



Graduate Theses and Dissertations

Graduate School

2011

# Operational Performance Evaluation of Four Types of Exit Ramps on Florida's Freeways

Linjun Lu *University of South Florida*, linjun.lu@yahoo.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the <u>American Studies Commons</u>, <u>Civil Engineering Commons</u>, and the <u>Urban Studies</u> and <u>Planning Commons</u>

#### Scholar Commons Citation

Lu, Linjun, "Operational Performance Evaluation of Four Types of Exit Ramps on Florida's Freeways" (2011). *Graduate Theses and Dissertations*.

http://scholarcommons.usf.edu/etd/3218

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

#### Operational Performance Evaluation of

Four Types of Exit Ramps on Florida's Freeways

by

#### Linjun Lu

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Civil and Environmental Engineering
College of Engineering
University of South Florida

Major Professor: John Lu., Ph.D.
Yu Zhang, Ph.D.
Abdul Pinjari, Ph.D.
Rajaram Lakshminarayan, Ph.D.
Michael Weng, Ph.D.
Zhenyu Wang, Ph.D.

Date of Approval: March 25, 2011

Keywords: Operational Analysis, Safety Analysis, Cross Road, TSIS-CORSIM, Simulation

Copyright © 2011, Linjun Lu

#### **Dedication**

I dedicate this dissertation to my family and friends, especially ...

To my parents for opening my eyes to the world,

To Dr. John Lu for his guidance and teaching,

To Jane Zhang for her love and care,

To Pan Liu, Tao Pan, Qing Wang, Bin Cao, Changjiang Zheng, Lei Zhang, and all other colleagues for their assistance of this project, and

To all saints in Tampa Local Church who helped me with my life.

#### Acknowledgements

This dissertation was derived from a research project sponsored by Florida Department of Transportation (FDOT). The author would like to acknowledge support from FDOT for its assistance and suggestions leading to the successful completion of this dissertation.

The contents of the report reflect the views of author, who is responsible for the facts, opinions, and accuracy of the information presented here. The contents do not necessarily reflect official views or policies of the sponsoring agency.

### **Table of Contents**

| List of Tables                                               | iii |
|--------------------------------------------------------------|-----|
| List of Figures                                              | V   |
| Abstract                                                     | vii |
| Chapter 1 Introduction                                       | 1   |
| 1.1 Background                                               | 1   |
| 1.2 Research Objectives                                      | 2   |
| 1.3 Sections of Exit Ramp                                    | 5   |
| Chapter 2 Literature Review                                  | 7   |
| 2.1 Previous Findings                                        | 7   |
| 2.2 Summary                                                  | 13  |
| Chapter 3 Methodology                                        | 15  |
| 3.1 Computer Simulation                                      | 15  |
| 3.2 Simulation Procedure                                     | 22  |
| 3.3 Methods for Operational Analysis                         | 23  |
| 3.3.1 Freeway Section                                        | 24  |
| 3.3.2 Ramp Section                                           | 28  |
| 3.3.3 Crossroad Section                                      | 30  |
| Chapter 4 Data Collection                                    | 33  |
| 4.1 Site Selection                                           | 33  |
| 4.2 Data Collection Equipment                                | 35  |
| 4.3 Data Collection Procedures                               | 38  |
| 4.4 Data Reduction                                           | 41  |
| Chapter 5 Data Analysis and Results                          | 64  |
| 5.1 Freeway Section                                          | 65  |
| 5.1.1 Number of Lane Changes                                 | 65  |
| 5.1.2 Average Speed                                          |     |
| 5.1.3 Delay Time                                             |     |
| 5.1.4 Length Design for Deceleration Lane of Ramp Type I and |     |
| IV                                                           | 72  |
| 5.1.5 Selection of Optimal Exit Ramp Type                    | 76  |
| 5.2 Exit Ramp Section                                        | 78  |

| 5.2.1 Ramp Length Design | 78       |
|--------------------------|----------|
| 5.2.2 Ramp Configuration | 79       |
| 5.3 Crossroad Section    | 81       |
|                          |          |
| Chapter 6 Conclusions    | 82       |
|                          |          |
| References               | 84       |
|                          |          |
| About the Author         | End Page |

## **List of Tables**

| Table 1.1  | Exit ramp type survey                                      | 4  |
|------------|------------------------------------------------------------|----|
| Table 4.1  | Locations of 13 observed sites in Florida                  | 34 |
| Table 4.2  | Location of 24 exit ramps with classification of ramp type | 35 |
| Table 4.3  | Time period and method for all data collection             | 39 |
| Table 4.4  | I-4 at Conroy Road (NB)                                    | 42 |
| Table 4.5  | I-4 at Conroy Road (SB)                                    | 43 |
| Table 4.6  | I-4 at Altamonte Drive (SB)                                | 44 |
| Table 4.7  | I-4 at Altamonte Drive (NB)                                | 45 |
| Table 4.8  | I-275 at 4th Street (SB)                                   | 46 |
| Table 4.9  | I-75 at SR 56 (SB)                                         | 47 |
| Table 4.10 | I-75 at SR 56 (NB)                                         | 48 |
| Table 4.11 | I-4 at CR 579 (WB)                                         | 49 |
| Table 4.12 | I-4 at CR 579 (EB)                                         | 50 |
| Table 4.13 | I-275 at Ulmerton Road (SB)                                | 51 |
| Table 4.14 | I-4 at SR 434 (SB)                                         | 52 |
| Table 4.15 | I-4 at SR 434 (NB)                                         | 53 |
| Table 4.16 | I-75 at Fowler Avenue (SB)                                 | 54 |
| Table 4.17 | I-75 at Fowler Avenue (NB)                                 | 55 |
| Table 4.18 | I-4 at I-75 (SB)                                           | 56 |
| Table 4.19 | I-4 at I-75 (NB)                                           | 57 |

| Table 4.20 | I-275 at Hillsborough Avenue (SB)                                  | 58 |
|------------|--------------------------------------------------------------------|----|
| Table 4.21 | I-275 at Hillsborough Avenue (NB)                                  | 59 |
| Table 4.22 | I-4 at Universal Blvd. (NB)                                        | 60 |
| Table 4.23 | I-4 at Universal Blvd. (SB)                                        | 61 |
| Table 4.24 | I-4 at Lee Road (SB)                                               | 62 |
| Table 4.25 | I-4 at Lee Road (NB)                                               | 63 |
| Table 5.1  | Change of selected variables                                       | 64 |
| Table 5.2  | Calibrated global parameters                                       | 65 |
| Table 5.3  | Calibration and validation results                                 | 65 |
| Table 5.4  | Coefficient values                                                 | 68 |
| Table 5.5  | Coefficient values                                                 | 71 |
| Table 5.6  | Coefficient values                                                 | 72 |
| Table 5.7  | Minimum deceleration lane                                          | 76 |
| Table 5.8  | Comparisons of exit ramp types                                     | 76 |
| Table 5.9  | Selection of optimal exit ramp                                     | 78 |
| Table 5.10 | Minimum ramp length                                                | 79 |
| Table 5.11 | Observed ramp length                                               | 80 |
| Table 5.12 | Relative speed S.D                                                 | 80 |
| Table 5.13 | Minimum distance between ramp terminal and downstream intersection | 81 |
| Table 5.14 | Minimum distance between ramp terminal and upstream intersection   |    |

# **List of Figures**

| Figure 1.1 | Type 1 single-lane exit ramp with a taper                            | 3  |
|------------|----------------------------------------------------------------------|----|
| Figure 1.2 | Type 2 single-lane exit ramp without a taper                         | 3  |
| Figure 1.3 | Type 3 two-lane exit ramp with an optional lane                      | 3  |
| Figure 1.4 | Type 4 two-lane exit ramp without an optional lane                   | 4  |
| Figure 1.5 | Main sections for analysis                                           | 6  |
| Figure 3.1 | TSIS interface                                                       | 16 |
| Figure 3.2 | NETSIM and FRESIM in TSIS                                            | 21 |
| Figure 3.3 | Number of lane changes                                               | 24 |
| Figure 3.4 | Exit ramp configurations                                             | 29 |
| Figure 3.5 | Distances between ramp terminal and downstream intersection          | 31 |
| Figure 3.6 | Distances between upstream/downstream intersection and ramp terminal | 32 |
| Figure 4.1 | Scattergrams of 13 observed sites in Florida                         | 34 |
| Figure 4.2 | Data collection equipment                                            | 36 |
| Figure 4.3 | Location of devices for data collection                              | 40 |
| Figure 5.1 | Number of lane changes vs. ramp volume                               | 66 |
| Figure 5.2 | Number of lane changes vs. freeway volume                            | 67 |
| Figure 5.3 | Number of lane changes vs. number of through lanes                   | 67 |
| Figure 5.4 | Average speed vs. volume                                             | 69 |
| Figure 5.5 | Average speed vs. traffic exit rate                                  | 69 |

| Figure 5.6  | Average speed vs. number of through lanes        | 70 |
|-------------|--------------------------------------------------|----|
| Figure 5.7  | Speed S.D. vs. length (type I, 2 through lanes)  | 73 |
| Figure 5.8  | Speed S.D. vs. length (type I, 3 through lanes)  | 73 |
| Figure 5.9  | Speed S.D. vs. length (type I, 4 through lanes)  | 74 |
| Figure 5.10 | Speed S.D. vs. length (type IV, 2 through lanes) | 74 |
| Figure 5.11 | Speed S.D. vs. length (type IV, 3 through lanes) | 75 |
| Figure 5.12 | Speed S.D. vs. length (type IV, 4 through lanes) | 75 |

#### **Abstract**

This research focuses primarily on the analysis of exit ramp performance related to safety and operations. The safety analysis focuses on the impacts of different exit ramp types for freeway diverge areas and different factors contributing to the crashes that occur on the exit ramp sections. The operational analysis is based mainly on simulations by TSIS-CORSIM. Different ramp effects and guidance for selecting optimal exit ramp type are concluded. Issues related to ramp sections and crossroad sections are also demonstrated. Minimum ramp length and minimum distance between ramp terminal and downstream or upstream intersections are calculated. The operational analysis was conducted to determine different ramp effects and to provide guidance for selecting optimal exit ramp type.

Comparisons of the operational performance of different types of exit ramps are made to present a method for choosing the optimal one. Some methods of evaluation (MOEs) are used to approach this objective, such as number of lane changes, average speed, delay time, etc. Data collection at 24 sites in Florida was conducted, and traffic simulations by TSIS-CORSIM were applied for analysis. Mathematical models were built to evaluate different impacts of these ramps based on simulations. All impact analysis is concluded to summarize a model for optimal exit ramp selection. In addition to ramp type evaluation and selection, issues related to ramp section and

crossroad section are demonstrated. Minimum ramp length and minimum distance between ramp terminal and downstream or upstream intersections are calculated.

#### **Chapter 1 Introduction**

#### 1.1 Background

In Florida, several types of exit ramps are used for traffic to exit freeways (i.e., Interstate and Turnpike systems). Drivers exiting freeways need to make decisions and execute maneuvers (i.e., lane change or lane merge) prior to the exit ramp in order to access crossroads at interchanges. If the exit ramps are not sufficiently long, drivers must complete their driving maneuvers within a short distance, resulting in potentially unsafe driving actions (i.e., fast-paced deceleration, lane changing, merging, unbalanced lane utilization, etc.), which will result in the development of shock-waves on upstream traffic, etc. Considering these factors, there are several issues and concerns that need to be addressed in selecting the optimum types of freeway exit ramp(s) to use at a given interchange.

Some of these concerns include, but are not limited to, the operational performance and correlation between types of exit ramps, lane utilization, geometrics, land use along the crossroad, adequate distances for lane change, deceleration, and adequate distance for traffic to transit from the exit gore to the downstream intersection, which includes weaving. These issues have not been studied in the past, and no clear guidelines, either federal (AASHTO Green Book) or state, are currently available in selecting exit ramp types. Therefore, there is a need to perform research under Florida

conditions to specifically evaluate the operational performance for each exit ramp type to develop tailored guidelines that address the issues.

This need is especially significant considering the rapid increase in new developments close to freeway interchanges. The Florida Department of Transportation (FDOT), in joint cooperative efforts with local land use agencies, can use the findings of this research to determine the type of exit ramps that should be constructed at a given location considering the prevailing conditions applicable to traffic, roadway, and land use developments.

#### 1.2 Research Objectives

The main goal of the research is to develop tailored technical guidelines governing the selection of optimum exit ramp types to be used on Florida freeways. Typical exit ramp types include, but are not limited to, single-lane exit ramp with a taper, single-lane exit ramp without a taper, two-lane exit ramp with an optional lane, and two-lane exit ramp without an optional lane (see Figures 1.1 to 1.4).

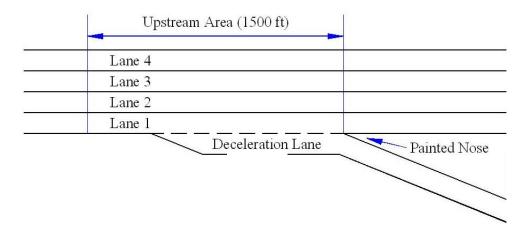



Figure 1.1 Type 1 single-lane exit ramp with a taper

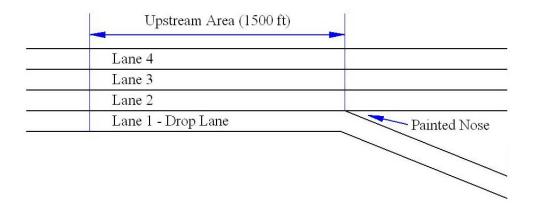



Figure 1.2 Type 2 single-lane exit ramp without a taper

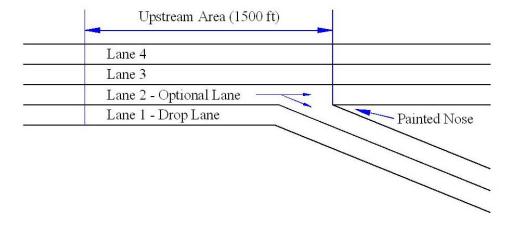



Figure 1.3 Type 3 two-lane exit ramp with an optional lane

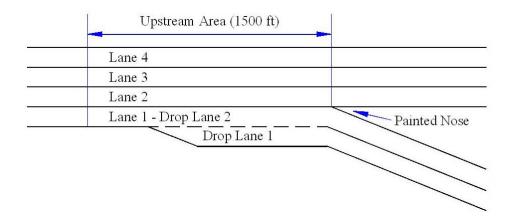



Figure 1.4 Type 4 two-lane exit ramp without an optional lane

Another objective is to present some design guidelines, such as ramp length design, ramp curve design, super elevation design, minimal distance design on cross road, etc., which are also based on operational analysis.

A survey was conducted to investigate the distribution of different types of exit ramps in the state of Florida. Table 1.1 shows that more than 95% exit ramps are of these four selected types. Thus, the research on these four typical exit ramp types is very significant to Florida Highway system.

Table 1.1 Exit ramp type survey

| Interstate  | Length |        |        |        |        |       |       |
|-------------|--------|--------|--------|--------|--------|-------|-------|
| Highway     | (mile) | Type 1 | Type 2 | Type 3 | Type 4 | Other | Total |
| I-4         |        |        |        |        |        |       |       |
| (Primary)   | 133    | 59     | 32     | 29     | 2      | 5     | 127   |
| I-275       |        |        |        |        |        |       |       |
| (Auxiliary) | 64     | 35     | 14     | 6      | 1      | 2     | 58    |
| I-295       |        |        |        |        |        |       |       |
| (Auxiliary) | 36     | 39     | 12     | 5      | 3      | 0     | 59    |

All the analysis is based on a traffic operational performance evaluation. Video cameras were installed at selected sites to record vehicle movements so that performance data such as delay, operating speed, number of necessary or unnecessary lane changes/merges, lane utilization, vehicle queue length, level of service, capacity, etc., could be obtained for each exit ramp type. After capture the existing data of exit ramps, the simulation software TSIS (Version 6) was used to change possible variables to simulate different traffic, geometric, and control conditions.

#### 1.3 Sections of Exit Ramp

The analysis of exit ramps includes three main sections: freeway section, ramp section, and crossroad section (see Figure 1.5). A freeway section refers to the upstream section of an exit ramp on a freeway, whose length is 1500 ft, which is generally considered the impact distance of an exit ramp. Exit ramp section is from the start point of the ramp, the painted nose, to the end of the ramp, the ramp terminal. If there is a left or right taper at the ramp terminal, the end of the ramp is the point where the taper intersects the crossroad. A crossroad section is started from the downstream intersection of the ramp terminal to the upstream intersection of the terminal. All data for these two intersections were included in this area.

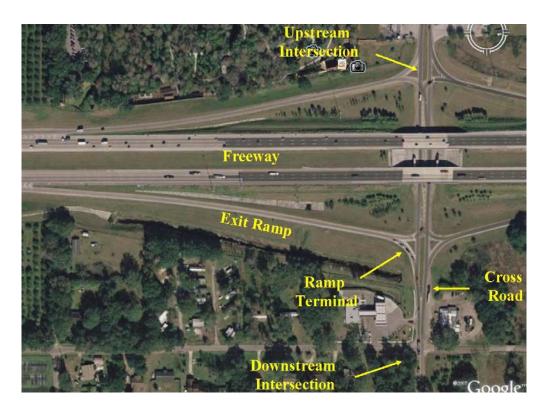



Figure 1.5 Main sections for analysis

#### **Chapter 2 Literature Review**

Previous studies and findings of the operational performance on freeway diverge areas, exit ramps, and crossroad sections are reviewed and summarized in this chapter. The freeway is one of the primary components of a transportation network and is categorized as the highest functional hierarchy of the highway system. The grand reliance on this facility promotes the essence of applying a reliable, efficient, and sustainable infrastructure system; thus, the operational performance is obviously an important consideration in freeway exit ramp design. Many factors are related to operations on freeways and their adjacent facilities. The wide variety of site geometric conditions, traffic volumes, ramp types, and design layouts could increase or decrease operation levels.

#### 2.1 Previous Findings

Al-Kaisy (1978) used a simulation approach for examining capacity and operational performance at freeway diverge areas. Freeway diverge areas, and particularly those in the proximity of exit ramps, are often viewed as potential bottlenecks in freeway operations. The existing diverge procedures within the 1994 and 1997 *Highway Capacity Manual* updates are limited in that they do not provide a direct estimate of freeway capacity, nor do they model performance at oversaturated traffic conditions. Moreover, a parallel investigation of these procedures revealed some inconsistencies

in predicting measures of performance at those critical areas. This paper describes the use of computer traffic simulation to explore the patterns of capacity and operational performance behavior at these areas under the impact of some key geometric and traffic variables. For this purpose, the microscopic traffic simulation model INTEGRATION was selected to conduct an extensive experimental work on a typical ramp-freeway diverge section. Five control variables were investigated, namely, total upstream demand, off-ramp demand, length of deceleration lane, off-ramp free-flow speed, and number of lanes at mainline. The impact of upstream or downstream ramps was considered beyond the scope of this research. Except for off-ramp free-flow speed, the impact of other control variables on capacity and operational performance was shown to be significant. Also, the simulated trends of traffic behavior showed considerable agreement with logic and expectations in light of the current state of knowledge on freeway operations.

Cassidy et al. (2000) conducted research on freeway traffic near an exit ramp. He assumed that the freeway section near an exit ramp is a bottleneck. A bottleneck with a diminished capacity is shown to have arisen on a freeway segment whenever queues from the segment's off-ramp spilled over and occupied its mandatory exit lane. Although the ramp's queues were confined to the right-most exit lane, non-exiting drivers reduced their speeds upon seeing these queues, which diminished flows in all lanes. It was also shown that the lengths of these exit queues were negatively correlated with the discharge flows in the freeway segment's adjacent lanes, i.e.,

longer exit queues from the over-saturated off-ramps were accompanied by lower discharge rates for the non-exiting vehicles. Whenever the off-ramp queues were prevented from spilling over into the exit lane (by changing the logic of a nearby traffic signal), much higher flows were sustained on the freeway segment, and a bottleneck did not arise there. These observations underscore the value of control strategies that enable diverging vehicles to exit a freeway unimpeded.

Newell (1998) studied the delays caused by a queue at a freeway exit ramp. This occurs when a queue from an exit ramp backs onto the freeway, causing a partial blockage of the right lane. Exiting vehicles are confined to the right lane but thru vehicles can travel in any lane. The two vehicle types interact, but their queues must be treated separately. This illustrates a special case of a model of "freeways with special lanes" formulated by Daganzo (1997). Whereas Daganzo presented a numerical scheme of calculating flows, the emphasis here is on graphical evaluation of the complete evolution of the queues. The graphical solution more clearly illustrates the practical issues.

Anon (1976) focused on the design and control of freeway off-ramp terminals, evaluating a more successful design and operating practices used at freeway exit-ramp terminals and concluded that the design of exit ramps should be related to both the freeway and the crossroad. Grades should be as flat as possible and, where possible, the entire ramp should be visible from the freeway exit. The ramp should have a

relatively flat platform at the intersection with the crossroad. Adequate stopping sight distance must be provided throughout the length of the ramp, and enough sight distance is needed at the intersection to allow for safe turns. These suggestions can improve safety performance significantly.

Xiao (2007) studied the minimum-length-requirement model for expressway off-ramp joint. To augment the capacity of off-ramp joint, a method to calculate its length is needed. With the definition and basic hypothesis of off-ramp joint, the characteristic of its structure and traffic flow are analyzed. From a systematic viewpoint, kinematics, gap-acceptance theory, and probability theory were employed to establish the minimum-length-requirement model for expressway off-ramp joint. While modeling, the more difficult traffic maneuver of running off the off-ramp road, finishing its interweaving, and running onto the left-turn lane of downstream intersection were taken into consideration comprehensively. For a newly constructed road, the required minimum length can be computed using the model. For an existing road, based on the comparison of the measured value and calculated value, the model is helpful for determining the reasons for congestion on the off-ramp joint and taking corresponding improvement measures. Finally, the model was verified to be feasible through comparison with the simulation results of CORSIM (corridor simulation model).

Li (2007) did research about factors influencing free flow speed on expressway. In order to research the pattern of the free flow speed (FFS) on the expressway, the

measured FFS, the theoretical FFS and the 85 percentile speed and their correlation were analyzed statistically using the traffic data acquired by the loop vehicle detectors buried in the expressway in Shanghai. The attention was focused on the measure FFS, and the regression models between it and the radius of the horizontal curve, between it and the distance to the inlet or from the exit ramp, and between it and the traffic saturation degree. On this basis, a model was presented to estimate the FFS on the expressway without the need of the field data, providing a base for evaluating the service level of the expressway operation system and estimating its traffic flow capacity.

Bunker (2003) predicted minor stream delays at a limited priority freeway merge. He discussed the development and application of a limited priority gap acceptance model to freeway merging. In the limited priority model, drivers in the major stream at a merge area may incur delay in restoring small headways to a larger, sustainable minimum headway between them and the vehicle in front. This allows minor stream drivers to accept smaller gaps. The headway distributions are assumed to be distributed according to Cowan's M3 model, whose terms were calibrated for this system. Minor stream minimum follow-on time was calibrated, and a realistic range of the critical gap identified. An equation was developed for minimum average minor stream delay.

A function was identified to model the relationship between minor stream average delay and degree of saturation. The shape parameter of this function was calibrated using simulated traffic flow data, under three different minor stream arrival pattern regimes. The model provides a useful means of comparing performance, through average minor stream delay, for varying minor and major stream flow rates and minor stream critical gap, under arrival patterns that differ due to traffic control upstream of the on-ramp. Minor stream delay is a particularly useful measure of effectiveness for uncongested freeway merging as it relates directly to the distance required to merge. Observations from the model developed provide physical evidence that minor stream drivers incur lesser delay, or have a better chance of merging quickly, when they arrive at constant intervals as is the case under constant departure ramp metering, than when they arrive in bunches downstream of a signalized intersection, or even a semi-bunched state downstream of an unsignalized intersection.

Zhou (2008) developed a methodology to evaluate the effects of access control near freeway interchange areas. Access connections and signalized intersections within the functional area of an interchange can adversely impact safety and operations at the interchange crossroad and on the freeway, and can cause the interchange to fail prematurely. Standard practice is to acquire a minimum of 90 m (300 ft) of limited access right-of-way beyond the end of the acceleration/ deceleration lanes for rural interchanges and 30 m (100 ft) in urban areas.

His study methodology included the following basic steps: (1) traffic operations analysis of the study interchange with varying configurations of signalized access spacing using CORSIM; (2) safety analysis of a sample of Florida interchanges with varied access spacing; and (3) cost/benefit analysis of acquiring varying amounts of limited access right-of-way. This study indicates that the long-term safety, operation, and fiscal benefits of purchasing additional limited access right-of-way at interchange areas greatly exceeds the initial costs. The findings suggest that state transportation agencies and the traveling public may benefit greatly by an increase in the amount of limited access right-of-way at interchange areas to a minimum of 180 m (600 ft) and a desirable 400 m (1320 ft). Although the safety and operational benefits of managing access in freeway interchange influence areas are clear, the cost effectiveness of purchasing access rights at the time of interchange construction has not been established through national- or state-level research. The primary objective of this study was to assess the relative costs and benefits of purchasing additional limited access right-of-way at the time of construction in lieu of retrofitting interchange areas after functional failure.

#### 2.2 Summary

Exit ramp is always an important research focus, such as ramp capacity, waving area operations, ramp configuration, crash analysis on freeway and ramps, and etc. And previous research findings had already shown some results of such analysis. However, specific analysis on operational performance of different types of exit ramps hasn't

conducted yet. Therefore, possible results and conclusions of this research are very helpful for exit ramp evaluation and selection, as well as some geometry design issues.

#### **Chapter 3 Methodology**

This chapter mainly describes the methodology of this project, including a microscopic traffic simulation technique, statistical modeling, and some design issues. The main contents consist of introduction to simulation, simulation procedures, freeway section evaluation, ramp parameter design, cross road access spacing, etc.

#### 3.1 Computer Simulation

All operational analysis was based on traffic simulation software TSIS-CORSIM.

TSIS can satisfy all the requirements of this project. After data validation and calibration, variables were changed in TSIS to simulate different traffic situations, which saved much energy and time. All collected data were input to TSIS for simulation, and output data provided analysis results for further calculation and comparison.

The Federal Highway Administration's (FHWA) Traffic Software Integrated System (TSIS) is an integrated development environment that enables users to conduct traffic operations analysis. Built using component architecture, TSIS is a toolbox that contains tools that allow the user to define and manage traffic analysis projects, define traffic networks and create inputs for traffic simulation analysis, execute traffic simulation models, and interpret the results of those models (Figure 3.1).

TSIS is microscopic traffic software with a long history, which guarantees reliability and practicability. The history is as follows:

• Mid 1970s: UTCS-1 (Urban Traffic Control System)

• Mid 1980s: NETSIM

• Late 1980s: TRAF-NETSIM

• 1990: TSIS/NETSIM

• 1994: TSIS/FRESIM

• 1995: TSIS/CORSIM (DOS version)

• 1997: TSIS/CORSIM (Windows version)



Figure 3.1 TSIS interface

TSIS is a complete software package, and different individual tools are included. Each tool has its exclusive function. Here are 10 main components in TSIS Version 6 and their use, which can help better understand how TSIS works, as described below:

• TShell: TShell is the graphical user interface for the TSIS integrated development environment. It provides a project view that enables you to

manage your TSIS projects. It is also the container for the pre-configured tools and any tools that you add to the suite. See the TShell User's Guide for additional details.

- TSIS Next: TSIS Next contains the same type of functionality that can be seen in the TShell, TRAFED, and TextEditor component programs. TSIS Next is a "quicker-and-easier" version of TSIS that contains specific advantages and disadvantages. Certain advanced CORSIM applications will continue to require TShell and TRAFED. By having access to both TSIS and TSIS Next on the same computer, you can choose whichever functionality you prefer.
- CORSIM: The CORSIM simulation consists of an integrated set of two microscopic simulation models (NETSIM and FRESIM) that represent the entire traffic environment as a function of time. NETSIM represents surface-street traffic and FRESIM represents freeway traffic. Microscopic simulations model the movements of individual vehicles, which include the influences of driver behavior. Thus, the effects of very detailed strategies, such as relocating bus stations or changing parking restrictions, can be studied with such models. CORSIM provides its own interface in TSIS 6 that enables you to control the simulation and the accumulation of traffic measures of effectiveness. See the CORSIM User's Guide for additional details.
- TRAFED: TRAFED is a graphical user interface-based editor that allows you
  to easily create and edit traffic networks and simulation input for the CORSIM
  model. See the TRAFED User's Guide for additional details.

- TRAFVU: TRAFVU (TRAF Visualization Utility) is a graphics post-processor for FHWA's CORSIM microscopic traffic simulation system.

  TRAFVU displays traffic networks, animates simulated traffic flow operations, animates and displays simulation output measures of effectiveness, and displays user-specified input parameters for simulated network objects. See the TRAFVU User's Guide for additional details.
- TSIS Text Editor: This editor is a standard text editor that has the additional capability of "understanding" the CORSIM TRF file format. When editing a TRF file with this editor, the TShell output window displays text describing the entry field and record type at the current cursor position. Clicking a specific field description in the output window highlights the corresponding entry field in the displayed TRF file. This makes manual editing of the text file much easier than with previous text editors. See the TSIS Text Editor User's Guide for additional details.
- TSIS Script Tool: The TSIS Script Tool is a combined script editor and tool for executing Visual Basic Scripts. Using the built-in TSIS interfaces, the Script Tool is a powerful mechanism for extending the functionality of the other TSIS components. We have also included two scripts with this release. One is a multi-run script that repeatedly runs CORSIM on a test case, applying different random number seeds to each run. The other script runs CORSIM on many different test cases. See the Script Tool User's Guide for additional details.

- TSIS Translator: The TSIS Translator converts TRF files for use by TRAFED.

  This translator also performs the reverse operation of translating the TRAFED native format (TNO) files into TRF files for use by CORSIM and other tools.

  See the Translator User's Guide for additional details.
- automatically compute selected statistics and summary data during multiple runs of CORSIM. The collected data is written to an Excel workbook, a comma-separated file, an XMLtagged file, or a tab-separated text file. The Output Processor can also compute 95th percentile confidence intervals, and can recommend sample sizes (i.e., the number of simulation runs that should be performed with varying random number seeds) for achieving desired accuracy. The Output Processor has been redesigned for TSIS 6 to efficiently summarize any model result generated by CORSIM. Cumulative MOEs may be obtained from the start of simulation, or just for the current time interval, or just for the current time period, or any combination of those three.
- e CORSIM Runtime Extension (RTE): Although it comes pre-configured with a set of tools, TSIS provides a mechanism by which an external application can interface directly with CORSIM simulation. This type of application has become known as a CORSIM run-time extension (RTE). Run-time extensions can be built to replace existing logic in CORSIM, or to supplement the logic. The original run-time extensions were tailored for signal timing studies. However, the concept has been expanded to support freeway monitoring,

incident detection, ramp metering run-time extension packages, work zone control, and signalization.

TSIS-CORSIM has a very strong capability with many applications, some of which are related to this project: Freeway and surface street interchanges, Signal timing and signal coordination, Freeway weaving sections, lane adds and lane drops, Ramp metering and HOV lanes, Queuing studies involving turn pockets and queue blockage, etc.

TSIS-CORSIM combines two of the most widely used traffic simulation models, NETSIM for surface streets and FRESIM for freeways. FRESIM is mainly for freeway system, and NETSIM is for roadways other than freeways.

Thus, in this project, NETSIM can be used to build up crossroads and parts of exit ramps, and FRESIM can be used to build up freeways and parts of exit ramps. Also, CORSIM can combine them into one network. Figure 3.2 shows a network example combining NETSIM and FRESIM in TSIS.

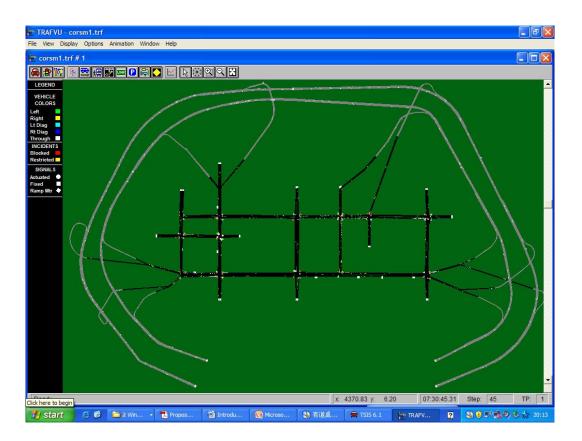



Figure 3.2 NETSIM and FRESIM in TSIS

In addition, TSIS-CORSIM also provides several demo projects for different subjects, which helps to understand the simulation process. These demo projects are as follows:

- Actuated Control Demo: This project demonstrates the operation of actuated control in the CORSIM model.
- CORSIM City Demo: This project demonstrates the capabilities of the TSIS
  package in creating and simulating a wide variety of different roadway
  configurations and interchanges.
- Incident Demo: This project demonstrates the effects of a freeway incident (accident) on a freeway and its surrounding arterials as modeled by CORSIM.

- EV Example: Emergency vehicles can cause signal pre-emption, follow specific routes, and travel at excess speeds.
- Interchange Demo: This project demonstrates the operation of the CORSIM surface-street interchange feature.
- Surface and Freeway Demo: This combined surface-street and freeway project demonstrates many features of the CORSIM model, including intersection controller and bus operations.
- Left Hand Examples: This project demonstrates left-hand drive within the
   CORSIM model, including intersection controller and roundabout operations.

#### 3.2 Simulation Procedure

There are several typical steps for a complete TSIS simulation application:

- Step 1: Geometry data input. This step includes nodes, links, frameworks, property of node and link. Detailed factors are lane assignment, length, width, grade, curve, median, sign, mark, etc.
- Step 2: Traffic data input. This step mainly inputs traffic volume and related data, such as hourly volume, heavy vehicle, bicycle, pedestrian, bus, bus station, etc.; not only total volume needs to be input, but also volume for each turning direction should be indicated.
- Step 3: Traffic control data input. This step tells TSIS the type of traffic control. Normally, signalized control is used for intersections at ramp terminals, downstream intersections, or upstream intersections. Even some

intersections are actuating control; they are considered as pre-time control intersections. Timing and phasing data are observed during peak hours, which keeps them constant.

- Step 4: Simulation running. After all data are accomplished, TSIS will start running. During this step, all warnings and errors can be stated, which indicate necessary correction. Because traffic flow is random, all simulation files and models were running multiple times, and average outputs were considered the final results in order to eliminate randomness of traffic.
- Step 5: Data output: TSIS can produce a report of all Measures of Effectiveness (MOEs), tables, and charts. Useful data are selected for further analysis.
- Step 6: Calibration: Some MOEs will be selected for calibration, such as queuing length at the intersection approach. TSIS output data and field data are compared to make sure the errors are under control. This step assures accuracy of the simulation.
- Step 7: Modeling: After data calibration is passed, useful data are chosen for mathematical modeling, presenting relationships among variables.

#### 3.3 Methods for Operational Analysis

The whole network of each observed site in TSIS was divided into three sections: freeway section, exit ramp section, and crossroad section. These sections were separated for further analysis. Different MOEs were presented to evaluate the

performance for each section. And for whole system calibration and validation, different sections were combined.

#### 3.3.1 Freeway Section

In the freeway section, the main task was to find out whether the impacts of different exit ramps are significantly different based on operational analysis. If the impacts are different, there is a need to select an optimal one under certain conditions.

Based on previous studies and data collection, number of lane changes, average speed, and delay time are considered the measures of effectiveness for operational performance evaluation.

#### (1) Number of Lane Changes

The number of lane changes is the total number of vehicles changing lanes in the freeway upstream section (1,500 ft before exit ramp) within one hour (see Figure 3.3).

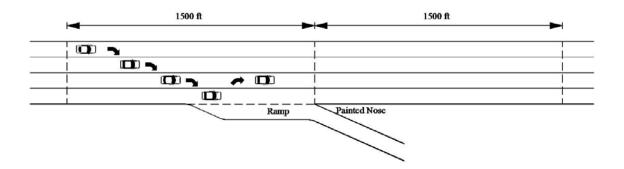



Figure 3.3 Number of lane changes

Number of lane changes is a significant factor that impacts operational performance on freeway sections adjacent to exit ramps. This change is mainly caused by exiting traffic to the ramp. The larger the number of lane changes, the worse the operational performance of the freeway. One kind of change is the exiting vehicles changing lanes from the left side thru lane to the right side ramp, which is called a mandatory lane change. The other kind of lane change happens between thru lanes just to find a better driving environment, which is an optional lane change. The last kind of number of lane change is the thru traffic changing lanes from the right side lane to the left.

Several independent variables may affect the number of lane changes, including ramp type, traffic volume, and number of thru lanes, etc. A mathematical model is presented to demonstrate the variable of number of lane changes.

$$Y = f(X_{12}, X_{13}, X_{14}, X_2, X_3, X_4,...)$$
 Eq. (1)

Where,

Y — number of lane change

 $X_{12}$  — ramp type II

 $X_{13}$  — ramp type III

X<sub>14</sub> — ramp type IV

 $X_2$  — freeway volume (vph)

 $X_3$  — exit rate (%)

X<sub>4</sub> — number of thru lanes on freeway

# (2) Average Speed

In addition to the number of lane changes, average speed on a freeway section is factor that can be used to estimate the impacts of the exit ramp. The larger of the average speed, the better the performance, and the less the probability of a crash.

The variables of ramp type, traffic volume, and number of thru lanes contribute to speed. A prediction model to estimate average speed is as follows:

$$Y = f(X_{12}, X_{13}, X_{14}, X_2, X_3, X_4,...)$$
 Eq. (2)

Where,

Y — average speed

 $X_{12}$  — ramp type II

 $X_{13}$  — ramp type II

 $X_{14}$  — ramp type IV

 $X_2$  — freeway volume (vph)

 $X_3$  — exit rate (%)

X<sub>4</sub> — number of thru lanes on freeway

By using TSIS simulation, many scenarios are specified, such as the different levels of traffic, different thru lanes, and different ramp types. All the extended examples can help find the correlation ships.

# (3) Delay Time

Delay time per vehicle on a freeway section indicates the impacts of the existence of the exit ramp. Ramp type is an important factor contributing to it. Field data show that exit ramp types can affect control delay on a freeway near a ramp area. A prediction model is presented to estimate control delay per vehicle, and the format is the same as model for number of lane changes and average speed.

$$Y = f(X_{12}, X_{13}, X_{14}, X_2, X_3, X_4,...)$$
 Eq. (3)

Where,

Y — delay time (s)

 $X_{12}$  — ramp type II

 $X_{13}$  — ramp type III

 $X_{14}$  — ramp type IV

 $X_2$  — freeway volume (vph)

 $X_3$  — exit rate (%)

X<sub>4</sub> — number of thru lanes on freeway

When different impacts of different ramp types are found under the same traffic and geometric conditions, there is evidence for choosing an optimal exit ramp for a certain situation. In addition to all three MOEs mentioned above, safety is another aspect for the selection. Results from the safety analysis also were used.

## (4) Length Design for Deceleration Lane of Ramp Type I and IV

Besides number of lane change and speed standard deviation (S.D.), length design for the deceleration lane is another important issue. For ramp types I and IV, the length of the deceleration lane can be verified, and the change of length might impact the performance.

In simulation, the length is changed from 100 ft to 1500 ft in TSIS to see the distribution of MOE speed S.D. under a different level of volume. Actually, AASHTO's Green Book has already presented the proper length for freeway exit lanes, but the standards are mainly based on stop distance. New suggested distances are based on operational analysis.

## 3.3.2 Ramp Section

There are two issues related to the ramp section: determining the minimal length for a ramp and discussing the ramp configuration.

# (1) Ramp Length Design

Ramp length design is based on the assumption that the minimum length of ramp must meet the requirements of holding exiting traffic, including queuing length, deceleration length, and perception-reaction distance. The exiting traffic spilling back onto the freeway must be avoided. The deceleration distance can be calculated by the initial speed and the deceleration rate, and the perception-reaction distance depends

on speed and time. Queuing length needs simulation, which depends on geometry and traffic conditions together.

Several factors will affect the minimum ramp length, such as volume level, control type, number of lanes on ramp, ramp terminal, etc. Thus, all the independent variables will be changed to simulate respectively, in order to find the minimal queuing length under each scenario.

# (2) Ramp configuration

The AASHTO Green Book listed three kinds of exit ramp configuration: type A, type B and type C, as shown in Figure 3.4.

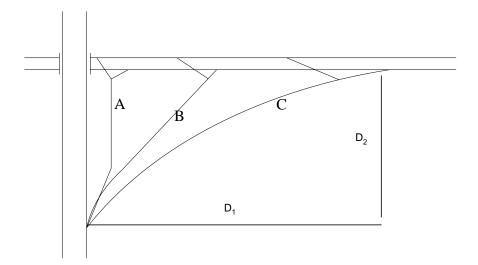



Figure 3.4 Exit ramp configurations

In a type A, the ramp terminal is close to the freeway, and the exit ramp is almost parallel to the freeway. This type is usually caused by limited land use. In type B, the ramp terminal is little farther away from the freeway and the length of the exit ramp is

longer; the ramp is closer to straight, or the curve is sharp. In a type C, ramp the terminal is far enough from the freeway, and the ramp curve can be made smooth.

Two factors are changed that result in changes in operational performance,  $D_1$  and  $D_2$ . (see Figure 3.4). Distance change is to find out how speed S.D. changes. A larger speed S.D. value under certain ramp configuration can cause potential problems.

#### 3.3.3 Crossroad Section

The main task related to crossroads is to determine the minimal distance between the ramp terminal and the upstream/downstream intersection.

Take the distance between the ramp terminal and he downstream intersection as an example. Based on this assumption, it is calculated that the queuing length of vehicles on the crossroad does not block the traffic coming out from the exit ramp. For distance between the downstream intersection and the ramp terminal, the weaving distance is also considered in addition to queuing length. Figure 3.5 shows the general method for calculating minimum distance. There is not a specified minimal distance requirement between the ramp terminal and the upstream intersection, which is also the distance between two exit ramps at a diamond interchange. Several factors will impact this distance, such as geometric configuration and land use.



Figure 3.5 Distances between ramp terminal and downstream intersection

A minimal distance is presented here mainly based on queuing length simulation. This method assures that queuing length will not spill back from segments between the two exit ramps, which will worsen thru traffic conditions on the crossroad.

Figure 3.6 shows the simulation network in TSIS to test different distances when traffic volumes, signal timing plans, and the geometry conditions are changed. The minimum distance can be found under heavy traffic conditions.

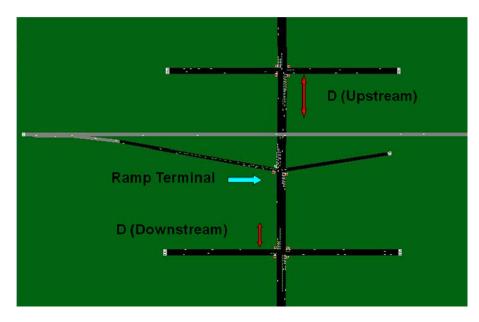



Figure 3.6 Distances between upstream/downstream intersection and ramp terminal

## **Chapter 4 Data Collection**

This chapter mainly describes information about field data collection, including site selection, data collection equipment, data collection procedures, and data reduction.

All collected field data were subject to simulation modeling and input requirements.

The quality of data collection will impact the accuracy of the simulation results.

Therefore, this part of the project was well prepared.

### 4.1 Site Selection

Site selection must be determined first. There were 13 sites selected for data collection in Florida. The selection criteria for all these sites were based on discussions among FDOT project officials and USF researchers, with the following requirements:

- All sites are freeway interchanges in central Florida.
- All sites are representative and typical in central Florida.
- All sites include the four different types of exit ramps.
- All sites serve a high traffic volume at peak hours.

Table 4.1 shows the locations and area of the 13 sites. All are located in the Tampa Bay and Orlando areas in central Florida. Figure 4.1 shows the exact scattergrams of

the observed sites on a map of Florida. Generally, each completed interchange contains two exit ramps on the two opposite sides, and only two interchanges have one exit ramp. Thus, there are 24 exit ramps for the 13 sites. Table 4.2 shows the 24 exit ramps with detailed classifications of ramp types.

Table 4.1 Locations of 13 observed sites in Florida

| No. | Location                             | Area          |
|-----|--------------------------------------|---------------|
| 1   | I-75 at SR 56                        | Tampa         |
| 2   | I-4 at CR 579                        | Tampa         |
| 3   | I-275 at Hillsborough Ave            | Tampa         |
| 4   | I-75 at I-4                          | Tampa         |
| 5   | I-275 at Ulmerton Rd                 | St Petersburg |
| 6   | I-275 at 4th St                      | St Petersburg |
| 7   | I-75 at Fowler Ave                   | Tampa         |
| 8   | I-4 at Universal Blvd                | Orlando       |
| 9   | I-4 at Conroy Rd                     | Orlando       |
| 10  | I-4 at Lee Rd                        | Orlando       |
| 11  | I-4 at Altamonte Dr                  | Orlando       |
| 12  | I-4 at SR 434                        | Orlando       |
| 13  | I-75 at CR 581 (Bruce B. Downs Blvd) | Tampa         |

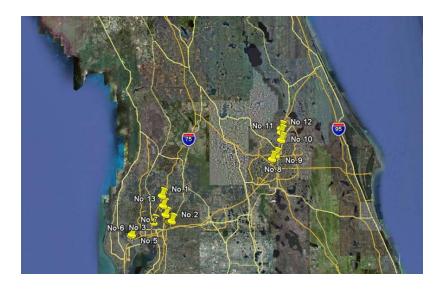
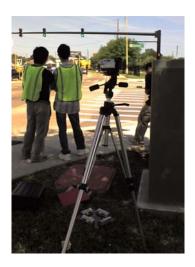



Figure 4.1 Scattergram of 13 observed sites in Florida

Table 4.2 Locations of 24 exit ramps with classification of ramp type


| Ramp<br>No. | Ramp<br>Type | Ramp<br>Location            | Ramp<br>Direction | Number of Thru Lanes on Freeway | Number<br>of Lanes<br>on Ramp |
|-------------|--------------|-----------------------------|-------------------|---------------------------------|-------------------------------|
| 1           | Ι            | I-75 at SR 56               | SB                | 2                               | 1                             |
| 2           | Ι            | I-4 at CR 579               | WB                | 3                               | 1                             |
| 3           | Ι            | I-275 at Hillsborough Ave   | NB                | 3                               | 1                             |
| 4           | I            | I-275 at Hillsborough Ave   | SB                | 3                               | 1                             |
| 5           | Ι            | I-75 at I-4                 | SB                | 3                               | 1                             |
| 6           | Ι            | I-275 at 4 <sup>th</sup> St | SB                | 4                               | 1                             |
| 7           | Ι            | I-4 at Universal Blvd       | SB                | 3                               | 1                             |
| 8           | Ι            | I-75 at CR 581 (BBD)        | SB                | 2                               | 1                             |
| 9           | II           | I-75 at Fowler Ave          | SB                | 3                               | 1                             |
| 10          | II           | I-4 at Lee Rd               | NB                | 4                               | 1                             |
| 11          | II           | I-4 at Lee Rd               | SB                | 4                               | 1                             |
| 12          | II           | I-4 at SR 434               | SB                | 4                               | 1                             |
| 13          | III          | I-75 at SR 56               | NB                | 4                               | 2                             |
| 14          | III          | I-4 at CR 579               | EB                | 4                               | 2                             |
| 15          | III          | I-4 at Universal Blvd       | NB                | 4                               | 2                             |
| 16          | III          | I-4 at Conroy Rd            | NB                | 5                               | 2                             |
| 17          | III          | I-4 at Conroy Rd            | SB                | 5                               | 2                             |
| 18          | III          | I-4 at Altamonte Dr         | NB                | 4                               | 2                             |
| 19          | III          | I-4 at SR 434               | NB                | 4                               | 2                             |
| 20          | III          | I-4 at Altamonte Dr         | SB                | 4                               | 2                             |
| 21          | III          | I-75 at CR 581 (BBD)        | NB                | 3                               | 2                             |
| 22          | IV           | I-75 at I-4                 | NB                | 4                               | 2                             |
| 23          | IV           | I-275 at Ulmerton Rd        | SB                | 4                               | 2                             |
| 24          | IV           | I-75 at Fowler Ave          | NB                | 3                               | 2                             |

# **4.2 Data Collection Equipment**

As many parameters were required, several pieces of equipment were used to assist with field data collection, including video cameras, traffic counters, radar guns, stop watches, traffic cones, etc. Detailed information (purpose and function) is shown as follows:

- Video Camera: to capture traffic volume and number of vehicles in a queue
- Traffic Counter: to assist video camera
- Radar Gun: to detect operating speed on roadway
- Stop Watch: to obtain timing plan for intersections
- Traffic Cones: to set a safety zone at roadside for all observers and equipment
- Rough Measurer: to measure geometry dimension
- Flash Coat: to protect observers by reminding other drivers





- (a) Video camera with stand
- (b) Use of video camera in data collection





- (c) Traffic counter
- (d) Use of traffic counter in data collection

Figure 4.2 Data collection equipment



Figure 4.2 (Continued)

(j) Flash coat

(i) Rough measurer

#### **4.3 Data Collection Procedures**

Data collection was divided into three sections: freeway section, exit ramp section, and crossroad section. Several kinds of data were collected for these three sections, such as traffic volume, heavy vehicles (%), operation speed, signal timing plan, number of lane changes, number of lanes, turn lane assignment, etc. All the data were collected at peak hours in order to capture the high volume situation of operation. The peak hour times were to two hours for both the morning and afternoon peaks (7:00 – 9:00 AM, and 4:00 – 6:00 PM) because of the long time of observation. Based on some data already gained, the range of peak hour time is proper due to the relatively constant traffic.

For the freeway section, the hourly traffic volume of each lane was collected by video camera with the ratio of heavy vehicles, and the operation speed was collected by radar gun. The number of lane changes was also captured by video camera in the 1500 ft upstream section of the exit ramp.

For the ramp section, in addition to the hourly traffic volume of each lane, the timing plan for the ramp terminal and the queuing length for each lane at each approach was also captured.

For the crossroad section, data collection was mainly focused on the upstream and downstream intersections. All traffic data (volume, assignment, etc.) and timing data

were collected, as most intersections were signalized. A radar gun was used to detect the operational speed of all approaches on the crossroad. Google Earth was used to collect geometric data, including number of lanes, turn bays at intersections, lane width, curvature, median, channelized island, etc. Table 4.3 and Figure 4.3 demonstrate the comprehensive method of data collection.

Table 4.3 Time period and method for all data collection

| Observing                | Parameters                                                                               | Methods                      |
|--------------------------|------------------------------------------------------------------------------------------|------------------------------|
| Time                     | Hourly volume of each lane and total HV ratio in freeway                                 | Counted by observer          |
| 7:00 to 8:00             | Number of lane changes on freeway in front of painted nose of exit ramp                  | Counted by observer          |
| AM<br>or                 | Hourly volume of each lane and total HV ratio in ramp terminal                           | By video camera              |
| 5:00 to 6:00<br>PM       | Queuing length of each lane in ramp terminal                                             | By video camera              |
|                          | Signal timing and phasing at ramp terminal                                               | Read by observer using timer |
|                          | Speed on freeway and ramp                                                                | By radar gun                 |
|                          | Hourly volume of each lane and total HV ratio of each approach (downstream intersection) | By video camera              |
|                          | Queuing length of each lane in each approach (downstream intersection)                   | By video camera              |
| 8:00 to 9:00<br>AM       | Signal timing and phasing at downstream intersection                                     | Read by observer using timer |
| or<br>6:00 to 7:00<br>PM | Hourly volume of each lane and total HV ratio of each approach (upstream intersection)   | By video camera              |
|                          | Queuing length of each lane in each approach (upstream intersection)                     | By video camera              |
|                          | Signal timing and phasing at upstream intersection                                       | Read by observer using timer |
|                          | Speed on downstream and upstream intersection                                            | By radar gun                 |

Some signalized intersections were actuating control, whose timing plan were affected by traffic volume and might vary at each cycle. It is difficult to get the actuating timing plan from observation, because it depends on values such as minimal initial time, minimal crossing time, etc., which are difficult to know. A decision was made to simplify the observation and get a reasonable result by setting pre-timed signalized control for these intersections by using the average timing plan from actuating signal. This method had been attested to through field data. The split time for each phase was pretty close because of the relevantly constant traffic at the peak hours.



Figure 4.3 Location of devices for data collection

## 4.4 Data Reduction

After data collection was completed, data reduction was conducted. All video camera data were read and transferred to a computer, timing data were calculated, and data recorded on paper were input into electronic file. Because not all field data were collected at the same time, it is reasonable that some data do not match. If this happened, error was controlled to less than 5%, or data collection was conducted again until it was less than 5%.

Final field data for each observed site are shown in Tables 4-4 through 4-25, which includes two directions (NB and SB, or EB and WB).

Table 4.4 I-4 at Conroy Road (NB)

|                      |                |       | Free     | way          |                |             |
|----------------------|----------------|-------|----------|--------------|----------------|-------------|
| Basic number of la   | nes 4          |       |          | Volume of    | ramp           | 1038        |
| Volume of each lar   | ne 1137,       | 1296, | 954,     | Exit ramp t  | type           | III         |
| (from left to right) | 486            |       |          |              |                |             |
| Number of lanes or   | n 2            |       |          | Number of    | f lane changes | 72          |
| ramp                 |                |       |          | on freeway   | 7              |             |
|                      |                | ]     | Ramp T   | erminal      |                |             |
| Traffic Volume       |                |       |          |              |                |             |
| EB: 1083             | WB: 801        |       |          | SB: 0        | 1              | NB: 1038    |
| Timing and Phasin    | g              |       |          |              |                |             |
| Phase                | Maneuver       |       | Gree     | n (s)        | Yellow (s)     | All Red (s) |
| 1                    | NB             |       | 1        | 6            | 3              | 1           |
| 2                    | EB and WB      |       | 3        | 6            | 3              | 1           |
|                      |                | Dow   | nstream  | Intersection | ı              |             |
| Traffic Volume       |                |       |          |              |                |             |
| EB: 393              | WB: 498        |       |          | SB: 978      | NB: 708        |             |
| Timing and Phasin    | g              |       |          |              |                |             |
| Phase                | Maneuver       |       | Gree     | n (s)        | Yellow (s)     | All Red (s) |
| 1 1                  | EB and WB left |       | 1        | 4            | 3              | 1           |
| 2                    | EB and WB thru | l     | 1        | 4            | 3              | 1           |
| 3                    | SB             |       | 2        | 6            | 3              | 1           |
| 4                    | SB and NB thru |       | 2        | 4            | 3              | 1           |
| 5                    | NB             |       | 4        | 4            | 3              | 1           |
|                      |                | Ups   | stream I | ntersection  |                |             |
| Traffic Volume       |                |       |          |              |                |             |
| EB: 974              | WB: 104        | 3     |          | SB: 603      | 1              | NB: 845     |
| Timing and Phasin    | g              |       |          |              |                |             |
| Phase                | Maneuver       |       | Gree     | n (s)        | Yellow (s)     | All Red (s) |
| 1                    | EB and WB left |       | 1        | 0            | 3              | 1           |
| 2                    | EB and WB thru | 1     | 1        | 2            | 3              | 1           |
| 3                    | SB             |       | 1        | 5            | 3              | 1           |
| 4 .                  | SB and NB thru |       | 2        | 6            | 3              | 1           |
| 5 ]                  | NB             |       | 2        | 6            | 3              | 1           |

Table 4.5 I-4 at Conroy Road (SB)

|                  |             | Fre            | eeway          |            |             |
|------------------|-------------|----------------|----------------|------------|-------------|
| Basic number of  | lanes       | 5              | Volume of      | f ramp     | 1052        |
| Volume of each l | ane (from   | 1892,1594,1078 | , Exit ramp    | type       | III         |
| left to right)   |             | 696,740        |                |            |             |
| Number of lanes  | on ramp     | 2              | Number o       | f lane     | 216         |
|                  |             |                | changes        | on freeway |             |
|                  |             | Ramp           | Terminal       |            |             |
| Traffic Volume   |             |                |                |            |             |
| EB: 2118         | WB:         | 2367           | SB: 1052       |            | NB: 0       |
| Timing and Phas  | ing         |                |                |            |             |
| Phase            | Maneı       | iver G         | reen (s)       | Yellow (s) | All Red (s) |
| 1                | SB          |                | 12             | 3          | 1           |
| 2                | EB and WI   | 3 thru         | 40             | 3          | 1           |
|                  |             | Downstrea      | m Intersection | 1          |             |
| Traffic Volume   |             |                |                |            |             |
| EB: 1083         | WB:         | 1287           | SB: 705        |            | NB: 1116    |
| Timing and Phas  | ing         |                |                |            |             |
| Phase            | Maneı       | iver Gi        | reen (s)       | Yellow (s) | All Red (s) |
| 1                | EB and WI   | 3 left         | 11             | 3          | 1           |
| 2                | EB and WI   | 3 thru         | 16             | 3          | 1           |
| 3                | SB          |                | 17             | 3          | 1           |
| 4                | SB and NB   | thru           | 34             | 3          | 1           |
| 5                | NB          |                | 20             | 3          | 1           |
|                  |             | Upstream       | Intersection   |            |             |
| Traffic Volume   |             |                |                |            |             |
| EB: 1947         | WB:         | 1578           | SB: 0          |            | NB: 1874    |
| Timing and Phas  |             |                |                |            |             |
| Phase            | Maneı       | iver Gi        | reen (s)       | Yellow (s) | All Red (s) |
| 1                | NB          |                | 34             | 3          | 1           |
| 2                | EB left and | thru           | 31             | 3          | 1           |
| 3                | EB and WI   | 3 thru         | 42             | 3          | 1           |

Table 4.6 I-4 at Altamonte Drive (SB)

|                         |                  | Freev       | /ay                 |         |             |  |  |
|-------------------------|------------------|-------------|---------------------|---------|-------------|--|--|
| Basic number of         | f lanes 3        |             | Volume of ramp      | 645     |             |  |  |
| Volume of each          | lane 1284,       | 1338,1257   | Exit ramp type      | III     |             |  |  |
| (from left to rigl      | ht)              |             |                     |         |             |  |  |
| Number of lanes         | s on ramp 2      |             | Number of lane char | nges 36 |             |  |  |
|                         |                  |             | on freeway          |         |             |  |  |
|                         |                  | Ramp Te     | rminal              |         |             |  |  |
| Traffic Volume          | Traffic Volume   |             |                     |         |             |  |  |
| EB: 1629                | WB: 2271         |             | SB: 396             | NB: 0   |             |  |  |
| Timing and Pha          | sing             |             |                     |         |             |  |  |
| Phase                   | Maneuver         | Green       | (s) Yellow          | v (s)   | All Red (s) |  |  |
| 1                       | SB               | 35          | 3                   |         | 1           |  |  |
| 2                       | WB thru and left | 36          | 3                   |         | 1           |  |  |
| 3                       | EB and WB thru   | 60          | 3                   |         | 1           |  |  |
| Downstream Intersection |                  |             |                     |         |             |  |  |
| Traffic Volume          |                  |             |                     |         |             |  |  |
| EB: 1578                | WB: 1908         | 3           | SB: 441             | NB: 52  | 8           |  |  |
| Timing and Pha          | sing             |             |                     |         |             |  |  |
| Phase                   | Maneuver         | Green       | (s) Yellow          | v (s)   | All Red (s) |  |  |
| 1                       | WB               | 17          | 3                   |         | 1           |  |  |
| 2                       | EB and WB thru   | 36          | 3                   |         | 1           |  |  |
| 3                       | EB               | 19          | 3                   |         | 1           |  |  |
| 4                       | SB and NB left   | 17          | 3                   |         | 1           |  |  |
| 5                       | SB and NB thru   | 21          | 3                   |         | 1           |  |  |
|                         |                  | Upstream In | tersection          |         |             |  |  |
| Traffic Volume          |                  |             |                     |         |             |  |  |
| EB: 1776                | WB: 1668         | 3           | SB: 0               | NB: 10  | 08          |  |  |
| Timing and Pha          | sing             |             |                     |         |             |  |  |
| Phase                   | Maneuver         | Green       | (s) Yellow          | v (s)   | All Red (s) |  |  |
| 1                       | NB               | 32          | 3                   |         | 1           |  |  |
| 2                       | EB and WB thru   | 71          | 3                   |         | 1           |  |  |
| 3                       | EB thru and left | 28          | 3                   |         | 1           |  |  |

Table 4.7 I-4 at Altamonte Drive (NB)

|                    |                   | Freeway               |                  |                |
|--------------------|-------------------|-----------------------|------------------|----------------|
| Basic number of    | lanes 3           | Volume of             | ramp 1           | 098            |
| Volume of each     | lane 1710,1716,88 | Exit ramp             | type I           | II             |
| (from left to righ | it)               |                       |                  |                |
| Number of lanes    | on 2              | Number of             | f lane changes 7 | <sup>'</sup> 8 |
| ramp               |                   | on freeway            | 7                |                |
|                    |                   | Ramp Terminal         |                  |                |
| Traffic Volume     |                   |                       |                  |                |
| EB: 2655           | WB: 3669          | SB: 0                 | NB               | : 1728         |
| Timing and Phas    | sing              |                       |                  |                |
| Phase              | Maneuver          | Green (s)             | Yellow (s)       | All Red (s)    |
| 1                  | NB                | 42                    | 3                | 1              |
| 2                  | EB and WB thru    | 76                    | 3                | 1              |
| 3                  | EB thru and left  | 33                    | 3                | 1              |
|                    | Dov               | wnstream Intersection | 1                |                |
| Traffic Volume     |                   |                       |                  |                |
| EB: 2258           | WB: 1923          | SB: 372               | NB               | : 477          |
| Timing and Phas    | sing              |                       |                  |                |
| Phase              | Maneuver          | Green (s)             | Yellow (s)       | All Red (s)    |
| 1                  | EB thru and left  | 27                    | 3                | 1              |
| 2                  | WB thru and left  | 43                    | 3                | 1              |
| 3                  | EB and WB left    | 20                    | 3                | 1              |
| 4                  | SB                | 20                    | 3                | 1              |
| 5                  | NB                | 20                    | 3                | 1              |
|                    | $U_{l}$           | pstream Intersection  |                  |                |
| Traffic Volume     |                   |                       |                  |                |
| EB: 1878           | WB: 2133          | SB: 714               | NB               | : 0            |
| Timing and Phas    | sing              |                       |                  |                |
| Phase              | Maneuver          | Green (s)             | Yellow (s)       | All Red (s)    |
| 1                  | SB                | 24                    | 3                | 1              |
| 2                  | WB thru and left  | 34                    | 3                | 1              |
| 3                  | EB and WB thru    | 81                    | 3                | 1              |

Table 4.8 I-275 at 4th Street (SB)

| Freeway                              |                                                                                              |                           |                      |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------|---------------------------|----------------------|--|--|--|
| Basic number of lanes                | 4                                                                                            | Volume of ramp            | 332                  |  |  |  |
| Volume of each lane                  | 837,868,1185,965                                                                             | Exit ramp type            | II                   |  |  |  |
| (from left to right)                 |                                                                                              |                           |                      |  |  |  |
| Number of lanes on                   | 1                                                                                            | Number of lane changes    | 126                  |  |  |  |
| ramp                                 |                                                                                              | on freeway                |                      |  |  |  |
| Ramp Terminal                        |                                                                                              |                           |                      |  |  |  |
| Traffic Volume                       |                                                                                              |                           |                      |  |  |  |
| EB: 47                               | WB: 43                                                                                       | SB: 298                   | NB: 552              |  |  |  |
| Timing and Phasing                   |                                                                                              |                           |                      |  |  |  |
| (This intersection is yie            | ld controlled, SB and l                                                                      | NB approaches belong to m | ain road, and EB and |  |  |  |
| WB approaches belong to              | o minor road.)                                                                               |                           |                      |  |  |  |
|                                      | Downstrea                                                                                    | m Intersection            |                      |  |  |  |
| Traffic Volume                       |                                                                                              |                           |                      |  |  |  |
| EB: 38                               | WB: 27                                                                                       | SB: 261                   | NB: 487              |  |  |  |
| Timing and Phasing                   |                                                                                              |                           |                      |  |  |  |
| (This intersection is yie            | (This intersection is yield controlled, SB and NB approaches belong to main road, and EB and |                           |                      |  |  |  |
| WB approaches belong to minor road.) |                                                                                              |                           |                      |  |  |  |

**Table 4.9 I-75 at SR 56 (SB)** 

|                     |                | Freeway               |                |              |  |
|---------------------|----------------|-----------------------|----------------|--------------|--|
| Basic number of     | f lanes 2      | Volume of             | ramp           | 731          |  |
| Volume of each      | lane 873,767   | Exit ramp t           | ype I          | I            |  |
| (from left to right | ht)            |                       |                |              |  |
| Number of lanes     | s on 1         | Number of             | lane changes 3 | 38           |  |
| ramp on freeway     |                |                       |                |              |  |
|                     |                | Ramp Terminal         |                |              |  |
| Traffic Volume      |                |                       |                |              |  |
| EB: 674             | WB: 1097       | SB: 719               | NE             | B: 0         |  |
| Timing and Pha      | sing           |                       |                |              |  |
| Phase               | Maneuver       | Green (s)             | Yellow (s)     | All Red (s)  |  |
| 1                   | SB             | 24                    | 3              | 1            |  |
| 2                   | WB left        | 16                    | 3              | 1            |  |
| 3                   | EB and WB thru | 30                    | 3              | 1            |  |
|                     | Do             | wnstream Intersection | 1              |              |  |
| Traffic Volume      |                |                       |                |              |  |
| EB: 1095            | WB: 993        | SB: 734               | NE             | <b>3</b> : 0 |  |
| Timing and Pha      | sing           |                       |                |              |  |
| Phase               | Maneuver       | Green (s)             | Yellow (s)     | All Red (s)  |  |
| 1                   | SB left        | 29                    | 3              | 1            |  |
| 2                   | EB left        | 17                    | 3              | 1            |  |
| 3                   | EB and WB thru | 31                    | 3              | 1            |  |
|                     | U              | pstream Intersection  |                |              |  |
| Traffic Volume      |                |                       |                |              |  |
| EB: 737             | WB: 972        | SB: 0                 | NE             | 3: 530       |  |
| Timing and Pha      | sing           |                       |                |              |  |
| Phase               | Maneuver       | Green (s)             | Yellow (s)     | All Red (s)  |  |
| 1                   | NB             | 21                    | 3              | 1            |  |
| 2                   | EB left        | 17                    | 3              | 1            |  |
| 3                   | EB and WB thru | 27                    | 3              | 1            |  |

**Table 4.10 I-75 at SR 56 (NB)** 

|                                |                                | Freeway           |                   |                    |  |
|--------------------------------|--------------------------------|-------------------|-------------------|--------------------|--|
| Basic number of                | of lanes 4                     | Volume of         | ramp              | 1056               |  |
| Volume of each                 | n lane 1001,876,831,111        | 13 Exit ramp      | type 1            | III                |  |
| (from left to rig              | ght)                           |                   |                   |                    |  |
| Number of land                 | es on 2                        | Number o          | f lane changes    | 103                |  |
| ramp on freeway                |                                |                   |                   |                    |  |
|                                | Ra                             | mp Terminal       |                   |                    |  |
| Traffic Volume                 | ;                              |                   |                   |                    |  |
| EB: 978 WB: 1421 SB: 0 NB: 996 |                                |                   |                   |                    |  |
| Timing and Ph                  | asing                          |                   |                   |                    |  |
| Phase                          | Maneuver                       | Green (s)         | Yellow (s)        | All Red (s)        |  |
| 1                              | NB                             | 26                | 3                 | 1                  |  |
| 2                              | EB left                        | 15                | 3                 | 1                  |  |
| 3                              | EB and WB thru                 | 39                | 3                 | 1                  |  |
|                                | Downst                         | ream Intersection | n                 |                    |  |
| Traffic Volume                 | ;                              |                   |                   |                    |  |
| EB: 871                        | WB: 1341                       | SB: 16            | NE                | 3: 23              |  |
| Timing and Ph                  | asing                          |                   |                   |                    |  |
| (This intersect                | ion is yield controlled, EB as | nd WB approach    | es belong to main | n road, and SB and |  |
| NB approaches                  | s belong to minor road.)       |                   |                   |                    |  |
|                                | Upstro                         | eam Intersection  |                   |                    |  |
| Traffic Volume                 | <b>;</b>                       |                   |                   |                    |  |
| EB: 1021                       | WB: 1209                       | SB: 767           | NE                | B: 0               |  |
| Timing and Ph                  | asing                          |                   |                   |                    |  |
| Phase                          | Maneuver                       | Green (s)         | Yellow (s)        | All Red (s)        |  |
| 1                              | SB                             | 24                | 3                 | 1                  |  |
| 2                              | WB left                        | 21                | 3                 | 1                  |  |
| 3                              | EB and WB thru                 | 36                | 3                 | 1                  |  |

**Table 4.11 I-4 at CR 579 (WB)** 

|                    |                  | Freeway               |                  |             |
|--------------------|------------------|-----------------------|------------------|-------------|
| Basic number of    | Tlanes 3         | Volume of             | Ramp 9           | 983         |
| Volume of each     | lane 330,687,24  | 10 Exit ramp          | type I           | I           |
| (from left to righ | nt)              |                       |                  |             |
| Number of lanes    | on ramp 1        | Number o              | f lane changes 4 | .6          |
|                    |                  | on freeway            | y                |             |
|                    |                  | Ramp Terminal         |                  |             |
| Traffic Volume     |                  |                       |                  |             |
| EB: 0              | WB: 945          | SB: 1250              | NB               | : 1876      |
| Timing and Phas    | sing             |                       |                  |             |
| Phase              | Maneuver         | Green (s)             | Yellow (s)       | All Red (s) |
| 1                  | WB               | 20                    | 3                | 1           |
| 2                  | NB and SB thru   | 33                    | 3                | 1           |
| 3                  | NB thru and left | 18                    | 3                | 1           |
|                    | Do               | wnstream Intersection | n                |             |
| Traffic Volume     |                  |                       |                  |             |
| EB: 331            | WB: 64           | SB: 1654              | NB               | : 634       |
| Timing and Phas    | sing             |                       |                  |             |
| Phase              | Maneuver         | Green (s)             | Yellow (s)       | All Red (s) |
| 1                  | NB and SB left   | 12                    | 3                | 1           |
| 2                  | NB and SB thru   | 24                    | 3                | 1           |
| 3                  | EB and WB        | 16                    | 3                | 1           |
|                    | U                | pstream Intersection  |                  |             |
| Traffic Volume     |                  |                       |                  |             |
| EB: 1184           | WB: 0            | SB: 1342              | NB               | : 1653      |
| Timing and Phas    | sing             |                       |                  |             |
| Phase              | Maneuver         | Green (s)             | Yellow (s)       | All Red (s) |
| 1                  | EB               | 23                    | 3                | 1           |
| 2                  | NB and SB thru   | 38                    | 3                | 1           |
| 3                  | NB thru and left | 14                    | 3                | 1           |

**Table 4.12 I-4 at CR 579 (EB)** 

|                    |                   | Freeway               |                 |             |  |
|--------------------|-------------------|-----------------------|-----------------|-------------|--|
| Basic number of    | lanes 4           | Volume o              | of Ramp         | 1140        |  |
| Volume of each     | lane 870,934,656, | ,1240 Exit ramp       | p type          | III         |  |
| (from left to righ | nt)               |                       |                 |             |  |
| Number of lanes    | on 2              | Number                | of lane changes | 87          |  |
| ramp               |                   | on freew              | ay              |             |  |
|                    |                   | Ramp Terminal         |                 |             |  |
| Traffic Volume     |                   |                       |                 |             |  |
| EB: 1089           | WB: 0             | SB: 1243              | NI NI           | 3: 1709     |  |
| Timing and Phas    | sing              |                       |                 |             |  |
| Phase              | Maneuver          | Green (s)             | Yellow (s)      | All Red (s) |  |
| 1                  | EB                | 28                    | 3               | 1           |  |
| 2                  | NB and SB thru    | 42                    | 3               | 1           |  |
| 3                  | NB thru and left  | 21                    | 3               | 1           |  |
|                    | Do                | wnstream Intersection | on              |             |  |
| Traffic Volume     |                   |                       |                 |             |  |
| EB: 351            | WB: 478           | SB: 1457              | ' NI            | 3: 960      |  |
| Timing and Phas    | sing              |                       |                 |             |  |
| Phase              | Maneuver          | Green (s)             | Yellow (s)      | All Red (s) |  |
| 1                  | EB and WB         | 26                    | 3               | 1           |  |
| 2                  | NB and SB left    | 19                    | 3               | 1           |  |
| 3                  | NB and SB thru    | 37                    | 3               | 1           |  |
|                    | U                 | pstream Intersection  | 1               |             |  |
| Traffic Volume     |                   |                       |                 |             |  |
| EB: 0              | WB: 670           | SB: 813               | NI              | 3: 1534     |  |
| Timing and Phas    | sing              |                       |                 |             |  |
| Phase              | Maneuver          | Green (s)             | Yellow (s)      | All Red (s) |  |
| 1                  | WB                | 23                    | 3               | 1           |  |
| 2                  | NB and SB thru    | 35                    | 3               | 1           |  |
| 3                  | NB thru and left  | 27                    | 3               | 1           |  |

Table 4.13 I-275 at Ulmerton Road (SB)

|                           | F                    | reeway                       |                             |  |  |
|---------------------------|----------------------|------------------------------|-----------------------------|--|--|
| Basic number of lanes     | 3                    | Volume of each ra            | mp 1784                     |  |  |
| Volume of each lane       | 654,886,704          | Exit ramp type               | II                          |  |  |
| (from left to right)      |                      |                              |                             |  |  |
| Number of lanes on ramp   | 2                    | Number of lane ch            | nanges 57                   |  |  |
|                           |                      | on freeway                   |                             |  |  |
|                           | Ram                  | p Terminal <sup>1</sup>      |                             |  |  |
| Traffic Volume            |                      |                              |                             |  |  |
| EB: 1194                  | WB: 1542             | SB: 0                        | NB: 15                      |  |  |
| Timing and Phasing        |                      |                              |                             |  |  |
| (This intersection is yie | ld controlled; EB an | nd WB approaches be          | elong to main road, and NB  |  |  |
| approach belongs to mine  |                      |                              |                             |  |  |
|                           | Downstre             | am Intersection <sup>1</sup> |                             |  |  |
| Traffic Volume            |                      |                              |                             |  |  |
| EB: 1023                  | WB: 1439             | SB: 16                       | NB: 23                      |  |  |
| Timing and Phasing        |                      |                              |                             |  |  |
| •                         |                      | WB approaches belo           | ng to main road, and SB and |  |  |
| NB approaches belong to   | *                    |                              |                             |  |  |
|                           | Ram                  | p Terminal <sup>2</sup>      |                             |  |  |
| Traffic Volume            |                      |                              |                             |  |  |
| EB: 354                   | WB: 0                | SB: 363                      | NB: 225                     |  |  |
| Timing and Phasing        |                      |                              |                             |  |  |
| · ·                       |                      | and SB approaches be         | elong to main road, and EB  |  |  |
| approach belongs to mind  |                      | 2                            |                             |  |  |
|                           | Downstre             | am Intersection <sup>2</sup> |                             |  |  |
| Traffic Volume            |                      |                              |                             |  |  |
|                           | WB: 0                | SB: 371                      | NB: 209                     |  |  |
| Timing and Phasing        |                      |                              |                             |  |  |
| •                         |                      | and SB approaches be         | elong to main road, and EB  |  |  |
| approach belongs to mind  | or road.)            |                              |                             |  |  |

**Table 4.14 I-4 at SR 434 (SB)** 

|                      |                    | Freeway              |              |             |  |  |  |
|----------------------|--------------------|----------------------|--------------|-------------|--|--|--|
| Basic number of 1    | anes 3             | Volume of            | ramp         | 1103        |  |  |  |
| Volume of each la    | ne 1764, 1572, 76  | 9 Exit ramp t        | ype          | I           |  |  |  |
| (from left to right) | )                  |                      |              |             |  |  |  |
| Number of lanes of   | on 1               | Number of            | lane changes | 76          |  |  |  |
| ramp                 |                    | on freeway           |              |             |  |  |  |
|                      | ]                  | Ramp Terminal        |              |             |  |  |  |
| Traffic Volume       |                    |                      |              |             |  |  |  |
| EB: 1789             | WB: 1702           | SB: 1021             |              | NB: 0       |  |  |  |
| Timing and Phasin    | ng                 |                      |              |             |  |  |  |
| Phase                | Maneuver           | Green (s)            | Yellow (s)   | All Red (s) |  |  |  |
| 1                    | SB left            | 28                   | 3            | 1           |  |  |  |
| 2                    | WB thru & left     | 46                   | 3            | 1           |  |  |  |
| 3                    | EB and WB thru     | 147                  | 3            | 1           |  |  |  |
|                      | Down               | nstream Intersection | l            |             |  |  |  |
| Traffic Volume       |                    |                      |              |             |  |  |  |
| EB: 1346             | EB: 1346 WB: 1156  |                      | NB: 451      |             |  |  |  |
| Timing and Phasin    | ng                 |                      |              |             |  |  |  |
| Phase                | Maneuver           | Green (s)            | Yellow (s)   | All Red (s) |  |  |  |
| 1                    | EB and WB thru     | 24                   | 3            | 1           |  |  |  |
| 2                    | EB thru & left     | 42                   | 3            | 1           |  |  |  |
| 3                    | WB thru & left     | 19                   | 3            | 1           |  |  |  |
| 4                    | SB and NB left     | 39                   | 3            | 1           |  |  |  |
| 5                    | SB and NB thru     | 21                   | 3            | 1           |  |  |  |
|                      | Ups                | stream Intersection  |              |             |  |  |  |
| Traffic Volume       |                    |                      |              |             |  |  |  |
| EB: 1453             | WB: 1134           | SB: 0                |              | NB: 987     |  |  |  |
| Timing and Phasin    | Timing and Phasing |                      |              |             |  |  |  |
| Phase                | Maneuver           | Green (s)            | Yellow (s)   | All Red (s) |  |  |  |
| 1                    | NB left            | 22                   | 3            | 1           |  |  |  |
| 2                    | EB and WB thru     | 46                   | 3            | 1           |  |  |  |
| 3                    | NB left            | 19                   | 3            | 1           |  |  |  |
| 4                    | EB and WB left     | 37                   | 3            | 1           |  |  |  |

**Table 4.15 I-4 at SR 434 (NB)** 

|                      |                   | Freeway              |                |             |
|----------------------|-------------------|----------------------|----------------|-------------|
| Basic number of la   | nes 3             | Volume of            | ramp           | 1011        |
| Volume of each lan   | e 2184, 1752, 735 | 5 Exit ramp          | type           | III         |
| (from left to right) |                   |                      |                |             |
| Number of lanes or   | n 2               | Number of            | f lane changes | 96          |
| ramp                 |                   | on freeway           | 7              |             |
|                      | F                 | Ramp Terminal        |                |             |
| Traffic Volume       |                   |                      |                |             |
| EB: 1944             | WB: 1647          | SB: 0                | NI             | B: 1164     |
| Timing and Phasing   | g                 |                      |                |             |
| Phase                | Maneuver          | Green (s)            | Yellow (s)     | All Red (s) |
| 1 1                  | NB left           | 24                   | 3              | 1           |
| 2 I                  | EB and WB thru    | 50                   | 3              | 1           |
| 3 1                  | NB left           | 21                   | 3              | 1           |
| 4 I                  | EB and WB left    | 41                   | 3              | 1           |
|                      | Down              | nstream Intersection | n              |             |
| Traffic Volume       |                   |                      |                |             |
| EB: 1767             | WB: 1575          | SB: 198              | NB: 798        |             |
| Timing and Phasing   | g                 |                      |                |             |
| 1                    | SB left           | 24                   | 3              | 1           |
| 2                    | WB thru & left    | 47                   | 3              | 1           |
| 3                    | SB left           | 22                   | 3              | 1           |
| 4                    | EB and WB thru    | 146                  | 3              | 1           |
|                      | Ups               | tream Intersection   |                |             |
| Traffic Volume       |                   |                      |                |             |
| EB: 1797             | WB: 1692          | SB: 879              | NI             | B: 0        |
| Timing and Phasing   | g                 |                      |                |             |
| Phase                | Maneuver          | Green (s)            | Yellow (s)     | All Red (s) |
| 1 I                  | EB and WB thru    | 85                   | 3              | 1           |
| 2                    | NB thru & left    | 32                   | 3              | 1           |
| 3 I                  | EB and WB left    | 17                   | 3              | 1           |
| 4 5                  | SB thru & left    | 17                   | 3              | 1           |
| 5 I                  | EB thru & left    | 15                   | 3              | 1           |

Table 4.16 I-75 at Fowler Avenue (SB)

|                   |                          | Freeway                |                  |             |  |
|-------------------|--------------------------|------------------------|------------------|-------------|--|
| Basic number of   | f lanes 2                | Volume of              | Ramp             | 1057        |  |
| Volume of each    | lane 1765, 145           | 7 Exit ramp t          | Exit ramp type I |             |  |
| (from left to rig | ht)                      |                        |                  |             |  |
| Number of lane    | s on ramp 2              | Number of              | lane changes     | 87          |  |
|                   |                          | on freeway             | ,                |             |  |
|                   |                          | Ramp Terminal          |                  |             |  |
| Traffic Volume    |                          |                        |                  |             |  |
| EB: 1579          | WB: 1764                 | SB: 667                | NI               | B: 0        |  |
| Timing and Pha    | sing                     |                        |                  |             |  |
| Ramp terminal     | is yield control.        |                        |                  |             |  |
|                   | Do                       | ownstream Intersection | 1                |             |  |
| Traffic Volume    |                          |                        |                  |             |  |
| EB: 1701          | WB: 1879                 | SB: 430                | NI               | B: 391      |  |
| Timing and Pha    | sing                     |                        |                  |             |  |
| Phase             | Maneuver                 | Green (s)              | Yellow (s)       | All Red (s) |  |
| 1                 | EB and WB left           | 29                     | 3                | 1           |  |
| 2                 | EB and WB thru           | 120                    | 3                | 1           |  |
| 3                 | NB and SB left           | 20                     | 3                | 1           |  |
| 4                 | NB and SB thru           | 33                     | 3                | 1           |  |
|                   | J                        | Jpstream Intersection  |                  |             |  |
| Traffic Volume    |                          |                        |                  |             |  |
| EB: 1684          | WB: 1760                 | SB: 0                  | NI               | B: 572      |  |
| Timing and Pha    | sing                     |                        |                  |             |  |
| Upstream inters   | ection is yield control. |                        |                  |             |  |

Table 4.17 I-75 at Fowler Avenue (NB)

|                          | Freeway             |                        |         |  |  |  |
|--------------------------|---------------------|------------------------|---------|--|--|--|
| Basic number of lanes    | 2                   | Volume of Ramp         | 998     |  |  |  |
| Volume of each lane      | 1543, 1321          | Exit ramp type         | IV      |  |  |  |
| (from left to right)     |                     |                        |         |  |  |  |
| Number of lanes on       | 2                   | Number of lane changes | 75      |  |  |  |
| ramp                     |                     | on freeway             |         |  |  |  |
|                          | Ramp T              | Terminal               |         |  |  |  |
| Traffic Volume           |                     |                        |         |  |  |  |
| EB: 1589                 | WB: 1549            | SB: 0                  | NB: 754 |  |  |  |
| Timing and Phasing       |                     |                        |         |  |  |  |
| Ramp terminal is yield   | control.            |                        |         |  |  |  |
| Downstream Intersection  |                     |                        |         |  |  |  |
| Traffic Volume           |                     |                        |         |  |  |  |
| EB: 1356                 | WB: 1305            | SB: 75                 | NB: 0   |  |  |  |
| Timing and Phasing       |                     |                        |         |  |  |  |
| Downstream intersection  | n is yield control. |                        |         |  |  |  |
|                          | Upstream 1          | Intersection           |         |  |  |  |
| Traffic Volume           |                     |                        |         |  |  |  |
| EB: 1621                 | WB: 1678            | SB: 574                | NB: 0   |  |  |  |
| Timing and Phasing       |                     |                        |         |  |  |  |
| Upstream intersection is | s yield control.    |                        |         |  |  |  |

**Table 4.18 I-4 at I-75 (SB)** 

| Freeway                  |                     |                        |         |  |  |
|--------------------------|---------------------|------------------------|---------|--|--|
| Basic number of lanes    | 2                   | Volume of ramp         | 773     |  |  |
| Volume of each lane      | 1543, 1059          | Exit ramp type         | I       |  |  |
| (from left to right)     |                     |                        |         |  |  |
| Number of lanes on       | 1                   | Number of lane changes | 5 56    |  |  |
| ramp                     |                     | on freeway             |         |  |  |
|                          | R                   | amp Terminal           |         |  |  |
| Traffic Volume           |                     |                        |         |  |  |
| EB: 1734                 | WB: 1521            | SB: 773                | NB: 0   |  |  |
| Timing and Phasing       |                     |                        |         |  |  |
| Ramp terminal is yield   | control.            |                        |         |  |  |
|                          | Downs               | stream Intersection    |         |  |  |
| Traffic Volume           |                     |                        |         |  |  |
| EB: 1712                 | WB: 1671            | SB: 346                | NB: 0   |  |  |
| Timing and Phasing       |                     |                        |         |  |  |
| Downstream intersection  | n is yield control. |                        |         |  |  |
|                          | Upst                | ream Intersection      |         |  |  |
| Traffic Volume           |                     |                        |         |  |  |
| EB: 1653                 | WB: 1534            | SB: 0                  | NB: 549 |  |  |
| Timing and Phasing       |                     |                        |         |  |  |
| Upstream intersection is | s yield control.    |                        |         |  |  |

**Table 4.19 I-4 at I-75 (NB)** 

| Freeway                  |                        |                               |                           |  |  |  |
|--------------------------|------------------------|-------------------------------|---------------------------|--|--|--|
| Basic number of lanes    | 3                      | Volume of ramp                | 1214                      |  |  |  |
| Volume of each lane      | 1987, 1552, 741        | Exit ramp type                | IV                        |  |  |  |
| (from left to right)     |                        |                               |                           |  |  |  |
| Number of lanes on       | 2                      | Number of lane changes        | 3 121                     |  |  |  |
| ramp                     |                        | on freeway                    |                           |  |  |  |
|                          | Ram                    | p Terminal                    |                           |  |  |  |
| Traffic Volume           |                        |                               |                           |  |  |  |
| EB: 1744                 | WB: 1529               | SB: 0                         | NB: 621                   |  |  |  |
| Timing and Phasing       |                        |                               |                           |  |  |  |
| Ramp terminal is yield   | control.               |                               |                           |  |  |  |
|                          | Downstre               | am Intersection               |                           |  |  |  |
| Downstream intersection  | on is another ramp o   | f freeway, not the cross s    | street. Furthermore, the  |  |  |  |
| distance is about 4750 f | eet, which exceeds ran | np influence distance of 1500 | 0 feet. Therefore, ignore |  |  |  |
| existence of downstrear  | n intersection.        |                               |                           |  |  |  |
|                          | Upstream               | m Intersection                |                           |  |  |  |
| Traffic Volume           |                        |                               |                           |  |  |  |
| EB: 1697                 | WB: 1492               | SB: 679                       | NB: 0                     |  |  |  |
| Timing and Phasing       | •                      |                               |                           |  |  |  |
| Upstream intersection is | s yield control.       |                               |                           |  |  |  |

Table 4.20 I-275 at Hillsborough Avenue (SB)

|                     |                      |             | Free     | way                     |                |         |             |
|---------------------|----------------------|-------------|----------|-------------------------|----------------|---------|-------------|
| Basic number of     | lanes                | 4           |          | Volume of               | Ramp           | 831     |             |
| Volume of each la   | ach lane 1721, 1636, |             | 1201,    | 1201, Exit ramp type II |                |         |             |
| (from left to right | t)                   | 698         |          |                         |                |         |             |
| Number of lanes     | on ramp              | 1           |          | Number of               | f lane changes | 97      |             |
|                     |                      |             |          | on freeway              | y              |         |             |
|                     |                      |             | Ramp To  | erminal                 |                |         |             |
| Traffic Volume      |                      |             |          |                         |                |         |             |
| EB: 1235            | WI                   | B: 1198     |          | SB: 827                 |                | NB: 0   |             |
| Timing and Phasi    | ing                  |             |          |                         |                |         |             |
| Phase               | Maneu                | iver        | Green    | (s)                     | Yellow (s)     | 1       | All Red (s) |
| 1                   | SB le                | eft         | 22       |                         | 3              |         | 1           |
| 2                   | WB thru              | & left      | 16       |                         | 3              |         | 1           |
| 3                   | EB and W             | B thru      | 32       |                         | 3              |         | 1           |
|                     |                      | Dow         | nstream  | Intersection            | n              |         |             |
| Traffic Volume      |                      |             |          |                         |                |         |             |
| EB: 1301            | WI                   | B: 1279     |          | SB: 730                 |                | NB: 49  | 1           |
| Timing and Phasi    | ing                  |             |          |                         |                |         |             |
| Phase               | Mane                 | euver       | Gree     | n (s)                   | Yellow (s)     |         | All Red (s) |
| 1                   | EB and W             | B left      | 1′       | 7                       | 3              |         | 1           |
| 2                   | EB and W             | B thru      | 49       | )                       | 3              |         | 1           |
| 3                   | NB and S             | B left      | 1.       | 3                       | 3              |         | 1           |
| 4                   | NB and S             | B thru      | 10       | 5                       | 3              |         | 1           |
|                     |                      | Up          | stream I | ntersection             |                |         |             |
| Traffic Volume      |                      |             |          |                         |                |         |             |
| EB: 1284            | WI                   | 3: 1260     |          | SB: 0                   |                | NB: 452 | 2           |
| Timing and Phasi    | ing                  |             |          |                         |                |         |             |
| Upstream interse    | ction is yiel        | ld control. |          |                         |                |         |             |

Table 4.21 I-275 at Hillsborough Avenue (NB)

|                    |                     | Freeway              |                 |                |
|--------------------|---------------------|----------------------|-----------------|----------------|
| Basic number of    | lanes 3             | Volume of            | Ramp 54         | <del>1</del> 7 |
| Volume of each l   | ane 1641, 1410, 88  | 2 Exit ramp t        | type II         |                |
| (from left to righ | t)                  |                      |                 |                |
| Number of lanes    | on 1                | Number of            | lane changes 54 | 4              |
| ramp               |                     | on freeway           | ,               |                |
|                    | ]                   | Ramp Terminal        |                 |                |
| Traffic Volume     |                     |                      |                 |                |
| EB: 1389           | WB: 1349            | SB: 0                | NB:             | 554            |
| Timing and Phas    | ing                 |                      |                 |                |
| Ramp terminal is   | s yield controlled. |                      |                 |                |
|                    | Down                | nstream Intersection | 1               |                |
| Traffic Volume     |                     |                      |                 |                |
| EB: 1456           | WB: 1405            | SB: 75               | NB:             | 0              |
| Timing and Phas    | ing                 |                      |                 |                |
| Phase              | Maneuver            | Green (s)            | Yellow (s)      | All Red (s)    |
| 1                  | EB and WB left      | 21                   | 3               | 1              |
| 2                  | EB and WB thru      | 65                   | 3               | 1              |
| 3                  | SB and NB left      | 19                   | 3               | 1              |
| 4                  | SB and NB thru      | 26                   | 3               | 1              |
|                    | Ups                 | tream Intersection   |                 |                |
| Traffic Volume     |                     |                      |                 |                |
| EB: 1221           | WB: 1378            | SB: 674              | NB:             | 0              |
| Timing and Phas    | ing                 |                      |                 |                |
| Phase              | Maneuver            | Green (s)            | Yellow (s)      | All Red (s)    |
| 1                  | SB left             | 23                   | 3               | 1              |
| 2                  | WB thru & left      | 17                   | 3               | 1              |
| 3                  | EB and WB thru      | 41                   | 3               | 1              |

Table 4.22 I-4 at Universal Blvd. (NB)

|                                  | F                                      | reeway          |              |              |
|----------------------------------|----------------------------------------|-----------------|--------------|--------------|
| Basic number of lanes 4          |                                        | Volume of R     | lamp         | 164 (HV 4%), |
|                                  |                                        |                 |              | 340 (HV 4%)  |
| Volume of each la                | Volume of each lane 1644 (HV 2%), 1584 |                 | pe           | III          |
| (from left to right)             | (HV 3%), 1196 (H                       | V               |              |              |
|                                  | 3%), 252 (HV 4%)                       |                 |              |              |
| Number of lanes of               | on 2                                   | Number of 1     | lane changes | 164          |
| ramp                             |                                        | on freeway      |              |              |
|                                  | Ram                                    | p Terminal      |              |              |
| Traffic Volume                   |                                        |                 |              |              |
| EB: 1296                         | WB: 0                                  | SB: 776         | N            | NB: 694      |
| Timing and Phasir                | ng                                     |                 |              |              |
| Phase                            | Maneuver G                             | reen (s)        | Yellow (s)   | All Red (s)  |
| 1                                | EB left and right                      | 39              | 3            | 1            |
| 2                                | SB thru and left                       | 30              | 3            | 1            |
| 3                                | NB thru and right                      | 29              | 3            | 1            |
|                                  | Downstre                               | am Intersection |              |              |
| Traffic Volume                   |                                        |                 |              |              |
| EB: 996 WB: 1080 SB: 780 NB: 642 |                                        |                 | NB: 642      |              |
| Timing and Phasir                | ng                                     |                 |              |              |
| Phase                            | Maneuver G                             | reen (s)        | Yellow (s)   | All Red (s)  |
| 1 E                              | B & WB left                            | 15              | 3            | 1            |
| 2 E                              | B thru and left                        | 24              | 3            | 1            |
| 3 E                              | B & WB thru                            | 47              | 3            | 1            |
| 4 N                              | B & SB left                            | 13              | 3            | 1            |
| 5 N                              | B & SB thru                            | 27              | 3            | 1            |
|                                  | Upstream                               | m Intersection  |              |              |
| Traffic Volume                   |                                        |                 |              |              |
| EB: 1296                         | EB: 1296 WB: 0                         |                 | N            | NB: 834      |
| Timing and Phasir                | ıg                                     |                 |              |              |
| Phase                            | Maneuver G                             | reen (s)        | Yellow (s)   | All Red (s)  |
| 1 E                              | В                                      | 22              | 3            | 1            |
|                                  | B & SB left                            | 19              | 3            | 1            |
| 3 N                              | B & SB through                         | 42              | 3            | 1            |

Table 4.23 I-4 at Universal Blvd. (SB)

| Freeway                    |                      |                 |                     |               |  |  |
|----------------------------|----------------------|-----------------|---------------------|---------------|--|--|
| Basic number of lanes      | 3                    | Volume          | of Ramp             | 564 (HV 0%)   |  |  |
| Volume of each lane        | 1398 (HV 2%), 14     | 04 Exit ran     | np type             | II            |  |  |
| (from left to right)       | (HV 3%), 1089 (H     | IV              |                     |               |  |  |
|                            | 3%)                  |                 |                     |               |  |  |
| Number of lanes on         | 1                    | Number          | of lane changes     | 108           |  |  |
| ramp                       |                      | on freev        | vay                 |               |  |  |
|                            | Ran                  | np Terminal     |                     |               |  |  |
| Traffic Volume             |                      |                 |                     |               |  |  |
| EB: 498                    | WB: 765              | SB: 0           | N                   | NB: 396       |  |  |
| Timing and Phasing         |                      |                 |                     |               |  |  |
| Phase Mar                  | neuver C             | Green (s)       | Yellow (s)          | All Red (s)   |  |  |
| 1 NB left a                | nd right             | 20              | 3                   | 1             |  |  |
| 2 WB thru                  | and left             | 16              | 3                   | 1             |  |  |
| 3 EB & W                   | B thru               | 22              | 3                   | 1             |  |  |
|                            | Downstr              | eam Intersect   | tion                |               |  |  |
| Traffic Volume             |                      |                 |                     |               |  |  |
| EB: 0                      | WB: 741              | SB: 105         | 00 N                | NB: 27        |  |  |
| Timing and Phasing         |                      |                 |                     |               |  |  |
| It is yield controlled. EB | and WB are the major | or approaches   | s, and NB is the mi | nor approach. |  |  |
|                            | Upstrea              | am Intersection | on                  |               |  |  |
| Traffic Volume             |                      |                 |                     |               |  |  |
| EB: 648                    | WB: 0                | SB: 738         | S N                 | NB: 888       |  |  |
| Timing and Phasing         |                      |                 |                     |               |  |  |
| Phase Ma                   | neuver (             | Green (s)       | Yellow (s)          | All Red (s)   |  |  |
| 1 WB thru                  | & left               | 39              | 3                   | 1             |  |  |
| 2 NB & SF                  | 3 left               | 6               | 3                   | 1             |  |  |
| 3 SB thru 8                | & left               | 21              | 3                   | 1             |  |  |
| 4 NB & SI                  | 3 thu                | 75              | 3                   | 1             |  |  |

Table 4.24 I-4 at Lee Road (SB)

| Freeway               |                    |                |            |             |  |  |
|-----------------------|--------------------|----------------|------------|-------------|--|--|
| Basic number of lanes | 4                  | Volume of Ram  | ıp         | 894 (HV 0%) |  |  |
| Volume of each lane   | 2262 (HV 0%), 1929 | Exit ramp type |            | II          |  |  |
| (from left to right)  | (HV 1%), 1626 (HV  |                |            |             |  |  |
|                       | 0.5%), 966 (HV 0%) |                |            |             |  |  |
| Number of lanes on    | 1                  | Number of lane | changes    | 54          |  |  |
| ramp                  |                    | on freeway     |            |             |  |  |
|                       | Ramp               | Terminal       |            |             |  |  |
| Traffic Volume        |                    |                |            |             |  |  |
| EB: 1131              | WB: 909            | SB: 894        | N.         | B: 0        |  |  |
| Timing and Phasing    |                    |                |            |             |  |  |
| Phase Ma              | neuver Gree        | en (s)         | Yellow (s) | All Red (s) |  |  |
| 1 SB left             | 3                  | 33             | 3          | 1           |  |  |
| 2 EB & W              | B thru 6           | 52             | 3          | 1           |  |  |
| 3 WB thru             | and left 3         | 35             | 3          | 1           |  |  |
|                       | Downstrean         | n Intersection |            |             |  |  |
| Traffic Volume        |                    |                |            |             |  |  |
| EB: 1128              | WB: 1357           | SB: 311        | N          | B: 0        |  |  |
| Timing and Phasing    |                    |                |            |             |  |  |
| Phase Ma              | neuver Gree        | en (s)         | Yellow (s) | All Red (s) |  |  |
| 1 SB thru             | & left 1           | 16             | 3          | 1           |  |  |
| 2 WB thru             | and left           | 5              | 3          | 1           |  |  |
| 3 EB & W              | B thru 9           | 90             | 3          | 1           |  |  |
| 4 EB thru             | & left 1           | 15             | 3          | 1           |  |  |
|                       | Upstream 1         | Intersection   |            |             |  |  |
| Traffic Volume        |                    |                |            |             |  |  |
| EB: 1485              | WB: 1461           | SB: 0          | N          | B: 618      |  |  |
| Timing and Phasing    |                    |                |            |             |  |  |
| Phase Ma              | neuver Gree        | en (s)         | Yellow (s) | All Red (s) |  |  |
| 1 NB left             |                    | 36             | 3          | 1           |  |  |
| 2 EB thru             | & left 5           | 51             | 3          | 1           |  |  |
| 3 EB & W              | B thru 4           | <b>1</b> 1     | 3          | 1           |  |  |

Table 4.25 I-4 at Lee Road (NB)

| <del>-</del>       |                   | Freeway              |                   |             |
|--------------------|-------------------|----------------------|-------------------|-------------|
| Basic number of    | f lanes 4         | Volume               | of Ramp 7         | 18 (HV 1%)  |
| Volume of each     | lane 1712 (HV 19  | 6), 1612 Exit ram    | p type I          | I           |
| (from left to righ | ht) (HV 1%), 18   | 372 (HV              |                   |             |
|                    | 1%), 718 (H       | V 1%)                |                   |             |
| Number of lanes    | s on 1            | Number               | of lane changes 2 | .14         |
| ramp               |                   | on freew             | ay                |             |
|                    |                   | Ramp Terminal        |                   |             |
| Traffic Volume     |                   |                      |                   |             |
| EB: 2000           | WB: 1480          | SB: 0                | NB                | : 652       |
| Timing and Phas    | sing              |                      |                   |             |
| Phase              | Maneuver          | Green (s)            | Yellow (s)        | All Red (s) |
| 1                  | NB left and right | 15                   | 3                 | 1           |
| 2                  | EB thru and left  | 68                   | 3                 | 1           |
| 3                  | EB & WB thru      | 45                   | 3                 | 1           |
|                    | Do                | wnstream Intersecti  | on                |             |
| Traffic Volume     |                   |                      |                   |             |
| EB: 1282           | WB: 976           | SB: 344              | NB                | : 0         |
| Timing and Phas    | sing              |                      |                   |             |
| Phase              | Maneuver          | Green (s)            | Yellow (s)        | All Red (s) |
| 1                  | SB & NB left      | 8                    | 3                 | 1           |
| 2                  | SB & NB thru      | 13                   | 3                 | 1           |
| 3                  | EB thru & left    | 31                   | 3                 | 1           |
| 4                  | EB & WB thru      | 58                   | 3                 | 1           |
| 5                  | WB thru & left    | 13                   | 3                 | 1           |
|                    | U                 | pstream Intersection | n                 |             |
| Traffic Volume     |                   |                      |                   |             |
| EB: 958            | WB: 1024          | SB: 494              | NB                | : 0         |
| Timing and Phas    | sing              |                      |                   |             |
| Phase              | Maneuver          | Green (s)            | Yellow (s)        | All Red (s) |
| 1                  | SB left           | 32                   | 3                 | 1           |
| 2                  | EB & WB thru      | 62                   | 3                 | 1           |
| 3                  | WB thru & left    | 36                   | 3                 | 1           |

### **Chapter 5 Data Analysis and Results**

Field data collection provided limited data for the simulation software. Simulation models changed several parameters randomly, such as traffic volume, geometry configuration, posted speed, signal timing, etc. Such changes extended the simulation samples from the initial 24 to thousands of sites. Therefore, this is a very efficient and reliable method for producing a great amount of data that can develop statistical models.

All results produced by CORSIM were from multi-runs (10 times). Parameters were changed within a reasonable range to enlarge the sample size. Parameter of travel time was selected for output validation (freeway section), error is controlled by 10%. Parameter of Queuing length was selected for output validation (ramp and cross road section), error is controlled by 15%. Some coefficients of driving behavior were adjusted for output validation. Table 5.1 shows how some variables were changed, table 5.2 shows how CORSIM global parameters were adjusted, and table 5.3 shows the final calibration and validation results.

Table 5.1 Change of selected variables

| Parameters                     | Range                          |
|--------------------------------|--------------------------------|
| Ramp Type                      | I, II, III, IV                 |
| Freeway Volume (vphpl)         | 100 to 2000 (100 as increment) |
| Volume Exit Rate (%)           | 5% to 30% (5% as increment)    |
| No. of Through Lane on Freeway | 2, 3, 4                        |

**Table 5.2 Calibrated global parameters** 

| Driver Type    | 1    | 2       | 3   | 4   | 5   | 6               | 7   | 8   | 9   | 10  |
|----------------|------|---------|-----|-----|-----|-----------------|-----|-----|-----|-----|
| Driver Type    | 17   | 12      | 12  | 11  | 10  | 10              | 9   | 7   | 7   | 5   |
| Percentage (%) | 1 /  | 12      | 12  | 11  | 10  | 10              | ,   | ,   | ,   | 3   |
| Acceptable     |      |         |     |     |     |                 |     |     |     |     |
| Deceleration   | 21   | 18      | 15  | 12  | 9   | 7               | 6   | 5   | 4   | 4   |
| (fpss)         |      |         |     |     |     |                 |     |     |     |     |
| Acceptable Gap | 5.6  | 5.0     | 4.6 | 4.2 | 3.9 | 3.7             | 3.4 | 3.0 | 2.6 | 2.0 |
| - Cross (s)    | 5.6  | 3.0 4.0 | 7.2 | 3.7 | 3.7 | J. <del>4</del> | 3.0 | 2.0 | 2.0 |     |
| Acceptable Gap | 7.8  | 6.6     | 6.0 | 5.4 | 4.8 | 4.5             | 4.2 | 3.9 | 3.6 | 2.7 |
| – Left (s)     | 7.0  | 0.0     | 0.0 | 3.4 | 4.0 | 4.3             | 4.2 | 3.9 | 3.0 | 2.1 |
| Acceptable Gap | 10.0 | 8.8     | 8.0 | 7.2 | 6.4 | 6.0             | 5.6 | 5.2 | 4.8 | 3.6 |
| – Right (s)    | 10.0 | 0.0     | 0.0 | 1.2 | 0.4 | 0.0             | 5.0 | 3.2 | 4.0 | 5.0 |

**Table 5.3 Calibration and validation results** 

| Section      | Parameter           | Error before | Error after |
|--------------|---------------------|--------------|-------------|
|              |                     | C. & V.      | C. & V.     |
| Freeway      | Average Travel      | 11.2% > 10%  | 8.9%        |
|              | Time (s)            |              |             |
| Ramp & Cross | Queuing Length      | 16.8% > 15%  | 14.6%       |
| Road         | (number of vehicle) |              |             |

After all data were prepared, statistical models, such as linear and non-linear regression, were applied to develop forecast models for operational evaluations. All results are classified into three sections: freeway section, exit ramp section, and crossroad section.

# **5.1 Freeway Section**

## 5.1.1 Number of Lane Changes

Comparisons of the number of lane changes among the four exit ramp types are shown from Figures 5.1 to Figure 5.3. In Figure 5.1, the freeway volume is 3600 vph,

the number of thru lanes on the freeway is 3, and the number of lane changes increases with the ramp volume increasing. In Figure 5.2, the ramp volume is 800 vph, the number of thru lanes on the freeway is 3, and the number of lane changes increases lightly with the freeway volume increasing. In Figure 5.3, the freeway volume is 3600 vph, the ramp volume is 800 vph, and the number of lane changes increases with number of thru lanes increasing. Thus, all the three independent variables have positive impacts on the number of lane changes. Under the same conditions, exit ramp type IV has the largest number of lane changes, and type I has the smallest number of lane changes.

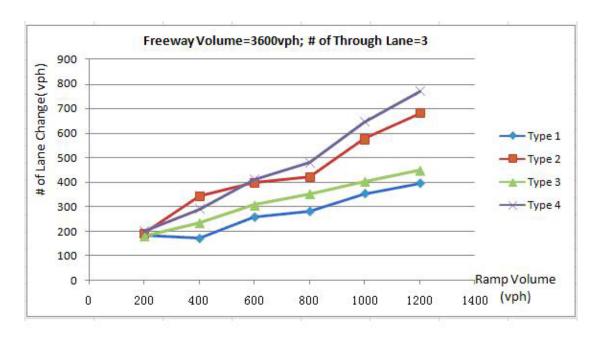



Figure 5.1 Number of lane changes vs. ramp volume

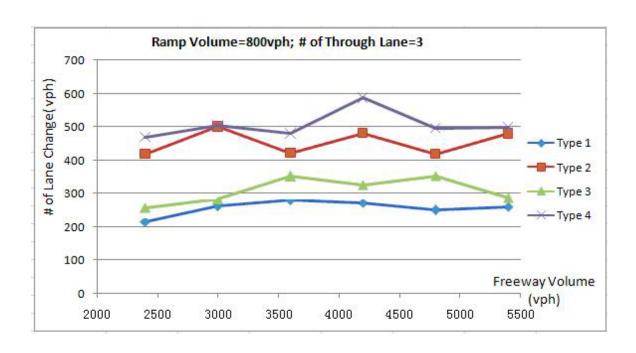



Figure 5.2 Number of lane changes vs. freeway volume

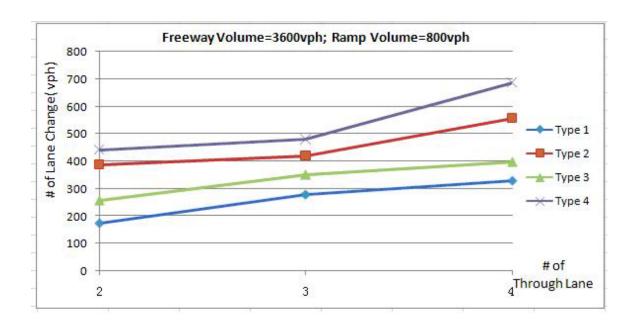



Figure 5.3 Number of lane changes vs. number of through lanes

All simulation conditions were used to calculate coefficients in the prediction model.

Results are shown in Table 5.4. Column B is the coefficients for all independent variables.

$$Y = a_0 + a_1 X_{12} + a_2 X_{13} + a_3 X_{14} + a_4 X_2 + a_5 X_3 + a_6 X_4$$
 Eq. (4)

Where,

Y — number of lane changes

 $X_{12}$  — ramp type II

 $X_{13}$  — ramp type III

 $X_{14}$  — ramp type IV

 $X_2$  — freeway volume (vph)

 $X_3$  — exit rate (%)

 $X_4$  — number of thru lanes on freeway

**Table 5.4 Coefficient values** 

|                                                     | Estimate   | Std. Error | t value | Pr(> t )    |  |
|-----------------------------------------------------|------------|------------|---------|-------------|--|
| (Intercept)                                         | -2.062e+03 | 5.322e+01  | -38.748 | < 2e-16 *** |  |
| x12                                                 | 4.556e+02  | 3.009e+01  | 15.139  | < 2e-16 *** |  |
| x13                                                 | 1.594e+02  | 3.009e+01  | 5.297   | 1.3e-07 *** |  |
| x14                                                 | 6.095e+02  | 3.009e+01  | 20.252  | < 2e-16 *** |  |
| x2                                                  | 8.465e-01  | 1.845e-02  | 45.873  | < 2e-16 *** |  |
| x3                                                  | 3.309e+01  | 1.246e+00  | 26.552  | < 2e-16 *** |  |
| x4                                                  | 3.280e+02  | 1.303e+01  | 25.172  | < 2e-16 *** |  |
| Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1 |            |            |         |             |  |
| Adjusted R-squared: 0.7327                          |            |            |         |             |  |

## 5.1.2 Average Speed

Comparisons of average speed among the four exit ramp types are shown from Figure 5.4 to Figure 5.6. In Figure 5.4, the exit rate is controlled by 20 percent, the number of thru lanes on the freeway is 3, and the average speed decreases with volume increasing. In Figure 5.5, the ramp exit rate changes from 5 percent to 30 percent, the

number of thru lanes on the freeway is 3, and the average speed decreases with exit volume increasing. In Figure 5.6, the freeway volume is 800 vph, the ramp volume is 800 vph, and number of lane changes decreases with the number of thru lanes increasing. Thus, two independent variables have positive impacts on the number of lane changes, while the number of thru lanes has negative impacts. Under the same conditions, exit ramp type I has the largest average speed, and type IV has the smallest average speed.

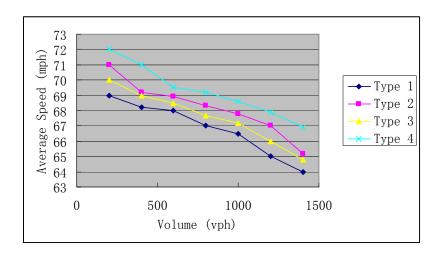



Figure 5.4 Average speed vs. volume

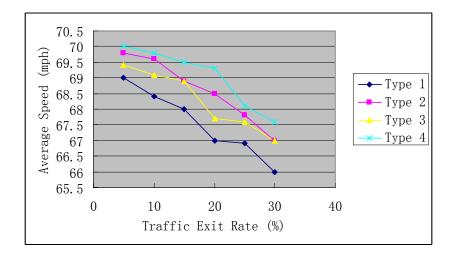



Figure 5.5 Average speed vs. traffic exit rate

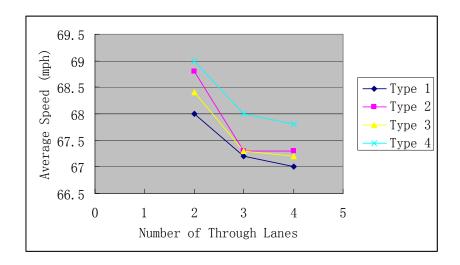



Figure 5.6 Average speed vs. number of through lanes

All simulation conditions were used to calculate coefficients in the prediction model.

Results are shown in Table 5.5. Column B is the coefficients for all independent variables.

$$Y = a_0 + a_1 X_{12} + a_2 X_{13} + a_3 X_{14} + a_4 X_2 + a_5 X_3 + a_6 X_4$$
 Eq. (5)

Where,

Y — average speed

 $X_{12}$  — ramp type II

X<sub>13</sub> — ramp type III

 $X_{14}$  — ramp type IV

 $X_2$  — freeway volume (vph)

 $X_3$  — exit rate (%)

 $X_4$  — number of thru lanes on freeway

**Table 5.5 Coefficient values** 

|                                                     | Estimate                   | Std. Error | t value | Pr(> t )    |  |  |  |
|-----------------------------------------------------|----------------------------|------------|---------|-------------|--|--|--|
| (Intercept)                                         | 72.1402683                 | 0.3062959  | 235.5   | < 2e-16 *** |  |  |  |
| x12                                                 | 1.5794083                  | 0.1732124  | 9.1     | < 2e-16 *** |  |  |  |
| x13                                                 | 1.2224556                  | 0.1732124  | 7.1     | 2.6e-12 *** |  |  |  |
| x14                                                 | 1.8364556                  | 0.1732124  | 10.602  | < 2e-16 *** |  |  |  |
| x2                                                  | -0.0026333                 | 0.0001062  | -24.795 | < 2e-16 *** |  |  |  |
| x3                                                  | -0.0646289                 | 0.0071717  | -9.012  | < 2e-16 *** |  |  |  |
| x4                                                  | -0.4882510                 | 0.0750032  | -6.5    | 1.0e-10 *** |  |  |  |
| Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1 |                            |            |         |             |  |  |  |
| Adjusted R-squa                                     | Adjusted R-squared: 0.7653 |            |         |             |  |  |  |

# 5.1.3 Delay Time

The model for delay time is similar to the number of lane changes and average speed.

All simulation conditions were used to calculate coefficients in the prediction model.

Results are shown in Table 5.6. Column B is the coefficients for all independent variables.

$$Y = a_0 + a_1 X_{12} + a_2 X_{13} + a_3 X_{14} + a_4 X_2 + a_5 X_3 + a_6 X_4$$
 Eq. (6)

Where,

Y — delay time (s)

 $X_{12}$  — ramp type II

X<sub>13</sub> — ramp type III

 $X_{14}$  — ramp type IV

 $X_2$  — freeway volume (vph)

 $X_3$  — exit rate (%)

 $X_4$  — number of thru lanes on freeway

**Table 5.6 Coefficient values** 

|                                                     | Estimate   | Std. Error | t value | Pr(> t )    |  |
|-----------------------------------------------------|------------|------------|---------|-------------|--|
| (Intercept)                                         | -7.482e-01 | 1.335e-01  | -5.606  | 2.4e-08 *** |  |
| x12                                                 | -4.273e-01 | 7.547e-02  | -5.662  | 1.8e-08 *** |  |
| x13                                                 | -3.844e-01 | 7.547e-02  | -5.093  | 3.9e-07 *** |  |
| x14                                                 | -5.274e-01 | 7.547e-02  | -6.989  | 4.2e-12 *** |  |
| x2                                                  | 6.937e-04  | 4.627e-05  | 14.991  | < 2e-16 *** |  |
| x3                                                  | 2.048e-02  | 3.125e-03  | 6.553   | 7.8e-11 *** |  |
| x4                                                  | 1.619e-01  | 3.268e-02  | 4.955   | 8.0e-07 *** |  |
| Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1 |            |            |         |             |  |
| Adjusted R-squared: 0.6929                          |            |            |         |             |  |

# 5.1.4 Length Design for Deceleration Lane of Ramp Type I and IV

For the length design of the deceleration lane, ramp type I, the speed S.D. decreases quickly when length increases, especially when the volume is high. Figures 5.7 to Figure 5.12 show the speed S.D. vs. length under different volume levels.

However, for ramp type IV, this kind of change is not obvious. The speed S.D. decreases slowly when length increases, which means the deceleration lane does not have to be very long to lower speed S.D. It is also suggested that the length should be long if possible.

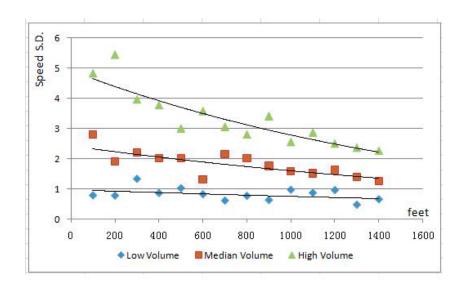



Figure 5.7 Speed S.D. vs. length (type I, 2 through lanes)

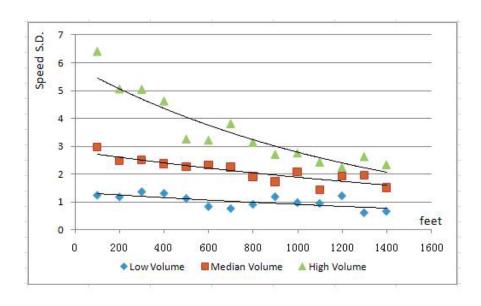



Figure 5.8 Speed S.D. vs. length (type I, 3 through lanes)

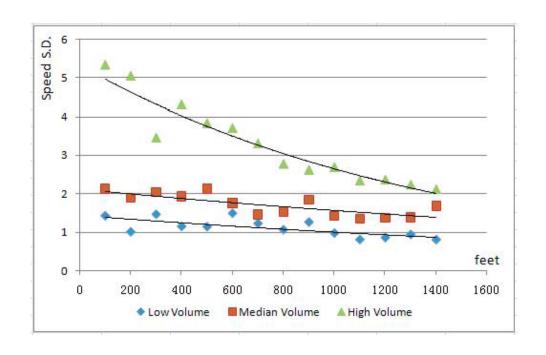



Figure 5.9 Speed S.D. vs. length (type I, 4 through lanes)

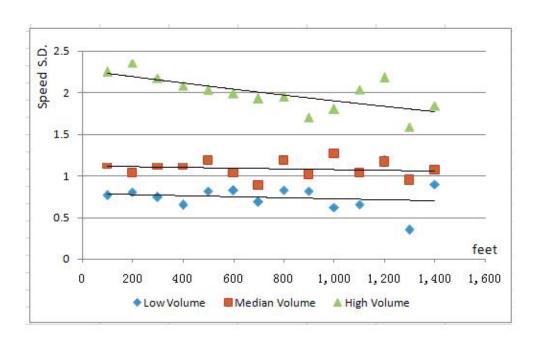



Figure 5.10 Speed S.D. vs. length (type IV, 2 through lanes)

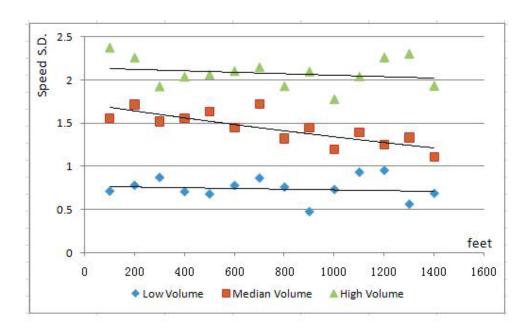



Figure 5.11 Speed S.D. vs. length (type IV, 3 through lanes)

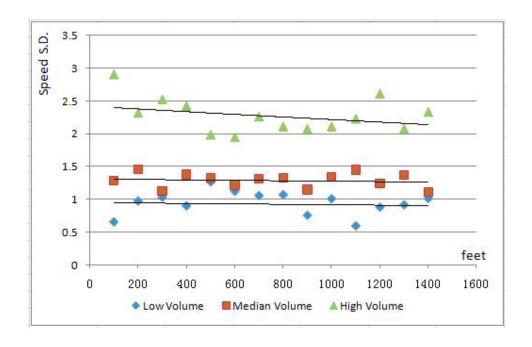



Figure 5.12 Speed S.D. vs. length (type IV, 4 through lanes)

The speed S.D. should be controlled under certain levels to research good operational performance. Simulation results are shown in Table 5.7, and simulation results are larger than the AASHTO standard.

**Table 5.7 Minimum deceleration lane** 

| Operating | AASHTO   | Simulation | Simulation |
|-----------|----------|------------|------------|
| speed     | Standard | Type I     | Type IV    |
| (mph)     | (ft)     | (ft)       | (ft)       |
| 55        | 480      | 750        | 550        |
| 60        | 530      | 800        | 600        |
| 65        | 570      | 850        | 650        |
| 70        | 615      | 875        | 700        |
| 75        | 660      | 900        | 725        |

### 5.1.5 Selection of Optimal Exit Ramp Type

The exponential models show different impacts of four types of ramps on the number of lane changes, speed SD, and control delay. The larger value of coefficient ai means more contribution of independent variable to dependent variable. Based on Tables 5.4, 5, and 6, a comparison table (Table 5.8) was developed to show the difference. It is clear that ramp type I has the least number of lane changes out of the four types, and type IV has the largest. For speed SD, the situation is the opposite: ramp type IV is the best, and type I the worst. For control delay, ramp type II is the best, and type I the worst.

Table 5.8 Comparisons of exit ramp types

| MOE                         | Best → Worst                                                              |
|-----------------------------|---------------------------------------------------------------------------|
| Number of Lane Changes      | Type I $\rightarrow$ Type III $\rightarrow$ Type IV                       |
| Standard Deviation of Speed | Type IV $\rightarrow$ Type II $\rightarrow$ Type III $\rightarrow$ Type I |
| Control Delay per Vehicle   | Type II $\rightarrow$ Type IV $\rightarrow$ Type III $\rightarrow$ Type I |

Because the priority ranking of ramp type for each parameter is totally different, it is hard to say which is the optimal type of exit ramp; the importance of the three parameters is different under different conditions. For example, if expected exiting traffic for a ramp is very high, then the number of lane changes should be paid more attention in order to reduce crashes caused by decreasing lane changes. Or, in another case, if operational performance is required to strengthen, then control delay should be the first consideration. Thus, different weights can be added to the three parameters due to different design situations or requirements.

Taking ramp type I as the reference, coefficients of all other types can be compared based on the exponential model, as shown in Table 5.9. Take the second line of assigned weights (0.5 for lane change, 0.3 for speed SD, and 0.2 for control delay) as an example: the total value is 1 for ramp type I, 1.214 for type II, 1.057 for type III, and 1.276 for type IV. Therefore, ramp type I has the smallest value, and it is the optimal one under this condition.

The comprehensive evaluation model includes three MOEs (number of lane changes, average speed, and delay time per vehicle). Different weights for each MOE are assigned for different design conditions and considerations. Finally, the optimal one can be found. It is flexible for any necessary changes. Different MOEs can be added or deleted if available. Also, weights for each MOE can be changed.

Table 5.9 Selection of optimal exit ramp

| Ramp<br>Type | MOE                | Relative a <sub>i</sub> | Assigned Weights |     |     |     |     |     |     |
|--------------|--------------------|-------------------------|------------------|-----|-----|-----|-----|-----|-----|
|              | Lane Change        | 1                       | 0.33             | 0.5 | 0.5 | 0.3 | 0.3 | 0.2 | 0.2 |
| I            | Delay Time         | 1                       | 0.33             | 0.3 | 0.2 | 0.5 | 0.2 | 0.5 | 0.3 |
|              | Ave. Speed         | -1                      | 0.33             | 0.2 | 0.3 | 0.2 | 0.5 | 0.3 | 0.5 |
|              | Total Value for I  |                         | 0.33             | 0.6 | 0.4 | 0.6 | 0   | 0.4 | 0   |
|              | Lane Change        | 1.19                    | 0.33             | 0.5 | 0.5 | 0.3 | 0.3 | 0.2 | 0.2 |
| II           | Delay Time         | 0.94                    | 0.33             | 0.3 | 0.2 | 0.5 | 0.2 | 0.5 | 0.3 |
|              | Ave. Speed         | -1.08                   | 0.33             | 0.2 | 0.3 | 0.2 | 0.5 | 0.3 | 0.5 |
|              | Total Value for II |                         |                  | 0.6 | 0.4 | 0.6 | 0.0 | 0.3 | -0. |
|              |                    |                         | 0.35             | 6   | 6   | 1   | 1   | 8   | 02  |
|              | Lane Change        | 1.08                    | 0.33             | 0.5 | 0.5 | 0.3 | 0.3 | 0.2 | 0.2 |
| III          | Delay Time         | 0.98                    | 0.33             | 0.3 | 0.2 | 0.5 | 0.2 | 0.5 | 0.3 |
|              | Ave. Speed         | -1.05                   | 0.33             | 0.2 | 0.3 | 0.2 | 0.5 | 0.3 | 0.5 |
|              | Total Value for II | I                       |                  | 0.6 | 0.4 | 0.6 | -0. | 0.3 | -0. |
|              |                    |                         | 0.34             | 2   | 2   | 1   | 01  | 9   | 02  |
|              | Lane Change        | 1.24                    | 0.33             | 0.5 | 0.5 | 0.3 | 0.3 | 0.2 | 0.2 |
| IV           | Delay Time         | 0.91                    | 0.33             | 0.3 | 0.2 | 0.5 | 0.2 | 0.5 | 0.3 |
|              | Ave. Speed         | -1.12                   | 0.33             | 0.2 | 0.3 | 0.2 | 0.5 | 0.3 | 0.5 |
|              | Total Value for IV | I                       |                  | 0.6 | 0.4 |     | -0. | 0.3 | -0. |
|              |                    |                         | 0.34             | 7   | 7   | 0.6 | 01  | 7   | 04  |
|              | Optimal Type       |                         | I                | I   | I   | I   | III | IV  | IV  |
|              |                    |                         |                  |     |     | IV  | IV  |     |     |

## **5.2 Exit Ramp Section**

# 5.2.1 Ramp Length Design

Simulations for different conditions suggest different minimum ramp lengths, as shown in table 5.10. Table 5.11 compares field data to standard, and a red number shows field data that are shorter than standard. This table indicates that a short ramp length is an important problem in practical situations. Deceleration length is based on an average speed of 40 mph, and the distance is 200 ft for 50 mph and 225 ft for 60 mph.

Table 5.10 Minimum ramp length

| No.<br>of<br>lanes<br>on<br>ramp | No. of lanes on cross road | No. of<br>left<br>turn<br>bay | Queuing<br>length<br>(ft) | Deceleration length (ft) | Perception reaction length (ft) | Volume<br>after<br>queue<br>(ft) | Total<br>length<br>(ft) |
|----------------------------------|----------------------------|-------------------------------|---------------------------|--------------------------|---------------------------------|----------------------------------|-------------------------|
| 1                                | 2                          | 0                             | 600                       | 175                      | 600                             | 330                              | 1705                    |
| 1                                | 4                          | 0                             | 850                       | 175                      | 600                             | 415                              | 2040                    |
| 1                                | 6                          | 0                             | 950                       | 175                      | 600                             | 445                              | 2170                    |
| 1                                | 2                          | 1                             | 550                       | 175                      | 600                             | 315                              | 1640                    |
| 1                                | 4                          | 1                             | 750                       | 175                      | 600                             | 380                              | 1905                    |
| 1                                | 6                          | 1                             | 900                       | 175                      | 600                             | 430                              | 2105                    |
| 2                                | 4                          | 0                             | 700                       | 175                      | 600                             | 365                              | 1840                    |
| 2                                | 6                          | 0                             | 875                       | 175                      | 600                             | 420                              | 2070                    |
| 2                                | 4                          | 1                             | 600                       | 175                      | 600                             | 330                              | 1705                    |
| 2                                | 6                          | 1                             | 800                       | 175                      | 600                             | 400                              | 1975                    |

Note: Queuing length is based on simulation for observing sites during peak hour.

# 5.2.2 Ramp Configuration

Speed S.D. is selected for evaluating ramp configuration.  $D_1$  and  $D_2$  are changed in a range to see changes of speed S.D. Taking speed S.D. as reference 1, at  $D_1$  it is less than 400ft, and  $D_2$  it is at a level of 1600 ft. All other values are compared with 1. Based on this table, the longer the distance of  $D_1$  and  $D_2$  would cause the smaller the value of speed S.D., and the better performance.

Table 5.11 Observed ramp length

|     |                                | Number of    | Ramp   |
|-----|--------------------------------|--------------|--------|
| No. | Exit Ramp                      | ThruLanes    | length |
|     |                                | on crossroad | (ft)   |
| 1   | I-75 at State Road 56 - SB     | 4            | 2575   |
| 2   | I-4 at County Road 579 - WB    | 2            | 1500   |
| 3   | I-275 at Hillsborough Ave - NB | 6            | 910    |
| 4   | I-275 at Hillsborough Ave - SB | 6            | 1100   |
| 5   | I-75 at I-4 - SB               | 6            | 4300   |
| 6   | I-275 at 4th St - SB           | 4            | 3950   |
| 7   | I-4 at Universal Blvd - SB     | 6            | 2665   |
| 8   | I-75 at CR 581 (BBD) - SB      | 6            | 2530   |
| 9   | I-75 at Fowler Ave - SB        | 6            | 1750   |
| 10  | I-4 at Lee Road -NB            | 6            | 1770   |
| 11  | I-4 at Lee Road - SB           | 6            | 1840   |
| 12  | I-4 at SR 434 - SB             | 6            | 1000   |
| 13  | I-75 at State Road 56 - NB     | 6            | 2400   |
| 14  | I-4 at County Road 579 - EB    | 4            | 1630   |
| 15  | I-4 at Universal Blvd - NB     | 4            | 1630   |
| 16  | I-4 at Conroy Road - NB        | 6            | 3800   |
| 17  | I-4 at Conroy Road - SB        | 6            | 2415   |
| 18  | I-4 at Altamonte Dr - NB       | 8            | 1050   |
| 19  | I-4 at SR 434 - NB             | 4            | 1170   |
| 20  | I-4 at Altamonte Dr - SB       | 8            | 800    |
| 21  | I-75 at CR 581 (BBD) - NB      | 6            | 2600   |
| 22  | I-75 at I-4 - NB               | 6            | 3900   |
| 23  | I-275 at Ulmerton Rd - SB      | 4            | 3800   |
| 24  | I-75 at Fowler Ave- NB         | 6            | 3800   |

Table 5.12 Relative speed S.D.

| $D_1$ | Type A: <=400 | Type B: 600 | Type B: 800 | Type C: >=1000 |
|-------|---------------|-------------|-------------|----------------|
| 1600  | 1             | 0.954       | 0.910       | 0.865          |
| 1800  | 0.987         | 0.941       | 0.904       | 0.853          |
| 2000  | 0.975         | 0.939       | 0.879       | 0.821          |

#### **5.3 Crossroad Section**

All simulation scenarios show results of minimum distance. The design minimum distance is tested under heavy traffic conditions, as shown in Tables 5.13 and 5.14.

Table 5.13 Minimum distance between ramp terminal and downstream intersection

| Distance (ft)                | Number of Lanes on Cross Road |         |               |       |               |       |  |
|------------------------------|-------------------------------|---------|---------------|-------|---------------|-------|--|
| Distance (1t)                | 2                             |         | 4             |       | 6             |       |  |
| Weaving-moving across thru   | 800                           |         | 1200          |       | 1600          |       |  |
| lanes                        |                               |         |               |       |               |       |  |
| Transition-moving into lanes | 150 U                         | 200 R   | 150 U         | 200 R | 150 U         | 200 R |  |
| Perception-reaction distance | 100 U                         | 150 R   | 100 U         | 150 R | 100 U         | 150 R |  |
| Storage                      | 550 (20                       | 00-300) | 700 (200-300) |       | 750 (200-300) |       |  |
| Distance to centerline of    | 40(                           | (50)    | 50(50)        |       | 60(50)        |       |  |
| intersection                 |                               |         |               |       |               |       |  |
| Total distance               | 1640                          | 1740    | 2200          | 2300  | 2660          | 2760  |  |

Note: U = Urban Area, R = Rural Area.

Table 5.14 Minimum distance between ramp terminal and upstream intersection

| Distance (ft)                | Number of Lanes on Cross Road |       |                      |       |         |       |  |
|------------------------------|-------------------------------|-------|----------------------|-------|---------|-------|--|
| Distance (it)                | 2                             |       | 4                    |       | 6       |       |  |
| Transition-moving into lanes | 150 U                         | 200 R | 150 U                | 200 R | 150 U   | 200 R |  |
| Perception-reaction distance | 100 U                         | 150 R | 100 U                | 150 R | 100 U   | 150 R |  |
| Storage                      | 650 (200-300) 750 (20         |       | 00-300) 850 (200-300 |       | 00-300) |       |  |
| Distance to centerline of    | 40(:                          | 50)   | 50(50)               |       | 60(50)  |       |  |
| intersection                 |                               |       |                      |       |         |       |  |
| Total Distance               | 940                           | 1040  | 1050                 | 1150  | 1160    | 1260  |  |

Note: U = Urban Area, R = Rural Area.

#### **Chapter 6 Conclusions**

This chapter represents simulation results and mathematical models to evaluate the operational performance of exit ramps. Comparisons are made to determine the optimal one. Ramp length and minimum distance on crossroads are also presented. Detailed conclusions are as follows:

- Numerical evaluations are provided for different ramp types on number of lane changes, average speed, and delay time. Three prediction models are presented.
- Minimum ramp length standard is presented based on analysis of speed S.D.
   by simulations. This standard is longer than the traditional one.
- A method for selecting the optimal exit ramp type is indicated. Different
  weights can be added due to different purposes. Optimal is not a constant, but
  type III and IV are suggested when traffic volume is heavy.
- Minimum exit ramp length is presented, which includes queuing length,
   movement distance, etc. This distance helps regulate future design.
- Simulation for ramp configuration shows that the longer distance between freeway and ramp terminal, and the longer distance between crossroad and exit ramp nose, the smaller the speed S.D. and the better the ramp operational performance.

 Minimum distance between ramp terminal and downstream/upstream intersections was calculated. This distance standard lowers speed variance and conflict and assures traffic mobility.

#### References

- Aasman, J. Modelling Driver Behaviour in Soar. Leidschendam, The Netherlands: KPN Research, 1995.
- Abdel-Aty, Mohamed, Jeremy Dilmore, and Albinder Dhindsa. Evaluation of Variable Speed Limits for Real-time Freeway Safety Improvement. *Accident Analysis and Prevention*, 38, 2006, pp. 335-345.
- Abdel-Aty, Mohamed, and Yile Huang. Exploratory Spatial Analysis of Expressway Ramps and its Effect on Route Choice. *Journal of Transportation Engineering*, 2004.
- Ahmed, K. I., M. E. Ben-Akiva, H. N. Koutsopoulos, and R. G. Mishalani. Models of Freeway Lane Changing and Gap Acceptance Behavior. In J.-B. Lesort (Ed.), *Transportation and Traffic Theory*. New York: Elsevier Science Publishing, 1996.
- American Association of State Highway and Transportation Officials. A Policy on Geometric Design of Highways and Streets. Washington, D.C., 2004.
- Bared, Joe, Alvin Powell, Evangelos Kaisar, and Ramanujan Jagannathan. Crash Comparison of Single Point and Tight Diamond Interchanges Sources. *Journal of Transportation Engineering*, May 2005, pp. 379-381.
- Bared, Joe, Greg L. Giering, and Davey L. Warren. Safety of Evaluation of Acceleration and Deceleration Lane Lengths. *ITE Journal*, May 1999, pp. 50-54.
- Batenhorst, Ralph A., and Jef G. Gerken. Operational Analysis of Terminating Freeway Auxiliary Lanes with One-Lane and Two-Lane Exit Ramps: A Case Study. *Mid-Continent Transportation Symposium Proceedings*, 2000.
- Bauer, K. M., and D.W. Harwood. Statistical Models of Accidents on Interchange Ramps and Speed-Change Lanes. FHWA-RD-97-106, FHWA, U.S. Department of Transportation, 1998.
- Bernhardt, Kristen L. Sanford, and Mark R. Virkler. Improving the Identification, Analysis and Correction of High-Crash Locations. *ITE Journal*, 2002.

- Brown, J. A. Signing for Dual Exit Lanes. Letter Report. Florida Department of Transportation, Tallahassee, October 17, 1991.
- Cassidy, Michael J., Shadi B. Anani, and John M. Haigwood. Study of Freeway Traffic Near an Off-Ramp. California PATH Working Paper, UCB-ITS-PWP-2000-10, 2000.
- Cassidy, M. J., S. B. Anani, and J. M. Haigwood. Study of Freeway Traffic Near an Off-Ramp. *Transportation Research Part A: Policy and Practice*, 36(6), 2002.
- Cirillo, J.A., S. K. Dietz, and R. L. Beatty. Analysis and Modeling of Relationships between Accidents and the Geometric and Traffic Characteristics of the Interstate System. Federal Highway Administration, August 1969.
- Coursey, John D. Highway Safety Improvement Program. U.S. DOT & FHWA-TS-81-218.
- Fengxiang Qiao, Xiaoyue Liu, and Lei Yu. Using Driving Simulator for Advance Placement of Guide Sign Design for Exits along Highways. Department of Transportation Studies, Texas Southern University.
- Finnegan, P., and P. Green. The Time to Change Lanes: A Literature Review. MI: University of Michigan Transportation Research Institute.
- Fitzpatrick, K., and L. Nowlin. One-Sided Weaving Operations on One-Way Frontage Roads. *Transportation Research Record*, 1555, 1996.
- Fitzpatrick, K., R. L. Nowlin, and A. H. Parham. Procedures to Determine Frontage Road Level of Service and Ramp Spacing. Texas Transportation Institute, Texas Department of Transportation, Federal Highway Administration, 1996.
- Ford, G. L., M. D. Fontaine, and H. G. Hawkins. Evaluation of Texas Department of Transportation's Existing Freeway Guide Signing. Research Project 4170, Technical Memorandum 1. Texas Transportation Institute, College Station, 2002.
- Freeway Management and Operations Handbook. U.S. Department of Transportation, Federal Highway Administration, 2004.
- Freeway Signing Handbook. Texas Department of Transportation, 2008.
- Garber, N., and M. Fontaine. Guidelines for Preliminary Selection of the Optimum Interchange Type for a Specific Location. VTRC-99-r15.

- Garcia, Alfredo, and Mario A. Romero. Experimental Observation of Vehicle Evolution on a Deceleration Lane with Different Lengths. Transportation Research Board, Washington D.C., 2006.
- Highway Safety Improvement Program Manual. Texas Department of Transportation, 2008.
- Hunter, Michael, Randy Machemehl, and Alexei Tsyganov. An Operational Evaluation of Freeway Ramp Design. *Transportation Research Record*, 1751, 2001, pp. 90-100.
- Hunter, Michael, Randy Machemehl, and Alexei Tsyganov. Reevaluation of Ramp Design Speed Criteria: Summary Report. Center for Transportation Research, The University of Texas at Austin, Texas Department of Transportation Research and Technology Transfer Section/Construction Division, No. 1732-S, 2002.
- Jacobson, M., L. Nowlin, and R. H. Henk. Development of Access Spacing Guidelines for Nonfreeway Weaving Environments. *Transportation Research Record*, 1665, 1999.
- Janson, Bruce N., Wael Awad, and Juan Robles. Truck Accidents at Freeway Ramps: Data Analysis and High-Risk Site Identification. *Journal of Transportation and Statistics*, January 1998, pp. 75-92.
- Keller, Joanne, Mohamed Abdel-Aty, and Patrick A. Brady. Type of Collision and Crash Data Evaluation at Signalized Intersection. *ITE Journal*, 2006.
- Khorashadi, Ahmed. Effect of Ramp Type and Geometry on Accidents. FHWA/CA/TE-98/13, California Department of Transportation, 1998.
- Kwon, E., R. Lau, and J. Aswegan. Maximum Possible Weaving Volume for Effective Operations of Ramp-Weave Areas: Online Estimation. *Transportation Research Record*, 1727, 2000.
- Leisch, J. E. Signing for Two-Lane Exit Ramps. *ITE Journal*, April 1990, pp. 41–42.
- Leisch, Joel P. Freeway and Interchange Geometric Design Handbook. Institute of Transportation Engineers, 2006.
- Li, Jibing, and Deo Chimba. A Supplement to Advance Guide Sign Placement Distance Guideline in MUTCD. *Transportation Research Board 84th Annual Meeting Compendium of Papers*, CD-ROM, Transportation Research Board of the National Academies, Washington, D.C., 2005.

- Li, Jibing, and Deo Chimba. A Supplement to Advance Guide Sign Placement Guidelines in MUTCD. *Transportation Research Board 85th Annual Meeting Compendium of Papers*, CD-ROM, Transportation Research Board of the National Academies, Washington, D.C., 2006.
- Lord, Dominique, and James A. Bonneson. Calibration of Predictive Models for Estimating Safety of Ramp Design Configurations. *Transportation Research Record* 1908, Washington, D.C., 2005, pp. 88-95.
- Manual on Uniform Traffic Control Devices for Streets and Highways, Federal Highway Administration, 2003. Including Revision 1, November 2004, and Revision 2, December 2007.
- Maze, Tom H., Garrett Burchett, Thomas M. Welch, and Neal R. Hawkins. Safety Performance of Two-Way Stop-Controlled Expressway Intersection. *ITE Journal*, 2006.
- McCartt, A. T., V. S. Northrup, and R. A. Retting. Types and Characteristics of Ramp-Related Motor Vehicle Crashes on Urban Interstate Roadways in Northern Virginia. *Journal of Safety Research*, 35(1), 2004.
- McCartt, Anne T., Veronika Shabanova Northrup, and Richard A. Retting. Types and Characteristics of Ramp-Related Motor Vehicle Crashes On Urban Interstate Roadways In Northern Virginia. *Journal of Safety Research*, 35, 2004, pp. 107–114.
- Munoz, Juan Carlos, and Carlos Daganzo. Experimental Characterization of Multi-lane Freeway Traffic Upstream of an Off-ramp Bottleneck. California PATH Working Paper, UCB-ITS-PWP-2000-13, 2000.
- Neter, John, Michael H. Kutner, Christopher J. Nachtsheim, and William Wasserman. *Applied Linear Regression Models*, 3<sup>rd</sup> Edition, 2002.
- Newell, G. F. Delays Caused By A Queue At A Freeway Exit Ramp. *Transportation Research Part B: Methodological*, 33(5), 1999.
- Ng, Joanne C.W., and Tarek Sayed. Effect of Geometric Design Consistency on Road Safety. *Canadian Journal of Civil Engineering*, 31(2), 2004, pp. 218-27.
- Nowlin, R. L., and K. Fitzpatrick. Two-Sided Weaving Analysis on One-Way Frontage Roads. Texas Transportation Institute, Texas Department of Transportation, Federal Highway Administration, 1996.

- Pline, James. *Traffic Engineering Handbook 5th Edition*. Institute of Transportation Engineers, October 1, 1999.
- Rakha, Hesham, and Yihua Zhang. Analytical Procedures for Estimating Capacity of Freeway Weaving, Merge, and Diverge Section, *Journal of Transportation Engineering*, 2006.
- Ramp Management and Control Handbook. U.S. Department of Transportation, Federal Highway Administration, 2006.
- Resende, P., and R. F. Benekohal. Effects of Roadway Section Length on Accident Modeling. *Challenges, Innovations and Opportunities: Proceedings on Traffic Congestion and Traffic Safety in the 21st Century*, New York, 1997, pp. 403-409.
- Retting, Richard A., Allan F. Williams, David F. Preusser, and Helen B. Weinstein, (1995), Classifying Urban Crashes for Countermeasure Development. *Accident Analysis and Prevention*, 27(3), 1995, pp. 283-294.
- Salvucci, Dario D., and Andrew Liu. The Time Course of A Lane Change: Driver Control and Eye-movement Behavior. *Transportation Research Part F*, March 6, 2002.
- Sarhan, Mohamed, Yasser Hassan, and Abd El Halim. Design of Freeway Speed Change Lanes: Safety-Explicit Approach. Transportation Research Board, Washington, D.C., 2006.
- Shaw, Leonard, and William R. McShane. Optimal Ramp Control for Incident Response, Research and Training in Urban Transportation. Urban Mass Transportation Administration of the Department of Transportation, Britain, 1972.
- Skowronek, D. A. An Investigation of Potential Urban Freeway Guide Sign Problem Locations in Houston, Texas. M.S. thesis, Texas A&M University, College Station, 1990.
- Somers, R. A., H. G. Hawkins, D. Jasek, and T. Urbanik II. An Evaluation of Guide Signing at Right Multilane Freeway Exits with Optional Lanes.Report FHWA/TX-97/1467-5. Texas Transportation Institute, College Station, 1996.
- Texas Transportation Institute. Sign Crew Field Book: A Guide to Proper Location and Installation of Signs and Other Devices. Texas Department of Transportation, TX.

- Transportation Research Board. *Highway Capacity Manual*. National Research Council, Washington, D.C., 2000.
- Upchurch, J. Development of a Guide Sign Design for Two-Lane Exits with an Option Lane. Institute of Transportation Engineers, 2004.
- Upchurch, J., D. L. Fisher, and B. Waraich. Guide Signing for Two-Lane Exits with an Option Lane: A Human Factors Evaluation. *Transportation Research Board 84th Annual Meeting Compendium of Papers*, CD-ROM, Transportation Research Board of the National Academies, Washington, D.C., 2005.
- Wang, Z. Placement Design of Ramp Control Signals. *Transportation Research Board 86nd Annual Meeting Compendium of Papers*, CD-ROM, Transportation Research Board of the National Academies, Washington, D.C., 2007.
- Zwahlen, H. T., A. Russ, J. M. Roth, and T. Schnell. Evaluation of the Effectiveness of Ground Mounted Diagrammatic Advance Guide Signs for Freeway Entrance Ramps. *Transportation Research Board 86nd Annual Meeting Compendium of Papers*, CD-ROM, Transportation Research Board of the National Academies, Washington, D.C., 2003.

#### **About the Author**

Mr. Linjun Lu has a solid background in transportation engineering. He got his bachelor's and master's degrees from the Department of Transportation Engineering, Southeast University (Nanjing China), and he will complete his Ph.D. in the Spring of 2011 at the Department of Civil & Environmental Engineering at the University of South Florida in Tampa.

He has over six years of experience in research and application projects in transportation engineering. His research and work areas mainly include safety and operation analysis, traffic management and control, simulations, traffic planning, etc. Specifically, he is experienced in safety and operational analysis. He is also familiar with field observation, crash and conflict analysis, driving behavior analysis, modeling, and countermeasures and evaluations. Furthermore, he can operate Safety Analyst (software) as an assistant for safety design and is skilled in VISSIM, CORSIM, SYNHCRO, HCS, AUTOCAD, and SPSS.