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An Integrated Building Water Management Model for Green Building 

Caryssa Joustra 

 

ABSTRACT 

 

The U.S. Green Building Council (USGBC) is the developer of the Leadership in 

Energy and Environmental Design (LEED™) green building scoring system.  On first 

inspection of LEED points, few address water efficiency.  However, water management 

encompasses other points beyond the Water Efficiency (WE) category.  In general, the 

industry is apt to take a somewhat compartmentalized approach to water management.  

The use of alternative water sources or the reuse of wastewater significantly complicates 

the water budget picture.  A total water management systems approach, taking into 

consideration water from various sources, both inside and outside the building, should 

be implemented in order to devise a strategy for optimal reduction of potable water 

consumption and wastewater generation.  Using the STELLA software to create an 

integrated building water management (IBWM) model provides stakeholders with a tool 

to evaluate potential water savings under dynamic conditions for a specific project site.  

Data collection for IBWM model calibration also shows that water consumption trends 

are unique to each project, and using LEED assumptions about water usage can 

overestimate or underestimate potential water savings.  
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CHAPTER 1: 

INTRODUCTION 

 

Increased population accompanied by other water stressors is putting stress on 

the world‟s water supply.  In the United States, buildings utilize large amounts of potable 

water, as well as discharge wastewater and contribute to pollutant loadings through 

stormwater runoff.  As our population increases and spreads out, our demand for water 

also increases and our infrastructure also spreads.  Increased stress on water 

resources, both in terms of decreasing quantity and quality, leads to growing interest in 

more efficient water uses.  Through the implementation of water management strategies, 

such as water reclamation, conservation, or decentralized water reuse, the issues 

associated with increased water demand may be alleviated. 

Similarly, water cannot be infinitely pumped from potable sources to meet 

community demands.  Sustainable solutions are required that meet current and 

projected demand as well as preserve natural and human cycles.  One way to determine 

impacts from possible solutions that aim to alleviate the disparity between supply and 

demand is the creation and implementation of a systems model.  Models are currently 

used by planning and regulatory agencies to predict future water demand and decision-

making outcomes. 

 The objective of this study is to develop a dynamic systems model capable of 

analyzing the interaction among different water supplies and demands in the building 

environment.  Current models rely on static assumptions about individual usage and 

water supply; but occupancy, climate, and fixture usage are all fluctuating variables that 
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vary over time.  A model capable of evaluating water changes over time will better 

predict the overall impacts of preferred water management strategies. 
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CHAPTER 2: 

BACKGROUND 

 

Green Building and LEED 

The building industry significantly impacts the human and natural environments.  

Buildings account for a substantial portion of electricity consumption, greenhouse gas 

emissions, material use, waste output, and potable water consumption.  Forty percent of 

the extracted materials in the United States are consumed by the construction industry; 

and poor reuse and recycling processes result in 145 million tons of waste, the majority 

being from demolition (Kibert, 2005).  The planning and development of building sites 

individually and in relationship to each other also puts a strain on resources and the 

environment.  Transportation within the built environment consumes energy and 

increases air pollution (Kibert, 2005).  Further effects of buildings in the United States 

are outlined in Table 1. 

 

TABLE 1: Percent of resources used and waste produced from the building sector. 

Building usage Percent of total 

Total energy 36% 

Electricity consumption 65% 

Greenhouse gas emissions 30% 

Raw materials 30% 

Waste output 65% 

Potable water consumption 12% 

*Percentages taken from the USGBC, 2007. 
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In response to impacts from the building industry, a green building movement 

emerged.  Building “green” involves the use of two main concepts: sustainability and 

integrated design.  These concepts are quintessential in the planning of a green building 

and are also necessary when designing any project.  Sustainability requires developers 

to examine the entire lifetime of the project.  The same is true of an integrated design 

process.  The “green” process requires both ideas to fuse, resulting in streamlined 

construction and leading to savings in water, energy, and costs. 

Savings occur in all sectors when building green.  The initial building costs can 

be no more than those of a conventional structure; but because a green building is more 

efficient, savings continue throughout the entire lifetime of the structure.  In addition to 

environmental and economic benefits, green buildings also enhance the comfort and 

health of occupants by improving air quality, thermal conditions, and the overall work 

environment. 

In the United States there are nonprofit organizations that promote sustainability 

and green design such as the U.S. Green Building Council (USGBC).  The USGBC 

consists of more than 9,000 organizations and 75 regional chapters including a chapter 

for the Florida Gulf Coast (USGBC, 2007).  All sectors share a common goal to 

transform the building market. 

 

TABLE 2: Growth of USGBC membership and LEED projects. 

Year 2002 2003 2004 2005 2006 

LEED projects 
(millions of square feet) 

80 141 180 500 642 

USGBC membership 2370 3532 4970 5882 7600 

*Data taken from the USGBC, 2007. 
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Leadership in Energy and Environmental Design (LEED) 

In order to define and promote green buildings, the USGBC created the 

Leadership in Energy and Environmental Design (LEED) rating and certification system.  

Participation in LEED is completely voluntary, and programs are available for all building 

types including new commercial construction, existing building operations, homes, 

neighborhood development, schools, and retail structures (USGBC, 2007).  LEED rating 

systems set a standard that defines green building based on building type.  Points are 

awarded in seven major categories inherent in green building.  The point breakdown for 

LEED 2009 for New Construction and LEED 2009 for Existing Building: Operations and 

Maintenance is given in Table 3. 

 

TABLE 3: Breakdown of LEED 2009 credits by category in the New Construction (NC)  

and Existing Building: Operations and Maintenance (EBOM) rating systems. 

LEED Category Possible Points out of 110 

NC 2009 EBOM 2009 

Sustainable Sites 26 26 

Water Efficiency 10 14 

Energy and Atmosphere 35 35 

Materials and Resources 14 10 

Indoor Environmental Quality 15 15 

Innovation and Design Process 6 6 

Regional Priority Credits 4 4 

*Information compiled from LEED 2009 checklists. 

 

Water Dimensions in LEED Certification 

On first inspection of LEED NC 2009 points and categories, only 10 of the 110 

points pertain to water.  Although Water Efficiency is one of the smallest categories in 

terms of points, water management affects each of the seven categories in the LEED 

system.  Figure 1 shows how water is linked to LEED categories through environmental 

quality, energy, and materials. 
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FIGURE 1: The effect of water management on LEED categories. 

 

Both indoor and outdoor environments benefit from integrated water 

management.  Efficient water practices take into account stormwater management that 

preserves local hydrology and protects the natural cycle.  Preserving green space within 

a building site is one way to accomplish responsible stormwater management.  

Responsible water management increases water efficiency while maintaining an 

agreeable aesthetic to the building site (Peretti and La Rocca, 2000). 

Sustainable water reuse is a central theme in green building; water is a finite 

resource intrinsically linked to energy.  Energy is required to pump and move water 

throughout the building system.  Additional energy is consumed by treatment processes 

that result in water which meets acceptable quality standards. 

 Various water strategies can be implemented to increase water use efficiency.  

Technologies such as water cisterns or membrane bioreactors (MBRs) require initial 

manufacturing and replacement parts throughout the operational lifetime of the system.  

Appropriate materials for use in water applications are chosen for the technology to be 

successful.  However, there is also an intrinsic energy and water cost in the 
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transportation and manufacturing of these products.  In the end, water is a universal 

connector, and all related aspects must be considered in green building. 

Specific points directly related to water are outlined in Table 4.  The goal of 

Water Efficiency is to reduce the inflow of water through the system, and the goal of 

Sustainable Sites is to control the outflow.  LEED outlines the points attainable through 

conservative water practices in these two categories, as well as the Innovation in Design 

sector. 

 
TABLE 4: LEED 2009 NC credits that are directly related to water management. 

LEED Credit Possible Points 

Sustainable Sites 
SS Credit 5.1: Site Development – Protect or Restore Habitat 
SS Credit 5.2: Site Development – Maximize Open Space 
SS Credit 6.1: Stormwater Design – Quantity Control 
SS Credit 6.2: Stormwater Design – Quality Control 
SS Credit 7.1: Heat Island Effect – Non-Roof 
SS Credit 7.2: Heat Island Effect – Roof 

6 Points 
     1 Point 
     1 Point 
     1 Point 
     1 Point 
     1 Point 
     1 Point 

Water Efficiency 
WE Prerequisite 1: Water Use Reduction – 20% Reduction 
WE Credit 1: Water Efficient Landscaping 

Reduce potable water use by 50% 
Reduce potable water use by 100% 

WE Credit 2: Innovative Wastewater Technologies 
Reduce potable water use by 50% or treat 50% of   

wastewater 
WE Credit 3: Water Use Reduction 

Reduce potable water use by 30% 
Reduce potable water use by 35% 
Reduce potable water use by 40% 

10 Points 
     Required 
     2 to 4 Points 
          2 Points 
          4 Points 
     2 Points 
 
 
     2 to 4 Points 
          2 Points 
          3 Points 
          4 Points 

Energy and Atmosphere 
     EA Credit 3: Enhanced Commissioning 

2 Points 
     2 Points 

Innovation in Design 
     ID Credit 1: Innovation in Design 

5 Points 
     1 to 5 Points 

Regional Priority 
WE Credit 2: Innovative Wastewater Technologies 

1 Point 

 

The Sustainable Sites category stresses the importance of protecting or 

maximizing green space in order to protect habitat for local plants and wildlife and 

decrease the heat island effect (USGBC, 2006).  Increased green space on a building 
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site can also provide economic incentives in the form of increased property values and 

reduced resource use from a more compact structure design (USGBC, 2006).  Both the 

quantity and quality control of stormwater address runoff limitations.  Restricting the 

amount of stormwater runoff from urban development prevents erosion of stream 

channels and disruption of the hydrologic cycle.  Further protection of the natural 

hydrologic cycle is maintained through pollution control.  Stormwater treatment methods 

include constructed wetlands and natural filters.  Although heat island effect points are 

not directly linked to water management, the strategies used to control stormwater runoff 

coincide with the strategies that decrease the urban heat island effect.  By using 

vegetation or permeable materials, the heat absorption caused by impervious surfaces, 

such as pavement and rooftops, can be reduced. 

All points in the Water Efficiency category are achieved through water 

management strategies.  By using conservation measures or technologies to treat and 

reuse wastewater within the building (whether greywater, blackwater, or both), overall 

potable water use is reduced.  Treated effluent from systems is often used in flushing 

toilets or offsetting irrigation demands because these sources do not need high-quality 

potable water. 

Enhanced commissioning is affected in the Energy and Atmosphere category 

because installation of systems, such as the MBR, can be considered major mechanical 

system.  As such, its performance should be verified and submetered to ensure proper 

operation. 

Additional points are available in the Innovation in Design and Regional Priority 

categories.  Projects that exceed the basic requirements set by LEED or incorporate 

additional innovative technologies can receive additional points toward certification.  

Building-scale MBR plants represent an innovative technology used for water reuse.  It is 

possible to treat and reuse all wastewater within the building, thereby closing the water 
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loop and creating a structure that is closer to attaining independence from municipal 

potable supply.  The newly formed Regional Priority category adds an additional 

achievable point to credits that are important to the geographical region of the project.  

For Tampa, an additional credit is available for achieving Water Efficiency credit 2. 

 

Water Management Options 

As population increases, so does the consumption of water resources.  Water 

demand is further altered by additional stressors such as land use, urbanization, and 

climate change (Zimmerman et al., 2008).  How each stressor relates to another form a 

complex web, and it is not clear how a change in one stressor will ultimately affect the 

others (Zimmerman et al., 2008).  When designing a system, certain stressors, such as 

population and urbanization projections are included in the preliminary evaluation.  

However, other stressors, most notably climate change, are often overlooked. 

An integrated systems approach to building water management allows for the 

best allocation of potable water drawn from the municipal supply.  These options include 

practices that regulate the inflow of water and recycling of water throughout the building 

system, but also decrease the outflow of water through efficient wastewater and 

infiltration processes.  Management encompasses all aspects of the water cycle, from 

start to finish.  Conventional water allocation is compared to the appropriation of water in 

a green building in Figure. 2. 

 

           
 
FIGURE 2: Water flow in a conventional structure (left) vs. a green building (right). 
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In addition to engineering, a technology must also overcome issues such as 

social acceptance, education, cost, and ease of use (Lazarova et al., 2001).  The 

preceding considerations can be categorized as sustainability indicators.  All sustainable 

water projects must overcome the same obstacles in order to succeed.  The slow push 

towards alternative water supplies has caused an increase in the use of “sustainable” 

technologies; for example, the membrane bioreactor (MBR), rainwater cistern, and 

reclaimed water distribution.  Although each technology is proven to decrease potable 

water demand, the sustainability of each option depends on the aforementioned 

indicators. 

Integrating cultural and social aspects into water management is also crucial in 

large scale management projects.  An integrated approach needs to take all tradeoffs, 

such as the social, cultural, and technical into account in order to be successful (Pahl-

Wostl et al., 2008).  Doing so encompasses all stakeholders, whether managers or 

residents, into the larger water management process (Pahl-Wostl et al., 2008).  Often 

overlooked is the need for a change in a general population‟s belief and behavior in 

order for a strategy to succeed (Pahl-Wostl et al., 2008).  For example, water 

conservation efforts are achieved when human behavior is modified through education 

and participation.  A study conducted in Jordan evaluated the affects of implementing 

greywater reuse in residences (Al-Jayyousi, 2004).  The results showed that the low-

income families saved money and gained awareness about the importance of water 

conservation and water quality from a hands-on perspective.  It is not enough to solve 

problems through the sole use of technology.  Forgetting the human side of water 

management can result in local water disputes that are socio-culturally based or lead to 

water projects that succeed on paper, but fail in practice. 
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Conservation 

The leading option for water management is conservation.  Common tactics 

include the implementation of water-conserving fixtures such as low-flow water closets 

and waterless urinals to reduce the demand for potable water.  Although the Energy 

Policy Act (EPAct) of 1992 already sets maximum values allowable by water fixtures 

(Table 5), green buildings often implement hardware that goes beyond the set 

requirements.  For example, water closets are mandated to use no more than 1.6 

gallons per flush (gpf); however, there exists high-efficiency toilets (HETs) that use less 

than 1.3 gpf. Low-flow options are also available for other fixtures such as showerheads 

and faucets.  Sensors and aerators installed in faucets can further reduce water use. 

 

TABLE 5: Maximum requirements for plumbing fixtures defined by the EPAct of 1992.  

Plumbing fixture Maximum requirement 

Water closets 1.6 gallons (6 liters) per flush 

Urinals 1.0 gallon (3.8 liters) per flush 

Showerheads 2.5 gallons (9.5 liters) per minute at 80 psi (550 kPa) 
2.2 gallons (8.5 liters) per minute at 60 psi (410 kPa) 

Faucets 2.5 gallons (9.5 liters) per minute at 80 psi (550 kPa) 
2.0 gallons (7.8 liters) per minute at 60 psi (410 kPa) 

Replacement aerators 2.5 gallons (9.8 liters) per minute 

Metering faucets 0.25 gallons (0.98 liters) per cycle 

*Unless otherwise noted, flow rates are at a pressure of 80 psi. Fixture requirements 
compiled from Kibert, 2005. 
 

Conservation requires knowledge about current water use patterns, and 

resolution is critical when applied to water monitoring.  Water companies and utilities 

keep track of water pulled from wells and additional sources, but they also measure 

water used by individual residences and buildings to better evaluate where water is 

going.  Water use can be assessed further through submetering.  Submetering provides 

better resolution regarding water usage.  Often buildings only meter water entering the 

building system, but water submetering can aid water conservation measures by 
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providing information on the amount of water used and when water is used for various 

fixtures and applications (Tamaki et al., 2001).  The routes of water must be known first 

before conservation measures can be taken.  The University of São Paulo in Brazil 

utilized submetering to reduce water consumption (Tamaki et al., 2001).  With this 

information, water reduction amounts can be estimated based on various possible water 

management strategies such as low-flow fixtures, water reuse technologies, or irrigation 

sensors.  Anomalies in water usage on campus can be isolated and addressed with 

greater speed because of increased resolution due to added meters (Tamaki et al., 

2001).   

Education is a major component of conservation, and submetering provides 

detailed information about water usage that can be used to educate users about the 

importance of proper water management.  The University of South Florida campus in 

Tampa meters water usage for the entire campus and has submeters on many campus 

buildings.  The impact education has on water conservation was made evident by a 

student initiative that monitored fourteen residence halls over a time period of two 

months.  Student residents were educated about energy and water conservation, as well 

as given incentives to decrease their usage.  The result was a 20% decrease in overall 

energy usage based on decreased usage of cold and hot water (Cox and Joustra, 2008).  

Submetering allowed usage by individual residence halls to be measured and evaluated.  

Like the University of São Paulo, the University of South Florida is also capable of 

pinpointing abnormalities in campus water usage and fixing the issue. 

 

Recycling/Reuse 

The quality of water is of great importance when determining where it will be 

discharged or reused.  In a sense, all water is reused.  Water discharged upstream is 

used as a drinking water source for populations downstream, and water discharged into 
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larger water bodies is recycled in the aquatic system.  Wastewater is often defined as 

water that has been contaminated or polluted, but the definition of contamination is up 

for interpretation.  All water contains some form of impurities, but regulations set 

contaminant levels that label water as polluted.  While water remains a pure substance, 

it is the impurities within it that need to be removed in order to improve the level of 

quality. 

All wastewater can potentially be recycled within a building system (Boehler et 

al., 2007).  Wastewater exiting the building generally falls under one of two streams: 

greywater or blackwater.  Greywater consists of water from sinks, showers, and other 

low-strength sources.  Blackwater contains higher amounts of organic material and exits 

from toilets and urinals.  Toilet flushing can make up 35% of overall water consumption, 

but utilizing alternative sources such as rainwater can help offset the potable cost 

(Cheng, 2003).  Kitchen wastewater can be grouped into either category; it does not 

come into direct contact with human excrement, but does have a high organic loading.  

Greywater reuse systems have been shown to be economically feasible and offset 

potable water consumption (Ghisi and Ferreira, 2007).  Because water recycling has 

associated human and ecological risks, political regions often have unique sets of 

guidelines that outline appropriate approaches to ensure safety (Anderson et al., 2001).  

Water can be treated for reuse on-site using technologies such as the membrane 

bioreactor or off-site at municipal wastewater treatment facilities. 

 

Membrane Bioreactor 

Membrane bioreactors (MBRs) operate using both biological treatment methods 

as well as permeable membranes which provide an absolute barrier and prevent solids 

within the influent water from passing to the effluent.  MBRs differ from traditional 

wastewater treatment systems in that secondary clarification and tertiary treatment 
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solutions are replaced by the membrane, providing an opportunity to decrease the 

overall area, as well as resources required for treatment.  Several variations of the MBR 

exist; namely aerobic and anaerobic MBRs, and those which may utilize the membranes 

in submerged or external applications. 

MBRs are assumed to be suitable for use in a sustainable water management 

plan because they allow production of high-quality effluent which can be used for 

greywater and blackwater reuse applications.  Since they are compact, MBRs can then 

be implemented in proportionally smaller systems while still maintaining effluent quality.  

However, pitfalls also exist; the most significant of which is the issue of fouling which 

reduces and may eventually prevent flow through the membrane.  Fouling significantly 

affects the sustainability of membranes because it not only requires increased energy 

consumption associated with necessary increases in pressure over time, but it also 

shortens the useful life of a membrane, requiring premature replacement and thus an 

added cost. 

MBRs occupy less space than other conventional treatment processes and have 

been utilized in structures such as the Solaire Apartments (General Electric, 2007) and 

the Helena Building (Dynatec, 2006) in New York City where the system provides 

recycled water for toilet flushing, irrigation, and cooling.  The appeal of implementing 

MBRs in green buildings is the ability to produce high-quality water which can be reused 

on-site, thereby reducing the demand and cost for municipal potable water (GE, 2010). 

Atasoy et al. (2007) investigated the performance of MBR technology treating 

separate greywater and blackwater streams from campus lodgings.  Treated effluent 

from both sources of wastewater proved to be adequate for re-use applications such as 

toilet-flushing or irrigation.  Neither effluent detected total coliforms.  Permeate from 

treated greywater contained lower pollutant concentrations due to the lower beginning 

concentrations in the feed water.  Greywater is often targeted for reuse over blackwater 
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because it is easier to treat and has a high generation rate within buildings (Atasoy et al., 

2007). 

The emergence of the MBR package plant has made it easier to integrate this 

technology in high-performance urban buildings where time, installation, and limited 

footprint are crucial (Sorgini, 2004).  The systems are shipped wire, piped, and tested 

ready-to-go; they are inclusive systems containing everything from backwater tanks and 

air supply systems to instrumentation and controls (Sorgini, 2004).  High-quality effluent 

produced by the packaged MBR meets agency standards for reuse and treated 

wastewater (Sorgini, 2004).  MBR operations can be computer-controlled, minimizing the 

need for an operator to always be present (GE, 2010).  

 

Reclaimed Water 

An important resource from wastewater treatment is the water itself.  Reclaimed 

water is an example of recycling and reuse, techniques also implemented toward solid 

waste management.  Through the treatment process, water is removed from the waste 

stream, and the use of reclaimed water offsets demand for finite potable water 

resources. 

Highly treated reclaimed water can be delivered to the building site from a 

regional or satellite wastewater treatment facility.  Although normally associated with 

irrigation, the applications of reclaimed water extend to other nonpotable uses such as 

cooling towers and toilet flushing, similar to the uses for greywater.  Florida contains an 

extensive reclaimed water program, and the cost for reclaimed water is generally less 

than that for potable water. 
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Green Roof 

Another technology available for offsetting stormwater runoff is the green roof.  A 

green roof consists of a water-proof root containment system, drainage, and a plant 

growing medium (Green Roofs, 2005).  The green roof is often used as an example of 

integrated design in sustainable construction because of how it affects the building 

system.  Benefits are seen in water management, energy efficiency, and air quality.  A 

green roof mitigates runoff quantities through water retention by plants and substrate 

(VanWoert et al., 2005).  This method also increases the quality of water leaving the 

green roof, protecting the environment from high pollutant loads.  Insulation and 

evaporation allow a green roof to even out building temperatures over time.  In addition 

to reducing heat outdoors, vegetative roofs may also have positive impacts on the indoor 

conditions of the building while providing an aesthetically pleasing environment for 

workers and guests.  Although these and other benefits exist, there is hesitation to install 

green roofs.  Policy changes and incentives could help increase the prevalence of this 

technology (Carter and Fowler 2008).  Green roofs are included in best management 

practices (BMPs) defined by the Clean Water Act (CWA) that meet stormwater 

management guidelines; Section 319 of the CWA has funded at least twelve green roof 

projects to treat nonpoint pollution sources (Carter and Fowler 2008).  In general, green 

roofs are encouraged according to local and federal policy, but the extent of 

encouragement varies.  Certain areas like Toronto mandate that green roofs be 

implemented when feasible, whereas other cities do not mention the option in local 

codes and regulations.  Green roof subsidies dependent on unit area are offered in other 

parts of the world, but not in the United States; however, grants awarded to green roof 

construction projects are found in Chicago (Carter and Fowler 2008) and other governed 

areas.  The creation of incentives based on roof size or expansion of existing grants 
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could increase green roof area and have a beneficial effect on urban stormwater 

management. 

In addition to water management, green roofs can also achieve LEED points in 

other non-water-related categories.  A green roof has the ability to reduce the energy 

demand building by maintaining a reasonable temperature within a building (Oberndorfer 

et al., 2007).  Points for energy reduction are awarded in the Energy and Atmosphere 

category of the LEED system.  Points may also be awarded to green roofs in the 

Materials and Resources category.  Green roofs often extend the lifetime of the roof.  

Using local plants and materials gains LEED NC points for Regional Materials (MR 

Credits 5.1 and 5.2) and Rapidly Renewable Materials (MR Credit 6). 

 

Low Impact Development 

Undeveloped green spaces perform important functions in both the natural and 

built environment, such as stormwater mitigation, local temperature control, and air 

quality modification.  Often human development and implementation of green space 

work against one another; increased human development often results in a decrease in 

green areas due to the land demanded for an increased built environment.  Established 

urban green spaces are also threatened by local growing populations.  Drivers of human 

development such as demographics, economics, scientific innovation, and socio-cultural 

processes affect urban development, and therefore, also affect the green spaces 

associated with development (James et al., 2009). 

In the Leadership in Energy and Environmental Design (LEED) green building 

certification system established by the U.S. Green Building Council (USGBC), protection 

of green space is an integral part of sustainable design.  LEED provides multiple credits 

related to green space.  The Sustainable Sites category stresses the importance of 

protecting or maximizing green space in order to protect habitat for local plants and 
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wildlife and decrease the heat island effect (USGBC, 2006).  Increased green space on 

a building site can also provide economic incentives in the form of increased property 

values and reduced resource use from a more compact structure design (USGBC, 

2006).  Utilization of green space plays a major role in water management due to its 

positive effects on stormwater retention, treatment, and possibility of reuse. 

Although green space function may be well recognized, integration of green 

spaces into the planning, design, and management processes is lacking (James et al., 

2009).  Local development requirements contain ordinances for building projects.  These 

include required green areas and plantings in parking lots or specified green perimeters 

around buildings to be incorporated during the planning and design stage.  However, 

best management strategies for green areas are generally unknown.  The Florida Parks 

Department has a more detailed management plan which was implemented to preserve 

their parks.  Those management strategies include the removal of invasive plant 

species, habitat restoration, prescribed burning, and constant monitoring and inventory.  

Although these strategies exist to keep parks in an “original” natural state, they are not 

perfect.  For example, the chosen original state used as the park benchmark depends on 

many factors and cannot be definitively determined.  For instance prescribed burning is 

often actually performed during unnatural fire seasons in order to protect nearby human 

developments.  James et al. (2009) acknowledges the holes in green space research 

and suggests an integrated framework with special focus placed on green space 

management and green space behavior as a result of social, demographic, and 

environmental change.  Management, whether focused on water, green space, or 

another entity, requires integration of the possible effects due to changes in social, 

cultural, environmental, and additional factors in order to be successful and sustainable. 

One method to decrease stress on the sewer system is to decrease runoff 

through low impact development (LID).  Low Impact Development is “a new, 
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comprehensive land planning and engineering design approach with a goal of 

maintaining and enhancing the pre-development hydrologic regime of urban and 

developing watersheds” (Low Impact, 2005)  Quantity control of stormwater can best be 

attained by limiting the impervious surfaces on site, a LID strategy.  More green space 

allows more water to infiltrate, reducing excessive stormwater flows and pollution that 

can travel within these flows.  LID practices not only created aesthetically pleasing green 

areas, but also increase local property values which resulted in an increase in property 

taxes collected by the local government.  In the end the LID projects can make more 

money than they cost to execute, strengthening the business case for environmentally 

sustainable practices.  A cost-benefit analysis can determine economic gains. 

 

Native Landscaping 

Choosing the most appropriate vegetation beforehand results in less 

maintenance, water, and energy needed in the long-run.  In drought-prone regions, such 

as Florida, utilizing native plants and vegetation for outdoor landscaping (xeriscaping) is 

an advantageous practice.  Choosing the proper plants and implementing other drought 

management techniques, such as soil and water management, provides resiliency to 

changes over time (Rockström, 2003). 

The application of wireless or wired sensors can also aid in reducing the water 

requirement for landscaping.  In an Australian study, wireless sensors were used to 

measure soil moisture, temperature, and humidity so that irrigation efficiency could be 

improved (McCulloch et al., 2008).  Soil moisture sensors were placed at three different 

soil depths to best model moisture patterns in both time and space around plant root 

structures.  Previous studies used moisture, temperature, and humidity data to predict 

plant disease outbreaks. 
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Water Modeling 

Models allow individuals to better predict future needs and how to achieve those 

goals.  Benefits of utilizing a model include analyzing solutions that can waste less 

energy, such as reduced energy from pumping less potable or wastewater to and from 

buildings.  Model analysis can also result in economical benefits due to the decrease in 

energy used for improved management practices.  However, in order for model analysis 

and management practices based on that analysis to be successful, education of 

stakeholders is necessary.  Dynamic modeling of a system should be built at the proper 

scale, whether individual or community-based, with all stakeholders in mind. 

An integral part of utilizing a model for policy changes or decision-making is 

education and public involvement (Stave 2003).  A model cannot be successful if the 

information it provides is not explained to and understood by planners, policymakers, 

and members of the community.  Models can easily become complex in order to 

accurately simulate programmed conditions.  The challenge is to simplify inputs and 

outputs so that anyone can understand the underlying concepts and reasoning behind 

the results.  In a Las Vegas water management case, public forums allowed participants 

to suggest possible ways to meet increasing water demand and to witness how their 

proposed policies affected the point where demand exceeded supply (Stave 2003).  

Some participants believed restricting hotel water usage would lower demand 

substantially, but the model showed the audience that reducing residential demand 

would have a higher impact.  With policies such as conservation, successful results 

occur when the community is actively involved and understands the consequences of 

their choices. 

 A life cycle assessment performed on Australia‟s largest water service provider 

included considerations, such as operations and maintenance of the system (Lundie et 

al., 2004).  Energy and chemical usage were prevalent throughout the water processes.  
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Different scenarios utilizing different technologies were evaluated based on how 

resource utilization and environmental impact differed from a baseline case.  Strategic 

planning was used for determining improvement options in the Australian water system.  

The same life cycle analysis steps are included water use and reuse modeling.  Building 

owners need to choose appropriate technologies if successful water reuse is going to be 

achieved.  They must also consider the materials involved in implementing the chosen 

technology.  The financial cost due to maintenance and level of education needed by 

operators are two additional factors to contemplate.  An important, but often overlooked 

step is what happens to the technology when its usable life ends.  Conventional 

management discards and replaces old technology, but if end-of-life is considered 

before implementing a system, a technology that can be reused, recycled, or 

deconstructed in a sustainable manner can be chosen from the start. 

 Available urban water use models include Aquacycle (Mitchell, 2005) and House 

Water Expert (Maheepala, 2007).  Both models originate in Australia and evaluate the 

water balance of both the interior and exterior of the urban environment.  Rainwater and 

wastewater are considered alternative water sources for reuse within the system.  House 

Water Expert (HWE) focuses on residential water consumption (Maheepala, 2007).  

Users build their home in the program interface by specifying the home area, green 

space, paved spaces, home features (swimming pool, spa, shed, etc.), water fixtures 

both indoors and out, and the frequency that each fixture is used by household 

members.  The choice of collecting rainwater in a storage unit or treating wastewater for 

reuse is available.  Each action changes the amount of total water consumed, 

wastewater generated, and stormwater generated listed at the top of the interface.  

Users are also provided with a results tab where a breakdown of water use is provided 

including sources of incoming water, water disposal values, usage for the household, 

usage per individual, usage per appliance, and outdoor water usage (Maheepala, 2007).  
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Climate data is built into the program; users choose from a set of weather stations 

available in Australia to mimic the climate of their region.  HWE is a good educational 

tool because the intuitive nature of the program is applicable to a wide audience 

(Mitchell et al., 2004).  However, calculations are static.  End results are given as an 

average use per day or over the year.  In addition to a single residence, Aquacycle also 

contains the ability to expand the water balance up to a community or regional level and 

has specific files for climate data that can be altered by the user (Mitchell, 2005).  The 

total area included in the model is called the catchment and can be divided into no more 

than 50 clusters, where each cluster is divided into uniformly spaced blocks (Last and 

Mackay, 2007).  Outputs of the program include daily, monthly, and annual water usage.  

The outdoor water parameters are more detailed in Aquacycle than in HWE; they include 

inflow and infiltration, leakage in pipes, and groundwater recharge.  However, evaluation 

of the program found that Aquacycle contained discrepancies with runoff calculations 

(Last and Mackay, 2007). 
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CHAPTER 3: 

RESEARCH MOTIVATION 

 

The LEED rating system clearly states the objective for each point, and there are 

numerous technologies and methods available to utilize in order to reach each goal.  

However, the process is abstract.  Analysis of water use requires knowledge of both 

initial and final water values, but those values are dependent on the water management 

option that has been implemented.  Everything is relative; an integrated building water 

management (IBWM) is needed to provide measurable value to each alternative 

The challenge is to give meaning to LEED requirements and evaluate the impact 

of different water management alternatives.  There are many techniques that affect 

water flows in a building system, but the magnitude of impact is also of great importance.  

For example, the use of potable water can be lowered by installing toilets that use fewer 

gallons per flush (gpf) or by installing sinks that use fewer gallons per minute (gpm).  

The effect of each option is already given: the demand for potable water will decrease; 

however, the magnitude of that decrease is unknown in each case.  A quantitative 

decision-making tool, taking into account various options for water conservation and 

reuse, is needed.  By assigning values to the unique options, the impact of different 

methods can be measured with respect to the system and to each other.   

The movement of water throughout a system is an observable event; flows and 

volumes are measurable and verifiable.  Hence, a model was chosen as the best 

medium by which to sort the information and serve as a decision-making tool.  

Adaptability to numerous flow setups, such as low-flow fixtures and various water 
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sources, allows for each option affecting water use to be considered.  All conceptualized 

aspects are networked using the Systems Thinking Experimental Learning Laboratory 

with Animation (STELLA) visual modeling software (ISEE Systems) to form a coherent 

system.  STELLA was chosen as the development tool for the model due to its visual 

mapping, simulation features, and user-friendly interface.  Utilizing STELLA provides a 

built-in dynamic aspect to the IBWM model, allowing trends in water demand and supply 

to be simultaneously plotted. 

 The objectives of this study are: 

 Develop a dynamic integrated building water management (IBWM) model for the 

building water cycle.  The model must be customizable and able to track water 

quantities and flows over time. 

 Check assumptions and calculations defined by Leadership in Energy and 

Environmental Design (LEED) green building rating systems.  LEED outlines 

assumptions about water consumption to use when calculating water savings in 

green buildings.  This project will measure water consumption at a local school 

and compare measured values with LEED values. 

 Calibrate and test the IBWM model to verify performance.  Using a local school 

as a test site, measured consumption will be used to calibrate the IBWM model. 

 Determine whether STELLA can be used as a teaching tool about the building 

water cycle. 
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CHAPTER 4: 

INTEGRATED BUILDING WATER MANAGEMENT MODELING 

 

Overview 

Development of the first version of the IBWM was based on a generic 

commercial building, but with the Patel Center for Global Solutions at the University of 

South Florida in mind.  The initial version of the IBWM model (Version 1) was developed 

from the conceptual volumes and flows of water in a building system.  The control 

volume includes the building and adjacent landscaping.  Runoff was considered a major 

area within the framework; and as such, a green roof option and low impact 

development (LID) strategies, such as limited impervious surfaces, were included for 

analysis.  Equations and assumptions were developed intuitively.  Because of this, the 

validity of the numerical results may be questioned; however, the model succeeded at 

tracking the various flows and maintaining a mass balance, as well as providing 

comparable outcomes for different water management options.  Equations and 

assumptions are estimated values with the exception of mandated flows given in the 

Energy Policy Act of 1992.   

The second and current version of the model was developed to accommodate 

the water flows and management options of a local children‟s school.  Version 2 

borrowed heavily from Version 1 because the water mapping is essentially the same; 

water is still taken from the same sources (potable water, recycled water) and delivered 

to the same sinks (toilets, irrigation).  New equations and assumptions were taken 

directly from the LEED NC Reference Manual so that attainable LEED points for the 



 

26 
 

project could be determined from the improved model.  Although the assumptions may 

not accurately represent the water usage for a specific building, this model allows users 

to alter the assumptions to values they feel more accurately portray water usage for their 

particular site.  Sectors of the model not included in the Reference Manual, such as 

green roofs or cooling, are generally turned off in the Version 2 framework because 1) 

they do not contribute to attainable LEED credits and 2) acceptable equations and 

assumptions for these sectors have not been developed.  However, these sectors are 

built-in and prepared to be linked when proper assumptions can be established.  The 

current IBWM model consists of various flows and volumes that can be separated into 

individual sectors. 
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FIGURE 3: IBWM modeling framework using STELLA. 
 



 

28 
 

Full-Time Occupant Equivalent 

For water fixtures within a building, water demand is directly linked to hours of 

occupancy.  In order to account for the various time periods each individual spends in 

the building, each time period is normalized to an 8-hour workday.  This results in a full-

time occupant equivalent (FTE) value that describes building occupancy and can be 

used to determine the water fixture demand by the occupants.  A full-time employee 

working an 8-hour workday is given a value of 1.0.  The value given to an individual 

working for a different period of time is determined by dividing the hours worked by the 

8-hour average workday.  Students carry an FTE value of 1.0 in the LEED for Schools 

rating system.  The total FTE calculation is as follows: 

 
(1) 

 
 Ni = Number of employees working i hours 

ti = Average daily number of hours worked 

tfull = Full-time average daily number of hours worked (8 hours) 

 
The FTE value is used to calculate baseline and demand water flows for toilets, urinals, 

bathroom sinks, kitchen sinks, and showers. 

 

Irrigation 

Irrigation around a building can create the single largest water demand for the 

site.  Choosing native or adaptive plants through xeriscaping practices greatly reduces 

or eliminates the demand for water sources in addition to natural rainfall.  Rainwater 

harvesting from either a conventional or green roof provides additional support for 

irrigation.  Water caught via low impact development (LID) design practices can be 

stored in a retention pond and pumped as demand dictates, although filtration may be 
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necessary to prevent possible clogging of the piping system.  In addition to cooling and 

toilet flushing, both reclaimed water and greywater are applicable for irrigational 

purposes.  The sum of all inflows for irrigation is the total flow for irrigation. 

 

 
 
FIGURE 4: Detail model framework for the irrigation sector. 

 

The stock in the center of the irrigation portion of the model represents the landscaping 

within the building site.  There is no accumulation of volume in this stock; all water 

sources are applied to irrigation and then are either used by the plants or exit as runoff.  
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Therefore, the sum of all inflows must equal the sum of all outflows.  This balance is 

represented as: 

ΣQin – ΣQout = 0 

QP
I + QY

I + QW
I + QR

I + QG
I – Qrun

I – Qplants
I  

(2) 
 

(3) 

QP
I = Flow of potable water to irrigation (gal/day) 

QY
I = Flow of treated greywater to irrigation (gal/day) 

QW
I = Flow of reclaimed water to irrigation (gal/day) 

QR
I = Flow of collected rainwater to irrigation (gal/day) 

QG
I = Flow of collected stormwater to irrigation (gal/day) 

QRun
I = Flow leaving irrigation as runoff (gal/day) 

Qplants
I = Flow of water used by irrigated plants (gal/day) 

 
Calculations for irrigation are applied to month of July according to the LEED 

Reference Manual.  The underlying assumption is that the amount of water demanded in 

July is the highest value of the year and will represent the greatest gap in water 

availability and water need.  However, summer months can also be times of plentiful 

rainfall, reducing the irrigation demand for other water sources.  The IBWM model has 

the capability of running water calculations over a year-long period to better estimate 

water requirements and determine whether the July scenario provides the worst-case 

irrigation water demand scenario.  The water demand for irrigation depends on 

landscape factors specific to individual plantings, the evapotranspiration rates for the 

region, the efficiency of the irrigation system, and implementation of alternative water 

sources. 

The Landscape Coeeficient (KL) is used to calculate the amount of water lost 

through evapotranspiration.  This value depends on 1) the landscape species, 2) the 
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microclimate, and 3) the planting density.  Values for each factor are given in Table 6.  

The formula is given as: 

KL,i = ks,i × kd,i × kmc,i (4) 

ks,i = Species factor for vegetation type i (%) 

 kd,i = Density factor for vegetation type i (%) 

 kmc,i = Microclimate factor  for vegetation type i (%) 

 
The species factor (ks) accounts for the species of plants being used.  The factor 

can be high, average, or low depending on the plants chosen.  The average ks value is 

0.5 (50%).  If a plant does not require irrigation, the ks is 0, and the resulting KL is 0.  The 

density factor (kd) accounts for the number of plants and total leaf area in a given 

landscape.  An average kd is given to areas where trees shade 60% to 100% (or 

groundcover shades 90% to 100%) of the landscaped area.  Where shading is less than 

these percentages, the kd value is lower.  Higher densities have higher kd values.  The 

microclimate factor (kmc) accounts for temperature, wind, and humidity.  The average kmc 

value is 1.0 and is given to areas where landscape evapotranspiration is unaffected by 

buildings and pavements.  Landscaped areas near reflective surfaces or exposed to 

windy conditions have higher kmc values.  Low kmc values are given to shaded areas and 

those protected from wind. 

 

TABLE 6: Landscape factor values for calculating the landscape coefficient. 

Vegetation Type, i Species Factor 
(ks) 

Density Factor 
(kd) 

Microclimate 
Factor (kmc) 

Low Avg High Low Avg High Low Avg High 

Trees 0.2 0.5 0.9 0.5 1.0 1.3 0.5 1.0 1.4 
Shrubs 0.2 0.5 0.7 0.5 1.0 1.1 0.5 1.0 1.3 
Groundcover 0.2 0.5 0.7 0.5 1.0 1.1 0.5 1.0 1.2 
Mixed: trees, shrubs, 
groundcover 

0.2 0.5 0.9 0.6 1.1 1.3 0.5 1.0 1.4 

Turfgrass 0.6 0.7 0.8 0.6 1.0 1.0 0.8 1.0 1.2 

*Coefficients compiled from the LEED NC Reference Guide (USGBC, 2009). 
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After the landscape coefficient has been calculated, the water requirement can 

be determined from this value and the evapotranspiration rate for the area. 

 ETL,i = ET0 × KL,i (5) 

 ETL,i = specific evapotranspiration rate for vegetation type i (in/day) 

 ET0 = reference evapotranspiration rate (in/day) 

 KL,i = landscape coefficient for vegetation type i (%) 

 
The reference evapotranspiration rate (ET0) is the amount of water required to 

grow a reference plant in inches per time.  This value can be found in regional 

agricultural data.  However, extensive values could only be found for areas in Texas.  

This model uses these values as assumptions.  Summing the reference 

evapotranspiration rate for all plant types on the building site (turfgrass, groundcover, 

shrubs, trees, and mixed) results in the total reference evapotranspiration rate for all 

landscaping: 

 ETLATot  = Σ(ETL,i ×Ai) 

  = ETL,Tre ATre + ETL,Shr AShr + ETL,Grd AGrd + ETL,Mix AMix + ETL,Trf ATrf 

(6) 
 

(7) 

 ETLATot = specific evapotranspiration rate for all irrigation multiplied by the total  

area (in-ft2/day) 

 ETL,Tre = evapotranspiration rate for trees (in/day) 

 ATre = Area taken up by trees (ft2) 

 ETL,Shr = evapotranspiration rate for shrubs (in/day) 

 AShr = Area taken up by shrubs (ft2) 

 ETL,Grd = evapotranspiration rate for groundcover (in/day) 

AGrd = Area taken up by groundcover (ft2) 

 ETL,Mix = evapotranspirtation rate for mixed areas of trees, shrubs, and  

groundcover (in/day) 
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 AMix = Area taken up by mixture of trees, shrubs, and groundcover (ft2) 

 ETL,Trf = evapotranspiration rate for turfgrass (in/day) 

 ATrf = Area taken up by turfgrass (ft2) 

 
The above value (ETLATot) represents the total water demanded by the 

vegetation as a volume, but does not include the efficiencies of the installed irrigation 

system.  The total irrigation water demand that incorporates these efficiencies is 

calculated as: 

QBase
I = (ETLATot / IE) × CE × CF (8) 

QBase
I = Baseline case water flow demanded for irrigation (gal/day) 

ETLATot = Site-specific water demand (in-ft2/day) 

IE = Irrigation efficiency (%) 

CE = Controller efficiency (%) 

CF = Conversion factor (0.6223 gal/ft2/in) 

 
 The irrigation efficiency (IE) depends on the type of irrigation system used for 

each landscaped area.  Values are given in Table 7.  The controller efficiency (CE) is 

only applicable if there is a percent reduction in water use from weather-based 

controllers or moisture sensor-based systems.  Documentation must support this 

number if used.  In this model, controller efficiency is not included and is therefore 

assumed to be 1. 

 

TABLE 7: Irrigation efficiency (IE) values. 

Irrigation Type IE 

Sprinkler 0.625 
Drip 0.90 

*Irrigation efficiencies taken from the LEED NC Reference Manual (USGBC, 2009). 
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The above calculated value is considered as the baseline case when sprinklers 

are used for irrigation and there are no alternative water sources.  In the baseline case, 

the total water allocated (TWA) for irrigation is the same as the total potable water 

allocated (TPWA) because all water used is from a potable source. 

The design case water demand for irrigation is calculated in the same manner as 

the baseline case.  However, the design case allows to alternative water sources to be 

included in the equation so that the potable water demand may be reduced. 

QDsgn
I = [(ETLATot / IE) × CE × CF] - QY

I + QW
I + QR

I + QG
I  (9) 

QDsgn
I = Design case water flow demanded for irrigation (gal/day) 

QY
I = Flow of treated greywater to irrigation (gal/day) 

QW
I = Flow of reclaimed water to irrigation (gal/day) 

QR
I = Flow of collected rainwater to irrigation (gal/day) 

QG
I = Flow of collected stormwater to irrigation (gal/day) 

 
Values for alternative water depend on the water management options chosen 

for a project.  Figure 5 shows the possible water sources for irrigation in the IBWM 

model.  The chosen sources in the model represent common alternative water methods 

and may be altered to fit additional sources not specifically represented. 

 

 

FIGURE 5: Water sources for irrigation in the IBWM model. 
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The previous calculations provide daily water flow rates.  The IBWM model sums 

flows over a specified time period (default time period set to 365 days or one year).  

Cumulative volumes are tracked during the time period and final values are displayed at 

the end according to the following equations: 

  

  

(10) 

 

(11) 

 VBase
I = Baseline case water volume for irrigation (gal) 

 VDsgn
I = Design case water volume for irrigation (gal) 

 t = time period (days) 

 QBase
I = Baseline case water flow demand for irrigation (gal/day) 

 QDsgn
I = Design case water flow demand for irrigation (gal/day) 

 
 The percent reduction in overall water for irrigation depends on the total water 

allocated for both the baseline and design cases.  The percent reduction in potable 

water depends only on the potable water used for the baseline and design cases.  As 

mentioned before, the potable water used in the design case is the same as the total 

water used for the design case.  The equations are: 

  

  

(12) 

 

(13) 

 PTot
I = Percent reduction in total water use for irrigation (%) 

 PP(Tot)
I = Percent reduction in potable water use for irrigation (%) 

 VP(Dsgn)
I = Volume of potable water used for irrigation (gal) 
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Bathroom Sinks 

A detailed view of the portion of the model involving bathroom sinks is shown 

below in Figure 6.  The bathroom sinks stock does not accumulate volume; therefore, 

the volume within the stock is 0.  The only inflow is assumed to be potable water 

because of the possibility of human consumption.  Water exiting from bathroom sinks is 

sent directly to the sewer in the baseline case.  The model provides the opportunity for 

greywater exiting the fixtures to be routed to treatment before being reused within the 

building. 

 

 

FIGURE 6: Detail model framework for the bathroom sink sector. 

 

Because there is no accumulation in the bathroom sink stock, the difference 

between all inflows and all outflows must be 0: 

ΣQin – ΣQout = 0 

QP
Sb – QS

Sb – QY
Sb  

(14) 

(15) 

QP
Sb = Flow of potable water to bathroom sinks (gal/day) 

QS
Sb = Flow to sewer from bathroom sinks (gal/day) 

QY
Sb = Flow of greywater from bathroom sinks to treatment (gal/day) 
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The baseline and design case total water demand for bathroom sinks depends 

on the FTE defined by the building occupants, number of times each occupant uses the 

fixture, the flow rate of the fixture, and the duration of the usage application: 

QBase
Sb = FTE × NA

Sb × QA
Sb(Base) × tA

Sb(Base)  

 QDsgn
Sb = FTE × NA

Sb × QA
Sb(Dsgn) × tA

Sb(Base)  

(16) 

(17) 

 QBase
Sb = Baseline case water flow for bathroom sinks (gal/day) 

 QDsgn
Sb = Design case water flow for bathroom sinks (gal/day) 

 NA
Sb = Number of bathroom sink applications (uses/person/day) 

 QA
Sb(Base) = Baseline case flow rate of bathroom sink application (gpm) 

 QA
Sb(Dsgn) = Design case flow rate of each bathroom sink application (gpm) 

 tA
Sb(Base) = Baseline case duration for each bathroom sink application (sec) 

 tA
Sb(Base) = Design case duration for each bathroom sink application (sec) 

 
The only variables that change between the baseline and design cases are the 

flow rate of the fixture and the duration of the event.  In order to reduce the water 

demand, water-saving fixtures must be implemented.  Possible values for the previous 

equations are given in Table 8.   

   

TABLE 8: Flow rate, duration, and uses per day for bathroom sinks. 

Bathroom 
Sink Fixture 
Type 

Flow 
Rate 
(gpm) 

Duration (sec) Uses/Day 

Non-
residential 

Residential FTE Transient Retail 
Customer 

Residential 

Conventional 2.5 15
1
 60 3 0.5 0.2 5 

Low-flow 1.8 15
1
 60 3 0.5 0.2 5 

Ultra low-flow 0.5 15
1
 60 3 0.5 0.2 5 

1If an autocontrol system is used, the duration is 12 seconds. 

 

Summing the daily flows over a defined time period (in number of days) results in 

overall baseline case and design case volumes: 



 

38 
 

  (18) 

  (19) 

 VBase
Sb = Baseline case water volume for bathroom sinks (gal) 

 VDsgn
Sb = Design case water volume for bathroom sinks (gal) 

 t = time period (days) 

 QBase
Sb = Baseline case water flow demand for bathroom sinks (gal/day) 

 QDsgn
Sb = Design case water flow demand for bathroom sinks (gal/day) 

 
Water demand for both the baseline case and design case comes only from a 

potable source.  Therefore, the percent reduction in overall water use and percent 

reduction in potable water use are equal: 

  (20) 

 PTot
Sb = Percent reduction in total water use for bathroom sinks (%) 

 PP(Tot)
Sb = Percent reduction in potable water use for bathroom sinks (%) 

 

Kitchen Sinks 

A detailed view of the portion of the model involving bathroom sinks is shown 

below in Figure 7.  Like the bathroom sinks, the kitchen sinks stock does not accumulate 

volume; therefore, the volume within the stock is 0.  The only inflow is assumed to be 

potable water because of the possibility of human consumption.  Water exiting from 

bathroom sinks is sent directly to the sewer in the baseline case.  The model provides 

the opportunity for greywater exiting the fixtures to be routed to treatment before being 

reused within the building. 
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FIGURE 7: Detail model framework for the kitchen sink sector. 

 

Because there is no accumulation in the kitchen sink stock, the difference 

between all inflows and all outflows must be 0: 

ΣQin – ΣQout = 0 

QP
Sk – QS

Sk – QY
Sk  

(21) 

(22) 

QP
Sk = Flow of potable water to kitchen sinks (gal/day) 

QS
Sk = Flow to sewer from kitchen sinks (gal/day) 

QY
Sk = Flow of greywater from kitchen sinks to treatment (gal/day) 

 
The baseline and design case total water demand for kitchen sinks depends on 

the FTE defined by the building occupants, number of times each occupant uses the 

fixture, and the flow rate of the fixture.  The duration in both cases is the same. 

 QBase
Sk = FTE × NA

Sk × QA
Sk(Base) × tA

Sk 

 QDsgn
Sk = FTE × NA

Sk × QA
Sk(Dsgn) × tA

Sk  

(23) 

(24) 

 QBase
Sk = Baseline case water flow for kitchen sinks (gal/day) 

 QDsgn
Sk = Design case water flow for kitchen sinks (gal/day) 

 NA
Sk = Number of kitchen sink applications (uses/person/day) 
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 QA
Sk(Base) = Baseline case flow rate of each kitchen sink application (gpm) 

 QA
Sk(Dsgn) = Design case flow rate of each kitchen sink application (gpm) 

 tA
Sk = Duration for each kitchen sink application (sec) 

 
The only variable that changes between the baseline and design cases is the 

flow rate of the fixture.  In order to reduce the water demand, water-saving fixtures must 

be implemented.  Possible values for the previous equations are given in Table 9.   

  

TABLE 9: Flow rate, duration, and uses per day for kitchen sinks. 

Kitchen Sink 
Fixture Type 

Flow 
Rate 
(gpm) 

Duration (sec) Uses/Day 

Non-
Residential 

Residential FTE Transient Retail 
Customer 

Residential 

Conventional 2.5 15 60 1 0 0 4 

Low-flow 1.8 15 60 1 0 0 4 

 

Summing the daily flows over a defined time period (in number of days) results in 

overall baseline case and design case volumes: 

  (25) 

  (26) 

 VBase
Sk = Baseline case water volume for kitchen sinks (gal) 

 VDsgn
Sk = Design case water volume for kitchen sinks (gal) 

 t = time period (days) 

 QBase
Sk = Baseline case water flow demand for kitchen sinks (gal/day) 

 QDsgn
Sk = Design case water flow demand for kitchen sinks (gal/day) 

 
Water demand for both the baseline case and design case comes only from a 

potable source.  Therefore, the percent reduction in overall water use and percent 

reduction in potable water use are equal: 
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(27) 

 PTot
Sk = Percent reduction in total water use for kitchen sinks (%) 

 PP(Tot)
Sk = Percent reduction in potable water use for kitchen sinks (%) 

 

Showers 

A detailed view of the portion of the model involving showers is shown below in 

Figure 8.  The center shower stock does not accumulate volume; therefore, the volume 

within the stock is 0.  The only inflow is assumed to be potable water.  Water exiting from 

bathroom sinks is sent directly to the sewer in the baseline case.  The model provides 

the opportunity for greywater exiting the fixtures to be routed to treatment before being 

reused within the building. 

 

 

FIGURE 8: Detail model framework for the showers sector. 

 

Because there is no accumulation in the shower stock, the difference between all 

inflows and all outflows must be 0: 
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ΣQin – ΣQout = 0 

QP
H – QS

H – QY
H  

(28) 

(29) 

QP
H = Flow of potable water to showers (gal/day) 

QS
H = Flow to sewer from showers (gal/day) 

QY
H = Flow of greywater from showers to treatment (gal/day) 

 
The baseline and design case total water demand for showers depends on the 

FTE defined by the building occupants, number of times each occupant uses the fixture, 

and the flow rate of the fixture.  The duration in both cases is the same. 

QBase
H = FTE × NA

H × QA
H(Base) × tA

H 

 QDsgn
H = FTE × NA

H × QA
H(Dsgn) × tA

H  

(30) 

(31) 

 QBase
H = Baseline case water flow for showers (gal/day) 

 QDsgn
H = Design case water flow for showers (gal/day) 

 NA
H = Number of shower applications (uses/person/day) 

 QA
H(Base) = Baseline case flow rate of each shower application (gpm) 

 QA
H(Dsgn) = Design case flow rate of each shower application (gpm) 

 tA
H(Base) = Duration for each shower application (sec) 

 
The only variable that changes between the baseline and design cases is the 

flow rate of the fixture.  In order to reduce the water demand, water-saving fixtures must 

be implemented.  Possible values for the previous equations are given in Table 10.   

  

TABLE 10: Flow rate, duration, and uses per day for showers. 

Shower 
Fixture Type 

Flow 
Rate 
(gpm) 

Duration (sec) Uses/Day 

Non-
Residential 

Residential FTE Transient Retail 
Customer 

Residential 

Conventional 2.5 300 480 0.1 0 0 1 

Low-flow 1.8 300 480 0.1 0 0 1 
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Summing the daily flows over a defined time period (in number of days) results in 

overall baseline case and design case volumes: 

  (32) 

 (33) 

VBase
H = Baseline case water volume for showers (gal) 

 VDsgn
H = Design case water volume for showers (gal) 

t = time period (days) 

 QBase
H = Baseline case water flow demand for showers (gal/day) 

 QDsgn
H = Design case water flow demand for showers (gal/day) 

 
Water demand for both the baseline case and design case comes only from a 

potable source.  Therefore, the percent reduction in overall water use and percent 

reduction in potable water use are equal: 

 

(34) 

 PTot
H = Percent reduction in total water use for showers (%) 

 PP(Tot)
H = Percent reduction in potable water use for showers (%) 

 

Toilets 

There are numerous alternative water sources that can be applied to flushing 

toilets because water for sewage conveyance does not need to be of high quality 

(potable water).  The source flows and sink flows from toilet fixtures for the IBWM model 

are shown in Figure 9.  Alternative sources of water include recycled greywater from 

sinks and showers, collected rainwater, collected stormwater, or reclaimed water.  Water 

used for flushing is sent directly to the sewer in the baseline scenario.  For the design 

case, blackwater exiting the fixtures can be sent to treatment for use as a separate 
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possible recyclable source within the building.  The toilets are split into two sections for 

male and female.  The separation is necessary because the number of applications for a 

male and female toilet differ if urinals are present in the building.  The number of 

applications for a male toilet will be less due to utilization of urinals. 
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FIGURE 9: Detail model framework for the toilets sector. 
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There is no accumulation in the toilet stocks.  As a result, the difference between 

all inflows and all outflows must be 0: 

ΣQin – ΣQout = 0 

QP
T + QY

T + QW
T + QR

T + QG
T – QS

T – QB
T  

(35) 

(36) 

QP
T = Flow of potable water to toilets (gal/day) 

QY
T = Flow of treated greywater to toilets (gal/day) 

QW
T = Flow of reclaimed water to toilets (gal/day) 

QR
T= Flow of collected rainwater to toilets (gal/day) 

QG
T = Flow of collected stormwater to toilets (gal/day) 

QS
T = Flow to sewer from toilets (gal/day) 

QY
T = Flow of blackwater from toilets to treatment (gal/day) 

 
Water demanded for the flushing of toilets depends on the number of occupants 

in the building (FTE), the usage of each occupant, and the gallons required for each 

toilet application.  Water demand can be decreased by installing toilet fixtures that use 

fewer gallons per flush. 

 QBase
T = FTE × NA

T × VA
T(Base) 

 QDsgn
T = FTE × NA

T × VA
T(Dsgn) – QY

T – QW
T – QR

T – QG
T 

(37) 

(38) 

 QBase
T = Baseline case water flow for all toilets (gal/day) 

 QDsgn
T = Design case water flow for all toilets (gal/day) 

 NA
T = Number of toilet applications (uses/person/day) 

 VA
T(Base) = Baseline case volume of each toilet application (gpf) 

 VA
T(Dsgn) = Design case volume of each toilet application (gpf) 

 
The only variable that changes between the baseline and design cases is the 

flow rate of the fixture.  In order to reduce the water demand, water-saving fixtures must 
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be implemented or alternative water sources must be used to offset the potable supply.  

Possible values for the previous equations are given in Table 11.   

 

TABLE 11: Volume per event and uses per day for toilets.  

Toilet Fixture 
Type 

Flow 
Rate 
(gpf) 

Uses/Day 

FTE Transient Retail Customer Residential 

M F M F M F M F 

Low-flow 1.6 1 3 0.1 0.5 0.1 0.2 5 5 

High-efficiency 1.28 1 3 0.1 0.5 0.1 0.2 5 5 

Ultra low-flow 0.8 1 3 0.1 0.5 0.1 0.2 5 5 

Composting 0 1 3 0.1 0.5 0.1 0.2 5 5 

M = Male; F = Female 

 

Summing the daily flows over a defined time period (in number of days) results in 

overall baseline case and design case volumes: 

  (39) 

  (40) 

 VBase
T = Baseline case water volume for toilets (gal) 

 VDsgn
T = Design case water volume for toilets (gal) 

 t = time period (days) 

 QBase
T = Baseline case water flow demand for toilets (gal/day) 

 QDsgn
T = Design case water flow demand for toilets (gal/day) 

 
The percent reduction in overall water for toilet flushing depends on the total 

water allocated for both the baseline and design cases.  The percent reduction in 

potable water depends only on the potable water used for the baseline and design 

cases.  The equations are: 

 
(41) 
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(42) 

 PTot
T = Percent reduction in total water use for toilets (%) 

 PP(Tot)
T = Percent reduction in potable water use for toilets (%) 

 VP(Dsgn)
T = Volume of potable water used for toilets (gal) 

 

Urinals 

The same framework used for toilets holds true for that of urinals within the 

model.  The alternative water sources available are the same: recycled greywater from 

sinks and showers, collected rainwater, collected stormwater, or reclaimed water.  In the 

baseline case, flushed water is sent to the sewer.  The design case allows blackwater 

leaving the urinals to be reused for other applications.  The urinals are split into male 

and female sections.  If urinals are installed in the building, there will be a water demand 

in the male section.  There will not be a demand in the female section. 
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FIGURE 10: Detail model framework for the urinals sector. 
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There is no accumulation in the urinals stocks.  As a result, the difference 

between all inflows and all outflows must be 0: 

ΣQin – ΣQout = 0 

QP
U + QY

U + QW
U + QR

U + QG
U – QS

U – QB
U  

(43) 

(44) 

QP
U = Flow of potable water to urinals (gal/day) 

QY
U = Flow of treated greywater to urinals (gal/day) 

QW
U = Flow of reclaimed water to urinals (gal/day) 

QR
U= Flow of collected rainwater to urinals (gal/day) 

QG
U = Flow of collected stormwater to urinals (gal/day) 

QS
U = Flow to sewer from urinals (gal/day) 

QY
U = Flow of blackwater from urinals to treatment (gal/day) 

 
Water demanded for the flushing of urinals depends on the number of occupants 

in the building (FTE), the usage of each occupant, and the gallons required for each 

urinal application.  Water demand can be decreased by installing urinal fixtures that use 

fewer gallons per flush. 

 QBase
U = FTE × NA

U × VA
U(Base) 

 QDsgn
U = FTE × NA

U × VA
U(Dsgn) – QY

U – QW
U – QR

U – QG
U 

(44) 

(46) 

 QBase
U = Baseline case water flow for all urinals (gal/day) 

 QDsgn
U = Design case water flow for all urinals (gal/day) 

 NA
U = Number of urinal applications (uses/person/day) 

 VA
U(Base) = Baseline case volume of each urinal application (gpf) 

 VA
U(Dsgn) = Design case volume of each urinal application (gpf) 

 
The only variable that changes between the baseline and design cases is the 

flow rate of the fixture.  In order to reduce the water demand, water-saving fixtures must 



 

51 
 

be implemented or alternative water sources must be used to offset the potable supply.  

Possible values for the previous equations are given in Table 12.   

 

TABLE 12: Volume per event and uses per day for urinals. 

Urinal Fixture 
Type 

Flow 
Rate 
(gpm) 

Uses/Day 

FTE Transient Retail Customer 

M F M F M F 

Conventional 1.0 2 0 0.4 0 0.1 0 

Low-flow 0.5 2 0 0.4 0 0.1 0 

Waterless 0 2 0 0.4 0 0.1 0 

M = Male; F = Female 

 

Summing the daily flows over a defined time period (in number of days) results in 

overall baseline case and design case volumes: 

  (47) 

  (48) 

 VBase
U = Baseline case water volume for urinals (gal) 

 VDsgn
U = Design case water volume for urinals (gal) 

 t = time period (days) 

 QBase
U = Baseline case water flow demand for urinals (gal/day) 

 QDsgn
U = Design case water flow demand for urinals (gal/day) 

 
The percent reduction in overall water for urinal flushing depends on the total 

water allocated for both the baseline and design cases.  The percent reduction in 

potable water depends only on the potable water used for the baseline and design 

cases.  The equations are: 

             (49) 
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             (50) 

 PTot
U = Percent reduction in total water use for urinals (%) 

 PP(Tot)
U = Percent reduction in potable water use for urinals (%) 

 VP(Dsgn)
U = Volume of potable water used for urinals (gal) 

 

Cooling Tower 

There are five possible water sources for a cooling tower.  It is assumed that 

recycled water sources are sought first, such as recycled greywater and reclaimed 

water.  Rainwater stored in a cistern and stormwater collected in a pond provide two 

additional water sources.  Potable water is only extracted as needed.  The cooling 

volume requires replenishment due to evaporation, drift, and bleed-off.  Drift occurs 

when water droplets exit the tower by air flow and represents from 0.05 to 0.2 percent of 

the system‟s flow rate (Bracciano, unpublished).  Evaporation within the tower increases 

the concentration of dissolved solids; therefore, water from the tower is drained, or bled-

off, to return the concentration to a safe and reasonable value. 
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FIGURE 11: Detail model framework for rainwater collection. 

 

Water lost in the cooling volume through evaporation and bleed out must be 

made up from other sources.  As a result, the difference between all inflows and outflows 

is 0. 

ΣQin – ΣQout = 0             (51) 

QP
C + QY

C + QW
C + QR

C + QG
C – QS

C – QE
C           (52) 

QP
C = Flow of potable water to cooling tower (gal/day) 

QY
C = Flow of treated greywater to cooling tower (gal/day) 

QW
C = Flow of reclaimed water to cooling tower (gal/day) 
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QR
C= Flow of collected rainwater to cooling tower (gal/day) 

QG
C = Flow of collected stormwater to cooling tower (gal/day) 

QS
C = Flow to sewer from cooling tower as blowdown (gal/day) 

QE
C = Flow of evaporation lost from cooling tower (gal/day) 

 
The percent reduction in overall water needed for cooling is calculated using both 

the baseline and design cases.  The percent reduction in potable water depends only on 

the potable water used for the baseline and design cases.  The equations are: 

             (53) 

             (54) 

 PTot
C = Percent reduction in total water use for cooling (%) 

 PP(Tot)
C = Percent reduction in potable water use for cooling (%) 

 VP(Dsgn)
C = Volume of potable water used for cooling (gal) 

 

Green Roof 

A green roof, containing native and drought-tolerant landscaping, should only 

require natural rainfall for sustainable maintenance.  Of this rainfall, between 70% and 

90% is lost through evapotranspiration (ET) in the summer, 25% to 40% in the winter.  

The remainder can exit the subsystem as runoff which can be collected in a cistern for 

irrigation use.  If the maximum volume of the cistern is exceeded, the excess flow is 

directed to the storm sewer. 
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FIGURE 12: Sources and sinks for green roof. 

 

If a green roof is implemented on the building and required irrigation, the demand 

can be included in the irrigation section of the IBWM with the other landscaping.  

Potential rainwater capture can be added to the rainwater collection sector of the model 

by implementing override values in the interface section. 

 

Rainwater Collection 

A rainwater collection system typically consists of a rain barrel or cistern to store 

water, a first flush system to prevent debris from entering the storage container, and 

piping to both collect and distribute the stored water.  Systems often utilize roof areas 

and gutters for collection.  Rainwater enters the storage unit from the collection area, 

and a portion of the rainwater volume is rejected in the first flush system prior to entering 

collection.  If the maximum storage volume is exceeded, an overflow pipe directs excess 

water out of the collection system. 
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FIGURE 13: Detail model framework for rainwater collection. 

 

For the rainwater collection system, the central collection volume can carry a 

storage volume.  Therefore, the difference between all inflows and outflows is not 

necessarily 0.  In this case, the difference in flows results in an accumulation of volume 

in the stock. 

  (55) 

 VR
Cis = Volume of rainwater in the cistern (gal) 

 t = time period (days) 

 QR
Cis = Flow of rainwater into the cistern (gal/day) 

 Qout
Cis = Flow of water out of the cistern to meet water demands (gal/day) 

 Qover
Cis = Overflow from cistern (gal/day) 
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The amount of rainwater collected by the cistern depends on the rainfall, 

collection area, amount of water in the first flush, and the efficiency of the overall system:  

 QR
Cis = ACis × R × CECis × CF – Vflush (56) 

 QR
Cis = Flow of rainfall into the cistern (gal/day) 

 ACis = Collection area for rainfall collection into the cistern (ft2) 

 R = Rainfall (in) 

 CECis = Collection efficiency of the cistern system (%) 

 CF = Conversion factor (0.6223 gal/ft2/in) 

 Vflush = Volume of the first flush (gal) 

 
Rainwater in the cistern can be used for cooling tower makeup water, toilet 

flushing, urinal flushing, or irrigation in the IBWM model. 

 

Stormwater Collection 

The stormwater collection system in the IBWM model has a similar setup as the 

rainwater collection system.  Collected stormwater is directed to a storage pond and 

used to offset potable water use in the building system.  Additional losses from the pond 

include evaporation and infiltration of stored water.  If water entering the pond exceeds 

the maximum storage volume, excess water is directed to an overflow. 
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FIGURE 14: Detail model framework for stormwater collection. 

 

The central collection volume in the stormwater sector can carry a storage 

volume.  In this case, the difference in flows results in an accumulation of volume. 

  (57) 

 VW
Pnd = Volume of stormwater in the pond (gal) 

 t = time period (days) 

 QW
Pnd = Flow of stormwater into the pond (gal/day) 

 Qout
Pnd = Flow of water out of the pond to meet water demands (gal/day) 

 Qover
Pnd = Overflow from pond (gal/day) 

 QE
Pnd = Evaporation loss from the pond (gal/day) 

 QInf
Pnd = Infiltration loss from the pond (gal/day) 
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The amount of rainwater collected by the pond depends on the rainfall, collection 

area, and the efficiency of the overall system:  

 QW
Pnd = APnd × R × CEPnd × CF (58) 

 QW
Pnd = Flow of stormwater into the pond (gal/day) 

 APnd = Collection area for stormwater collection into the pond (ft2) 

 R = Rainfall (in) 

 CEPnd = Collection efficiency of the pond system (%) 

 CF = Conversion factor (0.6223 gal/ft2/in) 

 
Stormwater in the cistern can be used for cooling tower makeup water, toilet 

flushing, urinal flushing, or irrigation in the IBWM model. 
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CHAPTER 5: 

MODEL SIMULATIONS 

 

Assumptions 

 A sample run of the IBWM model for a hypothetical green office building in 

Tampa, FL was conducted using the following assumptions. 

 

FTE 

 The full-time occupant equivalent (FTE) is calculated assuming that the office 

building employs 85 full-time workers and 30 part-time workers.  The total FTE is 

calculated as 100. 

 

TABLE 13: FTE calculations for sample model simulation. 

Occupant 
Type 

Number Average Hours 
Worked per Day 

Weight FTE 

Full-time 85 8 1.0 85 

Part-time 30 4 0.5 15 

Total 115   100 

 

Irrigation 

 The assumptions for landscaping around the office building are given in Table 14 

below.  All landscape factors are assumed to be average values.  Sprinklers are used to 

provide water to the plants, yielding an irrigation efficiency (IE) of 0.625.  The water 

consumption required to irrigation incorporates the average evapotranspiration rate 

averaged from data collected for Odessa, FL from 2004 to 2006 (USGS, 2010). 
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TABLE 14: Irrigation parameters for sample model simulation. 

Vegetation 
Type 

Area 
(ft2) 

Landscape Factors IE 

ks kd kmc 

Trees 200 0.5 1.0 1.0 0.625 

Shrubs 0 0.5 1.0 1.0 0.625 

Groundcover 200 0.5 1.0 1.0 0.625 

Mixed 150 0.5 1.0 1.0 0.625 

Turfgrass 5000 0.5 1.0 1.0 0.625 

 

Fixtures 

 The green office building contains toilets, urinals, bathroom sinks, kitchen sinks, 

and showers for employees.  The baseline parameters for these fixtures are based on 

the LEED values and are provided in Table 15. 

 

TABLE 15: Baseline fixture parameters for sample model simulation. 

Fixture Volume or 
Flow Rate 

Duration Uses per Day 

Male Female 

Conventional toilet 1.6 gpf n/a 1 3 

Conventional 
urinal 

1.0 gpf n/a 2 0 

Bathroom sink 2.5 gpm 15 sec 3 3 

Kitchen sinks 2.5 gpm 15 sec 1 1 

Shower 2.5 gpm 300 sec 0.05 0.05 

 

Rainfall Collection 

 In this scenario, the feasibility of a rainwater collection system is being evaluated.  

The building has a total roof collection area of 10,000 square feet.  The collection 

efficiency of the system is 90%, and the first flush volume is 5 gallons for every 500 

square feet of catchment area.  If all 10,000 square feet of catchment are utilized, the 

first flush volume is 100 gallons.  The cistern volume can be varied.  Daily rainfall values 

collected by a personal weather station in Lutz, FL (KFLLUTZ5) for 2009 were used for 

the simulations (Ferguson, 2010). 
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Wastewater Treatment 

 Another option available for the building is wastewater treatment and reuse.  The 

wastewater reuse technology can store up to 5,000 gallons of water for use in the 

building.  Water can be collected from sinks, showers, toilets, and urinals, and be used 

for irrigation or sewage conveyance. 

 

Model Runs 

 The IBWM model was run using different scenarios.  Each model run lasted a full 

year from June 1 to May 31.  Percent reductions in both total water and potable water 

were determined from the LEED baseline case.  The scenarios analyzed by this IBWM 

simulation are: 

 Scenario 1: Conservation measures are in place. The building installs toilets that 

use 1.28 gpf, urinals that use 0.5 gpf, and sinks with 1.8 gpm flow rates. 

 Scenario 2: The same conservation measures mentioned in Scenario 1 are in 

place, as well as low-flow showerheads that use 1.8 gpm. Aerators are installed 

on bathroom sinks to reduce the duration from 15 seconds to 12 seconds.  Drip 

irrigation is installed for all landscaping, changing the irrigation efficiency from 

0.625 to 0.90. 

 Scenario 3: All conservation measures mentioned above are in place.  Greywater 

from kitchen sinks, bathroom sinks, and showers are used to flush toilets. 

 Scenario 4: All conservation measures are still in place.  Greywater from kitchen 

sinks, bathroom sinks, and showers is used for flushing urinals first and then 

toilet flushing. 

 Scenario 5: All conservation measures are in place.  Greywater from kitchen 

sinks, bathroom sinks, and showers is used for irrigation. 
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 Scenario 6: All conservation measures are in place.  Greywater from kitchen 

sinks, bathroom sinks, and showers is used for flushing urinals and toilets.  

Rainwater is collected in a 5000 gallon cistern for irrigation use. 

 Scenario 7: Same as Scenario 6, but the cistern size is 1000 gallons. 

The percent savings in total water consumption and percent savings in potable water 

consumption for each water sector are give in Tables 16 and 17, respectively.  The 

overall total water savings and potable water savings for each scenario is presented in 

Figure 15. 

 

TABLE 16: Percent savings in total water consumption for each water sector. 

 Toilets Urinals Bathroom 
Sinks 

Kitchen 
Sinks 

Showers Irrigation All 

Baseline 0 0 0 0 0 0 0 

Scenario 1 20 50 28 28 0 0 16 

Scenario 2 20 50 42 28 28 31 31 

Scenario 3 20 50 42 28 28 31 31 

Scenario 4 20 50 42 28 28 31 31 

Scenario 5 20 50 42 28 28 31 31 

Scenario 6 20 50 42 28 28 31 31 

Scenario 7 20 50 42 28 28 31 31 

 

TABLE 17: Percent savings in potable water consumption for each water sector. 

 Toilets Urinals Bathroom 
Sinks 

Kitchen 
Sinks 

Showers Irrigation All 

Baseline 0 0 0 0 0 0 0 

Scenario 1 20 50 28 28 0 0 16 

Scenario 2 20 50 42 28 28 31 31 

Scenario 3 82 50 42 28 28 31 48 

Scenario 4 20 100 42 28 28 31 48 

Scenario 5 20 50 42 28 28 83 48 

Scenario 6 66 100 42 28 28 99 74 

Scenario 7 66 100 42 28 28 88 69 
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FIGURE 15: Overall total water and potable water savings for each simulation scenario. 

 

 The total water savings only depends on conservation measures taken in the 

building.  The conservation measures in the form of low-flow fixtures are the same for 

scenarios 2 through 7, and these scenarios have the same percent savings in total water 

consumption.  However, the implementation of alternative water sources changes the 

amount of potable water saved in each scenario.  Simply changing the source of water 

to meet demand will not affect the overall amount of water savings; changing the water 

source substitutes potable water with an alternative point of supply. 

 The IBWM model differentiates between total water reduction and potable 

reduction and presents these values to the user.  LEED currently awards points for 

reducing the use of potable water; however, future editions will address the reduction of 

total water demand.  The IBWM model also provides users with a breakdown of where 

water is being used for the building site.  This provides users with the ability to see which 

fixtures or water sectors are putting the most stress on the building‟s water cycle.  Table 

18 shows the percent of total water used by each fixture or irrigation output by the 

model.  Again, scenarios 2 through 7 have the same values because water to meet 
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demand is only being substituted; the amount of water still needed for each fixture does 

not change. 

 

TABLE 18: Percent of total water going to each sector for simulation. 

 Toilets Urinals Bathroom 
Sinks 

Kitchen 
Sinks 

Showers Irrigation 

Baseline 27.27 8.52 15.98 5.33 5.33 37.59 

Scenario 1 25.87 5.05 13.64 4.55 6.32 44.58 

Scenario 2 31.59 6.17 13.33 5.55 5.55 37.80 

Scenario 3 31.59 6.17 13.33 5.55 5.55 37.80 

Scenario 4 31.59 6.17 13.33 5.55 5.55 37.80 

Scenario 5 31.59 6.17 13.33 5.55 5.55 37.80 

Scenario 6 31.59 6.17 13.33 5.55 5.55 37.80 

Scenario 7 31.59 6.17 13.33 5.55 5.55 37.80 
 

Resolution 

 The IBWM model can show trends on an annual, monthly, or daily scale.  Figure 

16 plots the percent reduction in potable water consumption for the parameters set in 

scenario 7.  The percent reductions shown are calculated as an annual average, 

monthly average, and daily average. 

 

 

FIGURE 16: Potable water reduction for scenario 7 plotted annually, monthly, and daily. 
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The average annual potable water reduction for scenario 7 is 69%.  The figure above 

shows that the percent savings by month and day varies due to the change in rainfall 

and evapotranspiration, the main variables affecting irrigation.  The plot supports the 

LEED suggestion of analyzing water consumption over the entire year.  However, 

providing resolution down to the monthly or daily level allows users to evaluate how the 

effects of water management are dynamic with respect to time.  This also shows model 

users when an assumed water reduction is not being met. 

 Plotting daily water consumption captures trends such as workday consumption 

vs. weekday consumption, and seasonal changes for irrigation.  Figure 17 presents the 

daily water consumption for irrigation, sewage conveyance, water fixtures, and the total 

building over the simulation year for scenario 7. 

 

 

FIGURE 17: Daily water consumption breakdown for scenario 7. 
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The trends in interior versus exterior water consumption for the building are seen in the 

above figure.  The colored bars represent interior water usage by building fixtures.  

Water consumption by all fixtures is around 504 gal/day (306 gal/day for toilets and 

urinals) when the building is occupied during the weekdays; interior consumption goes to 

zero during the weekends when the building is not occupied.  Total water consumption 

for the site is the sum of the demand by all water fixtures and irrigation.  The graph 

shows that irrigation drives the changes in overall demand; more water is consumed in 

the summer when irrigation demand is high, while less water is consumed in the winter 

when irrigation demand is low. 

 

July Baseline Case 

 LEED calculations for water fixtures use an annual average; however, the 

landscaping portion of LEED NC allows projects to calculate potable water savings by 

using the month of July as the baseline.  The underlying assumption is that 

evapotranspiration is highest in July; and therefore, the water required for irrigation will 

be the highest and will be harder to meet with alternative water sources.  Figure 18 plots 

the amount of water required for irrigation based on the irrigation parameters given 

earlier in Table 14.  Also graphed is the available rainwater for collection each month 

assuming a collection area of 2000 square feet.  The rainwater and evapotranspiration 

values are average values for the Lutz, Florida area and are provided in Table 19. 

 

TABLE 19: Rainfall and reference evapotranspiration (ET0) used for Figure 18. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rain 2.92 2.08 1.80 3.59 3.36 5.40 8.59 5.98 4.98 2.34 1.02 1.82 

ET0 0.86 1.00 1.77 2.88 3.66 4.21 4.52 4.14 3.66 2.91 1.74 1.01 

*Rainfall values are an average of KFLLUTZ5 data (2007-2009) and NWS normal values 
*Reference ET values are an average of USGS data (2004-2006) for Odessa, FL 
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FIGURE 18: Monthly comparison of available rainfall to irrigation demand. 

 

The triangles define the ratio of available rainwater to the irrigation demand for each 

month; higher ratios indicate that rainwater can meet more of the demand.  If all 

rainwater is applied for irrigation, the ratio becomes the percent potable water savings.   

November actually provides the worst-case month to offset potable water for 

landscaping because it has the lowest ratio of 0.17.  Although July has the highest 

demand for irrigation, there is also a fair amount of rainfall available to offset potable 

water.  The ratio for July is 0.56; if all rainwater is collected and applied to irrigation, 56% 

of potable water would be saved.  However, the annual average ratio is 0.40 or 40% 

possible potable water savings.  In this scenario, the July baseline assumption 

overestimates the potential potable water reduction by 16 percentage points. 
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TABLE 20: Irrigation demand, rainwater supply, and ratio of supply to demand. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

Demand 
(gal/day) 

104 135 215 362 445 528 549 503 460 353 218 123 333 

Supply 
(gal/day) 

105 83 65 134 121 202 310 216 186 84 38 66 134 

Ratio 
(%) 

100 61 30 37 27 38 56 43 40 24 17 54 40 

 

The difference in this scenario affects Water Efficiency credit 1: Water Efficient 

Landscaping.  The July baseline calculates a 56% potable water reduction, which would 

earn the project two points for exceeding the 50% reduction threshold.  However, 

measuring the reduction over the year would show that the average savings of 40% 

does not meet the 50% goal.  The end result is that the building is perceived as more 

water-efficient than it really is.  Doing so not only overestimates water savings, but also 

the potential economic savings and payback associated with it. 
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CHAPTER 6: 

LEARNING GATE COMMUNITY SCHOOL 

 

Overview 

Part of the Hillsborough County School District, Learning Gate Community 

School is an environmentally-themed K-8 charter school.  The school began as a private 

institution in 1983 and was charted in 2000 with an approximate student body of 500.  

Their educational programs integrate the natural world into teaching activities and 

subjects.  Learning Gate Community School is registered for LEED Platinum 

certification.  Newly constructed modular buildings on the campus have achieved 

platinum certification in the LEED for Schools rating system. 

Learning Gate provides an optimal test site for water budget analysis because of 

the extensive planning and technologic implementation exercised in order to preserve 

water on campus.  To collect rainwater, there are two cisterns for the new buildings, 

totaling 10,000 gallons.  Collected water from cisterns is used to flush toilets in the new 

buildings which are already plumbed for this purpose.  The school is also investigating 

whether it is feasible to collect additional rainwater in two retention ponds located on the 

north side of the campus.  Currently the ponds collect stormwater runoff for the school 

which quickly infiltrates and recharges the groundwater supply.  Therefore, any retention 

attempt would require that the ponds be lined to halt the high infiltration that occurs 

naturally.  Learning Gate intends to implement an on-site natural wastewater treatment 

system (Eco-Machine) where all wastewater generated on campus will be sent for 

treatment and reused to supplement the toilet-flushing need.  Recycled water can also 
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be used to supplement the campus demand or to sustain a fish or plant crop within the 

Eco-Machine.  All the aforementioned technologies provide excellent educational 

opportunities for students to learn and be a part of the water treatment and reuse 

process. 

The study area for this project consists of one newly constructed modular 

classroom building that contains a mix of fourth and fifth grade students.  Each class has 

approximately 22 occupants, and the building contains two classrooms. 

 

 

FIGURE 19: Aerial view of Learning Gate campus.  

 

 

 

 

 

 

N 
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Wetlands area behind campus 

 

Northwest stormwater pond 

 

Decking made of recycled plastic 

 

Munters air conditioning unit for green 
classrooms 
 

 

Interior of green classroom 

 

Vegetable garden on campus  

 
FIGURE 20: Pictures of Learning Gate campus. 
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Rain barrels collecting condensate 

 

Recycling bins 

 

Compost bin on campus 

 

Pervious parking outside the main building 
 

 
FIGURE 21: Pictures of Learning Gate campus (cont.). 
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Rainwater Collection System 

 The newly constructed modular classrooms on the south side of the campus 

have low-flow toilets and sinks installed with automatic sensors.  The automatic sensors 

are manufactured by Zurn and are battery-powered.  Faucets can only be operated by 

tripping the sensor; however, toilets have a manual button in addition to the sensor. 

 

 

FIGURE 22: Photos of bathroom fixtures: (a) 1.28 gpf toilet, (b) detail view of sensor and 
manual button, (c) lavatory, and (d) detail view of faucet sensor. 
 

 Toilets utilize stored rainwater for flushing.  Rainwater is directed to the gutter 

system by the angled roofs of the two smaller classroom buildings.  Downspout pipes 

are covered with angled screens to keep debris from entering the storage bladders 

(10,000 gallon capacity) located under the classroom buildings, and water passing by 

chlorine tablets provides disinfection.  A 600 gallon equalization tank provides rainwater 

to the toilets.  In the event of decreased rainwater storage, potable water is added to the 

system from the school well.  An overflow pipe releases excess water during high 

intensity rainfall events.  

 

a b c d 
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FIGURE 23: Overview of the rainwater collection system at Learning Gate. 

 

 

FIGURE 24: Photos of the rainwater collection system at Learning Gate: (a) gutter 
piping, (b) storage bladder beneath building, (c) equalization tank, and (d) overflow pipe. 
 
 

Data Collection Equipment 

 In order to acquire data on water usage for model calibration, sensors were 

installed on water lines in two of the LEED certified modular buildings.  Each building is 

a b c d 
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approximately 1910 square feet (27.3‟ x 70‟) and contains two classrooms with two 

bathrooms in between them.  Each bathroom contains one toilet and one sink. 

 

 

FIGURE 25: Aerial view of classrooms and sensor equipment location. 
 

The water line to each toilet has a 1” diameter, and the water line to the sinks has a ¾” 

diameter.  Each pipe was fitted for a paddlewheel flow sensor (FPB151 series 4-20 mA 

polypropylene sensor from Omega Engineering, Inc.).  Each sensor was calibrated and 

programmed to the conditions listed in Table 21. 
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TABLE 21: Parameters for installed sensors. 

Sensor 
Location 

Pipe 
Diameter 

Flow 
Units 

K-Factor Output Signal Avg. Sens. 

4 mA 20 mA 

Toilet line 1” gpm 352.44 0 gpm 15 gpm 0 0 

Sink line ¾” gpm 545.14 0 gpm 10 gpm 0 0 

 

All sensors are programmed so that output amperage values are related to water 

flow in gallons per minute (gpm).  An output of 4 mA corresponds to a flow rate of 0 gpm.  

For toilets, an output of 20 mA corresponds to a flow rate of 15 gpm.  For sinks, an 

output of 20 mA corresponds to a flow rate of 10 gpm.  The relationship between output 

amperage and flow rate is linear.  The K-factor defines the number of pulses per volume 

unit.  The K-factors are 352.44 pulses per gallon for the toilet sensors and 545.14 pulses 

per gallons for the sink sensors as defined by tables supplied by the sensor 

manufacturer.  Both averaging and sensitivity values are set to 0 so that data is collected 

as it happens and without bias. 

 

 

FIGURE 26: Installed water sensors under decking. 
 

Sensors are hardwired to the HOBO U30-ETH Ethernet communications data 

logger (from the Onset Computer Corporation).  Four 24 V direct current (DC) power 

supplies provide power to all eight sensors; two sensors share each power supply. 
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FIGURE 27: HOBO data logger: (a) location in classroom closet, (b) sensor connections, 
and (c) detail inside view. 
 

Data is logged at an interval of once every second through an ethernet connection at 

Learning Gate and saved to the Onset-hosted webserver HOBOlink.com.  The public 

link for this project can be found at: 

https://www.hobolink.com/p/d2199c59fe86b5f1e570197760be4b5e. 

 

Learning Gate Data 

 

Resolution of Data 

 Raw data from the HOBO data logger is given as a flow rate logged at each 

second.  From this data, the volume of each fixture usage event and the time at which it 

occurred can be determined.  The resolution provides insight into individual usage 

patterns for students within the classrooms. 

 

a b c 
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FIGURE 28: Event volume and time of event for bathroom B (3/17/10). 

 

The figure above shows the compiled data for one bathroom during one day.  

Each square represents the volume for each toilet use at a specific time, and each 

diamond represents the volume for each bathroom sink use.  Bathroom sink applications 

generally occur right after toilet uses.  Bathroom activity can be split into morning, 

midday, and afternoon sections.  Morning use is clustered around the beginning of the 

school day as students arrive to class.  The highest period of usage is between 10:00 

AM and 1:30 PM and coincides with the period before, during, and right after lunch.  The 

third cluster of activity is seen at the end of the school day when students are released 

from class. 

 Utilizing the detailed data for both bathrooms on the same day provides an 

estimation of the number of fixture uses per event.  The assumption is that one toilet 

flush and one sink use occurs for each trip to the bathroom or event.  However, in reality 

the number of times a fixture is used during one event can be greater than once, as 

seen in the data compiled in Table 22.   
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TABLE 22: Statistical values for the number of times each fixture is used per event. 

 

Mean Median Minimum Maximum Std. Dev. Events 

Toilet Uses 1.1 1 1 2 0.27 78 

Sink Uses 1.6 1 1 6 1.05 81 

*Data is from both bathroom A and bathroom B on 3/17/10. 

 

Clustered uses were assumed to be part of a larger event.  Toilets were generally 

flushed once per visit, although some events contained two separate flush events.  

Multiple sink uses per visit were more common due to the automated faucet sensor.  

Removing hands from under the faucet causes the water flow to cease until tripped 

again. 

 Since the beginning and end date for each event is logged, the duration and flow 

rate for the sinks can be estimated.  Table 23 includes the average event duration and 

flow rate for bathroom sinks from 163 events.  Distribution curves are provided in 

Figures 29 and 30. 

 

TABLE 23: Statistical values for sink flow rate and duration per event. 

 

Mean Median Minimum Maximum Std. Dev. Events 

Flow rate (gpm) 1.07 1.08 0.443 1.75 0.333 163 

Duration (sec) 12 10 4.0 51 7.74 163 

*Data is from both bathroom A and bathroom B on 3/17/10. 
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FIGURE 29: Distribution curve for bathroom sink flow rates (3/17/10). 

 

 

FIGURE 30: Distribution curve for bathroom sink duration (3/17/10). 
 

Without the high resolution from the sensors and logger, information on usage 

within the individual event context would not be possible. 
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Fixture Data 

 Data collected over multiple days provides an improved picture of water usage in 

the classrooms.  The distribution of event volumes for both toilets and bathroom sinks is 

shown in Figures 31 and 32.  Both figures include fixture events from February 18, 2010 

through May 10, 2010.  Events less than 0.05 gallons assumed to be a result of 

interference from the sensors and were omitted from the data set. 

 

 

FIGURE 31: Distribution curve for toilet event volumes from 2/18/10 to 5/10/10. 
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FIGURE 32: Distribution curve for sink event volumes from 2/18/10 to 5/10/10. 

 

 Event volumes for each toilet use follow a normal distribution curve.  The 

average volume per flush of 1.12 gpf is less than the rated 1.28 gpf of the toilet fixtures, 

but within the 0.61 gpf standard deviation.  The average volume for each sink use is 0.23 

gallons with a standard deviation of 0.24 gallons.  The resulting curve does not follow a 

normal distribution.  However, previous distribution curves for sink duration and flow rate 

have trends closer to that of a normalized curve. 

 From the same data set, the number of times each fixture is used can be 

calculated.  Table 24 shows the average number of uses per day for toilets and sinks.   
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TABLE 24: Fixture uses per day from 2/17/10 through 5/10/10 for weekdays only. 

 

Toilets Sinks 

A B All A B All 

Mean 25.8 33.2 29.5 55.3 30.8 43.1 

Median 24.0 33.5 29.0 48.5 29 38.5 

Minimum 5.0 17 5.0 23 5.0 5.0 

Maximum 57 60 60 147 96 147 

Std. Dev. 9.6 7.4 9.3 26.6 15.3 24.9 

Count 52 52 104 52 52 104 

 

Data on fixture uses per day changed dramatically from day to day.  During the 52 

weekdays evaluated, uses for toilets ranged from 5 to 60 per day, and uses for sinks 

ranged from 5 to 147 per day.  No trend between number of fixture uses and day of the 

week was observed for weekdays. 

Table 25 shows the average number of uses per day per person for each fixture 

assuming that the study building has 44 occupants. 

 

TABLE 25: Fixture use per student per day for weekdays (2/17/10 - 5/10/10). 

Fixture Mean Median Minimum Maximum Std. Dev. Count 

Toilets 1.34 1.32 0.73 2.66 0.349 52 

Sinks 1.96 1.76 0.86 4.36 0.738 52 

 

Like the overall uses per day, the number of uses per student per day contained a 

relative range of values.  The LEED assumption that students use each fixture (toilet and 

bathroom sink) three times per day is higher than the values calculated in this study. 

 

Interpretation of Data 

 The data on fixture water use from the Learning Gate bathrooms shows a range 

of values as seen in the distribution curves.  Factors such as equipment calibration, 
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programmed time steps for data collection, and how each fixture is activated result in a 

series of observed numbers that do not match up to the expected values. 

 The calculated flow rate for the bathroom sinks is calculated by dividing the total 

volume for each sink event by the duration.  The HOBO data logger is able to take a 

reading once every second; however, a sink may be activated or deactivated anywhere 

within that second.  For an average duration length of 12 seconds, this provides decent 

room for error, as the duration may be underestimated by up to one second or 

overestimated up to one second, causing the flow rate to follow the same trend.  The 

flow rate should be standard for each sink because they are automated, and individuals 

do not have control of the faucet.  On the other hand, duration is expected to vary 

because it depends on how long an individual holds their hand over the sensor to 

prolong activation. 

 The data collected on the volume per flush for toilets was unexpected.  The 

expected value from the toilet manufacturer is 1.28 gpf.  Although the average is slightly 

less at 1.12 gpf, events were observed from 0.1 gpf up to 14.8 gpf.  Like the sinks, it is 

possible that the data logger does not capture the entire event with a resolution of one 

data point per second.  However, this would not cause the drastic range of values.  Also 

like the sinks, the toilets contain an automated feature; and it was assumed that this 

would result in a more uniform flush volume.  The culprit behind the erratic flush volume 

can be traced back to the manual button provided on each toilet.  By overriding the 

automatic flush mechanism by utilizing the manual button, various flush volumes occur.  

Figure 33 shows the effect of the manual button on flush volumes when different forces 

are applied to the button. 
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FIGURE 33: Effect of using the manual flush button on toilet flush volumes. 

 

The test shows that using the manual flush button can create a flush volume of nearly 

any value.  Pushing the button lightly resulted in some flushes being near the lower-end 

threshold of 0.05 gallons, whereas holding the manual button down can result in an 

infinite flush volume as water continues to flow until the button is released.  This can 

explain the 14.8 gpf event observed in the data.  The test also showed that there is a 

delay between the time the automatic sensor is tripped and the time the toilet is flushed, 

which makes it possible for a user to press the manual button thinking the sensor has 

not been activated.  Doing this can cause a double flush; the sensor activates a new 

flush while the one activated by the manual button is still occurring.  The resulting value 

is higher than that of a normal automated flush volume. 

 Evidence that students are using the manual button over the automated flush 

system was found on one of the bathroom doors (Figure 34).  Students are encouraged 

to hold the button down to clear the toilet. 
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FIGURE 34: Bathroom procedures posted on bathroom door. 
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LG STELLA Model 

 The IBWM model utilizing the STELLA software is set up to represent the study 

classroom building.  Toilets and bathroom sinks are the only fixtures included in the 

water budget.  Sources of water used to meet these demands come from collected 

rainwater or potable water from the on-site well.  The duration of each model run is for 

an entire year starting July 1 and ending June 30. 

 The STELLA model has a built-in Monte Carlo Simulation function that allows 

users to input average values and their corresponding standard deviations to create 

random runs.  Using the parameters listed in Table 26, the Learning Gate IBWM model 

was run 4000 times to produce the distribution of annual water demand values plotted in 

Figure 35. 

 

TABLE 26: Parameters used in the STELLA runs for water demand in study building. 

 Toilets Sinks 

 Volume per 
Event (gpf) 

Uses per 
Student per Day 

Flow Rate 
(gpm) 

Uses per 
Student per Day 

Duration 
(sec) 

Mean 1.12 1.34 1.07 1.96 12 

Std. dev. 0.611 0.349 0.333 0.738 7.74 

 

The large standard deviation values for the bathroom sink duration per event, number of 

sink uses per student per day, and toilet volume per flush caused some values chosen in 

the random STELLA drawing to be negative.  As a result, the annual water demand was 

calculated as zero for 70 out of 4000 runs.  This indicates that the additional data on the 

variables in Table 26 should be analyzed to evaluate whether the range of values for 

each parameter can be minimized. 
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FIGURE 35: Distribution curve for the annual water demand for the Learning Gate 

classroom study. 

 

For the distribution curve above, the average annual water demand is approximately 

69,600 gallons for the classroom building.  The average annual water demand is 

approximately 70,800 gallons if the 70 events with no demand listed are omitted. 

 The STELLA software also has the ability to create a distribution for the possible 

water supply.  For the Learning Gate classroom scenario, the total rainfall available for 

collection was determined from 4000 runs.  The average rainfall value was calculated 

from three years of measured data (KFLLUTZ 2007-2009) for Lutz, FL and the normal 

values from the National Weather Service.  These values are shown in Table 27. 

 

TABLE 27: Annual rainfall for Lutz, Florida. 

 20071 20081 20091 Weather2 Mean 

Rainfall (in) 36.67 42.64 51.39 44.77 43.87 
1Annual rainfall compiled from KFLLUTZ5. 
2Annual average rainfall from NWS. 
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The mean value for the data in the previous table is 43.87 inches with a standard 

deviation of 6.07 inches.  These values were used to create the distribution curve in 

Figure 36 for the rainfall available for collection from the classroom building, assuming a 

90% collection efficiency and roof collection area of 1910 square feet. 

 

 

FIGURE 36: Distribution curve for the annual water supply for the Learning Gate 

classroom study. 

 

The average volume of rainfall available for collection from the STELLA runs is 46,700 

gallons.  The standard deviation is 6600 gallons. 

 The probability of meeting annual water demand with a selected water supply 

can be evaluated by compiling both the demand and supply distributions. 
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FIGURE 37: Distribution curves for both the annual water demand and supply for the 

Learning Gate classroom study. 

 

The range of values for the annual rainfall supply is much smaller than that of the annual 

water demand.  Water demand depends on multiple variables that contain a range of 

possible values.  The end result is a broadly distribution of annual water demand.  From 

the distribution plots, it is unlikely that collected rainfall can meet all of the water 

demand. 

 

Calibration 

 LEED reference manuals outline assumptions on individual water usage in order 

to estimate water savings; however, the question remains about whether these 

assumptions provide accurate results.  Answering this question also provides the 
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opportunity for model calibration and defends calibration as an important step in 

determining potential and accurate water savings.  Table 28 below describes the 

baseline and design parameters used to evaluate water savings for the Learning Gate 

classroom study.  These values will be used in the STELLA IBWM model. 

 

TABLE 28: IBWM model parameters for the LG classroom study using LEED 

assumptions. 

Fixture Volume or Flow Rate Duration Uses per Day 

Base Design Base Design Base Design 

Toilet 1.6 gpf 1.28 n/a n/a 3 3 

Sink 2.5 gpm 1.0 15 sec 12 sec 3 3 

 

LEED assumes baseline fixture ratings of 1.6 gpf for toilets and 2.5 gpm for sinks, as 

well as usage rates of three uses per day per person for each.  The baseline duration of 

each sink event is set at 15 seconds.  For this run, the design fixture ratings are set at 

1.28 gpf for toilets and 1.0 gpm for sinks in order to represent the expected water use for 

each fixture in the building bathrooms.  The duration for each bathroom sink event is set 

to 12 seconds because LEED assumes this set duration if automatic sensors are used, 

as is the case in the Learning Gate classrooms.  The IBWM model was run from 

February 18, 2010 to May 10, 2010, and the cumulative design water demand for this 

period is plotted against the measured actual water use in the classrooms in Figure 38. 
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FIGURE 38: Cumulative water demand volume for LG study using LEED assumptions 

vs. measured values. 

 

The above figure shows that the LEED assumptions used for the design water demand 

have overestimated the measured water usage of the building.  This is expected 

because the LEED assumptions for fixture uses per person per day are much higher 

than the rates observed at the study site. 

A second IBWM model run was conducted using the parameters in Table 29.  

These values use the same LEED assumptions for baseline fixture use, but replace 

design and personal fixture usage per day values with those calculated from the sensor 

data. 

 

TABLE 29: IBWM model parameters for the LG study using measured values. 

Fixture Volume or Flow Rate Duration Uses per Day 

Base Design Base Design Base Design 

Toilet 1.6 gpf 1.12 n/a n/a 1.34 1.34 

Sink 2.5 gpm 1.07 15 sec 12 sec 1.96 1.96 
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For this run, the fixture design volume for each toilet flush is slightly less than what the 

fixture is rated for and the flow rate of the bathroom sinks is slightly more.  The number 

of times each person uses each fixture per day is less than the LEED-assumed value of 

three times per day. 

The results of the IBWM model run are shown in Figure 39.  The cumulative 

design water demand volume using calibrated values is compared to measured water 

use in the classroom building during the defined time period. 

 

 

FIGURE 39: Cumulative water demand volume for LG study using calibrated 

assumptions vs. measured values. 

 

Using the calibrated values, the IBWM model run closely followed the measured water 

usage in the classroom building.  Flat areas on the graph show times where volume is 

not accumulating and represent weekends or vacation time when the classrooms were 

not occupied. 

 The classroom building used for these IBWM model runs contains a rainwater 

collection system to offset the potable water demand of the toilet and was included in the 
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model runs.  The collection area was set to the roof area of 1910 square feet with a 

collection efficiency of 90%.  The storage area was 5000 gallons.  (The rainwater 

collection system at Learning Gate has a total of 10,000 gallons split between two 

buildings.)  Daily rainfall amounts were input from documented values.  The resulting 

water reduction percentages are plotted in Figure 40 for the model run using LEED 

assumptions and the model run using calibrated values.  The percent reduction in total 

water demand and percent reduction in potable water demand are included. 

 

 

FIGURE 40: Water savings based on IBWM model runs using LEED assumptions and 

calibrated values. 

 

The percent reduction in total water is constant throughout the model runs for both 

scenarios.  This is because the amount of total water saved depends on conservation.  
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Substituting some of the overall water needed with rainwater does not change the total 

amount of water still required for the fixtures.  Reduction values for total water are a 

result of the low-flow toilets and sinks installed in the bathrooms.  Potable water 

reduction is dependent on the rainwater used.  As a result, the percent reduction 

changes as available rainwater changes. 

 The figure above shows that the LEED assumptions underestimate the total 

water savings, but overestimate the potable water reduction.  The pairs of values each 

differ by about 10 percentage points.  The LEED assumptions underestimate the total 

water reduction in this case because of the decreased gallons per flush value (1.28 gpf 

vs. 1.12 gpf).   Another reason is the assumption that each fixture is used three times 

per occupant, when data shows they are used fewer times.  Having fewer events causes 

the water savings per event to hold more weight.  The difference in events per occupant 

per day also affects the potable water savings.  Now the LEED assumption 

overestimates the savings because the ratio of water demand for toilets to water 

demand for sinks has decreased.  Using the LEED assumptions, water needed for toilets 

is heavily weighted; but if the volume per flush and number of flushes is decreased, the 

weight of the toilet sector also decreases compared to the sink sector which has not 

changed as much between the two scenarios. 

 

Education 

 Part of the project objectives is to develop an IBWM model that is a user-friendly 

tool for evaluating water management.  In order to determine whether STELLA is an 

appropriate platform for the IBWM model, students at Learning Gate were introduced to 

the program and given the opportunity to play with different model scenarios over a three 

day period from May 24 through May 26, 2010.  Lessons took place during four 7th grade 

computer classes held daily.  Approximately 75 students in the 7th grade took part. 
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 An overall introduction to modeling was conducted on the first day, focusing on 

how the STELLA program can build relationships in a thought experiment.  Students 

followed the sample model provided online through NetSim (isee systems, 2010) entitled 

“Mystery on the Island of Borneo.”  The model asks the user to think how bubonic 

plague, falling roof beams, and dying fish may be linked on the island.  Users are able to 

follow the creation of a STELLA model that shows the relationships between each of the 

three unexplained mysteries and the thought process behind the answer.  The program 

teaches students how one question leads to a chain of questions that eventually trace 

back to the answer and how everything is interconnected.  This exercise also linked 

back to a book the students had read Who Killed Cock Robin?.  Both the book and 

STELLA model pose a question with the answer linked to DDT in the environment. 

 On the second day, students were asked to define words related to rainwater 

catchment: rain barrel, cistern, first flush system, rainwater, potable water, greywater, 

and blackwater.  Although the computer room is located in the new classroom complex 

where rainwater collection is implemented, most students were unfamiliar with the 

system.  After explaining the components of a typical system, the students were 

provided with a worksheet showing a classroom and asked to draw a rainwater 

collection system used to flush the toilet within the building.  The following components 

were to be included: cistern, overflow pipe, first flush system, piping for rainwater to 

toilets, and potable make-up water for toilets.  From the picture, students mapped out 

the same rainwater collection system as a STELLA model schematic.  The goal of the 

exercise was to have students follow the thought process for building a STELLA model 

by turning a tangible system into a computer model.  Once complete, the students were 

given time to play with a STELLA model of the rainwater collection system.  Students 

were asked a series of questions that required them to change the collection area, 

cistern size, and monthly rainfall in the model interface. 
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FIGURE 41: STELLA rainfall model interface. 

 

Students enjoyed playing with the STELLA model and creating the output graph.  In the 

end, students could: 

 Easily change the input parameters of the model and run the model. 
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 Evaluate the effects of changing collection area and cistern size.  Increasing the 

collection area provides more rainwater capture, but the cistern must be large 

enough to store the water. 

 View the effect that changing rainfall has on rainwater collection.  Students were 

given drought-year monthly rainfall totals and asked to determine the new 

parameters they would need to use to still meet the toilet-flushing water demand. 

 Understand the meaning of the different plots on the graphical output device.  

When the rainfall collection line is beneath the water demand line, there is not 

enough rainwater to meet demand, and the cistern is not storing water because it 

is all being used.  When the rainfall collection line exceeds the water demand 

line, there is more water available than demanded; and storage in the cistern 

occurs. 

 

  

FIGURE 42: Output graph from STELLA rainwater model. 

 

 On the third day of STELLA lessons, the students were given extra time to 

answer questions from the rainwater model.  Once completed, they were given an 

Rainwater available 

exceeds the water 

demand. Excess 

water is stored in 

the cistern 
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additional worksheet that asked questions about the IBWM model created for the entire 

campus.  The objective of the worksheet was to evaluate how well the students could 

maneuver through the IBWM model developed for this project.  Not all students were 

able to complete the assignment, but beneficial feedback was collected from those who 

had time to work through the overall model.  The version provided to the students would 

consistently freeze during model runs; this information resulted in the creation of the 

current IBWM model that is not plagued by the same problem.  Additional comments 

about the preliminary model interface include: 

 Busy interface with too many variable inputs on each page. 

 Lack of run button in an easily accessible area. 

 Insufficient explanation of input variables and associated terms. 

 Additional instructions required. 

 Additional work on aesthetics. 

 Helpfulness of the existing “undo” button on input tables. 

 Worked well and good layout. 

 Useful program that is easy to work. 

Comments were used to create the current version of the IBWM model that eliminates 

most of the negative aspects regarding model runs and framework.  Feedback about the 

user interface will be used to construct an appealing and user-friendly design for the final 

model product. 

 The education session undertaken at Learning Gate showed that students can 

understand the concepts behind STELLA modeling and water management.  Although 

problems were faced with the previous version of the IBWM model used for the lessons, 

all students had a good grasp of the rainwater collection model.  The future use of the 

STELLA IBWM model as both an educational and decision-making tool is affirmed by 
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the actions of the 7th grade students over the three day evaluation period.  If the students 

can actively comprehend the processes of the model, then it follows that an IBWM 

model using STELLA can be utilized by a wide audience. 

 

 

FIGURE 43: Students during the STELLA lessons at Learning Gate: (a) drawing a 

rainwater collection system, and (b-d) using models to analyze water saving scenarios. 

 

 

a b 

c d 
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CHAPTER 7: 

CONCLUSION 

 

Overview 

Water conservation and reuse are often compartmentalized; each water-saving 

technique is advised in place of another.  However, an integrated approach evaluates 

the outcomes of different water management techniques or more importantly a 

combination of techniques.  This information is crucial to making decisions based on 

water use, and these decisions are made by individuals involved in the construction of 

both green and conventional buildings.  Sustainable design calls for a change in thinking 

methods; it requires an integrated approach.  As such, the STELLA integrated water 

budget management (IBWM) model incorporates the integration of creative and 

innovative water management techniques with common methods for conservation to 

better educate its users. 

The research and discoveries made in the green building industry affect the 

builders and users of building projects.  The STELLA model provides users with the 

ability to analyze the effects that different water management options have on a 

building‟s water budget.  The conceptualized flows and volumes are assigned concrete 

values that can then be tracked using tables and graphs.  Results estimate the best 

courses of action to take in order to gain LEED points toward accreditation  However, 

the system‟s generic framework allow it to be applied to other structures and totally 

closed systems; e.g., a space station.  Therefore, the model has as many applications 

as can be imagined by its users.  The model also serves as a teaching tool.  Educators 
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can utilize the model to teach students about the importance of water as a natural 

resource, cause and effect, and mass balance. 

 

Future Work 

With the model, users can track changes in water consumption due to variations 

in seasonal demand, building occupancy, and occupant behavior.  Model parameters 

are derived from literature review, historical data of university water usage and 

consultation with building superintendents.  However, smart sustainable design requires 

the fusion of related dimensions in order to perform a more complete system analysis.  

Mapped water flow represents only one dimension within the system.  A second 

dimension is defined by energy (E) usage.  Water and energy share a close bond, 

referred to as watergy.  Heating and treating water requires energy values that can be 

defined and integrated into the IBWM-QEC model.  Treating water to higher quality 

standards requires more energy; and more energy has a higher associated cost.  

Therefore, water quality (Q) and costs (C) construct a third and fourth dimension to the 

model.  Integrating all four dimensions establishes a sustainable and unique approach to 

overall building hydraulic design, and an IBWM-QEC model provides a single platform 

where each aspect is defined and allowed to interact. 

The advanced IBWM-QEC model can be a powerful tool for designers and 

managers to examine scenarios for reducing water consumption and wastewater output, 

while providing users with an understanding of building water integration.  The finished 

product is anticipated to be adopted for use by the USGBC as a tool to be used with 

future versions of LEED.  The STELLA modeling software is widely available and can 

therefore be used by other planning agencies and researchers to determine feasible 

water reuse and efficiency projects.  Additionally, the model can be further developed for 

use in real-time applications.  For example, if sensors are incorporated within a building, 
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the model can run simulations from the web using the real-time data. By inputting 

collected data, the model can help make future predictions regarding the water budget.  

Also, it should be noted that although the IBWM-QEC model is intended for tracking 

water in individual buildings, the model can be modified and adapted for multiple building 

or community-level modeling, thereby expanding the applications to other sectors such 

as neighborhood development.  The ease of use of STELLA also makes it a great 

educational tool for teaching water conservation and reuse.  The water budget model 

and the water usage data can be made available on the internet so that students and the 

public can learn about and appreciate water conservation and reuse in a sustainable 

framework such as a green building. 
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Appendix A: STELLA IBWM Model Variables by Sector 

 

Irrigation 

 

FIGURE A1: Detail view of the IBWM model irrigation section. 
 

TABLE A1: Variables in the irrigation section of the IBWM model. 

Notation in Model Variable Description Units or Value 

Q:Dsgn\C QDsgn
C
 Design demand flow for cooling gal/day 

Q:Dsgn\I QDsgn
I
 Design demand flow for irrigation gal/day 

Q:Dsgn\T QDsgn
T
 Design demand flow for toilets gal/day 

Q:Dsgn\U QDsgn
U
 Design demand flow for urinals gal/day 

Q:G\T QG
T
 Flow of stormwater to toilets gal/day 

Q:G\U QG
U
 Flow of stormwater to urinals gal/day 

Q:I\Total QTotal
I
 Total water flow allocated for irrigation gal/day 

Q:Irrigation\Plants QPlants
I
 Flow of water utilized by plants gal/day 
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Appendix A (Continued) 

 

TABLE A1 (Continued). 

Notation in Model Variable Description Units or 

Value 

Q:Pond\Irrigation QGI Stormwater flow for irrigation gal/day 

Q:R QW Total available flow of reclaimed water gal/day 

Q:R\T QRT Flow of rainwater for toilets gal/day 

Q:R\U QR
U
 Flow of rainwater for urinals gal/day 

Q:Rain\Irrigation QR
I
 Flow of rainwater for irrigation gal/day 

Q:Reclaim\Irrigation QW
I
 Flow of reclaimed water for irrigation gal/day 

Q:Runoff\Irrigation QRun
I
 Flow of runoff water from irrigation gal/day 

Q:W\T QW
T
 Flow of reclaimed water for toilets gal/day 

Q:W\U QW
U
 Flow of reclaimed water for urinals gal/day 

Q:Y\I QY
I
 Flow of greywater to irrigation gal/day 

S:Pond for 

Irrigation 

- Switch to turn on stormwater source flow for 

irrigation 

1 

S:Rain for Irrigation - Switch to turn on rainwater source flow for irrigation 1 

S:Reclaim\Irrigation - Switch to turn on reclaimed water flow for irrigation 1 

S:Y for Irrigation - Switch to turn on greywater flow for irrigation 1 

V:G\Pond VG
Pond

 Volume of stormwater in the storage pond gal 

V:R\Cis VR
Cis

 Volume of rainwater in the cistern gal 

V:Runoff\Irrigation VRun
I
 Volume of runoff from irrigation gal 

V:Treat V
Treat

 Volume of treated greywater available for reuse gal 

V to plants VPlants
I
 Volume of water going to plants gal 

 

Bathroom Sinks 
 

 

FIGURE A2: Detail view of the IBWM model bathroom sink section. 
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Appendix A (Continued) 

 

 

 
 
FIGURE A3: Baseline (top) and design (bottom) components for bathroom sinks in the 

IBWM model. 

 

TABLE A2: Variables in the bathroom sink section of the IBWM model. 
Notation in Model Variable Description Units or Value 

Q:Dsgn\Sb QDsgn
Sb

 Design demand flow for bathroom sinks gal/day 

Q:P\Sb QP
Sb

 Design potable water demand for bathroom sinks gal/day 

Q:S\Sb QS
Sb

 Flow to sewer from bathroom sinks gal/day 

Q:Y\Sb QY
Sb

 Greywater flow from bathroom sinks to treatment for 

reuse 

gal/day 

S:S\Sb SS
Sb

 Switch to turn on sewer flow from bathroom sinks 1 

S:Y\Sb SY
Sb

 Switch to turn on greywater reuse flow from bathroom 

sinks 

1 

V:S\Sb VS
Sb

 Volume of water entering sewer from bathroom sinks gal 

V:Sb V
Sb

 Volume of water in bathroom sinks gal 

V:Treat V
Treat

 Volume of water in treatment for reuse gal 

Baseline Bathroom 

Sink Demand 

Override Value 

QBase
Sb

 Override value for baseline water demand for 

bathroom sinks if imbedded model calculations are 

not used 

gal/day 

N:A\Sb NA
Sb

 Number of applications of bathroom sinks uses/person/day 

Q:A\Sb Base QA
Sb(Base)

 Baseline flow rate for each bathroom sink application gpm 

Q:Base\Sb QBase
Sb

 Baseline water demand for bathroom sinks gal/day 

S:Baseline 

Bathroom Sink 

Demand Calculated 

Value 

- Switch to use model calculations for baseline water 

demand for bathroom sinks 

1 
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Appendix A (Continued) 

 

TABLE A2 (Continued). 

Notation in Model Variable Description Units or Value 

S:Baseline Bathroom Sink 

Demand Override Value 

- Switch to use the override value for baseline 

water demand for bathroom sinks 

1 

T:Base\Sb tBase
Sb

  sec 

Total FTE FTE Full-time occupant equivalent people 

Design Bathroom Sink 

Demand Override Value 

QDsgn
Sb

 Override value for design water demand for 

bathroom sinks if imbedded model calculations 

are not used 

gal/day 

N:A\Sb NA
Sb

 Number of applications of bathroom sinks uses/person/day 

Q:A\Sb Dsgn QA
Sb(Dsgn)

 Design flow rate for each bathroom sink 

application 

gpm 

Q:Dsgn\Sb QDsgn
Sb

 Design water demand for bathroom sinks gal/day 

S:Design Bathroom Sink 

Demand Calculated Value 

- Switch to use model calculations for design 

water demand for bathroom sinks 

1 

S:Design Bathroom Sink 

Demand Override Value 

- Switch to use the override value for design 

water demand for bathroom sinks 

1 

T:Dsgn\Sb tDsgn
Sb

  sec 

Total FTE FTE Full-time occupant equivalent people 

 

Kitchen Sinks 
 
 

 

FIGURE A4: Detail view of the IBWM model kitchen sink section. 
 
 
 
 
 



 

114 
 

Appendix A (Continued) 

 

 
 

 

FIGURE A5: Baseline (top) and design (bottom) components for kitchen sinks in the 

IBWM model. 

 
TABLE A3: Variables in the kitchen sink section of the IBWM model. 

Notation in Model Variable Description Units or Value 

Baseline Kitchen Sink 

Demand Override Value 

QBase
Sk Override value for baseline water demand for kitchen 

sinks if imbedded model calculations are not used 

gal/day 

Design Kitchen Sink 

Demand Override Value 

QDsgn
Sk Override value for design water demand for kitchen 

sinks if imbedded model calculations are not used 

gal/day 

N:A\Sk NA
Sk Number of kitchen sink applications uses/person/day 

Q:A\Sk Base Q:A
Sk(Base

) 

Baseline kitchen sink flow rate gpm 

Q:A\Sk Dsgn QA
Sk(Dsgn) Design kitchen sink flow rate gpm 

Q:Base\Sk QBase
Sk Baseline demand flow for kitchen sinks gal/day 

Q:Dsgn\Sk QDsgn
Sk Design demand flow for kitchen sinks gal/day 

Q:P\Sk QP
Sk Flow of potable water to kitchen sinks gal/day 

Q:S\Sk QS
Sk Flow of water to the sewer from kitchen sinks gal/day 

Q:Y\Sk QY
Sk Flow of greywater collected from kitchen sinks gal/day 

S:Baseline Kitchen Sink 

Demand Calculated 

Value 

- Switch to use model calculations for baseline water 

demand for kitchen sinks 

1 

S:Baseline Kitchen Sink 

Demand Override Value 

- Switch to use the override value for baseline water 

demand for kitchen sinks 

1 

S:Design Kitchen Sink 

Demand Calculated 

Value 

- Switch to use model calculations for design water 

demand for kitchen sinks 

1 

S:Design Kitchen Sink 

Demand Override Value 

- Switch to use the override value for design water 

demand for kitchen sinks 

1 
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TABLE A3 (Continued). 

Notation in Model Variable Description Units or Value 

S:S\Sk - Switch to direct water from kitchen sinks to 

sewer 

1 

S:Y\Sk - Switch to collect greywater from kitchen sinks for 

reuse 

1 

T:Sk\Base tBase
Sk

 Baseline duration for kitchen sink application sec 

T:Sk\Dsgn tDsgn
Sk

 Design duration for kitchen sink application sec 

Total FTE FTE Full-time occupant equivalent people 

V:S\Sk VS
Sk

 Volume of water directed to sewer from kitchen 

sinks 

gal 

V:Sk V
Sk

 Volume of water in kitchen sinks 0 

V:Treat V
Treat

 Volume in water for treatment for reuse gal 

 

Showers 
 

 

FIGURE A6: Detail view of the IBWM model shower section. 
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Appendix A (Continued) 

 

 
 

 

FIGURE A7: Baseline (top) and design (bottom) components for showers in the IBWM 

model. 

 

TABLE A4: Variables in the shower section of the IBWM model. 

Notation in Model Variable Description Units or Value 

Baseline Shower Demand 

Override Value 

QBase
H Override value for baseline water demand for 

showers if imbedded model calculations are not used 

gal/day 

Design Shower Demand 

Override Value 

QDsgn
H Override value for design water demand for showers 

if imbedded model calculations are not used 

gal/day 

N:A\H NA
H Number of shower applications uses/person/day 

Q:A\H Base Q:A
H(Base) Baseline shower flow rate gpm 

Q:A\H Dsgn QA
H(Dsgn) Design shower flow rate gpm 

Q:Base\H QBase
H Baseline demand flow for showers gal/day 

Q:Dsgn\H QDsgn
H Design demand flow for showers gal/day 

Q:P\H QP
H Flow of potable water to showers gal/day 

Q:S\H QS
H Flow of water to the sewer from showers gal/day 

Q:Y\H QY
H Flow of greywater collected from showers gal/day 

S:Baseline Shower 

Demand Calculated Value 

- Switch to use model calculations for baseline water 

demand for showers 

1 

S:Baseline Shower 

Demand Override Value 

- Switch to use the override value for baseline water 

demand for showers 

1 

S:Design Shower Demand 

Calculated Value 

- Switch to use model calculations for design water 

demand for showers 

1 

S:Design Shower Demand 

Override Value 

- Switch to use the override value for design water 

demand for showers 

1 
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Appendix A (Continued) 

 

TABLE A4 (Continued).  

Notation in Model Variable Description Units or Value 

S:S\H - Switch to direct water from showers to sewer 1 

S:Y\H - Switch to collect greywater from showers for reuse 1 

T:H\Base tBase
H
 Baseline duration for shower application sec 

T:H\Dsgn tDsgn
H
 Design duration for shower application sec 

Total FTE FTE Full-time occupant equivalent people 

V:S\H VS
H
 Volume of water directed to sewer from showers gal 

V:H V
H
 Volume of water in showers 0 

V:Treat V
Treat

 Volume of water in treatment available for reuse gal 
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Appendix A (Continued) 

 
Toilets 

 

 

FIGURE A8: Detail view of the IBWM model toilets section. 
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Appendix A (Continued) 

 

 
 

 

FIGURE A9: Baseline (top) and design (bottom) components for toilets in the IBWM 

model. 

 

TABLE A5: Variables in the toilet section of the IBWM model. 

Notation in Model Variable Description Units or Value 

Baseline Toilet Demand 

Override Value 

QBase
T Baseline demand flow for all toilets gal/day 

Design Toilet Demand 

Override Value 

QDsgn
T Design demand flow for all toilets gal/day 

N:A\T Female NA
T(F) Daily applications of female toilets uses/person/day 

N:A\T Male NA
T(M) Daily applications of male toilets uses/person/day 

Pct:M PM Percent of occupants that are male - 

Q:Base\T QBase
T Baseline demand flow for all toilets gal/day 

Q:Base\T Female QBase
T(F) Baseline demand flow for female toilets gal/day 

Q:Base\T Male QBase
T(M) Baseline demand flow for male toilets gal/day 

Q:Dsgn\C QDsgn
C Design demand flow for cooling gal/day 

Q:Dsgn\T QDsgn
T Design demand flow for all toilets gal/day 

Q:Dsgn\T Female QDsgn
T(F) Design demand flow for female toilets gal/day 

Q:Dsgn\T Male QDsgn
T(M) Design demand flow for male toilets gal/day 

Q:Dsgn\U QDsgn
U Design demand flow for all urinals gal/day 

Q:G\T Female QG
T(F) Flow of stormwater to female toilets gal/day 

Q:G\T Male QG
T(M) Flow of stormwater to male toilets gal/day 

Q:G\U QG
U Flow of stormwater to all urinals gal/day 

Q:P\T Female QP
T(F) Flow of potable water to female toilets gal/day 

Q:P\T Male QP
T(M) Flow of potable water for male toilets gal/day 
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Appendix A (Continued) 

 

TABLE A5 (Continued). 

Notation in Model Variable Description Units or 

Value 

Q:R\T Female QR
T(F)

 Flow of rainwater to female toilets gal/day 

Q:R\T Male QR
T(M)

 Flow of rainwater to male toilets gal/day 

Q:R\U QR
U
 Flow of rainwater to all urinals gal/day 

Q:S\T Female QS
T
 Flow of water to the sewer from female toilets gal/day 

Q:S\T Male QS
T(M)

 Flow of water to the sewer from male toilets gal/day 

Q:W QW Total flow of available reclaimed water gal/day 

Q:W\T Female QW
T(F)

 Flow of reclaimed water to female toilets gal/day 

Q:W\T Male QW
T(M)

 Flow of reclaimed water to male toilets gal/day 

Q:W\U QW
U
 Flow of reclaimed water to all urinals gal/day 

Q:Y\T Female QY
T(F)

 Flow of greywater for female toilets gal/day 

Q:Y\T Male QY
T(M)

 Flow of greywater for male toilets gal/day 

S:Baseline Toilet Demand 

Override Value 

- Switch to use the override value for baseline water 

demand for toilets 

1 

S:Design Toilet Demand 

Calculated Value 

- Switch to use model calculations for design water 

demand for toilets 

1 

S:Design Toilet Demand 

Override Value 

- Switch to use the override value for design water 

demand for toilets 

1 

S:Pond for Toilets Female - Switch to direct stormwater to female toilets 1 

S:Pond for Toilets Male - Switch to direct stormwater to male toilets 1 

S:Rain for Toilets Female - Switch to direct rainwater to female toilets 1 

S:Rain for Toilets Male - Switch to direct rainwater to male toilets 1 

S:Reclaim for Toilets 

Female 

- Switch to direct reclaimed water to female toilets 1 

S:Reclaim for Toilets Male - Switch to direct reclaimed water to male toilets 1 

S:T\Black Female - Switch to direct water from female toilets to treatment 

for reuse 

 

S:T|Black Male - Switch to direct water from male toilets to treatment 

for reuse 

1 

S:T\Sewer Female - Switch to direct water from female toilets to sewer  1 

S:T\Sewer Male - Switch to direct water from male toilets to sewer 1 

S:Y for Toilets Female - Switch to reuse greywater for female toilets 1 

S:Y for Toilets Male - Switch to reuse greywater for male toilets 1 

Total FTE FTE Full-time occupant equivalent people 

V:A\T Base VA
T(Base)

 Baseline volume per toilet application gpf 

V:AT Dsgn VA
T(Dsgn)

 Design volume per toilet application gpf 

V:B\T VB
T
 Volume of blackwater for reuse from all toilets gal 

V:G\Pnd VG
Pnd

 Volume of stormwater in the collection pond gal 

V:R\Cis VR
Cis

 Volume of rainwater in the cistern gal 

V:T\Sewer Female VS
T(F)

 Volume of water into sewer from female toilets gal 

V:T\Sewer Male VS
T(M)

 Volume of water into sewer from male toilets gal 

V:T Toilets Female V
T(F)

 Volume of water in female toilets 0 

V:T Toilets Male V
T(M)

 Volume of water in male toilets 0 

V:Treat V
Treat

 Volume of water in treatment available for reuse gal 
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Appendix A (Continued) 

 

Urinals 
 

 

FIGURE A10: Detail view of the IBWM model urinals section. 
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Appendix A (Continued) 

 

 

 
 

 

FIGURE A11: Baseline (top) and design (bottom) components for urinals in the IBWM 

model. 

 

TABLE A6: Variables in the urinal section of the IBWM model. 

Notation in Model Variable Description Units or Value 

Baseline Urinal Demand 

Override Value 

QBase
U Baseline demand flow for all urinals gal/day 

Design Urinal Demand 

Override Value 

QDsgn
U Design demand flow for all urinals gal/day 

N:A\U Female NA
U(F) Daily applications of female urinals uses/person/day 

N:A\U Male NA
U(M) Daily applications of male urinals uses/person/day 

Pct:M PM Percent of occupants that are male - 

Q:Base\U QBase
U Baseline demand flow for all urinals gal/day 

Q:Base\U Female QBase
T(F) Baseline demand flow for female urinals gal/day 

Q:Base\U Male QBase
T(M) Baseline demand flow for male urinals gal/day 

Q:Dsgn\C QDsgn
C Design demand flow for cooling gal/day 

Q:Dsgn\U Female QDsgn
U(F) Design demand flow for female urinals gal/day 

Q:Dsgn\U Male QDsgn
U(M) Design demand flow for male urinals gal/day 

Q:G\U Female QG
T(F) Flow of stormwater to female urinals gal/day 

Q:G\U Male QG
T(M) Flow of stormwater to male urinals gal/day 

Q:G\U QG
U Flow of stormwater to all urinals gal/day 

Q:P\U Female QP
T(F) Flow of potable water to female urinals gal/day 

Q:P\U Male QP
T(M) Flow of potable water for male urinals gal/day 

Q:R\U Female QR
T(F) Flow of rainwater to female urinals gal/day 
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Appendix A (Continued) 

 

TABLE A6 (Continued). 

Notation in Model Variable Description Units or Value 

Q:R\U Male QR
T(M)

 Flow of rainwater to male urinals gal/day 

Q:R\U QR
U
 Flow of rainwater to all urinals gal/day 

Q:S\U Female QS
T
 Flow of water to the sewer from female 

urinals 

gal/day 

Q:S\U Male QS
T(M)

 Flow of water to the sewer from male 

urinals 

gal/day 

Q:W QW Total flow of available reclaimed water gal/day 

Q:W\U Female QW
T(F)

 Flow of reclaimed water to female urinals gal/day 

Q:W\U Male QW
T(M)

 Flow of reclaimed water to male urinals gal/day 

Q:W\U QW
U
 Flow of reclaimed water to all urinals gal/day 

Q:Y\U Female QY
T(F)

 Flow of greywater for female urinals gal/day 

Q:Y\U Male QY
T(M)

 Flow of greywater for male urinals gal/day 

S:Baseline Urinal Demand 

Calculated Value 

- Switch to use model calculations for 

baseline water demand for urinals 

1 

 
 



 

124 
 

Appendix A (Continued) 

 

 
Cooling Tower 
 

 

FIGURE A12: Detail view of the IBWM model cooling section. 

 
TABLE A7: Variables in the cooling section of the IBWM model. 

Notation in Model Variable Description Units or Value 

Q:Dsgn\C QDsgn
C
 Design demand flow for cooling gal/day 

Q:E\C QE
C
 Flow lost through evaporation from cooling gal/day 

Q:G\C QG
C
 Flow of stormwater for cooling gal/day 

Q:G\T QG
T
 Flow of stormwater for toilets gal/day 

Q:G\U QG
U
 Flow of stormwater for urinals gal/day 

Q:P\C QP
C
 Flow of potable water for cooling gal/day 
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Appendix A (Continued) 

 

TABLE A7 (Continued). 

Notation in Model Variable Description Units or Value 

Q:Pond\Irrigation QG
I
 Flow of stormwater for irrigation gal/day 

Q:R\C QR
C
 Flow of rainwater for cooling gal/day 

Q:R\C reclaim in QW
C
 Flow of reclaimed water for cooling gal/day 

Q:S\C QS
C
 Flow of water bled out to sewer from cooling gal/day 

Q:W QW Total available flow of reclaimed water gal/day 

Q:Y\C QY
C
 Flow of greywater for cooling gal/day 

S:R\C - Switch to direct rainwater to cooling 1 

S:Reclaimfor cooling - Switch to direct reclaimed water to cooling 1 

S:W\C - Switch to direct collected stormwater to cooling 1 

V:C\sewer VS
C
 Volume of water directed to sewer from 

cooling 

gal 

V:Cooling V
C
 Volume of water in the cooling tower gal 

V:E\C VE
C
 Volume of water lost through evaporation from 

cooling 

gal 

V:G\Pnd VG
Pnd

 Volume of stormwater available in the pond gal 

V:R\Cis VR
Cis

 Volume of rainwater available in the cistern gal 
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Appendix A (Continued) 

 

Rainwater Collection 
 

 

FIGURE A13: Detail view of the IBWM model rainwater collection section. 

 
TABLE A8: Variables in the rainwater collection section of the IBWM model. 

Notation in Model Variable Description Units or Value 

A:Cis ACis Collection area for the cistern ft2 

CE:Cis CECis Collection efficiency of the cistern collection 

system 

- 

Conversion Factor CF Conversion factor 0.6223 gal/ft2/in 

Q:Out\Cis QTot
Cis Total outflow to all fixtures from cistern gal/day 

Q:Over\Pnd QO
Pnd Overflow from cistern gal/day 

Q:R\Cis QR
Cis Flow of rainwater into the cistern gal/day 

Q:R\T QR
T Flow of rainwater to toilets gal/day 

Q:R\U QR
U Flow of rainwater to urinals gal/day 

Q:Rain\Irrigation QR
I Flow of rainwater to irrigation gal/day 

R R Rainfall in/day 

Rainfall Flow into 

Cistern Override Value 

QR
Cis Flow of rainwater into the cistern gal/day 
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TABLE A8 (Continued) 

Notation in Model Variable Description Units or Value 

S:Rainfall Flow into 

Cistern Calculated Value 

- Switch to use model calculations to 

determine rainwater flow into cistern 

1 

S:Rainfall Flow into 

Cistern Override Value 

- Switch to use override value to determine 

rainwater flow into cistern 

1 

V:flush V
flush

 Volume of the first flush gal 

V:Max\Cis VMax
Cis

 Maximum cistern volume gal 

V:R\Cis VR
Cis

 Volume of rainwater in the cistern gal 

V:Rain\Cistern VR
Cis

 Volume of rainwater in the cistern gal 

 

 
Stormwater Collection 
 

 

FIGURE A14: Detail view of the IBWM model stormwater collection section. 
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Appendix A (Continued) 

 

TABLE A9: Variables in the stormwater collection section of the IBWM model. 

Notation in Model Variable Description Units or Value 

A:Pnd A
Pnd

 Collection area for the pond ft
2
 

CE:Pnd CE
Pnd

 Collection efficiency of the stormwater 

collection system 

- 

Conversion Factor CF Conversion factor 0.6223 gal/ft
2
/in 

Q:Evap\Pond QE
Pnd

 Flow lost through evaporation from the pond gal/day 

Q:G\Pond QG
Pnd

 Flow of stormwater into the pond gal/day 

Q:G\T QG
T
 Flow of stormwater for toilets gal/day 

Q:G\U QG
U
 Flow of stormwater for urinals gal/day 

Q:inf\Pnd QInf
Pnd

 Flow lost through infiltration from the pond gal/day 

Q:Out\Pnd QTot
Pnd

 Total flow to all fixtures from pond gal/day 

Q:Over\Pnd QO
Pnd

 Overflow from stormwater pond gal/day 

Q:Pond\Irrigation QW
I
 Flow of stormwater for irrigation gal/day 

R R Rainfall in/day 

S:Stormwater Flow into 

Pond Calculated Value 

- Switch to use model calculations to 

determine flow of stormwater into pond 

1 

S:Stormwater Flow into 

Pond Override Value 

- Switch to use override value for flow of 

stormwater into pond 

1 

Stormwater Flow into 

Pond Override Value 

QG
Pnd

 Flow of stormwater into the pond gal/day 

V:G\Pnd VG
Pnd

 Volume of stormwater in the pond gal 

V:Max\Pnd VMax
Pnd

 Maximum volume of the stormwater pond gal 

V:Storm\Pond VG
Pnd

 Volume of stormwater in the pond gal 

 



 

129 
 

Appendix B: STELLA IBWM Model Equations 

 

Design_TWA(t) = Design_TWA(t - dt) + (Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA) * dt 
INIT Design_TWA = 0 
INFLOWS: 
Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA = 
(S:Design_Irrigation_Demand_Calculated_Vlaue*(TWA\Groundcover+TWA\Mixed+TWA\Shrubs+TWA\Trees+TWA\Turfgr
ass)) 
+ 
(S:Design_Irrigation_Demand_Override_Value*Design_Irrigation_Demand_Override_Value) 
Total_Rainfall(t) = Total_Rainfall(t - dt) + (Rainfall_Flow_In) * dt 
INIT Total_Rainfall = 0 
INFLOWS: 
Rainfall_Flow_In = Q:R\Cis_Rainfall_flow_into_Cistern 
V:Baseline_TPWA_2(t) = V:Baseline_TPWA_2(t - dt) + (Q:Base\I_Baseline_Demand_for_Irrigation_TPWA__and_TWA) * 
dt 
INIT V:Baseline_TPWA_2 = 0.0000000000000001 
INFLOWS: 
Q:Base\I_Baseline_Demand_for_Irrigation_TPWA__and_TWA = 
(S:Base_Irrigation_Demand_Calculated_Vlaue*(TPWA\Groundcover_2+TPWA\Mixed_2+TPWA\Shrubs_2+TPWA\Trees_
2+TPWA\Turfgrass_2)) 
+ 
(S:Base_Irrigation_Demand_Override_Value*Baseline_Irrigation_Demand_Override_Value) 
V:BaseTotal(t) = V:BaseTotal(t - dt) + (Q:Base\Total) * dt 
INIT V:BaseTotal = 0.0000000000001 
INFLOWS: 
Q:Base\Total = Q:Base\Total_Baseline_Total_Water_Use_All_Potable_Water 
V:Base\H(t) = V:Base\H(t - dt) + (Q:Base\H) * dt 
INIT V:Base\H = 0.0000000000000001 
INFLOWS: 
Q:Base\H = Q:Dsgn\H_Design_Demand_for_Showers 
V:Base\I(t) = V:Base\I(t - dt) + (Q:Base\I) * dt 
INIT V:Base\I = 0.0000000000000001 
INFLOWS: 
Q:Base\I = Q:Base\I_Baseline_Demand_for_Irrigation_TPWA__and_TWA 
V:Base\Sb(t) = V:Base\Sb(t - dt) + (Q:Base\Sb) * dt 
INIT V:Base\Sb = 0.0000000000000001 
INFLOWS: 
Q:Base\Sb = Q:Base\Sb_Baseline_Demand_for_Bathroom_Sinks 
V:Base\Sk(t) = V:Base\Sk(t - dt) + (Q:Base\Sk) * dt 
INIT V:Base\Sk = 0.0000000000000001 
INFLOWS: 
Q:Base\Sk = Q:Base\Sk_Baseline_Demand_for_Kitchen_Sinks 
V:Base\Swge(t) = V:Base\Swge(t - dt) + (Q:Base\Swge) * dt 
INIT V:Base\Swge = 0.0000000000001 
INFLOWS: 
Q:Base\Swge = Q:Base\Swge_Basline_Sewage_Conveyance 
V:Base\T(t) = V:Base\T(t - dt) + (Q:Base\T) * dt 
INIT V:Base\T = 0.0000000000000001 
INFLOWS: 
Q:Base\T = Q:Base\T__Baseline_Demand_for_All_Toilets 
V:Base\U(t) = V:Base\U(t - dt) + (Q:Base\U) * dt 
INIT V:Base\U = 0.0000000000000001 
INFLOWS: 
Q:Base\U = Q:Base\U_Baseline_Demand_for_All_Urinals 
V:Base\Wter(t) = V:Base\Wter(t - dt) + (Q:Base\Wter) * dt 
INIT V:Base\Wter = 0.0000000000001 
INFLOWS: 
Q:Base\Wter = Q:Base\Wter_Baseline_Water_Use_for_Fixtures_All_Potable_Water 
V:B\T_Blackwater(t) = V:B\T_Blackwater(t - dt) + (Q:B\T_Male_black_in + Q:B\T_Female_black_in) * dt 
INIT V:B\T_Blackwater = 0 
INFLOWS: 
Q:B\T_Male_black_in = S:T\Black_Male*Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets 
Q:B\T_Female_black_in = S:T\Black_Female*Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets 
V:B\U_Blackwater(t) = V:B\U_Blackwater(t - dt) + (Q:B\U_Male_black_in + Q:B\U_Female_black_in) * dt 
INIT V:B\U_Blackwater = 0 
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Appendix B (Continued) 

 

INFLOWS: 
Q:B\U_Male_black_in = S:U\Black_Male*Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals 
Q:B\U_Female_black_in = S:U\black_Female*Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals 
V:Cooling(t) = V:Cooling(t - dt) + (Q:Y\C_grey_out + Q:P\C_potable_in + Q:R\C_reclaim_in + 
Q:G\C_Stormwater_from_Pond_to_Cooling + Q:R\C_Rainwater_from_Cistern_to_Cooling - 
Q:S\C_Flow_to_Sewer_from_Cooling_Bleed_Out - Q:E\C_out) * dt 
INIT V:Cooling = 0 
INFLOWS: 
Q:Y\C_grey_out = IF ( Q:Dsgn\C_Design_Demand_for_Cooling > Q:R\C_Rainwater_from_Cistern_to_Cooling ) 
    THEN 
        IF (V:Treat_Volume_of_Treated_Water_for_Reuse ) > Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:R\C_Rainwater_from_Cistern_to_Cooling 
            THEN ( Q:Dsgn\C_Design_Demand_for_Cooling - Q:R\C_Rainwater_from_Cistern_to_Cooling )*S:Y_for_Cooling 
        ELSE (V:Treat_Volume_of_Treated_Water_for_Reuse)*S:Y_for_Cooling 
ELSE 0 
Q:P\C_potable_in = Q:Dsgn\C_Design_Demand_for_Cooling - Q:Y\C_grey_out - 
Q:R\C_Rainwater_from_Cistern_to_Cooling - Q:G\C_Stormwater_from_Pond_to_Cooling - Q:R\C_reclaim_in 
Q:R\C_reclaim_in = IF (Q:Dsgn\C_Design_Demand_for_Cooling > ( Q:Y\C_grey_out + 
Q:R\C_Rainwater_from_Cistern_to_Cooling + Q:G\C_Stormwater_from_Pond_to_Cooling ) ) 
    THEN 
        IF ( ( Q:Dsgn\C_Design_Demand_for_Cooling - Q:Y\C_grey_out - Q:R\C_Rainwater_from_Cistern_to_Cooling - 
Q:G\C_Stormwater_from_Pond_to_Cooling ) > Q:W_reclaimed_water ) 
            THEN (Q:W_reclaimed_water*S:Reclaim_for_cooling) 
        ELSE ( (Q:Dsgn\C_Design_Demand_for_Cooling - Q:Y\C_grey_out - Q:R\C_Rainwater_from_Cistern_to_Cooling - 
Q:G\C_Stormwater_from_Pond_to_Cooling )*S:Reclaim_for_cooling ) 
ELSE 0 
Q:G\C_Stormwater_from_Pond_to_Cooling = IF ( Q:Dsgn\C_Design_Demand_for_Cooling > ( Q:Y\C_grey_out + 
Q:R\C_Rainwater_from_Cistern_to_Cooling) )  
    THEN  
        IF ( ( Q:Dsgn\C_Design_Demand_for_Cooling - Q:Y\C_grey_out - Q:R\C_Rainwater_from_Cistern_to_Cooling ) > ( 
V:G\Pnd_Stormwater_Volume_in_Pond - Q:G\U_Stormwater_for_All_Urinals - Q:G\T_Stormwater_for_All_Toilets - 
Q:Pond\Irrigation_pond_in ) )  
            THEN ( ( V:G\Pnd_Stormwater_Volume_in_Pond - Q:G\U_Stormwater_for_All_Urinals - 
Q:G\T_Stormwater_for_All_Toilets - Q:Pond\Irrigation_pond_in )*S:W\C_Stormwater_for_Cooling ) 
        ELSE ( ( Q:Dsgn\C_Design_Demand_for_Cooling - Q:Y\C_grey_out - Q:R\C_Rainwater_from_Cistern_to_Cooling - 
Q:G\U_Stormwater_for_All_Urinals - Q:G\T_Stormwater_for_All_Toilets - Q:Pond\Irrigation_pond_in 
)*S:W\C_Stormwater_for_Cooling ) 
ELSE 0 
Q:R\C_Rainwater_from_Cistern_to_Cooling = IF ( V:R\Cis_Rainwater_Volume_in_Cistern > 
Q:Dsgn\C_Design_Demand_for_Cooling ) 
     THEN ( Q:Dsgn\C_Design_Demand_for_Cooling*S:R\C_Rainwater_for_Cooling ) 
ELSE ( V:R\Cis_Rainwater_Volume_in_Cistern*S:R\C_Rainwater_for_Cooling ) 
OUTFLOWS: 
Q:S\C_Flow_to_Sewer_from_Cooling_Bleed_Out = 0 
Q:E\C_out = 0 
V:C\sewer(t) = V:C\sewer(t - dt) + (Q:S\C_Flow_to_Sewer_from_Cooling_Bleed_Out) * dt 
INIT V:C\sewer = 0 
INFLOWS: 
Q:S\C_Flow_to_Sewer_from_Cooling_Bleed_Out = 0 
V:Dsgn\H(t) = V:Dsgn\H(t - dt) + (Q:Dsgn\H) * dt 
INIT V:Dsgn\H = 0.0000000000000001 
INFLOWS: 
Q:Dsgn\H = Q:Dsgn\H_Design_Demand_for_Showers 
V:Dsgn\I(t) = V:Dsgn\I(t - dt) + (Q:Dsgn\I) * dt 
INIT V:Dsgn\I = 0.0000000000000001 
INFLOWS: 
Q:Dsgn\I = Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA 
V:Dsgn\Sb(t) = V:Dsgn\Sb(t - dt) + (Q:Dsgn\Sb) * dt 
INIT V:Dsgn\Sb = 0.0000000000000001 
INFLOWS: 
Q:Dsgn\Sb = Q:Dsgn\Sb_Design_Demand_for_Bathroom_Sinks 
V:Dsgn\Sk(t) = V:Dsgn\Sk(t - dt) + (Q:Dsgn\Sk) * dt 
INIT V:Dsgn\Sk = 0.0000000000000001 
INFLOWS: 
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Q:Dsgn\Sk = Q:Dsgn\Sk_Design_Demand_for_Kitchen_Sinks 
V:Dsgn\Swge(t) = V:Dsgn\Swge(t - dt) + (Q:Dsgn\Swge) * dt 
INIT V:Dsgn\Swge = 0 
INFLOWS: 
Q:Dsgn\Swge = Q:Dsgn\Swge_Design_Sewage_Conveyance 
V:Dsgn\T(t) = V:Dsgn\T(t - dt) + (Q:Dsgn\T) * dt 
INIT V:Dsgn\T = 0.0000000000000001 
INFLOWS: 
Q:Dsgn\T = Q:Dsgn\T__Design_Demand_for_All_Toilets 
V:Dsgn\Total(t) = V:Dsgn\Total(t - dt) + (Q:Dsgn\Total) * dt 
INIT V:Dsgn\Total = 0.0000000000001 
INFLOWS: 
Q:Dsgn\Total = Q:Dsgn\Total_Design_Total_Water_Use_All_Water 
V:Dsgn\U(t) = V:Dsgn\U(t - dt) + (Q:Dsgn\U) * dt 
INIT V:Dsgn\U = 0.0000000000000001 
INFLOWS: 
Q:Dsgn\U = Q:Dsgn\U_Design_Flowrate_for_All_Urinals 
V:Dsgn\Wter(t) = V:Dsgn\Wter(t - dt) + (Q:Dsgn\Wter) * dt 
INIT V:Dsgn\Wter = 0 
INFLOWS: 
Q:Dsgn\Wter = Q:Dsgn\Wter_Design_Water_Use_for_Fixtures_All_Water 
V:E\C_Evap(t) = V:E\C_Evap(t - dt) + (Q:E\C_out) * dt 
INIT V:E\C_Evap = 0 
INFLOWS: 
Q:E\C_out = 0 
V:H_Showers(t) = V:H_Showers(t - dt) + (Q:P\H_Potable_water_to_Showers - Q:S\H_from_Showers_to_Sewer - 
Q:Y\H_Greywater_to_Treatment) * dt 
INIT V:H_Showers = 0 
INFLOWS: 
Q:P\H_Potable_water_to_Showers = Q:Dsgn\H_Design_Demand_for_Showers 
OUTFLOWS: 
Q:S\H_from_Showers_to_Sewer = Q:P\H_Potable_water_to_Showers*S:S\H_to_Sewer 
Q:Y\H_Greywater_to_Treatment = Q:P\H_Potable_water_to_Showers*S:Y\H_to_Treatment 
V:I_Irrigation(t) = V:I_Irrigation(t - dt) + (Q:Y\I_grey_out + Q:Rain\Irrigation_rain_in + Q:Pond\Irrigation_pond_in + 
Q:Reclaim\Irrigation_reclaimed_in + Q:P\I_Potable_water_for_Irrigation - Q:Runoff\Irrigation - Q:Irrigation\Plants) * dt 
INIT V:I_Irrigation = 0 
INFLOWS: 
Q:Y\I_grey_out = IF (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
(Q:Dsgn\T__Design_Demand_for_All_Toilets+Q:Dsgn\U_Design_Flowrate_for_All_Urinals) ) > 
Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA 
    THEN ( Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA*S:Y_for_Irrigation ) 
ELSE ( ( V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
(Q:Dsgn\T__Design_Demand_for_All_Toilets+Q:Dsgn\U_Design_Flowrate_for_All_Urinals) )*S:Y_for_Irrigation ) 
Q:Rain\Irrigation_rain_in = IF ( Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA > Q:Y\I_grey_out ) 
    THEN  
        IF ( Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA - Q:Y\I_grey_out ) > ( 
V:R\Cis_Rainwater_Volume_in_Cistern - Q:R\U_Rainwater_for_All_Urinals - Q:R\T_Rainwater_for_All_Toilets ) 
            THEN ( ( V:R\Cis_Rainwater_Volume_in_Cistern - Q:R\U_Rainwater_for_All_Urinals - 
Q:R\T_Rainwater_for_All_Toilets )*S:Rain_for_Irrigation ) 
        ELSE ( ( Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA - Q:Y\I_grey_out )*S:Rain_for_Irrigation )  
ELSE 0 
Q:Pond\Irrigation_pond_in = IF ( Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA > ( Q:Y\I_grey_out + 
Q:Rain\Irrigation_rain_in ) )  
    THEN  
        IF ( ( Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA - Q:Y\I_grey_out - Q:Rain\Irrigation_rain_in ) > ( 
V:G\Pnd_Stormwater_Volume_in_Pond - Q:G\U_Stormwater_for_All_Urinals - Q:G\T_Stormwater_for_All_Toilets ) )  
            THEN ( ( V:G\Pnd_Stormwater_Volume_in_Pond - Q:G\U_Stormwater_for_All_Urinals - 
Q:G\T_Stormwater_for_All_Toilets )*S:Pond_for_Irrigation ) 
        ELSE ( ( Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA - Q:Y\I_grey_out - Q:Rain\Irrigation_rain_in - 
Q:G\U_Stormwater_for_All_Urinals - Q:G\T_Stormwater_for_All_Toilets )*S:Pond_for_Irrigation ) 
ELSE 0 
Q:Reclaim\Irrigation_reclaimed_in = IF ( Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA > ( Q:Y\I_grey_out + 
Q:Rain\Irrigation_rain_in + Q:Pond\Irrigation_pond_in ) ) 
    THEN 
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         IF ( ( Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA - Q:Y\I_grey_out - Q:Rain\Irrigation_rain_in - 
Q:Pond\Irrigation_pond_in ) > ( Q:W_reclaimed_water - Q:W\U_Reclaimed_water_for_All_Urinals - 
Q:W\T_Reclaimed_water_for_All_Toilets) ) 
             THEN ( Q:W_reclaimed_water - Q:W\U_Reclaimed_water_for_All_Urinals - 
Q:W\T_Reclaimed_water_for_All_Toilets )*S:Reclaim\Irrigation 
        ELSE ( ( Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA - Q:Y\I_grey_out - Q:Rain\Irrigation_rain_in - 
Q:Pond\Irrigation_pond_in - Q:W\U_Reclaimed_water_for_All_Urinals - Q:W\T_Reclaimed_water_for_All_Toilets 
)*S:Reclaim\Irrigation ) 
ELSE 0 
Q:P\I_Potable_water_for_Irrigation = Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA-Q:Y\I_grey_out-
Q:Rain\Irrigation_rain_in-Q:Pond\Irrigation_pond_in-Q:Reclaim\Irrigation_reclaimed_in 
OUTFLOWS: 
Q:Runoff\Irrigation = 0 
Q:Irrigation\Plants = Q:I\Total 
V:P_Dsgn\H(t) = V:P_Dsgn\H(t - dt) + (Q:P_Dsgn\H) * dt 
INIT V:P_Dsgn\H = 0 
INFLOWS: 
Q:P_Dsgn\H = Q:P\H_Potable_water_to_Showers 
V:P_Dsgn\I(t) = V:P_Dsgn\I(t - dt) + (Q:P_Dsgn\I) * dt 
INIT V:P_Dsgn\I = 0 
INFLOWS: 
Q:P_Dsgn\I = Q:P\I_Potable_water_for_Irrigation 
V:P_Dsgn\Sb(t) = V:P_Dsgn\Sb(t - dt) + (Q:P_Dsgn\Sb) * dt 
INIT V:P_Dsgn\Sb = 0 
INFLOWS: 
Q:P_Dsgn\Sb = Q:P\Sb_Potable_water_to_Bathroom_Sinks 
V:P_Dsgn\Sk(t) = V:P_Dsgn\Sk(t - dt) + (Q:P_Dsgn\Sk) * dt 
INIT V:P_Dsgn\Sk = 0 
INFLOWS: 
Q:P_Dsgn\Sk = Q:P\Sk_Potable_water_to_Kitchen_Sinks 
V:P_Dsgn\Swge(t) = V:P_Dsgn\Swge(t - dt) + (Q:P_Dsgn\Swge) * dt 
INIT V:P_Dsgn\Swge = 0 
INFLOWS: 
Q:P_Dsgn\Swge = Q:P_Dsgn\Swge_Sewage_Conveyance_from_Potable_Water 
V:P_Dsgn\T(t) = V:P_Dsgn\T(t - dt) + (Q:P_Dsgn\T) * dt 
INIT V:P_Dsgn\T = 0 
INFLOWS: 
Q:P_Dsgn\T = Q:P\T_Potable_water_for_All_Toilets 
V:P_Dsgn\Total(t) = V:P_Dsgn\Total(t - dt) + (Q:P_Dsgn\Total) * dt 
INIT V:P_Dsgn\Total = 0 
INFLOWS: 
Q:P_Dsgn\Total = Q:P_Dsgn\Total_Design_Total_Water_Use_Potable_Water 
V:P_Dsgn\U(t) = V:P_Dsgn\U(t - dt) + (Q:P_Dsgn\U) * dt 
INIT V:P_Dsgn\U = 0 
INFLOWS: 
Q:P_Dsgn\U = Q:P\U_Potable_water_for_All_Urinals 
V:P_Dsgn\Wter(t) = V:P_Dsgn\Wter(t - dt) + (Q:P_Dsgn\Wter) * dt 
INIT V:P_Dsgn\Wter = 0 
INFLOWS: 
Q:P_Dsgn\Wter = Q:P_Dsgn\Wter_Design_Water_Use_for_Fixtures_Potable_Water 
V:Rain\Cistern(t) = V:Rain\Cistern(t - dt) + (Q:R\Cis_Rainfall_flow_into_Cistern - Q:Out\Cis_Outflow_from_Cistern - 
Q:Over\Cis_Overflow_from_Cistern) * dt 
INIT V:Rain\Cistern = 0 
INFLOWS: 
Q:R\Cis_Rainfall_flow_into_Cistern = 
(S:Rainfall_Flow_into_Cistern_Calculated_Value*(R_Rainfall*A:Cis_Collection_Area_for_Cistern*CE:Cis_Collection_Effici
ency_of_Cistern*Conversion_Factor_gal\sf\in - V:flush_First_flush_volume)) 
+ 
(S:Rainfall_Flow_into_Cistern_Override_Value*Rainfall_Flow_into_Cistern_Override_Value) 
OUTFLOWS: 
Q:Out\Cis_Outflow_from_Cistern = 
Q:Rain\Irrigation_rain_in+Q:R\T_Rainwater_for_All_Toilets+Q:R\U_Rainwater_for_All_Urinals 
Q:Over\Cis_Overflow_from_Cistern = IF ( V:Rain\Cistern < V:Max\Cis_Maximum_Cistern_Volume ) 
    THEN ( 0 ) 
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ELSE ( Q:R\Cis_Rainfall_flow_into_Cistern ) 
V:Runoff\Irrigation(t) = V:Runoff\Irrigation(t - dt) + (Q:Runoff\Irrigation) * dt 
INIT V:Runoff\Irrigation = 0 
INFLOWS: 
Q:Runoff\Irrigation = 0 
V:Sb_Bathroom_Sinks(t) = V:Sb_Bathroom_Sinks(t - dt) + (Q:P\Sb_Potable_water_to_Bathroom_Sinks - 
Q:S\Sb_from_Bathroom_Sinks_to_Sewer - Q:Y\Sb_Greywater_to_Treatment) * dt 
INIT V:Sb_Bathroom_Sinks = 0 
INFLOWS: 
Q:P\Sb_Potable_water_to_Bathroom_Sinks = Q:Dsgn\Sb_Design_Demand_for_Bathroom_Sinks 
OUTFLOWS: 
Q:S\Sb_from_Bathroom_Sinks_to_Sewer = Q:P\Sb_Potable_water_to_Bathroom_Sinks*S:S\Sb_to_Sewer 
Q:Y\Sb_Greywater_to_Treatment = Q:P\Sb_Potable_water_to_Bathroom_Sinks*S:Y\Sb_to_Treatment 
V:Sk_Kitchen_Sinks(t) = V:Sk_Kitchen_Sinks(t - dt) + (Q:P\Sk_Potable_water_to_Kitchen_Sinks - 
Q:Y\Sk_Greywater_to_Treatment - Q:S\Sk_from_Kitchen_Sinks_to_Sewer) * dt 
INIT V:Sk_Kitchen_Sinks = 0 
INFLOWS: 
Q:P\Sk_Potable_water_to_Kitchen_Sinks = Q:Dsgn\Sk_Design_Demand_for_Kitchen_Sinks 
OUTFLOWS: 
Q:Y\Sk_Greywater_to_Treatment = Q:P\Sk_Potable_water_to_Kitchen_Sinks*S:Y\Sk_to_Treatment 
Q:S\Sk_from_Kitchen_Sinks_to_Sewer = Q:P\Sk_Potable_water_to_Kitchen_Sinks*S:S\Sk_to_Sewer 
V:Storm\Pond(t) = V:Storm\Pond(t - dt) + (Q:G\Pond_Stormwater_Flow_into_Pond - Q:Out\Pnd_Outflow_from_Pond - 
Q:Over\Pnd_Overflow_from_Pond - Q:Evap\Pond_Evaporation_Loss_from_Pond - 
Q:Inf\Pnd_Infiltration_Loss_from_Pond) * dt 
INIT V:Storm\Pond = 0 
INFLOWS: 
Q:G\Pond_Stormwater_Flow_into_Pond = 
(S:Stormwater_Flow_into_Pond_Calculated_Value*(R_Rainfall*A:Pnd_Collection_Area_for_Pond*CE:Pnd_Collection_Effi
ciency_for_Pond*Conversion_Factor_gal\sf\in)) 
+ 
(S:Stormwater_Flow_into_Pond_Override_Value*Stormwater_Flow_into_Pond_Override_Value) 
OUTFLOWS: 
Q:Out\Pnd_Outflow_from_Pond = 
Q:G\T_Stormwater_for_All_Toilets+Q:G\U_Stormwater_for_All_Urinals+Q:Pond\Irrigation_pond_in 
Q:Over\Pnd_Overflow_from_Pond = IF ( V:Storm\Pond < V:Max\Pnd_Maximum_Pond_Volume ) 
    THEN ( 0 ) 
ELSE ( Q:G\Pond_Stormwater_Flow_into_Pond ) 
Q:Evap\Pond_Evaporation_Loss_from_Pond = 0 
Q:Inf\Pnd_Infiltration_Loss_from_Pond = 0 
V:S\H_Sewer(t) = V:S\H_Sewer(t - dt) + (Q:S\H_from_Showers_to_Sewer) * dt 
INIT V:S\H_Sewer = 0 
INFLOWS: 
Q:S\H_from_Showers_to_Sewer = Q:P\H_Potable_water_to_Showers*S:S\H_to_Sewer 
V:S\Sb_Sewer(t) = V:S\Sb_Sewer(t - dt) + (Q:S\Sb_from_Bathroom_Sinks_to_Sewer) * dt 
INIT V:S\Sb_Sewer = 0 
INFLOWS: 
Q:S\Sb_from_Bathroom_Sinks_to_Sewer = Q:P\Sb_Potable_water_to_Bathroom_Sinks*S:S\Sb_to_Sewer 
V:S\Sk_Sewer(t) = V:S\Sk_Sewer(t - dt) + (Q:S\Sk_from_Kitchen_Sinks_to_Sewer) * dt 
INIT V:S\Sk_Sewer = 0 
INFLOWS: 
Q:S\Sk_from_Kitchen_Sinks_to_Sewer = Q:P\Sk_Potable_water_to_Kitchen_Sinks*S:S\Sk_to_Sewer 
V:Treat_Treatment(t) = V:Treat_Treatment(t - dt) + (Q:Y\Sb_Greywater_to_Treatment + Q:Y\H_Greywater_to_Treatment 
+ Q:Y\Sk_Greywater_to_Treatment - Q:Y\T_Male_grey_out - Q:Y\T_Female_grey_out - Q:Y\C_grey_out - Q:Y\I_grey_out 
- Q:Y\U_Male_grey_out - Q:Y\U_Female_grey_out) * dt 
INIT V:Treat_Treatment = 0 
INFLOWS: 
Q:Y\Sb_Greywater_to_Treatment = Q:P\Sb_Potable_water_to_Bathroom_Sinks*S:Y\Sb_to_Treatment 
Q:Y\H_Greywater_to_Treatment = Q:P\H_Potable_water_to_Showers*S:Y\H_to_Treatment 
Q:Y\Sk_Greywater_to_Treatment = Q:P\Sk_Potable_water_to_Kitchen_Sinks*S:Y\Sk_to_Treatment 
OUTFLOWS: 
Q:Y\T_Male_grey_out = IF ( Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets > Q:R\T_Male_rain_in ) 
    THEN 
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        IF (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Design_Flowrate_for_All_Urinals ) > Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets - 
Q:R\T_Male_rain_in 
            THEN ( Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets - Q:R\T_Male_rain_in )*S:Y_for_Toilets_Male 
        ELSE (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Design_Flowrate_for_All_Urinals)*S:Y_for_Toilets_Male 
ELSE 0 
Q:Y\T_Female_grey_out = IF ( Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets > Q:R\T_Female_rain_in) 
    THEN 
        IF (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Design_Flowrate_for_All_Urinals - Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets ) > 
Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets - Q:R\T_Female_rain_in 
            THEN ( Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets - Q:R\T_Female_rain_in 
)*S:Y_for_Toilets_Female 
        ELSE (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Design_Flowrate_for_All_Urinals - 
Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets)*S:Y_for_Toilets_Female 
ELSE 0 
Q:Y\C_grey_out = IF ( Q:Dsgn\C_Design_Demand_for_Cooling > Q:R\C_Rainwater_from_Cistern_to_Cooling ) 
    THEN 
        IF (V:Treat_Volume_of_Treated_Water_for_Reuse ) > Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:R\C_Rainwater_from_Cistern_to_Cooling 
            THEN ( Q:Dsgn\C_Design_Demand_for_Cooling - Q:R\C_Rainwater_from_Cistern_to_Cooling )*S:Y_for_Cooling 
        ELSE (V:Treat_Volume_of_Treated_Water_for_Reuse)*S:Y_for_Cooling 
ELSE 0 
Q:Y\I_grey_out = IF (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
(Q:Dsgn\T__Design_Demand_for_All_Toilets+Q:Dsgn\U_Design_Flowrate_for_All_Urinals) ) > 
Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA 
    THEN ( Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA*S:Y_for_Irrigation ) 
ELSE ( ( V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
(Q:Dsgn\T__Design_Demand_for_All_Toilets+Q:Dsgn\U_Design_Flowrate_for_All_Urinals) )*S:Y_for_Irrigation ) 
Q:Y\U_Male_grey_out = IF ( Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals > Q:R\U_Male_rain_in ) 
    THEN 
        IF (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals ) > Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals - 
Q:R\U_Male_rain_in 
            THEN ( Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals - Q:R\U_Male_rain_in )*S:Y_for_urinals_Male 
        ELSE (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals)*S:Y_for_urinals_Male 
ELSE 0 
Q:Y\U_Female_grey_out = IF ( Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals > Q:R\U_Female_rain_in ) 
    THEN 
        IF (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling) > 
Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals - Q:R\U_Female_rain_in 
            THEN ( Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals - Q:R\U_Female_rain_in 
)*S:Y_for_urinals_Female 
        ELSE (V:Treat_Volume_of_Treated_Water_for_Reuse - 
Q:Dsgn\C_Design_Demand_for_Cooling)*S:Y_for_urinals_Female 
ELSE 0 
V:T\Sewer_Female(t) = V:T\Sewer_Female(t - dt) + (Q:S\T_Female_to_Sewer_from_Toilets_F) * dt 
INIT V:T\Sewer_Female = 0 
INFLOWS: 
Q:S\T_Female_to_Sewer_from_Toilets_F = S:T\Sewer_Female*Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets 
V:T\sewer_Male(t) = V:T\sewer_Male(t - dt) + (Q:S\T_Male_to_Sewer_from_Toilets_M) * dt 
INIT V:T\sewer_Male = 0 
INFLOWS: 
Q:S\T_Male_to_Sewer_from_Toilets_M = S:T\Sewer_Male*Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets 
V:T_All_Toilets(t) = V:T_All_Toilets(t - dt) + (Q:W\T_Reclaimed_water_for_All_Toilets + Q:Y\T_Greyater_for_All_Toilets + 
Q:P\T_Potable_water_for_All_Toilets + Q:R\T_Rainwater_for_All_Toilets + Q:G\T_Stormwater_for_All_Toilets - 
Q:B\T_Blackwater_for_Reuse_from_All_Toilets - Q:S\T_Water_to_Sewer_from_All_Toilets) * dt 
INIT V:T_All_Toilets = 0 
INFLOWS: 
Q:W\T_Reclaimed_water_for_All_Toilets = Q:W\T_Female_reclaimed_in+Q:W\T_Male_reclaimed_in 
Q:Y\T_Greyater_for_All_Toilets = Q:Y\T_Female_grey_out+Q:Y\T_Male_grey_out 
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Q:P\T_Potable_water_for_All_Toilets = Q:P\T_Female_potable_in+Q:P\T_Male_potable_in 
Q:R\T_Rainwater_for_All_Toilets = Q:R\T_Female_rain_in+Q:R\T_Male_rain_in 
Q:G\T_Stormwater_for_All_Toilets = Q:G\T_Female_pond_in+Q:G\T_Male_pond_in 
OUTFLOWS: 
Q:B\T_Blackwater_for_Reuse_from_All_Toilets = Q:B\T_Female_black_in+Q:B\T_Male_black_in 
Q:S\T_Water_to_Sewer_from_All_Toilets = 
Q:S\T_Female_to_Sewer_from_Toilets_F+Q:S\T_Male_to_Sewer_from_Toilets_M 
V:T_Toilets_Female(t) = V:T_Toilets_Female(t - dt) + (Q:Y\T_Female_grey_out + Q:P\T_Female_potable_in + 
Q:W\T_Female_reclaimed_in + Q:G\T_Female_pond_in + Q:R\T_Female_rain_in - 
Q:S\T_Female_to_Sewer_from_Toilets_F - Q:B\T_Female_black_in) * dt 
INIT V:T_Toilets_Female = 0 
INFLOWS: 
Q:Y\T_Female_grey_out = IF ( Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets > Q:R\T_Female_rain_in) 
    THEN 
        IF (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Design_Flowrate_for_All_Urinals - Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets ) > 
Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets - Q:R\T_Female_rain_in 
            THEN ( Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets - Q:R\T_Female_rain_in 
)*S:Y_for_Toilets_Female 
        ELSE (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Design_Flowrate_for_All_Urinals - 
Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets)*S:Y_for_Toilets_Female 
ELSE 0 
Q:P\T_Female_potable_in = Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets - Q:Y\T_Female_grey_out - 
Q:R\T_Female_rain_in - Q:G\T_Female_pond_in - Q:W\T_Female_reclaimed_in 
Q:W\T_Female_reclaimed_in = IF ( Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets > ( Q:Y\T_Female_grey_out 
+ Q:R\T_Female_rain_in + Q:G\T_Female_pond_in ) ) 
    THEN 
         IF ( ( Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets - Q:Y\T_Female_grey_out - Q:R\T_Female_rain_in - 
Q:G\T_Female_pond_in ) > ( Q:W_reclaimed_water - Q:W\U_Reclaimed_water_for_All_Urinals - 
Q:W\T_Male_reclaimed_in ) ) 
             THEN ( Q:W_reclaimed_water - Q:W\U_Reclaimed_water_for_All_Urinals - Q:W\T_Male_reclaimed_in 
)*S:Reclaim_for_Toilets_Female 
        ELSE ( ( Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets - Q:Y\T_Female_grey_out - 
Q:R\T_Female_rain_in - Q:G\T_Female_pond_in - Q:W\U_Reclaimed_water_for_All_Urinals - Q:W\T_Male_reclaimed_in 
)*S:Reclaim_for_Toilets_Female ) 
ELSE 0 
Q:G\T_Female_pond_in = IF ( Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets > ( Q:Y\T_Female_grey_out + 
Q:R\T_Female_rain_in ) )  
    THEN  
        IF ( ( Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets - Q:Y\T_Female_grey_out - Q:R\T_Female_rain_in ) 
> ( V:G\Pnd_Stormwater_Volume_in_Pond - Q:G\U_Stormwater_for_All_Urinals - Q:G\T_Male_pond_in ) )  
            THEN ( ( V:G\Pnd_Stormwater_Volume_in_Pond - Q:G\U_Stormwater_for_All_Urinals - Q:G\T_Male_pond_in 
)*S:Pond_for_Toilets_Female) 
        ELSE ( ( Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets - Q:Y\T_Female_grey_out - 
Q:R\T_Female_rain_in - Q:G\U_Stormwater_for_All_Urinals - Q:G\T_Male_pond_in )*S:Pond_for_Toilets_Female ) 
ELSE 0 
Q:R\T_Female_rain_in = IF ( V:R\Cis_Rainwater_Volume_in_Cistern - Q:R\U_Rainwater_for_All_Urinals - 
Q:R\T_Male_rain_in > Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets ) 
     THEN ( Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets*S:Rain_for_Toilets_Female ) 
ELSE ( V:R\Cis_Rainwater_Volume_in_Cistern - Q:R\U_Rainwater_for_All_Urinals - Q:R\T_Male_rain_in 
)*S:Rain_for_Toilets_Female 
OUTFLOWS: 
Q:S\T_Female_to_Sewer_from_Toilets_F = S:T\Sewer_Female*Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets 
Q:B\T_Female_black_in = S:T\Black_Female*Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets 
V:T_Toilets_Male(t) = V:T_Toilets_Male(t - dt) + (Q:P\T_Male_potable_in + Q:R\T_Male_rain_in + Q:Y\T_Male_grey_out 
+ Q:G\T_Male_pond_in + Q:W\T_Male_reclaimed_in - Q:B\T_Male_black_in - Q:S\T_Male_to_Sewer_from_Toilets_M) * 
dt 
INIT V:T_Toilets_Male = 0 
INFLOWS: 
Q:P\T_Male_potable_in = Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets-Q:Y\T_Male_grey_out-
Q:R\T_Male_rain_in-Q:G\T_Male_pond_in-Q:W\T_Male_reclaimed_in 
Q:R\T_Male_rain_in = IF ( V:R\Cis_Rainwater_Volume_in_Cistern - Q:R\U_Rainwater_for_All_Urinals > 
Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets ) 
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     THEN ( Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets*S:Rain_for_Toilets_Male ) 
ELSE ( V:R\Cis_Rainwater_Volume_in_Cistern - Q:R\U_Rainwater_for_All_Urinals )*S:Rain_for_Toilets_Male 
Q:Y\T_Male_grey_out = IF ( Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets > Q:R\T_Male_rain_in ) 
    THEN 
        IF (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Design_Flowrate_for_All_Urinals ) > Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets - 
Q:R\T_Male_rain_in 
            THEN ( Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets - Q:R\T_Male_rain_in )*S:Y_for_Toilets_Male 
        ELSE (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Design_Flowrate_for_All_Urinals)*S:Y_for_Toilets_Male 
ELSE 0 
Q:G\T_Male_pond_in = IF ( Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets > ( Q:Y\T_Male_grey_out + 
Q:R\T_Male_rain_in ) )  
    THEN  
        IF ( ( Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets - Q:Y\T_Male_grey_out - Q:R\T_Male_rain_in ) > ( 
V:G\Pnd_Stormwater_Volume_in_Pond - Q:G\U_Stormwater_for_All_Urinals ) )  
            THEN ( ( V:G\Pnd_Stormwater_Volume_in_Pond - Q:G\U_Stormwater_for_All_Urinals 
)*S:Pond_for_Toilets_Male) 
        ELSE ( ( Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets - Q:Y\T_Male_grey_out - Q:R\T_Male_rain_in - 
Q:G\U_Stormwater_for_All_Urinals )*S:Pond_for_Toilets_Male ) 
ELSE 0 
Q:W\T_Male_reclaimed_in = IF ( Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets > ( Q:Y\T_Male_grey_out + 
Q:R\T_Male_rain_in + Q:G\T_Male_pond_in ) ) 
    THEN 
         IF ( ( Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets - Q:Y\T_Male_grey_out - Q:R\T_Male_rain_in - 
Q:G\T_Male_pond_in ) > ( Q:W_reclaimed_water - Q:W\U_Reclaimed_water_for_All_Urinals ) ) 
             THEN ( Q:W_reclaimed_water - Q:W\U_Reclaimed_water_for_All_Urinals )*S:Reclaim_for_Toilets_Male 
        ELSE ( ( Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets - Q:Y\T_Male_grey_out - Q:R\T_Male_rain_in - 
Q:G\T_Male_pond_in - Q:W\U_Reclaimed_water_for_All_Urinals )*S:Reclaim_for_Toilets_Male ) 
ELSE 0 
OUTFLOWS: 
Q:B\T_Male_black_in = S:T\Black_Male*Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets 
Q:S\T_Male_to_Sewer_from_Toilets_M = S:T\Sewer_Male*Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets 
V:U\Sewer_Female(t) = V:U\Sewer_Female(t - dt) + (Q:S\U_Female_to_Sewer_from_Urinals_F) * dt 
INIT V:U\Sewer_Female = 0 
INFLOWS: 
Q:S\U_Female_to_Sewer_from_Urinals_F = 
S:U\Sewer_Female*Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals 
V:U\Sewer_Male(t) = V:U\Sewer_Male(t - dt) + (Q:S\U_Male_to_Sewer_from_Urinals_M) * dt 
INIT V:U\Sewer_Male = 0 
INFLOWS: 
Q:S\U_Male_to_Sewer_from_Urinals_M = S:U\Sewer_Male*Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals 
V:U_All_Urinals(t) = V:U_All_Urinals(t - dt) + (Q:W\U_Reclaimed_water_for_All_Urinals + 
Q:P\U_Potable_water_for_All_Urinals + Q:R\U_Rainwater_for_All_Urinals + Q:G\U_Stormwater_for_All_Urinals + 
Q:Y\U_Greywater_for_All_Urinals - Q:S\U_Water_to_Sewer_from_All_Urinals - 
Q:B\U_Blackwater_for_Reuse_from_All_Urinals) * dt 
INIT V:U_All_Urinals = 0 
INFLOWS: 
Q:W\U_Reclaimed_water_for_All_Urinals = Q:W\U_Female_reclaimed_in+Q:W\U_Male_reclaimed_in 
Q:P\U_Potable_water_for_All_Urinals = Q:P\U_Female_potable_in+Q:P\U_Male_potable_in 
Q:R\U_Rainwater_for_All_Urinals = Q:R\U_Female_rain_in+Q:R\U_Male_rain_in 
Q:G\U_Stormwater_for_All_Urinals = Q:G\U_Female_pond_in+Q:G\U_Male_pond_in 
Q:Y\U_Greywater_for_All_Urinals = Q:Y\U_Female_grey_out+Q:Y\U_Male_grey_out 
OUTFLOWS: 
Q:S\U_Water_to_Sewer_from_All_Urinals = 
Q:S\U_Female_to_Sewer_from_Urinals_F+Q:S\U_Male_to_Sewer_from_Urinals_M 
Q:B\U_Blackwater_for_Reuse_from_All_Urinals = Q:B\U_Female_black_in+Q:B\U_Male_black_in 
V:U_Urinals_Female(t) = V:U_Urinals_Female(t - dt) + (Q:W\U_Female_reclaimed_in + Q:P\U_Female_potable_in + 
Q:G\U_Female_pond_in + Q:R\U_Female_rain_in + Q:Y\U_Female_grey_out - 
Q:S\U_Female_to_Sewer_from_Urinals_F - Q:B\U_Female_black_in) * dt 
INIT V:U_Urinals_Female = 0 
INFLOWS: 
Q:W\U_Female_reclaimed_in = IF (Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals > ( 
Q:Y\U_Female_grey_out + Q:R\U_Female_rain_in + Q:G\U_Female_pond_in ) ) 
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    THEN 
        IF ( ( Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals - Q:Y\U_Female_grey_out - Q:R\U_Female_rain_in - 
Q:G\U_Female_pond_in ) > Q:W_reclaimed_water ) 
            THEN (Q:W_reclaimed_water*S:Reclaim_for_urinals_Female) 
        ELSE ( (Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals - Q:Y\U_Female_grey_out - 
Q:R\U_Female_rain_in - Q:G\U_Female_pond_in )*S:Reclaim_for_urinals_Female ) 
ELSE 0 
Q:P\U_Female_potable_in = Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals - Q:Y\U_Female_grey_out - 
Q:R\U_Female_rain_in - Q:G\U_Female_pond_in - Q:W\U_Female_reclaimed_in 
Q:G\U_Female_pond_in = IF (Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals > ( Q:Y\U_Female_grey_out + 
Q:R\U_Female_rain_in ) )      THEN (  
          ( IF ( ( Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals - Q:Y\U_Female_grey_out - 
Q:R\U_Female_rain_in ) > V:G\Pnd_Stormwater_Volume_in_Pond ) 
               THEN (V:G\Pnd_Stormwater_Volume_in_Pond*S:Pond_for_urinals_Female) 
               ELSE ( (Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals - Q:Y\U_Female_grey_out - 
Q:R\U_Female_rain_in )*S:Pond_for_urinals_Female ) ) ) 
     ELSE 0 
Q:R\U_Female_rain_in = IF ( V:R\Cis_Rainwater_Volume_in_Cistern > 
Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals ) 
     THEN ( Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals*S:Rain_for_urinals_Female ) 
ELSE ( V:R\Cis_Rainwater_Volume_in_Cistern*S:Rain_for_urinals_Female ) 
Q:Y\U_Female_grey_out = IF ( Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals > Q:R\U_Female_rain_in ) 
    THEN 
        IF (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling) > 
Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals - Q:R\U_Female_rain_in 
            THEN ( Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals - Q:R\U_Female_rain_in 
)*S:Y_for_urinals_Female 
        ELSE (V:Treat_Volume_of_Treated_Water_for_Reuse - 
Q:Dsgn\C_Design_Demand_for_Cooling)*S:Y_for_urinals_Female 
ELSE 0 
OUTFLOWS: 
Q:S\U_Female_to_Sewer_from_Urinals_F = 
S:U\Sewer_Female*Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals 
Q:B\U_Female_black_in = S:U\black_Female*Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals 
V:U_Urinals_Male(t) = V:U_Urinals_Male(t - dt) + (Q:Y\U_Male_grey_out + Q:G\U_Male_pond_in + Q:R\U_Male_rain_in 
+ Q:W\U_Male_reclaimed_in + Q:P\U_Male_potable_in - Q:S\U_Male_to_Sewer_from_Urinals_M - 
Q:B\U_Male_black_in) * dt 
INIT V:U_Urinals_Male = 0 
INFLOWS: 
Q:Y\U_Male_grey_out = IF ( Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals > Q:R\U_Male_rain_in ) 
    THEN 
        IF (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals ) > Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals - 
Q:R\U_Male_rain_in 
            THEN ( Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals - Q:R\U_Male_rain_in )*S:Y_for_urinals_Male 
        ELSE (V:Treat_Volume_of_Treated_Water_for_Reuse - Q:Dsgn\C_Design_Demand_for_Cooling - 
Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals)*S:Y_for_urinals_Male 
ELSE 0 
Q:G\U_Male_pond_in = IF (Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals > ( Q:Y\U_Male_grey_out + 
Q:R\U_Male_rain_in ) )  
    THEN  
        IF ( ( Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals - Q:Y\U_Male_grey_out - Q:R\U_Male_rain_in ) > ( 
V:G\Pnd_Stormwater_Volume_in_Pond - Q:G\U_Female_pond_in ) )  
            THEN ( ( V:G\Pnd_Stormwater_Volume_in_Pond - Q:G\U_Female_pond_in )*S:Pond_for_Urinals_Male) 
        ELSE ( (Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals - Q:Y\U_Male_grey_out - Q:R\U_Male_rain_in - 
Q:G\U_Female_pond_in )*S:Pond_for_Urinals_Male ) 
ELSE 0 
Q:R\U_Male_rain_in = IF ( V:R\Cis_Rainwater_Volume_in_Cistern - Q:R\U_Female_rain_in > 
Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals ) 
     THEN ( Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals*S:Rain_for_urinals_Male ) 
ELSE ( V:R\Cis_Rainwater_Volume_in_Cistern - Q:R\U_Female_rain_in )*S:Rain_for_urinals_Male 
Q:W\U_Male_reclaimed_in = IF (Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals > ( Q:Y\U_Male_grey_out + 
Q:R\U_Male_rain_in + Q:G\U_Male_pond_in ) ) 
    THEN 
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         IF ( ( Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals - Q:Y\U_Male_grey_out - Q:R\U_Male_rain_in - 
Q:G\U_Male_pond_in ) > ( Q:W_reclaimed_water - Q:W\U_Female_reclaimed_in ) ) 
             THEN ( Q:W_reclaimed_water - Q:W\U_Female_reclaimed_in )*S:Reclaim_for_Urinals_Male 
        ELSE ( (Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals - Q:Y\U_Male_grey_out - Q:R\U_Male_rain_in - 
Q:G\U_Male_pond_in - Q:W\U_Female_reclaimed_in )*S:Reclaim_for_Urinals_Male )  
ELSE 0 
Q:P\U_Male_potable_in = Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals - Q:Y\U_Male_grey_out - 
Q:R\U_Male_rain_in - Q:G\U_Male_pond_in - Q:W\U_Male_reclaimed_in 
OUTFLOWS: 
Q:S\U_Male_to_Sewer_from_Urinals_M = S:U\Sewer_Male*Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals 
Q:B\U_Male_black_in = S:U\Black_Male*Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals 
V_to_plants(t) = V_to_plants(t - dt) + (Q:Irrigation\Plants) * dt 
INIT V_to_plants = 0 
INFLOWS: 
Q:Irrigation\Plants = Q:I\Total 
UNATTACHED: 
Cooling_Demand_Flow = 0 
UNATTACHED: 
Q:W = Q:W_reclaimed_water 
A:Cis_Collection_Area_for_Cistern = 2000 
A:Pnd_Collection_Area_for_Pond = 0 
Area\Groundcover = 20000 
Area\Groundcover_2 = 20000 
Area\Mixed = 60000 
Area\Mixed_2 = 60000 
Area\Shrubs = 0 
Area\Shrubs_2 = 0 
Area\Trees = 40000 
Area\Trees_2 = 40000 
Area\Turfgrass = 80000 
Area\Turfgrass_2 = 80000 
Baseline_Bathroom_Sink_Demand_Override_Value = 50 
Baseline_Irrigation_Demand_Override_Value = 50 
Baseline_Kitchen_Sink_Demand_Override_Value = 50 
Baseline_Shower_Demand_Override_Value = 50 
Baseline_Toilet_Demand_Override_Value = 50 
Baseline_Urinal_Demand_Override_Value = 50 
CE:Cis_Collection_Efficiency_of_Cistern = 0.9 
CE:Pnd_Collection_Efficiency_for_Pond = 0.9 
Conversion_Factor_gal\sf\in = 0.6223 
Conversion_gal\sf\in = 0.6223 
DAYS = TIME 
Design_Bathroom_Sink_Demand_Override_Value = 50 
Design_Irrigation_Demand_Override_Value = 50 
Design_Kitchen_Sink_Demand_Override_Value = 50 
Design_Shower_Demand_Override_Value = 50 
Design_Toilet_Demand_Override_Value = 50 
Design_Urinal_Demand_Override_Value = 50 
FTE:Full_FTE_Value_for_Full_time_Occupants = Ocp:Full_Full_time_Occupants*Percent_FTE_for_Full_time_Occupants 
FTE:Other_1_FTE_Value_for_Occupants = Ocp:Other_1_Number_of_occupants*Percent_FTE_for_Other_Occupants_1 
FTE:Other_2_FTE_Value_for_Occupants = Ocp:Other_2_Number_of_occupants*Percent_FTE_for_Other_Occupants_2 
FTE:Part_FTE_Value_for_Part_time_Occupants = 
Ocp:Part_Part_time_Occupants*Percent_FTE_for_Part_time_Occupants 
FTE:_Constant = 
FTE:Full_FTE_Value_for_Full_time_Occupants+FTE:Other_1_FTE_Value_for_Occupants+FTE:Other_2_FTE_Value_for
_Occupants+FTE:Part_FTE_Value_for_Part_time_Occupants 
IE\Sprinkler\Groundcover = 0.625*S:IE\Sprinkler\Groundcover 
IE\Sprinkler\Groundcover_2 = 0.625*S:IE\Sprinkler\Groundcover_2 
IE_Drip\Groundcover = 0.9*S:IE_Drip\Groundcover 
IE_Drip\Groundcover_2 = 0.9*S:IE_Drip\Groundcover_2 
IE_Drip\Mixed = 0.9*S:IE_Drip\Mixed 
IE_Drip\Mixed_2 = 0.9*S:IE_Drip\Mixed_2 
IE_Drip\Shrubs = 0.90*S:IE_Drip\Shrubs 
IE_Drip\Shrubs_2 = 0.90*S:IE_Drip\Shrubs_2 
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IE_Drip\Trees = 0.90*S:IE_Drip\Trees 
IE_Drip\Trees_2 = 0.90*S:IE_Drip\Trees_2 
IE_Drip\Turfgrass = 0.9*S:IE_Drip\Turfgrass 
IE_Drip\Turfgrass_2 = 0.9*S:IE_Drip\Turfgrass_2 
IE_Sprinkler\Mixed = 0.625*S:IE_Sprinkler\Mixed 
IE_Sprinkler\Mixed_2 = 0.625*S:IE_Sprinkler\Mixed_2 
IE_Sprinkler\Shrubs = 0.625*S:IE_Sprinkler\Shrubs 
IE_Sprinkler\Shrubs_2 = 0.625*S:IE_Sprinkler\Shrubs_2 
IE_Sprinkler\Trees = 0.625*S:IE_Sprinkler\Trees 
IE_Sprinkler\Trees_2 = 0.625*S:IE_Sprinkler\Trees_2 
IE_Sprinkler\Turfgrass = 0.625*S:IE_Sprinkler\Turfgrass 
IE_Sprinkler\Turfgrass_2 = 0.625*S:IE_Sprinkler\Turfgrass_2 
k\d_average\Groundcover = 1.0*S:k\d_average\Groundcover 
k\d_average\Groundcover_2 = 1.0*S:k\d_average\Groundcover_2 
k\d_average\Mixed = 1.1*S:k\d_average\Mixed 
k\d_average\Mixed_2 = 1.1*S:k\d_average\Mixed_2 
k\d_average\Shrubs = 1.0*S:k\d_average\Shrubs 
k\d_average\Shrubs_2 = 1.0*S:k\d_average\Shrubs_2 
k\d_average\Trees = 1.0*S:k\d_average\Trees 
k\d_average\Trees_2 = 1.0*S:k\d_average\Trees_2 
k\d_average\Turfgrass = 1.0*S:k\d_average\Turfgrass 
k\d_average\Turfgrass_2 = 1.0*S:k\d_average\Turfgrass_2 
k\d_high\Groundcover = 1.1*S:k\d_high\Groundcover 
k\d_high\Groundcover_2 = 1.1*S:k\d_high\Groundcover_2 
k\d_high\Mixed = 1.3*S:k\d_high\Mixed 
k\d_high\Mixed_2 = 1.3*S:k\d_high\Mixed_2 
k\d_high\Shrubs = 1.1*S:k\d_high\Shrubs 
k\d_high\Shrubs_2 = 1.1*S:k\d_high\Shrubs_2 
k\d_high\Trees = 1.3*S:k\d_high\Trees 
k\d_high\Trees_2 = 1.3*S:k\d_high\Trees_2 
k\d_high\Turfgrass = 1.0*S:k\d_high\Turfgrass 
k\d_high\Turfgrass_2 = 1.0*S:k\d_high\Turfgrass_2 
k\d_low\Groundcover = 0.5*S:k\d_low\Groundcover 
k\d_low\Groundcover_2 = 0.5*S:k\d_low\Groundcover_2 
k\d_low\Mixed = 0.6*S:k\d_low\Mixed 
k\d_low\Mixed_2 = 0.6*S:k\d_low\Mixed_2 
k\d_low\Shrubs = 0.5*S:k\d_low\Shrubs 
k\d_low\Shrubs_2 = 0.5*S:k\d_low\Shrubs_2 
k\d_low\Trees = 0.5*S:k\d_low\Trees 
k\d_low\Trees_2 = 0.5*S:k\d_low\Trees_2 
k\d_low\Turfgrass = 0.6*S:k\d_low\Turfgrass 
k\d_low\Turfgrass_2 = 0.6*S:k\d_low\Turfgrass_2 
k\L_Groundcover = 
ET\0*(k\s_low\Groundcover+k\s_average\Groundcover+k\s_high\Groundcover)*(k\d_low\Groundcover+k\d_average\Grou
ndcover+k\d_high\Groundcover)*(k\mc_low\Groundcover+k\mc_average\Groundcover+k\mc_high\Groundcover) 
k\L_Groundcover_2 = 
ET\0*(k\s_low\Groundcover_2+k\s_average\Groundcover_2+k\s_high\Groundcover_2)*(k\d_low\Groundcover_2+k\d_ave
rage\Groundcover_2+k\d_high\Groundcover_2)*(k\mc_low\Groundcover_2+k\mc_average\Groundcover_2+k\mc_high\Gr
oundcover_2) 
k\L_Mixed = 
ET\0*(k\s_low\Mixed+k\s_average\Mixed+k\s_high\Mixed)*(k\d_low\Mixed+k\d_average\Mixed+k\d_high\Mixed)*(k\mc_lo
w\Mixed+k\mc_average\Mixed+k\mc_high\Mixed) 
k\L_Mixed_2 = 
ET\0*(k\s_low\Mixed_2+k\s_average\Mixed_2+k\s_high\Mixed_2)*(k\d_low\Mixed_2+k\d_average\Mixed_2+k\d_high\Mix
ed_2)*(k\mc_low\Mixed_2+k\mc_average\Mixed_2+k\mc_high\Mixed_2) 
k\L_Shrubs = 
ET\0*(k\s_low\Shrubs+k\s_average\Shrubs+k\s_high\Shrubs)*(k\d_low\Shrubs+k\d_average\Shrubs+k\d_high\Shrubs)*(k\
mc_low\Shrubs+k\mc_average\Shrubs+k\mc_high\Shrubs) 
k\L_Shrubs_2 = 
ET\0*(k\s_low\Shrubs_2+k\s_average\Shrubs_2+k\s_high\Shrubs_2)*(k\d_low\Shrubs_2+k\d_average\Shrubs_2+k\d_hig
h\Shrubs_2)*(k\mc_low\Shrubs_2+k\mc_average\Shrubs_2+k\mc_high\Shrubs_2) 
k\L_Trees = 
ET\0*(k\s_low\Trees+k\s_average\Trees+k\s_high\Trees)*(k\d_low\Trees+k\d_average\Trees+k\d_high\Trees)*(k\mc_low\
Trees+k\mc_average\Trees+k\mc_high\Trees) 
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k\L_Trees_2 = 
ET\0*(k\s_low\Trees_2+k\s_average\Trees_2+k\s_high\Trees_2)*(k\d_low\Trees_2+k\d_average\Trees_2+k\d_high\Trees
_2)*(k\mc_low\Trees_2+k\mc_average\Trees_2+k\mc_high\Trees_2) 
k\L_Turfgrass = 
ET\0*(k\s_low\Turfgrass+k\s_average\Turfgrass+k\s_high\Turfgrass)*(k\d_low\Turfgrass+k\d_average\Turfgrass+k\d_high
\Turfgrass)*(k\mc_low\Turfgrass+k\mc_average\Turfgrass+k\mc_high\Turfgrass) 
k\L_Turfgrass_2 = 
ET\0*(k\s_low\Turfgrass_2+k\s_average\Turfgrass_2+k\s_high\Turfgrass_2)*(k\d_low\Turfgrass_2+k\d_average\Turfgrass
_2+k\d_high\Turfgrass_2)*(k\mc_low\Turfgrass_2+k\mc_average\Turfgrass_2+k\mc_high\Turfgrass_2) 
k\mc_average\Groundcover = 1.0*S:k\mc_average\Groundcover 
k\mc_average\Groundcover_2 = 1.0*S:k\mc_average\Groundcover_2 
k\mc_average\Mixed = 1.0*S:k\mc_average\Mixed 
k\mc_average\Mixed_2 = 1.0*S:k\mc_average\Mixed_2 
k\mc_average\Shrubs = 1.0*S:k\mc_average\Shrubs 
k\mc_average\Shrubs_2 = 1.0*S:k\mc_average\Shrubs_2 
k\mc_average\Trees = 1.0*S:k\mc_average\Trees 
k\mc_average\Trees_2 = 1.0*S:k\mc_average\Trees_2 
k\mc_average\Turfgrass = 1.0*S:k\mc_average\Turfgrass 
k\mc_average\Turfgrass_2 = 1.0*S:k\mc_average\Turfgrass_2 
k\mc_high\Groundcover = 1.2*S:k\mc_high\Groundcover 
k\mc_high\Groundcover_2 = 1.2*S:k\mc_high\Groundcover_2 
k\mc_high\Mixed = 1.4*S:k\mc_high\Mixed 
k\mc_high\Mixed_2 = 1.4*S:k\mc_high\Mixed_2 
k\mc_high\Shrubs = 1.3*S:k\mc_high\Shrubs 
k\mc_high\Shrubs_2 = 1.3*S:k\mc_high\Shrubs_2 
k\mc_high\Trees = 1.4*S:k\mc_high\Trees 
k\mc_high\Trees_2 = 1.4*S:k\mc_high\Trees_2 
k\mc_high\Turfgrass = 1.2*S:k\mc_high\Turfgrass 
k\mc_high\Turfgrass_2 = 1.2*S:k\mc_high\Turfgrass_2 
k\mc_low\Groundcover = 0.5*S:k\mc_low\Groundcover 
k\mc_low\Groundcover_2 = 0.5*S:k\mc_low\Groundcover_2 
k\mc_low\Mixed = 0.5*S:k\mc_low\Mixed 
k\mc_low\Mixed_2 = 0.5*S:k\mc_low\Mixed_2 
k\mc_low\Shrubs = 0.5*S:k\mc_low\Shrubs 
k\mc_low\Shrubs_2 = 0.5*S:k\mc_low\Shrubs_2 
k\mc_low\Trees = 0.5*S:k\mc_low\Trees 
k\mc_low\Trees_2 = 0.5*S:k\mc_low\Trees_2 
k\mc_low\Turfgrass = 0.8*S:k\mc_low\Turfgrass 
k\mc_low\Turfgrass_2 = 0.8*S:k\mc_low\Turfgrass_2 
k\s_average\Groundcover = 0.5*S:k\s_average\Groundcover 
k\s_average\Groundcover_2 = 0.5*S:k\s_average\Groundcover_2 
k\s_average\Mixed = 0.5*S:k\s_average\Mixed 
k\s_average\Mixed_2 = 0.5*S:k\s_average\Mixed_2 
k\s_average\Shrubs = 0.5*S:k\s_average\Shrubs 
k\s_average\Shrubs_2 = 0.5*S:k\s_average\Shrubs_2 
k\s_average\Trees = 0.5*S:k\s_average\Trees 
k\s_average\Trees_2 = 0.5*S:k\s_average\Trees_2 
k\s_average\Turfgrass = 0.7*S:k\s_average\Turfgrass 
k\s_average\Turfgrass_2 = 0.7*S:k\s_average\Turfgrass_2 
k\s_high\Groundcover = 0.7*S:k\s_high\Groundcover 
k\s_high\Groundcover_2 = 0.7*S:k\s_high\Groundcover_2 
k\s_high\Mixed = 0.9*S:k\s_high\Mixed 
k\s_high\Mixed_2 = 0.9*S:k\s_high\Mixed_2 
k\s_high\Shrubs = 0.7*S:k\s_high\Shrubs 
k\s_high\Shrubs_2 = 0.7*S:k\s_high\Shrubs_2 
k\s_high\Trees = 0.9*S:k\s_high\Trees 
k\s_high\Trees_2 = 0.9*S:k\s_high\Trees_2 
k\s_high\Turfgrass = 0.8*S:k\s_high\Turfgrass 
k\s_high\Turfgrass_2 = 0.8*S:k\s_high\Turfgrass_2 
k\s_low\Groundcover = 0.2*S:k\s_low\Groundcover 
k\s_low\Groundcover_2 = 0.2*S:k\s_low\Groundcover_2 
k\s_low\Mixed = 0.2*S:k\s_low\Mixed 
k\s_low\Mixed_2 = 0.2*S:k\s_low\Mixed_2 
k\s_low\Shrubs = 0.2*S:k\s_low\Shrubs 
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k\s_low\Shrubs_2 = 0.2*S:k\s_low\Shrubs_2 
k\s_low\Trees = 0.2*S:k\s_low\Trees 
k\s_low\Trees_2 = 0.2*S:k\s_low\Trees_2 
k\s_low\Turfgrass = 0.6*S:k\s_low\Turfgrass 
k\s_low\Turfgrass_2 = 0.6*S:k\s_low\Turfgrass_2 
N:A\H_Daily_Uses_for_Showers = 0.05 
N:A\Sb_Daily_Uses_for_Bathroom_Sinks = 3 
N:A\Sk_Daily_Uses_for_Kitchen_Sinks = 1 
N:A\T_Female_Daily_Uses_for_Toilets_used_byFemales = 3 
N:A\T_Male_Daily_Uses_for_Toilets_used_by_Males = 1 
N:A\U_Female_Daily_Uses_for_Urinals_used_byFemales = 0 
N:A\U_Male_Daily_Uses_for_Urinals_used_by_Males = 2 
Ocp:Full_Full_time_Occupants = 50 
Ocp:Other_1_Number_of_occupants = 0 
Ocp:Other_2_Number_of_occupants = 0 
Ocp:Part_Part_time_Occupants = 20 
P:Base\H_Vol_Percent_of_All_Water_for_Showers = (V:Base\H/V:BaseTotal)*100 
P:Base\I_Vol_Percent_of_All_Water_for_Irrigation = (V:Base\I/V:BaseTotal)*100 
P:Base\Sb_Vol_Percent_of_All_Water_for_Bathroom_Sinks = (V:Base\Sb/V:BaseTotal)*100 
P:Base\Sk_Vol_Percent_of_All_Water_for_Kitchen_Sinks = (V:Base\Sk/V:BaseTotal)*100 
P:Base\Total = 
P:Base\H_Vol_Percent_of_All_Water_for_Showers+P:Base\I_Vol_Percent_of_All_Water_for_Irrigation+P:Base\Sb_Vol_
Percent_of_All_Water_for_Bathroom_Sinks+P:Base\Sk_Vol_Percent_of_All_Water_for_Kitchen_Sinks+P:Base\T_Vol_Pe
rcent_of_All_Water_for_Toilets+P:Base\U_Vol_Percent_of_All_Water_for_Urinals 
P:Base\T_Vol_Percent_of_All_Water_for_Toilets = (V:Base\T/V:BaseTotal)*100 
P:Base\U_Vol_Percent_of_All_Water_for_Urinals = (V:Base\U/V:BaseTotal)*100 
P:Dsgn\H_Vol_Percent_of_All_Water_for_Showers = (V:Dsgn\H/V:Dsgn\Total)*100 
P:Dsgn\I_Vol_Percent_of_All_Water_for_Irrigation = (V:Dsgn\I/V:Dsgn\Total)*100 
P:Dsgn\Sb_Vol_Percent_of_All_Water_for_Bathroom_Sinks = (V:Dsgn\Sb/V:Dsgn\Total)*100 
P:Dsgn\Sk_Vol_Percent_of_All_Water_for_Kitchen_Sinks = (V:Dsgn\Sk/V:Dsgn\Total)*100 
P:Dsgn\Total = 
P:Dsgn\H_Vol_Percent_of_All_Water_for_Showers+P:Dsgn\I_Vol_Percent_of_All_Water_for_Irrigation+P:Dsgn\Sb_Vol_
Percent_of_All_Water_for_Bathroom_Sinks+P:Dsgn\Sk_Vol_Percent_of_All_Water_for_Kitchen_Sinks+P:Dsgn\T_Vol_P
ercent_of_All_Water_for_Toilets+P:Dsgn\U_Vol_Percent_of_All_Water_for_Urinals 
P:Dsgn\T_Vol_Percent_of_All_Water_for_Toilets = (V:Dsgn\T/V:Dsgn\Total)*100 
P:Dsgn\U_Vol_Percent_of_All_Water_for_Urinals = (V:Dsgn\U/V:Dsgn\Total)*100 
P:Pot\All_Water_Vol_Percent_Red_in_Potable_Water_for_All_Sectors = 1-(V:P_Dsgn\Total/V:BaseTotal) 
P:Pot\H_Vol_Percent_Red_in_Potable_Water_for_Showers = 1-(V:P_Dsgn\H/V:Base\H) 
P:Pot\I_Flow_Percent_Red_in_Potable_Water_for_Irrigation = IF (Q:Base\I=0) 
     THEN 0 
ELSE (1-(Q:P_Dsgn\I/Q:Base\I)) 
P:Pot\I_Vol_Percent_Red_in_Potable_Water_for_Irrigation = 1-(V:P_Dsgn\I/V:Base\I) 
P:Pot\Sb_Flow_Percent_Red_in_Potable_Water_for_Bathroom_Sinks = IF (Q:Base\Sb=0) 
     THEN 0 
ELSE (1-(Q:P_Dsgn\Sb/Q:Base\Sb)) 
P:Pot\Sb_Vol_Percent_Red_in_Potable_Water_for_Bathroom_Sinks = 1-(V:P_Dsgn\Sb/V:Base\Sb) 
P:Pot\Sk_Vol_Percent_Red_in_Potable_Water_for_Kitchen_Sinks = 1-(V:P_Dsgn\Sk/V:Base\Sk) 
P:Pot\Swge_Vol_Percent_Red_in_Potable_Water_for_Swge_Conveyance = 1-(V:P_Dsgn\Swge/V:Base\Swge) 
P:Pot\T_Flow_Percent_Red_in_Potable_Water_for_Toilets = IF (Q:Base\T=0) 
     THEN 0 
ELSE (1-(Q:P_Dsgn\T/Q:Base\T)) 
P:Pot\T_Vol_Percent_Red_in_Potable_Water_for_Toilets = 1-(V:P_Dsgn\T/V:Base\T) 
P:Pot\U_Vol_Percent_Red_in_Potable_Water_for_Urinals = 1-(V:P_Dsgn\U/V:Base\U) 
P:Pot\Wter_Flow_Percent_Red_in_Potable_Water_for_Water_Fixtures = IF (Q:Base\Wter=0) 
     THEN 0 
ELSE (1-(Q:P_Dsgn\Wter/Q:Base\Wter)) 
P:Pot\Wter_Vo_Percent_Red_in_Potable_Water_for_All_Water_Fixtures = 1-(V:P_Dsgn\Wter/V:Base\Wter) 
P:Total\All_Water_Vol_Percent_Red_in_Total_Water_for_All_Sectors = 1-(V:Dsgn\Total/V:BaseTotal) 
P:Total\All_Watr_Flow_Percent_Red_in_Total_Water_for_All_Sectors = IF (Q:Base\Total=0) 
     THEN 0 
ELSE (1-(Q:Dsgn\Total/Q:Base\Total)) 
P:Total\H_Flow_Percent_Red_in_Total_Water_for_Showers = IF (Q:Base\H=0) 
     THEN 0 
ELSE (1-(Q:Dsgn\H/Q:Base\H)) 
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P:Total\H_Vol_Percent_Red_in_Total_Water_for_Showers = 1-(V:Dsgn\H/V:Base\H) 
P:Total\I_Flow_Percent_Red_in_Total_Water_for_Irrigation = IF (Q:Base\I=0) 
     THEN 0 
ELSE (1-(Q:Dsgn\I/Q:Base\I)) 
P:Total\I_Vol_Percent_Red_in_Total_Water_for_Irrigation = 1-(V:Dsgn\I/V:Base\I) 
P:Total\Sb_Flow_Percent_Red_in_Total_Water_for_Bathroom_Sinks = IF (Q:Base\Sb=0) 
     THEN 0 
ELSE (1-(Q:Dsgn\Sb/Q:Base\Sb)) 
P:Total\Sb_Vol_Percent_Red_in_Total_Water_for_Bathroom_Sinks = 1-(V:Dsgn\Sb/V:Base\Sb) 
P:Total\Sk_Flow_Percent_Red_in_Total_Water_for_Kitchen_Sinks = IF (Q:Base\Sk=0) 
     THEN 0 
ELSE (1-(Q:Dsgn\Sk/Q:Base\Sk)) 
P:Total\Sk_Vol_Percent_Red_in_Total_Water_for_Kitchen_Sinks = 1-(V:Dsgn\Sk/V:Base\Sk) 
P:Total\Swge_Flo_Percent_Red_in_Total_Water_for_Sewage_Conveyance = IF Q:Base\Swge=0 
     THEN 0 
ELSE (1-(Q:Dsgn\Swge/Q:Base\Swge)) 
P:Total\Swge_Vol_Percent_Red_in_Total_Water_for_Swge_Conveyance = 1-(V:Dsgn\Swge/V:Base\Swge) 
P:Total\T_Flow_Percent_Red_in_Total_Water_for_Toilets = IF (Q:Base\T=0) 
    THEN 0 
ELSE (1-(Q:Dsgn\T/Q:Base\T)) 
P:Total\T_Vol_Percent_Red_in_Total_Water_for_Toilets = 1-(V:Dsgn\T/V:Base\T) 
P:Total\U_Flow_Percent_Red_in_Total_Water_for_Urinals = IF (Q:Base\U=0) 
     THEN 0 
ELSE (1-(Q:Dsgn\U/Q:Base\U)) 
P:Total\U_Vol_Percent_Red_in_Total_Water_for_Urinals = 1-(V:Dsgn\U/V:Base\U) 
P:Total\Wter_Fl_Percent_Red_in_Total_Water_for_All_Water_Fixtures = IF (Q:Base\Wter=0) 
     THEN 0 
ELSE (1-(Q:Dsgn\Wter/Q:Base\Wter)) 
P:Total\Wter_Vo_Percent_Red_in_Total_Water_for_All_Water_Fixtures = 1-(V:Dsgn\Wter/V:Base\Wter) 
Pct:M_Percent_Male_Occupants = 0.5 
Percent_FTE_for_Full_time_Occupants = T:Full_Average_hours_per_day/8 
Percent_FTE_for_Other_Occupants_1 = T:Other_1_Average_hours_per_day/8 
Percent_FTE_for_Other_Occupants_2 = T:Other_2_Average_hours_per_day/8 
Percent_FTE_for_Part_time_Occupants = T:Part_Average_hours_per_day/8 
Q:A\H_Base_Baseline_Shower_Flowrate = 2.5 
Q:A\H_Dsgn_Design_Shower_Flowrate = 2.5 
Q:A\Sb_Base_Baseline_Bathroom_SinkFlowrate = 2.5 
Q:A\Sb_Dsgn_Design_Bathroom_SinkFlowrate = 2.5 
Q:A\Sk_Base_Baseline_Kitchen_SinkFlowrate = 2.5 
Q:A\Sk_Dsgn_Design_Kitchen_SinkFlowrate = 2.5 
Q:Base\H_Baseline_Demand_for_Showers = 
((Total_FTE*N:A\H_Daily_Uses_for_Showers*(T:H\Base_Baseline_Duration_of_Shower_Event/60)*Q:A\H_Base_Baselin
e_Shower_Flowrate)*S:Baseline_Shower_Demand_Calculated_Value) 
+ 
(Baseline_Shower_Demand_Override_Value*S:Baseline_Shower_Demand_Override_Value) 
Q:Base\Sb_Baseline_Demand_for_Bathroom_Sinks = 
((Total_FTE*N:A\Sb_Daily_Uses_for_Bathroom_Sinks*(T:Base\Sb_Baseline_Duration_of_Bathroom_Sink_Event/60)*Q:A
\Sb_Base_Baseline_Bathroom_SinkFlowrate)*S:Baseline_Bathroom_Sink_Demand_Calculated_Value) 
+ 
(Baseline_Bathroom_Sink_Demand_Override_Value*S:Baseline_Bathroom_Sink_Demand_Override_Value) 
Q:Base\Sk_Baseline_Demand_for_Kitchen_Sinks = 
((Total_FTE*N:A\Sk_Daily_Uses_for_Kitchen_Sinks*(T:Sk\Base_Baseline_Duration_of_Kitchen_Sink_Event/60)*Q:A\Sk_
Base_Baseline_Kitchen_SinkFlowrate)*S:Baseline_Kitchen_Sink_Demand_Calculated_Value) 
+ 
(Baseline_Kitchen_Sink_Demand_Override_Value*S:Baseline_Kitchen_Sink_Demand_Override_Value) 
Q:Base\Swge_Basline_Sewage_Conveyance = 
Q:Base\T__Baseline_Demand_for_All_Toilets+Q:Base\U_Baseline_Demand_for_All_Urinals 
Q:Base\Total_Baseline_Total_Water_Use_All_Potable_Water = 
Q:Base\I_Baseline_Demand_for_Irrigation_TPWA__and_TWA+Q:Base\Wter_Baseline_Water_Use_for_Fixtures_All_Pot
able_Water 
Q:Base\T_Female_Baseline_Flowrate_for_Female_Toilets = 
Total_FTE*N:A\T_Female_Daily_Uses_for_Toilets_used_byFemales*V:A\T_Base_Baseline_Toilet_Application_Volume*(
1-Pct:M_Percent_Male_Occupants) 
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Q:Base\T_Male_Baseline_Flowrate_for_Male_Toilets = 
Total_FTE*N:A\T_Male_Daily_Uses_for_Toilets_used_by_Males*V:A\T_Base_Baseline_Toilet_Application_Volume*Pct:
M_Percent_Male_Occupants 
Q:Base\T__Baseline_Demand_for_All_Toilets = 
((Q:Base\T_Female_Baseline_Flowrate_for_Female_Toilets+Q:Base\T_Male_Baseline_Flowrate_for_Male_Toilets)*S:Ba
seline_Toilet_Demand_Calculated_Value) 
+ 
(Baseline_Toilet_Demand_Override_Value*S:Baseline_Toilet_Demand_Override_Value) 
Q:Base\U_Baseline_Demand_for_All_Urinals = 
((Q:Base\U_Female_Baseline_Flowrate_for_Female_Urinals+Q:Base\U_Male_Baseline_Flowrate_for_Male_Urinals)*S:B
aseline_Urinal_Demand_Calculated_Value) 
+ 
(Baseline_Urinal_Demand_Override_Value*S:Baseline_Urinal_Demand_Override_Value) 
Q:Base\U_Female_Baseline_Flowrate_for_Female_Urinals = 
Total_FTE*N:A\U_Female_Daily_Uses_for_Urinals_used_byFemales*V:A\U_Base_Baseline_Urinal_Application_Volume*
(1-Pct:M_Percent_Male_Occupants) 
Q:Base\U_Male_Baseline_Flowrate_for_Male_Urinals = 
Total_FTE*N:A\U_Male_Daily_Uses_for_Urinals_used_by_Males*V:A\U_Base_Baseline_Urinal_Application_Volume*Pct:
M_Percent_Male_Occupants 
Q:Base\Wter_Baseline_Water_Use_for_Fixtures_All_Potable_Water = 
Q:Base\Sb_Baseline_Demand_for_Bathroom_Sinks+Q:Base\Sk_Baseline_Demand_for_Kitchen_Sinks+Q:Base\T__Bas
eline_Demand_for_All_Toilets+Q:Base\U_Baseline_Demand_for_All_Urinals+Q:Dsgn\H_Design_Demand_for_Showers 
Q:Dsgn\C_Design_Demand_for_Cooling = 0 
Q:Dsgn\H_Design_Demand_for_Showers = 
((Total_FTE*N:A\H_Daily_Uses_for_Showers*(T:H\Dsgn_Design_Duration_of_Shower_Event/60)*Q:A\H_Dsgn_Design_
Shower_Flowrate)*S:Design_Shower_Demand_Calculated_Value) 
+ 
(Design_Shower_Demand_Override_Value*S:Design_Shower_Demand_Override_Value) 
Q:Dsgn\Sb_Design_Demand_for_Bathroom_Sinks = 
((Total_FTE*N:A\Sb_Daily_Uses_for_Bathroom_Sinks*(T:Dsgn\Sb_Design_Duration_of_Bathroom_Sink_Event/60)*Q:A\
Sb_Dsgn_Design_Bathroom_SinkFlowrate)*S:Design_Bathroom_Sink_Demand_Calculated_Value) 
+ 
(Design_Bathroom_Sink_Demand_Override_Value*S:Design_Bathroom_Sink_Demand_Override_Value) 
Q:Dsgn\Sk_Design_Demand_for_Kitchen_Sinks = 
((Total_FTE*N:A\Sk_Daily_Uses_for_Kitchen_Sinks*(T:Sk\Dsgn_Design_Duration_of_Kitchen_Sink_Event/60)*Q:A\Sk_D
sgn_Design_Kitchen_SinkFlowrate)*S:Design_KItchen_Sink_Demand_Calculated_Value) 
+ 
(Design_Kitchen_Sink_Demand_Override_Value*S:Design_Kitchen_Sink_Demand_Override_Value) 
Q:Dsgn\Swge_Design_Sewage_Conveyance = 
Q:Dsgn\T__Design_Demand_for_All_Toilets+Q:Dsgn\U_Design_Flowrate_for_All_Urinals 
Q:Dsgn\Total_Design_Total_Water_Use_All_Water = 
Q:Dsgn\I_Design_Demand_for_Irrigation_Design_TWA+Q:Dsgn\Wter_Design_Water_Use_for_Fixtures_All_Water 
Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets = 
Total_FTE*N:A\T_Female_Daily_Uses_for_Toilets_used_byFemales*V:A\T_Dsgn_Design_Toilet_Application_Volume*(1-
Pct:M_Percent_Male_Occupants) 
Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets = 
Total_FTE*N:A\T_Male_Daily_Uses_for_Toilets_used_by_Males*V:A\T_Dsgn_Design_Toilet_Application_Volume*Pct:M
_Percent_Male_Occupants 
Q:Dsgn\T__Design_Demand_for_All_Toilets = 
((Q:Dsgn\T_Female_Design_Flowrate_for_Female_Toilets+Q:Dsgn\T_Male_Design_Flowrate_for_Male_Toilets)*S:Desig
n_Toilet_Demand_Calculated_Value) 
+ 
(Design_Toilet_Demand_Override_Value*S:Design_Toilet_Demand_Override_Value) 
Q:Dsgn\U_Design_Flowrate_for_All_Urinals = 
((Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals+Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals)*S:Desi
gn_Urinal_Demand_Calculated_Value) 
+ 
(Design_Urinal_Demand_Override_Value*S:Design_Urinal_Demand_Override_Value) 
Q:Dsgn\U_Female_Design_Flowrate_for_Female_Urinals = 
Total_FTE*N:A\U_Female_Daily_Uses_for_Urinals_used_byFemales*V:A\U_Dsgn_Design_Urinal_Application_Volume*(
1-Pct:M_Percent_Male_Occupants) 
Q:Dsgn\U_Male_Design_Flowrate_for_Male_Urinals = 
Total_FTE*N:A\U_Male_Daily_Uses_for_Urinals_used_by_Males*V:A\U_Dsgn_Design_Urinal_Application_Volume*Pct:
M_Percent_Male_Occupants 
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Q:Dsgn\Wter_Design_Water_Use_for_Fixtures_All_Water = 
Q:Dsgn\H_Design_Demand_for_Showers+Q:Dsgn\Sb_Design_Demand_for_Bathroom_Sinks+Q:Dsgn\Sk_Design_Dema
nd_for_Kitchen_Sinks+Q:Dsgn\T__Design_Demand_for_All_Toilets+Q:Dsgn\U_Design_Flowrate_for_All_Urinals 
Q:I\Total = 
Q:Pond\Irrigation_pond_in+Q:P\I_Potable_water_for_Irrigation+Q:Rain\Irrigation_rain_in+Q:Reclaim\Irrigation_reclaimed_
in 
Q:P_Dsgn\Swge_Sewage_Conveyance_from_Potable_Water = 
Q:P\T_Potable_water_for_All_Toilets+Q:P\U_Potable_water_for_All_Urinals 
Q:P_Dsgn\Total_Design_Total_Water_Use_Potable_Water = 
Q:P\I_Potable_water_for_Irrigation+Q:P_Dsgn\Wter_Design_Water_Use_for_Fixtures_Potable_Water 
Q:P_Dsgn\Wter_Design_Water_Use_for_Fixtures_Potable_Water = 
Q:P\H_Potable_water_to_Showers+Q:P\Sb_Potable_water_to_Bathroom_Sinks+Q:P\Sk_Potable_water_to_Kitchen_Sin
ks+Q:P\T_Potable_water_for_All_Toilets+Q:P\U_Potable_water_for_All_Urinals 
Q:W_reclaimed_water = 0 
Rainfall_Flow_into_Cistern_Override_Value = 50 
S:Baseline_Bathroom_Sink_Demand_Calculated_Value = 1 
S:Baseline_Bathroom_Sink_Demand_Override_Value = 1 
S:Baseline_Kitchen_Sink_Demand_Calculated_Value = 1 
S:Baseline_Kitchen_Sink_Demand_Override_Value = 1 
S:Baseline_Shower_Demand_Calculated_Value = 1 
S:Baseline_Shower_Demand_Override_Value = 1 
S:Baseline_Toilet_Demand_Calculated_Value = 1 
S:Baseline_Toilet_Demand_Override_Value = 1 
S:Baseline_Urinal_Demand_Calculated_Value = 1 
S:Baseline_Urinal_Demand_Override_Value = 1 
S:Base_Irrigation_Demand_Calculated_Vlaue = 1 
S:Base_Irrigation_Demand_Override_Value = 1 
S:Design_Bathroom_Sink_Demand_Calculated_Value = 1 
S:Design_Bathroom_Sink_Demand_Override_Value = 1 
S:Design_Irrigation_Demand_Calculated_Vlaue = 1 
S:Design_Irrigation_Demand_Override_Value = 1 
S:Design_KItchen_Sink_Demand_Calculated_Value = 1 
S:Design_Kitchen_Sink_Demand_Override_Value = 1 
S:Design_Shower_Demand_Calculated_Value = 1 
S:Design_Shower_Demand_Override_Value = 1 
S:Design_Toilet_Demand_Calculated_Value = 1 
S:Design_Toilet_Demand_Override_Value = 1 
S:Design_Urinal_Demand_Calculated_Value = 1 
S:Design_Urinal_Demand_Override_Value = 1 
S:FTE:Constant = 1 
S:FTE:Varying = 1 
S:IE\Sprinkler\Groundcover = 1 
S:IE\Sprinkler\Groundcover_2 = 1 
S:IE_Drip\Groundcover = 1 
S:IE_Drip\Groundcover_2 = 1 
S:IE_Drip\Mixed = 1 
S:IE_Drip\Mixed_2 = 1 
S:IE_Drip\Shrubs = 1 
S:IE_Drip\Shrubs_2 = 1 
S:IE_Drip\Trees = 1 
S:IE_Drip\Trees_2 = 1 
S:IE_Drip\Turfgrass = 1 
S:IE_Drip\Turfgrass_2 = 1 
S:IE_Sprinkler\Mixed = 1 
S:IE_Sprinkler\Mixed_2 = 1 
S:IE_Sprinkler\Shrubs = 1 
S:IE_Sprinkler\Shrubs_2 = 1 
S:IE_Sprinkler\Trees = 1 
S:IE_Sprinkler\Trees_2 = 1 
S:IE_Sprinkler\Turfgrass = 1 
S:IE_Sprinkler\Turfgrass_2 = 1 
S:k\d_average\Groundcover = 1 
S:k\d_average\Groundcover_2 = 1 
S:k\d_average\Mixed = 1 
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S:k\d_average\Mixed_2 = 1 
S:k\d_average\Shrubs = 1 
S:k\d_average\Shrubs_2 = 1 
S:k\d_average\Trees = 1 
S:k\d_average\Trees_2 = 1 
S:k\d_average\Turfgrass = 1 
S:k\d_average\Turfgrass_2 = 1 
S:k\d_high\Groundcover = 1 
S:k\d_high\Groundcover_2 = 1 
S:k\d_high\Mixed = 1 
S:k\d_high\Mixed_2 = 1 
S:k\d_high\Shrubs = 1 
S:k\d_high\Shrubs_2 = 1 
S:k\d_high\Trees = 1 
S:k\d_high\Trees_2 = 1 
S:k\d_high\Turfgrass = 1 
S:k\d_high\Turfgrass_2 = 1 
S:k\d_low\Groundcover = 1 
S:k\d_low\Groundcover_2 = 1 
S:k\d_low\Mixed = 1 
S:k\d_low\Mixed_2 = 1 
S:k\d_low\Shrubs = 1 
S:k\d_low\Shrubs_2 = 1 
S:k\d_low\Trees = 1 
S:k\d_low\Trees_2 = 1 
S:k\d_low\Turfgrass = 1 
S:k\d_low\Turfgrass_2 = 1 
S:k\mc_average\Groundcover = 1 
S:k\mc_average\Groundcover_2 = 1 
S:k\mc_average\Mixed = 1 
S:k\mc_average\Mixed_2 = 1 
S:k\mc_average\Shrubs = 1 
S:k\mc_average\Shrubs_2 = 1 
S:k\mc_average\Trees = 1 
S:k\mc_average\Trees_2 = 1 
S:k\mc_average\Turfgrass = 1 
S:k\mc_average\Turfgrass_2 = 1 
S:k\mc_high\Groundcover = 1 
S:k\mc_high\Groundcover_2 = 1 
S:k\mc_high\Mixed = 1 
S:k\mc_high\Mixed_2 = 1 
S:k\mc_high\Shrubs = 1 
S:k\mc_high\Shrubs_2 = 1 
S:k\mc_high\Trees = 1 
S:k\mc_high\Trees_2 = 1 
S:k\mc_high\Turfgrass = 1 
S:k\mc_high\Turfgrass_2 = 1 
S:k\mc_low\Groundcover = 1 
S:k\mc_low\Groundcover_2 = 1 
S:k\mc_low\Mixed = 1 
S:k\mc_low\Mixed_2 = 1 
S:k\mc_low\Shrubs = 1 
S:k\mc_low\Shrubs_2 = 1 
S:k\mc_low\Trees = 1 
S:k\mc_low\Trees_2 = 1 
S:k\mc_low\Turfgrass = 1 
S:k\mc_low\Turfgrass_2 = 1 
S:k\s_average\Groundcover = 1 
S:k\s_average\Groundcover_2 = 1 
S:k\s_average\Mixed = 1 
S:k\s_average\Mixed_2 = 1 
S:k\s_average\Shrubs = 1 
S:k\s_average\Shrubs_2 = 1 
S:k\s_average\Trees = 1 
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S:k\s_average\Trees_2 = 1 
S:k\s_average\Turfgrass = 1 
S:k\s_average\Turfgrass_2 = 1 
S:k\s_high\Groundcover = 1 
S:k\s_high\Groundcover_2 = 1 
S:k\s_high\Mixed = 1 
S:k\s_high\Mixed_2 = 1 
S:k\s_high\Shrubs = 1 
S:k\s_high\Shrubs_2 = 1 
S:k\s_high\Trees = 1 
S:k\s_high\Trees_2 = 1 
S:k\s_high\Turfgrass = 1 
S:k\s_high\Turfgrass_2 = 1 
S:k\s_low\Groundcover = 1 
S:k\s_low\Groundcover_2 = 1 
S:k\s_low\Mixed = 1 
S:k\s_low\Mixed_2 = 1 
S:k\s_low\Shrubs = 1 
S:k\s_low\Shrubs_2 = 1 
S:k\s_low\Trees = 1 
S:k\s_low\Trees_2 = 1 
S:k\s_low\Turfgrass = 1 
S:k\s_low\Turfgrass_2 = 1 
S:Pond_for_Irrigation = 1 
S:Pond_for_Toilets_Female = 1 
S:Pond_for_Toilets_Male = 1 
S:Pond_for_urinals_Female = 1 
S:Pond_for_Urinals_Male = 1 
S:Rainfall_Flow_into_Cistern_Calculated_Value = 1 
S:Rainfall_Flow_into_Cistern_Override_Value = 1 
S:Rain_for_Irrigation = 1 
S:Rain_for_Toilets_Female = 1 
S:Rain_for_Toilets_Male = 1 
S:Rain_for_urinals_Female = 1 
S:Rain_for_urinals_Male = 1 
S:Reclaim\Irrigation = 1 
S:Reclaim_for_cooling = 1 
S:Reclaim_for_Toilets_Female = 1 
S:Reclaim_for_Toilets_Male = 1 
S:Reclaim_for_urinals_Female = 1 
S:Reclaim_for_Urinals_Male = 1 
S:R\C_Rainwater_for_Cooling = 1 
S:Stormwater_Flow_into_Pond_Calculated_Value = 1 
S:Stormwater_Flow_into_Pond_Override_Value = 1 
S:S\H_to_Sewer = 1 
S:S\Sb_to_Sewer = 1 
S:S\Sk_to_Sewer = 1 
S:T\Black_Female = 1 
S:T\Black_Male = 1 
S:T\Sewer_Female = 1 
S:T\Sewer_Male = 1 
S:U\black_Female = 1 
S:U\Black_Male = 1 
S:U\Sewer_Female = 1 
S:U\Sewer_Male = 1 
S:W\C_Stormwater_for_Cooling = 1 
S:Y\H_to_Treatment = 1 
S:Y\Sb_to_Treatment = 1 
S:Y\Sk_to_Treatment = 1 
S:Y_for_Cooling = 1 
S:Y_for_Irrigation = 1 
S:Y_for_Toilets_Female = 1 
S:Y_for_Toilets_Male = 1 
S:Y_for_urinals_Female = 1 
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S:Y_for_urinals_Male = 1 
Stormwater_Flow_into_Pond_Override_Value = 50 
T:Base\Sb_Baseline_Duration_of_Bathroom_Sink_Event = 15 
T:Dsgn\Sb_Design_Duration_of_Bathroom_Sink_Event = 15 
T:Full_Average_hours_per_day = 8 
T:H\Base_Baseline_Duration_of_Shower_Event = 300 
T:H\Dsgn_Design_Duration_of_Shower_Event = 300 
T:Other_1_Average_hours_per_day = 0 
T:Other_2_Average_hours_per_day = 0 
T:Part_Average_hours_per_day = 4 
T:Sk\Base_Baseline_Duration_of_Kitchen_Sink_Event = 15 
T:Sk\Dsgn_Design_Duration_of_Kitchen_Sink_Event = 15 
Total_FTE = FTE:_Constant*S:FTE:Constant+FTE_Varying*S:FTE:Varying 
TPWA\Groundcover_2 = 
k\L_Groundcover_2*Area\Groundcover_2*Conversion_gal\sf\in/(IE_Drip\Groundcover_2+IE\Sprinkler\Groundcover_2) 
TPWA\Mixed_2 = k\L_Mixed_2*Area\Mixed_2*Conversion_gal\sf\in/(IE_Sprinkler\Mixed_2+IE_Drip\Mixed_2) 
TPWA\Shrubs_2 = k\L_Shrubs_2*Area\Shrubs_2*Conversion_gal\sf\in/(IE_Drip\Shrubs_2+IE_Sprinkler\Shrubs_2) 
TPWA\Trees_2 = k\L_Trees_2*Area\Trees_2*Conversion_gal\sf\in/(IE_Drip\Trees_2+IE_Sprinkler\Trees_2) 
TPWA\Turfgrass_2 = 
k\L_Turfgrass_2*Area\Turfgrass_2*Conversion_gal\sf\in/(IE_Sprinkler\Turfgrass_2+IE_Drip\Turfgrass_2) 
TWA\Groundcover = 
k\L_Groundcover*Area\Groundcover*Conversion_gal\sf\in/(IE_Drip\Groundcover+IE\Sprinkler\Groundcover) 
TWA\Mixed = k\L_Mixed*Area\Mixed*Conversion_gal\sf\in/(IE_Sprinkler\Mixed+IE_Drip\Mixed) 
TWA\Shrubs = k\L_Shrubs*Area\Shrubs*Conversion_gal\sf\in/(IE_Drip\Shrubs+IE_Sprinkler\Shrubs) 
TWA\Trees = k\L_Trees*Area\Trees*Conversion_gal\sf\in/(IE_Drip\Trees+IE_Sprinkler\Trees) 
TWA\Turfgrass = k\L_Turfgrass*Area\Turfgrass*Conversion_gal\sf\in/(IE_Sprinkler\Turfgrass+IE_Drip\Turfgrass) 
V:A\T_Base_Baseline_Toilet_Application_Volume = 1.6 
V:A\T_Dsgn_Design_Toilet_Application_Volume = 1.6 
V:A\U_Base_Baseline_Urinal_Application_Volume = 1 
V:A\U_Dsgn_Design_Urinal_Application_Volume = 1 
V:flush_First_flush_volume = 0 
V:G\Pnd_Stormwater_Volume_in_Pond = V:Storm\Pond 
V:Max\Cis_Maximum_Cistern_Volume = 1000000 
V:Max\Pnd_Maximum_Pond_Volume = 1000 
V:R\Cis_Rainwater_Volume_in_Cistern = V:Rain\Cistern 
V:Treat_Volume_of_Treated_Water_for_Reuse = V:Treat_Treatment 
ET\0 = GRAPH(TIME) 
(0.00, 0.00), (3.10, 0.00), (6.20, 0.00), (9.30, 0.00), (12.4, 0.00), (15.5, 0.00), (18.6, 0.00), (21.7, 0.00), (24.8, 0.00), (27.9, 
0.00), (31.0, 0.00) 
FTE_Varying = GRAPH(DAYS) 
(0.00, 100), (1.00, 100), (2.00, 100), (3.00, 100), (4.00, 100), (5.00, 0.00), (6.00, 0.00), (7.00, 100), (8.00, 100), (9.00, 

100), (10.0, 100), (11.0, 100), (12.0, 0.00), (13.0, 0.00), (14.0, 100), (15.0, 100), (16.0, 0.00), (17.0, 0.00), (18.0, 0.00), 

(19.0, 0.00), (20.0, 0.00), (21.0, 0.00), (22.0, 0.00), (23.0, 0.00), (24.0, 0.00), (25.0, 0.00), (26.0, 0.00), (27.0, 0.00), (28.0, 

0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 0.00), (33.0, 0.00), (34.0, 0.00), (35.0, 0.00), (36.0, 0.00), (37.0, 0.00), 

(38.0, 0.00), (39.0, 0.00), (40.0, 0.00), (41.0, 0.00), (42.0, 0.00), (43.0, 0.00), (44.0, 0.00), (45.0, 0.00), (46.0, 0.00), (47.0, 

0.00), (48.0, 0.00), (49.0, 0.00), (50.0, 0.00), (51.0, 0.00), (52.0, 0.00), (53.0, 0.00), (54.0, 0.00), (55.0, 0.00), (56.0, 0.00), 

(57.0, 0.00), (58.0, 0.00), (59.0, 0.00), (60.0, 0.00), (61.0, 0.00), (62.0, 0.00), (63.0, 0.00), (64.0, 0.00), (65.0, 0.00), (66.0, 

0.00), (67.0, 0.00), (68.0, 0.00), (69.0, 0.00), (70.0, 0.00), (71.0, 0.00), (72.0, 0.00), (73.0, 0.00), (74.0, 0.00), (75.0, 0.00), 

(76.0, 0.00), (77.0, 0.00), (78.0, 0.00), (79.0, 0.00), (80.0, 0.00), (81.0, 0.00), (82.0, 0.00), (83.0, 0.00), (84.0, 0.00), (85.0, 

0.00), (86.0, 0.00), (87.0, 0.00), (88.0, 0.00), (89.0, 0.00), (90.0, 0.00), (91.0, 0.00), (92.0, 0.00), (93.0, 0.00), (94.0, 0.00), 

(95.0, 0.00), (96.0, 0.00), (97.0, 0.00), (98.0, 0.00), (99.0, 0.00), (100, 0.00), (101, 0.00), (102, 0.00), (103, 0.00), (104, 

0.00), (105, 0.00), (106, 0.00), (107, 0.00), (108, 0.00), (109, 0.00), (110, 0.00), (111, 0.00), (112, 0.00), (113, 0.00), (114, 

0.00), (115, 0.00), (116, 0.00), (117, 0.00), (118, 0.00), (119, 0.00), (120, 0.00), (121, 0.00), (122, 0.00), (123, 0.00), (124, 

0.00), (125, 0.00), (126, 0.00), (127, 0.00), (128, 0.00), (129, 0.00), (130, 0.00), (131, 0.00), (132, 0.00), (133, 0.00), (134, 

0.00), (135, 0.00), (136, 0.00), (137, 0.00), (138, 0.00), (139, 0.00), (140, 0.00), (141, 0.00), (142, 0.00), (143, 0.00), (144, 

0.00), (145, 0.00), (146, 0.00), (147, 0.00), (148, 0.00), (149, 0.00), (150, 0.00), (151, 0.00), (152, 0.00), (153, 0.00), (154, 

0.00), (155, 0.00), (156, 0.00), (157, 0.00), (158, 0.00), (159, 0.00), (160, 0.00), (161, 0.00), (162, 0.00), (163, 0.00), (164, 

0.00), (165, 0.00), (166, 0.00), (167, 0.00), (168, 0.00), (169, 0.00), (170, 0.00), (171, 0.00), (172, 0.00), (173, 0.00), (174, 

0.00), (175, 0.00), (176, 0.00), (177, 0.00), (178, 0.00), (179, 0.00), (180, 0.00), (181, 0.00), (182, 0.00), (183, 0.00), (184, 

0.00), (185, 0.00), (186, 0.00), (187, 0.00), (188, 0.00), (189, 0.00), (190, 0.00), (191, 0.00), (192, 0.00), (193, 0.00), (194, 

0.00), (195, 0.00), (196, 0.00), (197, 0.00), (198, 0.00), (199, 0.00), (200, 0.00), (201, 0.00), (202, 0.00), (203, 0.00), (204,  
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0.00), (205, 0.00), (206, 0.00), (207, 0.00), (208, 0.00), (209, 0.00), (210, 0.00), (211, 0.00), (212, 0.00), (213, 0.00), (214, 

0.00), (215, 0.00), (216, 0.00), (217, 0.00), (218, 0.00), (219, 0.00), (220, 0.00), (221, 0.00), (222, 0.00), (223, 0.00), (224, 

0.00), (225, 0.00), (226, 0.00), (227, 0.00), (228, 0.00), (229, 0.00), (230, 0.00), (231, 0.00), (232, 0.00), (233, 0.00), (234,  

0.00), (235, 0.00), (236, 0.00), (237, 0.00), (238, 0.00), (239, 0.00), (240, 0.00), (241, 0.00), (242, 0.00), (243, 0.00), (244, 
0.00), (245, 0.00), (246, 0.00), (247, 0.00), (248, 0.00), (249, 0.00), (250, 0.00), (251, 0.00), (252, 0.00), (253, 0.00), (254, 
0.00), (255, 0.00), (256, 0.00), (257, 0.00), (258, 0.00), (259, 0.00), (260, 0.00), (261, 0.00), (262, 0.00), (263, 0.00), (264, 
0.00), (265, 0.00), (266, 0.00), (267, 0.00), (268, 0.00), (269, 0.00), (270, 0.00), (271, 0.00), (272, 0.00), (273, 0.00), (274, 
0.00), (275, 0.00), (276, 0.00), (277, 0.00), (278, 0.00), (279, 0.00), (280, 0.00), (281, 0.00), (282, 0.00), (283, 0.00), (284, 
0.00), (285, 0.00), (286, 0.00), (287, 0.00), (288, 0.00), (289, 0.00), (290, 0.00), (291, 0.00), (292, 0.00), (293, 0.00), (294, 
0.00), (295, 0.00), (296, 0.00), (297, 0.00), (298, 0.00), (299, 0.00), (300, 0.00), (301, 0.00), (302, 0.00), (303, 0.00), (304, 
0.00), (305, 0.00), (306, 0.00), (307, 0.00), (308, 0.00), (309, 0.00), (310, 0.00), (311, 0.00), (312, 0.00), (313, 0.00), (314, 
0.00), (315, 0.00), (316, 0.00), (317, 0.00), (318, 0.00), (319, 0.00), (320, 0.00), (321, 0.00), (322, 0.00), (323, 0.00), (324, 
0.00), (325, 0.00), (326, 0.00), (327, 0.00), (328, 0.00), (329, 0.00), (330, 0.00), (331, 0.00), (332, 0.00), (333, 0.00), (334, 
0.00), (335, 0.00), (336, 0.00), (337, 0.00), (338, 0.00), (339, 0.00), (340, 0.00), (341, 0.00), (342, 0.00), (343, 0.00), (344, 
0.00), (345, 0.00), (346, 0.00), (347, 0.00), (348, 0.00), (349, 0.00), (350, 0.00), (351, 0.00), (352, 0.00), (353, 0.00), (354, 
0.00), (355, 0.00), (356, 0.00), (357, 0.00), (358, 0.00), (359, 0.00), (360, 0.00), (361, 0.00), (362, 0.00), (363, 0.00), (364, 
0.00), (365, 0.00) 
R_Rainfall = GRAPH(TIME) 
(0.00, 0.00), (8.10, 0.00), (16.2, 0.00), (24.3, 0.00), (32.4, 0.00), (40.5, 0.00), (48.6, 0.00), (56.7, 0.00), (64.8, 0.00), (72.9, 
0.00), (81.0, 0.00) 
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Appendix C: HOBOLink Website 

 

 

FIGURE C1: HOBOLink website for Learning Gate. 
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Appendix D:  Data Output Logged by HOBO Data Logger and HOBOlink 

 

Table D1: Raw data from sensors in mA. 
 

Time, Eastern 
Daylight Time 

Current, 
mA 

Current, 
mA 

Current, 
mA 

Current, 
mA 

Current, 
mA 

Current, 
mA 

Current, 
mA 

Current, 
mA 

 
Toilet A Toilet B Sink A Toilet C Sink B Sink C Toilet D Sink D 

3/15/2010 9:08:41 3.995 4.01 3.995 3.971 3.99 3.995 0.909 4 

3/15/2010 9:08:42 3.995 4.005 3.985 3.98 3.976 3.99 0.85 3.985 

3/15/2010 9:08:43 4.015 3.98 3.98 3.98 3.98 3.98 0.786 4.015 

3/15/2010 9:08:44 4.02 3.976 3.971 3.995 3.99 3.985 0.821 3.995 

3/15/2010 9:08:45 3.995 4 4.005 4 4 3.995 0.771 3.99 

3/15/2010 9:08:46 3.99 3.99 3.99 3.995 3.995 3.99 0.87 3.971 

3/15/2010 9:08:47 3.995 3.99 3.985 3.98 3.985 4 0.796 4.005 

3/15/2010 9:08:48 4.005 3.995 3.971 4 3.976 3.99 0.791 3.99 

3/15/2010 9:08:49 3.985 4.01 3.99 4.005 3.98 3.99 0.816 3.971 

3/15/2010 9:08:50 3.99 3.985 3.99 3.976 3.976 3.99 0.747 4 

3/15/2010 9:08:51 3.995 4 4 3.976 3.985 3.99 0.791 3.976 

3/15/2010 9:08:52 3.99 4 3.995 4 3.976 3.985 0.806 4.005 

3/15/2010 9:08:53 3.995 3.99 4 3.99 3.976 3.985 0.811 3.99 

3/15/2010 9:08:54 4 3.98 4.015 3.99 3.976 3.98 0.826 3.971 

3/15/2010 9:08:55 3.985 3.99 3.99 3.976 3.99 3.99 0.801 4.01 

3/15/2010 9:08:56 3.985 4.01 4.01 3.985 3.976 3.99 0.821 3.98 

3/15/2010 9:08:57 3.985 3.985 3.99 3.985 4.01 3.99 0.836 3.985 

3/15/2010 9:08:58 3.985 3.995 3.976 3.971 3.995 3.99 0.776 3.99 

3/15/2010 9:08:59 3.985 3.99 3.985 3.99 3.98 3.98 0.776 3.985 

3/15/2010 9:09:00 3.99 4.015 4.005 4.005 3.971 3.966 0.816 3.99 

3/15/2010 9:09:01 3.985 3.995 3.976 3.985 3.985 3.995 0.806 4.01 

3/15/2010 9:09:02 3.99 4.01 3.98 3.985 3.985 3.99 0.796 3.99 

3/15/2010 9:09:03 3.99 3.995 3.98 3.985 3.99 3.98 0.826 4 

3/15/2010 9:09:04 3.995 3.98 3.99 3.985 3.99 4 0.757 3.985 

3/15/2010 9:09:05 4.005 3.99 3.995 3.971 3.966 3.995 0.836 4 

3/15/2010 9:09:06 3.995 3.995 4.01 3.98 3.995 3.99 0.762 3.98 

3/15/2010 9:09:07 3.98 4.005 4 3.976 3.995 3.995 0.796 3.985 

3/15/2010 9:09:08 3.98 4 3.99 4.005 3.976 3.98 0.786 3.99 

3/15/2010 9:09:09 3.995 4.005 3.976 3.99 3.995 4.005 0.836 4.02 

3/15/2010 9:09:10 4.005 3.99 3.98 3.985 3.985 3.995 0.836 4.005 

3/15/2010 9:09:11 3.98 3.995 4.015 4 3.976 3.98 0.786 4 

3/15/2010 9:09:12 4.005 4.025 3.985 3.99 3.995 3.98 0.796 3.995 

3/15/2010 9:09:13 3.995 4.015 3.99 3.99 3.966 3.99 0.845 3.99 

3/15/2010 9:09:14 3.99 4.005 3.976 3.995 3.98 3.995 0.781 3.99 

3/15/2010 9:09:15 3.985 4 3.995 3.99 3.985 4 0.84 3.966 

3/15/2010 9:09:16 3.99 3.995 3.985 3.98 3.985 3.985 0.86 3.985 

3/15/2010 9:09:17 3.976 4.01 3.985 3.99 3.99 3.98 0.821 4.01 

3/15/2010 9:09:18 3.995 3.99 3.976 3.976 4 3.98 0.776 3.985 

3/15/2010 9:09:19 4 4.005 3.985 3.98 3.976 3.976 0.821 4.005 

3/15/2010 9:09:20 3.985 3.985 3.961 3.976 3.98 3.99 0.855 3.99 

3/15/2010 9:09:21 3.971 3.995 4 4.005 3.995 3.99 0.845 3.985 
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Appendix E:  Filtered Event Data from Bathrooms A and B (3/17/10) 

 

Table E1: Events for bathrooms A and B on 3/17/10. 
 

Start Time End Time Duration Volume  

2:37:25 AM 2:37:35 AM 10 1.027 Toilet A 

6:57:49 AM 6:58:01 AM 12 1.016 Toilet B 

8:06:11 AM 8:06:24 AM 13 0.919 Toilet B 

8:06:42 AM 8:06:58 AM 16 0.297 Sink B 

8:15:31 AM 8:15:43 AM 12 1.209 Toilet B 

8:32:00 AM 8:32:08 AM 8 0.128 Sink B 

9:01:44 AM 9:01:51 AM 7 0.443 Toilet A 

9:08:45 AM 9:08:51 AM 6 0.070 Sink A 

10:41:43 AM 10:41:55 AM 12 1.103 Toilet B 

11:20:07 AM 11:20:16 AM 9 0.605 Toilet B 

11:20:20 AM 11:20:30 AM 10 0.164 Sink B 

11:31:45 AM 11:31:56 AM 11 1.042 Toilet B 

11:52:38 AM 11:52:54 AM 16 1.417 Toilet B 

12:08:13 PM 12:08:27 PM 14 1.120 Toilet B 

12:09:10 PM 12:09:21 PM 11 0.176 Sink B 

12:17:35 PM 12:17:46 PM 11 0.998 Toilet B 

12:32:11 PM 12:32:23 PM 12 1.089 Toilet B 

12:38:14 PM 12:38:28 PM 14 1.205 Toilet B 

12:54:17 PM 12:54:30 PM 13 1.021 Toilet B 

1:19:15 PM 1:19:27 PM 12 0.991 Toilet B 

1:21:52 PM 1:22:07 PM 15 1.234 Toilet B 

1:29:54 PM 1:29:59 PM 5 0.073 Sink B 

1:30:49 PM 1:30:54 PM 5 0.061 Sink B 

1:39:08 PM 1:39:59 PM 51 0.941 Sink B 

1:41:13 PM 1:41:17 PM 4 0.059 Sink B 

2:20:18 PM 2:20:26 PM 8 0.094 Sink B 

2:27:15 PM 2:27:26 PM 11 1.168 Toilet A 

2:30:26 PM 2:30:39 PM 13 1.130 Toilet A 

2:36:38 PM 2:36:54 PM 16 1.371 Toilet A 

2:39:44 PM 2:39:56 PM 12 1.234 Toilet A 

2:40:45 PM 2:40:58 PM 13 1.463 Toilet A 

3:14:05 PM 3:14:16 PM 11 0.970 Toilet A 

3:32:18 PM 3:32:23 PM 5 0.057 Sink B 

3:41:15 PM 3:41:27 PM 12 0.714 Toilet A 

4:02:00 PM 4:02:28 PM 28 3.300 Toilet A 

4:43:54 PM 4:44:08 PM 14 1.065 Toilet A 

5:05:52 PM 5:06:04 PM 12 1.017 Toilet A 
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Appendix F: Student Worksheet on Rainfall Collection at Learning Gate 
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Appendix F (Continued) 
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Appendix G: Student Worksheet on Learning Gate School Model 
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Appendix G (Continued) 
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