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Abstract

The Reproducing Kernel Element Method is a numerical technique that combines finite

element and meshless methods to construct shape functions of arbitrary order and continu-

ity, yet retains the Kronecker-δ property. Central to constructing these shape functions

is the construction of global partition polynomials on an element. This dissertation shows

that asymmetric interpolations may arise due to such things as changes in the local to global

node numbering and that may adversely affect the interpolation capability of the method.

This issue arises due to the use in previous formulations of incomplete polynomials that

are subsequently non-affine invariant. This dissertation lays out the new framework for

generating general, symmetric, truly minimal and complete affine invariant global parti-

tion polynomials for triangular and tetrahedral elements. It is shown that this new class of

reproducing kernel element solves the asymmetry issue that affected previous developed

elements. The interpolation capabilities of this new class of reproducing kernel elements is

studied in problems of surface representations and in solving problems of bending of thin

plates using a Galerkin approach. Optimal convergence rates were observed in the solu-

tion of Kirchhoff plate problems with rectangular domains. Furthermore, it is shown that

the new proposed two-dimensional elements out perform the previous elements with the

addition of only a few internal degrees of freedom.

ix



Chapter 1

Introduction

1.1 Motivation

The construction of functions k-times continuously differentiable and globally compat-

ible in multiple dimensions was the main goal during the initial development of the Finite

Element Method in the 1960’s and 1970’s before the idea was abandoned for its extreme

difficulty [26]. Then, a question arose, why do we want k-times continuously differentiable

and globally compatible functions? One answer is because we want to solve fourth-order

differential equations, as in thin plate problems [54], using a Galerkin approach, and it will

lead to an irreducible form that requires, at least, functions with continuous first deriva-

tives [59]. Also, higher order interpolations associated with the space of functions k-times

continuously differentiable, where k ≥ 1, are believed to have better computational perfor-

mance than the standard space of continuous functions [27]. The Finite Element Method

(FEM) has been the de facto standard to solve the partial differential equations that appears

in important problems in engineering and science. However, there are important problems

where the Finite Element Method does not perform well due to the difficulty in the con-

struction of globally and compatible k-times continuously differentiable space of functions.

One of these areas is the formulation of effective and reliable plate elements, that require
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globally compatible functions with continuous first derivatives. Several attempts were car-

ried out to develop those elements, the most important are cited in [2, 11, 13, 14, 24, 28].

The meshless community has attempted to develop interpolation schemes to solve the prob-

lem of bending of thin plates. Some of those schemes are cited in [31, 32, 34, 40, 56–58].

Their most important drawback is the difficulty in the imposition of Dirichlet boundary

conditions on nodes. An excellent account of the problem is presented in [23]. The Repro-

ducing Kernel Element Method (RKEM) [29, 33, 38, 42, 50], is the first method developed

that has k-times continuously differentiable and globally compatible functions in multiple

dimensions, yet retains the Kronecker-δ property on the nodes. Table 1.1 presents a com-

parison of the finite element method with the reproducing kernel element method. From

the table aforementioned, we notice that both methods require an element mesh for the

shape functions creation. Figure 1.1(a) shows a simple example of how meshing a do-

main with quadrilaterals elements, using an automatic mesh generator routine, introduces

excessive aspect ratios (see Appendix B) and geometric distortions of the elements. The

latter inevitably degrade the interpolation capability of the method. It can be explained

mathematically in the context of the finite element method using the expression for the

interpolation error [9], as follows,

‖u−uh‖2
1 ≤ c∑

m
h2k

m ‖u‖2
k+1,m (1.1)

where m denotes an individual element, hm is a measure of the size of the element, c is a

constant independent of hm, u represent the exact solution, uh represent the interpolated
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function, k represent the order of the polynomial space used for interpolation and ‖•‖k are

norms (see Appendix A). Hence, the total interpolation error is estimated summing the local

contribution from each element. Therefore, regions with geometrically distorted quadrilat-

eral elements will introduce considerable errors in the interpolated solution. On the other

hand, the generation of a good quality quadrilaterals mesh (mapped mesh) will require the

geometry to be built as a series of fairly regular volumes and/or areas that can accept a

mapped mesh [1], undeniably, a time consuming task that will involve significant human

interaction with the software. Figure 1.1(b) shows the same domain as before, but meshed

using triangular elements, it can be seen that the automatic meshing generator routines pro-

vides triangular elements with good aspect ratio and small geometric distortions. Then,

why linear triangular elements are not recommended in finite element? Because, it is well

known that linear triangular elements have poor performance solving important engineer-

ing problems, for example, they suffer from “locking” phenomena in bending dominated

problems [59], and therefore some solution variables are under predicted, unlike quadri-

laterals elements. Whereas, the Reproducing Kernel Element Method based on triangular

elements is not affected by the same finite element issue just mentioned. Although, a good

aspect ratio of elements in the mesh is preferred in the RKEM.

Another field where RKEM was explored, was geometry representation, modification

and iterative design [18, 49]. In fact, an asymmetry issue with the geometry representation

of the circle was detected in [49] and it motivated the development of a new class of RKEM

elements with symmetric behavior and truly minimal degrees of freedom.

3



(a) Quadrilateral elements. Red circles shows region with poor element quality.

(b) Triangular elements.

Figure 1.1 Domain meshed using an automatic meshing generator program.
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Table 1.1 Comparison between Finite Element and Reproducing Kernel Element ( adapted
from [36] ).

Items Finite Element Reproducing Kernel
Element

1. Element mesh yes yes
2. Mesh creation and

automatization
Difficult for quadrilat-
erals and hexahedral el-
ements

Relatively easy for tri-
angular and tetrahedral
elements

3. Shape function cre-
ation

Element based Nodal and element
based

4. Shape function
property

Satisfy Kronecker-δ
condition. C0 func-
tions.

Satisfy Kronecker-δ
condition. Ck func-
tions; k ≥ 0.

5. Stiffness matrix Symmetrical Symmetrical
6. Imposition of essen-

tial boundary condi-
tions

Easy and standard Easy but weakly en-
forced

7. Post-processing of
derived variables

Special technique re-
quired

Direct interpolation and
differentiation

8. Stage of develop-
ment

Mature Infancy

9. Commercially
available software

Many None
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1.2 Objective

The goal of research in computational mechanics is to develop methods to assist in the

engineering design process, using computational approaches, to characterize, predict, and

simulate physical events in engineering systems. An important ingredient of the compu-

tational approach is the generation of a space of basis functions that are capable of rep-

resenting solution variables in a Galerkin weak formulation. One of these methods is the

well known finite element method. However, the finite element method has its limitations

in solving important practical problems in engineering and therefore, other methods have

evolved to address its weaknesses. One of these weaknesses is the construction of a space

of basis functions k-times continuously differentiable and globally compatible in multiple

dimensions. The Reproducing Kernel Element Method is a relatively new method that al-

lows us the construction of such a space of basis functions by combining finite element and

meshless methods. An important ingredient of the Reproducing Kernel Element Method is

the construction of the so-called global partition polynomial, therefore, a robust framework

for constructing the global partition polynomials is crucial for the success of the method.

The goal of this dissertation is to lay out the framework for generating general, sym-

metric and truly minimal global partition polynomials necessary to construct a space of

of basis functions k-times continuously differentiable and globally compatible in multiple

dimensions and evaluate their performance in interpolation and in solving bi-harmonic dif-

ferential equations that are difficult or even impossible to solve using the well established

finite element method.
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Chapter 2

Background

2.1 Interpolation Using Reproducing Kernel Element Shape Functions

An important application area for RKEM is the interpolation of a set of points. Ac-

cording to [55], we can distinguish two types of fitting, interpolation and approximation.

The difference is interpolation goes through the points, and approximation does not. Meth-

ods like finite element and finite differences use the concept of interpolation, on the other

hand, popular meshless methods use the concept of approximation. This difference has

an enormous impact on the application of the methods. In this chapter we introduce the

interpolation capability of the reproducing kernel element method.

2.2 Concept of Shape Function in Reproducing Kernel Element Method

A shape function is the name given to a collection of functions used to interpolate or

approximate a data set. The success of an interpolation/approximation depends on the

shape functions chosen. In general we want a method capable of representing a function

at some point just using the information in its vicinity. A number of ways to construct

shape functions have been proposed and we can find a considerable literature about them.

Liu [36] classifies these methods in three major categories:

7



1. Finite integral representation methods where the function is represented using its

information in a local domain via an integral form,

f (x)≈
∫ x2

x1

f (ξ )κρ (x−ξ ;x) dξ (2.1)

where κρ (x−ξ ;x) is known as the kernel and ρ as the support size. Figure 2.1 is

a pictorial definition of the support size for a two-dimensional space with a circular

support. The solid circles represents nodes location and xQ is an evaluation point.

The kernel is evaluated for the nodes that are inside the circle of radius ρ . A mathe-

matical definition of the support size is given in §2.2.3.2.

2. Finite series representation methods where the function is interpolated using a basis

of functions, as follows,

f (x)≈ a0 +a1 p1(x)+a2 p2(x)+ · · · (2.2)

where p1 (x) , p2 (x) , . . . are functions that depend on the nodes position but not on

the constants a0,a1, . . . Usually the functions are constructed using a Lagrange inter-

polation, but it is not limited to them.

3. Finite differential representation methods where the function is approximated as a

finite sum of terms that are calculated from the values of the function’s derivatives at

8



ρ

xQ

Figure 2.1 Support size.

a single point,

f (x)≈ f (x0)+ f ′ (x0)(x− x0)+
1
2!

f ′′ (x0)(x− x0)2 + · · · (2.3)

where x0 is an arbitrary point inside the interval of interpolation, and f ′ (•) , f ′′ (•) , · · ·

are the derivatives of the function to represent.

Mathematically the finite differential representation method can be seen as a particular case

of the finite representation method. However, conceptually they are differents, the former

can be seen as a Lagrange interpolation and the latter is an application of the Taylor’s

theorem [30]. An important property when we deal with interpolation is the Kronecker-δ

property. It definition is given below,

Definition 2.2.1 ( Kronecker-δ property ) Let φI (x) denote a function evaluated at point

x ∈ℜd , for the node I, where, I = 1,2, . . . ,N, being N the number of nodes in the domain.

Let xI ∈ℜd denote the location of the node I. Then, the Kronecker-δ property means,

φI (xJ) = δIJ I,J = 1,2, . . . ,N (2.4)

9



where,

δIJ =





1 if I = J

0 if I 6= J

(2.5)

The reproducing kernel element shape function is closely related to the finite integral rep-

resentation and furthermore it has some distinguishing features [38]:

1. The smoothness of the global basis functions are solely determined by that of the

kernel function. Smoothness in this dissertation means functions that are continuous

and at least one derivatives exist and is continuous [26].

2. The global basis functions of RKEM have the Kronecker delta property at the associ-

ated nodes, provided that some conditions on the support size of the kernel function

are met [17].

To understand the finite integral representation and its associated problem, we show an

example in Fig. 2.2. The exact function we want to represent is given by

f (x) = (1− x) [arctan(α (x− x̄))+ arctan(α x̄)] (2.6)

where α = 50.0 and x̄ = 0.40. From Fig. 2.2 it can be seen that the approximation is

continuous and smooth. At the same time, the support size has a direct impact on the

approximation function accuracy. The function shown in Eq. (2.6) is zero when x = 0 and

x = 1, that is, f (0) = f (1) = 0. We have placed nodes at both ends, and we expect that

if the approximation has the Kronecker-δ property, then when the approximation formula

10
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Figure 2.2 Comparison between exact and approximate function for two different kernels
using the finite integral approximation.
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is evaluated at those nodes, its value must be zero. But that is not the case. Most of

the meshless method are based, in one way or another, on a finite integral representation,

therefore they will inherit the lack of Kronecker-δ property. Whereas, the reproducing

kernel element method has the Kronecker-δ on the desired nodes, as it will be explain in

§2.2.3.3.

To clarify the subsequent exposition of the RKEM interpolant some definitions about

continuity, global partition polynomials and multi-index notations are essential.

Definition 2.2.2 ( Continuity ) (Hughes [26]) A function f : Ω→ℜ is said to be k-times

continuously differentiable, or class Ck = Ck (Ω), if its derivatives of order j, where 0 ≤

j ≤ k, exist and are continuous functions.

Definition 2.2.3 ( Global Partition Polynomials ) (Li and Liu [35]) Consider a finite el-

ement discretization, Ωe,e ∈ ΛE := {1,2,3, . . . ,nel} where nel is the total number of ele-

ments. We assume that each element, Ωe, has nnp number of vertexes, or nodes. We further

assume that there are linearly independent functions {ψe,i} , i∈Λe :=
{

1,2,3, . . . ,nnp
}

and

such that the following reproducing property of order k holds:

∑
i∈Λe

ψe,i(x)x
γ
e,i = xγ ∀γ : |γ | ≤ k, ∀x ∈ Ω̄ (2.7)

Where, ψe,i are globally defined polynomial functions, we call them global partition poly-

nomials.

12



The global partition polynomial could be seen as finite element shape functions that are

extended beyond the element domain, and therefore the adjective “global” was added to

the name. From definition 2.2.3, it is clear that the global partition polynomial should form

a partition of unity in Λe if the reproducing property of order zero is enforced. The proof

is self evident, because

∑
i∈Λe

ψe,i(x)x0
e,i = x0, ∀x ∈ Ω̄ =⇒ ∑

i∈Λe

ψe,i(x) = 1, ∀x ∈ Ω̄ (2.8)

Definition 2.2.4 ( Multi-Index Notation ) (Li and Liu [35]) Let Zd denote the set of all

ordered d-tuples of non-negative integers. A multi-index is an ordered collection (d-tuples)

of d non-negative integers, α = (α1,α2, · · · ,αd), and its length is defined as

|α |=
d

∑
i=1

αi (2.9)

we write α! = α1!α2! · · ·αd! and xα = xα1
1 xα2

2 · · ·xαd
d . For a differentiable function u(x) and

any α with |α| ≤ p,

Dαu(x) =
∂ |α|u(x)

∂xα1
1 · · ·∂xαd

d
(2.10)

is the αth order partial derivative. As usual, D0u(x) = u(x).

In addition to the reproducing condition (2.7), the global partition polynomial has the

Kronecker-δ property, as has been proved in [33]

Dαψ(β )
e,i

∣∣∣
x=x j

= δi jδαβ , xi, x j ∈Ωe, |α |, |β | ≤ m (2.11)
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2.2.1 The Reproducing Kernel Element Interpolant

The reproducing kernel element interpolant is a hybrid between the finite integral rep-

resentation and the global partition polynomial that produces globally compatible shape

functions of arbitrary degree. The RKEM shape functions could be used for interpolation,

approximation or even approximation/interpolation at the same time, provided some con-

ditions on the kernel function are met [17]. This interpolation/approximation capability is

because we are free to assign the Kronecker-δ property to the desired nodes in the domain,

as it is defined in [17]. In [38] the Reproducing Kernel Element interpolant, I , is defined

as the operator acting on a continuous function f ∈C (Ω) such that

I f (x) =
nel

∑
n=1

[∫

Ωn

κρ (y−x;x) dy
nnp

∑
i=1

ψn,i (x) f (xn,i)

]
(2.12)

A more familiar way to look at Eq. (2.12) is obtained by expressing the interpolation as a

linear combination of shape functions and nodal weights,

I f (x) = ∑
I∈ΛN

ΨI (x) fI (2.13)

where ΛN is the set of all the nodes in the domain, fI is the nodal weight corresponding to

node I and ΨI (x) is the reproducing kernel element shape function at node I, and that can

be expressed as

ΨI (x) = ∑
k∈ΛE

[(∫

Ωk

κρ (y−x;x) dy
)

ψek,ik (x)
]

(2.14)

where, (e1, i1) , · · · ,(ek, ik)→ I, is the local index pair that define a connectivity map. Note

14
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21 3

2

Figure 2.3 Spatial discretization with two elements and three nodes.

that we have specified in Eq. (2.14) a summation over all the elements in the domain. How-

ever, in practice, it is not required because the function, Eq. (2.14), is compactly supported;

but special care should be exercised in order to precompute the set of elements that partic-

ipate in the summation, as is shown in [17]. To understand better Eq. (2.13) the following

one-dimensional example is presented. Considering the one-dimensional mesh in Fig. 2.3

and using Eq. (2.12) to interpolate the generic function u(x), we arrive at

u(x) =
[∫

Ω1

κρ (y− x;x) dy
]
[ψ1,1 (x) û1 +ψ1,2 (x) û2]+

[∫

Ω2

κρ (y− x;x) dy
]
[ψ2,1 (x) û2 +ψ2,2 (x) û3] (2.15)

where ûi corresponds to the value of the function to interpolate evaluated at the node i.

Doing some algebraic manipulations we get the desired representation.

u(x) =
3

∑
I=1

ΨI (x) ûI (2.16)

where,

Ψ1 (x) =
[∫

Ω1

κρ (y− x;x) dy
]

ψ1,1 (x) (2.17)

Ψ2 (x) =
[∫

Ω1

κρ (y− x;x) dy
]

ψ1,2 (x)+
[∫

Ω2

κρ (y− x;x) dy
]

ψ2,1 (x) (2.18)

15



Ψ3 (x) =
[∫

Ω2

κρ (y− x;x) dy
]

ψ2,2 (x) (2.19)

Notice that the structure of the previous shape functions are also common in the finite

element method. The main difference is the replacement of the integration of the kernel by

a Heaviside step function,

χe (x) =





1 x ∈Ωe

0 x /∈Ωe

(2.20)

The purpose of the Heaviside step function is to truncate the polynomial basis such that

the approximation has a compact support, its length is determined by the element size,

and to enforce compatibility. The requirement of compatibility means that the function

within the elements and across the element boundaries must be continuous [9]. The kernel

achieves similar effect as the Heaside step function by the specification of a support size,

such that, the kernel is different from zero inside the specified support, and zero otherwise.

The differentiability of the RKEM shape function is dictated by the differentiability of the

kernel [38, 51], since the global partition polynomials are infinitely smooth and therefore

they posseses continuous derivatives of any order.

2.2.2 Globally Conforming Cn Reproducing Kernel Element Shape Functions

In §2.2.1 we introduced reproducing kernel element shape functions whose differentia-

bility is solely determined by the continuity of the kernel. It is because the global partition

polynomials are C∞ functions, therefore, the limiting condition for the differentiability of

16



the RKEM shape functions is given by the maximum derivative that exist and is continuous

in the kernel. The existence of higher order derivatives does not mean that the functions

constructed so far are globally compatible. In this section we will show how to construct

globally conforming Cn reproducing kernel element shape functions using what was called

in [33] globally conforming Im/Cn hierarchy II. According to Li [33], we assume that there

exist a set of Hermite type global polynomials,
{

ψ(0)
e,i ,ψ(1)

e,i , . . . ,ψ(m)
e,i

}
, such that within the

element, e, they can reproduce λ th order polynomials,

∑
i∈e

{
ψ(0)

e,i (x)xλ
i +λψ(1)

e,i (x)xλ−1
i + · · ·+ λ !

(λ −m)!
ψ(m)

e,i (x)xλ−m
i

}
= xλ , |λ | ≤ k

(2.21)

A set of global Reproducing Kernel Element shape functions are constructed as follows,

Ψ(m)
I (x) = ∑

k∈ΛI

[(∫

Ωk

κρ (y−x;x) dy
)

ψ(m)
ek,ik (x)

]
(2.22)

Using the previous framework, Eq. (2.13) transforms into,

I f (m) (x) = ∑
I∈ΛN

(
Ψ(0)

I (x) fI +Ψ(1)
I (x)D f

∣∣∣
I
+ · · ·+Ψ(m)

I (x)Dm f
∣∣∣
I

)
(2.23)

where Dm f refers to the nodal value corresponding to the m-derivative of the function

to interpolate. The main feature of this construction is that the continuity of the globally

conforming RKEM shape function is given by the order of the global partition polynomials.

This does not contradict what we have said at the beginning of this section, as long as, we

understand that in the former case we construct non-conforming shape functions, but still

17



differentiable functions, and in the latter, we have globally conforming shape functions. An

excellent explanation of conforming and non conforming shape functions is given in [59]

in the context of variational formulations.

2.2.3 Kernel

In this section we will discuss the basic properties of the kernel used in this dissertation.

The concept of the kernel is related to the finite integral representation of a function and

the Dirac delta function. The basic concept is as follows,

f (x) =
∫

Ω
δ (x̄−x) f (x̄) dx̄ (2.24)

where δ (x) is the Dirac delta function and has the following two properties

∫ +∞

−∞
δ (ζ − x) f (ζ ) dζ = f (x) (2.25)

∫ +∞

−∞
δ (x) dx = 1 (2.26)

From a computational point of view, the Dirac delta function is not attractive because it is

not a “function” in a strict sense. As a result, a modification of Eq. (2.24) is required in

order to be used for practical computation. The idea is to mimic the properties of the Dirac

delta function using what is called a kernel. Therefore, the desired properties for the kernel

are
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1.
∫

ℜd κρ (x) dΩ = 1

2. κρ (x)→ δ (x) , ρ → 0

To achieve the two previous properties, a special form for the kernel was used

κρ (z ; x) :=
1

ρd w
(‖z‖

ρ

)
b(x) (2.27)

where ‖•‖ is the Euclidean norm, z is the difference between the point x, at which the ker-

nel is centered and an arbitrary evaluation point. The function w is a compactly-supported

smooth window function (§ 2.2.3.2), and b(x) is a normalization factor that properly ad-

justs the integration of the kernel to one when other than exact integration is used. The

evaluation of the normalizer follows from the requirement that the integral of the kernel

over the domain must be equal to one. Therefore,

{∫

Ω

[
1

ρd w
(‖z‖

ρ

)
b(x)

]
dz

}
= 1 (2.28)

b(x) :=
{∫

Ω

[
1

ρd w
(‖z‖

ρ

)
dz

]}−1

(2.29)

If exact integration could be done in Eq. (2.29), then b(x) should be equal to one. Never-

theless, in practice, it is difficult to use exact integration in Eq. (2.29), because the function

to integrate is not available in simple form. For this reason, numerical integration should

be used, as is shown in § 2.2.3.1, thus the requirement of the normalizer.
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2.2.3.1 The Role of Nodal Integration

There are several ways to integrate numerically Eq. (2.29), the simplest one being,

nodal integration. In fact, nodal integration was used in this dissertation to integrate the

normalizer and kernel.

b(x) :=

{
A

e∈ΛE

[
∑

j∈Λe

1
ρd w

(∥∥x−xe, j
∥∥

ρe, j

)
∆Ve, j

]}−1

(2.30)

where A
e∈ΛE

is the assembly operator and denotes the summation over all the mesh [26],

∆Ve, j is an integration weight whose value is equal to the volume/area of the element di-

vided by the number of nodes in the element, and xe, j is the corresponding nodal point

location.

2.2.3.2 Window Function

The concept of window function used in the kernel is inherited from the meshless com-

munity [35, 36]. In general, it satisfies the following criteria [51]





w(x) ∈Ck
(
ℜd

)
, k ≥ 1

supp(w) = Bρ

w(x) > 0, for ‖x‖< ρ

∫
Bρ

w(x) dΩ = 1

(2.31)
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where, for x̄ ∈ ℜd and ρ > 0, a spherical ball with radius ρ is defined as the domain of

influence of x̄,

Bρ (x̄) =
{

x
∣∣∣ ‖x− x̄‖ ≤ ρ , x ∈ℜd

}
(2.32)

A conical window function in one-dimension was selected for computation. The coni-

cal window function has the following simple form [7],

w(x) =





[
1−

(
x
ρ

)2
]m

, |x| ≤ ρ

0 |x|> ρ

(2.33)

The proper choice of the natural number m depends on the continuity of the shape function.

Without loss of generality, we will show it for a one-dimensional problem. Imagine that

we are solving a one-dimensional linear elastic strain gradient problem [6]. As a result,

the continuity of the second derivative of the reproducing kernel element shape function

is required in a weak form of the problem. For this reason, the continuity of the second

derivative of the window function is also required. If we want the window function to be

continuous up to the m-derivative, then the derivative when we approach to a point from the

left should be equal to the derivative when we approach from the right side, mathematically,

d(m+1)

dx(m+1) w(x)
∣∣∣
x=z+

=
d(m+1)

dx(m+1) w(x)
∣∣∣
x=z−

(2.34)

Equation. (2.34) is no more than an extension of the concept of the continuity of the first

derivatives that are taught in basic calculus [3]. Going back to the specific case where the
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continuity of the second derivative is required and using Eq. (2.34) we arrive at

d3

dx3 w(x) =
12 (m−1) mx

(
1− x2

ρ2

)m−2

ρ4 −
8 (m−2) (m−1) mx3

(
1− x2

ρ2

)m−3

ρ6

Note that the continuity of the second derivative of w is satisfied if m > 3. In general, we

have found that the order of the conical window function must satisfy the condition m >

n + 1, where n is the desired continuity order in the weak form. In Fig. 2.4 we appreciate

that if m = 3, then the continuity of the second derivative is lost at both end points, because

a kink is formed at both extremes ( Fig. 2.4(c)), unlike Fig 2.5 where the continuity in the

second derivative is guaranteed for m = 4.

2.2.3.3 Geometry of the Support Domain

The geometry of the support domain plays an important role in the computation and

integration of the shape functions [19–22, 34]. In the meshfree literature, the rectangu-

lar shape is dominant because it covers more area and the intersection of the domains is

more likely to align with the Gauss points as a consequence of the background integration

cells [22]. In this dissertation, we have chosen a circular shape for the geometry of the

support domain, because of its symmetry and because our background cells are triangles

anyway. We say that a node is isolated if it is not in the support of any other node [17]. The

latter guarantee the Kronecker-δ property on the node. Figure 2.6 presents two possible

geometries of the support domain; rectangular and circular. The mesh shown in Fig 2.6(a)

has the Kronecker-δ property for the center node (for both shapes of the support domain),
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Figure 2.4 Window function and its derivatives for m = 3.
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Figure 2.5 Window function and its derivatives for m = 4.
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but in Fig 2.6(b) the rectangular shape fails maintaining the Kronecker-δ property for the

nodes that are inside the rectangular support of the center node. Those nodes violates the

definition of isolated node.

2.2.3.4 Numerical Integration

To integrate the weak form, we have chosen to use a higher order cubature rule for

triangular domains [52]. In general, these cubature rules are not optimal, but there are no

other high-order cubature rules available for triangular domains. We have found that to

satisfy the patch test with reproducing kernel element interpolations, accurate evaluations

of the derivatives and integrals in the weak form are essential. The same issues have been

found in [10, 12, 15, 39, 44] for the evaluation of integrals in the Element Free Galerkin

method (EFG). In addition, we face another important issue related to the integration of

the stiffness matrix and force vector that appear in the weak form; that is, our domain

of integration is not aligned with the intersection of the support domain of two nodes.

To illustrate the last statement, consider a typical entry of the stiffness matrix for a two-

dimensional problem as shown in Eq. (2.35).

KIJ =
∫

Ω
Ψ(00)

I,x (x) Ψ(00)
J,x (x) dΩ (2.35)

In Fig. 2.7 the shaded region represents a domain where the derivative of the shape function

is different from zero and the red circle corresponds to Gauss point location. We could

summarize the source of errors during the integration process:
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Rectangular support Circular support

(a) mesh A and support for center node.

Rectangular support Circular support

(b) mesh B and support for center node.

Figure 2.6 Two square meshes with different geometry support domain.
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I

Figure 2.7 Integration issue in Reproducing Kernel Element.

1. The reproducing kernel element shape functions are not polynomial and they may

have strong oscillations.

2. High-order cubature rules for triangular domains are not optimal.

3. The domain of integration is not aligned with the background cell and this affect

negatively the accuracy of the Gauss point rule, in the sense that, we are truncating

the Gauss point rule and therefore, changing its original degree of precision.

Previous drawbacks could be potentially eliminated by the implementation of exact inte-

gration formulas for the RKEM shape functions, as presented in [8], for the integration

of Reproducing Kernel Method (RKM) shape functions. Still it is an open question that

should be addressed in future research.
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2.3 Review of Construction of Reproducing Kernel Element Global Partition Poly-

nomials

This section deals with the construction of the new proposed symmetric global par-

tition polynomials. The basic idea will be explained for a triangular element; due to its

simplicity and elegance. Similiar procedures are used for the construction of tetrahedral

elements in a three dimensional space. The construction of general quadrilaterals and hex-

ahedral elements requires additional care, as will be discussed in § 3.5. The main reason

to use reproducing kernel element is its ability to reproduce polynomials of the desired

order. However it retains the Kronecker-δ property and the ability to have global smooth

functions, Cn; n≥ 0. Contrary to finite element method, the additional degrees of freedom

required for higher-order interpolation come from interpolating the primary variable and

its derivatives instead of adding mid-side nodes on the edges/faces of the elements. The

continuity of the globally conforming RKEM shape function is given by the order of the

global partition polynomials, as was explained in §2.2.2.

The global partition polynomials for an element can be formulated using a direct or

parametric approach [50]. In this dissertation, we have chosen the parametric approach to

construct the global partition polynomials.

2.4 Parametric Approach

In this methodology, we want to transform the geometric domain into a parent domain

using a predefined mapping as shown in Fig. 2.8. It will give us the advantage of performing
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Figure 2.8 Linear triangular element domain and local node ordering.

all the calculations in a predefined domain, provided the mapping between the geometric

and parametric space exists. Let ζ denote a parent domain in the parametric space,

Definition 2.4.1 ( Mapping ) (Hughes [26]) Let x : ζ →Ωe be of the form

x(s) =
nnp

∑
a=1

Na (s)xe
a (2.36)

where Na are shape functions and xe
a are nodal coordinates. Eq. (2.36) define a mapping

such that x : ζ →Ωe ⊂ℜd is said to be one-to-one if for each pair of points s(1), s(2) ∈ ζ

such that s(1) 6= s(2), then x(s(1)) 6= x(s(2)).

The triangle shown in Fig. 2.8 is different from the triangle chosen in [50] to con-

struct the global partition polynomials. It is a difference between our concept and the one

presented in the aforementioned reference. The shape functions for this triangle are the
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standard finite element shape functions for a three-node triangular element:

N1 (s, t) = 1− s− t (2.37a)

N2 (s, t) = s (2.37b)

N3 (s, t) = t (2.37c)

In §2.2.2 we assigned to each node a set of global partition polynomials that represent

generalized Hermite polynomials in order to construct a RKEM representation capable of

interpolating up to the m-derivative and being of class Cn. Using a compact notation, we

represent the global partition polynomial for each element as

ψ̃e,1(s) =




ψ̃(00)
1

ψ̃(10)
1

ψ̃(01)
1

...




ψ̃e,2(s) =




ψ̃(00)
2

ψ̃(10)
2

ψ̃(01)
2

...




ψ̃e,3(s) =




ψ̃(00)
3

ψ̃(10)
3

ψ̃(01)
3

...




ψ̃e,4(s) =




ψ̃(00)
3

ψ̃(10)
3

ψ̃(01)
3

...




(2.38)

where e denotes an element in the mesh and 1, 2, 3, 4 represents the nodes in a triangle,

the last one being an interior node (if required), such that the primary scalar variable can
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be interpolated by the formula

I w̃(s, t) =
[

ψ̃T
e,1 ψ̃T

e,2 ψ̃T
e,3 ψ̃T

e,4

]
w̃I, ∀s ∈Ωe (2.39)

where I is the interpolation operator, the superscript T denotes transpose, and w̃I is a

vector of all the nodal unknowns on the element:

w̃I :=




w̃e,1

w̃e,2

w̃e,3

w̃e,4




(2.40)

w̃e,1(s) =




w̃(se,1, te,1)

w̃,s (se,1, te,1)

w̃,t (se,1, te,1)

...




w̃e,2(s) =




w̃(se,2, te,2)

w̃,s (se,2, te,2)

w̃,t (se,2, te,2)

...




w̃e,3(s) =




w̃(se,3, te,3)

w̃,s (se,3, te,3)

w̃,t (se,3, te,3)

...




w̃e,4(s) =




w̃(se,4, te,4)

w̃,s (se,4, te,4)

w̃,t (se,4, te,4)

...




(2.41)

The tilde was added to some variables to emphasize that the interpolation is done in the

parent domain. The element interpolation provided by the global partition polynomials can
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Figure 2.9 Pascal’s triangle for polynomials in two variables.

be written as a vector equation

w̃(s, t) = ΦT (s, t)c (2.42)

where

cT :=
[

c1 c2 c3 c4 c5 c6 . . .

]1×ndo f

ΦT (s, t) :=
[

1 s t s2 st t2 . . .

]1×ndo f

(2.43)

and ndo f is the total number of degrees of freedom in an element, and they are determined

by the order of the complete polynomial space that is desired. The Pascal’s triangle shown

in Fig. 2.9 is used to construct Φ in a two-dimensional space. One can determine the

coefficients c in terms of the nodal unknowns w̃I , by solving a set of linear equations

w̃(se,1, te,1) = ΦT (se,1, te,1)c

w̃,s (se,1, te,1) = Φ,Ts (se,1, te,1)c

w̃,t (se,1, te,1) = Φ,Tt (se,1, te,1)c

...

w̃(se,2, te,2) = ΦT (se,2, te,2)c

w̃,s (se,2, te,2) = Φ,Ts (se,2, te,2)c
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w̃,t (se,2, te,2) = Φ,Tt (se,2, te,2)c

...

Denote the resulting coefficient matrix A, then

c = A−1w̃I (2.44)

and

w̃(s, t) = ΦT A−1w̃I (2.45)

where

AT = [AT
i j]

ndo f×ndo f = [Φ(se,1, te,1),Φ,x(se,1, te,1),Φ,y(se,1, te,1), · · · ,

Φ(se,2, te,2),Φ,x(se,2, te,2),Φ,y(se,2, te,2), · · · ,

Φ(se,3, te,3),Φ,x(se,3, te,3),Φ,y(se,3, te,3) · · · ]

Φ(se,4, te,4),Φ,x(se,4, te,4),Φ,y(se,4, te,4) · · · ] . (2.46)

The desired global partition polynomials in the parametric space can now be determined

by comparing Eq. (2.39) and Eq. (2.45). Therefore,

[
ψ̃T

e,1 ψ̃T
e,2 ψ̃T

e,3 ψ̃T
e,4

]
= ΦT A−1 (2.47)
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We can explicitly generate the global partition polynomials in the parametric space given

the inversion of the matrix A. The inversion of the matrix A can be done in exact arith-

metic using a computer algebra system. In fact, we have used the open-source program

Maxima [45] for the inversion of all the A matrices used in this dissertation. It is worth

mentioning that the inversion is done only once. Examples of global partition polynomials

generated by this methodology will be given in Ch. 4.

2.4.1 From the Geometric to Parametric Space

The use of a parametric space to construct and compute the global partition polyno-

mials necessitate the introduction of a transformation, such a transformation is given by

Eq. (2.36). Because the global partition polynomials are generalized Hermite polynomials,

we need to transform the nodal derivative values. As an example we will show how to

transform nodal values associated with the first derivative for the node I,





w,x

w,y





I

=




s,x t,x

s,y t,y








w̃,s

w̃,t





I

(2.48)

Equation (2.36) enables us to calculate the matrix,

x,s =




x,s x,t

y,s y,t


 (2.49)
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whose components are,

x,s =
np

∑
a=1

Na,s (s, t)xe
a x,t =

np

∑
a=1

Na,t (s, t)xe
a (2.50)

y,s =
np

∑
a=1

Na,s (s, t)ye
a y,t =

np

∑
a=1

Na,t (s, t)ye
a (2.51)

Using Eq. (2.36) with Eq. (2.37) and the information given in Fig. 2.8, we write it out

explicitly as,

x,s = x2− x1 x,t = x3− x1 (2.52a)

y,s = y2− y1 y,t = y3− y1 (2.52b)

Performing the inversion of matrix (2.49), we have the desired transformation,

s,x =




s,x s,y

t,x t,y


 = (x,s)

−1 =
1

x,sy,t − x,ty,s




y,t −x,t

−y,s x,s


 (2.53)

2.5 Interlude: Element Nomenclature

It may be useful to elaborate on the nomenclature used for specifying Reproducing

Kernel Elements. We use the notation introduced in [51] where the general structure of a

Reproducing Kernel Element element name takes the form:

SmPnIo

where
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• The letter S denotes the shape of the element.

• The letter m is replaced by a number that is the total number of degrees of freedom

for the element.

• The letter P denotes polynomial.

• The letter n is replaced by an integer that is the highest degree of globally reproduced

complete polynomial.

• The letter I denotes interpolation.

• The letter o is replaced by a number, perhaps rational, that is the number of deriva-

tives interpolated at the vertex degrees of freedom.

This nomenclature was developed for reproducing kernel elements that only had vertex

nodes [33], but it contained redundant information. With a slight re-interpretation of the

components of the name, we believe it is sufficient to describe the new elements derived in

this dissertation. The previous redundancy was in the fact that a given shape already deter-

mines the number of vertex nodes, and combined with the order of interpolated degree-of-

freedom’s (primary variable, first derivatives, etc.), the total number of degrees of freedom

was redundant. Figure 2.10 shows a pictorial representation of the DOF’s (degree of free-

dom) on nodes. A solid circle means that a function value is interpolated at that point, a

circle about a point means that both first derivatives are to be interpolated at that point, a

double circle about a point means that both second derivatives are to be interpolated at that

point and a cross means that cross derivative is to be interpolated at that point. An example
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(a) Solid circe: main variable. (b) Circe: first derivative.

(c) Double circe: Second
derivative.

(d) Cross : partial derivative.

Figure 2.10 Pictorial nomenclature for degrees of freedom on nodes.

may be helpful. In previous work, the T9P2I1 triangle interpolated the primary variable and

the first partial derivatives ( 3 degree-of-freedom/node). Since a triangle always has three

vertices, the total number of degrees available for that element are (3 nodes) x (3 degree-

of-freedom/node) = 9 degree-of-freedom. Hence the ’9’ in the element name is redundant.

In §4.1.2, we will develop the T10P3I1 element. In this case, the vertex degree-of-freedom

are the same, but the total number of degree-of-freedom is 10, indicating that there must

be an interior node with one degree of freedom. One cannot tell from the name precisely

which variables, primary or its derivatives, are interpolated at the interior node. We elected

not to enhance the element name to reflect this additional information, as we feared the

nomenclature would become overly cumbersome.
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Chapter 3

Minimal Affine Invariant Global Partition Polynomials

3.1 Difficulties with Previous Formulation

The construction of global partition polynomials in previous formulations of RKEM

have presented some problems. First, in the desire to restrict the degrees of freedom to the

vertex nodes, the number of available DOF’s may not exactly match the number required to

represent a complete polynomial of a given order. In [42], this was fixed by using different

DOF’s at the vertices to ensure a match with those required. However, this complicates

the problem of generating meshes, since adjacent elements sharing that vertex are now

constrained to having the same DOF’s. In Figure 3.1 is shown a pictorial of a mesh with

different DOF’s specified on nodes. In that case, the specification of the global to local

numbering indexing require extra effort during the meshing process, because it must verify

that a vertex that belong to more than one element has the correct DOF’s. On the other

hand, it is very desirable, from the meshing point of view, to restrict all vertex nodes to

have the same DOF’s, consequently the global to local numbering indexing do not require

any special algorithm. In [50], [51] and [49], the DOF’s mismatch problem was solved by

selecting interpolations that provided equal or greater total DOF’s required for the desired

degree polynomial through additional derivative degrees of freedom. Use of derivative
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(a) Element with different
DOF’s on nodes.

(b) Mesh

Figure 3.1 Mesh with different DOF’s on nodes.

degrees of freedom leads to an added restriction for the successful use of a parametric

formulation using a parent element. In order for the mapping between geometric and parent

elements to be complete, all derivatives of a given order must be present. For example, in

two dimensions, if one would like to interpolate the second derivatives u,ss and u,tt , one

must also interpolate u,st . Generally, then, more DOF’s are available than required. In

the case of the T9P2I1 element, 9 vertex DOF’s are available, consisting of the primary

variable and its first partial derivatives (see Fig. 3.2), but only a quadratic polynomial is

exactly reproduced. A quadratic only requires 6 DOF’s so to account for the extra degree-

of-freedom, the next higher polynomial, a cubic, is used. The cubic requires a total of 10

degree-of-freedom, so the previous formulation combined two higher order terms, s2t + st2

to match the 9 available DOF’s. According to Eq. (2.42), for the T9P2I1 we have,

cT :=
[

c1 c2 c3 c4 c5 c6 c7 c8 c9

]
(3.1a)

ΦT (s, t) :=
[

1 s t s2 st t2 s3 s2t + st2 t3

]
(3.1b)
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Figure 3.2 T9P2I1 element.

While this process achieved the desired reduction, a full quadratic field is interpolated and

only a partial cubic field.

Definition 3.1.1 ( Linearly Dependent Functions ) (Sansone [47]) The n functions f1 (x),

f2 (x) , . . ., fn (x) are linearly dependent if, for some c1, c2, . . ., cn ∈ℜ not all zero,

n

∑
i=1

ci fi (x) = 0 (3.2)

for all x ∈ℜd in some interval. If the functions are not linearly dependent, they are said to

be linearly independent.

The set of polynomials defined in Eq. (3.1b) are linearly dependent and therefore they do

not form an affine-transformation. An account of the theory of affine-transformations is

given in [46] and presented here using same notation as in the reference aforementioned.

Definition 3.1.2 ( Affine transformation ) (Oden [46]) Let {Γ∆ (x)} be another set of G

linearly independent functions. If this set also belongs to a subspace Φ of finite dimension

G, it is always possible to find a matrix AΓ
∆ which describes an affine trasformation of the

set {Γ∆} into {Φ∆}.

40



1 2

3

1 2

3

Parent to geometric

Geometric to parent
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t

(0, 0) (1, 0)

(1, 1)

(0, 0) (2, 0)

(0, 2)

x

y

(a) Geometric to Parent.

(b) Global partition polynomial for geometric node 1 and two
different local to global node numbering.

Figure 3.3 Asymmetry in global partition polynomials in the T9P2I1 element.
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Using Eq. (3.1b) and Eq. (3.2) we arrive at,

c1 + c2t + c3s+ c4s2 + c5st + c6t2 + c7s3 + c8
(
s2t + st2)+ c9t3 = 0 (3.3)

If only c8 6= 0 in Eq. (3.3), then s =−t for s, t 6= 0. In other words, there exist a c8 6= 0 that

makes Eq. (3.2) equal to zero for all the s, t lying on the line s + t = 0, but excluding the

origin. The latter means that the space of polynomials defined in Eq. (3.1b) is linearly de-

pendent, hence not affine-invariant. The reduction process (i.e., blending two higher order

terms, s2t + st2, to match required DOF’s) destroys the affine invariance of the restricted

polynomial space. This leads to asymmetric interpolations even for simple changes in the

local to global node numbering. Figure 3.3 demonstrates the asymmetry in the global parti-

tion polynomials for the T9P2I1 element. The asymmetry is due to re-ordering of the local

to global node numbering only. Figure 3.3(b) plots the global partition polynomial asso-

ciated with the global node number 1. Note how the resulting global partition polynomial

is different, even for a simple change of the local to global nodal numbering. Further, the

restricted polynomials could lead to a singularity in the coefficient equation, Eq. (2.46). To

side step the singularity issue, special choices of parent elements were made to guarantee

invertibility, [50, 51]. The asymmetry due to re-ordering the local to global node number-

ing can be seen in the following example for the reproducing kernel element interpolation.

We used a simple two-element mesh shown in Fig. 3.4(a) and used the T9P2I1 element to

interpolate the function

f (x,y) = sin(x · y) on (x,y) ∈ [0,2]× [0,2]. (3.4)
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Table 3.1 Local to global node numbering for the mesh in Fig. 3.4(a) used to demonstrate
asymmetric interpolation of the T9P2I1 element.

Element Local Node 1 Local node 2 Local node 3
0 3 0 1
1 1 2 3
0 1 3 0
1 3 1 2

We then changed the local to global node numbering for the elements, as shown in Ta-

ble 3.1, and compared the difference between the two interpolations, as shown in Fig. 3.4(b).

In Table 3.1, the top two rows are the connectivity for the first interpolation, the second two

rows for the second interpolation. The difference between the two interpolations, due solely

to changes in the connectivity, ranges from −0.185 to 0.057.

3.2 A New Formulation of Symmetric Global Partition Polynomials

We have formulated truly minimal affine-invariant global partition polynomials for

parametric reproducing kernel elements. Further, our formulation retains the same sim-

plicity of meshing as finite element triangular and tetrahedral meshes [25, 48] but with

higher order continuity. The latter being an important practical issue for the meshing of

complex domains and adaptive meshing analysis [37]. The basic concept is to automati-

cally generate a single interior node at the centroid of the element (see Fig. 3.5). This node

then carries enough degrees of freedom to complete the necessary degrees of freedom for

an exact polynomial of given degree. To avoid meshing complications, we require that,

for any element, the degree-of-freedom interpolated at each vertex is exactly the same. In

finite elements, an interior node would generally lead to either compatibility issues along
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(a) mesh

(b) Difference between interpolations

Figure 3.4 Asymmetric interpolation arising from changes in node numbering.
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the boundary of the element. Since reproducing kernel elements uses the meshfree kernel

to enforce compatibility, we are free to add extra nodes without compatibility concerns.

Note that we could add additional interior nodes, but we feel that is an extra level of com-

plication, and we have not found it necessary to do so for triangular and tetrahedral ele-

ments. Also, mid-side nodes could be added without compatibility concerns, but that could

still lead to the same meshing difficulties encountered in FEM for elements with mid-side

nodes. Since our goal is the simplest, complete, affine-invariant element formulation, we

chose to use a single additional node at the centroid of the element. As an interior node,

our implementation automatically creates the node during the initialization process. This

allows us to use FEM triangular and tetrahedral mesh generators - all the extra nodes are

created completely within the reproducing kernel element code. For the generation of the

interior node in the geometrical space, we only need to know the coordinate location of

the vertex nodes of the element, then the interior node is created easily. For triangular

elements, we use Eq. (2.37) as follows

x4 = N1

(
1
3
,
1
3

)
x1 +N2

(
1
3
,
1
3

)
x2 +N3

(
1
3
,
1
3

)
x3 (3.5)

With the goal of truly practical, robust implementations, we use the following guide lines

in our constructions:

a) All nodes on the boundary of an element lie at the vertices.

b) All vertices have exactly the same degrees of freedom.
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Figure 3.5 Location of interior node.

c) If any DOF corresponds to a derivative, then all terms of that order derivative must

also be degrees of freedom. In order for the mapping between geometric and parent

elements to be complete, all derivatives of a given order must be present.

3.2.1 Tutorial: Construction of Global Partition Polynomials for the T6P2I0 Ele-

ment

In this section we present a tutorial on how to construct global partition polynomials for

the T6P2I0 element. The element is capable of reproducing quadratic polynomials, but it

is not capable of interpolating derivatives other than for quadratic polynomials. The latter,

because we do not interpolate the first partial derivatives at the vertex nodes. According to

Eq. (2.42), for the T6P2I0 (see Fig 3.6.) we have,

cT :=
[

c1 c2 c3 c4 c5 c6

]
(3.6a)
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Figure 3.6 T6P2I0 element.

ΦT (s, t) :=
[

1 s t s2 st t2

]
(3.6b)

The requirement of six DOF’s is because to represent a complete quadratic polynomials,

six monomial terms should be presents (see Pascal’s triangle in Fig. 2.9). Before using

Eq. (2.46) to evaluate A, we compute the requires derivatives of ΦT (s, t)

ΦT
,s(s, t) =

[
0 1 0 2s t 0

]
(3.7a)

ΦT
,t (s, t) =

[
0 0 1 0 s 2t

]
(3.7b)

Using the coordinates of the nodes in the parent element, (0,0), (1,0), (0,1), (1/3,1/3),

Eq. (3.6b) and Eq. (3.7), we arrive at Eq. (3.8). The global partition polynomials are ob-

tained using Eq. (2.47) and Eq. (3.8). The resulting global partition polynomials are sym-

metric as will be shown in next chapter. To conclude this tutorial, it is important to mention

that we are not interpolating derivatives in the vertex nodes, then the global partition poly-

nomials for the T6P2I0 element do not have the Kronecker-δ property in the derivatives

(Eq. (2.11)) evaluated at vertex nodes, furthermore that is independent of the size of the

radius of support for the interior node.
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A =




1 0 0 0 0 0

1 1 0 1 0 0

1 0 1 0 0 1

1 1
3

1
3

1
9

1
9

1
9

0 1 0 2
3

1
3 0

0 0 1 0 1
3

2
3




, A−1 =




1 0 0 0 0 0

−3 −1 1 3 1 −2

−3 1 −1 3 −2 1

2 2 −1 −3 −1 2

5 −1 −1 −3 2 2

2 −1 2 −3 2 −1




(3.8)

3.3 Summary of Triangular and Tetrahedral Elements

We summarize the successful triangular and tetrahedral Reproducing Kernel Elements,

their DOF, and the locations of the DOF in Table 3.2. In Table 3.2 the “*” in the Tet10P2I0

is used to denote that this element could violate the guide lines of construction of symmetric

global partition polynomials, as we will discuss in next chapter. Also, it is important to

say that the Kronecker-δ property may or may not be imposed on the interior node. In

this dissertation, we have chosen to relax the Kronecker-δ property for those nodes, in a

attempt to smooth the RKEM shape functions associated with interior nodes.

3.4 Symmetry of the Interpolation

The T6P2I0 and T10P3I1 (§ 4.1.2) elements do provide symmetric interpolations, as

shown in Fig. 3.7 and Fig. 3.8, unlike the T9P2I1 element. Figure 3.7 plots the global par-

tition polynomial associated with the global node number 2 for the T6P2I0 and T10P3I1.
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Table 3.2 Minimal triangular/tetrahedral elements and their vertex and interior degrees of
freedom.

Element # nodes (exterior / interior) Vertex DOF Interior node DOF
T3P1I0 3 / 0 u -
T6P2I0 3 / 1 u u; u,x; u,y

T10P3I1 3 / 1 u; u,x; u,y u
Tet4P1I0 4 / 0 u -

Tet10P2I0 4 / 1 u u,xx; u,yy; u,zz; u,xy; u,yz; u,zx
Tet10P2I0* 4 / 1 u u,x; u,y; u,z; u,xy; u,yz; u,zx
Tet20P3I1 4 / 1 u; u,x; u,y; u,z u; u,x; u,y; u,z

Within numerical precision, the global partition polynomial with different local global

numbering is the same. Considering the sample RKEM interpolation in Fig. 3.4, the dif-

ference plots for the T6P2I0 and the T10P3I1 are shown in Fig 3.8. Within numerical

precision, the interpolation with different local global numbering is the same.

3.5 Quadrilateral and Hexahedral Elements

We finish this chapter with a comment on constructing quadrilateral and hexahedral

elements using this methodology. The main impetus for the use of quadrilateral and hex-

ahedral elements in finite elements was to increase the interpolatory power of the shape

functions. The strictly linear triangle element was seen to demonstrate locking in sim-

ple, but important problems, such as beam bending. The additional degree-of-freedoms

afforded by the extra node reduced this phenomenon. While this solved one problem, it

introduced another, namely in meshing. Every point set in two-dimensions may be triangu-

larized, but they may not always be quadrialteralized. Thus, quadrilateral meshing is more

difficult than triangular meshing. A similar situation exists in three dimensions, though
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(a) Geometric to parent.

(b) Global partition polynomial for geometric node 2 and two
different local to global node numbering for the T6P2I0 element.

(c) Global partition polynomial for geometric node 2 and two dif-
ferent local to global node numbering for the T10P2I1 element.

Figure 3.7 Symmetric global partition polynomials in the T6P2I0 and T10P3I1 elements.
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(a) T6P2I0

(b) T10P3I1

Figure 3.8 Difference plots for symmetric interpolations.
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not every point set admits even a tetrahedralization, construction of tetrahedral meshes is

still simpler than hexahedral meshes. Higher-order triangular finite elements exist by in-

troducing nodes along their edges. Compatibility requires these nodes to also exist in the

shared neighbor, and thus complicates the meshing problem. With the advent of higher-

order triangular and tetrahedral elements that only share vertex nodes with their neighbors,

we do not believe there is much motivation to use reproducing kernel element quadrilateral

or hexahedral elements, and as such, have not devoted much effort to their development.

However, if one already possesses a quadrilateral or hexahedral mesh, it may be desirable

to construct RKEM shape functions directly on that mesh, and RKEM quadrilateral and

hexahedral elements may have a place.

We attempted to construct truly minimal parametric quadrilateral and hexahedral ele-

ments as before, however, we were unable to construct these elements. The approach we

adopted goes by the name Birkhoff or Hermite-Birkhoff interpolation in the mathematics

literature, [4, 41]. Matrices of the form Eq. (2.46) are called Vandermonde matrices. Under

certain conditions, the Vandermonde matrix may be singular, and in the case of the ele-

ments that we attempted in Table 3.4, it is singular. Since we are not particularly interested

in quadrilateral and hexahedral elements, we did not pursue the issue further. Nevertheless,

we present the details of our attempt, and a guide to resolving the issues that arose. In Ta-

ble 3.3, we list the number of degrees of freedom available at the vertexes depending, con-

sistent with the guidelines of construction of global partition polynomials. Recalling that

quadratic polynomials in two- and three-dimensions require 6 and 10 degree-of-freedom,

respectively, and cubic polynomials require 10 and 20, respectively, it is easy to see from
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Table 3.3 Vertex degree-of-freedom available for quadrilateral/hexahedral elements for 0th-
and 1st-order Hermite interpolation.

Element # nodes 0th-order 1st-order
Quadrilateral 4 4 12
Hexahedral 8 8 32

Table 3.3 that interpolating any derivative degrees of freedom at the vertexes provides too

many degree-of-freedom. Thus, quadrilateral and hexahedral elements consistent with our

formulation only interpolate the primary variable at the vertexes. A quadratic quadrilateral

can easily be formulated meeting our rules of construction of global partition polynomials

by adding a single node at the centroid of the quadrilateral and interpolating the two first

partial derivatives. This element is the Q6P2I0 element. A cubic quadrilateral requires 6

degree-of-freedom at the center node, which can be provided by interpolating the primary

variable, and the first and second partial derivatives. A quadratic hexahedral element re-

quires two additional interior degrees-of-freedom, but no combination of primary variable

or derivative degrees of freedom consistent with it exist. Cubic hexahedral elements require

an additional 12 degrees-of-freedom, and again, no combination of degrees-of-freedom’s

consistent with our rules exist. We are then faced with using more than one internal node.

From an aesthetic point of view, we believe it is desirable to have each internal node carry

the same degrees of freedom. Quadratic and cubic hexahedral elements can be constructed

using two internal nodes; the interior nodes interpolate the primary variable in the quadratic

case, and interpolate the second partial derivatives in the cubic case. The placement of the

two interior nodes is arbitrary. These elements are summarized in Table 3.4.
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Table 3.4 Failed quadrilateral/hexahedral elements and their vertex and interior degrees of
freedom.

Element # nodes (exterior / interior) Vertex DOF Interior node DOF
Q6P2I0 4 / 1 u u,x; u,y

Q10P3I0 4 / 1 u u; u,x; u,y; u,xx; u,yy; u,xy
Hex10P2I0 8 / 2 u u
Hex20P3I0 8 / 2 u u,xx; u,yy; u,zz; u,xy; u,yz; u,zx
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Chapter 4

Element Library

4.1 Triangular Elements

4.1.1 The T6P2I0 Triangle

A quadratic polynomial requires six degrees of freedom. We specify primary variable

DOF, u, at each vertex and primary variable plus its first partial derivatives, {u;u,x ;u,y}, at

the interior node. The global partition polynomials are:

ψ̃(00)
1 = 2 t2 +5st−3 t +2s2−3s+1 (4.1a)

ψ̃(00)
2 =−t2− st + t +2s2− s (4.1b)

ψ̃(00)
3 = 2 t2− st− t− s2 + s (4.1c)

ψ̃(00)
4 =−3 t2−3st +3 t−3s2 +3s (4.1d)

ψ̃(10)
4 = 2 t2 +2st−2 t− s2 + s (4.1e)

ψ̃(01)
4 =−t2 +2st + t +2s2−2s (4.1f)

Figure 4.1 shows the corresponding global partition polynomials for a mesh composed of

two triangular elements to emphasizes that the global partition polynomials expand beyond

the elements where they are defined. The global partition polynomials are defined in the
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whole domain, and they are smooth polynomials. Figure 4.2 shows the RKEM shape func-

tions for the mesh center node and a symmetric mesh and Figure 4.3 shows same but for

an asymmetric mesh. In both cases, are appreciates the benefit of the relaxation of the

Kronecker-δ property on those nodes that are not required to have it.

4.1.2 The T10P3I1 Triangle

A cubic polynomial requires ten degrees of freedom. We specify primary variable and

first partial derivative degree-of-freedoms, {u;u,x ;u,y}, at each vertex and the primary vari-

able u, at the interior node. The global partition polynomials are:

ψ̃(00)
1 = 2 t3 +13st2−3 t2 +13s2 t−13st +2s3−3s2 +1 (4.2a)

ψ̃(10)
1 = 2st2 +3s2 t−3st + s3−2s2 + s (4.2b)

ψ̃(01)
1 = t3 +3st2−2 t2 +2s2 t−3st + t (4.2c)

ψ̃(00)
2 = 7st2 +7s2 t−7st−2s3 +3s2 (4.2d)

ψ̃(10)
2 =−2st2−2s2 t +2st + s3− s2 (4.2e)

ψ̃(01)
2 = st2 +2s2 t− st (4.2f)

ψ̃(00)
3 =−2 t3 +7st2 +3 t2 +7s2 t−7st (4.2g)

ψ̃(10)
3 = 2st2 + s2 t− st (4.2h)

ψ̃(01)
3 = t3−2st2− t2−2s2 t +2st (4.2i)

ψ̃(00)
4 =−27st2−27s2 t +27st (4.2j)
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(a) ψ̃(00)
1 . (b) ψ̃(00)

2 .

(c) ψ̃(00)
3 . (d) ψ̃(00)

4 .

(e) ψ̃(10)
4 . (f) ψ̃(01)

4 .

Figure 4.1 Global partition polynomial for the T6P2I0 element.
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(a) Kronecker-δ property enforced only on boundary nodes.

(b) Kronecker-δ property enforced on all the vertex nodes.

Figure 4.2 The global shape function of T6P2I0 element and symmetric mesh:Ψ(00)
I .
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(a) Kronecker-δ property enforced only on boundary nodes.

(b) Kronecker-δ property enforced on all the vertex nodes.

Figure 4.3 The global shape function of T6P2I0 element and asymmetric mesh: Ψ(00)
I .
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Figure 4.4 T10P3I1 element.

The element is capable of reproducing cubic polynomials and interpolate first derivatives

at the corner nodes. The latter, because we specify the first partial derivatives at the vertex

nodes. According to Eq. (2.42), for the T10P3I1 (see Fig. 4.4) we have,

cT :=
[

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

]
(4.3a)

ΦT (s, t) :=
[

1 s t s2 st t2 s3 s2t st2 t3

]
(4.3b)

Figure 4.5 and Fig 4.6 shows the corresponding global partition polynomials for a mesh

composed of two triangular elements to emphasizes that the global partition polynomials

expand beyond the elements where they are defined. The global partition polynomials

are defined in the whole domain, and they are smooth polynomials. Figure 4.7 shows the

RKEM shape functions for the mesh center node and a symmetric mesh and Figure 4.10

shows same but for an asymmetric mesh. In both cases, it is appreciated the benefit of

the relaxation of the Kronecker-δ property on those nodes that are not required to have

it. In §5.1 is presented an application example where we have relaxed the Kronecker-
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δ property for some nodes. Unlike the T6P2I0 global partition polynomials and RKEM

shape functions, the T10P3I1 global partition polynomials and RKEM shape functions

are are more complex. It could be related with the large values of the global partition

polynomials for the T10P3I1; specially at the interior node (ψ̃(00)
4 ), besides in general,

cubic polynomials has a more complex behavior that quadratic polynomials.

4.2 Tetrahedral Elements

4.2.1 The Tet10P2I0 Tetrahedra

A quadratic polynomial in three variables contains ten terms. The Tet10P2I0 element

interpolates the primary variable, u, at each vertex. The remaining six degrees of freedom

at the interior node are chosen to be the six second partial derivatives, {u,xx; u,yy; u,zz; u,xy;

u,yz; u,zx}. It is interesting to note the simplicity of the global partition polynomials for this

case, and that the vertex global partition polynomials are the same as the C0 finite element

shape functions for the same tetrahedron. The global partition polynomials are:

ψ̃(000)
1 = 1−w− t− s (4.4a)

ψ̃(000)
2 = s (4.4b)

ψ̃(000)
3 = t (4.4c)

ψ̃(000)
4 = w (4.4d)

ψ̃(200)
5 =

s2

2
− s

2
(4.4e)

ψ̃(200)
5 =

t2

2
− t

2
(4.4f)
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(a) ψ̃(00)
1 . (b) ψ̃(10)

1 .

(c) ψ̃(01)
1 . (d) ψ̃(00)

2 .

(e) ψ̃(10)
2 . (f) ψ̃(01)

2 .

Figure 4.5 Global partition polynomial for the T10P3I1 element: node 1 to 2.
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(a) ψ̃(00)
3 . (b) ψ̃(10)

3 .

(c) ψ̃(01)
3 . (d) ψ̃(00)

4 .

Figure 4.6 Global partition polynomial for the T10P3I1 element: node 3 to 4.
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(a) Kronecker-δ property enforced only on boundary nodes.

(b) Kronecker-δ property enforced on all the vertex nodes.

Figure 4.7 The global shape function of T10P3I1 element and symmetric mesh: Ψ(00)
I .
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(a) Kronecker-δ property enforced only on boundary nodes.

(b) Kronecker-δ property enforced on all the vertex nodes.

Figure 4.8 The global shape function of T10P3I1 element and symmetric mesh: Ψ(10)
I .
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(a) Kronecker-δ property enforced only on boundary nodes.

(b) Kronecker-δ property enforced on all the vertex nodes.

Figure 4.9 The global shape function of T10P3I1 element and symmetric mesh: Ψ(01)
I .
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(a) Kronecker-δ property enforced only on boundary nodes.

(b) Kronecker-δ property enforced on all the vertex nodes.

Figure 4.10 The global shape function of T10P3I1 element and asymmetric mesh: Ψ(00)
I .
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(a) Kronecker-δ property enforced only on boundary nodes.

(b) Kronecker-δ property enforced on all the vertex nodes.

Figure 4.11 The global shape function of T10P3I1 element and asymmetric mesh: Ψ(10)
I .
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(a) Kronecker-δ property enforced only on boundary nodes.

(b) Kronecker-δ property enforced on all the vertex nodes.

Figure 4.12 The global shape function of T10P3I1 element and asymmetric mesh: Ψ(01)
I .
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ψ̃(200)
5 =

w2

2
− w

2
(4.4g)

ψ̃(110)
5 = st (4.4h)

ψ̃(011)
5 = t w (4.4i)

ψ̃(101)
5 = sw (4.4j)

A different possible quadratic element can be constructed that violates the rule for con-

struction of global partition polynomials by interpolating the three first partial derivatives,

{u,x; u,y; u,z} and the three mixed second partial derivatives,{u,xy; u,yz; u,zx}. Violating

this rule does not actually preclude this element, but what it means is that the degrees of

freedom associated with the second mixed partial derivatives will not transform from the

parent triangle to the geometric triangle in such a way that corresponds to the mixed par-

tials with respect to the geometric coordinates. As such, they can be treated as arbitrary

internal degrees of freedom. We denote this element as Tet10P2I0*. One could similarly

define an element where the interior degree-of-freedom are the first partials, and {u,xx; u,yy;

u,zz}, which we omit here. The global partition polynomials are:

ψ̃(000)
1 =−2w2 +w−2 t2 + t−2s2 + s+1 (4.5a)

ψ̃(000)
2 = 2s2− s (4.5b)

ψ̃(000)
3 = 2 t2− t (4.5c)

ψ̃(000)
4 = 2w2−w (4.5d)

ψ̃(100)
5 = 2s−2s2 (4.5e)
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ψ̃(010)
5 = 2 t−2 t2 (4.5f)

ψ̃(001)
5 = 2w−2w2 (4.5g)

ψ̃(110)
5 =

t2

2
+ st− t

2
+

s2

2
− s

2
(4.5h)

ψ̃(011)
5 =

w2

2
+ sw− w

2
+

s2

2
− s

2
(4.5i)

ψ̃(101)
5 =

w2

2
+ t w− w

2
+

t2

2
− t

2
(4.5j)

4.2.2 The Tet20P3I1 Tetrahedral

A cubic tetrahedral element, the Tet20P3I1 interpolates the primary variable and its first

partial derivatives at each vertex and at an interior node. The global partition polynomials

are:

ψ̃(000)
1 = 2w3 +13 t w2 +13sw2−3w2 +13 t2 w+44st w−13 t w+13s2 w

−13sw+2 t3 +13st2−3 t2 +13s2 t−13st +2s3−3s2 +1 (4.6a)

ψ̃(100)
1 = 2sw2 +5st w+3s2 w−3sw+2st2 +3s2 t−3st + s3−2s2 + s (4.6b)

ψ̃(010)
1 = 2 t w2 +3 t2 w+5st w−3 t w+ t3 +3st2−2 t2 +2s2 t−3st + t (4.6c)

ψ̃(001)
1 = w3 +3 t w2 +3sw2−2w2 +2 t2 w+5st w−3 t w+2s2 w−3sw+w (4.6d)

ψ̃(000)
2 =−11 t w2 +7sw2−11 t2 w−4st w+11 t w+7s2 w−7sw+7st2

+7s2 t−7st−2s3 +3s2 (4.6e)

ψ̃(100)
2 = 3 t w2−2sw2 +3 t2 w+ st w−3 t w−2s2 w+2sw−2st2−2s2 t

+2st + s3− s2 (4.6f)
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ψ̃(010)
2 =−t w2− t2 w− st w+ t w+ st2 +2s2 t− st (4.6g)

ψ̃(001)
2 =−t w2 + sw2− t2 w− st w+ t w+2s2 w− sw (4.6h)

ψ̃(000)
3 = 7 t w2−11sw2 +7 t2 w−4st w−7 t w−11s2 w+11sw−2 t3 +7st2

+3 t2 +7s2 t−7st (4.6i)

ψ̃(100)
3 =−sw2− st w− s2 w+ sw+2st2 + s2 t− st (4.6j)

ψ̃(010)
3 =−2 t w2 +3sw2−2 t2 w+ st w+2 t w+3s2 w−3sw+ t3−2st2

− t2−2s2 t +2st (4.6k)

ψ̃(001)
3 = t w2− sw2 +2 t2 w− st w− t w− s2 w+ sw (4.6l)

ψ̃(000)
4 =−2w3 +7 t w2 +7sw2 +3w2 +7 t2 w−4st w−7 t w+7s2 w

−7sw−11st2−11s2 t +11st (4.6m)

ψ̃(100)
4 = 2sw2− st w+ s2 w− sw− st2− s2 t + st (4.6n)

ψ̃(010)
4 = 2 t w2 + t2 w− st w− t w− st2− s2 t + st (4.6o)

ψ̃(001)
4 = w3−2 t w2−2sw2−w2−2 t2 w+ st w+2 t w−2s2 w+2sw+3st2

+3s2 t−3st (4.6p)

ψ̃(000)
5 =−16 t w2−16sw2−16 t2 w−32st w+16 t w−16s2 w+16sw

−16st2−16s2 t +16st (4.6q)

ψ̃(100)
5 = 12 t w2−4sw2 +12 t2 w+8st w−12 t w−4s2 w+4sw

−4st2−4s2 t +4st (4.6r)
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ψ̃(010)
5 =−4 t w2 +12sw2−4 t2 w+8st w+4 t w+12s2 w−12sw

−4st2−4s2 t +4st (4.6s)

ψ̃(001)
5 =−4 t w2−4sw2−4 t2 w+8st w+4 t w−4s2 w+4sw

+12st2 +12s2 t−12st (4.6t)
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Chapter 5

Examples

In this chapter, three ways of using the RKEM interpolant are shown, one is used in

a Galerkin weak form, the other is used to represent geometry and finally, for point inter-

polation. Some convergence results are presented for the newly developed T10P3I1 and

T6P2I0 elements and also a comparison between convergence rates with the T9P2I1 ele-

ment is presented. A Kirchhoff plate theory is used to show the performance of the new

element in solving Galerkin weak forms. This problem was chosen, because of its impor-

tance in structural applications and because it involves interpolation of second derivatives.

Three different problems were considered: clamped square plate, simply supported square

plate and clamped circular plate. Same problems were used in [50] to test the T18P4I2

element. In the following, L2, H1 and H2 are the standard Sobolev norms. Contrary to

the C0 elements used in finite element analysis of plates, where a mixed formulation is

implemented to solve the problem, the T10P3I1 element could be used directly into a dis-

placement based formulation and obtain accurate solution and optimal convergence rates.

Furthermore, the RKEM interpolants are globally smooth functions and therefore, there is

no need to apply smoothing techniques to the solution. In all the examples, we have en-

forced the Kronecker-δ property only on the boundary nodes, using the concept of nodal

isolation presented in [17]. Furthermore, a fourth-order conical window function with a
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radial support has been used to calculate the kernel and 36 Gauss points per element were

used to integrate the weak form, in contrast to the 576 Gauss points per element used be-

fore.

5.1 Plate Bending Approximation: Thin (Kirchhoff) Plates

The differential equation that governs the behavior of thin plates is

∂ 4w
∂x4 +2

∂ 2w
∂x2∂y2 +

∂ 4w
∂y4 =

p
D

∀ (x,y) ∈Ω (5.1)

where Ω is the domain of the problem, D is the bending stiffness and p the transverse

distributed load. In all the examples chosen, p/D = 1. To solve this equation using a

Galerkin method, we use the weak form. The weak form specific to a simply supported

and clamped plate then becomes,

∫ (
∇2w

)(
∇2δw

)
dΩ =

∫ p
D

δwdΩ (5.2)

For a clamped plate, the essential boundary conditions are

w = 0 ∀(x,y) ∈ δΩ

w,n = 0 ∀(x,y) ∈ δΩ

w,s = 0 ∀(x,y) ∈ δΩ

For a Galerkin solution, these boundary conditions require the arbitrary variation δw to
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also satisfy

δw = 0 ∀(x,y) ∈ δΩ

δw,n = 0 ∀(x,y) ∈ δΩ

δw,s = 0 ∀(x,y) ∈ δΩ

For a simply supported plate, the essential boundary conditions are

w = 0 ∀(x,y) ∈ δΩ

For a Galerkin solution, these boundary conditions require the arbitrary variation δw to

also satisfy

δw = 0 ∀(x,y) ∈ δΩ

5.1.1 Clamped Square Plate

A unit clamped square plate subjected to a uniform transverse load is analyzed. The

problem was solved using the T10P3I1 element. The boundary conditions were enforced by

setting w = 0 and w,x = w,y = 0 at the boundary nodes. A solution for a plate of dimensions

a×b is given in [53] as:

w(x,y) =
N

∑
m=1

N

∑
n=1

wmn

(
1− cos

2mπx
a

)(
1− cos

2mπy
b

)
(5.3)
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Table 5.1 Rates of convergence for the clamped square plate.

L2 H1 H2
T10P3I1 4.838±0.2167 2.641±0.2846 0.931±0.0388
T9P2I1 2.128±0.1236 1.966±0.0.0959 0.854±0.1076

where the coefficients wmn are computed using the method in [53]. 1000× 1000 terms

were used in Eq. (5.3) to compute the exact solution, and the maximum displacement at the

middle point is given as 1.265319087× 10−3. The displacement profile of the plate and

the convergence rates for the Galerkin solution are depicted in Fig. 5.1 and Table 5.1. A

High convergence rate in L2 error norm can be observed in the Galerkin solution. Also, the

relative error in the maximum displacement at the middle point is less than 0.08%.

(a) Displacement profile
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(b) Convergence rate

Figure 5.1 Convergence for the clamped square plate and the T10P3I1 element.

5.1.2 Simply Supported Square Plate

A unit simply supported square plate subjected to a uniform transverse load is analyzed.

Again, the T10P3I1 element was used. The boundary conditions were enforced by setting

w = 0 at the boundary nodes. A solution for a plate of dimensions a×b is given in [54] as:
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w(x,y) =
16p
π6D

∞

∑
m=1

∞

∑
n=1

sin mπx
a sin nπy

b

mn
[
(m/a)2 +(n/b)2

]2 (m,n = 1,3,5, . . .) (5.4)

The maximum displacement at the midpoint is given as 4.06234741×10−3. The displace-

ment profile of the plate and the convergence rates for the Galerkin solution are depicted

in Fig. 5.2 and Table 5.2. Approximately same convergence rate in L2 error norm can be

observed in the Galerkin solution for this case and previous one. The relative error in the

maximum displacement at the midpoint is exact up to four significant digits.

(a) Displacement profile
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(b) Convergence rate

Figure 5.2 Convergence for the simply square plate and the T10P3I1 element.

Table 5.2 Rates of convergence for the simply square plate.

L2 H1 H2
T10P3I1 4.898±0.0531 2.872±0.0280 1.488±0.0899
T9P2I1 3.044±0.0418 2.711±0.0583 1.116±0.0175

5.1.3 Clamped Circular Plate

A unit clamped circular plate subjected to a uniform transverse load is analyzed. Again,

the T10P3I1 element was used. The boundary conditions were enforced by setting w = 0,
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(a) Displacement profile
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(b) Convergence rate

Figure 5.3 Convergence for the circle clamped plate and the T10P3I1 element.

w,x = w,y = 0 at the boundary nodes. A solution for a circular plate of radius a is given

in [54] as:

w(x,y) =
p

64D

(
a2− x2− y2)2

(5.5)

The maximum displacement at the midpoint is given as 9.76562×10−4. The displacement

profile of the plate and the convergence rates for the Galerkin solution are depicted in

Fig. 5.3 and Table 5.3. The relative error in the maximum displacement at the midpoint

is less than 1.02%. The convergence order for this problem is almost half the value of

previous examples. It is related to the Babuska paradox, which states that no convergent

approximation may be found, in clamped circular plate, if the curved boundary is replaced

by a polygonal domain [16].

Table 5.3 Rates of convergence for the clamped circular plate.

L2 H1 H2
T10P3I1 2.584±0.090 2.585±0.0947 1.613±0.0727
T9P2I1 0.980±0.2929 1.157±0.2317 0.647±0.2362
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5.2 Surface Fitting Using Reproducing Kernel Element Shape Functions

In this section we present the results of the interpolation of a surface using the repro-

ducing kernel element shape functions associated with the new global partition polynomi-

als developed in §4.1.1 and §4.1.2. The function to interpolate is defined in the 2D domain

shown in Fig. 5.4 and is given by

f1 (x,y) = sin(x)cos(y) (5.6)

The domain of the problem is a complex shape, but it is easy to mesh using triangular

elements. There is no effort, from a user point of view, in the generation of the mesh, unlike

meshes with quadrilaterals. Analyzing the results of Fig. 5.5 to Fig 5.8, it is clear that the

RKEM functions are able to represent the solution better than using a simple linear interpo-

lation scheme. Even for a coarse mesh the approximation is good. With a small refinement

of the mesh we obtained with good accuracy an excellent representation of the exact shape.

Figure 5.9 presents the convergence rate in L2 error norm of the interpolation for a linear

triangular finite element, T6P2I0 and T10P3I1 reproducing kernel elements. The inter-

polation is performed in the irregular domain of Fig 5.4. As expected, the T10P3I1 has

the better approximation property with respect to the L2 error norm. In Table 5.4 shows

the comparison of the total number of degrees of freedom used for interpolation and the

corresponding L2 error norm for different elements. It is important to note that with only

521 degrees of freedom, the T10P3I1 reproducing kernel Element has approximately the
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(a) Coarse mesh

(b) Finer mesh

Figure 5.4 Background meshes used for interpolation.
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Figure 5.5 Interpolations for coarse mesh and exact solution, T6P2I0 element.

Figure 5.6 Interpolations for coarse mesh and exact solution, T10P3I1 element.
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Figure 5.7 Interpolated and exact surface for the T6P2I0 element for finer mesh.

Figure 5.8 Interpolated and exact surface for the T10P3I1 element for finer mesh.
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Figure 5.9 Convergence rates in L2 error norm of interpolation for the function f1 (x,y) =
sin(x)cos(y) in an irregular domain.

same error in the L2 norm as the linear triangular finite element with 1390 degrees of free-

dom. Additionally, the T10P3I1 element produces continuous interpolation, up to the first

derivative, contrary to the linear triangular finite element.

As a second example of interpolation, we used a more complicated function that has

a rough derivative. We will show that it will be a difficult test for the interpolation of the

Table 5.4 Comparison of the total number of degrees of freedom used for interpolation of
f1 (x,y) and the corresponding L2 error norm for different elements.

L2 error norm Degrees of freedom # elements

Linear 0.04008 1390 2536

T10P3I1 0.04678 521 170
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function using generalized Hermite type polynomials. The function is as follows,

f2 (x,y) = g(x) ·h(y) (5.7a)

g(x) = (1− x) [arctan(α (x− x̄))+ arctan(α x̄)] (5.7b)

h(y) = (1− y) [arctan(α (y− ȳ))+ arctan(α ȳ)] (5.7c)

The functions given in Eq. (5.7b) and Eq. (5.7c) changes its roughness as the parameter

α varies [38]. It becomes smoother as the parameter α gets smaller, and the graph of

the function has a sharp knee at x = x̄ (i.e., Fig. 2.2). In this example we have chosen

α = 50.0 and x̄ = 0.40. The domain of the problem corresponds to the bi-unit square,

Ω = (0,1)×(0,1). Contrary to the previous example, where the function and its derivatives

are smooth, here, the number of degrees of freedom needed to have approximately the same

error as the linear triangular finite element is bigger, as presented in Table 5.5. The DOF

presented in Table 5.5 were computed for different meshes. For the linear finite element

triangular element a finer mesh was used (3872 elements), for the T6P2I0 a mesh with 2312

element was adopted and for the T10P3I1 a rough mesh was utilized (1152 elements). We

presume that the increase of DOF is because with the T10P3I1 we are interpolating the

primary variable and the derivative. Therefore, to capture the roughness of the derivative, as

shown in Fig 5.10, we will need more degrees of freedom than in the case where derivatives

are smooth. As a consequence, if the derivative needs to be interpolated, then the T10P3I1

element will have a better behavior that the linear triangular finite element. The same effect

of the T10P3I1 is seen in the T6P2I0 element. The convergence rate and the graph of the
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interpolation are shown in Fig 5.11 and Fig 5.12, respectively. In Fig. 5.13 the difference

between the interpolation and the exact function for the T10P3I1 and linear triangular finite

elements for a finer mesh is plotted. To explain the increase of DOF’s, imagine that we want

to interpolate a function in two dimensions using the T6P2I0 element, then

u =
M

∑
I

Ψ(00)
I uI +

N

∑
J

[
Ψ(00)

J uJ +Ψ(10)
J uJ

,x +Ψ(01)
J uJ

,y

]
(5.8)

where we have omitted the arguments of the functions and the first summation is over the

set of vertex nodes, and the second summation is over the set of interior nodes. If the

nodal weights associated with the derivatives change abruptly and they have a value much

bigger than the nodal weight associated with the main variable, then the interpolation will

have a strong gradient. In Fig. 5.14 the case is presented where we are interpolating the

function f2 (x,y) for two different values of α using same mesh. If we use same mesh

for interpolation, then the RKEM shape functions will be the same for both interpolations,

hence the only difference will be in the nodal weights. For the case where α = 5.0 we have

a smooth representation, contrary to the case where α = 50.0. In Fig. 5.14(b) the jagged

surface is a result of the RKEM interpolation and it is not the actual geometry. This example

shows the deleterious effect when the function has a strong gradient in the derivative and a

relatively corse mesh is used for interpolation. Under refinement, the “abrupt” changes are

reduced; and therefore a better approximation is obtained.
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Table 5.5 Comparison of the total number of degrees of freedom used for interpolation of
f2 (x,y) and the corresponding L2 error norm for different elements.

L2 error norm Degrees of freedom # elements

Linear 0.008014 2025 3872

T6P2I0 0.006887 8161 2312

T10P3I1 0.008315 3027 1152

Figure 5.10 Derivatives of the function f2 (x,y) = g(x) ·h(y) for α = 50.0; and height was
scaled by 0.04 for illustration purpose.
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Figure 5.11 Convergence rates in L2 error norm of interpolation for the function f2 (x,y) =
g(x) ·h(y) in a regular domain.

Figure 5.12 Interpolation of the function f2 (x,y) = g(x) · h(y) in a finer mesh for the
T10P3I1 element and comparison with exact function for α = 50.
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(a) Interpolation using linear finite element triangles

(b) Interpolation using T10P3I1 elements triangles

Figure 5.13 Absolute error of the interpolation of the function f2 (x,y) = g(x) · h(y) in a
finer mesh (3872 elements) for the T10P3I1 element and the linear finite element triangle.
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(a) α = 5.0

(b) α = 50.0.

Figure 5.14 Interpolation of the function f2 (x,y) = g(x) ·h(y) in same mesh for the T6P2I0
element and different values of α .
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5.3 Volume Representation

We now present an example in two dimensions of volume representation of a circle

using RKEM. The theory behind volume representation is found in [49] and it is explained

briefly here. Given a boundary point set, a perpendicular projection of the point onto the

nearest RKEM boundary edge is found. We called these points a boundary auxiliary point

set. Next, we must also determine a set of auxiliary points for the interior. Our procedure

is to take the RKEM mesh points from the boundary auxiliary point list and use a mesh

generator to generate the interior. This gives us a set of auxiliary points, ui, for the en-

tire body. At this point, we only know the associated body points for the boundary. To

determine the body points, xi, for the interior, we use a linear finite element solution on

the volume mesh using all essential boundary conditions on the known boundary auxiliary

points. This generates a displacement field for the interior points that we use to populate

the interior auxiliary point pairs. Given the auxiliary points, we now solve a set of linear

algebraic equations like Eq (5.9) and solve in a minimum least-square sense for the nodal

data.

xi = x̃(ui) ; i = 1 . . .M (5.9)

where M is the number of body points and x̃(ui) is the RKEM interpolation evaluated at

the auxiliary point ui.

In Fig 5.15 we show the results of the volume representation of a circle, using three

different RKEM elements. A total of 36 equally spaced geometric boundary points, repre-

senting a circle, were projected onto the RKEM boundary edges. For all the cases a four
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element mesh as shown in Fig 5.15(a) were used. Some aspect should be pointed out. We

are trying to represent a circle using few points on the boundary and a coarse RKEM mesh,

therefore, it represents an extreme case. The presence of the “cusps” in the representation

was discussed for the first time in [18] for boundary and volume representation using the

T9P2I1 and Tet16P2I1 elements. It was concluded that the presence of the cusps are due

to the fact that we are projecting data that is fundamentally smooth onto boundary edges

that are not smooth. In this particular example, for the four corner nodes, an inconsistency

arises because we cannot automatically have there the necessary conditions for continu-

ous functions for arbitrary parameters of the nodal data. The effect of the cusp is more

evident in the T6P2I0 element because this element does not interpolate derivatives at the

corner nodes. The lack of symmetry of the global partition polynomials for the T9P2I1

element has an impact in the volume representation, at least, when a coarse mesh is used.

On the contrary, the T10P3I1 can represent the circle almost exactly and does not suffer

from symmetry issues.
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(a) RKEM mesh (b) T6P2I0

(c) T9P2I1 (d) T10P3I1

Figure 5.15 Volume representation of a circle for different RKEM elements.
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Chapter 6

Conclusions

We have proposed a new methodology to construct truly minimal and symmetric global

partition polynomials that have the desired Kronecker-δ property at the nodes. We have

shown that the previous two-dimensional RKEM triangular elements suffer from an asym-

metry problem and it is because they are not affine-invariant. Consequently, previous for-

mulations for construction of RKEM elements should be abandoned, in favor of the new

formulation proposed in this dissertation. A key point in this new formulation is the inclu-

sion of an interior node. Unlike other methods, where adding more nodes complicates the

meshing process and even destroys the compatibility of the elements, in our methodology

the inclusion of the interior node does not involve any extra effort from a meshing point of

view and still we have globally compatible elements. Indeed, it is done automatically when

an element is created. It means that we can use with absolutely no modifications the same

mesh for all the two-dimensional RKEM triangular elements. The new T10P3I1 element

was used in a Galerkin weak form in order to solve some Kirchhoff plate bending problems

to test numerically the convergence rate, and also, the same problems were solved using

the previously developed T9P2I1 element for comparison purpose. The performance of

the T10P3I1 element proved to be superior to the T9P2I1 element. The imposition of the

Kronecker-δ property only on the nodes where a Dirichlet boundary condition needs to be
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enforced allowed us to reduce the number of Gauss points required to integrate the weak

form. From the original 576 Gauss points per element used in [50] we moved to 36 Gauss

points per element. The relaxation of the Kronecker-δ property has the effect of smoothing

the RKEM shape functions. Further research in this area should be conducted in order to

find an “optimal” quadrature rule. The use of the T10P3I1 RKEM interpolant for volume

representation showed an improvement over the T6P2I0 and T9P2I1 elements.

6.1 Future Works

This dissertation explains the new way of construction of minimal and symmetric global

partition polynomials needed in the formulation of RKEM elements. Still there are some

future work to explore. A number of these are summarized below,

a) A rigorous mathematical error analysis for the new elements should be performed in

order to evaluate, theoretically, the approximation property of the RKEM space of

functions. This is a necessary step in order to lay out a firm mathematical foundation

of the method. Although an error analysis was done in [38] for the construction of

an interpolation error for RKEM elements with linear reproducing property.

b) The reproducing kernel element method requires a great effort to compute accurately

the integrals appearing in a weak formulation by using a conventional numerical

integration scheme such as the Gaussian quadrature rule. The previous drawback

could be potentially eliminated by the implementation of exact integration formulas

for the reproducing kernel element shape functions, as present in [8].

95



c) The reproducing kernel element method produces global and smooth higher-order

shape functions, as a result, they are continuously differentiable, or Ck (Ω) type,

where often, k ≥ 1. Consequently, post-processing of derived variables (i.e. strain

and stress) is performed using a direct interpolation and differentiation. However, this

leads to a difficulty when there is an imposed discontinuity in the derivatives, such

as the discontinuity in strains when material discontinuities are present [6]. Hence,

it is important to have a method to impose this physical discontinuity. In [43] a first

attempt to introduce discontinuities in the reproducing kernel element approximation

is presented. As part of future research, an extension of the methodology presented

in [43] should be done for the new elements proposed in this dissertation.

d) Only plate elements were implemented in this dissertation, but the use of RKEM

shell elements in linear and non-linear analyzes should be explored. The analysis of

shell structures is necessary in engineering calculations of stresses and strains of flat

and curved surfaces (i.e., stresses in the fuselage of an airplane).

e) While having a higher-order interpolation capability could be beneficial respect to the

solution accuracy viewpoint, it is in general more expensive to compute that lower-

order interpolations. Therefore, coupling lower-order Finite Elements with RKEM

elements would be advantageous. The blending of Finite Elements and RKEM el-

ements could speed up the solution time process if only the higher-order RKEM

elements are needed in a small sub-domain of the problem.
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Appendix A: Sobolev Norms

In numerical analysis the concept of Sobolev norms is used to evaluate the convergence

rate of different approximations [5]. One important motivation for the adoption of these

measure norms is its relations with the weak form of a boundary value problem. In this

appendix we will describe three Sobolev norms used in this dissertation. No new infor-

mation is described in this appendix. According to [26], consider Ω ⊂ ℜn, n ≥ 1, and let

u,v : Ω→ℜ.

The L2 (Ω) inner product and norm are defined by

(u,v) =
∫

Ω
uvdΩ (A.1)

and

‖u‖0 = (u,v)1/2 (A.2)

respectively. For the computation of the L2 error norm used in this dissertation, Gaussian

quadrature was employed to evaluate the integral, as follows,

‖e‖0 =

{
∑
ΛE

∑
Λg

[
I f (xg)− f (xg)

]2
Wg

}1/2

(A.3)

where, Λg is the set of Gauss points in an element, xg is a Gauss point and Wg is the Gauss

point weigth multiplied by the determinant of the Jacobian. This norm is used to evaluate

the interpolation error of main variables, for example, displacements.
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Appendix A: (Continued)

The H1 (Ω) inner product and norm are defined by

(u,v)1 =
∫

Ω
(uv+u,i v,i ) dΩ (sum, 1≤ i≤ n) (A.4)

and

‖u‖1 = (u,v)1/2
1 (A.5)

respectively. The computation of the H1 error norm was performed in the same way as

the L2 (Ω) error norm, but including the first derivatives. This norm is used to evaluate the

interpolation error of main variables and its first derivative, for example, displacements and

rotations in the classical Kirchhoff theory of plates.

The H2 (Ω) inner product and norm are defined by

(u,v)2 =
∫

Ω

(
uv+u,i v,i +u,i j v,i j

)
dΩ (sum, 1≤ i, j ≤ n) (A.6)

and

‖u‖2 = (u,v)1/2
2 (A.7)

repectively. The computation of the H2 (Ω) error norm was done using Gaussian quadra-

ture, including the second derivatives. This norm is used to evaluate the interpolation error

of main variables, its first and second derivatives, for example, displacements, rotations and

moments in the analysis of bending of thin plates. The Hm (Ω) inner product and norm are
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Appendix A: (Continued)

defined by

(u,v)m =
∫

Ω


uv+u,i v,i +u,i j v,i j + · · ·+u, i j · · ·k︸ ︷︷ ︸

m indices

v, i j · · ·k︸ ︷︷ ︸
m indices


 dΩ (sum, 1≤ i, j ≤ n)

(A.8)

and

‖u‖m = (u,v)1/2
m (A.9)
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Appendix B: Aspect Ratio

A convenient way to test is a mesh is well graded is to use the concept of aspect ratio,

that is defined as follow.

According to [26], consider a domain Ω⊂ℜd and Ω̄ =∪nel
e=1 Ω̄e. Let he be the diameter

of smallest circle that contain the element Ωe, then the aspect ratio is given by

σ =
h
ρ

(B.1)

where,

he = diameter Ωe (B.2)

ρe = diameter of largest sphere contained in Ωe (B.3)

h = max
1≤e≤nel

(he) (B.4)

ρ = min
1≤e≤nel

(ρe) (B.5)

heΩe

ρe

Figure B.1 Schematic of the smallest circle that contains the element Ωe.
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