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Abstract 

 

Biofouling, or the formation of biofilm on membrane surfaces, can decrease the 

performance (decreased flux and/or increased operating pressure) of a reverse osmosis 

(RO) membrane system in a water treatment plant.  However, biofilms have been used in 

water treatment systems to remove organic carbon from water via biofilters and 

successfully reduce biofilm growth downstream.  This research investigates the 

possibility that the heterotrophic biofilm present on membrane surfaces removes nutrients 

from the treatment water, thereby making it nutrient deprived as it travels along the 

treatment train.  This may potentially be exploited as an in situ biofilter to actively 

remove dissolved organic carbon (DOC) from the treatment water, thereby protecting 

downstream membrane surfaces from biofouling.  Analysis of fouled membranes from 

the Dunedin water treatment plant in Dunedin, FL indicates the presence of biofilm on 

membrane surfaces in a gradient pattern with a higher level of fouling at the front of the 

element.  Additionally, the community structure of the biofilm at the front of the element 

is unique with respect to the feed-water and downstream membrane material.  

Additionally, a carbon (and nitrogen) mass balance study was performed at the water 

treatment plant in Dunedin, FL through extensive sampling of DOC at multiple locations 

of the RO membrane system over a 20 month period.  Plant-level mass balance results 

indicate a significant pool of DOC was consistently unaccounted for, and presumably 

assimilated or otherwise removed within the membrane system.  Sampling also indicated 
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a removal of total nitrogen.  Additionally, the specific UV absorbance (SUVA) of the 

DOC in concentrate was consistently greater than that of the feed water, suggesting the 

removal of labile aliphatic carbon as the feed water travels through the feed channel of 

the membrane system. 

 

A pilot system was designed and built to operate under plant conditions (flow rate and 

pressure) to test if the biofilm on the surface of the membrane can have a protective effect 

for downstream membrane material.  A fouled membrane element was pulled from the 

plant at the same time and general location as an autopsied element (to determine 

composition on the surface) and used in the pilot system.  Feed and concentrate water 

from the pilot was directed to flat sheet modules for performance testing and surface 

characterization.  This allowed for characterization of the two sections without disturbing 

the membrane element.  Differences in performance and foulant deposition were 

characterized for the two sections as a function of carbon addition and flow rate.  The 

results from this testing suggest the membrane element, or the biofilm on its surface, has 

both a performance and a foulant deposition benefit for downstream membranes as 

compared to feed membrane material.  This benefit also displayed an increasing trend as 

the concentration of organic carbon fed into the system increases. 
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Chapter 1 Introduction 

 

1.1 Membrane Background 

Water is a precious resource and is vital to life and the proper function of bodily systems.  

Due to the increasing scarcity of clean water sources, nontraditional water sources with 

relatively high levels of contaminants are increasingly being used [1-4].  In order to 

remove these contaminants and to meet increasingly stringent water quality regulations, 

there have been technological advances in processes and materials to make clean drinking 

water from these relatively contaminated sources.  One such field of study is membrane 

technology, in which thin films are used to separate and purify gases and/or liquids.  The 

use of membranes to purify water has great promise for increasing the world’s water 

supply, thereby reducing the strain on current water resources. 

 

There are various types of membrane filters, each having characteristic size cut-offs they 

are capable of filtering.  These membrane filters make use of two distinct filtration 

mechanisms.  First, size-exclusion filtration, or the pore flow model, refers to membranes 

with pores of a specific size or range of sizes.  These pores act as a physical barrier, 

allowing particles and/or molecules that are smaller than the pore to pass through while 

blocking all particles and/or molecules that are larger [5].  The second mechanism is 

solution diffusion.  Solution diffusion is different from size exclusion filtration in that 

there are no distinct pores in the membrane surface.  Instead, this type of filtration relies 
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on physical interactions of the membrane material and the materials that compose the 

solution based on their chemical and physical properties.  The material being filtered can 

be said to dissolve in the membrane material and is transmitted through in voids by 

diffusion down a concentration gradient [5].  In order to make use of this mechanism for 

water filtration, the osmotic pressure of the filter water must be overcome to obtain water 

from a diluted phase to a more concentrated phase (i.e. concentrating the water on the 

permeate side and the solutes in the effluent). 

 

Microfiltration, ultrafiltration, and particle filtration are all examples of membranes that 

function by the pore flow model [5].  All these filters are capable of reducing turbidity in 

water by removing suspended particles, bacteria, and viruses.  Reverse osmosis (RO) 

membranes function on the solution diffusion model and are capable of filtering charged 

particles and materials that are at the smallest portion of the membrane filtration 

spectrum, such as monovalent and multivalent ions as small as 1 nanometer and organic 

compounds (although small organics tend to be permeable due to their small size and 

neutral charge) [5].  Nanofiltration membranes are in the grey area between pore flow 

and solution diffusion.  These membranes are capable of removing multivalent ions with 

varying efficiencies and organic compounds, although they suffer from the same 

shortfalls with small, neutral organic compounds as RO membranes, Figure 1-1 [5]. 
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Figure 1-1  Membrane Filtration Spectrum, adapted from Ultrapure Industries [6] 

 

Asymmetric RO membranes were introduced over forty years ago, originating from the 

Loeb Sourirajan process for the production of anisotropic cellulose acetate membrane 

materials [7-9].  These membranes were a tremendous advance due to their ability to 

desalinate water without the use of heated distillation and greatly reduced the amount of 

energy required for pressurized reverse osmosis processes.  This is due to the very thin, 

dense cellulose acetate separation layer of these membranes formed during the phase 

inversion process.  Advantages of these membranes include their resistance to chlorine 

and their smooth surface morphology, which makes them more resistant to foulant 

adhesion [10].  Additionally, their surface is uncharged, leading to more stable 

performance.  However, the cellulose acetate is susceptible to biological degradation.  
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Cellulose acetate membranes also have a narrow pH range of operation, are sensitive to 

high temperatures, and have limited rejection of salts and low molecular weight 

compounds, so more advanced materials were studied, leading to advances in material 

science and engineering.  Thin film composite (TFC) membranes with a dense aromatic 

polyamide separation layer on a porous support are the recent and popular evolution of 

this research [11].  These membranes have a very thin (0.01-0.1 m) charged surface 

giving them higher rejection capabilities of salts and small molecules and the material has 

a wide tolerance to pH.  Their thin separation layer lends them higher flux than cellulose 

acetate membranes, and they are resistant to biological degradation. However, TFC 

membranes are sensitive to chemical oxidants such as chlorine.  Due to the advantages of 

TFC membranes over cellulose acetate membranes, they have become the most 

commonly used material for large scale purification processes [12-14].  RO membranes 

have received a lot of attention for a variety of applications, including drinking water, 

municipal wastewater, and industrial wastewater [3, 4, 15-18].  However, their most 

common application is for drinking water via desalination and/or softening of seawater 

and brackish groundwater sources [19]. 

 

The typical configuration for RO membranes is the spiral wound configuration, Figure 1-

2.  This configuration is a collection of flat-sheet membrane material that is rolled into a 

cylindrical housing.  The individual membrane leafs are separated by feed and permeate 

spacers and glue lines to prevent cross-contamination of the feed, permeate, and 

concentrate streams.  This configuration allows for a large surface area of membrane 
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material, typically 400 ft2 (37.2 m2) for the standard 8” x 40” membrane element, to be 

housed in a small volume that is easily handled and occupies a small footprint. 

 

 

Figure 1-2  Spiral Wound Reverse Osmosis Element 

 

The majority of RO systems in use today are spiral-wound, plug-flow configurations.  In 

order to increase the water yield, multiple stages may be used where the concentrate from 

one stage becomes the feed for the next stage.  This process is known as concentrate 

staging, Figure 1-3.  This configuration (also known as the Christmas-tree array) 

squeezes out as much pure water as is economically feasible from the treatment water and 

minimizes concentrate disposal.  These arrays may be two or three stages, although two 

stage arrays with first stage: second stage pressure vessel ratios of 2:1 and 3:2 being most 

common in drinking water applications [20].  As the membranes separate pure water 

from the solutes and contaminants, the feed-water becomes progressively concentrated 

along the flow axis.  This increase in concentration of solutes and contaminants can lead 
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a loss in rejection performance as well as the deposition and/or adhesion of solutes on the 

membrane surface, resulting in fouling. 

 

 

Figure 1-3  Concentrate Staging Membrane Treatment Design 

 

1.2 Components in Water 

Water can contain a variety of components, each presenting unique challenges for their 

removal in water treatment.  Among these components are salts, ionic species, organic 

and inorganic materials, and metals.  The primary focus of the research presented here is 

carbon, which can exist in an inorganic form (carbonate salts, carbon dioxide) or in an 

organic form.  The removal of inorganic carbon is well studied and not a focus of this 

research.  Organic carbon has implications in the formation of disinfection byproducts, 

membrane fouling, and growth of microorganisms in treatment and distribution systems 

[21-24]. 
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1.2.1 Organic Carbon 

Most of the organic carbon found in natural water resources is natural organic matter 

(NOM) and comes from the decomposition of plants and animals [25].  The presence of 

NOM in solution can lead to high levels of disinfection byproducts, colloidal fouling, and 

biofouling [26-28].  NOM can be divided into two categories, dissolved organic carbon 

(DOC) and particulate organic carbon (POC).  POC can be removed through filtration 

and/or coagulation/sedimentation [29, 30].  DOC is of particular interest in its potential 

fouling effect for membrane filtration.  DOC can be further divided into a biodegradable 

organic matter (BOM) and a refractory fraction, Figure 1-4 [31].  The refractory portion 

is not easily biodegradable and does not significantly contribute to microbial growth, 

although refractory organic carbon can be converted to BOM through oxidation (i.e. 

chlorine disinfection) [32]. 

 

1.2.1.1 Organic Carbon Analysis 

Due to the issues listed above, the amount and type of organic carbon present in treatment 

waters is of interest.  A common method for determining the amount of organic carbon 

present is through the use of a total organic carbon (TOC) analyzer.  This method is 

capable of determining both the amount of carbon present (total carbon) and/or the TOC 

content.  Although this is an effective method for determining the amount of organic 

carbon present, the downfall of this measurement is the lack of information on the type of 

organic carbon in solution.  In order to further characterize the organic carbon measured 

with a TOC analyzer, the specific UV absorbance (SUVA) can be determined by 

normalizing the TOC to the UV absorbance at 254nm.  The value of SUVA for a 
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treatment water has been strongly correlated to its aromatic character, and thus gives 

insight to the amount that is biodegradable [21]. 

 

The biodegradable fraction of organic carbon is typically characterized using 

biodegradable dissolved organic carbon (BDOC) and/or assimilable organic carbon 

(AOC) assays [31].  These measurements are powerful in that they give a direct 

measurement to the amount of organic carbon that is readily degradable by 

microorganisms.  However, BDOC measurements have limitations at low levels (0.1-0.2 

mg/L) and AOC detection is time consuming and requires a high level of expertise [31].  

Additionally, AOC results are typically lower than BDOC results [33]. 

 

 

Figure 1-4  Schematic of carbon fractions 
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1.3 Membrane Fouling 

Membrane fouling is defined as the gradual accumulation of contaminants on a 

membrane surface or within a porous membrane structure that inhibits the passage of 

water, thus decreasing productivity [20].  It remains the most pressing issue for RO 

system operation and leads to higher energy use, greater cleaning frequency and a 

reduction in the lifetime of the membrane.  Cleaning fouled membranes begets 

considerable costs in terms of down time, personnel hours, and chemical costs and 

disposal.  Further, excessive cleaning can damage membranes and decrease their lifespan.  

The contaminants that lead to membrane fouling include precipitated salts (scaling), the 

deposition of colloidal organic materials, and bacterial colonization (biofilms) [20]. 

 

1.3.1 Scaling 

Scaling is the precipitation and/or accumulation of salts that have exceeded their 

solubility limit in solution and typically occurs with sparingly soluble salts [20, 34, 35].  

There are two mechanisms that contribute to the concentration of these solutes exceeding 

their solubility limit.  First, the concentration of solutes increases as the treatment water 

progresses through the treatment train.  Second, the concentration of the salts at the 

surface of the membrane is higher than in the bulk solution due to a phenomenon known 

as concentration polarization, Figure 1-5 [5].  This phenomenon occurs when pure water 

is passed through the membrane and the treatment water immediately on the treatment 

side of the membrane is inadequately mixed creating a laminar boundary layer.  To 

combat this, modifications in the feed spacer can be made to increase turbulence at the 

boundary layer.  Common materials forming scales include calcium carbonate, calcium 
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sulfate, and barium sulfate, as well as many more [36-39].  The precipitation of these 

materials on the membrane surface and within the pores leads to flux decline as well as 

increase in operational costs [39]. 

 

 

Figure 1-5  Salt concentration gradient at an RO membrane boundary layer, i.e. 

concentration polarization 

 

1.3.2 Colloidal Fouling 

Colloidal Fouling is caused by the deposition of organic materials, namely humic 

substances, polysaccharides, and proteins on the membrane surface.  It can be an 

important contributing factor to flux decline, especially when treating waters that have 

high levels of NOM [26, 40, 41]. 
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1.3.3 Biofouling 

Organic, colloidal, and to some extent, inorganic fouling can be controlled by limiting 

their concentrations in solution [42].  However, biofouling is difficult to control due to 

the ability of microorganisms to survive and multiply on a limited amount of nutrients, 

including dead bacteria [43].  As bacteria colonize surfaces, they excrete extracellular 

polymeric substances (EPS) which are composed of polysaccharides, proteins, nucleic 

acids, and other polymeric materials.  This mixture of bacteria and the EPS they secrete is 

known as biofilms [44, 45]. EPS enhances the structural integrity of biofilms by 

providing electrostatic interactions, hydrogen bonds, and nonpolar interactions within the 

matrix.  Biofilms act as an ecological habitat for bacteria, condition the membrane 

surfaces to aid colonization, help shield bacteria from biocides and oxidizing agents, 

retain water for the bacteria, and are resistant to shear forces [43, 44, 46].  Due to the 

ability of bacteria to grow and reproduce, biofilms can accumulate rapidly and seemingly 

suddenly while other types of fouling are typically more gradual [47].  Once attached to a 

surface, the multiplication of bacteria is a function of the concentration of biodegradable 

material in the feed-water [47]. 

 

Like other types of fouling, biofouling can lead to serious issues, such as loss of permeate 

flux, increase in pressure and operational costs, and in some instances, biological 

degradation of the membrane material.  The loss of permeate flux attributed to biofouling 

can be caused by the physical clogging of pores by particulates, allowing less water to 

pass through; and/or the formation of a layer of EPS causing significant resistance [47].  

The resistance increases proportionally to the thickness of the foulant layer, which 
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increases pumping costs and decreases salt rejection due to concentration polarization 

[47].  Studies have shown that some membrane surfaces, such as cellulose acetate, are 

damaged by biofouling [48]. Although no studies have indicated biological degradation 

of TFC membranes, they contain carbon and nitrogen, so the potential does exist [47]. 

 

There are several factors that contribute to membrane fouling, mostly related to the 

solution chemistry, hydrophobicity of the surfaces, and/or the presence of 

microorganisms in the treatment water.  Studies have shown that the morphology of the 

membrane surface also contributes to their fouling potential.  Namely, the degree of 

fouling is directly proportional to the degree of roughness of a membrane surface [10].  

Membrane surfaces with a higher degree of roughness will have an increased surface area 

of the membrane, which enables more bacteria to attach.  Rough surfaces also immobilize 

colloids and/or particles, attracting them to the membrane surface.  Studies have shown 

that polyamide membranes generally have a higher degree of roughness than cellulose 

acetate membranes [10]. 

 

1.4 Fouling Diagnosis 

If a plant is experiencing problems with membrane performance and fouling, it is 

advisable to observe the membrane surface to determine the source of the performance 

issue, thereby enabling better pretreatment design to reduce or eliminate the problem.  In 

order to observe the membrane surface in a spiral wound membrane element, the 

fiberglass shell must be cut open to reveal the membrane surfaces in a process called a 

membrane autopsy.  During an autopsy, tests are performed on the membrane surface and 
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on the material deposited on it to ascertain its chemical and/or biological composition.  In 

a survey of 150 membrane autopsies, biofouling was the most frequently observed 

problem, occurring in approximately 83% of the reverse osmosis plants surveyed [23, 47, 

49]. 

 

1.5 Pretreatment Methods 

To date, much of the research effort has focused on operational fouling mitigation 

strategies and system design improvements.  To this end, efforts have focused on two 

fronts: improved pretreatment of feed water to minimize fouling propensity, and 

membrane material and surface modification to combat fouling [50-53].  Common 

pretreatment methods for RO systems include conventional pretreatment, membrane 

filtration with microfiltration or ultrafiltration, and biofiltration. 

 

1.5.1 Conventional Pretreatment 

Conventional pretreatment for RO systems typically includes an intake, screens for 

coarse filtration, chemical addition paired with coagulation/flocculation, single or double 

stage multimedia filtration, and cartridge filtration, Figure 1-6.  This type of pretreatment 

is capable of delivering high quality feed water for RO systems.  However, fluctuations in 

the raw water quality can be detrimental to the system and can lead to increased turbidity, 

decreased removal efficiency, filter breakthrough, and coagulant on the RO membrane 

surfaces [54]. 
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Figure 1-6  Typical Conventional Pretreatment Scheme 

 

1.5.2 Membrane Pretreatment 

Alternative pretreatment methods for RO include membrane filtration with 

microfiltration (MF) or ultrafiltration (UF) filters.  These pretreatment methods include 

an intake and screening, as in conventional pretreatment.  However, the other 

pretreatment steps are replaced with a MF or UF filter step, Figure 1-7.  This replacement 

has a number of advantages, such as the ability to accommodate very high solids, the 

ability to deliver a consistent RO feed-water flow rate and quality, a significant reduction 

in the fouling rate of the RO membranes increasing their life expectancy, lower 

operational and cleaning costs, lower demand for operator control, and overall higher RO 

flux [50, 54, 55]. 
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Figure 1-7  Typical Membrane Pretreatment Scheme 

 

1.6 Biofiltration 

Traditionally, due to the issues listed above, biofilm formation has been avoided in water 

treatment systems.  The growth of microorganism in a system can lead to several 

unwanted effects such as odor, presence of pathogens, microbial induced corrosion, 

blockage of pipes increasing pumping costs, reduction of heat transfer increasing energy 

costs, etc.  Past solutions to microbial growth in these engineered systems have involved 

disinfection with strong oxidants, such as chlorine or ozone; addition of biocides; or other 

disinfectants [56].  However, addition of oxidants to waters with high levels of 

microorganisms can actually lead to an increase in microbial growth by increasing the 

bioavailability of nutrients in that water [57].  Due to the difficulty in completely 

negating all microorganisms from the treatment process, and in light of research 

indicating that the presence of such organisms could actually be useful, interest has 

grown in the intentional incorporation of biofilms in filters for treatment processes [58-

60].  Microbial growth and biofilm formation in engineered systems are topics of 

growing interest in the fields of water and wastewater treatment, water distribution, water 

resources, as well as myriad other systems. 
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Biofilters use microorganisms, and in particular their enzymes and metabolic reactions, to 

chemically oxidize materials in water (or gas) to inert and/or desirable forms.  For 

example, biofilters are used to remove volatile organic compounds (VOCs), hydrogen 

sulfide, and other mercaptans from the off-gas of wastewater treatments plant by 

oxidizing these materials to relatively inert forms [61-63].  This method effectively 

reduces the odor of the off-gas from the wastewater treatment process.  Additionally, 

biofilters have been used to reduce biofouling in cooling systems and in fish farms [64, 

65]. 

 

The removal of organic carbon from source waters for drinking water treatment 

applications is of particular interest.  This can be achieved of various methods, including 

oxidative reaction, biofiltration, and to some extent, conventional treatment methods [19, 

66-70].  As stated above, biofilters make use of a fixed film of microorganisms on a 

surface for the biological oxidative removal contaminants as the treatment water passes 

over/through the filter, Figure1-8.  For drinking water the presence of organic carbon can 

lead to the formation of disinfection byproducts, colloidal fouling, and biofouling of 

treatment and distribution systems.  The removal of organic carbon from the treatment 

water by a biofilter causes the treatment water to become nutrient deprived.  This 

phenomenon leads to the formation of a distinct microbial flora in the biofilter that is 

unique from the treatment water as well as microorganisms found downstream [71].   
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Figure 1-8  Diagram showing biofilm growth on fixed media in a biofilter 

 

Research has shown that there is a correlation between the level of DOC, and more 

precisely AOC, in a system and the rate of microbial growth [72, 73].  Therefore, the 

removal of AOC from water is a method of reducing the biofouling potential of treatment 

waters.  It has been widely reported that biological processes are able to effectively 

remove AOC [74], which has led to the application of biological processes to engineered 

systems in various forms such as biofiltration. 

 

As stated above, research into the methods traditionally used for potable water treatment 

has shown that disinfection techniques such as chlorination and ozonation actually lead to 

increases in the amount of AOC in a system through the degradation and oxidation of 

more complex organic compounds [64, 74, 75].  The biological stability of water at 

various stages of treatment were investigated by monitoring the amount and change in 

AOC [74].  It was determined that granular activated carbon and biological treatment lead 

to large decreases in the amount of AOC present in the water.  However, advanced 
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oxidation considerably increased the AOC in water.  It was therefore concluded that 

ozonation, if used, should be combined with other treatments such as granular activated 

carbon or biofiltration.  This treatment scheme leads to greatly increased biological 

stability of the potable water in the water distribution system and greatly decreased levels 

of AOC in the finished water.  Otherwise, the level of AOC would be greatly increased 

and the biological stability of the water would be greatly decreased, resulting in regrowth 

in the distribution systems. 

 

Removal of AOC and biodegradable organic matter (BOM) from a water system by 

biological processes has effects on the bacteriological populations and community 

structure [76-79].  In one study, a pilot system was used to investigate the effect of 

biofiltration and pipe material on the amount of biofilm in the distribution pipes and its 

rate of formation [76].  It was demonstrated that chlorination did not effectively reduce 

the total number of bacteria in the water, although it did reduce the cultivatable portion 

and shifted the population of the bacteria present.  It was also reported that planktonic 

bacteria had little effect on biofilm in the systems.  The conventionally treated system 

had higher levels of BOM and a higher rate of biofouling in the distribution system.  On 

the other hand, the system treated with biofiltration had a much lower rate of biofouling 

in the distribution system.  However, it was pointed out that the final level of biofouling 

was approximately the same for both systems even though the rate of biofouling was 

drastically different.  Another difference that was readily apparent upon investigation was 

the community structure of the biofilms between the two treatment schemes. 
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The growth of biofilm in water reuse processes as a function of carbon concentration was 

explored by analyzing the amount of biofilm formed and its community structure [77].  

The biomass and biovolume of the biofilm formed in the secondary effluent without 

biofiltration were consistently greater than the biomass and biovolume of the biofilm 

formed when biofiltration was used.  It was pointed out that higher carbon concentration 

conditions are conducive to higher growth rates of microorganisms and hence a higher 

level of biofilm formation is seen.  Differences in the morphology between the biofilms 

formed under these different conditions were also noted.  Biofilms that were formed in 

low carbon concentrations, i.e. those formed in the system where a biofilter was used 

generally had a higher porosity and a higher surface to volume ratio than biofilms that 

were formed in high carbon concentrations.  It was proposed that this is an adaptation by 

the microorganisms present to enable them to acquire more nutrients.  When differences 

in the biofilms were examined using molecular tools, differences in their community 

structure were observed.  It was concluded that biofiltration is an effective method of 

reducing the mass of biofilm generates; however, this method preferentially selects for 

organisms that are adapted to thrive in nutrient limiting conditions. 

 

1.6.1 Biofilters for Membrane Pretreatment 

Biofiltration has been investigated as a promising pretreatment method for reducing 

downstream membrane biofouling [80-82].  Typical biofiltration processes utilize 

attached-growth microorganisms, or biofilms, in a stand-alone step to remove AOC as 

well as colloidal material which can serve as precursor for fouling.  This removal of 

particulate matter and dissolved nutrients significantly increases effective run time of 
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membrane filtration processes and extends time between required cleanings.  Biofilters 

traditionally require a separate unit containing the filter media (e.g. sand, granular 

activated carbon, etc.) with the biofilm growth on the surface of that media, Figure 1-8.  

This design allows for relatively low pressure units and can accommodate a variety of 

filter media. 

 

Membrane filtration is susceptible to fouling by various means as described above.  In 

order to reduce the impact of biofouling on membrane filtration processes, biofiltration 

has been investigated as a possible pretreatment for membrane filtration [53, 81, 83].  In 

one study, the effect of biofiltration as a pretreatment process for reverse osmosis 

membrane filtration of drinking water was investigated on a pilot scale [83].  In this 

study, a reference system with coagulation, sedimentation, rapid sand filtration, and slow 

sand filtration as a pretreatment regime was used.  The test system consisted of the 

reference system with the addition of ozonation and biofiltration using granular activated 

carbon.  Although only a slight increase in productivity and stability of the test system 

was observed over the reference system, the chlorine demand for the test system was half 

that of the reference system.  Additionally, the biofouling of the test system was also 

approximately half that of the reference system. 

 

In another study, biofiltration was investigated as a pretreatment for membrane filtration 

of waters containing soil-derived humic substances [53].  This was a laboratory scale 

experiment where a pretreatment scheme consisted of a biological filter that contained 

biologically active carbon or iron oxide coated sand.  The results of this study indicated 
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that biofiltration was capable of significantly reducing fouling downstream in the 

membrane filtration process.  Using biofiltration as a pretreatment reduced the fouling 

layer on the membrane by approximately half, and it reduced the cell counts on the 

membrane surface four to five-fold.  Although AOC was not a parameter measured in 

this experiment, the reduction of AOC by the biofilter can be inferred based on the 

reduction on bacteria on the membrane surface. 

 

In an additional lab-scale study, a reverse osmosis membrane filtration system was set up 

at a water reclamation plant to investigate the effect of biofiltration on the filtration 

performance [81].  A biofilter was used as a pretreatment process to remove AOC from 

the feed water before it entered the membrane.  The results from this study indicate that 

the biofilters are capable of decreasing the amount of AOC and DOC with a removal 

efficiency of 40-49% and 35-45% respectively.  This removal efficiency translated to an 

increase of the operation time from 72h without biofiltration to 300h with biofiltration 

before a significant impact on the membrane performance due to microbial growth was 

observed.  This can easily be translated to a decrease in cleaning requirements, an 

extended the life of the membrane, and decreased cost overall. 

 

Although a separate biofiltration step is effective for organic carbon reduction and 

reducing biofouling issues downstream, there are upfront capital expenses, increased 

monitoring and operation, and additional land requirements for the footprint of the 

additional pretreatment process.  Additionally, for a water treatment plant that is looking 
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to implement a pretreatment biofiltration step, the minimum required footprint of land 

must be available on site. 

 

For RO processes, conventional wisdom still dictates that biofouling be eliminated or 

minimized to the fullest extent possible.  While the above approaches are important, a 

third unexplored approach has the potential to dramatically alter our perception and 

approach toward fouling control.  This approach is an in situ biofiltration unit in the 

membrane skids.  This would be comprised of a lead element or lead elements in the 

membrane skid that contain a biofilm layer, Figure 1-9.  This layer would remove AOC 

from solution, thereby depleting the treatment water of AOC.  This would potentially 

have a protective effect on downstream membrane material by reducing the potential for 

biofilm formation and extend the time between membrane cleanings. 

 

 

Figure 1-9  Diagram showing biofilm growth on membrane filter surface 

 

It has been shown that fouling is not uniform throughout the treatment train, and there is 

a general lack of understanding on the spatial variation of fouling with changes in feed-

water characteristics [84].  To improve RO system operations, an understanding of how 
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the microbial and chemical ecology of the feed-water and membrane foulants changes 

from the beginning to the end of the treatment train is needed. 

 

1.7 Research Objectives 

The goals of this research include developing a better understanding of the fouling profile 

throughout a membrane treatment system and developing a better understanding of the 

role of the biofilm present on the membrane surfaces on the reduction of organic carbon 

in the system.  The objectives under these goals are: 

 to characterize the quantity and chemical and microbial composition of the 

foulant layer throughout a membrane treatment plant using available analytical 

tools and microbiology methods 

 to determine if there is a net removal of organic carbon in a RO treatment system 

 to test whether the microorganisms in the foulant layer are responsible for 

removing organic carbon from the feed water 

 to determine the extent to which in situ biofiltration protects downstream 

membranes 

 To test the effects of carbon loading rate on biofilm formation and the protective 

effect of the biofilm on the downstream membrane performance and biofilm 

growth 

 

1.7.1 Experimental Phases 

To achieve the objectives listed above, the research presented here was broken into 

specific phases. 
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1.7.1.1 Phase I: Literature Investigation and Equipment Setup 

A background literature investigation on related topics and studies was performed and 

lead to the equipment setup and experimental designs as well as the background 

information presented in this dissertation. 

 

1.7.1.2 Phase II: Membrane Autopsies at Three Points of Skid 

An autopsy was performed in 2006 under the guidance and with the cooperation of the 

scientists at Orange County Water District in Orange County California.  This autopsy 

was performed to ascertain the types and patterns of fouling present on the membrane 

surfaces.  Three additional membrane autopsies were performed on the lead element of 

the first stage, the lead element of the second stage, and the tail element of the second 

stage.  This beginning, middle, end approach of autopsy analysis is unique in that it gives 

an overall picture of the fouling profile within the treatment plant. 

 

1.7.1.3 Phase III: Plant Analysis of Carbon Mass Balance 

It is believed that the biofilm is responsible for the removal of organic carbon from the 

treatment water, thereby making the treatment water nutrient deprived.  In order to test 

this hypothesis, a carbon mass balance was performed on the Dunedin water treatment 

plant and on individual skids of the treatment plant.  If carbon is indeed being removed 

from the treatment water, this finding would support the hypothesis that the biofilm is 

responsible its removal. 
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1.7.1.4 Phase IV: Flat Sheet Module Pilot Testing with Fouled Membrane Element 

The information gathered in Phase II was used to set the experimental conditions for the 

pilot testing.  During Phase III, a lead element with the foulant layer already present was 

taken from the skid simultaneous to the autopsy.  This element was placed into a pilot 

system with eight flat sheet modules (four on the feed portion and four on the concentrate 

portion).  The pilot was designed to operate under plant conditions and monitor the effect 

of flow rate and carbon loading on membrane fouling and performance before and after 

the membrane element.  This phase was aimed to confirm the biofilm’s responsibility for 

a protective effect of fouling and performance of downstream membrane material. 

 

The results of this research have implications for using biofilm on membrane surfaces as 

an in situ biofilter to protect downstream membrane material.  This research was carried 

out at the Dunedin RO water treatment plant with the full cooperation of the City of 

Dunedin, FL. 
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Chapter 2 Background 

 

2.1 Dunedin Reverse Osmosis Water Treatment Plant 

Located on the central west coast of Florida on the Gulf of Mexico, the City of Dunedin 

has a population of approximately 37,000 residents and an area of approximately 10 sq. 

mi.  Due to complaints of hardness and rust discoloration from the tap water, in the late 

1980’s the city researched options for eliminating these issues.  The options investigated 

included lime softening and membrane softening.  The option chosen was membrane 

softening, and the city currently owns and operates a reverse osmosis water softening 

plant (9.5 MGD design capacity, 3.2 MGD typical flow) that draws groundwater from the 

Floridan aquifer which began operation in 1992. 

 

2.1.1 Dunedin Pretreatment Process 

The city of Dunedin owns and operates a well field with 26 wells at locations throughout 

the city.  The well operation is alternated to avoid over pumping at any given location.  

The water drawn from this well field is pumped to the Dunedin water treatment plant to 

undergo the treatment process.  Prior to filtration through the reverse osmosis 

membranes, the water is subjected to a pretreatment process.  The plant pre-chlorinates 

the raw water as it is entering the plant to oxidize sulfides and iron, extend the life of the 

green sand filters, and reduce the KMnO4 addition.  After pre-chlorination, KMnO4 is 

added to the water at a 3 ppm dosage to oxidize iron, sulfides and help regenerate the 
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oxidative surface of the green sand (next step of pretreatment process). The water is then 

passed through five mixed-media pressurized horizontal multimedia filter units (10.2 

MGD total capacity).  A cross-section of one of these filter units shows the composition 

of the various lavers, Figure 2-1.  The base of the filter unit is a 21.5” layer of concrete, 

upon which a layer of support gravel rests.  Additionally, a 16” under-drain header lies 

between the two layers.  The support gravel consists of four separate layers itself: the 

base layer is 8” thick and contains 1.5” x ¾” gravel; the next layer is 4” thick and 

contains ½” x ¼” gravel; the top layer is 4” thick and contains ¼” x 1/8” gravel; and the 

top layer is 4” thick and contains 0.5” x ¾” gravel. A 6” layer of #6 x #9 silica gravel 

rests on the support gravel.  The next layer is a 15” layer of manganese green sand.  The 

top layer if the filter unit is a 30” layer of anthracite.  The filter unit itself has a 12’ 

diameter, is 31’ long, and has a 16”inlet.  The manganese green sand portion of the filters 

has an oxidizing surface and oxidizes the soluble ferrous ion (Fe2+) to the insoluble ferric 

ion (Fe3+), which precipitates and is subsequently removed.  Additionally, the KMnO4 

added to the water is absorbed by this layer reactivating the oxidative properties of its 

surface.  Thus, it is removed from the treatment water. 
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Figure 2-1  Cross section of a horizontal green sand filter unit: A) 21.5” concrete base, B) 

20” support gravel, C) 6” silica gravel, D) 15” manganese green sand, E) 30” Anthracite, 

F) 16” underdrain header, G) air scour header, and H) 16” inlet 

 

After green sand filtration, the water is passed through seven cartridge filtration units 

containing 5 m polypropylene cartridge filters to remove particulate matter not removed 

in the green sand filters.  A proprietary antiscalant purchased from American Water 

Chemicals, Inc. is added to the filtrate from four of the cartridge filter units, after which, 

high pressure pumps pressurize the water to 100-120 psig for the membrane filtration 

skids.  The effluent from three cartridge filter units bypasses further treatment for 

subsequent blending with permeate water from the membrane treatment train. 
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2.1.2 Dunedin Reverse Osmosis Process 

The plant has four reverse osmosis skids, each composed of two stages arranged in the 

concentrate staging configuration.  The first stage contains twenty six pressure vessels, 

the concentrate streams from which feeds thirteen pressure vessels in the second stage, 

Figure 2-2.  Each pressure vessel contains seven 8½” x 40” membrane elements 

containing 400 ft2 (37.2 m2) of polyamide thin-film composite TFC 9921-S (Koch 

Membrane Systems, Inc.) with 31 mil (0.79 mm) feed spacer.  Due to the high purity and 

aggressive nature of the permeate water, the plant’s finish water is an approximate blend 

of 80% permeate with 20% water from the three cartridge filter units bypassing further 

treatment and the membrane softening stage.  A schematic of the treatment process is 

available in Appendix A. 
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Figure 2-2  Product side of skid detailing the numbering convention for pressure vessels 

 

Historically, the Dunedin water treatment plant has experienced problems with fouling of 

their reverse osmosis membranes, leading to frequent cleanings.  Prior plant evaluations 

and membrane autopsies have indicated the fouling problems at the Dunedin water plant 

originate from biofouling [85, 86]. 
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Chapter 3 Materials and Methods 

 

3.1 Experimental Objectives 

The overall research objectives of this project are delineated in Chapter 1.  In order to 

reach these objectives, the project was divided into phases.  The experimental designs 

and analytical methods described in this chapter were implemented and/or developed to 

carry out these experimental phases, and ultimately meet the research objectives. 

 

3.2 Design of Experiments 

There are several possible parameters that have an effect on the results of 

experimentation.  In order to better understand the results and provide more appropriate 

insight to the questions raised, the effect of the following variables on the formation of 

the biofilm were explored:  

 Operational conditions (cross flow velocity, trans-membrane pressure) 

 Feed water characteristics (oxidation/reduction potential, pH, dissolved oxygen, 

TC/TN, UV254 absorption) 

 membrane surface properties (roughness)  

 

The above variables were tested and/or monitored during specified research phases.  The 

Plant level evaluation of carbon mass balance required the analysis of organic carbon and 

nitrogen concentration and carbon character (UV254 absorption), Chapter 6.  The Pilot 
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system evaluation of the effect of biofilm on downstream membranes required more 

intensive evaluation of operational conditions, characteristics of the water streams, and 

membrane surface properties, Chapter 7. 

 

3.3 Experimental Protocols and Analytical Methods 

This section delineates the details of the procedures used to collect data for further 

analysis in this research. 

 

3.3.1 Carbohydrate Assay 

The carbohydrate assay is designed to quantify the amount of carbohydrates in a sample.  

It was originally designed for the analysis of carbohydrates in seawater, but has been 

adapted for the analysis of carbohydrates in water samples and on membrane surfaces 

[87-89].  To apply this method to biofilms on membrane surfaces, the biofilm must first 

be removed by sonicating a measured area in deionized water for 10 minutes (additional 

sonication times of 5 minutes may be added if biofilm is not completely removed from 

the surface).  The reagents required are a phenol reagent and a sulfuric acid reagent.  The 

phenol reagent is 5% wt/V phenol/deionized water.  This reagent can be prepared by 

dissolving a 25g aliquot of ultra-pure phenol in 500mL deionized water (can be scaled up 

or down according to amount required/ number of samples).  The phenol reagent is stored 

in an all-glass container that will prevent exposure to light.  The sulfuric acid reagent is 

0.5% wt/V hydrazine sulfate/sulfuric acid.  This reagent is prepared by dissolving 2.5g of 

hydrazine sulfate in 500mL concentrated sulfuric acid (can be scaled up or down 

according to amount required/ number of samples). 
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Large test tubes (e.g. 100x15mm) with loose fitting caps are used for this reaction.  A 

0.5mL aliquot of each sample is added to separate test tubes (triplicates should be run if 

sample volume allows).  Next, a 0.5mL aliquot of the Phenol Reagent is added to each 

sample.  In a fume hood, a 2.5mL aliquot of the Sulfuric Acid Reagent is rapidly added to 

the sample from a pipette while vortex mixing.  A pipette pump that will allow complete 

rapid delivery of sulfuric acid reagent should be used, taking care not to break the tube 

with the pipette tip.  The sulfuric acid reagent generates excessive amounts of heat so 

care should be taken with the acid addition.  The tubes are then covered with aluminum 

foil and allowed to cool at room temperature in a dark place for one hour (color is stable 

for 24 hours).  Prior to measuring optical density, the samples should be vortex mixed 

due to some heterogeneity of the sample (allow sample to sit to remove bubbles).  The 

optical density of the samples are measured at 490nm using a UV-VIS 

spectrophotometer. 

 

In order to calculate the carbohydrate concentration of the prepared samples, a calibration 

curve must be generated.  This is done by preparing a 100 mg/L stock solution of 

dextrose (glucose) by dissolving 0.1g dextrose in 1000mL deionized water.  Dilutions of 

the stock solution are performed as per Table 3-1.  The calibration samples are run using 

the same method as delineated above.  Micro-pipetters are used to make the dilutions, and 

polystyrene cuvettes are used to measure absorption spectra. Calibration samples are run 

in triplicate to ensure reproducibility of the data. 
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Table 3-1  Typical dilution series for carbohydrate calibration curve 

mg/mL 
Concentration 

Sugars (Dextrose) 
L Dextrose Stock 

Solution 
L DI 
Water 

100 500 0 
70 350 150 
50 250 250 
30 150 350 
10 50 450 
0 0 500 

 

An example of the samples generated from calibration are shown in order of most 

concentrated to least concentrated from left to right respectively in Figure 3-1. 

 

 

Figure 3-1 Dilution series from calibration curve from most concentrated to least 

concentrated, left to right 
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3.3.2 Total Direct Count 

The purpose of the total direct count is to measure the total microorganisms present per 

unit area of membrane surface (mass may also be used).  The method presented here is 

modified from Standard Methods [90].  In order to complete this analysis, the biofilm 

must first be removed from the membrane surface.  A phosphate buffer is used to remove 

the biofilm and is prepared by dissolving 6.8 g potassium phosphate monobasic and 50 

mg of sodium pyruvate in 500mL deionized water and adjusted to pH 7 with potassium 

phosphate dibasic.  The solution is prepared in a 1000mL autoclavable bottle and 

sterilized by autoclaving at 121°C for 30 minutes.  In order to visualize the 

microorganisms, they are treated with the fluorescent stain 4',6-diamidino-2-phenylindole 

(DAPI) prior to excitation at 350 nm with an epifluorescent microscope.  A stock solution 

of DAPI is prepared by dissolving 10mg in 10mL ultrapure water.  A working stock is 

then prepared by diluting 100L of the stock to 1000L with ultrapure water.   

 

A measured area of membrane sample is placed into a 20mL scintillation vial and 10mL 

phosphate buffer is added.  The sample is then sonicated for 10 minutes (additional 

sonication times of 5 minutes may be added if biofilm is not completely removed from 

the surface).  A 5mL aliquot of the resulting suspension is placed into a vial, ensuring to 

vortex mix prior to removal of any sample, and a 5L aliquot of DAPI working stock is 

added to vial with sample and vortex mixed.  The sample is allowed to sit in dark for 

approximately 5 minutes.  A 10-1 dilution of the sample is prepared by diluting 1mL 

sample to 10mL with phosphate buffer and vortex mixed.  A 1mL aliquot of the 10-1 

sample is filtered through a 0.2m polycarbonate filter disk and washed with an 
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additional 2mL phosphate buffer.  A black filter disk can be used to reduce the 

fluorescent background for analysis.  The filter disk is mounted on a microscope slide by 

immersing in a 10%PBS/glycerin solution and covered with a cover slip.  Additional 

and/or different dilutions may be prepared as needed. 

 

The samples were taken to FCoE-BITT and visualized with a Leica DM2000 compound 

microscope with bright field and fluorescence (with EL6000 external light source); 

5/10/20/40X, 100X long working distance (dry), 100X (oil) objectives, Figure 3-2.  The 

100x oil objective was used for image capture and analysis.  A Canon 35 mm digital 

camera (8 megapixel; Powershot S5 IS, with Martin Microscope MM99 adapter) was C-

mounted to the microscope for image capture.  ImageJ 1.43u software was used for the 

numerical determination. 

 

 

Figure 3-2 Microscope setup in FCoE-BITT used for total direct count 
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3.3.3 Fourier-Transform Infrared Spectroscopy (FTIR) 

The Fourier Transform Infrared Spectroscope (FTIR) is a useful tool for measuring the 

vibrational modes of compounds and their functional groups.  These data give chemical 

information on the material being analyzed.  For membrane material, it can give bonding 

information of the polymer and give evidence on whether the material is being degraded.  

Additionally, it will also yield information on the material that is adsorbed to the surface 

of the membrane, i.e. membrane foulants [91].  The instrument used in this study is a 

Bio-Rad Excalibur Series Model FTS-3000 fitted with a Pike MLRacle diamond press 

attenuated total reflectance (ATR) attachment, Figure 3-3.  The range of data collection is 

4000-400 cm-1 with a resolution of 4cm-1 and a total of 256 scans.  Triplicate spectra 

were captured for each sample. 

 

 

Figure 3-3  Russell Ferlita loading sample in FTIR (left) and sample in ATR-FTIR (right) 

 

3.3.4 Heterotrophic Plate Count 

The purpose of the heterotrophic plate count is to measure the total number of viable 

heterotrophic microorganisms present per unit area (mass may also be used) of membrane 

surface.  R2A agar plates are used to plate the bacteria for counting.  This media is 
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designed for heterotrophic microorganisms in drinking water applications [90].  A 

volume of 700mL R2A agar suspension is prepared in a 1000mL autoclavable bottle as 

per manufacturer’s specifications.  The suspension is dissolved by heating in an autoclave 

at 121°C for 20 minutes, allowed to cool to approximately 70°C, and mixed thoroughly.  

The agar is then sterilized by autoclaving at 121°C for 30 minutes and allowed to cool to 

50-70°C.  A volume of approximately 25-30mL agar solution is poured in each sterile 

petri dish (volume prepared should be enough to prepare an entire sleeve of 25).  Bubbles 

are commonly formed when pouring agar plates and can be mistaken for colonies during 

analysis.  To remove the bubbles, a flame is quickly passed over the hot agar pre-

solidification using a torch.  The petri dishes are covered to prevent contamination and 

allowed to cool and solidify.  Excess condensate can be removed from the tops of the 

petri dishes by quickly removing the top, tapping it on the counter, and flicking moisture 

off.  This should be performed in such a way as to prevent contamination of the agar (i.e. 

in hood under UV light).  Excess petri dishes can be stored in a refrigerator. 

 

A Phosphate Buffer is used to remove the biofilm from the membrane surface and is 

prepared by dissolving 6.8 g potassium phosphate monobasic and 50 mg of sodium 

pyruvate in 500mL deionized water and adjusted to pH 7 with potassium phosphate 

dibasic.  The solution is prepared in a 1000mL autoclavable bottle and sterilized by 

autoclaving at 121°C for 30 minutes. 

 

In order to remove the microorganisms from the membrane surface for analysis, a 

measured area of membrane sample is placed into a 20mL scintillation vial with 10mL 
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phosphate buffer solution and sonicated for 10 minutes (additional sonication times of 5 

minutes may be added if biofilm is not completely removed from the surface).  The 

sample is vortex mixed prior to removal of any sample.  The suspension is diluted to 

obtain solutions with countable numbers of microorganisms.  The following is an 

example of dilutions used for analysis: A 10L aliquot of sample is diluted to 10mL with 

phosphate buffer to obtain a solution that is a 10-3 dilution.  A 1000L aliquot of the 

resulting solution is diluted to 10mL with phosphate buffer to obtain a solution that is a 

10-4 dilution.  A 1000L aliquot of the resulting solution is diluted to 10mL with 

phosphate buffer to obtain a solution that is a 10-5 dilution. 

 

The dilutions prepared above are plated on the R2A agar plates prepared above to achieve 

countable levels of microorganisms from the membrane surface.  A 10L aliquot of the 

10-3 dilution solution is placed on a R2A agar plate, spreading the sample throughout 

using an L-shaped glass rod and a Lazy Suzan resulting in a 10-5 dilution.  The L-shaped 

rod is dipped in ethanol and flame sterilized prior to spreading each plate.  A 10L 

aliquot of the 10-4 dilution solution is placed on a R2A agar plate, spreading the sample 

using an L-shaped glass rod and a Lazy Suzan resulting in a 10-6 dilution.  A 10L 

aliquot of the 10-5 dilution solution is placed on a R2A agar plate, spreading the sample 

with an L-shaped glass rod and a Lazy Suzan resulting in a 10-7 dilution.  The above 

dilutions and plating is an example of an actual analysis and additional and/or different 

dilutions may be prepared as needed.  An example of an agar plate with countable 

colonies is in Figure 3-4. 
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Figure 3-4  R2A agar plate with countable microbial colonies 

 

3.3.5 Protein Assay 

The Lowry Protein Assay is designed to quantify the amount of proteins in a sample.  It 

has a wide spectrum of applicability, such as bulk tissue samples, enzyme digestion, and 

antigen-antibody precipitates.  The method has been adapted for the analysis of proteins 

in water samples and on membrane surfaces [88, 89, 92].  To apply this method to 

biofilms on membrane surfaces, the biofilm must first be removed by sonicating a 

measured area in deionized water for 10 minutes (additional sonication times of 5 

minutes may be added if the biofilm is not completely removed from the surface). 

 

Five reagents are required for the Lowry Protein Assay.  Reagent A is a 4% Sodium 

Carbonate in 0.2N Sodium Hydroxide solution and is prepared by first dissolving 0.8g 

NaOH in 100mL water, then dissolving 4.0g Na2CO3 in 96mL NaOH solution.  Reagent 

B is a 2% Copper Sulfate solution and is prepared by dissolving 0.5g CuSO4 in 24.5mL 

deionized water.  Reagent C is a 4% Sodium Tartrate solution.  It is prepared by 



 

41 

 

dissolving 2.0g Sodium Tartrate in 48mL deionized water (potassium tartrate may also be 

used).  Reagent D is prepared by mixing Reagents A, B, and C in a 100:1:1 ratio.  

Reagent E is a 1:1 mixture of Folin’s Reagent and deionized water.  The volumes of 

reagents can be scaled up or down according to amount required/ number of samples to 

be analyzed. 

 

Small vials, such as 20mL scintillation vials, are used to complete the reaction.  A 2.0mL 

aliquot of sample is added to individual vials, and a 2.0mL aliquot of Reagent D is added 

to each sample (triplicates should be run if sample volume allows).  The mixture is vortex 

mixed and allowed to sit capped and covered for 10 minutes.  A 0.4mL aliquot of 

Reagent E is added to each mixture, vortex mixed, and allowed to sit capped and covered 

for 30 minutes.  The optical density of the samples is measured at 550nm using a UV-

VIS spectrophotometer. 

 

In order to calculate the protein concentration of the prepared samples, a calibration curve 

must be generated.  This is done by preparing a 100 mg/L stock solution of Bovine 

Serum Albumin (BSA) by dissolving 0.1g BSA in 1000mL deionized water.  Dilutions of 

the stock solution are performed using micro-pipetters as per Table 3-2.  A new pipette 

tip should be used for each aliquot to prevent cross contamination and due to the soapy 

nature of the BSA solution.  The calibration samples are run using the same method as 

delineated above.  Cuvettes are used to measure absorption of the samples. Calibration 

samples are run in triplicate to ensure reproducibility of the data. 
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Table 3-2  Typical dilution series for protein calibration curve 

mg/L Concentration 
Protein (BSA)

mL BSA Stock 
Solution mL DI Water

100 10.0 0.0 
75 7.5 2.5 
50 5.0 5.0 
25 2.5 7.5 
10 1.0 9.0 
0 0.0 10.00 

 

An example of the samples from calibration are shown in order of most concentrated to 

least concentrated from left to right respectively in Figure 3-5. 

 

 

Figure 3-5  Dilution series from a protein calibration curve from most concentrated to 

least concentrated, left to right 

 



 

43 

 

3.3.6 Total Dry Mass 

The total dry mass of material deposited on the membrane surface throughout the 

membrane elements is analyzed by scraping the fouled material from a measured area of 

the membrane surface with a straight razor.  The scrapings are placed it into a pre-

weighed weighing dish, then heating it at 105°C overnight before re-weighing.  

Triplicates should be run to ensure reproducibility of the data. 

 

3.3.7 Total Organic Carbon/Total Nitrogen Analysis 

The concentration of total organic carbon and nitrogen are analyzed using a total organic 

carbon analyzer.  The samples were prepared be adding 1mL 2N HCl to 49mL sample to 

acidify and mixed.  The samples are sparged with ultrazero grade air (Air Gas) in the 

instrument for 90 seconds, which removes volatile compounds and the carbonates as 

carbon dioxide (due to acidification).  Acidification may also be performed in the 

instrument automatically negating the need to pre-acidify the samples.  The 

concentrations of non-purgable organic carbon (NPOC) and total nitrogen (TN) were 

then measured in triplicate using a Shimadzu TOC-V TOC analyzer fitted with an auto-

sampler (ASI-V) (Shimadzu Scientific Instruments, Columbia, MD).  The results from 

the instrument are analyzed against a calibration curve prepared from potassium 

hydrogen phthalate and potassium nitrate for determining carbon and nitrogen 

concentrations respectively. 
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3.3.8 UV254 Absorption 

The UV absorbance of the samples was measured at 254 nm in quartz cuvettes using a 

Hach UV/4000U UV/vis laboratory spectrophotometer (Hach Company, Loveland, CO).   

 

3.3.9 Specific UV Absorbance (SUVA) 

The specific UV absorbance (SUVA) of each sample was calculated by dividing the UV 

absorbance at 254 nm (section 3.3.8) by the NPOC concentration (section 3.3.7) using 

Equation 3.1. 

 

NPOC

UV
SUVA nm254  

(3.1) 

 

3.3.10 Microscopic Evaluation 

Qualitative analyses of the membrane surface, cross-section, and foulants were performed 

using scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS).  

The electron microscope used was a Hitachi S-800 field emission high vacuum electron 

microscope fitted with an EDAX energy dispersive spectroscope (EDS).  The SEM was 

used for visual analysis while EDS was used for elemental analysis.  Cross sections of 

membrane material were also prepared for analysis by SEM and EDS using the cryosnap 

method, chapter 4 [93, 94]. 

 

A Digital Instruments Dimension 3100 Atomic Force Microscope (AFM) was used for 

surface visualization and qualitative analysis of clean and fouled membranes.  This 

instrument was also used for quantitative measurements of the surface roughness of clean 
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and fouled membrane samples.  Roughness values were measured as root mean squared 

(RMS) roughness and average (Ra) roughness. 
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Chapter 4 Cryo-Snap: A Simple Modified Freeze-Fracture Method for SEM Imaging 

of Membrane Cross-Sections 

 

4.1 Introduction 

Modern commercial water purification technologies heavily rely on the use of 

membranes for removal of contaminants. Microscale and nanoscale suspended matter is 

removed using microfiltration (MF) or ultrafiltration (UF), while large organic molecules 

and divalent mineral cations removed using nanofiltration membranes (NF).  Reverse 

osmosis (RO) membranes are used to remove monovalent cations. Membrane fouling, the 

gradual accumulation of contaminants on a membrane surface or within a porous 

membrane structure that inhibits the passage of water, is an issue of great concern during 

membrane operations. Contaminants that lead to membrane fouling include precipitated 

salts (scaling), bacterial colonization (biofouling), and deposited organic materials 

(colloidal fouling).  Fouling leads to higher energy use, greater cleaning frequency and a 

reduction of membrane lifetime which decreases overall productivity [95].  Many 

researchers have focused on improving membrane materials, surface properties, and 

system manipulation to manage or mitigate fouling  [96-98].  A detailed understanding of 

the interaction between membranes and foulants is essential to improve membrane 

efficiency and design.  There has also been much work in understanding the various types 

of fouling through detailed characterization of foulants [99-106].  The exact location and 

spatial relationships of the various types of foulants to each other and to the membrane is 
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crucial to appropriately diagnose fouling problems.  Much of this information can be 

obtained if an appropriate cross-section of the membrane material is examined using 

scanning electron microscopy (SEM).  If the sample is carefully prepared, the cross-

sectional view can offer much information in terms of the micro- and nano-scale internal 

structures of the membrane, as well as the spatial relationship of foulants with respect to 

the membrane. 

 

Membranes used for water purification may be isotropic (a single matrix) or anisotropic 

(a composite of polymer layers), and may be applied to a support backing.  In the latter 

case, the dissimilarity in material properties and mechanical strengths of the layers can 

lead to differential deformation when a shearing force is applied, thereby distorting the 

structure.  Polymers used for membranes may be relatively elastic and thus resist sharp 

force cleavage.  Mechanical cuts using sharp force devices (razor blades or knives) create 

compression, tearing and localized heating which can severely distort the fine structures 

of the membrane.  Relatively clean cross-sections may be obtained  using special 

equipment such as a focused ion beam or an ultramicrotome [107, 108]; however, these 

methods require laborious sample preparation and expensive equipment.  A commonly 

used approach is the direct freeze fracture method, where the membrane sample is frozen 

in liquid nitrogen to make it brittle and quickly broken [105].  In many cases, the 

resulting fracture plane can be very uneven, yielding poor results.  Furthermore, some 

membrane polymers such as polypropylene are difficult to fracture because they do not 

become sufficiently brittle even when submerged in liquid nitrogen.  Finally, the direct 

freeze fracture method is difficult to apply to membranes with a support backing such as 
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reverse osmosis membranes.  In these instances, the membrane merely bends or rips, but 

does not cleave cleanly.  Because the method is unable to break the tough RO membrane 

backing, some researchers have suggested manual removal of the backing prior to freeze 

fracture.  Such excessive manipulation invariably distorts the membrane and likely 

significantly modifies or damages the foulant layer.   

 

Biologists have employed a variation of the freeze fracture method for the preparation of 

biological samples and cellular membranes for cross-sectional analyses in which the 

sample is first embedded in a medium which is subsequently frozen and fractured with a 

sharp knife.  A replica preserving nanoscopic detail is then made from the frozen surface 

which is examined by SEM [109].  Though producing clean cross-sections that preserve 

sample detail, this procedure is rather lengthy and requires special equipment for sample 

preparation.  Since membrane materials are typically more dimensionally stable than 

individual cell membranes, we investigated a more simplified approach by dispensing 

with replica manufacture and directly preparing the cleaved membrane surface for SEM 

observation. Here, we present a modified freeze fracture approach (termed Cryo-snap), 

for production of membrane cross-sections.  This method involves embedding the 

membrane sample in a liquid medium (water) contained in a glass tube, cryogenically 

freezing the medium, then cleaving the sample by manually breaking the tube and frozen 

cylinder of embedding medium.  Following removal of the medium by vacuum 

sublimation, the cleaved membrane surface is prepared for examination by SEM.  The 

method was tested on a variety of membrane types of both isotropic compositions 

(polypropylene hollow fibre MF) and anisotropic compositions (thin film composite RO 
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membranes) with materials of dissimilar mechanical properties.  The effect of hydration 

on cleavage of a hollow fibre MF membrane was also investigated. 

 

4.2 Experimental 

4.2.1 Materials and Sample Preparation 

Three membrane types were used for this study: 1) an uncoated PVDF UF membrane 

prepared by Membrane Technologies Research, Inc. (Menlo Park, CA); 2) a Koch TFC 

9921-S thin film composite polyamide RO membrane (Koch Membrane Systems, Inc., 

Wilmington, Massachusetts); and 3) a Siemens CMF-S 0.2um polypropylene hollow 

fiber MF membrane (Siemens Water Technologies, Warrendale, PA).  Membrane 

samples that were expected to have biological material present (biofoulants) were fixed 

with a 2.5% glutaraldehyde solution to prevent distortion of the biological sample and 

loss of information [109].  In the case of microporous membrane materials, we also 

examined the impact of pore hydration on the quality of the membrane cross-section.  

Pore spaces of virgin MF hollow fiber membrane material were fully hydrated by pulling 

ethanol through to the fiber lumen, followed by water, using syringe and needle. 

 

4.2.1.1 Razor Sectioning 

Samples of membrane materials obtained from bulk flat sheets or from fibers were 

manually cross-sectioned using a clean, sharp razor blade, and the edge of the cut section 

was directly examined perpendicular to the cut plane by SEM.   
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4.2.1.2 Direct Freeze Fracture 

A small membrane sample was submerged in liquid nitrogen for approximately 5 minutes 

to ensure it was completely frozen.  It was then removed from the liquid nitrogen and 

immediately snapped with two pairs of tweezers.  The cleaved sample was dried under 

vacuum to remove any excess ice and water from the freeze fracture process, and the 

cleaved edge examined perpendicular to the cut plane by SEM. 

 

4.2.1.3 Cryo-Snap 

For flat sheet membrane materials, a thin sample strip (maximum dimensions 6mm x 

50mm) was obtained at the location of interest using a sharp razor blade or scissors.  

Hollow fiber membrane samples were cut to length (maximum of 50mm) from bulk fiber 

in a similar fashion.  The sample was  submerged  in an aqueous medium in a glass tube 

(6 x 50 mm Fisher brand flint glass test tube) previously scored using a carbide knife or 

glass file to permit easy manual fracturing.  The tube was slowly submerged in liquid 

nitrogen over approximately a one minute period (freezing the sample too quickly tends 

to cause premature fracturing of the tube) and left in liquid nitrogen for an additional two 

minutes to ensure thorough freezing.  Following freezing, the glass tube was removed 

from liquid nitrogen and immediately fractured at the score by manually snapping it in 

two.  Insulated gloves or paper towels were used to hold the tube to prevent injury and 

prevent thawing.  Snapping the glass tube and ice was observed to cleanly sever the 

membrane sample.  The tube fragments containing the cleaved embedded sample were 

placed under vacuum to remove the ice by sublimation, which avoided the potential for 

damage that would otherwise be caused by capillary forces generated by the retreating 
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front of liquid water.  Once completely dried, the membrane sample was removed from 

the glass tube and examined perpendicularly to the cut plane by SEM. 

 

4.2.1.4 SEM Analysis 

Prepared membrane samples were fixed to a sample mount using conductive carbon tape.  

The samples were coated with a layer of approximately 5 to 10 nm of gold using a 

Hummer X sputter coater to increase sample conductivity.  A Hitachi S800 field emission 

scanning electron microscope fitted with an EDAX energy dispersive X-ray spectrometer 

(EDS) was used to examine the prepared membrane sample cross-sections. 

 

4.3 Results and Discussion 

4.3.1 Ultrafiltration Membrane 

The cross-section of the UF membrane prepared using the razor sectioning method (Fig. 

4-1a) shows obvious signs of deformation: the image lacks anticipated micro-structure 

detail.  Razor sectioning apparently resulted in tearing and deformation of the micro-scale 

structure.  Localized heating may have resulted in what appears to be micro-scale melting 

and loss of detailed structure.  It was also observed that the top layer of the membrane 

folded over while sectioning, further resulting in the loss of observable detailed structure.  

 

The direct freeze fracture method (Fig. 4-1b) produced a cross-section with much 

improved resolution and a significant decrease in sample deformation compared to the 

razor sectioning method.  However, large pieces of rough membrane edges can be seen, 

indicating that some level of deformation occurred with this method as well. 
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By comparison, the Cryo-snap method produced a clean fracture plane with much 

improved resolution of the membrane material over either of the other two methods (Fig. 

4-1c).  Cleavage by this method produced the least observable damage to the UF 

membrane material 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 4-1  Cross-sectional SEM image of uncoated PVDF ultra-filtration membrane 

prepared using  a) razor sectioning, b) freeze fracture, and c) Cryo-snap method. 
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4.3.2 Reverse Osmosis Membrane 

Cross-sections of thin film composite RO membranes present an especially difficult 

situation, as the cleavage plane extends through layers of materials with disparate 

mechanical properties.  The SEM image obtained from the RO membrane sample cleaved 

using the razor sectioning method exhibited similar  artifacts to those observed using this 

method with the ultrafiltration membrane (Fig. 4-2a), including severe mechanical 

deformation. 

 

The RO membrane sample prepared by the direct freeze fracture method exhibited a 

significant decrease in sample deformation and increased resolution (Fig. 4-2b); however, 

the fracture plane was still rough and improvement would be desirable.  In both cases, the 

non-woven backing was difficult to sever cleanly. 

 

By contrast, the image of the RO membrane cleaved using the Cryo-snap method 

exhibited a clean fracture which preserved detailed structural information in all of the 

composite layers along with the foulant layer (including biofoulants) at the membrane 

surface (Fig. 4-2c).  A clean and relatively smooth cleavage was obtained through the 

entire matrix despite the dissimilarity in mechanical properties of the various membrane 

layers and the non-woven backing.  The undistorted cross-section allowed for detailed 

analysis with sufficient spatial resolution to determine foulant composition at specified 

locations, using tools such as EDS (Fig. 4-2d). 
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(a) 

 

(b) 

 

(c) (d) 

Figure 4-2  Cross-sectional SEM image of Koch polyamide reverse osmosis membrane 

prepared using a) razor sectioning, b) freeze fracture, c) Cryo-snap method, and d) the 

EDS spectrum of a portion of the foulant layer from c (indicated by circle) 

 

4.3.3 Hollow Fiber Membrane 

Razor sectioning of the isotropic hollow fiber 0.2 um polypropylene MF membrane 

produced a cross-section with severe artifacts. The SEM revealed macroscopic distortion 

of the shape of the fiber as well as severely altered membrane microstructure (Fig. 4-3a).  
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It is evident that membrane structural information, material location, and foulant-

membrane interaction information has been so altered as to render it completely useless.   

 

MF material cleaved with the direct freeze fracture method (Fig. 4-3b), though not 

displaying the gross macro-structure distortion observed with the razor sectioning 

method, appeared microscopically rough and distorted.  The porous polypropylene did 

not solidify completely in liquid nitrogen; breaking the fiber resulted in significant 

mechanical stretching and tearing, producing a very ragged edge to which shredded 

material may be observed clinging.  These severe surface distortions would preclude 

analysis of pore size or material deposition along the cleavage plane. 

 

In contrast, using the Cryo-snap method to cleave the MF hollow fiber material produced 

a superior cleavage surface compared to the other methods (Fig. 4-3c).  The fiber 

macroscopic structure is completely whole, and the cleaved surface exhibits considerably 

less roughness associated with mechanical stretching and tearing.   This approach 

allowed for better analysis of the membrane structure and definition of potential foulant-

membrane interactions. 

 

Failure of the Cryo-snap method to achieve a completely clean cleavage of the hollow 

fiber membrane was hypothesized to be due to the presence of air in the virgin membrane 

material pore spaces.  Polypropylene is highly hydrophobic; thus immersing the virgin 

MF fiber in water resulted in retention of air in the pore spaces.  Subsequent freezing 
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resulted in close contact between the polypropylene and water ice at the outer and lumen 

surfaces; however, the pore spaces were not likely hydrated.  Thus, during cleavage, the 

material inside the membrane would be subjected to similar stresses as during dry freeze-

fracturing, resulting in similar elastic deformations and tearing. 

 

In order to prevent this, the pore spaces of the hollow fiber MF material were thoroughly 

hydrated by first infusing with ethanol to wet the polypropylene followed by water to fill 

the pore spaces. 

 

When the membrane was fully hydrated and the fiber again sectioned using the Cryo-

snap method, a nearly perfect cleavage surface was obtained (Fig. 4-3d).  It is believed 

that in this case, the water in the filled pore spaces in the membrane matrix and water 

external to the fiber froze in a continuous matrix into which the polypropylene polymer 

was embedded.  When the ice matrix was snapped, the fracture plane began on the 

outside portion of the sample and extended though the lattice plane formed by the pore 

ice, resulting in a very clean cleavage surface.  With air in the pore space, the fracture 

plane was interrupted when it met the “dry” membrane material, resulting in more 

mechanical tearing and roughness at the cut surface. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-3  Cross-sectional SEM image of virgin polypropylene hollow fiber MF 

membrane material prepared via a) razor sectioning, b) freeze fracture, c) Cryo-snap 

method without membrane pore hydration, and d) Cryo-snap method with membrane 

pore hydration. 

 

4.4 Conclusions 

The Cryo-snap modified freeze-fracture method is a quick, easy means by which clean 

cross-sections of a wide variety of water processing membrane materials may be obtained 
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for SEM analysis without expensive equipment or extensive sample preparation.  The 

method minimizes the number of introduced artifacts compared to traditional means of 

sample cleavage and because it involves minimal sample handling to obtain the cross-

section, it is extremely useful when it is desirable to preserve delicate fouling layers.  Due 

to the nature of the method, there is a practical limit to the size of the sample that can be 

prepared (less than 6mm wide), but this is not particularly objectionable when working 

with membrane details at the micro to nanoscale.  
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Chapter 5 Characterization of Membrane Fouling by Autopsies: A Plant Scale 

Evaluation 

 

5.1 Introduction 

The City of Dunedin water treatment plant has historically suffered from biofouling 

issues on their membrane surfaces [85, 86].  To diagnose the extent and type of fouling 

present on the membrane surface, a membrane autopsy was performed in 2006 on the 

lead element of skid IV from the treatment process by Micromem of Orange County 

Water District (OCWD) in Orange County, California [84].  At a later date, three 

additional membrane autopsies were performed on elements taken from three different 

portions of the Dunedin Water Treatment plant to determine the extent and type of 

fouling present at three different portions of the treatment train.  The first membrane 

autopsy was performed on 31 Mar 2010, and the element (Serial# SE24421) was taken 

from the lead position of Skid IV, Stage I, pressure vessel 24.  The second membrane 

autopsy was performed on 07 Apr 2010, and the element (Serial# SE24426) was taken 

from the lead position of Skid IV, Stage II, pressure vessel 38.  The third membrane 

autopsy was performed on 14 Apr 2010, and the element (Serial# SE23890) was taken 

from the tail position of Skid IV, Stage II, pressure vessel 39. 
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5.2 Autopsy Procedure 

The membrane element for autopsy was removed by the operating staff at the Dunedin 

water treatment plant.  External evaluations were performed on site.  The membrane 

element was then wrapped in a large garbage bag and placed on ice in a cooler for 

transport to the University of South Florida Tampa campus.  The external fibreglass shell 

and plastic end caps were removed using an angle grinder fitted with a diamond blade. 

 

Once the casing and end caps were removed from the membrane element, it was unrolled 

to expose the leaves and samples were taken in triplicate using a razor blade from the 

front, middle, and end portions of the membrane element.  The analyses performed on the 

samples taken were protein and carbohydrate concentration, total dry mass, heterotrophic 

plate count, total direct count, Fourier transform infrared spectroscopy, and microscopic 

analysis (scanning electron microscopy and atomic force microscopy).  These techniques 

are further described in section 3.3. 

 

5.3 Autopsy Results From Orange County 

The first autopsy performed for this study was done in Orange County in California in 

2006 [84].  The autopsy was performed by the author (Russell Ferlita) and Joshua 

Goldman in conjunction with and under the supervision of the scientists at OCWD.  The 

results of this autopsy are presented here.  Differences in analysis procedures from 

section 3.3 are noted where appropriate.  This autopsy was performed both for an 

evaluation of fouling for the Dunedin water treatment plant and as a training for the 

proper procedures and methods for membrane autopsy and surface foulant evaluation. 



 

61 

 

5.3.1 External Evaluation 

The membrane autopsied was a KOCH TFCS 9921S (Serial number KM813295-1021) 

and was removed from the lead position of skid IV, stage I, pressure vessel 1.  Visual 

inspection of the membrane element revealed some deposition of foulant material on the 

feed channel of the element, Figure 5-1. 

 

 

Figure 5-1  Membrane element autopsied in Orange County showing the feed channel 

with debris deposited 

 

The fiberglass shell and plastic end caps were removed using a circular power saw.  The 

leaves were unrolled and measured samples were taken from areas corresponding to the 

front, middle, and end sections of the membrane element.  Visual inspection of the 

membrane surface revealed a slight buildup of foulant.  This buildup appeared most 

Debris noted on 
feed channel of the 
membrane module 
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pronounced to least pronounced from front to end respectively.  Additionally, the pattern 

of the feed spacer was discernable on the surface of the membrane material, Figure 5-2. 

 

 

Figure 5-2  Membrane leaf surface indicating flow direction (top) and areas of the 

membrane sampled, front (bottom left), middle (bottom center), and end (bottom 

right)(scale in cm) 

 

5.3.2 Protein and Carbohydrate Analysis 

Proteins and carbohydrates indicate the presence biological debris and/or living 

microorganisms.  Their concentrations in the foulant material on the membrane surfaces 

were measured, and the results are in Table 5-1. 
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Table 5-1  Concentrations with standard deviations of protein and carbohydrate and the 

ratio of carbohydrate to protein for indicated sample area 

Protein (g/cm2) 
Carbohydrate 
(g/cm2) Carbohydrate/Protein 

Section Average Stdev Average Stdev Average Stdev 
Front 32.2 4.3 42.3 13.3 1.32 0.5 
Middle 17.1 4.0 15.6 1.5 0.92 0.2 
End 14.2 2.3 21.0 2.8 1.48 0.3 

 

The data in Table 5-1 indicate approximately a 2-fold decrease in protein from the feed to 

the end portions of the membrane surface.  Statistical analysis of this decrease indicates 

the decrease observed is significant.  However, the decrease seen from the front to middle 

section of the membrane surface is not statistically significant.  Additionally the pattern 

of carbohydrate concentration resembled that of the protein concentration on the 

membrane surface, indicating a decrease of carbohydrate concentration from the front to 

end sections of the membrane surface.  However, due to the variability observed in the 

test, the results are not statistically significant at the 95% confidence interval from the 

front to end and the middle to end sections.  The carbohydrate/protein ratio did not 

exhibit a clear trend from the front to end portions of the membrane surface.  The protein 

and carbohydrate concentrations per unit area for the membrane sections are represented 

graphically, Figures 5-3 and 5-4 respectively.  Additionally, the carbohydrate/protein 

ratio for each section of the autopsied membrane is represented, Figure 5-5. 
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Figure 5-3  Concentration of protein per unit area as a function of membrane section 

sampled (error bars indicate standard deviation) 

 

 

Figure 5-4  Carbohydrate concentration per unit area for each section of membrane 

sampled (error bars indicate standard deviation) 
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Figure 5-5  The carbohydrate/protein ratio for each section of the membrane sampled 

(error bars indicate standard deviation) 

 

5.3.3 Total Direct Count and Heterotrophic Plate Count 

The total number of microorganisms (total direct count) and the total culturable 

microorganisms (HPC) on each membrane section were measured as per the method in 

section 3.3.  The results from these analyses are in Table 5-2. 

 

Table 5-2  Number of total bacteria (# x 106/cm2) and heterotrophic bacteria (# x 

104/cm2) on indicated sample area 

  Total Bacteria   
Total Aerobic 
Heterotrophs 

Section Average Stdev   Average Stdev 
Front 2.98 0.431 1.16 0.461 
Middle 1.51 0.273 4.80 0.295 
End 2.43 0.359 0.0132 0.0229 
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The determination of the number of total bacteria on the feed and end portions of the 

membrane element indicated approximately the same number present by statistical 

analysis.  However, the middle portion of the membrane element had a significantly 

lower number of bacteria present.  The lack of a gradient of bacterial numbers across the 

surface suggests deposition of microorganisms on the surface rather than growth. 

 

The determination of the total aerobic heterotrophs (HPC) present revealed a much lower 

number of culturable microorganisms present on the membrane surface than the total 

direct count revealed.  The front section of the membrane element had a significantly 

higher concentration of heterotrophic bacteria than the end section of the membrane 

surface.  Additionally, the middle section of the membrane surface had a significantly 

higher concentration of culturable bacteria than the end section.  Assuming the number of 

bacteria in the feed-water is constant, the number of heterotrophic microorganisms across 

the leaf should be approximately constant.  The gradient observed could be caused by the 

growth of microorganisms on AOC with a concentration low enough to be significantly 

reduced or removed by the biofilm at the front section of the membrane. 

 

The pattern of total aerobic heterotrophic microorganisms observed on the membrane 

surface is consistent with the pattern of protein and carbohydrate concentrations observed 

on the respective sections with higher concentration at the front section and lower 

concentration at the end section.  The number of total bacteria and heterotrophic bacteria 

present on the membrane surface is represented graphically in Figure 5-6. 
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Figure 5-6  The number of total microorganisms and heterotrophic microorganisms on 

the indicated sections of membrane surface (error bars indicate standard deviation) 

 

5.3.4 ATR-FTIR 

The membrane samples collected were dried with compressed air passed through a 

Balston drier prior to analysis by Fourier transform infrared spectroscopy (Magna 550, 

Thermo Electron, Madison, WI).  Virgin membrane material was sonicated for 30 min in 

1 mM NaCl (solution was changed after 15 min).  The spectra were obtained using 

attenuated total reflectance using a 45º single reflection germanium (Ge) ThunderDome 

internal reflection element (IRE) (Thermo Spectra-Tech). 

 

The ATR/FTIR spectra of each section of membrane surface were taken in triplicate.  

These spectra are displayed between 4000 cm-1 and 650 cm-1 along with a reference 

spectrum of virgin membrane material in Figure 5-7.  When comparing the spectra from 
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the fouled sections of the membrane surface to that of the virgin membrane material, it is 

apparent that the fouled spectra are dominated by protein and carbohydrate.  Vibrational 

bands at 1650 cm-1 and 1550 cm-1 are visible for each section and correspond to protein 

vibrational bands for the amide I (C=O stretch) and amide II (N-H bend).  There is also a 

peak associated with the C-O and C-O-C stretch of polysaccharides visible at 

approximately 1060 cm-1 for each of the membrane sections.  Additionally, there is a 

broad O-H stretching band (or possible N-H stretch from secondary amines) at 

approximately 3350 cm-1 and aliphatic CH2 and CH3 bands visible below 3000 cm-1 for 

each of the membrane sections.  Analysis of the spectra from each section revealed no 

indication of aluminum silicate, silica, calcium carbonate or calcium sulfate on the 

membrane surface. 



 

69 

 

 

Figure 5-7  ATR-FTIR spectra for A) front, B) middle, and C) end sections; D) difference spectra for each section with the 

reference spectrum 



 

70 

 

The difference spectra (obtained by subtracting reference spectrum from membrane 

section spectrum) for each of the membrane sections along with a reference spectrum 

from the virgin membrane material are displayed between 2000 cm-1 and 650 cm-1 in 

Figure 5-8.  These spectra display differences in the peak at approximately 1060 cm-1, 

which corresponds to the presence of polysaccharides.  The differences observed suggest 

the highest level of fouling at the front section, and similar levels of fouling at the middle 

and end sections of the membrane surface.  These results compliment the protein, 

carbohydrate, and microbial results reported above. 

 

 

Figure 5-8  Difference spectra for each membrane section and reference spectrum 
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5.3.5 Microbial Community Profile 

A MoBio Soil DNA extraction kit was used to recover DNA from feed-water, green sand 

filter backwash, and membrane samples from the front, middle, and end sections of the 

membrane element.  Extracts were amplified using a fluorescent tagged Universal 16S 

rRNA PCR primer, then cut with Dde1 endonuclease.  The fragments from digestion 

were separated using capillary electrophoresis with fluorescent detection.  This analysis is 

known as terminal restriction fragment length polymorphism (TRFLP). 

 

Since this method yields fragment length information only, the number of fragments 

yields the minimum number of organisms present and no information as to the type or 

species of the organisms.  The restriction enzyme is specific in its digestion site so the 

information yielded gives differences in the microbial communities of the samples 

analyzed. 

 

The fragment lengths present for the backwash water, feed-water, and each section of 

membrane surface are shown from base pair lengths 34 through 215 in Figure 5-9 and 

base pair lengths 216 through 270 in Figure 5-10. 

 

The green sand filter backwash and feed-water samples have only 2 fragments in 

common, indicating there is a different community structure in the filter and feed-water.  

Among the membrane sections, there are 14 fragments that occurred in common between 

the feed-water and one or more membrane sections, suggesting the feed-water could be a 

source of microorganisms observed in the analysis. 
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Further analysis of the capillary electrophoresis results indicate 24 front section 

fragments, 13 middle section fragments, and 12 end section fragments were absent from 

the feed-water.  These results suggest that organisms present at the front section of the 

membrane element arose from growth of specific organisms rather than by simple 

deposition from the feed-water.  Additionally, the microbial community structure of the 

feed-water is most related to that of the middle and end sections and least to that of the 

front section of the membrane element.  Also, the microbial community structures of the 

middle and end sections are closely related to each other and are different from that of the 

front section. 
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Membrane 
Samples   

Fragment 
BP Backwash 

Feed 
Water Front Middle End 

34           
37           
53           
54           
55           
56           
62           
86           
89           
90           
96           

116           
117           
127           
128           
129           
130           
131           
132           
133           
134           
135           
136           
137           
143           
146           
208           
215           

Figure 5-9  Capillary electrophoresis results of base pair lengths 34 through 215 (shaded 

regions indicate presence of fragment of specified length in sample indicated) 
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Figure 5-10  Capillary electrophoresis results of base pair lengths 216 through 270 

(shaded regions indicate presence of a fragment of specified length in sample indicated) 

 

The microbial community on the front section of the membrane element displayed 

fragments that were distinct from the feed-water and the other membrane sections.  This 

suggests the microorganisms on the front section have grown and become specialized.  

This combined with the result that the communities on the middle and end sections are 
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similar to the feed-water suggests the community on the front section is growing off of 

and depleting nutrients in the feed-water, whereas the microorganisms on the middle and 

end sections result from deposition from the feed-water. 

 

5.3.6 SEM/EDS 

The surface and cross-section of the membrane sections were viewed and analyzed by 

scanning electron microscopy and energy dispersive spectroscopy, section 3.3 and 

chapter 4.  The surface and cross-section of each membrane section as well as the EDS 

spectrum of the foulant on the front section are shown in Figure 5-11. 

 

 

Figure 5-11  Cryosnap images of front (top left), middle (top right), and end (bottom left) 

sections; and EDS spectrum for foulant on front section (bottom right) 
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5.3.7 AFM 

The surface morphologies and roughness of the fouled sections of the membrane element 

as well as the virgin membrane material were characterized by tapping mode AFM using 

a TM Microscopes CP AutoProbe (Sunnyvale, CA).  A representative AFM image from 

each section is shown in Figure 5-12. 

 

 

Figure 5-12  AFM top view images for autopsied membrane front (top left), middle (top 

right), and end (bottom left) sections as well as virgin membrane material (bottom right) 
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The AFM images of the front, middle, and end sections appear visually smoother than the 

virgin membrane material.  The surface roughness of the membrane sections and virgin 

membrane material were analyzed and the results are in Table 5-3. 

 

Table 5-3  Roughness data for indicated membrane samples 

Membrane RMS (nm) Stdev Ra (nm) Stdev 

Front 52.1 21.4 38.7 13.9 
Middle 41.2 15.4 30.8 10.7 
End 30.3 4.4 23.4 3.1 
Virgin 31.8 22.2 23.7 17.5 

 

The data in Table 5-3 indicate the root mean squared (RMS) and average (Ra) roughness 

values for the membrane samples.  The roughness values were the largest for the front 

section and smallest (and most similar to virgin membrane material) for the end section.  

However, statistical comparison of the data revealed no difference in these values at the 

95% confidence interval due to the variability of the data.  The samples do appear 

visually different, but these differences could not be confirmed through roughness 

analysis. 

 

5.4 Plant-Wide Autopsies 

Three membranes were taken for autopsy from the Dunedin water treatment plant on 

three separate dates.  The first membrane (membrane 1) was taken on March 31, 2010 

from the lead position of Skid IV, Stage I, pressure vessel number 24, serial number 

SE24421.  The second element (membrane 2) was taken on April 7, 2010 from the lead 

position of Skid IV, Stage II, pressure vessel number 38, serial number SE24426.  The 
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final element (membrane 3) was taken on April 14, 2010 from the tail position of Skid 

IV, Stage II, pressure vessel number 39, serial number SE23890.  A map of the pressure 

vessel numbering is in Figure 2-2. 

 

The analyses performed on the samples collected include carbohydrate and protein 

concentration, total direct count, heterotrophic plate count, Fourier transform infrared 

spectroscopy, and microscopic evaluation (scanning electron microscopy with EDS and 

atomic force microscopy).  Details of these analyses are available in section 3.3. 

 

5.4.1 External Evaluation 

The external fiberglass shell and the feed channel of the membrane elements were 

inspected upon removal for autopsy.  Images of the feed channel for each of the autopsied 

membranes are in Figure 5-13. 

 

Visual inspection of the feed channel for each of the autopsied membranes revealed 

deposition of debris for membrane 1 and no discernable deposition of debris for 

membranes 2 and 3. 
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Figure 5-13  Feed channel for membrane 1 (left), membrane 2 (middle), and membrane 3 

(right) 

 

5.4.2 Dry Mass Analysis 

The total dry mass of the foulants on the surface of the three autopsied membranes were 

characterized with the methods as per section 3.3.  The results of the total dry mass for 

each of the membranes are available in Table 5-4. 

 

The total dry mass for membrane 1 displayed a decreasing trend from the front to end 

sections.  This result indicates the level of fouling decreases from the front to end 

membrane surfaces.  The results from membrane 1 displayed a similar trend to membrane 

1, indicating a decrease in total mass from the front to end surfaces.  The results from 

membrane 3 displayed the opposite trend from membranes 1 and 2.  This membrane 

displayed an increase in the total mass of foulant from the front to the end sections of the 

membrane surface.  These analyses portray a general picture of the membrane surfaces 
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throughout the skid and indicate a general decrease in foulant concentration for at least 

the first half of the membrane surfaces and an increase in the foulant concentration for up 

to the second half of the membrane surface of the skid.  The data presented in Table 5-4 

are represented graphically in Figure 5-14.  This graph allows for easy visualization of 

the trends discussed above. 

 

The total dry mass data obtained for the foulants on the membrane surfaces only give a 

total amount of material present and does not give additional information on what types 

of materials are present. 

 

Table 5-4  The dry mass concentrations on the surface of the membranes 

Section Date 
Concentration 

(g/cm2) Stdev 
Front 1 3/31/2010 67.0 5.5 
Middle 1 3/31/2010 51.5 2.5 
End 1 3/31/2010 39.0 0.8 
Front 2 4/7/2010 44.8 1.2 
Middle 2 4/7/2010 38.6 1.6 
End 2 4/7/2010 24.1 6.6 
Front 3 4/14/2010 43.8 0.8 
Middle 3 4/14/2010 49.3 0.7 
End 3 4/14/2010 71.1 2.2 
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Figure 5-14  The concentration of dry mass measured for each section of membrane area 

autopsied (error bars indicate standard deviation) 

 

5.4.3 Protein and Carbohydrate Analysis 

To delve further into what types of materials are present in the foulant layer, additional 

analytical testing was performed on the membrane surfaces from each autopsy.  Among 

these tests were the measurement of protein and carbohydrate concentrations in this 

foulant layer (details on the procedures of these tests are available in section 3.3).  These 

tests give insight to how much of the foulant layer measured from the dry mass 

measurement could be attributed to protein and how much could be attributed to 

carbohydrates, Table 5-5. 
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Table 5-5  The protein and carbohydrate concentrations on the surface of the membranes 

and the carbohydrate/protein ratio 

Protein (g/cm2) 
Carbohydrate 
(g/cm2) Carbohydrate/Protein 

Section Date Average Stdev Average Stdev Average Stdev 

Front 1 3/31/2010 37.6 1.3 12.9 8.2 0.34 0.22 
Middle 1 3/31/2010 32.2 2.0 5.3 2.0 0.16 0.06 
End 1 3/31/2010 23.7 1.2 6.6 2.0 0.28 0.08 
Front 2 4/7/2010 30.2 2.1 3.7 1.2 0.12 0.04 
Middle 2 4/7/2010 23.4 1.4 3.9 1.3 0.17 0.05 
End 2 4/7/2010 16.7 1.4 0.6 1.5 0.03 0.09 
Front 3 4/14/2010 16.8 1.9 3.0 0.8 0.18 0.05 
Middle 3 4/14/2010 24.6 2.8 3.4 1.9 0.13 0.07 
End 3 4/14/2010 35.8 3.0 5.0 1.4 0.14 0.04 

 

The third and fourth columns reported in Table 5-5 gives the protein concentration with 

standard deviation respectively of the foulant material for each of the membrane sections 

listed.  From the data, it can be seen that membranes 1 and 2 displayed the same 

decreasing trend in protein concentration as described in the dry mass concentration 

above (section 5.4.2).  Additionally, membrane 3 showed an increasing trend in protein 

concentration, which coincides with the dry mass result above.  These data are 

represented graphically in Figure 5-15. 
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Figure 5-15  The protein concentration measured for each section of membrane area 

autopsied (error bars indicate standard deviation) 

 

The carbohydrate concentration and associated standard deviation on the surfaces of the 

membranes autopsied are reported in columns five and six respectively of Table 5-5.  

These data give further insight to the content of the foulant material on the membrane 

surfaces.  The data indicate a decreasing trend of carbohydrate concentration present for 

membranes 1 and 2.  However, the carbohydrate concentration on membrane 3 appeared 

to stay approximately constant and may have a slight increase in concentration.  This 

trend is similar to that seen in the dry mass test and protein concentration.  These data are 

represented graphically in Figure 5-16. 
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Figure 5-16  The carbohydrate concentration measured for each section of membrane 

area autopsied (error bars indicate standard deviation) 

 

5.4.4 Total Direct Count and Heterotrophic Plate Count 

The total number of microorganisms and the total number of culturable microorganisms 

(HPC) were analyzed for each section of each membrane autopsied, Table 5-6.  The data 

indicate low levels of culturable microorganisms on all membrane surfaces for all the 

autopsied membranes.  The surfaces for membrane 1 had especially low levels of 

culturable microorganisms.  The is likely due to the residual chlorine in the feed-water to 

the membrane skids, which is an effective secondary disinfectant [110].  Additionally, the 

number of culturable microorganisms increases as the membrane material is further from 

the lead element.  This could be from the gradual reduction in chlorine residual in the 

treatment water as it passes along the membrane surfaces. 
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Table 5-6  Number of culturable microorganisms for each section of each autopsied 

membrane 

  
Total Bacteria         
(#/cm2) 

Total Aerobic 
Heterotrphs (#/cm2) 

Section Average Stdev Average Stdev 
Front 1 - - 1.6 1.5 
Middle 1 - - 10.2 7.8 
End 1 - - 1 0.7 
Front 2 - - 69 32 

Middle 2 - - 25 28 
End 2 - - 49 53 
Front 3 6.54E+07 1.4E+07 870 39 
Middle 3 7.54E+07 1.6E+07 669 132 
End 3 3.26E+07 2.0E+07 7358 1135 

 

The data in Table 5-6 are plotted as the total number of microorganisms and the number 

of culturable microorganisms per unit area as a function of membrane section and 

autopsied element, Figure 5-17.  This graph portrays the increasing trend in culturable 

microorganisms as the feed-water passes along the membrane surface; giving evidence 

the residual chlorine has a disinfectant effect on the surfaces closest to the front of the 

skid. 

 

The total number of microorganisms was not countable for membranes 1 and 2 using the 

method in section 3.3.  It is believed this is due to the lysing of dead bacteria and a high 

level of genetic material in the foulant layer.  This gives a high fluorescent background 

and makes counting with this method difficult. 
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Figure 5-17  Number of culturable microorganisms per unit area on each section of each 

autopsied membrane element (error bars indicate standard deviation) 

 

5.4.5 ATR-FTIR 

The membrane samples collected were placed in a desiccator for at least 24 hours prior to 

ATR-FTIR analysis as per the methods in section 3.3.  The front, middle, and end 

sections of each membrane element were analyzed to investigate the type and relative 

amount of foulant material on the surfaces throughout the plant.  Spectra from each 

membrane section for all three autopsied membrane elements along with virgin 

membrane material are displayed from 4000-600 cm-1, Figure 5-18.  Figure 5-18 also 

displays difference spectra between a representative spectrum from each autopsied 

membrane element and virgin membrane material (from 4000-600 cm-1).  These spectra 

do not display foulant layers as thick as the autopsy from 2006 in Orange County.  This is 
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likely due to alteration in the plant operation since that autopsy, especially chlorination of 

the raw water prior to pretreatment.  The spectra were also analyzed for signs of 

degradation of the polyamide surface by chlorine, and no signs were readily apparent, 

suggesting chlorine may not be attacking the membrane surface. [111]. 

 

When qualitatively analyzing the peaks observed for foulant material in the range of 

4000-600 cm-1, the same trend is observed as with the protein and carbohydrate 

concentration analyses.  Namely, the foulant layer is thickest to thinnest from front to end 

on membranes 1 and 2, and the foulant layer gets thicker from front to end for membrane 

3.  A general idea of the types of foulants can be ascertained by the location of the peaks 

present in the fouled membrane material.  The exaggeration of the broad peak at 

approximately 3350 cm-1 indicates the presents of hydroxyl and/or amine groups in the 

foulant on all membrane element surfaces.  The peak at 2900 cm-1 is also present on all 

membrane element surfaces and is consistent with aliphatic carbon.  The peaks at 

approximately 2300 cm-1 is from carbon dioxide in the atmosphere of the sample 

chamber. 
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Figure 5-18  FTIR spectra for the front, middle, and end sections of the autopsied 

membranes for membrane 1 (top left), membrane 2 (top right), and membrane 3 (bottom 

left); and difference spectra for a representative spectrum from each autopsied membrane 

(bottom right) 

 

The difference spectra between a representative sample for each autopsied membrane and 

the virgin membrane is displayed from 2000-600 cm-1, Figure 5-19.  When analyzing 

these difference spectra, the foulant layer appears thickest for membrane 1 and thinnest 

for membrane 2.  Identification of some of these peaks reveals the amide I and amide II 

bonds at approximately 1650 cm-1 and 1550 cm-1 respectively.  The peak associated with 

the CHO carbohydrate component of biofilm is present at 1060cm-1, however this peak is 
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small and barely visible for membrane 2.  This observation is consistent with the low 

levels of carbohydrates observed in the carbohydrate concentration analysis. 

 

 

Figure 5-19  ATR-FTIR spectra from a representative sample from each autopsied 

membrane and virgin membrane material displayed from 2000-600 cm-1 

 

5.4.6 SEM/EDS 

Analysis of the debris sampled from the feed channel of membrane 1, section 5.3.1, by 

SEM showed irregular shaped particles of heterogeneous composition.  An example of 

one of these particles displaying heterogeneous composition (indicated by different 

reflective intensities in the SEM image) is shown in Figure 5-20. 
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Figure 5-20  Debris particle deposited on feed channel of membrane 1 

 

Further analysis of the particle using EDS revealed the heterogeneous composition of the 

particle as observed in the SEM image, Figure 5-21.  The particle contained material 

consistent with organic and/or scale in composition, carbon, oxygen, and calcium; 

components of steel, chromium and molibdinum; and material possibly from the green 

sand filters that made it through pretreatment, silicon and manganese. 
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Figure 5-21  EDS spectrum of a particle lodged in feed channel of membrane 1 

 

The front, middle and end sections of the membrane surface from each of the autopsied 

membrane elements were imaged, Figure 5-22.  Qualitative observation of the membrane 

surfaces indicated relatively low levels of foulant material when compared to the autopsy 

performed at Orange County in 2006.  The foulant material present was sparse and 

feathery appearance on all of the membrane surfaces.  Additionally, particles of a 

different composition appeared on the surface of each of the membrane elements and 

sections with increasing frequency as the surface material approached the tail of the plant. 
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Figure 5-22  SEM images of the surface for membrane 1 front (Top left), membrane 1 

middle (top center), membrane 1 end (top right), membrane 2 front (middle left), 

membrane 2 middle (middle center), membrane 2 end (middle right), membrane 3 front 

(bottom left), membrane 3 middle (bottom center), and membrane 3 end (bottom right) 

 

The elemental composition of the foulant material present on the surface of the 

membrane element sections was investigated using EDS.  The results of these analyses 

indicate the primary composition of the spectra is organic in nature, which is consistent 

with biofilm and/or the membrane material itself.  Low levels of calcium, silicon, and 

aluminum was observed for the surface of membrane 1.  This is likely from low levels of 

precipitated scalant materials and some small particles from the green sand filters making 
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it through the pretreatment process.  EDS analysis of the surface of membrane 2 indicated 

similar foulant composition as membrane 1.  When the surface of membrane 3 was 

analyzed, the same components seen on the surface of membrane 1 and 2 were observed.  

However, the level of calcium present on the surface was higher, especially on the end 

section of the element.  Additionally, a low level of iron was also observed in some of the 

spectra, Figure 5-23.  No presence of chlorine was observed on any section of the three 

membrane elements, suggesting the total chlorine residual in the feed-water may not be 

reacting with the polyamide surface of the membranes. 

 

 

Figure 5-23  EDS spectrum from the end section of membrane 3 
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5.4.7 AFM 

The surface morphologies and roughness of the front, middle, and end sections of the 

three autopsied membrane elements were characterized by tapping mode AFM using the 

methodologies in section 3.3.  The averaged data for each section is in Table 5-7, and a 

representative AFM image from each section are shown in Figure 5-24.  Using a t-test to 

statistically analyze the data in Table 5-7, there is no significant difference observed for 

the roughness of the membrane surfaces within each of the elements autopsies or between 

each of the elements.  This analysis was performed for both RMS and Ra roughness 

values. 

 

Table 5-7  AFM Roughness data for front middle and end sections of all three autopsied 

membrane elements 

Section Date 
RMS 
(nm) Stdev 

Ra 
(nm) Stdev 

Front 1 3/31/2010 53.7 11.5 42.1 9.5 
Middle 1 3/31/2010 43.6 3.0 34.5 1.8 
End 1 3/31/2010 37.8 1.4 30.1 1.1 
Front 2 4/7/2010 53.1 24.4 40.9 16.8 
Middle 2 4/7/2010 36.3 1.0 28.5 0.5 
End 2 4/7/2010 29.2 3.4 22.3 2.4 
Front 3 4/14/2010 42.9 12.7 33.7 9.0 
Middle 3 4/14/2010 37.5 6.7 29.3 4.8 
End 3 4/14/2010 45.0 9.9 35.0 7.3 

 



 

95 

 

 

Figure 5-24  AFM images of the membrane sections from membrane 1 front (top left), 

membrane 1 middle (top center), membrane 1 end (top right), membrane 2 front (middle 

left), membrane 2 middle (middle center), membrane 2 end (middle right), membrane 3 

front (bottom left), membrane 3 middle (bottom center), and membrane 3 end (bottom 

right) 
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5.5 Conclusions 

5.5.1 Orange County Autopsy 

The distribution of fouling material on the membrane surface exhibited a decreasing trend 

from the front section to the end section.  Visual and microscopic observation suggested 

this trend, and the trend was observed quantitatively in the protein and carbohydrate 

concentrations and the number of culturable organisms (although total direct count is 

inconclusive).  The HPC distribution and community profile data reveal the organisms at 

the front section of the membrane element are dominant, and are different from those in 

the feed-water as well as the middle and end sections of the membrane. 

 

The results from the autopsy lead to the hypothesis that biofilm on the front section of the 

element act as a biological filter, removing AOC and nutrients from the feed-water, 

thereby making the feed-water nutrient deprived and preventing/reducing biological 

growth on downstream membrane surfaces. 

 

5.5.2 Plant-Wide Autopsies 

The autopsy results from membrane 1 and 2 revealed a decreasing trend in the 

distribution of fouling material on the membrane surfaces from the front section to the 

end section, and an increasing trend from front to end for membrane 3.  This trend was 

observed quantitatively in the total dry mass, protein concentration, and carbohydrate 

concentration.  However, the number of culturable organisms increased as the treatment 

water traveled along the membrane surface (although total direct count is inconclusive).  

The microbial data suggest a possible disinfectant effect of the residual total chlorine in 
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the feed-water, which could be consumed and become ineffective as the water travels 

toward the concentrate.  However, the HPC only measures microorganisms that are 

culturable using the R2A media, so a large portion of viable microorganisms could be 

neglected in the assessment. 

 

The protein, carbohydrate, and dry mass results from the three autopsies support the 

hypothesis that biofilm on the front section of the element act as a biological filter, 

removing AOC and nutrients from the feed-water and preventing biological growth on 

downstream membrane surfaces.  However, the tail element does have increased foulant 

(especially scalant) concentrations and an increased number of culturable 

microorganisms is observed.  This increase could be due to increased deposition of 

materials that have exceeded their solubility limit and an increased deposition of colloidal 

matter due to its higher concentration in solution. 

 

5.5.3 Overall Autopsy Conclusions 

The results from the plant-wide membrane autopsies revealed much lower levels of 

fouling than the original autopsy performed in Orange County in 2006.  The reduction in 

the overall levels of fouling is believed to be caused by differences in the treatment 

process that have occurred since 2006.  The most notable change in the process is the 

addition of chlorine to the raw water prior to pretreatment.  This was done to help oxidize 

iron and sulfides in the hopes of reducing potassium permanganate addition to the green 

sand filters and extend their life.  A total chlorine (not free chlorine) residual does remain 

in the treatment water and is fed to the membrane skids.  The secondary disinfectant 
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effect of the chlorine residual is what is believed to be causing this reduction in fouling 

on the membrane surfaces, namely the reduction of biofilm formation.  Additionally, it is 

believed the chlorine residual is responsible for the reduced number of culturable 

microorganisms observed at the head of the membrane treatment process. 
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Chapter 6 Mass Balance Analysis of Dissolved Organic Carbon in a Reverse 

Osmosis Membrane Water Treatment Plant: Implications for Biofouling Control 

 

6.1 Introduction 

Natural organic matter (NOM) is a mixture of organic compounds from diverse 

biological origins and is commonly found in the source water of water treatment plants.  

For surface water, NOM can be present in concentrations as high as 30 mg C/L (1).  For 

groundwater, the typical NOM concentration is around 2 mg/L, although concentrations 

can be as high as 15 mg C/L [112].  The presence of NOM in treatment plant feed-water 

can lead to a number of problems, such as formation of disinfection by-products, biofilm 

growth at the treatment plant, and re-growth in the distribution system [31, 78, 112-115].  

For drinking water treatment systems, the source and type of organic matter in the feed-

water has been shown to greatly impact the treatment process [116].  For systems 

implementing reverse osmosis membrane filtration, the presence of NOM in the 

membrane feed-water can lead to severe impact on the membrane surfaces, such as 

colloidal fouling and/or biofilm growth [20, 26, 117, 118], which lead to decreased 

performance and increased costs. 

 

A technique commonly used for the characterization of organic material in natural waters 

is the specific UV absorbance (SUVA), which is UV254 (the absorbance of the sample at 

254nm, corresponding to aromatic structures) normalized to the concentration of DOC 
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(section 3.3).  Higher values SUVA indicate that a greater fraction of the organic carbon 

is hydrophobic (due to aromatic groups), relative to the more hydrophilic aliphatic 

groups.  High SUVA can also mean greater resistance to biodegradation, as aromatic 

materials are generally more difficult to degrade than aliphatic materials.  Values for 

SUVA for natural systems have been reported from around 1 L mg-1 m-1 up to around 5 L 

mg-1 m-1 [69, 119-121]. 

 

The removal of organic carbon from plant feed-water can be achieved by various 

methods.  Traditional methods use coagulation, flocculation, and filtration to achieve 

removal [19, 122, 123].  Advanced treatment methods, such as advanced oxidation, 

activated carbon adsorption, and biologically activated carbon, and biofiltration may also 

be used for removal [66, 124, 125].  Biofiltration is effective for removing a significant 

fraction of NOM, and unique microbial community structures have been noted in these 

systems [67, 71].  Removal efficiencies of 5-45% for dissolved organic carbon (DOC) in 

biofiltration as a pretreatment for RO has been reported, although removal is highly 

dependent on source and type of organic carbon present [77, 81, 126].  The use of 

biofiltration as pretreatment has been shown to greatly decrease the formation of biofilm 

on membrane surfaces and decrease the rate of flux decline, thereby extending system 

runtime [81, 127]. 

 

Located on the central west coast of Florida on the Gulf of Mexico, the City of Dunedin 

has a population of approximately 37,000 residents and an area of approximately 10 sq. 

mi.  The city owns and operates a reverse osmosis water softening plant, the details of 
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which are in chapter 2.  Prior plant evaluations and membrane autopsies have indicated 

problems with membrane biofouling at the Dunedin water plant [85, 86].  Autopsy results 

indicate the highest concentration of biofilm on the front portion of the first-stage lead 

element of the plant, with a rapidly declining biomass profile along the element in the 

direction of flow.  Further spatial analysis of the microbial community structure (based 

on DNA fragment comparisons) of the lead element biofilm indicate that the front portion 

of the membrane contained a unique microbial community (more growth, less diversity) 

that was statistically distinct from the planktonic microbial communities present in the 

feed-water to the membrane skids, whereas the middle and end portions of the same 

element had microbial communities (less growth, more diversity)  that were statistically 

similar to that in the feed-water [84].  This spatial differentiation suggests that the biofilm 

on different portions of the element had developed under different selection pressure, 

likely due to differences in the availability of organic carbon in the feed-water.  It is 

believed that the heterotrophic biofilm on the front portion of the element developed by 

actively assimilating the DOC, whereas the biofilm on the remaining portions were 

mainly deposited from the feed-water.  This chapter explores the hypothesis that feed-

water organic carbon is removed (through assimilation and degradation) as it flows over 

the length of the membrane element, by conducting a plant-wide mass balance analysis 

on DOC total nitrogen at the Dunedin Water Treatment Plant. 

 

6.2 Sample Collection 

For the plant-wide carbon and nitrogen mass balance, water samples were collected from 

locations representative of the feed, permeate, and concentrate streams of the membrane 
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system.  A simple schematic of the plant and the respective sampling points are shown in 

Figure 6-1.  Prior to sampling, each sampling port was flushed for five minutes and the 

sample bottles were double rinsed with the sample water.  Water samples were collected 

in dark brown glass bottles (Fisher Scientific) without headspace and brought back the 

University of South Florida water quality lab for immediate analysis.  The actual flow 

rate of water at each of the sample points was obtained from the plant’s SCADA system. 

The DOC concentrations on the plant level were collected and evaluated over a 20 month 

period, and the TN concentrations were collected and evaluated over an 11 month period. 

 

 

Figure 6-1  Representation of plant sampling points:  A) plant feed, B) plant permeate, 

and C) plant concentrate 
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The concentration of DOC and TN and the UV254 absorption were measured and the 

SUVA was calculated for the samples collected.  These measurements were performed as 

per the procedures delineated in section 3.3. 

 

6.3 Mass Balance Calculation 

The data presented here are from the analyses of DOC and TN taken on the plant level.  

The mass flow rate of DOC and TN at each of the sample points was determined using 

the measured concentration of DOC and TN respectively, multiplied by the recorded 

volumetric flow rates at each sample point from the SCADA system.  A mass balance 

equation for these systems can be written as follows: 

 

 (6.1) 

 

where QF, QP, and  QC are the volumetric flow rates for the feed, permeate and 

concentrate respectively; CF, CP, CC, are the DOC (or TN) concentrations for the feed, 

permeate and concentrate respectively; and MR represents the mass of organic carbon 

removed from the system through assimilation or degradation.  The percent removal of 

organic carbon (or total nitrogen) from the system can be determined using the following 

equation: 

 

 
100100Re x
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(6.2) 
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6.4 Results and Discussion 

Temporal profiles of DOC and TN concentrations and the associated value of SUVA for 

the plant feed-water are shown in Figures 6-2 and 6-3 respectively.  The SUVA of the 

plant feed water is also plotted as a function of the DOC concentration of the feed-water 

(Figure 6-5).  Temporal profiles of the percent removal of DOC and TN (along with the 

average removal percentage of each) are shown in Figure 6-6.  The percent removal and 

unit removal of DOC plotted as a function of the unit loading of DOC are shown in 

Figure 6-7.  Temporal profile of the percent change of SUVA ((SUVAfeed – 

SUVAconc)/SUVAfeed x 100) during the monitoring is shown in Figure 6-8. 

 

The DOC concentration in the plant feed-water (Figure 6-2) is typically around 20mg/L, 

which is high for a groundwater source [112].  However, the source water is drawn from 

a relatively shallow aquifer in an urban well field, so may be more exposed to surface 

input of organic carbon.  Interestingly, there is a period of approximately 6 months (April 

– October 2009) when the DOC concentration in the feed-water dropped by 

approximately an order of magnitude, to about 2.5 mg/L.  However, the TN concentration 

remained relatively constant, between 0.25 and 0.4 mg/L.  Consequently, the C:N ratio 

for the feed-water, typically around 60, dropped to approximately 7 during this 6 month 

period. 
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Figure 6-2 Temporal profile of the concentration of DOC and TN in the plant feed-water 

 

Upon closer examination, it was found that the period of low DOC concentration 

correlates well with a period of high rain fall (Figure6- 4).  The monthly precipitation 

data, measured in Dunedin, were provided by the water plant.  From the temporal profile 

of the SUVA of the plant feed-water (Figure 6-3), it can be seen that the SUVA for the 

feed-water was low, with the exception of the 6 month period where the feed-water DOC 

dropped.  The high SUVA values suggest that the ratio of aliphatic carbon to aromatic 

carbon decreased during this time period, with a corresponding decrease in 

biodegradability [113, 121]. 
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Figure 6-3  Temporal profile of calculated SUVA of the plant feed-water 

 

 

Figure 6-4  Temporal profiles of the concentration of DOC in the plant feed-water and 

monthly precipitation 
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When the feed SUVA is plotted as a function of feed DOC (Figure 6-5), it can be seen 

that SUVA decreases with increasing DOC concentration, with high SUVA associated 

with DOC concentrations less than 5 mg/L and a stable region of low SUVA values of 

0.2 – 0.5 L/mg-m above a DOC concentration of 10 mg/L.  The above correlation, 

coupled with the rainfall data, give rise to a possible explanation that this period of high 

rainfall triggered increased microbial activity in the aquifer, thereby degrading the 

organic carbon and preferentially removing the more labile aliphatic portions.  The result 

is lower DOC concentration coupled with higher SUVA for this 6 month period.  

 

 

Figure 6-5  SUVA of the plant feed-water plotted as a function of plant feed-water DOC 

 

The percent DOC removed from the system was consistently positive (Figure 6-6), 

although a few data points do fall below into the negative range.  These negative data 
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points are likely due to contamination of the concentrate sample, possibly from sloughing 

of material from the membrane surfaces or plumbing.  The majority of the data show 

positive removal of DOC from the system, indicating a likely sink for the organic carbon.  

The average removal of DOC from the RO process was 12.5±10%.  The high variability 

of the data was likely due to variability in the RO system as well as variability in feed-

water DOC composition and concentration coming into the plant. 

 

 

Figure 6-6  Temporal profiles of percent removal of DOC and TN from RO treatment 

train 

 

When the percent removal of DOC was plotted against unit loading (in g DOC per m2 

membrane in operation per day, based on actual number of skids in operation that day), 

two distinct regions of the graph are observed (Figure 6-7 top).  The first region coincides 
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with low carbon loading, and little to no removal is seen in this region.  The second 

region displays a trend of decreasing removal percentage with increasing loading, with a 

maximum removal around a unit loading of 40 g/m2 day.  When the mass of DOC 

removed per unit area is plotted against unit loading (Figure 6-7 bottom), the same two 

regions are apparent.  The region of low unit loading of DOC displays little removal of 

DOC, while the second region of higher unit loading of DOC displays a consistent 

removal range of approximately 1-4 g C/m2 day which did not correlate with increasing 

unit carbon loading.  When a one-tailed t test was performed on this region of the graph, 

it resulted in a statistically significant positive removal of DOC during the treatment 

process with greater than 99.5% confidence.  The graphs in Figure 6-7 assume that 

biofilm is present on the entire membrane surface throughout the treatment train, equally 

contributing to the removal of DOC.  If only the lead element of the first stage were 

active in DOC removal (as suggested by previous autopsy results), then the range of 

carbon mass removal could be as high as 10-40 g C/m2 day.  Since the actual mass of 

biofilm on the membrane surface throughout the entire treatment plant is not known, the 

actual removal range of DOC per unit area is only known to fall somewhere between 

these extremes (from 1-4 g C/ m2 to 10-40 g C/m2 day). 
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Figure 6-7  Removal of DOC within the RO treatment train plotted against the unit DOC 

loading based on the total membrane area in operation at the time of sampling top) 

percent removal of DOC and bottom) unit removal of DOC 
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The percent change in SUVA was also consistently positive (Figure 6-8).  A one tailed t 

test of these data indicates this positive increase observed graphically is statistically 

significant with greater than 99.5% confidence. 

 

 

Figure 6-8  Temporal profile of the percent change in SUVA from feed-water to 

concentrate 

 

This observed increase in SUVA suggest an increase in the aromatic character of the 

organic carbon dissolved in the water.  This change in character of the organic carbon, as 

measured by SUVA, is seen in systems where biodegradation plays a role [113, 121].  

Likely, the smaller molecular weight aliphatic and more biodegradable carbon molecules 

were removed from the system [112].  Some of the data points show no change or a small 

decrease in the SUVA during treatment.  Many of these points coincide with the region of 
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relatively low influent DOC concentration (Figure 6-2), and relatively high values of 

SUVA for the influent water (Figure 6-3).  These data suggest that the smaller aliphatic 

carbon molecules, and thus more easily assimilable or biodegradable matter, are being 

removed from the treatment water during the RO process.  Additionally, when the 

concentration of easily assimilable or biodegradable organic carbon is low, the removal 

was also low.  Examining Figures 6-3 and 6-6 together, it can be seen that the periods of 

high feed-water SUVA (hence aromaticity) correlated with periods of low DOC removal. 

 

The percent removal of TN from the plant was also monitored over time.  The TN 

concentration in the feed-water remains relatively unchanged at concentration of 

approximately 0.3mg/L (Figure 6-2).  Additionally, the percent removal of TN in the 

plant was also consistently positive (Figure 6-6).  The average removal of TN from the 

RO process was 6.5±5%.  Variability was also seen with the removal of TN; however, the 

TN concentration in the plant feed-water did not exhibit the same variability as did the 

DOC concentration.  These data indicate a sink for TN in the system in addition to or in 

conjunction with DOC removal. 

 

The results of prior autopsies performed on membrane elements from the City of 

Dunedin indicated that there is significant growth of bacterial biofilm on the membrane 

surfaces [85, 86].  This growth exists as a gradient, with a much higher concentration of 

biofilm and a distinct community structure (less diverse, more growth, statistically 

different from feed-water microbial community) at the front portion of the lead 

membrane element [84]. The data discussed above indicate a sink for the organic carbon 
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and nitrogen in the treatment plant.  This data, paired with the SUVA data, which denote 

the smaller aliphatic carbon is being removed and the remaining carbon has an increased 

aromatic character, suggest the biofilm present on the membrane surfaces was 

responsible for the removal of the DOC and TN observed.  Based on these observations, 

the following hypothesis was made.  The organic carbon and nitrogen removed from the 

system functions as a food source for heterotrophic bacteria, thus resulting in an overall 

reduction in the mass of organic carbon and nitrogen from the system.  Since the organic 

carbon removed is likely the smaller aliphatic carbon, and thus the more easily 

biodegraded carbon, the biofilm on the surface of the membranes may indeed be 

functioning as an in situ biofilter which may have a protective effect against fouling for 

downstream membrane surfaces.  This is observed in the relatively high biofilm 

concentration at the front portion of the membrane element and the relatively low biofilm 

concentration at the end portion of the lead membrane element[84].  Furthermore, the 

removal efficiency ranges of approximately 5-45% DOC observed in the membrane 

system is comparable to reported ranges of 5-15% [77], 16-33% [126], and 35-45% [81].  

Additional carbon balance information on the plant level and on the individual skid level 

is in Appendix D. 

 

6.5 Conclusions 

From the plant-wide mass balance of DOC and TN, there is an observed reduction in the 

total mass of organic carbon (12.5±10%) and nitrogen (6.5±5%) from the system.  There 

is also an increase of SUVA (20-30%) in the feed-water after traveling through the 

pressure vessels and exiting as concentrate, thus an increase in aromatic character of the 
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organic carbon remaining.  These data indicate a sink for the organic carbon and nitrogen 

in the system, possibly by the biofilm growing on the surface of the membranes.  

Previous autopsy results indicated a gradient of biofilm growth on the membrane surface, 

with higher concentrations of biofilm at the front end.  In order to further elucidate the 

role of membrane-associated biofilm in removing organic carbon from the feed-water, a 

single-element pilot system has been built at the Dunedin water treatment plant.  The 

system is capable of complete data acquisition to monitor system conditions.  The pilot 

system uses the same 8½” elements used for water production at the Dunedin plant, as 

well as flat sheet modules for non-invasive testing of the membranes.  This system will 

allow for more detailed carbon mass balance and direct test of the role of lead element 

biofilm in reducing downstream fouling propensity. 
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Chapter 7 Pilot System Analysis of Biofilm Effect on Downstream Membrane 

Material 

 

7.1 Introduction 

The gradient pattern of foulant formation observed (Chapter 5) and the removal of 

organic carbon in a RO treatment plant (Chapter 6) suggest the potential of biofilm on the 

surface of the membrane to act as an in situ biofilter to protect downstream membrane 

surfaces.  If the biofilm on the lead membrane surface can be used as an in situ biofilter, 

differences in fouling should be observed between the front and end portions of the 

membrane.  Additionally, the protective effect should be quantifiable and be dependent 

on carbon concentration in the treatment water.  This protective effect should be visible 

in both fouling characteristics, including quantity on the membrane surface, and in the 

performance of the membranes themselves.  A pilot system was built to study the effects 

of biofilm on the surface of a membrane element on membrane surfaces downstream.  

The details of the pilot system are in Section 7.2 and Appendix C. 

 

7.2 Pilot Design and Testing 

A pilot system was designed to test the effect of the membrane and the foulant on its 

surface on membrane material downstream.  This was accomplished by building a pump-

driven system fed by a 150 gallon feed tank with an 8½” single element pressure vessel 

(from Department of Reclamation, AZ), Figure 7-1 (details of system diagram and pilot 
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operation are available in Appendix C).  An actual fouled element (serial number 

SE24427) was taken from Skid IV, Stage I, pressure vessel 21 at the same time as the 

first membrane autopsy (31 Mar 2010) and placed into single element pressure vessel so 

the approximate initial conditions of the biofilm on the membrane surface would be 

known for the pilot system (Chapter 5).  Operation of the pilot system under zero external 

carbon loading conditions commenced from this time.  Additionally, the flow rate and 

carbon loading rate to the system were varied to investigate their effects on performance 

and fouling. 

 

The feed, permeate, and concentrate pressures of the system were monitored using 

pressure transducers.  The Feed flow rate was kept constant and set using an analog flow 

meter.  The concentrate flow was monitored using a GPI industrial grade digital flow 

meter (model# G2S15N09), and the permeate flow was calculated by subtracting the 

concentrate flow rate from the feed flow rate.  The temperature of the system was kept 

constant at 25°C using a TempTek CF Series 1.5 ton air cooled portable chiller.  The data 

collected from the detectors above were recorded using HOBO U30 data loggers.  The 

data were exported into Excel spreadsheets for analysis. 

 

The pilot system was operated for a 35 week period.  In order to better understand the 

effect of carbon concentration in the feed water on the biofilm growth, the pilot system 

evaluation was divided into two distinct sub-phases, no carbon addition to pilot system 

and carbon addition.  This length of time encompassing the period of zero external 

carbon loading to the pilot system was 17 weeks long and extended from 31 Mar 2010 to 
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26 Jul 2010.  The pump malfunctioned at the end of this portion of the study and had to 

be rebuilt, causing the system to be down for approximately one month.  The carbon 

loading portion of the study was 18 weeks long and extended from 23 August 2010 to 03 

Jan 2011.  This portion of the study encompassed periods of carbon loading of 0.1, 0.5, 

and 2 g/m2day.  Each period of carbon loading was 6 weeks long, with 3 weeks 

performed at a flow rate of 50 GPM and 3 weeks at a flow rate of 25 GPM (the 

concentration of carbon loading increases chronologically). 

 

The foulant deposition and formation on the surface of the membrane swatches for the 

pilot system were monitored for the feed and concentrate flat sheet modules for the entire 

duration of operation.  In addition to characterizing the foulant material deposited and/or 

formed on the membrane surfaces, the performance of the membrane swatches was also 

characterized by monitoring the transmembrane pressure and the permeate flux.  

Comparison of these measurements between the feed and concentrate sides of the pilot 

membrane pressure vessel allow for an evaluation of the effect of the biofilm on the 

performance of downstream membrane material. The results from the foulant analyses as 

well as the performance characterization of the flat sheet modules are presented in the 

following sections. 
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Figure 7-1  Schematic of pilot system 
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In order to non-destructively sample the membrane surface to determine what the effect 

of the pilot element biofilm is on the downstream membrane material, water from the 

pilot feed and the pilot concentrate was passed over four flat sheet modules each.  The 

flat sheet modules are from Sterlitech, model number CF042, containing a 1.800” x 

3.625” (42cm2) active area of membrane material, Figure 7-2.  These membrane swatches 

are easily removed for destructive analysis without disturbing the 8½” membrane 

element.  

 

 

Figure 7-2  Sterlitech Flat Sheet Module 

 

The flat sheet modules at the feed and concentrate portion of the 8½” membrane element 

were arranged identically as four parallel units with a pressure transducer and an analog 

flow meter on the concentrate portion of each flat sheet module, a La Crosse (model 

number WS-2310-16 or TX32U-IT) rain gage was used to collect permeate flow data.  
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Valves were used to regulate flow, Figure 7-3.  Details of the flat sheet module portion of 

the pilot system are in Appendix C. 

 

 

Figure 7-3  FSM portion of pilot system 

 

7.2.1 Membrane Sampling 

The pilot system was shut down and membrane swatches in specified flat sheet modules 

were removed and replaced.  The membrane swatches were taken for analysis from each 

of the feed and the concentrate pilot streams once per week.  The analyses performed on 

the membrane swatches include protein and carbohydrate concentration, total direct 

count, heterotrophic plate count, Fourier transform infrared spectroscopy, and 

microscopic evaluation (scanning electron microscopy and atomic force microscopy).  

Details of these analyses are in section 3.3. 
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7.2.2 Zero External Carbon Loading 

In order to simulate actual treatment conditions at the Dunedin RO treatment plant as 

closely as possible, the feed tank was filled to approximately 145 gallons with feed water 

and refreshed biweekly.  The flow rate and pressure of the system were set to 50 GPM 

and approximately 120psig respectively.  One membrane swatch was taken from the feed 

portion of the pilot and one swatch was taken from the concentrate portion of the pilot for 

analysis weekly from 07 April 2010 to 26 July 2010. 

 

7.2.3 Carbon Loading 

In order to reliably pump a known concentration of carbon into the pilot system feed 

tank, a peristaltic pump (Cole Palmer Masterflex model number 7553-79) was used to 

pump a glycerin solution from a 5 gallon bucket into the feed tank.  The flow rate of the 

peristaltic pump was determined by pumping water over a known period of time and 

measuring the volume pumped.  The volume pumped was 790mL over a 270 minute 

time, giving a flow rate of 2.93 mL/min (1.11 gal/day).  The contents of the bucket 

containing the glycerin solution for carbon loading were refreshed biweekly.  The amount 

of glycerin required to give the desired carbon loading was calculated for each point. 

 

The glycerin concentration in the bucket to give a carbon feed rate of 0.1 g C/m2day was 

determined as follows: 
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This gives a glycerin concentration of 8.56 g/gallon, or 42.8g glycerin in 5 gallons.  To 

determine the glycerin concentration for a carbon feed rate of 0.5 g C/m2day, the 

following calculation was performed: 

 

 

 

This gives a glycerin concentration of 42.8 g/gallon, or 214.1g glycerin in 5 gallons.  To 

determine the glycerin concentration for a carbon feed rate of 2.0 g C/m2day, the 

following calculation was performed: 

 

 

 

This gives a glycerin concentration of 171.3 g/gallon, or 856.5 g glycerin in 5 gallons.  

Two membrane swatches were taken weekly from each the feed portion and the 

concentrate portion of the pilot from 30 August 2010 to 03 January 2011.  The flow rate 

for the pilot system was alternated between 25 and 50 GPM for each carbon loading 

condition.  This was done to test if flow rate has an effect on the relative fouling and 

performance between the feed and concentrate membrane swatches. 
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7.3 Results 

7.3.1 Surface Fouling Characterization 

The amount and type of foulant on the membrane surface is an essential part of this 

study.  Additionally, the relative amount of foulant on the feed and concentrate 

membrane surfaces yields important information on the effect of the pilot element biofilm 

on downstream membrane surfaces. 

 

7.3.1.1 Zero External Carbon Loading 

The pilot system was initially operated with plant feed-water only, refreshing the feed 

tank on a biweekly basis.  This was performed in order to simulate plant treatment 

conditions as closely as possible.  A feed tank was used for recirculation in order to run 

the pilot continuously, since the plant staggers operation hours.  Details on the operation 

of the pilot system from the period of zero external carbon loading are in Appendix C. 

 

The composition of the foulant material was characterized by measuring protein and 

carbohydrate concentrations, total direct count, and total culturable microorganisms 

(HPC) per unit area of membrane surface.  The foulant and membrane surface was 

further characterized using energy dispersive spectroscopy and attenuated total 

reflectance Fourier Transform infrared spectroscopy.  Additionally, the membrane 

surface was visualized through SEM and AFM, which allowed for qualitative evaluation 

of the membrane surface and any foulant material present.  AFM also yields a 

quantitative measurement of surface roughness.  Details on the methods and procedures 

for these characterization techniques are in section 3.3.  These analyses were performed 
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on a weekly basis for selected membrane swatches.  The results for the swatches taken 

from the feed side modules were compared to the swatches from the concentrate to 

evaluate differences in the foulant material.  The results for the fouling characterization 

and the performance analysis of the zero external carbon loading portion of the pilot 

study are reported in this section. 

 

7.3.1.1.1 Protein and Carbohydrate Data 

The concentration of proteins and carbohydrates on the feed and concentrate membrane 

swatches were measured as per the methods in section 3.3.  The results of these analyses 

along with their respective standard deviations are in Table 7-1.  This table also contains 

the carbohydrate/protein ratio data for the feed and concentrate swatches. 
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Table 7-1  The protein and carbohydrate concentrations of the pilot feed and concentrate 

swatches for the zero external carbon loading portion of the study 

Protein concentration (g/cm2) 
Carbohydrate concentration 
(g/cm2) 

Feed Concentrate Feed Concentrate 
Date Avg Stdev Avg Stdev Avg Stdev Avg Stdev 

4/7/2010 45.2 0.3 35.0 1.6 2.9 1.5 6.6 1.8 
4/14/2010 63.1 2.6 62.9 2.9 20.5 4.5 25.7 2.7 
4/20/2010 55.9 3.4 60.7 5.6 17.4 1.7 23.2 2.1 
4/27/2010 56.8 3.6 56.7 3.5 17.8 4.4 18.7 2.9 
5/4/2010 89.3 0.4 75.1 0.4 27.9 1.4 23.1 1.0 
5/11/2010 75.7 0.3 74.3 0.3 27.6 2.5 30.4 1.8 
5/18/2010 45.8 0.2 43.0 0.1 13.0 1.2 12.4 1.5 
5/25/2010 10.5 1.4 12.9 1.2 8.3 0.1 9.5 0.3 
6/1/2010 80.6 5.1 73.0 1.6 22.6 2.1 22.3 0.7 
6/7/2010 60.3 1.0 60.6 2.2 31.2 0.7 27.8 0.8 
6/14/2010 59.1 2.9 72.7 1.5 26.3 1.9 29.9 0.6 
6/21/2010 70.9 1.2 32.6 2.1 29.7 2.3 10.3 0.1 
6/28/2010 31.4 2.8 46.1 2.4 11.2 0.7 16.5 0.7 
7/5/2010 54.0 1.6 47.9 2.8 21.6 1.7 20.3 2.3 
7/12/2010 46.1 0.8 70.4 1.8 20.1 0.9 29.8 1.4 
7/19/2010 61.2 0.6 63.4 1.5 32.6 3.9 29.3 1.2 
7/26/2010 47.6 4.2 41.5 4.6 18.2 1.3 16.6 1.6 

 

The temporal profile of protein concentration on the feed and the concentrate membrane 

swatches listed in Table 7-1 above is graphed in Figure 7-4.  This graph displays 

fluctuation in the protein concentration on the membrane surfaces, but no trend is evident 

over time.  The carbohydrate concentration on the feed and concentrate membrane 

swatches listed in Table 7-1 above are graphed as a function of sampling date in Figure 7-

5.  As with the protein concentration, there is a fluctuation apparent in the data, but there 

is no discernible trend. 
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Figure 7-4  Time function of protein concentration on pilot feed and concentrate swatches 

 

 

Figure 7-5  Carbohydrate concentration on pilot feed and concentrate swatches as a 

function of sampling date 

 

Although the total amount of proteins and carbohydrates displayed no discernible trend as 

a function of sampling date when visually inspecting the curves, the overall 
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feed/concentrate ratio of these concentrations is of interest.  A ratio greater than 1 

indicates a larger proportion of that material on the feed, indicating the feed is 

experiencing more severe fouling.  However, a ratio less than 1 indicates a larger 

proportion of that material on the concentrate, indicating more severe fouling for the 

concentrate.  The feed/concentrate ratio data for protein and carbohydrate concentrations 

are in Table 7-2. 

 

Table 7-2  The carbohydrate/protein for the feed and concentrate swatches and the 

feed/concentrate ratio data for protein and carbohydrate concentrations 

Carb/Protein Feed/Concentrate 
Feed Concentrate 

Date Average Stdev Average Stdev Protein Carb 
4/7/2010 0.06 0.03 0.19 0.04 1.3 0.4 
4/14/2010 0.33 0.08 0.41 0.03 1.0 0.8 
4/20/2010 0.31 0.03 0.38 0.04 0.9 0.8 
4/27/2010 0.31 0.06 0.33 0.07 1.0 0.9 
5/4/2010 0.31 0.02 0.31 0.01 1.2 1.2 
5/11/2010 0.37 0.03 0.41 0.02 1.0 0.9 
5/18/2010 0.28 0.03 0.29 0.04 1.1 1.0 
5/25/2010 0.80 0.11 0.74 0.07 0.8 0.9 
6/1/2010 0.28 0.04 0.31 0.01 1.1 1.0 
6/7/2010 0.52 0.02 0.46 0.01 1.0 1.1 
6/14/2010 0.45 0.01 0.41 0.02 0.8 0.9 
6/21/2010 0.42 0.04 0.32 0.02 2.2 2.9 
6/28/2010 0.36 0.03 0.36 0.03 0.7 0.7 
7/5/2010 0.40 0.04 0.43 0.07 1.1 1.1 
7/12/2010 0.44 0.03 0.42 0.03 0.7 0.7 
7/19/2010 0.53 0.06 0.46 0.03 1.0 1.1 
7/26/2010 0.39 0.06 0.41 0.08 1.1 1.1 

 

A statistical analysis was performed on the data in Table 7-2 to see if they indicate a 

significant difference in the amount of protein or carbohydrate for the feed and 
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concentrate swatches.  This was accomplished by using a t-test on the average value of 

the feed concentrate ratio to see if it is significantly different than 1.  The results of this 

test indicate no significant difference in the concentration of protein or carbohydrate on 

the feed and concentrate surfaces with a 95% confidence level (i.e. the value is not 

significantly different from 1), see Appendix E.  The feed/concentrate ratio data from 

Table 7-2 are plotted as a function of sampling date for the protein and carbohydrate 

concentrations, Figure 7-6. 

 

 

Figure 7-6  The feed/concentrate ratio for protein and carbohydrate concentrations plotted 

as a function of date sampled 

 

The carbohydrate/protein ratio data for the feed and the concentrate pilot swatches are 

also in Table 7-2.  These data indicate a carbohydrate/protein ratio of 0.4±0.2 for the zero 

external carbon loading portion of the study.  These data are represented graphically in 

Figure 7-7. 
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Figure 7-7  The carbohydrate/protein ratio for the feed an concentrate swatches of the 

pilot system 

 

7.3.1.1.2 Microbiological Data 

The total number of microorganisms (total direct count) was measured per unit area for 

the feed and concentrate swatches from the pilot system for the zero external carbon 

loading portion of the study, Table 7-3. 
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Table 7-3  Total direct count for feed and concentrate swatches and feed/concentrate ratio 

Feed (# x 107/cm2) Concentrate (# x 107/cm2) 
Date Avg Stdev Avg Stdev Feed/Conc 

4/7/2010 2.40 1.0 1.13 0.53 2.1 
4/14/2010 1.53 0.49 1.79 0.21 0.9 
4/20/2010 3.17 0.72 2.71 0.40 1.2 
4/27/2010 4.59 0.68 1.17 0.12 3.9 
5/4/2010 8.76 0.65 5.85 0.76 1.5 
5/11/2010 6.50 0.57 5.76 0.47 1.1 
5/18/2010 3.88 0.69 2.79 0.54 1.4 
5/25/2010 1.41 0.13 1.44 0.29 1.0 
6/1/2010 9.16 2.5 7.41 0.60 1.2 
6/7/2010 13.3 0.91 4.91 1.9 2.7 
7/26/2010 9.94 1.5 8.83 1.1 1.1 

 

The feed/concentrate ratio of microorganisms was 1.6±0.9.  When analyzing this ratio 

using a t-test, there are significantly more microorganisms on the feed swatch than the 

concentrate with a 95% level of confidence, Appendix E. 

 

The total number of culturable microorganisms (HPC) per unit area were measured on 

the feed and concentrate swatches of the pilot system.  These data along with the 

feed/concentrate ratio are in Table 7-4. 
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Table 7-4  HPC data for the feed and concentrate swatches as well as feed/concentrate 

ratio data for these counts 

Feed (# x 105/cm2) Concentrate (# x 105/cm2) 
Date Average Stdev Average Stdev Feed/Concentrate 

4/7/2010 -  -  - -  - 
4/14/2010 6.9 1.3 8.8 3.8 0.78 
4/20/2010 1.1 0.44 1.2 0.12 0.95 
4/27/2010 2.1 0.21 11 0.82 0.20 
5/4/2010 14 1.5 18 4.5 0.77 
5/11/2010 0.57 0.27 0.30 0.031 1.90 
5/18/2010 2.5 0.11 2.4 0.17 1.05 
5/25/2010 1.1 0.27 1.1 0.046 0.96 
6/1/2010 12 1.4 7.6 0.51 1.57 
6/7/2010 11 0.52 10 0.88 1.07 
6/14/2010 18 1.6 25 1.8 0.72 
6/21/2010 21 3.3 4.1 1.6 5.22 
6/28/2010 0.32 0.070 4.8 0.36 0.07 
7/5/2010 0.93 0.34 2.0 0.11 0.48 
7/12/2010 2.5 1.1 7.8 5.5 0.32 
7/19/2010 18 3.8 11 1.6 1.55 
7/26/2010  - -  - -  - 

 

The number of culturable bacteria per unit area on the feed and concentrate pilot 

swatches are represented graphically in Figure 7-8. 
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Figure 7-8  The number of culturable bacteria per unit area on the feed and concentrate 

pilot swatches 

 

The graph in Figure 7-8 displays fluctuation in the number of culturable bacteria on the 

membrane surfaces for both the feed and the concentrate.  As with the protein and 

carbohydrate, there is no trend evident over time.  The feed/concentrate ratio data for 

HPC during the zero external carbon loading portion of the study were calculated, Table 

7-4.  This gives an indication of the relative number of culturable bacteria present on the 

membrane surfaces.  Ratios greater than 1 indicate more culturable microorganisms on 

the feed surface, while ratios less than 1 indicate more culturable microorganisms on the 

concentrate surface.  A t-test was performed on the data in Table 7-4, and the results 

indicate no significant difference with a 95% confidence level in the number of culturable 

bacteria present on the feed and concentrate surfaces from the zero external carbon 

loading portion of the study, Appendix E.  The ratio data from Table 7-4 are plotted as a 

function of sampling date in Figure 7-9. 
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Figure 7-9  The feed/concentrate ratio of the number of culturable bacteria on the 

membrane surface 

 

7.3.1.1.3 ATR-FTIR 

Infrared spectra of the feed and concentrate membrane swatches from the zero external 

carbon loading portion of the study were obtained as per the methods in section 3.3.  This 

analysis gives chemical information of the materials deposited on and/or grown on the 

surface of the membrane as well as the membrane material itself (assuming the foulant 

layer is thin enough).  Example spectra of the feed and concentrate pilot swatches from 

this portion of the study are plotted from 4000-600 cm-1 along with virgin membrane 

material, Figure 7-10 (spectra from 01 Jun 2010).  The foulant layer is apparent in these 

spectra, indicated by the amine and/or hydroxyl stretch at approximately 3300 cm-1 and 

the aliphatic stretch at approximately 2900 cm-1. 
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Figure 7-10  ATR-FTIR spectra for virgin membrane material and pilot feed and 

concentrate membrane swatches from the zero external carbon loading portion of the 

study 

 

In order to more closely analyze the peaks from the 2000-600 cm-1 region, that area is 

expanded and the difference between the pilot sample spectrum and the virgin membrane 

material was taken, Figure 7-11.  This method makes foulant peaks more readily 

apparent.  The peaks that are visible in these spectra are the Amide I and Amide II peaks, 

approximately 1630 and 1530 cm-1respectively, and carbohydrate CHO peak, 

approximately 1050 cm-1.  Differences in peak intensity indicating differences in 

concentration of foulant material are not readily apparent, indicating the foulant materials 
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either have approximately the same amounts of these foulants, or the foulant layer is too 

thick to indicate differences. 

 

 

Figure 7-11  Difference spectra for pilot feed and concentrate 

 

7.3.1.1.4 SEM-EDS 

The surface of the membrane swatches were qualitatively analyzed using scanning 

electron microscopy with energy dispersive spectroscopy (SEM-EDS).  Details on these 

analyses are available in section 3.3.  The surface of the membrane swatches did not 

display a high level of fouling, although signs of biofilm formation were commonly 

observed on the surfaces of both the feed and concentrate swatches from the pilot system.  

Additionally, the EDS spectra for the samples displayed organic content and sulfur, 
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which is consistent with biofilm formation as well as the membrane material itself.  No 

sign of scale formation was observed on the membrane surfaces by SEM or EDS. 

Example SEM images and EDS spectra of a feed and concentrate membrane swatch are 

displayed in Figure 7-12 (images and spectra from 20 April 2010).   

 

 

Figure 7-12  SEM images of feed (top left) and concentrate (top right) and EDS images 

of feed (bottom left) and concentrate (bottom right) 
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7.3.1.1.5 AFM 

The membrane surface was imaged using an AFM as per the procedure in section 3.3, 

which allows for qualitative analysis of materials deposited on or grown on the surface of 

the membrane.  This analysis gives a three-dimensional image of the membrane surface, 

so the roughness of the surface can be calculated.  Example AFM images of the pilot 

membrane swatches are in Figure 7-13 (images from 20 April 2010 sampling).  

Additionally, the roughness values for the surface are reported as root mean squared 

roughness (RMS) and average roughness (Ra).  The roughness data for the zero external 

carbon loading portion of the study are in Table 7-5. 
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Figure 7-13  AFM images of the pilot membrane surface swatches: top view for feed (top 

left), top view for concentrate (top right), surface view for feed (bottom left), and surface 

view for concentrate (bottom right) 
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Table 7-5  The AFM roughness data for the feed and concentrate membrane swatches as a function of sampling date 

Feed Concentrate 

Date 

Avg 
RMS 
(nm) Stdev 

AVG 
Ra 

(nm) Stdev 

AVG 
RMS 
(nm) Stdev 

AVG 
Ra 

(nm) Stdev 
Feed/concentrate 

RMS 
Feed/Concentrate 

Ra 
4/7/2010 47.8 17.9 34.5 9.6 49.1 1.5 36.2 1.2 1.0 1.0 
4/14/2010 70.4 12.7 48.8 7.1 59.8 25.6 45.4 17.8 1.2 1.1 
4/20/2010 50.0 2.3 38.3 0.3 55.1 7.3 42.0 4.1 0.9 0.9 
4/27/2010 55.1 2.5 43.6 1.7 69.1 29.1 54.2 23.2 0.8 0.8 
5/4/2010 63.1 15.3 48.1 11.2 52.5 18.2 39.9 13.5 1.2 1.2 
5/11/2010 141.8 76.1 113.7 64.0 104.5 51.6 84.5 44.0 1.4 1.3 
5/18/2010 73.6 18.4 56.4 13.3 65.3 13.5 47.8 7.4 1.1 1.2 
5/25/2010 44.9 8.2 32.8 4.7 36.1 7.0 28.4 4.9 1.2 1.2 
6/1/2010 55.1 17.2 41.9 10.7 42.6 3.9 33.8 3.3 1.3 1.2 
6/7/2010 45.5 3.9 35.4 2.5 46.7 5.3 35.6 2.9 1.0 1.0 
6/14/2010 36.6 5.5 29.1 5.1 45.7 14.6 36.2 12.3 0.8 0.8 
6/21/2010 41.7 7.2 30.7 2.1 43.2 2.2 33.2 2.2 1.0 0.9 
6/28/2010 45.4 14.8 35.5 11.4 43.1 5.4 34.0 5.3 1.1 1.0 
7/5/2010 48.7 6.7 38.6 4.8 42.9 5.1 33.1 3.8 1.1 1.2 
7/12/2010 45.2 4.1 35.0 2.5 49.7 4.9 38.6 3.7 0.9 0.9 
7/19/2010 66.7 13.3 53.9 10.0 53.4 10.1 39.7 6.8 1.2 1.4 
7/26/2010 47.9 9.4 37.3 8.3 56.1 7.5 44.3 5.5 0.9 0.8 
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Statistical analyses using a t-test were performed on the feed/concentrate ratio for the 

RMS and Ra roughness values to determine if there is a significant difference in the 

surface roughness for these membrane swatches.  The results of these analyses for the 

RMS and Ra roughness ratio data indicate no significant difference between feed and 

ratio with a 95% level of confidence (i.e. the ratio is not significantly different from 1), 

Appendix E. 

 

7.3.1.2 Carbon Loading 

The results from the zero external carbon loading portion of the study did not indicate 

significantly higher foulant on the either membrane swatch.  It is believed the lack of 

constant AOC exposure to the membrane surface is responsible for the lack of difference 

observed on the feed and concentrate swatches.  In order to simulate constant exposure of 

organic carbon to the membrane surface, a carbon loading portion of the study was 

performed.  The source of organic carbon chosen for the carbon loading portion of the pilot 

study was glycerin; since it more closely resembles natural organic matter than other 

carbon sources (e.g. dextrose, acetate).  This was achieved by adding a solution or known 

glycerin concentration to the feed tank at a known flow rate using a peristaltic pump (see 

section 7. 3 and Appendix C for details). 

 

The feed and concentrate membrane swatches from the pilot system were characterized 

using the same techniques used in the carbon loading portion of the study.  The 

concentration of organic carbon added to the system was varied to determine its effect of 

the growth of biofilm on the membrane surfaces. 
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7.3.1.2.1 Protein and Carbohydrate Data 

The concentration of proteins and carbohydrates on the feed and concentrate membrane 

swatches of the pilot system were measured as per the methods in section 3.3.  The 

results of these analyses with their respective standard deviations for the period of 0.1 g 

C/m2day carbon addition are in Table 7-6. 

 

Table 7-6  Protein and carbohydrate concentration on pilot membrane swatches from the 

0.1 g/m2day portion of study 

Protein 
concentration 
(g/cm2) 

Carbohydrate 
concentration 
(g/cm2) 

Feed Concentrate Feed Concentrate 

Date 
Flow 

(GPM) Avg Stdev Avg Stdev Avg Stdev Avg Stdev 
08/30/10 50 26.2 0.3 39.6 0.5 14.6 2.8 15.3 0.9 
08/30/10 50 20.7 0.1 20.6 0.2 10.6 0.9 9.4 0.8 
09/06/10 50 27.7 0.3 28.6 0.2 2.2 0.7 2.0 0.5 
09/06/10 50 26.7 0.4 34.1 0.2 3.0 1.8 5.0 1.1 
09/13/10 50 13.6 0.2 13.5 0.1 6.3 0.4 6.6 0.3 
09/13/10 50 15.2 0.3 14.9 0.3 8.7 1.8 7.7 0.8 
09/20/10 25 8.7 0.1 10.1 0.2 6.8 0.3 5.5 0.3 
09/20/10 25 10.6 0.2 10.1 0.1 6.3 1.7 5.7 0.4 
09/27/10 25 5.9 0.4 5.3 0.1 5.8 1.6 5.6 0.2 
09/27/10 25 7.0 0.1 6.9 0.0 6.9 2.2 6.0 0.3 
10/04/10 25 6.9 0.1 6.0 0.6 6.0 0.4 4.2 0.2 
10/04/10 25 6.7 0.1 6.6 0.1 4.2 0.7 5.9 0.7 

 

The data in Table 7-7 can be analyzed to determine the carbohydrate/protein ratio for the 

feed and concentrate membrane swatches.  The feed/concentrate ratio of protein and 

carbohydrates for the pilot system can be calculated as well.  These calculations for the 

0.1 g C/m2day portion of the carbon loading study are in Table 7-7. 



 

142 

 

Table 7-7  The carbohydrate/protein ratio data for the feed and concentrate swatches and 

feed/concentrate ratio data for protein and carbohydrates from the 0.1 g/m2day portion of 

study 

Carb/Protein Feed/concentrate 
Feed Concentrate 

Date 
Flow 

(GPM) Avg Stdev Avg Stdev Protein Carb 
8/30/2010 50 0.6 0.1 0.4 0.0 0.7 1.0 
8/30/2010 50 0.5 0.0 0.5 0.0 1.0 1.1 
9/6/2010 50 0.1 0.0 0.1 0.0 1.0 1.1 
9/6/2010 50 0.1 0.1 0.1 0.0 0.8 0.6 
9/13/2010 50 0.5 0.0 0.5 0.0 1.0 0.9 
9/13/2010 50 0.6 0.1 0.5 0.1 1.0 1.1 
9/20/2010 25 0.8 0.0 0.5 0.0 0.9 1.2 
9/20/2010 25 0.6 0.2 0.6 0.0 1.0 1.1 
9/27/2010 25 1.0 0.3 1.0 0.0 1.1 1.0 
9/27/2010 25 1.0 0.3 0.9 0.0 1.0 1.2 
10/4/2010 25 0.9 0.1 0.7 0.1 1.1 1.4 
10/4/2010 25 0.6 0.1 0.9 0.1 1.0 0.7 

 

The data in Table 7-6 indicate an average carbohydrate/protein ratio of 0.6±0.3 for the 

feed swatch and 0.6±0.3 for the concentrate swatch.  The feed/concentrate ratios for 

protein and carbohydrate concentrations are 1.0±0.1 and 1.0±0.2 respectively for the 0.1 

g C/m2day portion of the carbon loading study.  A t-test performed on the 

feed/concentrate ratio data indicates no significant difference between the feed and 

concentrate membrane swatches for the protein and carbohydrate concentrations with a 

95% confidence level.  However, when the carbohydrate/protein ratio data from the 0.1 g 

C/m2day were compared to the zero external carbon loading data, there was a significant 

increase in the ratio with greater than a 95% level of confidence for the feed and 

concentrate membrane swatches, Appendix E. 
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The next portion of the carbon loading study is the addition of 0.5 g C/m2day.  The data 

for the protein and carbohydrate concentrations on the surface of the feed and concentrate 

membrane swatches are in Table 7-8. 

 

Table 7-8  Protein and carbohydrate concentrations on pilot membrane swatches from the 

0.5 g/m2day portion of study 

Protein 
concentration 
(g/cm2) 

Carbohydrate 
concentration 
(g/cm2) 

Feed Concentrate Feed Concentrate 

Date 
Flow 

(GPM) Avg Stdev Avg Stdev Avg Stdev Avg Stdev 
10/11/10 25 18.2 0.5 14.1 0.1 24.6 1.9 14.4 0.8 
10/11/10 25 15.7 0.8 14.1 0.6 23.4 0.4 16.1 1.2 
10/18/10 25 12.4 1.1 10.6 0.1 16.6 0.7 15.4 0.5 
10/18/10 25 12.3 0.4 11.1 1.2 16.3 1.3 13.8 0.0 
10/25/10 25 3.6 0.2 5.7 0.2 0.5 0.3 2.1 0.2 
10/25/10 25 4.5 0.1 5.4 0.2 1.1 0.3 1.1 0.3 
11/08/10 50 19.3 0.9 10.4 0.8 18.2 2.4 14.0 1.4 
11/08/10 50 19.1 1.2 8.3 0.3 20.6 0.8 10.3 0.8 
11/15/10 50 20.2 0.6 9.3 0.3 25.4 0.1 14.2 0.5 
11/15/10 50 15.2 0.4 10.0 0.1 19.3 1.4 19.0 1.3 
11/22/10 50 25.4 0.9 13.6 0.4 24.7 3.3 14.1 0.8 
11/22/10 50 19.5 1.2 17.0 0.5 19.4 3.0 16.8 0.4 

 

The data in Table 7-8 were further analyzed to determine the carbohydrate/protein ratio 

for the feed and the concentrate swatches, Table 7-9.  This table also contains the 

feed/concentrate ratio for both the protein and carbohydrate concentrations. 
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Table 7-9  The carbohydrate/protein ratio data for the feed and concentrate swatches and 

feed/concentrate ratio data for protein and carbohydrates from the 0.5 g/m2day portion of 

study 

Carb/Protein Feed/Concentrate 
Feed Concentrate 

Date 
Flow 

(GPM) Avg Stdev Avg Stdev Protein Carb 
10/11/2010 25 1.4 0.1 1.0 0.1 1.3 1.7 
10/11/2010 25 1.5 0.1 1.1 0.1 1.1 1.4 
10/18/2010 25 1.4 0.1 1.4 0.0 1.2 1.1 
10/18/2010 25 1.3 0.1 1.2 0.1 1.1 1.2 
10/25/2010 25 0.1 0.1 0.4 0.0 0.6 0.2 
10/25/2010 25 0.2 0.1 0.2 0.1 0.8 0.9 
11/8/2010 50 0.9 0.2 1.3 0.2 1.9 1.3 
11/8/2010 50 1.1 0.1 1.2 0.1 2.3 2.0 
11/15/2010 50 1.3 0.0 1.5 0.1 2.2 1.8 
11/15/2010 50 1.3 0.1 1.9 0.1 1.5 1.0 
11/22/2010 50 1.0 0.1 1.0 0.1 1.9 1.8 
11/22/2010 50 1.0 0.2 1.0 0.0 1.1 1.2 

 

The data in Table 7-9 indicate an average carbohydrate/protein ratio of 1.0±0.4 for the 

feed swatch and 1.1±0.5 for the concentrate swatch.  The feed/concentrate ratios for 

protein and carbohydrate concentration are 1.4±0.5 and 1.3±0.5 respectively for the 0.5 g 

C/m2day portion of the carbon loading study.  A t-test reveals a significant difference in 

both the protein and carbohydrate concentrations between the feed and concentrate 

membrane swatches.  A t-test was also performed on the carbohydrate/protein ratio data, 

indicating a significant increase over the 0.1 g C/m2day portion of the study with a 95% 

confidence level, Appendix E. 
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The final portion of the carbon loading study is the addition of 2.0 g C/m2day.  The data 

for the protein and carbohydrate concentrations on the surface of the feed and concentrate 

membrane swatches are in Table 7-10. 

 

Table 7-10  Protein and carbohydrate concentration on pilot membrane swatches from the 

2.0 g/m2day portion of study 

Protein 
concentration 
(g/cm2) 

Carbohydrate 
concentration 
(g/cm2) 

Feed Concentrate Feed Concentrate 

Date 
Flow 

(GPM) Avg Stdev Avg Stdev Avg Stdev Avg Stdev 
11/29/10 50 13.8 0.9 10.9 0.5 15.1 2.2 11.6 0.6 
11/29/10 50 14.0 0.3 10.4 0.2 12.9 0.8 9.9 0.4 
12/06/10 50 10.4 0.5 8.9 0.1 15.2 1.3 10.7 0.6 
12/06/10 50 10.0 0.3 7.4 0.2 16.8 0.9 10.4 1.4 
12/13/10 50 9.9 0.3 6.6 0.2 13.6 4.7 3.6 0.9 
12/13/10 50 9.7 0.3 6.8 0.4 9.1 0.5 2.9 1.5 
12/20/10 25 11.3 0.7 7.6 1.7 11.2 0.8 8.4 1.5 
12/20/10 25 12.3 0.9 11.8 0.6 9.9 0.9 5.4 1.0 
12/27/10 25 14.2 0.3 11.2 0.7 9.0 0.9 6.9 0.9 
12/27/10 25 13.0 0.7 11.5 0.5 10.9 1.0 9.2 0.1 
01/03/11 25 9.1 0.2 7.8 0.2 8.2 0.7 5.2 0.1 
01/03/11 25 9.1 0.1 7.3 0.2 9.0 0.9 7.0 0.9 

 

The data in Table 7-10 are used to calculate the carbohydrate/protein ratio for the feed 

and the concentrate swatches.  The feed/concentrate ratio for the protein and 

carbohydrate concentrations are also calculated using these data, Table 7-11. 
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Table 7-11  The carbohydrate/protein ratio data for the feed and concentrate swatches and 

feed/concentrate ratio data for protein and carbohydrates from the 2.0 g/m2day portion of 

study 

Carb/Protein Feed/Concentrate 
Feed Concentrate 

Date 
Flow 

(GPM) Avg Stdev Avg Stdev Protein Carb 
11/29/2010 50 1.1 0.1 1.1 0.1 1.3 1.3 
11/29/2010 50 0.9 0.1 0.9 0.0 1.3 1.3 
12/6/2010 50 1.5 0.2 1.2 0.1 1.2 1.4 
12/6/2010 50 1.7 0.1 1.4 0.2 1.3 1.6 
12/13/2010 50 1.4 0.5 0.5 0.1 1.5 3.8 
12/13/2010 50 0.9 0.1 0.4 0.2 1.4 3.1 
12/20/2010 25 1.0 0.0 1.1 0.3 1.5 1.3 
12/20/2010 25 0.8 0.1 0.5 0.1 1.0 1.8 
12/27/2010 25 0.6 0.1 0.6 0.1 1.3 1.3 
12/27/2010 25 0.8 0.1 0.8 0.0 1.1 1.2 
1/3/2011 25 0.9 0.1 0.7 0.0 1.2 1.6 
1/3/2011 25 1.0 0.1 0.9 0.1 1.2 1.3 

 

The data in Table 7-11 reveal an average carbohydrate/protein ratio of 1.0±0.3 and 

0.9±0.3 for the feed and concentrate swatches respectively.  The feed/concentrate ratios 

for protein and carbohydrate concentrations are 1.3±0.1 and 1.8±0.8 respectively.  

Analysis of the feed/concentrate ratio data revealed a significant difference with a 95% 

confidence level using a t-test for both protein and carbohydrate concentrations.  

However, when compared to the 0.5 g C/m2day portion of the study, the feed/concentrate 

ratio data are not significantly different, indicating no additional protective effect with the 

additional carbon loading.  Analysis of the carbohydrate/protein ratio indicated a 

significant difference between the 2.0 g C/m2day data and the zero external carbon 
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loading data with a 95% confidence level.  However, the data for the 2.0 g C/m2day and 

0.5 g C/m2day carbon loading portions are not significantly different, Appendix E. 

 

The protein concentration on the feed and concentrate membrane swatches for the carbon 

loading portion of the study is displayed graphically as a function of sampling date, 

Figure 7-14.  The initial decrease observed for carbon concentration on the surface of the 

membrane swatches is likely due to equilibration from carbon addition and from startup 

after the pump rebuild (see above). 

 

 

Figure 7-14  Protein concentration on the feed and concentrate pilot swatches for the 

carbon loading portion of the study 

 

The carbohydrate concentration on the feed and concentrate membrane swatches for the 

carbon loading portion of the study is represented graphically in Figure 7-15.  In order to 

find a trend in the data for the protein and carbohydrate concentrations on the pilot 



 

148 

 

membrane surfaces, the feed/concentrate ratio of these concentrations for the membrane 

swatches are calculated as a function of sampling date, Figure 7-16.  Qualitatively, the 

feed/concentrate ratio appears to be both greater than one and increasing.  This would 

indicate a protective effect for the membrane material downstream from the membrane 

element.  The statistical analysis performed above also indicates an increasing trend for 

the feed/concentrate ratio of protein and carbohydrate concentrate as the concentration of 

carbon addition increases.  The carbohydrate/protein ratio also appears to increase with 

increasing carbon addition for the carbon loading portion of the study, and a t-test 

revealed a statistically significant increasing trend as the concentration of carbon addition 

increases, Figure 7-17. 

 

 

Figure 7-15  Carbohydrate concentration on the feed and concentrate swatches from the 

pilot system during the carbon loading portion of the study 
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Figure 7-16  The feed/concentrate ratio for protein and carbohydrate concentrations on 

the pilot membrane surfaces 

 

 

Figure 7-17  The carbohydrate/protein ratio for the pilot feed and concentrate membrane 

surfaces during the carbon loading portion of the study 
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7.3.1.2.2 Microbiological Data 

The total number of microorganisms on the membrane surfaces for the carbon loading 

portion of the study is in Appendix E.  The feed/concentrate ratio of total microorganisms 

was 1.4±0.4 from the 0.1 g/m2day portion of the study.  Analysis of the data reveals no 

significant difference between the feed and concentrate swatches at a 95% confidence 

level.  For the 0.5 g/m2day portion of the study, the feed/concentrate ratio was 1.8±0.6.  

This result indicates a significantly higher number of total microorganisms on the feed 

swatch to a 95% level of confidence.  Finally, the feed/concentrate ratio for the 2.0 

g/m2day is 1.8±0.5, which yields a significantly higher number on the feed swatch as 

compared to the concentrate swatch, Appendix E. 

 

The data from each of the carbon loading concentrations were further analyzed to 

determine if there was a significant difference between the points using a t-test.  

Although the results from the carbon loading levels of 0.5 and 2.0 g/m2day indicated 

significantly higher numbers of total bacteria on the feed swatch, analysis of the data 

indicated no significant difference between any of the ratio data.  Thus, the total direct 

count data are inconclusive as far as a relationship to carbon loading levels. 

 

The total number of culturable microorganisms on the surface of the feed and concentrate 

membrane swatches for the carbon loading portion of the study as well as the 

feed/concentrate ratio data are displayed in Tables 7-12, 13, and 14 for the 0.1, 0.5, and 

the 2.0 g C/m2day carbon loading rates respectively.  The ratio of culturable 

microorganisms for the feed to concentrate membrane swatches for the 0.1 g C/m2day 
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portion of the study is 1.3±0.8.  However, there was not a significant difference in the 

number of culturable bacteria on the feed and concentrate swatches at a 95% confidence 

level, Appendix E. 

 

The feed/concentrate ratio of culturable microorganisms for the 0.5 g C/m2day portion of 

the study was 2.6±2.  A t-test analysis reveals a significant difference in the number of 

culturable microorganisms on the feed and concentrate swatches, i.e. the ratio was 

statistically different than 1.  When the ratio of culturable microorganisms from the 0.1 g 

C/m2day and the 0.5 g C/m2day portions of the study were compared, there is not a 

significant difference at a 95% confidence level (although there is a significant difference 

at a 90% confidence level), Appendix E. 

 

The culturable microorganisms from the 2.0 g C/m2day had a feed/concentrate ratio of 

2.5±1.5.  Analysis of these data using a t-test indicates a significant difference in the 

number of culturable microorganisms for the feed and concentrate membrane swatches.  

Additionally, when comparing the feed/concentrate ratio of culturable microorganisms 

from the 0.1 g C/m2day and 2.0 g C/m2day carbon loading portions of the study, there is a 

significant difference, but when comparing the 0.5 g C/m2day and 2.0 g C/m2day carbon 

loading portions of the study, no significant difference is observed, Appendix E. 
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Table 7-12  Total culturable microorganisms on the feed and concentrate membrane 

swatches from the 0.1 g C/m2day portion of the study and the feed/concentrate ratio 

Feed (# x 104/cm2) Concentrate (# x 104/cm2) 
Date Average Stdev Average Stdev Feed/Conc 

8/30/2010 15 3.4 12 3.5 1.2 
8/30/2010 29 15 8.9 0.84 3.3 
9/6/2010 16 5.6 9.2 4.3 1.7 
9/6/2010 12 1.6 16 2.5 0.8 
9/13/2010 7.0 1.9 11 0.80 0.7 
9/13/2010 20 6.6 9.6 2.8 2.1 
9/20/2010 5.6 4.2 8.2 5.8 0.7 
9/20/2010 3.7 1.7 13 2.9 0.3 
9/27/2010 5.9 0.93 5.9 1.7 1.0 
9/27/2010 9.2 2.6 6.3 2.3 1.5 
10/4/2010 7.6 1.7 5.2 0.069 1.5 
10/4/2010 5.9 1.5 4.8 0.82 1.2 

 

Table 7-13  Total culturable microorganisms on the feed and concentrate membrane 

swatches from the 0.5 g C/m2day portion of the study and the feed/concentrate ratio 

Feed (# x 104/cm2) Concentrate (# x 104/cm2) 
Date Average Stdev Average Stdev Feed/Conc 

10/11/2010 5.3 0.59 3.9 0.17 1.3 
10/11/2010 3.3 0.072 4.6 2.7 0.7 
10/18/2010 31 6.4 4.0 2.5 7.7 
10/18/2010 27 4.7 7.0 3.5 3.9 
10/25/2010 6.0 2.1 3.6 1.2 1.7 
10/25/2010 6.3 5.4 5.4 1.3 1.2 
11/8/2010 33 8.1 33 13 1.0 
11/8/2010 42 9.9 19 9.0 2.2 
11/15/2010 83 6.2 16 9.9 5.1 
11/15/2010 63 16 26 5.2 2.5 

11/22/2010 18 1.5 7.2 2.8 2.5 
11/22/2010 16 4.9 10 1.5 1.5 
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Table 7-14  Total culturable microorganisms on the feed and concentrate membrane 

swatches from the 2.0 g C/m2day portion of the study and the feed/concentrate ratio 

Feed (# x 104/cm2) Concentrate (# x 104/cm2) 
Date Average Stdev Average Stdev Feed/Conc 

11/29/2010 1.9 0.67 1.5 1.3 1.3 
11/29/2010 1.4 1.3 1.1 1.1 1.3 
12/6/2010 17 4.8 9.4 5.8 1.8 
12/6/2010 22 10 4.6 2.7 4.8 
12/13/2010 13 5.8 9.3 4.1 1.4 
12/13/2010 27 31 10 3.9 2.6 
12/20/2010 30 23 5.5 6.3 5.4 
12/20/2010 16 20 4.7 7.2 3.4 
12/27/2010 1.2 1.2 1.2 1.9 1.0 
12/27/2010 2.7 2.4 2.3 2.0 1.2 
1/3/2011 15 11 4.2 0.84 3.5 
1/3/2011 10 1.8 3.5 4.2 2.9 

 

The total number of culturable microorganisms from all phases of the carbon loading 

portion of the study is plotted as a function of sampling date in Figure 7-18.  

Additionally, the feed/concentrate ratio of culturable microorganisms on the pilot 

membrane swatches is represented graphically, Figure 7-19. 
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Figure 7-18  The total number of culturable microorganisms as a function of sampling 

date for the carbon loading portion of the study 

 

 

Figure 7-19  The feed/concentrate ratio of culturable microorganisms as a function of 

sampling date for the carbon loading portion of the study 

 



 

155 

 

7.3.1.2.3 ATR-FTIR 

Infrared spectra of the feed and concentrate membrane swatches from the carbon loading 

portion of the study were obtained as per the methods in section 3.3.  Example spectra of 

the feed and concentrate pilot swatches from the carbon loading portion of the study 

along with virgin membrane material are plotted from 4000-600 cm-1, Figure 7-20 

(spectra from 11 Oct 2011).  Signs of foulant material are apparent in these spectra, 

indicated by the amine and/or hydroxyl stretch at approximately 3300 cm-1 and the 

aliphatic stretch at approximately 2900 cm-1. 

 

 

Figure 7-20  FTIR spectra of feed and concentrate membrane swatches from the carbon 

loading portion of the study along with virgin membrane material 
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The region of the spectra from 2000-600 cm-1 was expanded and the difference between 

the pilot sample spectrum and virgin membrane material was taken, Figure 7-21.  The 

notable peaks that are visible in these spectra are a carboxyl group peak at approximately 

1730 cm-1, an amide peak at approximately 1630 cm-1, and a carbohydrate CHO peak at 

approximately 1050 cm-1.  There appears to be slightly more foulant material on the 

concentrate membrane swatch, although this difference may be due to sampling location 

on the membrane swatch.  There are no notable differences in peak location, indicating 

the same type of foulant material is present on the feed and concentrate membrane 

swatches. 

 

 

Figure 7-21  FTIR difference spectra for feed and concentrate membrane swatches 
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7.3.1.2.4 SEM-EDS 

The surface of the membrane swatches from the carbon loading portion of the study were 

qualitatively analyzed using scanning electron microscopy with energy dispersive 

spectroscopy (SEM-EDS).  Details on these analyses are available in section 3.3.  The 

surface of the membrane swatches displayed signs of biofilm on both the feed and 

concentrate swatches of the pilot system.  Example SEM images of a feed and 

concentrate membrane swatches are displayed in Figure 7-22 (images and spectra from 

18 October 2010).  Additionally, the EDS spectra for the samples displayed organic 

content and sulfur, which is consistent with biofilm formation as well as the membrane 

material itself.  No sign of scale formation is observed on the membrane surfaces by SEM 

or EDS. 
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Figure 7-22  SEM images of pilot membrane swatch surface for feed (top left) and 

concentrate (top right) and EDS spectra for feed (bottom left) and concentrate (bottom 

right) 

 

7.3.1.2.5 AFM 

The membrane surface was imaged and qualitatively analyzed using an AFM as per the 

procedure in section 3.3.  Example AFM images of the pilot membrane swatch top and 

surface views from the carbon loading portion of the study are in Figure 7-23 (images 

from 18 October 2010).  Additionally, the roughness values for the surface are reported 

as root mean squared roughness (RMS) and average roughness (Ra).  The roughness data 
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for the carbon loading portion of the study are in Appendix E.  Analysis of these data 

using a t-test indicates no difference in the roughness of the feed and concentrate 

membrane swatches for the carbon loading portion of the study as well as the zero 

external carbon loading portion of the study. 

 

 

Figure 7-23  AFM images of the pilot membrane swatch surfaces: top view for feed (top 

left), top view for concentrate (top right), surface view for feed (bottom left), and surface 

view for concentrate (bottom right) 
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7.3.1.3 Overall Foulant Trends 

The foulant characterization data for the zero external carbon loading and the carbon 

loading portions of the pilot study give insight to the effect of carbon concentration on 

the relative deposition/growth of the foulant layer on the feed and concentrate membrane 

surfaces.  At zero external carbon loading and 0.1 g C/m2day, no significant difference 

was observed between the feed and concentrate pilot membrane swatches for either the 

protein or carbohydrate concentrations.  Additionally, the number of culturable 

microorganisms on the feed and concentrate surfaces was statistically the same for the 

zero external carbon loading portion of the study.  However, there was a statistically 

significant difference for the 0.1 g C/m2day portion of the study, indicating a greater 

number of culturable microorganisms for the feed membrane swatches.  This suggests 

that even though there was no observable difference in the amount of biofilm (protein and 

carbohydrate concentrations) between the feed and concentrate membrane swatches, the 

microorganisms are more active at the feed portion with the small amount of carbon 

addition.  Given a longer time of operation, differences in biofilm formation for the feed 

and concentrate surfaces may be observed for the 0.1 g C/m2day carbon addition rate. 

 

The 0.5 g C/m2day carbon loading rate portion of the study provided more significant 

results for the differences in biofilm growth.  Not only is there a significant increase in 

the feed/concentrate ratio of culturable microorganisms, there also is a significant 

increase in the feed/concentrate ratio of biofilm on the surfaces (protein and carbohydrate 

concentrations). 
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The highest carbon loading portion of the study was 2.0 g C/m2day.  This rate of carbon 

addition did lead to a significantly higher feed/concentrate ratio of protein concentration, 

carbohydrate concentration, and culturable microorganisms over the 0.1 g C/m2day 

portion of the study.  However, when compared to the 0.5 g C/m2day carbon loading rate 

portion of the study, there was no significant difference observed. 

 

The Feed/concentrate ratios for protein concentration, carbohydrate concentration, and 

culturable microorganisms (HPC) are displayed graphically, Figure 7-24.  This plot 

displays the increased difference in concentrations for feed and concentrate surfaces with 

increased carbon loading conditions. 

 

 

Figure 7-24  The feed/concentrate ratio of protein concentration, carbohydrate 

concentration, HPC (error bars indicate standard deviation) 
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As stated above, the feed/concentrate ratio of foulant on the pilot surfaces increases as the 

carbon loading rate increases.  This indicates the feed membrane surfaces are fouling 

more severely than the concentrate.  Thus, the membrane element has a protective effect 

on the fouling of downstream membrane material.  Additionally, the carbohydrate/protein 

ratio increases as the rate of carbon loading increases, Figure 7-25.  This indicates the 

formation of more biofilm (excretion of EPS by microorganisms) with higher levels of 

carbon present.  These data, paired with the gradient pattern of formation seen in the 

membrane autopsies (Chapter 5) and the removal of organic carbon in the Dunedin water 

treatment plant (Chapter 6), indicate the biofilm on the membrane element surface has a 

protective effect on downstream membrane material by removal of organic carbon from 

the treatment water and making it nutrient deprived. 

 

 

Figure 7-25  Carbohydrate/protein ratio for the pilot feed and concentrate membrane 

swatches plotted against carbon loading rate (error bars indicate standard deviation) 



 

163 

 

The data for surface roughness (measured by AFM) displayed no significant difference 

between the feed and concentrate swatches for any portion of the study.  There was also 

no significant difference in roughness for the different carbon loading rates.  

Additionally, no differences were observed using SEM-EDS or ATR-FTIR in the types 

of foulant material deposited for any portion of the study. 

 

7.3.2 Flat Sheet Module Performance Characterization 

In addition to analyzing the content and concentration of the foulant material deposited 

on the membrane surface, the performance of the membrane swatches was analyzed 

throughout the study.  The performance variables that were monitored were the permeate 

flux for the membrane swatches and the transmembrane pressure.  These variables were 

chosen for performance characterization due to their importance to the costs of operation 

of a membrane treatment plant. 

 

7.3.2.1 Flux Characterization 

The first performance variable analyzed and presented here is the permeate flux.  As the 

membrane swatch begins to foul, the permeate flux decreases proportionally.  This trend 

tends to happen quickly as the foulant layer begins to form/deposit.  After the initial flux 

decline, this decrease begins to level off.  The initial rapid flux decline of the membrane 

swatch can be characterized using a linear approximation.  This allows for the 

comparison of the feed and concentrate portions of the pilot system. 
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In order to compare flux data for each flat sheet module over the entire study, the 

permeate flux of each module is normalized to its own initial flux, since the initial flux 

approximately represents the maximum flux for the unfouled membrane.  Thus, the loss 

of normalized flux represents a percentage loss of flux.  As stated above, the initial flux 

decline due to the membrane fouling can be approximated linearly, and the slope of that 

curve would represent the normalized initial rate of fouling, m, for that membrane, 

Equation 7.1. 

 

 

(7.1) 

 

In Equation 7.1, J is instantaneous flux at time t, Jo is initial flux, and t is time.  In order 

to obtain the slope of the line for the initial loss of flux, the normalized flux for each 

membrane module must first be plotted as a function of time.  These data must then be 

truncated to obtain the initial linear portion of the curve and the artifact points (points 

from pump shut down, tank refilling, etc.) removed.  An example of a curve prepared to 

obtain the initial flux decline data is in Figure 7-26 (flux graphs for all carbon loading 

levels and all flat sheet modules are in Appendix E).  This graph displays the initial flux 

decline data for flat sheet module 4 during the 2 g C/m2day portion of the study. 
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Figure 7-26  Initial flux decline data for FSM#4 during the 2 g C/m2day portion of the 

study 

 

The initial flux decline for the feed and concentrate membrane swatches of the pilot 

system can be compared by taking the ratio of the feed to concentrate normalized initial 

rates of flux decline, Equation 7.2.  This ratio is represented by the variable M. 

 

econcentrat

feed

m

m
M   

(7.2) 

 

where M is the fouling rate ratio, mfeed is the normalized initial rate of fouling for the 

feed, and mconcentrate is the normalized initial rate of fouling for the concentrate.  This 
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variable was calculated for corresponding flat sheet modules (i.e. Feed 1 to Concentrate 

1, etc.) each week, see Appendix E.  The ratio data for each carbon loading condition 

were then averaged to determine the trend of the fouling ratio with respect to carbon 

loading, Table 7-15.  These data are represented graphically in Figure 7-27.  

Additionally, the first two weeks for each data point were deleted.  This was done to 

reduce the effect of the equilibration time for each new condition. 

 

Table 7-15  Ratio of initial flux decline for feed to concentrate with their standard 

deviations at each carbon loading condition as well as the number of samples used and 

the t-value for the difference from M=1 

C Loading Avg M Stdev n t-value Significant 
0 1.232 0.480 23 2.32 Yes 

0.1 0.968 0.542 11 0.20 No 
0.5 1.187 0.240 12 2.70 Yes 
2 1.384 0.621 16 2.48 Yes 
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Figure 7-27  Relationship of fouling rate ratio, M, to carbon loading rate (error bars 

indicate standard deviation) 

 

The data in Figure 7-27 indicate an increasing trend for the fouling rate ratio with 

increasing carbon loading.  This indicates the biofilm on the surface of the pilot 

membrane element has a greater protective effect on downstream membrane material as 

the concentration of organic carbon in the feed water increases.  The data do have a high 

level of variability due to slightly different conditions for each flat sheet module.  

Statistical analysis of each data point indicates an M value greater than 1 for the carbon 

loading rates of 0, 0.5, and 2.0 g C/m2day with a 95% level of confidence (see t-values in 

Table 7-15).  Additionally, a two tailed t-test analysis was performed for each data point 

of increasing carbon loading to test if there was an increase in M value.  Although the 

degradation in performance of the feed membrane swatches was significantly higher than 

the concentrate, the results of this two tailed t-test analysis failed to show a significant 
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difference in the value of M as the rate of carbon loading increases to a 95% level of 

confidence, Table 16. 

 

Table 7-16  Two-tailed t-test results between each carbon loading condition showing 

degrees of freedom (df), t-value, and indication of significance at 0.05 

C Loading 1 C Loading 2 df t-value Significant 
0.0 0.1 32 1.44 No 
0.0 0.5 33 0.31 No 
0.0 2.0 37 0.86 No 
0.1 0.5 21 1.27 No 
0.1 2.0 25 1.80 No 
0.5 2.0 26 1.04 No 

 

7.3.2.2 Transmembrane Pressure Characterization 

The pressure of each flat sheet module was monitored throughout the study.  The trend 

commonly observed was a slight increase in pressure for the feed module with respect to 

the concentrate, Figure 7-28.  This trend indicates an increase in resistance by the pilot 

membrane element, suggesting an increase in foulant material on the pilot element. 
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Figure 7-28  The pressure for FSM#1 feed and concentrate membrane swatches and their 

differential pressure 

 

7.3.3 Flow Rate 

The flow rate to the pilot system was altered between 50GPM and 25GPM for each of the 

carbon loading conditions (except the zero external carbon loading portion).  This was 

performed to see if the flow rate for the system would have an effect on the relative rates 

of fouling for the feed and concentrate membrane material.  The feed/concentrate ratio 

data for the 50GPM and 25GPM flow rates are in Tables 7-17 and 7-18 respectively.  A 

two tailed t-test analysis of the data indicates no significant difference in the quantity of 

foulant material on the surface for the two flow rates at each carbon loading condition 

(except for protein at 0.5 g C/m2day).  Additionally, no difference in membrane 
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performance was observed for each carbon loading condition at the two flow rates, 

Appendix E. 

 

Table 7-17  Feed/concentrate ratio of foulants for each carbon loading level at 50GPM 

Carbon 
Loading 

(g/m2day) Protein Stdev Carbohydrate Stdev HPC Stdev 
0 1.06 0.3 1.03 0.5 1.17 1.2 

0.1 0.91 0.1 0.98 0.2 1.62 1.0 
0.5 1.81 0.4 1.50 0.4 2.47 1.4 
2 1.34 0.1 2.09 1.1 2.21 1.4 

 

Table 7-18  Feed/concentrate ratio of foulants for each carbon loading level at 25GPM 

Carbon 
Loading 

(g/m2day) Protein Stdev Carbohydrate Stdev HPC Stdev 
0 - - - - - - 

0.1 1.03 0.1 1.11 0.2 1.02 0.5 
0.5 1.02 0.2 1.10 0.5 2.75 2.7 
2 1.22 0.1 1.42 0.2 2.88 1.6 

 

7.3.4 Carbon and Nitrogen Mass Balance 

The procedures from Chapter 6 were followed on the pilot system to calculate the mass 

balance of carbon and nitrogen for the pilot system along with the change in SUVA.  The 

percent removal of each species was calculated using Equation 6.2.  The statistical 

analysis used to determine significance to a 95% confidence level for the mass balance 

and SUVA change was a t-test.  Results are not available for the individual phases of 

external carbon loading due to problems with the instrument preventing full analyses.  

Thus, the available results are combined to give an overall picture, Table 7-19. 
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Table 7-19  The percent removal of carbon and nitrogen and percent increase in SUVA 

along with statistical results for the pilot system 

Variable Mean Stdev n t-value Significant 
C 12.3 8.5 14 5.380 Yes 
SUVA 6.2 9.6 12 2.231 Yes 
N 12.7 14.7 14 3.241 Yes 

 

The results from the analyses indicate a significant removal of carbon and nitrogen as 

well as a significant increase in SUVA.  These results agree with the results of the mass 

balance analysis presented in Chapter 6.  Paired with the results of the autopsies, Chapter 

5, the ratio of foulant deposition/formation on the feed and concentrate surfaces of the 

pilot system and the performance of the feed and concentrate membrane swatches of the 

pilot, the data suggest the biofilm on the membrane surface is removing nutrients from 

the treatment water and protecting downstream membrane surfaces. 

 

7.4 Discussion 

The data and statistical analyses presented above give insight to the effect of the biofilm 

on downstream membrane surfaces.  No relative difference in the level of fouling 

between the feed and concentrate membrane swatches was observed for the zero external 

carbon loading portion of the study.  However, the carbon loading portion of the study 

indicated a protective effect of the pilot membrane element biofilm on downstream 

membrane material for both membrane foulant deposition/formation and performance. 

 

The membrane swatches that were exposed to initial feed water stream (pilot treatment 

water before the pilot membrane element) exhibited an overall higher level of fouling 
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than the membrane swatches exposed the concentrate water stream (pilot treatment water 

after the pilot membrane element).  Additionally, the difference in fouling seen was 

greater as the level of carbon loading increased, although a maximum protective effect 

was observed for carbon loading rate of approximately 0.5 g C/m2day.  Low levels of 

carbon loading (including zero external carbon loading) did not reveal a significant 

difference in fouling between the feed and concentrate.  These trends were observed with 

all the constituents investigated, including proteins, carbohydrates, and total culturable 

microorganisms (although HPC numbers were significantly different at low carbon 

loading levels).  Parallel to the increase of protective effect (and carbon loading), the 

carbohydrate/protein ratio increased as well.  This is likely due to the formation of more 

biofilm, and subsequently the excretion of more EPS.  The formation of more biofilm 

would have the ability to remove a higher level of organic carbon, and thus have a higher 

protective effect on downstream membrane material. 

 

The surface properties (i.e. roughness) and the types of foulant material deposited/formed 

on the feed and concentrate membrane surfaces did not change with respect to each other 

throughout the study.  These properties were observed qualitatively with the use of SEM, 

EDS and AFM, and the roughness of the membrane surfaces was quantitatively measured 

with an AFM. 

 

In addition to measuring the deposition/formation of foulant material on the membrane 

surfaces and membrane surface properties, the performance of the feed and concentrate 

membrane swatches was monitored in terms of permeate flux production.  It was found 



 

173 

 

that the feed performance degrades faster than the concentrate in all the cases tested 

(except the 0.1 g C/m2day carbon loading portion).  This degradation in performance 

agrees with the higher levels of foulant material observed on the feed test swatches.  The 

disparity in membrane performance between the feed and concentrate also increased as 

the level of carbon loading to the system increased.  Additionally, the pressure for the 

feed membrane swatches increased at a higher rate than the concentrate membrane 

swatches.  This increase in pressure is likely the result of increased fouling on the surface 

of the pilot membrane element. 

 

The carbon and nitrogen mass balance analysis on the pilot system indicated significantly 

positive removal from the pilot system.  Additionally, there was a significant increase in 

SUVA (aromatic character of carbon) in the pilot system.  These results agree with the 

analysis presented in Chapter 6, suggesting the biofilm formed in the system is 

responsible for the changes observed. 

 

7.5 Conclusions 

The biofilm on the membrane surface was found to have a protective effect on 

downstream membrane material.  This protective effect manifested itself in both the 

deposition/formation of foulant material on the membrane surfaces and the overall 

performance of the membrane swatches.  In both cases, this protective effect was found 

to be dependent on the level of carbon loading to the system.  Additionally, there was a 

significant removal of nutrients (carbon and nitrogen) as well as a change in carbon 

character (SUVA increase).  Although there was no observed difference for the type of 
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foulant material present on the feed and concentrate membrane surfaces, the difference in 

quantity of foulant present suggests the biofilm on the pilot membrane surface is 

performing as an in situ biofilter. 

 

No difference in the surface roughness between the feed and concentrate swatches was 

observed for any portion of the study.  Additionally, no differences were observed 

between portions of carbon loading.  This suggests surface roughness is not a good 

indicator of relative fouling levels.  The flow rate of treatment water did not appear to 

have an effect on the performance of the pilot system and the relative fouling and 

performance of the feed and concentrate membrane swatches. 
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Chapter 8 Conclusions 

 

8.1 Summary of Work 

The autopsy performed in OCWD revealed a gradient distribution of fouling material on 

the membrane surface from the highest concentration on the front section to the lowest 

concentration on the end section.  This trend was qualitatively observed microscopically, 

and it was quantitatively reinforced in the measurement of protein and carbohydrate 

concentrations and the number of culturable organisms (HPC), although total direct count 

was inconclusive.  The results of the HPC distribution and community profile analysis 

revealed the organisms at the front section of the membrane are different from those in 

the feed-water and other membrane sections, and they are more numerous than the other 

membrane sections.  The results from the OCWD autopsy suggest that the biofilm on the 

front section of the element acts as a biological filter, removing AOC and nutrients from 

the feed-water, thereby making the feed-water nutrient deprived and preventing/reducing 

biological growth on downstream membrane surfaces. 

 

A plant-wide autopsy results revealed an overall decreasing trend in the distribution of 

fouling material on the membrane surfaces for at least the first half of the membrane 

treatment train.  Additionally, an increasing trend was observed for up to the second half 

of the treatment train.  However, HPC increased as the treatment water traveled along the 

membrane surface.  These results do support the hypothesis that biofilm at the lead of the 
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treatment train act as a biological filter, removing AOC and nutrients from the feed-water 

and preventing the formation of biological debris on downstream membrane surfaces.  

However, the tail element does have increased foulant concentrations and an increased 

number of culturable microorganisms are observed.  This increase could be due to 

increased deposition of materials that have exceeded their solubility limit and an 

increased deposition of colloidal matter due to its higher concentration in solution. 

 

The overall levels of foulant material on the membrane surfaces from the plant-wide 

membrane autopsies revealed much lower levels of fouling than the OCWD autopsy.  

This difference in the levels of fouling are believed to be caused by differences in the 

treatment process that have occurred since the OCWD autopsy.  The most notable change 

in the process is the addition of chlorine to the raw water.  A residual of total chlorine 

does remain in the feed water to the membrane skids.  The secondary disinfectant effect 

of the chlorine residual is what is believed to cause this reduction in fouling on the 

membrane surfaces, and namely the reduction of biofilm formation observed.  The 

chlorine residual in the treatment water is likely consumed as the water travels toward the 

concentrate, enabling biofilm growth at the tail of the plant 

 

The gradient patter of fouling observed in the membrane autopsies was believed to be due 

to biofilm removing AOC from treatment water as it passes, making it nutrient deprived.  

To further investigate the idea that the biofilm on the membrane surfaces is acting as a 

biological filter, a carbon mass balance was performed at the Dunedin water treatment 

plant.  These analyses revealed a reduction in the total mass of organic carbon and 
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nitrogen from the system as well as an increase in the aromatic character (SUVA) of the 

carbon in the treatment water after traveling through the membrane treatment process.  

This indicates a sink for the organic carbon and nitrogen in the system, likely by the 

biofilm growing on the surface of the membranes. 

 

To test the level of protection afforded by the biofilm on downstream membrane surfaces, 

a pilot system was built and operated.  The results of the pilot operation indicated a 

protective effect on downstream membrane material in terms of quantity of foulant 

deposited/formed on the membrane surface and in the flux performance.  In both cases, 

this protective effect was found to be dependent on the level of external carbon loading to 

the system.  The level of external carbon loading to the system also had an effect on the 

carbohydrate/protein ratio, suggesting to formation of higher levels of biofilm with higher 

levels of external carbon loading.  Although there was no significant difference observed 

for the type of foulant between the feed and concentrate membrane surfaces and their 

surface roughness, the difference in quantity of foulant present suggested the biofilm on 

the pilot surface is performing as an in situ biofilter. 

 

8.2 Impacts of Proposed Activities 

Membrane fouling has traditionally been avoided and membranes cleaned thoroughly.  

The research goes against this convention by embracing biofouling in a limited fashion.  

This parallels the shift in view on biological growth on sand or media in water filtration, 

which was initially viewed as a nuisance.  Due to the extreme difficulty with fighting the 

microbial growth, research was undertaken into possible advantages of the biofilms, 
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leading to the innovation of biofiltration.  Biofiltration is currently an accepted and 

practiced process for reducing AOC and microbial instability in distribution water.  This 

research could have a similar impact on spiral-wound RO systems, which commonly 

experience biofouling.  By intentionally allowing the formation of biofilm on the lead 

element or a portion thereof, a more sustainable approach than the currently accepted 

guidelines of biofouling prevention may be achieved.  The overall performance of this 

passive strategy of manipulating and employing biofouling could be better than the 

current strategy of trying to keep it from happening altogether.  The development of an in 

situ biofilter will utilize existing pressure vessels, negating the need for additional capital 

and O&M requirements of a separate pretreatment biofiltration step. 

 

8.3 Recommendations for Future Work 

The results of this research indicate the biofilm on the membrane surfaces are performing 

as an in situ biofilter, protecting downstream membranes in terms of foulant 

deposition/formation and membrane performance.  In order to increase the protective 

effect of the biofilm, different membrane materials should be tested to see if membrane 

surface properties could lead to higher levels of biofilm formation, increasing the 

protective effect on downstream membrane materials.  Additionally, smoother membrane 

surfaces could be implemented downstream, which could lead to lower levels of fouling 

and higher overall performance.  This could lead to a hybrid system with different 

membrane materials.  An additional advantage of hybrid systems for a plant like the one 

in the City of Dunedin is tuning the salt rejection of the membranes.  The aggressive 
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nature of the permeate water forces Dunedin to blend their treatment water.  A hybrid 

system could reduce, or potentially eliminate this necessity. 

 

Along the lines of a hybrid membrane treatment train, the lead RO element can be turned 

into a UF element by oxidation with KMnO4 [128].  The optimal treatment time 

(oxidation level of the RO surface) would need to be investigated.  Further, the 

performance of the membrane would need to be tested and tuned for the application.  As 

with the hybrid system stated above, this method has the potential to reduce, or even 

eliminate the need for blending permeate water to reduce its aggressive nature. 

 

In addition to testing the effect of carbon loading to the pilot system, a study investigating 

pairing carbon loading with nitrogen loading could be performed.  This would give 

additional insight to the properties of the nutrient loading on the formation of biofilm and 

the protective effect that biofilm would have on downstream membrane material. 

 

To gain a better understanding of the behavior of biofilm formation throughout the 

treatment plant as a function of location and membrane material, flat sheet modules could 

be placed at various points in the treatment train.  This would allow for determinations of 

the protective effect of the biofilm on downstream membrane material in terms of foulant 

level and performance under actual treatment conditions.  It would also allow for a better 

understanding of the behavior of the different types of membrane material tested. 
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It is likely the behavior of the biofilm as a biofilter is not exclusive to RO systems.  Thus, 

this concept could be applied to other membrane types and systems.  Examples include 

forward osmosis and nanofiltration systems. 
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Appendix A Plant Diagram 

 

Figure A-1  Plant Diagram 
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Appendix B Analytical Methods SOPs 

 

Carbohydrate Assay 

 

Objective: 

The purpose of this analysis is to measure the total carbohydrate concentration of a 

sample in question. 

 

Reagents: 

1. Reagent A: Phenol Reagent 

A 25g aliquot of ultra-pure phenol is dissolved in 500mL DI water 

Store in an all-glass container that will prevent exposure to light 

2. Reagent B: Sulfuric Acid Reagent 

2.5g of Hydrazine Sulfate in dissolved in 500mL Concentrated Sulfuric Acid 

 

Sample Preparation: 

1. A measured sample, mass or area depending on desired units, is placed into a 20 

mL scintillation vial 

2. 10mL distilled water is added to the sample 

3. The sample is sonicated for 10 minutes (additional 5 minute increments can be 

added if sample is not completely suspended) 

4. The sample is vortex mixed prior to removal of any sample 
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Appendix B (Continued) 

Method: 

1. A 0.5mL aliquot of sample is added to a 100x15mm test tube 

2. A 0.5mL aliquot of the Phenol Reagent is added to sample 

3. A 2.5mL aliquot of the sulfuric acid reagent is rapidly added to the sample from a 

pipette while rapidly vortex mixing. 

Note: use a pipette pump that will allow complete rapid delivery of sulfuric 

acid reagent, taking care not to break tube with pipette tip. 

Caution: The sulfuric acid reagent generates excessive amounts of heat.  Use 

proper safety attire and carry out the reaction in a fume hood. 

4. The tubes are then covered with aluminum foil and allowed to cool at room 

temperature in a dark place for one hour (color is stable for 24 hours) 

5. The optical density of the sample is measured at 490nm using a UV-VIS 

spectrophotometer 

 

Calibration Curve: 

A stock solution of glucose (dextrose) is prepared by dissolving 0.100g in 1000mL DI 

water.  The following table is used for the calibration curve of the concentration of 

carbohydrates.  Micro-pipetters and cuvettes are used to make the dilutions/measure 

absorption spectra. Calibration samples are run in triplicate to ensure reproducibility of 

the data. 
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Appendix B (Continued) 

Table B-1  Dilution series for carbohydrate calibration 

mg/mL 
Concentration 

Sugars (Dextrose) 
L Dextrose Stock 

Solution 
L DI 
Water 

100 500 0 
70 350 150 
50 250 250 
30 150 350 
10 50 450 
0 0 500 
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Appendix B (Continued) 

Total Direct Count 

 

Objective: 

The purpose of this analysis is to measure the total microorganisms present per unit area 

(mass may also be used). 

 

Reagents: 

1. Reagent A: DAPI 

10mg DAPI is dissolved in 10mL DI water for stock solution 

100L diluted to 900L working stock 

2. Reagent B: Phosphate Buffer 

A 13.6 g/L solution of potassium phosphate monobasic is prepared and adjusted 

to pH 7 with potassium phosphate dibasic.  100 mg sodium pyruvate is dissolved 

in 1L of this solution. 

 

Method: 

1. A measured sample, mass or area depending on desired units, is placed into a vial 

2. 10mL phosphate buffer is added to the sample 

3. The sample is then sonicated for 10 minutes (Triplicates may be taken to ensure 

reproducibility in the data) 

4. If biofilm not completely removed, sonicate for increments of 5 additional 

minutes until biofilm is completely removed 
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Appendix B (Continued) 

5. The sample is vortex mixed prior to removal of any sample 

6. A 5mL aliquot of sample placed into a vial 

7. A 5L aliquot of DAPI working stock is added to vial with sample and vortex 

mixed 

8. Sample is allowed to sit in dark for 5 minutes 

9. A 1mL aliquot of sample is diluted to 10mL with phosphate buffer and vortex 

mixed 

10. A 1mL aliquot of sample is filtered through a 0.2m filter disk 

11. Filter disk is washed with an additional 2mL phosphate buffer 

12. Filter disk is analyzed with an Epifluorescent microscope 

Note: additional and/or different dilutions may be prepared as needed. 
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Heterotrophic Plate Count 

 

Objective: 

The purpose of this analysis is to measure the total number of culturable microorganisms 

present per unit area (mass may also be used). 

 

Reagents: 

1. Reagent A: R2A Agar 

A solution of agar is prepared as per manufacturers specifications.  

Approximately 25-30mL agar is placed in sterile petri dish (prepare enough to 

perform analyses). 

2. Reagent B: Phosphate Buffer 

A 13.6 g/L solution of potassium phosphate monobasic is prepared and adjusted 

to pH 7 with potassium phosphate dibasic.  100 mg sodium pyruvate is dissolved 

in 1 L of this solution. 

 

Method: 

1. A measured sample, mass or area depending on desired units, is placed into a vial 

2. 10mL phosphate buffer is added to the sample 

3. The sample is then sonicated for 10 minutes (Triplicates may be taken to ensure 

reproducibility in the data) 
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4. If biofilm not completely removed, sonicate for increments of 5 additional 

minutes until biofilm is completely removed 

5. The sample is vortex mixed prior to removal of any sample 

6. A 10L aliquot of sample is diluted to 10mL with R2A broth (the resulting 

solution is a 10-3 dilution) 

7. A 1000L aliquot of resulting solution from step 6 is diluted to 10mL with R2A 

broth (the resulting solution is a 10-4 dilution) 

8. A 1000L aliquot of resulting solution from step 7 is diluted to 10mL with R2A 

broth (the resulting solution is a 10-5 dilution) 

9. A 10L aliquot of the 10-3 dilution (step 6) is placed on a R2A agar plate, 

spreading the sample throughout using a L-shaped glass rod and a Lazy Suzan 

resulting in a 10-5 dilution (L-shaped rod is dipped in ethanol and flame sterilized 

prior to spreading each plate) 

10. A 10L aliquot of the 10-4 dilution solution is placed on a R2A agar plate, 

spreading the sample throughout using a L-shaped glass rod and a Lazy Suzan 

(resulting in a 10-6 dilution) 

11. A 10L aliquot of the 10-5 dilution solution is placed on a R2A agar plate, 

spreading the sample throughout using a L-shaped glass rod and a Lazy Suzan 

(resulting in a 10-7 dilution) 

Note: additional and/or different dilutions may be prepared as needed. 
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Protein Assay 

 

Objective: 

The purpose of this analysis is to measure the total protein concentration of a sample in 

question. 

 

Reagents: 

1. Reagent A: 4% Sodium Carbonate in 0.2N Sodium Hydroxide 

8g NaOH dissolved in 1000mL DI water 

40g Na2CO3 dissolved in 960mL NaOH solution 

2. Reagent B: 2% Copper Sulfate 

0.5g CuSO4 dissolved in 24.5mL DI water 

3. Reagent C: 4% Sodium Tartrate 

1.0g Sodium Tartrate dissolved in 24mL DI water (potassium tartrate may also be 

used) 

4. Reagent D 

100mL Reagent A, 1.0mL Reagent B, and 1.0mL Reagent C 

5. Reagent E 

1:1 mixture of Folin’s Reagent to DI water 
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Sample Preparation: 

1. A measured sample, mass or area depending on desired units, is placed into a vial 

2. 10mL DI water is added to the sample 

3. The sample is then sonicated for 10 minutes (if biofilm not completely removed, 

sonicate for increments of 5 additional minutes until biofilm is completely 

removed) 

4. The sample is vortex mixed prior to removal of any sample 

 

Method: 

1. 2.0mL of Reagent D is added to 2.0mL sample 

2. Mixture is vortex mixed 

3. Sample is allowed to sit for 10 minutes 

4. 0.4mL Reagent E is added to the mixture 

5. Sample is vortex mixed and allowed to sit for 30 minutes 

6. The optical density of the sample is measured at 550nm using a UV-VIS 

spectrophotometer 
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Calibration Curve: 

A stock solution of Bovine Serum Albumin (BSA) is prepared by dissolving 0.100g in 

1000mL DI water, making sure to gently agitate as to prevent foaming of sample.  The 

following table is used for the calibration curve of the concentration of protein.  Micro-

pipetters and cuvettes are used to make the dilutions/measure absorption spectra.  

Calibration samples are run in triplicate to ensure reproducibility of the data. 

 

Table B-2  Dilution series for protein calibration 

mg/L Concentration 
Protein (BSA) 

mL BSA Stock 
Solution mL DI Water 

100 10.0 0.0 
75 7.5 2.5 
50 5.0 5.0 
25 2.5 7.5 
10 1.0 9.0 
0 0.0 10.0 
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Appendix C Pilot System Operation 

 

The pilot system consists of two main parts, the skid with the membrane element and the 

flat sheet module portion with the membrane samples for analysis.  This appendix lays 

out the operation of the skid, retrieval of the data, and operation and sampling from the 

flat sheet module portion. 

 

Filling the Feed Tank 

A 150 gallon feed tank is connected to the system for recirculation of fluid through the 

system.  The feed tank can be filled with a variety of fluids; including plant feed water, 

plant concentrate water, or any combination thereof.  To fill the tank with plant feed 

water, the following procedure is used (refer to Figure C-1 for identification of named 

devices on pilot system): 

1. Ensure valves V1, V4, V6, V7, V12, and V16 are in the closed position 

2. Ensure valves V2 and V3 are in the open position 

3. Slowly open valve V5 and monitor the water level in the feed tank 

4. Slowly close valve V5 when the feed tank is at approximately 145 gal 

 

To fill the feed tank with plant concentrate, the following procedure is used (refer to 

Figure C-1 for identification of named devices on skid): 

1. Ensure valves V1, V4, V10, V12, and V16 are on the closed position 

2. Ensure valve V14 is in the open position 

3. Slowly open valve V13 and monitor the water level in the feed tank 
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4. Slowly close valve V13 when the feed tank is at approximately 145 gal 

The pilot system is currently not designed to be filled with plant permeate water.  

However, simple modification to the system can be undertaken to accommodate this. 

 

Pilot Skid Operation 

The pilot skid is designed to operate under actual plant conditions.  Additionally, the pilot 

skid has been built to allow flexibility in feed flow and pressure, allowing for a wide 

range of potential studies.  Once the tank has been filled with the desired feed-water, the 

operation of the skid is outlined as follows (refer to Figure C-1 for identification of 

named devices on pilot system): 

1. Ensure valves V1, V2, V3, V6, V9, V10, V14, V15, and V18 are in the open 

position 

2. Ensure valves V4, V5, V7, V8, V11, V12, V13, V16, and V17 are in the closed 

position 

3. Turn on the chiller and set the temperature to the desired set point 

4. On the pump control panel, press the green FWD button (Figure C-3), press the 

up button to start pump, and close valve V2 

5. Press the up button to increase the pump speed and partially close valve V10 

(Alternate increasing pump speed and valve adjustment until desired pressure and 

flow rate are achieved) 
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During pump startup, check pressure and flow rates to ensure all procedures were 

followed correctly.  If pressure increases too rapidly, or not at all, immediately press the 

red STOP button (figure C-3) and check all valves.  If a significant leak is detected, press 

the red STOP button and perform necessary repairs. 

 

Draining the Feed Tank 

The feed tank can be periodically drained for refilling as often as necessary for 

experimental design.  Draining the feed tank is performed as follows (refer to Figure C-1 

for identification of named devices on pilot system): 

1. Ensure valves V5 and V13 are in the closed position 

2. Ensure valves V1, V2, V3, V4, V6, V7, V12, V15 and V16 are in the open 

position 

3. Allow tank to drain completely 

 

Data Acquisition 

The pilot system is designed to collect pressure and flow data for the pilot skid.  

Additionally, the pressure and flow for each flat sheet module is also collected.  All data 

are collected and saved on two HOBO U30 weather stations (for FSM feed portion,  for 

FSM concentrate portion). 

1. A computer with HOBO software is connected to the HOBO U30 weather station 

via a USB cable. 

2. Launch HOBO software. 
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3. In the upper left portion of the screen, select launch weather station. 

4. Pop-up screen will appear.  Ensure all sensors appear in the pop-up screen.  If not, 

check all connections, sensors and adaptors. 

5. Select the desired data acquisition parameters. 

6. Click launch to activate data logger. 

7. Once parameters are finished loading, disconnect computer from U30 device 

 

The data may be downloaded and exported for analysis periodically from the U30 

weather stations.  The following procedure is followed for data export: 

1. A computer with HOBO software is connected to the HOBO U30 weather station 

via a USB cable. 

2. Launch HOBO software 

3. The Readout button is chosen on the upper left portion of the screen. 

4. A file name and file location is chosen. 

5. Data may be exported in .CSV format, enabling analysis in Excel. 

 

 



 

208 

 

Appendix C (Continued) 

 

Figure C-1  Schematic of pilot system, not including flat sheet module portion 
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Figure C-2  Pump interface for pilot system 

 

Flat Sheet Module Pilot Operation 

The flat sheet module portion of the pilot system is connected to the pilot system skid.  

Thus, the approximate pressure, temperature, and feed water are consistent with what is 

chosen for the pilot system skid.  The flat sheet module portion contains 4 individual flat 

sheet modules, each with its own pressure transducer, variable flow meter, and rain gage 

(for permeate flow).  The four flat sheet modules are fed with pilot water through a 

manifold system. 
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The concentrate water from each flat sheet module is combined and returned to the pilot 

system feed tank.  The permeate water from all flat sheet modules is collected in a basin, 

and then pumped back into the feed tank using a bilge pump.  Identical flat sheet module 

pilot portions are connected to the feed and concentrate portions of the pilot system skid.  

For operation, the valves from the skid to the flat sheet modules are opened completely 

(Figure C-1).  The flow meters on the concentrate portion of the individual flat sheet 

modules are variable, allowing for adjustment of cross flow velocity on each flat sheet 

module, Figure C-3.  The flow chosen for this study was 1200 ccm, since it approximates 

the cross flow velocity of the Dunedin water treatment plant operational conditions. 

 

 

Figure C-3  Schematic of flat sheet module portion of pilot system 
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Membrane Swatch Sample Exchange 

Different membrane materials and/or types can be tested and analyzed at desired time 

points in the flat sheet module pilot system, Figure C-3.  The individual flat sheet 

modules (Sterlitech CF042 cross flow cells) are used to hold and test the membrane 

material, Figure C-4.  Prior to exchanging membrane swatches, the pilot system skid 

pump is turned off, and the valves to the flat sheet module portion are closed.  To 

exchange membrane swatches, the wing nuts are removed, the two halves separates and 

the old membrane swatch is removed and placed into a storage container for later 

analysis.  A new membrane swatch is cut using the template (included with the modules 

and in tool kit at plant), scissors, and a single hole punch.  The new membrane swatch is 

placed into module, ensuring proper alignment, the two halves are closed together, and 

the wing nuts are retightened. 
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Appendix D Additional Carbon Balance Information 

 

In addition to performing a carbon and nitrogen mass balance on the treatment train level, 

a mass balance analysis was also performed on the individual skid and the individual 

stage levels.  This appendix contains additional information from the skid and stage level 

carbon and nitrogen mass balance, the SUVA analysis, the plant sampling information, 

and data. 

 

Plant Sampling 

Water samples were collected as per the procedures outlined in Chapter 3.  In addition to 

collecting the membrane treatment train feed, permeate and concentrate; samples of the 

stage I permeate, stage II feed, stage II permeate, and stage II concentrate were taken for 

the skid and stage mass balance analysis, Figure D-1.  The feed for the skid was assumed 

to be the same as the treatment train feed.  Data for the flow of each sample were 

obtained from the plant SCADA system, except for the stage II concentrate.  This flow 

rate was calculated by stage I permeate from stage I feed since the plant did not have a 

flow meter to monitor this flow.  The mass balance of the individual skid can be written 

as in equation D.1. 

 

 (D.1) 
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where QS1F is the flow rate of the feed to the skid, CS1F is the concentration of carbon (or 

nitrogen) in the skid feed, QSP is the flow rate of the skid permeate, CSP is the 

concentration in the skid permeate, QS2C is the flow rate of the skid concentrate, CS2C is 

the concentration in the skid concentrate, and MR represents the mass of the organic 

carbon (or nitrogen) removed from the system by assimilation or degradation.  To 

calculate the percentage of carbon (or nitrogen) removed from the skid, Equation D.2 is 

used. 
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(D.2) 

 

The sample points coinciding with the concentrations and flows for the feed, permeate, 

and concentrate on the skid level are points A, B, and C respectively, Figure D-1. 

 

 

Figure D-1  Sampling scheme for individual skid and stage level 
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For further analysis, a mass balance for carbon (or nitrogen) can be performed on the 

individual stage level.  To perform this analysis on the first stage of the skid, Equation 

D.3 is used, and the analysis of the second stage requires the use of Equation D.4. 

 

 (D.3) 

 

where QS1F is the flow rate of the feed to the skid (and stage 1), CS1F is the concentration 

of carbon (or nitrogen) in the skid feed, QS1P is the flow rate of stage 1 permeate, CS1P is 

the concentration in stage 1 permeate, QS2F is the flow rate of stage 1 concentrate, CS2F is 

the concentration in stage 1 concentrate, and MR represents the mass of the organic 

carbon (or nitrogen) removed from the system by assimilation or degradation. 

 

 (D.4) 

 

where QS2F is the flow rate of stage 2 feed, CS2F is the concentration of carbon (or 

nitrogen) in stage 2 feed, QS2P is the flow rate of stage 2 permeate, CS2P is the 

concentration in stage 2 permeate, QS2C is the flow rate of stage 2 concentrate, CS2C is the 

concentration in stage 2 concentrate, and MR represents the mass of the organic carbon 

(or nitrogen) removed from the system by assimilation or degradation.  To calculate the 

removal of organic carbon (or nitrogen) in stage 1 and stage 2, Equations D.5 and D.6 

respectively are used. 
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100100Re

11

221111 x
CQ

CQCQCQ
 x 

mass input

edmass remov
 moval %

FSFS

FSFSPSPSFSFS 
  

(D.5) 
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The sample points used for the feed, permeate, and concentrate for the stage 1 

calculations were A, D and F respectively, Figure D-1.  The sample points used for the 

feed, permeate, and concentrate for the stage 2 calculations were D, E and C respectively, 

Figure D-1.  The data generated for the carbon mass balance for the skid level and the 

individual stages are in Tables D-1, D-2, D-3, and D-4.  Additionally, the nitrogen 

balance data generated on the skid and individual stage level are in Table D-9.  In 

addition to investigating the removal of carbon, the character of the organic carbon was 

analyzed for each scale of investigation.  The SUVA data for the skid and individual 

stage levels are in Tables D-5, D-6, D-7, and D-8. 

 

The temporal profile of organic carbon removal for the skid and individual stages is 

plotted for the duration of the study, Figure D-2.  The organic character, plotted as 

SUVA, for this duration is also graphed for each sampling point, Figure D-3.  Finally, the 

data for the removal of nitrogen for the latter part of the study were determined on the 

skid and stage level, Figure D-4.  
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Table D-1  Influent carbon into membrane treatment train and % removal to 04/07/09 

Date 
Run 

NPOC     
Raw 

Water 
Plant Feed 

(ppm) 
Plant Feed 

(g/min) 

Plant 
Feed 

(kg/day) 

% C 
Removal 

Plant 
07/02/08 15.4 13.4 200.5 288.7 3.5 
07/03/08 15.3 13.0 193.5 278.6 0.7 
07/09/08 16.8 15.7 236.9 341.2 26.2 
07/12/08 14.2 15.3 169.6 244.2 11.3 
07/13/08 13.4 13.8 150.7 217.0 28.9 
07/24/08 14.5 15.9 243.1 350.0 15.9 
07/28/08 6.3 10.7 113.1 162.9 17.6 
08/01/08 2.9 11.8 168.4 242.5 41.8 
08/06/08 16.0 19.3 278.2 400.7 10.9 
08/12/08 16.1 16.9 242.6 349.3 15.1 
08/22/08 18.2 19.1 274.6 395.4 13.7 
09/02/08 18.8 16.4 176.0 253.4 21.8 
09/08/08 17.3 17.8 117.5 169.2 40.9 
09/16/08 18.9 19.5 128.5 185.0 43.0 
09/23/08 16.1 17.6 118.1 170.1 32.8 
09/29/08 19.0 19.2 128.7 185.3 39.3 
10/07/08 18.8 20.2 214.7 309.1 20.5 
10/24/08 17.5 21.8 230.1 331.4 24.7 
11/12/08 17.4 20.1 212.9 306.6 14.5 
11/19/08 15.0 20.1 214.2 308.4 8.6 
12/16/08 20.1 22.1 235.5 339.1 15.0 
12/23/08 19.3 19.6 204.9 295.0 14.7 
01/06/09 18.1 19.9 210.8 303.5 14.3 
01/08/09 19.7 19.9 209.8 302.1 8.8 
01/13/09 16.9 17.4 188.5 271.5 9.9 
01/20/09 16.4 18.9 198.8 286.2 10.2 
01/27/09 16.9 19.7 213.2 306.9 18.8 
02/02/09 20.5 22.1 236.4 340.4 16.2 
03/05/09 - 20.7 214.9 309.4 10.8 
03/12/09 22.0 17.8 191.0 275.0 16.1 
03/19/09 20.7 22.2 224.9 323.8 5.9 
04/03/09 21.5 18.2 257.1 370.2 -6.1 
04/07/09 21.7 20.3 288.3 415.2 3.0 
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Table D-2  Influent carbon into membrane treatment train and % removal from 04/14/09 

Date 
Run 

NPOC     
Raw 

Water 
Plant Feed 

(ppm) 
Plant Feed 

(g/min) 

Plant 
Feed 

(kg/day) 

% C 
Removal 

Plant 
04/14/09 20.0 19.9 287.3 413.8 17.3 
04/24/09 21.7 19.6 280.7 404.3 4.9 
04/28/09 19.8 19.1 259.1 373.1 8.3 
05/12/09 22.4 21.2 302.8 436.0 4.4 
05/19/09 2.5 2.4 35.1 50.5 6.3 
05/28/09 2.7 2.6 37.3 53.8 -7.5 
06/04/09 2.7 2.5 36.3 52.2 2.6 
06/08/09 2.8 2.7 26.9 38.8 11.0 
06/09/09 2.5 3.0 43.8 63.1 9.5 
06/30/09 2.6 2.3 32.1 46.2 0.43 
07/07/09 2.2 2.1 30.1 43.3 1.7 
07/14/09 2.1 1.9 18.2 26.2 11.9 
07/15/09 2.3 2.1 29.8 42.9 1.1 
07/22/09 2.4 2.0 27.7 39.9 -3.2 
07/29/09 2.4 2.2 31.7 45.6 6.7 
08/04/09 2.5 2.4 33.4 48.1 6.6 
08/11/09 2.5 2.3 32.3 46.5 3.3 
08/21/09 2.1 2.0 19.4 28.0 8.9 
08/24/09 2.5 2.3 33.4 48.1 3.6 
08/31/09 2.3 2.3 31.4 45.3 1.3 
09/11/09 2.9 2.5 36.7 52.9 -2.1 
09/16/09 2.9 2.8 27.8 40.0 12.7 
09/23/09 3.3 3.1 43.2 62.1 2.1 
09/30/09 1.9 1.8 26.1 37.6 6.0 
10/08/09 2.2 2.1 28.1 40.5 10.9 
10/23/09 2.1 2.1 29.5 42.5 -11.8 
11/04/09 17.7 17.8 243.7 350.9 9.8 
11/13/09 11.9 8.4 119.4 172.0 42.9 
11/18/09 27.6 28.4 413.0 594.8 11.4 
11/25/09 27.3 26.7 249.5 359.3 28.9 
12/04/09 27.7 26.1 373.4 537.7 3.6 
01/12/10 28.1 25.0 359.1 517.2 4.8 
02/17/10 6.1 8.4 82.8 119.2 44.7 
03/10/10 6.363 7.132 108.3 155.9 6.9 
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Table D-3  Carbon removal on skid and individual stage levels to 04/07/09 

Date 
Run 

Skid 
Level 

Skid Stage 
I 

Skid Stage 
II 

07/02/08 -0.3 -17.0 16.1 
07/03/08 -1.0 -19.0 17.0 
07/09/08 25.2 23.2 3.0 
07/12/08 7.0 14.3 -9.4 
07/13/08 -7.3 -9.8 2.5 
07/24/08 87.9 6.6 96.3 
07/28/08 68.7 8.9 68.7 
08/01/08 16.7 -12.2 29.1 
08/06/08 13.5 6.1 8.8 
08/12/08 0.6 -4.6 5.6 
08/22/08 13.3 3.0 11.9 
09/02/08 15.7 4.0 13.7 
09/08/08 8.6 8.7 -0.2 
09/16/08 10.3 3.2 8.4 
09/23/08 -1.4 3.3 -5.5 
09/29/08 13.2 5.1 9.6 
10/07/08 2.9 -11.8 13.7 
10/24/08 9.7 4.9 5.5 
11/12/08 14.2 3.7 12.3 
11/19/08 8.6 -10.7 19.6 
12/16/08 -7.4 -10.8 3.4 
12/23/08 3.4 -2.7 6.6 
01/06/09 11.5 -4.2 16.5 
01/08/09 2.6 -20.3 20.8 
01/13/09 -5.9 -7.7 1.9 
01/20/09 10.9 -108.0 58.0 
01/27/09 6.8 -8.1 15.3 
02/02/09 6.4 -3.1 10.6 
03/05/09 -7.5 -29.9 19.5 
03/12/09 6.2 -15.0 20.8 
03/19/09 35.2 -103.6 73.3 
04/03/09 -4.3 -9.8 5.7 
04/07/09 -12.4 -31.2 
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Table D-4  Carbon removal on skid and individual stage levels from 04/14/09 

Date 
Run 

Skid 
Level 

Skid Stage 
I 

Skid Stage 
II 

04/14/09 7.7 -4.4 12.9 
04/24/09 -5.0 -15.1 9.9 
04/28/09 3.0 -13.2 16.1 
05/12/09 9.0 -4.4 14.4 
05/19/09 -2.6 -21.3 16.9 
05/28/09 -4.5 -21.4 15.7 
06/04/09 -7.2 -26.8 17.8 
06/08/09 -4.4 -14.4 10.5 
06/09/09 -2.8 -14.6 12.4 
06/30/09 -8.5 -15.2 6.2 
07/07/09 -6.3 -8.2 1.6 
07/14/09 -8.3 -14.8 5.7 
07/15/09 -8.1 -22.3 11.6 
07/22/09 -7.0 -18.4 9.7 
07/29/09 -4.4 -24.5 16.2 
08/04/09 -9.9 -13.4 3.1 
08/11/09 -7.1 -16.4 8.0 
08/21/09 -11.4 -1.7 -9.8 
08/24/09 -4.2 -18.5 12.1 
08/31/09 -3.0 -17.3 12.2 
09/11/09 -0.7 -11.5 9.9 
09/16/09 -8.6 -13.1 4.1 
09/23/09 -3.1 -10.0 6.4 
09/30/09 -3.1 -13.0 8.9 
10/08/09 -3.0 -16.8 12.0 
10/23/09 -0.3 -7.7 7.1 
11/04/09 0.0 -5.6 5.9 
11/13/09 48.9 38.3 19.5 
11/18/09 5.2 -11.3 16.4 
11/25/09 -5.0 -9.1 4.2 
12/04/09 1.2 -4.0 5.6 
01/12/10 2.6 -19.1 21.1 
02/17/10 25.4 27.9 -3.7 
03/10/10 4.3 -9.5 14.6 
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Figure D-2  Temporal profile of individual skid and stage level carbon removal 

 

The data in Figure D-2 indicate a similar trend as seen in the plant level analysis, Chapter 

6.  Additionally, discrepancies are seen between the removals for stages 1 and stage 2.  

This discrepancy is likely due to the lack of accurate and reliable flow data for stage 2 

feed.  Further, the confidence level in this data is lower than the plant level due to the 

lack in confidence in the flow data acquired.  Since these data are not required for plant 

operation, calibrations of the flow meters are performed infrequently. 
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Table D-5  Feed and concentrate SUVA and % change on plant level to 04/07/09 

Date Run 
Feed 

L/mg m 
Concentrate 

L/mg m 
% Change 

SUVA 
07/02/08 0.313 0.445 42.0 
07/03/08 0.346 0.449 29.6 
07/09/08 0.357 0.488 36.7 
07/12/08 0.360 0.364 1.1 
07/13/08 0.405 0.493 21.8 
07/24/08 0.276 0.388 40.6 
07/28/08 0.328 0.517 57.8 
08/01/08 0.276 0.388 40.6 
08/06/08 0.321 0.806 151.4 
08/12/08 0.519 0.443 -14.7 
08/22/08 0.313 0.407 29.9 
09/02/08 0.354 0.367 3.6 
09/08/08 0.292 0.317 8.5 
09/16/08 0.288 0.332 15.4 
09/23/08 0.324 0.340 4.8 
09/29/08 0.266 0.319 20.3 
10/07/08 0.218 0.274 25.6 
10/24/08 0.215 0.329 52.7 
11/12/08 0.209 0.312 49.3 
11/19/08 0.214 0.287 33.8 
12/16/08 0.253 0.313 23.6 
12/23/08 0.285 0.341 19.3 
01/06/09 0.221 0.300 35.8 
01/08/09 0.262 0.340 30.2 
01/13/09 0.259 0.309 19.2 
01/20/09 0.254 0.318 25.2 
01/27/09 0.248 0.312 25.7 
02/02/09 0.240 0.309 28.6 
03/05/09 0.286 0.330 15.7 
03/12/09 0.276 0.306 11.0 
03/19/09 0.252 0.318 26.2 
04/03/09 0.308 0.314 1.9 
04/07/09 0.270 0.314 16.1 
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Table D-6  Feed and concentrate SUVA and % change on plant level from 04/14/09 

Date Run 
Feed 

L/mg m 
Concentrate 

L/mg m 
% Change 

SUVA 
04/14/09 0.266 0.351 32.2 
04/24/09 0.266 0.348 31.2 
04/28/09 0.288 0.345 19.8 
05/12/09 0.165 0.267 61.6 
05/19/09 2.683 2.463 -8.2 
05/28/09 2.488 2.487 -0.1 
06/04/09 2.337 2.454 5.0 
06/08/09 2.021 2.312 14.4 
06/09/09 1.745 2.295 31.5 
06/30/09 2.519 2.342 -7.0 
07/07/09 2.573 2.144 -16.7 
07/14/09 2.526 2.485 -1.6 
07/15/09 2.648 2.498 -5.7 
07/22/09 2.489 2.331 -6.4 
07/29/09 1.956 2.266 15.8 
08/04/09 2.383 2.455 3.1 
08/11/09 2.212 2.310 4.4 
08/21/09 2.369 2.431 2.6 
08/24/09 2.415 2.279 -5.6 
08/31/09 2.258 2.264 0.3 
09/11/09 2.184 2.083 -4.6 
09/16/09 1.881 1.846 -1.8 
09/23/09 1.651 1.638 -0.8 
09/30/09 2.812 2.775 -1.3 
10/08/09 2.361 2.653 12.4 
10/23/09 2.627 2.458 -6.4 
11/04/09 0.287 0.358 24.8 
11/13/09 0.607 1.243 104.7 
11/18/09 0.179 0.235 30.7 
11/25/09 0.191 0.228 19.5 
12/04/09 0.192 0.222 15.7 
01/12/10 0.200 0.254 26.9 
02/17/10 0.658 1.018 54.6 
03/10/10 0.785 1.055 34.4 
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Table D-7  SUVA data for the skid and stage levels with % removal to 04/07/09 

Date 
Run 

Stage I 
Feed L/mg 

m 
Stage II Feed 

L/mg m 

Stage II 
Concentrate L/mg 

m 

% 
Removal 
Stage I 

Stage 
II 

Skid 
Level 

07/02/08 0.313 0.403 0.446 28.8 10.6 42.5 
07/03/08 0.346 0.393 0.445 13.6 13.0 28.4 
07/09/08 0.357 0.552 0.568 54.5 2.9 59.1 
07/12/08 0.360 0.440 0.408 22.1 -7.2 13.3 
07/13/08 0.405 0.426 0.437 5.2 2.5 7.8 
07/24/08 0.276 0.421 - 52.3 -  -  
07/28/08 0.328 0.511 0.838 56.1 63.8 155.7 
08/01/08 0.276 0.421  -  52.3 - - 
08/06/08 0.321 0.464 0.655 44.7 41.2 104.3 
08/12/08 0.519 0.733 0.266 41.1 -63.7 -48.8 
08/22/08 0.313 0.384 0.420 22.6 9.3 33.9 
09/02/08 0.354 0.377 0.446 6.3 18.5 25.9 
09/08/08 0.292 0.353 0.347 20.8 -1.8 18.7 
09/16/08 0.288 0.366 0.377 27.4 2.8 31.0 
09/23/08 0.324 0.362 0.368 11.7 1.5 13.4 
09/29/08 0.266 0.356 0.386 34.0 8.5 45.4 
10/07/08 0.218 0.239 0.286 9.8 19.6 31.3 
10/24/08 0.215 0.302 0.309 40.4 2.2 43.4 
11/12/08 0.209 0.308 0.352 47.2 14.4 68.4 
11/19/08 0.214 0.286 0.319 33.7 11.4 48.9 
12/16/08 0.253 0.279 0.271 10.1 -2.9 6.8 
12/23/08 0.285 0.333 0.339 16.5 1.8 18.6 
01/06/09 0.221 0.277 0.320 25.4 15.5 44.8 
01/08/09 0.262 0.308 0.309 17.7 0.4 18.2 
01/13/09 0.259 0.292 0.346 12.8 18.4 33.5 
01/20/09 0.254 0.308 0.324 21.1 5.3 27.6 
01/27/09 0.248 0.306 0.343 23.2 12.1 38.1 
02/02/09 0.240 0.274 0.308 13.9 12.5 28.2 
03/05/09 0.286 0.342 0.379 19.8 10.9 32.8 
03/12/09 0.276 0.300 0.355 8.9 18.4 28.8 
03/19/09 0.252 0.282 0.310 11.9 9.9 23.0 
04/03/09 0.308 0.333 0.352 8.1 5.8 14.4 
04/07/09 0.270 0.305 0.308 12.8 0.9 13.8 
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Table D-8  SUVA data for the skid and stage levels with % removal from 04/14/09 

Date 
Run 

Stage I 
Feed L/mg 

m 
Stage II Feed 

L/mg m 

Stage II 
Concentrate L/mg 

m 

% 
Removal 
Stage I 

Stage 
II 

Skid 
Level 

04/14/09 0.266 0.342 0.354 28.7 3.4 33.1 
04/24/09 0.266 0.310 0.312 16.9 0.5 17.4 
04/28/09 0.288 0.329 0.363 14.3 10.3 26.1 
05/12/09 0.165 0.262 0.313 58.5 19.4 89.3 
05/19/09 2.683 2.534 2.463 -5.5 -2.8 -8.2 
05/28/09 2.488 2.457 2.474 -1.3 0.7 -0.6 
06/04/09 2.337 2.421 2.449 3.6 1.2 4.8 
06/08/09 2.021 2.258 2.361 11.7 4.6 16.8 
06/09/09 1.745 2.170 2.304 24.3 6.2 32.0 
06/30/09 2.519 2.470 2.373 -2.0 -3.9 -5.8 
07/07/09 2.573 2.429 2.210 -5.6 -9.0 -14.1 
07/14/09 2.526 2.593 2.540 2.6 -2.1 0.5 
07/15/09 2.648 2.407 2.523 -9.1 4.8 -4.7 
07/22/09 2.489 2.409 2.374 -3.2 -1.5 -4.6 
07/29/09 1.956 2.071 2.265 5.9 9.3 15.8 
08/04/09 2.383 2.482 2.415 4.1 -2.7 1.4 
08/11/09 2.212 2.297 2.334 3.8 1.6 5.5 
08/21/09 2.369 2.494 2.383 5.3 -4.4 0.6 
08/24/09 2.415 2.325 2.282 -3.7 -1.9 -5.5 
08/31/09 2.258 2.260 2.198 0.1 -2.7 -2.6 
09/11/09 2.184 2.065 2.047 -5.4 -0.9 -6.3 
09/16/09 1.881 1.875 1.818 -0.3 -3.0 -3.3 
09/23/09 1.651 1.625 1.633 -1.6 0.5 -1.1 
09/30/09 2.812 2.864 2.785 1.8 -2.8 -1.0 
10/08/09 2.361 2.422 2.434 2.6 0.5 3.1 
10/23/09 2.627 2.802 2.746 6.7 -2.0 4.6 
11/04/09 0.287 0.351 0.348 22.4 -0.9 21.3 
11/13/09 0.607 1.303 1.526 114.6 17.1 151.4 
11/18/09 0.179 0.216 0.226 20.4 4.5 25.8 
11/25/09 0.191 0.210 0.225 9.6 7.3 17.7 
12/04/09 0.192 0.219 0.227 14.2 3.4 18.1 
01/12/10 0.200 0.236 0.276 18.0 16.7 37.6 
02/17/10 0.658 1.037 0.935 57.6 -9.8 42.1 
03/10/10 0.785 0.960 1.039 22.2 8.3 32.3 
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Figure D-3  Temporal profile of change in SUVA on individual skid and stage level 

 

The temporal profile of SUVA data for the individual skid and stage levels coincides with 

the profile observed for the plant level analysis in Chapter 6. Figure D-3.  Since the 

SUVA data are dependent on the concentration of organic carbon collected, the same 

discrepancies in the SUVA data were noted as with the % removal calculations.  These 

discrepancies are the result from the same sources listed above. 
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Table D-9  Influent nitrogen with removal on plant, skid and stage levels and C:N ratio 

Date 
Run 

Raw 
Water 
(ppm) 

Plant 
Feed 
(ppm) 

% 
Removal 

Plant 
Skid 
Level Stage I 

Stage 
II 

C:N 
Mass 
Ratio 

04/03/09 0.379 0.312 10.4 4.9 -1.5 8.4 58.4 
04/07/09 0.324 0.312 3.5 -24.9 -8.5 -19.5 65.2 
04/14/09 0.333 0.273 14.9 5.8 -9.7 18.7 73.0 
04/24/09 0.408 0.355 5.3 2.0 -12.2 16.3 55.1 
04/28/09 0.325 0.306 5.7 1.2 -12.5 15.9 62.4 
05/12/09 0.301 0.294 5.2 3.5 -3.7 9.2 72.0 
05/19/09 0.359 0.304 2.2 3.0 -12.4 18.1 8.0 
05/28/09 0.401 0.368 3.0 0.9 -10.5 13.2 7.1 
06/04/09 0.380 0.392 5.6 2.8 -11.5 16.2 6.4 
06/08/09 0.296 0.301 14.3 2.8 -7.1 11.7 9.0 
06/09/09 0.304 0.301 10.9 2.1 -10.0 14.0 10.1 
06/30/09 0.308 0.283 2.1 -6.5 -14.3 9.1 8.0 
07/07/09 0.336 0.316 4.0 1.2 -3.2 5.7 6.8 
07/14/09 0.329 0.322 17.6 6.1 -0.9 9.2 5.9 
07/15/09 0.424 0.364 5.9 1.4 -7.6 10.9 5.8 
07/22/09 0.340 0.274 0.8 -0.2 -9.7 11.3 7.2 
07/29/09 0.444 0.350 8.3 2.7 -12.2 16.3 6.3 
08/04/09 0.401 0.338 5.9 -5.8 -13.0 8.0 7.0 
08/11/09 0.490 0.399 8.0 -2.0 -6.9 5.7 5.8 
08/21/09 0.394 0.337 4.2 -7.3 -2.7 -5.9 5.9 
08/24/09 0.443 0.366 9.2 0.5 -12.2 14.3 6.3 
08/31/09 0.357 0.279 4.9 1.9 -11.4 14.7 8.1 
09/11/09 0.421 0.335 0.1 1.5 -8.2 11.3 7.4 
09/16/09 0.362 0.345 8.4 -3.1 -10.5 8.5 8.0 
09/23/09 0.350 0.307 -1.2 0.3 -7.0 8.9 10.2 
09/30/09 0.339 0.307 1.8 -0.8 -9.4 9.7 6.0 
10/08/09 0.364 0.313 9.6 -2.1 -12.1 11.3 6.6 
10/23/09 0.406 0.363 -6.5 -1.4 -10.3 9.9 5.8 
11/04/09 0.297 0.279 3.6 -5.2 -19.0 14.4 63.8 
11/18/09 0.348 0.325 12.9 8.4 -8.9 19.2 87.5 
11/25/09 0.318 0.272 12.9 -11.2 -13.9 2.9 98.1 
12/04/09 0.354 0.342 8.0 -1.4 -5.9 5.5 76.2 
01/12/10 0.371 0.274 2.3 1.8 -14.6 16.7 91.2 
02/17/10 0.272 0.274 21.1 1.7 -6.3 9.1 30.5 
03/10/10 0.318 0.300 4.2 -8.1 -19.8 12.8 23.8 
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Figure D-4  Temporal profile of nitrogen removal on an individual skid and stage level 

 

The removal of nitrogen observed on the skid level is consistent with the removal 

observed on the plant level, Figure D-4.  However, when analyzing the individual stage 

level, there is a discrepancy between the stage removals.  As stated, above, this is likely 

due to poor calibration of the flow meters on this scale.  When analyzing the data from 

the skid and stage levels, it is apparent the skid level data are a combination of the stage 1 

and 2 data, further supporting the hypothesis that the poor calibration of flow meters on 

this scale is responsible for these discrepancies. 
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Appendix E Additional Pilot Study Information 

 

The information presented in Chapter 7 includes the highlights and key points from the 

pilot testing portion of this research.  This appendix contains supplementary information 

as well as some supporting data. 

 

Foulant Analysis 

The data presented in Chapter 7 are a pretty comprehensive representation of the finished 

data for the pilot study.  This section presents some data not presented in Chapter 7 as 

well as some additional data in a more raw form. 

 

The total number of microorganisms on the surface of the membrane swatches was 

measured using the procedure for total direct count in Chapter 3.  Additionally, the 

statistical analyses for the total direct count for the carbon loading portion of the study is 

presented in Chapter 7.  The data for the total direct count from the carbon loading 

portion of the study along with the feed/concentrate ration are in Table E-1. 
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Table E-1  The total number of microorganisms on the feed and concentrate pilot 

membrane swatches and the respective feed/concentrate ratio for the carbon loading 

portion of the study 

Feed (#/cm2) Concentrate (#/cm2) 

Date 
Carbon 
Loading Avg Stdev Avg Stdev Feed/Conc 

8/30/10 0.1 4.55 0.9 2.43 0.9 1.9 
8/30/10 0.1 4.22 1.4 4.00 0.2 1.1 
9/6/10 0.1 5.75 0.3 4.19 0.8 1.4 
9/6/10 0.1 4.75 0.9 3.92 0.2 1.2 
10/11/10 0.5 2.59 0.9 2.90 0.3 0.9 
10/11/10 0.5 3.81 0.1 1.80 0.2 2.1 
10/18/10 0.5 2.44 0.6 1.87 0.4 1.3 
10/18/10 0.5 2.56 0.1 2.29 0.2 1.1 
10/25/10 0.5 1.41 0.1 1.13 0.3 1.2 
10/25/10 0.5 1.69 0.3 0.69 0.2 2.4 
11/8/10 0.5 2.70 0.1 1.71 0.4 1.6 
11/8/10 0.5 2.83 0.2 1.24 0.2 2.3 
11/15/10 0.5 2.80 0.8 1.28 0.1 2.2 
11/15/10 0.5 2.47 0.4 0.96 0.2 2.6 
11/22/10 0.5 1.62 0.1 0.58 0.2 2.8 
11/22/10 0.5 1.33 0.3 0.83 0.1 1.6 
11/29/10 2.0 1.23 0.2 0.71 0.2 1.7 
11/29/10 2.0 1.17 0.2 0.87 0.1 1.3 
12/6/10 2.0 1.93 0.3 0.67 0.6 2.9 
12/6/10 2.0 1.95 0.3 1.11 0.1 1.8 
12/13/10 2.0 2.54 0.6 1.49 0.4 1.7 
12/13/10 2.0 2.09 0.1 1.37 0.3 1.5 
12/20/10 2.0 2.09 0.2 0.89 0.2 2.4 
12/20/10 2.0 1.56 0.1 0.75 0.2 2.1 
12/27/10 2.0 1.49 0.1 0.95 0.0 1.6 
12/27/10 2.0 1.37 0.2 1.19 0.2 1.1 
1/3/11 2.0 1.75 0.1 1.10 0.2 1.6 
1/3/11 2.0 1.68 0.2 0.76 0.1 2.2 
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As stated in Chapter 7, the roughness data from the AFM did not reveal a significant 

difference in roughness between the feed and concentrate pilot membrane swatches.  The 

root mean squared (RMS) and average (Ra) roughness values for the feed and 

concentrate pilot swatches and the feed/concentrate ration of these values are presented in 

Table 7-5 for the no carbon loading portion and Table E-2 for the carbon loading portion 

of the study.  All the RMS roughness and respective ratio data and the Ra roughness and 

ratio data are displayed in Figures E-1 and E-2 respectively. 
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Table E-2  RMS and Ra roughness data and feed/concentrate ratio data 

Feed  Concentrate 

Date 

Avg 
RMS 
(nm)  Stdev 

AVG Ra 
(nm)  Stdev 

AVG 
RMS 
(nm)  Stdev 

AVG 
Ra 
(nm)  Stdev 

RMS 
Ratio 

Ra 
Ratio 

8/30/10 149.672  56.001  108.777  40.396  112.647  23.144  85.797  14.699  1.33  1.27 

8/30/10 119.322  30.470  92.247  21.894  75.288  7.477  57.827  4.206  1.58  1.60 

9/6/10 91.613  14.152  71.872  10.645  110.317  36.247  86.173  29.699  0.83  0.83 

9/6/10 107.763  6.599  83.357  7.431  98.865  42.324  71.930  25.672  1.09  1.16 

9/13/10 59.429  13.306  46.189  10.303  65.644  17.815  47.932  12.718  0.91  0.96 

9/13/10 68.134  6.169  52.508  8.162  60.913  16.248  46.027  13.092  1.12  1.14 

9/20/10 67.208  18.598  48.135  12.686  67.165  9.629  48.711  6.494  1.00  0.99 

9/20/10 58.539  14.458  44.243  10.199  54.460  14.066  40.841  9.553  1.07  1.08 

9/27/10 44.292  10.253  31.934  6.233  55.901  18.412  41.408  15.224  0.79  0.77 

9/27/10 61.543  10.519  44.087  9.099  74.962  20.835  56.174  13.384  0.82  0.78 

10/4/10 62.204  9.719  39.459  3.392  52.640  11.384  38.791  6.864  1.18  1.02 

10/4/10 47.186  11.650  34.282  8.984  47.790  6.686  36.022  4.950  0.99  0.95 

10/11/10 75.799  12.353  54.513  10.848  74.950  10.788  54.130  12.929  1.01  1.01 

10/11/10 86.936  15.689  58.148  9.672  97.968  30.990  73.229  24.398  0.89  0.79 

10/18/10 50.418  6.480  38.757  4.662  77.918  40.198  50.946  20.577  0.65  0.76 

10/18/10 76.405  21.797  58.762  17.170  70.019  12.948  53.183  12.103  1.09  1.10 

10/25/10 49.974  16.824  36.560  11.171  43.585  7.908  29.958  3.280  1.15  1.22 

10/25/10 78.044  49.577  60.008  38.855  43.052  7.347  30.322  3.560  1.81  1.98 

11/22/10 52.897  1.440  40.358  0.993  50.214  8.553  38.570  6.238  1.05  1.05 

11/22/10 61.817  9.951  49.348  7.754  64.584  31.838  47.081  21.855  0.96  1.05 

11/29/10 71.632  42.997  54.365  36.148  67.340  8.389  51.021  6.876  1.06  1.07 

11/29/10 51.278  10.009  38.694  5.828  81.313  33.886  62.210  24.397  0.63  0.62 

12/6/10 119.397  121.090  86.621  85.281  48.220  16.737  34.854  10.662  2.48  2.49 

12/6/10 68.110  31.538  53.487  24.007  45.115  4.976  34.725  3.485  1.51  1.54 

12/13/10 46.106  3.704  35.066  2.974  46.063  9.775  35.056  8.016  1.00  1.00 

12/13/10 50.864  1.982  37.540  2.696  58.311  16.140  46.433  12.782  0.87  0.81 

12/20/10 55.005  15.820  41.263  10.685  45.035  6.364  33.900  3.463  1.22  1.22 

12/20/10 53.092  26.196  38.443  14.720  58.188  12.052  40.650  6.597  0.91  0.95 

12/27/10 36.735  4.389  28.043  2.846  52.508  19.013  40.806  15.017  0.70  0.69 

12/27/10 45.131  6.732  35.042  5.496  54.167  3.968  41.570  3.409  0.83  0.84 

1/3/11 38.132  3.357  29.292  2.764  46.897  5.394  35.610  3.706  0.81  0.82 

1/3/11 50.715  5.144  38.058  1.059  42.527  2.872  32.483  1.557  1.19  1.17 
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Figure E-1  RMS roughness for feed and concentrate and feed/concentrate ration 

throughout pilot study 

 

 

Figure E-2  Average roughness for feed and concentrate and feed/concentrate ration 

throughout pilot study 
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The overall feed-concentrate fouling trends are presented in Chapter 7.  Additionally, it 

was demonstrated that there was no statistical difference between the 50 GPM and 25 

GPM flow rates for relative fouling rates.  The overall ratio data and the data for the 50 

GPM and 25 GPM flow rates are in Tables E-3, 7-16, and 7-17 respectively.  The data 

from the 50 GPM and 25 GPM flow rates are represented graphically, Figures E-3 and E-

4 respectively.  These graphs display the same general trend as seen in the overall ratio 

analysis did, Chapter 7.  Thus, there is a general increasing trend in the relative amount of 

foulant on the feed swatch with respect to the concentrate swatch as the level of carbon 

loading increases. 

 

Table E-3  Overall feed/concentrate ratio data for protein, carbohydrate, and HPC at each 

carbon loading condition 

Carbon 
Loading 

(g/m2day) Protein Stdev Carbohydrate Stdev HPC Stdev 
0 1.06 0.3 1.03 0.5 1.17 1.2 

0.1 0.97 0.1 1.04 0.2 1.32 0.8 
0.5 1.41 0.5 1.30 0.5 2.61 2.0 
2 1.28 0.1 1.75 0.8 2.5 1.5 
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Figure E-3  The feed/concentrate ratio for the protein, carbohydrate and HPC 

concentrations plotted against carbon loading rate for the 50 GPM flow rate 

 

 

Figure E-4  The feed/concentrate ratio for the protein, carbohydrate and HPC 

concentrations plotted against carbon loading rate for the 25 GPM flow rate 
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Additional Performance Analysis 

The flux data presented in Chapter 7 indicated a greater loss of flux for the feed portion 

of the pilot system over the concentrate portion.  Further, a greater difference between the 

two was observed as the level of carbon loading was increased, Figure 7-24.  To generate 

these data points, the initial flux decline for each membrane swatch was calculated for 

each week and for each carbon loading condition.  This was done by performing a linear 

approximation on the time lapse flux decline and taking the slope of the fit curve as 

described in Chapter 7. 

 

Due to the variations in the operation system, such as power fluctuations, pump shut off, 

pilot shutdown, etc., many of the flux data points for the flat sheet modules are not useful 

for flux decline calculations.  In order to obtain useful information, these points must first 

be removed from the data series.  Additionally, after the initial flux decline, the 

subsequent flux decline is less dramatic.  For the sake of obtaining comparable data, only 

the initial portion was used in these analyses. 

 

Graphs of the initial flux decline for all flat sheet modules for the no carbon loading, 0.1 

g C/m2day, 0.5 g C/m2day, and 2.0 g C/m2day portions of the study are in Figures E-5, E-

6, E-7, and E-8 respectively.  The slope of the curves represents the value of m (Equation 

7.1), which is the initial loss of flux for the membrane material. 
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Appendix E (Continued) 

 

Figure E-5  Initial rate of fouling, m, for the no carbon loading portion of the study for all four FSMs 
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Appendix E (Continued) 

 

Figure E-6  Initial rate of fouling, m, for the 0.1 g C/m2day portion of the study for all four FSMs 
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Appendix E (Continued) 

 

Figure E-7  Initial rate of fouling, m, for the 0.5 g C/m2day portion of the study for all four FSMs 
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Appendix E (Continued) 

 

Figure E-8  Initial rate of fouling, m, for the 2.0 g C/m2day portion of the study for all four FSMs 
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Appendix E (Continued) 

The values for m obtained from the graphs above for the feed and concentrate pilot 

membrane swatches were compared to determine relative fouling information.  The 

average ratio, M (Equation 7.2), for each data point was averaged over the entire period 

for each carbon loading condition, although the first two data points were ignored for 

system equilibration purposes.  The averaged M value for all for feed and all four 

concentrate membrane modules are in Tables E-4, E-5, E-6, and E-7 for the no carbon 

loading, 0.1 g C/m2day, 0.5 g C/m2day, and 2.0 g C/m2day portions of the study 

respectively. 

 

Table E-4  Feed/concentrate ratio for initial flux decline for the zero external carbon 

loading portion of the study 

C Loading Week# Avg M 
0 1 0.74 
0 2 0.90 
0 3 1.12 
0 4 0.86 
0 5 0.93 
0 6 1.02 
0 7 - 
0 8 2.16 
0 9 1.30 
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Appendix E (Continued) 

Table E-5  Feed/concentrate ratio for initial flux decline for the 0.1 g C/m2day portion of 

the study 

C Loading Week# Avg M 
0.1 1 1.22 
0.1 2 1.06 
0.1 3 0.98 
0.1 4 0.66 
0.1 5 1.73 
0.1 6 0.51 

 

Table E-6  Feed/concentrate ratio for initial flux decline for the 0.5 g C/m2day portion of 

the study 

C Loading Week# Avg M 
0.5 1 0.82 
0.5 2 0.73 
0.5 3 1.28 
0.5 4 - 
0.5 5 1.37 
0.5 6 0.91 

 

Table E-7  Feed/concentrate ratio for initial flux decline for the 2.0 g C/m2day portion of 

the study 

C Loading Week# Avg M 
2 1 0.93 
2 2 1.17 
2 3 1.03 
2 4 1.16 
2 5 2.31 
2 6 1.04 
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Appendix E (Continued) 

Statistics of Foulant Materials 

Statistical analyses were performed on the data obtained from the foulant deposition tests 

to determine if there is a significant difference between the feed and concentrate 

membrane swatches.  As stated in Chapter 7, ratio values greater than 1 indicates more 

fouling on the feed membrane sample than the concentrate.  The significance of the ratio 

values (whether they are greater than 1) were tested and the results are presented here.  

The test results for proteins, carbohydrates, total direct count, HPC, RMS roughness, and 

Ra roughness are in Tables E-8, E-9, E-10, E-11, E-12, and E-13 respectively. 

 

Table E-8  The t-test results from feed/concentrate ratio of protein concentration on pilot 

membrane samples 

C Loading Mean Stdev n t-value Significant 
0.0 1.1 0.3 17 0.70 No 
0.1 1.0 0.1 12 0.80 No 
0.5 1.4 0.5 12 2.73 Yes 
2.0 1.3 0.1 12 6.76 Yes 

 

Table E-9  The t-test results from feed/concentrate ratio of carbohydrate concentration on 

pilot membrane samples 

C Loading Mean Stdev n t-value Significant 
0.0 1.0 0.5 17 0.24 No 
0.1 1.1 0.3 12 1.45 No 
0.5 1.3 0.4 12 2.48 Yes 
2.0 1.8 0.8 12 3.19 Yes 
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Appendix E (Continued) 

Table E-10  The t-test results from feed/concentrate ratio of total direct count numbers on 

pilot membrane samples 

C Loading Mean Stdev n t-value Significant 
0.0 1.6 0.9 11 2.32 Yes 
0.1 1.4 0.4 4 2.13 No 
0.5 1.8 0.6 12 4.65 Yes 
2.0 1.8 0.5 12 5.97 Yes 

 

Table E-11  The t-test results from feed/concentrate ratio of HPC concentration on pilot 

membrane samples 

C Loading Mean Stdev n t-value Significant 
0.0 1.2 1.2 15 0.5 No 
0.1 1.3 0.8 12 1.4 No 
0.5 2.6 2.0 12 2.7 Yes 
2.0 2.5 1.5 12 3.6 Yes 

 

Table E-12  The t-test results from feed/concentrate ratio of root mean squared (RMS) 

roughness values for pilot membrane samples 

C Loading Mean Stdev n t-value Significant 
0.0 1.1 0.2 17 1.39 No 
0.1 1.1 0.2 12 0.90 No 
0.5 1.1 0.3 8 0.64 No 
2.0 1.1 0.5 12 0.71 No 

 

Table E-13  The t-test results from feed/concentrate ratio of average roughness (Ra) 

values for pilot membrane samples 

C Loading Mean Stdev n t-value Significant 
0.0 1.1 0.2 17 1.23 No 
0.1 1.0 0.2 12 0.70 No 
0.5 1.1 0.4 8 0.90 No 
2.0 1.1 0.5 12 0.69 No 
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Appendix E (Continued) 

The statistical analyses for the different carbon loading conditions for each of the tests 

performed were stated in Chapter 7.  The results of these analyses for proteins, 

carbohydrates, feed carbohydrate/protein ratio, concentrate carbohydrate/protein ratio, 

total direct count, HPC, RMS roughness, and average roughness are in Tables E-14, E-

15, E-16, E-17, E-18, E-19, E-20, and E-21 respectively. 

 

Table E-14  Two-tailed t-test results between each carbon loading condition for protein 

concentration showing degrees of freedom (df), t-value, and indication of significance at 

0.05 

C Loading 
1 

C Loading 
2 

df t-value Significant 

0.0 0.1 27 0.8623 No 
0.0 0.5 27 2.2341 Yes 
0.0 2.0 27 2.1619 Yes 
0.1 0.5 22 2.843 Yes 
0.1 2.0 22 5.4528 Yes 
0.5 2.0 22 0.8454 No 
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Appendix E (Continued) 

Table E-15  Two-tailed t-test results between each carbon loading condition for 

carbohydrate concentration showing degrees of freedom (df), t-value, and indication of 

significance at 0.05 

C Loading 
1 

C Loading 
2 

df t-value Significant 

0.0 0.1 27 0.5207 No 
0.0 0.5 27 1.5256 No 
0.0 2.0 27 2.9232 Yes 
0.1 0.5 22 1.3097 No 
0.1 2.0 22 2.5634 Yes 
0.5 2.0 22 1.6696 No 

 

Table E-16  Two-tailed t-test results between each carbon loading condition for feed 

carbohydrate/protein ratio showing degrees of freedom (df), t-value, and indication of 

significance at 0.05 

C Loading 
1 

C Loading 
2 

df t-value Significant 

0.0 0.1 27 2.5136 Yes 
0.0 0.5 27 5.7208 Yes 
0.0 2.0 27 7.8316 Yes 
0.1 0.5 22 2.9149 Yes 
0.1 2.0 22 3.7851 Yes 
0.5 2.0 22 0.1352 No 
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Appendix E (Continued) 

Table E-17  Two-tailed t-test results between each carbon loading condition for 

concentrate carbohydrate/protein ratio showing degrees of freedom (df), t-value, and 

indication of significance at 0.05 

C Loading 
1 

C Loading 
2 

df t-value Significant 

0.0 0.1 27 2.1674 Yes 
0.0 0.5 27 6.2749 Yes 
0.0 2.0 27 5.5708 Yes 
0.1 0.5 22 3.5684 Yes 
0.1 2.0 22 2.3772 Yes 
0.5 2.0 22 1.6671 No 

 

Table E-18  Two-tailed t-test results between each carbon loading condition for total 

direct count showing degrees of freedom (df), t-value, and indication of significance at 

0.05 

C Loading 
1 

C 
Loading 

2 
df t-value Significant 

0.0 0.1 13 0.5563 No 
0.0 0.5 21 0.5973 No 
0.0 2.0 21 0.5811 No 
0.1 0.5 14 1.3868 No 
0.1 2.0 14 1.6983 No 
0.5 2.0 22 0.0847 No 
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Appendix E (Continued) 

Table E-19  Two-tailed t-test results between each carbon loading condition for HPC 

concentration showing degrees of freedom (df), t-value, and indication of significance at 

0.05 

C Loading 
1 

C Loading 
2 

df t-value Significant 

0.0 0.1 25 0.3559 No 
0.0 0.5 25 2.261 Yes 
0.0 2.0 25 2.6189 Yes 
0.1 0.5 22 2.0362 No 
0.1 2.0 22 2.5116 Yes 
0.5 2.0 22 0.0898 No 

 

Table E-20  Two-tailed t-test results between each carbon loading condition for RMS 

roughness showing degrees of freedom (df), t-value, and indication of significance at 

0.05 

C Loading 
1 

C Loading 
2 

df t-value Significant 

0.0 0.1 27 0.004 No 
0.0 0.5 23 0.1566 No 
0.0 2.0 27 0.3241 No 
0.1 0.5 18 0.1288 No 
0.1 2.0 22 0.2689 No 
0.5 2.0 18 0.1306 No 
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Appendix E (Continued) 

Table E-21  Two-tailed t-test results between each carbon loading condition for average 

roughness (Ra) showing degrees of freedom (df), t-value, and indication of significance 

at 0.05 

C Loading 
1 

C Loading 
2 

df t-value Significant 

0.0 0.1 27 0.096 No 
0.0 0.5 23 0.6009 No 
0.0 2.0 27 0.3561 No 
0.1 0.5 18 0.5426 No 
0.1 2.0 22 0.3395 No 
0.5 2.0 18 0.092 No 

 

The statistical results from a two-tailed t-test performed on the data from the 25GPM and 

50GPM flow rate portions of the study discussed in Chapter 7 are presented here.  The 

statistical results from the 0.1 g C/m2day, 0.5 g C/m2day, and 2.0 g C/m2day portions of 

the study are in Tables E-22, E-23, and E-24 respectively. 

 

Table E-22  Two-tailed t-test results for the foulant analyses for 0.1 g C/m2day showing 

degrees of freedom (df), t-value, and indication of significance at 0.05 

Test 
C 

Loading n t-value Significant 
Protein 0.1 10 1.70 No 
Carbohydrate 0.1 10 1.05 No 

Feed 
Carbohydrate/Protein 0.1 10 0.18 No 

Concentrate 
Carbohydrate/Protein 0.31 
HPC 0.1 10 1.35 No 
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Appendix E (Continued) 

Table E-23  Two-tailed t-test results for the foulant analyses for 0.5 g C/m2day showing 

degrees of freedom (df), t-value, and indication of significance at 0.05 

Test 
C 

Loading n t-value Significant 
Protein 0.5 10 3.59 Yes 
Carbohydrate 0.5 10 1.54 No 

Feed 
Carbohydrate/Protein 0.5 10 0.31 No 

Concentrate 
Carbohydrate/Protein 1.65 
HPC 0.5 10 0.23 No 

 

Table E-24  Two-tailed t-test results for the foulant analyses for 2.0 g C/m2day showing 

degrees of freedom (df), t-value, and indication of significance at 0.05 

Test 
C 

Loading n t-value Significant 
Protein 2.0 10 1.56 No 
Carbohydrate 2.0 10 1.47 No 

Feed 
Carbohydrate/Protein 2.0 10 1.76 No 

Concentrate 
Carbohydrate/Protein 0.80 
HPC 2.0 10 0.77 No 
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