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Abstract 
 
 

This thesis has shown that the development of the instrumentation necessary to 

provide in-situ thermal imaging for the determination of homogeneity of concrete is 

theoretically sound.   

  

Drilled shafts are large diameter underground cast-in-place columns that 

necessarily rely on sound integrity to properly withstand imposed loadings. As a by-

product of the most common construction techniques, the entire process is often 

completely blind whereby the excavation and concreting processes are conducted beneath 

the surface of the water table (or slurry level). This results in an inability to inspect the 

final product and in many cases allows anomalous inclusions (soil cave-ins, slurry 

pockets, etc) to go undetected especially when they are formed outside the steel 

reinforcing cage. 

 

In an effort to gain verification of the as-built, below ground structure, numerous 

non-destructive test methods have been devised. Each of these methods have merits and 

drawbacks with regards to the full extent of the tested concrete volume. To further this 

cause, a new methodology was developed that uses the energy from hydrating concrete to 

assess the presence or absence of an intact concrete. Therein, the temperature generated 



xvi 
 

by the curing concrete can be measured and correlated to the probable dimensions of the 

drilled shaft.  

This thesis outlines the development of the instrumentation capable of making in-

situ temperature measurement of drilled shafts to assure the homogeneity of concrete is 

acceptable.  To that end, several configurations of instrumentation approach were tested 

on varying scales from small lab specimens to full-size field constructed drilled shafts.  

The bulk of this work was conducted several years before the completion of the thesis 

and has the benefit of noting later developments. For instance, this study was used to seed 

future research and led to subsequent FDOT and WSDOT (Washington State DOT) 

funded research for the express purpose of identifying capabilities of thermal testing in 

those states. Likewise, present day practice and use of the approach has also been 

documented. 
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Chapter 1 - Introduction 
 
 

Drilled shafts are large diameter concrete foundations that are preferable in many 

applications over driven pile foundations due to their enormous axial and lateral 

(moment) capacities.  In fact, they are the preferred foundation for bridges due to their 

large capacities.  Bridge foundations must be designed and constructed to resist extreme 

event loads such as ship or barge impact.   For example, it can be shown that six (6) 7’-0” 

diameter drilled shafts have an equivalent lateral capacity to 50 – 80 driven prestressed 

piles.    However, the disadvantages of drilled shafts over driven foundations include the 

inability to visually inspect the final structural product and a reduction in redundancy.  

Both of these disadvantages have led the author to investigate new technology which 

utilizes the inherent heat production in mass concrete elements to scan newly completed 

drilled shafts for defects and determine their integrity thus improving the overall safety 

and eventually reducing the overall costs of drilled shaft foundations. 

 

 

1.1 Background 
 

Resistance factors, typically referred to as Φ factors, are used in the design of 

structural and foundation elements to account for as-constructed unknown factors.  These 

factors may include: variability in constructed dimensions, material strengths and 
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properties, and soil conditions.  Drilled shafts are governed by geotechnical and structural 

capacity as well as the associated resistance factors as shown in the following equations: 

 

OR 

 

 

Therein, PUgeo and PUstr are computed from two different failure modes but both 

must be satisfied.  A problem arises, however, when FstrPNstr represents the capacity 

below ground where visual inspection cannot be provided. Presently, both above and 

below ground structures receive the same structural considerations and the same 

resistance factor is used for both.   This assumption may in fact lead to an over estimation 

of the foundation integrity / capacity, leading to a catastrophic failure of the foundation 

system.   

 

The resistance factors applied to the structure of a drilled shaft is based on the Φ 

factors for a column which are 0.85 compression and 0.90 for bending (ACI, AASHTO 

2010).  These Φ factors are assuming adequate quality control which cannot be achieved 

in the “Blind Construction” of a drilled shaft.  Figure 1.1 is an example of a drilled shaft 

which shows a significant defect near the surface where the need for structural capacity is 

at the highest.   
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Figure 1.1 - Drilled shaft with absent concrete 

 

Even where the entire section is in place, it has been shown that load test failures 

may in some cases be the result of structural failure (Figure 1.2). 

 

Figure 1.2 - Concrete failure at top of drilled shaft during load test (Left), concrete failure 
at top of drilled shaft during load test (Right) (Stokes, 2007) 

 
As shown in Table 1.1, current AASHTO Standards set resistance factors based 

on geotechnical testing and type of construction (AASHTO, 2010).   
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Table 1.1 - Resistance factors for driven piles and drilled shafts (AASHTO, 2010) 

Type of Foundation Resistance Factor Range 

Driven Piles 0.10 – 0.90  

Drilled Shafts 0.35 – 0.7 

 

Although these factors also address unknowns in geotechnical materials, the 

disparity between above and below ground conditions should be reflected by a change in 

the resistance factor or the quality assurance should be assured below ground.  Currently 

accepted methods for evaluating the integrity of drilled shafts have been shown to be 

ineffective in providing a full picture of the actual as-built condition of the shaft.  Some 

testing methods are effective at evaluating the core of the shaft while others are limited to 

only the proximity of access tubes, which are used to insert test equipment.  This thesis 

focuses on an alternative means to provide increased inspection for drilled shafts (id est 

underground concrete columns). 
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1.2 Organization of Thesis 
 

 

This thesis is organized into five chapters describing the background, testing, 

results, and finally applications of the thesis findings with conclusions.  

 

Chapter two outlines the current state of drilled shaft and mass concrete integrity 

testing and includes in depth discussions about the currently most used testing methods.  

The chapter also discusses the pros and cons of each of the testing methods.  The chapter 

concludes with the shortcomings of the current technology and emphasizes the need to 

develop a better testing method.  

 

Chapter three focuses on the history of basic theories utilized in the development 

of a deep thermal infrared instrument.  These include but are not limited to the genesis of 

the idea of using temperature as a means to determine the integrity of mass concrete 

elements and the history of temperature measurement and infrared technology.     This 

chapter concludes with discussions about why infrared was chosen as the preferred 

method to measure the temperature of deep mass concrete.  

 

Chapter four provides an overview and examines several different variations or 

generations of the thermal profiling instrumentation set-up and sample lab scale tests 

associated with each.  Chapter four also contains discussions about the pros and cons of 

each instrumentation set-up and what improvements should be made for the ensuing 

generation.  The chapter concludes with descriptions of an acceptable instrumentation 
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configuration and software development that can be utilized on a production basis in full 

scale operations.  

 

Chapter five discusses a series of full scale tests that were completed on test 

drilled shafts in conjunction with Auburn University close to the Auburn campus in 

Alabama.  This chapter concludes with discussions of the successes and shortcomings of 

the full scale tests in Auburn and makes recommendation on future improvements that 

could be made to the instrumentation and the process.      

 

Chapter six concludes the thesis by summarizing the results and discussing some 

of the lessons learned through failed tests.  This chapter concludes with information on 

the current state of Thermal Integrity Profiling Instrumentation.    
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Chapter 2 - The State of Drilled Shaft Integrity Testing 
 
 

This chapter discusses the current state of drilled shaft and mass concrete integrity 

testing and includes in depth discussions about the most currently used testing methods.  

The chapter also discusses the pros and cons of each of the testing methods.  The chapter 

concludes with the shortcomings of the current technology and emphasizes the need to 

develop a better testing method.  

 

 

2.1 Introduction 
 

The design of structural elements, including mass foundations, assures that the 

resistance of a specific structural element exceeds the Ultimate, Serviceability, and 

Specific limit states with an acceptable factor of safety.  The magnitude of the factor of 

safety applied to a structural system has a direct correlation to the ability of the designer 

to verify the resistances from structural and geotechnical components.  It is then verified 

that these resistances exceed the direct load effects.  The factor of safety also has a direct 

effect on the overall size and cost of any structural system.   

 

In the case of super structure members such as bridge girders, the inspection 

process can be straightforward, since the structural elements are easily inspected during 

manufacturing, shipping and installation, yielding an efficient system that accomplishes 
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the required task with little waste.  However, substructure elements, such as drilled 

concrete shaft foundations, do not have the same liberties of inspection as the 

aforementioned superstructure counterparts. Therefore, several methods have been 

developed in an effort to determine the integrity of a completed drilled shaft.  The most 

widely accepted methods are described herein along with a synopsis of the underlying 

physical principles or science that these tests are founded on, along with a discussion of 

the pros and cons for each test. 

  

In general design procedures, it must be verified that the resistances from 

structural components exceed the applied load effects.  Load effects are independent of 

the structural component and include, bending moment, shear, axial forces, torque, 

deflection and vibration.  The ability of a structural component to resist these effects is 

considered resistance.  Strength Reduction Factors, F, which are less than one and Load 

Factors, a, which are greater than one, are introduced to account for the fact that the 

resistance may be less and the loads may be higher than anticipated (MacGregor 1996).  

The resistance of structural members will most likely vary from the calculated strength 

because of variability in material strengths, differences in as-built dimensions from 

calculated dimensions, and effects of simplifying mathematical assumptions made during 

resistance calculations.    

 

Although drilled shaft capacity is closely linked to soil type, it has been long 

understood that construction practice can drastically affect anticipated capacity (Garbin 

2001).  Of particular concern is the loss of concrete cover around the steel reinforcement 
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which will result in corrosion of the reinforcement and a loss of strength.  Some 

inclusions or anomalies may be so severe that the foundation is considered unusable.   

 

Consider a drilled shaft that is constructed with bentonite slurry.  With current 

technology, it is not possible to determine exactly how well a drilled shaft has been 

constructed.  Foundations contribute a major part of the overall cost in most bridges, 

buildings and other structures that require mass concrete foundations to resist the applied 

loads.  Clearly, an increase in the ability to determine the integrity of a mass concrete 

foundation results in a direct reduction in the overall budget.  Many years of research and 

development have resulted in multiple different methods to determine the in-situ 

condition of drilled shafts or piles.   

 

This chapter will investigate the current state of integrity testing and conclude by 

identifying the present need for more robust capabilities. Methods can be categorized as 

either destructive or nondestructive and include: concrete coring, seismic echo, impulse 

response, cross-hole sonic logging, and density testing by downhole gamma-gamma 

logging. 

 

 

2.2 Cross-Hole Sonic Logging 
 

Cross-Hole Sonic Logging (CSL) is perhaps the most widely accepted and used 

integrity testing method. CSL evaluates the uniformity and continuity of concrete by 

recording the velocity of signals between preset tubes or pipes (Lew et al., 2002).  In fact, 
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Alabama Department of Transportation’s Specifications for Drilled Shaft Construction, 

Section 506 states in 506.10(a)1, “The nondestructive testing method called Crosshole 

Sonic Logging (CSL) shall be used on all production and trial drilled shafts (a) when 

constructed with the placement of concrete under water or through slurry, (b) when 

required by special note on the plans, (c) when full length temporary casing is used to 

prevent water from entering the shaft, or (d) when determined to be necessary by the 

Engineer” (ADOT 2001).  In short, whenever there is a high probability of the existence 

of drilled shaft inclusions or a problem, Alabama requires CSL testing be performed.  

Alabama does not recognize or accept any other testing methods in their state 

specifications. 

 

State of California Department of Transportation Engineering Service Center 

Division of Structures, California Foundation Manual and New York State Department 

of Transportation’s Drilled Shaft Inspector’s Guidelines have similar requirements to 

Alabama, but also allow the use of several different testing methods included in this 

chapter.    

 

The primary reason that CSL is so widely accepted is because it is an accurate, 

cost-effective, and nondestructive means of investigating the integrity of concrete in 

drilled shaft foundations (Branagan & Associates, Inc., 2002).   Furthermore, CSL 

determines the integrity and homogeneity of concrete in a deep foundation and identifies 

voids or soil intrusions within the structure.   
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The CSL Test includes placing a signal generator in one access tube and a signal 

receiver in another access tube.  The basic theory of the CSL test is that the arrival time 

of the compression wave signal from the generator to the receiver has a direct correlation 

to the density of the concrete.  The ultrasonic compression-wave (or p-wave) arrival time 

from a signal source in one tube is measured to a receiver in another tube.   The test is 

normally run from the bottom to the top with both the receiver and the generator at the 

same vertical elevation. Knowing the tube separation distance, the p-wave velocity is 

calculated for each depth.  The results are plotted as velocity with respect to depth 

(Branagan & Associates, Inc., 2002).   

 

P-wave velocities for sound concrete free of defects are typically around 3,700 

m/sec (12,000 ft/sec).  Decreases in sonic-velocity from the local velocity average, 

accompanied by decreases in signal energy, indicate a departure from uniform concrete 

quality. Soil intrusion, poor concrete mix quality, voids, or other non-cemented intrusive 

materials can cause a decrease in p-wave velocity (Branagan & Associates, Inc., 2002). 

Table 2.1 indicates the p-wave velocity in different mediums.  

 
Table 2.1 - P-wave velocities in different mediums 

 
Material Velocity (ft/sec) Velocity (km/sec) 

Sound Concrete 12,000 3.7 

Water 4,800 1.5 

Air 1,100 0.3 
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The equipment set up for the CSL test includes placing either steel or PVC access 

tubes around the perimeter of the reinforcement cage that is to be installed in the drilled 

shafts to be tested.  The number of tubes to be installed will depend on the diameter of 

the shaft and requirements of the state drilled shaft construction specifications where the 

shaft is being installed.  The general guide, however, is to install one access tube per foot 

of shaft diameter (or one tube per 0.25 to 0.30 meters of shaft diameter) (Branagan & 

Associates, Inc., 2002).  Alabama requires that 1.5 inch to 2.0 inch {40 mm to 50 mm} 

inside diameter schedule 40 steel pipe be used in quantities specified in Table 2.2. 

 
Table 2.2 - Minimum number of CSL tubes per shaft based on diameter (ADOT, 

2001) 
Shaft Diameter D Minimum Number of Tubes 

D≤ 4.5 feet {1372 mm} 4 

4.5 feet {1372 mm} <  D ≤ 5.5 feet {1676 mm} 5 

5.5 feet {1676 mm} < D ≤ 6.5 feet {1981 mm} 6 

6.5 feet {1981 mm} < D ≤ 7.5 feet {2286 mm} 7 

7.5 feet {2286 mm} < D ≤ 8.5 feet {2591 mm} 8 

8.5 feet {2591 mm} < D ≤ 9.0 feet {2743 mm} 9 

9.0 feet {2743 mm} < D ≤ 10.0 feet {3048 mm} 10 

10.0 feet {3048 mm} < D ≤ 11.0 feet {3353 mm} 11 

11.0 feet {3353 mm} < D ≤ 12.0 feet {3658 mm} 12 

 

Whether steel or PVC access tubes are used, the tubes must have end caps and 

couplers that are watertight.  The tube inside diameter must allow for the top-to-bottom 

free and unobstructed passage probes having dimensions of 1.41 inches diameter and 4 
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inches in length.  Prior to CSL testing, tubes should have removable caps at the surface to 

prevent foreign material which could obstruct the tube (Branagan & Associates, Inc., 

2002).  The access tubes are filled with potable water prior to testing.  The water provides 

a medium from which the p-wave signal can be transmitted and received inside the access 

tube.   

 

Another consideration for assuring the accuracy and reliability of the test is de-

bonding. De-bonding occurs when the concrete loses bond with the surface of the access 

tube.  This loss of bonding means that an air space has developed between the surface of 

the pipe and the concrete.  This space will produce false and attenuated signals.  To help 

curb this problem, the tube surface shall be clean and free from contamination and the 

test should be completed with the specified time after concrete placement.  Shrinkage of 

concrete increases with time and is a major cause of de-bonding.   PVC tubes cost less 

than steel but tend to de-bond more rapidly from concrete than steel tubes.  Therefore, 

when PVC tubes are used they shall be roughened by abrasion prior to installation 

(Branagan & Associates, Inc., 2002).  Table 2.3 indicates the approximate time window 

for acquiring optimal CSL data. 
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Table 2.3 - Approximate time window for acquiring optimal CSL data 

Tube Composition Tube ID (inches)
Approximate Time Window for

Acquiring Optimal CSL Data 

Schedule 40  

Black Steel 
1.5 to 2.0 24 hours up to 45 days 

Schedule 40 

PVC 
1.5 to 2.0 24 hours up to 10 days 

 

The installation of access tubes shall in general terms follow the following 

procedures: 

 

1. Consult with the project engineer and project specifications to verify: the type of 

tubes to be used, the quantity to be installed per shaft, required tube dimensions, 

and the method of tube installation (Branagan & Associates, Inc., 2002).  For 

example, Alabama specifications require that, “The tubes shall be installed in 

each shaft in a regular, symmetric pattern such that each tube is equally spaced 

from the others around the perimeter of the cage.  The Contractor shall submit to 

the testing organization his selection of tube size, along with his proposed method 

to install the tubes, prior to construction.” (ADOT, 2001)  

  

2. Watertight caps shall be placed on the bottom and the top of the tubes.  In 

addition, any couple used to make full-length tubes shall be watertight.  Butt 

welding of steel tube couplings and the use of tape to wrap pipes is not permitted.  
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In addition, if PVC pipe is used, couplers shall be threaded or glued (Branagan & 

Associates, Inc., 2002).   

 

3. Access tubes shall be attached to the interior of the reinforcing cage with wire ties 

at regular intervals along the length of the shaft, for example every three feet.  

Tubes shall be secured to maintain vertical and parallel alignment during cage 

lifting, lowering and concrete placement.  Tubes that are not vertical and parallel 

can adversely affect the outcome of a CSL test (Branagan & Associates, Inc., 

2002).  In addition, care shall be taken during reinforcement installation 

operations in the drilled shaft hole so as to not damage the tubes (ADOT, 2001). 

 

4. In order to include the toe of the shaft in the testing, the access tubes shall be 

installed such that their bottoms are close to the bottom of drilled shaft.  

Generally, tubes are placed within six inches of the toe of the shaft.  Tubes are 

also extended two to three feet above what will be the top of the concrete shaft 

(Branagan & Associates, Inc., 2002). 

 

5. The tubes must be filled with clean water as soon as possible after the 

reinforcement cage is set; in no case shall the tubes remain dry for more than one 

hour after concrete placement. The addition of the water to the tubes helps prevent 

the tubes from de-bonding.  The tubes shall be capped or plugged immediately 

after being filled with water to prevent debris from entering into the tubes 

(Branagan & Associates, Inc., 2002). 
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6. Alabama Specifications require, “The pipe caps or plugs shall not be removed 

until the concrete in the shaft has set.  Care shall be exercised in the removal of 

caps or plugs from the pipes after installation so as not to apply excess torque, 

hammering, or other stresses which could break the bond between the tubes and 

the concrete.”(ADOT 2001).  

 

7. Normally, after the CSL test is completed, the access holes are evacuated and 

filled with an approved grout mix.  

 

 When determining how soon after concrete placement a CSL Test can be 

completed, consideration must be given to how much the concrete has cured.  In no case 

shall a test be considered accurate if completed within twenty-four hours after concrete 

placement.  This time may need to be extended for larger diameter shafts or if mix 

designs that retard concrete setting is used (Branagan & Associates, Inc., 2002). In the 

interest of correcting any problems found in a timely manner and before the concrete is 

fully cured, the shaft should be tested as soon as possible after it has adequately cured.   

 

The procedure for completing a CSL test includes the following: 

 

1. The top and bottom elevations for the shaft being tested, or the shaft length, are 

recorded.  The concrete placement date is recorded along with any other pertinent 

data regarding unusual observations or events that occurred during construction of 

the concrete shaft (Branagan & Associates, Inc., 2002). 
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2. A sketch of the shaft under consideration is made and the access tubes are 

assigned a reference number.  This reference number is recorded on the sketch 

along with precise distance measurement between all of the tube pairs and the 

tube stick-ups above the concrete surface.  Since the theory behind the CSL Test 

is based on the p-wave arrival time, exact determination of the distance between 

tube pairs is necessary to accurately analyze a test (Branagan & Associates, Inc., 

2002). 

 

3. A tripod with the depth wheel is set up over top of the foundation to be tested and 

cabling is spooled from the computer, over the depth wheel to each of the source 

and receiver probes (Branagan & Associates, Inc., 2002).  The cabling along with 

a cable from the depth wheel runs back to the microprocessor based data 

acquisition unit.  These cables provide both excitation and signal return for the 

hydrophone, receiver, and depth encoder. 

 

 The data from a CSL test is typically presented to the client in the form of a 

written report which in addition to general descriptive information, includes the following 

specific information.  Conclusions are based on transit times and signal strength between 

each tube pair tested.   

 

1. Interpretation of velocity profile logs with regard to the integrity of the concrete. 

  

2. Identification of the depth interval and tube pair that includes a sonic anomaly. 
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3. Profiles of the initial acoustic pulse arrival time versus depth and pulse energy / 

amplitude versus depth (Branagan & Associates, Inc., 2002).  

 

Acceptance criteria vary by state.  For example, Florida Department of 

Transportation (FDOT) guidelines define acceptance solely on a 30% velocity reduction 

threshold. (FDOT, 2010)  

 

Washington State Department of Transportation (WSDOT) defines their use and 

interpolation with more detail: 

  

“If it is determined, from CSL Testing that a drilled shaft contains an 
anomaly, several methods may be used to try and isolate the location of the 
anomaly.  Ultimately, however, the drilled shaft will likely need to be cored 
to determine whether or not if the shaft is acceptable.  

 

CROSSHOLE SONIC LOGGING (CSL) CONDITION RATING 
CRITERIA 

 
This CSL rating criteria categorizes abrupt increases in the signal arrival 

times that correspond to decreases in the average signal velocity of the 
material between the test probes. These abrupt changes are a result of one 
or more of the following conditions: (1) increased signal path length as the 
signal travels around the flaw; (2) a decrease in the signal velocity as it 
travels through a lower velocity material such as weaker concrete, 
honeycomb, or contaminated concrete; and (3) deterioration of the bond 
between the access tube and the concrete. Of the three conditions that cause 
increased signal arrival times, the deterioration of the tube-concrete bond is 
the least common and is typically identified only in the upper portions of 
shafts and in shafts with PVC access tubes.  

 
This CSL rating criteria is based on the percentage reduction of the signal 

velocity through the flawed area versus the signal velocity through sound 
material immediately adjacent to the flaw. This ensures that the signal 
arrival times used to calculate the signal velocities are measured through 
the same amount of material, which is very important if a tube pair is not 
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evenly spaced from shaft top to bottom. This CSL criteria is in large part 
based on experience with ultrasonic pulse velocity measurements of 
structural concrete, which uses signal velocities to determine material 
integrity. However, the calculated signal velocities in the CSL testing are 
reduced by inherent delays due to the slower water, and PVC tube 
materials. This signal delay yields artificially lower signal velocity for path 
lengths of 24 inches or less. In contrast, the percentage change in signal 
velocity between good and flawed material is unaffected by inherent signal 
delays.” (WSDOT, 2009) 

 
 Additionally, as shown in Table 2.4, WSDOT publishes the following general 

rating criteria for CSL results. 

Table 2.4 - WSDOT general rating criteria for CSL results (WSDOT, 2009) 
Rating NDT Results 
indicative of Drilled 
Shaft Concrete 
Condition Good (G) 

No signal distortion and decrease in 
signal velocity of 10% or less is 
indicative of good quality concrete. 

Questionable (Q) Minor signal distortion and a lower 
signal amplitude with a decrease in 
signal velocity between 10% and 20%. 
Results indicative of minor 
contamination or intrusion and/or 
questionable quality concrete. 
Investigation of anomalies with 10% to 
15% reductions in velocity have 
identified sound concrete at some sites 
and flawed concrete at others. 

Poor/Defect (P/D) Severe signal distortion and much 
lower signal amplitude with a decrease 
in signal velocity of 20% or more. 
Results indicative of water slurry 
contamination or soil intrusion and/or 
poor quality concrete. 
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Table 2.4 Continued 

No Signal (NS) No signal was received. Highly 
probable that a soil intrusion or other 
severe defect has absorbed the signal 
(assumes good bonding of the tube-
concrete interface). If PVC tubes are 
used or if measurement is from near the 
shaft top the tube-concrete bonding is 
more suspect. 

Water (W) A measured signal velocity of 
nominally V = 4,800 to 5,000 fps. This is 
indicative of a water intrusion or of a 
water filled gravel intrusion with few or 
no fines present. 

 

 As shown in Figure 2.1, typical data presentation for CSL includes first arrival 

time (FAT) plot (left), velocity plot (center) and waterfall plot (right).  The CSL test 

indicates the presence of poor concrete at the top of the shaft.  
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Figure 2.1 - Data presentation from a CSL test 
 

The biggest limitation to CSL is that, as shown in Figure 2.2, CSL only has the 

ability to sample material velocities between pairs of access tubes.  Therefore, it will only 

detect a shaft defect if it is within the rebar cage.  It cannot detect defects outside of the 

rebar cage, which due to the need to protect the reinforcement and being the areas of 

highest stress are most critical to the structural performance of the drilled shaft. 
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Figure 2.2 - Limited sampling area for CSL 
 

 

2.3 Crosshole Tomography  
 

Several variations of the CSL test have been developed using the same 

instrumentation as the CSL.  These tests are typically employed after CSL has determined 

the high probability of an anomaly in a given area and are applied to improve location 

accuracy and to further characterize the feature.  The additional information is utilized to 

reduce the uncertainty in coring and remediating the defective area (Branagan & 

Associates, Inc., 2002).  One of the most popular of these variations is Crosshole 

Tomography.   

 

A Crosshole Tomography test is completed by leaving the receiver in a fixed 

position and raising the hydrophone while the hydrophone is producing sonic pulses.  As 

in the CSL Test, the arrival times from the hydrophone to the receiver are recorded.  This 
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procedure produces ray-paths that allow for three dimensional modeling of the suspect 

shaft.  Figure 2.3 shows a velocity tomogram on a drilled shaft of a highway bridge.  The 

anomalous zone in Figure 2.3 is the slow-velocity area which lies in between 31 and 33 

feet below the top of the concrete near tube one.  Note that the center of the shaft is sound 

(Olson, 2003). 

 
Figure 2.3 - A Velocity tomogram on a drilled shaft of a highway bridge showing an 

anomalous zone between 31 and 33 feet 
 

 

2.4 Single Hole Sonic Logging 
 

 Another variant of CSL testing is Single Hole Sonic Logging (SSL) which has 

some capabilities of assessing concrete quality outside of the reinforcing cage.  As the 

name implies, both the source and the receiver are placed in a single access hole and 

travel in a vertical direction, as shown in Figure 2.2.    The disadvantage of SSL as 
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compared to CSL is that the method is limited to only detecting defects directly adjacent 

to the tube; the advantage is that unlike CSL, it may have the ability to detect a defect 

that is outside of the rebar cage (Paikowsky et al, 2000).  Another advantage of SSL is 

due to the necessity for only one access tube to be utilized during the SSL test and the 

high cost of concrete coring, it is often the preferred method utilized when coring of a 

shaft is necessary to further investigate a suspected defect or anomaly.  SSL is also 

utilized in smaller diameter shafts and augercast piles (~24” diameter) in which the 

insertion of multiple access tubes for CSL testing is not practical. 

 

As with CSL, a strong signal and an arrival time that is comparable to the wave 

speed of good concrete is indicative of locally sound concrete, free of defects.  

Alternatively, a slow arrival time is indication that a defect may be present in the area of 

the access tube.  Figure 2.4, right side represents a sample test utilizing SSL testing in 

which the dark lines shown on the time record represent arrivals of signal energy plotted 

on a vertical scale of depth vs. time on the horizontal axis.  The absence of lines in the 5 

to 6 m depth interval are delayed arrival times and a weak signal which may be indicators 

of a defect in the pile. (FHWA, 2007)    
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Figure 2.4 - Single hole sonic logging test set-up (left), example test results from SSL 
showing possible anomaly (right) (FHWA, 2007) 

 

As will be discussed later, similar to gamma-gamma logging, SSL has a limited 

cross sectional area in which it can detect defects.  By placing the transmitter and the 

receiver close together, the resolution is improved; however the detectible cross sectional 

area is diminished.  Conversely, by spreading the transmitter and receiver apart, the 

detectible cross sectional area is increased, but the resolution is diminished.  It has been 

shown that if a defect is not directly adjacent to the access tube, it may need to be in 
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excess of 25% of the cross sectional area before being detected by SSL.  All applications 

involving SSL are only qualitative and cannot define physical meaning to an anomaly.     

 

 

2.5 Sonic Echo Test 
 

Sonic Echo Tests (SET) are probably the most un-intrusive and economical of any 

of the integrity tests and do not require any access holes in the drilled shaft being 

inspected.  The SET is based on stress wave theory and is part of a family of tests 

referred to as surface reflection methods.  

 

In surface reflection tests, a stress wave is introduced into the structure by a 

hammer impact.  The hammer generates stress waves which cause physical distortion to 

the media in which the impact occurred.  Four types of waves of concern are generated in 

the medium due to the impact (Finno & Prommer, 1994):  

 

1. Compression waves which are also referred to as primary, “bar”, or longitudinal 

waves.   

 

2. Shear waves which are also referred to as secondary or transverse waves. 

 

3. Surfaces waves or Rayleigh waves.  

 

4. Stoneley waves or tube wave. 
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The basis behind integrity tests that are developed from stress wave theory is that 

the time that it takes for a compressional stress wave to be generated at the surface, 

reflected off the toe, and return to the surface is based on the velocity of the wave and the 

length of the shaft.  Any variation from the expected arrival time may be indicative of a 

problem. 

 

The compression wave is the primary concern for SET and is the fastest wave 

traveling 13,100 ft/s (4,000 m/s) in solid high quality concrete.  The compression wave 

causes the material being tested to alternate compressional and tensile stresses by the 

wave (Blitz 1971).  At the point of the hammer impact, a compression zone is produced 

which results in the formation of a compressional stress wave.  The compressional wave 

travels down the shaft at a velocity (vc)  with a force (F).  Shaft impedance (Z) is a ratio 

of vc and F.  It is also a function of the elastic modulus, E, cross-sectional area, A, and 

compression wave velocity (vc) of the shaft (Finno & Prommer, 1994). 

 

A change in the cross-sectional area of the drilled shaft and/or a change in the 

density of the medium (concrete) will cause a change in impedance.  Part of the stress 

wave reflects back up the shaft whenever the wave encounters a change in impedance.   

The remainder of the stress wave continues on down the length of the shaft.  A 

compression or negative wave is reflected back up the shaft whenever an increase in 

cross-section or density occurs.  A tensile or positive wave is reflected back up the shaft 

with a reduction in cross-sectional area or concrete density.  In the absence of changes in 
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impedance, the stress wave travels until it is reflected off the pile toe (Finno & Prommer, 

1994). 

 

Part of the impact energy is radiated into the soil (Paquet, 1968).  Attenuation of 

the stress waves are continually occurring as they travel down the shaft as a function of 

the concrete quality, soil conditions surrounding the shaft, and the shaft cross-sectional 

area.  Stress wave attenuation will be greater for shafts placed in stiff soil than for those 

placed in loose soil.  In addition, wave attenuation will be less for shafts with larger 

cross-sectional areas than for those with smaller cross-sectional areas.  “In general, 

scattering of the signal occurs due to changes in the material the wave is propagating 

through, especially at boundaries where there are abrupt changes in the impedance 

between two materials.” (Finno & Prommer, 1994) 

 

The Dutch first used the Sonic Echo Test in the 1970’s as a means to provide 

quality control for driven precast concrete piles.  The SET uses a compression wave 

generated at the surface and propagating down the shaft until it reflects off the toe of the 

shaft.  As stated above, if the shaft contains irregularities in the concrete, such as cracks, 

a change in cross sectional area, or poor concrete quality, reflections will occur which 

indicate the presence of an irregularity.  Discontinuities can be severe enough to prevent 

the stress wave from reaching the toe altogether (Finno & Prommer, 1994). 

 

Test Equipment for the SET includes a hammer with a triggering device 

combined with a vertical geophone attached to a laptop or portable computer.  Geophones 
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are low frequency transducers that can measure frequencies below 2 kHz.  As an 

alternate, accelerometers may be used in lieu of the geophone.  However, since the 

system measures arrival times, additional signal processing must be performed to convert 

to velocity or using wave speed of the “known” material, the location of reflective 

boundaries can be determined.  The laptop typically contains a data acquisition card in 

combination with a signal conditioning unit. 

 

In order to perform a SET, two areas on the top of the concrete shaft being tested 

are cleaned and ground to a smooth surface.  Surface shall be free of loose debris and 

even.  One area is cleaned close to the center of the shaft.  This location is the impact 

point for the hammer.  The second location shall be near the perimeter, but within the 

rebar cage.  The geophone is fixed to the concrete surface with a coupling agent.  Next, 

the shaft being tested is struck with the hammer at the area close to the center of the shaft.  

Once the hammer impacts the top of the shaft, the portable computer is triggered and 

records the response of the top of the shaft via the geophone or the accelerometer.  

Background noise can be eliminated by performing the test several times and comparing 

and averaging the results (Finno & Prommer, 1994). 

 

The results of the SET indicating a sound shaft show compression wave reflection 

planes at the concrete-soil interface at the toe and the concrete-air interface at the top. 

Almost all of the energy is reflected back down the shaft for the top interface, while some 

of the energy is lost at the toe of soil to concrete interface.  Defects in the shaft will also 

cause the waves to reflect.  The waves will continue to reflect back and forth between the 
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reflection points until full attenuation has occurred.  The depth of the reflector is 

determined by the following equation: 

Z=VbDt/2 

where z is the depth to the reflector, either a defect or the toe of the shaft, Vb is the 

longitudinal wave velocity in concrete, and Dt is the travel time of the reflected wave.  A 

(2) is placed in the numerator of the equation since Dt is the time it takes for the 

compression wave to travel from the surface to the reflector and back to the surface.  

Since the velocity of the compression wave varies with concrete quality, it is preferable 

to determine Vb   based on concrete samples that are representative of the in-situ concrete 

in the drilled shaft being tested. As a less accurate method it is reasonable to use the 

values indicated in Table 2.5.  These values differ from source to source.  Therefore, the 

values indicated are based on ultrasonic pulse velocity measurements represented by an 

infinite concrete medium as reported by Hearne et al. (1981).  These values are reduced 

5%, assuming a Poisson’s ratio 0.2 for concrete since Hearne et al’s experiments were 

based on an infinite concrete medium. 

Table 2.5 - Compression wave velocity in concrete 
Compression wave velocity, feet per 

second (meters per second) 

General concrete quality 

Above 14,200 (4,300) Excellent 

11,400 – 14,200 (3,500 – 4,300) Good 

9,500 – 11,400 (2,900 – 3,500) Questionable 

6,700 – 9,500 (2,000 – 2,900) Poor 

Below 6,700 (2,000) Very Poor 
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 Figure 2.5 shows the typical test set-up and sample test results from a SET test. 

Figure 2.5 - Typical SET test set up / theory (left), sample of data (right) (FHWA, 2009) 
 

According to a report published by the FHWA (Baker et al. 1993), concrete with a 

compressive strength of approximately 4,300 to 5,100 psi  (30 to 35 N/mm2) has a Vc  

between 12,500 and 13,100 ft/s (Finno & Prommer, 1994).   

 

In order to interpret a SET both the concrete quality and the shaft length must be 

known or assumed.  Given these parameters, it will be easy to determine if a reflection in 

the signal is either the toe or an anomaly present in the shaft (Finno & Prommer, 1994).   

 

Exponential amplification is used to progressively increase the amplitude of the 

reflected signal in a similar manner to its attenuation.  This amplification process is 

required because the impact at the top of the shaft produces small strains relative to those 

required to mobilize the shaft capacity.    However, it is important to verify that the 

reflection is being amplified and not just background noise (Finno & Prommer, 1994).   
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There is a limiting length / diameter (L/D) ration beyond which all wave energy is 

dissipated and no toe response can be detected (Baker et al., 1993)  The limiting L/D ratio 

varies depending on the dampening and signal loss into adjacent soils.  With soft soil 

deposits such as silts, good results can be obtained for L/D ratios of 50:1 (Davis and 

Robertson, 1976).  For stiff clays, this ratio is reduced to 30:1 (Hearne et al, 1981).  In 

cases where the L/D ratio is exceeded, the only useful information that can be obtained 

from a SET test is the presence or absence of anomalies in the upper portion of the shaft 

(Finno & Prommer, 1994). 

 

As with the CSL Test, several variations of the SET have been developed in 

which a receiver is embedded along the shaft or at the shaft toe.  The additional points 

allow direct measurement of the compression wave arrival time and permit more accurate 

velocity calculations.  This method also allows for shafts that exceed the L/D ratio to be 

tested with a higher level of confidence.   However, this method drastically increases the 

cost of the SET since care must be given to the installation of the embedded receivers and 

the receivers are not able to be retrieved and used again.  They become a permanent part 

of the shaft (Finno & Prommer, 1994). 

 

The sonic echo test is only useful for determining the linear continuity of a shaft.  

Its limitations include but are not limited to (Finno & Prommer, 1994): 

 

1. SET provides no quantifiable information about the shaft’s cross-sectional area or 

behavior of the shaft under load.   
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2. Unless the test utilizes embedded receivers, only the uppermost defect can be 

readily detected.  Any defects occurring below the initial defect may not receive 

adequate signal to return a reflection that will not be masked out by noise. 

 

3. The hammer impact generates Rayleigh waves which propagate along the shaft 

surface and cause a noisy environment.  This problem is especially troublesome in 

the top 10 feet of a shaft.   

 

4. Defects located near the toe of the shaft can be difficult to identify since 

reflections from anomalies close to the toe may easily be misinterpreted as the toe 

and not an anomaly. 

 

5. Since a reduction in concrete shaft cross sectional area, or necking, and poor 

concrete quality both produce reductions in impedance, it is not possible to 

determine them apart.  In addition, a gradual decrease in cross sectional area may 

not generate a reflection at all. 

 

6. A layer of stiff soil may cause reflections similar to those of increases in 

impedance, increasing the uncertainty of the shaft integrity. 

 

7. An increase in cross sectional area will actually increase the shaft capacity and is 

generally not viewed as a problem.  However, the reflection from the bulb will be 

similar to that of a defective shaft. 
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8. Utilizing higher frequency waves would improve the accuracy of the test.  

However the wavelength used for the SET cannot decrease much less than the 

diameter of the shaft.  If shorter wavelengths are used, the shaft will behave as an 

elastic medium where compression waves will occur from all shaft boundaries 

and not like a rod type structure. 

 

9. In stiff soils, wave attenuation can be a problem.  The more similarity between the 

toe bearing material and the concrete, the lower the amplitude toe reflection.   

Therefore, shaft with end bearing in rock have very poor toe reflections. 

 

10. Anomalies located below other anomalies may not be detectible.   

 

It has been summarized in Finno & Prommer, 1994 that, “The method (SET) is 

best suited for checking precast and permanently cased piles due to the straight-sided 

shafts these structures provide.  It is not as suitable for drilled shafts due to variations in 

cross-section that often exist causing multiple reflections.” 

 

Several case studies of SET are discussed in (Finno & Prommer, 1994).  They are 

summarized below as supporting documentation to the information contained here 

within:  

 

1. SET tests were performed on 1.6 ft (0.5 m) diameter augur cast friction piles with 

lengths ranging from 20 to 59 ft (6 to 18m) and founded in stiff and very stiff clay 
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layers.  As expected, the piles with a L/D ratio of 32:1 and 36:1 did not produce a 

toe reflection.  Since the length of the piles were known, allowing for the 

determination of the compression wave velocity, it was also possible to determine 

that one pile had poor or questionable concrete quality. Specifically, the 

compression wave velocity in this pile was Vc = 11,200 ft/s (3,400 m/s).  The 

remaining piles had Vc ranging from 11,500 to 13,100 ft/s. 

 

2. As part of a FHWA test program for evaluating drilled shafts for bridge 

foundations, a test section was constructed at Texas A & M University with nine 

shafts.  These shafts varied in length from 34 to 79 feet with 3 feet of stick-up 

above the ground level.  All of the shafts were constructed with a 36 inch 

diameter cross section (L/D ratio from 11:1 to 26:1).  The integrity tests 

performed on the piles included the Impulse Response, Sonic Logging, and Sonic 

Echo.  In this study, several shafts were constructed with both planned and 

unplanned defects.  In conclusion of this test, SET was able to determine some 

areas where defects occurred.  However, the results also showed the limits of the 

sonic echo test and in one case, “…One could have been deceived into thinking 

that the reflection at 31 ft (9.4m) was the toe, if it was unknown that the shaft was 

79 ft (24.1 m) long” (Briaud et al, 2002).   

 

Clearly the SET method of integrity testing method can return some questionable 

results that may lead an engineer to falsely accept or deny the integrity of a test.  
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2.6 Impulse Response Test 
 

Another method that is based on the measurement of compression wave 

reflections is the Impulse Response Test (IRT).  This test is an extension of the vibration 

test, which was found to provide more information than the SET, particularly with the 

irregular profiles of drilled shafts.  In the IRT the head of the shaft is impacted with a 

hammer that induces transient vibrations with frequencies as high as 2,000 Hz.  The 

shafts response to these vibrations is measured in the time domain and the signal is 

digitally converted to the frequency domain for analysis (Finno & Prommer, 1994).   

 

The equipment set up for IRT is similar to SET except the impact hammer has a 

load cell that measures the impact force with time.  The hammer has the ability to 

generate transient vibrations up to 2,000 Hz.  A vertical geophone is triggered upon 

hammer impact and records the vibrations at the shaft head.  Both the hammer and the 

geophone are connected to a portable PC which is used for acquiring, analyzing and 

storing the data (Finno & Prommer, 1994). 

 

The testing procedure for IRT is identical to the SET.  However, it is critical that 

the hammer strikes the shaft head squarely to ensure proper force measurement (Finno & 

Prommer, 1994). 

 

Unlike SET, IRT provides a determination of the homogeneity of concrete in the 

shaft and measure of the shaft’s performance (Higgs and Robertson, 1979).  IRT provides 

a stiffness value of the shaft which has a direct correlation to the shaft’s performance.  In 
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addition, the length of the shafts may be determined from the IRT (Finno & Prommer, 

1994).  

 

Analysis of the results obtained from an IRT includes performing Fast Fourier 

Transform (FFT) on the force and velocity signals to convert them from the time to 

frequency domain.  Next, a plot of mobility versus frequency is obtained by dividing the 

velocity spectrum by the force spectrum.  The length of the shaft is calculated by 

measuring the frequency change between resonant peaks (Finno & Prommer, 1994).     

 

The low-strain dynamic stiffness (K’) can be calculated and correlated to the 

static stiffness. At low frequencies, the lack of internal effects causes the shaft/soil 

system to behave as a spring.  This behavior appears as a linear increase in amplitude of 

mobility from zero to the onset of resonance (Baer et al., 1993).  The commonly accepted 

dynamic stiffness value (K) provides a good indication of the low-strain, soil-foundation 

interaction.  For a rigid base, a high stiffness value will be calculated. For a compressible 

base, a low stiffness value will be calculated.  By comparing stiffness values for similar 

sized shafts, it can be determined which ones should be considered questionable.  Shafts 

founded in loose soil and shafts that have soil inclusions, necks, and breaks will have 

lower stiffness values than sound shafts founded in solid soils (Finno & Prommer, 1994). 

 

An evaluation of the shaft performance is made by calculating the Kmin and Kmax 

or the theoretical limiting values for dynamic stiffness and comparing them with the 

actual stiffness value.  In addition, the IRT provides a calculation of the theoretical mass 
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of the shaft which can be checked against field logs for a cross check on the amount of 

concrete used in the shaft (Finno & Prommer, 1994).   

 

It is easier to determine if a bulb or a neck has occurred with IRT than with SET.  

Stiffness values are lower than normal for necked shafts and higher than normal for shafts 

with bulbs.  In all, this method proves to be better for testing the integrity of drilled shafts 

than SET with some of the same limitations such as: 

 

1. This is a surface reflection method that relies on measuring reflected responses. 

 

2. There is a limiting L/D ratio based on the soil conditions. 

 

3. As the L/D ratio is approached, the curve will flatten out to where resonant peaks 

are not discernible. 

 

4. This method is subject to the problems associated with surface waves and there is 

a limit on the size of defects that can be detected. 

 

5. Only the top defect in a shaft can be detected, even if multiple defects exist. 

 

6. In order to interpret the results from a test either the concrete compression wave 

velocity or the shaft length must be known. 
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2.7 Gamma-Gamma Testing (GGT) or Gamma Density Logging (GDL) or Gamma-
Gamma Logging (GGL) 

 

Gamma-Gamma Testing (GGT) is an integrity testing method that is widely used 

and accepted by the California Department of Transportation (Caltrans).  It should be 

noted that this testing method is also referred to as Gamma Density Logging (GDL) or 

Gamma-Gamma Logging (GGL).  In GGT testing, a source of ionizing radiation 

(typically Cesium 137) and a Sodium Iodide crystal-photomultiplier detector are lowered 

down an access tube similar to CSL.  The probe that emits the radiation also contains but 

is separated by a shield from a gamma-ray detector.  The basic theory behind GGT is that 

the number of gamma-ray photons per unit of time that are reflected from the nuclei of 

the molecule of the material surrounding the tube, and return at a given energy level to 

the detector is related to the density of the material surrounding the tube. The remaining 

electrons either lose their energy or change direction in a manner called Compton 

scattering. The number of these interactions is directly related to the number of electrons 

in the surrounding material (Rucker & Verquer).   In short, GGT can detect significant 

reductions in localized density of the shaft concrete which would be indicative of a void 

or imperfection in the shaft (O’Neill & Reese 1999). GGT has an advantage over CSL in 

that it can detect reductions in concrete density outside of the reinforcement cage. 

 

The access tubes for GGT should be made of a material such as PVC that will 

allow the photons to pass through and reflect back through the wall of the tube.  Steel will 

cause a reduction zone for the GGT in that photons will be scattered at a greater rate by 

the dense steel tube as compared to the lower density of the PVC.  In general GGT will 
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not detect changes in density of the concrete outside of about a 3 to 4 1/2 inch radius 

from center of access tube when PVC is used and as stated, this detection zone is 

diminished when steel access tubes are used.  In order to accurately determine the density 

of the entire shaft, access tubes would need to be placed at 8 inches (200 mm) on center.  

Since this is not possible, an engineer must be content with having intermittent sampling 

of the concrete density around the perimeter of the cage (O’Neill & Reese 1999).  

Caltrans recommends that one access tube be used per foot of pile diameter (Lew et al 

2002).  This leaves a tube spacing of about 2.75 feet around the circumference of the 

cage. 

 

It is further recommended that the access tubes be placed at least 3 inches (76 

mm) away from any vertical reinforcement.  Since the vertical steel reinforcement is 

about 3 times denser than concrete, having the reinforcement too close the access tubes or 

varying the distance between the tubes and the reinforcement will cause false readings in 

the bulk density readings.  Furthermore, if the access tubes around the perimeter of the 

cage are not placed so that they have the same influence from the reinforcement, different 

tubes within the shaft cannot be compared (Speer, 1997).   

  

Due to the length of the gamma-gamma probe, vertical alignment of the access 

tubes must be maintained so that a 2 foot (0.6 m) long by 1.9 inch (48 mm) diameter rigid 

cylinder, called a dummy probe, be allowed to pass from the top to bottom of the tube 

(Speer, 1997).   Since radiation sources are subject to Nuclear Regulatory Commission 

(NCR) regulations which require special training and licensing for the handling and 
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transporting of the device, abandoning a lodged device and grouting it in place is not an 

option. During one well documented GGT, the ion transmitting probe was wedged in the 

inspection tube.  It took two weeks to remove the probe using special drilling and 

finishing tools (Lew et el 2002).  Access tubes that do not allow the dummy probe to pass 

must be core drilled to gain the necessary vertical alignment (Speer, 1997).  In addition, 

the process can be time consuming compared to other testing methods.   A typical 7 foot 

(2.1 m) diameter shaft with seven inspections tubes that is 60 feet (18 m) long will take 

eight hours to test.  

 

The standard GGT has a 1.87 inch (47 mm) diameter gamma-gamma probe with 

either a 10 or 100 millicurie Cs 137 source.  The probe is lowered down the access tube 

with a cable.  The probes are configured for the determination of density by backscatter.  

This method allows for the use of less powerful radioactive source.  Radiation is emitted 

from the source at the bottom of the probe.  The radiation is simultaneously absorbed and 

scattered by the concrete and reinforcement surrounding the inspection tube. The receiver 

at the top of the tube counts the reflected gamma rays over a time interval.  More gamma 

rays are counted in less dense material than in dense material (Speer, 1997).   

 

GGT data is processed by first plotting the gamma count rate versus time.  Next, 

this data is compared to all of the data for shafts in the same vicinity, using the same 

probe.  The data sets are reviewed and data that is insignificant and redundant is 

discarded.  The mean, mean minus two standard deviations and the mean minus three 
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standard deviations are plotted on the same graph.  Figure 2.6 shows the result of GGT 

that shows the effect of a necking defect (Speer, 1997).  

 

 

Figure 2.6 - GGT indicating necking of a drilled shaft 
 

Caltrans is typically considered to be the leading department of transportation in 

the development of testing methods and specifications related to GGT or in Caltrans case, 

GGL.   

 

Interpretation of the test results rely equally on experience, engineering judgment, 

and statistical analysis (Speer, 1997).  In any shaft, there is normally some variation in 

the density of normal concrete from different points in the shaft.  In general, if the bulk 

density of the concrete appears to drop below the mean minus three standard deviations 

line, these values are typically associated with an anomaly (O’Neill & Reese, 1999, 

Caltrans, 2006).  A standard statistical distribution curve showing the divisions of the 

standard deviations is shown in Figure 2.7.  There are several shortcomings associated 

with this approach: 

2σ 3σ
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Figure 2.7 - Statistical distribution “bell” curve used for interoperation of gamma-gamma 
data 

 
1. By basing the decision on whether an anomaly exists on statistical data, the 

presence of a large void may skew these results.  The presence of the void will 

cause the statistical mean and the standard deviation to be altered.   Caltrans and 

others attempt to correct for this shortcoming by utilizing 55 gallon drums filled 

with concrete of known density.  These drums are then utilized to calibrate 

between the interpreted concrete density and the recorded data (Caltrans, 2006). 

Again though, variations of reinforcement steel placement from the access tubes 

may provide improper results.  

 

2. Due to the limited cross sectional area of a drilled shaft that is actually covered by 

a GGT, extreme bulges, or inclusions on the center of the shaft may be missed.  

Specifically, only about 15% of coverage is provided on a 36 inch diameter shaft.  

This number drops to about 5% on a 10 foot diameter shaft.  
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3. As with most, if not all of the integrity testing methods, it is difficult, if not 

impossible, to determine the exact nature and full extent of potential anomalies 

without extracting the shaft.    

 

Figure 2.8 shows a sample of the equipment and test results from a GGL test.  As 

the data is often reviewed on the basis of statistics, it is possible for an entire tube to be 

surrounded by poor concrete and still be within the range of the statistical norm.  The 

data shown are side by side plots from the shaft tubes shown.  One could assume an 

average for the first tube and visually assess the quality of the concrete that is assumed to 

be good. The limits established by Caltrans are essential for proper evaluation.  
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Figure 2.8  - GGT Testing Equipment and Sample Test Results, equipment (top), sample 
GGT test showing anomaly in shaft (bottom), (Rucker & Verquer) 

 
 

  

AVG = Good 

Must Be Good 
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2.8 Concreteoscopy  
 

Concreteoscopy is a relatively new testing method that allows the integrity of the 

shaft to be checked real time.  In this testing method, clear, ½ inch diameter (12.7 mm) 

clear plastic tubes are attached to the rebar cage.   As the concrete is placed, a miniature 

television camera on a fiber-optic cable is used to view the concrete from within the 

tubes.  This test is similar to the GGT except that the results provide visual conffirmation 

as to the soundness of the concrete instead of relying on density monitoring.  As with 

GGT, Concreteoscopy is able to view only the material directly adjacent to the access 

tubes (O’Neill & Reese 1999).    

 

 

2.9 Parallel Seismic Integrity Testing 
 

Parallel Seismic Integrity Testing was developed in France in the 1970’s to 

evaluate the conditions of piles and drilled shafts under existing structures (Davis and 

Hertlein, 1993).  Clearly, if Parallel Seismic Integrity Testing can be utilized to determine 

the length and soundness of a drilled shaft, it can be used to determine the state of a 

freshly placed drilled shaft.  

 

The general procedure for the Parallel Seismic Integrity Test (PSIT) is that after 

the shaft construction is complete, a bore hole is drilled adjacent to and slightly deeper 

than the shaft being tested. Stress wave energy is generated on the surface of the structure 

by impacting it with a hammer and the arrival time of the compression wave is monitored 



47 
 

in the bore hole by means of a transducer known as a hydrophone. The tests are typically 

completed in increments of approximately 20 inches (50 cm) (Stain, 1987).  A profile of 

signals is built up for the entire length of the shaft.  Under good conditions, transmission 

distances up to 130 ft (40 m) are possible (Davis and Hertlein, 1993).  

 

As in the CSL test, the access tubes are filled with water.  As discussed in earlier 

testing methods, the stress waves generated on the surface due to the impact have a 

velocity that is directly proportional to the density of the medium in which they are 

propagating.  Therefore, the arrival times of the stress waves are proportional to the depth 

of the hydrophone.  A difference in the rate of the arrival time velocity with respect to 

depth indicates a change in the medium or the base of the shaft being tested (Finno & 

Prommer, 1994).   

 

The test equipment required for a PSIT includes an impulse hammer, a 

hydrophone receiver, and a data acquisition system that allows high speed sampling of 

the hydrophone.  In a typical arrangement, the data acquisition system is triggered when 

the impulse hammer strikes the pile or the shaft.  The hydrophone then records the arrival 

of the generated stress waves.  The hydrophone receiver must be capable of withstanding 

the hydrostatic pressure generated due to the head of the water column above.  This 

pressure can exceed 43 psi (196 kPa) at depth (Finno & Prommer, 1994). The data is 

collected by the acquisitions system, which typically consists of a data acquisition card in 

a portable computer, and may be analyzed on site.   
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The borehole should be made in the ground adjacent to the foundation being 

tested and slightly deeper.  To assure the correctness of the test, the boreholes must be 

parallel to and within 3 feet of the shaft wall.  If the shortest distance between the shaft 

and the borehole is not relatively constant, variations in arrival time will occur leading to 

false readings.  In addition, if the borehole is greater than three feet from the shaft wall, 

the signal will be affected due to attenuation and the non-homogeneity of the different 

soil layers.  Since compression waves are able to travel through fluids, water is added to 

the tubes to act as a coupling medium for the hydrophone receiver (Finno & Prommer, 

1994).    

 

This method of testing can also be accomplished by coring a hole in the suspect 

structure, filling with water, and performing the test as outlined above.  This test method 

is referred to as the downhole seismic method.  The arrival of the compression wave is 

critically refracted along the core hole wall at the propagation wave velocity of concrete 

(Davis and Hertlein, 1993). 

 

The test results and integrity are dependent on the ability to measure the direct 

arrival time of stress waves.  An anomaly in a drilled shaft will appear as an increase in 

the arrival time of the wave at the depth in which the anomaly occurs.  A test result for a 

continuous shaft without defects should contain a linear increase in arrival time with 

depth.  The toe of the shaft will also cause an increase in the wave arrival time, giving a 

clear indication of the location of the shaft toe.  (Finno & Prommer, 1994). 
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The downhole seismic test records a second wave in addition to the compression 

wave.  This second wave is known as the tube, hydo, or Stoneley wave.  The tube wave 

velocity is a function of tube diameter, roughness and the permeability of the material 

surrounding the hole.  The velocity of the tube wave is approximately 5,000 ft/s (1,500 

m/s) in cored concrete and its amplitude is much greater than that of the concrete 

compression wave (Davis and Hertlein, 1993). 

 

Tube waves are reflected from the ends of the core hole.  They are refracted at 

locations where the bulk elastic modules of concrete and the diameter of the core hole 

change.  The shape and the spectral content of the tube waves have a higher frequency 

and a shorter duration than the first direct waves.  Vertical receivers are generally used 

for recording Tube waves (Galperin, 1985).  Little has been studied about obtaining 

information from the tube wave, which theoretically should be able to yield information 

on the concrete quality (Finno & Prommer, 1994). 

 

All that can be determined from reviewing the results from either a parallel 

seismic or downhole test is that arrival time of the compression wave or tube wave has 

increased as a result of lower wave propagation velocity.  These changes can be caused 

by several factors including changes in concrete quality, cracks, soil inclusions and the 

toe of the shaft.  Therefore, it is difficult to determine the type of defect, if any exists, that 

has caused the change in the slope of the arrival time line.  This may lead to inconclusive 

results.  Another major disadvantage of the tests is the cost of coring and installing the 

access hole (Finno & Prommer, 1994). 
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In review of a case study as reported by (Finno & Prommer, 1994), two test piles 

were constructed at a research site in France by the CEBTP (Centre Expérimental 

ďÉtudes du Bâtiment et des Traveux Publics).  They were both 46 ft (14 m) long and 26 

inches (65 cm) in diameter.  One was continuous and the other had a break at 24.6 ft (7.5 

m).  Access tubes were installed adjacent to the shafts to a depth of 66 ft (20 m) to 

facilitate parallel seismic testing.  The sound shaft had a signal transmission time that 

increased linearly with depth down to the toe, proving continuality over the full length.  

The broken pile was linear down to 24.6 ft (7.5 m), but the arrival time increased 

significantly below this point.  For this shaft, it was known that the pile extended to 46 ft 

and had a break at 24.6 ft, but the test was unable to differentiate whether the break was 

in fact a defect or whether it was the pile toe (Stain, 1982).  

 

 

2.10 Conclusion 
 

When combining proper geotechnical monitoring and observation of the shaft 

installation with an integrity method, confirmation of the adequacy of a deep foundation 

system can be estimated (Lew et al., 2002).  However, each of the aforementioned testing 

methods contains an unacceptable level of uncertainty in their results.  In order to truly be 

effective, a new form of testing should be developed that allows for determination of the 

presence of anomalies as soon as possible after the concrete is placed in the shaft.  This 

thesis focuses on the feasibility of a new methodology that uses the hydration energy of 

curing concrete to assess the presence or absence of intact concrete.   
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Chapter 3 - History of the Basic Theories of Deep Thermal Infrared 
Instrumentation 

 
 
3.1 Introduction 
 

Circa 1970 – 1980 researchers at the University of South Florida, Department of 

Civil and Environmental Engineering, Tampa, FL, proposed the idea of measuring the 

soil temperature adjacent to a drilled shaft to determine the integrity of the shafts.   The 

theory was that temperature probes could be inserted adjacent to a newly placed drilled 

shaft to determine the effect of the cement heat of hydration on the surrounding soil.  A 

variation in the temperature in the surrounding soil may be evidence of a section of the 

shaft that is not uniform and therefore producing a variation in the thermal trace.  This 

initial theory was shelved because it was determined that it is not feasible to insert a 

thermal probe on the exterior and in the vicinity of a drilled shaft, mostly due to the 

drilled shafts being socketed into rock or other impenetrable bearing material.    

 

Circa 1990 inclinometer casing started to be installed in the cross section of the 

drilled shaft and by about 1996 cross-hole sonic logging started to become not only 

recognized, but the standard for drilled shaft integrity testing.   The advent and 

acceptance of CSL led researchers at USF to revamp earlier theories of and start 

investigations into the viability of using thermal measurements from within the 

boundaries of the drilled shaft as a determination of shaft integrity.   
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Circa 2000, Kranc, Mullins, the author and other research fellows started 

extensive studies on the heat of hydration of concrete, thermal transmission into various 

soils, mathematical modeling of the thermal image of a drilled shaft and the development 

of instrumentation to measure temperature of a drilled shaft foundation (Mullins and 

Kranc, 2004). 

 

 

3.2 Thermal Integrity Profiling Instrumentation 
 

After the development of the concept of testing the integrity of drilled shafts using 

thermal imaging, the focus turned to developing reliable instrumentation that could be 

used to measure and record the temperature of the shafts.  It was determined that the 

instrumentation and testing methods should utilize existing technologies and testing 

procedures as much as possible.  In this chapter, some of the basic theories utilized in 

Thermal Integrity Profiling are discussed along with the inherent complications in later 

chapters. Further, a look at some of the different instrument configurations and trial tests 

associated with each is presented. 

 

3.3 Temperature Measurement 
 

There are only four fundamental quantities in the International Measuring System: 

Length, Time, Mass and Temperature.  Of these quantities, temperature is the only one 

that is not additive. For example, if two objects are combined that have the same length 

and mass, these quantities will double.  Similarly, if two time intervals are combined, the 
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resulting time interval will be the sum of the two original times.  However, if two objects 

that have the same temperature are combined, the resulting temperature will remain the 

same (Doebelin, 2004).  

 

Statistical mechanics relates temperature to the mean kinetic energies of 

molecules.  This molecular kinetic energy which is dependent on mass, length and time 

for their description are currently not measurable, resulting in the need for an independent 

temperature standard (Doebelin, 2004). 

 

The zeroth law of thermodynamics states: For two bodies in contact to be said to 

have the same temperature, they must be in thermal equilibrium; that is, when thermal 

communication is possible between them, no change in the thermodynamic coordinates 

of either occurs. When two bodies are each in thermal equilibrium with a third body, they 

are in thermal equilibrium with each other and all bodies are the same temperature.  This 

provides the ability to calibrate a thermometer or other temperature reading device to a 

standard and then use it to determine unknown temperatures (Doebelin, 2004). 

 

The problem of repeating a fixed temperature for the purposes of calibration is 

difficult at best.  Ordinarily, the triple point of water which is defined as the state at 

which solid, liquid and vapor phases are present is considered the most reproducible state 

known.  The number assigned to this point is 273.16 K, making the difference between 

the ice point and the steam point of water equal to 100K (Doebelin, 2004).   
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The Thermodynamic Temperature Scale proposed by Lord Kelvin in 1848 

provides a theoretical base for a temperature scale independent of any material property 

based on the Carnot Cycle.  The Carnot Cycle assumes an ability to perfectly transfer 

heat without a loss of energy.  Since it is not possible to transfer heat without a loss of 

energy, the Kelvin Thermodynamic Temperature Scale remains theoretical only.    

 

The International Practical Temperature Scale (IPTS) conforms closely to the 

thermodynamic scale.  This scale uses the triple point of water along with five other 

primary fixed points: The boiling point of liquid oxygen (-182.962ºC); the boiling point 

of water (100 ºC); and the freezing points of zinc (419.58 ºC), silver (961.93 ºC) and gold 

(1064.43 ºC).  Additionally, other secondary points are established with the highest being 

the boiling point of gold (1064.43 ºC) and the lowest being the triple point of hydrogen (-

259.34 ºC).  The IPTS also establishes different instruments, equations and procedures to 

be used to interpolate between the fixed points,the idea being that no one equation, 

instrument or procedure will be applicable over the entire range (Doebelin, 2004). 

 

Considering that 273.16 is the triple point of pure water at one atmosphere of 

pressure, calibration of instrumentation using this reference is difficult for the following 

reasons:  

 

 Changing of pressure due to elevation and / or changes in weather patterns 

will change the triple point.   
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 Any impurities in the water will change the triple point. 

 

 Temperature variations may exist across the calibrating medium. 

 

There are currently many different instruments employed to measure temperature.  

These include but are not limited to: 

 

 Bimetallic Thermometers – Bimetallic thermometers are constructed by 

bonding together two different metals, each with a different thermal expansion 

coefficient.  As the metals expand or contract differently, the differing change 

in length causes a deflection of the combined material. 

 

 Liquid-in-Glass Thermometers – These thermometers use a liquid, typically 

mercury, in combination with a gas sealed inside of a glass tube.  As the liquid 

is heated, it expands, compressing the gas. A scale is typically placed in the 

glass tube to allow the height of the liquid column to be measured. 

 

 Pressure Thermometers – Pressure thermometers utilize a bulb that is 

sensitive to pressure and a capillary tube that is connected to a pressure 

measuring device.  The bulb and the tube are filled with either a liquid or a 

gas and the temperature is measured by either the compressibility of the liquid 

or the pressure change of the gas.   
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 Electrical Resistance Sensors – Electrical resistance thermometers rely on the 

fact that for certain materials, the electrical resistance changes in a 

reproducible manner in relation to the material’s temperature.  These materials 

are configured into an electrical resistor and then incorporated into one of 

several different electrical circuit configurations that record the change in the 

voltage as a result of the change in the temperature of the resistor.   

 

 Junction Semiconductor Sensors – Diodes and transistors exhibit temperature 

sensitivities.  These temperature sensitivities are reproducible, linear and 

maintain good sensitivity within a given range (-55 to +200 ºC). 

 

A few additional methods of recording temperature that deserve additional 

attention and consideration will now be discussed: 

 

 

3.4 Temperature - Thermocouple 
 

At first, several different ideas were discussed regarding the measurement of the 

temperature of a drilled shaft.  The standard and most widely used method for measuring 

temperature is to utilize a thermocouple.    

 

In 1821 T. J. Seebeck discovered the thermoelectric effect.  The thermoelectric 

effect occurs when two lengths of dissimilar metal wires (such as Iron and Constantan) 

are connected at both ends to form a complete electric circuit and one junction of the two 
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wires is at a different temperature than the other junction and an electromagnetic field 

(emf) forms. The developed emf (actually a small millivoltage) is dependent upon two 

conditions:  

 

1. The difference in temperature between the hot junction and the cold junction. 

Note that any change in either junction temperature can affect the emf value.   

 

2. The metallurgical composition of the two wires (OMEGA-1). 

 

A thermocouple is usually thought of as two wires joined at one end and open on 

the other.  However, this is not a true thermocouple unless the other ends of the wires are 

also connected.  As we will discuss later, it is important to remember ‘“Where there is a 

hot junction there is always a cold or reference junction’ (even though it may seem 

hidden inside an instrument 1,000 feet away from the hot junction)” (OMEGA-3). 

 

The net emf of a thermocouple circuit is the combined effects of the Peltier effect 

and the Thompson effect.  In 1834, Jean Peltier discovered that there is an emf produced 

solely from the contact of the two dissimilar wires.  Later in 1851, William Thomson, 

a.k.a. Lord Kelvin, discovered that an emf is produced by a temperature gradient along a 

metal conductor.  Given that there are two points of contact and two different metals or 

alloys in a thermocouple circuit, there are two Peltier and Thompson effects in any 

thermocouple circuit (OMEGA-3).  
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Given that the net emf is primarily a function of the temperature difference 

between the two junctions and the kinds of materials used, if the temperature of the cold 

junction is compensated for or maintained constant, the net change in the emf will be a 

function of the hot junction temperature.  This change in the emf can be measured by a 

potentiometer connected to the circuit. However, it is typically not practical to maintain a 

constant temperature at the cold junction (OMEGA-3). 

 

There are many different types of thermocouples.  Each type has a different 

combination of metals and corresponding unique properties and useable range.  Table 3.1 

describes properties of some of the most commonly used thermocouple types. Within the 

tolerance columns, T represents the temperature of the hot junction, in degrees Celsius. 

For example, a thermocouple with a tolerance of ±0.0025×T would have a tolerance of 

±2.5 °C at 1000 °C (Omega-5). 
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Table 3.1 - Thermocouple types and temperature ranges (Omega-5) 
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After due consideration, it was decided that permanently embedding 

thermocouples into a drilled shaft was not practical for several reasons.   First, the 

delicate nature of thermocouples and the thermocouple wiring is not conducive to drilled 

shaft construction.  Consider, for example, that it is impossible to replace a 

malfunctioning thermocouple after the shaft has been constructed.  Second, the cost 

associated with using sacrificial thermocouples was prohibitive.   

 

 

3.5 Temperature – Radiation (Infrared) 
 

For the purposes of measuring the temperature of a drilled shaft, radiation or 

infrared measuring methods were investigated.  It was determined that the infrared 

methods offered several distinct advantages over the other temperature measuring 

methods.  Specifically, these methods do not require that the instrument be in direct 

physical contact with the surface and is commonly utilized in production applications to 

scan the surface of an object.  Currently utilized applications for infrared technology 

include, manufacturing quality control, night vision, missile guidance and infrared 

spectroscopy (Doebelin, 2004).  Additionally, an advantage of the infrared thermocouple 

is that it could be configured to utilize the same access tubes as CSL testing, thereby 

meeting one of the stated goals of utilizing existing technology as much as possible.   

 

A historical perspective on the theories of infrared temperature measurement 

should begin with the scientists that made the original contributions.  First, Galileo 

Galilei (1564 – 1642) invented the thermometer in Italy.  This was about 100 years before 
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Sir Isaac Newton (1642 – 1727) discovered that by passing white light though a prism, it 

could be divided into a range of colors.  In Newton’s 1704 publication, Opticks, he 

showed that the least bent portion of the white light was red followed in order by orange, 

yellow, green, blue, indigo and finally violet (OMEGA-H2). 

 

In 1800, scientist and astronomer Fredrick William Herschel (1738-1822) while 

experimenting with sunlight discovered that different colored eye glasses produced a 

different heat sensation.  Accordingly, as shown in Figure 3.1, Herschel devised an 

experiment in which he utilized a prism to divide sunlight into the distinctive color 

regions.  He then used a thermometer to measure the surface temperature of each of the 

distinctive color regions.  What he found was that the temperature rose as he advanced 

from the violet to the red region.  Then wanting to know the dissipation of the 

temperature past the red region, he placed a thermometer just beyond the red region.  

What he found surprised him in that the temperature beyond the red region was actually 

higher.  This region “below the red” was referred to as the infrared region. It was not 

understood until some half century later that infrared radiation had all of the properties of 

light waves except they did not affect the retina in the eye in a way to produce light   

(OMEGA-H2).  
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Figure 3.1 - Herschel's infrared discovery (OMEGA-H2) 
 

In fact, visible infrared temperature measurement has unknowingly been used for 

thousands of years.  Craftsmen have long used the color of heated metal or glass as a way 

to determine if the material is the correct temperature to “work” (OMEGA-H1).  

 

 

Figure 3.2 - Wavelengths and infrared rays (Suite 101) 
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Infrared thermocouples operate in a similar fashion as a standard thermocouple; 

however, they do not require contact with the surface to measure the temperature.   

Therefore, the idea was developed to utilize infrared thermocouples inside of access tubes 

similar to those used in Cross-hole Sonic Logging (CSL).   

 

The past several decades have seen a tremendous development in small infrared 

thermocouples.  Many of the developments have been necessitated by the various 

applications in which infrared thermocouples are currently being utilized.  Although from 

the exterior, current infrared thermocouples may seem simplistic, they are actually quite 

sophisticated and include a complex optical system and electronic circuitry (OMEGA-2).   

 

The specific design of most infrared thermocouples is proprietary; however, the 

basic concept is that they utilize a lens or a set of lenses to focus the infrared signal from 

the target area onto a thermopile.  A thermopile is a group of several thermocouples 

typically connected in series, which generate an emf relative to their temperature. In fact, 

given the correct configuration, the infrared thermocouple will develop enough emf to be 

connected directly to conventional thermocouple measuring and recording systems. 

(OMEGA-2). 

Infrared thermocouples utilize the incoming infrared radiation to produce a 

millivolt output signal.  The signal which is produced through thermoelectric effects 

follows the rules of radiation thermal physics and its output is similar to the curve shown 

in Figure 3.3.  As shown in part two of the figure, it can be shown that over a narrow 

temperature range, the output curve is sufficiently linear to be considered a millivolt 
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output range matched to the millivolt output of a given thermocouple.  The instrument, 

once properly selected and calibrated, will produce a smooth curve over the operating 

range with about a 1% error (OMEGA-2).       

Figure 3.3 - IR thermocouple signal (OMEGA-2) 
 

Modern infrared thermocouples are solid, hermetically-sealed and fully potted.  

This is done to allow the instrument to be used in severe use environments without 

causing either a mechanical or metallurgical change in the instrument.  In contrast to 

traditional thermocouples, modern infrared thermocouples are well protected inside of a 

stainless steel body. Due to their construction, modern infrared thermocouples do not 

experience the drift problems associated with conventional thermocouples. 

 

 Based on the aforementioned benefits, infrared was chosen as the primary means 

of measuring temperature with verification by embedding sacrificial thermocouples into 

the concrete.  
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Chapter 4 - Basic Instrumentation and Lab Scale Tests 
 
 
4.1 Introduction 
 

After thoroughly investigating the state of current drilled shaft integrity testing 

techniques and the modern state of temperature measurement, focus was redirected 

towards how to develop an instrumentation system which would be rugged enough to be 

used on construction sites and as much as possible, use existing drilled shaft testing 

methodologies.  However, there were several distinct obstacles to overcome.   

 

 

4.2 Basic Instrumentation Version 1.0 
 

Once it was decided that the infrared thermocouple was the appropriate 

instrument to utilize, a search was completed of the commercially available infrared 

thermocouples.  Initially, the Omega OS36-RA was the best choice.  The OS36-RA has a 

90º viewing window and a sensing range of -50º to 1200ºF (-45º to 650ºC).  By using the 

Type E-140, the usable temperature range with a 2% accuracy is 80º to 180 ºF (25 º to 80 

ºC)  

 

As drilled shafts may be in excess of one-hundred feet deep, long lead wires 

would be required.  Given that output from an infrared thermocouple is a millivolt or low 
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voltage signal, impedance, noise and signal loss associated with these long lead wires 

was a concern.  Accordingly, the millivolt output signal from the infrared thermocouple 

was transformed into a current loop, whereby the current loop would not be subjected to 

the same signal problems of low voltage sources.  

 

Again, a search was conducted for readily available transmitter devices that would 

allow the millivolt signal from the infrared thermocouple to be transformed into a current 

loop.  The Omega TX901transmitter was chosen.  The transmitter accepts thermocouple 

sensor types J, K, T, E, R or S and produces a 4-20 mA output signal proportional to the 

output millivolt signal of the thermocouple.  Therein, the 4 mA was at the low end of the 

temperature sensing range and 20 mA was at the high end (OMEGA-4).  

 

The TX901 transmitter requires an unregulated power supply of at least +7V, but 

no more than  +35Vdc.  It was also necessary to have a standard voltmeter or data 

acquisition system to measure the change in voltage across a shunt resistor in the circuit 

line.  See Figure 4.1 for a schematic and wiring diagram for the OS36 and TX901. 

 

Figure 4.1 - OS36-RA and TX901 wiring diagram 
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4.3 Lab Scale Test #1 – Feasibility Study 
 

After researching the different systems available to measure temperature, it was 

decided that it was prudent to conduct a lab scale test to determine the viability of the 

measuring the heat of hydration of a concrete sample.  Accordingly, a lab scale test was 

devised in which two standard 6 inch diameter x 12 inch tall concrete cylinders were 

utilized.  One cylinder had an access tube placed in the center of the cylinder while the 

other specimen had the access tube placed towards the edge of the cylinder.  After filling 

the cylinders with concrete, the temperatures were recorded at each of the four radial 

directions and at the top, bottom, middle and quarter points as well as the ambient 

temperature.  See Figure 4.2 for a diagram of the test setup.   Table 4.1 shows a sample of 

the data that was collected for a given time.   

 

Figure 4.2 - Lab scale test #1 set up 
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Table 4.1 - Signal voltage for trial #1 

Date 7/24/2000 Time 
7:39 
PM   

Offset Specimen Ambient 
 12:00 3:00 6:00 9:00 1.91 
Top 1.98 1.984 1.986 1.986  
TL/4 1.996 1.999 2.005 2.001  
Mid 2.006 2.009 2.015 2.013  
BL/4 2.007 2.01 2.017 2.013  
Bot 1.984 1.986 1.999 1.994  
      
Center Specimen  
 12:00 3:00 6:00 9:00  
Top 1.969 2.005 2.002 2.002  
TL/4 2.004 2.019 2.018 2.02  
Mid 2.023 2.015 2.014 2.016  
BL/4 2.021 2.018 2.018 2.019  
Bot 1.998 1.994 1.995 1.998  

 

 

Figure 4.3 - Lab scale test 1 results 
 

After reviewing the data, several problems became apparent.  First, the time 

interval for collecting the data missed the peak temperature for this particular concrete 
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mix and conditions.  Second, it did not appear that the heat generated was enough to 

determine a spatial difference.   

 

 

4.4 Lab Scale Test #2 
 

In order to overcome the shortcomings of the original test, it was decided to 

utilize a data acquisition system in combination with a laptop computer to monitor and 

record the output voltages at regular intervals, thereby capturing the rise and fall of the 

concrete temperature.  The Optim Electronics Corporation Megadac 3415AC attached to 

a standard laptop was chosen for the data acquisition and data recording.   

 

A second lab test was devised to not only check the viability of the testing 

equipment but to also determine the conditions under which a cement paste sample 

produces a temperature trace.  Accordingly, a laboratory scale test was set up in which 

40lb of type I portland cement was mixed with 16 lb of water to produce a mix with a 

water to cement ratio of 0.4.  This cement water paste was then placed into a Styrofoam 

cooler with a capped 1” diameter schedule 80 PVC access tube.  The IR temperature 

sensing probe was then placed inside of the access tube and the lid was placed on top of 

the Styrofoam cooler.  The data acquisition system was then set up to record data every 

ten minutes and the test ran for a total of 63 hours.  The diagram for the set-up is shown 

in Figure 4.4 with the results shown in Figure 4.5. 
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Figure 4.4 - Set up configuration for trial #2 

 

  

Figure 4.5 - Cement paste temperature vs. time 
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The results of the test showed that the cement paste temperature appeared to rise 

steadily for about 10.33 hours.  At that point, the temperature peaked and began to 

decrease steadily.  There are two regions of particular interest with this graph.  These 

areas as highlighted with the arrows show an apparent increase in the cooling rate of the 

cement paste mixture.  It is believed, however, that this change in slope of the graph is a 

result of the computer resetting the time at 24 hour intervals.  It is also important to note 

that since calibration of the instrument had not yet been completed, the temperature data 

was presented in Volts and not an actual temperature.  Given that there was time 

associated with mixing the paste, placing it in the Styrofoam box and setting up the 

instrumentation, the slightly elevated temperature at the beginning of the test appears 

reasonable.  

 

 

4.5 Depth Measurements 
 

The concept is to be able to measure and record temperature measurements 

throughout the length of a drilled shaft and to be able to relate a given temperature to a 

given depth.  Having seemingly developed a viable option for measuring and recording 

the temperature, focus turned towards depth measurement.  In order to continue 

feasibility testing, a depth measuring device was assembled utilizing equipment on hand.   

 

As shown in Figure 4.6, this length measuring device utilized a string type multi-

turn variable resistor (called an industrial string potentiometer) to record the position of a 

bolt on a threaded rod.  The bolt was allowed to move laterally, but not rotate as the 
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threaded rod turned.  A primary pulley was attached to the end of the threaded rod and an 

idler pulley was utilized to ensure good contact between the umbilical PVC pipe and the 

primary pulley. As the PVC pipe, on which the IR thermocouple would be mounted was 

moved vertically, the threaded rod would turn, causing the bolt on which the end of the 

string for the string potentiometer was attached to move.  This system allowed the 

vertical displacement of the PVC to be measured and recorded utilizing the string 

potentiometer and the Megadac 3415AC attached to a standard laptop.   

 

  
Figure 4.6 - Depth measuring device 

 

 

4.6 Field Trial #1 
 

Based on the success of the lab scale tests, it was decided to create a field scale 

test.  The field scale test would be a 24 inch diameter, 12 feet long drilled shaft replica.  

Half of the drilled shaft replica would be buried into the ground and half would be free 

standing, exposed to the air.   
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Instrumentation for the test was set up with the OS36-RA infrared thermocouple 

extending out of a PVC coupling and reducer system that also contained the TX901 

transmitter.  The sensor, transmitter, coupling and reducer system was mounted to the end 

of a length of 1” schedule 40 PVC pipe allowing the lead wire to be fed from the 

Megadac to the temperature transmitter.  It should be noted that machining of the PVC 

couplings and/or reducers was necessary for proper fit of the components and to allow the 

instrument configuration to be inserted into the 2” diameter schedule 80 access tubes.  

Additionally, this configuration allowed for vertical and radial control of where the 

sensor was measuring.  See Figure 4.7 through 4.9 for additional information.   

 

In order to maximize heat production, it was decided in lieu of constructing the 

shaft replica out of concrete, to construct it utilizing cement paste consisting only of Type 

I portland cement and water.  The 24 inch diameter shaft would have three two inch 

diameter schedule 80 PVC access tubes, similar to those utilized for CSL testing, evenly 

spaced and extended 12 inches above the top of the simulated shaft.  These access tubes, 

labeled 1 – 3, would allow temperature readings to be taken of the inside wall of the 

PVC.  Further, it was decided to place several anomalies or inclusions in the shaft to 

mimic possible real life problems.  The anomalies were as follows:  

 
 6”x12” concrete cylinder mold filled with sand placed 14 inches from the 

bottom between access tubes 1 and 3. 

 

 2”x8”x12” box filled with sand placed 13 inches from the top of the shaft 

between access tubes 2 and 3. 
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 3”x6” air cylinder placed 28” from the top of the shaft adjacent to access tube 

2 towards access tube 1.   

 

In addition to measuring the temperature of the simulated shaft with the IR 

thermocouple, it was decided to embed standard two wire thermocouples at various 

locations to record the temperature of the cement paste mix as it hydrated.  The 

thermocouples were inserted into the shaft after placement of the paste, as detailed in the 

chronology of construction below.  

 

Figure 4.7 - IR sensor mount 
for field test #1 

 
Figure 4.8 - Top view field trial #1 
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Figure 4.9 - Field trial #1 side view 
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The shaft was constructed at the Soils Lab on the University of South Florida, 

Tampa Campus, as shown in Figure 4.10A.  Construction began by procuring the 

necessary materials and then proceeding as follows: 

 

  
Figure 4.10 - Field trial #1 test set-up, A - location of test shaft, B -securing access tubes to 

#3 circular ties 
 

 

1. Three (3) 18 inch diameter #3 grade 40 circular ties placed at the middle and 12 

inches from the top and bottom were utilized to secure the access tubes. – Figure 

4.10(B) 

 

2. The access tubes and ties were then placed inside of a 24 inch diameter x 12’-0” 

long Sonotube concrete form.  These were secured in place by using standard 

rebar tie wire. 

 

3. The anomalies as indicated above were then constructed and secured to the inside 

of the Sonotube. 

 

A B 
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Figure 4.11 - Placing anomalies for field trial #1, A - inserting and securing access tubes and 

ties, B - example of anomaly sand box, C - inside of Sonotube showing anomalies, access 
tubes and ties, D - end or bottom view of replica shaft showing access tubes and anomaly 

 

4. Using a 24inch diameter hydraulic auger attachment mounted to a Bobcat skid 

steer, a six foot deep hole was augured into the ground.  

 

5. The Sonotube containing the access tubes and the anomalies were then erected in 

the hole.  A work platform was then erected around the replica shaft to allow 

access to the top of the shaft. 

 

B A 

C D 
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Figure 4.12 - Excavation and erection of test shafts for field trial #1, A - auger attached to skid 
steer, B - completed hole, C - setting Sonotube into hole, D - final erection of Sonotube 

A 

B 
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Figure 4.13 - Field trial #1 erected test shaft, A - top view of erected Sonotube, B - work 

platform and bags of type I cement 
 

 

6. Since the cement paste mixture consisted only of Type I portland cement and 

water, it was important to attempt to place the cement paste into the shaft and 

begin testing as soon as possible.  Therefore, two cement mixers along with an 

overhead crane and a grout chute were utilized to mix and place the paste.  While 

one mixer was being loaded and the paste being mixed, the other was being 

emptied into the chute and placed into the shaft.  

  

   

 

A 

B 
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Figure 4.14 - Mixing and Placing Cement for field trial #1, A - double cement mixers, B -
transferring paste from mixer into grout chute, C - Placing paste into replica shaft, D - 

nearing completion of paste placement, E - completion of paste placement 
 

7. Following placement of the paste, six thermocouples were inserted into the replica 

shaft by first drilling a hole through the Sonotube and then using a stiff welding 

A 

E 

B 

D 

F 
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rod inside of a rubber tube, the tube was inserted into the center of the shaft.  Two 

thermocouples were then inserted into the rubber tube, one with twelve inches of 

embedment and the other with six inches of embedment.  The rubber tube was 

then extracted, leaving the thermocouples in place.  The thermocouples were then 

connected to a multi-channel digital readout and the temperature of each 

thermocouple was recorded. 

 

 
Figure 4.15 - Installing thermocouples in test shaft for field trial #1, A - inserting rubber 
tube into drilled shaft utilizing a welding rod, B - inserting two-wire thermocouples into 

capillary tube, C - removing capillary tube, leaving thermocouple in place 
 

8. The IR thermocouple, transmitter and string potentiometer height measuring 

devices were then attached to the Megadac and tested to make sure they were 

operating correctly.   

A B 

C 
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9. First the ambient temperature of the wood on the exterior of the shaft was 

measured with the IR thermocouple and recorded.  This allowed reference 

temperature.    

 

10. Several tests were then conducted on the outside face of the replica shaft.  These 

tests were necessary to check the device and provide a reference temperature.   

 

11. Next a series of tests were run inside of the access tubes.  As stated previously, 

each tube was numbered 1-3 and quarter direction was established for each tube.  

Quarter direction “A” was towards the center of the drilled shaft, and then 

progressing clockwise “B”, then “C” was towards the outside of the shaft, and 

then “D” was the final quarter point. 
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Figure 4.16 - Running tests field trial #1, A - instrumentation check, B - running tests 

inside of access tubes, C - running tests in access tubes close-up 
 

 

12. The first test in the access tube was completed at about 11:39 PM, approximately 

three hours after completion of the placement of the cement paste. Tests were then 

completed almost continuously until about 1:55 AM, approximately five hours 

after placement of the paste.  

A 

B 

C 
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It is important to note that after the first few tests in the access tube, the access 

tubes started heating up, causing the probe to stick.  Silicone was used in an attempt to 

lubricate the surface between the probe and the access tube.  At approximately 1:15 AM, 

the surface of the concrete and the access tubes became very hot and the bleed water on 

top of the replica shaft started to boil; shortly thereafter, the PVC access tubes debonded 

from the shaft, eliminating the possibility of any additional testing in the access tubes 

with the IR probe.     
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Figure 4.17 - Delamination of  PVC access tubes, A - bleed water boiling, B - bleed water 

boiling and thermal crack, C - delamination of access tube starting, D - full delamination
of access tube 

 

The following are samples of the data obtained from the test shaft test along with 

a brief discussion of the results.   

 

A 

D 

B 

C 
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Figure 4.18 - Temperature vs. depth, outside of replica shaft field trial #1 

 

Figure 4.18 indicates the temperature vs. depth taken on the outside of the replica 

shaft between access tubes 1 and 2.  There is an apparent error in the depth recording 

device, given that the two temperature traces do not align, likely due to the sensor rod 

slippage on the depth pulley.   
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Figure 4.19 - Temperature traces from access tube #3 field trial #1 
 

Figure 4.19 shows the temperature traces from Tube #3 from all four radial 

directions.  The sand box anomaly is apparent in temperature trace “D” which was 

pointed directly at the anomaly and trace “C” which is 90º away from the anomaly and 

pointed towards the exterior of the shaft.  It is also apparent where the soil level is and the 

fact that the base of the access tubes is in the soil below the shaft.  It is supposed that the 

temperature traces are cooler when the probe is extracted due to plunging air cooling the 

access tubes.   
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Figure 4.20 - Thermocouple data from replica shaft field trial #1 

 

Figure 4.20 indicates the thermocouple data from the replica shaft.  It is apparent 

that the recording times captured the rise and fall of the shaft temperature, but not the 

peak temperature. Therefore, a theoretical trace was added to the graph to mimic the 

temperature curve.  Based on this theoretical curve, it is estimated that the peak 

temperature of the cement paste was approximately 260ºF at the core of the test shaft. 

 

Additional information in regards to field trial #1 can be found in Appendix A.  

Based on the experience gained and the results of Field Test #1, several shortcomings 

were realized: 
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 Utilizing a rigid pipe for the probe was cumbersome and would be impractical 

when testing real drilled shaft foundations.  The length measuring device, 

which was improvised, needed improvement.  The PVC pipe slipped on the 

wooden wheel.   

 

 A method would need to be developed so that standard wire could be utilized, 

similar to CSL testing.   

 

 Running the test four different times in each access tube is impractical.  A 

method would need to be developed in which the four directions could be 

tested at once (i.e. four sensors). 

 

 The temperatures of the cement paste mix were too hot.  It is not likely that 

the temperature of a standard drilled shaft would reach 260ºF. Actual concrete 

would likely produce enough energy to be useable. 

 

 Continuous monitoring and recording of the embedded thermocouples is 

necessary to provide a complete understanding of the temperature of the 

cement as it hydrates. 
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4.7 Basic Instrumentation – Version 2.0 
 

Drawing from the lessons learned in Field Test #1, a redevelopment of both the 

infrared thermocouple and the length measuring instrumentation was undertaken.   

 

In order to achieve the desired results of testing all four directions simultaneously, 

quad-directional infrared thermocouple housing was designed constructed out of Teflon.  

The housing held each of the OS36RA in one of the four different primary radial 

directions, i.e. 0°, 90°, 180°, 270°. 

 

One of the shortcomings of the original probe was the size of the TX901 thermal 

transmitters.  Therefore, it was decided that the circuitry for the transmitter should be 

manufactured, making it as small as possible.  Therefore, the housing also contained a 

signal conditioning area.    

 

Given the apparent need to maintain radial positioning, it was elected to utilize 

standard 2 ¾ inch outside diameter inclinometer casing. Inclinometer casing contains 

grooves in which wheels on a standard inclinometer instrument ride in order to keep 

alignment. Accordingly, the Teflon housing would be attached to an inclinometer 

alignment mechanism that would also maintain an equidistant from the infrared 

thermocouple view window to the borehole surface. 

 

Figures 4.21 show drawings of the new device design.  The drawings of the 

assembled device were then divided into four individual pieces.  These pieces were then 
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machined at the University of South Florida Engineering Shop and, as shown in Figure 

4.22, were assembled by the author.  

 

Figure 4.21 - Drawings and specifications for version 2.0 instrumentation, A - assembled 
version 2.0 instrumentation including housing, B - enlarged view of assembled device, 

C - sample sections of device 
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Figure 4.22 - Manufacturing and assembly of version 2.0 instrumentation, A - housing 

manufacturing, B - completed pieces, C - housing pieces for down hole signal 
conditioning, D - IR thermocouple housing pieces, E - complete device disassembled, 

F - IR thermocouple section assembled 
 

The electronic circuitry for the device includes transducer end signal conditioning 

that transposes the output voltage from the thermocouples into a 4 to 20 mA current loop.   

C 
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This current loop is required to allow the signal from the thermocouples to be read at the 

acquisition board without loss or alteration of signal due to the length of the lead wires.   

 

The circuit for the current loop was not commercially available in a scale that 

allows it to be placed in the instrument body.  Therefore, a circuit was developed that met 

the scaling needs to be placed within the device.  Specifically, an Analog Devices Loop-

Powered 4-20 mA Sensor transmitter AD693 chip was selected and placed into a circuit 

as shown in Figure 4.23.  The AD693 is a monolithic signal conditioning circuit which 

accepts low-level inputs from a transducer to control a standard 4-20 mA two wire 

current loop (ANALOG). 

 

 
Figure 4.23 - 4-20 milliamp voltage to current loop converter 

 

In addition, a circuit was also developed to transpose the current loop signal into a 

differential voltage that can be measured by a data acquisition system. This circuit allows 

for the differential signal to have a moveable reference for greater accuracy when 
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recording the readouts.  See Figure 4.24 for a wiring diagram of the current to voltage 

conversion.   

 

 

Figure 4.24 - Current to voltage conversion 
 

The overall wiring diagram for one of the thermocouples and the associated signal 

conditioning is represented in Figure 4.25. Selected pictures from the assembly of the 

electronic components are shown in Figure 4.26. 
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Figure 4.25 - Complete wiring diagram 

 

  

  
Figure 4.26 - Version 2.0 wiring, A - Voltage to current loop circuits, B - Terminal block 

to DAQCard, C - current loop to voltage conversion overall, D - current loop to voltage 
circuitry close up 

 

 

A B 

C D 
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 The second instrument was the replacement for the string potentiometer based 

position indicator. A position wheel was manufactured with an aluminum body and 

contained a polyethylene molly wheel that was attached to a central shaft with a set 

screw.  The shaft then extended through a set of high precision bearings on each side held 

into the aluminum housing.  The molly wheel was grooved to ensure intimate contact 

between the borehole cable and the pulley.  This combination provided a high coefficient 

of friction and a large amount of surface area between the umbilical cable and the wheel, 

effectively eliminating the likelihood of slippage (Figure 4.27A).  One end of the shaft 

extended to coupling and an optical encoder that was mounted inside of a protective 

housing (Figure 4.27B).  Finally, the position indicator was fitted with a 5/8” x 11 threads 

per inch threaded opening to allow it to be attached to a standard surveying tripod (Figure 

4.27C).  The two high precision bearings were pressed into wheel assembly housing.  A 

Clarostat 600EN digital encoder was used to measure the angular motion of the wheel 

assembly.   
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       Figure 4.27- Version 2.0 depth measuring device, A –overall view of depth wheel, B - digital 
    encoder and coupling to wheel shaft, C - Umbilical cord, depth wheel and tripod 

 
 

The circuitry for the infrared thermocouples was completed by transforming the 

current in the current loop back in to voltage so it could be easily measured and recorded 

by the data acquisition system.  The current to voltage circuit was housed in the 

electronics “black box” that also housed the connections for the power supply, the depth 

encoder along with the data acquisition terminal block, the ribbon cable that connected 

the terminal block to the data acquisition card, and a manual thermocouple output device.  

A B 

C 
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The backbone of the data acquisition system was the National Instruments 

DAQCard – 700 which provided the hardware interface between the data acquisition 

terminal board in the Black Box and the portable computer.  Software to monitor the 

input signals from the infrared thermocouples and the depth encoder consisted of a 

LabView based program that provided real time numerical and graphical representations 

as well as the ability to adjust calibration factors.   

 

A standard 120 VAC to +/- 15 VDC @ 0.24 amp power supply / transformer was 

used to provide excitation to the downhole device.  Excitation for the depth encoder was 

provided from the data acquisition card in the portable computer.  

 

A standard surveying tripod was used to position the depth encoder over the 

access tubes and provide support during testing. 

 

Following the development and testing of the new instrumentation, a second field 

study was planned.   

 

 

4.8 Field Trial #2 
 

     A second field trial was devised to test the new instrumentation. The goals for this 

were: 
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 Two (2) 24” diameter x 6’-0” long test shafts using 24” Sonotube concrete forms 

were constructed. 

 

 The shafts would use standard 4000psi ready mix concrete. 

 

 One shaft would be constructed with a full rebar cage and one with only three (3) 

#3 ties to hold the access tubes in place. 

 

 The shafts would be constructed above ground except approximately one foot 

below the grade for stability.   

 

 Anomalies were placed in the shafts similar to Field Trial #1.  

 

 2.5” nominal inclinometer casing was used for access tubes in lieu of PVC   
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Figure 4.28 - Test set-up for field trial #2, A - side view control shaft, B - side view 
test shaft, C - top view control shaft, D - top view test shaft 

 

Following procurement of the materials, except the ready mix concrete, 

construction of the replica shafts progressed as follows at the Soils Lab on the University 

of South Florida, Tampa Campus.   

 
1. A 12’-0” long Sonotube concrete form was cut into two 6’-0” long sections. 

 

2. The inclinometer casing access tubes for the first shaft was secured with 18 inch 

diameter #3 grade 40 rebar ties placed at the middle and 12 inches from the top 

and bottom.  As with Trial #1, the access tubes were placed at 0º, 120º and 240º. 
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3. For the second shaft, the inclinometer casing, ten (10) #6 grade 60 rebar and 18 

inch diameter #3 grade 40 ties spaced at approximately 4 inches on center were 

tied into a “cage”.   

 

  
Figure 4.29 - Tieing rebar cages for field trial #2, A - inclinometer casing and #3 ties, B - 

inclinometer casing and rebar cage for second shaft 
 

4. The cages were placed along with the anomalies inside of the Sonotubes and 

secured with standard rebar tie-wire.   

 

5. The Sonotubes and cages were then erected with approximately one foot of 

embedment into the soil for stability.   

  

A B 
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Figure 4.30 - Field trial #2 test set-up, A - sand box anomaly, B - anomaly and cage inside 

of Sonotube, C - erected control shaft top view, D - erected control shaft elevation view
 

6. Ready mix concrete supplied from RMC Ewell, Inc was then placed inside of the 

two test shafts.  The ready mix design was a f’c 4000 psi drilled shaft mix with 

#57 rock, 35% fly ash and a water to cement ratio of 0.41 (Ewell’s mix number 

64405).   

 

7. Following placement of the concrete, 2-wire thermocouples were installed into 

the drilled shaft in a similar fashion as Field Trial #1.  The thermocouples were 

then attached to a Starlog Pro data logger for continuous data sampling. 

A B 

C 
D 



103 
 

  
Figure 4.31 - Installing thermocouples for field trial #2, A - insertion of 2-wire 

thermocouples, B - data logger for thermocouples 
  

8. Access scaffolding was then erected along with a shade canopy to limit the 

amount of direct exposure from the sun to the test shafts.  

 

9. Thermal testing of the shafts was then started and continued on a periodic basis.  

 

The following are samples of data taken during the tests along with a brief 

discussion. 

  

A B 
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Figure 4.32 - Field Trial #2 Testing, A - field trial #2 data collection overall, B - field test 
#2 data collection close-up 

A B 
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Figure 4.33 - Field trial #2 thermocouple data 
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Figure 4.34 - Sample data from field trial #2 - tube E-2 

 

 

Figure 4.35 - Sand box anomaly found adjacent to tube E-2 
 

Additional information in regards to field trial #2 can be found in Appendix B.  

The results of the Field Test #2 showed great promise.  It was decided that full scale 

testing should be performed next.  However, several key improvements were desired 

before continuing with another set of tests.   
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4.9 Basic Instrumentation – Version 2.1 and Software Development 
 

Drawing from the lessons learned in Field Test #2, several improvements were 

made.  First, the data acquisition end signal conditioning was reconfigured to be housed 

in a custom made steel “black box”.    Next, a driver motor and pulley assembly was 

added.  Specifically, a 2 RPM 110 VAC motor combined with a drive pulley and an idler 

pulley was configured to lower, and if desired, raise the downhole sensor in the access 

tubes.  This motor was mounted to a portable tool box, allowing the sensors to be raised 

and lowered at a constant rate and with little effort from the operator. Finally, a Belden 6-

conductor 22 AWG shielded cable with a PVC jacket was used to provide excitation to 

the downhole sensor along with signal return from each of the infrared thermocouples.  

The cable also acted to lower and raise the sensor in the access tube.  This shielded cable 

provided better resistance to electronic noise and greater strength and durability than the 

previously used umbilical wire.  Figure 4.36 shows the updated testing scheme. 
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Figure 4.36 - Thermal integrity profiling system setup 
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In order for Thermal Image Testing to be economically viable, given that 

inclinometer casing costs approximately $5.00 per linear foot, it needed to utilize access 

tubes similar to those utilized by CSL testing.  Therefore, it was decided that any future 

tests would not utilize inclinometer casing. 

 

In addition, Microsoft Excel combined with Visual Basic was utilized to develop 

a post-processing spread sheet.  The spread sheet as shown in Figure 4.37 allowed for the 

quick importation of the data files from the data acquisition software, the ability to import 

slope and offset values for calibration, and instantaneous temperature trace generation 

from the corrected data.   

 

 
Figure 4.37 - Screen shot from TIP data post processing worksheet 
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Chapter 5 - Full Scale Testing – Auburn, AL 
 
 
5.1 Introduction 

 

Based on the lessons learned from the previous tests, a full scale testing program 

was envisioned.  The full scale tests could be completed in conjunction with Auburn 

University and several different research projects could benefit from the full scale 

production.  Specifically, in addition to Thermal Integrity Profiling methods, the 

following concepts would be addressed: 

 

1. The drilled shafts would be constructed with a chamber at the base and access 

tubes to the top of the shaft, allowing the toes of the shafts to be pressure grouted 

after the concrete for the shafts had cured, thereby mobilizing the toe of the shaft.  

Load testing on the shafts would then be conducted following the grouting to 

determine the effect of the post-grouting.  

 

2. Several different concrete mixes with different slumps and course aggregate sizes 

would be utilized.  In addition, two shafts would be constructed utilizing self 

consolidating concrete.  The placement of the concrete would be monitored to 

determine the effect of these different mixes on concrete flow through the 

reinforcing cages.   
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3. Adiabatic boxes would be instrumented with standard two wire thermocouples 

and those thermocouples monitored throughout the curing of the concrete to allow 

the generation of heat of hydration curves for the different mix designs. 

 

4. In addition to Thermal Integrity Profiling, Cross-hole Sonic Logging (CSL) 

testing and Sonic Echo Testing would be performed to allow a comparison of the 

data obtained by Thermal Integrity Profiling.  

 

5. The drilled shaft bore hole and placement of the concrete would also be 

monitored using a Drilled Shaft Inspection Device (SID) which is a video camera 

and light system especially developed and equipped for inspecting drilled shafts 

both submerged and dry. 

 

 

5.2 Test Site Set-Up 
 

This full scale testing program would be located at the Auburn University’s 

National Geotechnical Experimental Site (NGES) which is adjacent to the National 

Center for Asphalt Technology (NCAT) test track at Auburn University, in Opelika, 

Alabama and was made available by Dan Brown, Ph.D., of Auburn University.  The site 

was chosen due to several factors.  First, the unique silt soil that exists at the site and the 

depth to the water table allows for 25 feet deep drilled shafts to be constructed without 

casing the openings.  Secondly, many tests had been conducted at the site in the past, and 

there was a wealth of information available regarding the geotechnical and geological 
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conditions of the site. The remnants of said research could be found readily on the 

property. Figure 5.1 shows an aerial image of the site.   

 
Figure 5.1 - Auburn University's NGES Test Site, Opelika, Alabama (Google Maps) 
 

It was decided that five different drilled shafts would be constructed; each would 

be 3’-6” in diameter and 24 feet deep.  Using the USF miniature cone penetrometer, a 

subsurface investigation was carried out prior to any site layout (Figure 5.2).  Virgin 

material was located in the northwest corner of the property, and the area was large 

enough to contain the proposed shafts.  Cone penetration tests (CPT) were performed at 

the centerline locations of each test shaft.  Figure 5.3 thru Figure 5.7 shows the CPT 

soundings for TS-1 through TS-5, respectively. The soil in this area was mainly a 

reddish-brown clayey silt with some gravel, mostly near the surface.  Full documentation 
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of the various geotechnical investigations can be found in Brown and Drew (2000), 

Mayne, et al. (2000), and Brown and Vinson (1998). 

  

Figure 5.2 - Alabama site soil testing, A - CPT soundings in test area, B - subsurface 
exploration using the USF mini-CPT rig 

 

 
Figure 5.3 - TS-1 mini CPT sounding 

A B 
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Figure 5.4 - TS-2 mini CPT sounding 

 

 
Figure 5.5 - TS-3 mini CPT sounding 
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Figure 5.6 - TS-4 mini CPT sounding 

 

 
Figure 5.7 - TS-5 mini CPT sounding 
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The shafts were laid out as shown in Figure 5.8.  Two rows of shafts were 

excavated, with the inside-to-inside spacing equal to 17.5 feet, which is approximately 5 

shaft diameters.  This same spacing was also used between the two rows of shafts.  This 

was done to ensure that the radial zone of influence from each shaft did not interfere with 

that of adjacent shafts.  Five shaft diameters is greater than the value recommended in 

recent literature to minimize group effects in drilled shafts (O’Neill, 1981; Poulos, 1980). 

 

 
Figure 5.8 - Test shaft layout 
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5.3 Rebar Cage Preparation Auburn Test Site 
 

The contractor delivered the five rebar cages to the site already assembled 

according to specifications by Dr. Brown.  These cages had an outer diameter of 31 

inches and a length of 25 feet. This allowed for 12 inches of rebar stick-up in each of the 

finished shafts, which would make future extraction of the shafts easier.   Longitudinal 

steel consisted of two DYWIDAG bars, 16 #9 bars, and 75 #4 shear hoops spaced at 4 

inches on edge (clear spacing).  One of the cages (TS-5) was observed to have tighter 

shear steel spacing, measured to be 3.2 inches on edge.  This cage had 93 hoops.  The 

DYWIDAG bars would be used to extract the drilled shafts. 

 

Sister bars were installed at the toe on each cage (four per cage).  These were 

configured with full bridge strain gauge devices, and were placed at quarter points around 

the circumference of each cage.  The wiring for the gauges was collected in a single 

harness that was secured to the shear stirrups along the length of each cage, and a service 

loop was left at the top for future access.  The purpose of the gauges was to provide a 

method to measure the strain of the reinforcement on the interior of the drilled shaft. 

 

Every cage was fitted with steel CSL access tubes installed at third points along 

the circumference.  These tubes were sealed at the bottom to prevent concrete from 

entering them, which would render them unusable; however later it would be shown that 

they were not sealed well enough to prevent grout from entering them during the post 

grouting procedure. 
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Four of the five cages had post grout cells installed at the toe.  The type of cell 

used on these shafts is known as a “flat jack” system (Dapp, 2002).  PVC grout tubes 

were installed along the length of the cage and mate with ports installed on the steel plate 

of the cell.  Also for four of the five cages, prefabricated anomalies were incorporated.  

This was done by attaching sand bags full of local material to predetermined locations on 

each cage.  Location TS-1 contained a cluster of bags at the toe, resting atop the post 

grout cell within the rebar cage.  Location TS-2 had an annular neck centered on a CSL 

tube and located approximately 3/4 the shaft length down from the top.  This neck 

encompassed an area on the cage measuring 18 inches in depth by 34 inches along the 

circumference.  Location TS-3 had an annular neck installed at mid-height on the cage.  

This anomaly measured 23 inches in depth by 56 inches along the circumference.  

Location TS-5 contained an anomaly similar to that of TS-2, however this one was placed 

between CSL access tubes and approximately 1/4 the shaft length down from the top of 

shaft.  The area it encompassed measured 18 inches in depth by 31 inches along the 

circumference.  Only the cage placed in location TS-4 was left without a post grout cell.  

This cage also contained no prefabricated anomaly. Figure 5.9 shows the different stages 

of rebar cage, anomaly and instrumentation placement.  
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Figure 5.9 - Auburn test shafts set-up, A - example of sand bag anomaly attached to rebar 
cage, B - overall picture of rebar cage, C - close up view of toe of TS-1 (a. post grout 

cell, b. sister bar), D - inside of rebar cage (a. grout tube, b. CSL / thermal access tube)
 

 

5.4 Drilled Shaft Excavation and Cage Placement 
 

The excavation of the five shafts was completed in one afternoon and each shaft 

was poured on that day.  A truck-mounted, diesel drill rig equipped with a double-flight 

rotary auger with stinger was supplied by the contractor, as shown in Figure 5.10. 
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Each of the five shafts was excavated in dry conditions with no casing.  This was 

appropriate because the soil was non-caving and the water table was below the proposed 

bottom elevation of the borehole, as shown in Figure 5.10.  Because of this, drilling 

proceeded quickly and each excavation was finished in approximately 30 minutes.  Also, 

the clean-out bucket was not used because there was little loose material left at the 

bottom of the excavation once auger drilling was complete.  This was verified using the 

borescope. 

 

As noted, the water table was below the bottom elevation of each excavation, so 

the holes remained relatively dry.  Tremie placed concrete under water was chosen for 

constructing the control shaft.  Therefore, the excavation denoted TS-4 was filled with 

water prior to placing the rebar cage.  This was performed using water stored in a tank 

onsite.  After the hole was filled with water, the borescope was again used to verify the 

final quality of the excavation before placement of the rebar cage. 

 

Following the excavations, the rebar cages were lowered into the excavated holes 

using a crane.  Nylon centralizers were utilized to maintain clearance between the rebar 

cage and the sides of the shaft.  
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Figure 5.10 – Excavation and erection for Auburn test shafts, A - truck mounted drill rig, 
B - close up of double flight rotary auger, C - completed excavation being inspected with 

bore scope, D - centralizer 
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5.5 Mix Specifications 
 

Several different concrete mix designs were used in this study.  The first two 

shafts poured used a standard portland cement concrete with #57 angular stone 

(maximum aggregate size of 1 inch).  These two mixes were identical except for the 

slump.  One of the mixes was required to have a slump of 8 to 9 inches, while the other 

needed a slump of 5 to 7 inches.  FDOT recommends a slump of 7 to 9 inches for all 

drilled shafts constructed using the tremie placed method, so this governed the selection 

of slumps for the test mixes.  

 

One shaft was constructed using a standard portland cement concrete and #7 river 

rock. This particular aggregate is rounded and has a maximum aggregate size of ½ inch.  

Number 7 stone is not typically used on FDOT drilled shaft projects.  However, it was 

anticipated that this mix design should perform much better than the #57 stone mix in 

terms of tremie placement and flow-ability. 

 

The remaining two shafts, one of which was the control shaft constructed under 

water, used a mix known as a “Self Compacting Concrete” (SCC).  Part of the research 

being conducted during this multiple phase study was the performance characteristics of 

SCC; therefore, additional comments are warranted.  SCC mix design is a very fluid, high 

slump (>10 inches) material that is designed to exhibit very favorable flow characteristics 

even in the presence of tight rebar spacing.  Because of this, a different assessment of 

workability is normally used with a SCC mix.  The apparatus, pictured in Figure 5.11, 

measures the flow of the material through a series of rebar sections.  Detailed information 
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regarding this method of testing can be found in literature by Hodgsen (2003) at Auburn 

University. 

 

SCC mixes generally have higher cement contents and higher fines, with lower 

water to cement ratios and high dosages of high range water reducers (W.R. Grace, 

2003). The first SCC mix was modified at the site by the addition of Glenium 3000NS to 

reach the required slump.  This delayed addition of the high range water reducer could be 

responsible for different characteristics between the mixes for TS-4 and TS-5.  Of other 

significance is the high water to cementitious ratio.  Generally SCC mixes have lower 

water to cement ratios, 0.32 to 0.38, to avoid excess bleed water and segregation which 

can result from the high dosages of high range water reducers.  Figure 5.11 indicates flow 

tests performed on the SCC mix and Table 5.1 details the 5 mixes used for the Auburn 

test shaft series. 

 

  

Figure 5.11 - Flow tests for SCC mixes, A - “L”-box flow test device used for measuring 
the flow of SCC mixes, B - material flows through lower gate and drop height is 

recorded 
 

 

A B 
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Table 5.1 - Detailed summary of concrete mixes 
 
Material 

 
TS-1 & 3 

 
TS-2 

 
TS-4 & 5 

 
Cement Type I 

 
560 lbs/cy 

 
560 lbs/cy 

 
420 lbs/cy 

 
Fly Ash Class F 

 
140 lbs/cy 

 
140 lbs/cy 

 
- 

 
Fly Ash Class C 

 
- 

 
- 

 
227 lbs/cy 

 
GGBF Slag 

 
- 

 
- 

 
97 lbs/cy 

 
Sand 

 
1075 lbs/cy 

 
1075 lbs/cy 

 
1595 lbs/cy 

 
#57 Limestone 

 
1900 lbs/cy 

 
- 

 
- 

 
#7 Pea Gravel 

 
- 

 
1900 lbs/cy 

 
1231 lbs/cy 

 
Water 

 
34 gals/cy 

 
34 gals/cy 

 
40 gals/cy 

 
Micro Air (Air Ent.) 

 
4.5 oz/cwt 

 
4.5 oz/cwt 

 
- 

 
Delvo (HRWR) 

 
40 oz 

 
40 oz 

 
- 

 
Glenium 3000NS 

 
- 

 
- 

 
4.0 oz/cwt 

 
Water / Cementitious 
Ratio 

 
0.4 

 
0.4 

 
0.45 

 

 

5.6 Quality Assurance 
 

The deliberate placement of anomalous regions within the shafts offered an 

opportunity to compare different non-destructive quality assurance methods.  Cross-hole 

Sonic Logging and Thermal Integrity Profiling were performed on each shaft shortly 

following construction. Sonic Integrity Testing was also performed on each shaft during 

the curing of the shaft. Once fully cured, the four shafts containing grout cells were tip-

grouted while monitoring both the grout pressure and upward displacement.  
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5.7 Cross-Hole Sonic Logging Auburn Test Shafts 
 

Cross-Hole Sonic Logging readings for each shaft were taken at approximate 12 

hour intervals for two days following shaft construction.  A review of several of the 

completed tests and a discussion of each are included below.  Refer to CSL Test Data 

from Auburn in the Appendix for additional information.  Test shaft TS-3 included an 

anomaly at the mid-depth of the shaft centered on access tube B or tube 2.     The signal 

does not show significant change from these readings.  The Velocity and Arrival Time, 

Energy plots for this series of tests are shown in Figure 5.12 and the Anomaly placed in 

TS-3 is shown in Figure 5.13.   
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Figure 5.12 - CSL velocity and energy plots for test shaft TS-3 - all tube pairs 
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Figure 5.12 (Continued) 

Figure 5.13 - Sand bag anomaly centered on tube B (2) for TS-3 Auburn test site 
 

As can be seen from the above information, the results from these CSL tests failed 

to identify this substantial inclusion on the side of the drilled shaft.   Similarly, results 

from TS-2 and TS-5 do not indicate the presence of anomalous regions in the test shafts.  

This is due to the fact that the included anomalies for these shafts are not arranged inside 

of the triangulated path between the 3 CSL tubes, but rather attached to the outside of the 

rebar cage.   
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The control shaft, TS-4 as shown in Figure 5.14 shows no significant change in 

velocity for all readings, although when excavated, TS-4 had a bullet shaped toe with 

CSL tubes exposed.  

 

 

Figure 5.14 - Control shaft TS-4 and the CSL test results for TS-4 Auburn test site 
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The results of the CSL test from TS-1 shows a decreasing velocity in tube pair 1-2 

from 23 to 24 feet.  This indicates a less dense material within this region which is 

indicative of the included sand bags at the toe.  The decrease in density was not evident in 

the other two tube pairs in the shaft.  The results of these tests along with pictures of the 

anomaly are included in Figure 5.15.   

 

 

Figure 5.15 - TS-1 CSL data and toe anomaly Auburn test site 
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5.8 Shaft Integrity Testing Auburn Test Shafts 
 

The goal of this non-destructive testing was to detect the anomalous regions 

placed within the test shafts and compare this testing method with both CSL and Thermal 

Integrity Profiling.  The first SET test was completed approximately 48 hours following 

the placement of the concrete in the test shafts and the second test was completed at 

approximately 72 hours following concrete placement.  The results of the first two SET 

tests found a large attenuation of the signal due to the concrete still being fresh.  See 

Figure 5.16 for SET test set-up showing the impact hammer, accelerometer and data 

acquisition system.  

Figure 5.16 - SET test set-up for Auburn test site 
 

Additional SET soundings were taken prior to post grouting, after load testing, 

and after extraction.  These readings were taken to show the additional effects of post 

grouting, load testing, and the influence of the surrounding soil.   
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Figure 5.17 - SET data for TS-1 before grouting (top) and after load testing (bottom) 
 
 

 

Figure 5.18 - SET data for TS-2 before grouting (top) and after load testing (bottom) 
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Figure 5.19 - SET data for TS-3 before grouting (top) and after load testing (bottom) 
 
 

 
Figure 5.20 - SET data for TS-4 before grouting (top) and after load testing (bottom) 
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Figure 5.21 - SET data for TS-5 before grouting (top) and after load testing (bottom) 
 

Figures 5.17 through 5.21 show the results from the SIT soundings prior to post grouting 

and after load testing for TS-1 through TS-5, respectively.  Comparing all of the SIT test 

data sets to the control shaft, it is only slightly apparent in TS-3 that a problem may exist 

in the test shaft in that there are several different intermediate reflector sets.  As may be 

expected, TS-1, TS-2, and TS-3 show a stronger toe reflection after grouting and load 

testing.  Additional information on the effects of post grouting can be found in Mullins 

and Winters (2004). 

 

 

5.9 Thermal Integrity Profiling – Auburn Test Shafts 
 

Thermal temperature readings were taken in the same fashion as CSL and in 

similar manners as taken in the earlier tests; however, the results proved more promising.  

Temperature soundings were taken in each of the three access tubes for all 5 shafts 

roughly every 4-6 hours over a 2 day period.  Despite the very high thermal conductivity 
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of the steel access tubes, the thermal signal was repeatable and sensitive on the order of 

0.1o F.  See Figure 5.22 for thermal test setup and testing in progress. 

 

Figure 5.22 - TIP testing at Auburn test site, A - tripod, depth wheel, tripod and down 
hole sensor, B - driver motor and pulleys, signal conditioning and portable computer, 

C - overall test setup, D - screen shot showing real time thermal sensors 
 

 

A 

B 

D C 
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As stated earlier, the CSL data failed to show any significant anomalies in test 

shaft TS-2.  However, the thermal data taken from shaft TS-2B show the effects that 

boundary conditions and diffusivity changes of various materials have on the heat flow 

regime of a drilled shaft.  The data show sharply increasing temperature curves at the top 

of the shaft, with peak temperatures occurring at a depth of 7 to 8 feet. Below this depth 

temperatures are decreasing somewhat steeply, with a flattening of the curves occurring 

around the shaft midpoint.  At 13 feet deep, a 6 inch pipe coupling induces a temperature 

increase on all the traces, below which is the sandbag anomaly.  Pipe coupling anomalies 

are identifiable in all shaft traces where a coupling exists.  Below this point, the thermal 

signal decreases steeply as some of the heat flow is diminished due to changing boundary 

conditions: increasing free water in pore spaces in the capillary fringe (previously noted 

GWT below tip of shafts >24 feet) and the end condition, requiring outward heat flow 

with both radial and vertical components. The anomaly at the third quarter point can be 

seen in all four traces at approximately 17 to 22 feet, with the coolest temperature trace 

(outward-facing) showing the greatest anomaly.  The base of the anomalous signal is 

clearly defined by the sharply increasing temperature curve beginning at 20 feet, 

progressing toward the non-anomalous temperature.  This upward temperature change 

occurs over approximately a 1 foot vertical span in which the purely outward radial heat 

flow of a cylinder is disrupted, adding a vertical component of heat flow.  The placement 

of the sandbag adjacent to the coupling enhances the heat flow (vertically and radially) 

through the coupling and around the sandbag.  This “heat channeling” effect may raise 

the temperature above that of the neighboring material, which appears to contradict 
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Fourier’s Law Q = -k dT/dx (where k is the thermal conductivity), but which is only valid 

in a constant-k domain. 

 

Figure 5.23 - Temperature traces vs. depth for test shaft TS-2 Auburn test site 
 

 During the process of doing the production Thermal Integrity Profiling Tests, the 

author noticed apparent problems associated with both sensitivity and noise.  

Specifically, the manufacturer’s specification of the infrared thermocouple gives a 

repeatability error for any device without temperature control, such as in this design of 1 

to 2% of reading value, and for complete ambient temperature control an error of 0.01% 

of value.  This is a large range of values, and an analysis of sampled signal and noise may 

more accurately place the expected values of error and signal/noise for this design. 
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Figure 5.24 shows the magnitude spectrum of the outward-facing sensor data 

from access tube A of shaft TS-3.  Note that this spectral peak at 0 Hz resides in the 

decade 100-1000 degrees, so that magnitude percentages can be read approximately from 

the log plot.  The plot was generated using 441 data from the trace TS-3A (outward), and 

was zero-padded to 512 points, and Fourier transformed using the “boxcar” window only.  

Without any filter windows the boxcar will yield spectra that are factorable into sinc 

functions, where sinc(x) = sin(x)/x, which produce the lobes seen throughout the data.  

This effect itself introduces noise to the transformed data.  

 

Figure 5.24 - Fourier analysis of inward-facing sensor temperature data for shaft TS-3 
(tube A) Auburn test site 

 

The data exhibit a 0.5dB amplitude falloff per wavenumber and a total drop of 

~15dB for wavenumbers < 30.  This spatial frequency (wavenumber = 30) represents a 

wavelength of 8.8 inches, and it suggests that important information in the data can be 

restricted statistically to length scales larger than 8.8 inches.  Also at this wavenumber, 

spectral magnitude falls below approximately 1% of the maximum value, the nominal 
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signal error.  The data “noise” appears to follow an exponential falloff  which is shown 

by the curve in Figure 5.24.  The exception to this trend occurs at wavenumber equal to 

62 to 65, which were in part masked by the lobular character of the data, but which 

clearly stands above the curve.  These wavenumbers have equivalent wavelengths of 4.06 

to 4.26 inches,  indicating rebar signal in the data, which is concordant with the 

placement of circular hoop rebar at nominal 4 inch separations, although some cages had 

smaller clear spacing. 

 

Figure 5.25 shows four “rebar-filtered” traces of shaft TS-3A and the unfiltered 

trace.  The unfiltered trace shows a strong heat transfer coupling between the circular 

rebar hoops and the access tube nearby which the data was taken.  Although the rebar 

“signals” are readily apparent in the trace, their magnitude is  <0.1% , higher than that of 

a temperature controlled device, but much less than expected in this device. This signal is 

sufficiently greater than the combination of all sources of noise, including uncontrolled 

ambient temperature and those introduced by poor data transformations (i.e., the un-

windowed FFT).  It should be concluded that the sensitivity and signal/noise ratio have 

surpassed the predicted values for this design. 
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Figure 5.25 - Low-passed (“rebar-filtered”) temperature traces and one unfiltered trace of 
the inward-facing channel from shaft TS-3 (tube A) Auburn test site 

 

As stated earlier, several problems became apparent during the various tests, these 

will be discussed further at the close of this chapter. Additional information in regards to 

the Auburn tests can be found in Appendix C.   

 

 

5.10 Post Grout– Auburn Test Site 
 

Post grouting was performed on four of the five test shafts (TS-1, TS-2, TS-3, and 

TS-5) approximately 13 days after initial concrete placement.  portland type I cement 

with a w/c ratio of 0.55 was pumped to the tip of each shaft.  Figure 5.26 shows the 

grouting process and test setup.   
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Figure 5.26 - Post Grouting at Auburn test site, A - grout pump and mixing of grout, B - 
injection of grout into top of shaft, C - string potentiometers used to measure vertical 

displacement of shaft 
 

 

The specified upward displacement was set at 2.5% the diameter (approximately 1 

inch for the 42 inch diameter shafts).  The displacement and grout pressure were 

monitored during the grouting process with string potentiometers and a pressure 

transducer.  The strains at the toe of the test shafts were also measured by four resistive 

strain gauges.  The post grouting results are summarized as follows: 

 

A B 

C 
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 TS-1 maximum grout pressure of 82 psi and uplift of 0.105 inches 

 

 TS-2 maximum grout pressure of 88 psi and uplift of 0.074 inches 

 

 TS-3 maximum grout pressure of 100 psi and uplift of 0.132 inches 

 

 TS-5 maximum grout pressure of 109 psi and uplift of 0.075 inches 

 

Additional information on the post grouting and the results of the post grouting program 

may be found in (Mullins and Ashmawy, 2005). 

 

 

5.11 Additional Testing – Auburn Test Site 
 

In addition to the aforementioned tests, researchers from the University of South 

Florida and Auburn University performed the following tests on the shafts: 

 

1. As shown in figure 5.27, the test shafts were load tested utilizing an axial 

compressive force pulse (rapid) testing method.  This testing method which is 

commonly referred to as statnamic load testing was performed on all shafts using 

a 4 MN statnamic device, equipped with the hydraulic catching mechanism. Two 

load cycles were performed on each shaft; the target displacement was set at 2.5% 

the shaft diameter.  The strain gauges located at the toe of each shaft made it 

possible to separate the applied load into side friction and end bearing 
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components.  A sample of the side shear results from the first load cycles can be 

seen in Figure 5.28.  The figure also shows the respective slumps for each test 

shaft.  The results show that within this test program the slump does not affect the 

side shear component.   

 

Figure 5.27 - 4MN statnamic load test setup Auburn test site 
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Figure 5.28 - Sample of rapid load test results on Auburn test shafts 
 
 

2. Following the load testing, the shafts were exhumed and dissected to fully 

document the condition of the final shafts.  Examples of this process can be seen 

in Figure 5.29.  
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Figure 5.29 - Exhuming, coring and dissecting the test shafts at the Auburn test site 
   

3. Following the excavation, coring and dissecting of the test shafts, the shafts were 

examined for confirmation of placed anomalies and aggregate distribution. 

Permeability tests were completed on the test shafts.  
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5.12 Lessons Learned from Thermal Integrity Profiling - Auburn Test Site 
 

Although several sets of very good data was retrieved at the Auburn test site that 

showed great promise, the testing was not as successful as originally envisioned.  Several 

distinct lessons were learned from the Auburn Test Program. 

 

 First, during one of the initial tests, the alignment wheels on the down hole 

portion of the thermal device became lodged in between two segments of the steel pipe 

access tube at the location of a couple.   This caused the down hole assembly to become 

stuck inside of the shaft and took several hours to dislodge.  This led to the conclusion 

that either a completely smooth access tube is required or the development of an 

alignment that had more tolerance was required.  The use of a completely smooth access 

tube is not reasonable in a production scenario.  In future tests, it would be shown that it 

is not necessary to have an alignment device.  The temperature traces from each of the 

four sensors could be radially adjusted based on the fact that the exterior of the shaft is 

cooler than the interior.   

 

 Second, although the access tubes were excavated of water prior to the testing and 

the tests were completed in rain free conditions, there was moisture present in both the 

access tubes and in the atmosphere.     Given that the down hole sensor and the depth 

encoder were enclosed, but not hermetically sealed, the electronic components were 

susceptible to moisture which caused signal problems. Future versions of the down hole 

sensor would need to be completely sealed to prevent moisture intrusion. 
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 Third, the use of an alternating current (A/C) driver motor and pulley assembly, 

which was intended to allow a uniform rate of descent and retrieval of the down hole 

sensor introduced 60 Hz noise into the signal.  This occurred, even though a properly 

grounded and shielded wire was used.  The signal strength from the down hole sensors 

was not strong enough to not be adversely affected from the alternating current of the 

motor.  Future versions of the system would need to eliminate the driver motor and pulley 

assembly.  If a constant rate of descent / retrieval was necessary, a mechanical solution 

would need to be developed.    

 

 One of the most basic concepts of thermocouple operation, which is discussed in 

detail in chapter three, is the cold junction.  To re-cap, a millivolt signal is produced due 

to the difference in temperature between two different junctions of differing metal.  The 

first junction is the reference, where the temperature is being measured.  The second, 

where the thermocouple signal is measured, is commonly referred to as the cold junction.  

During the course of developing the device, the cold junction and the effect that the 

change of temperature of the connection from the infrared thermocouple to the current 

loop had on the recorded signal had not been considered.   Given that the connection of 

the infrared thermocouple to the current loop occurred down hole, it meant that this 

connection was susceptible to the same temperature variants as the infrared thermocouple 

itself.  This cold junction problem led to temperature signals that were not a true 

reflection of the inside of the access tube.  To complicate the problem, there was not an 

embedded thermocouple in the device that would provide an actual temperature of the 

device.   Having an actual temperature of the device would have allowed for the 
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correction of the data to account for the cold junction error.  This problem was further 

complicated by the dissimilar metal used on the circuit board at the infrared 

thermocouple to current loop connection. Future versions of the device would need to 

either incorporate measures such as a different circuit to eliminate the cold junction 

problem or the current loop would need to be eliminated, thereby allowing the cold 

junction to occur at the surface where it would not be susceptible to extreme changes in 

temperature.   
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Chapter 6 - Summary and Conclusions 
 
 
6.1 Overview  

 

This thesis has shown that the development of the instrumentation necessary to 

provide in-situ thermal imaging for the determination of homogeneity of concrete is 

theoretically sound.   

  

Drilled shafts are large diameter underground cast-in-place columns that 

necessarily rely on sound integrity to properly withstand imposed loadings. As a by-

product of the most common construction techniques, the entire process is often 

completely blind whereby the excavation and concreting processes are conducted beneath 

the surface of the water table (or slurry level). This results in an inability to inspect the 

final product and in many cases allows anomalous inclusions (soil cave-ins, slurry 

pockets, etc) to go undetected especially when they are formed outside the steel 

reinforcing cage. 

 

In an effort to gain verification of the as-built, below ground structure, numerous 

non-destructive test methods have been devised, all of which have strengths and 

weaknesses with regards to the full extent of the tested concrete volume. To further this 

cause, a new methodology was developed that uses the energy from hydrating concrete to 

assess the presence or absence of an intact concrete. Therein, the temperature generated 
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by the curing concrete can be measured and correlated to the probable dimensions of the 

drilled shaft.  

 

This thesis outlines the development of the instrumentation capable of making in-

situ temperature measurement of drilled shafts to assure the homogeneity of concrete is 

acceptable.  To that end, several configurations of instrumentation approach were tested 

on varying scales from small lab specimens to full-size field constructed drilled shafts. 

The bulk of this work was conducted several years before the completion of the thesis 

and has the benefit of noting later developments. For instance, this study was used to seed 

future research and led to subsequent FDOT and WSDOT (Washington State DOT) 

funded research for the express purpose of identifying capabilities of thermal testing in 

those states. Likewise, present day practice and use of the approach has also been 

documented. 

 

 

6.2 Present Practice 
 

Integrity testing using the thermal method is now being used as an accepted 

method of drilled shaft integrity testing in multiple states. The frequency of testing is 

commensurate with other test methods wherein a minimum of 10% of shafts are tested 

when redundant load paths exist and 100% testing is performed on single shaft non-

redundant foundations. 
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Access tubes (previously only used for CSL or GGL) have been standardized to 

be 1.5” inner diameter black steel pipe and are installed with the general rule of no less 

than 1 tube per ft of shaft diameter with a minimum of 4 tubes. This changed from 2 inch 

I.D. steel (galvanized or black) and a minimum of 3 tubes since this exploratory study 

was conducted. 

 

Present day equipment is far improved from that used in this study. The field 

equipment used today has undergone further refinements whereby the infrared sensors 

are now digital and the data collectors are miniaturized. The depth measurement 

technique remains essentially unchanged. 

 

Data analysis at the time of the study was basic in nature reporting only 

temperature as a function of depth for each tube. Present day analysis techniques have 

evolved to a point where the eccentricity of the cage alignment, the radius of the shaft, 

and the concrete cover can all be determined. This provides an overall view of the shaft 

shape and concrete quality throughout that is not possible from other test methods. 
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Appendix A - Additional Information from Field Trial #1 
 

 The information contained in this appendix is additional information and test results from field trial #1 

 

Figure A1 - TIP data from field trial #1 all tubes 
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Appendix A (Continued)  
 

 
Figure A2 - TIP data from field trial #1 tube 1 
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Appendix A (Continued)  
 

 
Figure A3 - TIP data from field trial #1 tube 2 
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Appendix A (Continued) 
 

 
Figure A4 - TIP data from field trial #1 tube 3 
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Appendix A (Continued) 
 

 
Figure A5 - TIP data from field trial #1 outside of shaft 
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Appendix B - Additional Information from Field Trial #2 

 

The information contained in this appendix is additional information and test results from field trial #1. 

  

Figure B1 - Concrete mix design for field trial #2 
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Appendix B (Continued) 

 

  

B1 (Continued) 
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Appendix B (Continued) 
 

 

Figure B2 - Ready mix delivery ticket for concrete used in Field Trial #2  
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Appendix B (Continued) 

Figure B3 - Field trial #2 TIP test #1 rebar shaft tube 1  
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Appendix B (Continued) 

Figure B4 - Field trial #2 TIP test #1 rebar shaft tube 2  
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Appendix B (Continued) 

Figure B5 - Field trial #2 TIP test #1 rebar shaft tube 3  
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Appendix B (Continued) 

Figure B6 - Field trial #2 TIP test #1 control shaft tube 1  

0

1

2

3

4

5

6

7

8

9

50 60 70 80 90 100 110 120 130

D
ep

th
Fe

et
 

Approximate Temperature

Field Trial #2 - Control Shaft Test 1 Tube 1

Yel

Org

Blu

PUR



169 
 

 
Appendix B (Continued) 

Figure B7 - Field trial #2 TIP test #1 control shaft tube 2  
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Appendix B (Continued) 

Figure B8 - Field trial #2 TIP test #1 control shaft tube 3  
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Appendix B (Continued) 

Figure B9 - Field trial #2 TIP test #2 rebar shaft tube 1  
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Appendix B (Continued) 

Figure B10 - Field trial #2 TIP test #2 rebar shaft tube 2  
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Appendix B (Continued) 

Figure B11 - Field trial #2 TIP test #2 rebar shaft tube 3  
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Appendix B (Continued) 

Figure B12 - Field trial #2 TIP test #2 control shaft tube 1 
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Appendix B (Continued) 

Figure B13 - Field trial #2 TIP test #2 control shaft tube 2  
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Appendix B (Continued) 

Figure B14 - Field trial #2 TIP test #2 control shaft tube 3  
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Appendix B (Continued) 

Figure B15 - Field trial #2 TIP test #3 rebar shaft tube 1  

0

1

2

3

4

5

6

7

8

9

50 60 70 80 90 100 110 120

D
ep

th
Fe

et
 

Approximate Temperature

Field Trial #2 - Rebar ShaftTest 3 Tube 1

Yel

Org

Blu

PUR



178 
 

 
Appendix B (Continued) 

Figure B16 - Field trial #2 TIP test #3 rebar shaft tube 2  
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Appendix B (Continued) 

Figure B17 - Field trial #2 TIP test #3 rebar shaft tube 3  
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Appendix C - Additional Information Auburn Test Site 
 
 The information contained in this appendix is additional information and test results from the Auburn test site. 

Figure C1 - Explanation of thermocouple data from Auburn test 
site 

Figure C2 - Auburn test site thermocouple data from foam coolers 
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Appendix C (Continued) 

Figure C3 - Auburn test site thermocouple data normalized Figure C4 - Auburn test site thermocouple data from adiabatic box 
#1 
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Appendix C (Continued) 

Figure C5 - Auburn test site thermocouple data from adiabatic box 
#2 

Figure C6 - Auburn test site thermocouple data from first four 
mixes 
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Appendix C (Continued) 

Figure C7 - Auburn test site thermocouple data for three different 
volumes of the same mix (M1) 

Figure C8 - Auburn test site normalized thermocouple data for 
three different volumes of mix M1 
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Appendix C (Continued) 

Figure C9 - Auburn test site TIP test results TS1 tube A Test 1  
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Appendix C (Continued) 

Figure C10 - Auburn test site TIP test results TS1 tube B Test 1 
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Appendix C (Continued) 

Figure C11 - Auburn test site TIP test results TS1 tube C Test 1 
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Appendix C (Continued) 

Figure C12 - Auburn test site TIP test results TS2 tube A Test 1 

0

5

10

15

20

25

30

50 60 70 80 90 100 110 120 130 140

D
ep

th
 (F

ee
t)

Temperature ◦F

Shaft TS2 Tube A Test 1

Yel
Org
Blu
PUR

Blu

Pur

Org

Yel



188 
 

 
Appendix C (Continued) 

Figure C13 - Auburn test site TIP test results TS2 Tube B Test 1 
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Appendix C (Continued) 

Figure C14 - Auburn test site TIP test results TS2 Tube C Test 1 
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Appendix C (Continued) 

Figure C15 - Auburn test site TIP test results TS3 Tube A Test 1 
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Appendix C (Continued) 

Figure C16 - Auburn test site TIP test results TS4 Tube A Test 1 
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Appendix C (Continued) 

Figure C17 - Auburn test site TIP test results TS4 Tube B Test 1 
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Appendix C (Continued) 

Figure C18 - Auburn test site TIP test results TS4 Tube C Test 1 
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Appendix C (Continued) 

Figure C19 - Auburn test site TIP test results TS5 Tube A Test 1 
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Appendix C (Continued) 

Figure C20 - Auburn test site TIP test results TS5 Tube B Test 1 
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Appendix C (Continued) 

Figure C21 - Auburn test site TIP test results TS5 Tube C Test 1 
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Appendix C (Continued) 

Figure C22 - Auburn test site TIP test results TS1 Tube A Test 2 
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Appendix C (Continued) 

Figure C23 - Auburn test site TIP test results TS1 Tube B Test 2 
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Appendix C (Continued) 

Figure C24 - Auburn test site TIP test results TS1 Tube C Test 2 
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Appendix C (Continued) 

Figure C25 - Auburn test site TIP test results TS2 Tube A Test 2 
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Appendix C (Continued) 

Figure C26 - Auburn test site TIP test results TS2 Tube B Test 2 
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Appendix C (Continued) 

Figure C27 - Auburn test site TIP test results TS2 Tube C Test 2 
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Appendix C (Continued) 

Figure C28 - Auburn test site TIP test results TS3 Tube A Test 2 
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Appendix C (Continued) 

Figure C29 - Auburn test site TIP test results TS3 Tube B Test 2 
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Appendix C (Continued) 

Figure C30 - Auburn test site TIP test results TS3 Tube C Test 2 
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Appendix C (Continued) 

Figure C31 - Auburn test site TIP test results TS4 Tube A Test 2 
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Appendix C (Continued) 

Figure C32 - Auburn test site TIP test results TS4 Tube B Test 2 

0

5

10

15

20

25

50 55 60 65 70 75 80 85 90 95

D
ep

th
 (F

ee
t)

Temperature ◦F

Shaft TS4 Tube B Test 2

Yel
Org
Blu
PUR

Blu

Pur

Org

Yel



208 
 

 
Appendix C (Continued) 

Figure C33 - Auburn test site TIP test results TS4 Tube C Test 2 
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Appendix C (Continued) 

Figure C34 - Auburn test site TIP test results TS5 Tube A Test 2 
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Appendix C (Continued) 

Figure C35 - Auburn test site TIP test results TS5 Tube B Test 2 
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Appendix C (Continued) 

Figure C36 - Auburn test site TIP test results TS5 Tube C Test 2 
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Appendix C (Continued) 

Figure C37 - Auburn test site TIP test results TS1 Tube A Test 3 
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Appendix C (Continued) 

Figure C38 - Auburn test site TIP test results TS1 Tube B Test 3 
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Appendix C (Continued) 

Figure C39 - Auburn test site TIP test results TS1 Tube C Test 3 
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Appendix C (Continued) 

Figure C40 - Auburn test site TIP test results TS2 Tube A Test 3 
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Appendix C (Continued) 

Figure C41 - Auburn test site TIP test results TS2 Tube B Test 3 
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Appendix C (Continued) 

Figure C42 - Auburn test site TIP test results TS2 Tube C Test 3 
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Appendix C (Continued) 

Figure C43 - Auburn test site TIP test results TS3 Tube A Test 3 
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Appendix C (Continued) 

Figure C44 - Auburn test site TIP test results TS3 Tube B Test 3 
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Appendix C (Continued) 

Figure C45 - Auburn test site TIP test results TS3 Tube C Test 3 
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Appendix C (Continued) 

Figure C46 - Auburn test site TIP test results TS4 Tube A Test 3 
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Appendix C (Continued) 

Figure C47 - Auburn test site TIP test results TS4 Tube B Test 3 
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Appendix C (Continued) 

Figure C48 - Auburn test site TIP test results TS4 Tube C Test 3 
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Appendix C (Continued) 

Figure C49 - Auburn test site TIP test results TS5 Tube A Test 3 
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Appendix C (Continued) 

Figure C50 - Auburn test site TIP test results TS5 Tube B Test 3 
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Appendix C (Continued) 

Figure C51 - Auburn test site TIP test results TS5 Tube C Test 3 
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Appendix C (Continued) 

Figure C52 - Auburn test site TIP test results TS1 Tube A Test 4 
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Appendix C (Continued) 

Figure C53 - Auburn test site TIP test results TS1 Tube B Test 4 
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Appendix C (Continued) 

Figure C54 - Auburn test site TIP test results TS1 Tube C Test 4 
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Appendix C (Continued) 

Figure C55 - Auburn test site TIP test results TS2 Tube A Test 4 
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Appendix C (Continued) 

Figure C56 - Auburn test site TIP test results TS2 Tube B Test 4 
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Appendix C (Continued) 

Figure C57 - Auburn test site TIP test results TS2 Tube C Test 4 
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Appendix C (Continued) 

Figure C58 - Auburn test site TIP test results TS3 Tube A Test 4 
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Appendix C (Continued) 

Figure C59 - Auburn test site TIP test results TS3 Tube B Test 4 
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Appendix C (Continued) 

Figure C60 - Auburn test site TIP test results TS3 Tube C Test 4 
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Appendix C (Continued) 

Figure C61 - Auburn test site TIP test results TS4 Tube A Test 4 
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Appendix C (Continued) 

Figure C62 - Auburn test site TIP test results TS4 Tube B Test 4 
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Appendix C (Continued) 

Figure C63 - Auburn test site TIP test results TS4 Tube C Test 4 
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Appendix C (Continued) 

Figure C64 - Auburn test site TIP test results TS5 Tube A Test 4 

0

5

10

15

20

25

50 60 70 80 90 100 110

D
ep

th
 (F

ee
t)

Temperature ◦F

Shaft TS5 Tube A Test 4

Yel
Org
Blu
PUR

Blu

Pur

Org

Yel



240 
 

 
Appendix C (Continued) 

Figure C65 - Auburn test site TIP test results TS5 Tube B Test 4 
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Appendix C (Continued) 

Figure C66 - Auburn test site TIP test results TS5 Tube C Test 4 
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Appendix C (Continued) 

Figure C67 - Auburn test site TIP test results TS1 Tube A Test 5 
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Appendix C (Continued) 

Figure C68 - Auburn test site TIP test results TS1 Tube B Test 5 
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Appendix C (Continued) 

Figure C69 - Auburn test site TIP test results TS1 Tube C Test 5 
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Appendix C (Continued) 

Figure C70 - Auburn test site TIP test results TS2 Tube B Test 5 
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Appendix C (Continued) 

Figure C71 - Auburn test site TIP test results TS2 Tube C Test 5 
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Appendix C (Continued) 

Figure C72 - Auburn test site TIP test results TS3 Tube A Test 5 
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Appendix C (Continued) 

Figure C73 - Auburn test site TIP test results TS3 Tube B Test 5 
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Appendix C (Continued) 

Figure C74 - Auburn test site TIP test results TS3 Tube C Test 5 
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