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Effect of Permeate Suction on the Performance of Spiral Wound  
Nanofiltration Module 

 
Awad Abdel Monem El-Shamy 

ABSTRACT 

 

           Fouling in a nanofitration membrane module is usually a result of concentration 

polarization. The effect of permeate suction on the slightly negatively charged spiral 

wound nanofiltration membrane is investigated. According to the film theory, the mass 

transfer coefficient is inversely proportional to concentration polarization. The effect of 

permeate suction destabilizes the boundary layer. This will decrease the concentration 

polarization layer, and consequently will increase mass transfer through the membrane’s 

surface.  

            To validate the hypothesis, experiments were carried out on a NF membrane that 

can be described by the solution-diffusion model. This model has coefficients that can be 

measured experimentally. Using the membrane wall concentration in this model instead 

of the bulk feed concentration can help estimating the mass transfer coefficient more 

appropriately. 

Two experimental studies were carried out, one with a standard high pressure 

pump, and another one with the added effect of suction pressure applied to the permeate 

collector tube.  



Three different concentrations of binary dilute solutions of , , 

and , at three different pressures (low, medium, and high) were tested. 

NaCl 4MgSO

2MgCl

            For all tested solutions, permeate suction increased the diffusive Peclet number as 

a function of the feed concentration ( x ) according to the equation  = + + , 

with 

eP 2
1xa xb1 `1c

2R > 0.99, where x is the feed concentration in Mol/l, and , , and  are 

coefficients dependent on feed pressure for every salt solution. With the increase of the 

Peclet number, it was observed that the concentration polarization decreased, and both 

the product flow and the product quality were improved.  Suction had the greatest impact 

at the range of 100 to110 psi feed pressure, where the concentration polarization reduced 

approximately 14 to 20 %.  

1a 1b 1c

            ANOVA for the concentration polarization showed that suction was significant in 

reducing the calculated concentration polarization layer for all tested solutions.  

            It was concluded that permeate suction reduced concentration polarization, 

increased product flow rate, and improved product quality.  Thus, adding permeate 

suction has beneficial consequences because it reduces membrane fouling and extends its 

useful service life. 
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CHAPTER 1 

INTRODUCTION TO THE RESEARCH 
 
 

1.1 Importance of the Research Topic 
  
             The rapid growth of the new generation of nanofiltration as an attractive 

membrane separation process suggests renewed investigations of the current design 

methods for developing an improved design configuration to reduce membrane fouling.  

Fouling in reverse osmosis (RO)/nanofitration (NF) membrane modules is usually a 

result of concentration polarization. Membrane fouling has a serious economical 

implications on the water treatment plant because it causes permeate flux decline, reduces 

product quality, and shortens the life of the membrane. Spiral wound configuration, 

which is the most dominant module used in the application of pressure driven membrane 

for drinking water treatment, was rarely investigated by researchers as far as the permeate 

suction is concerned. 

            Nanofiltration membrane, which is sometimes called loose reverse osmosis 

membrane, is more manageable than RO membrane for permeate suction because its 

permeability coefficient is substantially higher than RO membrane. This is despite that 

NF membrane systems are typically designed like RO but with much lower driving 

pressures. Currently NF membranes are traditionally used to treat low salinity water, 

waste water, or in the process industry like extracting chemicals or protein from dilute 

water.  
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           The state of the art in NF membrane researches is taking advantages of using it in 

seawater desalination, either for pretreatment for existing thermal distillation plants; 

pretreatment of seawater RO plants; or to replace the traditional seawater RO membranes 

so that it improves production rate, or saves energy (Leon Awerbuch, 2007; Hassan, 

2004;Yann Gouellec et al., 2006). 

            This is an indication of the inspiring future that awaits the NF membrane in the 

pressure driven membrane technology. 

            Despite the numerous studies that have addressed the NF membrane fouling, few 

researchers have addressed using permeate suction as a means of reducing fouling in the  

widely used spiral wound thin film composite membrane configuration. 
  
 
1.2 Problem Definition 
 
            Membrane fouling and scaling can significantly increase the cost of a membrane 

system as well as reduce its reliability. This limitation is behind the great deal of research 

that has made significant developments in membrane science. 

           Fouling is a term generally used to describe the undesirable formation of deposits 

on the surface of the membrane. Membrane fouling is a complicated phenomenon 

because it results from a group of physical, chemical, and biological effects that can lead 

to an irreversible loss of membrane permeability (Salbani et al., 2001).  Attempts to 

analyze the fouling phenomena have shown that its primary characteristics are adsorption 

of feed components, and deposition of solids on the membrane surface, accompanied by 

crystallization and compaction of the membrane structure. However, the occurrence of 

fouling is almost always a result of concentration polarization (Jamal et al., 2004). 
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Concentration polarization (Figure 1-1), may be defined as the presence of a higher 

concentration of rejected species at the surface of a membrane than in the bulk solution, 

due to the convective transport of both solute and solvent. It is generally considered a 

totally reversible effect (Jamal et al, 2004). The reduction of concentration polarization 

layer ( Fδ ) is important for the improvement of the performance of osmotic type 

membranes, as it will inevitably lead to reduction in the fouling of the membrane (Jamal 

et. al, 2004). 

           Depending on molecular weight, which will determine diffusive back-transport 

from the membrane, concentration polarization is more or less distinct.  

            Although concentration polarization can also be found on the permeate side as 

indicated in Figure 1-1, it is usually neglected in pressure driven membrane since it is 

much less pronounced than feed side polarization (Fritzmann et al., 2007). 

            Concentration polarization has several negative effects on membrane 

performance: (1) rejection decreases due to higher salt flux because of increased salt 

concentrations at the membrane surface; (2), solubility limits can be exceeded, especially 

for divalent ions, leading to a precipitation layer on the membrane surface, which 

negatively influences mass transfer, that dramatically reduce permeate flux; (3) water 

flux is reduced due to higher osmotic pressure associated with higher salt concentration at 

the feed side membrane surface; (4) and particles are accumulated at the membrane 

which can lead to cake formation on the surface.  
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Figure 1-1.Concentration polarization layer near membrane surface (adopted from Fritzmann et al., 2007) 

 
           Several approaches have been used to try to minimize the effects of fouling.  

In thin film composite spiral wound module, the hydraulic flow is laminar due to  

 channels between the membrane layers. The mass transfer coefficient is the most widely 

 used parameter in the design of pressure-driven membrane separation systems such as 

 reverse osmosis and nanofiltration. The role of suction in mass transfer through porous 

 membranes is very important. It was identified by several researchers (e. g. Van den 

 Berg et al., 1989; Gekas et al., 1987) that the effect of permeate suction enhances the  

mass transfer from the bulk to the membrane surface.  By applying suction at the end  

of the collector tube of the membrane module, an increased rate of pressure along the 

 stream  will present. This increase in pressure rate will destabilize the boundary layer  

at steady state conditions (Schlichting, 1979).  

            The conventional way to estimate the mass transfer coefficient is to use Sherwood 

 number relationships obtained from heat and mass transfer analogy. 
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            Numerous Sherwood number relationships have been proposed and extensively 

 reviewed (C. Van de Liskdonk et al., 2000). The Graetz-Leveque correlation of 

 Sherwood number, which is used for laminar flow when the velocity field is fully 

 developed and the concentration boundary layer is not fully developed, is typically used 

 to estimate mass transfer coefficient as: 

Sh = X a(Re) ( )b
Sc

c

h

L

d
⎟
⎠
⎞

⎜
⎝
⎛                         (1-1) 

where Re = Reynold's number = 
ν

hwdV ;  Schmidt number = Sc = 
D

ν ; ν = kinematics 

 viscosity; wV  = average cross-flow permeate velocity; hd = hydraulic diameter of the 

 membrane element; D the diffusion coefficient for solute transport through solvent, and  

L is the spiral wound membrane width (Taylor et al.,1999). D in this relationship is equal 

to K Fδ , where K is the mass transfer coefficient, and Fδ is the concentration 

polarization layer thickness. The terms X, a, b, and c are coefficients that have taken 

 extremely different values by different researchers (e.g. Isaacson,1979; Schocket 

 Miquel,1979; Taylor, 1991). Further discussions about these terms will be included in 

 Chapter 2.  

            There are several limitations upon using the above-mentioned equation: 

(1) the above mentioned Sherwood number relationship is derived for flow through non- 

porous conduit; hence, the effect of suction can not be considered using these 

 relationships; (2) the axial change in osmotic pressure at membrane surface due to the 

 concentration polarization change is not considered in the above mentioned Sherwood 

 number correlations; (3) and suction will change the species concentration at the 
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 membrane surface that will change the solution’s physical properties like viscosity, 

 density, and diffusivity, which are functions of the concentration. Consequently, the 

 above-mentioned Reynold’s number, and Schmidt number, will be variable along the 

 membrane length. Those changes are not considered with this form of Sherwood number 

 relationship. 

The diffusive Peclet number is expressed as eP = 
D

hV dw         (1-2)                 

where wV is the cross flow permeate velocity; D  is the diffusivity coefficicent of the 

 species; and dh  is the hydraulic diameter of the spiral wound membrane. 

The diffusive Peclet number measures the dimensionless ratio of convective mass 

transfer to the membrane to the diffusive mass transfer towards the bulk solution at the 

opposite direction. The Peclet number is also called the dimensionless flux. If the 

diffusive Peclet number is increased due to suction, while the associated concentration 

polarization is being reduced, this means that the suction has increased membrane 

production with more favorable conditions to the membrane, as far as inorganic fouling is 

concerned.  Therefore, the Sherwood number can be avoided in the calculations due to 

the above-mentioned limitations. 

 
1.3 Research Objective  

            The objective of this research is to investigate the effect of permeate suction on 

 the mass transfer coefficient, concentration polarization layer, product quality,  

production flow rate, and membrane diffusive Peclet number for spiral wound NF 

 module.  
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            The goal is to increase system permeate flow without subjecting the membrane to 

an increasing tendency for inorganic precipitation. This was carried out by comparing the 

data collected from running two tests on the membrane: the first test will be run using the 

standard high pressure feed pump only, and second will be done by running the test after 

adding the effect of the permeate suction pump to the original setup. 

1.3 Research Approach 

            For high rejection membranes of the type used in reverse osmosis and 

nanofiltration membrane applications, the water flux can be presented by the solution 

diffusion model  (Lonsdale et al.1965; Soltanieh and Gill, 1981), which states that the 

solvent flux is proportional to the effective pressure difference ( PΔ - πΔ ). The solvent 

flux is caused by the gradient of chemical potential which includes a concentration 

diffusion term, and a pressure diffusion term. For real membranes that have some 

imperfections like holes or microspores, the measured flux is not purely diffusive, but it 

contains a term contributed by convection. Recent researches did not find pores in neither 

RO nor NF membranes, such that the transport of solvent is accomplished through the 

free volume between the segments of the polymers of which the membrane is constituted 

(William, 2003). In diffusion controlled hyperfiltration (RO and NF) membrane process, 

the solution-diffusion imperfection based model is widely used, because most of the 

coefficients used in this model are actual operating conditions that can be directly 

measured, as opposed to theoretical models that have parameters difficult to be measured 

in reality (Williams, 2003). Furthermore, for dilute solutions, which is the typical solution 
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fed to NF membrane, this convection term is so small such that it can be neglected 

(Soltanieh and Gill, 1981) to further simply the real model. 

           Mass transfer models typically assume that the bulk feed solution concentration is 

equal to the membrane wall solution concentration, which is not always true. 

This has to be related to the concentration polarization expressions (Williams, 2003). 

Concentration polarization complicates the modeling of membrane systems because it is 

very difficult to experimentally determine the  membrane wall concentration ( memc ).                     

Membrane wall concentration is necessary to be determined since it and not the bulk feed 

concentration ( Fc ) should be used in RO and NF transport models.  

            In the limited feed flow rate that is typically used for hyperfiltration (RO and NF) 

membrane processes, the flow in the membrane channels is laminar, and the difference 

between the wall and bulk concentrations can be substantial, so calculations of the 

concentration at the membrane wall must be appropriately estimated. 

           Bhattacharya et al. (1996) have developed a generalized mass-transfer relationship 

from first principals to obtain a theoretically modified form for the Sherwood number 

using the wall Peclet number to estimate the mass-transfer coefficient using permeate 

suction. 

           This correlation is debated due to the above-mentioned items that were discussed 

earlier.  

           The permeate suction was tested, and was experimentally validated for NF spiral 

wound TFC module in this research. An experimental setup for the membrane system 

was tested with the conventional operating setup in order for it to be compared with the 

permeate suction setup results. The research was conducted for three different dilute 
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strong electrolyte binary solutions, namely: NaCl , 2MgCl , 4MgSO , which are 1-1, 2-1, 

and 2-2 electrolytes, respectively, at three different pressures and three different dilute 

concentrations. The experiment was set at a constant temperature of 25 degrees Celsius in 

order to keep the diffusion coefficient constant for the different dilute solutions. 

 
1.5 Dissertation Outline 
 
           Chapter 2 of this dissertation is divided into five parts. The first part presents general 

information related to RO and NF membrane properties and module configurations. It also 

includes literature review of the previous researches accomplished to reduce concentration 

polarization in RO and NF. The second part emphasizes the properties of NF membranes, 

and their benefits in recent developments in either brackish water desalination or seawater 

desalination. It also explores the distinguished importance of the new generation of NF 

membranes. The third part demonstrates the history of using permeate suction in pressure-

driven membranes; and discusses the effect of gradually increasing suction on the boundary 

layer in fluid dynamics. The fourth part illustrates various mass transport models, 

describing the advantages and disadvantages of each model. Emphasis was placed on the 

solution-diffusion model which is the mass transport model used in this research.  

            The fifth part in Chapter 2 discusses the theories related to different equations that 

will be utilized to avoid using the Sherwood number relationship for mass transfer 

estimations.  

            Chapter 3 presents the experimental setup that is being used to validate the 

hypothesis.  A detailed description of the assumptions, equipment, solutions of salts, and 

chemicals used in the experiments are presented. 
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           Chapter 4 of this dissertation explores the results obtained from the above- 

mentioned experiments; along with detailed discussions for the results. 

            Chapter 5 exhibits the conclusion from the experimental results and the 

discussions. Recommendations were presented in this chapter, along with the suggested 

future permeate suction researches that can be conducted on higher concentrations of 

brackish water and seawater membranes to reduce concentration polarization in order to 

elongate the membrane life. 
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CHAPTER 2 
 

CONCENTRATION POLARIZTION IN RO AND NF MODULE: 
 

LITERATURE REVIEW 
 
 
            This chapter is divided into five main parts. The first part presents general 

information related to RO and NF membrane properties and module configurations.  

            The second part explores the distinguished importance of the new generation of 

NF membranes, and the promising future of this important type of membrane. The third 

part demonstrates the history of using permeate suction in pressure-driven membranes; 

and discusses the effect of gradually increasing suction on the boundary layer in fluid 

dynamics. The fourth part demonstrates various mass transport models, describing the 

advantages and disadvantages of each model. This includes the solution diffusion model 

for mass transport in the NF membrane, and the advantage of using it in the application to 

the new generation of NF membrane. The fifth part demonstrates the theories used to 

prove the hypothesis related to the chosen mass transport model in dilute solutions, which 

are used as a feed for NF membrane. 

 
2.1 Background  
 
           Information similar to that presented in this section can be found in numerous 

publications describing hyperfiltration membranes and processes. References are made 

only occasionally and mainly when information is specific to a source. 
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2.2 Preface 

           Water shortages and lack of access to safe drinking water will continue to be 

major global problems. At present, more than one billion people lack access to safe 

drinking water, and 2.4 billion people lack access to proper sanitation, nearly all of them 

in developing countries. At present a third of the world's population live in water-stressed 

countries, and by 2025, the number  is expected to rise to two-thirds. 

           Scarcity of fresh water has serious implications on human beings. It can slow 

down economic expansion, reduce agricultural output, hamper food independence, and 

degrade public health and quality of life. Since it was first introduced in the 1950’s, 

hyperfiltration membranes (reverse osmosis and nanofiltration) have most commonly 

been used for desalting seawater, and brackish water by removing salts and other 

impurities in order to improve the color, taste or properties of the water for drinking and 

irrigation. Hyperfiltration is finding increasing uses in industrial applications for highly 

pure water because of its reliability and cost-effectiveness. Membrane separation has 

gained considerable importance because they offer superior treatments at relatively 

modest capital and operating cost (Madireddi et al., 1999). However, membrane fouling 

will continue to be the major obstacle for the efficient operation of RO membrane 

systems (Jamal et al., 2004).  

2.3 Historical Background 

            The ancient Egyptians treated water by siphoning water out of the huge jars after 

allowing the muddy Nile River to settle and separate; the first United States water plant 

with filters was built in 1872 in Poughkeepsi, New York. Membrane filtration represents 
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the advanced ring in that historical development of water treatment, and RO is the finest 

level of filtration available. The concepts of "direct osmosis" and "reverse osmosis" have 

been known for many years. In fact, studies on osmosis were carried out as early as 1748 

by the French scientist Nollet, and many researchers investigated these phenomena over 

the next two centuries (Reid, 1966; Mason, 1991; Williams, 2003).     However, the use 

of reverse osmosis (RO) as a feasible separation process is a relatively young technology. 

In fact, only in the late 1950's did the work of Reid show that cellulose acetate RO 

membranes were capable of separating salt from water, even though the water fluxes 

obtained were too small to be practical (Reid and Breton, 1959; Ferguson, 1980; 

Lonsdale, 1982; Applegate, 1984). Then, in the early 1960's, Loeb and Sourirajan 

developed a method for making asymmetric cellulose acetate membranes with relatively 

high water fluxes and separations, thus making RO separation both possible and practical 

(Loeb and Sourirajan, 1962; Loeb, 1981; Sourirajan and Matsuura, 1985).             Since 

then, the development of newer generation membranes such as the thin-film composite 

membrane that can tolerate a wider pH range, higher temperatures, and harsh chemical 

environments, and that have highly improved water flux and solute separation 

characteristics has resulted in many RO applications. In addition to the traditional 

seawater and brackish water desalination processes, RO and NF membranes have found 

uses in wastewater treatment, production of ultrapure water, water softening, and food 

processing, as well as many other applications (Bhattacharyya, 1992).  
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2.4 Definition of Reverse Osmosis 

           Osmosis is a natural phenomenon that occurs in all living cells in which a solvent 

passes through a semi-permeable barrier from the side with lower solute concentration to 

the higher solute concentration. Reverse osmosis is based on a property of certain 

polymers called semi-permeability. While they are very permeable for water, their 

permeability for dissolved substances is low. By applying a pressure difference across the 

membrane the water contained in the feed is forced to permeate through the membrane. 

In order to overcome the feed side osmotic pressure, fairly high feed pressure is required. 

 

                         2-1a                                                                                             2-1b 
Figure2-1. Schematic drawing of water and salt fluxes in direct osmosis and reverse osmosis 

(Adopted from Ghiu et Carnahan, 2003) 
 
           As shown in Figure 2-1a, solvent flow continues until the chemical potential 

equilibrium of the solvent is established. At equilibrium, the pressure difference between 

the two sides of the membrane is equal to the osmotic pressure of the solution. To reverse 

the flow of water (solvent) a pressure difference greater than the osmotic pressure 

difference is applied as illustrated in Figure 2-2b. As a result, separation of water from 
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the solution occurs as pure water flows from the high concentration side to the low 

concentration side. This phenomenon is termed reverse osmosis or hyperfiltration. 

           The RO process is attractive because it is relatively simple in design. It consists of  
 
a feed water source, feed pretreatment, high pressure pump, RO membrane modules, and 
 
 in some cases post-treatment steps. 
 
  
2.5 Water Treatment by Pressure-Driven Membranes 
 
           The membrane processes that has the greatest immediate application to potable 

water treatment are reverse osmosis (RO), nanofitration (NF), ultrafitration (UF), and 

microfiltartion (MF). Figure 2-2 shows the kind of rejected species by different types of 

pressure-driven membranes. 

 

Figure 2-2. Kinds of rejected species by different pressure-driven membrane types 
(Adapted from Koch membrane manufacturer, 2009) 

 
            Reverse osmosis is primarily used to remove salts from brackish water or  
 
seawater, and it is also capable of very high rejection of synthetic organic compounds  
 
(SOCs). Nanofiltration is used to soften fresh water, and remove disinfection by-product  
 
(DBP) precursors. Ultrafiltraion, and microfiltration are used to remove turbidity, 

pathogens, and particles from fresh water. A membrane, the common element of all these 
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processes, could be defined as any barrier to the flow of suspended, colloidal, or 

dissolved species in any solvent. Contaminants larger than the maximum pore size of the 

membrane are removed by sieving in a diffusion-controlled process. 

            MF and UF membranes have pores in the filtration layer of the membrane, while 

the active layer in RO and NF membranes is nonporous. The transport of solvent in RO 

and NF is accomplished through the free volume between the segments of the polymers 

of which the membrane is constituted (William, 2003).                       

            Contaminants rejection by diffusion-controlled membrane processes increases as 

species charge and molecular weight increases. Consequently, satisfactory removal of 

metals, total dissolved solids (TDS), radionuclides, and disinfection by-products 

precursors can be attained. 

            Membranes are classified by molecular weight cutoffs, solute and solvent 
 
 solubility in the membrane film, active membrane material, active film thickness, surface  
 
charge, and smoothness of the active film surface. 
 
 
2.6 Reverse Osmosis Membrane Properties 
 
           Reverse osmosis membrane separation is governed by the properties of the 

membrane used in the process. These properties depend on the chemical nature of the 

membrane material as well as its physical structure. Most currently available RO 

membranes fall into two types of membranes: asymmetric membranes, and thin film 

composite (TFC). Asymmetric membrane containing one polymer, and thin film 

composite membranes consist of two or more polymer layers. Asymmetric RO 

membranes have a very thin, perm selective skin layer supported on a more porous sub-
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layer of the same polymer. This membrane is used to produce the hollow fine fiber (HFF) 

configuration. The hollow fiber element consists of large number of fine hollow fiber 

membranes (with an outer diameter up to 200 μm) placed in a pressure vessel; the feed 

flows outside the fibers and permeates through them (Allegrezza, 1988; Baker, 1990; 

Bhattacharyya et al., 1992). These elements have an extremely high packing density, and 

so can have high permeate production rates per module. However, these modules are 

highly prone to fouling, and thus are not feasible for many of the applications. 

           Thin film composite membrane is the one used in spiral wound membrane 

configuration. The dominant form of the synthetic materials is TFC aromatic polyamide 

membrane. The development of the cross-linked fully aromatic polyamide thin film 

composite membrane in the 1970’s represented a major advance in membrane 

technology. TFC membrane provides very thin active film that requires much less energy 

to induce fluid passage than other materials, making them more economical to use on a 

large scale. Figure 2-3 shows the composition of both the hydrophilic, and the 

hydrophobic TFC membrane. Both hydrophilic and hydrophobic films are laid in a 

composite film by cross-linking different polymers. The thickness of the nonporous layer 

is typically less than 1 μ m. The widely used aromatic polyamide membranes are 

unfortunately susceptible to oxidation, and are often impacted by the side chain reaction 

between the disinfectant oxidizing agent like chlorine, and the polyamide groups. This 

reaction disrupts their stable linkages, and conformational structure. Consequently, this 

renders them ineffective for their intended function. There have been several attempts to 

create chlorine-resistance membranes for more than 25 years, but without success 

(Mukiibi, 2008). 
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Membrane Surface
(Polyamide Layer = 0.15 micron)

Polyester Fiber = 150 microns
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Polysulfone  Layer = 50 microns

Barrier Interface

 

Figure 2-3. Thin film composite (TFC) cross section view 

                       (Adopted from Hydranautics Membrane Manufacturer, 2009) 
 

 
2.7 Reverse Osmosis Membrane and Module Configuration 
 
           The available membrane modules using asymmetric type include plate-and-frame, 

tubular, and spiral-wound configuration. Plate-and-frame modules consist of stacks of flat 

sheet membrane placed on supports; each membrane and support are separated by spacers 

which direct the feed across each membrane and channel permeate out of the module 

(Allegrezza, 1988; Baker, 1990; Strathmann, 1990; Bhattacharyya et al., 1992).  

           Tubular membrane elements consist of membrane tubes supported within 

perforated stainless steel tubes; as feed flows through the tubes, the permeate passes 

through the membrane and the support. While the plate-and-frame module, and the 

tubular module are resistant to fouling, they have low membrane surface area per 

element.  This makes them expensive and can limit their use in areas with space 

restrictions. 
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Figure 2-4. Structure of thin film barrier layer of RO aromatic polyamide membrane 
(Adopted from FilmTec Membrane Manufacturer, 2009) 

  
             
           While these elements are also fouling resistant, and are easy to clean, the modules 
 
 have a low packing density, and can be expensive to operate because of the necessary 

high feed flow rates. Because of the plate-and-frame, and tubular element disadvantages, 

these modules are used primarily for highly fouling feeds, or in laboratory researches.  

Figure 2-4, and Figure 2-5 illustrate the chemical structure of the RO and NF thin film 

composite polyamide, respectively. The spiral wound membrane configuration is the 

most common membrane for production of drinking, and industrial process water 

(Allegrezza, 1988; Bhattacharyya, 1992). This type of element has a high packing 

density, moderate fouling resistance, and lower capital and operating costs compared to 

plate-and-frame or tubular modules. The typical configuration of the spiral wound 

element leaves the membrane easily accessible to cleaning agents. Due to that, the spiral 

wound membrane can be cleaned more thoroughly, and it is less subject to fouling 

compared to HFF membranes (Williams et al., 1992). Spiral wound elements are 

manufactured using flat sheet membranes. 

            A typical spiral wound element, as shown in Figure 2-6, consists of envelopes 

(leaves) attached to a center tube that collects the permeate stream.   
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Figure 2-5. Structure of thin film barrier layer of the aromatic /aliphatic polyamide nanofiltration 
membrane (Adopted from FilmTec Membrane Manufacturer, 2009) 

 

The sheet itself consists of two layers forming a folded envelope. The envelope is       

glued along three open sides and near the fold, completely enclosing the permeate spacer.                        

The glue line on the fold end is a short distance away from the fold, because the fold end 

is attached to the center collection tube. The glue line at the fold end stops the flow of the 

feed stream, and allows the remaining pressure in the permeate stream to drive it through 

the membrane into the center collection tube. An envelope is formed by folding one flat 

sheet over a permeate stream spacer.  Feed spacer and permeate spacer, shown in Figure 

2-7, are attached to each envelope prior to establishing the fold end glue line.  

            Several envelopes, including feed spacers, and permeate spacers are attached to 

the center collection tube, and wrapped in a spiral around it. An epoxy shell or tape wraps 

are applied around the envelope, completing the spiral wound element. The feed stream 

enters the end of the spiral wound element in the channel created by the feed stream 

spacer. The feed stream can flow either in a path parallel to the center collection tube or 

through the active membrane film and membrane supports into a channel created by the 

permeate stream spacers. 
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Figure 2-6. A cross section in the thin film composite (TFC) spiral wound reverse osmosis membrane 
showing feed channel spacer (adopted from Fritzmann et al., 2007) 

 
 

            The permeate stream follows a spiral path into the center collection tube, and is 

taken away as product for point of use. The recovery in a spiral wound element varies 

from approximately 5 to 20 percent. The Reynold’s number typically ranges from 100 to 

1,000. The feed stream spacer creates additional turbulence and increases the Reynold’s 

number (J. S. Taylor, 1999). The highest and lowest feed stream velocities occur at the 

entrance, and the exit of the element, respectively. The feed flow is in the laminar region, 

and the last element in series is the one which is most likely subjected to chemical 

fouling, if the species in the feed water are subjected to super saturation. Fouling from 

particle deposition could occur mainly in the first element in series.         

            Because of the importance of the membrane module used in the RO process,  
 
much research has been performed to optimize the design of each element type. As a  
 
result, many models describing the various modules are available, such that allowing  
 
determination of different module hydrodynamics, or optimizing the membrane spacer  
 
placement and height. 
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Figure 2-7. Configuration of  permeate spacer (top)  and feed spacer (bottom) in spiral wound RO/NF 
element (adopted from Hydranuatics membrane manufacturer, 2009) 

         
 
           Reverse osmosis membrane modules can be arranged in several configurations in 

the RO process (Williams et al., 1992). For a single-pass arrangement, a single high 

rejection membrane sufficiently removes the solute from the feed. In a double-pass 

configuration, the permeate of one set of membranes is used as the feed to another set of 

membranes in order to provide adequate overall removal of the solute. The modules can 

also be placed in stages in order to increase water recoveries. In this configuration, the 

concentrate from one set of membranes is used as the feed for another set, and 

consequently high overall water recoveries are possible. 

 
2.8 Concentration Polarization 
 
            Concentration polarization, which is illustrated in Figure 1-1 in Chapter 1, is the 

term used to describe the accumulation of rejected solute at the surface of a membrane so 

that the solute concentration at the membrane wall is higher than that of the bulk feed 
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solution. As water passes through the membrane, the convective flow of solute to the 

membrane surface is much larger than the diffusion of the solute back to the bulk feed 

solution. As a result, the concentration of the solute at the membrane wall increases.      

Reviews of concentration polarization are given by Matthiasson and Sivik (1980), Gekas 

and Hallstrom (1987), Rautenbach and Albrecht (1989), and Bhattacharyya and Williams 

(1992). Possible negative effects of concentration polarization include: (1) decrease in 

water flux due to increased osmotic pressure at the membrane wall; (2) increase in solute 

flux through the membrane because of increased concentration gradient across the 

membrane; (3) precipitation of the solute if the surface concentration exceeds its 

solubility limit, leading to scaling or particle fouling of the membrane, and reduced water 

flux; (4) changes in membrane separation properties;  (5) enhancement of fouling by 

particulate or colloidal materials in the feed which block the membrane surface and 

reduce water flux. The extent of concentration polarization can be reduced by promoting 

good mixing of the bulk feed solution with the solution near the membrane wall. Mixing 

can be enhanced through membrane module optimization of turbulence promoters, or 

feed spacer geometrical configuration and height, or by increasing axial velocity to 

promote turbulent flow. 

2.9 Previous Studies to Reduce Concentration Polarization 

            Several techniques that have the potential to reduce the concentration polarization 

 to control the fouling have been proposed and adopted. One method is to adjust the 

 operating parameters, e.g. using an intermittent mode of operation, or employing 

 variable means to reduce concentration polarization. Both of these phenomena are 
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 impacting flux (Mahlab, 1978).  Other techniques include increasing the flow rate; 

 assembling an intensifier for turbulent flow; the use of impulse methods and agitating 

 methods; the periodic depressurization of the membrane tube, flow reversal, pre-coating 

 of the membrane surfaces; enzyme immobilization; modification of the membrane’s  

polymeric structure; and the mechanical and ultrasonic vibration of the membranes (e.g.,  

Mahlab, 1978; Cruver, 1973).  The turbulence promoter acts to reduce concentration 

 polarization and therefore fouling is decreased by increasing the friction factor and bulk 

 velocity. A model has been developed by Chiolle for reverse osmosis with turbulence 

 promoting nets for the parallel wall channels module (Chiolle et al, 1978). The model 

 developed by Drioli and Bellucci shows the effect of the interaction between 

 concentration polarization and solute-membrane on the pressure driven membranes, 

 when a multi-component solution is involved (Drioli and Bellucci, 1978). 

           The modification of the membrane’s polymeric structure plays an important role in 

 the reduction of concentration polarization through the fluidized bed that was developed 

 by Van der Waal (Van der Waal, 1977). Bhattacharyya developed a finite elements 

 program to compute the concentration profile throughout a reverse osmosis membrane 

 module to predict the performance of the module. The finite element method allowed 

 rapid evaluation of various membrane module configurations, such as tapered cell 

 geometry and channels containing spaces (Bhattacharyya et. al, 1990; Gupta, 2005).  

           The model developed by Van der Meer has shown that an increase of 20% in the 

 permeate productivity of the spiral wound RO process is achievable by lowering the 

 number of membrane modules from six per vessel to two in a pressure vessel (Van der 

 Meer et al., 1988).  
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2.10 Limiting Factors for Membrane Fouling 

            Membrane processes are not only limited by increasing osmotic pressure due to 

concentration polarization and rising overall concentrations along the membrane, but by 

other factors leading to reduced performance and they can be differentiated by their 

mechanism. Various chemicals can harm the active layer of the membrane, leading to 

irreversible damage associated with reduced rejection capability and even destruction of 

the membrane. Oxidants used in pre-treatment of the reverse osmosis feed water, or as 

cleaning chemicals are the most important group of chemicals responsible for membrane 

deterioration. In addition, polymeric membranes are more or less susceptible to very low 

or high pH values. Therefore pH adjustment and control is necessary to ensure stable 

operation. During operation of a reverse osmosis plant, care has to be taken that no 

dissolved, colloidal or biologic matter accumulate at the membrane surface, building a 

continuous layer that reduces or inhibits mass transfer across the membrane. 

           Precipitation on the membrane is caused by super-saturation of inorganic 

compounds concentrated on the feed side. Super-saturated salts can precipitate on the 

membrane surface building a thin layer, which hinders mass transfer through the 

membrane. Scaling always occurs at the membrane surface because of the increased salt 

concentration near the membrane caused by concentration polarization. Some of the most 

important scaling substances are 3CaCO , 4CaSO , 4BaSO , 4SrSO , 2CaF , 2)(OHMg , 

and 2SiO . Scaling can drastically reduce permeate flux, and has to be avoided by all 

means. Figure 2-8 illustrates the species that can foul or scale the membrane that leads to 

deteriorated performance. Most susceptible to scaling is the downstream part of the RO 

stage where concentration in the feed solution is the highest.  Therefore, pre-treatment is 
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used for stabilization of substances that could cause scaling. By pH adjustment, and the 

use of antiscalants, precipitation can be inhibited. Crystal growth is usually divided into 

three stages as shown in Figure 2-9. Antiscalants inhibit one or more of these building 

stages (Fritzmann et al., 2007). Membrane fouling is caused either by convective and 

diffusive transport of suspended or colloidal matter, or by bio-fouling. An existing 

fouling layer adds to the overall resistance to mass transfer of the membrane and overall 

performance decreases significantly. In addition, membrane fouling also increases 

pressure loss along the membrane, while rejection is decreased. In RO operations, fouling 

can never fully be prevented even with optimized pre-treatment. Therefore, periodical 

membrane cleaning has to be performed. Complete removal is not possible and fouling 

has to be tolerated up to a decrease of mass flux down to 75% of original flux (Fritzmann 

et al., 2007). Good operating practice calls for chemical cleaning of the membranes, 

either normalized permeate flow decreases by 10%, feed channel pressure loss increases 

by 15%, or normalized salt rejection decreases by 10% from initial conditions during the 

first 48 hours of plant operation. 

           A key phase in the membrane separation processes is the transition from 
 
 concentration polarization to fouling. This occurs at a critical flux. 
  
            Song (1998) developed a mechanistic model, based on first principles, for 

predicting the limiting flux. He showed that for a given suspension there is a critical 

pressure below which a concentration polarization layer will exist at the membrane 

surface.         
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Figure 2-8. Limiting  factors for RO and NF membrane fouling  

(adopted from Fritzmann et al., 2007) 
 

                   

  

Figure 2-9. Inorganic scaling stages (Adopted from Fritzmann et al., 2007) 
 

            However, a cake layer will form between the polarization layer, and the 
 
membrane surface when the applied pressure exceeds a critical pressure. The limiting or 
 
critical flux values predicted by the mechanistic model compared well with the integral  
 
model for a low concentration feed. However, it deviated at high solute feed 
 
concentrations (Salbani et al., 2001). 
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2.11 The Promise of Nanofiltration Membrane 

           NF membrane is sometimes called a loose RO pressure-driven membrane process 

because of its relatively much higher permeability coefficient. NF processes operate at 

pressures between 50 psi, and 150 psi - much lower than reverse osmosis (200 to 1,000 

psi), but higher than ultrafiltration, and micorfiltration (10 to 70 psi). The molecular 

weight cut-off (MWCO) is generally between 300 and 1,000 Dalton.              

            In treating brackish water, NF has been widely used due to more stringent 

drinking water regulations. Brackish water desalination is assumed to grow at higher 

rates than seawater desalination in the near future (Fritzmann et al., 2007). Delivery of 

fresh water from seawater desalination plants demands piping and pumping systems to 

transport product water from coastal regions to residential areas, which increase cost. 

High availability of most brackish water in residential areas makes expensive delivery 

piping and pumping unnecessary. 

 
2.11.1 Nanofiltration for Contaminated Drinking Water 
  
           Nanofiltration membrane, although a relatively recent development, has attracted a 

great deal of attention for use in water softening, and removal of various contaminants 

from drinking water sources (Williams, 2003). NF membranes are usually negatively-

charged, and, as a result, ion repulsion is the major factor in determining salt rejection.     

For example, more highly charged ions such as −−
4SO , ++Ca , and ++Mg  are rejected by  

nanofiltration membranes to a greater extent than monovalent ions such as −Cl , or −Na .     

NF processes can reduce or remove TDS, hardness, color, agricultural chemicals, and 

high molecular weight humic and fulvic materials, which can form trihalomethanes when 
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chlorinated. Dykes and Conlon (1989), Conlon and McClellan (1989), Watson and 

Hornburg (1989), and Conlon et al. (1990) have identified NF as an emerging technology 

for compliance with THM regulations and for control of TDS, TOC, color, and THM 

precursors. Clifford et al. (1988) discussed the use of NF70 membranes of FilmTec for 

contaminated groundwater treatment. Removals included 91% for radium-226 and 87% 

for TDS. Taylor et al. (1989) reported that NF70 membranes could allow control of THM 

formation, TOC, TDS, and produce high quality product water from an organic 

contaminated groundwater. They indicated that the cost of a NF process would be 

competitive with conventional treatment processes which do not control THM formation.  

            Amy et al. (1990) used NF70 membranes to remove dissolved organic matter 

from both groundwater, and surface water in order to reduce THM precursors; they found 

that the process was effective in reducing the organics as well as conductivity in both 

water sources. NF membranes also reject organic compounds with molecular weights 

above 200 to 500. These properties have made possible some interesting new applications 

in wastewater treatment, such as selective separation, and recovery of pollutants that have 

charge differences, separation of hazardous organics from monovalent salt solutions, and 

membrane softening to reduce hardness, and THM precursors in drinking water sources 

(Eriksson, 1988; Cadotte et al., 1988; Williams et al., 1992). Arsenic, which is the most 

extensive environmental poisonous chemical element throughout the world, can be 

removed by NF to meet World Health Organization (WHO) standards (Larry Henke, 

2008). 
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2.11.2 Nanofiltration for Wastewater 
 
            Nanofiltration has also been used to remove both organics and inorganics in 

various wastewaters. Bindoff et al. (1987) reported the use of NF membranes to remove 

color-causing compounds from effluent containing lignin, and high salt concentrations in 

a wood pulping process. Color removals were >98% at water recoveries up to 95% while 

the inorganic was poorly rejected, allowing the use of low operating pressures, since the 

osmotic pressure of organic matters is small. Ikeda et al. (1988) indicated NF could give 

high separations of color-causing compounds such as lignin sulphonates in paper pulping 

wastewaters. Afonso et al. (1992) found NF removal (>95%) of chlorinated organic 

compounds from alkaline pulp and paper bleaching effluents with high water fluxes.       

Simpson et al. (1987) reported the use of NF membranes to remove hardness and 

organics in textile mill effluents. Gaeta and Fedele (1991) also indicated that high water 

recoveries (up to 90%) from textile dye house effluent could be achieved with NF 

membranes. Ikeda et al. (1988) and Cadotte et al. (1988) reported the use of NF 

membranes in the treatment of food processing wastewaters. Some specific uses included 

the desalting of whey and the reduction of high BOD and nitrate levels in potato 

processing waters (Anonymous, 1988). Bhattacharyya et al. (1989) used NF membranes 

to selectively separate mixtures of cadmium and nickel. Chu et al. (1990) detailed the use 

of NF in a process for treating uranium wastewater; uranium rejections were 97% to 

99.9%. Dyke and Bartels (1990) discussed the use of NF membranes to replace activated 

carbon filters for the removal of organics from offshore produced water containing 

residual oils. The produced waters contained ~1,000 mg/l soluble organics (mostly 

carboxylic acids) and high inorganic concentrations (~15,000 mg/l +Na  and ~25,000 
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mg/l −Cl as well as other dissolved ions). Organic rejections were suitable to meet 

discharge standards, while inorganics rejections were low (<20%), allowing operation at 

low pressures. 

 
 2.11.3 Nanofiltration for Hybrid Seawater Distillation 
 
            The use of NF membrane is the state of the art in sea water distillation industry  

(Anwerbuch, 2007). The process comprises the operation of the NF selective membrane 

to soften the feed to distillation units.  NF membrane substantially increases the water 

production from the mature technology of multi stage flash (MSF), muli effect distillation 

(MED), and vapor compression (VP) distillation techniques.  

            The scaling in sea water distillation systems occurs due to inverse solubility of 

calcium sulfate at higher temperature. In order to increase the water production of the 

existing distillation units, it is required to increase operation temperatures, so that higher 

recovery or higher concentration factor are obtained. NF selective membranes were used 

to reject the high content of sulfate, and hardness in the sea water before it is fed to the 

distillation units. This allows the operators to optimize the operation of the units to run at 

higher temperatures than that it was designed for because of the reduction of sulfate and 

hardness in the re-circulated seawater after being pretreated with NF membrane.  

           Experiments show that the water temperature was increased from design of 105 

degree C to a maximum of 117.9 degree C, which helped to achieve a product capacity 

increase of 40%, and a decrease in operating cost by 40% for the operation of MSF plants 

(Anwerbuch, 2007). Hassan (2004) from Saline Water Conversion Corporation (SWEC) 

of Saudi Arabia has successfully introduced a new concept to seawater desalination by 
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combining the NF membrane process with one or more of the conventional seawater 

desalination processes in one fully integrated process system to form: a NF-SWRO, a 

NF-MSF, and a NF-SWRO reject -MSF, which were successfully evaluated at the pilot, 

and demonstration plant level. The NF-SWRO hybrid has increased the productivity by 

42%, and raised SWRO unit water recovery ratio to 56% from 28%. After four years in 

operation, no SWRO membrane replacement, or cleaning were needed. 

 
2.11.4 Nanofiltration Membrane in Replacing Standard Seawater RO Membrane 
 
           The Long Beach Water Department of California (LBWD) has recently patented a 

two-pass NF membrane for seawater desalination (Le Gouellec et al., 2006).  

            NF membranes have a significantly higher permeability than seawater RO 

membrane, but with higher salt passage, especially for monovalent ions. In a two pass 

NF-NF system, the seawater is treated by a first pass NF system. Because of the lower 

salt rejection ability of the NF membrane, permeate from the first pass is further treated 

by a second pass NF system to produce a permeate water of acceptable quality.            

According to the results, the overall recovery of the system is approximately 40% to 

43%. The two staged NF system is as much as 20% more energy efficient than the typical 

seawater desalination RO membrane for Pacific Ocean seawater with salinity of 35,000 

mg/l. The typical energy saving possible with the two configurations discussed above is 

illustrated in Figure (2-10). A standard RO configuration is also shown for comparison.  

As indicated in the figure, higher recovery with lower energy consumption is possible  
 
with brackish and seawater element. The NF-NF configuration results in the lowest  
 
energy consumption at a slightly lower recovery than standard RO seawater system. 
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Power Comparison  for Different Membrane Treatment for Seawater Desalination

1 9

1 95

2

2 05

2 1

2 15

2 2

2 25

2 3

2 35

2 4

Type of Pressure Driven Mmembrane

Po
w

er
 C

on
su

m
pt

io
n 

(K
w

/m
3)

SW (45%) BW & SW (55%) Two Pass NF-NF (43%)
 

 
Figure 2-10.  Comparison of energy consumption for seawater desalination with SW membrane; BW-SW 

membrane & NF-NF membrane. Recoveries are shown in parentheses (Le Gouellec et al., 2006) 
 
 
2.12 New Generation of Nanofiltration Membrane 
 
            New NF membranes have been recently developed which can be tailored to have 

a range of hardness rejection. These membranes are thee composite polyamide type, 

similar to the existing standard RO membranes, but are chemically treated to adjust the 

hardness rejection. This treatment also imparts fouling resistance (Wilf et al., 2007). 

           Among the makers of the new generation of NF membranes are Hydranautics, and 

FilmTec membrane manufacturers. Table 2-1 illustrates the performance comparison for 

various types of the new generation of NF membranes. For example, the rejection 

characteristics of Hydranautics membrane manufacturer new NF can be tailored to meet a 

variety of hardness rejection values ranging between 83% to 93 % at standard operating 
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pressure of a feed of 500 mg/l of 2CaCl and 75 psi feed pressure at 25 degree C, as shown 

in table 2-1.   

Table 2-1 Comparison of new generation of NF membranes performance at standard operating conditions 
(Adopted from FilmTec, and Hydranautics Membrane Manufacturer, 2009) 
 

Manufacturer Product Element Area Nominal Flow Rejection 

  ( 2ft )       ( 2m ) (gpd)   (m3/d) % 
Hydranautics ESNA1-LF 400           37.2 8,200    31.1 89 (1) 
Hydranautics ESNA1-LF2 400           37.2 10,500  39.8 86 (1) 
Hydranautics ESNA-LF3 400           37.2 7,200    27.3 90 (1) 

FilmTec NF-270-400 400           37.2 14,700  55.6 40-60 (2) 

    
97 (3) 

 
FilmTec NF-200-400 400           37.2 8,000    30.3 50-65 (2) 

    97 (3) 
 
Test Conditions     
(1) 500 mg/l of 2CaCl , 75 psi, 25 C, 15% recovery   
(2) 500 mg/l of 2CaCl  , 70 psi, 25 C, 15% recovery  
(3) 2,000 mg/l of 4MgSO , 70 psi, 25 C, 15% recovery 

  
            
            FilmTec has introduced a similar new type of NF membrane model NF270, and 
 
 model NF200. These membranes have a salt rejection of 97% at standard operating  
 
conditions of 2,000 mg/l of 4MgSO  at 70 psi, and 25 degree C., and a salt rejection of 

40-60% at 500 mg/l of 2CaCl . (FilmTec, 2007). 
  
            The other feature of those types of membranes is the low fouling nature due to the 

smoothness of the membrane surface and the near neutral surface charge (Wilf, 2007). 

            Figure 2-11 indicates the relative surface smoothness of the new NF membrane 

model ESNA1-LF compared to the standard low pressure RO membrane model ESPA3.  

Both products are manufactured by Hydranautics. 

            The lower negative charge of the new generation NF ESNA1-LF membrane from 

Hydranautics can be seen in Figure 2-12. The figure shows the Zeta potential of the 
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membrane surface measured as a function of the feed pH. It can be seen that the 

traditional NF membrane ESNA-1 has a very strong negative charge at neutral pH. 

            In contrast, the low pressure low fouling RO membrane, LFC1, has a slight 

negative charge at these pH values. Similarly, the ESNA1-LF membrane has a slight 

charge, or near neutral surface charge. This minimal surface charge minimizes the 

interaction with some organic compounds. It is interesting to mention that due to the 

slight negative surface charge of the new generation of this type of NF membranes, the 

membrane mass transport can be modeled using the typical Solution-Diffusion Model 

which is normally used for RO membrane rather than the more sophisticated models like 

Donnan exclusion, and extended Nernst- Planck models, that include electrostatic effects. 

These charged membrane models are discussed in more details later in item 2.15.3. 

 

 
Figure 2-11. Image of the surface of the New Generation NF ESNA1-LF membrane compared to the Low 

Pressure RO ESPA3 membrane Showing Relative Surface Smoothening 
(Adopted from Hydranautics membrane manufacturer, 2007) 
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Figure 2-12. Comparison of surface charge of new generation NF ESNA1-LF membrane, typical NF LFC1 
membrane, and low pressure low fouling RO LFC1 membrane (Adopted from Hydranautics membrane 

manufacturer, 2007) 
 
 
2.13 History of Using Permeate Suction in Pressure-Driven Membrane 
 
            Permeate suction has not been commercially used before in RO or NF. 

However, permeate suction was theoretically investigated by several researchers. 

            Bhattacharya, et al. (1996) have developed a generalized mass-transfer relation 

from first principals to obtain a theoretically modified form for Sherwood number using 

the wall Peclet number to estimate the mass-transfer coefficient using permeate suction in 

rectangular channel cell, tubular module, and cross flow cell. He concluded that suction 

through the porous membrane had a significant effect on the mass transfer coefficient, 

and, in turn, the permeate flux for both RO and UF. He mentioned that this should be of 

immense help to the process and design engineer to improve the module design. 

           The role of suction in mass transfer through porous membranes is very important.  
 
It was identified by several researchers (Van den Berg et al., 1989; Gekas et al., 1987) 

that the effect of permeate suction enhances the mass transfer from the bulk to the 
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membrane surface. Gekas and Hallstrom (1987) found that suction at the membrane 

surface increased the mass transfer coefficient from the surface to the bulk. Sirshendu and 

Bhattacharya (1988) have proposed a modified Sherwood number  relationship including 

the effect of property variations due to permeate suction for laminar flow in a rectangular 

channel cross flow ultrafiltration for bovine serum and dextran (Sirshendu and 

Bhattacharya, 1999). 

            Immersed UF membrane (Figure 2-13) is used to treat wastewater that has 

virtually no osmotic pressure, so only small suction pressure is enough to create water 

flow from the permeate side to penetrate though the membrane (about 4-9 psi). 

           In this case, suction pressure can not theoretically exceed the atmospheric pressure 

which is about 14.7 psi (1 atm), in order to avoid cavitation in the permeate suction 

pump. 

 

Figure 2-13. Membrane bio-reactor using permeate suction to treat wastewater by immersed UF 

membrane (Adopted from Zenon Environmental membrane manufacturer, 2006) 
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2.14 Effect of Increasing Suction Pressure on the Boundary Layer: 

 In a two dimensional laminar flow, the thickness of the boundary layer which has 

 not separated can be estimated as follows: the inertia force per unit volume is equal to 

 
x

u
u

∂
∂ρ  . And for a membrane envelop of width L, the gradient of  

x

u

∂
∂  is proportional to  

L

u , where u denotes the velocity outside the boundary layer. Hence the inertia force is of 

the order 
L

u 2

ρ  . On the other hand the friction force per unit volume is equal to 
y∂

∂τ , 

which is in the assumption of the laminar flow is equal to 2

2

y

u

∂
∂μ  . The velocity gradient 

y

u

∂
∂  in the direction perpendicular to the membrane is of the order

δ
u , so that the friction 

force per unit volume is (Schlichtings, 1979) 
y∂

∂τ  2∂
≈

uμ     (2-1) 

From the condition of equality of the friction and inertia forces, assuming a  

constant viscosity, we obtain:  

2δ
μ u  

L

U 2ρ
≈                                       (2-2)               

Solving for the boundary layer thickness δ at any point of the membrane length, it 

 is found at laminar flow that: 

  δ
u

L

ρ
μ

≈  = 
u

Lν                                             (2-3)                         

Hence for laminar flow region, the boundary layer thickness is: 

δ   = 5
u

Lν  , where L is the membrane width.        (Schlichting, 1979)     (2-4)                        

              In NF spiral wound membrane, the flow is laminar, and the local Reynold’s  
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number ranges between 100-1,000 ( Taylor et al., 1999). By applying suction at the end  

of the collector tube of the membrane module, an increase of pressure gradient along the 

 stream at x direction will present. This increase in pressure will de-stabilize the boundary  

layer (Schlichting,  1979). This is oppisite to the case of a decrease in the pressure  

gradient along x direction. In the latter case, the bounary layer will be stabilized, and will  

not create a suitable condition for the reduction of the concnetration polarization. 

 

 

 

Figure 2-14. Application of suction to the membrane to prevent the boundary layer separation 

The de-stabilzation of the boundary layer will have two effects: first, it will  

 reduces the  boundary layer thickness and a thinner boundary layer is less prone to 

 become  turbulent. Secondly, since in the dilute solutions the concntration polarization  

layer is impedded in the  boundary layer (Probstein, 1994), suction will consequently  

reduce concnetration  polarization. 

            In a flat surface membrane, it is assumed that the quantities of fluid particles in  

the immediate neighborhood of the membrane surface are sucked away.  

Flow direction

Membrane surface

δ

 0νVelocity due to suction

Boundary layer thickness
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            This is equivalent to that the ratio of suction velocity 0v  (x) to free stream 

velocity u is very small, say 
u

v0  = 0.0001 to 0.01 (Schlichting, 1979). When the suction 

 velocity is of such a small order of magnitude, it is possible to neglect the loss of mass or  

“sink-effect”on the external potential flow. On the flat surface membrane, the quantity of  

fluid removed Q, will be expressed through a dimensionless volume coefficient by  

putting  Q = Qc 1A  u     (2-5)        

where 1A   = wetted membrane surface area (bxL) 

 And for the flat membrane     

Q =  b  ∫ −
L

v
0

0[ (x)] dx                          (2-6)                        

Since equation (2-5) equals to equation (2-6), consequently  

 Qc 1A  u  = b  ∫ −
L

v
0

0[ (x)] dx          

or     Qc  =    
Lu

1     ∫ −
L

v
0

0[ (x)] dx    where 1A = bL     (2-7)  

where Q = quantity of fluid removed during suction, Qc  = Dimensionless volume 
 
coefficient, u = Average bulk velocity at the x direction, and for the case of increasing 
 
suction pressure: 

 0v increases over the x axis , i.e. 0v (x).                      

 The suction pressure is necessary to be dependent on x and y, i.e. P (x,y)   (2-8) 

and the continuity and Navier –Stock equations that govern the laminar two 

dimensions flow at steady state condition when there is a mass transfer through 
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 porous membrane  surface are, and using the mean flow is (Schlichting, 1979): 

x

u

∂
∂ '

 + 
y

v

∂
∂ '

= 0                      (2-9)                         

and u 
x

u

∂
∂ '

+ 'v  
y

u

∂
∂ '

 = - 
ρ
1  

x

P

∂
∂ '

 + ν 2∇ 'u                                     (2-10) 

and u
x

v

∂
∂ '

                 = - 
ρ
1

y

P

∂
∂ '

+  ν 2∇ 'v    (2-11) 

where  2∇  denotes the Laplacian operator    2

2

x∂
∂  +  2

2

y∂
∂                                                          

From equations 2-9, 2-10, and 2-11 the velocity gradient due to permeate suction can be  

Calculated, and the boundary conditions are:  

at y =0 : u = 0, and v = 0v  < 0 at x = 0,  

and at y = ∞ : u = U (x)  

    2.15 Reverse Osmosis Models 

            Many mathematical models have been proposed to describe reverse osmosis  
 
membranes. Some of these descriptions rely on relatively simple concepts while 
 
others are far more complex and require sophisticated solution techniques.  

Models that adequately describe the performance of RO membranes are essential, since  
 
These are needed in the design of RO processes. Reverse osmosis models can be divided  
 
Into four types: irreversible thermodynamics (I. T.) models; nonporous homogeneous 
 
 models; pore models; and charged membranes models. A fundamental difference exists  
 
between the assumptions of the homogeneous and porous membrane models.  
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The homogeneous models assume that the membrane is nonporous, that is transport takes  
 
place between the interstitial spaces of the polymer nodules, usually by diffusion. The  
 
porous models assume that transport takes place through pores that run the length of the  
 
membrane barrier layer; as a result transport can occur by both diffusion and convection  
 
through the pores. While both concepts have had some success in predicting RO  
 
separation, the question of whether a RO membrane is  nonporous or pores is still a point  
 
of debate (Williams, 2003). 
 

2.15.1 Irreversible Thermodynamics Models 

            Irreversible thermodynamics (I.T.) models, such as the Spiegler-Kedem model, 

 assume that the membrane is in mechanical equilibrium, no external force acting on the 

 system, and flux can be described by the phenomenological equations relationships. 

            The water flux according to the Spiegler-Kedem model is given by  

J w = Lp ( pΔ -σ πΔ )      (2-12) 

 while the solute flux is expressed as  

J s = ω πΔ + (1-σ  ) (Cm )avg J w        (2-13) 

where Lp is the hydrodynamic permeability coefficient; σ  is the coefficient of coupling  
 
between salt and water; πΔ  is the difference in the osmotic pressure across the  
 
membrane; pΔ is the operating pressure;ω  is the salt  permeation coefficient; and (Cm ) avg  

 

is the logarithmic mean solute concentration in the membrane (Soltanieh and Gill, 1984). 
 
            The Spiegler-Kedem model has found a wide use for the description and analysis 

of RO membrane separation. However a major disadvantage of the model is the treatment 

of the membrane as a black box. It does not provide insight into the transport mechanisms 
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 of the membrane. I. T. models also do not include any convection effects, and considers 

transport of the solvent and solute take place only by the effect of the chemical potential 

gradient, which includes concentration, and pressure diffusion. These models assume that 

Onsager reciprocal relations are valid (Soltanieh et Gill, 1981). This assumption is 

controversial in processes far from equilibrium (Rosenbaum and Skiens, 1968). As a 

result, I. T. models are not very useful in optimizing separation based on membrane 

structure and properties. These models also do not adequately describe water flux for 

some solute systems, in particular some dilute organics that have no osmotic pressure 

(Williams, 2003). 

 
2.15.2 Porous Models 
 
            The porous models assume that transport takes place through pores that run the 
 
length of the membrane barrier layer; as a result, transport can occur by both diffusion 
 
and convection through the pores. The preferential sorption-capillary flow model (PSCP)  
 
proposed by Sourirajan (1970); Sourirajan and Matsuura (1985) states that the membrane  
 
is assumed to be microporous and the barrier layer has chemical properties such that it  
 
has a preferential sorption for the solvent or preferential repulsion for the solutes of the  
 
feed solution. As a result, a layer of almost pure solvent is preferentially sorbed on the  
 
surface and in the pores of the capillary pores under pressure. 
 
The total water flux is given by wN = A [ pΔ - ( )( FXπ - )( PXπ ]    (2-14) 

The total solute flux is expressed as sN = 
M

ws Dck

δ
( FX - )PX           (2-15) 

 
where A is the pure water permeability constant of the membrane; pΔ is the applied  
 
pressure difference; )(Xπ represents the osmotic pressure of the feed or permeate side  
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with solute mole fraction X; C is the molar concentration of salt; sk is the distribution  
 
coefficient of the solute from the feed into the pore of the membrane; wD is the diffusion  
 
coefficient of the solute in the membrane; and Mδ is the active membrane thickness. 

The term 
F

ws Dk

δ
, which is treated as a single parameter, is called “solute transport 

parameter”. In their experiments, Alegranti et al. (1975), suggested that the fixed pore  

diameter equivalent of free volume of the hollow fiber skin layer of 0.4 micron is 10 
o

A   
 

or less. The limit of the electron microscope used in their work was 15
o

A . This suggests  
 
that possible microspores in the skin layer could not be detected (Soltanieh et Gill, 1981). 
 
Sourirajan and Matsuura (1985) have utilized the above equations to analyze transport for 

a large number of solutes and membranes; however the above equations failed to describe 

the water flux drop, and rejection for some organics, and solutes. 

 
2.15.3 Charged Membrane Models 
 
           Charged membrane models, like the one used for standard NF, account for 

electrostatic effects as well as for diffusive and/or convective flow in order to describe 

the solute separation. Many charged membrane transport theories have been proposed.  

Donnan equilibrium models assume that a dynamic equilibrium is established when a 

charged membrane is placed in a salt solution (Bhattacharyya and Cheng, 1986; 

Bhattacharyya and Williams, 1992). The counter-ion of the solution, opposite in charge 

to the fixed membrane charge, typically carboxylic or sulfonic groups, is present in the 

membrane at a higher concentration than that of the co-ion (same charge as the fixed 

membrane charge) because of electrostatic attraction and repulsion effects. This creates a 
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Donnan potential which prevents the diffusive exchange of the counter-ion, and co-ion 

between the solution, and membrane phase. When a pressure driving force is applied to 

force water through the charged membrane, the effect of the Donnan potential is to repel 

the co-ion from the membrane; since electroneutrality must be maintained in the solution 

phase. The counter-ion is also rejected, resulting in ionic solute separation. The model 

correctly predicted that the solute rejection was a function of membrane charge capacity, 

ion feed concentration, and ion charge. However, this model does not take into account 

solute diffusive and convective fluxes which are also important in charged membrane 

separations. Lakshminarayanaiah (1965, 1969), Dresner (1972), and Dresner and Johnson 

(1980) have described the use of extended Nernst-Planck equations for the prediction of 

solute ion fluxes. The model represents the solute flux due to diffusion, convection and 

Donnan potential. Dresner (1972) has shown that the extended Nernst-Planck model 

correctly predicts the trends expected for ionic solute rejection, including conditions 
  
under which a negative rejection is obtained. However, the difficulty of experimentally 
 
 measuring the model parameters limits its use for solute flux, and flux prediction. 
 
 
2.15.4 Solution-Diffusion Models 
 
            The solution diffusion model assumes that the water transport across the  
 
membrane is only by diffusion, and so can be expressed by Fick’s low (Soltanieh et Gill,  
 
1981) as:  
 

wJ = - wD  
dy

dcw                                                                        (2-16) 

where c w and D w are the concentration, and the diffusivity coefficient of water in the 

membrane, respectively. 
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           The water flux is given by wJ = A ( PΔ - πΔ )         (2-17) 
 
where A is the membrane solvent permeability coefficient and it is the property of the  
 
membrane; pΔ is the operating pressure; πΔ  is the difference in the osmotic pressure  
 
across the membrane. 
 

And the solute flux is expressed as sJ = 2k  ( PR CC − )    (2-18) 

where 2k is the membrane solute permeability coefficient; and RC and PC  are the reject 
 
 and product concentration, respectively. 
 
 
2.15.4.1 Solution-Diffusion-Imperfection Model 
 
            Sherwood et al. (1967) have extended the solution-diffusion model by including 

additional terms due to pore flow in addition to diffusion of solvent and solute through 

the membrane as the mechanism of transportation. This modified model recognizes that 

 there may be small imperfections or defects (pores) on the surface of the membrane 

through which transport can occur. 

            The total water flux, wN , and the total salt flux, sN , are given by: 
 

wN  = wJ + memPCk Δ3 = A )( πΔ−ΔP + memPCk Δ3                                          (2-19)  
 

sN = sJ + RPCk Δ3  = )(2 RP CCk −   + RPCk Δ3                                               (2-20) 

 
where memC  is the water concentration on the upstream side of the membrane. 
 
 The coefficient 3k can be viewed as a coupling coefficient. 
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            If we divide both sides of equation (2-19) by memC , the left hand side will be equal 
 

 to the water permeation velocity expressed as wV = 
mem

w

C

N ,  which is very close to the  

total permeation velocity. 
 
            For real membranes, which have some imperfections, the measured flux ( wN ) is 

not purely diffusive ( wJ ), but it contains a term contributed by convection. It is necessary 

to distinguish between the two, although in the literature, they are usually used 

interchangeably (Soltanieh et Gill, 1981).  

            The solute flux is equal to the permeation velocity multiplied by the product 

concentration, i.e. sN = wV PC  

           Equations (2-21) & (2-22) then can be written in terms of the permeation velocity: 

wV = PkPk Δ+Δ−Δ 31 )( π                                                                                    (2-21) 
 

wV = RRP PCkCCk Δ+− 32 )(                                          (2-22) 
 

where 1k = 
memC

A  

          It is interesting to compare the relative contribution of diffusive and pore flow 
 
 Fluxes based on the calculated values of 21 & kk and  3k  from Applegate, and Antoson  
 
(1972). Applegate, and Antoson used the above equations to analyze the rejection  
 
pressure drop data for asymmetric aromatic polyamide membranes, and cellulose acetate  
 
membrane. The values of 3k  from all membranes, and concentrations were at least two  
 
orders of magnitude smaller than those of 1k . 
 
            Since in the solvent flux equation (2-21), PΔ and )( πΔ−ΔP , are of the same  
 
order of magnitude, the second term Pk Δ3 (the pore flow) is negligible as compared to  
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the first term )(1 πΔ−ΔPk  (the diffusive flow). This is true for dilute solutions.   

           In the solute flux equation (2-22), we have to compare Pk Δ3 with 2k  since RC  is  

of the same order as )( PR CC − .  Calculations of Soltanieh and Gill (1981) illustrated that  

the calculations of Applegate and Antonson experiments for dilute solutions (< 0.05 M),  

showed that the contribution of the pore flow to the solute flux is very small (about 2% of  

total flux). At higher concentrations, say about 0.1 M, the contribution of pore flow is  

about 8%, and for a 0.5 M feed, the pore flow contributes to about 25-40% of the solute  

flux for polyamide membrane. The standard NF membrane used to be described by the 

Donnan equilibrium model (Battacharyya and Cheng, 1986; Battacharyya and Williams, 

1992), or by the extended Nernst-Planck model (Lakshminaraiah, 1969; Dresner and 

Jonson, 1980) to predict the solvent and solute flux, because it is negatively charged. The 

new generation of NF membranes has a slight negative charge at the membrane surface, 

and this charge is approximately close to neutral as shown in Figure 2-12 (Wilf et al, 

2006), so these sophisticated models are not required any more to describe the solvent, 

and solute flux in this type of membranes. Instead, the above-mentioned simpler solution-

diffusion model can describe the membrane, when the pore flow terms are neglected. 

 
2.15.4.2 Assumptions when using Solution-Diffusion Model 

            Based on the above equations for the solution diffusion-imperfection model, the  

following assumptions are going to be considered (Fritzmann et al, 2006): 

 (1) the active membrane layer is a dense membrane without pores. Permeating 

components dissolve in the membrane phase; (2) at all times there is chemical 

equilibrium at the phase interface between membrane and feed/permeate side; (3) salt and 

water flux are independent of each other. Salt flux results solely from concentration 
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gradient, but not from pressure;  (4) due to membrane swelling, water concentration and 

water diffusion coefficient across the membrane are constant; (5) the driving force for 

permeation of each component can be split into two terms, the concentration or activity 

difference, and the pressure difference between the feed and the permeate sides; (6) at 

relatively low salt concentrations, the pressure driving force for permeating salt 

components is negligible; (7) due to the assumption of constant water concentration in 

the membrane, solely the applied pressure difference Δp causes water flux across the 

membrane; (8) the measured flux wN , and the purely diffusive flux wJ  are assumed to be 

equal. 

2.16 Determining Membrane Surface Concentration 

            RO membrane transport models typically assume that the bulk feed solution 

concentration is equal to the membrane wall solution concentration, which is not always 

true. This has to be related to the concentration polarization expressions (Williams, 

2003). Concentration polarization complicates the modeling of membrane systems 

because it is very difficult to experimentally determine the solute membrane wall 

concentration ( memC ). The membrane wall concentration is necessary to be determined 

since it is not equal to the bulk feed concentration ( FC ). In the limited feed flow rate that 

is typically used for hyperfiltration (RO and NF) membrane processes, the flow in the 

membrane channels is laminar, and the difference between the membrane wall 

concentration and bulk concentrations can be substantial. So, calculating the membrane 

wall concentration must be appropriately estimated. 

For dilute solutions, and from equation (2-21) above, the water flux will be equal to  
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wJ  = A ( PΔ - πΔ )                                                                                            (2-23) 

where A is the permeability coefficient of the membrane, and it is a function of the 

membrane construction. The membrane permeability coefficient A can be determined 

from distilled water where πΔ in equation (2-23) in this case will be approximately equal 

to zero.  The term PΔ is the hydraulic pressure difference across the membrane, and is 

equal to the applied membrane pressure minus the permeate pressure, while wJ is the 

permeate flux and equal to the permeate flow rate divided by the membrane cross flow 

area. The term πΔ is equal to the difference between the osmotic pressure at the 

membrane surface minus the permeate osmotic pressure. Osmotic pressure is a property 

of the solution and does not in any way depend on the membrane properties (Probstein, 

1994). For dilute solutions the osmotic pressure is independent of the solute species, and 

is given by Van’t Hoff equation: 

  iπ = in RT  ∑
=

n

i
iC

1

                                                                                            (2-24) 

 Where in = number of ions formed when the solute dissociates. 

And iC = molar concentration of the solute = ic / 1000 iMW  

and ic = total dissolved solids as mg/l ; iMW = molecular weight of the dilute solution;  

R= gas constant; and T= absolute temperature. 

From equations (2-23) and (2-24) above, membrane wall concentration C mem  can be 

calculated. 
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2.17 Determining Mass Transfer Coefficient and Thicknesses of the  
 
Concentration Polarization Layer 
 
            Under the condition of mass transfer-limited permeate flux shown in Figure 2-15, 

the accumulation of materials near the membrane can be envisioned as a balance between 

advection of materials towards the membrane due to permeation, and back diffusion that 

occurs as a concentration gradient builds up near the membrane (Letterman and Taylor, et 

al. 1999). Figure 2-15 illustrates the flow directions of solvent and solute near the  

membrane surface. 

(y) direction

Flow Direction 
(x) direction

Membrane

Fδ

y

c
D

∂
∂

memc

bulkc wJ

 

 Figure 2-15.  Feed side concentration polarization layer 

2.18 Using Sherwood Number to Determine Mass Transfer Coefficient 

           The conventional way to estimate the mass transfer coefficient is to use Sherwood  

number relationships obtained from the heat and mass transfer analogy. Numerous  

Sherwood number relationships have been proposed and extensively reviewed. 

           The Graetz-Leveque correlation of Sherwood number, which is used for laminar  

flow when the velocity field is fully developed and the concentration boundary layer is  

not fully developed, is typically used to estimate mass transfer coefficient as: 

Sh = X a(Re) ( )b
Sc

c

h

L

d
⎟
⎠
⎞

⎜
⎝
⎛        (2-25)                        
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where Re = Reynold's number = 
ν

hwdV ;  Schmidt number = Sc = 
D

ν ; ν = kinematics 

viscosity; wV  = average cross-flow permeate velocity; hd = hydraulic diameter of the 

membrane element; D the diffusion coefficient for solute transport through solvent, and L 

is the spiral wound membrane width. (Taylor et al.,1999). D in this relationship is equal 

to K Fδ , where K is the mass transfer coefficient, and Fδ is the concentration 

polarization layer thickness.The terms X, a, b, and c are coefficients that have taken 

extremely different values by different researchers (Isaacson, 1976; Schock & Miquel, 

1987; Xuesong, 1987; Taylor, 1991; Van de Lisdonk et.al, 2001). Table 2-2 demonstrates 

the different values of coefficients found in the literature by some of those researchers to 

calculate Sherwood number at different operating conditions. It is clear from the table 

that the different coefficients vary considerably. 

Table 2-2. Several values of Sherwood number coefficients found in literature 

Literature Year X a b c 
Isaacson 1976 0.2-0.27 0.5 0.33 0 

Schock & Miquel 1987 0.065 0.875 0.25 0 
Wang Xuesong 1987 1.66 0.36 0.34 0.42 

Taylor 1991 1.86 0.33 0.33 0.33 
Van de Lisdonk 2001 0.265 0.33 0.52 0 

           There are several limitations in using the above-mentioned equation: (1) the above 

mentioned Sherwood number relationship is derived for flow through non-porous 

conduit; hence, the effect of suction can not be considered using these relationships; (2) 

the axial change in osmotic pressure at membrane surface due to the concentration 

polarization change is not considered in the above mentioned Sherwood number 

correlations; (3) suction will alter the velocity gradient in the bulk stream through the 
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boundary layer (Schlichting, 1979) that will impact Reynolds number, which is not 

considered in calculating the Graetz-Leveque Sherwood number; (4) and suction will 

change the species concentration at the membrane surface that will change the solution 

physical properties like viscosity, density, and diffusivity, which are function of the 

concentration. Consequently, the above mentioned Reynold’s number, and Schmidt 

number, will be variable along the membrane length. These changes are not considered 

with this form of Sherwood number relationships. It is concluded that in the case of 

suction, calculating the concentration polarization layer using the traditional way of using 

Sherwood number correlations will lead to erroneous results due to the change in the 

solution properties that are not considered in the above mentioned relationship.  

2.19 Overcoming the Disadvantages of using Sherwood Number to Determine Mass 

 Transfer Coefficient with Permeate Suction 

            Of great interest is the case of dilute solution where Sc >> 1.  In this case the  

diffusion concentration polarization layer is imbedded in the viscous boundary layer, and 

the velocity it sees is that close to the wall (Probstein, 1994). 

 

2.19.1 Film Theory 

            According to the film theory, mass transfer coefficient is inversely proportional to 

the concentration polarization layer (Taylor et al., 1999; Williams, 2003), so if the 

concentration polarization layer decreases, the mass transfer coefficient will increase, and 

the permeate flow and quality will improve; and consequently membrane fouling can be 

reduced. Referring to Figure 2-15 at item 2.17 above, the Navier-Stockes diffusion-
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convection equation for flow over a flat sheet membrane, gives the concentration profile 

by (Bhattacharyya and Williams, 1992) 

u 
x

C

∂
∂ + wV  

y

C

∂
∂  - D (

x

C
2

2

∂
∂ +

y

C
2

2

∂
∂ ) = 0         (2-26)                   

With boundary conditions: 

For x direction C (0,y) = FC  

And for y direction 
y

xC

∂
∂ )0,( = 0 

           Assuming a constant permeation rate, and a concentration polarization layer with 

axial distance (Figure 2-14), mass balance on the concentration polarization layer yields     

CJ w  = - D 
y

c

∂
∂                                         (2-27)    

where wJ  is the permeate water flux; C is the concentration of the species subject to  
 
concentration-polarization, D is the diffusivity coefficient for solute transport through  
 
solvent (calculated from Cussler, 1984), and y is the distance with the boundary layer  
 
such that C = memC  at y = 0; and C = FC  at y = Fδ  

            If the boundary layer is assumed to be stagnant over the channel length, the 

equation will be:  

wJ   
y

C

∂
∂  = D  

y

C
2

2

∂
∂                                                              (2-28)                                    

Integrating this expression over the thickness of the stagnant concentration-polarization  
 
layer Fδ , results in the following expression: 
 

PF

Pmem

CC

CC

−
−

= exp 
D

J Fwδ                                                                                   (2-29) 
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           This is the widely applied film theory developed by Brian (Brian 1966; Bhattaryya 
 
 and Williams, 1992).  The ratio of the diffusion coefficient for solute transport through  
 
solvent to the concentration polarization layer thickness in this film thoery model defines  
 
a mass transfer coefficient K: 

K =   
F

D

δ
                                                                              (2-30) 

where K is the mass transfer coefficent. 

Using equation (2-30), the concentration polarization layer Fδ can be calculated, if the 

diffusivity coeficient of the speices D, and the mass transfer coeficient K are determined, 

without having to use Sherwood number corelations. 

2.19.2 Peclet Number 

           Peclet number is defined as the dimentionless ratio of the rate of mass transported 

 by convection to the membrane, and the rate of mass transported by diffusion back to the 

bulck solution; in other words the diffusive membrane Peclet number is expressed as:  

eP =  
21−D

hV dw                                                                                                        (2-31) 

where wV is the permeate velocity which is equal to the permeate flux per one sheet of 

membranes; 21−D  is the diffusivity coefficicent of the ionized electrolye; and dh  is the 

hydraulic diameter of the spiral wound membrane. The diffusive Peclet number is a 

measure of how permeate goes through the membane, so if eP  is less than unity, this is an 

indication of no cocentration polarization, while a large Peclet number means that there is 

a concentration polarization at the membrane surface. Peclet number is called the 
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dimensionless flux. If the diffusive Peclet number is increased due to suction, while the 

associated concentration polarization is being reduced, this means that suction has 

increased membrane production with more favorable conditions to the membrane, as far 

as inorganic fouling is concerned. Therefore, we using Sherwood number can be avoid in 

the calculations due to the above-mentioned limitations. For the 2.5 inch diameter 

membrane, which is composed of two envelopes (leaves) of  membranes, where every 

envelope is composed of two sheets, the hydraulic diameter is the  ratio of the cross 

section of the flow channel to the wetted circumference and can be  calculated with the 

dimensions of the feed-concentrate spacer according to (Schock and  Miquel, 1987):           

dh = 

ff dd

4).1(1
4

ε

ε

−+
                                                                                      (2-32)  

where ε  is the porosity of the feed-concentrate spacer; and fd is the filment diameter of 

 the feed spacer, which is equal to half the feed spacer height. As in the case of NF 

 membrane, it is observed that for dilute solutions the Schmidt number is very large, as 

 a consequence of which the diffusive membrane Peclet number is generally large. This is  

true even at a moderate Reynold’s number (Probstein,1994).  

            Probstein (1994) also showed that at typical condition of operting the mebrane 

system without permeate suction, as eP  number increases, the concentration polarization 

boundary layer increases, and consequelty the mass transfer along with the product 

permeate decreases. If permeate suction increases the eP , and the concentration 

polarization layer is decreased, this will indicate that permeate suction will help in 

reducing the membrane fouling, while product flow is increased. 
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2.20 Determinig Diffusion Coefficient for Strong Elecrolytes 

            A transport of mass or “diffusion” of mass will take place in a fluid mixture of 

 two or more species whenever there is a saptial gradient in the properties of the mixure, 

 that is, a concentration gradient (Probstein, 1994). Diffusion causes convection. 

           Convection flow can have many causes. For example, it can occur because of  

pressure  gradient or through differences in temperature. However, even in isothermal  

and isobaric  systems, diffusion will always produce convection (Cussler, 1984).  

This combination of  diffusion and convention could complicate our analysis. 

            Multi-ions salt solutions calculations of diffusion coefficient are more 

complicated because more than one cation can be accompanied by one anion or vice 

versa, depending on the ion valence. For example, for a ternary system, there would be 

two concentration gradients, and the diffusive flux of each species could be affected by 

both concentration gradients. One instance where this is not so is the infinitely dilute 

solutions for which each component is unaffected by the presence of the other (Probstein, 

1994). The diffusivity for dilute liquid solutions, like the case of the feed to NF 

membrane, may be estimated theoretically from simple hydrodynamic consideration 

(Probstein, 1994). In solute-solute interaction dilute solutions, like the case of NF 

membrane, the convection caused by diffusion is vanishingly small, and dependent on the 

solute concentration, and thus on temperature. This is the frame work of this research.  

It is worthy to mention that estimates of diffusion for concentrated solutions are far more 

difficult (Probstein, 1994). 
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            Salts are ionized when they are dissolved in water. For example, a Soduim 

Chloride solution in water diffuses as a single ion, and not as a single molecule; instead 

sodium ions and chloride ions move freely through the solution (Cussler, 1984).  

            Table 2-3 shows values of ionic diffusion coefficients in water at 25 degree C at 

infinite dilution. 

2.20.1 1-1 Strong Electrolyte  

            Referring to the below mentioned Table 2-3, and in the above example of Soduim 

 Chloride solution, the diffusion of +Na  is slower than that of −Cl , and the diffusion of 

 both ions in a dilute soltion of NaCl  is going to be dominated by the larger ion because 

 the two ions are tied together electrostatically. 

Table 2-3. Ionic diffusion coefficients in water at 25 degree C at infinite dilution in 510−  scm /2 . 
(Calculated from data of Robinson and Stocks (adopted from Cussler, 1984) 

 

            When describing the ion fluxes of a single strong 1-1 electrolyte, such an 

 electrolyte ionizes completlety, and it will be producing equal numbers of cations and 

 anions.  Although the concentration of anions and cations may vary through the solution,  

the concentration gradient of these species are equal everywhere because of  the 



 59

electroneutrality (Cussler,1984). 

and  21−D =   

21

11
2

DD
+

                                               (2-33) 

Where  21−D , 1D and 2D  are the diffusivity coefficicent of the ionized electrolye, the  

anion, and cation respectively. 

2.19.2 Non 1-1 Strong Elecrolyte 

           The non 1-1 electrolyes like 4MgSO , and 2MgCl  are parallel to the above  

mentioned 1-1 electrolyte, but more complicated algebraically (Cussler,1984). 

The diffusivity coefficicent of the ionized electrolyte in this case is going to be expressed 

 as: 

21−D = 

1

2

2

1

21

D

Z

D

Z

ZZ

+

+
           (2-34)                         

where 21−D , 1D , and 2D  are the diffusivity coefficicent of the ionized electrolye, the 

anion, and cation respectively, while 1Z and 2Z  are the absloute valent numbers of the the 

anion, and the cation respectively. 
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  CHAPTER 3 
 

EXPERIMENTAL METHODOLOGY 
 
 
           This chapter describes the technical procedure utilized in performing the 

experimental part of this research. The dilute solutions preparation, and the 

instrumentation used in the experiments are described first, followed by the experimental 

procedures. For the two types of experiments, a diagram of the equipment set-up is 

shown with each component briefly described. The description of each type of 

experiment contains a summary table of the salts solutions used as feed water, their 

concentration and the system operating parameters. The sampling and the measurement 

protocols, as well as the procedure for the replicate runs are presented for each type of 

experiment. 

 
3.1 Dilute Solutions Preparation 
 
            The feed water for all the experiments is prepared using de-ionized (DI) water and 
 
analytical grade salts. DI water is produced from a feed of tap water using RO unit.  

The conductivity of the product is 16 ±1 sμ . Only simple binary solutions of NaCl , 

2MgCl , and 4MgSO - which are 1-1, 2-1, and 2-2, respectively, strong electrolyte dilute 

solutions - are considered in this research. The diffusion coefficients for the binary 

solutions were calculated using the equations from Cussler (1984).  

Salt concentration was prepared to have concentration of the three different binary 
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 solutions according to Table 3-1. The experiments were run at three concentrations for  
 
low, medium, and high values of the applied feed pressures. 
 
 
3.2 Reasons behind Choosing the Chemicals 
            
            It is required to study the effect of both monovalent and divalent ions on the 

performance of the new generation of NF membrane. −Na , and −Cl  ions are monovalent 

ions. The solubility of chloride salts and sodium salts are high and do not create a RO 

scaling problems, that may allow running the experiments at a relatively high recovery. 

Sodium and Chloride, in brackish and seawater, are the prevalent ions. Magnesium 

( ++Mg ) is a divalent cation, and accounts for about a third of the hardness in brackish 

water, leaving about the two third to Calcium ( ++C ) cations. 

 Table 3-1. Dilute solutions concentration and operating pressures for the experiments 
 

Dilute Solution 
Feed Concentration  

(mg/l) 
Feed Concentration  

(Mol/l) Feed Pressure (psi) 
  750 0.0249 80, 110,160 

Sodium 
Chloride 1200 0.0411 80, 110,160 

  1750 0.0599 80, 110,160 
  820 0.0136 80, 100,130 

Magnesium 
Sulfate 1235 0.0205 80, 100,130 

  1770 0.0606 80, 100,130 
  840 0.0176 80, 100,130 

Magnesium 
Chloride 1260 0.0265 80, 100,130 

  1750 0.0368 80, 100,130 
 

           The solubility of magnesium salts is high, and they typically do not cause a scaling 

 problem in  membrane systems. Sulfate ( −−
4SO ) is a divalent anion, and 4MgSO does 

not cause scaling on membranes. This is unlike calcium, barium, and strontium sulfate, 
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which have low solubility limits, and can cause scaling problem in the back-end of the 

system.  

 
3.3 Experimental Setup 
 
            The apparatus used in the experiment are assembled on the equipment skid shown 
 
 in the pictures of figures (3-1, 3-2 and 3-3). 
 

 
Figure 3-1. Experiential equipment skid showing pressure gauges, TDS meters, flowmeters, and NF 

membrane pressure vessel 
 

           The instruments used are presented in Table 3-2 together with calibration 

requirements, manufacturer, readings range, and accuracy. The sensors are connected to 

the control panel of the equipment skid for data collection and analysis. Samples were 

taken during the runs to test the feed water pH and the biocide content.  Samples were 

also taken for feed flow, product flow, and concentrate flow to test the conductivity panel 

readings against manually held TDS meter. Whenever samples were taken for test, they 

were poured back to the feed water tank to keep feed water conductivity constant. 
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Figure 3-2.  Variable frequency drives for the high pressure pump, and the permeate pump 

 

 

 

Figure 3-3. The assembled high pressure pump (top), and the permeate pump (bottom) 
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Table 3-2. Instrumentation and specifications 

No. Instrument Manuf. Model 
Calib. 
Req. Range Accuracy 

1 

Electrical Top 
loading 
Balance Ohaus Adventure No 0 -3,100 g ± 0.1 mg 

2 
Conductivity 

Meter & Probe Hanna BL983318 Yes 
0 -10,000 

mg/l ± 1 mg/l 

3 Control Box 
R&D 

Specialties CE2-IPC Yes 
0 – 999 

mg/l ± 1 mg/l 

4 

Permeate 
Conductivity 

Cell 
R&D 

Specialties 80TDS150R1 Yes 
0 – 999 

mg/l ± 1 mg/l 

5 Flowmeter Blue-White  F440 No 0 - 1 gpm 
± 0.05 
gpm 

6 Flowmeter Blue-White   F44375 No 0 - 5 gpm 
± 0.05 
gpm 

7 
2.5" Pressure 

Gauge Wika 
316SS tube & 

Connection Yes 0 - 30 psi ± 0.1 psi 

8 
2.5" Pressure 

Gauge Wika 
316SS tube & 

Connection Yes 0 - 60 psi ± 0.1 psi 

9 
2.5 " Pressure 

Gauge Wika 
316SS tube & 

Connection Yes 0 - 300 psi ± 0.5 psi 

10 
0.5" NC 

Solenoid Valve GC-Valves H211YF02J7DG4 No On/Off N/A 

11 
Volumetric 

Flask Kimax 20024 No  250 ml ± 1.4% 

12 
Volumetric 

Flask Pyrex 3024 No  100 ml ± 1.0% 

13 

Hand Held 
Conductivity 

Meter Hanna TDS-3 Yes 0-19,999 ± 10 mg/l 

14 
Hand Held pH 

Meter Hanna HI 98107 Yes 0-14 ± 0.1 

15 
Volumetric 

Pipette Pyrex 7101 No 0 - 50 ml ± 0.2% 
16 Beaker Kimax 14000 No 0 - 600 ml ± 5.0% 

17 Beaker Pyrex 1000 No 
0 - 1,000 

ml ± 5.0% 

18 
Low Pressure 

Switch Barksdale E1H-H90 No 0- 40 psi ± 1 psi 
 
   

            As shown on the schematic flow diagram Figures 3-4 and 3-5, solutions were 
 
 pumped from a HDPE 35 gallons feed tank by a booster pump to the high pressure pump 

through 5 μ m cartridge filter to protect the pump, and the membrane from any 

suspended solids that may be available in the solution tank. The booster pump is a 



 65

centrifugal type; model number 594-154; manufactured by Surflow Company, USA, and 

rated at 3.3 gpm at 45 psi. The membrane was pre-compacted at 120 psi using re-

circulated DI water, and the re-circulated solution is kept disinfected using 0.2 – 0.3 mg/l 

of biocide. The used biocide is Model number RoCide DB-20 manufactured by Avista 

Company, USA, is formulated to keep the membrane sanitized and non-oxidized. RoCide 

DB-20 is approved by the EPA to be used in RO systems as a fast acting; non-oxidizing 

biocide based on a 20% solution of the active ingredient DBNPA (Dibromo nitrilo 

propionamide), (Avista Company, 2008). The same concentration of biocide was kept for 

all the solutions during the entire experiment runs. The biocide content was periodically 

checked using oxidant reagent test kit. At the beginning of the experiments, the pure 

water permeability coefficient (A) was calculated using equation (2-23), where wJ  = A 

( PΔ - πΔ ), since A is the permeability coefficient of the membrane, and it is a function 

of the membrane chemical structure.  

          The membrane permeability coefficient A was determined from distilled water  
 
where πΔ in equation (2-23) in this case is approximately equal to zero. 

           The term PΔ is the hydraulic pressure difference across the membrane, and is  

equal to the applied membrane pressure minus the permeate pressure, while wJ is the  

permeate flux, and is equal to the permeate flow rate divided by the membrane cross flow  

area. The capacity of the high pressure pump was determined according to the membrane 

software program of the manufacturer following the design guide lines at the laboratory 

temperature. The pump is a rotary vane type manufactured by Procon company, USA; 

constructed from 304 SS, and rated at 207 gph at 200 psi and 1725 rpm.  
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The pump Model number is 105E265F31BA215. The motor is 1 HP at 1725 rpm; 

inverted duty non washdown manufactured by Baldor with electrical specifications of 

230/460 V/60 Hz/ 3 Ph; and Model number IDNM3581T bolt on. The variable frequency 

drive (VFD) on the high pressure pump along with the concentrate control valve allows 

unlimited control of the membrane feed pressure according to the feed water 

concentration.  
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Figure 3-4. First setup by running the high pressure pump only 
 
 

           The setup shows the spiral wound NF TFC membrane used in the experiment. 
 
Table (3-3) demonstrates the geometrical dimensions of the tested new generation NF 

membrane, which is a standard size commercial 2.5 inch nominal diameter, and a 40 inch 

long spiral wound aromatic polyamide thin-film composite membrane  Model NF270- 

2540, manufactured  by Dow-FilmTec Inc., Minneapolis, MN. 

The effective surface area is 28 2ft (2.6 2m ). This membrane was chosen for this research  
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as a representative of a class of the new generation membranes, which is used  
 
increasingly in water treatment applications. The 2CaCl rejection is about 40-60%, and  
 
the magnesium sulfate rejection is 93%, as reported by the manufacturer (test conditions:  
 
feed TDS is 500 mg/l for 2CaCl , and 2,000 mg/ l for 4MgSO , 70 psi, 10% recovery, and 
 
 25◦C. The feed spacer height is 28 mil (0.711 mm) with a porosity (ε ) of 0.89,  
 
computed as described by Schock and Miquel (1987). 
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Figure 3-5. Second setup by running the high pressure pump and the permeate suction pump 
 
           The membrane zeta potential is close to neutral, so the membrane charge was  
 
assumed to be zero, to eliminate the charge effect. The membrane pressure vessel is made 
 
of reinforced fiberglass and has a rated maximum operating pressure of 300 psi. 
 
The pressure vessel is produced by Crane Environmental. 

           The experiments were divided into two setups: the first setup was conducted by 
 
running the experiment using the high pressure pump only. 
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Table3-3. Geometrical Parameters for the tested FilmTec Membrane Model NF270-2540 

Parameter Specifications 
Membrane Model No. 270NF-2540 

Active Area 28 2ft (2.6 2m ) 
Active Length 35.4 in.(90.4 mm) 

Feed Spacer Thickness 28 mil (0.71 mm) 
No. of envelops (leaves) 2 

Feed Spacer Porosity 0.89 
Hydraulic Diameter 28 mil (0.877 mm) 
Filament Diameter  14 mil (0.355 mm) 

 
 
 

           In the second setup of the experiments, the permeate suction pump was run along 

with the high pressure pump, to apply suction on the membrane permeate side. The 

capacity of the permeate suction pump was determined according to the projected 

permeate flow rate given by using the manufacturer software program. The pump is a 

positive displacement rotary vane type manufactured from bronze by Procon Company, 

USA, and rated at 37 gph at pressure of 50 psi and 1725 rpm.  The Model number is 

102E125F31BA250. The motor is 0.5 HP at 1725 rpm; inverted duty non washdown. It is 

manufactured by Baldor company with electrical specifications of 230/460 V/60 Hz / 3 

Ph, and Model number IDNM3538.  The VFD  which is used to control the suction 

pressure is rated at 0.5 HP manufactrerd by Woods company with electrical 

specifications of 115 V/ 1 Phase/ 60 Hz, and Model number SE1C1S005D01. 

            It is worthy to mention that the suction pressure of the permeate suction pump can 

not be lower than the pump net positive suction head (NPSH), in order to avoid 

cavitations in the pump. All the interconnecting piping was made of anti-corrosion 

Stainless Steel tubes, or flexible breaded Stainless Steel. Permeate tubing was made of 

polypropylene tubing. The permeate flow, concentrate flow, pressures, and total 

dissolved solids for the feed, permeate, and concentrate side were measured on the 
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control panel. The permeate flow, and concentrate flow were returned to the feed tank 

where the temperature was kept constant at 25 ±  1 degree C by a cooler.  

           The cooler is a drop in chiller manufactured by Current company, USA, rated at 

3,926 BTU, and model No. CD-22308- ¼ HP. Keeping the re-circulated flow at a 

constant temperature eliminates the effect of the change of the diffusivity coefficient of 

the species due to temperature change, since diffusivity coefficient is a function of the 

solvent temperature and solute concentration.  

           The salt diffusivity coefficient for the 1-1 strong ionized solution is calculated  
 
from equation (2-33), and (2-34) in Chapter 2 by: 

 21−D = 

21

11
2

DD
+

 

where  21−D , 1D and 2D  are the diffusivity coefficicent of the ionized electrolye, the 

anion, and cation respectively, and for non 1-1 strong ionized solution is calculated from: 

21−D = 

1

2

2

1

21

D

Z

D

Z

ZZ

+

+
  

where 21−D , 1D , and 2D  are the diffusivity coefficicent of the ionized electrolye, the  

anion, and cation respectively, while 1Z and 2Z  are the absloute valent numbers of the  

anion and cation respectively. The run for each salt solution is finished when the  

permeate water conductivity and flow rate are at equilibrium. At the end of the runs for  

every salt solution, the pure water permeability coefficient (A) is re-calculated using DI  

water. The value of the new permeability coefficient was used for the calculations of the  
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next salt solution. This value is typically reduced due the membrane compaction with  

aging. After the completion of each solution run, the system is flushed with DI water  

before running the next solution experiment. When applying pressure on the dilute  

solutions, the term πΔ is equal to the difference  between the osmotic pressure at the  

membrane surface minus the permeate osmotic pressure, as indicated in Chapter 2 above  

from equation number (2-24):  

where iπ = in RT  ∑
=

n

i
iC

1

                 

 where in = number of ions formed when the solute dissociates. 

And iC = molar concentration of the solute = ic /1000 iMW ; and ic = Total Dissolved 

 Solids as mg/l; iMW = Molecular Weight of the dilute solution; R= gas constant; and 

 T= absolute temperature. 

From the equations (2-23), and (2-24) in Chapter 2 above, membrane wall concentration 

C mem  was calculated.  

From equations (2-29), and (2-30) in Chapter 2, the mass transfer coeficient K, and the 

concentration polarization layer Fδ were calculated. 

            Peclet number was calculated as per equations (2-31), and (2-32) in Chapter 2. 

3.4 Assumptions of the Experiments 

            Based on the above discussion, the following assumptions in the experimental 

setup were made: (1) the membrane is neutral because the zeta potential is close to zero; 

(2) the diffusion coefficient of the binary solution species is only a function of 

temperature and solution concentration, hence the diffusivity is constant because the 

experiments are carried out at a constant temperature and constant feed concentration; 
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(3) the mass transfer coefficient of the whole membrane is constant, and is not a function 

of the permeate flux or concentrate flow velocity; (4) the concentrate flow is equally 

distributed on the membrane envelope and the feed and permeate spacers; (5) the type of 

membrane material and chemical structure does not influence concentration polarization; 

(6) there are no dead zones where salt can accumulate on the membrane;  (7) the binary 

solutions used in the experiments are completely ionized in the water, and the concentrate 

solutions have not reached the saturation limits so that there is no species precipitations 

on the membrane; (8) the concentration polarization layer is stagnant and constant along 

the run of the membrane surface.  
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CHAPTER 4 
 

RESULTS AND DISCUSSION 
 
 

            This chapter presents the results obtained from the two setups of experiments 

described in Chapter 3. It also discusses the results in details. The results are presented 

in tables and graphs. The graphs are arranged such that they can be compared with each 

others for each dilute solution, at different pressures.  

           The details of the replicate runs are shown in the tables of Appendices A, B, and 

C.  Pressures were identified as low, medium, and high; while solute dilutions were also 

determined as low, medium, and high, as per table 3-2 presented previously in Chapter 

3. For an easier illustration, the medium pressure 100 to110 psi is indicated on the 

graphs by the solid line for both operating setups, i.e without permeate suction, and with 

permeate  suction, while the other two pressures, i.e. low, and high pressures, are 

indicated by different dotted lines. 

 
 4.1 Effect of Permeate Suction on the Concentration Polarization Layer Thickness 
 
           According to the equations (2- 33), and (2-34) in Chapter 2, the diffusion 

coefficient for the dilute solutions of 4MgSO , and 2MgCl , and NaCl are 0.85 x 910− , 

1.243 x 910− , and 1.612 x 910− sm /2 , respectively. The molecular weights of the three 

binary salt solutions are 120.3, 95.3, and 58.5, respectively. This indicates that the 

diffusion coefficient is a function of the molecular weight; and at constant temperature, 
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the back diffusion of the salt is proportional to the diffusion coefficient and solute 

concentration. Hence, the diffusivity is assumed to be constant for all the experiments, 

since a cooler was used to keep the temperature at 25 degrees C. Figures 4-1, and  

4-2 illustrate that the concentration polarization layer thickness, in general, is decreased 

with permeate suction at all the tested pressures and feed concentrations.  According to 

the film theory, the concentration polarization layer is inversely proportional to the 

mass transfer coefficient. This suggests that the effect of permeate suction enhances the 

mass transfer from the bulk to the membrane surface, and it de-stabilizes the laminar 

flow condition in the conduit due to the gradual increase in the positive pressure on the 

bulk solution due to the permeate suction at the permeate collector tube. 

           The above mentioned two figures also show that the concentration polarization 

layer thickness increases with the increase of the TDS of the feed. A more detailed 

study of Figure 4-1 and 4-2 shows that the greatest impact on the concentration 

polarization layer was achieved at the medium feed pressure, which is 100 psi. 

            Also, the above two figures along with Figure 4-3 show that the thickness of the 

concentration polarization layer is proportional to the rejected ions in the binary dilute 

solution, since the solute flux in the membrane is propositional to concentration 

difference across the membrane.  
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 Concentration Polarization Layer Thickness Versus Feed Concentration - MgCl2
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Figure 4-1 Concentration polarization layer thickness versus feed concentration - 2MgCl   



 75

 Concentration Polarization Layer Thickness Versus Feed Concentration - MgSO4
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Figure 4-2. Concentration polarization layer thickness versus feed concentration - 4MgSO  
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            It is also illustrated from Figure 4-3 that NaCl  solutions are showing the same 

trend as 2MgCl , and 4MgSO solutions, but with one higher order of magnitude.  

This is due to the much lower rejection of the NF membrane for both monovalent ions 

in the NaCl solutions. According to the solution-diffusion transport model, the solute 

transport in the membrane is a function in the difference between the membrane wall 

concentration, and the permeate concentration, regardless of the operating pressure.  

            Since the permeate concentration is relatively high, the concentration 

polarization layer thickness was relatively high. Figure 4-3 also shows that the greatest 

reduction in concentration polarization layer thickness in the NaCl  solution is 

achievable at the medium pressure which is 110 psi. As it was mentioned above, in the 

case of NaCl  solutions the concentration polarization layer thickness is of one order of 

magnitude higher than that of the case of 2MgCl , and  4MgSO solutions. Part of this 

higher magnitude is due to the higher tested pressure for NaCl solutions (110 psi), as 

compared to the other two solutions of 2MgCl and 4MgSO (100 psi).  

           Figure 4-4 summarizes the conclusion from the above three figures. It shows the 

relative effect of the permeate suction on the three binary solutions at the medium range 

of pressure (100 to110 psi) in which the permeate suction had the greatest impact.  

It clearly shows that the concentration polarization layer thickness is reduced with 

suction for all the tested solutions. Detailed study of the above-mentioned figure also 

shows that the concentration polarization layer thickness is a function of the diffusion 

coefficient of the solute. As the diffusion coefficient increases from 4MgSO  to 



 77

2MgCl to NaCl , the concentration polarization layer increases if the feed solution 

concentration and the temperature are kept constant.  

Concentration Polarization Layer Thickness Versus Feed Concentration - NaCl
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Figure 4-3. Concentration polarization layer thickness versus feed concentration  – NaCl 
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Concentration Polarization Layer Thickness Vresus Feed Concentration - 100 to 110 psi for the Three NaCl, MgCl2, and MgSO4 
Solutions
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Figure 4-4. Concentration polarization layer thickness versus feed concentration at 100 to 110 psi 

for the three NaCl , 2MgCl , and 4MgSO solutions 
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            Figure 4-5 is plotting the trend in concentration polarization layer thickness  
 
against the  net operating pressure ( PΔ - πΔ ) for 2MgCl solutions. The solid line is 
 
 showing the trend  with permeate suction, while the dotted line is presenting the trend  
 
without permeate suction. For example, at a net operating pressure of 5.45 atm, the  
 
average concentration polarization layer thickness without permeate suction was 7.9 x  
 

510−  m. This was reduced to about 6.7 x 510− m with permeate suction, resulting in a  
 
 reduction of about 15%. 
 

Concentration Polarization Layer Thickness Versus Net Operating Pressure -MgCl2 
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Figure 4-5. Concentration polarization layer thickness versus net operating pressure - 2MgCl  
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4.1.1 Statistically Testing the Experimental Design for Concentration Polarization 
 
 Layer Thickness 
 
             The measured concentration polarization layer thicknesses were in the order of 

magnitude of 510− to 410− m. To validate the experiments, and to eliminate experimental 

errors, the Analysis of Variance (ANOVA) was tested.  

            ANOVA were carried out on the two different treatments (without permeate 

suction, and with permeate suction) to compare the mean value of the two tests, and to 

check if the permeate suction has made a significant change from the case of not having 

permeate suction. Two statistical hypotheses were tested:  

0H : 1μ = 2μ  

and 1H : 1μ  ≠  2μ  

where 1μ  is the mean concentration layer thickness in the case of running the test with 

out using permeate suction in m multiplied by 510 , and 2μ is the mean concentration 

layer thickness in the case of using permeate suction in m multiplied by 510 . 

           The following ANOVA tables for three tested salts are showing the results of the  
 
experiment analysis. 
 
 
4.1.1.1 ANOVA for 2MgCl  Solutions 
 
           Referring to Table 4-1 below, and from Table IV of Design and Analysis of  

Experiments book (Montgomery D., 2001):  

Critical value of )1)(1),(1,(050 −−− baaF = 8,1,050F = 5.32 

Since oF  = 288.552 > 8,1,050F = 5.32 
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so 0H :   1μ =  2μ  is rejected, and 1H : 1μ  ≠  2μ  
  
  It was concluded that there was a difference between the two treatments.  
 
Hence, the permeate suction was significantly different from the case of no suction. 
 

Table 4-1. ANOVA Table for 2MgCl  solutions 

 
Source of 
Variation 

Sum of 
Square DOF 

Mean 
Square oF  

     
Treatment (w/o & 

w suction) 6.8672 1 6.8672 288.5552 
     

Blocks 17.9010 8 2.2376  
     

Error 0.1903 8 0.0238  
     

Total 26.1177 17   
 
         
  4.1.1.2 ANOVA for 4MgSO  Solutions 
  
            Referring to Table 4-2 below, and from table IV of Design and Analysis of  

Experiments text book (Montgomery D., 2001):  

Critical value of  )1)(1),(1,(050 −−− baaF = 8,1,050F = 5.32 

Since oF  =  267.2989 > 8,1,050F = 5.32 

so 0H :   1μ =  2μ  is rejected, and 1H : 1μ  ≠  2μ  

It was concluded that there was a difference between the two treatments.  

Hence, the permeate suction was significantly different from the case of no suction. 
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Table 4-2. ANOVA Table for 4MgSO  solutions 

 
Source of 
Variation 

Sum of 
Square DOF 

Mean 
Square Fo 

       
Treatment (w/o 
& w suction) 2.2493 1 2.2493 267.2989 
       
Blocks 19.9345 8 2.4918   
       
Error 0.0673 8 0.0084   
       
Total 22.2512 17     

 
             
4.1.1.3 ANOVA for NaCl  Solutions 

            Referring to Table 4-3 below, and from table IV of Design and Analysis of  

Experiments text book (Montgomery D., 2001):  

Critical value of )1)(1),(1,(050 −−− baaF = 8,1,050F = 5.32 

Since oF  = 10.36771 > 8,1,050F = 5.32 
 

so 0H :   1μ =  2μ  is rejected 
  

and 1H : 1μ  ≠  2μ   
  

 Table 4-3. ANOVA Table for NaCl  solutions 

 
Source of 
Variation 

Sum of 
Square DOF 

Mean 
Square Fo 

       
Treatment 
(w/o & w 
suction) 0.5894 1 0.5894 10.3677 
       
Blocks 104.1044 8 13.0130   
       
Error 0.4548 8 0.0568   
       
Total 105.1486 17     

 



 83

4.2 Effect of Permeate Suction on Mass Transfer Coefficient 

           As was mentioned above, the mass transfer coefficient is inversely proportional 

to the concentration polarization layer thickness. Figures 4-6, 4-7, and 4-8 show that the 

mass transfer coefficient for all dilute solutions increased with permeate suction, if 

compared with the case of no permeate suction. 

            Again, it is deduced that the permeate suction destabilizes the boundary layer in 

the laminar flow condition that reduces concentration polarization and enhances the 

mass transfer coefficient. The above-mentioned figures show that the greatest mass 

transfer coefficients were achievable when the operating conditions were in the range of 

100 to 110 psi. However, the mass transfer coefficient rates for 4MgSO solutions were 

reduced faster at the higher feed concentration greater than 0.0225 Mol/l, due to the 

higher rate of the increase of concentration polarization layer at the higher 

concentrations. 
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Mass Transfer Coefficient Versus Feed Concentration - MgCl2
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Figure 4-6. Mass transfer coefficient versus feed concentration - 2MgCl  
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 Mass Transfer Coefficient Versus Feed Concentration -MgSO4
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Figure 4-7.  Mass transfer coefficient versus feed concentration – 4MgSO  
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Mass Transfer Coefficient Versus Feed Concentration - NaCl
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Figure 4-8. Mass transfer coefficient versus feed concentration - NaCl  
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4.3 Effect of Permeate Suction on Permeate Flow 

           Figures number 4-9, 4-10, and 4-11 show the relationship between the feed 

concentration, and the product flow for the different dilute solutions at the three 

pressures.  It is evident from the figures that the product flow has increased due to 

permeate suction for all salt solutions, and under the three tested pressures. As it was 

expected, the permeate flow rate, and consequently the permeate flux was increased 

with the higher feed pressure. In general, the product flow rate was reduced as the feed 

concentration increased. However, for 4MgSO and NaCl  solutions the greatest rate of 

increase due to permeate suction was achieved at the medium operating feed pressure 

range (100 to110 psi). 
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 Permeate Flow Versus Feed Concentration - MgCl2
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Figure 4-9.  Permeate flow versus feed concentration – 2MgCl  
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 Permeate Flow Versus Feed Concentration - MgSO4
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Figure 4-10. Permeate flow versus feed concentration – 4MgSO  
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Permeate Flow Versus Feed Concentration - NaCl 
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Figure 4-11.  Permeate flow versus feed concentration – NaCl  
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4.4 Effect of Permeate Suction on Permeate Concentration 

           Figures 4-12, 4-13, and 4-14 illustrate the change in permeate concentration  

versus feed concentration with permeate suction at various pressures. It is clear from  

the three figures that permeate suction has improved the quality of the permeate  

concentration at all pressures. It is interesting to notice on the first two figures that  

the greatest improvement was achieved at the medium feed pressure (100 psi). 

            It is worthy to mention that the permeate concentration of 2MgCl solutions was 

 much higher than the permeate concentration of 4MgSO solutions under the same  

operating conditions. This as indicated in item 4.1 above, is due to the low rejection of  

the −Cl monovalent  anion by the NF membrane, while the rest of ions in the two  

solutions, namely, ++Mg , and −−
4SO are highly rejected because they are divalent ions. 

           The ionic mobility of ions has also contributed to the rate of their rejection. 

Robinson and Stockes (1965) have indicated that the radius of chloride ion is 1.81 
o

A ,  
 
versus a greater radius for  sulfate compound ion. The fact that the sulfate compound  
 
anion has a radius greater than that of the chloride element anion has helped the latter in  
 
its greater passage rate through the membrane. In all cases, the use of permeate suction  
 
has resulted in a better permeate quality. This was more pronounced in the solutions of  
 
the divalent ions than the monovalent ion solutions. 
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 Permeate Concentration Versus Feed Concentration - MgCl2

17

19

21

23

25

27

29

31

33

35

0.017 0.022 0.027 0.032 0.037

Feed Concentration (Mol/l)

Pe
rm

ea
te

C
on

ce
nt

ra
tio

n
x

10
-5

(M
ol

/l)

HPP Only - 80 psi HPP + Permeate Pump - 80 psi HPP Only - 100 psi
HPP + Permeate Pump - 100 psi HPP Only - 130 psi HPP + Permeate Pump - 130 psi
Linear (HPP Only - 80 psi) Linear (HPP + Permeate Pump - 80 psi) Linear (HPP Only - 100 psi)
Linear (HPP + Permeate Pump - 100 psi) Linear (HPP Only - 130 psi) Linear (HPP + Permeate Pump - 130 psi)  

Figure 4-12. Permeate concentration versus feed concentration – 2MgCl  
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 Permeate Concentration Versus Feed Concentration - MgSO4
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Figure 4-13. Permeate concentration versus feed concentration – 4MgSO  



 94

Permeate Concentration Versus Feed Concentration - NaCl
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Figure 4-14. Permeate concentration versus Feed concentration – NaCl  
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4.5 Effect of Permeate Suction on Concentrate Concentration 
 

            Concentrate concentration is generally increased due to permeate suction for all 

dilute solutions at different concentrations and pressures as shown in Figures (4-15,  

4-16, and 4-17). The increase is due to the reduction in the membrane wall 

concentration as it will be explained later in item 4.6.  Especially at the medium feed 

pressure range (100 to 110 psi), the rate of increase of the concentrate concentration due 

to suction in 4MgSO solutions was higher. This was due to the higher rejection of its 

two divalent ions ++Mg , and −−
4SO , as opposed to the lower rejection of the 

monovalent ion −Cl  that is available in the 2MgCl solutions, as was indicated in item 

4.1 above. 
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Concentrate Concentration Versus Feed Concentration - MgCl2
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Figure 4-15. Concentrate concentration versus feed concentration - 2MgCl  
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 Concentrate Concentration Versus Feed Concentration - MgSO4
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Figure 4-16.  Concentrate concentration versus feed concentration - 4MgSO  
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Concentrate Concentration Versus Feed Concentration -NaCl
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Figure 4-17. Concentrate concentration versus feed concentration - NaCl  
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4.6 Effect of Permeate Suction on Membrane Wall Concentration 
 
            Membrane wall concentration can not be experimentally measured. Therefore it 

was calculated using the solution diffusion model, as it was discussed in Chapter 2.  

 Figures 4-18, 4-19, and 4-20 show that the calculated membrane wall concentration is 

lower with permeate suction if compared to the case of running the high pressure pump 

only at all pressures for all the tested solutions. A more detailed analysis of the above-

mentioned figures can be illustrated if they are compared to the corresponding three 

figures of the concentrate concentration in item 4.5, namely Figures (4-15, 4-16, and 4-

17). It is deduced from that comparison that the membrane wall concentration is a 

function of the effect of concentration polarization. The higher the feed pressure, the 

more pronounced the difference in concentration between no suction, and permeate 

suction. The difference between the ionic species radii of chloride element ion, and 

sulfate compound ions as it was discussed in item 4.1 and 4.4 above, has contributed to 

the distinction. For example, at the medium pressure range (100 to 110 psi), where the 

permeate suction had the greatest impact, the fact that the sulfate compound anion has a 

radius greater than that of the chloride element anion has helped the latter in its higher 

passage rate through the membrane in both NaCl , and 2MgCl solutions such that the 

membrane wall concentration in those cases is greater than the case of 

4MgSO solutions. 
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 Membrane Wall Concentration Versus Feed Concentration - MgCl2
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Figure 4-18. Membrane wall concentration versus feed concentration - 2MgCl  
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Membrane Wall Concentration Versus Feed Concentration - MgSO4
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Figure 4-19. Membrane wall concentration versus feed concentration - 4MgSO  
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 Membrane Wall Concentration Versus Feed Concentration - NaCl
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 Figure 4-20. Membrane wall concentration versus feed concentration - NaCl  
 





alter the velocity profile from profile number (1) to profile number (2) due to the de-

stabilization of the boundary layer. In addition, let us take a cross section perpendicular 

to the membrane at steady state condition. Also, let us consider a random point at the 

boundary layer velocity profile, and its correspondent point at the concentration profile. 

Suction will increase velocity U1 to velocity U2, which will increase the local flow at 

that point. Since the corresponding point at the concentration profile without suction is 

C1, the concentration at the same point after applying suction will be decreased to C2 

because the corresponding velocity and flow rates have increased. When applying the 

mass balance equation for the whole system at steady state conditions, the average 

concentrate concentration at the bulk solution at the case of applying suction will be 

increased, if compared to the average concentrate concentration of the bulk solution 

before suction. This is due to the increased flow near the membrane that will partially 

wash away the accumulated species on the membrane.  This was the observation of  the  

experiment for the concentrate concentration as indicated in Figures 4-15, 4-16, and 4-

17 in item 4.5 above for all the solutions at all pressures. 

 
4.7 Effect of Permeate Suction  on Peclet Number 

           Peclet number is defined as the dimentionless ratio of the rate of mass 

 transported by convection to the membrane, to the rate of mass transported by diffusion  

back to the bulk solution. In other words, the diffusive membrane Peclet number which  

is expressed as per equation (2-31) in Chapter 2 is:  

eP =  
21−D

hV dw                                                                                                       

where is the permeate velocity which is equal to the permeate flux per one sheet of  wV
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membranes;  is the diffusivity coefficicent of the ionized electrolye; and  is the 21−D dh

 
 hydraulic diameter of the spiral wound membrane. The diffusive Peclet number is a 
 
 measure of how permeate goes through the membrane. It is observed that for the dilute 

solutions the Schmidt number is very large, as a consequence of which the diffusion 

Peclet number is large. This is true even at moderate Reynolds number 

(Probstien,1994). 

In the case of using the standard high pressure pump only, both the permeate 

concentration and the concentration polarization layer increase as the Peclet number 

increase (Probstein, 1994). However Figures 4-22, 4-23, and 4-24 show a remarkable 

result. They show that the diffusive Peclet number for the binary dilute solutions has  

increased with the permeate suction at all pressures, although the associated permeate 

concentration, and concentration polarization layer thicknesses have decreased as was 

discussed in item 4.1 and 4.3 above. This is a proof that the permeate suction has 

stabilized the flow conditions, and has enhanced the mass transfer coefficient.  

From the above mentioned figures, at permeate suction, and at different feed operating 

conditions, the diffusive Peclet number can be expressed according to the equation :  

eP  = + + , with 2
1xa xb1 `1c 2R > 0.99, where x is the feed concentration in Mol/l, and 

, , and  are coefficients dependent on feed pressure for every binary salt solution. 1a 1b 1c
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 Peclet Number Versus Feed Concentration - MgCl2
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Figure 4-22. Diffusive Peclet number versus feed concentration -  2MgCl
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Peclet Number Versus Feed Concentration   - MgSO4
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Figure 4-23. Diffusive Peclet number versus feed concentration -  4MgSO
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Figure 4-24. Diffusive Peclet number versus feed concentration –  NaCl
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CHAPTER 5 
 

CONCLUSION AND RECOMMENDATIONS 

 

           This chapter consists of three parts. The first part concludes the results of the 

 
 experiments. The second part emphasizes the importance of the findings on the design  
 
improvements for NF plants. The third part discusses the suggested and recommended  
 
future researches that can be carried out as a further step to this research. 
 
       
 5.1 Conclusion  
 
            The goal of this research was to make use of the effect of the de-stabilization of 

the laminar flow that exists at the membrane surface due to the gradually increased 

permeate suction, in an attempt to reduce the concentration polarization layer in the 

module. Previous researches showed that the concentration polarization is almost 

always the reason behind membrane fouling. The technique of using permeate suction is 

not practically used in the NF of RO membrane industry so far, despite that it has been 

theoretically investigated at the laboratory scale by a few researchers. 

(1) This research showed that when using binary dilute solutions, the permeate 

suction reduced the concentration polarization at the feed side of the industry 

scale NF membrane surface that helped to increase mass transfer coefficient, and  

increased the product flux without subjecting the membrane to less favorable 

conditions.  



(2) The research also showed that permeate suction had the greatest impact at the 

medium range (100 to110 psi) feed pressure, resulting in a reduction of 

concentration polarization layer thickness with an average between 14 to 20%.  

(3) The magnitude of the measured concentration polarization layer thickness in the 

experiments was very small in the order of 3 x to 8 x  meters. To 

eliminate experimental errors, the analysis of the variances of the experiments 

(ANOVA) were tested in both experiment treatments (without suction, and with 

suction) to investigate the significance of the permeate suction. ANOVA Tables 

for the three tested binary dilute salt solutions showed that the permeate suction 

was significant, and applying the permeate suction was statistically different 

from the case of not applying suction.  

510− 410−

(4) This research showed that calculating the concentration polarization layer using 

the traditional way of using Sherwood number correlation would lead to 

erroneous results due to the changes in the solution properties because of 

suction, that are not considered in this relationship. In addition, it is even 

believed that the use of the correlation of Sherwood number in the literature for 

the traditional high pressure pump design only might be inadequate. This is 

shown by the different values of the coefficients that were deduced by different 

researchers in calculating the relationships in that correlation. 

(5) The use of Peclet number instead, which does not primarily depend on most of 

the changed physical properties of the solutions would eliminate the need to use 

the Sherwood number. The values used in calculating the diffusive Peclet 

number could be easily and appropriately calculated. Although the Peclet 
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number is a function of the solute diffusion coefficient, keeping the temperature 

constant through all the experiments has eliminated the change that could occur 

in the solute diffusivity back to the bulk solution. The velocity term in the Peclet 

number was easily calculated from the experimentally measurable permeate 

flux. The hydraulic diameter coefficient in Peclet number is dependent on the 

membrane structure, which was calculated from the geometrical dimensions of 

the tested membrane. 

(6) The diffusive Peclet number increased with the permeate suction at all the 

experimental testes. The Peclet number followed a pattern of   = + 

+ , with 

eP 2
1xa

xb1 `1c 2R > 0.99, where x is the feed concentration in Mol/l. The terms 

, , and  are coefficients dependent on feed pressure for every binary salt 

solution. The results showed that the permeate flow increased at the same time, 

while the concentration polarization was reduced. This was opposite to the 

traditional case where permeate suction is not used. In the later case, the 

increase of the Peclet number increases the concentration polarization layer.  

1a 1b 1c

(7) Although some researchers used the concentration polarization layer thickness, 

and boundary layer thickness interchangeably (e.g. Lisdonk, C., et al. 2001; 

Sablani S., et al, 2001) they are actually different. At the dilute solutions where 

Schmidt number is >> 1, the concentration polarization layer is imbedded in the 

viscous boundary layer, and its velocity is that the one close to the wall. 

Schlichting (1979) estimated the boundary layer thickness at the porous wall 

suction as a function of Reynold’s number. The calculations for this estimation 

 111



 112

are based on an assumption of a constant viscosity along the membrane width, 

which may not be accurate, especially for highly concentrated solutions.  

(8) It is worthy to mention that the equation of transport in the membrane is 

complex for multi component solutions with more than one anion and one cation 

because more than one cation can be accompanied by one anion or vice versa, 

depending on the ion valence. It has been shown that the concentration 

polarization for individual salts changes substantially with the presence of other 

salts (Srinivasan and Tein, 1970). The solution-diffusion model is valid only for 

binary solution systems, and can not be used for a mixture of salts. To estimate 

the transport in the membrane for a multi component solution, one alternative is 

the use of the Nernst-Plank model, which is for a mixture of n ions (3n+2) 

equations are required (Ghiu and Carnahan, 2003). 

 
5.2 Recommendations 
 

(1) The NF membrane makers traditionally use the standard testing pressure of 70 

to75 psi range. It is suggested that the membrane manufacturers might have to 

change their standard test conditions to 100 to110 psi, since this research 

showed that the greatest impact on the NF membranes was achieved at the 

medium feed pressure which was 100 to110 psi. 

(2) The applications of NF membrane in the water treatment industry are numerous, 

and based on the above-mentioned results using the permeate suction can help 

reduce the concentration polarization layer in NF modules, and increase mass 

transfer coefficient, that will elongate the useful membrane life. 
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(3) One interesting recent application is using two staged NF-NF to desalinate 

seawater is very promising. In this case using the permeate suction at the end of 

both stages may be a way to reduce concentration polarization in this application 

for seawater desalination, which would lead to a prolonged life of the 

membrane, in addition to increasing the NF plant productivity. 

 
 
5.3 Future Researches 
 

(1) It is thought that an economical study of adding the cost of the permeate suction 

pump to the existing traditional module design should be addressed in the 

upcoming researches, and the total water cost of a system should be evaluated 

based on that addition.  

(2) Another proposed future study is determining the minimum suction pressure 

required to reduce the concentration polarization layer, so that the plant 

modification from the current standard system design can be optimized. 

(3) It is also believed that extending the application of the permeate suction to the 

higher concentration of brackish water RO modules, or seawater RO plants can 

critically be investigated, despite the complexity of predicting the mass transfer 

model for highly concentrated mixed salt solutions. 
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