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Effect of Permeate Suction on the Performance of Spiral Wound
Nanofiltration Module

Awad Abdel Monem EI-Shamy

ABSTRACT

Fouling in a nanofitration membrane module is usually a result of concentration
polarization. The effect of permeate suction on the slightly negatively charged spiral
wound nanofiltration membrane is investigated. According to the film theory, the mass
transfer coefficient is inversely proportional to concentration polarization. The effect of
permeate suction destabilizes the boundary layer. This will decrease the concentration
polarization layer, and consequently will increase mass transfer through the membrane’s
surface.

To validate the hypothesis, experiments were carried out on a NF membrane that
can be described by the solution-diffusion model. This model has coefficients that can be
measured experimentally. Using the membrane wall concentration in this model instead
of the bulk feed concentration can help estimating the mass transfer coefficient more
appropriately.

Two experimental studies were carried out, one with a standard high pressure
pump, and another one with the added effect of suction pressure applied to the permeate

collector tube.

XV



Three different concentrations of binary dilute solutions of NaCl , MgSO, ,
and MgCl, , at three different pressures (low, medium, and high) were tested.
For all tested solutions, permeate suction increased the diffusive Peclet number as

a function of the feed concentration ( x ) according to the equation P, = a,x*+ b,x +c,.,

with R?>0.99, where x is the feed concentration in Mol/l, and a,, b,, and ¢, are

coefficients dependent on feed pressure for every salt solution. With the increase of the
Peclet number, it was observed that the concentration polarization decreased, and both
the product flow and the product quality were improved. Suction had the greatest impact
at the range of 100 t0110 psi feed pressure, where the concentration polarization reduced
approximately 14 to 20 %.

ANOVA for the concentration polarization showed that suction was significant in
reducing the calculated concentration polarization layer for all tested solutions.

It was concluded that permeate suction reduced concentration polarization,
increased product flow rate, and improved product quality. Thus, adding permeate
suction has beneficial consequences because it reduces membrane fouling and extends its

useful service life.
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CHAPTER 1

INTRODUCTION TO THE RESEARCH

1.1 Importance of the Research Topic

The rapid growth of the new generation of nanofiltration as an attractive
membrane separation process suggests renewed investigations of the current design
methods for developing an improved design configuration to reduce membrane fouling.
Fouling in reverse osmosis (RO)/nanofitration (NF) membrane modules is usually a
result of concentration polarization. Membrane fouling has a serious economical
implications on the water treatment plant because it causes permeate flux decline, reduces
product quality, and shortens the life of the membrane. Spiral wound configuration,
which is the most dominant module used in the application of pressure driven membrane
for drinking water treatment, was rarely investigated by researchers as far as the permeate
suction is concerned.

Nanofiltration membrane, which is sometimes called loose reverse osmosis
membrane, is more manageable than RO membrane for permeate suction because its
permeability coefficient is substantially higher than RO membrane. This is despite that
NF membrane systems are typically designed like RO but with much lower driving
pressures. Currently NF membranes are traditionally used to treat low salinity water,
waste water, or in the process industry like extracting chemicals or protein from dilute

water.



The state of the art in NF membrane researches is taking advantages of using it in
seawater desalination, either for pretreatment for existing thermal distillation plants;
pretreatment of seawater RO plants; or to replace the traditional seawater RO membranes
so that it improves production rate, or saves energy (Leon Awerbuch, 2007; Hassan,
2004;Yann Gouellec et al., 2006).

This is an indication of the inspiring future that awaits the NF membrane in the
pressure driven membrane technology.

Despite the numerous studies that have addressed the NF membrane fouling, few
researchers have addressed using permeate suction as a means of reducing fouling in the

widely used spiral wound thin film composite membrane configuration.

1.2 Problem Definition

Membrane fouling and scaling can significantly increase the cost of a membrane
system as well as reduce its reliability. This limitation is behind the great deal of research
that has made significant developments in membrane science.

Fouling is a term generally used to describe the undesirable formation of deposits
on the surface of the membrane. Membrane fouling is a complicated phenomenon
because it results from a group of physical, chemical, and biological effects that can lead
to an irreversible loss of membrane permeability (Salbani et al., 2001). Attempts to
analyze the fouling phenomena have shown that its primary characteristics are adsorption
of feed components, and deposition of solids on the membrane surface, accompanied by
crystallization and compaction of the membrane structure. However, the occurrence of

fouling is almost always a result of concentration polarization (Jamal et al., 2004).



Concentration polarization (Figure 1-1), may be defined as the presence of a higher
concentration of rejected species at the surface of a membrane than in the bulk solution,
due to the convective transport of both solute and solvent. It is generally considered a
totally reversible effect (Jamal et al, 2004). The reduction of concentration polarization

layer (O ) is important for the improvement of the performance of osmotic type

membranes, as it will inevitably lead to reduction in the fouling of the membrane (Jamal
et. al, 2004).

Depending on molecular weight, which will determine diffusive back-transport
from the membrane, concentration polarization is more or less distinct.

Although concentration polarization can also be found on the permeate side as
indicated in Figure 1-1, it is usually neglected in pressure driven membrane since it is
much less pronounced than feed side polarization (Fritzmann et al., 2007).

Concentration polarization has several negative effects on membrane
performance: (1) rejection decreases due to higher salt flux because of increased salt
concentrations at the membrane surface; (2), solubility limits can be exceeded, especially
for divalent ions, leading to a precipitation layer on the membrane surface, which
negatively influences mass transfer, that dramatically reduce permeate flux; (3) water
flux is reduced due to higher osmotic pressure associated with higher salt concentration at
the feed side membrane surface; (4) and particles are accumulated at the membrane

which can lead to cake formation on the surface.
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Figure 1-1.Concentration polarization layer near membrane surface (adopted from Fritzmann et al., 2007)

Several approaches have been used to try to minimize the effects of fouling.
In thin film composite spiral wound module, the hydraulic flow is laminar due to
channels between the membrane layers. The mass transfer coefficient is the most widely
used parameter in the design of pressure-driven membrane separation systems such as
reverse osmosis and nanofiltration. The role of suction in mass transfer through porous
membranes is very important. It was identified by several researchers (e. g. Van den
Berg et al., 1989; Gekas et al., 1987) that the effect of permeate suction enhances the
mass transfer from the bulk to the membrane surface. By applying suction at the end
of the collector tube of the membrane module, an increased rate of pressure along the
stream will present. This increase in pressure rate will destabilize the boundary layer
at steady state conditions (Schlichting, 1979).

The conventional way to estimate the mass transfer coefficient is to use Sherwood
number relationships obtained from heat and mass transfer analogy.

4



Numerous Sherwood number relationships have been proposed and extensively
reviewed (C. Van de Liskdonk et al., 2000). The Graetz-Leveque correlation of
Sherwood number, which is used for laminar flow when the velocity field is fully
developed and the concentration boundary layer is not fully developed, is typically used

to estimate mass transfer coefficient as:

Sh=X(Re)* (Sc f (dThj (1-1)
v, d, . 1% : .
where Re = Reynold's number = ——; Schmidt number = Sc = B; v = kinematics
1%

viscosity; V,, = average cross-flow permeate velocity; d, = hydraulic diameter of the

membrane element; D the diffusion coefficient for solute transport through solvent, and
L is the spiral wound membrane width (Taylor et al.,1999). D in this relationship is equal

to K ¢, where K is the mass transfer coefficient, and o is the concentration

polarization layer thickness. The terms X, a, b, and c are coefficients that have taken
extremely different values by different researchers (e.g. Isaacson,1979; Schocket
Miquel, 1979; Taylor, 1991). Further discussions about these terms will be included in
Chapter 2.
There are several limitations upon using the above-mentioned equation:
(1) the above mentioned Sherwood number relationship is derived for flow through non-
porous conduit; hence, the effect of suction can not be considered using these
relationships; (2) the axial change in osmotic pressure at membrane surface due to the
concentration polarization change is not considered in the above mentioned Sherwood

number correlations; (3) and suction will change the species concentration at the

5



membrane surface that will change the solution’s physical properties like viscosity,
density, and diffusivity, which are functions of the concentration. Consequently, the
above-mentioned Reynold’s number, and Schmidt number, will be variable along the
membrane length. Those changes are not considered with this form of Sherwood number
relationship.

thd

The diffusive Peclet number is expressed as P,= 5

(1-2)

where V, is the cross flow permeate velocity; D is the diffusivity coefficicent of the
species; and h, is the hydraulic diameter of the spiral wound membrane.

The diffusive Peclet number measures the dimensionless ratio of convective mass
transfer to the membrane to the diffusive mass transfer towards the bulk solution at the
opposite direction. The Peclet number is also called the dimensionless flux. If the
diffusive Peclet number is increased due to suction, while the associated concentration
polarization is being reduced, this means that the suction has increased membrane
production with more favorable conditions to the membrane, as far as inorganic fouling is
concerned. Therefore, the Sherwood number can be avoided in the calculations due to

the above-mentioned limitations.

1.3 Research Objective

The objective of this research is to investigate the effect of permeate suction on
the mass transfer coefficient, concentration polarization layer, product quality,
production flow rate, and membrane diffusive Peclet number for spiral wound NF

module.



The goal is to increase system permeate flow without subjecting the membrane to
an increasing tendency for inorganic precipitation. This was carried out by comparing the
data collected from running two tests on the membrane: the first test will be run using the
standard high pressure feed pump only, and second will be done by running the test after

adding the effect of the permeate suction pump to the original setup.

1.3 Research Approach

For high rejection membranes of the type used in reverse osmosis and
nanofiltration membrane applications, the water flux can be presented by the solution
diffusion model (Lonsdale et al.1965; Soltanieh and Gill, 1981), which states that the
solvent flux is proportional to the effective pressure difference (AP - Az ). The solvent
flux is caused by the gradient of chemical potential which includes a concentration
diffusion term, and a pressure diffusion term. For real membranes that have some
imperfections like holes or microspores, the measured flux is not purely diffusive, but it
contains a term contributed by convection. Recent researches did not find pores in neither
RO nor NF membranes, such that the transport of solvent is accomplished through the
free volume between the segments of the polymers of which the membrane is constituted
(William, 2003). In diffusion controlled hyperfiltration (RO and NF) membrane process,
the solution-diffusion imperfection based model is widely used, because most of the
coefficients used in this model are actual operating conditions that can be directly
measured, as opposed to theoretical models that have parameters difficult to be measured

in reality (Williams, 2003). Furthermore, for dilute solutions, which is the typical solution



fed to NF membrane, this convection term is so small such that it can be neglected
(Soltanieh and Gill, 1981) to further simply the real model.

Mass transfer models typically assume that the bulk feed solution concentration is
equal to the membrane wall solution concentration, which is not always true.
This has to be related to the concentration polarization expressions (Williams, 2003).
Concentration polarization complicates the modeling of membrane systems because it is

very difficult to experimentally determine the membrane wall concentration (C,, ).

Membrane wall concentration is necessary to be determined since it and not the bulk feed
concentration (Cr ) should be used in RO and NF transport models.

In the limited feed flow rate that is typically used for hyperfiltration (RO and NF)
membrane processes, the flow in the membrane channels is laminar, and the difference
between the wall and bulk concentrations can be substantial, so calculations of the
concentration at the membrane wall must be appropriately estimated.

Bhattacharya et al. (1996) have developed a generalized mass-transfer relationship
from first principals to obtain a theoretically modified form for the Sherwood number
using the wall Peclet number to estimate the mass-transfer coefficient using permeate
suction.

This correlation is debated due to the above-mentioned items that were discussed
earlier.

The permeate suction was tested, and was experimentally validated for NF spiral
wound TFC module in this research. An experimental setup for the membrane system
was tested with the conventional operating setup in order for it to be compared with the

permeate suction setup results. The research was conducted for three different dilute
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strong electrolyte binary solutions, namely: NaCl , MgCl,, MgSO, , which are 1-1, 2-1,
and 2-2 electrolytes, respectively, at three different pressures and three different dilute
concentrations. The experiment was set at a constant temperature of 25 degrees Celsius in

order to keep the diffusion coefficient constant for the different dilute solutions.

1.5 Dissertation Outline

Chapter 2 of this dissertation is divided into five parts. The first part presents general
information related to RO and NF membrane properties and module configurations. It also
includes literature review of the previous researches accomplished to reduce concentration
polarization in RO and NF. The second part emphasizes the properties of NF membranes,
and their benefits in recent developments in either brackish water desalination or seawater
desalination. It also explores the distinguished importance of the new generation of NF
membranes. The third part demonstrates the history of using permeate suction in pressure-
driven membranes; and discusses the effect of gradually increasing suction on the boundary
layer in fluid dynamics. The fourth part illustrates various mass transport models,
describing the advantages and disadvantages of each model. Emphasis was placed on the
solution-diffusion model which is the mass transport model used in this research.

The fifth part in Chapter 2 discusses the theories related to different equations that
will be utilized to avoid using the Sherwood number relationship for mass transfer
estimations.

Chapter 3 presents the experimental setup that is being used to validate the
hypothesis. A detailed description of the assumptions, equipment, solutions of salts, and

chemicals used in the experiments are presented.



Chapter 4 of this dissertation explores the results obtained from the above-
mentioned experiments; along with detailed discussions for the results.

Chapter 5 exhibits the conclusion from the experimental results and the
discussions. Recommendations were presented in this chapter, along with the suggested
future permeate suction researches that can be conducted on higher concentrations of
brackish water and seawater membranes to reduce concentration polarization in order to

elongate the membrane life.
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CHAPTER 2
CONCENTRATION POLARIZTION IN RO AND NF MODULE:

LITERATURE REVIEW

This chapter is divided into five main parts. The first part presents general
information related to RO and NF membrane properties and module configurations.

The second part explores the distinguished importance of the new generation of
NF membranes, and the promising future of this important type of membrane. The third
part demonstrates the history of using permeate suction in pressure-driven membranes;
and discusses the effect of gradually increasing suction on the boundary layer in fluid
dynamics. The fourth part demonstrates various mass transport models, describing the
advantages and disadvantages of each model. This includes the solution diffusion model
for mass transport in the NF membrane, and the advantage of using it in the application to
the new generation of NF membrane. The fifth part demonstrates the theories used to
prove the hypothesis related to the chosen mass transport model in dilute solutions, which

are used as a feed for NF membrane.

2.1 Background
Information similar to that presented in this section can be found in numerous
publications describing hyperfiltration membranes and processes. References are made

only occasionally and mainly when information is specific to a source.
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2.2 Preface

Water shortages and lack of access to safe drinking water will continue to be
major global problems. At present, more than one billion people lack access to safe
drinking water, and 2.4 billion people lack access to proper sanitation, nearly all of them
in developing countries. At present a third of the world's population live in water-stressed
countries, and by 2025, the number is expected to rise to two-thirds.

Scarcity of fresh water has serious implications on human beings. It can slow
down economic expansion, reduce agricultural output, hamper food independence, and
degrade public health and quality of life. Since it was first introduced in the 1950’s,
hyperfiltration membranes (reverse osmosis and nanofiltration) have most commonly
been used for desalting seawater, and brackish water by removing salts and other
impurities in order to improve the color, taste or properties of the water for drinking and
irrigation. Hyperfiltration is finding increasing uses in industrial applications for highly
pure water because of its reliability and cost-effectiveness. Membrane separation has
gained considerable importance because they offer superior treatments at relatively
modest capital and operating cost (Madireddi et al., 1999). However, membrane fouling
will continue to be the major obstacle for the efficient operation of RO membrane

systems (Jamal et al., 2004).

2.3 Historical Background
The ancient Egyptians treated water by siphoning water out of the huge jars after
allowing the muddy Nile River to settle and separate; the first United States water plant

with filters was built in 1872 in Poughkeepsi, New York. Membrane filtration represents
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the advanced ring in that historical development of water treatment, and RO is the finest
level of filtration available. The concepts of "direct osmosis" and "reverse osmosis" have
been known for many years. In fact, studies on osmosis were carried out as early as 1748
by the French scientist Nollet, and many researchers investigated these phenomena over
the next two centuries (Reid, 1966; Mason, 1991; Williams, 2003). However, the use
of reverse osmosis (RO) as a feasible separation process is a relatively young technology.
In fact, only in the late 1950's did the work of Reid show that cellulose acetate RO
membranes were capable of separating salt from water, even though the water fluxes
obtained were too small to be practical (Reid and Breton, 1959; Ferguson, 1980;
Lonsdale, 1982; Applegate, 1984). Then, in the early 1960's, Loeb and Sourirajan
developed a method for making asymmetric cellulose acetate membranes with relatively
high water fluxes and separations, thus making RO separation both possible and practical
(Loeb and Sourirajan, 1962; Loeb, 1981; Sourirajan and Matsuura, 1985). Since
then, the development of newer generation membranes such as the thin-film composite
membrane that can tolerate a wider pH range, higher temperatures, and harsh chemical
environments, and that have highly improved water flux and solute separation
characteristics has resulted in many RO applications. In addition to the traditional
seawater and brackish water desalination processes, RO and NF membranes have found
uses in wastewater treatment, production of ultrapure water, water softening, and food

processing, as well as many other applications (Bhattacharyya, 1992).
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2.4 Definition of Reverse Osmosis

Osmosis is a natural phenomenon that occurs in all living cells in which a solvent
passes through a semi-permeable barrier from the side with lower solute concentration to
the higher solute concentration. Reverse osmosis is based on a property of certain
polymers called semi-permeability. While they are very permeable for water, their
permeability for dissolved substances is low. By applying a pressure difference across the
membrane the water contained in the feed is forced to permeate through the membrane.

In order to overcome the feed side osmotic pressure, fairly high feed pressure is required.

/
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Figure2-1. Schematic drawing of water and salt fluxes in direct osmosis and reverse osmosis
(Adopted from Ghiu et Carnahan, 2003)

As shown in Figure 2-1a, solvent flow continues until the chemical potential
equilibrium of the solvent is established. At equilibrium, the pressure difference between
the two sides of the membrane is equal to the osmotic pressure of the solution. To reverse
the flow of water (solvent) a pressure difference greater than the osmotic pressure

difference is applied as illustrated in Figure 2-2b. As a result, separation of water from
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the solution occurs as pure water flows from the high concentration side to the low
concentration side. This phenomenon is termed reverse osmosis or hyperfiltration.

The RO process is attractive because it is relatively simple in design. It consists of
a feed water source, feed pretreatment, high pressure pump, RO membrane modules, and

in some cases post-treatment steps.

2.5 Water Treatment by Pressure-Driven Membranes

The membrane processes that has the greatest immediate application to potable
water treatment are reverse osmosis (RO), nanofitration (NF), ultrafitration (UF), and
microfiltartion (MF). Figure 2-2 shows the kind of rejected species by different types of

pressure-driven membranes.
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Figure 2-2. Kinds of rejected species by different pressure-driven membrane types
(Adapted from Koch membrane manufacturer, 2009)

Reverse osmosis is primarily used to remove salts from brackish water or
seawater, and it is also capable of very high rejection of synthetic organic compounds
(SOCs). Nanofiltration is used to soften fresh water, and remove disinfection by-product
(DBP) precursors. Ultrafiltraion, and microfiltration are used to remove turbidity,

pathogens, and particles from fresh water. A membrane, the common element of all these
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processes, could be defined as any barrier to the flow of suspended, colloidal, or
dissolved species in any solvent. Contaminants larger than the maximum pore size of the
membrane are removed by sieving in a diffusion-controlled process.

MF and UF membranes have pores in the filtration layer of the membrane, while
the active layer in RO and NF membranes is nonporous. The transport of solvent in RO
and NF is accomplished through the free volume between the segments of the polymers
of which the membrane is constituted (William, 2003).

Contaminants rejection by diffusion-controlled membrane processes increases as
species charge and molecular weight increases. Consequently, satisfactory removal of
metals, total dissolved solids (TDS), radionuclides, and disinfection by-products
precursors can be attained.

Membranes are classified by molecular weight cutoffs, solute and solvent

solubility in the membrane film, active membrane material, active film thickness, surface

charge, and smoothness of the active film surface.

2.6 Reverse Osmosis Membrane Properties

Reverse osmosis membrane separation is governed by the properties of the
membrane used in the process. These properties depend on the chemical nature of the
membrane material as well as its physical structure. Most currently available RO
membranes fall into two types of membranes: asymmetric membranes, and thin film
composite (TFC). Asymmetric membrane containing one polymer, and thin film
composite membranes consist of two or more polymer layers. Asymmetric RO

membranes have a very thin, perm selective skin layer supported on a more porous sub-
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layer of the same polymer. This membrane is used to produce the hollow fine fiber (HFF)
configuration. The hollow fiber element consists of large number of fine hollow fiber
membranes (with an outer diameter up to 200 um) placed in a pressure vessel; the feed
flows outside the fibers and permeates through them (Allegrezza, 1988; Baker, 1990;
Bhattacharyya et al., 1992). These elements have an extremely high packing density, and
so can have high permeate production rates per module. However, these modules are
highly prone to fouling, and thus are not feasible for many of the applications.

Thin film composite membrane is the one used in spiral wound membrane
configuration. The dominant form of the synthetic materials is TFC aromatic polyamide
membrane. The development of the cross-linked fully aromatic polyamide thin film
composite membrane in the 1970’s represented a major advance in membrane
technology. TFC membrane provides very thin active film that requires much less energy
to induce fluid passage than other materials, making them more economical to use on a
large scale. Figure 2-3 shows the composition of both the hydrophilic, and the
hydrophobic TFC membrane. Both hydrophilic and hydrophobic films are laid in a
composite film by cross-linking different polymers. The thickness of the nonporous layer

is typically less than 1 g m. The widely used aromatic polyamide membranes are

unfortunately susceptible to oxidation, and are often impacted by the side chain reaction
between the disinfectant oxidizing agent like chlorine, and the polyamide groups. This
reaction disrupts their stable linkages, and conformational structure. Consequently, this
renders them ineffective for their intended function. There have been several attempts to
create chlorine-resistance membranes for more than 25 years, but without success
(Mukiibi, 2008).
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Figure 2-3. Thin film composite (TFC) cross section view

(Adopted from Hydranautics Membrane Manufacturer, 2009)

2.7 Reverse Osmosis Membrane and Module Configuration

The available membrane modules using asymmetric type include plate-and-frame,
tubular, and spiral-wound configuration. Plate-and-frame modules consist of stacks of flat

sheet membrane placed on supports; each membrane and support are separated by spacers

which direct the feed across each membrane and channel permeate out of the module

(Allegrezza, 1988; Baker, 1990; Strathmann, 1990; Bhattacharyya et al., 1992).

Tubular membrane elements consist of membrane tubes supported within

perforated stainless steel tubes; as feed flows through the tubes, the permeate passes

through the membrane and the support. While the plate-and-frame module, and the

tubular module are resistant to fouling, they have low membrane surface area per

element. This makes them expensive and can limit their use in areas with space

restrictions.
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Figure 2-4. Structure of thin film barrier layer of RO aromatic polyamide membrane
(Adopted from FilmTec Membrane Manufacturer, 2009)

While these elements are also fouling resistant, and are easy to clean, the modules
have a low packing density, and can be expensive to operate because of the necessary
high feed flow rates. Because of the plate-and-frame, and tubular element disadvantages,
these modules are used primarily for highly fouling feeds, or in laboratory researches.
Figure 2-4, and Figure 2-5 illustrate the chemical structure of the RO and NF thin film
composite polyamide, respectively. The spiral wound membrane configuration is the
most common membrane for production of drinking, and industrial process water
(Allegrezza, 1988; Bhattacharyya, 1992). This type of element has a high packing
density, moderate fouling resistance, and lower capital and operating costs compared to
plate-and-frame or tubular modules. The typical configuration of the spiral wound
element leaves the membrane easily accessible to cleaning agents. Due to that, the spiral
wound membrane can be cleaned more thoroughly, and it is less subject to fouling
compared to HFF membranes (Williams et al., 1992). Spiral wound elements are
manufactured using flat sheet membranes.

A typical spiral wound element, as shown in Figure 2-6, consists of envelopes

(leaves) attached to a center tube that collects the permeate stream.
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Figure 2-5. Structure of thin film barrier layer of the aromatic /aliphatic polyamide nanofiltration
membrane (Adopted from FilmTec Membrane Manufacturer, 2009)

The sheet itself consists of two layers forming a folded envelope. The envelope is
glued along three open sides and near the fold, completely enclosing the permeate spacer.
The glue line on the fold end is a short distance away from the fold, because the fold end
is attached to the center collection tube. The glue line at the fold end stops the flow of the
feed stream, and allows the remaining pressure in the permeate stream to drive it through
the membrane into the center collection tube. An envelope is formed by folding one flat
sheet over a permeate stream spacer. Feed spacer and permeate spacer, shown in Figure
2-7, are attached to each envelope prior to establishing the fold end glue line.

Several envelopes, including feed spacers, and permeate spacers are attached to
the center collection tube, and wrapped in a spiral around it. An epoxy shell or tape wraps
are applied around the envelope, completing the spiral wound element. The feed stream
enters the end of the spiral wound element in the channel created by the feed stream
spacer. The feed stream can flow either in a path parallel to the center collection tube or
through the active membrane film and membrane supports into a channel created by the

permeate stream spacers.
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Figure 2-6. A cross section in the thin film composite (TFC) spiral wound reverse osmosis membrane
showing feed channel spacer (adopted from Fritzmann et al., 2007)

The permeate stream follows a spiral path into the center collection tube, and is
taken away as product for point of use. The recovery in a spiral wound element varies
from approximately 5 to 20 percent. The Reynold’s number typically ranges from 100 to
1,000. The feed stream spacer creates additional turbulence and increases the Reynold’s
number (J. S. Taylor, 1999). The highest and lowest feed stream velocities occur at the
entrance, and the exit of the element, respectively. The feed flow is in the laminar region,
and the last element in series is the one which is most likely subjected to chemical
fouling, if the species in the feed water are subjected to super saturation. Fouling from
particle deposition could occur mainly in the first element in series.

Because of the importance of the membrane module used in the RO process,
much research has been performed to optimize the design of each element type. As a
result, many models describing the various modules are available, such that allowing
determination of different module hydrodynamics, or optimizing the membrane spacer

placement and height.
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Figure 2-7. Configuration of permeate spacer (top) and feed spacer (bottom) in spiral wound RO/NF
element (adopted from Hydranuatics membrane manufacturer, 2009)

Reverse osmosis membrane modules can be arranged in several configurations in
the RO process (Williams et al., 1992). For a single-pass arrangement, a single high
rejection membrane sufficiently removes the solute from the feed. In a double-pass
configuration, the permeate of one set of membranes is used as the feed to another set of
membranes in order to provide adequate overall removal of the solute. The modules can
also be placed in stages in order to increase water recoveries. In this configuration, the
concentrate from one set of membranes is used as the feed for another set, and

consequently high overall water recoveries are possible.

2.8 Concentration Polarization
Concentration polarization, which is illustrated in Figure 1-1 in Chapter 1, is the
term used to describe the accumulation of rejected solute at the surface of a membrane so

that the solute concentration at the membrane wall is higher than that of the bulk feed
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solution. As water passes through the membrane, the convective flow of solute to the
membrane surface is much larger than the diffusion of the solute back to the bulk feed
solution. As a result, the concentration of the solute at the membrane wall increases.
Reviews of concentration polarization are given by Matthiasson and Sivik (1980), Gekas
and Hallstrom (1987), Rautenbach and Albrecht (1989), and Bhattacharyya and Williams
(1992). Possible negative effects of concentration polarization include: (1) decrease in
water flux due to increased osmotic pressure at the membrane wall; (2) increase in solute
flux through the membrane because of increased concentration gradient across the
membrane; (3) precipitation of the solute if the surface concentration exceeds its
solubility limit, leading to scaling or particle fouling of the membrane, and reduced water
flux; (4) changes in membrane separation properties; (5) enhancement of fouling by
particulate or colloidal materials in the feed which block the membrane surface and
reduce water flux. The extent of concentration polarization can be reduced by promoting
good mixing of the bulk feed solution with the solution near the membrane wall. Mixing
can be enhanced through membrane module optimization of turbulence promoters, or
feed spacer geometrical configuration and height, or by increasing axial velocity to

promote turbulent flow.

2.9 Previous Studies to Reduce Concentration Polarization

Several techniques that have the potential to reduce the concentration polarization
to control the fouling have been proposed and adopted. One method is to adjust the
operating parameters, e.g. using an intermittent mode of operation, or employing

variable means to reduce concentration polarization. Both of these phenomena are

23



impacting flux (Mahlab, 1978). Other techniques include increasing the flow rate;
assembling an intensifier for turbulent flow; the use of impulse methods and agitating
methods; the periodic depressurization of the membrane tube, flow reversal, pre-coating
of the membrane surfaces; enzyme immobilization; modification of the membrane’s
polymeric structure; and the mechanical and ultrasonic vibration of the membranes (e.g.,
Mahlab, 1978; Cruver, 1973). The turbulence promoter acts to reduce concentration
polarization and therefore fouling is decreased by increasing the friction factor and bulk
velocity. A model has been developed by Chiolle for reverse osmosis with turbulence
promoting nets for the parallel wall channels module (Chiolle et al, 1978). The model
developed by Drioli and Bellucci shows the effect of the interaction between
concentration polarization and solute-membrane on the pressure driven membranes,
when a multi-component solution is involved (Drioli and Bellucci, 1978).

The modification of the membrane’s polymeric structure plays an important role in
the reduction of concentration polarization through the fluidized bed that was developed
by Van der Waal (Van der Waal, 1977). Bhattacharyya developed a finite elements
program to compute the concentration profile throughout a reverse osmosis membrane
module to predict the performance of the module. The finite element method allowed
rapid evaluation of various membrane module configurations, such as tapered cell
geometry and channels containing spaces (Bhattacharyya et. al, 1990; Gupta, 2005).

The model developed by Van der Meer has shown that an increase of 20% in the
permeate productivity of the spiral wound RO process is achievable by lowering the
number of membrane modules from six per vessel to two in a pressure vessel (Van der

Meer et al., 1988).
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2.10 Limiting Factors for Membrane Fouling

Membrane processes are not only limited by increasing osmotic pressure due to
concentration polarization and rising overall concentrations along the membrane, but by
other factors leading to reduced performance and they can be differentiated by their
mechanism. Various chemicals can harm the active layer of the membrane, leading to
irreversible damage associated with reduced rejection capability and even destruction of
the membrane. Oxidants used in pre-treatment of the reverse osmosis feed water, or as
cleaning chemicals are the most important group of chemicals responsible for membrane
deterioration. In addition, polymeric membranes are more or less susceptible to very low
or high pH values. Therefore pH adjustment and control is necessary to ensure stable
operation. During operation of a reverse osmosis plant, care has to be taken that no
dissolved, colloidal or biologic matter accumulate at the membrane surface, building a
continuous layer that reduces or inhibits mass transfer across the membrane.

Precipitation on the membrane is caused by super-saturation of inorganic
compounds concentrated on the feed side. Super-saturated salts can precipitate on the
membrane surface building a thin layer, which hinders mass transfer through the
membrane. Scaling always occurs at the membrane surface because of the increased salt
concentration near the membrane caused by concentration polarization. Some of the most

important scaling substances are CaCO,, CaSO,, BaSO,, SrSO,, CaF,, Mg(OH),,

and SiO, . Scaling can drastically reduce permeate flux, and has to be avoided by all

means. Figure 2-8 illustrates the species that can foul or scale the membrane that leads to
deteriorated performance. Most susceptible to scaling is the downstream part of the RO

stage where concentration in the feed solution is the highest. Therefore, pre-treatment is

25



used for stabilization of substances that could cause scaling. By pH adjustment, and the
use of antiscalants, precipitation can be inhibited. Crystal growth is usually divided into
three stages as shown in Figure 2-9. Antiscalants inhibit one or more of these building
stages (Fritzmann et al., 2007). Membrane fouling is caused either by convective and
diffusive transport of suspended or colloidal matter, or by bio-fouling. An existing
fouling layer adds to the overall resistance to mass transfer of the membrane and overall
performance decreases significantly. In addition, membrane fouling also increases
pressure loss along the membrane, while rejection is decreased. In RO operations, fouling
can never fully be prevented even with optimized pre-treatment. Therefore, periodical
membrane cleaning has to be performed. Complete removal is not possible and fouling
has to be tolerated up to a decrease of mass flux down to 75% of original flux (Fritzmann
et al., 2007). Good operating practice calls for chemical cleaning of the membranes,
either normalized permeate flow decreases by 10%, feed channel pressure loss increases
by 15%, or normalized salt rejection decreases by 10% from initial conditions during the
first 48 hours of plant operation.

A key phase in the membrane separation processes is the transition from
concentration polarization to fouling. This occurs at a critical flux.

Song (1998) developed a mechanistic model, based on first principles, for
predicting the limiting flux. He showed that for a given suspension there is a critical
pressure below which a concentration polarization layer will exist at the membrane

surface.
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Figure 2-9. Inorganic scaling stages (Adopted from Fritzmann et al., 2007)

However, a cake layer will form between the polarization layer, and the
membrane surface when the applied pressure exceeds a critical pressure. The limiting or
critical flux values predicted by the mechanistic model compared well with the integral
model for a low concentration feed. However, it deviated at high solute feed

concentrations (Salbani et al., 2001).
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2.11 The Promise of Nanofiltration Membrane

NF membrane is sometimes called a loose RO pressure-driven membrane process
because of its relatively much higher permeability coefficient. NF processes operate at
pressures between 50 psi, and 150 psi - much lower than reverse osmosis (200 to 1,000
psi), but higher than ultrafiltration, and micorfiltration (10 to 70 psi). The molecular
weight cut-off (MWCO) is generally between 300 and 1,000 Dalton.

In treating brackish water, NF has been widely used due to more stringent
drinking water regulations. Brackish water desalination is assumed to grow at higher
rates than seawater desalination in the near future (Fritzmann et al., 2007). Delivery of
fresh water from seawater desalination plants demands piping and pumping systems to
transport product water from coastal regions to residential areas, which increase cost.
High availability of most brackish water in residential areas makes expensive delivery

piping and pumping unnecessary.

2.11.1 Nanofiltration for Contaminated Drinking Water

Nanofiltration membrane, although a relatively recent development, has attracted a
great deal of attention for use in water softening, and removal of various contaminants
from drinking water sources (Williams, 2003). NF membranes are usually negatively-

charged, and, as a result, ion repulsion is the major factor in determining salt rejection.
For example, more highly charged ions such asSO, ~ , Ca™, and Mg™" are rejected by
nanofiltration membranes to a greater extent than monovalent ions such as Cl~, or Na™.

NF processes can reduce or remove TDS, hardness, color, agricultural chemicals, and

high molecular weight humic and fulvic materials, which can form trihalomethanes when

28



chlorinated. Dykes and Conlon (1989), Conlon and McClellan (1989), Watson and
Hornburg (1989), and Conlon et al. (1990) have identified NF as an emerging technology
for compliance with THM regulations and for control of TDS, TOC, color, and THM
precursors. Clifford et al. (1988) discussed the use of NF70 membranes of FilmTec for
contaminated groundwater treatment. Removals included 91% for radium-226 and 87%
for TDS. Taylor et al. (1989) reported that NF70 membranes could allow control of THM
formation, TOC, TDS, and produce high quality product water from an organic
contaminated groundwater. They indicated that the cost of a NF process would be
competitive with conventional treatment processes which do not control THM formation.
Amy et al. (1990) used NF70 membranes to remove dissolved organic matter
from both groundwater, and surface water in order to reduce THM precursors; they found
that the process was effective in reducing the organics as well as conductivity in both
water sources. NF membranes also reject organic compounds with molecular weights
above 200 to 500. These properties have made possible some interesting new applications
in wastewater treatment, such as selective separation, and recovery of pollutants that have
charge differences, separation of hazardous organics from monovalent salt solutions, and
membrane softening to reduce hardness, and THM precursors in drinking water sources
(Eriksson, 1988; Cadotte et al., 1988; Williams et al., 1992). Arsenic, which is the most
extensive environmental poisonous chemical element throughout the world, can be
removed by NF to meet World Health Organization (WHO) standards (Larry Henke,

2008).
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2.11.2 Nanofiltration for Wastewater

Nanofiltration has also been used to remove both organics and inorganics in
various wastewaters. Bindoff et al. (1987) reported the use of NF membranes to remove
color-causing compounds from effluent containing lignin, and high salt concentrations in
a wood pulping process. Color removals were >98% at water recoveries up to 95% while
the inorganic was poorly rejected, allowing the use of low operating pressures, since the
osmotic pressure of organic matters is small. Ikeda et al. (1988) indicated NF could give
high separations of color-causing compounds such as lignin sulphonates in paper pulping
wastewaters. Afonso et al. (1992) found NF removal (>95%) of chlorinated organic
compounds from alkaline pulp and paper bleaching effluents with high water fluxes.
Simpson et al. (1987) reported the use of NF membranes to remove hardness and
organics in textile mill effluents. Gaeta and Fedele (1991) also indicated that high water
recoveries (up to 90%) from textile dye house effluent could be achieved with NF
membranes. Ikeda et al. (1988) and Cadotte et al. (1988) reported the use of NF
membranes in the treatment of food processing wastewaters. Some specific uses included
the desalting of whey and the reduction of high BOD and nitrate levels in potato
processing waters (Anonymous, 1988). Bhattacharyya et al. (1989) used NF membranes
to selectively separate mixtures of cadmium and nickel. Chu et al. (1990) detailed the use
of NF in a process for treating uranium wastewater; uranium rejections were 97% to
99.9%. Dyke and Bartels (1990) discussed the use of NF membranes to replace activated
carbon filters for the removal of organics from offshore produced water containing

residual oils. The produced waters contained ~1,000 mg/1 soluble organics (mostly

carboxylic acids) and high inorganic concentrations (~15,000 mg/l Na* and ~25,000
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mg/l Cl™ as well as other dissolved ions). Organic rejections were suitable to meet
discharge standards, while inorganics rejections were low (<20%), allowing operation at

low pressures.

2.11.3 Nanofiltration for Hybrid Seawater Distillation

The use of NF membrane is the state of the art in sea water distillation industry
(Anwerbuch, 2007). The process comprises the operation of the NF selective membrane
to soften the feed to distillation units. NF membrane substantially increases the water
production from the mature technology of multi stage flash (MSF), muli effect distillation
(MED), and vapor compression (VP) distillation techniques.

The scaling in sea water distillation systems occurs due to inverse solubility of
calcium sulfate at higher temperature. In order to increase the water production of the
existing distillation units, it is required to increase operation temperatures, so that higher
recovery or higher concentration factor are obtained. NF selective membranes were used
to reject the high content of sulfate, and hardness in the sea water before it is fed to the
distillation units. This allows the operators to optimize the operation of the units to run at
higher temperatures than that it was designed for because of the reduction of sulfate and
hardness in the re-circulated seawater after being pretreated with NF membrane.

Experiments show that the water temperature was increased from design of 105
degree C to a maximum of 117.9 degree C, which helped to achieve a product capacity
increase of 40%, and a decrease in operating cost by 40% for the operation of MSF plants
(Anwerbuch, 2007). Hassan (2004) from Saline Water Conversion Corporation (SWEC)

of Saudi Arabia has successfully introduced a new concept to seawater desalination by
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combining the NF membrane process with one or more of the conventional seawater
desalination processes in one fully integrated process system to form: a NF-SWRO, a
NF-MSF, and a NF-SWRO reject -MSF, which were successfully evaluated at the pilot,
and demonstration plant level. The NF-SWRO hybrid has increased the productivity by
42%, and raised SWRO unit water recovery ratio to 56% from 28%. After four years in

operation, no SWRO membrane replacement, or cleaning were needed.

2.11.4 Nanofiltration Membrane in Replacing Standard Seawater RO Membrane

The Long Beach Water Department of California (LBWD) has recently patented a
two-pass NF membrane for seawater desalination (Le Gouellec et al., 2006).

NF membranes have a significantly higher permeability than seawater RO
membrane, but with higher salt passage, especially for monovalent ions. In a two pass
NF-NF system, the seawater is treated by a first pass NF system. Because of the lower
salt rejection ability of the NF membrane, permeate from the first pass is further treated
by a second pass NF system to produce a permeate water of acceptable quality.
According to the results, the overall recovery of the system is approximately 40% to
43%. The two staged NF system is as much as 20% more energy efficient than the typical
seawater desalination RO membrane for Pacific Ocean seawater with salinity of 35,000
mg/l. The typical energy saving possible with the two configurations discussed above is
illustrated in Figure (2-10). A standard RO configuration is also shown for comparison.
As indicated in the figure, higher recovery with lower energy consumption is possible
with brackish and seawater element. The NF-NF configuration results in the lowest

energy consumption at a slightly lower recovery than standard RO seawater system.
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Power Comparison for Different Membrane Treatment for Seawater Desalination
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Figure 2-10. Comparison of energy consumption for seawater desalination with SW membrane; BW-SW
membrane & NF-NF membrane. Recoveries are shown in parentheses (Le Gouellec et al., 2006)

2.12 New Generation of Nanofiltration Membrane
New NF membranes have been recently developed which can be tailored to have

a range of hardness rejection. These membranes are thee composite polyamide type,
similar to the existing standard RO membranes, but are chemically treated to adjust the
hardness rejection. This treatment also imparts fouling resistance (Wilf et al., 2007).

Among the makers of the new generation of NF membranes are Hydranautics, and
FilmTec membrane manufacturers. Table 2-1 illustrates the performance comparison for
various types of the new generation of NF membranes. For example, the rejection
characteristics of Hydranautics membrane manufacturer new NF can be tailored to meet a

variety of hardness rejection values ranging between 83% to 93 % at standard operating
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pressure of a feed of 500 mg/1 of CaCl, and 75 psi feed pressure at 25 degree C, as shown

in table 2-1.

Table 2-1 Comparison of new generation of NF membranes performance at standard operating conditions
(Adopted from FilmTec, and Hydranautics Membrane Manufacturer, 2009)

Manufacturer Product Element Area Nominal Flow | Rejection
2 2
(ft) (M) | (gpd) (m3/d) %
Hydranautics ESNAI-LF 400 37.2 8,200 31.1 89 (1)
Hydranautics ESNA1-LF2 400 37.2 10,500 39.8 86 (1)
Hydranautics ESNA-LF3 400 37.2 7,200 27.3 90 (1)
FilmTec NF-270-400 400 37.2 14,700 55.6 40-60 (2)
97 (3)
FilmTec NF-200-400 400 37.2 8,000 30.3 50-65 (2)
97 (3)

Test Conditions
(1) 500 mg/l of CaCl, , 75 psi, 25 C, 15% recovery

(2) 500 mg/l of CaCl, , 70 psi, 25 C, 15% recovery
(3) 2,000 mg/l of MQSO, , 70 psi, 25 C, 15% recovery

FilmTec has introduced a similar new type of NF membrane model NF270, and
model NF200. These membranes have a salt rejection of 97% at standard operating
conditions of 2,000 mg/l of MgSO, at 70 psi, and 25 degree C., and a salt rejection of
40-60% at 500 mg/1 of CaCl, . (FilmTec, 2007).

The other feature of those types of membranes is the low fouling nature due to the
smoothness of the membrane surface and the near neutral surface charge (Wilf, 2007).

Figure 2-11 indicates the relative surface smoothness of the new NF membrane
model ESNA1-LF compared to the standard low pressure RO membrane model ESPA3.
Both products are manufactured by Hydranautics.

The lower negative charge of the new generation NF ESNA1-LF membrane from
Hydranautics can be seen in Figure 2-12. The figure shows the Zeta potential of the
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membrane surface measured as a function of the feed pH. It can be seen that the
traditional NF membrane ESNA-1 has a very strong negative charge at neutral pH.

In contrast, the low pressure low fouling RO membrane, LFC1, has a slight
negative charge at these pH values. Similarly, the ESNA1-LF membrane has a slight
charge, or near neutral surface charge. This minimal surface charge minimizes the
interaction with some organic compounds. It is interesting to mention that due to the
slight negative surface charge of the new generation of this type of NF membranes, the
membrane mass transport can be modeled using the typical Solution-Diffusion Model
which is normally used for RO membrane rather than the more sophisticated models like
Donnan exclusion, and extended Nernst- Planck models, that include electrostatic effects.

These charged membrane models are discussed in more details later in item 2.15.3.
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Figure 2-11. Image of the surface of the New Generation NF ESNAL-LF membrane compared to the Low
Pressure RO ESPA3 membrane Showing Relative Surface Smoothening
(Adopted from Hydranautics membrane manufacturer, 2007)
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Figure 2-12. Comparison of surface charge of new generation NF ESNA1-LF membrane, typical NF LFC1
membrane, and low pressure low fouling RO LFC1 membrane (Adopted from Hydranautics membrane
manufacturer, 2007)

2.13 History of Using Permeate Suction in Pressure-Driven Membrane

Permeate suction has not been commercially used before in RO or NF.
However, permeate suction was theoretically investigated by several researchers.

Bhattacharya, et al. (1996) have developed a generalized mass-transfer relation
from first principals to obtain a theoretically modified form for Sherwood number using
the wall Peclet number to estimate the mass-transfer coefficient using permeate suction in
rectangular channel cell, tubular module, and cross flow cell. He concluded that suction
through the porous membrane had a significant effect on the mass transfer coefficient,
and, in turn, the permeate flux for both RO and UF. He mentioned that this should be of
immense help to the process and design engineer to improve the module design.

The role of suction in mass transfer through porous membranes is very important.
It was identified by several researchers (Van den Berg et al., 1989; Gekas et al., 1987)

that the effect of permeate suction enhances the mass transfer from the bulk to the
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membrane surface. Gekas and Hallstrom (1987) found that suction at the membrane
surface increased the mass transfer coefficient from the surface to the bulk. Sirshendu and
Bhattacharya (1988) have proposed a modified Sherwood number relationship including
the effect of property variations due to permeate suction for laminar flow in a rectangular
channel cross flow ultrafiltration for bovine serum and dextran (Sirshendu and
Bhattacharya, 1999).

Immersed UF membrane (Figure 2-13) is used to treat wastewater that has
virtually no osmotic pressure, so only small suction pressure is enough to create water
flow from the permeate side to penetrate though the membrane (about 4-9 psi).

In this case, suction pressure can not theoretically exceed the atmospheric pressure

which is about 14.7 psi (1 atm), in order to avoid cavitation in the permeate suction

pump.

Backpulse tank

Feed 0¢=> Permeate

Immersed |
membranes Permeate pump

Membrane tank

Air {-\
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injection Purge/Reject
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Figure 2-13. Membrane bio-reactor using permeate suction to treat wastewater by immersed UF

membrane (Adopted from Zenon Environmental membrane manufacturer, 2006)
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2.14 Effect of Increasing Suction Pressure on the Boundary Layer:
In a two dimensional laminar flow, the thickness of the boundary layer which has

not separated can be estimated as follows: the inertia force per unit volume is equal to

puU A . And for a membrane envelop of width L, the gradient of % is proportional to
X

OX
u . . . . .
— , where u denotes the velocity outside the boundary layer. Hence the inertia force is of

2
u . . . T
the order p— . On the other hand the friction force per unit volume is equal to —,

2

- . The velocity gradient

which is in the assumption of the laminar flow is equal to x—

ou . o . . u _y
— 1n the direction perpendicular to the membrane is of the orderg, so that the friction

force per unit volume is (Schlichtings, 1979) % ~ y;—z (2-1)
y

From the condition of equality of the friction and inertia forces, assuming a

constant viscosity, we obtain:

p—

u pu?’
~ 2-2
o’ L @-2)

Solving for the boundary layer thickness o at any point of the membrane length, it

is found at laminar flow that:
s~ [ o A (2-3)
ou u
Hence for laminar flow region, the boundary layer thickness is:
o =5, /ﬁ , where L is the membrane width. (Schlichting, 1979) (2-4)
u
In NF spiral wound membrane, the flow is laminar, and the local Reynold’s
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number ranges between 100-1,000 ( Taylor et al., 1999). By applying suction at the end
of the collector tube of the membrane module, an increase of pressure gradient along the
stream at x direction will present. This increase in pressure will de-stabilize the boundary
layer (Schlichting, 1979). This is oppisite to the case of a decrease in the pressure
gradient along x direction. In the latter case, the bounary layer will be stabilized, and will

not create a suitable condition for the reduction of the concnetration polarization.

Flow direction

Boundary layer thickness & |

TYYYYYYYY

Velocity due tosuction V)

Figure 2-14. Application of suction to the membrane to prevent the boundary layer separation
The de-stabilzation of the boundary layer will have two effects: first, it will
reduces the boundary layer thickness and a thinner boundary layer is less prone to
become turbulent. Secondly, since in the dilute solutions the concntration polarization
layer is impedded in the boundary layer (Probstein, 1994), suction will consequently
reduce concnetration polarization.
In a flat surface membrane, it is assumed that the quantities of fluid particles in

the immediate neighborhood of the membrane surface are sucked away.

39



This is equivalent to that the ratio of suction velocity v, (x) to free stream

. . \Y C 1 .
velocity u is very small, say —> = 0.0001 to 0.01 (Schlichting, 1979). When the suction
u

velocity is of such a small order of magnitude, it is possible to neglect the loss of mass or
“sink-effect”on the external potential flow. On the flat surface membrane, the quantity of
fluid removed Q, will be expressed through a dimensionless volume coefficient by

putting Q=c¢, A u (2-5)
where A, = wetted membrane surface area (bxL)

And for the flat membrane

L

Q=b [[~v, ()] dx (2-6)

0

Since equation (2-5) equals to equation (2-6), consequently

Co A u=b j[—vo (x)] dx

L
or Co = Llu j [V, (x)] dx where A =bL (2-7)
0

where Q = quantity of fluid removed during suction, ¢, = Dimensionless volume
coefficient, u = Average bulk velocity at the x direction, and for the case of increasing
suction pressure:
V, increases over the x axis , 1.e. V, (X).
The suction pressure is necessary to be dependent on x and y, i.e. P (x,y)  (2-8)

and the continuity and Navier —Stock equations that govern the laminar two

dimensions flow at steady state condition when there is a mass transfer through
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porous membrane surface are, and using the mean flow is (Schlichting, 1979):

OX oy
andu Mgy M LR ey (2-10)

OX oy p  OX

and uﬂ =- +v Vv (2-11)

1
ox p oy

2 2
where V?* denotes the Laplacian operator ;—2 + %
X

From equations 2-9, 2-10, and 2-11 the velocity gradient due to permeate suction can be
Calculated, and the boundary conditions are:

aty=0:u=0,andv=v, <0atx=0,
andaty = c:u=U (x)

2.15 Reverse Osmosis Models
Many mathematical models have been proposed to describe reverse osmosis

membranes. Some of these descriptions rely on relatively simple concepts while

others are far more complex and require sophisticated solution techniques.

Models that adequately describe the performance of RO membranes are essential, since
These are needed in the design of RO processes. Reverse osmosis models can be divided
Into four types: irreversible thermodynamics (I. T.) models; nonporous homogeneous
models; pore models; and charged membranes models. A fundamental difference exists

between the assumptions of the homogeneous and porous membrane models.
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The homogeneous models assume that the membrane is nonporous, that is transport takes
place between the interstitial spaces of the polymer nodules, usually by diffusion. The
porous models assume that transport takes place through pores that run the length of the
membrane barrier layer; as a result transport can occur by both diffusion and convection
through the pores. While both concepts have had some success in predicting RO
separation, the question of whether a RO membrane is nonporous or pores is still a point

of debate (Williams, 2003).

2.15.1 Irreversible Thermodynamics Models

Irreversible thermodynamics (I.T.) models, such as the Spiegler-Kedem model,
assume that the membrane is in mechanical equilibrium, no external force acting on the
system, and flux can be described by the phenomenological equations relationships.

The water flux according to the Spiegler-Kedem model is given by
Jw=Lp(Ap-0o Ax) (2-12)
while the solute flux is expressed as

Js= a)Azz+(1-0' )(Cm)avng (2—13)

where Lpis the hydrodynamic permeability coefficient; o is the coefficient of coupling
between salt and water; Az is the difference in the osmotic pressure across the

membrane; Ap is the operating pressure; @ is the salt permeation coefficient; and (Cm)avg

is the logarithmic mean solute concentration in the membrane (Soltanieh and Gill, 1984).
The Spiegler-Kedem model has found a wide use for the description and analysis
of RO membrane separation. However a major disadvantage of the model is the treatment

of the membrane as a black box. It does not provide insight into the transport mechanisms
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of the membrane. I. T. models also do not include any convection effects, and considers
transport of the solvent and solute take place only by the effect of the chemical potential
gradient, which includes concentration, and pressure diffusion. These models assume that
Onsager reciprocal relations are valid (Soltanieh et Gill, 1981). This assumption is
controversial in processes far from equilibrium (Rosenbaum and Skiens, 1968). As a
result, I. T. models are not very useful in optimizing separation based on membrane
structure and properties. These models also do not adequately describe water flux for
some solute systems, in particular some dilute organics that have no osmotic pressure

(Williams, 2003).

2.15.2 Porous Models

The porous models assume that transport takes place through pores that run the
length of the membrane barrier layer; as a result, transport can occur by both diffusion
and convection through the pores. The preferential sorption-capillary flow model (PSCP)
proposed by Sourirajan (1970); Sourirajan and Matsuura (1985) states that the membrane
is assumed to be microporous and the barrier layer has chemical properties such that it
has a preferential sorption for the solvent or preferential repulsion for the solutes of the
feed solution. As a result, a layer of almost pure solvent is preferentially sorbed on the

surface and in the pores of the capillary pores under pressure.

The total water flux is given by N,=A [Ap - (7(X¢)-7(Xp)] (2-14)
: ck,D
The total solute flux is expressed as N = % (Xe- Xp) (2-15)
M

where A is the pure water permeability constant of the membrane; Ap is the applied

pressure difference; 7(X )represents the osmotic pressure of the feed or permeate side
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with solute mole fraction X; C is the molar concentration of salt; K, is the distribution

coefficient of the solute from the feed into the pore of the membrane; D,, is the diffusion

coefficient of the solute in the membrane; and d,, is the active membrane thickness.

The term —Y

, which is treated as a single parameter, is called “solute transport
F

parameter”. In their experiments, Alegranti et al. (1975), suggested that the fixed pore

diameter equivalent of free volume of the hollow fiber skin layer of 0.4 micron is 10 A

or less. The limit of the electron microscope used in their work was 15 A . This suggests

that possible microspores in the skin layer could not be detected (Soltanieh et Gill, 1981).
Sourirajan and Matsuura (1985) have utilized the above equations to analyze transport for
a large number of solutes and membranes; however the above equations failed to describe

the water flux drop, and rejection for some organics, and solutes.

2.15.3 Charged Membrane Models

Charged membrane models, like the one used for standard NF, account for
electrostatic effects as well as for diffusive and/or convective flow in order to describe
the solute separation. Many charged membrane transport theories have been proposed.
Donnan equilibrium models assume that a dynamic equilibrium is established when a
charged membrane is placed in a salt solution (Bhattacharyya and Cheng, 1986;
Bhattacharyya and Williams, 1992). The counter-ion of the solution, opposite in charge
to the fixed membrane charge, typically carboxylic or sulfonic groups, is present in the
membrane at a higher concentration than that of the co-ion (same charge as the fixed

membrane charge) because of electrostatic attraction and repulsion effects. This creates a

44



Donnan potential which prevents the diffusive exchange of the counter-ion, and co-ion
between the solution, and membrane phase. When a pressure driving force is applied to
force water through the charged membrane, the effect of the Donnan potential is to repel
the co-ion from the membrane; since electroneutrality must be maintained in the solution
phase. The counter-ion is also rejected, resulting in ionic solute separation. The model
correctly predicted that the solute rejection was a function of membrane charge capacity,
ion feed concentration, and ion charge. However, this model does not take into account
solute diffusive and convective fluxes which are also important in charged membrane
separations. Lakshminarayanaiah (1965, 1969), Dresner (1972), and Dresner and Johnson
(1980) have described the use of extended Nernst-Planck equations for the prediction of
solute ion fluxes. The model represents the solute flux due to diffusion, convection and
Donnan potential. Dresner (1972) has shown that the extended Nernst-Planck model
correctly predicts the trends expected for ionic solute rejection, including conditions
under which a negative rejection is obtained. However, the difficulty of experimentally

measuring the model parameters limits its use for solute flux, and flux prediction.

2.15.4 Solution-Diffusion Models

The solution diffusion model assumes that the water transport across the
membrane is only by diffusion, and so can be expressed by Fick’s low (Soltanieh et Gill,
1981) as:

dc

w

dy

J,=-D

w w

(2-16)
where ¢, and D , are the concentration, and the diffusivity coefficient of water in the

membrane, respectively.
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The water flux is given by J,= A (AP -Ax) (2-17)
where A is the membrane solvent permeability coefficient and it is the property of the
membrane; Ap is the operating pressure; Az is the difference in the osmotic pressure

across the membrane.

And the solute flux is expressed as J;= k, (C,—-C,) (2-18)

wherek, is the membrane solute permeability coefficient; and C; and C, are the reject

and product concentration, respectively.

2.15.4.1 Solution-Diffusion-Imperfection Model

Sherwood et al. (1967) have extended the solution-diffusion model by including
additional terms due to pore flow in addition to diffusion of solvent and solute through
the membrane as the mechanism of transportation. This modified model recognizes that
there may be small imperfections or defects (pores) on the surface of the membrane
through which transport can occur.

The total water flux, N, and the total salt flux, N, , are given by:

N, =J,* KAPC, .= A (AP -Ax)+ k,APC, .. (2-19)
N,= J.+ K,APC, = k,(C, —Cy) + k,APC, (2-20)
where C, ., is the water concentration on the upstream side of the membrane.

The coefficient k, can be viewed as a coupling coefficient.
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If we divide both sides of equation (2-19) by C_.. , the left hand side will be equal

mem 2

to the water permeation velocity expressed as V,,= —*

, which is very close to the
mem

total permeation velocity.

For real membranes, which have some imperfections, the measured flux (N, ) is
not purely diffusive (J,,), but it contains a term contributed by convection. It is necessary

to distinguish between the two, although in the literature, they are usually used
interchangeably (Soltanieh et Gill, 1981).
The solute flux is equal to the permeation velocity multiplied by the product

concentration, i.e. N;=V,, C,

Equations (2-21) & (2-22) then can be written in terms of the permeation velocity:

V,, = k(AP — Ax) + k,AP (2-21)
V,= k,(C, —C;) +Kk,APC, (2-22)
where k, = A

mem

It is interesting to compare the relative contribution of diffusive and pore flow

Fluxes based on the calculated values of k; & k,and Kk, from Applegate, and Antoson

(1972). Applegate, and Antoson used the above equations to analyze the rejection
pressure drop data for asymmetric aromatic polyamide membranes, and cellulose acetate
membrane. The values of k, from all membranes, and concentrations were at least two
orders of magnitude smaller than those ofk; .

Since in the solvent flux equation (2-21), AP and (AP — Ar), are of the same

order of magnitude, the second term K,AP (the pore flow) is negligible as compared to
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the first termKk, (AP — Ax) (the diffusive flow). This is true for dilute solutions.
In the solute flux equation (2-22), we have to compare k,AP with k, since Cj is

of the same order as(C, —C,). Calculations of Soltanieh and Gill (1981) illustrated that

the calculations of Applegate and Antonson experiments for dilute solutions (< 0.05 M),
showed that the contribution of the pore flow to the solute flux is very small (about 2% of
total flux). At higher concentrations, say about 0.1 M, the contribution of pore flow is
about 8%, and for a 0.5 M feed, the pore flow contributes to about 25-40% of the solute

flux for polyamide membrane. The standard NF membrane used to be described by the
Donnan equilibrium model (Battacharyya and Cheng, 1986; Battacharyya and Williams,
1992), or by the extended Nernst-Planck model (Lakshminaraiah, 1969; Dresner and
Jonson, 1980) to predict the solvent and solute flux, because it is negatively charged. The
new generation of NF membranes has a slight negative charge at the membrane surface,
and this charge is approximately close to neutral as shown in Figure 2-12 (Wilf et al,
2006), so these sophisticated models are not required any more to describe the solvent,
and solute flux in this type of membranes. Instead, the above-mentioned simpler solution-

diffusion model can describe the membrane, when the pore flow terms are neglected.

2.15.4.2 Assumptions when using Solution-Diffusion Model

Based on the above equations for the solution diffusion-imperfection model, the
following assumptions are going to be considered (Fritzmann et al, 2006):
(1) the active membrane layer is a dense membrane without pores. Permeating
components dissolve in the membrane phase; (2) at all times there is chemical
equilibrium at the phase interface between membrane and feed/permeate side; (3) salt and

water flux are independent of each other. Salt flux results solely from concentration
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gradient, but not from pressure; (4) due to membrane swelling, water concentration and
water diffusion coefficient across the membrane are constant; (5) the driving force for
permeation of each component can be split into two terms, the concentration or activity
difference, and the pressure difference between the feed and the permeate sides; (6) at
relatively low salt concentrations, the pressure driving force for permeating salt
components is negligible; (7) due to the assumption of constant water concentration in
the membrane, solely the applied pressure difference Ap causes water flux across the

membrane; (8) the measured flux N, and the purely diffusive flux J, are assumed to be

equal.

2.16 Determining Membrane Surface Concentration

RO membrane transport models typically assume that the bulk feed solution
concentration is equal to the membrane wall solution concentration, which is not always
true. This has to be related to the concentration polarization expressions (Williams,
2003). Concentration polarization complicates the modeling of membrane systems
because it is very difficult to experimentally determine the solute membrane wall

concentration (C,_. ). The membrane wall concentration is necessary to be determined

mem
since it is not equal to the bulk feed concentration (C. ). In the limited feed flow rate that

is typically used for hyperfiltration (RO and NF) membrane processes, the flow in the
membrane channels is laminar, and the difference between the membrane wall
concentration and bulk concentrations can be substantial. So, calculating the membrane
wall concentration must be appropriately estimated.

For dilute solutions, and from equation (2-21) above, the water flux will be equal to
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J, =A(AP-Ax) (2-23)
where A is the permeability coefficient of the membrane, and it is a function of the
membrane construction. The membrane permeability coefficient A can be determined
from distilled water where Ax in equation (2-23) in this case will be approximately equal
to zero. The term AP is the hydraulic pressure difference across the membrane, and is

equal to the applied membrane pressure minus the permeate pressure, while J , is the

permeate flux and equal to the permeate flow rate divided by the membrane cross flow
area. The term A7 is equal to the difference between the osmotic pressure at the
membrane surface minus the permeate osmotic pressure. Osmotic pressure is a property
of the solution and does not in any way depend on the membrane properties (Probstein,
1994). For dilute solutions the osmotic pressure is independent of the solute species, and
is given by Van’t Hoff equation:
n
m=nRT ) C, (2-24)
i=1

Where n, = number of ions formed when the solute dissociates.
And C, = molar concentration of the solute = ¢,/ 1000 MW,

and c,= total dissolved solids as mg/l ; MW, = molecular weight of the dilute solution;

R= gas constant; and T= absolute temperature.

From equations (2-23) and (2-24) above, membrane wall concentration C,,,, can be

calculated.
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2.17 Determining Mass Transfer Coefficient and Thicknesses of the
Concentration Polarization Layer

Under the condition of mass transfer-limited permeate flux shown in Figure 2-15,
the accumulation of materials near the membrane can be envisioned as a balance between
advection of materials towards the membrane due to permeation, and back diffusion that
occurs as a concentration gradient builds up near the membrane (Letterman and Taylor, et
al. 1999). Figure 2-15 illustrates the flow directions of solvent and solute near the

membrane surface.

Flow Direction
80_> (x) direction
D= ] |
5y+ Gour "
1 s Y
(y) direction Crem
Membrane

Figure 2-15. Feed side concentration polarization layer

2.18 Using Sherwood Number to Determine Mass Transfer Coefficient

The conventional way to estimate the mass transfer coefficient is to use Sherwood
number relationships obtained from the heat and mass transfer analogy. Numerous
Sherwood number relationships have been proposed and extensively reviewed.

The Graetz-Leveque correlation of Sherwood number, which is used for laminar
flow when the velocity field is fully developed and the concentration boundary layer is

not fully developed, is typically used to estimate mass transfer coefficient as:

Sh=X(Re)" (S¢ f (dTh] (2-25)
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Vudy : Schmidt number = Sc = v
v D

where Re = Reynold's number = ; v =kinematics

viscosity; V,, = average cross-flow permeate velocity; d, = hydraulic diameter of the

membrane element; D the diffusion coefficient for solute transport through solvent, and L
is the spiral wound membrane width. (Taylor et al.,1999). D in this relationship is equal

to K &, where K is the mass transfer coefficient, and o is the concentration

polarization layer thickness.The terms X, a, b, and ¢ are coefficients that have taken
extremely different values by different researchers (Isaacson, 1976; Schock & Miquel,
1987; Xuesong, 1987; Taylor, 1991; Van de Lisdonk et.al, 2001). Table 2-2 demonstrates
the different values of coefficients found in the literature by some of those researchers to
calculate Sherwood number at different operating conditions. It is clear from the table

that the different coefficients vary considerably.

Table 2-2. Several values of Sherwood number coefficients found in literature

Literature Year X a b c

Isaacson 1976 0.2-0.27 0.5 0.33 0

Schock & Miquel 1987 0.065 0.875 0.25 0
Wang Xuesong 1987 1.66 0.36 0.34 0.42
Taylor 1991 1.86 0.33 0.33 0.33

Van de Lisdonk 2001 0.265 0.33 0.52 0

There are several limitations in using the above-mentioned equation: (1) the above
mentioned Sherwood number relationship is derived for flow through non-porous
conduit; hence, the effect of suction can not be considered using these relationships; (2)
the axial change in osmotic pressure at membrane surface due to the concentration
polarization change is not considered in the above mentioned Sherwood number

correlations; (3) suction will alter the velocity gradient in the bulk stream through the
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boundary layer (Schlichting, 1979) that will impact Reynolds number, which is not
considered in calculating the Graetz-Leveque Sherwood number; (4) and suction will
change the species concentration at the membrane surface that will change the solution
physical properties like viscosity, density, and diffusivity, which are function of the
concentration. Consequently, the above mentioned Reynold’s number, and Schmidt
number, will be variable along the membrane length. These changes are not considered
with this form of Sherwood number relationships. It is concluded that in the case of
suction, calculating the concentration polarization layer using the traditional way of using
Sherwood number correlations will lead to erroneous results due to the change in the

solution properties that are not considered in the above mentioned relationship.

2.19 Overcoming the Disadvantages of using Sherwood Number to Determine Mass
Transfer Coefficient with Permeate Suction

Of great interest is the case of dilute solution where Sc >> 1. In this case the
diffusion concentration polarization layer is imbedded in the viscous boundary layer, and

the velocity it sees is that close to the wall (Probstein, 1994).

2.19.1 Film Theory

According to the film theory, mass transfer coefficient is inversely proportional to
the concentration polarization layer (Taylor et al., 1999; Williams, 2003), so if the
concentration polarization layer decreases, the mass transfer coefficient will increase, and
the permeate flow and quality will improve; and consequently membrane fouling can be

reduced. Referring to Figure 2-15 at item 2.17 above, the Navier-Stockes diffusion-
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convection equation for flow over a flat sheet membrane, gives the concentration profile

by (Bhattacharyya and Williams, 1992)

2 2
L,y & o e

=0 2-26
OX oy o’x oy ) (2-26)
With boundary conditions:

For x direction C (0,y) = C;

oC(x,0) _

And for y direction 0

Assuming a constant permeation rate, and a concentration polarization layer with

axial distance (Figure 2-14), mass balance on the concentration polarization layer yields
oc

J,C=-D — (2-27)
oy

where J,, is the permeate water flux; C is the concentration of the species subject to

concentration-polarization, D is the diffusivity coefficient for solute transport through
solvent (calculated from Cussler, 1984), and y is the distance with the boundary layer
suchthat C=C __ aty=0;and C= C; aty = o

If the boundary layer is assumed to be stagnant over the channel length, the

equation will be:

2
%:D 0C

J, -
oy oy

(2-28)

Integrating this expression over the thickness of the stagnant concentration-polarization

layer o, results in the following expression:
Zmem TP — oxp “WIF (2-29)
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This is the widely applied film theory developed by Brian (Brian 1966; Bhattaryya
and Williams, 1992). The ratio of the diffusion coefficient for solute transport through
solvent to the concentration polarization layer thickness in this film thoery model defines

a mass transfer coefficient K:

K= =2 (2-30)

where K is the mass transfer coefficent.

Using equation (2-30), the concentration polarization layer d; can be calculated, if the

diffusivity coeficient of the speices D, and the mass transfer coeficient K are determined,

without having to use Sherwood number corelations.

2.19.2 Peclet Number
Peclet number is defined as the dimentionless ratio of the rate of mass transported
by convection to the membrane, and the rate of mass transported by diffusion back to the

bulck solution; in other words the diffusive membrane Peclet number is expressed as:

p= —wd (2-31)

where V, is the permeate velocity which is equal to the permeate flux per one sheet of
membranes; D, , is the diffusivity coefficicent of the ionized electrolye; and h, is the

hydraulic diameter of the spiral wound membrane. The diffusive Peclet number is a
measure of how permeate goes through the membane, so if P, is less than unity, this is an
indication of no cocentration polarization, while a large Peclet number means that there is
a concentration polarization at the membrane surface. Peclet number is called the
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dimensionless flux. If the diffusive Peclet number is increased due to suction, while the
associated concentration polarization is being reduced, this means that suction has
increased membrane production with more favorable conditions to the membrane, as far
as inorganic fouling is concerned. Therefore, we using Sherwood number can be avoid in
the calculations due to the above-mentioned limitations. For the 2.5 inch diameter
membrane, which is composed of two envelopes (leaves) of membranes, where every
envelope is composed of two sheets, the hydraulic diameter is the ratio of the cross
section of the flow channel to the wetted circumference and can be calculated with the

dimensions of the feed-concentrate spacer according to (Schock and Miquel, 1987):

4
hy= ———— (2-32)
—+(-&).—
d dy

where ¢ is the porosity of the feed-concentrate spacer; and d | is the filment diameter of

the feed spacer, which is equal to half the feed spacer height. As in the case of NF
membrane, it is observed that for dilute solutions the Schmidt number is very large, as
a consequence of which the diffusive membrane Peclet number is generally large. This is
true even at a moderate Reynold’s number (Probstein,1994).

Probstein (1994) also showed that at typical condition of operting the mebrane
system without permeate suction, as P, number increases, the concentration polarization
boundary layer increases, and consequelty the mass transfer along with the product

permeate decreases. If permeate suction increases the P,, and the concentration

polarization layer is decreased, this will indicate that permeate suction will help in

reducing the membrane fouling, while product flow is increased.
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2.20 Determinig Diffusion Coefficient for Strong Elecrolytes

A transport of mass or “diffusion” of mass will take place in a fluid mixture of
two or more species whenever there is a saptial gradient in the properties of the mixure,
that is, a concentration gradient (Probstein, 1994). Diffusion causes convection.

Convection flow can have many causes. For example, it can occur because of
pressure gradient or through differences in temperature. However, even in isothermal
and isobaric systems, diffusion will always produce convection (Cussler, 1984).

This combination of diffusion and convention could complicate our analysis.

Multi-ions salt solutions calculations of diffusion coefficient are more
complicated because more than one cation can be accompanied by one anion or vice
versa, depending on the ion valence. For example, for a ternary system, there would be
two concentration gradients, and the diffusive flux of each species could be affected by
both concentration gradients. One instance where this is not so is the infinitely dilute
solutions for which each component is unaffected by the presence of the other (Probstein,
1994). The diffusivity for dilute liquid solutions, like the case of the feed to NF
membrane, may be estimated theoretically from simple hydrodynamic consideration
(Probstein, 1994). In solute-solute interaction dilute solutions, like the case of NF
membrane, the convection caused by diffusion is vanishingly small, and dependent on the
solute concentration, and thus on temperature. This is the frame work of this research.

It is worthy to mention that estimates of diffusion for concentrated solutions are far more

difficult (Probstein, 1994).
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Salts are ionized when they are dissolved in water. For example, a Soduim
Chloride solution in water diffuses as a single ion, and not as a single molecule; instead
sodium ions and chloride ions move freely through the solution (Cussler, 1984).

Table 2-3 shows values of ionic diffusion coefficients in water at 25 degree C at

infinite dilution.

2.20.1 1-1 Strong Electrolyte

Referring to the below mentioned Table 2-3, and in the above example of Soduim
Chloride solution, the diffusion of Na™ is slower than that of Cl~, and the diffusion of
both ions in a dilute soltion of NaCl is going to be dominated by the larger ion because
the two ions are tied together electrostatically.

Table 2-3. lonic diffusion coefficients in water at 25 degree C at infinite dilution in 10”° cm?/s.
(Calculated from data of Robinson and Stocks (adopted from Cussler, 1984)

Cation; D, Anion; D,

H* 9.31 OH- 5.28
Li* 1.03 F- 1.47
Na* 1.33 Cl- . 2.03
K* 1.96 Br- 2.08
Rb* 2.07 I~ 2.05
Cs* 2.06 NO;~ 1.90
Ag* 1.65 CH;CO0~ 1.09
NH.* 1.96 CH;CH,C00O~ 0.95
N(C Hg)e* 0.52 B(CeHg),™ 0.53
Ca?* 0.79 SO2- 1.06
Mg?* 0.71 CO#* 0.92
La* 0.62 Fe(CN)*- 0.98

When describing the ion fluxes of a single strong 1-1 electrolyte, such an
electrolyte ionizes completlety, and it will be producing equal numbers of cations and
anions. Although the concentration of anions and cations may vary through the solution,
the concentration gradient of these species are equal everywhere because of the

58



electroneutrality (Cussler,1984).

and D, ,= (2-33)

Where D, ,, D,and D, are the diffusivity coefficicent of the ionized electrolye, the
anion, and cation respectively.
2.19.2 Non 1-1 Strong Elecrolyte

The non 1-1 electrolyes like MgSO, , and MgClI, are parallel to the above
mentioned 1-1 electrolyte, but more complicated algebraically (Cussler,1984).
The diffusivity coefficicent of the ionized electrolyte in this case is going to be expressed
as:

_ 2]+,
1-2 H_i_@
Dz D1

(2-34)

where D, ,,D,, and D, are the diffusivity coefficicent of the ionized electrolye, the

anion, and cation respectively, while Z,and Z, are the absloute valent numbers of the the

anion, and the cation respectively.
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CHAPTER 3

EXPERIMENTAL METHODOLOGY

This chapter describes the technical procedure utilized in performing the
experimental part of this research. The dilute solutions preparation, and the
instrumentation used in the experiments are described first, followed by the experimental
procedures. For the two types of experiments, a diagram of the equipment set-up is
shown with each component briefly described. The description of each type of
experiment contains a summary table of the salts solutions used as feed water, their
concentration and the system operating parameters. The sampling and the measurement
protocols, as well as the procedure for the replicate runs are presented for each type of

experiment.

3.1 Dilute Solutions Preparation
The feed water for all the experiments is prepared using de-ionized (DI) water and
analytical grade salts. DI water is produced from a feed of tap water using RO unit.

The conductivity of the product is 16 +1 £s . Only simple binary solutions of NaCl ,
MgCl,, and MgSO, - which are 1-1, 2-1, and 2-2, respectively, strong electrolyte dilute

solutions - are considered in this research. The diffusion coefficients for the binary
solutions were calculated using the equations from Cussler (1984).

Salt concentration was prepared to have concentration of the three different binary
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solutions according to Table 3-1. The experiments were run at three concentrations for

low, medium, and high values of the applied feed pressures.

3.2 Reasons behind Choosing the Chemicals

It is required to study the effect of both monovalent and divalent ions on the
performance of the new generation of NF membrane. Na™, and Cl~ ions are monovalent
ions. The solubility of chloride salts and sodium salts are high and do not create a RO
scaling problems, that may allow running the experiments at a relatively high recovery.
Sodium and Chloride, in brackish and seawater, are the prevalent ions. Magnesium
(Mg ™) is a divalent cation, and accounts for about a third of the hardness in brackish

water, leaving about the two third to Calcium (C*") cations.

Table 3-1. Dilute solutions concentration and operating pressures for the experiments

Feed Concentration Feed Concentration
Dilute Solution (mg/1) (Mol/l) Feed Pressure (psi)
750 0.0249 80, 110,160
Sodium
Chloride 1200 0.0411 80, 110,160
1750 0.0599 80, 110,160
820 0.0136 80, 100,130
Magnesium
Sulfate 1235 0.0205 80, 100,130
1770 0.0606 80, 100,130
840 0.0176 80, 100,130
Magnesium
Chloride 1260 0.0265 80, 100,130
1750 0.0368 80, 100,130

The solubility of magnesium salts is high, and they typically do not cause a scaling
problem in membrane systems. Sulfate (SO, ) is a divalent anion, and MgSO, does

not cause scaling on membranes. This is unlike calcium, barium, and strontium sulfate,
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which have low solubility limits, and can cause scaling problem in the back-end of the

system.

3.3 Experimental Setup
The apparatus used in the experiment are assembled on the equipment skid shown

in the pictures of figures (3-1, 3-2 and 3-3).

Y

i

Figure 3-1. Experiential equipment skid showing pressure gauges, TDS meters, flowmeters, and NF
membrane pressure vessel

The instruments used are presented in Table 3-2 together with calibration
requirements, manufacturer, readings range, and accuracy. The sensors are connected to
the control panel of the equipment skid for data collection and analysis. Samples were
taken during the runs to test the feed water pH and the biocide content. Samples were
also taken for feed flow, product flow, and concentrate flow to test the conductivity panel
readings against manually held TDS meter. Whenever samples were taken for test, they

were poured back to the feed water tank to keep feed water conductivity constant.
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Figure 3-2. Variable frequency drives for the high pressure pump, and the permeate pump

Figure 3-3. The assembled high pressure pump (top), and the permeate pump (bottom)
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Table 3-2. Instrumentation and specifications

Calib.
No. Instrument Manuf. Model Req. Range | Accuracy
Electrical Top
loading
1 Balance Ohaus Adventure No 0-3,100g | 0.1 mg
Conductivity 0-10,000
2 Meter & Probe Hanna BL983318 Yes mg/l * 1 mg/l
R&D 0-999
3 Control Box Specialties CE2-IPC Yes mg/l * 1 mg/l
Permeate
Conductivity R&D 0-999
4 Cell Specialties 80TDS150R1 Yes mg/1 * 1 mg/l
+0.05
5 Flowmeter Blue-White F440 No 0-1gpm gpm
10.05
6 Flowmeter Blue-White F44375 No 0-5gpm gpm
2.5" Pressure 316SS tube &
7 Gauge Wika Connection Yes 0-30psi +0.1 psi
2.5" Pressure 316SS tube &
8 Gauge Wika Connection Yes 0 - 60 psi +0.1 psi
2.5 " Pressure 316SS tube &
9 Gauge Wika Connection Yes 0-300psi | £0.5psi
0.5" NC
10 | Solenoid Valve GC-Valves H211YF02J7DG4 No On/Off N/A
Volumetric
11 Flask Kimax 20024 No 250 ml + 1.4%
Volumetric
12 Flask Pyrex 3024 No 100 ml * 1.0%
Hand Held
Conductivity
13 Meter Hanna TDS-3 Yes 0-19,999 | £ 10mg/!l
Hand Held pH
14 Meter Hanna HI 98107 Yes 0-14 10.1
Volumetric
15 Pipette Pyrex 7101 No 0-50ml 1£0.2%
16 Beaker Kimax 14000 No 0- 600 ml +5.0%
0 - 1,000
17 Beaker Pyrex 1000 No ml +5.0%
Low Pressure
18 Switch Barksdale E1H-H90 No 0- 40 psi + 1 psi

pumped from a HDPE 35 gallons feed tank by a booster pump to the high pressure pump

As shown on the schematic flow diagram Figures 3-4 and 3-5, solutions were

through 5 x m cartridge filter to protect the pump, and the membrane from any

suspended solids that may be available in the solution tank. The booster pump is a
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centrifugal type; model number 594-154; manufactured by Surflow Company, USA, and
rated at 3.3 gpm at 45 psi. The membrane was pre-compacted at 120 psi using re-
circulated DI water, and the re-circulated solution is kept disinfected using 0.2 — 0.3 mg/I
of biocide. The used biocide is Model number RoCide DB-20 manufactured by Avista
Company, USA, is formulated to keep the membrane sanitized and non-oxidized. RoCide
DB-20 is approved by the EPA to be used in RO systems as a fast acting; non-oxidizing
biocide based on a 20% solution of the active ingredient DBNPA (Dibromo nitrilo
propionamide), (Avista Company, 2008). The same concentration of biocide was kept for
all the solutions during the entire experiment runs. The biocide content was periodically
checked using oxidant reagent test kit. At the beginning of the experiments, the pure

water permeability coefficient (A) was calculated using equation (2-23), where J,, = A

(AP -Ar), since A is the permeability coefficient of the membrane, and it is a function
of the membrane chemical structure.

The membrane permeability coefficient A was determined from distilled water
where A7 in equation (2-23) in this case is approximately equal to zero.

The term AP is the hydraulic pressure difference across the membrane, and is
equal to the applied membrane pressure minus the permeate pressure, while J, is the
permeate flux, and is equal to the permeate flow rate divided by the membrane cross flow
area. The capacity of the high pressure pump was determined according to the membrane
software program of the manufacturer following the design guide lines at the laboratory
temperature. The pump is a rotary vane type manufactured by Procon company, USA;

constructed from 304 SS, and rated at 207 gph at 200 psi and 1725 rpm.
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The pump Model number is 105E265F31BA215. The motor is 1 HP at 1725 rpm;
inverted duty non washdown manufactured by Baldor with electrical specifications of
230/460 V/60 Hz/ 3 Ph; and Model number IDNM3581T bolt on. The variable frequency
drive (VFD) on the high pressure pump along with the concentrate control valve allows
unlimited control of the membrane feed pressure according to the feed water

concentration.

TDS3 Concentrate Flowmeter

I I Concentrate return flow

Permeate return flow l l ?

Permeate Flowmeter 1052 Conc
Control

Out D VFD Press. In ®_ Valve

Cartridge ~ High Pressure é 5 Membrane Module

Booster Pump  Filter Pump Press. In

TDSI1

Press. Out

Figure 3-4. First setup by running the high pressure pump only

The setup shows the spiral wound NF TFC membrane used in the experiment.
Table (3-3) demonstrates the geometrical dimensions of the tested new generation NF
membrane, which is a standard size commercial 2.5 inch nominal diameter, and a 40 inch
long spiral wound aromatic polyamide thin-film composite membrane Model NF270-

2540, manufactured by Dow-FilmTec Inc., Minneapolis, MN.

The effective surface area is 28 ft* (2.6 m?*). This membrane was chosen for this research
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as a representative of a class of the new generation membranes, which is used
increasingly in water treatment applications. The CaCl, rejection is about 40-60%, and

the magnesium sulfate rejection is 93%, as reported by the manufacturer (test conditions:

feed TDS is 500 mg/1 for CaCl,, and 2,000 mg/ 1 for MgSO, , 70 psi, 10% recovery, and

25°C. The feed spacer height is 28 mil (0.711 mm) with a porosity (&) of 0.89,

computed as described by Schock and Miquel (1987).

TDS2 Concentrate Flowmeter

I I Concentrate return flow

Permeate return flow l l A
) Sudtion Pump
Chiller Press. Out Conc
Permeate Flowmeter TDS1 VFD Control

D VFD Press. In Valve
Cartridge Filter '\
Booster High Pressure Membrane Module
Pump Pump Press. In Press. Out

Figure 3-5. Second setup by running the high pressure pump and the permeate suction pump

The membrane zeta potential is close to neutral, so the membrane charge was
assumed to be zero, to eliminate the charge effect. The membrane pressure vessel is made
of reinforced fiberglass and has a rated maximum operating pressure of 300 psi.
The pressure vessel is produced by Crane Environmental.

The experiments were divided into two setups: the first setup was conducted by

running the experiment using the high pressure pump only.
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Table3-3. Geometrical Parameters for the tested FilmTec Membrane Model NF270-2540

Parameter Specifications
Membrane Model No. 270NF-2540
Active Area 28 ft? (2.6 mz)
Active Length 35.4 in.(90.4 mm)
Feed Spacer Thickness 28 mil (0.71 mm)
No. of envelops (leaves) 2
Feed Spacer Porosity 0.89
Hydraulic Diameter 28 mil (0.877 mm)
Filament Diameter 14 mil (0.355 mm)

In the second setup of the experiments, the permeate suction pump was run along
with the high pressure pump, to apply suction on the membrane permeate side. The
capacity of the permeate suction pump was determined according to the projected
permeate flow rate given by using the manufacturer software program. The pump is a
positive displacement rotary vane type manufactured from bronze by Procon Company,
USA, and rated at 37 gph at pressure of 50 psi and 1725 rpm. The Model number is
102E125F31BA250. The motor is 0.5 HP at 1725 rpm; inverted duty non washdown. It is
manufactured by Baldor company with electrical specifications of 230/460 V/60 Hz / 3
Ph, and Model number IDNM3538. The VFD which is used to control the suction
pressure is rated at 0.5 HP manufactrerd by Woods company with electrical
specifications of 115 V/ 1 Phase/ 60 Hz, and Model number SE1C1S005DO01.

It is worthy to mention that the suction pressure of the permeate suction pump can
not be lower than the pump net positive suction head (NPSH), in order to avoid
cavitations in the pump. All the interconnecting piping was made of anti-corrosion
Stainless Steel tubes, or flexible breaded Stainless Steel. Permeate tubing was made of
polypropylene tubing. The permeate flow, concentrate flow, pressures, and total

dissolved solids for the feed, permeate, and concentrate side were measured on the
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control panel. The permeate flow, and concentrate flow were returned to the feed tank
where the temperature was kept constant at 25+ 1 degree C by a cooler.

The cooler is a drop in chiller manufactured by Current company, USA, rated at
3,926 BTU, and model No. CD-22308- "2 HP. Keeping the re-circulated flow at a
constant temperature eliminates the effect of the change of the diffusivity coefficient of
the species due to temperature change, since diffusivity coefficient is a function of the
solvent temperature and solute concentration.

The salt diffusivity coefficient for the 1-1 strong ionized solution is calculated

from equation (2-33), and (2-34) in Chapter 2 by:

where D,_,, D,and D, are the diffusivity coefficicent of the ionized electrolye, the
anion, and cation respectively, and for non 1-1 strong ionized solution is calculated from:
_ [z]+[zy

-2 H_'_H
D, D

where D, ,,D,, and D, are the diffusivity coefficicent of the ionized electrolye, the

anion, and cation respectively, while Z,and Z, are the absloute valent numbers of the

anion and cation respectively. The run for each salt solution is finished when the
permeate water conductivity and flow rate are at equilibrium. At the end of the runs for
every salt solution, the pure water permeability coefficient (A) is re-calculated using DI

water. The value of the new permeability coefficient was used for the calculations of the
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next salt solution. This value is typically reduced due the membrane compaction with
aging. After the completion of each solution run, the system is flushed with DI water
before running the next solution experiment. When applying pressure on the dilute
solutions, the term A is equal to the difference between the osmotic pressure at the
membrane surface minus the permeate osmotic pressure, as indicated in Chapter 2 above

from equation number (2-24):

where ;= n, RT ZCi

i=l

where N, = number of ions formed when the solute dissociates.

And C, = molar concentration of the solute = ¢,/1000 MW, ; and c,= Total Dissolved
Solids as mg/l; MW, = Molecular Weight of the dilute solution; R= gas constant; and
T= absolute temperature.

From the equations (2-23), and (2-24) in Chapter 2 above, membrane wall concentration

C..m Was calculated.

From equations (2-29), and (2-30) in Chapter 2, the mass transfer coeficient K, and the

concentration polarization layer o - were calculated.

Peclet number was calculated as per equations (2-31), and (2-32) in Chapter 2.

3.4 Assumptions of the Experiments

Based on the above discussion, the following assumptions in the experimental
setup were made: (1) the membrane is neutral because the zeta potential is close to zero;
(2) the diffusion coefficient of the binary solution species is only a function of
temperature and solution concentration, hence the diffusivity is constant because the

experiments are carried out at a constant temperature and constant feed concentration;
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(3) the mass transfer coefficient of the whole membrane is constant, and is not a function
of the permeate flux or concentrate flow velocity; (4) the concentrate flow is equally
distributed on the membrane envelope and the feed and permeate spacers; (5) the type of
membrane material and chemical structure does not influence concentration polarization;
(6) there are no dead zones where salt can accumulate on the membrane; (7) the binary
solutions used in the experiments are completely ionized in the water, and the concentrate
solutions have not reached the saturation limits so that there is no species precipitations
on the membrane; (8) the concentration polarization layer is stagnant and constant along

the run of the membrane surface.
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CHAPTER 4

RESULTS AND DISCUSSION

This chapter presents the results obtained from the two setups of experiments
described in Chapter 3. It also discusses the results in details. The results are presented
in tables and graphs. The graphs are arranged such that they can be compared with each
others for each dilute solution, at different pressures.

The details of the replicate runs are shown in the tables of Appendices A, B, and
C. Pressures were identified as low, medium, and high; while solute dilutions were also
determined as low, medium, and high, as per table 3-2 presented previously in Chapter
3. For an easier illustration, the medium pressure 100 to110 psi is indicated on the
graphs by the solid line for both operating setups, i.e without permeate suction, and with
permeate suction, while the other two pressures, i.e. low, and high pressures, are

indicated by different dotted lines.

4.1 Effect of Permeate Suction on the Concentration Polarization Layer Thickness

According to the equations (2- 33), and (2-34) in Chapter 2, the diffusion

coefficient for the dilute solutions of MgSO, , and MgCl, , and NaCl are 0.85 x10~,

1.243 x10™, and 1.612 x10™° m? /s, respectively. The molecular weights of the three
binary salt solutions are 120.3, 95.3, and 58.5, respectively. This indicates that the

diffusion coefficient is a function of the molecular weight; and at constant temperature,
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the back diffusion of the salt is proportional to the diffusion coefficient and solute
concentration. Hence, the diffusivity is assumed to be constant for all the experiments,
since a cooler was used to keep the temperature at 25 degrees C. Figures 4-1, and

4-2 illustrate that the concentration polarization layer thickness, in general, is decreased
with permeate suction at all the tested pressures and feed concentrations. According to
the film theory, the concentration polarization layer is inversely proportional to the
mass transfer coefficient. This suggests that the effect of permeate suction enhances the
mass transfer from the bulk to the membrane surface, and it de-stabilizes the laminar
flow condition in the conduit due to the gradual increase in the positive pressure on the
bulk solution due to the permeate suction at the permeate collector tube.

The above mentioned two figures also show that the concentration polarization
layer thickness increases with the increase of the TDS of the feed. A more detailed
study of Figure 4-1 and 4-2 shows that the greatest impact on the concentration
polarization layer was achieved at the medium feed pressure, which is 100 psi.

Also, the above two figures along with Figure 4-3 show that the thickness of the
concentration polarization layer is proportional to the rejected ions in the binary dilute
solution, since the solute flux in the membrane is propositional to concentration

difference across the membrane.
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Concentration Polarization Layer Thickness Versus Feed Concentration - MgCl2

10

S lm)
o~ I — o [ =) o o I

Mancentratinn Palarizatinn [ aver Thirknece v 110

wn
<

0017 0022 007 0.032 0.037
Feed Concentration (Mol)

¢ HPP Only- 80 psi B HPP+ Permeate Pump - 80 psi A HPP Only - 100 psi

X' HPP + Permeate Pump - 100 psi X HPP Only - 130 psi 0 HPP+ Permeate Pump - 130 psi

we= Lingar (HPP + Permeate Pump - 80 psi) =Lincar (HPP + Permeate Pump - 100 psi) ™= Lincar (HPP Only - 80 psi)
====Linear (HPP Only- 100 psi) w= Lingar (HPP Only - 130 psi) we= Lingar (HPP + Permeate Pump - 130 psi)

Figure 4-1 Concentration polarization layer thickness versus feed concentration - MgCl,
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Concentration Polarization Layer Thickness Versus Feed Concentration - MgS04
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Figure 4-2. Concentration polarization layer thickness versus feed concentration - MgSO,
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It is also illustrated from Figure 4-3 that NaCl solutions are showing the same
trend as MgCl, , and MgSO, solutions, but with one higher order of magnitude.

This is due to the much lower rejection of the NF membrane for both monovalent ions
in the NaCl solutions. According to the solution-diffusion transport model, the solute
transport in the membrane is a function in the difference between the membrane wall
concentration, and the permeate concentration, regardless of the operating pressure.
Since the permeate concentration is relatively high, the concentration
polarization layer thickness was relatively high. Figure 4-3 also shows that the greatest
reduction in concentration polarization layer thickness in the NaCl solution is
achievable at the medium pressure which is 110 psi. As it was mentioned above, in the
case of NaCl solutions the concentration polarization layer thickness is of one order of
magnitude higher than that of the case of MgCl, , and MgSO, solutions. Part of this
higher magnitude is due to the higher tested pressure for NaCl solutions (110 psi), as

compared to the other two solutions of MgCl, and MgSO, (100 psi).

Figure 4-4 summarizes the conclusion from the above three figures. It shows the
relative effect of the permeate suction on the three binary solutions at the medium range
of pressure (100 to110 psi) in which the permeate suction had the greatest impact.

It clearly shows that the concentration polarization layer thickness is reduced with
suction for all the tested solutions. Detailed study of the above-mentioned figure also
shows that the concentration polarization layer thickness is a function of the diffusion

coefficient of the solute. As the diffusion coefficient increases from MgSO, to
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MgCl, to NaCl, the concentration polarization layer increases if the feed solution

concentration and the temperature are kept constant.

Concentration Polarization Layer Thickness Versus Feed Concentration - NaCl
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Figure 4-3. Concentration polarization layer thickness versus feed concentration — NaCl
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Concentration Polarization Layer Thickness Vresus Feed Concentration - 100 to 110 ps for the Three NaCl, MgCL2, and MgS04
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Figure 4-4. Concentration polarization layer thickness versus feed concentration at 100 to 110 psi
for the three NaCl, MgCl, , and MgSO, solutions
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Figure 4-5 is plotting the trend in concentration polarization layer thickness
against the net operating pressure (AP - Az ) for MgCl, solutions. The solid line is
showing the trend with permeate suction, while the dotted line is presenting the trend
without permeate suction. For example, at a net operating pressure of 5.45 atm, the
average concentration polarization layer thickness without permeate suction was 7.9 x
10~ m. This was reduced to about 6.7 x 10~ m with permeate suction, resulting in a

reduction of about 15%.

Concentration Polarization Layer Thickness Versus Net Operating Pressure -MgCI2
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Figure 4-5. Concentration polarization layer thickness versus net operating pressure - MgCI2
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4.1.1 Statistically Testing the Experimental Design for Concentration Polarization
Layer Thickness

The measured concentration polarization layer thicknesses were in the order of
magnitude of 10~ to 10~ m. To validate the experiments, and to eliminate experimental
errors, the Analysis of Variance (ANOVA) was tested.

ANOVA were carried out on the two different treatments (without permeate
suction, and with permeate suction) to compare the mean value of the two tests, and to
check if the permeate suction has made a significant change from the case of not having
permeate suction. Two statistical hypotheses were tested:

Ho: =1,
and H,: 1, # 1,
where g, is the mean concentration layer thickness in the case of running the test with

out using permeate suction in m multiplied by 10°, and 4, is the mean concentration

layer thickness in the case of using permeate suction in m multiplied by 10°.
The following ANOVA tables for three tested salts are showing the results of the

experiment analysis.

4.1.1.1 ANOVA for MgCl, Solutions

Referring to Table 4-1 below, and from Table IV of Design and Analysis of
Experiments book (Montgomery D., 2001):

Critical value of F s o 1) @aw= Foosis= 332

Since F, =288.552>F, =532

0
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so H,: = w, isrejected, and H,: g, # 1,
It was concluded that there was a difference between the two treatments.

Hence, the permeate suction was significantly different from the case of no suction.

Table 4-1. ANOVA Table for MgCl, solutions

Source of Sum of Mean
Variation Square DOF Square F,
Treatment (w/o &
W suction) 6.8672 1 6.8672 288.5552
Blocks 17.9010 8 2.2376
Error 0.1903 8 0.0238
Total 26.1177 17

4.1.1.2 ANOVA for MgSO, Solutions

Referring to Table 4-2 below, and from table IV of Design and Analysis of
Experiments text book (Montgomery D., 2001):

Critical value of F, 5 a1 @anon= Foosis=S-32

Since F, = 267.2989 > F, s, = 5.32

(0]
so H,: = p, isrejected, and H,: g, # 1,
It was concluded that there was a difference between the two treatments.

Hence, the permeate suction was significantly different from the case of no suction.
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Table 4-2. ANOVA Table for MgSO, solutions

Source of Sum of Mean

Variation Square DOF Square Fo
Treatment (w/o
& w suction) 2.2493 1 2.2493 267.2989
Blocks 19.9345 8 24918
Error 0.0673 8 0.0084
Total 22.2512 17

4.1.1.3 ANOVA for NaCl Solutions
Referring to Table 4-3 below, and from table IV of Design and Analysis of
Experiments text book (Montgomery D., 2001):

Critical value of F, s o 1) @aw= Foosis™= 332

Since F, = 1036771 >F, o5, 4= 5.32

0
so H,: = p, isrejected
and H,: 1, # 1,

Table 4-3. ANOVA Table for NaCl solutions

Source of Sum of Mean

Variation Square DOF Square Fo
Treatment
(W/o & w
suction) 0.5894 1 0.5894 10.3677
Blocks 104.1044 8 13.0130
Error 0.4548 8 0.0568
Total 105.1486 17
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4.2 Effect of Permeate Suction on Mass Transfer Coefficient

As was mentioned above, the mass transfer coefficient is inversely proportional
to the concentration polarization layer thickness. Figures 4-6, 4-7, and 4-8 show that the
mass transfer coefficient for all dilute solutions increased with permeate suction, if
compared with the case of no permeate suction.

Again, it is deduced that the permeate suction destabilizes the boundary layer in
the laminar flow condition that reduces concentration polarization and enhances the
mass transfer coefficient. The above-mentioned figures show that the greatest mass
transfer coefficients were achievable when the operating conditions were in the range of

100 to 110 psi. However, the mass transfer coefficient rates for MgSO, solutions were

reduced faster at the higher feed concentration greater than 0.0225 Mol/l, due to the
higher rate of the increase of concentration polarization layer at the higher

concentrations.
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Mass Transfer Coefficient Versus Feed Concentration - MgCl2
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Figure 4-6. Mass transfer coefficient versus feed concentration - MgCl,
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Mass Transfer Coefficient Versus Feed Concentration -MgS04
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Figure 4-7. Mass transfer coefficient versus feed concentration - MgSO,
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Mass Transfer Coefficient Versus Feed Concentration - NaCl
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Figure 4-8. Mass transfer coefficient versus feed concentration - NaCl
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4.3 Effect of Permeate Suction on Permeate Flow

Figures number 4-9, 4-10, and 4-11 show the relationship between the feed
concentration, and the product flow for the different dilute solutions at the three
pressures. It is evident from the figures that the product flow has increased due to
permeate suction for all salt solutions, and under the three tested pressures. As it was
expected, the permeate flow rate, and consequently the permeate flux was increased
with the higher feed pressure. In general, the product flow rate was reduced as the feed

concentration increased. However, for MgSO, and NaCl solutions the greatest rate of

increase due to permeate suction was achieved at the medium operating feed pressure

range (100 to110 psi).
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Permeate Flow Versus Feed Concentration - MgCl2
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Figure 4-9. Permeate flow versus feed concentration - MgCl,
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Figure 4-10. Permeate flow versus feed concentration - MgSO,
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Permeate Flow Versus Feed Concentration - NaCl
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Figure 4-11. Permeate flow versus feed concentration — NaCl
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4.4 Effect of Permeate Suction on Permeate Concentration

Figures 4-12, 4-13, and 4-14 illustrate the change in permeate concentration
versus feed concentration with permeate suction at various pressures. It is clear from
the three figures that permeate suction has improved the quality of the permeate
concentration at all pressures. It is interesting to notice on the first two figures that
the greatest improvement was achieved at the medium feed pressure (100 psi).

It is worthy to mention that the permeate concentration of MgCI, solutions was

much higher than the permeate concentration of MgSO, solutions under the same

operating conditions. This as indicated in item 4.1 above, is due to the low rejection of
the Cl” monovalent anion by the NF membrane, while the rest of ions in the two
solutions, namely, Mg™" , and SO,  are highly rejected because they are divalent ions.

The ionic mobility of ions has also contributed to the rate of their rejection.

Robinson and Stockes (1965) have indicated that the radius of chloride ion is 1.81 A ,
versus a greater radius for sulfate compound ion. The fact that the sulfate compound
anion has a radius greater than that of the chloride element anion has helped the latter in
its greater passage rate through the membrane. In all cases, the use of permeate suction
has resulted in a better permeate quality. This was more pronounced in the solutions of

the divalent ions than the monovalent ion solutions.

91



Permeate Concentration Versus Feed Concentration - MgCI2
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Figure 4-12. Permeate concentration versus feed concentration - MgCl,
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Figure 4-13. Permeate concentration versus feed concentration - MgSO,
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Permeate Concentration Versus Feed Concentration - NaCl
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Figure 4-14. Permeate concentration versus Feed concentration — NaCl
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4.5 Effect of Permeate Suction on Concentrate Concentration
Concentrate concentration is generally increased due to permeate suction for all
dilute solutions at different concentrations and pressures as shown in Figures (4-15,
4-16, and 4-17). The increase is due to the reduction in the membrane wall
concentration as it will be explained later in item 4.6. Especially at the medium feed
pressure range (100 to 110 psi), the rate of increase of the concentrate concentration due

to suction in MgSO, solutions was higher. This was due to the higher rejection of its
two divalent ionsMg ™" , and SO, , as opposed to the lower rejection of the

monovalent ion Cl~ that is available in the MgCl, solutions, as was indicated in item

4.1 above.
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Concentrate Concentration Versus Feed Concentration - MgCl2
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Figure 4-15. Concentrate concentration versus feed concentration - MgClI,
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Concentrate Concentration Versus Feed Concentration - MgSO4
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Figure 4-16. Concentrate concentration versus feed concentration - MgSO,
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Concentrate Concentration Versus Feed Concentration -NaCl
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Figure 4-17. Concentrate concentration versus feed concentration - NaCl
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4.6 Effect of Permeate Suction on Membrane Wall Concentration

Membrane wall concentration can not be experimentally measured. Therefore it
was calculated using the solution diffusion model, as it was discussed in Chapter 2.
Figures 4-18, 4-19, and 4-20 show that the calculated membrane wall concentration is
lower with permeate suction if compared to the case of running the high pressure pump
only at all pressures for all the tested solutions. A more detailed analysis of the above-
mentioned figures can be illustrated if they are compared to the corresponding three
figures of the concentrate concentration in item 4.5, namely Figures (4-15, 4-16, and 4-
17). It is deduced from that comparison that the membrane wall concentration is a
function of the effect of concentration polarization. The higher the feed pressure, the
more pronounced the difference in concentration between no suction, and permeate
suction. The difference between the ionic species radii of chloride element ion, and
sulfate compound ions as it was discussed in item 4.1 and 4.4 above, has contributed to
the distinction. For example, at the medium pressure range (100 to 110 psi), where the
permeate suction had the greatest impact, the fact that the sulfate compound anion has a
radius greater than that of the chloride element anion has helped the latter in its higher

passage rate through the membrane in both NaCl , and MgCI, solutions such that the

membrane wall concentration in those cases is greater than the case of

MgSO, solutions.
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Figure 4-18. Membrane wall concentration versus feed concentration - MgCl,
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Membrane Wall Concentration Versus Feed Concentration - MgSO04
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Figure 4-19. Membrane wall concentration versus feed concentration - MgSO,
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Membrane Wall Concentration Versus Feed Concentration - NaCl
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Figure 4-20. Membrane wall concentration versus feed concentration - NaCl
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Figure 4-21.Fully developed Velocity profiles and concentration profiles in the boundary laver without
and with permeate suction

In an attempt to explain the relationship between the change in the velocity
profile and the concentration profile due to suction, refer to Figure 4-21 above.
Adding positive pressure by the permeate suction to the feed pressure should increase
the permeate flow, and consequently the average concentrate concentration of the bulk
solution should increase, as it was expected. However, the permeate suction has
decreased the concentration gradient in addition to the increase of permeate flow rate, as
it was observed in the experiments. Since our principle concern is the dilute solution, it
was mentioned previously in Chapter 2 that the concentration polarization layer is
embedded in the viscous boundary layer, and the velocity in that layer is that close to
the wall (Probstein, 1944). Referring to Figures 4-15, 4-16, and 4-17 in item 4.5 above,

in conjunction with the sketch in Figurel4-21, it is suspected that permeate suction will
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alter the velocity profile from profile number (1) to profile number (2) due to the de-
stabilization of the boundary layer. In addition, let us take a cross section perpendicular
to the membrane at steady state condition. Also, let us consider a random point at the
boundary layer velocity profile, and its correspondent point at the concentration profile.
Suction will increase velocity U1 to velocity U2, which will increase the local flow at
that point. Since the corresponding point at the concentration profile without suction is
C1, the concentration at the same point after applying suction will be decreased to C2
because the corresponding velocity and flow rates have increased. When applying the
mass balance equation for the whole system at steady state conditions, the average
concentrate concentration at the bulk solution at the case of applying suction will be
increased, if compared to the average concentrate concentration of the bulk solution
before suction. This is due to the increased flow near the membrane that will partially
wash away the accumulated species on the membrane. This was the observation of the
experiment for the concentrate concentration as indicated in Figures 4-15, 4-16, and 4-

17 in item 4.5 above for all the solutions at all pressures.

4.7 Effect of Permeate Suction on Peclet Number

Peclet number is defined as the dimentionless ratio of the rate of mass
transported by convection to the membrane, to the rate of mass transported by diffusion
back to the bulk solution. In other words, the diffusive membrane Peclet number which

IS expressed as per equation (2-31) in Chapter 2 is:

where V,, is the permeate velocity which is equal to the permeate flux per one sheet of
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membranes; D, , is the diffusivity coefficicent of the ionized electrolye; and h, is the

hydraulic diameter of the spiral wound membrane. The diffusive Peclet number is a
measure of how permeate goes through the membrane. It is observed that for the dilute
solutions the Schmidt number is very large, as a consequence of which the diffusion
Peclet number is large. This is true even at moderate Reynolds number
(Probstien,1994).

In the case of using the standard high pressure pump only, both the permeate
concentration and the concentration polarization layer increase as the Peclet number
increase (Probstein, 1994). However Figures 4-22, 4-23, and 4-24 show a remarkable
result. They show that the diffusive Peclet number for the binary dilute solutions has
increased with the permeate suction at all pressures, although the associated permeate
concentration, and concentration polarization layer thicknesses have decreased as was
discussed in item 4.1 and 4.3 above. This is a proof that the permeate suction has
stabilized the flow conditions, and has enhanced the mass transfer coefficient.

From the above mentioned figures, at permeate suction, and at different feed operating

conditions, the diffusive Peclet number can be expressed according to the equation :

P, = a,x’+ bx +c,., with R*>0.99, where x is the feed concentration in Mol/I, and

a,, b, and c, are coefficients dependent on feed pressure for every binary salt solution.
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Peclet Number Versus Feed Concentration - MgCI2
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Figure 4-22. Diffusive Peclet number versus feed concentration - MgCl,
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Figure 4-23. Diffusive Peclet number versus feed concentration - MgSO,

107




Peclet Number Versus Feed Concentration - NaCl
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Figure 4-24. Diffusive Peclet number versus feed concentration — NaCl
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

This chapter consists of three parts. The first part concludes the results of the

experiments. The second part emphasizes the importance of the findings on the design
improvements for NF plants. The third part discusses the suggested and recommended

future researches that can be carried out as a further step to this research.

5.1 Conclusion

The goal of this research was to make use of the effect of the de-stabilization of
the laminar flow that exists at the membrane surface due to the gradually increased
permeate suction, in an attempt to reduce the concentration polarization layer in the
module. Previous researches showed that the concentration polarization is almost
always the reason behind membrane fouling. The technique of using permeate suction is
not practically used in the NF of RO membrane industry so far, despite that it has been
theoretically investigated at the laboratory scale by a few researchers.

(1) This research showed that when using binary dilute solutions, the permeate
suction reduced the concentration polarization at the feed side of the industry
scale NF membrane surface that helped to increase mass transfer coefficient, and
increased the product flux without subjecting the membrane to less favorable

conditions.
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(2) The research also showed that permeate suction had the greatest impact at the
medium range (100 to110 psi) feed pressure, resulting in a reduction of
concentration polarization layer thickness with an average between 14 to 20%.

(3) The magnitude of the measured concentration polarization layer thickness in the

experiments was very small in the order of 3 x10°to 8 x10™ meters. To
eliminate experimental errors, the analysis of the variances of the experiments
(ANOVA) were tested in both experiment treatments (without suction, and with
suction) to investigate the significance of the permeate suction. ANOVA Tables
for the three tested binary dilute salt solutions showed that the permeate suction
was significant, and applying the permeate suction was statistically different
from the case of not applying suction.

(4) This research showed that calculating the concentration polarization layer using
the traditional way of using Sherwood number correlation would lead to
erroneous results due to the changes in the solution properties because of
suction, that are not considered in this relationship. In addition, it is even
believed that the use of the correlation of Sherwood number in the literature for
the traditional high pressure pump design only might be inadequate. This is
shown by the different values of the coefficients that were deduced by different
researchers in calculating the relationships in that correlation.

(5) The use of Peclet number instead, which does not primarily depend on most of
the changed physical properties of the solutions would eliminate the need to use
the Sherwood number. The values used in calculating the diffusive Peclet

number could be easily and appropriately calculated. Although the Peclet
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number is a function of the solute diffusion coefficient, keeping the temperature
constant through all the experiments has eliminated the change that could occur
in the solute diffusivity back to the bulk solution. The velocity term in the Peclet
number was easily calculated from the experimentally measurable permeate
flux. The hydraulic diameter coefficient in Peclet number is dependent on the
membrane structure, which was calculated from the geometrical dimensions of
the tested membrane.

(6) The diffusive Peclet number increased with the permeate suction at all the

experimental testes. The Peclet number followed a pattern of P, = a,x*+

b,x +c,., with R*>0.99, where x is the feed concentration in Mol/l. The terms
a,, b, and c, are coefficients dependent on feed pressure for every binary salt

solution. The results showed that the permeate flow increased at the same time,
while the concentration polarization was reduced. This was opposite to the
traditional case where permeate suction is not used. In the later case, the
increase of the Peclet number increases the concentration polarization layer.

(7) Although some researchers used the concentration polarization layer thickness,
and boundary layer thickness interchangeably (e.g. Lisdonk, C., et al. 2001;
Sablani S., et al, 2001) they are actually different. At the dilute solutions where
Schmidt number is >> 1, the concentration polarization layer is imbedded in the
viscous boundary layer, and its velocity is that the one close to the wall.
Schlichting (1979) estimated the boundary layer thickness at the porous wall

suction as a function of Reynold’s number. The calculations for this estimation
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are based on an assumption of a constant viscosity along the membrane width,
which may not be accurate, especially for highly concentrated solutions.

(8) It is worthy to mention that the equation of transport in the membrane is
complex for multi component solutions with more than one anion and one cation
because more than one cation can be accompanied by one anion or vice versa,
depending on the ion valence. It has been shown that the concentration
polarization for individual salts changes substantially with the presence of other
salts (Srinivasan and Tein, 1970). The solution-diffusion model is valid only for
binary solution systems, and can not be used for a mixture of salts. To estimate
the transport in the membrane for a multi component solution, one alternative is
the use of the Nernst-Plank model, which is for a mixture of n ions (3n+2)

equations are required (Ghiu and Carnahan, 2003).

5.2 Recommendations

(1) The NF membrane makers traditionally use the standard testing pressure of 70
to75 psi range. It is suggested that the membrane manufacturers might have to
change their standard test conditions to 100 to110 psi, since this research
showed that the greatest impact on the NF membranes was achieved at the
medium feed pressure which was 100 t0110 psi.

(2) The applications of NF membrane in the water treatment industry are numerous,
and based on the above-mentioned results using the permeate suction can help
reduce the concentration polarization layer in NF modules, and increase mass

transfer coefficient, that will elongate the useful membrane life.
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(3) One interesting recent application is using two staged NF-NF to desalinate
seawater is very promising. In this case using the permeate suction at the end of
both stages may be a way to reduce concentration polarization in this application
for seawater desalination, which would lead to a prolonged life of the

membrane, in addition to increasing the NF plant productivity.

5.3 Future Researches

(1) Itis thought that an economical study of adding the cost of the permeate suction
pump to the existing traditional module design should be addressed in the
upcoming researches, and the total water cost of a system should be evaluated
based on that addition.

(2) Another proposed future study is determining the minimum suction pressure
required to reduce the concentration polarization layer, so that the plant
modification from the current standard system design can be optimized.

(3) Itis also believed that extending the application of the permeate suction to the
higher concentration of brackish water RO modules, or seawater RO plants can
critically be investigated, despite the complexity of predicting the mass transfer

model for highly concentrated mixed salt solutions.
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APPENDIX C:

Tables of Test Results for MgCl, Solutions
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