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ABSTRACT 
 
Digital image based automated pavement crack detection and classification technology 

has seen vast improvements in the recent years. In spite of these developments, although 

pavement crack lengths and widths can be evaluated using state-of-the-art software with a 

reasonable accuracy, no reported evidence is found in extending this technology to 

evaluate crack depths.  Hence a preliminary study was carried out to model the digital 

image formation of cracked concrete pavements based on the Bidirectional Reflection 

Distribution Function. It was revealed that a definitive theoretical relationship exists 

among the crack widths and depths and the maximum pixel intensity contrasts in the 

images of cracks. The above relationships fortified by appropriate calibration were 

verified using actual crack data not used in the calibration that can be useful in predicting 

crack depths. Secondly,  a number of innovative techniques in computer vision such as 

image characterization using quantification of optical texture properties of images and a 

number of widely used optical texture related techniques for characterization of digital 

images which have not been exploited adequately in pavement evaluation, were 

introduced highlighting their useful applications in pavement evaluation. One such 

application, the automated and accurate detection of correspondences in progressive 

images of the same pavement captured during different times, would be essential for 

close monitoring of cracks or wear at the project-level. Two reliable methods for 

determining correspondences among pavement images illustrated in this work are; (1) 

texture masking and minimum texture distance method applicable to locations with no 

 x



 

significant distress, and (2) homogeneous coordinates based geometrical matching and 

the maximum texture distance to detect the locations of distress and be applied to detect 

exact locations of crack propagation and excessive pavement wear. Thirdly, the BRDF 

based pavement image formation model revealed that quantifiable changes in the 

brightness of images occurs due to pavement wear-related changes in texture depth and 

spacing (wavelength). The traffic induced pavement wearing process was simulated by 

gradual smoothening of the modeled surfaces and then images corresponding to each 

wearing stage were generated. The theoretically predicted variation of the image 

brightness due to wear was experimentally verified using images from a gradually worn 

out concrete specimen. Finally it was illustrated how the brightness evaluation of wheel 

path images has the potential to be a screening tool to monitor the degradation of 

macrotexture and hence the skid-resistance of pavements at the network level. 

 

 

 

 xi



 

CHAPTER 1: INTRODUCTION 

Digital image-based automated pavement evaluation has been gradually replacing the 

manual pavement evaluation due to its improved efficiency and operational safety. 

Automated pavement evaluation implemented in real-time or post-processing of digital 

images of asphalt or concrete pavements has become a routine practice in many 

transportation agencies worldwide (Cheng et al., (1999), Huang and Xu (1996), Lee and 

Kim (2005), Wang (2007)). Typical evaluation vehicles include an exterior line-scan 

camera that captures grayscale images of the pavement and a computer mounted inside 

the vehicle for acquisition, storage and analysis of the captured images. The grayscale 

images are composed of individual pixels having intensity values in the range of 0 to 255, 

representing colors from black to white respectively. A lighting system attached to the 

rear bumper of the survey vehicle provides adequate illumination for acquisition of 

images irrespective of natural lighting. In more recently developed imaging vehicles, the 

lamp-based artificial illumination has been replaced by laser lights to overcome the issues 

of non-uniform illumination and shadows (National Optical Institute, 2008). 

 

When digital pavement images are processed, a pixel intensity contrast is observed at 

cracks with the intensities inside the crack being significantly lower compared to the 

outside, if the cracks are not filled with sand or clay. The consequent color contrast is 

exploited in automated state-of-the-art pavement evaluation software to identify cracks. 

Automated assessment of the extent and severity of cracks based on the respective  
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evaluation of crack lengths and widths, becomes a useful input to pavement condition 

evaluation. 

 

1.1 Research Objectives 

Assessment of crack depths would be useful in determining rehabilitation strategies and 

when it is required to identify milling depths for asphalt pavement resurfacing projects, 

since engineers depend on pavement core samples. Digital image-based evaluations reach 

well short of evaluation of depth of cracks. It is believed that if the image formation 

process is modeled using appropriate optics it would lead to the revelation of even more 

useful information such as shallow crack depths, from the digital images. It was unable to 

locate any published literature where attempts have been made to model the formation of 

digital images of cracked or jointed pavements using principles of optics. Theferefore, the 

first objective of this research is to model the image formation procedure to uncover the 

relationship between crack depths and the intensity contrast between cracks and 

uncracked pavement. 

  

The second research objective is based on the realization that although the application of 

optical texture differentiation techniques is scarce in pavement evaluation literature, the 

established optical texture analysis techniques may be used effectively in monitoring 

small-scale texture changes in pavement sections of interest. If a sequence of images is 

collected under the same scale and orientation, and the changes in texture between the 

images of the location of interest at two conditions are relatively low compared to the 

texture difference between the images of that location and non-corresponding locations, 

 2



 

then texture similarity measures can be used for correspondence of a sequence of images. 

If the sequence of images is collected under different resolutions, there is noticeable 

wander of the vehicle resulting in deviations in orientation, or the changes in texture 

exceed a threshold limit, then an alternative non-optical method; the method of 

homogeneous coordinates, can be used for correspondence.  

 

Presently the wet skid-resistance of localized areas of highway pavements is evaluated by 

the Locked-wheel Skid-Tester (LWST) at a slip speed of 65 km/hr (ASTM E 274-06), 

while the Runway Friction Testers (RFT), Grip testers and mu meters are employed to 

evaluate the wet skid resistance continuously over selected runway sections at designated 

slip speeds. Since the wet friction estimates vary from one device to another, the “spot-

measuring” and relatively precise Dynamic Friction Tester (DFT) is considered to 

provide the standard friction values at a slip speed of 60 km/h (ASTM 1911-09a). 

However, neither of the above devices can be used for rapid screening of pavements for 

skid resistance deficiencies at the highway network level. The above need can only be 

addressed with techniques that can monitor the continuous changes in skid-resistance 

along an entire pavement network based on evaluating the degradation of its macro-

texture in particular. Alternatively, the digital images of a pavement embody the entire 

set of 3-D macrotexture parameters that characterizes wet skid-resistance of a pavement 

and the pixel intensity contrasts due to contaminants. Therefore, the analysis of optical 

properties embedded in pavement images can reveal both attributes of reduced skid-

resistance; i.e degradation texture and contamination. The third objective of the 
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dissertation research is related to the potential of using appropriately calibrated images of 

wheel paths to predict the corresponding changes in macro-texture and skid resistance. 

 

1.2 Literature Review 

In published research, analysis related to processing of digital images has been focused 

mostly on automated detection of type, extent and severity of cracks (Ayenu-Prah and 

Attoh-Okine, 2008, Chou and Cheng, 1994, Huang and Xu, 2006, Lee and Kim, 2005, 

Liu et al., 2008, Wang, 2000). Since the current state-of-the-art of automation in crack 

analysis has proven to be satisfactory mostly for quality assurance of network-level crack 

evaluations and warranty project-level general crack evaluations (Gunaratne et al., 2008), 

extensive and vigorous research is being conducted to further advance the frontiers of 

distress evaluation through innovative techniques. Use of fuzzy sets (Cheng et al., 1999), 

neural networks (Cheng et al.,2001), stereovision (Wang, 2007), wavelet transform (Zhou 

et al.,2006), and Finite Ridgelet Transform (Gang et al.,2007) are some such innovations. 

 

Complex algorithms with high levels of computing power are required for most 

automated crack type determination and crack evaluation systems. Nonetheless, most 

automated crack type determination systems as well as evaluation systems have not 

provided accurate results acceptable to public highway agencies. Hence, currently there is 

no automated crack evaluation system that can be adopted as part of a national standard. 

Many offline image processing techniques such as digital filters, adaptive thresholds, and 

expert systems can be readily found in the literature (Huang and Xu , 2006). 

A crack type index (CTI) was developed by Lee and Kim (2005) to identify the crack 
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types as longitudinal, transverse, and alligator cracks using tiles. A tile is defined as a 

sub-image of a whole digital image and the CTI is based on the vertical and horizontal 

spatial distribution of image tiles rather than image pixels. Block cracks and multiple 

cracks were validated by combining the CTI method with an existing index called the 

Unified Crack Index (UCI).  

 

It is possible to measure crack quantities rapidly from the tile-based computation because 

it significantly reduces the computational complexity over pixel-based computation. 

Also, when there is a significant degree of noise in the pavement image, a pixel-based 

approach would produce unreliable results. In addition, since isolated crack pixels will be 

ignored as background noise, the tile-based UCI system would be relatively stable. Each 

pixel is binarized by applying this threshold value to each tile. A tile is considered as a 

crack tile if the percentage of crack pixels in a tile is greater than another predefined 

threshold value. Finally, the UCI is calculated by dividing the number of crack tiles by 

the total number of tiles of the entire image.  

 

An image processing algorithm customized for high-speed, real-time inspection of 

pavement cracking was presented by Huang and Xu (2006). A pavement image is divided 

into grid cells of 8x8 pixels, and each cell is classified as a noncrack or crack cell using 

the grayscale information of the pixels bordering the grid. Whether a crack cell can be 

regarded as a basic element (or seed) depends on its contrast with the neighboring cells. If 

they fall on a linear string, a number of crack seeds can be called a crack cluster. A crack 

cluster is a dark strip in the original image that may or may not be a part of a real crack. 
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Additional conditions to verify a crack cluster are the contrast, width, and length of the 

strip.  

 

Automated real time crack analysis based on fuzzy logic, and fuzzy set theory was 

proposed by Cheng et al. (1999). In this analysis, a sample space reduction and 

interpolation approach was used to determine the threshold pixel intensity values for 

crack detection in pavement images, rapidly and accurately. There are three stages in the 

procedure of determining the threshold values. The first is to create the original sample 

space by collecting a large number of pavement images. Second, the sample space is 

reduced to achieve a faster rate of processing. Finally, the threshold value of a pavement 

image is estimated by applying the proposed thresholding approach to the reduced sample 

space.  

 

Wang (2000) has developed a real time image processing software called Automated 

Distress Analyzer (ADA) that analyzes pavement images. This software is separated into 

two parts. One part of the software analyzes cracks such as longitudinal, transverse, block 

and alligator cracking. The other software analyzes distresses such as rutting and 

roughness. The images of the pavement surface are obtained by using two simultaneous 

cameras, each with a resolution of 1300 x 1024. Then the two images are interlaced to 

combine them to form a single image. The real time distress data is produced using the 

computing facilities on board the data vehicle and multimedia databases are generated. 

The speed of collection and analysis of data is above 60 mph. The three protocols used to 

analyze multipass data sets of pavement images from a roadway section are, (1) the 

 6



 

AASHTO interim distress protocol (AASHTO, 2001), (2) the World Bank’s Universal 

Cracking Indicator (CI) (Peterson and Uddin, 1994), and the (3) Texas Department of 

Transportation’s (TxDOT) method.  

 

A novel approach was presented by Chou et al. (1994) to apply moment invariants of 

distress and neural networks to analyze pavement images. Once features are obtained by 

calculating moment invariants from different types of distress, back propagation neural 

network is used to classify them. In this method, the quality of images is determined by 

the illumination in addition to the object’s reflectance. Pavement image processing is 

improved by using fuzzy image processing methods. Moment invariants under changes of 

size (scale), position (translation), and orientation (rotation) extracted from cracks’ 

features are used to better classify the cracks.  

 

Also interactive crack detection software that incorporates both automated and manual 

crack detection algorithms have been developed.  When the images are loaded onto this 

software, the type of pavement surface as well as the types of distresses should be 

specified. When a crack is observed in the image, the user must first decide the type of 

crack, on a manual basis. Once the type and severity are specified, the length of the crack 

is specified by dragging the mouse along that crack. Then the software automatically 

determines the extent of the crack on an automatic basis.  

 

Evaluation of crack depths plays an important role in pavement management systems. 

Although automated digital image analysis has been mostly focused on crack detection, 
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in literature methods of automated crack depth detection based on digital images could 

not be found. However in a study by Mei et al. (2004) neural networks were used to 

estimate the depths of shallow cracks in asphalt pavements automatically and 

dynamically without destructing the pavement structure. In this method a laser 

measurement unit is used to collect crack geometry data and a neural network is used to 

map crack depth, crack opening geometry and other pavement parameters. 

 

Skid resistance on pavements is also an important issue in pavement management 

systems. It was found that the specific influence of pavement texture on skid-resistance 

and tire wear has been investigated by Britton et al. (1974), Leu and Henry (1978) and 

Balmer (1978). Consequent to the above studies, a single model correlating skid 

resistance to both macrotexture and microtexture evaluations was first introduced by Leu 

and Henry (1978). More recently, Gendy and Shalaby (2007) found that the complete 

characterization of skid resistance must involve all three attributes; size, spacing and 

shape of both macrotexture and microtexture.  Microtexture which can be detected 

indirectly in the field by the British Portable Skid Tester (BPT) (ASTM E303-93) 

governs the dry friction produced by adhesion at low tire speeds. On the other hand, 

macrotexture produces hysteresis friction at high tire speeds and in addition reduces the 

possibility of hydroplaning by facilitating the drainage of water. Macrotexture can be 

evaluated using the mean texture depth (MTD) or the mean profile depth (MPD) (ASTM 

E 1845-01). Although state-of-the-art laser profiling techniques (LRIS,2008) can provide 

accurate evaluations of pavement macrotexture, laser evaluations can become unreliable 

due to contamination. In the literature, only one laser system (DSC 111,2008) is reported 

 8



 

 9

to have the capability to distinguish contaminants such as water, frost, snow, slush and 

black ice from pavement material. 

 

1.3 Description of Dissertation Chapters 

In the second chapter of the dissertation the modeling of crack and joint depths using 

digital images are discussed. The Ward’s reflection model which is described in this 

chapter is used to relate optical reflection properties to correlate image intensities to crack 

and joint depths. The objectives of the study documented in this chapter are to (Huang 

and Xu, 2006) model the intensity contrast at cracks and joints using reflection properties 

of the intact pavement surface and cracks, and (Lee and Kim, 2005) use the model to 

predict depths of cracks, joints and other irregular features to distinguish each feature. 

 

The objectives of the third chapter are to identify optical texture characterization features 

that are relevant to pavement images, use texture similarity measures and homogeneous 

coordinates for correspondence of a sequence of images and investigate the applicability 

of the above techniques in monitoring pavement wear as well as widening and elongation 

of cracks, at the project-level. 

 

In the fourth chapter of this dissertation, the Ward’ reflection model is used again to 

model macrotexture and wear of concrete pavements with time. Theoretical simulations 

were performed and experimentally verified using actual images of concrete sections. 

 
 



 

CHAPTER 2: MODELING OF CRACK AND JOINT DEPTHS IN DIGITAL 
IMAGES OF CONCRETE PAVEMENTS USING OPTICAL REFLECTION 

PROPERTIES 
 

2.1 Modeling of Pavement Surface Radiance 

2.1.1 Reflection Properties of Surfaces 

Light incident on a surface could reflect completely in the opposite direction as dictated 

by the law of reflection or scatter in many directions. Surfaces where light reflection is 

solely in the opposite direction are known as specular surfaces while diffusive surfaces 

reflect light in all directions including the specular direction. Generally most surfaces 

have both specular and diffusive properties, reflecting light in all directions but more so 

in the specular direction. The reflection properties of a pavement surface depend on the 

texture of the surface determined by the constituents of the pavement mix and the surface 

geometry. Hence the reflection properties can be used to model the unique characteristics 

of pavement surfaces including their distress features. 

 

2.1.2 Bidirectional Reflection Distribution Function (BRDF) 

The intensity of light reflection (radiance) from any point on a surface in the direction of 

the camera depends on the intensity of incident light (irradiance), the local reflectance 

properties and the orientation of the surface at that point to the direction of incidence. The 

complex relationship between the radiance and irradiance of a surface can be best 

described by the Bidirectional Reflection Distribution Function (BRDF). When the 

intensity and direction of the radiant light are known BRDF of the surface can be used to
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determine the intensity of the light that reflects from the surface in any given direction. 

BRDF is defined as the ratio of radiance in a given direction )(R  to the irradiance on that 

surface from another direction )(I (Ward, 1992) (Eqn. 1(a)).  




dIL

RL
RIRIBRDF

ii

r

cos)(

)(
),(),(      (1a) 

where )(RLr  is the radiance (reflected flux per unit normal area per unit solid angle)  

)(ILi  is the irradiance (incident flux per unit normal area per unit solid angle) 

i  is the polar angle between the incident vector and the surface normal 

d  is the solid angle subtended at the surface point by the incident light source   

 

The total radiance at a point on the surface in the R  direction due to all the light entering 

the hemisphere encompassing a solid angle of 2π surrounding that point can be expressed 

as,  




dILRIRL iir cos)(),()(
2

0
   (1b) 

Therefore in 3D, the above relationship is based on two incident and two reflected angles 

defining the directions I and R  as expressed in Eqn. 2, 

 
 


2

0

2/

0

sincos),(),;,(),( iiiiiiirriirrr ddLL   (2) 

where 

i  is the azimuth angle of the incident vector projected on to the surface plane 

r  is the polar angle between the reflected vector and the surface normal 
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r  is the azimuth angle of the reflected vector projected on to the surface plane 

),( rrrL  is the reflected radiance (watts/steradian/meter2) 

),( iiiL  is the incident radiance (watts/steradian/meter2) 

),;,( rrii   is the BRDF (steradian-1) given by equation 1b 

 

The most common functions that are used to represent BRDF of a surface are the tensor 

products of the spherical harmonics, Zernike polynomials, and spherical wavelets 

(Rusinkiewicz, 1998). However, most of the basic functions require a large number of 

coefficients to describe even moderately specular BRDFs. In addition, the above methods 

do not require any less storage even under isotropic BRDF conditions. Rusinkiewicz 

(1998) proposed a method for decomposing BRDFs by changing variables more 

efficiently. In the Rusinkiewicz (1998) transformation, the BRDF is represented as a half 

angle between incident and reflection directions, and the difference angle between the 

half angle and incident angle ( h in Fig. 1). Kautz and McCool (1999) used single value 

decomposition (SVD) and normalized decomposition (ND) for the BRDF function. On 

the other hand, simplified models are also available for approximate evaluation of BRDF 

such as Phong (1975), He (1991), Cook and Torrance (1981), and Ward (1992) models. 

 

2.1.3 Ward’s Reflection Model for BRDF 

In the work reported here, the Ward’s reflection model (1992) is used due to its simplicity 

and physically meaningful parameters. Although Ward (1992) formulated reflection 

models for both anisotropic and isotropic surfaces, in this preliminary analysis the 

isotropic model given by Equation (3) has been assumed for simplicity. 
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rdidh                   (4) 

where  

d  is the diffuse reflectance (steradian-1) 

s  is the specular reflectance (steradian-1) 

  is the angle between vectors  and  in Figure 1 ( n  is the unit normal to the surface, 

 is the half vector between the unit incident vector and unit reflection vector  as 

illustrated and defined in Eqn. (4)). 

n̂ ĥ ˆ

id ˆĥ rdˆ

  is the standard deviation of the surface slope or the square root of the slope variance.  

 

 

 

 

 

 

 

 

id ˆ  

ĥ  n̂  

rd ˆ  
δ

FIGURE 1 Illustration for Ward’s Reflection Model 

 

2.1.4 Selection of Surface Parameters for Ward’s Model 

The three dominant parameters in the Ward’s reflection model (Eqn. 3) are d , s  and . 

The parameter   represents the randomness in the orientation of the tiny fractals that 

form the surface. Typically surfaces with relatively lower α values can be considered 

specular because smooth surfaces that are characterized by low slope variances (α) reflect 
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light mostly in the specular direction with much lower reflection components in the other 

directions. As α increases, more and more light reflects in the directions other than the 

specular direction and the surface assumes diffusive characteristics. Thus a very low but a 

non-singular  value as high as 0.0001 defines a surface with high specularity for all 

practical purposes, where as a relatively high value of 0.2 portrays a highly random 

fractal orientation and hence a diffusive surface. However, once a limiting high value of 

α is reached, one can expect the reflection to reduce in all directions due to obscurity and 

internal reflection caused by the interference from the surface profile itself. Although the 

parameter α could depend on both the macrotexture and the microtexture of a pavement, 

it is more sensitive to the microtexture. 

 

On the other hand, the parameters s  and d  determine the respective magnitudes of the 

total specularity and the total diffusivity that are inherent to that surface. As seen in Eqn. 

(3) the specular component is assumed to be a Gaussian distribution with its standard 

deviation related to . Typical values of d  and s  for different surfaces are reported in 

Ward (1992). However, the specific values of s , d , and   in the model are estimated 

based on comparing the model predictions to corresponding experimental data. 

Gonioreflectometers are commonly used to measure the BRDF of a given surface. It is 

recommended to use at least 2500 data points to sample BRDF at every 100 on isotropic 

surfaces and at least 100,000 data points to sample BRDF on non-isotropic surfaces 

(Joshi et al., 2007). Marschner et al. (2000) presented an image based process for 

measuring the BRDF of a surface with an apparatus consisting of two cameras, a light 

source, and a test sample of known shape. 
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2.2 Modeling of the Image Intensity Variation Across Cracks  

For modeling purposes a crack can be considered simply as a discontinuity with a V-

shaped (triangular) cross-section on a homogeneous pavement surface. In the following 

formulation it is demonstrated how the contrast and the pixel intensity variation across 

the image of a pavement discontinuity can be modeled. In this formulation the light 

source attached to the rear bumper of the imaging vehicle is considered as a transverse 

line light source that provides uniform and continuous illumination. As the vehicle moves 

forward, the line-scan camera scans the pavement in a plane perpendicular to the 

direction of travel capturing the image of a strip of the entire width of the pavement at a 

given instant. This line strip is considered to be one pixel in width and completely 

illuminated by the above light source at the image capturing instant. As shown in Figures 

2, 3 and 5, at any instant, the camera (C) only points to a single point (P) of the pavement 

when imaging the pavement. Hence it can be assumed that the pixel intensity 

corresponding to the image of P is due to the reflection from the incident illumination at 

P from the entire light source (L). Other assumptions made in this formulation are that (1) 

the heights of the light source and the camera are relatively larger than the crack depths, 

and (2) two cameras are used with each one pivoted immediately above each wheel path. 

These two assumptions ensure the maximum contrast to be obtained in the images of 

cracks and preclude the need to consider inter-reflection within the cracks.      

 

2.2.1 Case 1 - Modeling the BRDF of Longitudinal Cracks 

For this case, as shown in Fig. 2, the analysis can be performed in 2D assuming the cross-

section of the crack to be invariant in the z (longitudinal) direction. Hence the z ( k ) axis 

 15



 

that comes out of the paper is not shown in Fig. 2. The following vectors can be defined 

at any point P(px,py) with respect to illumination due to an element of length δx* of the 

light source at L(lx, h) where h is the height of the light source above the pavement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a

d

C (0,cy) 
Camera 

Line light  
source 

P (px,py) 

x, i  
y, j  

x1

Transverse 
direction of 
pavement 

Crack 

O (0,0) 

     Light element δx* at L (lx,h,0) 

FIGURE 2 Configuration of the Radiance from a Longitudinal Crack 
 

Incident vector, I jlpyilxpx )()(             (5a) 

Reflected vector, R = jpycyipx )()(             (5b) 

The following relationships are valid in the respective domains. 

Outside the crack  

py = 0                     (6a) 

Unit normal to the pavement surface, n = j                                    (6b) 

Inside the crack 

For 1x < px  < 2/1 ax   
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py =  12 xpx
a

d







               (7a) 

= j
ad

a
i
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d

4/

2/

4/ 2222 



          (7b) Unit normal, n

For  2/1 ax  < px < ax 1  

py=  pxax
a

d







 12                   (8a) 

= j
ad

a
i

ad

d

4/

2/

4/ 2222 



           (8b) Unit normal, n

The above results can be used to obtain the variables θi, θr and δ (Eqn. (3)) for Case (1) as 

shown in the section on converting BRDF to pavement surface radiance (Eqns. (15a)-

(15c)).  

 

2.2.2 Case 2 - Modeling the BRDF of Transverse Cracks 

Since the geometry of a transverse crack varies along transverse planes perpendicular to 

the travel direction where both illumination and imaging occur, variations along the 

longitudinal direction (z) must be considered in this analysis. 

 

The following vectors can be defined at any point P(px,py,pz) with respect to illumination 

due to an element of length δx* of the light source at L(lx, h). 

Incident vector, I kpzjlpyilxpx )()()(            (9a) 

Reflected vector, R = kpzjpycyipx )()()(            (9b) 

The following relationships are valid in the respective domains. 
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Outside the Crack 

py = 0              (10a) 

Unit normal to the pavement surface, n = j             (10b) 

Inside the Crack 

For 0< pz < a/2 

py = z
a

d






 2

                (11a) 

= k
ad

d
j

ad

a
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2222 


              (11b)

 n

For a/2<pz<a 

py =  za
a

d







 2

               (12a)
 

= k
ad

d
j

ad

a

4/4/

2/
2222 


              (12b) 

n

 

The above results can be used to obtain the variables θi, θr and δ (Eqn. (3)) for Case (2) as 

shown in the section on converting BRDF to pavement surface radiance (Eqns. (15a)-

(15c)). 

 

Furthermore, in both Cases 1 and 2, provisions were made in the computer code 

BRDFimage that programmed the above analysis to account for the possibility of 

obscurity of some locations inside cracks with respect to the camera and the light source. 
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 C (0,cy, 0) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 3 Configuration of the Radiance from a Transverse Crack  

 

 

 
 
 
 
 
  
 

FIGURE 4 Cross-Sectional View of a Transverse Crack 
 

2.2.3 Case 3 - Modeling the BRDF of Joints 

The following vectors can be defined at any point P(px,py,pz) with respect to illumination 

due to an element of length δx* of the light source at L(lx, h) 

Incident vector, I jlpyilxpx )()(           (13a) 

Reflected vector, R = jpycyipx )()(           (13b) 

The following relationships are valid in the respective domains. 

Camera

Line light  
source 

Light element δx* at L (lx,h,0) 

P (px, py, pz) 

x, i  
y, j  Transverse 

direction of 
pavement 

O (0, 0, 0)

x1
x2

a
O (0, 0, 0)

d Longitudinal 
direction of 
pavement z,  k
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Inside and outside the joint  

py = 0                 (14a) 

Unit normal to the pavement surface n = j             (14b) 

The above results can be used to obtain the variables θi, θr and δ (Eqn. (3)) for Case (3) as 

shown in the section on converting BRDF to pavement surface radiance (Eqns. (15a)-

(15c)).  

 
 

Joint 
filler O (0, 0, 0) Transverse 

direction of 
pavement 

x, i  
y, j  

Line light  
source 

P (px,py) 

Light element δx* at L (lx,h,0) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5 Configuration of the Radiance from a Joint 
 

 

2.2.4 Conversion of BRDF to Pavement Surface Radiance 

For all the above Cases (1)-(3), in relation to the Ward’s model (Eqn. 3), 

Cos θi =- nI .              (15a) 

Cos θr = nR.              (15b) 

Cos δ = RInRRII  /).//(
          (15c)
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Therefore, the BRDF (ρ(px,py,pz)) on the pavement surface and the crack surfaces can be 

evaluated by substituting from Eqn. (15) in Eqn. (3). Finally, the radiance of P can be 

determined from Eqn. (1b) using the following additional relationships. It can be seen 

from Fig. 6 that the solid angle subtended at P by the light source element δx* at L(lx, h) 

is given by (normal component of area/square of distance) 

2

cos*)]([

D

xb L
 

            (16a)
 

cos θL = kI .  

where  

θL is the angle between the line light source and the normal to the incident light vector 

δx* is the considered length of the light source element at L(lx, h) 

D is the distance LP  

b is the width of line light source 

If the light intensity attenuation is assumed to be inversely proportional to the distance, 

then from Fig. 6 it can also be seen that 

2

*2

)(
D

Lh
IL 

             (16b)
 

L* is the irradiance at the point Q on the pavement immediately underneath the light 

source. Finally, by substituting from Eqns. (16a) and (16b) in Eqn. (1b),   





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2/
22
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* cos*)]([

.
cos
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R D

dxb

D

Lh
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
                  (16c) 

where l is the total length of the light source.  
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2.2.5 Conversion of Pavement Radiance to Image Intensities 

The image of a pavement feature is formed when the light reflected from that feature 

(object) enters the camera lens (aperture) and is refracted to the CCD sensor. A schematic 

diagram of the optics of image formation is shown in Figure 6. The relationship between 

the radiance from any given object on the surface of the pavement and the intensity of the 

image can be expressed using the following formulation. 

 

The parameters f, dc and Dc are the focal length, aperture diameter and the distance 

between the camera center and the imaged point (P) respectively. O  is the area 

surrounding P from which light is reflected to the corresponding area I  of the image.  

  

f 

Dc 
δω 

P, Area δO 

δΩ 

θi 

dc 

AC, Camera Aperture 

       L 
AL=(δx*)b 

D
θr 

θC 

h 

Q 

CCD 
Sensor  
Plane  

θL 

Area δI
θC 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6 Illustration of the Image Formation Process 
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The flux leaving the pavement surface area δO toward the camera is given by 

 OLF R               (17) 

where LR is the radiance at δO 

2

cos

C

r
c

D
A


                (18) 

AC is the area of the camera and Dc = R (from Eqns. (5b), (9b) or (13b)) 

If it is assumed that there is no loss of photo energy at the camera, and the intensity at the 

image point I is E, then 

IEF .             (19a) 

Substituting from Eqn. (19a) in Eqn. (17),  

  OLIE R             (19b) 

Using Eqn. (18), Eqn. (19b) can be rewritten as  
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             (19c) 

From basic optics it follows that the light originating from the object O and passing 

through the center of the camera lens continues without refraction to form the image I . 

Hence the solid angles subtended at the camera center O by O  and I  are equal and 

opposite. Then by evaluating each solid angle one obtains,  
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where θC is the angle between the normal to the aperture of the camera and the reflected 

vector from point P. Substituting in Eqn. (19c) from Eqn. (20), 

C
C

R A
f

LE .
cos

.
2

3
               (21) 

For a line-scan camera since θC is equal to zero because the camera is oriented toward the 

imaging location and Ac and f are constants, the intensity E of the image corresponding to 

the surface point P is proportional to the radiance of P (or LR). Hence it can be deduced 

that Eqn. (16c) itself can be used conveniently to model the relative pixel intensities in a 

pavement image. 

 

2.3 Analysis of Model Predictions 

In the theoretical simulation of the image formation, the line light source and the camera 

were assumed to be 4 ft and 9 inches respectively above the pavement surface. The 

widths (a) and depths (d) of the modeled cracks were selected in the ranges of 1 mm to 10 

mm, and 0.5 mm to 20 mm respectively encompassing the ranges of corresponding 

values for most shallow cracks found in concrete pavements. Typical sd  , and  values 

(Ward, 1992) were used in the reflection model for the intact pavement surface as well as 

cracks and joints. The relatively high roughness inside cracks and joints due to the high 

variability in the orientations of surface fractals requires higher d and   values to be 

assumed inside cracks and joints compared to the respective values of the neighboring 
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pavement surface areas. The main objective of the image model calibration is to establish 

two specific average sets of values for the parameters sd  , and  for a given pavement 

surface and a considered type of shallow cracks on it. 

 

For a given crack width, as the depth of the crack increases the illumination of the tip of 

the crack decreases due to lower amount of light reaching it and hence the minimum 

intensity within the crack, which occurs at the tip, decreases. This results in an increased 

image pixel intensity reduction (contrast) between the outside and the tip of the crack for 

higher crack depths. The formulated model can be used to observe the variation of the 

pixel intensity reduction from the outside to the tip of the crack (i.e. the maximum pixel 

intensity drop in the crack) with the depth, for different crack widths. For two selected 

sets of sd  , and   values from Table 1; (0.6, 0.4 and 0.1) for the uncracked surface and 

(0.8, 0.2, and 0.2) for the surface inside a longitudinal crack, this variation is shown in 

Figure 7. During the simulation the intensity outside the crack is assumed to be 170 in the 

gray scale range of 0-255, based on average measurements of intensities on the pavement 

surface at the given lighting conditions. It can be observed from Figure 7 that for all 

crack widths ranging from 1 to 10 mm, the reduction in intensity reaches a limiting value 

when the depth of the crack tip is approximately twice the width of the crack. It must be 

noted that, theoretically, the limiting value of the maximum reduction in pixel intensity 

(ΔImax)ult must be equal to the pixel intensity of the uncracked surface (170 in this case) 

corresponding to the scenario of zero pixel intensity at the crack tip. However, the family 

of curves in Fig. 7 reaches limiting values between 140 and160 at finite crack depths.  
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TABLE 1 Ranges of Optical Parameters for Pavements 

Ward’s Reflection Parameters Location 
ρd (steradians-1) ρs (steradians-1) Α 

Uncracked Pavement 
Surface 

0.5-0.8 0.2-0.5 0.1-0.2 

Inside Cracks 0.7-0.9 0.1-0.3 0.1-0.2 
Inside Joints 0.5-0.9 0.1-0.5 0.1-0.2 
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FIGURE 7 Maximum Pixel Intensity Reduction Vs the Depth for Longitudinal 
Cracks Predicted by the Reflection Model 

 

It can also be noted in Figure 7 that the initial slope (f(a)) depends on the width of the 

crack (a). Therefore, in order to develop an equation for the family of curves shown in 

Figure 7 the relationship between the initial slope and the crack width can be expressed 

by Equation 22.   

mkaaf )(     (22) 

where k and m are parameters governed by the optical properties of ρs, ρd and α of the 

intact surface and the cracks. The logarithmic form of Equation (22) can be expressed by 

Equation (23). 

)ln()ln())(ln( amkaf    (23) 
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Figure 8 shows the plot of Equation (23) corresponding to data in Figure 7. One 

remarkable finding of the analysis is that the selected format (Eqn. 22) to express the 

initial slope of such families of curves for both longitudinal and transverse cracks 

consistently produced high R2 values for any selected set of sd  , and   values. When 

the values of k and m are determined from the intercept and slope of the fitted line in 

Figure 7, Equation (22) can be rewritten as,  

97.0366)(  aaf      (24) 

When the initial slopes are expressed analytically (Eqn. 22) the family of curves in Figure 

7 can be modeled using the following hyperbolic relationship based on the constant 

ultimate intensity difference (ΔImax)ult reached by the curves. 
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   (25) 

where d is the depth of the tip. Based on Figure 7 and Equation (24) the specific form of 

Eqn. (25) for longitudinal cracks for the selected sets of ( sd  , and  ) can be given by, 
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97.0max

366 
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     (26) 

A similar analytical procedure was adopted to model the variation of the maximum pixel 

intensity reduction in transverse cracks as well, with increasing crack depths. The family 

of curves (Figure 9) predicted by the reflection model corresponding to the selected set of 

sd  , and   values can be expressed by, 

)55(106 max)
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The above analytical development with respect to Figures 7 and 9 shows that the 

maximum pixel intensity reduction in a longitudinal or transverse crack predicted by 

theoretical simulation can be expressed using a simple mathematical format. 
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FIGURE 8 Plot of ln(f(a)) Vs ln(a) for Longitudinal Crack (Uncracked Area 
4.0,6.0 sd   and  =0.1, Inside Crack 2.0,8.0 sd   and  =0.2) 
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FIGURE 9 Maximum Pixel Intensity Reduction Vs the Depth for Transverse 
Cracks Predicted by the Reflection Model 
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FIGURE 10 Plot of ln(f(a)) Vs ln(a) for Transverse Crack (Uncracked Area 
4.0,6.0 sd   and  =0.1, Inside Crack 1.0,9.0 sd   and  =0.2) 

 

2.4 Calibration of the Model 

2.4.1 Experimental Setup 

In order to calibrate the formulated reflection model (BRDFimage), the digital images of 

actual concrete pavement cracks with comparable dimensions were compared to digital 

images created using the above model. For this purpose, a surface was concreted and V-

shaped cracks of desired dimensions were formed on it under regulated conditions before 

the concrete hardened. Crack widths and depths in the ranges of 1-10 mm and 0.5-20mm 

were selected to match the modeled cracks. Table 2 shows locations of the camera and 

the light source with respect to the 3D coordinate axis system in Figs 2, 3 and 5 in the 

experimental setup. In this study the optimum positions for the light source and the 

camera were selected (Table 2) to provide the highest contrast between the uncracked and 

cracked areas. When imaging a given crack it was placed at the origin of coordinates with 

the camera oriented toward it while the pavement surface was set to be in the x-z plane.  
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TABLE 2 Locations of the Camera, Light Source and the Crack with Respect to the 
Pavement Surface 
 

Coordinates Entity 
X Y Z 

Camera 0 229 mm 0 
Line light 
source  

-610 to +610 mm 1220 mm -5 to +5 mm 

Lowest point of 
crack 

0 Depth of crack 0 

 

The crack widths were measured using a Vernier caliper while crack depths were gauged 

using a thin wire. It must be noted that cracks and joints had to be artificially formed in 

this preliminary phase of the research such that a/d ratios could be regulated well and 

uniform conditions could be achieved along the cracks and joints. Uniformity was further 

ensured by smoothing the concrete surface with a sand paper. A sample of captured 

digital images of a longitudinal crack, a transverse crack and a joint are shown in Figures 

11(a), 12(a) and 13(a) respectively.  

 

2.4.2 Results of Model Calibration  

Predictions of the maximum pixel intensity reduction for a number of modeled 

longitudinal and transverse cracks were selected from Figures 7 and 9 for comparison 

with those of the corresponding actual images. A sample of the modeled images is shown 

in Figures 11(b), 12(b) and 13(b) against their experimental counter-parts. In order to 

form a rational basis for comparison of the actual images and the corresponding modeled 

images, the intensities of the two sets of images (modeled and actual) were normalized 

with respect to the intensities of the immediate (uncracked) outside vicinity of the crack. 
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Then the pixel intensity distributions within the digital images of actual cracks were 

compared to those of the modeled images. 

FIGURE 11(a) Digital Image of 
Longitudinal Concrete Crack a=5.4mm, 

d=2.5mm 

FIGURE 11(b) Modeled Digital Image of 
the Crack in Figure 11(a) 

 

 

 

FIGURE 12(a) Digital Image of 
Transverse Concrete Crack a=9mm, 

d=7.3mm 

FIGURE 12(b) Modeled Digital Image of 
the Crack in Figure 12(a) 
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FIGURE 13(a) Digital Image of Concrete 
Joint 

FIGURE 13(b) Modeled Digital Image of 
the Joint in Figure 13(a) 

 

The comparison of the distribution of intensities across experimental and modeled cracks 

for selected longitudinal and transverse cracks and a joint are shown in Figures 14 - 16. 

From the plots in Figures 14 - 16 it can be observed that the intensities inside actual 

cracks are distributed more randomly compared to those in the surrounding area. The 

general randomness is due to the non-homogeneity of the concrete mix and one can 

expect this non-homogeneity to be even more pronounced inside the cracks due to their 

irregular walls. In contrast, the pixel intensity variation predicted by the reflection model 

shows an abrupt decrease in pixel intensity up to the crack bottom (Fig. 14(b), 15(b) and 

16(b)). This is because one simplifying assumption made in the optical modeling is that 

both surfaces; inside and outside the crack are individually homogeneous.  As a result 

intensity contrast at the boundaries of cracks and the joint of the modeled images are 

clearer than those of the corresponding images of actual crack and the joint (Figs. 14(a), 

15(a) and 16(a)). Therefore, when the optimum optical parameters ( sd  , and  ) for the 

new model were determined during the calibration, only the minimum pixel intensity 
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values of the actual cracks were chosen from Figs. 14(a), 15(a) and 16(a) for comparison 

with the intensities of the modeled images.  
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FIGURE 14(a) Intensity Distribution 
Across Longitudinal  Crack a=5.4mm, 

d=2.5mm 

FIGURE 14(b) Intensity Distribution 
Across Modeled Crack of Figure 11(a) 
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FIGURE 15(a) Intensity Distribution 
Across Transverse  Crack a=9mm, 

d=7.3mm 

FIGURE 15(b) Intensity Distribution 
Across Modeled Crack of Figure 15(a) 
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FIGURE 16(a) Intensity Distribution 
Across  Concrete Joint (1 pixel = 0.04 

mm) 

FIGURE 16(b) Intensity Distribution 
Across Modeled Joint of Figure 16(a)       

(1 pixel = 0.04 mm) 
 

All in all, Figs. 14-16 show that despite the randomness in the intensity profile in actual 

cracks and joints due to the inherent non-homogeneity, the intensity profiles in the 

images of cracks and joints can be simulated reasonably well based on the calibrated 

reflection model. Similarly, the parameters needed in the new model to predict the 

intensity variation of joints were also estimated using the intensity distributions across 

joints. Based on the above described calibration the optimum values of d , s  and   

obtained for the three cases considered are given in Table 3.  

 

TABLE 3 Estimated Parameters for the Model 

Ward’s Reflection Parameters Type of 
Feature 

Location 
ρd ρs α 

Inside  0.8 0.2 0.2 Longitudinal 
Crack Outside 0.6 0.4 0.1 

Inside 0.9 0.1 0.2 Transverse 
Crack Outside 0.6 0.4 0.1 

Inside 0.9 0.1 0.2 Joint 
Outside 0.6 0.4 0.1 
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As seen in Table 3 it was observed that the model could be calibrated with invariant 

reflection properties both outside and inside the cracks and joints. 

 

2.5 Verification of the Model  

The predictive equations (26 and 27) were verified by plotting the maximum intensity 

reductions and depths of additional experimental cracks that were not used in the 

calibration procedure, on the plots generated by Eqns. (26) and (27). For this exercise, 

based on the definition of ΔI)max)ult in Eqns. (26) and (27), it would be replaced by the 

pixel intensity of the uncracked pavement that can be extracted from the images of the 

experimental cracks. Knowing ΔI)max)ult, for a crack with a known width, the 

corresponding prediction curve can be generated using Equations 26 and 27. While the 

curves in Figures 17 and 18 illustrate the respective predictions of Eqns. (26) and (27) for 

longitudinal and transverse cracks, the discrete points on the same figures show the data 

obtained from the experimental cracks. It was seen that 80% of the overall predictions 

yielded errors less than 50% and 52% of the predictions yielded errors lower than 30%. 

The error was defined as the difference between the actual and predicted depths over the 

actual depth of cracks. The errors were seen to be more significant for shallow depths 

possibly indicating that the main source of the errors could have been the estimation of 

the widths and actual depths of cracks using manual methods. 

 

Furthermore, Figs 19(a) and 19(b) illustrate the correlation between the model predicted 

crack depths and the measured crack depths. From Figs 19(a) and 19(b) it is seen that 

there is a satisfactory correlation (high R2) between the predicted crack depths and the 
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actual ones with about 0.7 mm of systematic underprediction. However, these results can 

be improved by modeling the random variations of the image intensity in the uncracked 

and cracked areas. As seen in Figs. 14(a), 15(a) and 16(a), the random variations in the 

actual images certainly affect the accurate determination of the maximum intensity 

contrast in particular and hence the model predicted crack depths. The observed extent of 

matching between the model predictions and the actual data is encouraging in view of the 

simplifying assumptions made in the model especially with respect to homogeneity, 

isotropy, and the regular geometry of cracks.  
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FIGURE 17(a) Predicted and Measured Maximum Intensity Reduction in 
Experimentally Created Longitudinal Cracks (Widths Lower than 5mm) 
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FIGURE 17(b) Predicted and Measured Maximum Intensity Reduction in 
Experimentally Created Longitudinal Cracks (Widths Larger than 5mm) 
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FIGURE 18(a) Predicted and Measured Maximum Intensity Reduction in 
Experimentally Created Transverse Cracks (Widths Lower than 5mm) 
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FIGURE 18(b) Predicted and Measured Maximum Intensity Reduction in 
Experimentally Created Transverse Cracks (Widths Larger than 5mm) 
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FIGURE 19(a) Variation of Predicted Crack Depths Vs Actual Crack Depths for 
Longitudinal Cracks 
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FIGURE 19(b) Variation of Predicted Crack Depths Vs Actual Crack Depths for 
Transverse Cracks 

 

One realizes that the intensity contrast in the image of a joint is either due to the 

difference in reflection properties between the filler material and the pavement or the 

abrupt 900 surface slope change that occurs in the case of joints with missing fillers. 

Hence the images of joints would exhibit a high gradient of pixel intensity variation or 

rate of change of intensity per pixel. The above fact becomes evident from the 

comparison of Figs.(14a) and (15a) with (16a). Therefore, cracks can be differentiated 

from joints based on the gradient of the pixel intensity variation. 

 

2.6 Potential Application in Pavement Rehabilitation 

Most sealing and repair strategies of cracked concrete pavements depend on the depths of 

cracks. Also, in the case of cracked asphalt pavements a knowledge  of crack depths is 

essential to determine milling depths prior to resurfacing. At present, milling depths are 

determined by the 95th percentile of the crack depth distribution established by three core 
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samples retrieved from the existing pavement. Currently no non-destructive evaluation 

method is available to determine even shallow crack depths in an entire pavement 

network in a speedy manner Hence evaluation of approximate crack depths based on the 

processing of crack images would be invaluable to pavement maintenance decision 

making.  

 

Furthermore, when state-of-the-art crack identification software are used to evaluate 

cracks in superpave pavements topped with open graded friction courses, some surface 

irregularities can be misidentified as small cracks. Even in the case of concrete pavement 

evaluation, spalling and other surface defects can interfere with crack identification. 

Therefore, the procedure formulated in this dissertation for identification of shallow crack 

depths up to 1 cm would be useful in differentiating between cracks and other defects 

which are generally limited only to the surface. 

    

Based on the results of this preliminary investigation, the following simplified procedure 

can be recommended for determination of approximate depths of shallow cracks in 

concrete pavements 

1.   Use currently established procedures to acquire digital images of the pavement 

section to be evaluated. 

2.   Using a number of selected “benchmark” cracks in the above section,  

calibrate the model parameters d , s  and   as described for different types of cracks 

(transverse, longitudinal) and joints.   

 40



 

 41

3.   Estimate the width (a) of any other crack of which the depth is desired, based on the 

number of pixels in which an intensity contrast is seen in its image. 

4.   Knowing the crack width (a) and the pixel intensity of the uncracked area  

(ΔImax)ult) plot the variation of the maximum theoretical pixel intensity reduction (ΔImax) 

with the crack depth (d) using Equation (26) (for longitudinal cracks) or Equation (27) 

(for transverse cracks). 

5.  Select the depth that produces the maximum pixel intensity difference that closely 

matches the one obtained from the actual digital image. This is the approximate depth of 

the considered crack.   

 

It is realized that the field implementation of the new technique is not completely assured 

at this preliminary phase of research. Also it must be emphasized that the new technique 

is not meant to replace any of the other image processing techniques that are currently in 

use, but rather it introduces a novel method of assessing the depths of cracks from 

images. As in the case of any other crack evaluation procedure, the technique must be 

improved by accounting for the random variations in pixel intensity, image noise, etc. 

When the current procedure is refined and programmed efficiently to make it more 

practical, it would provide an invaluable non-destructive means of evaluating crack 

depths in pavements and certainly supplement the existing crack evaluation techniques. 

 



 

CHAPTER 3: OPTICAL TEXTURE BASED TOOLS FOR MONITORING 
PAVEMENT SURFACE WEAR AND CRACKS WITH TIME USING DIGITAL 

IMAGES 

3.1 Application of Texture Analysis in Pavement Evaluation 

For periodic project-level pavement crack growth or wear evaluations, the relevant 

pavement sections must be imaged at regular time intervals, often under different 

illuminations, and subsequently the features of interest in one image have to be matched 

and compared to the corresponding features of previous images of the same locations. 

Although the approximate locations of a multiple sequence of images can be 

corresponded using the GPS and DMI (Distance Measuring Instrument) equipped in 

modern imaging vehicles, the above tracking methods cannot be used to detect the exact 

location of the pavement to match the level of resolution of the imaging camera. 

Furthermore, currently available automated crack evaluation techniques are not designed 

to monitor the rate of crack growth or wearing of the pavement in specific locations of 

interest. 

 

The techniques presented in this dissertation are recommended only for project-level 

studies where selected areas of pavement sections have to be monitored for cracks or 

wearing. From the images of the relevant pavement sections that are obtained during the 

initial survey time, specific locations have to be earmarked where changes are required to 

be continuously monitored with time. When images captured at the same locations at 

different times are first identified using the GPS and DMI the images corresponding to
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the earmarked areas can be selected approximately. It is in the more precise or refined 

matching of the earmarked pavement details that the tools described in this dissertation 

can be quite useful. 

 

3.1.1 Imaging Vehicle 

Most of the images used in this study were obtained by the Multi Purpose Survey Vehicle 

(MPSV) of the Florida Department of Transportation (FDOT) (Figure 20(a)). MPSV uses 

a Basler 103 linescan camera (1 in Figure 20(a)) and an artificial lighting system (2 in 

Figure 20(a)) consisting of ten 150 kW lamps. Two parameters that affect the 

illumination of pavement images are natural and artificial lighting. When state-of-the-art 

laser lighting techniques are adopted for image acquisition such as that reported in Wang 

(2007), the issue of shadows could be minimized. Another parameter that causes 

variability of the images is the orientation of the pavement camera at the time of image 

capture. Although the pavement camera is rigidly fixed to the MPSV and oriented 

vertically downward (Figure 20(a)), the orientation of the features of interest in the image 

could change due to the random wandering of the survey vehicle during repeated runs. 

Sample asphalt and concrete pavement images collected by this vehicle are shown in 

Figures 20(b) and 20(c) respectively. 
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1

2

FIGURE 20(a) FDOT Multi Purpose Survey Vehicle (MPSV) Used for Pavement 
Imaging 

 
 

  

FIGURE 20(b) Sample Asphalt 
Image Collected by MPSV 

FIGURE 20(c) Sample Concrete 
Image Collected by MPSV 

 
 

3.2 Texture Characterization of Digital Pavement Images  

A number of image (optical) texture characterization techniques that have applications in 

pavement image processing will be discussed in this section with their actual applications 

illustrated in two later sections. 
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3.2.1 Scaled Scattering Index (SSI) and its Usefulness  

The size of a typical texture-wise homogenous section or the size of the texture primitives 

in an image depends on the features of the image and the intensity distribution within the 

images. The Scaled Scattering Indicator (SSI) (Germain et al., 2000) which quantifies 

textural properties based on the local differences of a given attribute can be used to 

determine the approximate homogeneous section size. It is also a useful tool for 

classification of the extent of randomness of the texture in an image. 

 

The differences in the constituents of asphalt concrete (AC) and Portland cement concrete 

(PCC) result in distinct pavement surface textures and even within each type the random 

distribution of material constituents changes the surface texture from one location to 

another. Consequently, the optical texture of pavement images would inherit the same 

randomness due to the differences in the Bidirectional Reflectance Distribution (BRD) of 

the pavement surface texture.  

 

Depending on the observation scale, the local average intensity differences and local 

texture orientation respectively represent the homogeneity and anisotropy of the texture 

of an image. The mean intensity inside a n x n observation pixel window centered around 

the point (x,y) is defined as ),( yxn , which is evaluated as, 
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where u and v are respectively the horizontal and vertical pixel positions inside the 

window, and is the intensity at the pixel (u,v). For longitudinal (vertical) 

neighboring windows SSI2 is calculated by Equation (29). 

),( vup

 2
0000

2 )),(),(()( nyxyxEnSSI nn                         (29) 

where E denotes the expected value. Similarly, SSI2(n) can be computed for transverse 

(horizontal) neighboring windows as well. The homogeneous texture size can be obtained 

by the n value that corresponds to the Maximum value of SSI2 in a plot of SSI2 Vs n. 

Figures 21(a) and 21(b) show the variation of SSI2 in the longitudinal and transverse 

directions respectively for asphalt images captured within a narrow band of illumination 

measured in klux. Curves denoted by FO, FL, 56th and 46th represent images from Fowler 

Avenue (FO) at 50.2 klux, Fletcher Avenue (FL) at 55.9 klux, 56th Street at 52.5 klux and 

46th Street at 54.5 klux respectively in Tampa, FL. It can be seen from Figures 21(a) and 

21(b) that for all the cases, the highest SSI2 was observed at an observation scale of only 

4x4 pixels indicating a mostly random and heterogeneous optical texture.  

 

Figure 21(c) illustrates the SSI2 distribution for a concrete pavement on US41 in Port 

Charlotte, FL. It can be observed from Figure 21(c) that as in the case of asphalt 

pavements (Figures 21(a) and 21(b)), the major SSI2 peaks in both transverse and 

longitudinal directions at an observation scale of 4x4 pixels, which corresponds to the 

natural texture of the concrete pavement. However, in addition the SSI2 profile for the 

concrete pavement in Figure 21(c) also shows a secondary peak at an observation scale of 

13x13 pixels. This reflects the artificial line texture (tined finish) apparent in Figure 21(c) 

which in fact was manually observed to have a period of about 10-15 pixels.  
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Different mixtures used for pavement construction produce different SSI values in their 

images depending on the varying proportions of constituent materials. Hence their texture 

primitive sizes represented by SSI can be used to characterize different pavement 

mixtures. Furthermore, the concept of SSI can also be used as a measure of quality 

assurance by comparing the SSI Vs n plot among images of various sections of a newly 

constructed pavement. Moreover, the SSI Vs n plot derived from the images captured at 
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various stages of the life of any pavement can be used to monitor the rate of degradation 

of that pavement since the degradation caused by the impact of traffic and environmental 

conditions changes the pavement texture resulting in definitive changes in the SSI Vs n 

behavior.  

 

3.2.2 The Concept of Texture Distance 

Another image texture based tool that can be used for determining the degree of 

similarity of optical texture in digital images is the texture distance evaluated between 

corresponding segments of two or more images. When two image segments are to be 

matched, the image segment that is used to match is termed the query image (Q) and the 

images that are matched with the query image are called the compared images (C). Out of 

the several images of the same size that are compared with the query image, generally 

only one exactly matches with the query image, and the latter image is termed the 

corresponding image. The pixel intensities in the query and the compared images are 

represented as texture description vectors T(Q) and T(C) respectively. T(C) and T(Q) 

respectively store the 2D pixel intensities of the compared and query images in a 1D 

array only after an appropriate processor is applied to highlight the desired texture. Then 

the texture distances between the query image and each compared image are computed 

for all the regions in the compared image. Finally, the region in the compared image 

corresponding to the lowest texture distance is selected as the region that matches the 

query image. Thus the matching region is given by, 

2
)()(min),( QTCTQCd iimatch                         (30) 
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where i (1,n) defines a particular region of matching and n is the total number of regions 

in the database image. Unless the query image and the compared corresponding image 

have very specific textures, this method becomes a crude method of determining texture 

similarity. 

 

The second method of evaluating texture distance is to divide the section of interest in the 

query image into separate homogeneous grids. Then the texture vectors  are 

evaluated separately for each grid. Each compared image is similarly discretized using 

the same grid size. The texture distance between the corresponding grid cells of the 

compared and query image is evaluated and their summation is computed as the total 

texture distance between the query and the compared image sections (Eqn 31). 

                     (31) 

))(( QTg


g

gigtextureitexturegridded QTCTdQCd ))(),((ˆ),(_

where,  is the texture distance between the query image and the 

compared image i, for the grid g. Finally, the particular section in the compared image 

corresponding to the minimum texture distance is selected as the section that matches the 

query image section. Obviously, a more effective comparison can be made between the 

textures of two images if the texture distance is computed after highlighting the desired 

texture feature (edge, spot etc.) using an appropriate texture mask. Hence highlighting of 

desired pavement texture using specific texture masks will be discussed in the ensuing 

section. 

))(),((ˆ QTCTd ggtexture
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Although the concept of minimum texture distance can be used to find the exact 

correspondence using two images of the same location collected at different times, if 

major changes due to distresses or wear have occurred in the selected pavement 

segments, this concept cannot be used for correspondence. On the other hand the 

maximum texture distance can be used to find the locations where maximum texture 

changes have occurred. For example, when the texture distance between different 

segments along the crack are compared with the corresponding segments of the crack 

collected at a different time, the texture distance for each segment could be different 

depending on the elongation and widening of that crack. In such cases, the maximum 

texture distance would represent the section where the maximum changes in texture has 

occurred due to either elongation or widening of the crack.  

 

3.2.3 Use of Texture Masks 

Well defined local masks can be employed to detect areas of digital images that have 

specific optical texture patterns. Therefore, masking would be a reliable tool for, first 

highlighting and then identifying features of interest such as edges, spots, ripples etc. in 

pavement images. Nine standard 5x5 convolution masks have been developed by Laws 

(Shapiro and Stockman, 2001) using the 5x1 vectors defined in Eqn. (32). They are: 

L5 (Level texture)   = [ 1  4  6  4  1]          (32a) 

E5 (Edge texture)   = [-1 -2  0  2  1]          (32b) 

S5 (Spot texture)    = [-1  0  2  0 -1]           (32c) 

R5 (Ripple texture) = [ 1 -4  6 -4  1]           (32d) 
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The vectors L5, E5, S5 and R5 yield center-weighted local average, edges, spots and 

ripples respectively. Then nine different masks can be formed by computing the outer 

products of each pair of the above vectors. They are designated as L5E5, L5R5, E5S5, 

S5S5, R5R5, L5S5, E5E5, E5R5 and S5R5. As an example L5E5 is obtained by the 

product of Eqns. (32a) and (32b): 
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When operating any one of the above masks on an image, the mask is first applied as an 

intensity multiplier in the neighborhood of every pixel (i,j) of the image and then its pixel 

intensity  is replaced by the resultant intensity . The masking operation is defined 

by the following convolution equation. 

jiP , jiP ,'


 
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2

2

2

2
3,3,, .'

l k
lkljkiji MPP              (34) 

where, M(k,l) [k={-2,2}, l= {-2,2}] are the elements of the mask M. Then energy maps 

indicating the prevalence of the specific textures in the original image can be developed 

by using the updated intensity values obtained on the application of the relevant masks. If 

desired, the given image can even be clustered into regions of uniform texture using these 

texture energy maps. However, clustering is generally inapplicable for surfaces with 

widely varying texture such as pavements. 
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3.2.4 Method of Homogeneous Coordinates 

The texture similarity method operates based on the logic that the minimum texture 

distance between the query image and the compared corresponding image corresponds to 

areas of similar texture in the two images. For this technique to produce accurate texture 

matching, both images must have the same orientation and the scale, since matching is 

performed based on areas demarcated by horizontal (longitudinal) and vertical 

(transverse) boundaries encompassing a fixed number of pixels. However, during typical 

project-level pavement evaluation exercises leading to repeated imaging of the same 

pavement location, the orientation and the scale of the images could change due to the 

wander of the survey vehicle and the possible changes in camera setting respectively. In 

addition the minimum texture criterion would not be applicable for cases where the level 

of distress changes in the corresponding areas. The above limitations can be overcome by 

replacing the texture similarity technique by the method of homogeneous coordinates in 

matching the correspondences among images collected at different times and 

illuminations. This method, based on geometrical correspondence only, precludes the 

need for orientation and scale adjustment in the images. It would also address the 

inability of the texture similarity correspondence to detect corresponding points on a 

distressed location that grows in extent or severity or both. 

 

In the method of homogeneous coordinates (Trucco and Verri, 1998), for any point 

 of the query image, Equation (35) is used to obtain the corresponding points 

 in the compared image. 

)( 1,1 yx

)( 2,2 yx
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The nine unknown components  (for i,j =1,3) of the rotation matrix (R) between the 

two images can be determined by substituting the coordinates of three known 

correspondence points (i=1-3) in the query image and the compared image 

, in Equation (35). Then Equation (35) can be used to determine the 

correspondences  (in the compared image) for any other specified coordinates 

of the query image. Hence this method provides accurate correspondences of 

points between two images irrespective of the differences in scales and orientations since 

the scale and orientation are automatically incorporated in the matrix R. In this 

dissertation, the method of homogeneous coordinates will be illustrated by its application 

in locating the correspondences on active cracks in asphalt images.  

ijr

)( 1,1 ii yx

)( 2,2 ii yx
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If a relative rotation exists between the features in the two images, the angle of rotation 

(θ) between the two images can also be determined by using the components of the 

matrix R given in Equation (35) as: 

11

21

r

r
                (36) 

 

3.3 Applications in Pavement Image Correspondence 

Tools of texture correspondence of images can be useful in monitoring the changes in 

pavement characteristics in a variety of applications in pavement evaluation. Although 
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images captured at different times could have widely varying total intensity distributions 

(histograms), the relative texture of a given location in an image with respect to other 

locations would only change due to the propagation of distresses at that location or 

wearing of the surface. Therefore tools that predict texture similarities or differences can 

be used, devoid of the illumination effects, to monitor distress propagation and wearing 

of pavements using their images captured at different times. Different pavement materials 

respond to growth of cracks or traffic or environment induced wear at different rates and 

as part of projects it is necessary to compare the rates of degradation in materials. The 

rates of crack growth or wear in different pavement surface types can be monitored using 

correspondence of images. This can be achieved by corresponding images close to the 

area of interest using texture similarity measures or homogeneous coordinates and then 

determining the rate of degradation with time. Thus, two ideal applications of these tools 

would be in the regular monitoring of (1) hairline crack growth and (2) wearing of the 

pavement within a closely monitored section, using a sequence of images collected at 

different times. 

 

3.3.1 Eliminating the Effect of Illumination and Moisture 

If texture matching is to be performed to detect a certain feature (ex. edge texture for 

detection of cracks), the matching exercise can be made more effective by operating the 

relevant mask on the image. However, prior to using Laws’ texture masks for the texture 

matching, the effects of illumination must be removed from the query image and the 

compared image. This is typically achieved by selecting a window size of more or less 

homogeneous intensity and subtracting the mean of the intensities of this window from 
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the intensity of its center pixel. Laws’ texture method recommends a 15 x 15 pixel 

window to be considered for this purpose assuming the prominent features of the image 

to be larger than a 15 x 15 pixel set. However, the basic size of the texture primitives in 

typical pavements could be smaller than a 15 x 15 window under normal imaging 

resolutions. Hence an approximately homogeneous section size must be selected for a 

given pavement surface texture so that the effect of illumination can be removed without 

altering the features. The SSI concept that was introduced in Section 2.1 becomes useful 

in the selection of the homogeneous size for a particular image texture. It was shown that 

the homogenous sections for both asphalt and concrete were 4x4. Since it is practically 

inconvenient to use 4x4 pixels as the homogeneous section, for all pavement images a 

15x15 window suggested in the literature (Shapiro and Stockman, 2001) was used for 

eliminating the effects of illumination. 

 

Moisture changes the appearance of pavements in terms of color, reflection and 

transparency characteristics. If the effect of moisture on pavements is more or less 

uniform in all areas of the studied pavement section in terms of the image intensity 

variation, then the correction for moisture effects would be similar to the removal of the 

effect of illumination. However, if moisture is retained only inside cracks or troughs of 

the pavement, then the intensity variation due to this must be considered. This can be 

addressed by modeling and observing the intensity variation of images at different 

moisture contents and removing the effect of moisture prior to processing. However, this 

cumbersome problem can be avoided if images are obtained after a dry period that allows 

water to be completely removed from the surface. 
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3.3.2 Correspondences of Concrete Images 

Figure 22(a) shows one segment of a sample concrete image collected on US41 in Port 

Charlotte, FL using the FDOT MPSV, while Figure 22(b) shows the matched area of the 

corresponding image collected at the same location during a different run on the same 

day. The selected window of the first image contains a crack (considered as an “edge”) 

and hence the L5E5 mask was used to determine its corresponding position in the second 

image (Figure 22(b)). Although the pixel intensities are different in the two instances 

primarily due to the differences in illumination, this method enables one to detect the 

exact corresponding location in the second image. Figure 23(a) is a gray scale (intensity 

of 0-255) plot of the texture distance (Equation 4) between the image in Figures 22(a) 

and image segments of the same size at different locations of Figures 22(b), with the 

intensity of a given area in Figure 23(a) setup to be proportional to the texture distance 

between that area and the query image section. The dark spot (lowest intensity) at the 

center of Figure 23(a) indicates the area with the minimum distance between the two 

images, which in fact was verified manually to be the exact matching position. 

Figure 24 shows similar results for the same concrete pavement at a different location 

where the exact identification could be made even in the absence of major identification 

features such as cracks and isolated defects. It is also evident that the matching can be 

achieved even with the marked difference in illumination between the images in the two 

runs. Similar to Figure 23(a), the dark spot at the center of Figure 23(b) shows the area 

with the minimum texture distance between the two images (Figures 24(a) and 24(b)), 

which corresponds to the exact matching position. 
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FIGURE 22(a) Query Image of a 
Cracked Concrete Pavement 

FIGURE 22(b) Compared Image of Figure 
22(a) after Matching 

 
 

FIGURE 23(a) Display of 
Distance Measurement for 

Figure 22 

FIGURE 23(b) Display of Distance Measurement 
for Figure 24 

 
 

 

FIGURE 24(a) Query Image of an 
Uncracked Concrete Pavement 

FIGURE 24(b) Compared Image of Figure 
24(a) after Matching 
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3.3.3 Detection of Pavement Wear through Correspondences of Asphalt Images  

It is well established that the skid resistance of a pavement depends on the microtexture 

of the aggregate as well as the macrotexture depth (mean profile depth (MPD)) and 

wavelength. MPD and wavelength are governed by the size and spacing of the aggregates 

respectively. Lower MPDs, higher wavelengths and smooth textured aggregates decrease 

the skid resistance of pavements. Thus pavement wear lowers both microtexture and 

macrotexture and reduces the skid r esistance of pavements. It was theoretically proved 

and experimentally verified (Amarasiri et al., 2009) that the pavement surface 

degradation due to changes in macrotexture and microtexture results in quantifiable 

changes in the intensity of the corresponding images. It was also found by Amarasiri et 

al. (2009) that the brightness of an image increases with pavement wear. In a similar 

study by Khoudeir and Brochard (2004), pavement wear has been attributed to changes in 

the gray level distribution, absolute value of the gradient, the autocorrelation function, 

and the distribution of the curvature map of corresponding digital images. Amarasiri et al. 

(2009) also showed that once an equipment specific correlation is developed between the 

intensities of images captured at one stage of wearing and the skid friction measurement 

corresponding to that stage, the intensities of images can alone be used to predict the 

friction measurements at future stages. The above research findings can be used to 

determine the degree of wear of pavements at different stages of their life using the 

intensities of corresponding images. The matching technique developed in the current 

research would be ideal during such efforts for identifying the location to be monitored 

for wear at every stage. 
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However, to compare the image intensity distribution at different times, the exact 

pavement section has to be corresponded at each time. This can be achieved by using the 

minimum texture distance criterion to find the corresponding points. Generally changes 

in texture due to wear are limited to the wheel paths. Hence the minimum texture distance 

can be an appropriate method to correspond the exact locations of the relatively 

unaffected neighboring non-wheel path areas of images collected at different times. Then 

the significant texture changes that occur on the wheel path locations that are visible in 

the images can be estimated to evaluate the degree of wear. 

 

Figures 25(a) and 25(b) are two images collected from a section of the asphalt pavement 

in Fowler Avenue, Tampa, Florida on 8th July 2007 and 20th January 2008 respectively. 

These will be used to illustrate similarity matching and detection of pavement wear. Even 

after the illumination effects were removed from the two images, locations close to one 

wheel path of the compared image (around point B) showed significant texture changes 

compared to the point A outside the wheel path. Since no significant distress was seen at 

B, it was determined that the relatively high change of the texture would be due to 

pavement wear. However, in order to evaluate the texture change at B accurately, one 

must locate the point B in both images.  

 

This is made possible by first corresponding a point outside the wheel path, such as A 

with minimal texture changes, in the two images. When the minimum texture distance 

criterion was applied to the two images in Figs. 6(a) and 6(b), point A is matched exactly 

as seen in the dark spot in Fig. 6(d). Then, based on the relative positions of A and B, one 

 59



 

can locate the point B in Figs. 6(b) and 6(c). Furthermore, Fig. 6(d) depicts the relative 

texture distance between the two image segments with the point A with no texture change 

corresponding to the minimum distance. Finally, the texture distance corresponding to the 

point B and hence the degree of wear at B can be estimated based on Fig. 6(d). It can be 

concluded that while the procedure for detection of texture similarity is applicable to 

locations where no significant changes in texture have taken place between imaging 

times, it can also be extended to evaluate the wear at neighboring locations.  

 

 

FIGURE 25(a) Query 
Image of an Asphalt 

Pavement 

FIGURE 25(b) Compared Image of Figure 25(a) after 
Matching 

A

B
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FIGURE 25(c) Display 
of Distance 

Measurement for Figure 
25(a) 

FIGURE 25(d) 3D Display of Distance Measurement for 
Figure 25(b) 

B 

A 

B 

A

 

3.4 Application to the Monitoring of Crack Growth 

The durability of a pavement depends on the rate of crack propagation. The higher the 

rate of crack propagation, the faster the rate of pavement deterioration. Hence monitoring 

of individual cracks at the project level could furnish valuable information on the 

performance of a given pavement mix or a specific maintenance or rehabilitation 

technique. These objectives can be achieved by monitoring a few selected representative 

cracks on the given pavement section. 

 

To formulate a new methodology for monitoring of the growth of selected cracks using 

the tools described in this dissertation, images of five asphalt pavement locations with 

different traffic levels (low-high) were selected. At each location, low, medium and high 

severity cracks were earmarked for growth monitoring. For locations where texture 
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changes between images were minimal, the minimum texture distance was used for 

correspondence, while for locations with significant changes in texture, homogeneous 

coordinates were used. On the other hand, the maximum texture distance was used to find 

the locations of a crack where maximum texture changes have occurred. 

 

3.4.1 Use of Canny Edge Detector for Crack Tip Identification 

In automated pavement evaluation systems, edge detection has been considered as the 

conventional method for identifying and classifying pavement cracks. Of the common 

Edge Detectors that are currently used in digital image processing, the Canny Edge 

Detector (Canny, 1986) is one of the most effective ones used to detect the intensity 

contrasts (edges). Wang et al. (2007) used a wavelet based technique to detect edge 

information from pavement surface images.  In this work, it was first attempted to use the 

Canny Edge Detector built in MATLAB to detect the intensity contrasts at the cracks. 

The parameters to be assigned for the Canny Edge Detector are the contrast threshold 

intensity for the edges and its standard deviation. Then the edges of images that are above 

the threshold are detected automatically. Trial threshold values and variances were used 

to select the optimum identification conditions. In the case of asphalt texture, since the 

aggregate particle/asphalt binder interface had a higher contrast than the edges of cracks, 

the edges of the particles were highlighted over the edges of cracks. Figure 26 shows the 

results of edge detection with a threshold of 0.25 and a variance of 0.1. This analysis 

demonstrates that the Canny Edge Detector is inadequate for detection of an asphalt 

pavement crack tip.  
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FIGURE 26 Resulting Image of FOM1 after Application of Canny Edge Detector 

 

3.4.2 Application of Homogeneous Coordinates to Study the Pavement Crack 
Growth 

To monitor the growth of a crack two criteria must be available; (1) any common 

(matching) location on the crack appearing in the initial and the updated images (2) 

identification of the crack tip location in the two images. Although homogeneous 

coordinates technique is adequate to determine matching locations on active cracks, in 

order to locate the crack tip accurately, one also needs an edge detection technique. 

 

3.4.3 Application of Maximum Texture Distance to Study the Pavement Crack 
Growth 

Correspondences between images of cracks which do not change in width can be 

determined using the minimum texture distance criterion. However, extending crack tips 

and widening crack locations cannot be matched because of the significant texture 

changes at the crack tip and widening locations. On the other hand, the combination of 

the homogeneous coordinates and the maximum texture distance concept satisfy the 

respective criteria mentioned above for monitoring the growth of an active crack. Thus 

the above techniques was used to detect the locations of crack tips and widening 
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locations. Figure 27 shows an image of a cracked pavement section from Fowler Avenue, 

FL captured on 24th June, 2007. Six sections, 1 through 6, of size 50 x 50 pixels were 

marked along the crack including the tip of the crack, from left to right. Using the method 

of homogeneous coordinates the corresponding 50 x 50 pixel sections were detected on 

the subsequently captured images of the same location (Figures 28(a), 29(a), 29(b)). For 

each of the six sections on the crack, texture distances between correspondence points 

were computed after the L5E5 operation.  

 

 

FIGURE 27 Image of Crack FOM1 (June 24, 2007), LM=50.2 klux 
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FIGURE 28(a) Image of Crack FOM1 
(July 15, 2007), LM = 35.14 klux 
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FIGURE 29(a) Image of Crack FOM1 
(September 16, 2007), LM = 38.97 klux 

FIGURE 29(b) Image of Crack FOM1 
(October 21, 2007), LM = 38.97 klux 

 

Figure 28(b) corresponds to the texture distance distribution in the sections 1-6 in Figure 

27 and the corresponding sections in Figures 28(a). From Figure 28(b), it can be noted 

that the maximum texture distance corresponds to section 1 of Figure 27 where the most 

significant texture change has occurred. Figure 30 is a plot of the same sections showing 

how the location of the maximum texture difference between the sections in Figure 27 

and the corresponding sections in Figures 28(a), 29(a) and 29(b) changes gradually. It is 

noted that the section of maximum texture distance moves inside the crack as the crack 

propagates. When the sections were visually observed, it could also be noted that in 

addition to its growth in extent, there was also widening of the crack. When the changes 

in texture due to widening of the crack are higher than those due to the extension of the 

crack tip, the section corresponding to the maximum texture distance is shifted to the 

location where the widening of the crack has occurred. Hence the maximum texture 

distance criterion can be used to detect locations where the most significant changes have 

occurred on the pavement either due to widening or elongation.  
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FIGURE 30 Sections Corresponding to Maximum Texture Distance 

 

3.5 Application in Different Types of Defects 

The changes in pavement texture caused by different types of defects in response to 

traffic and environmental conditions have unique characteristics. Therefore, by initially 

calibrating the texture measurements for the specific changes in image texture associated 

with given types of defects or rehabilitation such as patching, one would be able to use 

the images collected at different times to identify the variation in the pavement condition 

due to the above defects or rehabilitation techniques. This would preclude the necessity 

for using hazardous manual pavement surveys for such exercises. Such potential 

applications can be pursued when the image matching procedure described here is made 

more efficient practically. 

 

3.6 Summary of Developments 

1. The minimum texture distance criterion can be used to detect corresponding locations 

of images where the pavement distress condition does not change within times of capture. 

2. When the pavement texture changes significantly due to changes in extent and 

severity of distress, the minimum texture distance concept must be replaced by the 
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method of homogeneous coordinates for detecting correspondences within or outside the 

distressed areas.  

3. Detected correspondences between images can be used to monitor progression of 

wear at project-level pavement investigations. 

 

The method of homogeneous coordinates, L5E5 masking operation and the maximum 

texture distance criterion can be combined to verify the significant mode of crack growth, 

i.e. elongation or widening, depending on whether the location of the maximum texture 

distance moves out of the crack or inside the crack. 



 

CHAPTER 4 : USE OF DIGITAL IMAGE MODELING FOR EVALUATION OF 
CONCRETE PAVEMENT MACROTEXTURE AND WEAR 

 

4.1 Importance of Surface Macrotexture Evaluation in Pavement Management 

A major task of pavement management is to ensure adequate skid-resistance (friction) on 

all pavements in a network. Gradual degradation of skid-resistance on highways and 

runways can be attributed primarily to pavement texture changes due to traffic induced 

wear. Therefore, a safe level of skid resistance can be ensured by regularly monitoring 

pavement texture and taking corrective measures to restore degraded texture in a timely 

manner. Pavement friction is known to originate from two levels of texture; (1) macro-

texture (depths from 0.5 to 20 mm and widths from 0.5 to 50 mm) and (2) micro-texture 

(depths from 0.001 to 0.5 mm and widths less than 0.5 mm) (Table 4 ISO 1997). 

 

TABLE 4 Classification of Texture Based on Wavelengths (ISO, 1997) 
 

Type Wavelength (mm) Description of texture 
Micro-
texture 

λ<0.5 Formed by either fine aggregate particles (sand) or 
surface roughness of the large aggregate 

Macro-
texture 

0.5<λ<50 Same order of size as coarse aggregate or tire tread 
elements 

Mega-texture 50<λ<500 Same order of size as tire/road contact area 
Unevenness 500<λ Surface roughness that affects the ride comfort 
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4.1.1 Objectives of the Investigation 

In the preliminary study reported in this dissertation, first the geometrical reflection 

properties of macrotexture would be used to model the digital image formation of 

pavement surfaces of uniform color. Second, the above imaging model would be used to 

identify (1) the changes in optical properties of digital images that reflect pavement wear 

and (2) the optimum specular setting required by the imaging system to detect the above 

changes. Then a simple experimental study would be set up to verify the theoretical 

findings. Finally, it would be illustrated how the detectable changes that occur in the 

optical properties of digital images due to the pavement wear can be correlated to 

degradation of macrostructure and consequent loss of skid-resistance.  

 

4.1.2 Advances in Surface Characterization Using Digital Images 

The identification of object characteristics from their images has been made possible by 

recent advances in the image processing technology. Tamura et al. (1978) modeled 

optical texture of a physically textured object using its reflection properties and illustrated 

how it facilitates image classification, image segmentation, and image encoding. Optical 

texture models have also been used to recreate depth and orientation of objects and to 

generate desired synthetic image textures by adjusting model parameters (Tamura et al. 

(1978)). It was shown by Shapiro et al.(2001) that the optical texture of pavement images 

can also be formed from image primitives of varying shape or by using stochastic 

assumptions. In the above work, pavement macrotexture and microtexture were 

considered to be composed respectively of relatively large and small optical texture 

primitives. The intensity of each pixel in the image space has also been considered a 
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random variable within a range of intensities defined by the neighboring pixels. 

Consequently, this relationship of interdependence of intensities has been modeled using 

the Markov random field theory to determine the pavement image texture parameters and 

hence evaluate the specific parameters relevant to pavement friction (Rado (1994)). Rado 

(1994) used the above model to correlate the macrotexture to image intensities of local 

neighborhoods using actual images of pavements and the corresponding mean texture 

depths measured from those pavement profiles.Consequently, this relationship of 

interdependence of intensities has been modeled using the Markov random field theory to 

determine the pavement image texture parameters and hence evaluate the specific 

parameters relevant to pavement friction (Rado (1994)). Rado (1994) used the above 

model to correlate the macrotexture to image intensities of local neighborhoods using 

actual images of pavements and the corresponding mean texture depths measured from 

those pavement profiles.  

 

More recently Khoudeir and Brochard (2004) have studied the changes in image 

properties due to wearing of pavement surfaces based on the statistical properties of the 

image gradient, the curvature map of the gray level images, and the derivative of the 

autocorrelation function of several lines of the images. However in Khoudeir and 

Brochard (2004) work, the intensity of light reflection in a given direction was considered 

to be governed by the reflected angle only thus neglecting its significant dependence on 

the incident angle and the surface properties. In the work presented in this dissertation the 

intensities of incident and reflected light as well as the reflection properties of surfaces of 

uniform color are used in modeling the wearing of pavement macrotexture.  
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4.2 Modeling of the Pavement Image Formation Process 

4.2.1 Selection of Surface Parameters for the Bidirectional Reflection Distribution 
Function (BRDF) Model  

The Ward’s reflection model described in Section 2.1.3 with the same parameters was 

used in this analysis also. In this analysis was computed from the variation of surface 

slopes in the neighborhood surrounding the nodal point of interest. For the assumption of 

local specularity to be valid in the neighborhood of any node and the value of   to 

capture the microtexture, the nodal spacing was selected as 0.025 mm in both x and y 

directions (Table 3. Although theoretical modeling of the texture imaging can reach the 

microtexture level, the image resolution achieved by state-of-the-art pavement cameras is 

only 1mm. Thus, any refinement in the fineness of the nodal mesh beyond 0.5 mm would 

only make the computation of nodal α values more accurate and produce images that 

show more texture details than real images. Since the reflection at each local node is 

considered to be specular, s  and d  are assigned values of 1.0 and 0 respectively.  

 

4.2.2 Simulation of the Pavement Texture Profile 

In the modeling of images of pavement macrotexture, the pavement profiles were 

represented in terms of 3-D sine functions. This representation can be justified based on 

the principles of Fourier decomposition, whereby most pavement texture profiles can be 

approximated with a series (n) of finite 3-D sine waves varying in wavelengths and 

amplitudes as shown in Eqn. (37). 
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where i  and  are the respective wavelength and amplitude of the ith component.  iamp

 

4.2.3 Evaluation of the Reflectance of the Pavement Surface 

The texture profile of the imaged pavement and the locations of the light source and the 

camera were defined using a 3D cartesian coordinate system (Fig. 31). Then the BRDF 

variation of the surface due to the direct illumination from the light source can be 

computed, disregarding the inter-reflection and illumination from other sources such as 

sunlight. Part of the light from the illuminating source gets reflected from every point on 

the pavement such as R (x,y,z), scatters due to the diffusivity caused by the slope 

variance ( ) of the  neighborhood of R and reaches different locations of the camera 

lens. Therefore, BRDF of R with respect to a number of small elements (Ac) that 

constitute the camera lens area (Ac) must be evaluated and integrated to determine the 

average radiance from R with respect to the camera. It has been shown in the Appendix A 

that the average BRDF at R with respect to the entire camera can be determined as, 
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where, = Unit vector bisecting the incidence and reflection directions (Fig. 1) ĥ

n̂ = Unit vector normal to the surface at R (Fig. 1) 

nh ˆ.ˆcos  , nRLui ˆ.cos   and nRPur ˆ.cos   

uLR = Unit vector in the direction of incidence (Fig. 31) 

uRP = Unit vector in the direction of reflection (Fig. 31) 
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The appropriate expressions for the above vectors are also derived in the Appendix A.  

The BRDF at any point on the surface (i.e, R) with respect to camera aperture segments 

of 0.5 mm and 300 increments in the radial and angular directions respectively, can be 

evaluated numerically using Equation (38). The incident light from the source does not 

reach certain locations on the surface due to occlusion by the surface profile and similarly 

the reflected light from certain other locations is prevented from reaching the camera. 

Both of the above conditions were incorporated when the BRDF for imaged surface was 

evaluated using Equation (38). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 31 Illustration of the Imaging System Setup 

 

4.2.4 Conversion of Pavement Radiance to Image Intensity 

The image of a pavement feature is formed when the light reflected from that feature 

(object) enters the camera lens and refracts on to the CCD sensor. A schematic diagram 

of the optics of image formation is shown in Figure 32. The relationship (Eqn. 39) 
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between the radiance from any surface point (R) and the intensity of its image (∆E) has 

been derived in the Appendix B. 

C
cL

Li A
fD

ALhE  .
cos

.
cos

..cos*
2

3

4
2 

            (39) 

Where f, , L*, and c  are the focal length of the lens, BRDF at R with respect to one 

camera element ∆AC, intensity of irradiance immediately below the light source (at Q), 

and the angle between the normal to the camera aperture and the line RC, respectively. 

The remaining symbols in Eqn. (39) are illustrated in Fig. 32.  
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FIGURE 32 Illustration of the Image Formation Process 
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If the light source and the camera are placed at a relatively large height compared to the 

dimensions of the imaged area, L  and θC  would not change significantly within one 

image. Furthermore, since h, L*, AL and f are constants, Eqn. (39) can be re-written as, 

Ci A
D

KE 
4

1
.cos               (40) 

where K includes the constant quantities in Eqn. (39). Finally, the total intensity E of the 

image formed by the surface point R due to light entering the entire lens (of area Ac) can 

be determined by combining Eqns. (38) and (40) as 

avgC
i zyxA

D
KE ),,(

cos
4




              (41) 

Therefore, Eqns. (38) and (41) can be used to obtain the pixel intensity distribution in the 

pavement surface image. 

 

4.3 Experimental Verification of the Image Formation Model  

The accuracy of the image formation model developed in Section 2.0 was verified 

experimentally using a single wavelength periodic surface (n=1, 1 =6mm and 

=3mm in Eqn. (37)) molded from clay. The light source was set up above the 

molded surface with the normal to its surface intersecting the profile at a horizontal 

distance of 380 mm from it. The camera was placed 500 mm away from the light source 

and oriented in such a way that the normal lines to the camera aperture and the light 

source intersected the pavement profile at the same location. Then the surface was 

imaged at two different camera heights of 305 mm and 610 mm. The actual and 

simulated images corresponding to the two conditions are shown in Figures 33(a)-(f). 

1amp
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When comparing Figs. 33(a) with 33(b) and Figs. 33(d) with 33(e), it can be observed 

that the images created by the BRDF model (Eqns. (38) and (41)) resemble those of the 

actual surface. Furthermore, the images of the same surface mathematically simulated 

under the same lighting and imaging conditions using the Phong (1975) model 

programmed in a widely used computer graphics software, Maya 7, are also shown in 

Figs. 33(c) and 33(f). It is seen that Figs. 33(b) and 33(e) compare reasonably well with 

Figs. 33(c) and 33(f) as well. The pixel intensities of the synthetic (modeled) image 

closer to the camera were seen to be higher (Fig. 33(b)) as in the case with its 

experimental counterpart (Fig. 33(a)). However, Figs. 33(b) and 33(e) show that there is a 

sharp intensity reduction from the peak of the profile in the modeled images whereas the 

intensities of the experimental counterparts (Figs. 33(a) and 33(d)) decrease gradually 

from the peak. This can be attributed to the fact that the exact sinusoidal shape described 

by Eqn. (37) could not be achieved due to a minor flattening effect produced at the peaks 

during molding of the clay surface. 

 

 

FIGURE 33(a) Actual 
Image of the Profile Taken 

at 305 mm Above the 
Surface 

FIGURE 33(b) Modeled 
(Ward) Image of the 

Simulated Profile 
Corresponding to Figure 

33(a) 

FIGURE 33(c) Modeled 
(Maya) Image of the 

Simulated Profile 
Corresponding to Figure 

33(a) 

 76



 

 

FIGURE 33(d) Actual 
Image of the Profile Taken 

at 610 mm Above the 
Surface 

FIGURE 33(e) Modeled 
(Ward)  Image of the 

Simulated Profile 
Corresponding to Figure 

33(d) 

FIGURE 33(f) Modeled 
(Maya) Image of the 

Simulated Profile 
Corresponding to Figure 

33(d) 
  

4.4 Application of the Image Model in Detection of Wear 

In the next phase of the study, the new reflection model was applied to detect the 

degradation of texture in pavements. For this purpose, a 0.05m x 0.05m segment of a 

pavement surface was modeled mathematically with the light source and the camera 

placed on opposite sides of the normal to the center of the surface, 0.05 m apart from 

each other at heights of 0.5m and 1 m respectively above the modeled surface (Fig. 

34(a)). Possible optimum locations of two such imaging systems in a potential field 

implementation of this technique are shown in Fig. 34(b). As implied in Fig. 34(b) the 

pavement wear detection can be limited to the wheel path areas where wearing of 

pavement texture due to traffic is predominant. Using the above setup, the reflection 

model described in Section 2.2 was used to create the corresponding images of the 

mathematically represented original and worn profiles, as described later in Section 4.2.  
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FIGURE 34(a) 
Specular Setup of the 

Imaging System 

FIGURE 34(b) Optimum Arrangements of Light Source, 
Camera and Imaged Section 

CL

 

4.4.1 Tools for Assessing Pavement Wear Using Digital Images 

Several image characteristics can be used for differentiation of digital images of new and 

worn out pavements and subsequent identification of the extent of degradation of texture 

and frictional properties. The normalized pixel intensity histogram of a digital image 

which depicts the statistical distribution of pixel intensities on the gray scale of 0 to 255 

provides the simplest tool to compare and contrast images. Khoudeir and Brochard 

(2004) (Section 1.3) have used specific statistical properties and the autocorrelation 

function for this purpose. Alternatively, an appropriately defined brightness function of 

an image can also be employed as a more reliable measure for comparison of images. 

However, the perceived brightness of a given gray-scale intensity cannot be defined in a 

clear-cut manner due to the vagueness of intermediate intensities between black and 

white. To address this issue and define a reliable brightness function, researchers (Cheng 

et al., 1999) have considered image brightness as a fuzzy set. 

 

The membership function (μbright(x)) of the brightness fuzzy set can be defined in the gray 

intensity scale of 0 to 255 with three parameters a, b, and c. As illustrated in Fig. 35, the 

 78



 

intensities less than a have zero membership and the intensities higher than c have a 

membership of 1, in the brightness fuzzy set. The degree of brightness for the intensities 

between a and c would vary gradually from 0 to 1. This variation can be represented 

using a standard S function described in Eqn. (42) (Cheng et al., 1999). 
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FIGURE 35 Illustration of the Brightness of Gray-Scale Intensities 

 

Then the brightness of an image can be expressed as a probability measure as follows  





255

0

)().()(
x

bright xpxbrightP              (43) 

where p(x) is the probability of occurrence of any given intensity x in the evaluated image 

as displayed in its normalized histogram. The optimum values for parameters a, b and c 

can be found by maximizing the entropy of brightness (H(bright) in Eqn. 44) of a 

selected standard image.  

))(1log())(1())(log()()( brightPbrightPbrightPbrightPbrightH         (44) 
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In the current investigation a standard gray-scale target (Edmund, 2003) consisting of 17 

evenly spaced patches with intensities between 0 and 255 (Fig. 36) was used as the 

standard image. With p(x) (Eqn. (43)) determined from the normalized intensity 

distribution of an image of the standard gray-scale target, the maximization of the 

brightness entropy function (Eqn. (44)) yielded the optimum a, b and c values of 45, 135 

and 195, respectively. Then, the brightness evaluation of any other image can be 

performed using Eqn. (43) with p(x) obtained from its intensity histogram and μbright(x) 

evaluated from Eqn. (42) using the optimum a, b and c values determined above.  

 

 

FIGURE 36 Standard Fifteen-Wedge Grayscale Target (Edmund, 2003) 

 

4.4.2 Detection of Surface Wear Based on Image Brightness   

4.4.2.1 Case 1 – Modeling of Single Sine Wave Profiles 

The effect of texture wear on the brightness of the original and worn out images was 

investigated by modeling the images of different texture levels using the reflection model 

in Equations (41) and (44) under the light source and the camera positions illustrated in 

Figure 34(a). The brightness of the modeled images of single sine wave surface profiles 

(Equation 37) with predefined amplitudes (MTD) varying from 1 mm to 5 mm and 

wavelengths (average texture spacing) varying from 1 mm to 10 mm were determined 

using Equation (43) and plotted in Figure 37. From Figure 37 it can be observed that for a 
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constant wavelength the image brightness increases with decreasing mean texture depth 

(MTD) while for a constant MTD, the brightness increases with increasing wavelength. 

In both cases the increase in brightness can be attributed to the smoothening of the 

profile. Based on the above preliminary observations it was decided that the 

consideration of the brightness of pavement images captured under the specific 

conditions defined in this study (Fig. 34) could be pursued to detect surface wear. 

 
FIGURE 37 3-D Plot of Brightness Variation with Wavelength and MTD 

 
 
4.4.2.2 Case 2 – Modeling of Complex Pavement Surface Profiles 

In the next phase of modeling, two different and more complex profiles were composed 

of multiple sine waves to closely represent actual texture profiles of relatively rough and 

relatively smooth pavements. In both profiles the wavelengths were set to be 24, 12, 8, 6 

and 4 mm. The wavelength to amplitude ratios (  in Equation 45) of the rougher profile 

were set to be 10, 8, 5, 3 and 2 respectively, while  for the smoother profile was set at a 

ia

ia
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constant value of 10 for all the wavelengths. Then the above profiles can be expressed 

mathematically as, 
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where  

i is the wavelength of ith  sine curve (i = 1,5 mm) 

ia  is the wavelength( i ) to amplitude ( ) ratio of ith sinusoidal curve iamp

Three stages of wearing were simulated on the computer by degrading the portion of their 

profiles above the mean levels by 2%, 4% and 6% of the original profile heights 

respectively. The original and the worn surfaces of the smooth and rough profiles are 

shown in Figures 38(a) and 38(b) respectively. Figures 39(a) and 39(c) show the 

respective images of the original profiles shown in Figures 38(a) and 38(b) modeled 

using Eqns. (38) and (41), while Figures 39(b) and 39(d) show the modeled images of 

their 6% worn counterparts. The pair-wise comparison of Figure 39(b) with Figure 39(a) 

and Figure 39(d) with Figure 39(c) shows an increase in image brightness due to wearing. 

Fig. 40 is a plot of the brightness Vs the MTD for both pavement surfaces under different 

stages of wearing. It can be observed from Figure 40 that the images of the smoother 

surface are significantly brighter than those of the rougher surface at all stages of 

wearing. Furthermore, Fig. 40 shows the clearly increasing trends of brightness of both 

profiles as wearing proceeds. The above observations further support the increasing trend 

of brightness that was observed in Figs. 37 due to smoothening of single sine waves. In 

summary, the results indicated in Figs. 37-40 demonstrate the viability of setting up an 

optical imaging system in the manner specified in Fig. 34 to identify the level of 

macrotexture degradation on a pavement. 
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4.4.3 Experimental Verification of Image Brightness Variation due to Wearing 

In the final phase of the investigation, the theoretical relationship between image 

brightness and the extent of wear developed in Section 4.2 was experimentally verified 

using a 460 mm diameter laboratory concrete specimen made to be compatible with the 

Circular Track Meter (CTM) (ASTM E 1845-01). The above concrete specimen was 

grooved at uniformly spaced intervals to obtain the textured surface seen in Fig. 41(a). 

Then, four 50x50 mm sections evenly spaced out along the CT meter track were 

earmarked on it as test sections where the experimental results could be averaged to 

remove any bias due to texture variation. These individual sections were then imaged 

using the same optical settings used in the theoretical study. Later, the surface of the 

concrete specimen was gradually worn with sand paper and the worn sections were re-

imaged under the same lighting conditions. The CT meter profiles for the original and 

worn profiles are shown in Figure 42 from which the average MTD can be calculated at 

each wearing stage as shown in Table 5. 
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FIGURE 38(a) Wearing of Smooth 
Profile 

FIGURE 38(b) Wearing of Rough 
Profile 
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FIGURE 39(a) Synthetic Image for 
the Original Profile of Figure 38(a) 

 

FIGURE 39(b) Synthetic Image for the 
Worn Profile (Wear 3) of Figure 38(a) 

  

FIGURE 39(c) Synthetic Image for 
the Original Profile of Figure 38(b) 

FIGURE 39(d) Synthetic Image for the 
Worn Profile (Wear 3) of Figure 38(b) 
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FIGURE 40 Brightness Variation of Smooth and Rough Pavement Surfaces due to 
Wearing (Theoretical Modeling Results) 
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FIGURE 41(a) Original Image of the 
50mm x 50 mm Section 

 

FIGURE 41(b) Image of Section in 
Figure 41(a) after Wearing 
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FIGURE 41(c) Image Histogram for 
Original Section Shown in Figure 41(a) 

 

FIGURE 41(d) Image Histogram for 
Worn Section Shown in Figure 41(b) 

   

FIGURE 41(e) Original 
Pavement (Brightness = 

0.3102) 

FIGURE 41(f) After Stage 
1 Wearing (Brightness = 

0.3680) 

FIGURE 41(g) After 
Stage 2 Wearing 

(Brightness = 0.3852) 
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FIGURE 41(h) Image 
Histogram for Original 
Section Shown in Figure 

41(e) 

FIGURE 41(i) Image 
Histogram for Worn 

Section Shown in Figure 
41(f) 

FIGURE 41(j) Image 
Histogram for Worn 

Section Shown in Figure 
41(g) 
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FIGURE 42 Circular Track Meter Results Showing the Variation of Cement 
Surface Profile due to Wearing 

 

Images of the original and worn conditions of one of the four selected sections are shown 

in Fig. 41 with the corresponding intensity histograms. Comparison of the image 

histograms of Figures 41(c) and 41(d) show how the overall image intensities have 

increased slightly due to wearing. The computed average brightness values of the images 

are also shown in Table 5. From the results in Table 5 and the corresponding plot in 
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Figure 43, it can be observed that the brightness of the images of the four sections have 

increased due to wearing. Hence it can be concluded that the theoretically predicted 

increase in image brightness due to wearing is supported by the above experimental 

results.  
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FIGURE 43 Variation of Brightness with MTD 
 
 

4.4.4 Application of Image Brightness to Evaluate Pavement Friction 

The experimental relationship obtained in Fig. 43 between the image brightness and 

MTD of a given surface can be calibrated using Equation (46). 

nMTDkeB )(                     (46) 

where k and n are assumed to be constants for given pavement and lighting conditions. 

For the specific Brightness Vs MTD data set in Fig. 43, one obtains, 

247.0)(58.2 MTDeB                (47) 
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On the other hand, the Skid Number (SN) (ASTM E 1960-03) of a pavement can be 

evaluated using as, 

pS

sV

eSNSN


 0               (48)  

where, s and V are the slip ratio and the speed of measurement.  is the friction 

measurement corresponding to static conditions. For the Locked-Wheel Friction Testers 

(LWST) (ASTM E 274-06) and DFTs (ASTM E 1911-09a), s=100%. Also, , the 

speed constant, can be related to the Mean Profile Depth (MPD) as, 

0SN

pS

)(MPDbaS p                (49) 

where a and b are constants dependent on the method used to evaluate macrotexture. For 

the CT meter measurements, ASTM E 1960-03 recommended values are a=14.2 and 

b=89.7. 

 

TABLE 5 Brightness Variation due to Wearing 
 

Surface 
Description 

Mean Texture 
Depth (MTD) 

– mm 

Brightness 
of Images 

Originally 
grooved 0.253 0.1702 

After wearing 
stage 1 0.207 0.1821 

After wearing 
stage 2 0.198 0.1834 

After wearing 
stage 3 0.187 0.1894 

 
Smooth surface 0.172 0.2053 
 

If it is assumed that MTD and MPD of a profile to be approximately the same, the skid-

number (SN) of a pavement measured with the LWST or DFT can be related to the 
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brightness of the corresponding images by combining Equations (46), (48) and (49) as 

follows 
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Finally, Equation (50) can be used to calibrate the relationship between the predicted SN 

at different stages of wearing of a given concrete pavement and the brightness (B) of the 

corresponding images. As an example, let the LWST measured SN of the initially 

unworn concrete specimen for which the image Brightness and MTD variation is defined 

in Fig. 43 (with k=2.58 and n=0.267), be 42. Then the variation of SN with the brightness 

of images captured at different stages of wear shown in Table 5 can be evaluated using 

Eqn. (50). This variation is illustrated in Figure 44 for the standard measurement speed of 

65 km/hr.  

 

The above example illustrates the need for calibrating Equation (50) to determine the 

specific values of SN0, k and n applicable for a given pavement and a lighting system, 

prior to field implementation of the developed methodology on that pavement. Two 

initial LWST measurements and brightness evaluations of the corresponding images 

would suffice for this purpose.    
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FIGURE 44 Variation of Skid Number with Brightness 
 

 

4.5 Limitations of the New Technique 

A limitation of the developed technique is its inapplicability on wheel paths where the 

deposition of tire rubber camouflages the texture, thereby offsetting increase in brightness 

in the images due to wear. In addition, the images created using the geometrical and 

reflection models could differ from the actual images due to camera artifacts and other 

types of noise. Hence the images collected from survey vehicles have to be pre-processed 

to remove any noise before they are used to detect the changes in brightness. Another 

possible limitation could be the complexity of the actual illumination conditions at the 

time of image capture. This effect can be especially pronounced when images are 

collected during daytime in the presence of sunlight and inter-reflections from other 

sources which are not considered in the modeling. However, this issue can be overcome 

by imaging during the night time when the imaged pavement surface would be 

illuminated mostly under the influence of the probe light attached to the evaluation 
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vehicle. Finally, in this preliminary analytical investigation and its companion 

experimental verifications, the image intensity contrasts were predicted based on the 

surface relief variations only, thus disregarding effects of color variation introduced in 

the radiant light by different constituent materials. This issue would be critical in the 

application of this technique to detect wear in asphalt pavements in particular, which 

constitutes aggregate and binder with contrasting colors. However, this technique can be 

refined further to incorporate color variations in the BRDF models (Amarasiri et al., 

2010). 

 



 

CHAPTER 5: CONCLUSIONS 

In the first part of the study, variations in Bidirectional Reflectional Distribution Function 

(BRDF) at surface discontinuities were used to model digital images of longitudinal and 

transverse cracks and joints in concrete pavements. Ward’s isotropic model was chosen 

to express the BRDF because of its simplicity and the parameters that are physically 

meaningful. The theoretical formulation was simplified by assuming homogeneity and 

isotropy in concrete pavement surfaces and regular geometry in surface discontinuities. It 

was shown that the reduction in pixel intensities which produces a color contrast at the 

discontinuities could be modeled successfully in order to obtain information on the depth 

of cracks. For calibration and experimental verification of the model, experimental cracks 

of varying severity and depths were formed in a concrete pavement. In the calibration 

process, the model parameters (diffusive and specular reflectances and the local slope 

variation) were determined by comparing the pixel intensity distributions of the modeled 

cracks and joints with their experimental counterparts. It was found that invariant model 

parameters could be used to model cracks and joints on a given concrete pavement. The 

calibrated model was able to produce additional images of cracks and joints that 

resembled their experimental counterparts to a reasonable degree in terms of both 

contrast in appearance and pixel intensity distributions within cracks. Another attractive 

feature of the new formulation is that the maximum pixel intensity reduction within a 

crack could be expressed in terms of the crack width and depth using an analytical 

relationship. It was also illustrated how this analytical relationship provides a convenient
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basis for predicting the crack depths based on crack widths and the pixel intensity 

contrast within the crack, thus precluding the need for time consuming processing. In the 

present study only crack widths up to 10 mm were modeled. Obviously one can foresee 

no issue with cracks of higher widths. Infact, even a better accuracy in predicting the 

depth of relatively wide cracks is speculated. However, for crack widths smaller than 1 

mm (hairline cracks), identification depends on the resolution of the camera and the 

accuracy would be lower due to lower contrast in intensities within an adequate width. In 

order to obtain more accurate results the assumption of homogeneity must be replaced 

with means of modeling the random variation in reflection properties particularly inside 

the cracks. The new technique shows definitive potential as an expedient tool for 

evaluation of shallow crack depths useful in rehabilitation decision-making and 

differentiation of cracks from other surface irregularities in open graded surface courses 

and joints in concrete pavements. Hence it would readily supplement the existing crack 

evaluation software as an additional tool. 

 

In the second part of the study accurate monitoring of the development of pavement 

distress such as cracking and wear was identified as vital in project level pavement 

evaluations. This is especially the case when a significant change in the crack rating or 

skid number is observed in a given pavement section between two consecutive surveys, 

or when the durability of different surface mix types have to be compared. However, for 

these applications to be efficiently implemented, the same image sections collected at 

different times must be matched manually or automatically.  
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The optical texture characteristics of pavement images change due to the formation of 

new distresses and growth of existing distress. Since manual correspondence at pixel 

level would be extremely tedious, tools for evaluating optical texture changes in 

pavement images would be quite useful in pavement management. Prior to texture 

distance computations, appropriate texture masks have to be applied to highlight the 

prominent texture features. When texture measures are computed, determining the 

approximate size of the texture primitives of a pavement is important. In this regard, the 

application of the Scaled Scattering Index (SSI) in determining the size of a 

homogeneous section was illustrated. SSI produced consistent results for both asphalt and 

concrete pavements showing that the primitive texture size is 4x4 pixels. In addition, the 

SSI relationship correctly reflected the artificial line texture that occurred every 10-15 

pixels in concrete pavements. However, it was found that the use of a 15x15 pixel 

window was more practical than a 4x4 window for masking operations. 

 

The concept of minimum texture distance was shown to be effective in matching areas in 

images where no significant texture changes have occurred. It was also demonstrated that 

the correspondence (matching) of images can be used to monitor pavement wear on an 

accurate basis. The investigation also revealed that when locating corresponding points 

on the distressed areas, homogeneous coordinates concept can be used effectively, 

irrespective of the likelihood of significant texture changes. The concept of maximum 

texture distance was shown to be effective in identifying the significant mode of crack 

growth; elongation or widening. In contrast to existing computational techniques that 

classify cracks and evaluate them in relatively large pavement sections based on 
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AASHTO and other standard protocols, the newly introduced computational techniques 

would be useful in fine monitoring of limited distressed pavement sections required in 

project-level and quality assurance investigations. 

 

In the third part of the study, a pavement image modeling technique was developed to 

demonstrate that changes in pavement macrotexture and skid resistance can be monitored 

using quantifiable optical properties of digital images captured by a well designed 

imaging system at an optimum location relative to the pavement. In this technique, the 

simplified Bidirectional Reflection Distribution Function (BRDF) model with physically 

meaningful parameters was used to transform the macrotexture of a pavement surface to 

the corresponding images captured by a digital area-view camera. This modeling 

technique was first verified by matching the theoretically simulated images of a single 

wavelength 3-D sinusoidal surface with those of a geometrically similar experimentally 

molded surface. Next the images of a family of 3-D single sine waves with varying 

amplitudes and wavelengths were modeled to explore specific image characteristics that 

would detect surface smoothening caused by changes in the mean texture depth or the 

texture spacing (wavelength). The above investigation was also extended to include 

appropriate combinations of 3D sine curves that resemble actual pavement surfaces with 

different macrotexture levels. Modeling of surface wear consistently revealed monotonic 

increases in the brightness of the corresponding images.  

 

Modeling results were verified experimentally using a concrete specimen compatible in 

size with the Circular Track Meter (CTM) and worn out in stages using sandpaper. 
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Processing of the images of the original and worn specimens confirmed the definitive 

increase in image brightness due to wearing. It was demonstrated that once the brightness 

variation trend of the images corresponding to initial stages of wearing of a given 

pavement is established, the model can be calibrated to determine the extent of pavement 

wear at any future stage based on evaluating the brightness of the relevant images. In 

addition, the conventional correlation between the skid number and MTD of a pavement 

was employed to illustrate how the new technique can be extended to predict the 

degradation of skid resistance, based on evaluating the brightness of pavement images.  

Meanwhile, the use of devices such as Locked-wheel skid testers is impractical for 

periodic network level screening of highway pavements for inadequate skid resistance. 

On the other hand, with further refinement of the methodology introduced in this study, if 

the evaluated brightness of pavement images routinely collected by various transportation 

agencies can be used to predict the degradation of skid-resistance of pavements, it would 

provide a valuable tool for network-level screening. Furthermore, since this texture 

modeling technique can reach even the microtexture of pavements, it can be employed to 

investigate the types of information on pavement microtexture that could also be revealed 

by enhancing the camera resolution. 
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Appendix A     Derivation of BRDF for an Aerial-View Camera  

From Fig. 31, the incident light vector at R can be determined as 

uLRDkzhjyixLR .)(                  (A1) 

where D is the distance LR and uLR  is the unit vector.  In order to compute the 

irradiance (incident light) on the camera, a transformation can be used to convert the 

aperture from a 3D plane circle in the (x,y,z) system to a 2D circle in the  zyx  ,,  

system as shown in Figure A1.  

 

If  is normal to the aperture of the lens, then the camera plane can be identified by the 

unit vector 

z

k along  defined by two of its directional cosines l and m as; z

kmljmilk 221              (A2) 

 

Then the unit vector i can be selected such that x  axis lies on the xy plane that intersects 

the circle. Since i  and k  are perpendicular to each other (i.e. 0. ki ), the transformed 

i can be expressed using the original i and j  as  

j
ml

l
i

ml

m
i

2222 



             (A3) 

Also since the third unit vector j  is perpendicular to both i  and k  (i.e. ikj  ), the 

transformed j can be expressed using the original i , j  and k as  
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Appendix A   (Continued) 
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FIGURE A1 Polar and Cartesian Coordinate Systems for the Camera Aperture 

 

Using the transformation defined by Eqns (A2)-(A4), the vector CP  (Figure A1) can be 

represented in the (x,y,z) coordinates as, 
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 (A5) 

Let the vector joining R and the center of the camera C (Figure A1) be, 

kCjCiCRC zyx                   (A6) 

Since, 

CPRCRP   

The reflected light from R to P can be represented by the following vector   
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Appendix A   (Continued) 

RP uC RPD .                     

where Dc  is the distance RP and uRP  is the unit vector.  Then using the unit vectors in 

the RP and LR directions, the half vector between the incident and the reflected light 

(Figure 1) is defined by, 

uu LRRPh   = hh


.ˆ                  (A8)  

If the unit normal to the pavement texture profile at point is specified using two 

known directional cosines Nx and Ny as follows, 

),,( zyxR

 kNNjNiNn yxyx
221ˆ                  (A9) 

Then, the angular parameters required for Ward’s BRDF expression (Eqn. (3)) to be 

applied at the surface location R can be determined as,  

nh ˆ.ˆcos                   (A10) 

nLRui ˆ.cos                  (A11) 

nRPur ˆ.cos                  (A12) 

 

Finally, by applying Eqn. (3a) to an element of area ∆AC of the aperture, the average 

BRDF at R with respect to the entire camera can be determined as, 
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where ))(( ddrrAc   (Fig. A) and Ac is the area of the camera aperture.  
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Appendix B    Relationship Between the Photo Intensities of Objects and their 
Images 

In Fig. 32, O  is the area of the neighborhood of R from which light is reflected to the 

corresponding area I  of the image. The flux leaving the pavement surface area δO 

toward the camera is given by 

 OLF R                   (B1) 

where LR is the radiance at δO. The solid angle subtended by cA  on R can be expressed 

as, 
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               (B2) 

If no loss of photo energy is assumed within the camera, and the intensity caused by the 

light refracted within the element Ac at the image area I is ∆E, then 

IEF .              (B3) 

Substituting from Eqn. (B3) in Eqn. (B1),  

  OLIE R              (B4) 

Using Eqn. (B2), Eqn. (B4) can be rewritten as  
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Appendix B   (Continued) 

From basic optics it follows that the light originating from an object O and passing 

through the center of the camera lens (C) continues without refraction to form its 

image I . Hence the solid angles subtended at the camera center C by O  and I  are 

equal and opposite. Then, by evaluating each solid angle one obtains,  
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where θC is the angle between the normal to the aperture at C and the line CR (Figure 32) 

and is the angle between the normal to the modeled surface and CR. Since the camera 

lens is relatively small in area, it can be assumed that =

/
r

/
r r  and =DC. Therefore, by 

substituting in Eqn. (B5) from Eqn. (B6)  
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From Equation (1a) the reflected radiance LR and the incident radiance  can be related 

by, 

'L

  iR LL cos'              (B8) 

where 2

cos
.

D
A L

L

   and L  is the inclination of the face of the light source to the 

plane normal to RL 
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Appendix B   (Continued) 

Furthermore, since the attenuation of radiance is inversely proportional to the square of 

the distance, 

*'
2

2

L
D

h
L 








              (B9) 

where L* is the radiance on the surface immediately below the light source Q. By 

combining Eqns. (B7), (B8) and (B9) one obtains,  
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Appendix C    Use of Field Permeability Values in the Modeling of Transient and 
Steady-State Unconfined Seepage from a Pond into a Saturated Particulate Soil  

In the conventional seepage models, the dynamic flow of water through soil pores is 

commonly idealized using the Darcy’s law. Experimental studies show that Darcy’s law 

may not be suited to model transient conditions and high fluid velocities that develop 

under excessive hydraulic gradients. Hydraulic infrastructure like retention ponds and 

canals almost always operate under transient flow conditions. Hence, the conventional 

method of analysis based on steady state seepage in a continuum must be replaced by an 

alternative approach that can model the transient flow that precedes the eventual steady 

state flow. Furthermore, seepage models for granular media must incorporate the discrete 

particulate nature of the soil skeleton. 

 

Thus a confined seepage model for particulate media has been (Jeyisanker,2009) 

extended  to analyze transient and steady-state unconfined seepage in a granular soil. The 

soil skeleton was modeled with discrete spherical particles randomly selected from a 

known particle size distribution (PSD) using Monte-Carlo simulation and packed to 

achieve a desired in-situ relative density. This model was used specifically to study the 

seepage flow from a pond into a saturated coarse-grained soil. The interstitial pore water 

flow initiated by sudden filling of the pond was modeled using the standard Navier-

Stokes (NS) equations modified to incorporate drag forces acting on water due to soil 

particles. The NS equations were discretized using finite differences in time and applied 

to discrete elements of the soil skeleton in a staggered spatial grid. The time variation of 

the seepage domain was demarcated using the velocity gradient at the phreatic line.  
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Appendix C   (Continued) 

The time variation of the pond level, the phreatic line and the seepage quantity were 

visualized. In addition, the model prediction of the recovery time and the geometry of the 

phreatic surface were compared to other solutions based on continuous media and the 

Darcy’s law.  

 

Recovery time is defined as a length of time required for the design treatment volume in a 

pond to subside to the normal level or bottom of the pond. The developed model was 

used by the author to predict the accurate recovery time for the case study used in 

(Jeyisanker,2009) for a saturated particulate medium with a permeability of 6 cm/sec. 

The prediction results are shown in Figure C1.  
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FIGURE C1 Prediction of Recovery Time from Numerical Model 
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ppendix C   (Continued) 

that the recovery time is 45 seconds for the above foundation 

 

ere 

-7 

nal 

A

It is noticed from Figure C1 

soil. Since it is impractical to construct a retention pond in a foundation soil with such a 

short recovery time, to improve this soil, it was mixed with concrete and investigated as a

foundation soil. Several such samples of the mixture were tested in the laboratory for 

permeability values. The tested samples were of ages 7, 14 and 28 days. The results w

based on randomly selected population of 100 samples. The results showed that the 

average permeability of the 7 day, 14 day and 28 permeability values were 1.77 x 10

cm/sec, 3.58 x 10-7 cm/sec and 1.73 x 10-8 cm/sec respectively. The obtained values 

showed that there was a significant decrease in the permeability over that of the origi

foundation soil. Thus the recovery time of the pond would be expected to increase to 

more realistic values needed for retention ponds. 
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