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ABSTRACT 

 

 Soil-aquifer treatment (SAT) has been proposed as a method for reusing 

treated municipal wastewater. SAT is characterized by alternating cycles of 

aerobic and anaerobic conditions in the subsurface, in response to alternating 

cycles of flooding and drainage of a surface impoundment.  It is not yet known 

how these alternating redox conditions affect the removal of potentially harmful 

endocrine-disrupting compounds (EDCs) from treated effluent. 

 The overall objective of my doctoral research is to determine the fate of 

EDCs in alternating aerobic/anoxic/anaerobic conditions under simulated SAT 

conditions. To assess the fate of EDCs in simulated SAT conditions, I first had to 

develop appropriate analytical methods. Prior researchers have developed 

sophisticated analytical methods for measuring low concentrations of EDCs in 

water.  However, it is not inherently clear which of these methods is preferable 

for analysis of any particular set of environmental samples.  Therefore, in order to 

compare the analytical methods, solid-phase extraction (SPE) and solid-phase 

micro-extraction (SPME) were compared for the analysis of two EDCs, 

bisphenol-A (BPA) and 17β-estradiol (E2), in water samples of water.  Following 

extraction by SPE or SPME, the target EDCs were derivatized (silylated) and 

then analyzed by gas chromatography (GC) with mass spectrometry (MS).  Also, 



 x 

the performance of two candidate derivatization agents, N,O-bis-(trimethylsiyl) 

trifluoroacetamide (BSTFA), N-methyl-N-(trimethylsilyl) trifluoroacetamide 

(MSTFA), was compared.  SPME is more convenient, is less labor-intensive, and 

allows for analysis of smaller sample volumes, but it is expensive because fibers 

need frequent replacement, and the range of linearity was limited.  SPE has a 

lower material cost and allows for the analysis of a broader range of 

concentrations, but it is more labor-intensive and large sample volumes may be 

required.  Therefore, the selection of which method is “best” depends upon the 

constraints (time, money, sample volume, acceptable detection limit) associated 

with any particular set of samples.  The two derivatization agents performed 

equally when used in conjunction with SPE, but MSFTA yielded higher peak 

areas for headspace (on-fiber) derivatization during SPME. 

 To investigate how alternating redox conditions of SAT may affect the 

removal of harmful EDCs, a simulated SAT systems were constructed in 4-L 

reactors with 500 g of sediment (collected from a wetland) and 3 L of treated 

effluent from a municipal wastewater treatment plant; then BPA and E2 were 

spiked into reactors, two common EDCs often found in treated wastewater.  

Redox conditions in the mesocosms were controlled by switching the air between 

air (to induce aerobic conditions) and nitrogen (to induce anaerobic conditions); 

the length of the anoxic/anaerobic cycles was varied to determine how this 

affects biodegradation of the target EDCs.  The mesocosm environment was 

supplemented with either nitrate or sulfate to serve as potential electron 

acceptors during the anoxic/anaerobic cycles.  In addition to monitoring the 



 xi 

concentrations of the target EDCs in the mesocosms over time, I also monitored 

the concentration of dissolved oxygen in the water; the redox potential; the 

concentrations of nitrate, nitrite, and sulfate; and the concentration of bacteria in 

the water (estimated via flow cytometry).   

 BPA was biodegraded only during aerobic cycles, but E2 was 

biodegraded during both aerobic and anoxic/anaerobic cycles.  Whenever the 

redox conditions in the system were switched, there was a temporary drop in the 

bacterial population, followed by a recovery of the population.  When redox 

conditions were switched from anoxic/anaerobic to aerobic, biodegradation of the 

target EDCs commenced after a lag period during which no biodegradation was 

observed.  The lag time for biodegradation in the aerobic cycle was longer when 

the anaerobic cycles were longer in duration.  More biodegradation of E2 was 

observed under anoxic conditions than under anaerobic conditions. 

 SPE and SPME methods that included derivatization agent are useful 

method for detection and quantification of EDCs in water.  I concluded that SAT 

is a viable technology to produce potable water from treated WWTP effluent, but 

the optimal length of flooding and drying cycles of SAT required removing the 

targeted contaminants during infiltration through the vadose zone. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background and Motivation 

 Rapidly increasing demand for domestic water supply causes a limitation 

of fresh water, and the availability of potable water is a critical issue for many 

cities, especially in arid regions.  As current water supplies begin to diminish and 

water costs increase, a sustainable supply of clean water that is reliable and 

inexpensive is required for both people and ecosystems. Water reuse 

technologies may be required to provide a sustainable supply of potable water, 

and soil-aquifer treatment (SAT) is a promising and successful technology for 

indirect reuse of tertiary treated municipal wastewater (Idelovitch and Michail 

1984, Rice and Bouwer 1984).  After SAT, effluents from wastewater treatment 

plants (WWTP) can be reused as potential indirect water sources.  During SAT, 

treated wastewater is ponded in an unlined surface impoundment and is allowed 

to infiltrate through the vadose zone, thereby recharging a groundwater aquifer 

(Figure 1.1).  The condition of vadose zone was changed between aerobic and 

anaerobic condition depend on the recharging process.   Because impurities are 

removed during transport through the soil and the aquifer, low-quality wastewater 

can be purified to high-quality source water (Idelovitch and Michail 1984, Rice 
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and Bouwer 1984).  Advantages of SAT are that it is cost effective and it can 

store treated wastewater in an aquifer for future use (Nema et al. 2001).  

However, if SAT is to be used as a means of potable reuse of wastewater, it 

must be determined whether harmful chemical and biological contaminants do 

not persist after treatment.   

 

 

 

 

 

 

Figure 1.1. Soil-aquifer treatment (SAT) for indirect potable water re-use. 
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 One of the most important challenges for water reuse is the presence of 

trace organic chemicals, especially endocrine-disrupting compounds (EDCs), in 

reclaimed water.  EDCs present in the wastewater may threaten our potable 

supply if they are not sufficiently removed during SAT (Montgomery-Brown et al. 

2003, Quanrud et al. 2004, Mansell et al. 2004a, Mansell et al. 2004b).  The 

presence and fate of EDCs in the environment are now topics of worldwide 

concern.  EDCs are environmental contaminants that interfere with the function 

of the endocrine system in wildlife and humans and can potentially cause severe 

health effects in humans (Colborn et al. 1993, Routledge et al. 1998, Iguchi et al. 

2001, Silva et al. 2002).  EDCs are commonly found in wastewater and may 

persist during SAT if operating conditions are not engineered properly (Quanrud 

et al. 2004, Mansell and Drewes 2004a).  Classes of EDCs include phenols (e.g., 

bisphenol-A, bisphenol-F), hormone steroids (e.g., 17β-estradiol, estrone, estriol, 

testosterone, 17α-ethinyl estradiol, mestranol, diethylstilbestrol), alkylphenols and 

their metabolites (e.g., nonylphenol, octylphenol, nonylphenol ethoxylate, 

octylphenol ethoxylate, alkylphenoxy carboxylate, halogenated alkylphenols), 

and phytoestrogens (Nollet 2007).  EDCs can be introduced into the environment 

in the effluent of WWTP (Halling-Sorensen et al. 1998, Daughton et al. 1999, 

Kolpin et al. 2002, Campbell et al. 2006). 

 Currently, the details of how SAT operates are not well known.  

Researchers have observed the improvements in water quality during SAT, but 

with little understanding of the mechanisms by which those improvements occur.   

Also, in the past, most researchers evaluated the performance and potential of 
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SAT based on the persistence of non-specific water quality indicators, such as 

dissolved organic carbon removal (Drewes et al. 2006, Rauch-Williams et al. 

2006).  The problem with this approach is that, even if the vast majority of 

dissolved organic carbon is removed during SAT, the small fraction that persists 

may be in the form of chemicals that are harmful even at low concentrations, 

such as EDCs. 

 The conditions of the vadose zone below the SAT pond typically changes 

between saturated and unsaturated conditions during alternating cycles of 

flooding and drying.  This can cause alternating aerobic and anaerobic conditions 

of SAT, and can lead to cycles of varying oxidation and reduction conditions in 

the vadose zone (Amy et al. 1993, Greskowiak et al. 2005).  Limited information 

is available in the literature about the degradation of EDCs under these types of 

conditions.  Therefore, the success of SAT for potable reuse depends on 

improved understanding of biodegradation of EDCs during alternating 

aerobic/anoxic/anaerobic conditions. 

 

1.2. Research Objectives 

 The long-term objective of this research is to contribute making SAT a 

viable technology for producing potable water from reclaimed water.  The overall 

objective of my doctoral research is to determine the fate of EDCs under 

alternating aerobic/anoxic/anaerobic conditions using a simulated SAT systems.  

The central hypothesis is that biodegradation of EDCs during SAT exhibits a 

alternating cyclic behavior linked to the aerobic and anoxic/anaerobic cycles.  
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The rationale for this project is that determination of the fate of EDCs under 

alternating aerobic/anoxic/anaerobic conditions during SAT will allow for 

optimization of the removal mechanism and maximum efficiency of EDC removal 

during SAT.  Therefore it will help to validate SAT as a technology for potable 

supply. 

 The overall objective of this project will be accomplished through 

achieving the following three specific goals. 

 

1.2.1. Develop a Reliable Method for Detecting and Quantifying Target EDCs in 

Water Samples. 

 The working hypothesis of this goal is that target EDCs can be detected 

and quantified by solid phase extraction (SPE) and solid phase micro extraction 

(SPME) with derivatization, followed by gas chromatography and mass 

spectrometry (GC/MS). 

 

1.2.2. Measure the Lag Time and the Biodegradation for Target EDCs under 

Alternating Aerobic/Anoxic Conditions. 

 The working hypothesis of this goal is that alternating between aerobic 

and anoxic conditions leads to a diauxic lag in the bacteria responsible for 

biodegradation of target EDCs.  Therefore, longer anoxic cycles will lead to 

longer lag time and slower degradation of EDCs during the aerobic cycle under 

alternating aerobic/anoxic conditions.  
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1.2.3. Quantify the Biodegradation of EDCs under Different Anaerobic Terminal 

Electron Accepting Processes (TEAPs).   

 The working hypothesis of this goal is that different electron-accepting 

processes (e.g. reduction of nitrate or sulfate) lead to different biodegradation 

rates of EDCs during anaerobic cycles under alternating aerobic/anaerobic 

conditions.  Furthermore, different electron-accepting processes during the 

anaerobic cycle will lead to different lag time duration and different rates of 

biodegradation of EDCs in the aerobic cycle during alternating aerobic/anaerobic 

conditions. 

 

 Accomplishment of these three research objectives will elucidate the 

linkage between biodegradation and alternating aerobic/anoxic/anaerobic 

conditions during SAT.  This, in turn, will represent significant progress towards 

achievement of my long-term goals.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. Soil-Aquifer Treatment (SAT) 

 The subsurface environment can be used as a natural filtration treatment 

system, which is called soil-aquifer treatment (SAT).  In SAT, treated effluent (or 

partially treated effluent) from a WWTP infiltrates through the vadose zone, also 

called the unsaturated zone, and reaches the groundwater (Rice et al. 1984, 

Idelovitch et al. 1984).  SAT works as a natural bio filter that can remove odorous 

compounds, suspended solids, biodegradable materials, and endocrine-

disrupting compounds from the wastewater (Routledge et al. 1998, Fox 2002, 

Asano et al. 2002, Mansell et al. 2004a, Mansell et al. 2004b, Conroy et al. 2005).  

In addition, heavy metals, nitrogen, and phosphorus can be removed by SAT 

systems (Lin et al. 2004, Cha et al. 2006).  

 

2.1.1. Soil Materials for SAT 

 A soil with a high infiltration rate is required for SAT systems.  If the 

infiltration rate is too low, then excessive basin areas are needed and high 

evaporation losses occur from the basins. In order to provide a high infiltration 

rate and good quality effluent after SAT, fine sand and/or loamy sand are 
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required for SAT systems.  Fine suspended material in the effluent can cause the 

formation of a clogging layer on the bottom of the basin, and this causes a 

decrease in infiltration rate into the vadose zone.  

 

2.1.2. Alternating Cycles of SAT 

 Because SAT is operated by alternating cycles of flooding and drying, the 

vadose zone below the wastewater pond typically undergoes cyclic changes 

between saturated and unsaturated conditions (Figure 2.1) and this causes 

alternating aerobic and anaerobic conditions (Greskowiak et al. 2005).  In Step 1, 

saturated conditions beneath the pond are started and established, and the 

infiltration rate increases.  During Step 2, saturated conditions prevail at the 

begging. Unsaturated conditions start at the end of Step 2. During Step 3, a 

clogging layer occurs and the groundwater table declines.  The infiltration rate 

decreased rapidly.  Infiltration did not occurred during step 4 and unsaturation 

condition prevailed.  These changes result from the repeated formation of a 

clogging layer at the pond bottom.  The formation of clogging layer causes a 

decrease in infiltration rate and air can penetrate into the unsaturated region.  

During the alternating cycles, the system experiences cycles of different 

oxidation and reduction conditions and reactions occurring in the soil 

(Greskowiak et al. 2005, Amy et al. 1993).  Therefore we have to consider and 

investigate EDCs biodegradation processes under alternating aerobic and 

anaerobic conditions. 
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Figure 2.1. Infiltration process in SAT (adapted from Greskowiak et al. 2005) 

 

 

 

2.1.3. Nitrification and Denitrification during SAT 

 Prior to SAT typically swage contains organic nitrogen at levels of 20 to 

100 mg/L (as N) (Idelovitch et al. 2003, Miller et al. 2006).  Nitrogen may be 

present as ammonium, nitrate, and/or organic nitrogen (Idelovitch et al. 2003, 

Miller et al. 2006).  Nitrogen can be removed in a SAT system by controlling the 

hydraulic loading rates and flooding and drying periods of the basins (Leach and 

Enfield 1983).  Flooding and drying periods cause aerobic and anaerobic 

conditions in the soil, which in turn may promote nitrification or denitrification 

(Greskowiak et al. 2005).  Certain anaeorobic bacteria present in the soil can 

reduce nitrate to free nitrogen gas. In one study, approximately 75% of the 
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nitrogen was removed by a SAT system (Idelovitch et al. 2003).  Organic carbon 

is required for denitrifying bacteria as an energy source under anaerobic 

conditions (Starr et al. 2005).  Currently, it is not known how denitrification in SAT 

depends upon the flooding and drying cycles. 

 

2.2. Endocrine-Disrupting Compounds 

 Endocrine-disrupting compounds (EDCs) are a relatively new topic of 

worldwide concern.  EDCs are environmental contaminants that interfere with the 

function of the endocrine system in wildlife and humans and can potentially 

cause severe health effects in humans (Colborn et al. 1993, Routledge et al. 

1998, Iguchi et al. 2001, Silva et al. 2002).  Steroid hormones detected in the 

environment can cause endocrine disrupting effects in aquatic wildlife (Jobling et 

al. 1998, Panter et al. 1998).  Because EDCs exist ubiquitously in the 

environment but their concentrations are typically very low, it is difficult to 

understand their characteristics, sources, and effects on wildlife and humans 

(Colborn et al. 1993, Kuch et al. 2001, Braun et al. 2003). 

 

2.2.1. Occurrence of EDCs 

 One reason why EDCs are so common in the environment is that 

treatment systems are not optimaized for removing EDCs from wastewater.  

EDCs have been detected in wastewater treatment plant effluents, which can act 

as a source of EDCs to soil and surface water (Desbrow et al. 1998, Daughton et 

al. 1999, Kolpin et al. 2002, Campbell et al. 2006, Halling-Sorensen et al. 1998).  
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BPA is chemical that is widely used in the manufacture of phenolic resins and is 

released to environment (air, water, land, subsurface).  Rudel et al. (1998) 

measured BPA levels of 0.1 - 1.7 μg/L in untreated septic system effluent and 

wastewater and 20 – 44 ng/L in drinking water wells.  17β-estradiol (E2), 17α-

ethinylestradiol (EE2), and estrone (E1) were detected in WWTP effluent at 

maximum concentrations of 12, 7.5, and 47 ng/L, respectively, in the Netherlands 

(Belfroid et al. 1999).  E2, EE2, and E1 were detected in surface water at 

maximum concentrations of 93, 831, and 112 ng/L, respectively, in the U.S.A. 

(Kolpin et al. 2002).  E2 has also been detected in ground water (Peterson et al. 

2000).  I focused on two particular EDCs, bisphenol-A (BPA) and 17β-estradiol 

(E2), because they are commonly found in wastewater effluents and receiving 

waters (Staples et al. 1998, Kolpin et al. 2002).  BPA is a widely used monomer 

and an important compound, which is used in epoxy and polycarbonate plastic 

and flame retardants (Desvrow et al. 1998).  E2 is a steroid estrogen hormone 

involved in high estrogenic activities (Desvrow et al. 1998, Hansen et al. 1998).  

EDCs have been detected, even though at trace concentration, in surface waters 

and river sediments around the world (Petrovic et al. 2004).  Estradiol has been 

detected in the aquatic environment, mainly coming from municipal WWTP, 

agricultural production, and livestock farming (Ternes et al. 1999, Hanselman et 

al. 2003).  The main sources of EDCs in nature originate from industrial, 

municipal, domestic, and animal farming activities.  Negative potential effects of 

EDCs to animal and humans have caused an interest in removing EDCs from the 

environment.  
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2.2.2. Physical-Chemical Properties of EDCs 

 The chemicals that form the basis of this study are bisphenol-A (BPA) and 

E2.  The physical-chemical properties of these EDCs are listed in Table 2.1 and 

molecular structures are shown in Figure 2.2. BPA (2,2-bis(4-

hydroxyphenyl)propane; CAS Registry No. 80-05-7) is used most widely in the 

manufacture of phenolic resins (Staples et al. 1998).  BPA has an acute toxicity 

to aquatic organisms in the range of 1 – 10 mg/L (Alexander et al. 1988).  Under 

ambient conditions, BPA is a solid as crystals, prills, or flakes.  Natural and 

synthetic estrogens, E1, E2 and EE2, have the strongest estrogenic effects.  Due 

to a large amount of the estrogenicity in the municipal sewage treatment plant 

effluent, estrogens are often present in the aquatic environment (Anderson et al. 

2003).  EE2 and E2 are structurally similar and EE2 is used in oral 

contraceptives (Arcand-Hoy et al. 1998).  E2 is commonly metabolized to E1 

(Lee et al. 2003).  EDCs generated in the manufacturing process are released 

during processing, handling, and transportation. BPA level is 0.1–1.7 mg/L in 

untreated septic- and wastewater and 20–44 ng/L in 2 of 28 drinking water wells 

(Rudel et al. 1998).  EDCs can be naturally attenuated by subsurface of 

contaminated sites.  Natural attenuation which low cost remediation is comprised 

by subsurface geology, hydrology, and microbial ecology.  Intrinsic 

bioremediation in the subsurface is a potential remediation method of EDCs 

(Röling et al. 2002). 



 13 

 

Table 2.1. Physical-chemical properties of EDCs 

Compound name Bisphenol-A 17β-Estradiol Estrone 

M.W. 
(g/mol) 

228.3 272.4 270.4 

Water solubility 

(mg/L at 20˚C) 

120-300 [1] 3.9-13 
5.4-13.3 [2] 

0.8-12.4 [2] 
6-13 [1] 

LogKow 
2.50-6.60 [1] 3.10-4.01 [1] 

3.8-4.0 [2] 
2.45-3.34 [1] 
3.1-4.4 [2] 

pKa 9.6-11.3 [1] 10.71 [1] 10.3-10.8 [1] 

Vapor pressure (mm Hg) 5.3 X 10-8 [3] 3 X 10-8 [3] 3 X 10-8 [3] 

Henry‟s law constant 

(atm·m3/mole at 25˚C) 

1 X 10-11 [4] 3.64 X 10-11 [4] 3.8 X 10-10 [4] 

Formula C15H16O2 C18H24O2 C18H22O2 

 

[1] Campbell et al. 2006.  

[2] Khanal et al. 2006.  
[3] Sarmah et al. 2008.  

[4] Mes et al. 2005.  
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(a) bisphenol-A (BPA) 

 

(b) 17β-estradiol (E2) 

 

(c) estrone (E1) 

Figure 2.2. Molecular structure of (a) bisphenol-A, (b) 17β-estradiol, and (c) 

estrone. 
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2.3. Fate of EDCs in the Environment 

 In these days, amount of man-made chemicals (EDCs, pharmaceutical 

materials, and personal care products) are increasing and it makes increasing 

the suspected EDCs amount which is discharged through WWTPs.  The major 

EDC transformation processes in nature are photodegradation, sorption, and 

biodegradation. These processes are considered below. 

 

2.3.1. Photodegradation 

 Recent research demonstrates that photodegradation is an important 

removal mechanism of EDCs from surface waters (Watanabe et al. 2003, Zhang 

et al. 2007). Photodegradation without biodegradation and sorption was the 

dominant removal mechanism in some batch reactor studies (Feng et al. 2005, 

Tsai et al. 2009).  Phototransformation efficiency of EDCs depends on pH, 

concentration of Fe(III), and concentration of EDCs.  The degradation efficiency 

of E1 varied from 14.2% to 98.4% under photo-Fenton system (Feng et al. 2005).  

The water matrix can affect the photodegradation of EDCs but the effects of 

natural organic matter (NOM) and dissolved organic carbon (DOC) on EDCs 

photodegradation are still under investigation (Neamtu et al. 2006).  

Photodegradation in SAT systems is restricted by lack of sunlight (Crump 2001).  
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2.3.2. Sorption 

 Sorption is defined as the uptake of a solute from a liquid phase to a solid 

phase. Sorption has an important function in the aquatic environment in the fate 

of EDCs.  The transport of EDCs is retarded by sorption to soils and sediments 

(Lee et al. 2003, Yu et al. 2004, Casey et al. 2004, Das et al. 2004, Kim et al, 

2007).  Sorption can be the main removal mechanism of EDCs in the soil 

environment (Mansell et al, 2004a, b).  There is little information about the 

sorptive nature of EDCs under natural conditions.  Various environmental 

conditions, humic acid, black carbon, polyaromatic hydrocarbons and herbicides 

in soil can all affect the sorption coefficient and rates (Stevenson 1994, Schmidt 

et al. 2000, Xiao et al. 2004, Yu et al. 2006).  More research is required to 

determine the effects of different functional groups and environmental conditions 

(i.e. ionic strength, surface complexation) on sorption of EDCs. 

 

2.3.3. Microbial Degradation of EDCs 

 Release of EDCs to nature over a long period has enabled certain 

bacteria to evolve pathways allowing them to use these compounds as an energy 

source.  Steroid hormones can be used as the sole source of carbon and energy 

by certain bacteria.  Under aerobic conditions, steroids can be degraded by 

aerobic bacteria, and a few degradation processes have been described 

(Kieslich 1985, Fujii et al. 2002, Fujii et al. 2003, Yoshimoto et al. 2004).  During 

the aerobic biodegradation of steroids, molecular oxygen is used to form 

hydroxylated products from oxygenase-catalyzed reactions.  During 
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denitrification in wastewater treatment or in sediments of lakes, anoxic conditions 

prevail, and oxygen has limited access to microbial activity.  Less is known about 

biodegradation of steroids without molecular oxygen (Hylemon et al. 1999, 

Kniemeyer et al. 1999, Probian et al. 2003).  The enterohepatic circulation in 

mammals by intestinal anaerobic bacteria is the most known transformation of 

steroids in anoxic habitats (Groh 1993).  Under denitrifying condition, the 

mineralization of estradiol occurred, but more research is required to understand 

the responsible bacteria and oxidation products of estrone (Andersen et al. 2003, 

Joss et al. 2004).  EDCs can be removed by microbial transformation.  Organic 

compounds can be oxidized by microbes and the carbon was used as an energy 

source via direct metabolism.  Alternatively, compounds can be transformed by 

microbial cometabolism (Benotti and Snyder. 2000).  An oxidation and a 

corresponding accumulation of estradiol to estrone were reported and an 

accumulation of estrogens was suggested in anoxic environments (Czajka et al. 

2006).  BPA is generally rapidly biodegraded in surface waters, WWTPs, and 

biological waste treatment systems at greater thant 96% efficiency (Staples et al. 

1988) under aerobic conditions. 

 

2.3.4. Biotransformation and Biodegradation Pathways for BPA and E2 

 Figure 2.3 shows the pathway for bacterial metabolism of BPA and Figure 

2.4 shows the pathway of E2.  Many bacteria, fungi, and algae that can degrade 

BPA and E2 have been identified from soils, river waters, and WWTP (Lobos et 

al. 1992, Spivack et al. 1994, Ike et al. 2000, Kang et al. 2002a,b, Kang et al.  
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Figure 2.3.  Proposed degradation pathway of BPA biodegradation by strain MV1 
(adapted from Spivack et al. 1994).  
A: 1,2-bis(4-hydroxyphenyl)-2-propanol,  
B: 4.4´-dihydroxy-α-methylstilbene,  
C: 4-hydroxybenzaldehyde,  
D: 4-hydroxyacetophenone,  
E: 4-hydroxybenzoic acid,  
F: 2,2-bis(4-hydroxyphenyl)-1-propanol,  
G: 2,2-bis(4-hydroxyphenyl)propanoic acid,  
H: 2,3-bis(4-hydroxyphenyl)-1,2-propanediol,  
I: 4-hydroxyphenacyl 
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Figure 2.4.  Proposed degradation pathway of estrone (adapted from Lee and Liu 
2002).  
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2004, Sasaki et al. 2005).  But Figure 2.3 and 2.4 are proposed degradation 

pathway of EDCs because the fate and degradation pathway of EDCs in 

environment are not yet fully understand.  BPA metabolized routes by a gram-

negative bacteria strain MV1 was found (Lobes et al. 1992, Spivack et al. 1994).  

MV1 is isolated from WWTP and MV1 uses BPA as the sole carbon and energy 

source.  Figure 2.3 shows the major and minor pathways of BPA metabolism. 

Two primary metabolites (4-hydroxyacetephenone and 4-hydroxybenzoic acid) 

are produced from the major pathway and two primary metabolites (2,2-bis(4-

hydrozyphenyl)-1-propanol and 2, 3- bis(4-hydroxyphenyl)-1, 2-propanediol) are 

produced from the minor pathway.  Biotransformed BPA metabolites have no 

toxic and estrogenic effects of BPA: only 4-hydroxyacetephenone has a slight 

estrogenic activity compared with BPA (Ike et al. 2002).  Figure 2.4 shows the 

pathways of E2 metabolism. Degradation of estradiol appeared to initiate at C-17 

of ring D in E2, leading to the formation of a keto group at the same position 

(conversion of E2 to E1). In addition, E1 converse to X1 which was tentatively 

identified as a lactone. E2 biodegradation was not yet clear. 

 Tables 2.2 and 2.3 show the microorganisms capable of biodegrading or 

metabolizing BPA and E2.  BPA was removed over 90% in a wastewater 

treatment process (Staples et al. 1998, Fürhacker et al. 2000) but BPA remaining 

in the effluent can be a source in the aquatic environment.  A Pseudomonas 

species and a Pseudomonas putida strain showed high BPA biodegradability 

(about 90%).  Moreover, Streptomyces sp. strain has high BPA biodegradability 

(>90%) (Kang et al. 2004).  These bacteria which have high BPA biodegradability 
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may be useful for the bioremediation of the aquatic environment. E2, E1, estriol 

(E3), and EE2 were degraded by strains of Rhodococcus (Yoshimoto et al. 2004) 

and many microorganisms degrade the E2. 

 

Table 2.2. Microorganisms capable of biodegrading or metabolizing BPA 

 

Microorganisms Strains References 
   

Bacteria MV1 Lobos et al. 1992, Spivack et al. 
1994 

 Psudomonas paucimobilis FJ-4 Ike et al. 2000 
 Pseudomonas sp. Kang et al. 2002a 
 Pseudomonas putida Kang et al. 2002a 
 Caragana chamlagu Chai et al. 2003 
 Streptomyces sp. Kang et al. 2004 
 Bacillus pumilus 2CK Yamanaka et al. 2005 
 Bacillus pumilus 21DK Yamanaka et al. 2005 
 Bacillus pumilus 22DK Yamanaka et al. 2005 
 Sphingomonas sp. AO1 Sasaki et al. 2005 
 Achromobacter xylosoxidans B-16 Zhang et al. 2007 
   
Fungi Pleurotus ostreatus O-48 Hirano et al. 2000 
 Phanerochaete chrysosporium ME-446 Tsutsumi et al. 2001 
 Trametes versicolor IFO-7043 Tsutsumi et al. 2001 
 Trametes villosa Fukuda et al. 2001, Uchida et 

al. 2001 
 Phanerochaete chrysosporum ME-446 Suzuki et al. 2003 
 Trametes versicolor IFO-6482 Suzuki et al. 2003 
 Aspergillus fumigatus Yim et al. 2003 
 Fusarium sporotrichioides NFRI-1012 Chai et al. 2005 
 Fusarium moniliforme 2-2 Chai et al. 2005 
 Aspergillus terreus MT-13 Chai et al. 2005 
 Emericella nidulans MT-98 Chai et al. 2005 
 Stereum hirsutum Lee et al. 2005 
 Heterobasidium insulare Lee et al. 2005 
 Irpex lacteus Shin et al. 2007 
 Trametes versicolor Diano et al. 2007 
 Irpex lacteus 617/93 Cajthaml et al. 2009 
 Pleurotus ostereatus 3004 CCBAS278 Cajthaml et al. 2009 
 Phlebia tremellosa Kum et al. 2009 
   
Planktons Chlorella fusca var. vacuolata Hirooka et al. 2003 
 Nammochloropsis sp. Ishihara et al. 2003 
 Chlorella gracilis Ishihara et al. 2003 
 Stephanodiscus hantzschii Li et al. 2009 
 Pavlova sp. Shimoda et al. 2009 
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Table 2.3.Microorganisms capable of biodegrading or metabolizing E2  

 

Microorganisms Strains References 
   

Bacteria Novosphingobium Fujii et al. 2002 
 Nitrosomonas europaea Shi et al. 2004 
 Rhodococcus zopfii Y50158 Yoshimoto et al. 2004 
 Rhodococcus equi Y50155 Yoshimoto et al. 2004 
 Rhodococcus equi Y50156 Yoshimoto et al. 2004 
 Rhodococcus equi Y50157 Yoshimoto et al. 2004 
 KC1 Yu et al. 2007 
 KC2 Yu et al. 2007 
 KC3 Yu et al. 2007 
 KC4 Yu et al. 2007 
 KC5 Yu et al. 2007 
 KC6 Yu et al. 2007 
 KC7 Yu et al. 2007 
 KC8 Yu et al. 2007 
 KC9 Yu et al. 2007 
 KC10 Yu et al. 2007 
 KC11 Yu et al. 2007 
 KC12 Yu et al. 2007 
 KC13 Yu et al. 2007 
 KC14 Yu et al. 2007 
 Baculus pumilus 1 Pauwels et al. 2008 
 Baculus pumilus 2 Pauwels et al. 2008 
 Baculus pumilus 3 Pauwels et al. 2008 
 Baculus pumilus 7 Pauwels et al. 2008 
 Baculus pumilus 8 Pauwels et al. 2008 
 Baculus pumilus 10 Pauwels et al. 2008 
   
Planktons Chlorella vulgaris Lai et al. 2002 
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2.4. Oxidation and Reduction 

 The removal of electrons from a compound (electron donor) is oxidation 

and the addition of electrons to a compound (electron acceptor) is reduction 

(DeLaune and Reddy, 2005).  Transfer of electrons from one compound to 

another is a coupled reaction.  During oxidation a compound is oxidized and its 

oxidation number is increased.  During reduction a compound is reduced and its 

oxidation number is decreased.  The redox potential of an environment is a 

measure of electrochemical potential or electron availability within soil, water, 

and marine systems.  Wetland soils, usually anaerobic environments, are limited 

by electron acceptor and have a plentiful electron donor (DeLaune and Reddy, 

2005).  NH4
+, Fe2+, Mn2+, S2-, CH4, and H2 are reducing inorganic compounds.  

Aerobic condition soils are usually limited by electron donors and have an ample 

electron acceptor.  O2, NO3
-, MnO2, FeOOH, SO4

2-, and HCO3
- are oxidized 

inorganic compounds.  Table 2.4 shows the redox potential range in soil and 

sediment, showing the microbial metabolism process and electon acceptor 

(DeLaune and Reddy, 2005).  Redox potential is an identification method for 

recognizing whether an area is functioning as aerobic or anaerobic of the 

biogeochemical reactions in surface environments.  The major removal 

mechanisms of EDCs are oxidation processes (Liu et al. 2009). 
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Table 2.4. Redox potential range in soil and sediment, showing the microbial 
metabolism process and electron acceptor. 

 
Sediment condition Anaerobic Aerobic 

Redox condition Highly reduced       Reduced      Moderately reduced              Oxidized 

Electron acceptor CO2 SO4
2-

 Fe
3+

 Mn
4+

    NO3
-
 O2 

Microbial metabolism Anaerobic Facultative Aerobic 

Oxidation reduction 

potential (mV) 

-300   -200   -100     0   +100   +200   +300   +400   +500   +600   +700  

Adopted from DeLaune and Reddy (2005) 

 

 

2.5. Removal of EDCs during SAT 

 Multiple bench-scale studies and laboratory-scale soil column experiments 

have been performed to verify which mechanisms dominate the removal of the 

EDCs during SAT.  Mansell et al. (2004a and 2004b) examined the fate and 

transport of EDCs during SAT and concluded that the dominating removal 

mechanism of EDCs during SAT is adsorption to soil.  Additional removal 

mechanism by microorganism in redox condition (aerobic vs. anoxic) is required.  

For the purposes of this dissertation, I use the terms aerobic, anoxic and 

anaerobic according to the following definitions from Metcalf and Eddy (1991):  

“Aerobic processes are biological treatment processes that occur in the presence 

of oxygen; anaerobic processes are biological treatment processes that occur in 

the absence of oxygen; anoxic denitrification is the process by which nitrate 

nitrogen is converted biologically to nitrogen gas in the absence of oxygen”  

There are many studies on the fate of EDCs under aerobic and anaerobic 
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conditions. In this section, aerobic/anoxic/anaerobic biological degradation of 

EDCs will be described.  

 

2.5.1. Aerobic Metabolism 

 There is a difference of BPA biodegradability between aerobic conditions 

and anaerobic conditions.  BPA is able to degrade under aerobic condition 

(Staples et al. 1998, Ike et al. 2006, Zhao et al. 2008).  BPA has been easily 

biodegraded under aerobic conditions in river water and spiked samples (>90%), 

but BPA degradation is difficult to find under anaerobic conditions (<10% for 10 

days) (Kang and Kondo, 2002a).  Ying et al. (2008) reported that BPA, E2, and 

EE2 were all degraded under aerobic conditions by groundwater microorganisms 

present in the aquifer. 

 

2.5.2. Anoxic Denitrification 

 The EDCs removal in sludge from WWTP with nitrification/denitrification 

was investigated (Joss et al. 2004), and EDCs can be degraded under anoxic 

denitrification and EDCs were largely biodegraded in the denitrifying tanks in a 

municipal activated sludge system (Andersen et al. 2003).  

 

2.5.3. Anaerobic Metabolism  

 Degradation of E2 under anaerobic condition was observed but 

degradation of BPA under anaerobic condition was not observed (Ike et al. 2006, 

Kang and Kondo 2002a, Ying and Kookana 2003).  BPA was not biodegraded in 
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anaerobic slurry even after 3 months of incubation (Ronen et al. 2000).  These 

results show that anaerobic bacteria have little capability for BPA biodegradation.  

Co-metabolic transformations of estrogens by the nitrifying bacterium 

Nitrosomonas europaea have been described (Veder et al. 2000, Shi et al. 2004), 

but the exact explanation of co-metabolism by microbial process is not yet fully 

understood (Wackett 1996).  Under anaerobic conditions, removal of EDCs (E2, 

EE2, BPA, and 4-n-Nonylphenol (NP)) removal was attributed to the sulfate-, 

nitrate-, and iron-reducing conditions within the tested media; however, the 

overall degradation of the compounds was influenced by abiotic factors (Sarmah 

et al. 2008, Czajka and Londry 2006, Ying et al. 2008).  Sulfate reducing 

bioremediation might not be applicable in every situation.  Microbial activity and 

the intrinsic biodegradability are depending on the bioavailability of substrates, 

electron acceptors and nutrients, which are related to environmental conditions 

(Röling et al. 2002). 

 

2.6. Diauxic Lag 

 During bioremediation, the microbes sometimes require a length of time to 

acclimate themselves to the environment (Crane and Novak, 2001).  The length 

of acclimating time required for microbial inoculants in environment is the lag 

time of micro organism (Crane and Novak, 2001).  When the enzyme is stored 

with a reversible inhibitor present, lag time is required for complete dissociation 

of the inhibitor.  Bacteria generate their own enzymes, and there was lag time 

between enzyme application and results.  Lag phase are also observed when 
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temperatures are not steady state condition (Copeland. 2000).  Klečka et al. 

2001 found that rapid biodegradation of BPA occurred after lag phases ranging 

from 2 to 4d.  In biological systems, the amount of biomass and its growth are 

limited by the substrate in environment. Under physiological stress, endogenous 

processes effect to the amount of biomass (Lopez et al. 2006).  During lag 

phase, the microbes are physiologically active and are adapting to the 

physiological stress, but the amount of microbes remains constant, and at the 

end of the lag phase, the bacteria start to divide (Madigan and Martinko. 2006).  

Diauxic lag is a lag period of little or no growth that occurs when bacteria switch 

electron donors or when they switch terminal electron acceptors during exposure 

to alternating aerobic and anoxic conditions (Monod 1949, Kodama et al. 1969).   

In some systems, the amount of dissolved oxygen in the oxic phase and the 

presence of nitrate during the oxic phase affect the length of diauxic lag (Liu et al. 

1998, Gouw et al. 2001, Lisbon et al. 2002).  The long aerobic condition cause 

the long diauxic lag after oxygen is removed, and the occurrence and length of 

diauxic lag is affected by the presence of nitrate and oxygen during the aerobic 

condition (Liu et al. 1998, Gouw et al. 2001, Lisbon et al. 2002).  During 

alternating aerobic/anaerobic condition, diauxic lag might be an important factor 

to biodegradation of EDCs because the SAT leads to the cycles of different 

oxidation and reduction conditions.  Therefore, investigation is required about the 

phenomenon of diauxic lag under alternating aerobic/anaerobic condition during 

SAT. 
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CHAPTER 3 

DEVELOP A RELIABLE METHOD FOR DETECTING AND 

QUANTIFYING TARGET EDCS IN WATER SAMPLES 

 

3.1. Introduction 

 The global concern over trace levels of EDCs in the environment has led 

to the development of sensitive analytical methods for detecting and quantifying 

EDCs in environmental samples (river water, ground water, and effluent from 

wastewater treatment plants) (Belfroid et al. 1999, Carpinteiro et al. 2004, 

Basheer et al. 2005).  Due to the diversity of chemical properties of EDCs and 

the complexity of environmental matrices, quantification of EDCs in 

environmental samples at low concentrations is challenging.  Numerous 

analytical methods have been developed to measure EDCs, most often by gas 

chromatography with mass spectrometry (GC/MS) or by liquid chromatography 

with mass spectrometry (LC/MS) (Castillo et al. 1997, Rudel et al. 1998, Mol et al. 

2000, Huang et al. 2001, Ternes et al. 2001, Vanderford et al. 2003, Chang et al. 

2005).  Because the concentrations of EDCs are often very low (μg/L or lower) in 

environmental samples, suitable methods for extracting and concentrating target 

EDCs must be applied prior to analysis by GC/MS.  Extraction methods include 

solid-phase extraction (SPE), liquid-liquid extraction (LLE), and solid-phase 
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micro-extraction (SPME) (Arthur et al. 1992, Louch et al. 1992, Daughton et al. 

1999, Mol et al. 2000, Kuch et al. 2001, Ternes et al. 2001, Lopez-Blanco et al. 

2002, Braun et al. 2003).  Furthermore, target EDCs that have highly polar 

functional groups need to be derivatized prior to GC/MS analysis to reduce peak 

tailing in the chromatogram and to improve the sensitivity, accuracy, and 

reproducibility of the analysis (Jeannot et al. 2002, Xiangli et al. 2006, Yang et al. 

2006, Zhang et al. 2006, Moder et al. 2007, Pan et al. 2008). 

 Although the conventional methods (LLE and SPE) for the extraction and 

concentration of EDCs from environmental samples are effective, these methods 

require intensive labor as well as the use of expensive and potentially harmful 

organic solvents.  Additionally, large sample volumes may be needed if the target 

contaminant concentration is low (ng/L) (López-Blanco et al. 2002, Chang et al. 

2005, Zhang et al. 2006, Moder et al. 2007).  In contrast, SPME does not require 

organic solvents or large sample volumes, but it frequently exhibits a higher 

detection limit (µg/L) (López-Blanco et al. 2002).  This may raise concern 

because some EDCs are present at low concentrations in the environment.  

Therefore, it is unclear which method (SPE or SPME) is preferable depending on 

sample volume and target contaminant concentration.  

 Derivatization agents including N,O-bis-(trimethylsiyl) trifluoroacetamide 

(BSTFA), N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), N-methyl-N-

(tert.-butyldimethyltrifluoroacetamide) (MTBSTFA), and pentafluorobenzyl 

bromide (PFBBr) have been used with SPE (Mol et al. 2000, Jeannot et al. 2002, 

Zhang et al. 2006, Moder et al. 2007) and SPME (Basheer et al. 2004, 
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Carpinteiro et al. 2004, Basheer et al. 2005, Chang et al. 2005, Yang et al. 2006, 

Pan et al. 2008, Negreira et al. 2009, Viñas et al. 2009).  Some investigations 

have compared derivatization agents and found BSTFA preferable to MSTFA or 

bromoacetonitrile (BAN) (Hsu et al. 2007, Szyrwińska et al. 2007).  The 

comparison of derivatizing agent studies performed without a preceding 

extraction step such as SPE or SPME.  Therefore, it is still unclear if one 

particular derivatization agent is preferable for use with SPE and/or SPME.  

Lociciro et al. (2007) is found that MSTFA is more useful than the other 

derivatization agent (bovine serum albumin (BSA), N-Trimethylsilyimidazole 

(TMSI) and BSTFA).  Szyrwińska et al. (2007) concluded that BSTFA is more 

useful than BAN.  BSTFA and MSTFA are useful for confirming the presence of 

EDCs and its derivatization efficiency is almost the same (Basheer et al. 2005, 

Szyrwińska et al. 2007, Zhou et al. 2007, Sebők et al. 2008). 

 The purpose of this study was to compare analytical methods based on 

SPE and SPME with derivatization followed by GC/MS for detection and 

quantification of EDCs in water samples.  We selected MSTFA and BSTFA over 

other possible derivatization agents in this study because these two have been 

observed to produce higher peak area than BAN, BSA, and TMSI.  Derivatization 

efficiency of MSTFA and BSTFA is almost same and useful to EDCs.  I focused 

on two particular EDCs, bisphenol-A (BPA) and 17β-estradiol (E2), because they 

are commonly found in wastewater effluents and receiving waters (Staples et al. 

1998, Kolpin et al. 2002).  BPA is a widely used monomer and an important 

compound, which is used in epoxy and polycarbonate plastic and flame 
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retardants (Desvrow et al. 1998).  E2 is a steroid estrogen hormone involved in 

high estrogenic activities (Desvrow et al. 1998, Hansen et al. 1998).  The 

important contributions of this chapter are: (1) we determine which derivatization 

agent, MSTFA or BSTFA, is more effective in both SPE and SPME; and (2) we 

determine which extraction method (SPE or SPME) is preferable depending on 

operating factors such as the sample volume available and the concentration of 

the target analyte in the sample. 

 

3.2. Materials and Methods 

 Solutions of known concentrations of BPA and E2 were created in purified 

water then those solutions were used to develop calibration curves for the 

analytical methods described below.  This enabled us to determine such 

parameters as the method detection limit and the range of linearity of the 

calibration curves, thereby giving us a basis with which to compare the extraction 

methods and the derivatization agents. 

 

3.2.1. Chemicals 

 Methanol (HPLC grade), BPA (purity grade > 99 %), E2 (purity grade > 99 

%), 4-n-Nonylphenol (NP) (purity grade > 99.9), sodium chloride (NaCl, purity 

grade > 99.5 %), BSTFA with 1% trimethylchlorosilane (TMCS), and MSTFA with 

1% TMCS were purchased from Aldrich (WI, USA).   
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3.2.2. Aqueous Samples 

 Primary stock standard solutions (1,000 mg/L) of each BPA and E2 were 

prepared in methanol by dissolving 0.100 g of analyte into 100 mL methanol.  

Stock solutions were stored at 4 °C in a refrigerator.  Aqueous samples were 

prepared daily by dilution of the stock solutions into deionized water.  The 

concentrations of the aqueous samples ranged from 1 ng/L to 100 µg/L for SPE, 

and from 30 ng/L to 1 mg/L for SPME.  The aqueous samples were prepared 

from the primary stock solutions by diluting with deionized water, using 

sequential dilutions when necessary to obtanin low concentrations.  Methanol 

content in the aqueous samples was 0.1% or lower (by volume, before mixing) in 

all aqueous samples, and is therefore considered negligible.  For SPME 

analyses, nonylphenol (NP) was spiked into the deionized water as an internal 

standard.  The concentration of NP in all SPME samples was 10 µg/L.  Samples 

were analyzed by SPE and SPME to compare the two methods. 

 

3.2.3. Solid-Phase Extraction (SPE) 

 Here we describe the SPE method used to prepare a sample for analysis 

by GC/MS.  The procedure is also shown in Figure 3.1.  Oasis HLB glass 

cartridges (5 mL, 200 mg HLB) were purchased from Waters (Milford, MA) and 

placed on a vacuum manifold (SPE 24-port Vacuum manifold, purchased from 

Fisher).  Figure 3.2 shows the extraction manifold (Vacuum Manifold) and pump.  

The cartridges were conditioned with 40 mL of deionized water and 25 mL of 

methanol, both of which were drawn through the cartridges under very low 
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vacuum to remove residual bonding agents.  A known volume of aqueous 

sample was subsequently loaded onto the cartridge and flowed through under 

slight vacuum (flow rate = 60 mL/min).  We tested different volumes of samples 

ranging from 10 mL to 4 L, and different EDC concentrations ranging from 1 ng/L 

to 100 µg/L.  During the sample loading step, the target compounds are extracted 

from the aqueous samples onto the SPE cartridges.  After loading, the cartridges  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. Solid-phase extraction (SPE) method: Aqueous samples are loaded 

onto an OASIS HLB glass cartridge, and then target analytes are 
extracted from the cartridge with methanol. 

Step 1: Conditioning. 

The cartridge is conditioned with methanol and deionized water. 

[5 mL methanol + 20 mL water + 20 mL methanol + 20 mL water] 

Step 2: Loading.  

A known volume of aqueous sample is loaded onto the cartridge 

and flows through under slight vacuum. 

 

Step 3: Washing.  

The cartridge is washed with 20 mL of deionized water. 

Step 4: Elution.  

The target analytes (in this case, BPA and E2) are eluted off 

the cartridge into 5 mL methanol. 

Step 5: Evaporation.  

The methanol is evaporated by a rotary evaporator (Buchi Rotavapor R-210), 

leaving a residue that contains the target analytes. 

Step 6: Derivatization.  

Hydroxyl groups on the BPA and E2 molecule are silylated for improved 

chromatography and detection. The BPA and E2 residue is reacted with 100 μL of 

derivatization agent (BSTFA or MSTFA) in an oven at 65 °C for 25 min. 

 

Step 7: Analysis.  

1 μL of the derivatized sample is manually injected into the GC/MS for analysis. 
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Figure 3.2.  Extraction manifold (vacuum manifold) and pump 

 

were washed with 20 mL of deionized water, and then dried for 5 min under 

vacuum in order to remove the excess of water remaining on the cartridge.  The 

adsorbed analytes were eluted from the cartridges into 10 mL vials with 5 mL 

methanol at a flow rate of 5 mL/min.  

 Due to the presence of polar functional groups in BPA and E2, which can 

give rise to poor chromatographic peaks, derivatization was necessary.  The 

methanol eluent collected from SPE was evaporated with a rotary evaporator 

(Buchi Rotavapor R-210).  The dry residues were derivatized either by BSTFA 

with 1% TMCS or by MSTFA with 1% TMCS.  For either agent, 100 μL of 
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derivatization reagent was added into each reaction vial.  Then, the vials were 

closed and placed in an oven at 65 °C for 25 min.  Once the derivatization was 

completed, 1 µL of the reaction mixture was injected into the GC/MS system in 

30 min to avoid reaction inversion. 

 

3.2.4. Solid-Phase Micro-Extraction (SPME) 

 SPME procedures were performed with a CombPAL auto-sampler (CTC 

Analytics) using a polyacrylate (PA) fiber of 85 μm thickness.  The procedure is 

shown in Figure 3.3 and SPME fiber is shown in Figure 3.4.  The PA fibers were 

purchased from Supelco.  The PA fiber has higher extraction capacities for 

phenols, anilines, amides, and many drugs and pesticides.  In addition, PA fiber 

has more efficient and linear range of response over a wide range of phenols 

concentration in water samples than polydimethylsiloxane (PDMS) fiber (Endo et 

al. 2011).  Each fiber was conditioned in the injector of the GC for 90 min at 280 

°C before its first use, as described in Supelco‟s conditioning instructions.  

Conditioning was followed by blank analysis to determine the conditioning 

quality.  For sample analysis, 10 mL of aqueous sample was placed into a vial 

with 1.75 g NaCl.  Vials were sealed with Teflon-coated silicone septa held by 

open-top screw caps.  SPME extraction was performed by piercing the septum of 

the sample vial with the autosampler needle and immersing the PA fiber into the 

aqueous sample.  Extraction was performed at 45 °C, controlled by the 

CombiPAL auto-sampler.  During extraction, the samples were continuously 

agitated with an agitating block at about 400 rpm for duration of 50 min, which we 



 36 

had previously determined was sufficient time to reach equilibrium.  After 

extraction, the fiber was transferred into the headspace derivatization vials.  The 

headspace derivatization vial contained 1 mL of derivatization reagent and was 

maintained at 70 °C with a heating block.  The SPME needle pierced the septum 

and the fiber was exposed to the headspace.   This allows the EDCs absorbed 

on the fiber to be derivatized with either BSTFA (1% TMCS) or MSTFA (1% 

TMCS) vapor rising from the bottom of the vial.  During derivatization, the vial 

was continuously agitated with an agitating block at about 250 rpm.  After 5 min 

of derivatization, the SPME fiber was withdrawn from the derivatization vial and 

inserted into the GC injection port to perform thermal desorption.  The 

temperature of the injection port was 280 °C, and the desorption time was 3 min. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3.  Solid-phase micro extraction (SPME) method: Target analytes in 
aqueous samples are extracted and concentrated onto a fiber. The 
procedure is fully automated on the Combi-PAL auto-sampler. 

Step 2: Extraction.  

BPA, E2 and NP are extracted from the aqueous sample onto a polyacrylate fiber (85 μm 

thick).  Sample volume = 10 mL; extraction time = 50 min; NaCl added to sample to 3.0 

M; extraction performed at 45 °C.  

Step 3: On-fiber derivatization.  

The fiber is inserted into the head space of a vial containing BSTFA or MSTFA as a derivatizing 

agent, allowing BPA, E2 and NP to be derivatized while sorbed to the fiber.  Derivatization time = 5 

min; derivatization performed at T = 70 °C in the autosampler’s hot plate. 

Step 4: Analysis.  

The fiber is inserted into the injection port of the GC/MS and held there for 3 min at 260 °C, 

allowing the derivatized BPA, E2 and NP to desorb from the fiber and enter the GC/MS. 

Step 1: Internal Standard.  

Nonylphenol is added to the aqueous sample at a concentration of 10 μg/L. 
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http://www.sigmaaldrich.com/Brands/Supelco_Home/Spotlights/SPME_central.html#spmeanim 
 
 

 
 

 
Figure 3.4 SPME fiber 

http://www.sigmaaldrich.com/Brands/Supelco_Home/Spotlights/SPME_central.html#spmeanim
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3.2.5. GC/MS Instrumentation and Operating Conditions 

 Analyses were carried out on a Varian CP-3800 gas chromatograph 

directly connected to a Saturn 2000 ion-trap mass spectrometer (Varian).  

GC/MS is shown in Figure 3.5.  A HP-5MS capillary column (30 m × 0.25 mm 

i.d., 0.25 μm film, 5% phenyl-dimethylsiloxane phase, Agilent) was used for 

chromatography.   Helium (99.9995% purity) was used as carrier gas at a 

constant flow rate of 1.0 mL/min.  The injection port temperature was 280 °C with 

splitless mode.  The GC oven temperature program was as follows: hold for 1 

min at 80 °C, increase at 15 °C/min to 240 °C, hold for 1 min, increase at 10 

°C/min to 280 °C, and hold for 5 min.  Data acquisition was performed in full scan 

mode measuring from m/z 69 to 614.  The transfer line temperature of the 

GC/MS was set at 170 °C, and the manifold temperature was set at 160 °C.  The 

electron emission current of GC/MS was 10 µA (70 eV), multiplier voltage was 

1500 V, and automatic gain control (AGC) target was 20,000. 

 BPA, E2, and NP were quantified by the area of the peak corresponding to 

a particular fragment on the MS.  We refer to these fragments as the diagnostic 

ions for each compound.  The m/z ratios for the diagnostic quantitative ions are 

357 for BPA, 416 for E2, and 179 for NP.  These m/z ratios correspond to major 

peaks in the mass spectra of the derivatized (silylated) compounds.   
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Figure 3.5. Gas Chromatography Mass Spectrometry (GC/MS) 
                   [Varian CP-3800 GC, Saturn 2000 GC/MS, Combi PAL auto sampler] 
 

 

3.2.6. Method Detection Limit for SPME 

 Seven replicate samples of concentration 30 ng/L were analyzed by 

SPME to determine the method detection limit (MDL) based on USEPA 

procedure 40 CFR, part 136.  With this method, the MDL is calculated as the 

standard deviation of replicate analyses times the student‟s t value for the 99% 

confidence level with n–1 degrees of freedom (Ripp, 1996).  The procedure was 

conducted for both BPA and E2 at concentrations of 30 ng/L. 
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3.3. Results 

 The retention times and mass spectra of the target EDCs (BPA and E2) 

and the internal standard (NP) were recorded.  Retention times are shown in 

Table 3.1 for both the derivatized and non-derivatized forms of the chemicals.  

Retention times increased by about 0.1 min for most silylated compounds 

compared to the non-derivatized compounds.  

 

 

 

 

Table 3.1. Retention time (RT) and mass spectrometric data for endocrine 
disruptors and their silylated derivatives 

 

Compound Not derivatized Derivatized 

 

 RT (min) Diagnostic ion RT (min) Diagnostic 

ion 

 

4-Nonylphenol 10.03 220 10.10 179 

Bisphenol-A 12.65 213 12.78 357 

-Estradiol 16.31 272 16.45 416 
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 López-Blanco et al. (2002) and Braun et al. (2003) compare the SPE and 

SPME concluded that both extraction methods are good for EDCs extraction 

because a dilute aqueous sample can become a more concentrated sample.  

Jeannot et al. (2002) and Zhang et al. (2006) studied SPE method with BSTFA 

derivatization agent.  Chang et al. (2005) studied SPME method with BSTFA 

derivatization agent.  They concluded that derivatization is useful step for 

effective detection by GC/MS.  Because highly polar compounds do not give 

sharp chromatographic peaks in GC, it is difficult to get a good chromatographic 

peak.  The derivatization reduces the polarity of compounds and thus procuces 

sharp peaks helping better detection.  Yang et al. (2006) investigated the 

optimized condition for SPE and SPME with derivatization.  Szyrwińska et al. 

(2007) compare different kind of derivatization agent and concluded that BSTFA 

is more useful than BAN.  The comparison test is required for selection of which 

extraction method (SPE and SPME) and which derivatization agent (BSTFA and 

MSTFA) is “better” to detect and quantify the EDCs in water samples.  

 

3.3.1. SPE: Calibration Curves 

 The calibration curves of EDCs extracted by SPE are presented in Figures 

3.6 and 3.7 as measured peak area versus injected EDC mass.  The injected 

EDC mass is calculated as the volume, V, of sample loaded onto the SPE 

cartridge (ranging from 20 mL to 4000 mL) times the concentration, C, of target 

EDC in the sample (ranging from 0.001 µg/L to 100 µg/L).   
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 For BPA (Figure 3.6), the calibration curve was generated from samples 

that met three criteria: the concentration CBPA was between 0.010 µg/L and 100 

µg/L; the sample volume V was between 20 mL and 4000 mL; and the BPA mass 

loaded (M = V*CBPA) was between 30 ng and 5000 ng.  The third criterion 

implies, for instance, that for samples where we used a volume V = 100 mL, the 

calibration curve includes all results for which 0.30 µg/L ≤ CBPA ≤ 50 µg/L, but not 

for samples outside this concentration range.  As can be seen from Figure 3.6, 

the measured peak area is linear with respect to the BPA mass injected for 

samples meeting the three necessary criteria.   
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Figure 3.6.   Calibration curves for BPA samples extracted by SPE.  Top panel: 
derivatized with BSTFA.  Bottom panel: derivatized with MSTFA. 

 
 



 44 

 For E2 (Figure 3.7), similar behavior was observed, but the range of 

linearity was even greater for E2 than it was for BPA.  For E2, the calibration 

curves were generated from samples which met the following three criteria: the 

concentration CE2 was between 0.010–100 µg/L; the sample volume V was 

between 20–4000 mL; and the E2 mass loaded (M = V*CE2) was between 20 ng 

and 20,000 ng.  The third criterion implies, for instance, that a sample volume of 

V = 500 mL could be used to quantify concentrations in the range 0.040 

µg/L ≤ CE2 ≤ 40 µg/L.  As can be seen from Figure 3.7, the measured peak areas 

were linear (log scale) with respect to the E2 mass injected for samples meeting 

these criteria.   

 For both BPA and E2, we did test several samples that did not meet one 

of the requisite criteria (e.g., samples of concentration C < 10 ng/L, or samples 

for which V*C is not in the specified range).  These samples generally did not 

follow the same linear behavior, and are not included in Figures 3.6 and 3.7.  

Hence, there is some limitation on the range of linearity for the SPE method; if 

the concentation is too low or too high, the measured peak area is not likely to 

fall on the calibration curves provided.  However, this limitation is not severe; 

simply by choosing the sample volume appropriately, the SPE method may be 

applied to samples of BPA or E2 in the concentration range 10 ng/L to 100 µg/L, 

a range of four orders of magnitude.  We found that C = 10 ng/L is a practical 

lower limit of quantification for the SPE method for both BPA andE2. 
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Figure  3.7.   Calibration curves for E2 samples analyzed by SPE.  Top panel: 
derivatized with BSTFA.  Bottom panel: derivatized with MSTFA. 
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3.3.2. SPME: Calibration Curves 

 The calibration curves of EDCs extracted by SPME are presented in 

Figures 3.8 and 3.9 as ratio of peak areas versus aqueous EDC concentration.  

The ratio of peak areas is the quotient of the measured area of the diagnostic ion 

for the target EDC (either BPA or E2) divided by the measured area of the 

diagnostic ion for the internal standard (NP).  We found that the performance of 

the SPME fibers changes over time, and therefore it is not acceptable to use only 

the peak area of the BPA or E2 fragment; the fragment area must be normalized 

by that of the internal standard to account for the transient behavior of the SPME 

fibers (and for other sample-to-sample variability of the automated SPME 

procedure). 

 Figure 3.8 shows that the calibration curves are linear with respect to EDC 

concentration in the high concentration range (50–1000 µg/L).  However, at lower 

concentration ranges, we consistently found that the ratio of peak areas was not 

linear with respect to the EDC concentration.  Figure 3.9 is presented on 

logarithmic axes, and it is observed that the calibration curves in the lower 

concentration range (0.030–30 µg/L) are log-linear but not linear.  In general, it is 

expected that SPME should produce a linear response factor, and if deviation 

from linearity is observed, it is more likely to be in the high concentration range 

(i.e., if the SPME fiber becomes saturated) rather than in the low concentration 

range (Tuduri et al. 2003).  Hence, the behavior observed here is unexpected.  

However, we consistently observed this deviation from linearity in the low 
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concentration range, for both BPA and E2, and with both MSTFA and BSTFA 

derivatization agents. 

 

 

 

 

 

Figure 3.8.  Calibration curves for BPA and E2 extracted by SPME, high 
concentration range (50–1,000 µg/L). 
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Figure 3.9.  Calibration curves for BPA and E2 extracted by SPME, low 
concentration range (0.030–30 µg/L). 
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 For analysis using SPME, we observed that the calibration curves depend 

on the individual SPME fiber employed, and hence a calibration curve developed 

with one fiber would not be applicable to analyses performed with a different 

fiber.  For instance, in comparing Figures 3.8 and 3.9, it can be seen that the 

ratio of BPA/NP areas is often higher in the low concentration range (Fig. 3.9) 

than in the high concentration range (Fig. 3.8).  This is because the SPME fiber 

was changed between analyses of the different concentration ranges.  Hence, 

only data collected with the same SPME fiber may be compared to each other.  

For the experimental procedure employed in this study, we observed that a 

single SPME fiber can be used for somewhere between 20 and 30 samples 

before it must be changed. 

 

3.3.3. SPME: Method Detection Limits and Performance 

 Replicate analysis of BPA and E2 samples at concentration 30 ng/L 

allowed us to determine the method detection limit (MDL) of the SPME 

procedure.  For both target analytes, the MDL was found to be 10 ng/L when 

MSTFA was used, and 15 ng/L when BSTFA was used.  

 

3.4. Discussion 

3.4.1. Selection of Derivatization Agent (MSTFA or BSTFA) 

 When using SPE to extract the target analytes from aqueous solution, 

either MSTFA or BSTFA may be used.  Examination of Figures 3.6 and 3.7 

shows that the calibration curves are nearly identical for the two derivatization 
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agents.  For analysis of BPA (Fig. 3.6), the slopes of the calibration curves differ 

by only about 7% for the two derivatization agents.  For analysis of E2 (Fig. 3.7), 

the slopes differ by only about 1%.   

 However, for on-fiber derivatization during the SPME extraction, MSTFA 

was consistently found to result in larger peak areas for the diagnostic ions as 

compared to BSTFA.  This suggests that MSTFA would probably result in more 

reliable analysis (higher signal-to-noise ratios) of target EDCs in the low 

concentration range.  Furthermore, MSTFA produced higher BPA/NP and E2/NP 

ratios than BSTFA, as can be seen from both Figure 3.8 and Figure 3.9; 

however, a higher ratio of peak areas does not necessarily mean a “better” 

analysis.  If, for instance, nonylphenol had been the target analyte and 17β-

estradiol had been the internal standard, then MSTFA would likely have resulted 

in lower NP/E2 peak ratios, but would still probably be preferable to BSTFA 

because the magnitude of all measured peak areas is larger.  The larger peak 

areas produced with MSTFA may be a result of MSTFA having a higher vapor 

pressure than BSTFA (Shareef et al. 2006, cf. Donike 1969), and therefore being 

present at a higher concentration in the head space during the on-fiber 

derivatization step of the SPME analysis.  However, we were not able to find 

measured values of vapor pressure of MSTFA and BSTFA to support this 

hypothesis; hence, the reason for the higher peak areas obtained with MSTFA is 

still uncertain. 
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3.4.2. Selection of Extraction Method (SPE or SPME)  

 The selection of which extraction method is “better” depends on a number 

of factors, such as time, money, the amount of sample volume available, and the 

expected concentration range of the samples to be analyzed. 

 When either time or sample volume is a limiting factor, SPME may be 

preferable to SPE.  The SPME method is much less labor-intensive because it 

can be automated by the CombiPAL auto-sampler.  The SPE method, however, 

requires multiple steps that must be performed by hand.  Also, although SPE was 

successful with sample volumes as low as 20 mL, the effective detection limit 

increases as the sample volume decreases (because the calibration curves are 

linear only if V*C satisfies a minimum criterion).  With a sample volume of 20 mL, 

our SPE procedure is applicable to BPA concentrations down to 1.5 µg/L and E2 

concentrations down to 1.0 µg/L.  In contrast, the SPME method requires a 

sample volume of only 10 mL and had a method detection limit of 0.010 µg/L for 

BPA and 0.015 µg/L for E2.   

 However, there are also conditions under which the SPE method may be 

preferable to SPME.  The SPME method has a higher materials cost because 

SPME fibers are relatively expensive and can only be used for approximately 20–

30 analyses (based on the conditions of our method), some of which must 

include calibration standards, because the instrument must be re-calibrated each 

time the fiber is changed.  Hence, each sample analyzed by SPME is costly.  In 

contrast, SPE cartridges are relatively inexpensive, and we found that a cartridge 

may be used multiple times (six times were tested) without loss of performance.  
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Also, the SPE calibration curves were linear over several orders of magnitude, 

whereas the SPME calibration curves were linear only in the high concentration 

range (50 µg/L – 1,000 µg/L) and were log-linear at lower concentration ranges.  

Therefore, if a number of samples must be analyzed which might consist of 

widely varying concentrations, SPE is probably preferable to SPME because of 

its much wider range of linearity. 

 In terms of detection limits, we found that about 10 ng/L was a practical 

lower limit of analysis for either method.  With SPME, the method detection limit 

was determined to be 10 ng/L for BPA and 15 ng/L for E2.  With SPE, the 

calibration curve was found to be linear with respect to concentration only if the 

concentration was 10 ng/L or higher.  Hence, neither method offered a significant 

advantage in terms of detection limit, as long as sufficient sample volume is 

available for the SPE method. 

 

3.5. Conclusions 

 The purpose of this study was to compare analytical methods based on 

SPE and SPME with derivatization followed by GC/MS for detection and 

quantification of EDCs in water samples.  Two particular EDCs, bisphenol-A 

(BPA) and 17β-estradiol (E2) was focused on this chapter.  The important 

contributions of this paper are: (1) I determined which derivatization agent, 

MSTFA or BSTFA, is more effective in both SPE and SPME; and (2) I 

determined which extraction method (SPE or SPME) is preferable depending on 
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operating factors such as the sample volume available and the concentration of 

the target analyte in the sample. 

 With regard to derivatizing agent, either MSTFA or BSTFA may be used 

when SPE (HLB cartridge) is the extraction method.  Calibration curves were 

nearly identical for the two derivatization agents.  For on-fiber derivatization 

during the SPME extraction, MSTFA was consistently found to result in larger 

peak areas for the diagnostic ions as compared to BSTFA.  This suggests that 

MSTFA would probably result in more reliable analysis (higher signal-to-noise 

ratios) of target EDCs in the low concentration range.  I suspect that the larger 

peak areas produced with MSTFA may be a result of MSTFA having a higher 

vapor pressure than BSTFA, and therefore being present at a higher 

concentration in the head space during the on-fiber derivatization step of the 

SPME (PA fiber) analysis.  With regard to extraction method, the selection of 

which method is “better” depends on a number of factors, such as time, money, 

the amount of sample volume available, and the expected concentration range of 

the samples to be analyzed.  When either time or sample volume is a limiting 

factor, SPME may be preferable to SPE, because the SPME procedure can be 

automated on the CombiPA auto-sampler, and because the SPME method 

allows a low detection limit with only 10 mL of sample.  The SPE method is labor-

intensive and requires large sample volumes to achieve low detection limits.  

There are also conditions under which the SPE method may be preferable to 

SPME.  The SPE method has a significantly lower materials cost, despite the 

need for an extraction solvent like methanol, because SPME fibers are relatively 
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expensive and can be used for only a limited number of samples.  Also, the SPE 

calibration curves were linear over several orders of magnitude, so if a number of 

samples must be analyzed which might consist of widely varying concentrations, 

SPE is probably preferable to SPME. 

 Of course a number of factors have not been considered in this study.  For 

instance, my conclusions are based on calibration curves generated by spiking 

the target analytes into purified water; therefore I have not considered matrix 

effects which might be important in samples collected from a natural environment 

or from a wastewater treatment plant.  Nevertheless, the comparison provided 

here can offer useful guidance to scientists and engineers who are trying to 

develop and select a useful analytical procedure for endocrine-disrupting 

compounds in aqueous samples at the ng/L to µg/L range. 
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CHAPTER 4 

BIODEGRADATION OF TARGET EDCS UNDER ALTERNATING AEROBIC 

AND ANAEROBIC CONDITIONS 

 

4.1. Introduction 

  During alternating aerobic/anaerobic conditions, diauxic lag might be an 

important factor for biodegradation of EDCs.  However, limited information is 

available in the literature about the degradation of EDCs under these types of 

conditions.  Therefore, the purpose of this chapter is to determine the fate of 

EDCs during alternating redox conditions.  The lag time and the phenomenon of 

diauxic lag were investigated for target EDCs under alternating aerobic/anaerobic 

conditions for efficient EDC removal.  The objectives of this chapter are to 

quantitatively distinguish between sorption-based and biodegradation-based 

removals, measure the lag-phase of aerobic biodegradation depending on the 

period of alternating cycles between aerobic and anaerobic conditions in 

simulated SAT systems, and investigate the rate of biodegradation for target 

EDCs under alternating aerobic/anaerobic conditions. 
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4.2. Materials and Methods 

4.2.1. Chemicals 

 SYTOX Green nucleic acid stain was purchased from Molecular Probes 

(OR USA).  Sodium azide (NaN3) and sodium nitrate (NaNO3) were purchased 

from Aldrich (WI USA). Methanol (HPLC grade), BPA (purity grade > 99 %), E2 

(purity grade > 99 %), 4-n-Nonylphenol (NP) (purity grade > 99.9 %), sodium 

chloride (NaCl, purity grade > 99.5 %), and MSTFA with 1% TMCS were 

purchased from Aldrich (WI, USA). 

 

4.2.2. Soil and Wastewater 

 Tertiary-treated effluent (final effluent) was obtained from Howard F 

Curren Advanced Waste Water Treatment Plant (WWTP) in Tampa, FL. Aquifer 

soil was obtained from a constructed Wetland Wastewater Treatment System in 

Lakeland, FL.  Characterization of effluent from WWTP is shown in Table 4.1.  

The plant has a design capacity of 96 million gallons per day and the effluent 

water is discharged to Hillsborough Bay or used as reclaimed water for cooling 

and irrigation.  Soil samples were collected from the top 10 cm, 50 cm, and 100 

cm of the pond bed and placed in glass jars.  Upon arrival back to the laboratory, 

the jars were kept under refrigeration.  Collected soil was mixed in the laboratory.  
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Table 4.1. The quality of effluent in Howard F. Curren Advanced WWTP 

 2009 Annual Average Permit Requirement Percent Removal 

Flow 54.2 MGD     

BOD5 1.5 mg/L 5.0 mg/L 99.1 

TSS 0.5 mg/L 5.0 mg/L 99.7 
Total Nitrogen 2.33 mg/L 3.0 mg/L 92.4 
Source: Howard F. Curren Advanced WWTP 
http://www.tampagov.net/dept_wastewater/information_resources/Advanced_Wastewater_Treat
ment_Plant/facts_of_interest.asp 

 

 

4.2.3. Batch Mesocosm Reactors 

 Simulated SAT systems were set up in 4 L reactors with 3 L effluent from 

WWTP and 500 g aquifer soil placed in each reactor.  BPA and E2 were spiked 

to simulated SAT system at an initial concentration of 1,000 µg/L.  This 

concentration is higher than could be observed in most WWTP effluent streams.  

However, for this research, I chose to use a high EDCs concentration in order to 

prove the clear variation of EDCs during alternating conditions.  If the initial EDCs 

concentration were too low then won‟t be able to observe removal of up to 99%.  

In general, batch simulated SAT mesocosms were run under alternating 

aerobic/anaerobic conditions.  The simulated SAT systems were operated in a 

dark environment (the reactor was wrapped in aluminum foil) at room 

temperature (20 ˚C).  Schematic diagram of a simulated SAT reactor is shown in 

Figure 4.1 and the photograph of a simulated SAT reactor is shown in Figure 4.2. 

 Because the SAT system is alternating between aerobic and anaerobic 

condition, simulated SAT systems were established by purging the system with  



 58 

 

Figure 4.1. The schematic diagram of simulated SAT reactor. 

 

Figure 4.2. The picture of simulated SAT reactor. 
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either air (21% O2) or N2 gas (O2 free) in order to make the alternating aerobic 

and anaerobic conditions.  Aerobic environment was established by air gas 

passing through the simulated SAT system, and then it was switched to 

anaerobic environment by N2 gas passing through the system.  The gas tank was 

connected with the simulated SAT reactor by fluoropolymer tubing and a syringe.  

The simulated SAT system was capped by silicone sealing in order to control the 

aerobic/anaerobic condition, and the air gas and N2 gas were connected through 

this cap by syringe.  Aerobic environment and anaerobic environment were 

manually switched by reconnecting the fluoropolymer tube and syringe.  In 

addition, a sampling syringe was connected through the cap. 

 In order to make nitrate-reducing condition during anaerobic cycles, nitrate 

was spiked to simulated SAT system at an initial concentration of 1,000 mg/L.  

This concentration is higher than could be observed in most WWTP effluent 

streams. However, for this research, I chose to use a high EDCs concentration in 

order to prove the clear variation of nitrate during alternating conditions and won‟t 

be able to observe removal of up to 99%.  Batch mesocosm reactors were used 

for lab experiments, and different periods of alternating conditions were tested.  

Nine simulated SAT batch reactors were prepared (Table 4.2 shows the 

condition of reactor; test was based on the triplicate); three control tests for 

sorption test without microbiological activity (Reactor C1, C2, and C3; same 

condition), and the other six test for comparison of different anaerobic duration 

(two days; reactor NS1, NS2, and NS3; same condition, and four days; reactor 

NL1, NL2, and NL3; same condition).  Control test was studied to distinguish 
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between sorption to the soil and biodegradation during simulated SAT system.  In 

order to know only sorption amount to the soil without microbiological activities, 

1,000 mg/L NaN3 was used for soil sterilization in control test (Kao et al. 2004, 

Zhang et al. 2009). 

 

Table 4.2. The condition of nine simulated SAT batch reactors  
 

Reactor # Condition of Reactor Duration (day) 

C1 Control for sorption test 20  
C2 Control for sorption test 20  
C3 Control for sorption test 20  

 Alternating system During anaerobic  Aerobic-Anaerobic 

NS1 3 aerobic/ 2anoxic Anoxic denitrification 23 3-2-3-2-3-2-3-2-3 
NS2 3 aerobic/ 2anoxic Anoxic denitrification 23 3-2-3-2-3-2-3-2-3 
NS3 3 aerobic/ 2anoxic Anoxic denitrification 23 3-2-3-2-3-2-3-2-3 

 Alternating system During anaerobic  Aerobic-Anaerobic 

NL1 3 aerobic/ 4anoxic Anoxic denitrification 31 3-4-3-4-3-4-3-4-3 
NL2 3 aerobic/ 4anoxic Anoxic denitrification 31 3-4-3-4-3-4-3-4-3 
NL3 3 aerobic/ 4anoxic Anoxic denitrification 31 3-4-3-4-3-4-3-4-3 

 

 

4.2.4. Sampling and Analysis 

 On the first day of each aerobic and anaerobic condition, six samples 

were taken (volume of sample is 10 mL, sampling time is 1, 3, 6, 10, 16, and 24 

hr).  Then, three samples of each condition were taken in each day thereafter 

(the frequency of sampling is 1 per 8 hour).  BPA and E2 were extracted from 

sample by SPME and analyzed by GC/MS (as described in Chapter 3).  When 

the concentration of EDCs was below 100 μg/L (90 % removal), EDCs was re-

spiked (100 μg/L additional). 



 61 

 Nitrate and nitrite were analyzed by Metrohm Ion Chromatography (881 

Compact IC pro and 863 Compact Autosampler), using a Metrosep A Supp 7-

250 (250 mm x 4 mm) analytical column, the eluent was sodium carbonate (3.6 

mmol/L), and the flow rate was 0.7 ml/min. 

 The microorganism population density was estimated by flow cytometry 

(BD FACSCanto II Analyzer, High-throughput flow cytometer).  SYTOX Green 

Nucleic Acid Stain was used to dye the bacteria.  1 mL aquous sample was 

mixed with 1 mL 4% paraform aldehyde and stay 5 min. It was centrifuged and 

discard the supernatant.  Put the stain (5 μM, 300 μL) into precipitation and 

resuspension. Put 200 μL sample into 96 tray and detect the microbes by flow 

cytometry.  It is a direct enumeration method (Gunasekera et al. 2000, Chen et al. 

2001).  Microorganisms stained with SYTOX Green Nucleic Acid Stain yield 

bright and stable fluorescent signals that could be detected by flow cytometry. 

 Dissolved oxygen concentration monitored by YSI DO200 DO meter, and 

the redox state was checked by pH100 redox potential meter. 

 

4.3. Results and Discussion 

4.3.1. Control Test 

 BPA and E2 (1,000 μg/L) were spiked into reactors for control test with no 

microbiological activity (1 g/L NaN3).  EDCs concentration in the aqueous phase 

is shown in Figure 4.3.  Because there is no microbiological reaction, sorption is 

the main removal mechanism in reactor.  BPA and E2 were rapidly decreased in 

first-day of reaction by sorption to soil, and they were maintained until the end of 
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the reaction.  The equillibrium concentration of BPA is 110 μg/L and E2 is 210 

μg/L in aqueous phase. In real application of SAT, sorption is probably not a 

viable removal mechanism over long periods of time, because eventually the soil 

equilibrate with the percolating water. Therfore biodegradation must be sustained 

in order to have sustained removal of EDCs form infiltrating water. 

 

 

 

 

 

Figure 4.3.  Concentration of EDCs as a function of time in reactors without 
microbiological reaction. 
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4.3.2. Dissolved Oxygen 

  Dissolved oxygen concentration in alternating between aerobic and 

anaerobic condition is shown in Figure 4.4 and 4.5.  Because simulated SAT 

system was established by passing either air (21% O2) or N2 gas (O2 free) in 

order to make the alternating aerobic and anaerobic conditions, during aerobic 

condition the dissolved oxygen level is between 7.5 mg/L and 7.9 mg/L (oxygen 

concentration in saturated condition at room temperature: 9.09 mg/L at 20 ˚C, 

and 8.26 mg/L at 25 ˚C), and during anaerobic condition the dissolved oxygen 

level is between 0.3 mg/L and 0.5 mg/L.  Aerobic environment was established 

and continued by air gas passing through the simulated SAT system, and then it 

was switched to anaerobic environment by N2 gas passing through the system.  

As seen in Figure 4.4 and 4.5, the concentration of dissolved oxygen dropped 

very quickly when the reactor was switched from air to N2, and rose very quickly 

when the reactor was switched from N2 to air. 

  Oxygen dissolves to the water by absorption from air or by 

photosynthesis. The aerobic bacteria and plants consume the dissolved oxygen 

in aquatic environment.  The aerobic and anaerobic/anoxic conditions of aquatic 

environment depend on the rates of dissolution and consumption.  During 

aerobic condition, aerobic microbes use organic matter and dissolved oxygen, 

and aerobic microbes produce additional cells, partially oxidized organic 

compounds, and carbon dioxide.  During absence of dissolved oxygen, 

anaerobic microbes perform the fermentative metabolism in order to produce the 

energy for growth. 
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  The aerobic condition is that when the microorganism(s) used O2 as the 

terminal electron acceptor, and the anaerobic/anoxic condition is that when the 

microorganism(s) carry out the fermentation without terminal electron acceptors 

or uses chemicals other than oxygen (nitrate, sulfate, iron, etc.) as terminal 

electron acceptors.  
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Figure 4.4. Concentration of dissolved oxygen as a function of time in reactors 

with a 2-day anaerobic cycle. Nitrate was provided as an electron 
acceptor for anaerobic cycles. (Rectangular boxes indicate 
anaerobic periods) 

 

 
 
Figure 4.5. Concentration of dissolved oxygen as a function of time in reactors 

with a 4-day anaerobic cycle. Nitrate was provided as an electron 
acceptor for anaerobic cycles. (Rectangular boxes indicate 
anaerobic periods) 
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4.3.3. Oxidation-Reduction (Redox) Potential Level 

 The redox potential of the water in the reactor responded rapidly to 

changes in the aeration status of the water.  Figure 4.6 and Figure 4.7 shows the 

redox potential level in each 2 days and 4 days anaerobic period.  The maximum 

redox potential under aerobic conditions for all treatments was approximately 

+240 mV.  The redox potential rapidly decreased right after air was switched by 

N2 gas.  The redox potential level was fallen down to approximately -100 mV and 

remained at this value throughout anaerobic condition.  On the contrary to this, 

the redox potential rapidly increased right after N2 gas was switched to air.  For 

the aerobic condition the redox potential level increased rapidly to approximately 

+ 240 mV and remained constant for the entire aerobic period (3 days). 
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Figure 4.6.  Redox potential as a function of time in reactors with a 2-day 

anaerobic cycle. Nitrate was provided as an electron acceptor for 
anaerobic cycles. (Rectangular boxes indicate anaerobic periods) 

 
 

 
 
Figure 4.7.  Redox potential as a function of time in reactors with a 4-day 

anaerobic cycle. Nitrate was provided as an electron acceptor for 
anaerobic cycles. (Rectangular boxes indicate anaerobic periods) 
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4.3.4. Concentration of Electron Acceptor 

 Nitrate and nitrite concentration in simulated SAT system are shown in 

Figure 4.8 and 4.9.  In aerobic cycles, the data shows that nitrate increases 

slightly and nitrite decreases slightly.  The total amount of nitrate and nitrite is 

constant.  Because nitrification occurred during aerobic cycles, NO2
- is converted 

to NO3
- both 2-days and 4-days cycles.  

 On the contrary to this, nitrite increases slightly and nitrate decreases 

slightly in anoxic cycles.  The total amount of nitrate and nitrite decreases.  

Because denitrification occurred during anoxic cycles, NO3
- is converted to NO2

- 

and finally it transferred to N2 both 2-days and 4-days cycles.  Nitrate was 

respiked at the beginning of 3rd aerobic cycles in 2-days, and at the beginning of 

2nd and 3rd anoxic cycles in 4-days. 

 The result shows that more denitrification occurred during anoxic cycles in 

4-day cycles than 2-day cycles.  Nitrate was re-spiked once for reactors with 2-

day cycles and re-spiked twice for reactors with 4-day cycles.  The nitrate 

concentration decreases quickly in 4-day anoxic cycles.  It looks like greater 

extent of denitrification with 4-day cycles causes more conversion to N2.  
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Figure 4.8.  Concentration of nitrate and nitrite as a function of time in reactors 

with a 2-day anaerobic cycle. Nitrate was provided as an electron 
acceptor for anaerobic cycles. (Rectangular boxes indicate 
anaerobic periods) 
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respike 
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Figure 4.9.  Concentration of nitrate and nitrite as a function of time in reactors 

with a 4-day anaerobic cycle. Nitrate was provided as an electron 
acceptor for anaerobic cycles. (Rectangular boxes indicate 
anaerobic periods) 
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respike respike 

respike respike 
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4.3.5. Quantification of Biomass 

 The individual cells or bacteria were measured with flow cytometry. 

Bacteria densities were quantified by measuring the fluorescence from cells 

stained.  The bacteria were stained by SYTOX Green dye.  Figure 4.10 shows 

the number of bacteria in control sample and alternating aerobic/anoxic sample.  

In control sample the number of bacteria is below detection limit.  Figures 4.11 

and 4.12 show the densities of microorganism during test.  When the condition 

was changed from aerobic to anoxic, and from anoxic to aerobic conditions, the 

microbes require a length of time to acclimate themselves to the environment 

(Crane and Novak, 2001) which is lag time. Exposure of aerobic microbes to 

anoxic environments and exposure of anoxic microbes to aerobic environments 

caused physiological stress.  When the condition was changed, the number of 

microbes decreased then increased after a lag time.  The lag time in aerobic 

cycles after longer anoxic condition (4 days) is longer than after short anoxic 

condition (2 days).  The population of microbes generally increased over time in 

reactors NS1, NS2, NS3, and overall trend is increasing.  The population of 

microbes goes up and down like „sine waves‟ in reactors NL1, NL2, NL3, and is 

not increasing overall. 
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(a) 

 

(b) 

Figure 4.10. The number of bacteria in (a) control sample without microbiological 
activity, and (b) alternating aerobic/anoxic sample with 
microbiological activity. 
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Figure 4.11.  The number of microbes by Flow Cytometry as a function of time in 

reactors with a 2-day anaerobic cycle. Nitrate was provided as an 
electron acceptor for anaerobic cycles. (Rectangular boxes indicate 
anaerobic periods) 
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Figure 4.12.  The number of microbes by Flow Cytometry as a function of time in 

reactors with a 4-day anaerobic cycle. Nitrate was provided as an 
electron acceptor for anaerobic cycles. (Rectangular boxes indicate 
anaerobic periods) 
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4.3.6. Concentration of EDCs 

 This study investigated the degradation of EDCs and lag time of 

microorganism in different conditions (alternating aerobic and anoxic condition) 

under simulated SAT systems.  The change from aerobic to anoxic and from 

anoxic to aerobic conditions causes the most significant changes, including the 

oxidation of EDCs, reduction of electron acceptor, and microbiological activity.  

Nitrate as an electron acceptor was added into simulated SAT reactors in order 

to create nitrate reducing conditions.  So, nitrate reducing conditions were 

dominant during anoxic conditions (Figure 4.8 and 4.9). This study demonstrates 

the different EDCs degradation in different aerobic or anoxic conditions, and the 

different lag time in aerobic condition after different anoxic period.   

 The concentration of EDCs in different anoxic period tests (2 days and 4 

days) are shown in Figure 4.13 and 4.15 respectively. EDCs were respiked at the 

beginning of 3rd aerobic cycles in 2-days, and at the beginning of 2nd and 3rd 

anoxic cycles in 4-days.  Biodegradation and sorption of EDCs occurred at the 

same time in the initial aerobic period.  After 48 hr, biodegradation of EDCs was 

the main removal phenomenon because sorption equilibrates within 48 hr (Figure 

4.3).  E2 degradability is slower under anoxic conditions than aerobic conditions 

and BPA is not degrading in anoxic conditions.  A small amount of 

biotransformation of E2 to E1 is observed during reaction.  E1 concentration is 

showed in Figure 4.14 (2-day) and 4.16 (4-day).  The trend of degradation is 

strongly linked to the redox conditions.  EDCs oxidation was dependent upon 

oxygen reduction in aerobic condition and nitrate reduction in anoxic condition.  
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E2 was degraded in both aerobic and anoxic conditions, and BPA was degraded 

only during aerobic condition.   

 Overall, EDCs degradation has similar trend in different alternation period 

both 2 days and 4 days systems.  However, the results show the different lag 

time in different alternation period both 2 days and 4 days systems.  There are 

longer lag time in aerobic condition right after longer anoxic period.  Figure 4.17 

shows the results of lag time.  When the condition was changed from aerobic to 

anoxic, and from anoxic to aerobic conditions, the microbes require a length of 

time to acclimate themselves to the environment (Crane and Novak, 2001) which 

is lag time.  Exposure of aerobic microbes to anoxic environments and exposure 

of anoxic microbes to aerobic environments caused physiological stress.  

Because microbes have physiological stress, biodegradation of EDCs were 

decreased during lag time.  Lag time was decided by when concentration 

decreases less than 5 %.  The longer lag time (34-42 hr) is showed in 4-day 

cycle and shorter lag time (18-26 hr) is showed in 2-day cycle.   
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Figure 4.13.  Concentration of EDCs as a function of time in reactors with a 2-day 
anaerobic cycle. Nitrate was provided as an electron acceptor for 
anaerobic cycles. (Rectangular boxes indicate anaerobic periods) 

 

 

Figure 4.14.  Concentration of E1as a function of time in reactors with a 2-day 
anaerobic cycle. Nitrate was provided as an electron acceptor for 
anaerobic cycles.  

respike 
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Figure 4.15.  Concentration of EDCs as a function of time in reactors with a 4-day 
anaerobic cycle. Nitrate was provided as an electron acceptor for 
anaerobic cycles. (Rectangular boxes indicate anaerobic periods) 

 

 

Figure 4.16.  Concentration of E1as a function of time in reactors with a 4-day 
anaerobic cycle. Nitrate was provided as an electron acceptor for 
anaerobic cycles.  

respike 
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(a) aerobic condition in 2-day                          (b) aerobic condition in 4-day 
 
Figure 4.17.  Concentration of EDCs as a function of time in reactors with a 2-day 

and 4-day anaerobic cycle. Nitrate was provided as an electron 
acceptor for anaerobic cycles. (a) aerobic condition in 2-day (left 
side), (b) aerobic condition in 4-day (right side).  
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4.3.7. Mass Balance of EDCs 

 Mass balance of EDCs is checked before and after the reaction.  Figure 

4.18 shows the mass balance of EDCs in sorption test (reactor C1 and C2), 2-

day cycles (reactor NS2 and NS3), and 4-day cycles (reactor NL2 and NL3).  

Figure 4.17 compares the spiked and final amount of EDCs.  Spiked amount of 

BPA and E2 is 3,000 μg for reactor C1 and C2, 3,300 μg for reactor NS2 and 

NS3 (respiked once), and 3,600 μg for reactor NL2 and NL3 (respiked twice).  

After finishing the reaction, aqueous and soil samples were collected and 

analyzed by GC/MS.  5 samples of aqueous phase and soil were tested, and the 

average results are shown in Figure 4.18.  In statistical t-test, the t value is equal 

to or less than 0.05.  Average results, standard deviation, and sampling mass of 

EDCs are shown in Table 4.3.  During test I collected 89 samples for 2-day 

cycles (reactor NS2 and NS3), and 107 samples for 4-day cycles (reactor NL2 

and NL3).  Each sample was 10 ml and contained BPA and E2.  Therefore a 

significant mass of the EDCs were removed from reactors during sampling and 

must be taken into account in the mass balance.  EDCs in aqueous phase were 

extracted by SPME, and in soil were extracted by methanol.  2 g soil samples 

was collected and dried at room temperature (20 ˚C, 24 hr), and 10 ml methanol 

was inserted into soil and shaken for 24 hrs in a 40 ml glass vial.  Methanol was 

separated by centrifuge and evaporated by gentle nitrogen gas.  EDCs were 

derivatized by MSTFA and detected by GC/MS.  Final EDCs amount is shown in 

Figure 4.18.  In reactor C1 and C2, where biodegradation was suppressed by 

NaN3, the average recovery of BPA was 96.8 % and the average recovery of E2 
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was 98.3 %.  In reactor NS2 and NS3, average recoveries were 70.1 % and 

61.1 % for BPA and E2 respectively.  In reactor NL2 and NL3, average 

recoveries were 72.5 % and 63.1 %.  This shows that biodegradation was 

minimal in the sorption control tests and was similar in reactors with 2-day and 4-

day anaerobic cycles. E2 is more biodegradable than BPA. 
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Figure 4.18.  Mass balance of EDCs in aqueous and soil with a control test, 2-

day and 4-day anaerobic cycle. Nitrate was provided as an electron 
acceptor for anaerobic cycles.  

 
 
 
 
 
 

97.2 % 98.6 % 96.3 % 98.0 % 

70.4 % 58.8 % 69.7 % 63.4 % 

69.6 % 60.4 % 75.4 % 65.8 % 
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Table 4.3.    Mass balance of EDCs in aqueous and soil with a control test, 2-day 
and 4-day anaerobic cycle. Nitrate was provided as an electron 
acceptor for anaerobic cycles. Average data from 5 samples and 
standard deviation. 

 

 C1 Initial BPA Final BPA Initial E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     84       120   

Aqueous 2951 39 330 8 2974 27 630 12 

Soil     2453 29     2183 29 

Total 2951 39 2867 23 2974 27 2933 21 

 

 C2 Initial BPA Final BPA Initial E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     79       112   

Aqueous 2964 25 333 6 2983 17 633 12 

Soil     2442 20     2178 35 

Total 2964 25 2854 20 2983 17 2923 25 

 

 NS2 Spiked mass of BPA Final BPA Spiked mass of E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     53       69   

Aqueous 3249 52 228 6 3267 45 183 9 

Soil     2005 26     1670 28 

Total 3249 52 2286 23 3267 45 1922 34 

 

 NS3 Spiked mass of BPA Final BPA Spiked mass of E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     54       78   

Aqueous 3216 26 219 7 3258 32 222 9 

Soil     1967 21     1767 26 

Total 3216 26 2240 22 3258 32 2067 34 

 

 NL2 Spiked mass of BPA Final BPA Spiked mass of E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     94       110   

Aqueous 3534 23 254 11 3541 20 303 9 

Soil     2110 35     1724 19 

Total 3534 23 2458 44 3541 20 2137 24 

 

 NL3 Spiked mass of BPA Final BPA Spiked mass of E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     102       116   

Aqueous 3520 21 390 15 3546 18 369 12 

Soil     2162 15     1850 17 

Total 3520 21 2654 21 3546 18 2335 14 
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4.3.8. Sorption vs Biodegradation 

 Figure 4.3 shows the results of sorption test, because there is no 

microbiological activity.  Initial concentration of EDCs is 1,000 μg/L, and final 

concentration is 210 μg/L for E2 and 110 μg/L for BPA after 24 hr.  The 

concentration of EDCs does not change after 24 hr in control test for sorption test, 

but the concentration of EDCs does change in 2-day and 4-day cycles test.  In 

the beginning part of reaction (0 -24 hr), sorption is the main EDCs removal 

mechanism, but biodegradation occurs, so the EDCs decrease continually 

(Figure 4.13 and 4.15).  E1 (bio-transformed from E2) is observed in reactor NS2, 

NS3, NL2, and NL3, but it is not observed in reactor C1 and C2.  Because the 

concentration of BPA is 110 μg/L and E2 is 210 μg/L in aqueous phase of control 

test after 24 hr, the difference concentration of EDCs between abiotic test 

(reactor C1 and C2) and biotic test (reactor NS2, NS3, NL2, and NL3) is due to 

biodegradation. 
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4.4. Conclusions 

  Simulated SAT reactor system has been constructed and demonstrates 

desired behavior during alternating conditions.  The redox condition had linkage 

with alternating aerobic/anaerobic condition.  Nitrification occurred during aerobic 

condition and denitrification occurred during anaerobic condition.  During 

alternating aerobic/anaerobic condition, after longer anaerobic condition, the 

adaptation to aerobic condition from anaerobic is dampened.  Biodegradation 

was differentiated from sorption and the biodegradation was investigated 

depending on the duration of alternating aerobic/anaerobic condition.  BPA and 

E2 can biodegrade during aerobic condition but only E2 can biodegrade during 

anaerobic condition.  This study quantifies the removal of BPA and E2 by the 

process of biodegradation; and most significantly, I am the first to measure how 

the lag time of microbiology during SAT depends upon the transient redox 

conditions (alternating aerobic/anaerobic conditions), which are controlled by the 

system operation.  After longer anaerobic condition, longer lag time occurred in 

aerobic condition right after longer anaerobic condition.  Since the simulated SAT 

system in this phase are more realistic condition about alternating 

aerobic/anaerobic condition, the results from this phase provide a better 

understanding to real SAT system.  The results from this study give good 

information to determine an optimized SAT operation time (no longer 4-day 

anaerobic condition in aquifer under the SAT pond) in order to get high removal 

efficiency of targeted material. 
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CHAPTER 5 

QUANTIFY THE BIODEGRADATION OF EDCS UNDER DIFFERENT 

ANAEROBIC TERMINAL ELECTRON ACCEPTING PROCESSES 

 

5.1. Introduction 

  Denitrification or anoxic denitrification is a standard biological process for 

the remediation of nitrogenous compounds from wastewater. During 

denitrification, NO3
− acts as an electron acceptor and reduced to N2 gas.  Nitrate-

reducing bacteria (NRB) or denitrifiers involved in the denitrification process and 

NRB is usually facultative bacteria.  The facultative bacteria can survive in 

aerobic and/or anaerobic respiration.  Sulfate-reducing bacteria (SRB) which is 

anaerobic bacteria use the sulfate as an electron acceptor.  Organic matter can 

be degraded by SRB in the presence of sulfate in an anaerobic environment.  

Hydrogen sulfide (H2S) gas was produced in anaerobic condition when sulfate 

acts as an electron acceptor.  Most SRB is obligate anaerobes.  Oxygen is the 

most favorable electron acceptor and the next best electron acceptor is NO3
− in 

anaerobic environment.  The electron acceptor affinity of microorganism is the 

following order: O2 >  NO3
− > MnO2 >  FeOOH >  SO4

2− >  CO2 (Kiene 1991). 

 EDCs biodegradation study in aerobic and anaerobic condition was 

performed in respectively (Wackett 1996, Ronen et al. 2000, Veder et al. 2000, 
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Kang and Kondo 2002a, Shi et al. 2004).  However, limited information is 

available in the literature about the degradation of EDCs under different types of 

electron acceptor.  Therefore, it was required that electron acceptor study in 

EDCs remediation during alternating condition between aerobic and anaerobic 

condition. 

 The objective of this study is to compare the different electron acceptors of 

anaerobic microbiology and quantify the biodegradation of EDCs under different 

electron acceptors during alternating cycles between aerobic and anaerobic in 

simulated SAT system.  The working hypothesis of this goal is that different 

electron-accepting processes (nitrate or sulfate) lead to different duration of lag 

time and different biodegradability of EDCs during anaerobic cycles under 

alternating aerobic/anaerobic conditions.  Simulated SAT in batch microcosms 

under alternating aerobic/anaerobic conditions was done, and the reduction of 

nitrate and sulfate conditions in anaerobic condition was compared.  

 

5.2. Materials and Methods 

5.2.1. Chemicals 

 SYTOX Green nucleic acid stain was purchased from Molecular Probes 

(OR USA).  Sodium sulfate (Na2SO4) was purchased from Aldrich (WI USA).  

Methanol (HPLC grade), BPA (purity grade > 99 %), E2 (purity grade > 99 %), 4-

n-Nonylphenol (NP) (purity grade > 99.9), sodium chloride (NaCl, purity grade > 

99.5 %), and MSTFA with 1% TMCS were purchased from Aldrich (WI, USA). 
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5.2.2. Soil and Wastewater 

 Tertiary-treated effluent (final effluent) was obtained from Howard F 

Curren Advanced Waste Water Treatment Plant (WWTP) in Tampa, FL. Aquifer 

soil was obtained from a constructed Wetland Wastewater Treatment System in 

Lakeland, FL.  Characterization of effluent from WWTP is shown in Table 4.1.  

The plant has a design capacity of 96 million gallons per day and the effluent 

water is discharged to Hillsborough Bay or used as reclaimed water for cooling 

and irrigation.  Soil samples were collected from the top 10 cm, 50 cm, and 100 

cm of the pond bed and placed in glass jars.  Upon arrival back to the laboratory, 

the jars were kept under refrigeration.  Collected soil was mixed in the laboratory.  

 

5.2.3. Batch Mesocosm Reactors 

 This study compared and measured the biodegradability of EDCs under 

different oxidation-reduction conditions.  In this study, simulated SAT reactor as 

described in Chapter 4 was used. Simulated SAT systems were set up in 4 L 

reactors with 3 L effluent from WWTP and 500 g aquifer soil placed in each 

reactor. BPA and E2 were spiked to simulated SAT system at an initial 

concentration of 1,000 µg/L.  This concentration is higher than could be observed 

in most WWTP effluent streams.  However, for this research, I chose to use a 

high EDCs concentration in order to prove the clear variation of EDCs during 

alternating conditions.  If the initial EDCs concentration were too low then won‟t 

be able to observe removal of up to 99%.  In general, batch simulated SAT 

mesocosms were run under alternating aerobic/anaerobic conditions.  The 
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simulated SAT systems were operated in a dark environment (the reactor was 

wrapped in aluminum foil) at room temperature (˚C).  Schematic diagram of 

simulated SAT reactor is shown in Figure 4.1 and the photograph of a simulated 

SAT reactor is shown in Figure 4.2. 

 Because the SAT system is alternating between aerobic and anaerobic 

condition, simulated SAT systems were established by passing either air (21% 

O2) or N2 gas (O2 free) in order to make the alternating aerobic and anaerobic 

conditions.  Aerobic environment was established by air gas passing through the 

simulated SAT system, and then it was switched to anaerobic environment by N2 

gas passing through the system.  The gas tank was connected with the simulated 

SAT reactor by fluoropolymer tubing and a syringe.  The simulated SAT system 

was capped by silicone sealing in order to control the aerobic/anaerobic 

condition, and the air gas and N2 gas were connected through this cap by 

syringe.  Aerobic environment and anaerobic environment were manually 

switched by reconnecting the fluoropolymer tube and syringe.  In addition, 

sampling syringe was connected through the cap. 

 In order to make anoxic or anaerobic condition during anaerobic cycles, 

nitrate or sulfate was spiked to simulated SAT system at an initial concentration 

of 1,000 mg/L.  This concentration is higher than could be observed in most 

WWTP effluent streams.  However, for this research, I chose to use a high 

concentration in order to prove the clear variation of nitrate or sulfate during 

alternating conditions and won‟t be able to observe removal of up to 99%.  When 

I put the nitrate or sulfate into the reactor respectively, nitrate condition refers to 
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anoxic, and sulfate condition refers to anaerobic condition.  Batch mesocosm 

reactors were used for lab experiments, and different electron acceptors were 

tested.  Nine simulated SAT batch reactors were prepared (Table 5.1 shows the 

condition of reactor; test was based on the triplicate); three control tests for 

sorption test without microbiological activity (Reactor C1,C2, and C3; same 

condition), and the other six test for comparison of different electron acceptors 

(nitrate; reactor NS1, NS2, and NS3; same condition, sulfate; reactor S1, S2, and 

S3; same condition).  Test was based on the triplicate.  Control test was studied 

to distinguish between sorption to the soil and biodegradation during simulated 

SAT system.  In order to know only sorption amount to the soil without 

microbiological activities, 1,000 mg/L NaN3 was used for soil sterilization in 

control test (Kao et al. 2004, Zhang et al. 2009). 

 

 

Table 5.1. The condition of nine simulated SAT batch reactors  
 

Reactor # Condition of Reactor Duration (day) 

C1 Control for sorption test 20  
C2 Control for sorption test 20  
C3 Control for sorption test 20  

 Alternating system During anaerobic  Aerobic-Anaerobic 

NS1 3 aerobic/ 2anoxic Anoxic denitrification 23 3-2-3-2-3-2-3-2-3 
NS2 3 aerobic/ 2anoxic Anoxic denitrification 23 3-2-3-2-3-2-3-2-3 
NS3 3 aerobic/ 2anoxic Anoxic denitrification 23 3-2-3-2-3-2-3-2-3 

 Alternating system During anaerobic  Aerobic-Anaerobic 

S1 3 aerobic/ 2anoxic Sulfate present 23 3-2-3-2-3-2-3-2-3 
S2 3 aerobic/ 2anoxic Sulfate present 23 3-2-3-2-3-2-3-2-3 
S3 3 aerobic/ 2anoxic Sulfate present 23 3-2-3-2-3-2-3-2-3 
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5.2.4. Sampling and Analysis 

 On the first day of each aerobic and anaerobic condition, six samples 

were taken (volume of sample is 10 mL, sampling time is 1, 3, 6, 10, 16, and 24 

hr).  Then, three samples of each condition were taken each day thereafter (the 

frequency of sampling is 1 per 8 hour).  BPA and E2 were extracted from 

samples by SPME and analyzed by GC/MS (as described in Chapter 3).  When 

the concentration of EDCs was below 100 μg/L (90 % removal), EDCs were re-

spiked (100 μg/L additional). 

 Nitrate, nitrite and sulfate were analyzed by Metrohm Ion Chromatography 

(881 Compact IC pro and 863 Compact Autosampler), using a Metrosep A Supp 

7-250 (250 mm x 4 mm) analytical column, the eluent was sodium carbonate (3.6 

mmol/L), and the flow rate was 0.7 ml/min. 

 The microbial population was estimated by the flow cytometry (BD 

FACSCanto II Analyzer, High-throughput flow cytometer).  SYTOX Green Nucleic 

Acid Stain was used to dye the bacteria.  1 mL aquous sample was mixed with 1 

mL 4% paraform aldehyde and stay 5 min. It was centrifuged and discard the 

supernatant.  Put the stain (5 μM, 300 μL) into precipitation and resuspension. 

Put 200 μL sample into 96 tray and detect the microbes by flow cytometry.  It is a 

direct enumeration method (Gunasekera et al. 2000, Chen et al. 2001).  

Microorganism stained with SYTOX Green Nucleic Acid Stain yield bright and 

stable fluorescent signals that could be detected by flow cytometry. 

 Dissolved oxygen concentrations monitored by a YSI DO200 DO meter, 

and the redox state was checked by pH100 redox potential meter. 
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5.3. Results and Discussion 

5.3.1. Dissolved Oxygen 

  Dissolved oxygen concentration in alternating between aerobic and 

anaerobic condition is shown in Figure 5.1 and 5.2.  Although different (nitrate 

and sulfate) reducing condition was compared under anaerobic condition, 

dissolved oxygen concentration is similar with Chapter 4.  In both reducing 

condition, during aerobic condition the dissolved oxygen level is between 7.5 

mg/L and 7.9 mg/L (oxygen concentration in saturated condition at room 

temperature: 9.09 mg/L at 20 ˚C, and 8.26 mg/L at 25 ˚C), and during anaerobic 

condition the dissolved oxygen level is between 0.3 mg/L and 0.5 mg/L, because 

simulated SAT system was established by passing either air (21% O2) or N2 gas 

(O2 free) in order to make the alternating aerobic and anaerobic conditions.  

Aerobic environment was established and continued by air gas passing through 

the simulated SAT system, and then it was switched to anaerobic environment by 

N2 gas passing through the system.  As seen in Figure 5.1 and 5.2, the 

concentration of dissolved oxygen dropped very quickly when the reactor was 

switched from air to N2, and rose very quickly when the reactor was switched 

from N2 to air. 

  The aerobic condition is that when the microorganism(s) used O2 as the 

terminal electron acceptor, and the anaerobic/anoxic condition is that when the 

microorganism(s) carry out the fermentation without terminal electron acceptors 

or uses the chemicals (nitrate, sulfate, iron, etc.) as terminal electron acceptors.  
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Figure 5.1. Concentration of dissolved oxygen as a function of time in reactors 

with a 2-day anaerobic cycle. Nitrate was provided as an electron 
acceptor for anaerobic cycles. (Rectangular boxes indicate 
anaerobic periods) 

 
 

 
 
Figure 5.2. Concentration of dissolved oxygen as a function of time in reactors 

with a 2-day anaerobic cycle. Sulfate was provided as an electron 
acceptor for anaerobic cycles. (Rectangular boxes indicate 
anaerobic periods) 
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5.3.2. Oxidation-Reduction (Redox) Potential Level 

 The redox potential of the water in the reactor responded rapidly to 

changes in the aeration status of the water.  Figure 5.3 and 5.4 shows the redox 

potential level in each nitrate and sulfate added condition.  The maximum redox 

potential under aerobic conditions for all treatment was approximately +240 mV.  

The redox potential was rapidly decreased right after air was switched by N2 gas.  

The redox potential level was fallen down to approximately -100 mV in anoxic 

condition and -150 mV in anaerobic condition, and remained at this value 

throughout anaerobic condition.  On the contrary to this, the redox potential was 

rapidly increased right after N2 gas was switched by air.  For the aerobic 

condition the redox potential level increased rapidly to approximately + 240 mV 

and remained constant for the entire aerobic period (3 days).  
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Figure 5.3.  Redox potential as a function of time in reactors with a 2-day 

anaerobic cycle. Nitrate was provided as an electron acceptor for 
anaerobic cycles. (Rectangular boxes indicate anaerobic periods) 

 
 

 
 
Figure 5.4.  Redox potential as a function of time in reactors with a 2-day 

anaerobic cycle. Sulfate was provided as an electron acceptor for 
anaerobic cycles. (Rectangular boxes indicate anaerobic periods) 
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5.3.3. Concentration of Electron Acceptor 

 Different electron acceptors were tested and the results and the behavior 

are showed in Figure 5.5 and 5.6.  Nitrate and sulfate was selected because 

these elements play a major role in the redox chemistry.  As described in 

Chapter 4, the nitrification and denitrification phenomenon is observed in Figure 

5.5.  Even though sulfate reduction was observed in anaerobic conditions, the 

level was relatively low.  The role of nitrate as an electron acceptor is effective in 

alternating aerobic and anaerobic systems, but the sulfate is not effective as an 

electron acceptor. 
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Figure 5.5.  Concentration of nitrate and nitrite as a function of time in reactors 

with a 2-day anaerobic cycle. Nitrate was provided as an electron 
acceptor for anaerobic cycles. (Rectangular boxes indicate 
anaerobic periods) 

respike 

respike 

respike 
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Figure 5.6.  Concentration of sulfate as a function of time in reactors with a 2-day 

anaerobic cycle. Sulfate was provided as an electron acceptor for 
anaerobic cycles. (Rectangular boxes indicate anaerobic periods) 
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5.3.4. Quantification of Biomass 

 The individual cells or bacteria were measured with flow cytometry.  

Figures 5.7 and 5.8 show the number of microorganism during test.  Bacteria 

number was quantified by measuring the fluorescence from cells stained.  The 

bacteria were stained by SYTOX Green dye.  The number of bacteria was 

compared with different electron acceptor (nitrate and sulfate) conditions, and the 

result shows that bacteria are at greater concentrations in nitrate reducing 

condition compared to sulfate present condition.  When the condition was 

changed from aerobic to anaerobic, and from anaerobic to aerobic conditions, 

the microbes required some length of time to acclimate themselves to the 

environment (Crane and Novak, 2001) which is lag time.  Exposure of aerobic 

microbes to anaerobic environments and exposure of anaerobic microbes to 

aerobic environments caused physiological stress.  When the condition was 

changed, the concentration of microbes initially decreased, and increased after a 

lag peroid.  The lag time in aerobic conditions followings sulfate present 

conditions was longer than after nitrate reducing condition.  
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Figure 5.7.  The number of microbes by Flow Cytometry as a function of time in 

reactors with a 2-day anaerobic cycle. Nitrate was provided as an 
electron acceptor for anaerobic cycles. (Rectangular boxes indicate 
anaerobic periods) 
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Figure 5.8.  The number of microbes by Flow Cytometry as a function of time in 

reactors with a 2-day anaerobic cycle. Sulfate was provided as an 
electron acceptor for anaerobic cycles. (Rectangular boxes indicate 
anaerobic periods) 
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5.3.5. Concentration of EDCs 

 This study investigated the degradation of EDCs in the presence of 

different electron acceptors (nitrate and sulfate) under simulated SAT systems.  

The electron acceptor change causes the microbiological activity in simulated 

SAT systems.  Nitrate and sulfate as an electron acceptor was added into 

separate simulated SAT reactors in order to create nitrate and sulfate reducing 

conditions respectively.  EDCs oxidation was dependent upon nitrate reduction or 

sulfate reduction and the biodegradation of EDCs was compared.  This study 

demonstrates the different EDCs degradation with different electron acceptor.  

The results of EDCs concentration in different electron accepting tests (nitrate 

and sulfate) are shown in Figure 5.9 and 5.11 respectively.  Biodegradation and 

sorption of EDCs occurred at the same time in the initial aerobic period.  After 48 

hr, biodegradation of EDCs was the main removal phenomenon because 

sorption equilibrates within 48 hr (Figure 4.3).  Biotransformation of E2 to E1 was 

observed over the course of the experiment.  E1 concentration is shown in Figure 

5.10 (nitrate) and 5.12 (sulfate). E2 degradation was slower under anaerobic 

conditions than aerobic conditions and BPA was not degraded under anaerobic 

conditions in nitrate reducing and sulfate present condition.  In sulfate present 

condition, EDCs degradation is much slower than nitrate reducing condition.  E2 

degradation amount is higher under nitrate reducing condition than sulfate 

present condition. Overall, EDCs degradation has different trend in different 

electron accepting systems.  E2 is more biodegradable than BPA, and EDCs 

biodegradation is much higher with nitrate reducing condition than sulfate present 
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condition during simulated SAT system. Moreover, the results show the different 

lag time in different electron accepting systems.  There are longer lag time in 

aerobic condition right after the anaerobic condition within sulfate present 

condition than nitrate reducing condition.  Figure 5.13 shows the results of lag 

time.  When the condition was changed from aerobic to anaerobic, and from 

anaerobic to aerobic conditions, the microbes require a length of time to 

acclimate themselves to the environment (Crane and Novak, 2001) which is lag 

time.  Exposure of aerobic microbes to anaerobic environments and exposure of 

anaerobic microbes to aerobic environments caused physiological stress.  

Because microbes have physiological stress, biodegradation of EDCs were 

decreased during lag time.  Lag time was decided by when concentration 

decreases less than 5 %.  The longer lag time (34-42 hr) is showed in sulfate 

reducing condition and shorter lag time (18-26 hr) is showed in nitrate reducing 

condition.   
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Figure 5.9.  Concentration of EDCs as a function of time in reactors with a 2-day 
anaerobic cycle. Nitrate was provided as an electron acceptor for 
anaerobic cycles. (Rectangular boxes indicate anaerobic periods) 

 

 

Figure 5.10.  Concentration of E1 as a function of time in reactors with a 2-day 
anaerobic cycle. Nitrate was provided as an electron acceptor for 
anaerobic cycles. (Rectangular boxes indicate anaerobic periods) 

respike 
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Figure 5.11.  Concentration of EDCs as a function of time in reactors with a 2-day 
anaerobic cycle. Sulfate was provided as an electron acceptor for 
anaerobic cycles. (Rectangular boxes indicate anaerobic periods) 

 

 

Figure 5.12.  Concentration of E1 as a function of time in reactors with a 2-day 
anaerobic cycle. Sulfate was provided as an electron acceptor for 
anaerobic cycles. (Rectangular boxes indicate anaerobic periods) 

respike 
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(a) aerobic condition with nitrate                          (b) aerobic condition with sulfate 
 
Figure 5.13.  Concentration of EDCs as a function of time in reactors with a 2-day 

anaerobic cycle. Nitrate and sulfate was provided as an electron 
acceptor for anaerobic cycles. (a) nitrate as a electron acceptor (left 
side), (b) sulfate as a electron acceptor (right side). 
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5.3.6. Mass Balance of EDCs 

 Mass balance of EDCs is checked before and after the reaction.  Figure 

5.14 shows the mass balance of EDCs in sorption test (reactor C1 and C2), 

nitrate reducing condition (reactor NS2 and NS3), and sulfate present condition 

(reactor S2 and S3).  Figure 5.14 compares the spiked and final amount of EDCs.  

Spiked amount of BPA and E2 is 3,000 μg for reactor C1 and C2, 3,300 μg for 

reactor NS2, NS3, S2, and S3 (respike once).  After finishing the reaction, 

aqueous and soil samples were collected and analyzed by GC/MS.  5 samples of 

aqueous phase and soil were tested, and the average results are shown in 

Figure 5.14.  In statistical t-test, the t value is equal to or less than 0.05.  Average 

results, standard deviation, and sampling mass of EDCs are shown in Table 5.2.  

During test I collected 89 samples for 2-day cycles (reactor NS2 and NS3), and 

89 samples for 2-day cycles (reactor S2 and S3).  Each sample was 10 ml and 

contained BPA and E2.  Therefore a significant mass of the EDCs were removed 

from reactors during sampling and must be taken into account in the mass 

balance.  EDCs in aqueous phase were extracted by SPME, and in soil were 

extracted by methanol. 2 g soil samples were collected and dried at room 

temperature (20 ˚C, 24 hr), and 10 mL methanol was inserted into soil and 

shaken for 24 hrs in a 40 ml glass vial.  Methanol was separated by centrifuge 

and evaporated by gentle nitrogen gas.  It was derivatized by MSTFA and 

detected by GC/MS.  Final EDCs amount is showen in Figure 5.14. In reactor C1 

and C2, where biodegradation was suppressed by NaN3, the average recovery of 

BPA was 96.8 % and the average recovery of E2 was 98.3 %.  In reactor NS2 
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and NS3, average recoveries were 70.1 % and 61.1 % for BPA and E2 

respectively.  In reactor S2 and S3, average recoveries were 82.6 % and 86.9 %. 

This shows that biodegradation was minimal in the sorption control tests and 

biodegradation amount of EDCs in nitrate reducing conditions (reactor NS2 and 

NS3) is higher than sulfate present conditions (reactor S2 and S3). 
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Figure 5.14.  Mass balance of EDCs in aqueous and soil with a control test and 
2-day anaerobic cycles. Nitrate and sulfate was provided as an 
electron acceptor for anaerobic cycles. 

 

 

 

97.2 % 98.6 % 96.3 % 98.0 % 

70.4 % 58.8 % 69.7 % 63.4 % 

83.3 % 87.3 % 81.8 % 86.4 % 
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Table 5.2.    Mass balance of EDCs in aqueous and soil with a control test, 2-day 
and 4-day anaerobic cycle. Nitrate and sulfate was provided as an 
electron acceptor for anaerobic cycles. Average data from 5 
samples and standard deviation. 

 

 

 C1 Initial BPA Final BPA Initial E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     84       120   

Aqueous 2951 39 330 8 2974 27 630 12 

Soil     2453 29     2183 29 

Total 2951 39 2867 23 2974 27 2933 21 

 

 C2 Initial BPA Final BPA Initial E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     79       112   

Aqueous 2964 25 333 6 2983 17 633 12 

Soil     2442 20     2178 35 

Total 2964 25 2854 20 2983 17 2923 25 

 

 NS2 Spiked mass of BPA Final BPA Spiked mass of E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     53       69   

Aqueous 3249 52 228 6 3267 45 183 9 

Soil     2005 26     1670 28 

Total 3249 52 2286 23 3267 45 1922 34 

 

 NS3 Spiked mass of BPA Final BPA Spiked mass of E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     54       78   

Aqueous 3216 26 219 7 3258 32 222 9 

Soil     1967 21     1767 26 

Total 3216 26 2240 22 3258 32 2067 34 

 

 S2 Spiked mass of BPA Final BPA Spiked mass of E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     58       113   

Aqueous 3237 17 293 13 3240 13 628 12 

Soil     2346 16     2086 23 

Total 3237 17 2697 29 3240 13 2827 34 

 

 S3 Spiked mass of BPA Final BPA Spiked mass of E2+E1 Final E2+E1 

  Average S.D. Average S.D. Average S.D. Average S.D. 

Sample     59       114   

Aqueous 3256 15 312 10 3234 14 642 11 

Soil     2292 12     2037 15 

Total 3256 15 2663 21 3234 14 2793 26 
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5.3.7. Sorption vs Biodegradation 

 Figure 4.3 shows the results of sorption test, because there is no 

microbiological activity.  Initial concentration of EDCs is 1,000 μg/L, and final 

concentration is 210 μg/L for E2 and 110 μg/L for BPA after 24 hr.  The 

concentration of EDCs is not change after 24 hr in control test for sorption test, 

but the concentration of EDCs is change in nitrate reducing and sulfate present 

cycles test.  In the beginning part of reaction (0 -24 hr), sorption is the main 

EDCs removal mechanism but the biodegradation is exist, so the EDCs is 

decreasing continually (Figure 5.9 and 5.11).  E1 (bio-transformed from E2) is 

observed in reactor NS2, NS3, S2, and S3, but it is not observed in reactor C1 

and C2.  Because the concentration of BPA is 110 μg/L and E2 is 210 μg/L in 

aqueous phase of control test after 24 hr, the difference concentration of EDCs 

between abiotic test (reactor C1 and C2) and biotic test (reactor NS2, NS3, S2, 

and S3) is biodegradation. 
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5.4. Conclusions 

 In this Chapter the simulated SAT reactor with different electron acceptor 

(nitrate and sulfate) and compare the lag time and EDCs bioremediation.  The 

important innovation is that the biodegradability is differentiated depend on 

different electron acceptor.  Nitrate and sulfate as the electron acceptor of 

anaerobic condition affects the biodegradation of EDCs during anaerobic 

condition in alternating system under simulated SAT reactor.  And it affect the 

duration of lag time and different biodegradability of EDCs in the aerobic cycle 

during alternating aerobic/anaerobic conditions.  In nitrate reducing condition, the 

EDCs biodegradability is much higher than sulfate present condition.  The lag 

time is longer in sulfate present condition than nitrate reducing condition. 
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CHAPTER 6 

CONCLUSIONS 

 

 The important innovation in this study is the linkage of the observed EDCs 

degradation to the prevailing redox conditions in the simulated SAT system.  This 

project will help SAT to become a viable means of providing a sustainable and 

low-cost supply of clean water around the world.  

 Important conclusions from this work include: (1) The comparison between 

SPE and SPME provided useful guidance to scientists and engineers who are 

trying to develop and select a useful analytical procedure for EDCs in aqueous 

samples at the ng/L to µg/L range; (2) A broader range of concentrations with 

large sample volumes can be analyzed by SPE, and it has a lower material cost, 

but more labor is required; (3) Small sample volume and limited range of 

concentration can be analyzed by SPME, and it is expensive due to frequent 

replacement of fiber, but less labor-intensive; (4) MSTFA yield higher peak areas 

than BSTFA for headspace (on-fiber) deriviatization during SPME; (5) E2 is 

biodegraded during aerobic, anoxic and anaerobic cycles, but BPA is 

biodegraded only during aerobic cycles; (6) The lag period is observed whenever 

the redox condition in the systems is switched and there is no biodegradation of 

EDCs during lag time; (7) The long anaerobic cycle (4-day) cause long lag time 
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for biodegradation in the aerobic cycle. So, anaerobic cycles should not last 

longer than 4 days because longer anaerobic condition cause the longer lag time 

and lower EDCs biodegradability; (8) Nitrate reducing condition is more suitable 

than sulfate present condition in EDCs biodegradation in alternating SAT system 

between aerobic and anaerobic condition. 

  I expect this research to have an impact at the national and international 

level, for several reasons.  First, interest in water reuse is increasing rapidly, both 

in the US and abroad (Metcalf and Eddy 2007).  Second, I am, to the best of my 

knowledge, the first researcher to consider biodegradation of EDCs under 

alternating aerobic/anaerobic conditions.  These alternating cycles are likely to 

control biodegradation of EDCs not only during SAT, but also during other low-

cost water-treatment strategies such as riverbank filtration, which is widely 

applied in Europe.  Third, the results of this work have important practical 

implications for the management of SAT systems.  For instance, I am the first to 

demonstrate how the operating parameters (e.g., length of flooding and drying 

cycles) affect the quality of the re-used water.  Thus, as a result of this project, 

we may be able to determine the optimal length of flooding and drying cycles 

required to ensure that the targeted contaminants are removed during 

percolation through the vadose zone.  Hence, I anticipate that this project will 

have a significant impact on our ability to provide a sustainable water supply at 

low cost. 
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