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ABSTRACT 

 

Water quality and availability are important issues in many developing countries 

where portions of populations still lack access to potable water. Throughout the 

English-speaking Caribbean and parts of Latin America, households and 

businesses invest in water supply systems even when they are connected to and 

pay for water services from a private or state owned provider. Inconsistent 

supplies of water from the water companies have led many people to invest in 

storage tanks which, if operated correctly, can provide water throughout the day 

even when the supply from the main is low or zero. While these individual 

systems help to guarantee a more constant supply of water, they may impact 

water quality when it does reach the household tap. The tanks could become 

breeding grounds for vectors of human disease and may also affect the 

concentrations of bacteria, heavy metals and organics in the water. 

The goal of this research was to understand how households use water storage 

tanks and determine the effect of these tanks and the individual practices on 

water quality. Target plots were used to visualize linkages between water quality 

parameters and household surveys of localized water practices and perception 

on water quality.  
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The study focused on three field sites: Siparia, Trinidad and Tobago, Region 4 

Subset in Guyana, and Villa Litoral, Bolivia. Convenience sampling was used to 

administer surveys to households in the rural areas of Siparia (39), Region 4 

Subset (40), and Villa Litoral (57). The Region 4 Subset is comprised of two rural 

areas, Mon Repos and Mocha, and Georgetown, the country’s capital.  

Black, high-density polyethylene (HDPE) tanks and water storage drums are 

predominantly used in the field sites within Siparia and Region 4 Subset, while 

cement tanks, drums, and jerry cans are used in Villa Litoral. The average age of 

household water storage devices was 4-10 years in Siparia and Region 4 

Subset, and 0- 3 years in Villa Litoral. These devices were found on various 

elevations to accommodate piped connection, indoor pumping, and rainwater 

catchment. Cleaning frequency of tanks in Siparia was every few months, while 

in Region 4 Subset it varied from weekly to every few months. In Villa Litoral 

26.3% of the population surveyed cleaned weekly and 38.6% cleaned annually. 

Disinfection of water sources was practiced by 30% of residents in Siparia and 

60% of residents in the Region 4 Subset. While disinfection was practiced, issues 

with frequency and correct dosage led to inadequate disinfection. Eighty-four 

percent of households in Siparia and 50% of households in Region 4 Subset 

disinfected on a monthly or quarterly basis. Of the households that did disinfect, 

the bleach and/or disinfectant used was allowed to mix for at least 30 minutes in 

50% of households in Siparia and 91.6% of households in the Region 4 Subset. 

Disinfection was not practiced by the majority of households in Villa Litoral. With 
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regards to health, 15% of households in Region 4 Subset and 40.4% in Villa 

Litoral reported recent waterborne illnesses among house members. 

Water samples were taken from households in Siparia (24), Region 4 Subset 

(40), and Villa Litoral (26). The majority of households in all three communities 

relied on piped water from their respective main pump. Those who were not 

connected to piped water relied on rain water. In the Region 4 Subset, 18% of 

samples tested positive for fecal coliform and 45% for total coliform. In Villa 

Litoral, 85% of samples tested positive for fecal coliform and 100% for total 

coliform. The majority of samples from all three communities exceeded the WHO 

guideline values for lead (0.01 mg/L) and iron (0.3 mg/L). This was most likely 

due to the material used in the household plumbing and distribution pipe 

infrastructure as these could leach.  

Five indicators (chemical and biological water quality, reach of risk, storage 

device, female involvement, and household belief) were conveniently projected 

on target plots to link the results from water quality assessments with reported 

household practices and beliefs. The greatest risk factors seen were poor water 

quality and household beliefs like the security of water storage containers and 

safety of stored water, perceived water description and pressure, and access to 

water safety media.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Global Water Quality Issues 

Water availability and quality pose challenges around the world and are 

compounded by issues like poverty, contamination and climate change.  The 

seventh target of the Millennium Development Goals (MDGs) established by the 

United Nations (UN) in 2000 is to halve the proportion of those without access to 

potable water and basic sanitation by the year 2015. According to a 2000 report 

by the World Health Organization (WHO), an improved water supply was defined 

as a transition to piped water and water connections in the homes 

(WHO/UNICEF, 2000). Table 1.1 summarizes which technologies are deemed as 

improved versus those seen as unimproved. 
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Table 1.1 Definition of improved versus not improved water supply. 
(WHO/UNICEF, 2000). 

The following technologies were considered “improved”: 
Water supply Sanitation 
Household connection Connection to a public sewer 
Public standpipe Connection to septic system 
Borehole Pour-flush latrine 
Protected dug well Simple pit latrine 
Protected spring Ventilated improved pit latrine 
Rainwater collection  
  
The following technologies were considered unimproved: 
Water supply Sanitation 
Unprotected well Service or bucket latrines 
Unprotected spring    (where excreta are manually removed) 
Vendor-provided water Public latrines 
Bottled water* Open latrine 
* Not considered “improved’ because of limitations concerning the potential 
quantity of supplied water, not the quality. 

 

Since the implementation of the Millennium Development Goals, the global 

proportion of individuals without access to improved water sources has 

decreased, as shown in Figure 1.2. Currently 87% of the world’s population 

utilizes an improved source of water supply (WHO/UNICEF, 2010). Roughly 57% 

of those improved water supplies come from a piped connection that provides 

running water in proximity to the home (WHO/UNICEF, 2010). However, while 

more individuals now have access to improved water sources, disparities still 

exists with regards to access within the urban population versus the rural 

population. Nearly 84% of the global population without access to improved 

water supplies resides in rural areas (WHO/UNICEF, 2010).  



3 

 

 
Figure 1.1 Comparison of global water supply as a function of region 

percentage-wise. (WHO/UNICEF, 2010). 
 

1.2 Water Quality Issues in the Latin American and Caribbean 

Region 

In 2000, 7% of the world’s population without access to improved water sources 

resided in the Latin American and Caribbean region (WHO/UNICEF, 2000). Like 

the rest of the world, a large disparity in this region exists between access to an 

improved water supply in urban and rural communities. Within the Latin American 

and Caribbean region, 96% of those living in the urban area have access to 

improved water, compared to only 76% of those in the rural area. Disparities 
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were  also seen in terms of piped water, of which only 55% of rural populations 

had access to, compared to 92% in urban areas (WHO/UNICEF, 2010).  

 
Figure 1.2 Improved water supply within the Latin American and Caribbean 

region. Percentage of Latin American and Caribbean population with 
improved water supply. Data obtained from WHO/UNICEF (2010). 

 

Water quality is often a much lower national priority than water coverage, 

particularly in countries where coverage levels are low (UNICEF, 2008). In many 

countries, water monitoring and surveillance systems are weak and sectoral 

professionals with water quality expertise are relatively rare (Fewtrell, 2005; 

Gundry, 2004; Clasen, 2007; Lee, 2005; Moe, 2006). Consequently, even 

widespread water quality problems go unnoticed until the public health system 

begins to register large numbers of water-related disease cases and deaths. 
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Programming for water quality tends to be reactive – responding to serious 

problems as they occur rather than focusing on safety and prevention (Hoque, 

1996; Colindres, 2007; Pruss, 2002; LeChevallier, 2003). The situation is 

beginning to change.  

Community awareness is increasing in many countries as sources become 

polluted due to population pressure, intensive agriculture and industrialization. In 

other countries, especially where coverage is high, additional resources are now 

being allocated to water quality. In an increasing number of countries, the United 

Nations Children’s Fund (UNICEF) programming in the area of water is shifting 

from water supply towards water quality. However, because awareness levels 

continue to be low in most countries, action is necessary to avoid the emergence 

of more serious water quality problems. UNICEF can play an important role in 

highlighting the importance of water quality at the national and community levels; 

contribute to the creation of an enabling policy environment for water quality 

programming; and help to build capacity to strengthen national surveillance and 

protection systems. 

 

1.3 Research Objective and Research Questions 

The goal of this research was to understand how households use water storage 

tanks and determine the effect of these tanks and the individual practices on 
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water quality in field sites in Bolivia, Guyana and Trinidad and Tobago. The 

research questions addressed and the associated tasks were as followed:  

1) Will potable water quality vary due to the source of water, type of 

household water storage device used, and community?  

a. Assess quality of drinking water source for basic water quality 

parameters, microbial contamination, and presence of 

chemicals and dissolved metals.  

b. Conduct field based surveys of real water storage systems to 

determine types of water storage containers being used, their 

respective locations, and surrounding environment.  

2) Will household activities (cleaning of tanks, covering of tanks, treatment of 

water) improve the water quality of water reaching the household tap?  

a. Conduct community-based household surveys that collect 

household tank activity data and correlate the information with 

results produced from Task 1b.  

3) Does a simple approach exist that captures and presents how household 

understanding of water quality, household practices, gender roles, and 

household location influence vulnerability to waterborne/water-

based/water-related illnesses?  

a. Develop indicators based on household survey data and water 

quality sampling data that capture components that influence 

potable water use at the household level. 
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b. Use target plots to show the role of various indicators and apply 

to various test site locations. 

 

1.4 Scope of Research 

Previous studies on household water storage and treatment have focused on 

either the water quality or the social dimensions of water use. Of the ones that 

look at both aspects, the water quality is often limited to just microbial analyses. It 

is necessary to investigate other water quality parameters in an effort to gain a 

better understanding of the drinking water quality afforded to the residents. When 

combined with a study on household behavior and perception, better insight is 

obtained into the relationship that exists between households and their potable 

water sources. 

This study serves as a compilation of three pilot studies attempting to bring more 

perspective into the household water issues faced in the Latin American and 

Caribbean region. No known research has been found that compares results 

from various countries within the region with regards to both the water quality and 

social aspect. While a pilot study in nature, the intent is that this study will provide 

a basis for further research, needs assessment, surveillance, and monitoring into 

the issue of household water storage and treatment seen in the region. 

 



8 

 

1.5 Dissertation Framework 

This dissertation consists of eight chapters. Chapter 1 provides a brief overview 

of the motivation for the research, including the issues stemming from the need 

for the household water storage, along with the research objectives. Chapter 2 

gives a background on water intermittence, household water storage and 

treatment used in developing countries, and the potential for microbial 

contamination as a result of activities at the point of use. Chapter 3 discusses the 

three target countries; Trinidad and Tobago, Guyana, and Bolivia. Chapter 4 

describes the methods and approaches used in conducting the water sampling 

and analyses, along with the household survey administration and analyses. 

Chapters 5 and 6 discuss the results and findings from the household surveys 

and water sampling analyses, respectively. Chapter 7 presents an approach for 

combining the results from Chapters 5 and 6 so that the health of a household 

water system can be assessed and main influences identified based on a set of 

key indicators/indicator categories. Chapter 8 concludes the overall research and 

makes recommendations based on the research findings.   
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CHAPTER 2: HOUSEHOLD WATER STORAGE AND TREATMENT 

 

2.1 Water Intermittence 

Household water storage initially arose from a need for sustainable resources of 

water when consistent access was not available. Even when fresh drinking water 

became available, households would transfer the remaining water that had been 

sitting to other uses, depending on the household’s economic status and 

availability of other sources (Joshi, 2002). In an evaluation on the influence of 

intermittent versus continuous water supplies in communities in India, Andey et al 

(2009) found that water consumption depended on whether the water supply was 

adequate to satisfy the consumers’ water demand and not on which approach 

was used.  

Various methods and interventions for managing water shortages exist and are 

implemented throughout the world. In many developing countries, municipal 

water is supplied for restricted hours in the morning and evening hours for 

various reasons under the assumption that residential water consumption would 

be less compared to consumption under continuous water supply (Andey et al., 

2009). In Lima, Peru, 48% of households received water only during limited 
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hours and supply interruptions are common (Alcázar et al., 2002). In Mexico City, 

32% of households reported receiving water during only limited hours and most 

residents suffer routine supply interruptions (Haggarty et al., 2002). Figure 2.1 

shows the 2010 water distribution schedule for Trinidad and Tobago, owners of 

the largest desalinization plant in the western hemisphere. Implemented during 

droughts and other temporary periods of water storages, the days and times of 

water availability are based on the residential district and area. Depending on 

location, municipal water sources may be supplied during the day or overnight. 

 
Figure 2.1 2010 water distribution schedule from the Water and Sewerage 

Authority (WASA) of Trinidad and Tobago. Image obtained from 
http://www.wasa.gov.tt/Forms/2010Schedule/WASA%20Schedules%20Feb

%2019.pdf, accessed 9/12/10.  
 

http://www.wasa.gov.tt/Forms/2010Schedule/WASA%20Schedules%20Feb%2019.pdf
http://www.wasa.gov.tt/Forms/2010Schedule/WASA%20Schedules%20Feb%2019.pdf
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The quotation below from a resident of Guyana captures the challenges faced by 

local homes in getting water and the familiarity of a water supply procedure 

ingrained from years of bad service.  

“At 05:00 hours you start to see water trickling in the yard. You can 

get a twenty foot head from 06:30 but it drops according to general 

usage. On cold rainy mornings that 20 foot head can last until 09:00 

hours. By 09:00 hours it is barely trickling at the standpipe in the 

yard. By 11:00 hours water starts flowing again and can reach 

maybe 15 feet. At precisely 13:00 hours a vacuum develops so if 

you had a 400 gallon tank outlet attached to the yard pipe that tank 

would be empty in half an hour. At 17:00 hours water starts to 

trickle again and the pressure rapidly builds up to 20 foot head to 

drop again as the user demand increases. At precisely 22:00 hours 

the vacuum develops once more as the Shelter Belt [local 

treatment plant] pumps are turned off” (J. Piggott, personal 

communication, August 14, 2010). 

Water intermittence poses several issues, such as change in water quality, low 

pressures, inability to conduct routine daily activities, inconvenience due to timing 

of supply, and potential sanitation problems (Ayoub et al., 2006; Joshi et al., 

2002). In addition to delay in daily activities and consumption, water intermittence 

can also affect soil moisture, which can impact agricultural and irrigation 
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processes (Elmaloglou 2008). Additionally, there is the potential for residents to 

rely on unsafe water sources as a result of intermittent water supply (CDC, 

2007). A consumer survey done in India found that residents were satisfied with 

service from their water provider whenever the water supply was continuous, 

regardless of the cost of the water (Joshi et al., 2002).  

 

2.2 Types of Water Storage Containers 

Inconsistent supplies of water from local water companies have led many people 

to invest in household systems which, when used correctly, can provide a more 

continuous supply of water even when the supply from the main is low or zero.  

More importantly, households can self ration based on their tank water level and 

the expected length of time until the next refill. This removes a level of 

uncertainty associated with relying solely on the water main for water to come out 

of the household tap. As such, households and businesses invest in water 

storage and supply systems even when they are connected to, and pay for water 

services from a private or state owned provider. Throughout the developing 

world, individuals who do not have household water connections or continuous 

water supplies must transport water from point sources or standpipes and store it 

in their homes. It is thus important that the water infrastructures and other means 

of water access are adequate, as this can impact the water quality (Mintz, 1995; 
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Jensen, 2002; Hoque, 2006; Eshcol, 2009; Oloruntoba, 2007; Levy, 2008; 

Wright, 2009).  

The design of storage and transport receptacles is also an important factor in 

reducing fecal coliform levels in stored water and in the levels of household 

diarrhea and other diseases. Studies show clear correlations between the type of 

container used and both fecal coliform levels and diarrhea incidence in the home 

(Roberts et al., 2001; Sobsey, 2002).  

Water storage containers include traditional clay or metal containers, plastic and 

metal buckets, jerry cans, collapsible containers, and water storage drums. 

Several of these container designs also have handles, are lightweight, are made 

from durable, UV-resistant plastic, and have an affixed label containing 

informative messages on their cleaning and use (Thompson et al., 2003). 

Additionally, in many homes, these containers serve multiple uses, aside from 

solely transporting and storing water. Thus, various factors come into 

consideration when considering a water storage container, such as size, shape, 

weight, and durability. Table 2.1 lists the criteria for water storage containers 

according to the United Nations Children’s Fund (UNICEF). While these 

containers are suitable to store water in the house, larger tank systems are 

generally used to collect and store water outside of the house.  
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 Table 2.1 Criteria for household level water storage containers. (UNICEF, 
2008). 

 

 

2.2.1 Polyethylene Water Storage Tanks 

Invented by research chemists Paul Hogan and Robert Banks of Phillips 

Petroleum in 1951, high-density polyethylene (HDPE) is a polyethylene 

thermoplastic made from petroleum. It takes 1.75 kilograms of petroleum (in 
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terms of energy and raw materials) to make one kilogram of HDPE. HDPE has 

little branching, giving it stronger intermolecular forces and tensile strength than 

lower-density polyethylene. It is opaque and can withstand higher temperatures 

of 120°C for short periods and 110°C continuously.  

In many countries, tanks made of HDPE are used to store water for individual 

residences, as shown in Figure 2.2. These supply systems usually include 

storage tanks, pumps, pipes, and a structure to elevate at least one of the 

storage tanks above the house.  These tanks are known for their sturdiness, 

resistance to the elements, simple shape, and availability. Additionally, HDPE 

tanks are easily washed and cleaned though their height above ground may 

make them inaccessible. Prolonged use of a plastic tank at temperatures above 

ambient will shorten tank life, as will temperature cycling. Temperature effects 

are directly dependent on the characteristics of the plastic resin, specific gravity 

of tank contents, tank size and configuration, exterior support, and wall thickness 

of the tank.  For polyethylene, it has been verified that the degradation in heat 

aging is mainly caused by the oxidation of polymers (Sarathi, 2004). Many of the 

HDPE tanks sold in the Caribbean and Latin America come with warranties of 

five or more years.   
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Figure 2.2 Water tanks in Guyana. (A) Rain collection at a rural gold mining 
camp; (B) Single tank on a concrete trestle at LBI; (C) Tanks on concrete 

trestle at University Gardens. 
 

Generally, bottom tanks are connected to the main supply lines and are filled 

when water pressures are high.  Water from the bottom tank is pumped to the top 

tank where it is then connected to all of the house pipes where it is used for 

drinking, cooking, washing and flushing toilets.  Wooden, aluminum and plastic 

tanks are commonly seen in the Caribbean, with the plastic tanks being the most 

popular and widely used.  Individuals and businesses incur the costs associated 

with their own water storage system. For places not connected to the main water 

supply lines, these tanks are filled with rainwater. For places with water 

connections, individuals and businesses have an additional cost as they must 

also pay for the local water services.  

In Trinidad and Tobago for example, a homeowner would pay a minimum of 

$2310 TT ($385 US) for a system that includes a 400 gallon HDPE tank ($595 
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TT), pump ($1695 TT), and piping ($20 TT/foot of half inch pipe), in 2010 

currency rates. Companies supplying HDPE tanks have recently started to sell 

treatment systems with the tanks ranging from simple filters to sand filters, 

activated carbon beds, UV disinfection and chlorination. In Guyana, the costs for 

the more extensive household water treatment option starts around $800 US 

making them inaccessible to the majority of the population.    

For wealthier households in the regions studied, more extensive household 

treatment systems exist for water quality improvements (Figure 2.3). 

Rotoplastics, a company that manufactures the HDPE tanks, now sells a suite of 

filters to be used in conjunction with their tanks (e.g. Washable Net Cartridge, 

Anti-Bacterial Cartridge, Activated Carbon Cartridges, Polyphosphate Cartridge). 

The growth of the private water industry and cost to individual households poses 

interesting areas for further research, especially the types of funding or policy 

changes needed to most efficiently guarantee safe drinking water for all 

households. 
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Figure 2.3 Schematic of household water treatment system recommended 

by SPADS Inc., Guyana. Image obtained from 
http://www.spadsinc.com/fltsys.htm, accessed 10/1/2010. 

 

2.3  Impact of Household Water Storage Systems on Water Quality  

While these individual systems help to guarantee a more constant supply of 

water, they may impact water quality when it does reach the household tap. The 

storage containers could become breeding grounds for mosquitoes which are 

responsible for the spread of diseases like dengue fever (Chadee, 2000). The 

type of storage container, material construction, and the source of the water (e.g. 

roof runoff) may also affect the concentrations of bacteria, heavy metals and 

organics in the water (Ahmad, 2007; Emmanuel, 2007; Levesque, 2008; Magyar, 

2007; Tokajian, 2003; Westerhoff, 2008).  

http://www.spadsinc.com/fltsys.htm
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As shown in Table 2.2, the drinking water guidelines established by the World 

Health Organization (WHO), state that the water source should not contain any 

microbiological agents that are pathogenic to humans (WHO, 2006). 

Thermotolerant bacteria, such as E. coli are often used as indicator species for 

fecal coliform as they are representative of pathogenic organisms that can live in 

the intestine of warm-blooded hosts. However, these drinking water guidelines 

are based on water quality at the point of delivery (e.g. distribution line), not 

through to the point of actual consumption (Wright, 2004).  

 

Table 2.2 Coliform guideline values for drinking water sources. (WHO, 
2006). 

Water class Indicator Species Guideline value 

All water directly intended 
for drinking 
 

E. coli or thermotolerant 
coliform bacteria 

Must not be detectable in 
any 100-ml sample 

Treated water entering 
the distribution system 
 

E. coli or thermotolerant 
coliform bacteria 

Must not be detectable in 
any 100-ml sample 

Treated water in the 
distribution system 
 

E. coli or thermotolerant 
coliform bacteria 

Must not be detectable in 
any 100-ml sample 

 

Traditionally, unimproved water sources were thought to be vulnerable; however, 

current research shows that even improved water sources are at risk for 

contamination (Thompson, 2003; Clasen, 2007; Tambe, 2008; Moe, 2006; Mara, 

2003). Microbiological contamination of drinking water during collection and 

storage in the home has been reported by several researchers (Clasen, 2003; 

VanDerslice, 1995; Thompson, 2003; Agard, 2002). Throughout the world, many 
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urban and rural piped water supplies have been found to be microbially 

contaminated due to factors such as poor influent water quality, inadequate water 

treatment, long distribution system residence times, and infiltration from sewage 

and other non-potable water sources (Nordblum, 2004; Mainville, 2002; Batte et 

al., 2006). Figure 2.4 and Table 2.3 show the various routes of contamination for 

improved water sources. 

Figure 2.4 Pathway of water delivery, storage, and use. 
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Table 2.3 Sources and pathways for fecal contamination of water sources. 
(UNICEF, 2008). 
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Agard (2002) examined the microbial quality of water sources supplied to the 

San Fernando community in southern Trinidad and Tobago and found that out of 

the 104 drinking water samples obtained from households, 80.8% tested positive 

for total coliforms, 53.8% tested positive for thermotolerant coliforms, and 67.3% 

tested positive for E. coli. Out of the 81 water samples collected from the Water 

and Sewerage Authority (WASA) distribution point, 46.9% tested positive for total 

coliforms, 16% tested positive for thermotolerant coliforms, and 33.3% tested 

positive for E. coli.  As the level of residual chlorine decreased, there was a 

statistically significant increase in the prevalence of total coliforms in water from 

0.0% in treated reservoir water to 80.0% in household drinking water. Agard 

(2002) concluded that the level of household water contamination presented a 

public health concern to residents.  

Kurup et al. (2010) also found significant water quality degradation in Guyana 

close to and in the capital of Georgetown, including high turbidity, iron, and 

microbial levels. Microbial analyses of water and biofilm samples taken from the 

treatment or distribution plants and household tap identified 12 different species 

with Acinetobacter spp. and Lactobacillus spp. being the most common and 

Lactobacillus being the most common in the biofilm (Kurup et al, 2010). Batte et 

al. (2006) found no correlation between the microbial community in the biofilm 

versus the water of full scale distribution systems in France; however their study 

was limited to 4 indicator organisms one of which was anaerobic sulfide- 

reducing bacteria spores (ASRB spores).  
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Brick (2004) examined the effects of household storage on water quality in a 

southern town in India. The study showed that two-thirds of the water sources 

became increasingly contaminated with E. coli within nine days of current 

household storage practices, in spite of receiving safe drinking water from 

municipal plants. However, the use of brass storage containers significantly 

decreased contamination of water. While this discovery was unexpected, it 

indicated that further research was needed to account for this, such as 

metallurgical analyses of brass on microbial growth. 

Trevett (2004) evaluated drinking water quality in three rural Honduran 

communities that used either a protected hand-dug well or borehole supply. 

There was frequent and substantial water quality deterioration between the 

points of supply and consumption. Additionally, it was concluded that none of the 

storage factors examined made any significant difference to the stored water 

quality, and that the contamination could have occurred at several points. Based 

on current literature, it is necessary to assess the microbial quality of the water 

stored within the households as impacted by factors such as chlorination levels, 

temperature, residence time, and distribution systems (Besner, 2001; Mainville, 

2002; Olsinska, 2007). Table 2.4 shows the various routes for fecal 

contamination of drinking water sources with particular relevance to developing 

countries. 
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Table 2.4 Pathways for fecal contamination during water collection, 
transport, and storage. (UNICEF, 2008). 

 

 

2.4 Household Water Treatment (HHWT) 

In their study on improved water sources, Thompson et al. (2003) reported that,  

“Use of effective technologies for household water treatment and 

storage is likely to have direct beneficial effects in the form of 

reduced infectious diseases, and also contribute to greater 

productivity and other associated benefits from improved health. 

Household treatment can often provide these benefits to 

underserved populations much more quickly than it would take to 

design, install and deliver piped community water supplies.”  
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2.4.1 Physical Means 

Physical treatment of household water includes water settling, filtration, boiling 

and UV radiation with the first three being the most accessible and affordable. 

Common filtration includes using a cloth or granular media (e.g. sand or 

charcoal) to allow the water to pass through while retaining the unwanted 

particles and taste. Boiling kills pathogens and requires nothing more than a 

source of heat and a container in which to boil the water. As such, boiling is often 

one of the first lines of protection when water sources have been compromised. 

For turbid water sources, the water is often left to stand for a period of time, 

enabling the particles to settle. While these methods may be the simplest and 

most economical, they often only treat the aesthetic issues associated with water 

quality. Microbiological contaminants and/or microscopic pathogens viruses can 

still exist in the water that has only been filtered or allowed to settle.  

Water can be directly treated by the physical method of solar radiation and then 

directly stored and dispensed for household use. With the solar water disinfection 

method (SODIS), clear, plastic beverage bottles which have been painted black 

on one side are filled with water and exposed to sunlight for several hours to 

disinfect it prior to use (Conroy, 1996; Rainey, 2005). This system utilizes 

inexpensive water storage containers and is simple to use. SODIS can be 

generally acceptable to users, especially if supported by an educational and 

motivational program to achieve implementation and maintain effective and 

sustained use (Hei, 2008; Kraemer, 2010; Mausezahi, 2009; Murinda, 2008).  
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However, several drawbacks exist with utilizing SODIS. First, the amount of 

water being disinfected is limited to the number of bottles which are available, 

thus limiting its practicality in providing safe water for an entire household on a 

daily basis. Second, the effectiveness of SODIS depends on the availability of 

sunlight and turbidity levels less than 30 NTU (Rainey, 2005). The disinfection 

process is thus extended or limited during cloudy days (Boyle, 2008; Oates, 

2003). Third, while SODIS provides a means of ultra-violet disinfection to the 

water source, it does not provide any residual disinfectant. Therefore, SODIS 

water sources must be consumed relatively soon following treatment as microbial 

contamination can recur (Amin, 2009; Schmid, 2008). 

 

2.4.2  Chemical Means- Chlorination 

Chlorination is a common household water treatment method for disinfection. 

Residents have the option of using either household bleach containing chlorine 

(sodium hypochlorite) or chlorine tablets to disinfect their water supply. When 

chlorine gas (Cl2(g)) is added to caustic soda, sodium hypochlorite (NaOCl) is 

formed, as shown below.   

 

Cl2(g) + 2NaOH  → NaOCl + Na+ + Cl- + H2O (2.1) 

 

Sodium hypochlorite completely dissociates in water. It reacts with water to form 

hypochlorous acid (HOCl) according to Equation 2.2. The acidity constant 
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governing the equilibrium between the hypochlorite ion and hypochlorous acid is 

7.6. Hence, below pH 7.6 HOCl dominates the speciation. Given that HOCl is 

stronger than OCl- as a disinfectant, pH values below 7.6 favor more efficient 

disinfection.  

 

NaOCl + H2O → HOCl + Na+ + OH- (2.2) 

 

Following chlorination, contamination can further be reduced by storing water in a 

vessels designed to minimize further contamination during storage (Mintz et al., 

1995; Reiff et al.; 1996; Sobsey, 2003). Sobsey (2003) studied the use of 

chlorine-safe water storage systems, in which water sources were stored without 

being disinfected. Disinfection took place in a dedicated plastic container which 

had a capacity of 12-25 liters. The container’s cap served as a measuring device, 

to ensure that the appropriate amount of 5 mg/L chlorine was being added. 

Following chlorine addition, the water was then stored for an allotted period of 

time to allow disinfection to occur. Once the time period had ended, the 

disinfected water could be poured out through the container’s spigot. This system 

ensured that the correct chlorine dosage was being used and that further 

contamination would not occur to the newly treated water source. In Table 2.5, 

various methods of chemical disinfectants are shown. While various methods 

have proven to be effective, the practicality or constraints (cost, ease of use, 

availability of the necessary materials) are the deciding factors in their usage. 
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 Table 2.5 Chemical disinfectants for treating household water supplies. 
(Sobsey, 2002). 
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2.5 Impact of Water Quality and Household Water Treatment on 

Community Perception 

An integral part of household water storage and treatment is community 

perception (Canter, 1993). Community, or public, perception on water quality is 

based on including 1) aesthetics; 2) trust in government and water suppliers; 3) 

previous experiences; and 4) information from media and peers. The aesthetics 

of water quality (e.g. taste, smell, color, clarity) are often used by individuals to 

determine whether a water source is safe for consumption. Such has been the 

case with chlorinated water. While chlorination reduces the risk of pathogenic 

and microbial contamination of water, many individuals are averse to the taste 

and smell of chlorinated water and will avoid it (Colindres, 2007; Lule, 2005; 

McLaughlin, 2009; Sobsey, 2003). Nevertheless, aesthetic values vary 

depending on the function and/or intended use of the water source.  

The level of trust with the respective government and water supplier is also an 

important factor. Jorgensen (2009) argued that there is a greater potential for 

non-compliance with water conservation and security initiatives when the public 

feels there are reasons for mistrust (e.g., poor management, lack of 

transparency, and misappropriation of funds). Jorgen further went on to say that 

individuals are also less likely to comply with water restriction mandates when 

the individual neither trusts nor believes that those around him (e.g. neighbors, 

agricultural sector, industry sector) are complying with the mandates.   
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Previous experiences with water quality also impact the perception. If an 

individual has gotten ill from consuming water, that individual will be less likely to 

believe in the safety of that water source for future needs. Similarly, if an 

individual has consumed a particular water source for a period of time, he is less 

likely to take heed to warnings about abstaining from that water source or to 

believe that he will become ill from consumption. Regular precautions (e.g. 

handwashing, boiling water, consumption of water-based products) may be 

eschewed when an individual has had mostly positive experiences with water 

consumption. Doria (2010) argued that, provided an individual has had positive 

experiences with water quality, he is more likely to speak favorably of the water 

source, as the perceived risk is lower compared to the individual who had a 

negative experience. Doria further went on to say how established familiarity with 

particular water quality aspects could come to be preferred over unfamiliar 

characteristics, even to the point of considering the former aspects to be 

something of desire. This may help to explain preferences by individuals for 

certain water quality traits (e.g. levels of water hardness, mineral composition, 

chlorine concentration). 

Information from media sources and peers can also affect perception. Media 

outlets (e.g. news, periodicals, movies, public announcements) are considered 

reliable sources of information and often serve as the main means of 

communication of water-related information. As such, the severity or insignificant 

of water-related events are gauged by the frequency and intensity with which 
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they are portrayed in the media (Wray, 2008). Doria (2010) stated that risk 

perception was lower in areas where fewer people have been exposed to water-

related health problems. Between 2002 and 2006,t he U.S. Centers for Disease 

Control (CDC) and the Association of Schools of Public Health 

(ASPH)collaborated on a joint project entitled the Pre-Event Message 

Development Project (PEMDP). Wray (2008) discussed the findings following the 

conclusion of the project.  The project found that, during cases of emergency, the 

public will looked to gain information from trusted media outlets, law 

enforcement, and public health experts. Wray further went on to say that, as a 

result of limited access to media outlets, individuals in the rural area would seek 

information from local authorities. 
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CHAPTER 3: TARGET COUNTRIES AND COMMUNITIES 

 

3.1  Introduction 

Based on established research connections and collaborations, pilot studies 

were conducted in Trinidad and Tobago, Guyana, and Bolivia. By having 

established contacts in these areas, a community representative was available to 

serve as a liaison and a facilitator of trust between the researcher and the 

residents.  All of the study locations in Trinidad and Tobago and Guyana had 

high density polyethylene (HDPE) water storage tanks at the household level. 

Bolivia has faced various documented issues relating to water storage and 

access (Quick, 1999; Tornheim, 2009; Wutich, 2008; Esrey, 1996; Anderson, 

1981; Laurie, 2007). In order to provide a common relationship between the 

countries, the study focused on rural communities, as those are the ones most 

affected by access to clean water and household water storage issues (Cotruvo, 

2000; Garrett, 2008; Hoque, 2006; Jagals, 2006; Kravitz, 2001; Luby, 2008; 

Simango, 1992; Trevett, 2004; Trevett, 2008; Welch, 2000). Thus rural 

communities of Siparia, Trinidad and Tobago; Villa Litoral, Bolivia; and Region 4 

Subset, Guyana were selected.  
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The three communities were selected as they provided insight into varying levels 

of access to potable water and means of water storage within the Latin American 

and Caribbean region. In Siparia, Trinidad, residents have long had access to 

potable water from a relatively advanced water facility and utilize sturdy water 

storage tanks. In Region 4 Subset, Guyana, there is a mixture of residents with 

regards to access and water storage system devices. Similar to Siparia, Trinidad, 

a portion of the residents have had access to water from the municipal plant and 

have used the HDPE water tanks. However, there is another portion of residents 

who, until recent years, only received water sources from rain, canals, streams, 

and other surface waters. A few years ago, many residents within this second 

group started using the HDPE water storage tanks with access to piped water, 

while several residents still continue to use water storage drums. In Villa Litoral, 

Bolivia, the main source of water is the community well and neighboring rivers, 

as bottled water is not readily available given the relatively remote location of the 

community. While many residents utilize smaller, portable containers for water 

storage, many do have large, stationary water storage tanks. Figure 3.1 provides 

a map of the three research sites.  
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Figure 3.1 Map of research field sites. Point A = Siparia, Trinidad and 

Tobago, Point B = Region 4 Subset, Guyana, Point C = Villa Litoral, Bolivia. 
Image obtained from Google Earth on 02/12/2010 at an altitude of 4902.21 

km.  
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3.2 Trinidad and Tobago 

 
Figure 3.2 Map of Trinidad and Tobago. (CIA 2008). 

 

Located between the Caribbean Sea and the North Atlantic Ocean to the east of 

Venezuela, Trinidad and Tobago (11º 00’ N, 61º 00’ W) has a population of 

1,047,366. Initially colonized by the Spanish, the islands came under British 

control in the early 19th century before finally gaining independence in 1962. 

With a gross domestic product (GDP) of roughly $23.8 billion, Trinidad and 

Tobago has one of the highest growth rates and per capita incomes in Latin 

America. Trinidad and Tobago exports several products such as petroleum, 

natural gas, methanol, ammonia, steel products, beverages, sugar, cocoa, 

coffee, citrus fruit, vegetables, and flowers. The GDP is derived primarily from 
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industry (61.9%), followed by services (37.5%) and agriculture (0.6%). 

Interestingly, although oil and gas account for about 40% of GDP and 80% of 

exports, only 5% of the country’s employment is derived from this sector. In 

addition to its natural gas and petroleum, Trinidad and Tobago also has an 

abundance of asphalt, as is evident by Pitch Lake, the world's largest natural 

reservoir of asphalt (CIA, 2008). 

Trinidad and Tobago faces several environmental issues, such as water pollution 

from agricultural chemicals, industrial wastes and raw sewage; oil pollution of 

beaches; deforestation; soil erosion and flooding. Although their total renewable 

water resources are estimated at 3.8 km3, the estimated freshwater withdrawal 

rate in Trinidad and Tobago is 0.31 km3/yr (CIA, 2008). The majority of this 

withdrawal is for domestic purposes (68%), followed by industrial (26%), and 

agricultural (6%) (CIA, 2008).  

 

3.2.1 Water Supply and Sanitation 

In a recent report, WHO (2008) made the following assessment on the water and 

sanitation issues plaguing Trinidad and Tobago:  

“Poor access to potable water is attributed to several factors, 

including a 40%–50% loss of water in the distribution system, 

deterioration of assets, and weak institutional and human resources 

programs. The quality of water delivered meets World Health 
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Organization guidelines for drinking water quality, although this 

status is challenged by environmental degradation, watershed 

destruction, and pollution.“  

The country’s public water supply is provided primarily by the country’s treatment 

and supply administrator, Water and Sewerage Authority (WASA). As shown in 

Figure 3.3, the majority of the country’s households (78.9%) receive public water 

supplies that were either being piped into their homes (60.5%), into their yards 

(8.8%) or from a public standpipe (9.6%) (CSO, 2000). 54.3% received a 

continous supply, while 36.9% received water more than at least twice a week.   

Figure 3.3 Percentage distribution of types of household water supply in 
Trinidad & Tobago. Data obtained from Trinidad and Tobago Central 

Statistical Office (CSO, 2000). 
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For sewage disposal and toilet facilities, 50.3% of the population is served by 

septic tank systems, while 21.7 percent is served by sewage treatment plants, 

and 26.8% use pit latrines (CSO, 2000). A small percentage (0.4%) lacked any 

toilet facilities. 

 

3.2.2 Siparia, Trinidad and Tobago 

Located in southern Trinidad and Tobago, the regional corporation of Siparia (10º 

08’ N, 61º 30’ W) accounts for 7% of Trinidad and Tobago’s households (CSO, 

2000). A predominantly rural area with a population of roughly 81,917 residents, 

the region is also in proximity to Rotoplastics LTD, the largest water storage tank 

distributor in the Caribbean. In terms of water supply, 74.2% of households 

receive piped water into their homes, yards, or through public standpipes (CSO, 

2000). For sewage disposal and toilet facilities, 61.9% of the population is served 

by septic tank systems, while 36.5%t use pit latrines (CSO, 2000).The 

administrative city of the region, also called Siparia, has a population of 15,634. 
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3.3 Guyana 

 
Figure 3.4 Map of Guyana. (CIA, 2008). 

 

Guyana (06º 46' N, 58º 10' W) is situated between Suriname and Venezuela on 

the northeastern coast of South America, as shown in Figure 3.4. Initially 

colonized by the Dutch, Guyana then came under British control before finally 

gaining independence in 1966. With a population of roughly 770,000, the 

economy is dominated by agriculture, fishing, and mining; with major exports 

being gold, rice, bauxite, sugar, timber, shrimp and prawns. Guyana has a gross 

domestic product (GDP) of roughly $2.8 billion, which is derived primarily from 

services (47.1%), followed by agriculture (31.1%) and industry (21.7%) (CIA, 

2008). 

Region 4 Subset 
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3.3.1 Water Supplies and Sanitation 

Guyana, known as The Land of Many Waters, features multiple rivers and 

streams. The climate is tropical with two wet and two dry seasons. Along the 

coastal lowland region, rain falls an average of 200 days a year, with 50% of the 

average rainfall occurring from mid- April to mid-August and from December to 

January. Annual rainfall in Georgetown and surrounding coastal areas was 2,163 

mm for the period 1985 to 2005 (Figure 3.5). According to the country’s 

Hydromet department, the annual average daytime maximum temperature is 

29.6°C and the annual average nighttime minimum temperature is 24.0°C. 

Figure 3.5 Rainfall in Georgetown, Guyana from 1985 to 2005 (average is 
2,163 mm/yr). Data obtained from the Hydrometeorological Service 

(Hydromet) of the Guyana Ministry of Agriculture 
http://www.hydromet.gov.gy/, accessed on 6/23/2010. 

 

http://www.hydromet.gov.gy/
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Surface water is used for agricultural and industrial purposes, and services 

roughly 10% of the country’s potable water needs. The majority of the population 

resides along the coast and is serviced by a series of groundwater wells 

extending down into a coastal aquifer system that is about 20,000 km2, extending 

250 km along the Atlantic coast and 40 to 150 km inland (USACE, 1998). This 

coastal aquifer system is made up of three connected but hydrogeologically 

distinct aquifers called the Upper Sands, the A Sand, and the B Sand which are 

shown in Figure 3.6. 

Figure 3.6 Coastal aquifer system in Georgetown, Guyana. Image obtained 
from US Army Corps of Engineers Water Resources Assessment of 

Guyana (USACE, 1998), which was based on Arad (1983). 
 

The coast currently relies heavily on water from the A Sands aquifer which is 

composed of quartz, sand and fine gravel and which is shielded from the Upper 

Sands aquifer by a 90 m thick Intermediate Clay and Sand formation composed 

of clay and shale. The A Sand aquifer ranges from 150 to 215 m deep and is 12 

to 27 m thick with yields similar to the other three aquifers of between 4,000 and 
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40,000 liters per minute year-round (USACE, 1995). In general the quality of 

water withdrawn from the A Sands aquifer has low chloride content and high iron 

levels.  

Figure 3.7 Map of Guyana’s coast showing study sites of Mocha, 
Georgetown and Mon Repos. Map not drawn to scale and details were 

provided by Mr. John Piggott. 
 

Figure 3.7 shows the coastal area of Guyana that was studied during this 

research. The majority of the population lives in this coastal region which lies 

beneath sea level at high tide with a seawall to protect it from the Atlantic Ocean 

and an earthen dam to protect it from the East Demerara Water Conservancy 

(EDWC). The EDWC was constructed to provide water for irrigational and 

industrial processes with a small flow going to Guyana Water Inc. (GWI), the 

municipal body that oversees sewage and water supply for the country. GWI was 
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established on May 30, 2002, resulting from the merger of the Guyana Water 

Authority (Guywa) and the Georgetown Sewerage and Water Commissioners 

(GS&WC). In 2003, an international private operator, Severn Trent Water 

International (STWI), was awarded a 5 year management contract for GWI which 

was then terminated by the government of Guyana in 2007. At the Shelter Belt 

treatment facility serving the Georgetown municipality and some suburbs, water 

from the EDWC undergoes treatment prior to distribution. Some of the water at 

the Shelter Belt facility is also mixed with groundwater. GWI supplies water to 

areas outside of the Georgetown Municipality and some Georgetown suburbs 

mainly through groundwater wells.   

Guyana currently faces several environmental issues, such as water pollution 

from sewage, agricultural and industrial chemicals, along with deforestation. 

Although the country’s total renewable water resource is an estimated 241.8 km3, 

the estimated freshwater withdrawal rate in Guyana is 1.64 km3/yr (CIA, 2009). 

The majority of this withdrawal is for agricultural (98%) purposes, followed by 

domestic (2%) and industrial (1%). Roughly 67% of Guyana’s population 

receives their water supply through water piped into their homes, yards or plot 

(UNICEF, 2006).  

The country experiences a wet climate for most of the year, which has led to 

problems such as floods (Monteiro, 2005; Peller, 1997). Bacterial and viral 

contamination of surface waters may occur during heavy rainfall which can 
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increase discharges of raw sewage or animal manure. For residents in the 

Georgetown municipality and a few suburban areas, sewage connections take 

waste from the house to a discharge facility where it enters the Demerara River 

untreated. Septic systems and pit latrines are generally used by those not 

connected to a sewer system. Surface waters are heavily contaminated with 

pathogenic microorganisms, although viruses have also been detected in 

groundwater (Pinfold, 1990; Han, 2007; Vollaard, 2005; Evans, 2007). The 

contamination of drinking water by sewage via pump failure or sewage system 

blockage, along with inadequate or failed treatment processes, have led to the 

insufficient removal of viruses from source waters (CDC, 2007; Graham, 2007; 

Lee, 2005).  

Waterborne outbreaks may arise from direct exposure by ingestion of 

contaminated tap water or water-containing products, e.g., ice cubes, custard, 

and salads. Waterborne disease outbreaks can cause significant economic 

impact due to increased cases of waterborne illnesses followed by secondary 

spread (Fewtrell, 2005; Pruss, 2002; Bessong, 2009; Wright, 2004; Clasen, 

2007).  

 

3.3.2 Region 4, Guyana 

The Demerara-Mahaica region, known as Region 4, includes the Georgetown 

municipality and Georgetown suburbs and many smaller areas, each of which 



45 

 

has its own National Democratic Council (NDC).  The total population of Region 

4 is 310,320, with a total of 77,937 households (BOS, 2002).  

All of the study sites were in Region 4 and Table 3.1 provides data on each of the 

areas studies as taken from the 2002 Guyana Census (BOS, 2002). The study 

areas visited included Mocha (06º 44’ N, 58º 08’ W) and Mon Repos (06º 46’ N, 

58º 04’ W), which would be considered rural according to the 2002 census.  

The capital Georgetown (06º 48’ N, 58º 10’ W) has a population of roughly 

235,000 individuals which includes residents in both the Georgetown Municipality 

and the Georgetown suburbs. Although the city contains many of the country’s 

major businesses and governmental offices, much of it and its surrounding 

communities remain severely water stressed at the household level owing to low 

water pressure and poor water quality. In this research, Region 4 Subset is used 

to refer to all of the sites studied in Guyana and Georgetown refers to sites in 

municipal Georgetown and suburban Georgetown. Figures 3.8 to 3.10 compare 

characteristics (female headed homes, source of drinking water, and water 

supply source) of each of the locations studied in Guyana and as reported in the 

2002 census (BOS, 2002). The number of female headed households and 

bottled water use are higher in the municipal Georgetown and suburban 

Georgetown areas. 
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Table 3.1 Census 2002 data for Georgetown, Mocha/Arcadia and Mon 
Repos/La Reconnaissance. Data obtained from Guyana Bureau of Statistics 

(BOS 2002). 

 
Georgetown 

 
Mocha/Arcadia 

 
Mon Repos/ 

La Reconnaissance 

Number of 
Households 

35271 732 4355 

Male head of 
Household 

58% 61% 75% 

Female Head of 
Household 

42% 39% 25% 

Main Source of Water 
Supply    

Private Piped into 
Dwelling 

12% 13% 4% 

Private Catchment 2% 10% 5% 

Private Piped into 
Yard 

6% 5% 11% 

Public Piped into 
Dwelling 

47% 55% 11% 

Public Piped into yard 25% 11% 57% 

Other 8% 6% 10% 

Main Source of 
Drinking Water    

Piped into Dwelling 34% 60% 12% 

Piped into Yard 24% 15% 48% 

Public Standpipe 7% 0% 3% 

Bottled Water 26% 5% 11% 

Rainwater 7% 19% 26% 

Other 2% 0% 0% 
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Figure 3.8  Distribution of head of households in select areas in Region 4, 
Guyana based on the 2002 census. Areas are based in National Democratic 

Committee (NDC) demarcations and Georgetown sums the Municipality 
and Suburban NDC.  Data obtained from Guyana Bureau of Statistics (BOS 

2002. 
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Figure 3.9 Distribution of drinking water sources in select areas in Region 
4, Guyana. Areas are based in National Democratic Committee (NDC) 

demarcations and Georgetown sums the Municipality and Suburban NDC. 
Data obtained from Guyana Bureau of Statistics (BOS 2002). 
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Figure 3.10 Distribution of water supply sources in select areas in Region 

4, Guyana. Areas are based in National Democratic Committee (NDC) 
demarcations and Georgetown sums the Municipality and Suburban NDC. 

Data obtained from Guyana Bureau of Statistics (BOS 2002).  
 

Research collaboration between our research team and the Guyana Citizen’s 

Initiative (GCI) began in 2005 during a major flood event that rendered much of 

the coast under stress (Trotz, 2008). Following the floods, our team provided 

advice to GCI on a community water survey project in the Mocha area where GCI 

was working with community members to install a series of water storage tank 

systems to be shared by various members of the community (Rahat, 2007). 

Based on GCI’s 2007 report, 57% of households in the Mocha community relied 

on rainwater as their main source of drinking water, whereas 19% relied on piped 
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water (Rahat, 2007). This was very different from the 2002 census data where 

over 50% of the population received drinking water that was piped into the 

dwelling. For various reasons the water samples collected by GCI during that 

2007 study were never processed.  

  

3.4 Bolivia 

 
Figure 3.11 Map of Bolivia. (CIA, 2008). 

 

A landlocked country, Bolivia (16º 30' S, 68º 10' W) is located in the western 

region of the South American continent adjacent to Peru, Brazil, Chile, Argentina, 
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and Paraguay, as shown in Figure 3.11. Bolivia gained its independence under 

the leadership of South American revolutionary Simon Bolivar in 1825. Its terrain 

varies from the rugged Andes Mountains with a highland plateau (Altiplano) and 

hills, to the lowland plains of the Amazon Basin. Its climate varies from humid 

and tropical in the lowlands to cold and semiarid in the highlands. Bolivia’s 

natural resources include tin, natural gas, petroleum, zinc, tungsten, antimony, 

silver, iron, lead, gold, timber, and hydropower. Bolivia’s total renewable water 

resources have a volume of 622.5 km3 (CIA, 2008). Freshwater withdrawal is 

used predominantly for the agricultural sector 81%, followed by the domestic 

sector (13%), and the industrial sector (7%) (CIA, 2008). 

Bolivia faces several environmental issues such as deforestation; soil erosion 

from overgrazing and poor cultivation methods; desertification; loss of 

biodiversity; industrial pollution of water supplies used for drinking and irrigation. 

Additionally, the northeast region of Bolivia is prone to flooding from March-April. 

Although landlocked, Bolivia shares control of Lago Titicaca, world's highest 

navigable and ancient lake (elevation 3,805 m), with Peru. 

Bolivia has a population of ~9,775,246, of which the median age is 21.9 years 

old. Bolivia’s urban population consists of 66% of the total population. The 

ethnicities of Bolivian residents consist of Quechua 30%, mestizo (mixed white 

and Amerindian ancestry) 30%, Aymara 25%, and white 15% (CIA 2008). Bolivia 

has three official languages to coincide with its ethnic groups: Spanish as spoken 
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by 60.7% of residents, Quechua by 21.2%, and Aymara by 14.6%. In Bolivia, the 

literacy rate is 86.7%, with the country spending 6.4% of its GDP on education. 

Bolivia has a GDP per capita of $4,600 (CIA, 2008). Bolivia’s GDP is derived 

predominantly from services (51.8%), industry (36.9%), and agriculture (11.3%) 

(CIA, 2008).  

 

3.4.1 Water Supply and Sanitation 

As with several developing countries, water and sanitation are great issues in 

Bolivia. Over the years, Bolivia has faced several natural disasters, as shown in 

Figure 3.12. The two most reported natural disaster issues are floods and 

droughts, which have increased in the past decade. With the increase of floods, 

drinking water sources are more likely to be compromised with bacterial and 

chemical contaminants. On the opposite side, the increase in drought cases 

means that there will be less potable water sources available, particularly for 

those who rely on rainwater as their main potable water source. Additionally, the 

governmental expenditure on water sources and sanitation has also decreased in 

the past decade, as shown in Figure 3.13. Thus, even as water sources become 

compromised and scarce, government expenditure on water resources has not 

addressed those needs.  
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Figure 3.12 Natural disasters reported in Bolivia, 2002-2008. Data obtained 

from Instituto Nacional de Estadística de Bolivia (INE, 2009). 
 

 
Figure 3.13 Distribution of mitigation and prevention programs in Bolivia by 
sector, 2000-2008. Data obtained from Instituto Nacional de Estadística de 

Bolivia (INE, 2009). 
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3.4.2 Villa Litoral, Bolivia 

Bolivia is divided into nine administrative departments: Beni, Chuquisaca, 

Cochabamba, La Paz, Oruro, Pando, Potosi, Santa Cruz, and Tarija. The 

Caranavi Province is one of the twenty provinces within the department of La Paz 

and is situated in the department's eastern area. The province is situated on the 

Bolivian Altiplano east of Lake Titicaca, on the headwaters of Río Beni. The 

population of Caranavi province has increased by roughly 40 % over the recent 

two decades, going from  43,093 inhabitants in 1992  to 59,090 inhabitants in 

2010 (INE, 2009). The literacy rate of the population is 83.1 %. 92.7 % of the 

population speak Spanish, 71.6 % speak Aymara, and 11.1 % Quechua (CIA, 

2008). Of this population, 8.7 % of the population has no access to electricity, 

while 65.6 % has no sanitary facilities. Caranavi Province is not further 

subdivided into municipalities, but is further subdivided into 22 cantons. 

Villa Litoral (15º 35’ 20”S, 67º 18’ 23” W) is located in the Caranavi province. A 

community of roughly 400 residents, Villa Litoral lies in proximity to the Rio Beni 

and Rio Tiatche. Villa Litoral is a predominantly agricultural community where the 

main crops grown are cacao, papaya, and citrus.  

 

3.5 Comparison of the Target Countries 

In general, the Latin American and Caribbean region, namely South America, 

has an abundance of water resources as well as a relatively high rate of 
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precipitation. However, the quality of the available water resources has declined 

(UNEP, 2007). This can be attributed to  factors like deforestation, urban sprawl, 

untreated sewage, mining and industrial activities, along with increased pesticide 

usage (UNEP, 2007; Foley, 1993; Mulreany, 2006; Rahat, 2006; Tokajian, 2003; 

Wright, 2004).  

Table 3.2 compares the three countries based on economic and environmental 

factors. A significant difference is seen when comparing Bolivia to the other 

countries in terms of the population proportion with access to improved water and 

sanitation, particularly in the rural sectors. This may be attributed to the fact that 

Bolivia is considered to be the least economically developed country in South 

America and that the majority of its citizens reside in rural areas. In each country, 

a disparity is seen between access to an improved water supply in the urban 

area versus the rural area. 
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Table 3.2 Comparison of environmental and economic statistics among 
target countries. Data obtained from (UNICEF, 2009). 

 
Latin America 
and Caribbean 

Trinidad 
and Tobago 

Guyana Bolivia 

% of population using improved 
drinking-water sources, 2006 

total 
92 94 93 86 

% of population using improved 
drinking-water sources, 2006 

urban 
97 97 98 96 

% of population using improved 
drinking-water sources, 2006 

rural 
73 93 91 69 

% of population using improved 
sanitation facilities 2006 total 

78 92 81 43 

% of population using improved 
sanitation facilities 2006 urban 

86 92 85 54 

% of population using improved 
sanitation facilities 2006 rural 

52 92 80 22 

Number per 100 population, 
2007, phones 

67 113 37 34 

Number per 100 population, 
2007, Internet users 

26 16 26 11 

Life expectancy, 2008 74 69 67 66 

% of population urbanized, 
2008 

78 13 28 66 

GNI per capita (US$), 2008 6888 16540 1420 1460 

GDP per capita average annual 
growth rate (%), 1990–2008 

1.6 5.1 2.4 1.5 

% of population below 
international poverty line of 

US$1.25 per day, 1992–2007* 
7 4 8 20 

% of central government 
expenditure (1998–2007*) 

allocated to:, health 
7 6 - 9 

% of central government 
expenditure (1998–2007*) 

allocated to:, education 
14 13 - 24 

Adult literacy rate: females as a 
% of males, 2003–2007* 

99 99 - 90 
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CHAPTER 4: METHODOLOGY 

 

4.1 Introduction 

An important factor in improving access to potable water in an area is community 

engagement and community based surveys are usually used to obtain baseline 

knowledge of the target communities being studied (Levesque, 2008; Agard, 

2002). Household surveys were used to understand the dynamics that exist 

between people in the three field sites and their water storage devices. In 

addition to the household surveys, the drinking water sources available to 

individuals at the household level were assessed through direct observations, 

sample collection and water quality analyses. Water quality analyses included 

bacterial enumeration, water quality parameters (DO, Turbidity, pH, Conductivity, 

Temperature), and dissolved metals. During March 2009, household surveys 

were administered and water samples collected in Siparia, Trinidad and Tobago; 

and a subset of Region 4, Guyana. During June 2009, surveying and water 

sampling were conducted in Villa Litoral, Bolivia. 
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4.2 Household Survey Development and Implementation 

The survey consisted of a questionnaire in which individuals were asked various 

questions about their habits, lifestyle, and perception as they pertain to 

household water consumption and handling. Appendix C contains the full 

questionnaire. In order to maintain anonymity and protect the privacy of the 

participants, the only means of identification on the surveys were the survey ID 

number.  Personal questions were limited to age, gender, household size, and 

number of children living in the house. The target areas for the survey distribution 

were a subset of Region 4, Guyana; Siparia, Trinidad and Tobago; and Villa 

Litoral, Bolivia. As mentioned in section 3.3.2, Region 4 subset refers to areas 

studied in the Georgetown municipality, suburban Georgetown, Mon Repos and 

Mocha/Arcadia. 

The household surveys were distributed to various households door-to-door. In 

Siparia, Trinidad and Tobago, the questionnaires were administered in March 

2009 through the assistance of USF graduate students, one of whom is a local 

resident. In Region 4 Subset, Guyana, the surveys were distributed in March 

2009 through the assistance of the Guyana Citizens Initiative (GCI), a local non-

government organization (NGO). For the community in Villa Litoral, Bolivia, the 

survey was translated to the country’s official language of Spanish, so as to 

better facilitate the administration of the questionnaire (Appendix C). The 

questionnaires were administered with the assistance of the community’s Water 



59 

 

Committee members and research students from Universidad Tecnológica 

Boliviana (UTB).  

The surveys were approved through the Institutional Review Board (IRB) at the 

University of South Florida and were exempt from documentation of consent 

because they were anonymous with no collection of biological or personal data.  

Eligible participants were residents aged eighteen and above and a one-page 

description of the survey and the project was provided to participants prior to 

asking for their consent to participate (Appendix C). The survey contained a 

disclosure stating that the survey was voluntary, that no compensation or 

incentive was given, and that the surveys were anonymous and participants were 

not asked to disclose personal identifiable information such as name, address, 

phone number, or social security number.  

All responses from the survey were coded into a Microsoft Access program via 

the Epi Info Version 3.5.1 software (CDC, Atlanta, GA).  

 

4.2.1 Survey Sampling Size 

An important aspect in conducting the household surveys was determining the 

desired sample size and analyzing results based on the actual sample size used. 

Figures 4.1- 4.3 shows the population and household data for field sites in 

Trinidad and Tobago, Guyana, and Bolivia, respectively.  
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Figure 4.1 Population and household data for Region 4 Subset, Guyana. 

Data obtained from Guyana Bureau of Statistics (BOS 2002). 
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Figure 4.2 Population and household data for Siparia, Trinidad and Tobago. 

Data obtained from Trinidad and Tobago Central Statistical Office (CSO, 
2003). 
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Figure 4.3 Population and household data for Villa Litoral, Bolivia. Data 

obtained from INE (2009). 
 

In Table 4.1, the criteria for the sampling size are shown. The population size 

was the number of households found within each target community rather than 

the number of individuals, as the surveys were distributed to an adult 

representative from each household. The survey sampling size was determined 

based on the desired confidence level, population size, and the sampling error 

(SE) utilized. 
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Table 4.1 Criteria for determining survey sample size. Population data 
obtained from (BOS, 2002; Dean, 2009; CSO, 2003; INE, 2009). 

Sample Size for Frequency in a Population 

 

Siparia, 
Trinidad 

and 
Tobago 

Region 4 
Subset, 
Guyana 

Villa 
Litoral, 
Bolivia 

Number of households in population 
size (for finite population correction 

factor or fpc)(N): 
4,093 40,358 66 

Hypothesized % frequency of 
outcome factor in the population (p): 

50%+/-5 50%+/-5 50%+/-5 

Confidence limits as % of 100 
(absolute +/- %)(d): 

5% 5% 5% 

Design effect (for cluster surveys-
DEFF): 

1 1 1 

 

Sampling size can be determined by sampling error. The greater the desired 

sample size, the smaller the SE, because the results become more 

representative of the actual population. Typically, the SE is chosen to be 5% or 

10%, along with a confidence level of at least 95%, where the level of risk (α) is 

5%. A lower confidence level (e.g. 80%) will increase the likelihood that the 

sample values do not reflect the true population value, thus reducing the validity 

of the test. A higher confidence level (e.g. 99%) improves the accuracy of the 

test, but may be more costly and time consuming, since it requires a larger 

sample size. Assuming the confidence level was 95% and the statistical 

variability (P) value was 0.5, the desired sample sizes are calculated using 

Equation 4.1:  

n = N / [1 + N(SE)2]   (4.1) 
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where n is the sample size, N is the population size and SE is the sampling error. 

In Table 4.2, various household sampling sizes are shown, based on sampling 

error values for the three field sites. 

 

 Table 4.2 Household sampling size based on sampling error. 
Confidence 
Level (%) 

Sampling 
Error (%) 

Siparia,  
Trinidad and Tobago      

Region 4 Subset,  
Guyana  

Villa Litoral,  
Bolivia 

95 1 2904.3 8014.22 65.57 

95 5 364.4 396.07 56.65 

95 10 97.6 99.75 39.76 

95 15 44.0 44.40 26.56 

95 20 24.8 24.98 18.13 

95 25 15.9 15.99 12.88 

 

While Table 4.2 provides ideal sample size calculations, availability of research 

funding, time, and resources present practical constraints on the actual sample 

size of any field administered survey. For this work, convenience sampling 

methods were employed within each of the communities studied due to budget 

constraints. The areas were chosen because related research being conducted 

in the areas and the availability of community representatives to assist by serving 

as liaisons with the residents. In using the convenience method, participants 

were selected based on availability for participation and residential occupancy 

within the research locations. As such, these factors ultimately determined the 

actual number of household surveys taken in Siparia, Trinidad and Tobago (39); 

Region 4 Subset, Guyana (40); and Villa Litoral, Bolivia (57). Statistical 

interpretations were conducted through Microsoft Access and SPSS software 
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(SPSS Inc., Chicago, IL), Descriptive statistics were used to analyze the results 

from the community survey. Multivariate analyses of variance (MANOVA) with 

the general linear model (GLM) were used to determine whether significant 

correlations exist between the various components. In order to account for the 

small sample sizes and better interpret the data collected, Pillai’s Trace (for F) 

and Tukey’s HSD (“Honestly Significantly Different”) post hoc tests were utilized 

and calculated using SPSS.  

 

4.3  Water Sampling and Storage Methods 

Duplicate water samples were collected from the source used by residents for 

obtaining water (water storage tanks, jerry cans, tap, or outdoor standing pipe). 

Samples were collected via the grab sample method as described in Standard 

Methods 1060 (Eaton, 2005).  

For the HDPE tanks and cement tanks, water samples were taken from the outlet 

pipe. Water was allowed to run full-force for a minute prior to collecting the 

sample. The flow rate from the spigot was adjusted so as to prevent further 

waste of water through splashing. Water from the drums was collected using the 

same containers (ladle, cup, etc) used by residents to collect water from the 

drum and poured directly into sample bottles. Water from the jerry cans was 

poured directly into sample bottles. HDPE water sampling bottles (100 mL and 

250 mL) were used to collect water samples for bacteriological analyses and 
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water quality analyses, respectively. In an effort to prevent sample 

contamination, latex gloves were donned prior to taking the samples and caution 

was taken so as to not touch the inside or lip of the sampling bottle or its cap. 

The sampling bottles were filled to the shoulder. Following sample collection, the 

sampling bottles were capped immediately. The bottles were then labeled, 

placed in doubly sealed plastic Ziploc™ bags, and then placed in a cooler filled 

with ice for transport to the designated laboratory space. All bacteriological 

procedures were conducted within six hours of sample collection.  

Once back at the laboratory space, water samples designated for the 

bacteriological analyses were separated and placed aside from water samples 

designated for water quality analyses. Portions of the water quality samples were 

taken so as to conduct the in situ analyses. The remaining water quality samples 

were acidified to 1 % nitric acid (HNO3), sealed with Para film™, placed back in 

their original plastic Ziploc™ bags, and then packaged for shipping. Once the 

samples were received at the Trotz Research Lab at the University of South 

Florida, they were kept in the refrigerator until time for further analysis.  

. 

4.4  Microbial Analyses and Enumeration 

Microbial analysis of water sources is of great importance and fecal coliform 

membrane filtration has been used for understanding microbial water quality 

(Clesceri, 1998; Agard, 2002; Brick, 2004; Trevett, 2004). Method 9222D from 
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the Standard Methods for the Examination of Water and Wastewater (Eaton, 

2005) was used for the enumeration of coliform bacteria. In order to account for 

variations that may be seen in the field, field replicates of 5 to 10 percent of the 

samples were taken. For drinking water sources, 100 mL of the sample was 

filtered through a 0.45 µm membrane filter which is capable of trapping all 

bacteria. The membrane filter was then placed within a Petri dish which 

contained m-FC agar medium and rosolic acid. The m-FC medium allows for the 

selectivity of E. coli, which is the common indicator organism for fecal coliform 

(Edberg, 2000). The Petri dish was then sealed with parafilm and then placed in 

the portable incubator (Thermotote mid-sized incubator; Scientific Devices, Inc., 

Des Plaines, IL) set at 44.5 ± 0.2°C for 24- 26 hours.  

Following incubation, the samples were removed and observed for colonies of 

coliform bacteria using a magnifier with a 10x magnification. Fecal coliform 

colonies, which appeared dark blue, were also enumerated. The color arose from 

the interaction of a metabolite of lactose with the dye that is in the culture 

medium. The Total and Fecal coliform were reported as the number of colony 

forming units per 100 pm (# CFU/100 mL). This analytical procedure was used in 

Guyana and in Trinidad and Tobago. 

In Bolivia, a different procedure for determining total and fecal coliform was 

employed owing to the acquisition of new equipment and its convenience. This 

analytical technique used the Colilert-18 method (IDEXX Laboratories, Inc., 
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Westbrook, ME), as stated in Method 9223B from the Standard Methods for the 

Examination of Water and Wastewater (Eaton, 2005). The Colilert-18 method 

utilized a defined substrate and is based on the Most Probable Number (MPN) 

method. Water samples of 100 mL were collected in IDEXX Laboratories 

supplied 120 mL plastic bottles containing the dechlorinating agent, sodium 

thiosulfate. The samples were then transported back to the designated lab 

space. Upon arrival, a single packet of the Colilert-18 reagent was added to each 

water sample and then mixed. The prepared water sample was then poured into 

a Quanti-Tray®/2000, which had already been labeled with the corresponding 

sample’s ID. The tray was placed face down on the company supplied rubber 

insert, which was fed into the Quanti-Tray® sealer. The newly sealed tray was 

then placed in the portable incubator (Thermotote mid-sized incubator; Scientific 

Devices Laboratory, Des Plaines, IL) at 35 ± 0.5°C for 18-22 hours.  

Following the specified time allotment, the tray was removed from the incubator 

and the yellow colored wells were counted for total coliform determination. In a 

dark location, a UV light was used to distinguish the wells that fluoresced. The 

fluoresced well indicated the presence of E.coli and were counted for fecal 

coliform determination. The number of wells for each color were counted and 

used to determine the number of fecal colonies and total coliform colonies based 

on the accompanying table provided by the manufacturer (IDEXX Laboratories, 

Inc., Westbrook, ME).  
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4.5  Water Quality Parameters 

Using a Hach® Hydrolab Quanta multi-sensing system (Hach Company, 

Loveland, CO), the following water quality tests were conducted in the field: 

temperature (°C), pH, conductivity (µS/cm), turbidity (NTU), total dissolved solids 

(TDS), and DO (mg/L and % saturation).  The storage cup was rinsed and then 

filled with the sample water, followed by placing the probe within the sample cup. 

Data measurements were then recorded for later computer input and analysis. 

Calibration of the probe was done every few days in accordance with the 

manufacturer’s recommendations (Hach Company, Loveland, CO)  using pH 

standards 4 and 7 (Fisher Scientific); temperature-stable air saturated water; 5 

and 50 µS/cm TDS/Conductivity standards (Hach Chemicals); and 10 and 40 

NTU turbidity standards (Hach Chemicals).  

 

4.6  Lab-Based Water Analyses 

Chemical analyses were conducted in the Environmental Engineering lab at the 

University of South Florida. Using the LaMotte™ Smart2 test kits and LaMotte 

Smart2 colorimeter (LaMotte™ Model SCL-05), samples were analyzed for the 

following dissolved metals: aluminum, cadmium, copper, iron, and lead.  The five 

dissolved metals were selected based on importance in drinking water quality 

and availability of resources to test for them. Specifications for the tests used are 

shown in Table 4.3. Total phosphorus was determined using a Hach test kit. 
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Table 4.3 Specifications of chemical tests. 

Analyte Method 
Detection 

Range 
Interference Factors 

Aluminum 

Eriochrome 

Cyanine R 

Method 

Code 364I-SC 

0 - 0.30 

mg/L Al 

 Calcium greater than 100 
ppm (250 ppm CaCO3).  

 Low concentrations of 
cerium, iron, manganese, 
magnesium, sulfur, tin, and 
EDTA . 

Cadmium Pan Method 

Code 4017 

0 - 1.00 

mg/L Cd 

 Strong oxidizing agents 

 Copper and cobalt in excess 
of 5.0 mg/L. 

Copper 
Diethyldithiocar-

bamate Method 

Code 3646-Sc 

0 - 6.00 

mg/L Cu 

 Hg+1 at 1 ppm.  

 Cr+3, Co+2, and silicate at 10 
ppm.  

 As+3, Bi+3, Ca+2, Ce+3, Ce+4, 
Hg+2, Fe+2, Mn+2, Ni+2 and 

 ascorbate at 100 ppm. 

 Many other metal cations 
and inorganic anions at 
1000 ppm.  

 EDTA at all concentrations. 

Iron Bipyridyl Method 

Code 3648-Sc 

0 - 6.00 

mg/L Fe 

 Fluoride  

 Polyphosphate 

Lead Par Method 

Code 4031 

0 - 5.00 

mg/L Pb 

 Ag+2, Co+2, Cu+2, Mn+2, Ni+2, 
Zn+2, Y+3, In+3 

Phosphorus 

PhosVer 3 with 

Acid Persulfate 

Digestion 

Method 8190 

0.00 - 3.50 

mg/L PO4
3- 

 Arsenate Interferes at any 
level  

 Copper and silicate greater 
than 10 mg/L 

 Silica greater than 50 mg/L 

 Zinc greater than 80 mg/L  

 Sulfide greater than 90 mg/L 

 Chromium and iron greater 
than 100 mg/L 

 Aluminum greater than 200 
mg/L 

 Nickel greater than 300 
mg/L 
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Table 4.4 shows the drinking water quality standards and guideline that were put 

in place by various governing bodies, such as the World Health Organization 

(WHO) and the U.S. Environmental Protection Agency (EPA). While the WHO 

guidelines offer recommendations for the global community with regards to the 

maximum heavy metal concentrations deemed safe, the EPA standards are 

enforceable by law in the United States.   

 

Table 4.4 Range of dissolved metals (as mg/L) present in household 
drinking water supplies within communities in Trinidad and Tobago, 

Guyana, and Bolivia. Standards from the U.S. Environmental Protection 
Agency Maximum Contaminant Level (USEPA MCL),the World Health 

Organization Guideline Values (WHO GV), and the European Union 
Maximum Acceptable Concentration (EU MAC) are shown. (UNICEF, 2008; 

Appendix A., Table A.1).  
  USEPA MCL WHO GV EU MAC 

Pb (mg/L) 0.015 0.01 0.01 

Fe (mg/L) 0.3 0.3 0.2 

Cu (mg/L) 1.3 2 3 

Al (mg/L) 0.05 – 0.2 0.1 - 0.2 0.2 

Cd (mg/L) 0.005 0.003 0.005 

  

4.6.1 Aluminum 

Aluminum was measured with the LaMotte™ Smart2 Aluminum test kit (0.00 – 

0.30 mg/L), which utilized the Eriochrome Cyanine R Method Code 364I-SC. 

Prior to preparing the samples, the LaMotte Smart2 colorimeter (LaMotte™ Model 

SCL-05) was programmed to 002 Aluminum. In testing for aluminum, 10 mL of 

sample was added to a colorimeter tube. After wiping the tube’s surface with 
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Kimtech Science™ Kimwipes®, the tube was then inserted into the colorimeter 

and scanned as BLANK. Following this, 5 mL of the sample was removed from 

the tube, leaving the remaining 5 mL to be used for further analysis. 

Approximately 0.05 g of the Aluminum Inhibitor Reagent (7865) was then added 

to the tube of sample water, capped, and mixed. Afterwards, 2 mL of Aluminum 

Buffer Reagent was pipetted into the tube, followed by the pipetting of 1 mL of 

Aluminum Indicator Reagent (7867). The contents of the tube were then mixed 

and allowed to sit for 5 minutes to ensure optimal color development. Following 

the allotted time period, the tube surface was wiped with Kimtech Science™ 

Kimwipes®, then inserted into the colorimeter and scanned as SAMPLE.  

Prior to analyzing the water samples, a reagent blank was determined. This was 

done by adding 5 drops of Aluminum Complexing Reagent (7868) to a tube 

containing 10 mL of deionized water, followed by the above-mentioned 

procedure. The concentration of the reagent blank was subtracted from all 

subsequent test results so as to account for any test contribution by the reagent 

system.   

 

4.6.2 Cadmium 

Cadmium was measured with the LaMotte™ Smart2 Cadmium test kit (0.00 – 

1.00 mg/L), which utilized the Pan Method Code 4017. Prior to preparing the 

samples, the LaMotte Smart2 colorimeter (LaMotte™ Model SCL-05) was 
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programmed to 012 Cadmium.  In testing for cadmium, 10 mL of sample was 

added to a colorimeter tube. After wiping the tube’s surface with Kimtech 

Science™ Kimwipes®, the tube was then inserted into the colorimeter and 

scanned as BLANK. A measure of 1.0 mL of Buffered Ammonia Reagent (4020) 

was pipetted to the tube of sample water, followed by the addition of two drops of  

Sodium Citrate 10% (6253), 0.5 mL of PAN Indicator (4021), and 0.5 mL 

Stabilizing Reagent (4022). The contents of the tube were then mixed, the tube 

then wiped with Kimtech Science™ Kimwipes®, and inserted into the colorimeter 

and scanned as SAMPLE.  

 

4.6.3 Copper 

Copper was measured with the LaMotte™ Smart2 Copper test kit (0.00 – 6.00 

mg/L), which utilized the Diethyldithiocarbamate Method Code 3646-Sc. Prior to 

preparing the samples, the LaMotte Smart2 colorimeter (LaMotte™ Model SCL-

05) was programmed to 32 Copper DDC.  In testing for copper, 10 mL of sample 

was added to a colorimeter tube. After wiping the tube’s surface with Kimtech 

Science™ Kimwipes®, the tube was then inserted into the colorimeter and 

scanned as BLANK. Afterwards, 5 drops of Copper 1 (6446) were added and the 

contents of the tube mixed. In the presence of copper in the water sample, the 

solution would turn yellow. The tube’s surface was wiped with Kimtech Science™ 

Kimwipes®, then inserted into the colorimeter and scanned as SAMPLE.  
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4.6.4 Iron  

Iron was measured with the LaMotte™ Smart2 Iron test kit (0.00 – 6.00 mg/L), 

which utilized the Bipyridyl Method Code 3648-Sc. Prior to preparing the 

samples, the LaMotte Smart2 colorimeter (LaMotte™ Model SCL-05) was 

programmed to 051 Iron Bipyr.  In testing for iron, 10 mL of sample was added to 

a colorimeter tube. After wiping the tube’s surface with Kimtech Science™ 

Kimwipes®, the tube was then inserted into the colorimeter and scanned as 

BLANK. A measure of Iron Reagent #1 (V-4450) was pipetted to the tube of 

sample water, capped, and then mixed. Afterwards, 0.1 g of *Iron Reagent #2 

Powder was added to the tube. The contents of the tube was then mixed 

vigorously for 30 seconds then allowed to sit for 3 minutes to ensure optimal 

color development. Following the allotted time period, the tube’s surface was 

wiped with Kimtech Science™ Kimwipes®, then inserted into the colorimeter and 

scanned as SAMPLE.  

 

4.6.5 Lead 

Lead was measured with the LaMotte™ Smart2 Lead test kit (0.00 – 5.00 mg/L), 

which utilized the Par Method Code 4031. Prior to preparing the samples, the 

LaMotte Smart2 colorimeter (LaMotte™ Model SCL-05) was programmed to 054 

Lead.  In testing for lead, 10 mL of sample was added to a colorimeter tube. After 

wiping the tube’s surface with Kimtech Science™ Kimwipes®, the tube was then 

inserted into the colorimeter then scanned as BLANK. Following this, 5 mL of the 
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sample was removed from the tube, leaving the remaining 5 mL to be used for 

further analysis. A measure of 5 mL Ammonium Chloride Buffer (4032) was 

pipetted to the tube, followed by 3 drops of Sodium Cyanide, 10% (6565), 0.5 mL 

PAR Indicator (4033), and 0.5 mL Stabilizing Reagent (4022).  

The contents of the tube were mixed, wiped with Kimtech Science™ Kimwipes®, 

then inserted into the colorimeter and scanned as SAMPLE. This first result was 

recorded as Reading A. Following the reading, 3 drops of DDC Reagent (4034) 

were added to the tube’s content then mixed. The tube’s surface was wiped with 

Kimtech Science™ Kimwipes®, then inserted into the colorimeter and scanned as 

SAMPLE. This second result was recorded as Reading B. The final lead 

concentration was then measured by subtracting the result of Reading B from the 

result of Reading A.  

 

4.6.6 Phosphorus 

The total phosphorus levels present in the water samples were measured using 

the Hach® Total Phosphorus Test N’ Tube™ (0.00 – 3.5 mg/L PO4
3-) test kit, 

which utilized the PhosVer 3 with Acid Persulfate Digestion Method 8190.  After 

setting the COD reactor to heat to 150°C, the spectrophotometer (Hach® 

DR/4000U) was programmed to 3036 P Total As. TNT, with a corresponding 

wavelength of 890 nm. A sample aliquot of 5 mL was added to a respective pre-

prepared test tube.  A blank was also prepared by adding 5 mL of 18.1 MΩ-cm 
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Deionized (DI) water to a pre-prepared test tube. Following the addition of the 

water sample, a single packet of the Potassium Persulfate powder was added to 

the tube then capped. To ensure adequate mixing, the test tube was shaken and 

inverted several times. The tube was then placed in the heated COD reactor for 

30 minutes. Following the allotted time period, the test tube was placed on a rack 

to cool to room temperature. Once cooled, a 2 mL aliquot of 1.54N Sodium 

Hydroxide solution was added to the tube. After wiping the tube’s surface with 

Kimtech Science™ Kimwipes®, the test tube was then inserted into the 

spectrophotometer to be zeroed. Following this, a single packet of the Phos Ver 

3 powder was added to the tube then capped. To ensure adequate mixing, the 

test tube was shaken and inverted several times for 10-15 seconds, then allowed 

to sit for 2 minutes. Following the allotted time period, the surface of the tube was 

wiped clean then inserted into the spectrophotometer for a final reading, 

measured in mg/L PO4
3-.  

 

4.7 Target Plotting 

Target plots were used to better assess the linkages between the various 

household survey questions and collected water quality data. Target plots 

present data in a visually striking way that allows for easy identification of the 

importance of different variables compared to one another and have been used 

in environmental engineering research to compare sustainability indicators for 

wastewater treatment (Muga, 2008) and ecotourism management (Thomas, 
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2010). Using household survey response data and water quality data collected, 

five indicators were selected to characterize the field sites. The five indicators 

selected were:  

1) Chemical and Biological Indicator: representing the quality of the water 

based on field sampling and analyses.  

2) Reach of Risk Indicator: capturing the exposure of members of the 

household to potential threats from potable water practices.  

3) Storage Device Indicator: capturing the storage device characteristics 

which may contribute to observed water quality. 

4) Female Involvement Indicator: representing the gender roles in activities 

related to household water provision. 

5) Household Belief Indicator: capturing the household attitude towards, and 

understanding of, potable water provision, quality and use. 

The household survey was initially developed to capture the information required 

for indicators 2-5 and a subset of questions from the survey was selected to 

represent each of these indicators. Answers to each question were rated on a 

scale of 1 to 2 with the lowest number representing least impact or most desired 

outcome. The responses given by survey participants and findings from water 

quality analyses were then transformed onto this indicator scale. The scores for 

the questions associated with each indicator category were then tallied to give an 

overall indicator value that was between 1 and 2. To do this, the total points for 

each indicator category was divided by the product of the number of 
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households/water samples and the number of questions and then scaled to the 

1-2 scoring range. This new number represented the impact value for the given 

indicator.  

The risk analyses were conducted among the three research field sites: Siparia, 

Trinidad and Tobago; Region 4 Subset, Guyana; and Villa Litoral, Bolivia. In 

Guyana, there were three sub-groups within the field site- Mocha/Arcadia, Mon 

Repos, and Greater Georgetown- and as such, risk analyses were conducted on 

each sub-group and on the total field site. There was an interest in seeing 

whether there were differences in the impact levels and overall risks among the 

three field sites, along with the urban and rural communities in Region 4 Subset.   
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CHAPTER 5: HOUSEHOLD SURVEY ANALYSES 

 

5.1 Introduction 

Household surveys designed to understand the dynamics that exist between 

people and water storage play an important role in interventions that can improve 

water use (Levesque, 2008; Agard, 2002). During the spring and summer of 

2009, a total of 136 household surveys were administered in the communities of 

Siparia, Trinidad and Tobago (39); Region 4 Subset, Guyana (40); and Villa 

Litoral, Bolivia (57). This chapter describes field site observations and presents 

and discusses survey responses as they relate to household level storage 

containers.   

 

5.2 Field Observations of Each Community 

Table 5.1 summarizes the total number of households surveyed per community 

and the corresponding sampling error as a function of confidence interval. The 

sampling error was calculated for each field site based on the total number of 

households within the respective community, the number of households 

surveyed, and the desired confidence interval as given in Equation 4.1. Using a 
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95% confidence interval, the sampling errors for Siparia, Region 4 Subset, and 

Villa Litoral were 15.6%, 15.5%, and 4.80%, respectively. Based on these 

numbers, the results from Villa Litoral are most representative of the community 

under study whereas Region 4 Subset and Siparia results are less representative 

of those places. The Region 4 subset refers to areas classified as both urban and 

rural according to the Guyana census. To better identify the differences seen 

within the Region 4 Subset, the rural communities of Mocha and Mon Repos will 

be looked at both separately and as part of the Region 4 Subset. 

 

Table 5.1 Calculated sampling errors based on confidential intervals for 
household surveys collected within field sites in the Latin American and 
Caribbean region. Population data obtained from (CSO, 2003; INE, 2009; 

Rahat, 2006). 

 

Siparia, 
Trinidad 

and 
Tobago  

Region 4 
Subset, 
Guyana 

Mocha and 
Mon 

Repos, 
Guyana 

Villa Litoral, 
Bolivia 

Household population size 4093 40,358 5081 66 

Household sample size 39 40 23 57 

Confidence Level Sampling Error 

99.9 26.2% 26% 34.20% 8.1% 

99 20.5% 20.4% 26.80% 6.3% 

95 15.9% 15.8% 20.40% 4.8% 

90 13.1% 13.0% 17.10% 4.1% 

80 10.2% 10.0% 13.30% 3.2% 

 

Figures 5.1 and 5.2 are schematic representations of tank storage systems seen 

at all locations with the two tiered system more popular in Guyana. Figures 5.3-5 

are actual pictures taken in the field at each of the sites. 
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Figure 5.1 Schematic representation of a storage tank made from either 

high density polyethylene (HDPE) or cement tank. The tanks collects water 
directly from the main (piped connections or from a hose), after which it is 

either piped into the house (if house is below tank elevation) or used to 
dispense water into smaller storage containers. Image is not drawn to 

scale. 
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Figure 5.2 Schematic representation of a two tiered storage tank system 
made from high density polyethylene (HDPE) that collects water directly 

from the main into a lower tank. Water from the lower tank is then pumped 
to an elevated tank which is then piped into the house. Image is not drawn 

to scale.  
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Figure 5.3 Representative water storage in Siparia, Trinidad and Tobago. (a) 

a 55 gallon HDPE storage drum (located next to a larger tank); (b) 400 
gallon HDPE storage tanks being filled by a hose connected to a standpipe 
from which water is collected directly from the base; (c) 400 gallon HDPE 
storage tanks collecting rain water and water from the main from which 

water is obtained directly from the base and piped to the house; and (d) 400 
gallon HDPE storage tank from which water is pumped from the ground to 

the rooftop tank prior to being piped to the house. 
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Figure 5.4 Representative water storage in Region 4 Subset, Guyana. (a) 

450 gallon HDPE storage tank being filled with rainwater (roof runoff) from 
which water is collected at the base; (b) 450 gallon HDPE storage tanks on 
a trestle with the bottom tank collecting water from the main which is then 
pumped to the higher tank that then delivers water directly into the house; 
and (c) 55 gallon HDPE storage drums filled with water from a standpipe 

connected to the main. 
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Figure 5.5 Representative water storage in Villa Litoral, Bolivia. (a) cement 

storage tank being filled with rainwater (roof runoff) and/or piped water 
from which water is collected at the base; (b) 400 gallon HDPE storage tank 
on the roof of a house that gets water from the main via a pump before it is 

piped to the house; (c) 5 gallon jerry cans used to collect water from 
standpipes; and (d) rain water collecting in a cement tank from which water 

is obtained from the base.   
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5.3 Characteristics of Water Storage Devices 

Table 5.2 summarizes the household size, water storage device age and its 

capacity. In 61% of the total households surveyed, households consisted of 4-7 

individuals. Smaller households represented 30% of the sample size and 

households with more than 7 people represented only 9% of the sample size. 

Demographics were similar for Region 4 Subset and Siparia, whereas a larger 

percentage of the Villa Litoral households had greater than 4 people. Guyana 

and Trinidad and Tobago are culturally similar which could possibly explain this 

demographic difference. Although the GNI of Guyana and Bolivia are similar, it 

was evident from field work that greater levels of poverty existed in the areas 

visited in Villa Litoral than in the areas visited in Region 4 Subset.  

In all of the households surveyed, some form of household water storage device 

was used. The average age of the tanks in Siparia and Region 4 Subset ranged 

from 4-10 years whereas in Bolivia it ranged from 0-3 years. 
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 Table 5.2 Characteristics of household water storage devices used within communities in the Latin American 
and Caribbean region. 

Water Storage Device 
Characteristics 

Siparia, Trinidad 
and Tobago (39)  

Region 4 Subset, 
Guyana (40)  

Region 4- Rural, 
Guyana (23)  

Villa Litoral, 
Bolivia (57) 

  No. %   No. %   No. %   No. % 

  

Household member size                       

1-3 16 41 
 

15 37.5 
 

7 30.4 
 

10 17.5 

4-7 21 53.8 
 

22 55 
 

15 65.2 
 

40 70.2 

More than 7 2 5.1 
 

3 7.5 
 

1 4.3 
 

7 12.3 

Age of storage device 
           

0-3 years 9 23.1 
 

17 42.5 
 

11 47.8 
 

38 66.7 

4-10 years 23 59 
 

21 52.5 
 

11 47.8 
 

9 15.8 

11-15 years 2 5.1 
 

2 5 
 

1 4.3 
 

6 10.5 

16-20 years 4 10.3 
 

0 0 
 

0 0.0 
 

1 1.8 

Older than 20 years 1 2.6 
 

0 0 
 

0 0.0 
 

3 5.3 

Storage device capacity 
           

0-50  gallons 0 0 
 

2 5 
 

1 4.3 
 

30 52.6 

51-100  gallons 0 0 
 

6 15 
 

5 21.7 
 

5 8.8 

101-500  gallons 36 92.3 
 

34 85 
 

17 73.9 
 

6 10.5 

501-1000  gallons 7 17.9 
 

1 2.5 
 

1 4.3 
 

0 0 

1001-5000  gallons 0 0 
 

1 2.5 
 

0 0.0 
 

14 24.6 

10000  gallons and above 0 0 
 

0 0 
 

0 0.0 
 

2 3.5 
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Figure 5.6 Distribution of household water devices within field sites in the 

Latin American and Caribbean region. Number of households: Siparia 
Trinidad and Tobago (39); Region 4 Subset, Guyana (40); Villa Litoral, 

Bolivia (57).  
 

Figure 5.7 Distribution of water storage container capacity among 
households surveyed. Number of households surveyed in Siparia, Trinidad 

and Tobago (n=39); Region 4 Subset, Guyana (n=40); and Villa Litoral, 
Bolivia (n=57). 
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Figure 5.6 shows the types of devices sampled in each location, while Figure 5.7 

shows the capacity of the devices. Within Siparia and Region 4 Subset, the 

predominant form of water storage device used was the black HDPE tanks with 

storage capacities of 400-500 gallons. Table 5.3 provides information on the 

HDPE tanks produced in Trinidad and Tobago which have, or are similar to the 

types of tanks that have the majority of the market in Siparia and Region 4 

Subset. Information in Table 5.3 was taken from the manufacturer and provides 

data on tank dimensions as that information was not recorded during the field 

surveys.  The tanks in the table below are contoured and taper at the top (see 

Figure 5.8), hence the reported capacity is smaller than the capacity calculated if 

one used the given diameter and height in the table.  

 

Table 5.3 Specifications of typical HDPE water storage tanks. Data obtained 
from Rotoplastics Trinidad and Tobago Limited, 

http://www.rotoplastics.co.tt/content/download-pdfs/tufftank.pdf, accessed 
3/21/2010. 

Model Capacity Diameter Height Weight 

CT200 
200 gallons 37” 56” 32 lbs 

757 liters 93 cm 143 cm 14.5 kg 

CT400 
400 gallons 44” 67” 50 lbs 

1514 liters 112 cm 170 cm 23 kg 

CT450 
450 gallons 46” 70.5” 55 lbs 

1703 liters 117 cm 179 cm 25 kg 

CT600 
600 gallons 52” 77.5” 80 lbs 

2271 liters 132 cm 197 cm 36 kg 

CT800 
800 gallons 61.5” 87.5” 110 lbs 

3028 liters 156 cm 222 cm 50 kg 

CT1000 
1000 gallons 65.5” 100” 140 lbs 

3785 liters 167 cm 254 cm 64 kg 

http://www.rotoplastics.co.tt/content/download-pdfs/tufftank.pdf
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Figure 5.8 Image of a HDPE storage tank manufactured by Rotoplastics in 

Trinidad and Tobago. Image obtained from 
http://www.rotoplastics.co.tt/content/download-pdfs/Approved-Tuff-Tank-

20x4-fc.jpg, accessed 10/1/2010. 
 

In Villa Litoral, close to 53% of households utilized drums, jerry cans and small 

buckets with capacities less than 50 gallons. Roughly 25% of households 

surveyed utilized cement tanks, predominantly with a capacity of 2,642 gallons 

(10,000 L).  

Multiple types of storage devices (e.g. an HDPE tank and an HDPE drum) were 

seen at the houses in 78% of households surveyed.  Residents were asked to 

http://www.rotoplastics.co.tt/content/download-pdfs/Approved-Tuff-Tank-20x4-fc.jpg
http://www.rotoplastics.co.tt/content/download-pdfs/Approved-Tuff-Tank-20x4-fc.jpg
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identify the storage device that supplied drinking water and that was the unit 

sampled at that location. If the household did not use the storage device for 

drinking, they were asked to identify the one used for cooking and then bathing 

and that device was sampled. With regards to device material, 61% percent of 

the storage devices used in the homes were made of plastic, while 28% were 

made of cement with the remainder made of metal. Figure 5.6 shows the 

occurrence of storage devices in each of the three locations. Additionally, 90% of 

households surveyed reported that their storage devices had a covering, usually 

the covering that came with the device.  Older HDPE tanks in Guyana featured a 

lid that was of similar diameter to the bottom (M. Trotz, personal communication, 

November 12, 2007); however, many of the tanks surveyed in Guyana had a 

smaller lid diameter, which has implications for access to cleaning. 

The location of the water storage devices varied within the communities. The 

water storage systems were elevated on a trestle or some form of embankment 

in the majority of households surveyed in Siparia (70%) and Region 4 Subset 

(71.8%) and in roughly 5% of households in Villa Litoral.  The elevated water 

storage system provided greater water pressure so that water could flow into the 

home by gravity. The other water storage systems were located on the ground. 

While few of these systems were HDPE tanks, this ground-level group consisted 

predominantly of water drums, jerry cans, and cement tanks.   
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5.4 Household Drinking Water Practices  

Household drinking water practices were assessed within the three target 

communities, and Table 5.4 summarizes the results. The questions refer to the 

use of the water from the storage device for drinking.  
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Table 5.4 Household drinking water practices as they relate to water from storage devices within communities in 
the Latin American and Caribbean region. 

Household Drinking Water 
Practice 

in Relation to Water Storage 
Device 

Siparia, Trinidad and 
Tobago (39) 

  Region 4 Subset, 
Guyana (40) 

  Region 4- Rural, 
Guyana (23) 

  Villa Litoral, 
Bolivia (57) 

      

No. %   No. %   No. %   No. % 

                        

Water used for drinking?                       

Yes 36 92.3 
 

10 25 
 

8 34.8 
 

47 82.5 

No 3 7.7 
 

30 75 
 

15 65.2 
 

10 17.5 

Water boiled? 
           Yes 11 28.2 

 
1 2.5 

 
1 4.3 

 
43 75.4 

No 28 71.8 
 

39 97.5 
 

22 95.7 
 

14 24.6 

Water filtered? 
           Yes 6 15.4 

 
2 5 

 
1 4.3 

 
15 26.3 

No 33 84.6 
 

38 95 
 

22 95.7 
 

42 73.7 

Bottled water used for drinking? 
           Daily 9 23.1 

 
28 70 

 
13 56.5 

 
0 0 

Weekly 4 10.3 
 

2 5 
 

0 0.0 
 

3 5.3 

Rarely 17 43.6 
 

1 2.5 
 

1 4.3 
 

15 26.3 

Not at all 9 23.1 
 

9 22.5 
 

9 39.1 
 

39 68.4 
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With regards to usage, 92% of the households surveyed in Siparia used their 

water storage device for drinking with Villa Litoral having the next highest 

percentage of 82.5% and Region 4 Subset having the least with 25%. While 

water boiling is one of the most widely used and accessible methods of 

household point-of-use water treatment (Brown, 2009; Christen, 2009; Clasen, 

2007), the majority of the households surveyed in Siparia (71.8%) and Region 4 

Subset (97.5%) did not practice it. This was different in Villa Litoral where 75.4% 

of the population boiled their water. Water filtration was even less widespread 

among the communities in Siparia (15.4%), Region 4 Subset (5%), and Villa 

Litoral (26.3%). In the households where it was practiced, filtration was achieved 

through the use of a cloth or a sieve. Several participants surveyed in Siparia 

commented that they allowed the water to “stand” prior to usage so that any 

sediment or particles present could settle to the bottom.  

The frequency of bottled water usage was assessed among the communities 

surveyed. Roughly 33% of households surveyed in Siparia used bottled water for 

drinking on a daily or weekly basis, compared to 75% of households surveyed in 

Region 4 Subset. Only 5% of households in Villa Litoral used bottled water on a 

regular basis. Households surveyed in Siparia reported that the water from their 

storage tank was safe to drink, but often supplemented their water sources with 

bottled water during abnormal circumstances (emergencies, shortages, health 

purposes for the children or elderly, provision for guests/visitors). In Region 4 

Subset, the 25% of households who rarely or never used bottled water were also 
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the same 25% who used water from the storage device for drinking.  These were 

mainly people from Mon Repos and Mocha as opposed to the more urbanized 

areas close to Georgetown. Similarly, bottled water was used by 100% of the 

households in municipal and suburban Georgetown. Chapter 7 reduces the data 

from the Region 4 subset into urban and rural. 

 

5.5  Storage Device Maintenance 

Maintenance guidelines for the upkeep of household water storage tank systems 

are not readily available in Trinidad and Tobago, Guyana or Bolivia.  Survey 

questions were designed to capture that information and the results are 

presented in this section.  

Figure 5.9 compares storage device maintenance practiced by households in the 

three different communities. In all three communities, greater percentages of 

households cleaned their water storage devices compared to the percentage of 

households who practiced water disinfection. The water disinfection question as 

delivered in the survey (Appendix C) resulted in responses that did not 

distinguish whether the chemical disinfectant was added to the tank or to a 

storage device used inside the home. Hence, the results presented on 

disinfection represent any disinfection at the household level. The majority of 

households in Siparia (92.3%), Region 4 Subset (67.5%), and Villa Litoral 

(87.7%) reported cleaning their respective storage devices. Households in 
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Siparia and Villa Litoral were three and four times, respectively, more likely to 

clean their storage devices than to disinfect their water. Water disinfection was 

only common among the Region 4 Subset households, where 60% reported 

disinfecting the water. It is interesting to note that only 25% of surveyed 

Guyanese households drank water from their storage devices, the majority of 

which were the larger HDPE tanks.  

 
Figure 5.9 Maintenance practices of household water storage devices 

within communities in the Latin American and Caribbean region. Number of 
households surveyed: Siparia, Trinidad and Tobago (39); Region 4 Subset, 

Guyana (40); Villa Litoral, Bolivia (57). For (a), disinfection refers to 
chemical disinfectant and device cleaning refers to any activity related to 

washing the water storage device. For (b) disinfection refers to boiling 
and/or chemical disinfectant. 

 

(b) 

(a) 



97 

 

Various reasons were given by all households surveyed for not disinfecting, such 

as an aversion to the taste of the disinfected water, inaccessibility of disinfection 

materials, and inconvenience. Participants were more apt to clean their storage 

device as no additional materials were needed and they did not have to 

remember correct dosages. Several residents said they left the tops of their tanks 

and devices open so that rainwater could flush out the interior of the device 

thereby cleaning it. Some residents also used this approach to fill their storage 

devices.  

The frequency of the disinfection and cleaning were also assessed. Figure 5.10 

shows the chemical disinfection frequency within households in Siparia. Fifty-

nine percent of households who reported disinfecting the water within their 

storage device did so every few months, while 25%  reported doing so on a 

monthly basis.  Eight percent of households disinfected their water weekly or 

annually. 
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Figure 5.10 Frequency of household water disinfection within Siparia, 
Trinidad and Tobago. The number of households surveyed in Siparia 
reporting water disinfection was 12 out of a total of 39 households. 

 

 
Figure 5.11 Frequency of household water disinfection within Region 4 

Subset, Guyana. The number of households surveyed that disinfected was 
24 out of a total of 40 households. 
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In Figure 5.11, the disinfection frequency is shown for households in Region 4 

Subset. The Region 4 Subset households surveyed practiced household water 

disinfection on a more frequent basis than households surveyed in Siparia. Fifty 

percent of households who disinfected did so on a daily or weekly basis, while 

17% of households disinfected on a monthly basis and 33% did so every few 

months. Various reasons may attribute to the higher rates of disinfection and 

frequency in Region 4 Subset, such as availability and accessibility of chlorine in 

liquid and tablet forms, increased awareness and promotion by NGOs and the 

government. A major flood event in January 2005 impacted Region 4 Subset and 

much of Guyana’s densely populated coastal region, resulting in widespread 

dissemination of health advisories and suggested water disinfection practices 

(Figure 5.12). Despite the small percentage of Guyanese who used tank water 

for drinking, the flyer makes it clear that bleach should be added to water used 

for drinking, washing hands, bathing, cooking, washing fruits and vegetables, and 

brushing teeth.  

Close to 23% of households in Bolivia reported adding sodium hypochlorite 

(lavandina), a chemical disinfectant, to their water storage devices. This, 

however, was done very rarely during the lifetime of their water storage devices. 

Approximately 75% of households surveyed in Villa Litoral boiled their water (see 

Table 5.4). Roughly 19% of households surveyed reported practicing both boiling 

and disinfection. However, as the residents stated that they rarely disinfected 
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their water sources over the lifetime of their containers, it can be stated that 

boiling and filtration were not both practiced regularly within a household. 

 
Figure 5.12 Water safety awareness flyer widely distributed in Guyana 

following the January 2005 floods. Image obtained from 
http://www.gina.gov.gy/ads/fullpage-healthadvisories-jan%2018.pdf, 

accessed 10/1/2010. 
 

Households were then asked to report the time of the most recent chemical 

disinfection and the type of disinfection practice used. In both Siparia and Region 

4 Subset, chemical disinfection of water storage devices had occurred within a 

month of the survey. Dosages varied among the households, as shown in Table 

5.5. In Siparia, 83% of households who disinfected used a cork-full of bleach in 

http://www.gina.gov.gy/ads/fullpage-healthadvisories-jan%2018.pdf
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water storage devices. Others reported using a tablespoon or a teaspoon of 

bleach to disinfect water storage devices. In Region 4 Subset, 45.8% of 

households who reported disinfecting their water sources used a cork-full of 

bleach.  Roughly 29% of all households who reported disinfecting their water 

sources used a cork-full of bleach. The remainder of households used 2 drops of 

chlorine (4.2%), one teaspoon (12.5%), or other sources such as chlorine tablets 

(8.3%).  

Bleach mix time also varied among the households, as shown in Table 5.5. In 

Siparia, 33.3% of households who disinfected allowed the treated water to mix 

for roughly 15 minutes before use, while 25% of households allowed 30 minutes. 

Other residents allowed the water to mix for less than 10 minutes (16.7%) or 

overnight (25%). In Region 4 Subset, 83.3% of households who disinfected 

allowed the treated water to mix for roughly 30 minutes before use. Other 

residents allowed the water to mix for less than 10 minutes (4.2%), 15 minutes 

(4.2%), or overnight (8.3%).  
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Table 5.5 Household water disinfection practices within communities in 
Trinidad and Tobago and Guyana based on the number of respondents 

who said they disinfected their water. 

  

Siparia, Trinidad 
and Tobago 

(12) 
  

Region 4 
Subset, 
Guyana 

(24) 

  

Region 4- 
Rural, 

Guyana 
(11) 

  No. %   No. %   No. % 

                  
Recent Chemical 
Disinfection       

Within the last two 
weeks 

3 25 
 

12 50 
 

5 45.5 

Within the last month 3 25 
 

5 20.8 
 

3 27.3 

Within the last six 
months 

4 33.3 
 

7 29.2 
 

3 27.3 

Within the last year 2 16.7 
 

0 0 
 

0 0.0 

Bleach dosage 
      

2 drops 0 0 
 

1 4.2 
 

0 0.0 

1 teaspoon 1 8.3 
 

3 12.5 
 

1 9.1 

1 tablespoon 1 8.3 
 

11 45.8 
 

7 63.6 

1 cork-full 10 83.3 
 

7 29.2 
 

3 27.3 

Other 0 0 
 

2 8.3 
 

0 0.0 

Bleach mix time 
      

Less than 10 minutes 2 16.7 
 

1 4.2 
 

0 0.0 

10-15 minutes 4 33.3 
 

1 4.2 
 

1 9.1 

15-30 minutes 
3 25 

 
20 83.3 

 
9 81.8 

Overnight 3 25 
 

2 8.3 
 

1 9.1 

 

While chemical disinfection holds several benefits, it is only effective when the 

adequate dosage is applied and adequate chlorine retention time is allowed. In 

several of the households, chlorine was being used to disinfect various volumes 

of water such as a water jug, a gallon jug, a pitcher, or an entire water storage 

tank/device. Additionally, information may have been distributed in which case a 
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particular amount of chlorine was erroneously thought to be the universal amount 

needed for every volume of water to be disinfected. Even when the correct 

dosage is used, the chlorine is not allowed to sit for an adequate amount of time. 

In such cases, microbial reduction has not been optimized, a strong taste is 

present, or there is inadequate chlorine residual. Inadequate mixing time results 

in an inadequate residual in the water, which increases the potential for microbial 

re-growth in water sources (LeChevallier, 1996). In Table 5.6, proper chlorine 

dosage measurements are shown with corresponding volumes. For each of the 

dosage measurements shown, the treated water should be allowed to sit for at 

least 30 minutes to ensure adequate disinfection (USEPA, 2010).  
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Table 5.6 Dosage measurements for chlorine disinfection of water sources. 
Obtained from EPA Emergency Disinfection of Water 

http://water.epa.gov/drink/emerprep/emergencydisinfection.cfm, access on 
5/13/2010. Marvex and Trin Chloro information obtained from 

http://www.gina.gov.gy/ads/fullpage-healthadvisories-jan%2018.pdf, 
accessed 10/1/2010.  

Chlorine Method Dosage 

1% free chlorine liquid 10 drops per quart of water 

10 drops per liter of water 

40 drops per gallon of water 

4-6% free chlorine liquid  2 drops per quart of water 

2 drops per liter of water 

8 drops per gallon (1/8 teaspoon) of water 

1 cork-full per 5 gallons (for Chloro-sol) of 
water 

7-10% free chlorine liquid 1 drop per quart of water 

1 drop per liter of water 

4 drops per gallon of water 

Prepared calcium hypochlorite  

 
1 part chlorine to 100 parts water 

½ liter to 50 liters of water  

Chlorine tablets 1 tablet per quart of water 

I tablet per liter of water 

Marvex or Trin Chloro bleach* ½ teaspoon to 5 gallons of water 

1 cup to a 400 gallon water tank 

*Marvex and Trin Chloro are the main bleach brands in Guyana and Trinidad and 
Tobago.   
 

In Table 5.7, household practices for cleaning water storage devices are shown. 

In Siparia, households reported cleaning their storage devices on a monthly 

(12.8%), quarterly or seasonal (41%), or annual basis (28.2%). About 10% of 

homes who reported cleaning their storage devices did so on rare occasions. In 

http://water.epa.gov/drink/emerprep/emergencydisinfection.cfm
http://www.gina.gov.gy/ads/fullpage-healthadvisories-jan%2018.pdf
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Region 4 Subset, cleanings were done predominantly on a weekly (22.5%) or 

quarterly basis (25%). Ten percent of households who cleaned their storage 

devices did so on an annual basis. In Villa Litoral, storage devices were cleaned 

predominantly on a weekly basis (26.3%) or on an annual basis (38%).  
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Table 5.7 Water storage device cleaning practices within communities in Trinidad and Tobago, Guyana, & Bolivia. 

 Household Cleaning Pra 

Siparia, Trinidad 
and Tobago (36) 

  
Region 4 
Subset, 

Guyana (27) 

  Region 4- 
Rural, 

Guyana (16) 

  Villa Litoral, 
Bolivia (57) 

    

  No. %   No. %   No. %   No. % 

                      

Cleaning frequency                     

Daily 0 0   0 0   0 0.0   7 12.3 

Weekly 0 0   9 22.5   8 50.0   15 26.3 

Monthly 5 12.8   3 7.5   1 6.3   4 7 

Every few months 16 41   10 25   5 31.3   1 1.8 

Annually 11 28.2   4 10   1 6.3   22 38.6 

Rarely 4 10.3   1 2.5   1 6.3   1 1.8 

Recent cleaning                     

Within the last two weeks 4 10.3   10 25   8 50.0   23 40.4 

Within the last month 6 15.4   3 7.5   1 6.3   2 3.5 

Within the last six months 13 33.3   9 22.5   5 31.3   15 26.3 

Within the last year 13 33.3   5 12.5   2 12.5   10 20 
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Various factors may impact the frequency at which household water storage 

devices were cleaned. Over 65% of the households surveyed either owned water 

storage devices with capacities above 400 gallons (Table 5.2), had devices 

which were elevated well above ground level, or were connected to pipes leading 

into the kitchen and bathrooms.  It is likely that these attributes make it difficult to 

clean the storage devices as frequently as one would wish or is needed, though 

guidelines for cleaning water storage devices in the regions studied are non-

existent. As was previously mentioned, flushing the storage tanks with rainwater 

was used to clean tanks in some places. Hence, household members coordinate 

device cleaning with rain episodes. This could explain why many households 

clean their tanks on a quarterly, annual, or even rare basis. However, smaller 

water storage devices are seen within some households, particularly in Villa 

Litoral.  In Villa Litoral, water drums and jerry cans were ubiquitous among 

households surveyed. Due to their ease in portability, these smaller containers 

could be cleaned on a more frequent basis. 

Table 5.8 shows the amount of water required as a function of household size, 

assuming a daily requirement of 50 gallons per person which falls in the range of 

the 25-79 gallons per person for optimal access to water (Mihelcic et al., 2009).  

Actual values on household usage rate in each of the three communities were 

not collected and may differ from this assumed value. Nevertheless, the 

information in the table provides an estimate of the frequency with which the 

tanks would be refilled for domestic purposes. One can use these numbers to 
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estimate the frequency of disinfection required assuming inadequate disinfection 

residual reached the household yard from the main. Based on the data from 

Tables 5.6 and 5.8, if a household of four in Guyana utilizes 200 gallons of water 

per day and has one 400-gallon tank, one cup of bleach would need to be added 

to the tank each time the tank is filled. This equates to a minimum of 3.5 cups of 

bleach on a weekly basis just to maintain adequate chlorine residual.  

 

 Table 5.8 Daily household usage rate of water and number of refills 
required per week depending on storage device size assuming a 50 gal/day 

requirement per person. 
# 

people/house 
 

gal/day/hous
e 
 

# refills/week 
50 gal 

# refills/week 
400 gal 

# 
refills/week 
 1000 gal 

1-3 50-150 7-21 0.9-2.7 0.35-1 

4-7 200-350 28-49 3.5-6.2 1.4 

8 400 56 7 2.8 

 

5.6 Household Water Access and Collection 

In Table 5.9, means of household water access, collection, and transport are 

shown for the three communities. Almost all the households surveyed in Siparia, 

Trinidad and Tobago and Region 4 Subset, Guyana are connected to a municipal 

water source, while close to 42.1% of those in Villa Litoral, Bolivia are connected. 

In Siparia and Region 4 Subset, households are billed a quarterly statement 

based upon the established water tariff for the designated area. In Villa Litoral, 

each household pays a flat $7Bs per month (~$1USD) for water, a price that was 

determined by the water personnel.  
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Those who are not connected often rely on rain water, river water, or the sharing 

of a neighbor’s pipe for water. Although, the majority of households in all three 

communities are connected, only households within Siparia had access to water 

all day. Sixty percent of households surveyed in Region 4 Subset had access to 

water half of the day, while 81% of households surveyed in Villa Litoral had 

access for a only a few hours a day. Close to 16% of households in Villa Litoral 

reported not having access to any piped water at all and thus relied solely on rain 

water or river water. 

The times of water availability varied between the target communities. In the 

households surveyed in Region 4 Subset, access to water from the main was 

normally available in the mornings. In Villa Litoral, access to water occurred 

when a member of the local water committee went to turn on the water pump. 

Additionally, water access alternated between the sides of the main street with 

each side getting access for a few hours.  

In accessing water from the water storage tanks, most residents either used a 

bucket to bring water into the home or had the water directly piped into the 

kitchen from the tank via PVC or metal pipes.  
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Table 5.9 Means of household water access, collection, and transport within communities in the Latin American 
and Caribbean region. 

Water Access, Collection, 
and Transport 

Siparia, Trinidad 
and Tobago (39) 

  
Region 4 
Subset, 

Guyana (40) 
  

Region 4- 
Rural. 

Guyana (23) 
  

Villa Litoral, 
Bolivia (57) 

  No. %   No. %   No. %   No. % 

                        

Municipal connection                       

Yes 37 94.9   40 100   23 100.0   33 57.9 

No 2 5.1   0 0   0 0.0   24 42.1 

Water access                       

All day 39 100   5 12.5   1 4.3   2 3.5 

Half a day 0 0   24 60   13 56.5   0 0 

A few hours a day 0 0   11 27.5   9 39.1   46 80.7 

Collection method                       

Bucket 19 48.7   21 52.5   16 69.6   39 68.4 

Pot 0 0   0 0   1 4.3   1 1.8 

Bottle 2 5.1   0 0   0 0.0   1 1.8 

Piped into home 18 46.2   19 47.5   7 30.4   15 26.3 

Other 0 0   0 0   0 0.0   1 1.8 

Water covered for transport                       

Yes 13 33.3   13 32.5   10 43.5   16 28.1 

No 8 20.5   8 20   6 26.1   26 45.6 
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5.7 Community Perception about Water Quality 

Community residents were asked to describe the water quality that they received 

from the municipal water source (Figure 5.13). The majority of the households in 

Siparia, Trinidad and Tobago (74%) and Region 4 Subset, Guyana (58%) 

reported the water source as being brown. Residents would often let the water 

settle or utilize filtration mechanisms prior to drinking, as was mentioned in 

Section 5.4. The brown color could be attributed to several factors. The majority 

of the households received water access in the morning, when the pumps would 

be turned on. As a result, all the sediment build-up within the pipes from the 

previous day was also brought in with the water source. A second factor could be 

high organic, iron, and/or manganese content in the water (Fass, 2003; Han, 

2007; Magyar, 2007).  
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Figure 5.13 Reported water description among communities. Number of 
households surveyed: Siparia, Trinidad and Tobago (39), Region 4 Subset, 

Guyana (40); Villa Litoral (57). 
 

While the majority of households in Villa Litoral (72%) reported their water source 

as being clear, 39% reported water sources as being salty, often to the point of 

not being potable. During this point those who relied on piped water sources 

would revert to using rainwater if available or would collect water from the river.  

Experiences with the municipal water pressure varied between the households 

connected to water. Participants were asked to describe the water pressure from 

the main according to the following categories: 

1) Good:  strong and constant flow when the water was turned on-  

2) Average: steady, constant flow 

3) Bad:  water would often trickle out or take a while before coming out.   
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Figure 5.14 Reported description of water pressure received at the 

household level (ex. at point where water for drinking comes from). Number 
of households surveyed: Siparia, Trinidad and Tobago (39), Region 4 

Subset, Guyana (40), Villa Litoral (57). 
 

Figure 5.14 shows a comparison of water pressure description among the three 

communities. In Siparia, 16% of households reported their water pressure as 

being good, while 48% reported their water as average. Five percent of 

households in Region 4 Subset reported their water pressure as being good 

while 85% reported it as average. Good water pressure was reported among 

14% of households in Villa Litoral, whereas 40% reported water pressure as 

being average. Five percent of households in Siparia and 16% of households in 

Villa Litoral did not have access to water from the main and thus did not report on 

the water pressure. While the majority of households in all three communities 
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reported water pressure as good or average, a percentage of households 

reported the water pressure as being bad. This can be attributable to water loss 

during distribution as a result of deteriorating or leaky pipes (Besner, 2001; 

Lamka, 1980; LeChevallier, 2003, Lee, 2005; Olsinska, 2007), or aggressive 

water theft. This can also be attributed to the water intermittence that occurs 

within the community.  

While many of the residents in all three communities were concerned that the 

appearance and taste of the water sources could be indicative of the dismal 

quality of the water, they felt that there was little that could be done at the local 

level to help resolve this. For those who were able to do so, bottled water 

became either the main or supplemental source of drinking water.  

 

5.8 Household Responsibilities for Water Provision 

For the majority of households in all three communities, the stored water lasts for 

up to three weeks when initially filled, while a quarter of households in Siparia 

and Villa Litoral have stored water sources that last more than three weeks, 

partly due to owning multiple or very large storage devices. Hence, the practices 

used to ensure the safety of the water source were assessed.  

In households without direct water connections into the house, the majority of 

participants reported that water sources were covered when being transported 

into the homes in Siparia (61.9%), Region 4 Subset (66.7%), and Villa Litoral 
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(52.4%). This was done to protect water sources from being contaminated both 

during transport and upon arrival in the home, as it would likely remain in the 

same covered container for daily use. This was of particular importance as many 

homes had children present. Households had water sources within the reach of 

toddlers in Siparia (15.4%), Region 4 Subset (35%), and Villa Litoral (57.9%). 

These consisted of water sources within the storage device or water sources 

being transported from the device to indoors. In a third of the households in Villa 

Litoral, the objects and toys have been thrown in the water sources by children, 

compared to 5% of households in Siparia and Region 4 Subset. This could be 

attributed to parents possibly carrying children while tending to water sources or 

to children having access to water sources, particularly to smaller and ground-

level water storage devices.  

Household water responsibilities for Siparia are shown in Figure 5.15. In terms of 

filling the storage devices and ensuring there were no leaks, the duty was 

performed primarily by the male head of the house (53.8%), followed by the 

female head (30.8%), a child of the homeowner (17.9%) or other persons 

(17.9%).  Five percent reported that no one takes filling responsibilities for the 

storage devices, as they simply allow the rain to fill them. Additionally, the male 

head is primarily responsible for cleaning the devices in 64.1% of households, 

compared to the female head (30.8%) and child (23.1%). The responsibility of 

collecting water from the storage device is primarily that of the male head 

(51.3%) or the female head (46.2%).  
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Figure 5.15 Household water responsibilities within Siparia, Trinidad and 
Tobago. The number of households surveyed was 39. 

 

Household water responsibilities for Region 4 Subset are shown in Figure 5.16. 

In 47.5% of the homes, the male head is responsible for both cleaning and filling 

the water storage devices, followed by the female head (30%). Close to 13% of 

households reported that no one takes cleaning or filling responsibilities for the 

storage devices, as they simply allow the rain to clean and fill them. However, the 

responsibility of collecting water from the storage device is primarily that of the 

female head (62.5%), followed by the male head (12.5%) and other individuals 

(7.5%).  

The Region 4 subset does consist of urban and rural areas which have 

differences in the percentage of male headed households with more male 
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headed households seen in the rural versus urban sites (BOS, 2002). Despite 

this difference, the trend remains the same for both the urban and rural areas 

studied that female heads of household contribute more to water collection than 

their male counterparts and contribute less to tank cleaning and filling than their 

male counterparts. The role of females in water collection is significantly higher in 

the rural compared to the urban areas studied. 

Figure 5.16 Household water responsibilities within Region 4 Subset, 
Guyana. The number of households surveyed was 40.  

 

Household water responsibilities for Villa Litoral are shown in Figure 5.17. In 

terms of filling the storage devices and ensuring there are no leaks, the duty is 

performed primarily by the male head of the house (40.4%), followed by the 

female head (35.1%), another person such as a neighbor or friend (21.1%), and 
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the child (5.3%).  About 9% of households reported that no one takes cleaning or 

filling responsibilities for the storage devices, as they simply allow the rain to 

clean and fill them. The male head is primarily responsible for cleaning the 

devices in 61.4% of households, compared to the female head (31.6%) and child 

(7%). The responsibility of collecting water from the storage device is primarily 

that of the female head (64.9%), followed by the male head (36.8%). 

Figure 5.17 Household water responsibilities within Villa Litoral, Bolivia. 
Number of households surveyed: 57. 

 

While collecting and tending to the water needs of a household are traditionally 

the responsibility of the woman (WHO/UNICEF, 2010), there is a shift and a 

sharing of these responsibilities as household water storage has become more 

advanced and durable. In a large percentage of households in Siparia, the male 
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head was responsible for all three duties (cleaning, filling, and collection). In 

Region 4 Subset, the male head was responsible for cleaning and filling the 

water storage device in a large percentage of households, while the female head 

is responsible for the collection. In Villa Litoral, the male is responsible for the 

cleaning while the female head is responsible for the collection. There is an 

almost even split among percentage of households where the male head and the 

female head are responsible for filling. 

The presence and the role of the male household head are of particular interest 

as the number of households headed by females continues to increase (Rutstein, 

2004). Table 5.10 summarizes the global distribution of households headed by 

females. In the Latin American and Caribbean region, between 17-27% of 

households are headed by a female. However, the results from this study show 

different demographics with regards to female-headed households. Based on the 

household responsibilities data, one can conclude that 60-70% of households are 

headed by men, leaving the remaining 30-40% of households to be headed by 

women. The data results obtained could indicate that the percentage of female 

heads in the Latin American and Caribbean region is underestimated. This 

realization shows that further gender-specific interventions may be needed in 

order to better address household water issues seen in the Latin American and 

Caribbean region. 
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Table 5.10 Global distribution of female heads of households by region and 
wealth quintile. Obtained from (Rutstein, 2004).  

Percentage of female household heads in each wealth quintile, by region Quintile 
(percent) 

Region Lowest Second Middle Fourth Highest Total 

Sub-Saharan 
Africa 

22 22 23 26 24 24 

Near East and 
North Africa 

8 8 9 11 9 9 

Europe and 
Central Asia 

14 14 16 20 29 19 

South and 
Southeast Asia 

8 10 10 11 14 11 

Latin America 
and Caribbean 

17 22 25 27 26 24 

Total 17 18 20 22 22 20 

 

5.9 Health and Community Perception 

Community perception and health were assessed within the three study areas, in 

terms of perceived risks and benefits associated with the water storage devices 

and with the current water quality. Responses from the surveys are summarized 

in Table 5.11. 
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Table 5.11 Community perception and health among households within communities in the Latin American and 
Caribbean region. 

Community Perception & Health 
Siparia, Trinidad 
and Tobago (39)   

Region 4 Subset, 
Guyana (40)   

Region 4 Subset, 
Guyana (40)   

Villa Litoral, 
Bolivia (57) 

No. % 
 

No. %   No. % 
 

No. % 
                        

Media access                       

Yes 13 33.3   39 97.5   23 100.0   42 73.7 

No 26 66.7   1 2.5   0 0.0   15 26.3 

Handwashing practiced                       

Yes 17 43.6   27 67.5   13 56.5   36 63.2 

No 14 35.9 
 

12 30   9 39.1   19 33.3 

Sometimes 8 20.5   1 2.5   1 4.3   2 3.5 

Confidence in H2O potability                       

Very confident 16 41   1 2.5   1 4.3   11 19.3 

Somewhat confident 17 43.6   8 20   6 26.1   16 28.1 

Not confident 6 15.4   31 77.5   16 69.6   30 52.6 

Confidence in tank                       

Very confident 8 20.5   0 0   0 0.0   9 15.8 

Somewhat confident 22 56.4   5 12.5   3 13.0   15 26.3 

Not confident 9 23.1   35 87.5   20 87.0   33 57.9 

Recent waterborne illness                       

Yes 1 2.6   6 15   3 13.0   23 40.4 

No 38 97.4   34 85   20 87.0   34 59.6 
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Survey participants were asked whether they had received water-related 

advisories or information through various sources of media (TV, radio, flyers, 

etc.) in the past year. While the majority of households surveyed in Region 4 

Subset (97.5%) and Villa Litoral (73.7%) reported receiving some advisory or 

information, only a third of the households surveyed in Siparia reported receiving 

any information or advisories within the past year. In Region 4 Subset, media 

access often involved boil notices or other advisories (for example, Figure 5.11), 

information through non-governmental organizations (NGOs), or information 

through the radio. In Villa Litoral, media access and information was 

predominantly through radio or through town forums presided over by the water 

committee.  

The frequency of handwashing prior to water handling was assessed. The 

majority of households surveyed in Region 4 Subset (67.5%) and Villa Litoral 

(63.2%) reported to regularly washing their hands prior to handling water from 

the water storage device. Roughly 44% of households in Siparia reported 

frequent handwashing. Various reasons were given as to why handwashing was 

not practiced. One common reason was that individuals did not remember to 

wash their hands before dealing with the water. A second reason was that they 

could not afford to waste precious water by washing their hands all the time, and 

would wipe their hands on a towel or clothes. A third reason was that the water 

supplies were piped into the home and accessed through the faucets, thus 

negating a need to wash their hands. 
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Figure 5.18 Confidence levels regarding household water sources and 
water storage systems among communities in the Latin American and 

Caribbean Region. Number of households surveyed: Siparia, Trinidad and 
Tobago (39); Region 4 Subset, Guyana (40); Villa Litoral, Bolivia (57). 

 

Confidence and trust in the water sources and water storage systems were 

assessed, as shown in Figure 5.18. When asked about their confidence in the 

potability and security of their drinking water sources, the majority of households 

surveyed in Siparia (84.6%) were either very confident or somewhat confident 

that their water sources were safe for consumption, compared to only 22.5% of 

households in Region 4 Subset and 47.4% of households in Villa Litoral. When 

asked about their confidence in the water storage systems to keep their water 

safe, the majority of households surveyed in Siparia (76.9%) were either very 

confident or somewhat confident that their water sources were safe for 
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consumption, compared to only 12.5% of households in Region 4 Subset and 

42.1% of households in Villa Litoral. Participants who felt confident in their water 

sources reported reasons such as adequate treatment at the municipal water 

plant/pump, regular household water treatment, no reported cases of waterborne 

illnesses or advisories, and perception that rainwater was free of contaminants.  

Reasons for lack of confidence included aesthetic aversion (color, smell, and 

taste), perceived risk, previous advisories, and distrust of the local governmental 

agency in charge of water provision.  

Participants were asked how confident were they that having water stored in the 

storage tanks would reduce their risk of water-related illnesses. Fifty-six percent 

stated that they were not confident at all, whereas 17% stated that they were 

very confident and 27% stated they were somewhat confident. Thus, while 48% 

of households were very or somewhat confident in their water quality, 44% of 

households were very or somewhat confident in the reduced risk of water-related 

risks as a result of using water storage devices. Participants who were confident 

reported feeling as such because the water storage systems were sealed, robust, 

and sturdy. Reasons cited for not being confident in the systems were that the 

water source itself was contaminated, the system was within reach of children 

and pets, and that minimal maintenance was done by owner thus the likelihood 

for lack of confidence.   
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Participants were asked whether there were any recent water-related illnesses 

among those living within the respective home. In Siparia, Trinidad and Tobago, 

only one household reported having a recent water-related illness, in which case 

the individual experienced headaches following consumption of the water. In 

contrast, 15 % of households in Region 4 Subset, Guyana and 40.4% of 

households in Villa Litoral reported recent illnesses. 

Figure 5.19 Distribution of symptoms reported among households 
following recent waterborne illnesses. Number of households surveyed: 

Region 4 Subset, Guyana (6); Villa Litoral, Bolivia (23). 
 

 Among those households reporting illnesses, various symptoms were observed 

by household members, as shown in Figure 5.19. Diarrhea was the most 

common symptom reported among households in Region 4 Subset (50%) and 
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Villa Litoral (32%). Participants reported household members having diarrheal 

episodes which lasted 1-3 days. In both communities, participants also reported 

household members experiencing stomach pains/cramps and skin rash. In Villa 

Litoral, 18% of households also reported symptoms of fever, nausea, and loss of 

appetite.  

In spite of the various symptoms presented, none of the individuals who had a 

waterborne illness in Siparia or Region 4 Subset had the illness medically 

diagnosed, while only half of those in Villa Litoral had the illness diagnosed. 

Various reasons for not visiting a medical facility were given, such as inability to 

pay, lack of access to care, lowered perceived risk of the symptoms due to 

commonality, potential inconvenience of a doctor visit, and time constraints. 

Currently, only one medical facility exists in Villa Litoral and it is headed by one 

medical personnel. There is a hospital located in Palos Blancos, which is situated 

across the Rio Beni. Although the hospital does take in some Villa Litoral 

residents, the community is predominantly serviced by the hospital within the 

Caranavi province, as this is the province to which the community belongs.  

The prevalence of diarrheal episodes following consumption of water sources 

poses a great threat to the welfare and development of the communities. One of 

the most acute effects of diarrhea is dehydration due to the loss of electrolytes 

(sodium, chloride, potassium, and bicarbonate) and water. Fatality can occur 

when the body reaches a fluid loss of 10%. Even if fatality does not occur, 
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dehydration can make one more susceptible to infections. This is of particular 

concern for those with children.  

 

5.10 Summary 

While water storage devices do provide additional and constant water supplies, it 

is evident that water quality can be compromised without adequate device 

maintenance and water treatment at the point of use. As most households have 

multiple water storage devices- several of which may have a capacity over 400 

gallons-, it becomes exceedingly difficult to clean these storage devices. As 

such, many households relegate device cleanings to coincide with rainfall 

episodes, where rainwater can flush out the storage devices. The problem of 

infrequent cleanings is compounded with inadequate water disinfection. In Villa 

Litoral, chemical disinfection is rarely practiced. In Siparia and Region 4 Subset, 

household water disinfection is practiced, but the reported chlorine dosage and 

mixing time are inadequate to provide optimal disinfection. While water 

advisories have been distributed in the communities, there is sometimes a 

misunderstanding as to whether the disinfection should take place in a separate, 

smaller container or in the storage device itself.   

While many households had connections to the main, water access was often 

limited to half a day or a few hours a day. Even though residents paid to receive 

piped water, issues with water aesthetics, taste, and pressure forced many 
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households to purchase bottled water as an alternative drinking water source, as 

was the case in Siparia and Region 4 Subset. As a result of household practices 

and water distribution issues, many households have experienced water-related 

illnesses with varying symptoms. It is thus necessary to build increased 

awareness on proper household water storage practices, particularly among 

those responsible for the collection of water sources and the cleaning of storage 

devices. It is also important to provide accurate information of chemical 

disinfection of household water sources as there are various device shapes and 

capacities present within the communities. 
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CHAPTER 6: WATER QUALITY ANALYSES 

 

6.1 Introduction 

Water samples were taken from twenty-four households within Siparia, Trinidad 

and Tobago. Within the Region 4 Subset, Guyana, samples were taken from 

forty households. Water samples were taken from twenty-six sites within Villa 

Litoral, including two samples from the main pump and from the Rio Tiatche and 

Rio Beni. Using a multi-parameter system (Hach® Hydrolab® Quanta, Loveland, 

CO), the following water quality tests were conducted in the field: temperature, 

pH, conductivity, turbidity, salinity, total dissolved solids, and DO.  GPS 

measurements of the sample sites were taken with a GPS receiver (Garmin® 

eTrex®, Olathe, KS) using the datum World Geodetic System 1984 (WGS 1984). 

Table 6.1 summarizes the number of samples taken by community, water 

source, and storage device. Region 4- Rural consists of only the rural 

communities of the Region 4 Subset- Mocha and Mon Repos. Piped water 

consisted of water distributed from the main pumping station, municipal plant, or 

community system. In each of those three sources, the water source was derived 

from groundwater. 

 



130 

 

Table 6.1 Summary of water samples taken from Siparia, Trinidad and 
Tobago; Region 4 Subset, Guyana; and Villa Litoral, Bolivia. 

 

Siparia, 
Trinidad 

and 
Tobago 

(24) 

Region 4 
Subset, 

Guyana (40) 

Region 4- 
Rural, Guyana 

(23) 

Villa Litoral, 
Bolivia (26) 

 
# % # % # % # % 

Source of water 

Main pump 
(piped water) 

22 91.7 24 60 14 60.9 14 53.8 

Rain water 0 0.0 13 32.5 8 34.8 10 38.5 

Mixed rain (rain 
& piped) 

2 8.3 1 2.5 0 0 0 0.0 

Other sources 0 0.0 2 5 1 4.3 2 7.7 

Type of water storage device 

Tanks 23 95.8 36 90.0 20 87 11 42.3 

Water drums 1 4.2 3 7.5 3 13 3 11.5 

Other (jerry 
cans, buckets, 

etc.) 
0 

 
1 

 
0 0 10 38.5 

 

Microbial analyses were done on the water samples taken from the three 

countries. In Trinidad and Tobago and Guyana, field analysis of fecal coliform 

and total coliform were conducted using the membrane filtration method and 

incubation within the portable incubator (Thermotote medium, Scientific Device 

Laboratory, Des Plaines, IL) for 44.5 ± 0.2°C for 24-26 hours. In Villa Litoral, 

microbial analysis was conducted using the Colilert-18 method (IDEXX 

Laboratories, Inc., Westbrook, ME) followed by incubation within the portable 

incubator for 35 ± 0.5°C for 18-22 hours.   
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6.2 Microbial Analyses 

WHO guidelines for microbial measurements state that drinking water should be 

free of both fecal and total coliforms (WHO, 2006). Figure 6.1 shows total and 

fecal coliform present in homes within all three target communities.  In Siparia, 

4% of households tested positive for fecal coliform while 25% tested positive for 

total coliform. All of the fecal positive samples came from water piped from the 

municipal distribution line, while 83% of samples testing positive for total coliform 

came from that source. 

 
Figure 6.1 Percentage of households with positive levels of microbial 
contamination within their household water sources, by community. 

Number of water samples tested: Siparia, Trinidad and Tobago (24); Region 
4 Subset, Guyana (40); Villa Litoral, Bolivia (26). 
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Of the 40 water samples taken in Region 4 Subset, close to 18% of the samples 

tested positive for fecal coliform and 45% tested positive for total coliform. Figure 

6.2 compares the source of the water samples that tested positive for fecal 

coliform. Of the seven water samples that tested positive for fecal coliform, 71% 

were derived from water piped from the main distribution system. Half of the 

eighteen water samples that tested positive for total coliform were derived from 

piped water sources, with the remainder derived from rain water sources (44%) 

and mixed rain water sources (6%).   

Figure 6.2 Presence of bacterial contamination within water samples by 
type of water source in Region 4 Subset, Guyana. Contamination was not 
detected in other sources of water used (n=2). Number of water samples 

tested: 40. 
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In terms of water storage, 89% of samples that tested positive for total coliform 

were from tank storage, whereas 100% of samples that tested for fecal coliform 

were from tank storage, as shown in Figure 6.3. None of the samples taken from 

the municipal pump station of Guyana Water Incorporated (GWI) in Mocha tested 

positive for either fecal or total coliform. This suggests that the contamination is 

taking place either along the distribution line or at the household point-of-use, as 

was mentioned in other studies (Clasen, 2003; Levy, 2008; Jagals, 2006; Luby, 

2006; Sobsey, 2008; Stauber, 2006).  

 

Figure 6.3 Presence of bacterial contamination by type of water storage 
device (black tank or water drum) in Region 4 Subset, Guyana. 

Contamination was not found in other sources of water storage used (n=1). 
Number of water samples tested: 40. 
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Of the twenty-six water samples taken In Villa Litoral, fecal coliform was found to 

be present in 85% of samples, while total coliform was present in 100% of the 

samples. In an effort to better understand the frequency of microbial 

contamination within the Villa Litoral community, the distribution of microbial 

contamination was analyzed in terms of the type of water source utilized and the 

means of water storage, as shown in Figures 6.4 and 6.5, respectively. Fifty-four 

percent and 42% of water samples that were derived from piped water tested for 

total coliform and fecal coliform, respectively. Thirty-eight percent of samples 

taken from water storage tanks tested positive for fecal coliform compared to 

samples taken from water drums (12%) and other storage containers such as 

jerry cans, buckets, and pots (27%). The same trend was observed for total 

coliform contamination, as the highest percentage of contamination was seen in 

water storage tanks (42%), other containers (38%), and water drums (12%). It 

appears that households with storage tanks had a higher risk for microbial 

contamination due to their relative larger size and difficulty in cleaning tank 

systems. 
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Figure 6.4 Presence of bacterial contamination by type of water source in 

Villa Litoral, Bolivia. Number of water samples tested: 26. 
 

 
Figure 6.5 Presence of bacterial contamination by type of water storage in 

Villa Litoral, Bolivia. Number of water samples tested: 26. 
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Unlike results from Siparia and Region 4 Subset, both fecal and total coliform 

were found at the head of the distribution line for the community’s water supply in 

Villa Litoral. The presence at the pre-distribution line is indicative that the issue 

that is being seen must be addressed prior to point-of-use. The presence of 

coliform in the water could be attributed to several factors, such as increased rain 

levels, unsanitary handling of water, inadequate disinfection both at the 

distributing plant and in the household (Agard, 2002; Tokajian, 2003; Moe, 1991; 

Semenza, 1998; Jagals, 2006). 

In Siparia and Region 4 Subset, the water distribution systems are more robust, 

as they provide for more residents and households than the one seen in Villa 

Litoral (Appendix D). At the WASA treatment plant and some of the GWI plants, 

chlorine disinfection is used to ensure a residual of 0.2 mg/L free chlorine in the 

effluent water, which is necessary to prevent microbial re-growth (LeChevallier, 

1996). Additional treatment of the water is also implemented, such as the use of 

lime and aeration. At the municipal water source in Villa Litoral, no disinfection is 

used, as the only means of treatment in the gravitation flow through the 

sediment. The lack of disinfection and advanced treatment play an important role 

in the frequency of microbial contamination seen in the water sources (Payment, 

1999; Gagnon, 2005; Jin, 1989; Pastre, 2002; Mahmud, 2007). Nevertheless, 

while the presence of total coliform is not always indicative, or a precursor to, 

infectious diseases, the significant distribution of the combination of E. coli and 

coliform in the water sources warrants the need for further research. With 
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regards to the total coliform levels, the coliform are common in the environment 

and do not necessarily indicate pathogenic or harmful contamination. However it 

does indicate that there is a breakdown in the distribution system.  

 

6.3 Basic Water Parameters 

Water quality parameters were measured for water samples from the 

communities. Table 6.2 summarizes the data findings of the parameters that 

were tested.  
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Table 6.2 Water quality parameters of household drinking water within 
communities in Trinidad and Tobago, Guyana, and Bolivia. Number of 

water samples tested: Siparia, Trinidad and Tobago (24); Region 4 Subset, 
Guyana (40); Villa Litoral (34).  

 

Siparia, Trinidad and 
Tobago 

n=24 

Region 4 Subset, 
Guyana 

n=40 

Villa Litoral, 
Bolivia 
n=26 

 
Min Max Mean Min Max 

Mea
n Min Max Mean 

pH 6.8 8.03 7.53 5.14 9.53 6.97 5.84 7.54 6.65 

Temperature 
(°C) 

25.09 31.09 27.84 27.17 41.79 30.8
3 

22.82 30.84 24.88 

Conductivity 
(mS/cm) 

0 0.681 0.46 0 0.608 0.20 0 1318 681.7
0 

DO (mg/L) 4.1 13.08 6.99 1.07 14.06 4.97 2.75 9.03 5.73 

Turbidity 
(NTU) 

0 21.4 2.48 10 26 13.6
3 

12.9 82.9 17.94 

TDS (mg/L) 0 400 260 0 400 120 0 990 480 

Total 
Coliform 

(#CFU/100m
L) 

0 86 8.57 0 54 2.35 2 960.6 89.65 

Fecal 
Coliform 

(#CFU/100m
L) 

0 5 0.21 0 144 9.70 0 675.1 53.46 

Pb (mg/L) 0.1 0.3 0.15 0 0.2 0.07 0 0.6 0.15 

Fe (mg/L) 0.05 1.48 0.59 0.08 2.13 0.68 0 3.62 0.94 

Cu (mg/L) 0.01 2.32 0.33 0.01 2.52 0.43 0 0.08 0.01 

P (mg/L) 0 2.3 0.63 0 3.42 0.41 0 2.3 0.39 

Al (mg/L) 0.02 0.25 0.13 0.03 0.36 0.19 0.01 0.27 0.11 

Cd (mg/L) 0.01 0.84 0.29 0.04 0.97 0.22 0 0.98 0.52 

 

In Region 4 Subset, Guyana, water samples were taken from Mocha, Mon 

Repos, and Georgetown. Georgetown includes the Georgetown municipality and 

suburban Georgetown. In the data analyses, the three areas are grouped 
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together as Region 4 Subset. Table 6.3 summarizes the data for the three areas 

sampled in Region 4 Subset. 

 

 Table 6.3 Water quality parameters of household drinking water within 
subgroups of Region 4 Subset, Guyana. 

 

Mocha  
n=14 

Mon Repos  
n=9 

Georgetown  
n=17 

 
Min Max Min Max Min Max 

pH 5.14 9.53 6.94 8.94 5.87 6.71 
Temperature 
(°C) 27.17 35.35 28.51 36.1 28.89 41.79 
Conductivity 
(mS/cm) 0 0.608 0.021 0.584 0.001 0.22 

DO (mg/L) 1.07 14.06 4.26 6.15 2.81 5.8 
Turbidity 
(NTU) 10.4 26.1 10.3 18.2 11.1 20.2 

TDS (mg/L) 0 0.4 0 0.4 0 0.1 
Total Coliform 
(#CFU/100mL) 0 2 0 54 0 3 
Fecal Coliform 
(#CFU/100mL) 0 144 0 8 0 46 

Pb (mg/L) 0 0.2 0 0.1 0 0.1 

Fe (mg/L) 0.08 1.62 0.48 1.02 0.13 2.13 

Cu (mg/L) 0.01 1.14 0.01 1.12 0.09 2.52 

P (mg/L) 0 0.18 0 0.02 0 3.42 

Al (mg/L) 0.03 0.28 0.03 0.31 0.12 0.36 

Cd (mg/L) 0.08 0.63 0.05 0.13 0.04 0.97 

Water Source 
Piped water (11), 
Rain water (7), 

Other (1) 

Piped water (6), Rain 
water (1), Mixed rain 

water (1) 

Piped water (7), 
Rain water (5), 

Other (1) 

 

Figure 6.6 shows the pH levels of the water sources.  WHO guidelines state that 

the recommended pH for drinking water range from 6.5 - 8 (WHO, 2008). While 

the water samples collected in Siparia had the greatest mean pH levels of the 

three communities (7.53), almost all of the water samples from Siparia met this 
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guideline. Preliminary research conducted in Siparia indicated that water 

hardness is prevalent among household water sources.  In order to address this, 

lime softening is used in the water treatment process at Trinidad and Tobago’s 

water distribution plant, WASA. Only 22.5% of water samples In Region 4 Subset 

and 46.2% of samples in Villa Litoral met this recommendation. Roughly 53% of 

water samples taken in Region 4 Subset had pH levels below 6.5 while 25% had 

pH levels above 8.0. In Villa Litoral, 53.8% of households had pH levels below 

6.5.  High acidity can lead to metal corrosion (Miller, 2004; Wyatt, 2008) while 

high alkalinity can lead to pipe scaling and taste problems. 

Figure 6.6 Box plot of pH levels of household water sources in the Latin 
American and Caribbean region. Number of samples: Siparia, Trinidad and 

Tobago (24), Region 4 Subset, Guyana (40), Villa Litoral, Bolivia (26). 
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As many of the water storage systems were situated under direct sunlight, it was 

important to record the temperature of the samples taken from these systems. 

Research shows that microbial growth increases above 15°C (Evison, 2001) 

which is lower than temperatures seen in all of the storage devices that were 

sampled between 8 am and noon for this research. Figure 6.7 shows the water 

temperatures recorded among samples from Siparia along with the ambient 

temperature in the community. The mean temperature recorded in the water 

storage devices was 27.84°C, about 2.1 degrees higher than the ambient 

temperature of 26.7°C reported by the local authority. Sixty-seven percent of 

water samples taken exceeded the ambient temperature, exceeding by up to 

3.25 degrees. Households surveyed in Siparia reported that water stored in the 

devices would last at least a week, thus allowing a longer residence time for 

potential microbial growth or for chemical contamination to occur. While only 4% 

of households tested positive for fecal coliform, it is possible for further 

contamination if proper maintenance is not taken.    
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Figure 6.7 Temperature (°C) of household water sources from Siparia, 
Trinidad and Tobago. Number of samples: 24. 

 

Figure 6.8 shows the temperature of water samples taken from Region 4 Subset. 

The mean temperature of the samples was 30.83°C, about 4.3 degrees higher 

than the ambient temperature of 26.8°C. All of the samples taken were above the 

ambient temperature, with temperatures exceeding by 0.37 - 15 degrees. While a 

significant correlation was not seen between the temperature of the water 

samples and the presence of fecal coliform, the increased temperatures are a 

potential factor for other contaminants not tested (e.g. Legionella spp., biofilm, 

organics) or during other temporal periods (e.g. rainy season). 
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Figure 6.8 Temperature (°C) of household water sources within Region 4 

Subset, Guyana. Number of samples: 40. 
 

Figure 6.9 shows the temperature of water samples taken from Villa Litoral. The 

mean temperature of the water samples was 24.88°C, 2.88 degrees higher than 

the ambient temperature of 22°C. All of the water samples taken had 

temperatures that surpassed the ambient temperature by 0.82 - 9.84 degrees. 

Temperatures recorded in Villa Litoral were much lower than those in Siparia and 

Region 4 Subset as this was the winter season in Bolivia. Higher temperatures 

were found among households with a tank compared to those where water was 

stored in smaller vessels such as buckets and jerry cans. While households with 

tanks had an equal percentage of fecal coliform contamination as those using 
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smaller vessels (Figure 6.5), there is an increased risk for microbial growth (e.g. 

biofilm) as a result of the increased temperature and dark environment presented 

within the containers (Evison, 2001; Tokajian, 2004).  

Figure 6.9 Temperature (°C) of household water sources within Villa Litoral, 
Bolivia. Number of samples: 26. 

 

In Chapter 5, a significant percentage of households surveyed in Villa Litoral 

reported the water sources as being salty, sometimes to the point of being 

undrinkable. Figure 6.10 shows a plot of the conductivity levels recorded from the 

water samples. In the figure, there is a clear increase in conductivity levels 

between the first set of samples and the second set of samples. The first set of 

samples was all households whose main source of water was rain water, while 
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the second set relied on piped water. While the conductivity levels of the rain 

water sources ranged from 0.001 - 0.239 mS/cm, the piped water sources had 

conductivity levels of 1286 – 1318 mS/cm. The total dissolved solids (TDS) data 

showed the same pattern, with levels among the rain water sources ranging from 

0 – 200 mg/L while piped water sources ranged from 800 – 900 mg/L. WHO 

states that TDS levels less than 600 mg/L are safe to drink, potable water 

becomes increasingly unpalatable once it reaches TDS levels of 1000 mg/L 

(WHO, 2008).  

Figure 6.10 Scatter plot of conductivity levels within household water 
sources in Villa Litoral, Bolivia. Plots 1-14 were derived from rain  water 
sources while 15-26 were derived from piped water sources. Number of 

samples: 26. 
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Figure 6.11 shows a comparison of turbidity levels found within the household 

water sources. While WHO guidelines have a recommended turbidity level of ≤5 

NTU, the minimum turbidity levels seen in Region 4 Subset and Villa Litoral were 

twice the guideline value  Residents in Siparia and Region 4 Subset largely 

reported water sources as being brown (Figure 5.12). High turbidity levels may 

be attributable to sediment buildup in the distribution pipes during periods of 

water intermittence and/or sediment levels present in the bottom of the water 

storage devices (Tokajian, 2003; Kotlarz, 2009; Colindres, 2007; Han, 2007). 

Additionally, high turbidity allows for the growth of microorganism while hindering 

chlorination and disinfection processes (Crump, 2004; Han, 2007; Kotlarz, 2009; 

LeChevallier, 1981; WHO, 2008). 
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Figure 6.11 Box plot of turbidity levels (NTU) within household water 
source in the Latin American and Caribbean region. Number of samples: 

Siparia, Trinidad and Tobago (24), Region 4 Subset, Guyana (40), Villa 
Litoral, Bolivia (26). 

 

6.4 Dissolved Chemicals and Metals 

In Section 4.6 of Chapter 4, the heavy metal concentration limits set by the World 

Health Organization (WHO), US Environmental Protection Agency (USEPA), and 

the European Union (EU) were addressed. Table 6.4 shows a comparison of the 

ranges of the dissolved metals found in the water samples from the different field 

sites as measured against those limits. High levels of lead, iron, aluminum, and 
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cadmium were found in each of the three communities. Guideline values have 

not been established for phosphorus. 

 

Table 6.4 Range of dissolved metals (as mg/L) present in household 
drinking water supplies within communities in Trinidad and Tobago, 
Guyana, and Bolivia. Standards from the World Health Organization 
Guideline Values (WHO GV), U.S. Environmental Protection Agency 

Maximum Contaminant Level (USEPA MCL), and the European Union 
Maximum Allowable Concentration (EU MAC) are shown. (UNICEF, 2008; 

Appendix A., Table A.1).  

  
Trinidad and 

Tobago 
Guyana Bolivia 

USEPA 
MCL 

WHO 
GV 

EU 
MAC 

Pb 
(mg/L) 

0.1 - 0.3 0 - 0.2 0 - 0.6 0.015 0.01 0.01 

Fe 
(mg/L) 

0.05 - 1.48 0.08 - 2.13 0 - 3.62 0.3 0.3 0.2 

Cu 
(mg/L) 

0.01 - 2.32 0.01 - 2.52 0 - 0.08 1.3 2 3 

Al 
(mg/L) 

0.02 - 0.25 0.03 - 0.36 0.01 - 0.27 0.05 – 0.2 0.1 - 0.2 0.2 

Cd 
(mg/L) 

0.01 - 0.84 0.04 - 0.97 0 - 0.98 0.005 0.003 0.005 

 

Elevated levels of lead have been known to cause adverse health effects, such 

as neurological defects, renal failure, and developmental delays. Lead levels 

were found in high concentrations among the three communities as shown in 

Figure 6.12. In Siparia and Villa Litoral, lead pipes were used to connect water 

sources to the home. In Guyana, while PVC pipes were used in many homes to 

connect the tanks to the interior of the home, some households stated that lead 

pipes were still being used in the homes.  
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In addition to water infrastructure, various other factors may attribute to the 

elevated lead levels. For example, in Trinidad and Tobago, leaded gasoline was 

only phased out in 2004.   

 
Figure 6.12 Scatter plot of lead concentrations within household water 

sources in the Latin American and Caribbean region. Number of samples: 
Siparia, Trinidad and Tobago (24), Region 4 Subset, Guyana (40), Villa 

Litoral, Bolivia (26).  
 

While the WHO guideline value for iron is 0.30 mg/L (WHO, 2008), the iron 

concentration values present in the three communities were sometimes 2-3 times 

higher than that level. In Villa Litoral, iron concentrations were as high as 3.62 

mg/L, twelve times the WHO guideline value. In many of the communities where 

water is connected, galvanized pipes are used to connect to the main distribution 

pump or used in faucets and indoor plumbing. As such, there is a risk for pipe 
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materials to leach out over time. While a strong correlation could not be made, 

higher concentrations of iron were seen in water samples with lower pH levels.    

Figure 6.13 shows a scatter plot of the iron concentrations from the different 

communities in addition to the WHO guideline value for iron.  With regards to iron 

levels in groundwater, WHO guidelines state that “the chemical aggressiveness 

of some groundwaters may affect the integrity of borehole casings and pumps, 

leading to unacceptably high levels of iron in the supply, eventual breakdown and 

expensive repair work. Both the quality and availability of drinking-water may be 

reduced and public health endangered” (WHO, 2008). 

 
Figure 6.13 Scatter plot of iron concentrations within household water 

sources in the Latin American and Caribbean region. Number of samples: 
Siparia, Trinidad and Tobago (24), Region 4 Subset, Guyana (40), Villa 

Litoral, Bolivia (26). 
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Figure 6.14 shows the comparison of copper concentrations present in water 

samples from the three communities. In Siparia and Region 4 Subset, where 

copper is used a bit more frequently, almost all of the water samples were below 

the WHO guideline value of 2 mg/L.   

 
Figure 6.14 Scatter plot of copper concentrations within household water 
sources in the Latin American and Caribbean region. Number of samples: 

Siparia, Trinidad and Tobago (24), Region 4 Subset, Guyana (40), Villa 
Litoral, Bolivia (26).  

 

Figure 6.15 shows comparisons of total phosphorus concentrations within the 

three communities.  While there are no established levels associated with 

phosphorus concentrations in drinking water, phosphorus levels are still 

important to measure as they are found in fertilizers and detergent agents and 
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subsequently in wastewater (USGS, 2009). Phosphorus concentrations were 

highest in Region 4 Subset, with levels reaching 3.42 mg/L. This may be 

attributable to fertilizer runoff or industrial uses. 

Figure 6.15 Scatter plot of phosphorus concentrations within household 
water sources in the Latin American and Caribbean region. Number of 

samples: Siparia, Trinidad and Tobago (24), Region 4 Subset, Guyana (40), 
Villa Litoral, Bolivia (26). 

 

Figure 6.16 shows the scatter plot of the aluminum concentrations along with the 

WHO guideline value for aluminum. The shaded region represents the range of 

the WHO recommended value, which is 0.1 – 0.2 mg/L (WHO, 2008). Aluminum 

values for each of the communities fell within as well as above the recommended 
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range. In Region 4 Subset, 40% of water samples had aluminum concentrations 

greater than 0.2 mg/L.  Sources of aluminum include alum coagulants from water 

treatment and trace levels in water sources. Alum is used at the treatment plant 

for municipal Georgetown and some suburban areas. 

Figure 6.16 Scatter plot of aluminum concentrations within household 
water sources in the Latin American and Caribbean region. Number of 

samples: Siparia, Trinidad and Tobago (24), Region 4 Subset, Guyana (40), 
Villa Litoral, Bolivia (26). Values in the shaded region are within the WHO 

guidelines values for aluminum.  
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Figure 6.17 shows the scatter plot along with the WHO guideline value. Given the 

Minimum Detection Limits of the instrument, it is difficult to determine how many 

samples exceed the cadmium MCL of 0.003 (WHO, 2008). Cadmium levels 

could be attributed to increased use and disposal of batteries containing 

cadmium along with the preparation of metal alloys (USGS, 2009).The highest 

concentrations were seen among samples from Villa Litoral. Bolivia has several 

mining operations for the recovery of zinc, of which cadmium is a by-product 

(USGS, 2009). Various studies have shown elevated cadmium levels as a result 

of mining ({Wyatt, 1998; Miller, 2004; Oporto, 2007).  
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Figure 6.17 Scatter plot of cadmium concentrations within household water 
sources in the Latin American and Caribbean region. Number of samples: 

Siparia, Trinidad and Tobago (24), Region 4 Subset, Guyana (40), Villa 
Litoral, Bolivia (26). Values in the shaded region are below the 0.025 mg/L 

detection limit of the method. 
 

Distribution of heavy metal concentrations exceeding WHO guideline levels were 

assessed by community, type of water storage device, water source. Figure 6.18 

shows the distribution of heavy metals by type of water storage in Siparia. Lead, 

iron, and cadmium concentrations were found to exceed WHO guideline values 

in water supplies stored in both the tanks and water drums.  Lead concentrations 

exceeded WHO guidelines in all of the samples tested, as was also shown in 

Figure 6.12. Iron and cadmium levels exceeded WHO guidelines in the water 

drums, but not in all of the tanks. High aluminum and copper were not seen in the 
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water drum, while less than 10% of the water samples from the tanks had 

exceeded values for both. As there was only one water drum, comparisons could 

not be made as to the significance of metal concentration by type of device. 

Figure 6.18 Distribution of samples exceeding WHO guideline values based 
on water storage device in Siparia, Trinidad and Tobago. Number of 

samples: 24. 
 

Figure 6.19 shows the distribution of heavy metal concentration exceeding WHO 

guideline values by water sources in Siparia. While exceeding levels of lead and 

iron were found in all of the water drum samples, exceeding iron levels were 

found in 68% of samples taken from piped water sources. Aluminum levels 

exceeding WHO guidelines in 50% of mixed rain water samples, compared to 

roughly 5% of the piped water samples. Zinc and aluminum are often used to 
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construct rooftops, which may end up leaching into rainwater sources as water is 

collected into the storage device.  

Figure 6.19 Distribution of samples exceeding WHO guideline values based 
on water source in Siparia, Trinidad and Tobago. Number of samples: 24. 

 

Region 4 Subset water samples with heavy metal concentrations exceeding the 

WHO guideline values are distributed by type of water storage device and shown 

in Figure 6.20.  Lead and cadmium concentrations exceeding the WHO guideline 

values were found in 61% and 86% of tank samples, respectively, while the two 

metals were found in exceeding levels in all of the water drum samples and other 

devices. Copper concentrations were found in excess of the WHO guideline 

values  in only the tank samples (2.8%).  
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Figure 6.20 Distribution of samples exceeding WHO guideline values based 
on water storage device in Region 4 Subset, Guyana. Number of samples: 

40. 
 

Figure 6.21 shows the exceeding metal concentrations by water source in 

Region 4 Subset. Rain water samples had the least percentage of metal 

concentrations exceeding guideline values with only 7.7% of samples each 

having exceeded guideline values for lead, iron, and cadmium. In piped water 

sources, which are the predominant source of household water in Region 4 

Subset, guideline values were exceeded among concentrations of lead (70.8%), 

aluminum (37.5%), and (91.7%). High levels of iron, aluminum, and cadmium 

was seen in the mixed rain water source. While piped water appears to have 
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greater proportion of metal concentrations exceeding WHO guideline values and 

rain water the lowest proportions, it cannot be determined whether having mixed 

rain water would produce safer water, as only one mixed water sample was 

taken. 

Figure 6.21 Distribution of samples exceeding WHO guideline values based 
on water source in Region 4 Subset, Guyana. Number of samples: 40. 

 

Figure 6.22 shows the concentrations found in Villa Litoral by type of water 

storage device. In terms of iron concentrations, over 80% of the samples taken 

from each of the types of devices exceeded WHO guidelines. Roughly 18% of 

tank samples had lead concentrations greater than the guideline values, while 

none of the aluminum concentrations were higher. Exceeding aluminum 

concentrations were only found in the water drum samples (33%). One can 
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conclude that the tank samples had the least percentage of exceeding heavy 

metal concentrations. This was different from the outcome in Siparia and Region 

4 Subset, partly because of near-exclusivity of tanks in those two other countries.  

 
Figure 6.22 Distribution of samples exceeding WHO guideline values levels 
based on water storage device in Villa Litoral, Bolivia. Number of samples: 

26. 
 

Villa Litoral samples with metal concentrations above the WHO guidelines based 

on water source are shown in Figure 6.23. Iron concentrations above the WHO 

guidelines were seen in over 80% of samples taken from each of the water 

sources. Of the three types of water sources, piped water sources had the 

greatest percentage of samples with exceeding concentrations of lead (42.9%), 

aluminum (7.1%), and cadmium (100%). Samples from rain and river sources all 
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had aluminum concentrations that met the WHO guideline values. Copper 

concentrations were below the WHO guideline values for all three types of water 

sources. 

Figure 6.23 Distribution of samples exceeding WHO guideline values based 
on water source in Villa Litoral, Bolivia. Number of samples: 26. 

 

6.5 Statistical Analyses 

To facilitate statistical analyses, the multivariate analyses of variance (MANOVA) 

with the general linear model (GLM) were used. There is a significant difference 

(p < 0.05) among the various field sites tested (Pillai’s Trace test). The significant 

variances seen among the field sites were in relation to 1) presence of fecal 

coliform (p < 0.001), 2) presence of total coliform (p = 0.014), 3) turbidity levels 

meeting WHO guidelines (p < 0.001), and 4) lead levels meeting WHO guidelines 
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(p < 0.001). No significant differences were seen among the field sites with 

regards to copper/iron levels meeting WHO guidelines. Given the relatively small 

number of samples, the Tukey Honestly Significant Difference (HSD) post hoc 

test was used to analyze differences seen in the water quality assessment 

results. 

For both fecal coliform and total coliform, there was a significant difference 

between results found in Villa Litoral versus those found in Siparia, Trinidad (p < 

0.001) and in Region 4 Subset, Guyana (p < 0.001). For turbidity, there was a 

significant difference between results found in Siparia, Trinidad versus those in 

Region 4 Subset, Guyana (p < 0.001) and Villa Litoral, Bolivia (p < 0.001). For 

lead concentrations meeting WHO guidelines, there was a significant difference 

between results found in Siparia, Trinidad and Region 4 Subset, Guyana and 

Villa Litoral, Bolivia (p < 0.001). The difference between results in Siparia and 

Region 4 Subset were found in Mon Repos community (p < 0.001) and in the 

Greater Georgetown community (p = 0.005). Significant differences were seen 

between lead concentrations results found in the three communities in the 

Region 4 Subset, Guyana. Lead concentrations results in the Mocha community 

differed from results found in Mon Repos (p < 0.001) and Greater Georgetown (p 

= 0.021) and Villa Litoral, Bolivia (p < 0.001). For water temperature, there was a 

significant difference between results found in Siparia, Trinidad and the other 

field sites. 
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Statistical analyses were done on the correlation between water source and 

water quality components.  For the presence of fecal coliform, no piped water, 

rain water, or mixed rain water sources.  With regards to turbidity levels meeting 

WHO guidelines, significant differences were seen between piped water and rain 

water (p < 0.001) and mixed rain water sources (p = 0.038). Rain water sources 

significantly differed from mixed rain water sources (p < 0.001). Lead levels 

meeting WHO guidelines significantly differed between piped water and rain 

water sources (p = 0.012). 

Statistical analyses were done looking at correlations between water storage 

devices and water quality components. In regards to fecal coliform, total coliform, 

and turbidity, a significant difference (p < 0.001) was seen between water 

samples taken from tanks versus small containers (buckets, pots, jerry cans, 

etc). No statistical difference was seen between water tanks and water drums.  

   

6.6 Research Limitations 

Due to the limitation of resources, traveling capabilities, and time constraints 

while visiting the target community sites, all sampling and surveying had to be 

conducted on a one time basis within a confined time period. As such, the 

amount of samples that could be taken was limited in order to ensure that there 

would be enough resources to conduct the necessary tests at the other sites. 

Additionally, the majority of the analyses were done in the field while abroad in 
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the various countries. In conducting the tests, it was necessary to set up a 

temporary makeshift lab. While the environment was not as sterile or as ideal as 

one would normally have it in the lab, these are the issues that must be taken 

into account and dealt with when conducting international field research.  Ideally, 

the goal would be to conduct a robust sampling program to gain a more 

statistically significant distribution of the populations being studied. Given all of 

this, it was more prudent to conduct the research and present the data as a 

collaboration of three pilot studies, which can be built upon in future studies.  

Chemical interferences could affect the results of the LaMotte test kits leading to 

either under or over estimations of actual concentrations of metals in solution. 

Some of the test kit detection limits are higher than the MCLs of metals like lead 

and cadmium. For example, the test kits used for lead show interference from 

calcium greater than 100 ppm (250 ppm CaCO3) and low concentrations of 

cerium, iron, manganese, magnesium, sulfur, tin, and EDTA. Access to more 

advanced analytical equipment would overcome this problem, but would likely 

not be accessible in many developing countries where this work is being 

undertaken. However, the data generated gives an estimated 

amount/concentration of the metals analyzed. 
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6.7 Summary 

Even while maintaining water sources in water storage devices, the potential for 

microbial and chemical contamination still exists. Microbial contamination was 

seen among households in Siparia, Region 4 Subset, and Villa Litoral. In each of 

the communities, tanks had the highest proportion of overall contamination 

among the different types of devices used. However, in terms of fecal coliform in 

Villa Litoral, contamination was highest in water drums, followed by tanks then 

other smaller portable containers. This may be a result of their large capacity and 

subsequent difficulties in maintenance. Water samples from Villa Litoral had the 

highest percentage of contamination, with 85% of all samples testing positive for 

fecal coliform and 100% for total coliform. While Siparia and Region 4 Subset 

have a more advanced and robust water distribution system, Villa Litoral’s 

system does not include any water treatment in addition to gravitation filtration. In 

Region 4 Subset, fecal coliform contamination was greater among piped water 

sources (71%), while total coliform contamination was greater among rain water 

sources (44%). In Villa Litoral 42% of piped water sources tested positive for 

fecal coliform. This difference could be to microbial contamination through leaks 

in underground pipes connected to the water distribution network. Turbidity levels 

were found to be high in each of the three communities, with minimum turbidity 

levels in Region 4 Subset and Villa Litoral being twice as high as the WHO 

guideline value. In Villa Litoral, piped water sources had TDS levels between 

800-900 mg/L, almost to the point of being unpalatable by WHO guidelines.  
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With the exception of copper, heavy metal concentrations often exceeded the 

WHO guidelines in the three countries. Copper concentrations stayed below 

WHO guideline levels for all of the field sites, except for 4% of the samples taken 

from piped water sources within tanks in Siparia. Overall, higher proportions of 

samples with over-the-limit metal concentrations were seen among samples 

taken from tank water and piped water samples. Villa Litoral had the least 

proportion of samples with over-the-limit concentrations. This could be due to 

interferences from dissolved salts which suppress the heavy metal 

concentrations or it could be due to the source water and geology of the area. 

In Chapter 5, survey results showed that households in Region 4 Subset cleaned 

their devices and disinfected their water much more frequently than those in 

Siparia or Villa Litoral. As such, one would expect the water quality analyses to 

reflect lower microbial contamination levels, turbidity, and heavy metal 

concentrations within Region 4 Subset. However, this was not the case. Lower 

microbial levels were seen in Siparia while lower over-the-limits metal 

concentrations were seen in Villa Litoral. This may be indicative of industrial 

activities, geological variations, water treatment and distribution differences, and 

overall need for increased disinfection dosage/residency in the storage systems.  
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CHAPTER 7: TARGET PLOTS TO INTEGRATE HOUSEHOLD AND WATER 

SAMPLING ASSESSMENTS 

 

7.1 Introduction 

A total of 25 component questions were selected for the 5 indicators previously 

selected. While different questions may have been chosen, the chosen 25 were 

considered adequate and capable for analyzing risks associated with household 

water storage and treatment.  Tables 7.1 and 7.2 summarize the indicators, 

component questions, responses, scoring, and risk rationale. 
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Table 7.1 Indicators i and ii and corresponding component questions for 
risk analyses. 

Indicators and Component 
Questions 

Responses Score Rationale 

i. Chemical and Biological Indicator  

1.Fecal Coliform Present 
Yes 2 Presence in water 

can cause adverse 
health 

No 1 

2.Total Coliform Present 
Yes 2 Indicative of 

potential microbial 
risks 

No 1 

3.Turbidity  
≤ 5  NTU 1 Affect disinfection 

processes  > 5 NTU 2 

4.Pb ≤ WHO Guideline Value 
Yes 1 Risk for adverse 

health No 2 

5. Cu, Fe ≤ WHO Guideline 
Value 

Yes 1 Risk for adverse 
health No 2 

6.Temperature ≤ Ambient 
Yes 1 Increased 

temperature 
promotes microbial 

No 2 

ii. Reach of Indicator  

1. How many persons are living 
in your household? 

≤3 1 Smaller household, 
less people affected >3 2 

2. How many children (under 18 
years)?   

≤3 1 More susceptible to 
health effects >3 2 

3. Drinking water kept within 
reach of young children?  

Yes 2 Risk of objects and 
hands in water 

supply 
No 1 

4. Is the water stored in the 
tank used for drinking water? 

Yes 2 Risk of adverse 
health if water is not 

safe 
No 1 

5. Do you boil or filter water 
prior to drinking? 

Yes 1 Kills  pathogens 
and reduces 

turbidity 
No 2 

6. Reliance on bottled water. 

Weekly or 
more 

1 Safer alternative for 
contaminated water 

Less than 
weekly 

2 

 

 



169 

 

Table 7.2 Indicators iii, iv,  v and corresponding component questions for 
risk analyses. 
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7.2 Target Plots and Analyses 

Once the indicators had been scored and an impact value established, target 

plots were then created for each of the three communities. Figure 7.1 

summarizes the target plot construction and indicators used. In an ideal setting 

where there is minimal to no risk in each of the indicator categories, the target 

plot would appear blank. As risk increases for each indicator, a shaded region 

will appear corresponding with the impact value. The shaded region will illustrate 

the impact value.  Table 7.3 shows the impact values of the environmental 

indicators. 

Figure 7.1 Target plot construction with indicators and corresponding 
component questions. 
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Table 7.3 Impact values of environmental health indicators. 
  Impact Values 

  Mocha Mon Repos Georgetown Total 

Indicator Category (# sub-indicators)         

Chemical & Biological (6) 1.7 1.7 1.7 1.7 

Reach of Risk (6) 1.4 1.4 1.3 1.4 

Storage Device (4) 1.3 1.4 1.4 1.3 

Female Involvement (3) 1.5 1.1 1.7 1.5 

Household Beliefs (6) 1.6 1.4 1.5 1.6 

 

Figure 7.2 shows the target plot for Mocha/Arcadia. The highest impact was seen 

in Indicator v (household belief indicator) where there was a value of 1.7 out of 2. 

Indicator i (chemical and biological indicator), had an impact value of 1.6, while 

indicator ii (reach of risk indicator) and iii (storage device indicator) each had an 

impact value of 1.5. The lowest impact was seen in indicator iv (female 

involvement indicator), with a value of 1.1. The lower the indicator value for 

category iv, the greater the influence of the female head of household over tank 

cleaning, filling and water collection activities. However, the higher impact values 

seen in indicator i and v indicate that the greater risk factors for environmental 

health issues associated with household water storage and treatment in Mocha 

are the poor water quality and household beliefs. In Mocha, heavy metal 

concentrations, microbial contamination, and other water parameters have 

exceeded WHO guideline values, thus affecting water quality. These issues are 

further exacerbated by household beliefs in which the water pressure is bad, 

there is little to no confidence in the security of the water or in storing it in the 

devices.  
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Figure 7.2 Target plot of risk indicators for the Mocha/Arcadia community 
in Guyana. 

 

Figure 7.3 shows the target plot for Mon Repos. Unlike the Mocha target plot, this 

target plot is skewed more to the top and to the right. The highest impact was 

seen in indicator i (chemical and biological indicator), where the impact value 

was 1.7. The other indicators all had low impact, with the lowest impact value 

being indicator iv (female involvement indicator) with an impact value of 1.1 The 

plot showed that water quality was the highest risk factor in the environmental 

health issues associated with household water storage and treatment in Mon 

Repos. 
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Figure 7.3 Target plot of risk indicators for the Mon Repos community in 
Guyana. 

 

Figure 7.4 shows the target plot for Georgetown community. Unlike previous 

plots, the plot area is skewed to the bottom left. The highest impact was seen in 

indicator i (chemical and biological indicator) and indicator v (female involvement 

indicator), where each had an impact value of 1.7. A moderate impact was seen 

in indicator v (household belief indicator), while low impact was seen in indicator 

ii (reach of risk indicator) and iii (storage device indicator). The plot shows that 

poor water quality and low female involvement in storage device responsibilities 
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were the highest risk factors for environmental health regarding household water 

storage and treatment in the area. 

Figure 7.4 Target plot of risk indicators for the Georgetown community in 
Guyana. 

 

In Figure 7.5, the three target plots are compared and overlaid to see the overall 

risk for the Guyana field site. The highest impact is seen in indicator i (chemical 

and biological indicator) with a value of 1.7, followed by indicator v (household 

belief indicator) with an indicator of 1.6. Moderate impact was seen in indicator iv 

(female involvement indicator), while low impact was seen in the remaining 

indicators. This plot shows that water quality and household beliefs are the 
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biggest risk to environmental health regarding household water storage and 

treatment within the overall Guyana field site. 

Figure 7.5 Target plot of risk indicators for the entire field site in Guyana. 
 

Figure 7.6 shows the target plot for Siparia. The target plot is skewed more to the 

left. The highest impact was seen in indicator i (chemical and biological 

indicator), where the impact value was 1.8, followed by female involvement 

indicator with an impact value of 1.6. The reach of risk indicator, indicator ii, had 

a moderate impact, while low impact levels were seen among the remaining 

indicators. The plot showed that water quality was the highest risk factor in the 
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environmental health issues associated with household water storage and 

treatment in Siparia, followed by reduced female involvement, and reach of risk. 

Figure 7.6 Target plot of risk indicators for Siparia, Trinidad and Tobago.  
 

Figure 7.7 shows the target plot for Villa Litoral. The target plot covers a large 

area than the plots constructed for the other sites.  The highest impact was seen 

in indicator i (chemical and biological indicator), where the impact value was 1.9.  

The reach of risk, female involvement, and household belief indicators each had 

an impact value of 1.6. The storage device indicator, indicator iii, had the lowest 

impact, with a value of 1.3. The plot showed that while water quality was the 
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highest risk factor in the environmental health issues associated with household 

water storage and treatment in Villa Litoral, all of the other indicators were also 

high risk factors, save for storage device. This is indicative of how the water 

quality is influenced by household behaviors & practices and vice-versa. 

Figure 7.7 Target plot of risk indicators for Villa Litoral, Bolivia. 
 

7.3 Summary 

Target plotting provides a means for visual comparisons of risk indicators that 

can impact environmental health with regards to household water storage and 

treatment. In the case of the Guyana field site, the greatest risk factor seen for all 
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three sub-groups and the field site as a whole was poor water quality, followed by 

household beliefs. Variations were seen in the impact values for the three sub-

groups particularly regarding female involvement and household beliefs. While 

female heads of households in Mon Repos were heavily involved in the storage 

device responsibilities, there was less involvement among households in Greater 

Georgetown. It was also seen that households in Mon Repos knew more about 

water-related issues than households in Mocha and Greater Georgetown. These 

observations may not have been captured otherwise. 

  

Table 7.4 Comparison of risks levels for field sites in Guyana, Trinidad and 
Tobago, and Bolivia.  

  
  

Impact Values 

Indicat
or Indicator Name 

Region 4 
Subset, 
Guyana 

Siparia, 
Trinidad and 

Tobago 

Villa 
Litoral, 
Bolivia 

i 
Chemical & Biological 

Indicator 
1.7 1.8 1.9 

ii Reach of Risk Indicator 1.4 1.5 1.6 

iii Storage Device Indicator 1.3 1.3 1.3 

iv 
Female Involvement 

Indicator 
1.5 1.6 1.6 

v Household Belief Indicator 1.6 1.4 1.6 

 

Table 7.4 compares risk levels for the three field sites. Poor water quality was the 

highest risk factor for each of the three field sites. This was evident by the high 

microbial contamination, heavy metal concentrations, and turbidity levels. Female 

involvement in the responsibilities of the household water devices is seen as a 

moderate to high risk factor. In many households, the female head of the 
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household was responsible for collecting water from the water storage device, 

while the cleaning and filling responsibilities were left to the male head of the 

house or other household member. This may be due to the cultural norms or 

practical reasons stemming from the size and capacity of the water storage 

device. This becomes a risk issue when the female head is unaware of what 

hygienic practices were used during the cleaning and filling and thus uses the 

water for household purposes, not knowing that the water source may have been 

further contaminated. As the traditional homemaker and primary caregiver for the 

household, if the female head is not involved in the water responsibility, there is 

potential risk for the rest of the household to be exposed to contaminated water 

sources and subsequent illnesses. In Chapter 2, it was stated that one of the 

main risks associated with the use of jerry cans and other small containers is that 

they are not exclusively used for water storage but may be used for multiple 

purposes. As such, it is all the more important that there is assurance that the 

container was properly cleaned and/or disinfected. 

 Within all three communities, the storage device indicator had the lowest impact 

value and was the lowest risk factor. This was attributed to the fact that the water 

storage devices all had a sturdy covering and most of the storage devices were 

relatively new, being under 3 years. Nevertheless, other indicators such as 

cleaning frequencies and storage capacity still proved to be of concern. 
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Figure 7.8 Target plot for Siparia, Trinidad and Tobago; Region 4 Subset, 
Guyana; and Villa Litoral, Bolivia. 

 

Among the field sites, variations were seen with regards to the impact levels and 

subsequent risk factors of the remaining indicators, as shown in Figure 7.8. While 

household beliefs were seen as a great risk in field sites in Guyana and Bolivia, 

this was not the case in Siparia, Trinidad and Tobago. Of the three communities, 

Siparia had the least amount of microbial contamination and reported waterborne 

illnesses. Additionally, the community had the highest proportions of households 

reporting a moderate to high confidence in the safety of the water sources and 

the security of the water storage device. The reach of risk indicator was a 
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moderate to high risk factor in Siparia and Villa Litoral, while being a low risk 

factor in the Guyana field site. Among the Guyana households surveyed, larger 

proportions did not drink the stored water but relied on bottled water. Additionally, 

the majority of households kept water sources outside of the reach of children. 

While using different indicators may provide insight to other indicators, the target 

plots that were constructed showed that there was a linkage between water 

quality and community perception and health in the three field sites. While other 

indicators may have had lower impact levels, none had a score of 1. Thus, these 

other indicators are still of concern with regards to environmental health. 

Intervention strategies can thus be made according to the indicators where the 

impact levels were the greatest and risks the highest. 
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CHAPTER 8: CONCLUSION 

 

8.1 Summary of Findings 

In Chapter 1, several research questions were established prior to the 

commencement of this research. These research questions were: 

1) Will potable water quality vary due to the source of water, type of 

household water storage device used, and community?  

2) Will household activities (cleaning of tanks, covering of tanks, treatment of 

water) improve the water quality of water reaching the household tap?  

3) Does a simple approach exists that will capture and present how 

household understanding of water quality, household practices, gender 

roles, and household location influence vulnerability to waterborne/water-

based/water-related illnesses?  

The first research question was addressed in that water quality variations were 

seen among the various household devices and sources of water. Even while 

maintaining water sources in water storage devices, the potential for microbial 

and chemical contamination still exists. Microbial contamination was seen among 

households in Siparia, Region 4 Subset, and Villa Litoral. In each of the 
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communities, tanks had the highest proportion of overall contamination among 

the different types of devices used. Water samples from Villa Litoral had the 

highest percentage of contamination, with 85% of all samples testing positive for 

fecal coliform and 100% for total coliform. In Region 4 Subset, fecal coliform 

contamination was greater among piped water sources (71%), while total 

coliform contamination was greater among rain water sources (44%). In Villa 

Litoral 42% of piped water sources tested positive for fecal coliform. Turbidity 

levels were found to be high in each of the three communities, with minimum 

turbidity levels in Region 4 Subset and Villa Litoral being twice as high as the 

WHO guideline value of 5 NTU. In Villa Litoral, piped water sources had TDS 

levels between 800-900 mg/L, almost to the point of being unpalatable by WHO 

guidelines.  

High heavy metal concentrations were seen among the three communities, often 

exceeding the WHO guidelines. Overall, higher proportions of samples with over-

the-limit metal concentrations were seen among samples taken from tank 

devices and piped water sources.  Villa Litoral had the least proportion of 

samples with over-the-limit concentrations.  

The second research question, which asked whether household activities 

improve water supply, was also addressed. While water storage devices do 

provide additional and constant water supplies, it was evident that water quality 

can be compromised without adequate device maintenance and water treatment 
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at the point of use. As most households have multiple water storage devices- 

several of which may have a capacity over 400 gallons-, it becomes exceedingly 

difficult to clean these storage devices. The problem of infrequent cleanings is 

compounded with inadequate water disinfection. In Siparia and Region 4 Subset, 

household water disinfection is practiced, but the chlorine dosage and mixing 

time are inadequate to provide optimal disinfection. While many households had 

connections to the main, water access was often limited to half a day or a few 

hours a day. Even though residents paid to receive piped water, issues with 

water aesthetics, taste, and pressure forced many households to purchase 

bottled water as an alternative drinking water source, as was the case in Siparia 

and Region 4 Subset.  

In Chapter 5, survey results showed that households in Region 4 Subset cleaned 

their devices and disinfected their water much more frequently than those in 

Siparia or Villa Litoral. As such, one would expect the water quality analyses to 

reflect lower microbial contamination levels, turbidity, and heavy metal 

concentrations within Region 4 Subset. However, this was not the case. Lower 

microbial levels were seen in Siparia while lower over-the-limits metal 

concentrations were seen in Villa Litoral. This may be indicative that good 

household storage and treatment practices can still be thwarted by external 

factors such as industrial activities, geological variations, water treatment and 

distribution differences, and overall need for increased disinfection 

dosage/residency in water sources. 
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The third research question was answered in that an approach does exist that 

could capture how household beliefs, practices, and gender roles influence 

vulnerability to waterborne illnesses. This hypothesis was proven true. In Chapter 

7, five indicators were developed while 25 component questions were taken from 

the household survey and water quality assessments. The indicators developed 

were physical and biological; risk of reach, storage device, female involvement, 

and household belief. Using responses and findings from the survey and water 

quality analyses, target plots were constructed to assess the associated risks 

with each of the indicators for each of the three filed sites. Poor water quality was 

the highest risk factor for each of the three field sites. This was evident by the 

microbial contamination, heavy metal concentrations, and other elevated water 

parameters that were discussed in Chapter 6.  

Lack of female involvement in the responsibilities of the household water devices 

was seen as a moderate to high risk factor. In many households, the female 

head of the household was responsible for collecting water from the water 

storage device, while the cleaning and filling responsibilities were left to the male 

head of the house or other household member. However, as the primary 

homemaker and caregiver in the house, the less involved the female head is in 

the water responsibilities, the greater the potential for increased reach of risk and 

exposure to the entire household.  
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High risks were associated with household beliefs in Region 4 Subset and Villa 

Litoral, as opposed to Siparia. Although relatively lower proportions of 

households surveyed in Siparia reported regular handwashing or access to 

water-related media, households in Siparia reported higher confidence in water 

sources and storage devices and almost no cases of recent waterborne 

illnesses. In addition, Siparia water sources had the lease microbial 

contamination of the three field sites. Participants who felt confident in their water 

sources reported reasons such as adequate treatment at the municipal water 

plant/pump, regular household water treatment, no reported cases of waterborne 

illnesses or advisories, and perception that rainwater was free of contaminants.  

Reasons for lack of confidence included aesthetic aversion (color, smell, and 

taste), perceived risk, previous advisories, and distrust of the local governmental 

agency in charge of water provision.  

While other indicators may have had lower impact levels, none had a score of 1. 

Thus, these other indicators are still of concern with regards to environmental 

health. Intervention strategies can thus be made according to the indicators 

where the impact levels were the greatest and risks the highest. 

As a result of household practices and water distribution issues, many 

households have experienced water-related illnesses with varying symptoms. In 

Siparia, only one household reported having a recent water-related illness, in 

which case the individual experienced headaches following consumption of the 
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water. In contrast, 15 % of households in Region 4 Subset, Guyana and 40.4% of 

households in Villa Litoral reported recent illnesses. Among those households 

reporting illnesses, the most common symptom was diarrhea among households 

in Region 4 Subset (50%) and Villa Litoral (32%). Other symptoms reported 

included stomach pains/cramps, skin rash, fever, nausea, and loss of appetite. In 

spite of the various symptoms presented, none of the individuals who had a 

waterborne illness in Siparia or Region 4 Subset had the illness medically 

diagnosed, while only half of those in Villa Litoral had the illness diagnosed.  

The prevalence of diarrheal episodes following consumption of water sources 

poses a great threat to the welfare and development of the communities. One of 

the most acute effects of diarrhea is dehydration due to the loss of electrolytes 

(sodium, chloride, potassium, and bicarbonate) and water. Fatality can occur 

when the body reaches a fluid loss of 10%. Even if fatality does not occur, 

dehydration can make one more susceptible to infections. This is of particular 

concern for those with children.  

It is thus necessary to build increased awareness on proper household water 

storage practices, particularly among those responsible for the collection of water 

sources and the cleaning of storage devices. While water advisories have been 

distributed in the communities, there is sometimes a misunderstanding as to 

whether the disinfection should take place in a separate, smaller container or in 

the storage device itself. As such, it is also important to provide accurate 
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information of chemical disinfection of household water sources as there are 

various device shapes and capacities present within the communities.  

 

8.2 Impact of Findings 

Formally documented and tested knowledge of the environmental engineering 

and public health issues associated with water resources in the Caribbean are 

severely sparse. It is the aim that the research conducted would be of benefit to 

the residents of Trinidad and Tobago, Guyana, and Bolivia, along with those 

living in areas with limited access to clean, potable water. Thus, it was imperative 

to provide a community technical report to each of the respective communities 

detailing the findings of the study (Appendix F). In doing so, the communities 

would then be able to share the findings with the residents, along with use it for 

the procurement of funding to further address the environmental needs and 

issues present. Health and environmental issues related to poor water 

infrastructures are problems that the residents deal with everyday   

In addition, this research will provide the basis for further research in the areas of 

environmental science, engineering, public health, and epidemiology. Further 

engineering research can take place in which various types of water treatment 

methods and models can be assessed in order to determine relevancy and 

whether it will be appropriate for use in the Caribbean. Upon deciding on models 

that promote best available technology, research can be done to evaluate its 
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efficiency and benefit to the communities and perhaps change to the next best-

available technology that is practical for Guyana.  

Engineering research can also look at ways to improve or reconstruct the 

outdated water infrastructures that are currently in place (Semenza, 1998; 

LeChevallier, 2003). Epidemiological studies can take place in which individuals 

who reside and utilize the water can participate in cohort and case studies in 

which researchers screen and monitor their lifestyles, health, and activities both 

past, present and future to determine the health risks associated with the 

contaminants in the water and to assess if the overall public health improved as a 

result of the new technologies that are put in place (Checkley, 2004; Strauss, 

2001; Tornheim, 2009; Brown, 2008; VanDerslice, 1994). Overall the goal is to 

improve water quality, water infrastructures, and public health awareness so as 

to ensure the environmental health of the community and provide better insight 

on their needs.  

 

8.3 Recommendations 

Several recommendations can be made in an effort to improve efforts taken to 

achieve MDG-7 and improve water access and water quality. More interventions 

are needed that are gender sensitive with regards to environmental issues along 

with water and sanitation. It is often the women who are in charge of the cooking, 

household care, and water storage and retrieval. As such, many household 
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environmental health issues can be mitigated by training women in proper 

storage and handling of water, ways to decrease indoor air pollution during 

cooking, and other sustainable measures (Elmendorf, 1982). While several 

campaigns are currently in place to combat malaria and dengue in the region, 

collaborations can be made with those campaigns where proper water storage 

techniques can be incorporated.  

Additional education initiatives can play an important role in ensuring 

environmental sustainability. Doria (2010) reports that education implementation 

provides the opportunity for awareness and improved communication with 

experts.  Doria goes on to state that water perception is developed at an early 

age, it is thus necessary to begin implementing water education from the start of 

formal education. Water and sanitation issues along with sustainability topics can 

be implemented into the education system. Lessons can be made to fit into the 

current science, civic and/or health curriculum. As students are taught about 

these issues and measures, they can share their new knowledge with friends and 

family, thus providing an effective measure of information distribution. In many 

parts of the region, particularly in the rural area, literacy may be an issue. As 

such, brochures and written documents may not be as effective. One source of 

intervention is the usage of Performance Theater. These interventions involve 

informative performances that incorporate culture and entertainment with an 

underlying message. Performance allows for interaction between the performers 

and community members in a less formal atmosphere. In tying with an underlying 
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theme of environmental sustainability or water/sanitation, the audience is able to 

receive the message while the performers are able to modify the performances to 

better fit the culture and age level of the audience (Conquergood, 1988). Various 

sustainability initiatives can be taken at the governmental level. These include 1) 

transference of expenditures to water resources and the health sector, 2) better 

waste management practices, 3) use of local and natural resources for water 

treatment and energy generation, and 4) international collaboration and 

cooperation.  

The disparities seen within the Latin American and Caribbean region are much 

more pronounced than those seen in other regions, and as such the targets are 

too general. Additionally, meeting the MDG targets in both the urban and rural 

areas prove to be quite daunting as a result of the disparities and lack of 

representation in data collection. In many areas of the region, there is a lack of 

formally documented data and information regarding to environmental issues. In 

addition, there are reporting discrepancies in many of the reported data. This is 

due to variations in reporting units, descriptions, and other limitations. With 

regards to water and sanitation, while many more individuals have access to 

improved water sources, these sources may not always provide improved water 

quality. This is seen in areas where there are 1) breaches in the distribution 

system, 2) contamination occurring at the household level as a result of improper 

water storage and handling, or 3) proximity of sanitation facilities to drinking 

water sources. 
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Appendix A. Water Quality Limits and Standards 

 

Table A.1 Water quality limits for chemicals. (UNICEF, 2008). 
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Appendix B. Global Drinking Water and Sanitation Coverage 

 

Table B.1 Drinking water and sanitation by means of supply. (UN, 2008) 
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Appendix C. Household Survey Tools 
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Appendix C. (Continued) 
 
 
 
 
 
 

Environmental Health in the Caribbean: Water Storage & Water Quality 
Community Survey Questionnaire 

 
Personal Information 

1. What is your gender?   
a. Male  
b. Female  

2. What is your age range? 
a. 18-35 
b. 36-50 
c. 50-65 
d. Over 65 

3. How many persons are living in your household? 
a. 1-3 
b. 4-7 
c. More than 8  

4. How many adults (aged 18 and above)?  
a. 1-3 
b. 4-7 
c. More than 8  

5. How many children (under 18 years)?  
a. 1-3 
b. 4-7 
c. More than 8  

6. What is the age range of children? 
a. Under 5 years 
b. 5-10 years 
c. 11-15 years 
d. 15- 18 years  

Survey Number: 
City, Country: 
Date: 
Date: 
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Appendix C. (Continued) 
 
 
 
 

About Water Storage Tank 
7. What is the color of your tank?  

a. Black 
b. Green 
c. Blue 
d. White 
e. Brown 
f. Other _____________________________ 

8. What material is your tank made of? 
a. Plastic 
b. Metal (aluminum, tin) 
c. Ceramic 
d. Other __________________________ 

9. Do you have a reservoir (black tank, drum, etc.) to store the receiving water 
(from pipe or rainfall)? 

a. Yes 
b. No  

10. What is the age of the tank? 
a. 0-3 years 
b. 4-10 years 
c. 11-15 years 
d. 16-20 years 
e. Older than 20 years 

11. What is the tank capacity of your unit in gallons? 
______________________ 

12. Where is the water tank located? 
a. On top of an embankment 
b. On the ground 
c. Other _____________________ 

13. Is there a cover on your drinking water storage container? 
a. Yes 
b. No 

14. If yes, what do you cover it with? ______________________ 
15. Is the water stored in the tank used for drinking water? 

a. Yes 
b. No 
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Appendix C. (Continued) 
 
 
 
 

16. Is the water stored in the tank boiled prior to drinking? 
a. Yes 
b. No 

17. Is the water stored in the tank filtered prior to drinking? 
a. Yes 
b. No 

18. If yes to #17, what filtering methods or materials do you 
use?__________________ 

19. How frequently do you and your household utilize bottled water? 
a. Daily 
b. Weekly 
c. Rarely 
d. Not at all 

20. What is the source of the water used to fill the storage tank? 
a. Municipal water from pipe 
b. Surface water carried by individual to storage tank 
c. Rainwater 
d. Other __________________________ 

21. Was water within the storage tank topped within two weeks prior to sample 
collection? 

a. Yes 
b. No 

22. Is the water storage tank disinfected? 
a. Yes 
b. No 

23. If yes to disinfection, how frequently is the tank disinfected? 
a. Daily 
b. Weekly 
c. Monthly 
d. Every few months 
e. Annually 
f. Rarely 

24. If yes to disinfection, when was the last time of disinfection? 
a. Within the last two weeks 
b. Within the last month 
c. Within the last six months 
d. Within the last year 
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Appendix C. (Continued) 
 
 
 
 

25. If yes to disinfection, how much bleach do you add to the container?  
a. 2 drops 
b. 1 teaspoon 
c. 1 tablespoon 
d. 1 cork-full  

26. After treating water with bleach, how long do you leave it to mix/dissolve 
before consuming? 

a. Less than 10 minutes 
b. 10 – 15 minutes 
c. 15 - 30 minutes 
d. Overnight 
e. Other____________________________  

27. Is the tank cleaned? 
a. Yes 
b. No 

28. If yes to cleaning, how frequently? 
a. Daily 
b. Weekly 
c. Monthly 
d. Every few months 
e. Annually 
f. Rarely 

29. If  yes to cleaning, when was the last time of cleaning 
a. Within the last two weeks 
b. Within the last month 
c. Within the last six months 
d. Within the last year 

 
Household Practice & Water Quality Beliefs 

30. How frequently do you have access to running pipe water? 
a. All day 
b. Half a day (only evenings or only daytime) 
c. A few hours a day 

31. Are you connected to the municipal water system? 
a. Yes 
b. No  
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32. f you are NOT connected to municipal water system, how far do you travel 
for water? 

a. Less than 0.5 mile 
b. 0.5-1 mile 
c. More than 1 mile 
d. Other ______________________ 

33. If you are NOT connected to municipal water system, where do you obtain 
water from? 

a. Neighbor pipe 
b. Canal 
c. Rainfall 
d. Other ___________________ 

34. If you are connected to municipal water system, how do you classify the 
supplied water? 

a. Brown 
b. Smelly 
c. Yellow 
d. Turbid 
e. Clear    

35. If you are connected to municipal water system, what is your water 
pressure like? 

a. Good 
b. Average 
c. Bad 

36. If you pay for any of the above sources of drinking water, how much do you 
pay? 

a. Less than $500 
b. $500-$1000 
c. More than $1000  

37. How long does this water last for drinking? 
a. 1 week 
b. 1-3 weeks 
c. More than 3 weeks  
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38. What container do you use to collect drinking water from the storage tank? 
a. Bucket 
b. Pot 
c. Bottle 
d. Other _______________________ 

39. Do you cover the container when transporting water? 
a. Yes 
b. No  
c. If yes, what do you cover it with? ___________________________ 

40. Do you keep drinking water within reach of young children? 
a. Yes 
b. No  

41. If yes, do they normally put hands or objects in the water? 
a. Yes 
b. No 
c. Sometimes 

42. Who is responsible for cleaning/disinfecting the water storage tank? 
a. Male head of house 
b. Female head of house 
c. Child 
d. Other__________________________ 

43. Who is responsible for filling the water storage tank? 
a. Male head of house 
b. Female head of house 
c. Child 
d. Other__________________________ 

44. Who is responsible for collecting water from the storage tank for use? 
a. Male head of house 
b. Female head of house 
c. Child 
d. Other__________________________ 

45. In the past year, have you seen or received any information (brochure, 
flyer, TV or radio announcement) about keeping your water safe or about 
handwashing? 

a. Yes 
b. No 
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46. Is handwashing always practiced prior to filling water storage tank or 
dispensing water from water storage tank?  

a. Yes 
b. No 
c. Sometimes 

47. How confident are you that the water stored in the tank is safe for drinking? 
a. Very confident 
b. Somewhat confident 
c. Not confident 

48. How confident are you that using a water storage tank will reduce your risk 
to water-related illnesses? 

a. Very confident 
b. Somewhat confident 
c. Not confident 

49. Have you recently experienced an illness resulting from drinking the water 
in your storage container? 

a. Yes 
b. No 

50. If yes to the illness, was it medically diagnosed? 
a. Yes 
b. No 

51. If yes to the illness, what symptoms did you have? 
a. Diarrhea b. Stomach pains/cramps         c. Fever  
d. Nausea e. Skin rash/infection        f. Loss of appetite 
g. Other_______________________ 
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Appendix C. (Continued) 
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Appendix C. (Continued) 
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Appendix C. (Continued) 
 
 
 
 
 
 

Salud Ambiental en El Caribe: Almacenamiento de Agua y Calidad de Agua 
Encuesta Comunitaria  

 
Información Personal 
1. Cuales su genero?   

a. Masculino 
b. Femenino 

2. Cual es su edad? 
a. 18-35 
b. 36-50 
c. 50-65 
d. Mayor que 65 

3. Cuantas personas viven en su vivienda? 
a. 1-3 
b. 4-7 
c. Mas que 8  

4. Cuantos mayores de edad (18 o mayor)? 
a. 1-3 
b. 4-7 
c. Mas que 8  

5. Cuantos menores de edad (menor que 18 años) viven en casa? 
a. 1-3 
b. 4-7 
c. Mas que 8  

6. Cual es el rango de las edades de los niños? 
a. Menor que 5 años 
b. 5-10 años 
c. 11-15 años 
d. 15- 18 años  

No de Encuesta: 
Ciudad, País: 
Fecha: 
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Sobre El Tanque/Envase de Almacenamiento de Agua 
7. Cual es el color del tanque/envase? 

a. Negro 
b. Verde 
c. Azul 
d. Blanco 
e. Marrón 
f. Otro color:______________________ 

8. De que material esta hecho el tanque/el envase? 
a. Plástico 
b. Metal (aluminio, hierro) 
c. Ceramico 
d. Metal con capa de concreto  
e. Otro_________________________ 

9. Tiene un contenedor (tanque, tinaco, etcétera) para almacenar el agua 
recibida (de tubería o la lluvia)? 

a. Si 
b. No     

10. Cuantos años tiene el tanque en este función? 
a. 0-3 años 
b. 4-10 años 
c. 11-15 años 
d. 16-20 años 
e. Mas que 20 años 

11. Que es la capacidad del tanque en galones? ______________________ 
12. Donde esta ubicado el tanque? 

a. En sima de una barraquilla 
b. En el piso 
c. Otro lugar _____________________ 

13. Usan una tapa para el envase/tanque? 
a. Si 
b. No 

14. Con que lo tapan? ______________________ 
15. Beben el agua del tanque? 

a. Si 
b. No 
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16. El agua del tanque esta hervida antes de bebérsela?  
a. Si 
b. No 

17. El agua del tanque esta filtrada antes de bebérsela? 
a. Si 
b. No 

18. Si respondió afirmativo a #17, cuales la metodología de filtrar el agua o 
cuales materiales usa?________________________ 

19. Con que frecuencia usan Usted y los de mas en su casa, agua 
embotellada?   

a. Diario 
b. Semanalmente 
c. Infrecuentemente 
d. Nunca 

20. Cual es el fuente de agua usada en el tanque? 
a. De una red de tubería 
b. Agua superficial traída por individuos al tanque. 
c. De Lluvia 
d. Malacate/Bomba  
e. Otro __________________________ 

21. El tanque ha sido tapado en las dos ultimas semanas antes de colectar la 
muestra?  

a. Si 
b. No 

22. Desinfectan el tanque? 
a. Si 
b. No 

23. Si lo desinfectan, con que frecuencia? 
a. Diariamente 
b. Semanalmente 
c. Mensualmente 
d. Cada dos meses 
e. Anualmente 
f. Infrecuente 
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24. Si lo desinfectan, cuando fue la ultima vez que lo desinfectaron el tanque? 
a. Entre las dos ultimas semanas 
b. Entre el ultimo mes 
c. Entre los últimos 6 meses 
d. Entre el ultimo año 

25. Si los desinfectan, que cantidad de cloro echan al contenedor? 
a. 2 gotas 
b. 1 cucharita 
c. 1 cuchara 
d. 1 tapita llena    

26. Desprez de tratar con cloro cuanto tiempo lo dejan mezclar o disolver antes 
de consumir? 

a. Menos que 10 minutos 
b. 10 – 15 minutos 
c. 15 - 30 minutos 
d. Que pasa la noche 
e. Otro___________________________  

27. Limpian el tanque? 
a. Si 
b. No 

28. Si lo limpian, con que frecuencia? 
a. Diariamente 
b. Semanalmente 
c. Mensualmente 
d. Cada dos meses 
e. Anualmente 
f. Infrecuente 

29. Si lo limpian, cuando fue la ultima vez  
a. Entre la ultimas dos semanas 
b. Entre el ultimo mes 
c. Entre los últimos 6 meses 
d. Entre el ultimo año 
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Comportamiento Casero y Creencia de Calidad de Agua  
30. Con que frecuencia tiene acceso a agua de tubería/red de distribución? 

a. Toda el día 
b. La mitad del día (solo en la tarde o solo durante del día) 
c. Algunas horas del día 

31. Están conectados al sistema de agua de la municipalidad? 
a. Si 
b. No  

32. Si NO están conectados al sistema, que distancia caminan para buscar el 
agua. 

a. Menos que media milla  
b. 0.5-1 milla 
c. Mas que 1 milla 
d. Otra distancia___________ 

33. Si NO están conectados al sistema, de donde obtienen su agua? 
a. Tubería del vecino 
b. Canal 
c. Lluvia 
d. Otro fuente___________ 

34. Si están conectados al sistema municipal, como clasificaría el agua dotada? 
a. Sucia 
b. Hedionda 
c. Amarilla 
d. Turbia 
e. Clara 

35. Si están conectados al sistema municipal, cual es la presión en su 
conexión? 

a. Buena 
b. Regular 
c. Mala 

36. Si pagan para el servicio de agua potable, cuanto pagan? 
a. Menos que 7Bs 
b. 7Bs-10Bs 
c. Mas que 10Bs 
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37. Cuanto tiempo dura el agua? 
a. 1 semana 
b. 1-3 semana 
c. Mas que 3 semanas 

38. Cual contenedor usan para recoger el agua de beber del tanque? 
a. Un balde 
b. Hoyo 
c. Botella 
d. Otro ___________________ 

39. Cuando transportan el agua lo tapan? 
a. Si 
b. No  
c. Si lo tapan, que es lo que usan?_________________________ 

40. El agua es almacenada dentro del alcance de niños? 
a. Si 
b. No  

41. Si es, ellos normalmente ponen sus manos o objetos en el agua? 
a. Si 
b. No 
c. A veces 

42. Quien es responsable para la limpieza y desinfección del tanque? 
a. Hombre cabeza de la casa 
b. Mujer cabeza de la casa 
c. Nino 
d. Otro________________________ 

43. Quien es responsable para llenar el tanque con agua? 
a. Hombre cabeza de la casa 
b. Mujer cabeza de la casa 
c. Nino 
d. Otro________________________ 

44. Quien es responsable para recoger el agua del tanque?  
a. Hombre cabeza de la casa 
b. Mujer cabeza de la casa 
c. Nino 
d. Otro________________________ 
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45. En el ultimo año, ha visto o recibo alguna información (folleto, volante, 
anuncio de televisión o radio) sobre como proteger el agua o lavarse las 
manos?  

a. Si 
b. No 

46. Siempre lavan las manos antes de llenar el tanque con agua o dispensar 
agua del tanque?  

a. Si 
b. No 
c. A veces 

47. Que nivel de confianza tiene de que el agua almacenada es segura de 
beber?  

a. Mucho confianza 
b. Poco confianza 
c. No confianza 

48. Que nivel de confianza tiene que usando un tanque de almacenar su agua 
reducirá el riesgo de enfermedades relacionadas con el agua? 

a. Muy confianza 
b. Poco confianza 
c. No confianza 

49. Últimamente, ha tenido usted una enfermedad como resulto de beber agua 
del envase de almacenamiento? 

a. Si 
b. No 

50. Si ha tenido una enfermedad, la enfermedad fue diagnosticada por un 
medico? 

a. Si 
b. No 

51. Si ha tenido una enfermedad, cuales eran las síntomas que tuvo? 
a. Diarrea b. Dolor del estómago           c. Fiebre  
d. Nausea e. erupción/infección del la piel    f. Perdida de apetito 
g. Otra síntoma_______________________ 
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Appendix C. (Continued) 
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Appendix D. Field Observations 

 
 

 

 

 

 

 

 

Figure D.1 Community within Siparia, Trinidad and Tobago. 

Figure D.2 Household water storage tanks in Siparia, Trinidad and 
Tobago. 

Figure D.3 Household water storage drum in Siparia, Trinidad and 
Tobago. Left, exterior and right, interior. 
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Figure D.4 Pictures from Water and Sewerage Authority of Trinidad and 
Tobago (WASA), Penal Plant. 
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Appendix D. (Continued) 
 
 
 
 

Figure D.5 Infrastructures at the Water and Sewerage Authority of Trinidad 
and Tobago (WASA), Penal Plant. 
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Appendix D. (Continued) 
 
 
 
 

Figure D.6 Processes at the Water and Sewerage Authority of Trinidad and 
Tobago (WASA), Penal Plant. 
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Appendix D. (Continued) 
 
 
 
 

Figure D.7 Water storage devices and interior of water storage tank in 
Mocha-Arcadia Neighborhood Democratic Community, Guyana. 
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Appendix D. (Continued) 
 
 
 
 

 
Figure D.8 Pictures from a Guyana Water Inc (GWI) treatment plant in 

Georgetown, Guyana. 
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Appendix D. (Continued) 
 
 
 
 

 
Figure D.9 Residential homes and sources of water seen throughout 

Georgetown, Guyana. 
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Appendix D. (Continued) 
 

 
 
 

 
Figure D.10 Various water storage tank elevations seen in Georgetown, 

Guyana. 
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Appendix D. (Continued) 
 
 
 
 

 
Figure D.11 Typical water bill received from Guyana Water Inc in 

Georgetown, Guyana. 
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Figure D.13 Water sources in Villa Litoral, Bolivia. Left, dug well and right, 
stand pipe. 

Figure D.12 Entrance to Villa Litoral community, Bolivia. 
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 Figure D.14 Community pump and water source in Villa Litoral, Bolivia. 
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  Figure D.16 Elevated black water storage tanks in Villa Litoral, Bolivia. 

Figure D.15 Household cement water storage tanks in Villa Litoral, Bolivia.  
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Appendix D. (Continued) 
 
 
 
 

   

 

 

Figure D.17 Plastic water storage containers used in Villa Litoral, Bolivia. 

Figure D.18 The community of Villa Litoral, Bolivia. 
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Appendix D. (Continued) 
 
 
 
 

 

 

 

 

Figure D.19 Housing within Villa Litoral, Bolivia. 

Figure D.20 Community health center for Villa Litoral, Bolivia. 
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Appendix D. (Continued) 
 
 
 
 
 

 

  
 
 
 
 
 
 
 
 

Figure D.21 Public meeting regarding state of community water source and 
sanitation.      

 

 

 

 

 
Figure D.22 National campaign on preventing the spread of Dengue in Villa 

Litoral, Bolivia. 
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Appendix E. Box Plots for Heavy Metal Concentrations 

 
 
 
 

 
Figure E.1 Comparison of lead concentrations present in water sources 

within households in the Latin American and Caribbean region. Number of 
samples: Siparia, Trinidad and Tobago (24), Region 4 Subset, Guyana (40), 

Villa Litoral, Bolivia (26). 
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Appendix E. (Continued) 
 
 
 
 

 
Figure E.2 Comparison of iron concentrations present in water sources 

within households in the Latin American and Caribbean region. Number of 
samples: Siparia, Trinidad and Tobago (24), Region 4 Subset, Guyana (40), 

Villa Litoral, Bolivia (26). 
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Appendix E. (Continued) 
 
 
 
 

Figure E.3 Comparison of copper concentrations present in water sources 
within households in the Latin American and Caribbean region. Number of 
samples: Siparia, Trinidad and Tobago (24), Region 4 Subset, Guyana (40), 

Villa Litoral, Bolivia (26). 
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Appendix E. (Continued) 
 
 
 
 

 
Figure E.4 Comparison of phosphorus concentrations present in water 

sources within households in the Latin American and Caribbean region. 
Number of samples: Siparia, Trinidad and Tobago (24), Region 4 Subset, 

Guyana (40), Villa Litoral, Bolivia (26). 
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Appendix E. (Continued) 
 
 
 
 

 
Figure E.5 Comparison of aluminum concentrations present in water 

sources within households in the Latin American and Caribbean region. 
Number of samples: Siparia, Trinidad and Tobago (24), Region 4 Subset, 

Guyana (40), Villa Litoral, Bolivia (26). 
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Appendix E. (Continued) 
 
 
 
 

 

Figure E.6 Comparison of cadmium concentrations present in water 
sources within households in the Latin American and Caribbean region. 
Number of samples: Siparia, Trinidad and Tobago (24), Region 4 Subset, 

Guyana (40), Villa Litoral, Bolivia (26). 
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Appendix F. Technical Reports 

 
Figure F.1 Preliminary technical report for Trinidad and Tobago.  
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Appendix F. (Continued) 

 
Figure F.1 (Continued) 
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Appendix F. (Continued) 

 
Figure F.1 (Continued) 
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Appendix F. (Continued) 

 
Figure F.2 Preliminary technical report for Guyana.  
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Appendix F. (Continued) 

 
Figure F.2 (Continued) 
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Appendix F. (Continued) 

 
Figure F.3 Preliminary technical report for Bolivia. 
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Appendix F. (Continued) 

 
Figure F.3 (Continued) 
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Appendix F. (Continued) 

 
Figure F.3 (Continued) 
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