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ANALYSIS OF WATER SEEPAGE THROUGH EARTHEN STRUCTURES 
USING THE PARTICULATE APPROACH 

 
KALYANI JEYISANKER 

ABSTRACT 

A particulate model is developed to analyze the effects of steady state and transient 

seepage of water through a randomly-packed coarse-grained soil as an improvement to 

conventional seepage analysis based on continuum models. In the new model the soil 

skeleton and pore water are volumetrically coupled. In the first phase of the study, the 

concept of relative density has been used to define different compaction levels of the soil 

layers of a completely saturated pavement filter system and observe the seepage response 

to compaction.  First, Monte-Carlo simulation is used to randomly pack discrete spherical 

particles from a specified Particle Size Distribution (PSD) to achieve a desired relative 

density based on the theoretical minimum and maximum void ratios. Then, a water 

pressure gradient is applied across one two-layer filter unit to trigger water seepage. The 

pore water motion is idealized using Navier Stokes (NS) equations which also 

incorporate drag forces acting between the water and soil particles. The NS equations are 

discretized using finite differences and applied to discrete elements in a staggered, 

structured grid.  The model predicted hydraulic conductivities are validated using widely 

used equations.  The critical water velocities, hydraulic gradients and flow within the 
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saturated soil layers are identified under both steady state and transient conditions. 

Significantly critical transient conditions seem to develop.  

In the second phase of the study the model is extended to analyze the confined flow 

through a partly saturated pavement layer and unconfined flow from a retention pond into 

the surrounding saturated granular soil medium. In partly saturated soil, the water 

porosity changes resulting from water flow is updated using the Soil Water 

Characteristics Curve (SWCC) of the soil. The results show how complete saturation 

develops due to water flow following the water porosity Vs pressure trend defined by the 

SWCC. Finally, the model is used to predict the gradual reduction in the water level of a 

retention pond and the location of the free-surface. The free-surface is determined by 

differentiating the wet and dry zones based on the Heaviside step function modified NS 

equations.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

Durability of earthen structures such as dams, levees, embankments and pavements is 

determined by one dominant factor; the nature of interaction of soil particles with water 

flow. Hence accurate analysis of water seepage through soils is essential to achieve more 

durable designs of such structures. The majority of currently available design criteria are 

formulated based on either the analysis of steady state laminar flow through saturated soil 

continua or empiricism. However, very often, field observations are also used to refine or 

calibrate the design criteria. In the conventional models, the dynamic flow of water 

through soil pores is commonly idealized using the Darcy’s law. Experimental studies 

show that Darcy’s law could be inaccurate for modeling transient conditions and high 

fluid velocities that develop under excessive hydraulic gradients [1]. It is also known that, 

under wind and tidal impacts as well as rainfall and rapid reservoir drawdown, it is the 

transient and non-laminar flow that plays a more crucial role in determining the stability 

of earthen and hydraulic infrastructure. In order to evaluate localized critical zones, one 

has to replace the conventional method of analysis based on a continuum to an alternative 

approach with a discrete soil skeleton which allows passage of water through its 
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interstices. Moreover, forensic investigations of failures often remind the civil 

engineering community of 

1) The vital role of the discontinuous or particulate nature of soil 

2) The importance of analyzing the flow through unsaturated soils, and 

3) The importance of incorporating critical transient effects that generally precede 

the eventual steady state flow. 

 

1.2 Literature Review 

Modeling of seepage through particulate media considering soil-water interaction is 

relatively new to computational geomechanics. Due to its complexity, Fredlund [2] used 

Richard’s equation (Eqn 1) and the continuum approach to obtain approximate solutions 

for slope stability problems.  
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            (1) 

Where, h is the total hydraulic head, kx and ky are the x and y directional hydraulic 

conductivities and mw
2 is the water storage coefficient equal to the slope of Soil-Water 

Characteristic Curve. 

As for non-steady state or transient flow problems, Fredlund [2] used Richard’s equation 

(Eqn 1) and the continuum approach to obtain approximate solutions.  

Where, h is the total hydraulic head, kx and ky are the x and y directional hydraulic 

conductivities and mw
2 is the water storage coefficient equal to the slope of Soil-Water 

Characteristic Curve [2]. Ng and Shi [3] also used Eqn1 to numerically investigate the 
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stability of unsaturated soil slopes subjected to transient seepage. In Ng and Shi’s [3] 

work, a finite element model was used to investigate the influence of various rainfall 

events and initial ground water conditions on transient seepage. However, slope stability 

was analyzed without considering the localized effects of high pressure build-up and high 

hydraulic gradients within the slope.  

Modeling of seepage through particulate media considering soil-water interaction is 

relatively new to computational geomechanics. The discrete element method (DEM) 

provides an effective tool to model granular soils in particular based on micro mechanical 

idealizations. El Shamy et al. [4] presented a computational micro-mechanical model for 

coupled analysis of pore water flow and deformation of granular assemblies. El Shamy et 

al. [4] have used their model and investigated the validity of Darcy’s law in terms of 

particle sizes and porosities. In addition, El Shamy and Zeghal [5] conducted simulations 

to investigate the three dimensional response of sandy deposits when subjected to critical 

and over-critical upward pore fluid flow using a coupled hydromechanical model. These 

simulations provide valuable information on a number of salient microscale mechanisms 

of granular media liquefaction under quicksand conditions. In addition, Shimizu’s [6] 

particle-fluid coupling scheme with a mixed Lagrangian-Eulerian approach which 

enables simulation of coupling problems with large Reynolds numbers is implemented in 

PFC 2D and PFC 3D released by Itasca Consulting Group, Inc. [7]. The models used by 

El Shamy and Zeghal [5] and Shimizu [6] are both based on the work by Anderson and 

Jackson [8] and Tsuji et al. [9]. Anderson and Jackson [8] modeled pore fluid motion 

using averaged Navier Stokes equations. Tsuji et al. [9] simulated the process of particle 
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mixing of a two-dimensional gas-fluidized bed using averaged Navier Stokes equations 

for comparison with experiments.  For all the above cited studies, granular assemblies are 

modeled using the discrete element model developed by Cundall and Strack [10] and the 

averaged Navier Stokes equations are discretized using a finite volume technique on a 

staggered grid [11]. 

The discrete nature of soil makes the required constitutive relationships to be exceedingly 

complex needing a large number of parameters to be evaluated in order to model the soil 

behavior accurately. However, the state-of-the-art high performance computer facilities 

would help the designer save time on the computations. Furthermore, nanoscale 

experimentation can be performed to establish model parameters such as the coefficients 

of normal and shear stiffness between the grains.   

 

1.3 Objectives 

1.3.1 Pavement Filter Design 

Design of durable filters is essential for highway pavements since the filters largely 

determine the success and failure of the drainage system and the lasting separation of 

pavement layers. Inadequate compaction or segregation of filter layers during placement 

and excessive cyclic traffic loads can lead to undesired soil particle migration and 

eventual erosion causing the malfunction of the pavement. Figure 1 shows a typical 

pavement structure made of three layers; subgrade, subbase and base. The results 

presented in the paper are only for the subbase-base layer interface (Figure 2a). Similar 

results can be obtained for the subgrade- subbase layer interface as well (Figure 2b). 
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Currently, the conventional criteria (Eqn 2) proposed by U.S. Army Corps of Engineers 

[12] are used for filter design. In these criteria, the filter refers to coarser layer and the 

finer layer is defined as the soil.   

           

          

       

 

Figure 1: Typical Pavement Structure 

 

 

 

 

  (a)           (b) 

Figure 2: Pavement Layer Interfaces 
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D15, D50 and D85 are the diameters of a soil mixture which correspond to cumulative 

weight percentages of 15%, 50% and 85% respectively in a particle size distribution of 

the mixture as shown in Figure 8.  

While the above criteria generally enable the designer to select the gradation of different 

structural layers, the flow characteristics and hydraulic gradients within the system are 

determined using the Darcy’s law. An obvious inadequacy of the current drainage design 

is the use of flow parameters and hydraulic conditions that represent only the overall 

average and steady-state conditions of each layer. Therefore, the conventional drainage 

and filter design techniques are unable to incorporate, perhaps more critical, localized, 

random and transient effects. Hence, the model presented here would equip designers 

with an analytical tool to address the deficiencies of current design techniques.   

            

1.3.2 Retention Pond Design 

Retention ponds are man-made or natural depressions into which stormwater runoff is 

directed for temporary storage with the expectation of disposal by infiltration into a 

shallow groundwater aquifer. They are often created near areas of development and in 

many instances required with new development of buildings, parking lots, roads, etc by 

the permitting agencies. Retention ponds are developed primarily to serve two functions 

such as limit flooding and removal of pollutants. 

These ponds generally comprise a sedimentation forebay and a larger basin sized to hold 

the water quality volume (WQV). They retain larger storm volumes for 24 to 48 hours, 

thus protecting the channels (streams, etc.) that receive the effluent. They also can be 
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designed to retain larger volumes generated by 10- to 100-year rain events. Water 

treatment is achieved naturally when particles settle along the flow path between inlet 

and outlet of the pond, and between storms when additional settling occurs. Nutrient 

removal occurs between storms via plant uptake. Rain events provide a fresh influx of 

stormwater runoff, which forces standing water out of the system. Maintenance 

requirements of retention ponds include the periodic removal of sediment and vegetation 

to restore storage capacity. Sediment removal is performed primarily in the forebay, 

which can be designed for easy equipment access. 

The model presented in this dissertation first uses a self-developed packing algorithm to 

randomly pack a three dimensional discrete soil skeleton. Then the model is used to 

determine the water flow behavior of the particulate soil medium consisting of 

volumetrically coupled water continuum and the discrete soil skeleton. The flow of water 

through the particulate medium is modeled using the Navier Stokes (NS) equations which 

are discretized using the finite difference method (FDM) [13]. The new model is capable 

of predicting both transient and steady state flow effects. The model is applied to a 

pavement structure designed based on the U.S. Army Corps of Engineers’ filter designed 

criteria [12] to analyze the localized transient and steady state seepage effects in terms of 

water velocities and hydraulic gradients at different degrees of compaction. Appropriate 

boundary conditions have been employed to simulate the conditions resulting from of a 

sudden surge of ground water just beneath the pavement subbase. It is assumed in the 

new model that reasonably accurate estimates of the above parameters can be obtained by 

volumetric coupling of water and the soil skeleton. 



8 
 

1.4 Numerical Modeling  

Numerical modeling can be performed to solve geomechanics problems using two 

different approaches: 

1) Solid continuum methods  

2) Discrete element methods 

1.4.1 Solid Continuum Methods  

In the solid continuum approach, the entire soil body is first divided into a number of 

small elements and the governing equations are mathematically solved for each element. 

In this regard, the following three methods are widely used: 

1) Finite Difference method 

2) Finite Element method  

3) Finite Volume method 

1.4.2 Discrete Element Methods 

Discrete element methods (DEM) comprise a suite of numerical techniques developed to 

model granular materials, rock, and other discontinua at the scale of grains. In most cases, 

the granular particles modeled as 3D spheres or 2D discs are individually packed in the 

structure. Then, appropriate inter-particle characteristics such as coefficients of normal 

and shear stiffness, friction between adjacent particles and friction between particles and 

other structures are introduced in the analysis. As in the case of continuum methods, the 

governing equations are solved numerically. Due to the nature of this analysis, DEM are 

also known as particle modeling methods. Particle Flow Code (PFC) [7] is one of the 

discrete element methods.  
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1.5 Assembling of Particles in the Particle Flow Code 

Using the PFC program, individual soil particles can be packed to model a given 

geotechnical structure such as an earthen dam or a pavement layer by closely simulating 

the transient dynamics of that particulate medium involved with the construction of that 

structure. The following laws govern the packing (construction) mechanism to achieve 

the final force equilibrium. 

1) Law of motion (Newton’s second law) 

2) Appropriate force displacement (constitutive) laws for normal and shear 

deformation 

The computational cycle in PFC-2D is a time stepping algorithm that consists of the 

repeated application of the law of motion to each particle, a force-displacement law to 

each contact, and constant updating of boundaries. The force-displacement law based on 

the contact constitutive model is repeatedly applied to each contact to update the contact 

forces based on the relative motion between the two entities at the contact. Until the 

particles reach equilibrium, the above laws will be applied in a loop as shown in Figure   

3. 
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Figure 3: Computational Cycle in PFC 

 

1.5.1 Theoretical Background of PFC 

1.5.1.1 Particle Interactions  

             

 

 

Figure 4: Illustration of Inter-Particle Forces 

The above-mentioned rigid circular particles (or spherical in 3-D) interact by way of 

normal and shear contacts modeled by a simplified mass-spring system as shown in 

Figure 3. For each pair of particles, the interactive force can be written as    

                (3a) sskNNkF sni .. Δ+Δ=

S (Shear) 

N (Normal) 
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Where,  kN - Coefficient of normal stiffness,  ks  - Coefficient of shear stiffness,  ΔN – 

Normal deformation and Δs – Shear deformation. Then, the total force acting on a 

particle given by,  

∑= itotal FF               (3b) 

 

1.6 Organization of Dissertation  

Chapter 2 describes the methodology used to randomly pack the soil particles and the 

mathematical formulation for steady state flow through a particulate pavement system. 

Chapter 3 presents the modification made on the governing equations for analyzing the 

transient behavior of water through particulate pavement system using the volumetric 

compatibility of the two phase media, such as water and solid particles. Chapter 4 

describes the mathematical formulation of flow through partly-saturated and saturated 

soils using Navier Stokes equations. Chapter 5 illustrates the application of the developed 

models for analyzing flow around retention ponds in order to determine the free-surface 

(Phreatic surface) using Navier Stokes equations. The different approaches are proposed 

to determine the free-surface for flow from retention pond. Results are included in each 

Chapter. 
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CHAPTER TWO 

ANALYSIS OF STEADY STATE WATER SEEPAGE IN A PAVEMENT 
SYSTEM USING THE PARTICULATE APPROACH 

 

2.1 Preliminary Studies Using Existing Software 

The existing finite-element software (Seep/W) and discrete element software (PFC2D) 

were used at the time of preliminary studies in order to visualize the effects of continuum 

and discrete approaches on flow problems. A simple model shown in Figure 5 was used 

to identify the localized effects within a two-layer pavement system. Under same 

pressure gradient, the flow rates are compared using continuum and discrete methods.  

Flow rate obtained using discrete method (0.0025 m3/s/m width) is less than that of 

continuum method (q = 0.0027 m3/s/m width) due to additional drag forces in the 

particulate matrix. 
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Figure 5: Analysis of Flow Problem Using Existing Software 

  

 

Figure 6a: Highway Pavement Layers 
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Figure 6b: Comparison of Hydraulic Gradients Obtained Using Continuum  
and Discrete Methods (Steady State) 
 

The seepage through two-layer pavement shown in Figure 6a was modeled using the 

PFC2D. As illustrated in Figure 6b, there is a significant difference in hydraulic gradients 

using the continuum and discrete approaches. At the interface, ilocal exceeds the iConventional 

analysis. However, since the three-dimensional porosities are realistic, the authors 

developed a three-dimensional packing algorithm.  The results obtained from the 

preliminary studies motivated the authors for analyzing the seepage phenomena through 

particulate soil media. 

 

2.2 Methodology Followed to Develop a Novel Algorithm 

The comprehensive analytical procedure and the computer code developed for its 

implementation are illustrated in Figure 7. The analytical procedure consists of two 

primary tasks such as random assembly of the particulate medium (granular soil) and 

solution of the fluid flow governing equations using partial coupling between the two 
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media. The flow chart also includes the sections, equation numbers and figure numbers 

corresponding to each stage. 
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Figure 7: Flow Chart Illustrating the Analytical Model for Steady State Flow 
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2.2.1 Modeling of Soil Structure (3D Random Packing of Soil Particles) 

The particle size distribution curves (PSDs) shown in Figure 8 were selected to satisfy the 

US. Army Corps of Engineers΄ filter criteria (Eqn 2) for a typical pavement system made 

of a gravel base, a coarse sand subbase and a fine sand subgrade [12]. 

 

2.2.1.1 Simulation of Maximum and Minimum Void Ratios Using PSD 

In this model the soil particles are assumed to be of spherical shape. To determine the 

maximum and minimum void ratios (emax and emin) corresponding to each soil type in 

Figure 8, a customized random packing algorithm was developed. In the case of gravel, 

28 mm × 28 mm × 28 mm cubes were packed using the corresponding PSD in Figure 8. 

It can be noted that the PSDs in Figure 8 are cumulative probability distributions of 

particle size for each soil type. Therefore, by using an adequately large array of random 

numbers from a uniform distribution between 0 and 100 (the y axis range in Figure 8), 

one can select the corresponding array of particle diameters that conforms to a selected 

PSD, from the x axis. This technique, known as the Monte-Carlo simulation [14] is used 

to select the array of packing diameters for each cube. It is noted that the resulting 

maximum and minimum void ratio distributions change in each packing trial since the 

order of diameters used for packing is changed randomly. Similarly, 16 mm ×16 mm × 

16 mm cubes and 3 mm ×3 mm × 3 mm cubes were used to obtain emax and emin in coarse 

sand packing and fine sand packing respectively (Figure 8). Smaller cubes are used to 

pack smaller particle sizes to reduce the computer running time assuming that an 
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adequate number of particles are within the cube to determine representative emax and emin 

for each type of soil. 
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Figure 8: Particle Size Distributions for Gravel, Coarse Sand and Fine Sand 

 

2.2.1.2 Implementation of the Packing Procedure 

In order to obtain the loosest state of each type of soil (emax) within the corresponding 

cubes described above, different sizes of soil particles inscribed in boxes are packed as 

indicated Figure 9a using a MATLAB code developed by the authors. The side length of 

each box is the same as the diameter of the inscribed soil particle. Based on the minimum 

particle diameter of the selected PSD, the side lengths of each cube is divided into a finite 

number of sub-divisions (Figure 9a). Then, the packing algorithm tracks the total number 

of sub-divisions occupied by each incoming box, i.e. each packed soil particle, as packing 

proceeds based on the Monte-Carlo simulation corresponding to a given PSD. Finally, the 
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automated algorithm fills the maximum possible number of sub-divisions until it finds 

that no space is available within the considered cube for further packing of soil particles 

from the given PSD.  

On the other hand, in order to obtain the minimum void ratio (densest packing), the 

maximum number of spheres smaller than the inscribing sphere in each box is also 

packed into the unoccupied space at the corners of each box (Figure 9c and 9d) before 

that box is placed in the cube (Figure 9b). For each type of soil, 400 such cubes (trials) 

were packed randomly using the Monte-Carlo simulation. Since the maximum and 

minimum void ratios obtained in each trial would be different as explained above, they 

are considered as random variables. Thus, the probability distributions of emax and emin 

obtained from those 400 trials are shown in Figure 10. The ranges derived for emax and 

emin as shown in Table 1 agree with the typical values in [15]. 

 

Table 1: Size Characteristics of Pavement Layers 

Soil type D15 (mm) D50 (mm) D85 (mm) emin emax 

Gravel  9.85 13 19 0.59 – 0.8 0.98 – 1.18 

Coarse sand  1.85 2.5 3.5 0.73 – 0.93 0.91 – 1.10 

Fine sand 0.16 0.29 0.49 0.54 – 0.79 0.91-1.26 
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Figure 9: Random Packing of Soil Particles 

 

2.2.1.3 Determination of the Natural Void Ratio Distribution 

The concept of relative density is helpful in quantifying the level of compaction of 

coarse-grained soils. The relative density of a coarse-grained soil at a given compaction 

level expresses the ratio of the reduction in the voids at the given compaction level, to the 

maximum possible decrease in the voids (Eqn 3). The in-situ void ratio distribution (e) 

corresponding to a relative density (Dr) is obtained using the previously obtained emax and 

emin (Eqns 3 or 4).  

%100
minmax

max ×
−
−

=
ee

ee
Dr                (4) 
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or 

minmax 100100
1 eDeDe rr +⎟

⎠
⎞

⎜
⎝
⎛ −=

              (5) 

Where, emax is the randomly distributed void ratio of gravel/sand in its loosest state. emin is 

the randomly distributed void ratio of gravel/sand in its densest state. e is the randomly 

distributed void ratio of gravel/sand in its natural state in the field. 

Thus, 

( ) ( ) ( )[ ]reeen DefefFef ,, minmax=               (6) 

Where ( )efen , ( )efe max and ( )efe min are Probability Density Functions (pdf) of in-situ 

natural void ratio, maximum void ratio and minimum void ratio respectively. 

If e is a function of two random variables (emax = e1, emin = e2) and µ1 and µ2 are the mean 

values of these random variables, the expected mean value of “e” can be expressed using  

the second-order Taylor series approximation as  
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Furthermore, the variance of “e” can be expressed as  
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Figure 10: Probability Density Function (PDF) of Maximum and Minimum Void 
Ratios 
 

Two alternative approaches can be followed to determine the probability distribution of 

the natural void ratio (e) from the probability distributions of the maximum and minimum 

void ratios (Eqn 5): 

1) Assume an appropriate Probability Density Function (Example: Log-normal) with 

mean and variance calculated using Eqn 6 and Eqn 7 from the means (µ1, µ2) and 

variances (V (e1), V (e2)) of emax and emin.  

2) Generating the probability distribution of natural void ratios (e) using Eqn 4 and 

the Monte-Carlo simulation technique. 

 

In this model, the method (2) listed above is used. When the probability distributions of 

emax and emin are known for each soil type (Figure 10) the corresponding cumulative 

distributions of emax and emin can be derived (Figure 11). Then, once more the Monte-

µ1 µ2

V (e1) 
V (e2) 
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Carlo simulation (Section 3.1) can be used to pick two arrays of emax and emin values for 

that soil type. Finally, with the emax and emin arrays, a corresponding array of natural void 

ratio (e) of any of the above soil types, for a given relative density (Dr) can be obtained 

from Eqn 4. The spatial distributions of natural void ratios (porosities) so obtained 

assumed to be representative of each soil layer will be used in the analysis of flow 

(Section 4). 

      

Figure 11: Cumulative Frequencies of Maximum and Minimum Void Ratios 

 

2.3 Modeling of Steady State Flow  

In modeling the pavement layers, the three dimensional porosities obtained from particle 

packing are coupled with two dimensional water flow. This is because flow is constrained 

in the third direction due to the two dimensional nature of the pavement. Due to the 

incompatibility of the sizes of the particles of the three layers and since the same grid 

element size is used for entire pavement structure, only two pavement layers are modeled 

at a time. Navier Stokes equations [13] are given by: 

Random 
selection 
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Mass Conservation (Continuity Equation): 
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∂
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Momentum Conservation (Momentum Equations): 

X direction: 
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Y direction: 
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Where, n – porosity at the location (x, y) at time t,    u, v – fluid velocities in the x and y 

directions respectively,    ρ – fluid density,   p – fluid pressure, µ - fluid viscosity, gy - 

gravitational force per unit mass in the y direction.  

Averaged fluid-particle interactions (drag forces) are quantified using semi-empirical 

relationships provided in Eqn 9 [6]. 
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Where, pd  - averaged particle diameter; Dx – x directional average fluid-particle 

iteration force per unit volume. A similar expression for Dy is used for y directional 

averaged fluid-particle interactions.  
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2.3.1 Need for a Staggered Grid 

The central difference form of Eqns 6 – 8 requires a staggered grid due to the two issues 

explained below: 

0
22

1,1,,1,1 =
Δ

−
+

Δ

− −+−+

y
vv

x
uu jijijiji            (13) 

 

Figure 12: Discrete Checkerboard Velocity Distribution at Each Grid Point: At 
Each Node, the Top Number is u and the Bottom Number is v 

 

Figure 12 illustrates an arbitrary zigzag type of distribution of both the x component and 

y components of velocity, u and v, respectively. When these arbitrary numbers are 

substituted in Eqn 12, the central difference form of the continuity equation for 

incompressible fluid flow is unconditionally satisfied. In other words, the checkerboard 

velocity distribution shown in Figure 12 produces a trivial solution inapplicable to a real 

physical flow field. 
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Considering a two-dimensional discrete, checkerboard pressure pattern as illustrated in 

Figure 13, the second order central difference formulation for the pressure gradients 

which appear in the momentum equations can be written as follows:  

x
PP

x
P jiji

Δ

−
=

∂
∂ −+

2
,1.1

              (14) 

y
PP

y
P jiji
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−
=

∂
∂ −+

2
1,1,               (15) 

 

Figure 13: Discrete Checkerboard Pressure Distribution 

 

The checkerboard pressure distribution (Figure 13) gives zero pressure gradients in the 

momentum equations in the x and y directions written in terms of the central difference 

scheme (Eqns 13 and 14 respectively).  In other words, the pressure field would not be 
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incorporated in the discretized Navier Stokes equations and hence the numerical solution 

would effectively see only uniform pressure distributions in the x and y directions. 

In order to address the above issue, an innovative remedy for the checkerboard 

distribution is to use a “staggered mesh” where discrete pressures and velocities are 

expressed only wherever required. A typical two-dimensional staggered mesh 

arrangement is shown in Figure 14. In the staggered grid, the velocity components are 

computed for the points that lie on the faces of the flow elements. Thus, the x-directional 

velocity, u, is computed on the planes or surfaces that are normal to the x-direction and 

similarly, the y-directional velocity, v, is computed on the planes or surfaces that are 

normal to the y-direction. On the other hand, the pressures are computed at the center of 

the flow elements. 

By introducing a staggered grid, the mass flow rates across the flow element faces can be 

evaluated without any interpolation of the relevant velocity components. Moreover, for a 

typical flow element, it will be easy to see that the discretized continuity equation would 

contain the differences of adjacent velocity components thus preventing a wavy velocity 

field resulting from the continuity equation. When the staggered grid is used, only 

“realistic” velocity fields would have the possibility of being acceptable to the continuity 

equation. Consequently, pressure fields in the momentum equations would no longer be 

felt as uniform pressure fields. 
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Figure   14: A Typical Staggered Grid Arrangement (Solid Circles Represent 
Pressure Nodes and Open Circles Represent Velocity Nodes) 
 

2.3.2 Numerical Solution Technique 

Based on the staggered grid arrangement introduced in Section 4.2, a finite-difference 

approach is used to discretize the Eqns 9, 10 and 11. The scheme is based on forward 

difference in time and central difference in space. The numerical form of the x directional 

momentum equation is written in Eqn 10, referring to the notation in Figure 15 for the 

sequential iteration steps of N and N+1. 

 

Y 

X 
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Figure 15: Computational Module for the X-Momentum Equation 
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Within the staggered grid some velocities need to be interpolated as shown in Eqns 16b 

and 16c. In a concise form, Eqn 16a can be written as 

( ) ( )tA
x

pp
)t(AtAunun j,ij,1iN

j,2
1ij,i

1N
j,2

1ij,i Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ

−
Δ+Δ+= +

+
+
+

     (16d) 
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The numerical form of the y directional momentum equation can be written similarly 

based on Eqn 11.  
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2.3.3 Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) Algorithm 

An iterative process called the pressure correction technique has found widespread 

application in the numerical solution of the incompressible, viscous Navier Stokes 

equations.  This technique is a vehicle by which the velocity and pressure fields are 

directed towards a solution that satisfies both the discrete continuity and momentum 

equations.  This technique is embodied in an algorithm called Semi-Implicit Method for 

Pressure-Linked Equations (SIMPLE) [11]. The primary idea behind SIMPLE is to create 

a discrete equation for pressure, in terms of the pressure correction, from the discrete 

continuity equation.  Figure 16 shows the step-by-step procedure for the SIMPLE 

algorithm. 
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Figure 16: Flow Chart for SIMPLE Algorithm for Steady State Condition 

 

2.3.3.1 Derivation of the Pressure Correction Formula 

At the beginning of each new iteration,  jip ,  is set to *
, jip , where *

, jip  is the pressure from 

the previous iteration. Then, Eqn 16d will be transformed to Eqn 17. 
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Similarly re-arranged y directional equation would be Eqn 18. 
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Iteration for steady-state 

Assume trial values of (p*) n, (u*) n, 
(v*) n for nth iteration 

Solve momentum equations for (n+1)th 
iteration [(u*) n+1 and (v*) n+1] 

Solve a pressure-correction equation for 
p' using a relaxation technique 

Calculate pn+1 = (p*) n + p' 
Correct the velocities 
u n+1 = (u*) n + u' 
v n+1 = (v*) n + v'

Visualize steady-
state results 

Determine the mass imbalance 
term (mit) 

mit < tol. 

Yes 

No
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Next, Eqns 17 and 18 are subtracted from Eqn 16d and its y directional counterpart to 

obtain Eqns 19 and 20 respectively. 
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Where, the pressure correction  *
,,

'
, jijiji ppp −=  , *' AAA −= , *' AAA −=  

ρ
jin

AAAand .*' −=== . 

BB ′,'  and B′  can be defined similarly from the y directional coefficients. 

Eqn 9 can be re-written in the discretized form as in Eqn 21 using the central difference 

scheme with the staggered grids, 

 

               (21) 

The semi-implicit terminology refers to arbitrary setting of  A ,A '' and the corresponding 

y directional coefficients equal to zero, thus allowing the ultimate pressure correction 

formula, (Eqn 21), to have p΄ appearing only at four neighborhood grid points illustrated 

in Figure 17. Omission of N
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the pressure correction and velocity corrections would in fact be zero for a converged 

solution. Arbitrarily setting N
ji

u
,2

1'
+

 and N
ji

v
2

1,
'

+
 equal to zero in Eqns 19 and 20 produce,  
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Using Eqns 22 and 23, the discretized continuity equation (Eqn 21) can be expressed as a 

pressure correction formula in terms of '
, jip values of only the neighboring four grid 

points as illustrated in Figure 17 (Eqn 21).  

 

Figure 17: Designation of Nodal Points on a Grid Used in SIMPLE Algorithm 

0fpepdpcpbpa j,i
'

1j,ij,i
'

1j,ij,i
'

j,1ij,i
'

j,1ij,i
'

j,ij,i =+++++ −+−+      (24a) 

Where, 

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δρ

Δ
+

Δρ

Δ
= 22j,ij,i

y
t

x
tn2a           (24b) 

( )2j,ij,i
x
tnb

Δρ

Δ
−=            (24c) 



35 
 

( )2j,ij,i
x
tnc

Δρ

Δ
−=            (24d) 

( )2j,ij,i
y
tnd

Δρ

Δ
−=             (24e) 

( )2j,ij,i
y
tne

Δρ

Δ
−=              (24f) 

and 

( ) ( )
y

vnvn

x

unun
f

1N
j,1ij.i

1N
j,1ij.i

1N
1j,ij.i

1N
1j,ij.i

j,i Δ

×−×
+

Δ

×−×
=

+
−

+
+

+
−

+
+       (24g) 

After determining the pressure correction, '
, jip  from Eqn 24, the pressure and velocity 

components at every node are updated as follows: 

'
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The pressure correction Equation (Eqn 24), which is of Poisson format in terms of p΄, can 

be solved by employing a numerical relaxation technique. The term jif , (Eqn 24g) is 

called the “mass imbalance term” which must vanish theoretically in the last iteration 
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where the velocity field converges to a field that satisfies the continuity equation (Eqn 9).  

In the numerical algorithm developed in this work, the mass imbalance term is used as a 

stopping criterion to assure that the solution converges to the correct velocity field. The 

function of the pressure correction formula is to set the iterative process in such a 

direction that, when the velocity distribution is determined from the momentum 

equations, it will eventually converge to the correct distribution which satisfies the 

continuity equation. Because the pressure correction method is designed to solve for the 

steady flow condition via an iterative process, the superscripts N and N+1 used in the 

equations are the sequential iteration steps, with no significance to any real transient 

variation. Under the steady state conditions, the term of Δt can be treated as a parameter 

which has some effect on the speed at which the convergence is achieved. 

 

2.3.3.2 Boundary Conditions for Pavement System 

The boundary conditions appropriate for the actual water flow through the pavement 

system are specified in the computer code as indicated in Figure 18.  

1) At the inflow boundary, the pressure and velocities are specified. Hence, the 

pressure correction, p΄, is zero at the inflow boundary. 

2) At the outflow boundary, the pressure is specified and velocity components are 

allowed to float. Hence, p΄ is zero at the outflow boundary as well. 

3) At the vertical walls, the slip conditions are maintained. Thus, the velocity 

component, u, normal to the walls is set to zero. 
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Figure 18: Boundary Conditions Incorporated in the Flow through the Pavement 
System 
 
 
2.4 Validation of the Numerical Model 

In order to validate the flow model described in Section 4, the coefficients of hydraulic 

conductivity of several uniformly graded soil types which are not used in the current 

illustration are determined from the numerical model and compared with widely used 

empirical relationships proposed by Hazen (Eqn 30) and Chapius (Eqn 31) [16]. The 

results of this comparison are summarized in Table 2. 
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Where, c - a constant that varies from 1.0 to 1.5 and D10 - the effective size in mm. 
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Table 2: Comparison of 3-D Coefficients of Hydraulic Conductivity Derived from 
SIMPLE Algorithm 

 

 

Figure 19: Relationship between Hydraulic Conductivity Vs Diameter for 
Uniformly Distributed Soils 
 

It can be concluded from Table 2 that the coefficients of hydraulic conductivities 

determined from the model agree fairly well with those computed from common 

empirical relationships. Furthermore, it was determined that the coefficients of hydraulic 

conductivity for gravel, coarse sand and fine sand used in the Numerical Illustration 

Soil 

type 

    (1) 

Effective size 

(D10) mm        

         (2) 

K model 

(cm/s) 

         (3) 

KHazen 

(cm/s) 

    (4) 

KChapius (cm/s) 

     

        (5) 

a 0.5 0.979871 0.375 0.497428 

b 1 3.108229 1.5 1.47206 

c 2 6.811264 6 4.532172 

d 3 9.374428 9 8.247057 

e 4 12.34681 16 12.94549 
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(Section 7) are 0.097 m/s ,0.043 m/s and 0.00024 m/s  respectively. These values are 

within the ranges of typical hydraulic conductivities presented in the literature [16] for 

the corresponding PSDs shown in Figure 8. According to the developed model, the 

relationship between hydraulic conductivity Vs square of the tenth percentile diameter for 

uniformly distributed soils is shown in Figure 19. Therefore, the empirical equation (Eqn 

45) does not seem to be accurate.  

 

2.5 Numerical Illustration 

The numerical model was applied to the pavement layer interfaces shown in Figure 2. 

The material properties and other model parameters shown in Table 1 and 3 were used 

for this purpose. 
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 Table 3: Model Parameters 

 

 

Particles  

Number of gravel particles considered for determining the 

porosity distribution 

137668 

Number of coarse sand particles considered for determining 

the porosity distribution 

205332 

Number of fine sand particles considered for determining 

the porosity distribution 

855450 

Gravel particle size 2 mm- 24 mm 

Coarse sand particle size 1 mm- 5mm 

Fine sand particle size 0.04 mm – 0.62 mm 

Average density of saturated soil 1900 kg/m3 

Average compression index for granular soils 0.37 [18] 

Specific gravity of soil 2.65 

Average void ratio of gravel packing (Dr = 50%)  0.86 

Average void ratio of coarse sand packing (Dr = 50%) 0.90 

Average critical hydraulic gradient  0.88 

Water  

Density  1000 Kg/m3 

Dynamic viscosity 10-3 Pa.s 

Flow calculations  

Gravitational acceleration 9.81 m/s2 

Number of grid elements 50 by 50 
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2.5.1 Results of Numerical Illustration 

Figure 20 and Figure 21 illustrate the progression of flow rate with iterations through 

different soil layers for different levels of compaction. They clearly reveal the reduction 

in flow rate due to densification and the impact of the hydraulic conductivity.  
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Figure 20: Plot of Flow Rate through Coarse Sand-Gravel Interface Vs Iteration 
Steps with Different Levels of Compaction (For Pressure Differential of 23 kPa) 
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Figure 21: Plot of Flow Rate through Fine Sand-Coarse Sand Interface Vs Iteration 
Steps with Different Levels of Compaction (For Pressure Differential of 23 kPa) 
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Figure 22 shows that at the steady state the local hydraulic gradients at the interface are 

larger than that at other locations. They also clearly exceed the values predicted by 

conventional analysis (Darcy’s law).  
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Figure 22: Comparison of Hydraulic Gradients Obtained Using Continuum and 
Particulate Approaches (Using SIMPLE Algorithm Steady State) 
 
It is seen from Figure 23 that when the hydraulic gradient is 1.7 times the critical 

hydraulic gradient, the water flow never reaches a steady state.  

Coarse sand / gravel interface with Dr = 95%
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Figure 23: Plot of Flow Rate Vs Iteration Step for High Hydraulic Gradient (i = 1.7 
icr)  
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2.6 Conclusions 

The current practice of designing pavement filter systems does not consider  

1) The interaction between pore water and the individual soil particles.  

2) The localized effects.  

In order to determine the realistic limiting hydraulic gradients that can be applied within 

pavement layers, a design methodology based on a particulate approach that incorporates 

particle-soil interaction needs to be used. In this Chapter, the steady state water seepage 

in two saturated filter interfaces with varying levels of compaction was analyzed using a 

soil particulate model. The particulate effects of soil with different levels of compaction 

were incorporated conveniently in the model using a random packing technique, while 

the flow of water within the particulate assembly was modeled by the Navier Stokes flow 

equations. Two separate filter interfaces, i.e. coarse sand-gravel and fine sand-coarse 

sand were assembled using particle size distributions that satisfied the conventional filter 

design criteria. Then, a pressure differential that corresponded to the critical hydraulic 

gradient was applied across the layer interface. In order to verify the model, the 

coefficients of hydraulic conductivity predicted from the model are compared with those 

computed from the empirical relationships widely used in drainage design. The steady 

state flow algorithm is modified in the next Chapter to analyze the transient behavior of 

seepage through two-layer particulate pavement system which predicts the critical 

conditions for erosion, piping and clogging. 
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CHAPTER THREE 

ANALYSIS OF TRANSIENT WATER SEEPAGE IN A PAVEMENT SYSTEM 
USING THE PARTICULATE APPROACH 

 

3.1 Modeling of Transient Flow 

The comprehensive analytical procedure and the computer code developed for its 

implementation are illustrated in Figure 24. The analytical procedure consists of two 

primary tasks such as the random assembly of the particulate medium (granular soil) and 

the solution of the fluid flow governing equations using partial coupling between the two 

media. The flow chart also includes the sections, equation numbers and figure numbers 

corresponding to each stage. 



45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Flow Chart Illustrating the Analytical Model for Transient and Steady 
State Flow 
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3.1.1 Transient Navier Stokes Equations 

In modeling the pavement layers, the three dimensional porosities obtained from particle 

packing are coupled with two dimensional water flow. This is because flow is constrained 

in the third direction due to the two dimensional nature of the pavement. Navier Stokes 

equations [13] are given by: 

Mass Conservation (Continuity Equation): 
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Where, n – porosity at the location (x, y) at time t,    u, v – fluid velocities in the x and y 

directions respectively,    ρ – fluid density,   p – fluid pressure, µ - fluid viscosity, gy - 

gravitational force per unit mass in the y direction.  

Averaged fluid-particle interactions (drag forces) are quantified using semi-empirical 

relationships provided in Eqn 35 [6]. 
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Where, pd  - averaged particle diameter; Dx – x directional average fluid-particle 

iteration force per unit volume. A similar expression for Dy is used for y directional 

averaged fluid-particle interactions.  

 

3.1.2 Volumetric Compatibility of Solid and Fluid Phases 

The effective stress in the soil phase can be expressed using Eqn 36 [16]. 

u−σ=σ′                (36) 

Where, σ ′  - effective vertical stress, σ   - total vertical stress and u   - pore water 

pressure 

After each time step, when the effective stress changes due to the change in pore water 

pressure, the void ratio must change according to the compressibility characteristics of 

the soil.  The typical log-linear void ratio versus effective stress relation [16] that 

characterizes saturated fine-grained soil (clay, silt) is assumed for coarse-grained soil 

(gravel, sand) as well (Eqn 37). 

)log(σ ′−= co Cee            (37a)  
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σ

σ
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′
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C
de c4343.0

           (37b) 

Where, Cc is the equivalent compression index of the soil. The corresponding void ratio 

change can be obtained using Equations (38a) and (38b). 

e1
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( )2n1dedn −=             (38b) 
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3.1.3 Numerical Solution Technique 

A finite-difference approach [12] is used to discretize the Eqns 32, 33 and 34. The 

scheme is based on forward difference in time and porosity, and central difference in 

space. A typical two-dimensional staggered mesh arrangement [11, 13] was used to 

discretize the Eqns 32, 33 and 34. On the other hand, Patankar’s original formulation [11] 

is based on the “pressure correction method” involving a finite-volume approach.  

The pavement layers were divided into a 50 × 50 grid for the finite difference analysis. 

One fluid cell, known herein as a grid element, was selected to be 25 mm × 25 mm × 1m 

(2-D flow) to be compatible with the cube sizes (28 mm × 28 mm × 28 mm or 16 mm × 

16 mm × 16 mm) used for packing (Section 3.1).  1 m has been selected in the third 

direction assuming two dimensional water flow. Since the Navier Stokes equations are 

written in terms of porosities, the spatial probability distribution of natural void ratios are 

first converted to porosities (Eqn 41a). First, natural porosities (void ratios) were assigned 

to each grid element based on the spatial probability distribution of natural void ratios 

determined from packing (Section 3.3). Within each grid element, the fluid-particle 

interaction is quantified considering the averaged particle diameter which is defined as 

the arithmetic mean of the diameters of all the particles in each grid. The authors΄ 

modified numerical scheme is described as follows: 

Eqn 39a expresses the x directional momentum equation in the numerical form for the 

sequential time steps of N and N+1 referring to the notation in Figure 25. 
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Figure 25: Computational Grid for the X-Momentum Equation 
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Where,  
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Similarly, the y directional momentum equation can be written numerically. 

Equations (37b) and (38b) can be used to express the change in porosity within the time 

interval Δt using the volumetric compatibility between solid and fluid phases.  Then, Eqn 

32 can also be discretized as follows: 
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To compute the change in porosity in the transient continuity equation in an explicit 

manner, the water pressure difference between the time steps (N-1) and N has been used 

in Eqn 40. By substituting velocities of the new time step by those of the previous time 

step, Eqn 40 is reduced to Eqn 41, which is a Poisson equation in terms of water pressure 

(p).  

 

Figure 26: Designation of Nodal Points on a Grid Used in the Iterative Procedure 
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Where, A , A , B and B  is a collection of velocity derivatives from the discretized 

momentum equations in both x and y directions. 
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Similar to the pressure correction method introduced by Patankar [11], the authors΄ 

modified algorithm solves the Poisson equation (Eqn 41) iteratively in terms of water 

pressures (p) at the neighboring nodes shown in Figure 26. Within each time step, when 

the water pressure difference at any node computed in each iteration becomes negligible, 

the algorithm checks the volumetric compatibility of solid and fluid phases throughout 

the entire pavement system (Eqn 40). Until the velocities become constant at each node, 

the time marching is continued while solving for water pressures iteratively at each time 

step (Figure 24).  

 

3.1.4 Boundary Conditions  

The boundary conditions appropriate for the actual water flow through the pavement 

system are specified in the computer code as indicated in Figure 27.  

1) At the inflow boundary, the pressure and velocities are specified.  

2) At the outflow boundary, the pressure is specified and velocity components are 

allowed to float.  

3) At the vertical walls, the slip conditions are maintained. Thus, the velocity 

component, u, normal to the walls is set to zero. 
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Figure 27: Boundary Conditions Incorporated in the Flow through the Pavement 
System (Saturated Soil) 
 

3.2 Interface Effect in FDM 

Since the hydraulic properties are different in different layers, Eqn 44 must be solved 

separately within each layer excluding the interface grid points. On the other hand, at the 

interface, Eqn 44h is used to satisfy the continuity of flow from one layer to the other.  
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3.3 Validation of the Numerical Models 

In order to validate the flow model described in Section 3.2, the coefficients of hydraulic 

conductivity of several uniformly graded soil types which are not used in the current 

illustration are determined from the numerical model and compared with widely used 

empirical relationships proposed by Hazen (Eqn 42) and Chapius (Eqn 43) [16]. The 

results of this comparison are summarized in Table 4. 

2
10Dc)s/cm(k =                 (42) 
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Where, c – a constant that varies from 1.0 to 1.5 and D10 - the effective size in mm. 

 

Table 4: Comparison of 3-D Coefficients of Hydraulic Conductivity Derived from 
the Numerical Methodology 
Soil 

type 

Effective size 

(D10) mm           

          

K from steady flow 

model using SIMPLE 

algorithm (Chapter 2)  

(cm/s)  

Kfrom current  

model 

(cm/s) 

 

 

KHazen 

(cm/s) 

 

 

 

KChapius (cm/s) 

 

 

 

a 0.5 0.979871 1.01984 0.375 0.497428 

b 1 3.108229 3.230112 1.5 1.47206 

c 2 6.811264 6.766702 6 4.532172 

d 3 9.374428 9.603897 9 8.247057 

e 4 12.34681 11.62177 16 12.94549 
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In order to solve the transient continuity equation and Navier Stokes equations, the 

authors have developed the model presented in this study considering the volumetric 

compatibility between solid and fluid phases. As opposed to Patankar’s work [11], there 

is no pressure correction method involved in the authors’ modification. Instead, an 

elliptic equation in terms of the water pressure is iteratively solved until the volumetric 

imbalance in any grid element becomes negligible. The coefficients of hydraulic 

conductivity determined using the current model are labeled as “K from current model” 

in Table 4. 

As an alternative, the authors have also analyzed flow through the same pavement system 

solving time-independent (steady state) continuity equation and Navier Stokes equations 

using a finite-difference approach similar to the pressure correction method in the 

SIMPLE (Semi Implicit Method for Pressure-Linked Equations) algorithm [11]. For the 

purpose of comparing the solutions obtained from the current model for the special case 

of steady state flow, the “K” value was also computed from steady state flow analysis in 

Chapter 2. In Table 4, these values are labeled as “K from steady flow model using 

SIMPLE algorithm”.   

It can be concluded from Table 4 that the coefficients of hydraulic conductivities 

determined from the current model agree fairly well with those computed from common 

empirical relationships. It also agrees with the “K” values predicted from a separate 

numerical model which the authors have developed based on the SIMPLE algorithm  in 

Chapter 2 to solve just the steady fluid flow problems. Furthermore, it was determined 

that the coefficients of hydraulic conductivity for gravel and coarse sand used in the 
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Numerical Illustration (Section 3.4) are 0.097 m/s and 0.043 m/s respectively. These 

values are within the ranges of typical hydraulic conductivities presented in the literature 

[16] for the corresponding PSDs shown in Figure 8.  

 

3.4 Numerical Illustration 

The numerical model was applied to the pavement layer interface shown in Figure (2a). 

The material properties and other model parameters shown in Table 1 and 3 were used 

for this purpose. 

 

3.5 Selection of Time Step 

Eqn 41a can be re-written in the matrix form as  

[ ]{ } { }SpA =                (44) 

Where [ ]A  will be a banded matrix with elements that are formed from ai,j , bi,j , ci,j , di,j 

and ei,j evaluated at nodes where (pi,j ) are unknown nodal pressures. { }p  is the vector of 

unknown pressures. Meanwhile, the { }S  vector contains Si,j terms evaluated at all the 

nodes and the known (fixed) nodal pressures (pi,j) at boundaries. Extremely small time 

steps can make the coefficient matrix [A] become ill-conditioned which could result in 

numerical instability in the solution procedure. On the other hand, if the time step is too 

large the numerical methods would not provide precise solutions due to truncation errors 

associated with the difference expression for the time derivative [13]. Hence, an optimum 

time step of 1e-4 seconds is used in this paper. 
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3.6 Results of Numerical Illustration 

Figures 28 and 29 respectively illustrate how the pore water pressures and water 

velocities are developed within the layers in real time upon a sudden pressure build-up at 

the bottom of the coarse sand-gravel layer system. The transient effects are clearly seen 

from the isochrones shown in Figures 28 and 29. It is also seen that it takes 2.5e-2 

seconds for the steady state flow to establish. 
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Figure 28: Development of Water Pressure within the Coarse Sand-Gravel Layers 
with Time (For Pressure Differential of 23 kPa) 
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Figure 29: Development of Water Velocity within the Coarse Sand-Gravel Layers 
with Time (For Pressure Differential of 23 kPa) 
 

Figure 30 illustrates the progression of flow rate with time for different levels of 

compaction. They clearly reveal the reduction in flow rate due to densification and the 

impact of compaction on the hydraulic conductivity.  
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Figure 30a: Plot of Flow Rate through Coarse Sand-Gravel Layers Vs Time Steps 
with Different Levels of Compaction (For Pressure Differential of 23 kPa) 
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Figure 30b: Plot of Flow Rate through Fine Sand-Coarse Sand Layers Vs Time 
Steps with Different Levels of Compaction (For Pressure Differential of 23 kPa) 
 
 

Determination of the localized maximum hydraulic gradients and their locations would 

be helpful in the design of pavements. Figure 31a was produced to depict the highest 

value of imax/icr anywhere within the coarse sand-gravel layer system. During initial time 

steps, the high imax/icr appears close to the bottom boundary where a high water pressure 

of 23 kPa is applied suddenly to initiate flow. This is natural, because in reality, sudden 

application of high pressure creates instability at the point of application. With time, the 

magnitude of imax/icr reduces and the high imax/icr gradually moves closer to the interface 

(Figure 31). As illustrated in Figure 31a, when the steady state is reached the spatial 

maximum hydraulic gradient is nearly equal to the average hydraulic gradient applied 

across the pavement layers i.e. the critical hydraulic gradient. Moreover, the overall 

(temporal) maximum hydraulic gradient that occurs after the initial condition effects on 
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bottom boundary is seen close to the interface during transient condition, varying slightly 

with the compaction level. From Figure 31b, it can be seen that the impact of compaction 

on the maximum hydraulic gradient is only marginal even under transient conditions. 
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Figure 31a: Plot of Maximum Hydraulic Gradient within the Coarse Sand-Gravel 
Layers Vs Time Steps for Different Levels of Compaction (For Pressure Differential 
of 23 kPa) 
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Figure 31b: Plot of Difference in Maximum Hydraulic Gradients Within The 
Coarse Sand-Gravel Layers Vs Time Steps for Different Levels of Compaction 
(For Pressure Differential of 23 kPa) 
 
Figure 32 shows that at the steady state the maximum spatial hydraulic gradients occur at 

the interface. First, the localized hydraulic gradient is computed at each grid from the 

water pressures, velocities and its elevation using Eqn 34. At any depth in the pavement 

system, the average localized hydraulic gradient is determined by averaging the localized 

hydraulic gradient of the individual grid elements in each row along the pavement width. 

Figure 32 shows that the localized hydraulic gradients also clearly exceed the values 

predicted by the conventional analysis (Darcy’s law).  
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Figure 32: Comparison of Hydraulic Gradients Obtained Using Continuum and 
Particulate Approaches (Steady State) 
 

As illustrated in Figure 33, when the soil is not uniformly compacted, some localized 

porosities would be high. In this study, in order to clearly visualize the local effects, the 

coarse sand/gravel interface is assembled with a local region poorly compacted (Dr = 5%) 

compared to other regions (Dr = 95%). 

 

 

 

 

 

 

 

Coarse sand - gravel interface 
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Figure 33: Porosity Distribution for Coarse Sand-Gravel Interface with Non-
Uniform Compaction (Circled Area is Packed with Dr of 5% and the Remaining 
Area is Packed with Dr of 95%) 
 

Figure 34 shows the impact of the localized weak zone on the flow pattern. As illustrated 

in Figure 35, fluid pressure varies linearly within each layer and shows a sudden change 

at the interface due to differences in grain size and porosity. On the other hand, a 

deficiency of compaction makes the fluid pressure distribution non-linear which affects 

the localized flow quantities. That is, an abrupt pressure change between two adjacent 

grid elements leads to undesirable higher localized hydraulic gradients as seen in Figure   

36.  An advantage of this model is that by making the size of the grid elements as small 

as possible, the desired localized effects can be observed more effectively. 

Deficiency of 
compaction,  
Dr = 5% 
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            (a)            (b) 

Figure 34: Velocity Vector Plots: (a) Uniformly Compacted Soil Media (Dr = 95%) 
(b) Deficiency of Compaction in Local Area 

              

  (a)      (b) 

Figure 35: Plot of Fluid Pressure Distribution across the Coarse Sand-Gravel 
Interface: (a) Uniformly Compacted Coarse Sand-Gravel Interface ((Dr = 95%)  (b) 
Deficiency of Compaction in Local Area 
 

 

Localized effects 

Localized 
effects 
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Figure 36: Plot of Localized Hydraulic Gradients for Coarse Sand-Gravel Interface 
with Weak Region 

 

3.7 Limitations of the Model 

In this simplified particulate model, the fluid phase is partially coupled with the solid 

phase only in terms of the volumetric compatibility. Therefore, the intricate dynamics of 

individual soil particle interactions with water, which would not impact the flow 

characteristics significantly, are not taken into account. Also, the soil particles are 

assumed to be perfect spheres neglecting the angularity and roughness. One realizes that 

the angularity of soil particles could widen the ranges of both the maximum and 

minimum void ratio and hence that of the natural void ratio. Because of the probability of 

having relatively larger changes in void ratio of adjacent grid elements due to angularity, 

excessive localized hydraulic gradients of larger magnitude could result. This issue could 

be addressed partly, by incorporating the compression indices (Eqn 43) modified for 

subrounded, subangular and angular particles as detailed in [18]. Furthermore, in this 

Localized effects 
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model, the three dimensional porosities obtained from particle packing are coupled with 

the flow constrained in the third direction due to the assumed two dimensional nature of 

the pavement system.  The above 2D assumption seems to be reasonable because the 

predicted hydraulic conductivities do not deviate much from those determined using 

widely used empirical equations. To compute the change in porosity in the transient 

continuity equation, the water pressure difference during the previous time step [(N-1) 

          N] was used in Eqn 16 to make the numerical scheme explicit. When the time step 

is adequately small, this limitation would not affect the solution since the variation in 

water pressure within small time duration can be considered linear and hence equal for all 

equal time steps. 

 

3.8 Conclusions 

In this study, water seepage in a couple of two-layer filter interface with different levels 

of compaction was analyzed using a soil particulate model with Navier Stokes flow 

principles. The particulate effects of soil with different levels of compaction were 

conveniently incorporated in the model using a random packing technique, while the flow 

of water within the particulate assembly was modeled by the Navier Stokes equations. 

Compaction effects were incorporated in the model using the concept of relative density. 

Two separate two-layer interfaces, i.e. coarse sand/gravel and fine sand/coarse sand were 

assembled using particle size distributions that satisfied the conventional filter design 

criteria. Then, a pressure differential that corresponded to the critical hydraulic gradient 

was applied across the layer interface. The relative density certainly impacts the flow rate 
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but has an insignificant effect on the localized hydraulic gradients. Furthermore, the 

localized hydraulic gradients determined using the particulate approach differed widely 

from their average values across the entire layer highlighting the importance of 

considering localized effects in formulating more applicable design criteria. The 

preliminary results obtained from this model illustrate the advantage of the particulate 

approach in predicting the critical conditions for erosion, piping and clogging, especially 

in transient flow conditions, well before the filter fails to function. Extended and more 

extensive research in this direction is expected to provide deeper insight into more 

accurate filter design criteria.  
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CHAPTER FOUR 

TRANSIENT SEEPAGE MODEL FOR PARTLY SATURATED AND 
SATURATED SOILS USING THE PARTICULATE APPROACH 

 

4.1 Introduction 

Functionality of earthen structures such as dams, levees, retention ponds and pavements 

is determined by one dominant factor; the nature of interaction of soil particles with water 

flow. Hence accurate analysis of water seepage through soils is essential to achieve more 

economic designs of such structures. The majority of currently available design criteria 

are formulated based on either empiricism or the analysis of steady state laminar flow 

through saturated soil continua. However, very often, field observations are also used to 

refine or calibrate the design criteria. In the conventional models, the dynamic flow of 

water through soil pores is commonly idealized using the Darcy’s law. Experimental 

studies show that Darcy’s law would not be applicable to model transient conditions and 

high fluid velocities that develop under excessive hydraulic gradients and unsaturated 

soils [1]. It is also known that it is the transient flow caused by abrupt fluctuations in 

groundwater conditions plays a more crucial role in determining the durability of 

pavement structures. Furthermore, hydraulic infrastructures like retention ponds almost 

always operate under transient flow conditions. Hence, one has to replace the 

conventional method of analysis based on a steady state continuum to an alternative 
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approach with a discrete soil skeleton with the ability to incorporate transient effects 

which includes pre-saturation flow that generally precede the eventual steady state flow.  

In this study, the author develops a finite-difference model that uses the Soil-Water 

Characteristic Curves concepts [19] and the Navier Stoke equations for analyzing 

transient fluid flow through partly saturated and saturated soils. Then, the model is 

applied to two specific problems:  

1) Confined flow occurring in a partly saturated pavement layer during sudden rise 

of the groundwater table and  

2) Transient seepage from retention pond into surrounding granular soil medium. 

In the first case, the results show how saturation achieves following the water porosity Vs 

water pressure trend defined by SWCC.  In the second case, the model is able to predict 

the gradual reduction in the water level of the retention pond including the location of the 

free-surface. 

 

4.2 Existing Particulate Models 

In the conventional seepage models, the flow of water through saturated soil pores is 

idealized using the Darcy’s law based on a continuum approach. In the above approach, a 

single representative value of hydraulic conductivity determined from field tests or 

laboratory tests is used to model the entire soil domain. Alternatively, if seepage through 

soils is analyzed using the particulate approach then one can certainly account for the 

spatial variation of hydraulic conductivity more accurately by incorporating drag forces 

acting between soil particles and water in the Navier Stokes equations. Moreover, when 
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using the particulate approach, the effects of intricate particle dynamics on the water flow 

can also be considered whenever needed. However, modeling of seepage through 

particulate media by considering soil-water interaction is relatively new to computational 

geomechanics. The discrete element method (DEM) does provide an effective tool to 

model granular soils in particular based on micro mechanical idealizations. El Shamy et 

al. [4] presented a computational micro-mechanical model for coupled analysis of pore 

water flow and deformation of saturated granular assemblies. Shimizu’s [6] particle-fluid 

coupling scheme with a mixed Lagrangian-Eulerian approach which enables simulation 

of coupling problems with large Reynolds numbers is implemented in PFC 2D and PFC 

3D released by Itasca Consulting Group, Inc. [7]. The models used by El Shamy et al. 

and Shimizu are both based on the work by Anderson and Jackson [8] and Tsuji et al. [9]. 

Anderson and Jackson [8] modeled pore fluid motion through saturated soil mass using 

averaged Navier Stokes equations. Tsuji et al. [9] simulated the process of particle 

mixing of a two-dimensional gas-fluidized bed using averaged Navier Stokes equations 

for comparison with experiments.  For all the above cited studies, granular assemblies are 

modeled using the discrete element model developed by Cundall and Strack [10] and the 

averaged Navier Stokes equations are discretized using a finite volume technique on a 

staggered grid [11]. 

 

4.3 Flow in Partly Saturated Soils 

Although partly saturated subsurface soils are common in most building sites, the 

concepts of partly saturated soil mechanics are rarely introduced in geotechnical designs. 
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Furthermore, most geotechnical engineering problems are dealt with assuming positive 

pore water pressures when suction can occur even in saturated soils. The solutions of 

many practical problems involving partly saturated soils require an understanding of the 

hydraulics, mechanics and interfacial physics of partially saturated soils [20]. Slope 

stability analysis that also incorporates unsaturated soil mechanics would provide more 

accurate results in most cases. However, water flow in partly saturated soils is, in general, 

complicated and difficult to describe quantitatively, since it often entails changes in the 

state and content of soil water.  

 

Figure 37: Schematic Diagram to Show the Movement Cycle of Water from 
Atmosphere to the Groundwater Table [20] 
 

Figure 37 is the schematic representation of the water movement cycle between the 

atmosphere to the groundwater table.  Below the water table, soil is generally saturated 

with positive pore-water pressures. Immediately above the water table is the capillary 
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fringe where the degree of saturation approaches 100 percent with negative pore water 

pressures (suction). In partly saturated soils, the two phases of air and water coexist in the 

inter-connected pore channels. In order to analyze seepage through saturated-unsaturated 

soils under transient conditions, Fredlund and Morgenstern [21] proposed Eqn 45a using 

the constitutive equations relating the volumetric strain in a soil due to total stress and 

pore water pressure changes.  

( ) ( )
t

uu
m

t
u

m
y
hk

yx
hk

x
aww

2
aw

1yx ∂
−∂

+
∂
−σ∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂       (45a) 

( )zyx3
1

σ+σ+σ=σ .              (45b) 

Where, h - total hydraulic head ,σ – mean normal stress ,ua – pore-air pressure, uw – pore-

water pressure, (ua – uw) – matric suction, kx and ky - x and y directional hydraulic 

conductivities, wm1  and wm2  are the corresponding partial compressibilities due to (σ – ua) 

and (uw – ua)  respectively.  

Darcy’s law is also applicable to flow through partly saturated soils with the use of 

variable hydraulic conductivities with respect to suction as shown later in Section 3.2. In 

saturated soils, any minor changes in the hydraulic conductivity due to changes in 

porosity are neglected whereas in unsaturated soils, hydraulic conductivity  is 

significantly affected by combined changes in the void ratio and the degree of saturation 

(or water content) of the soil. 

From a geotechnical engineering point of view, it is the flow in the water phase of the 

unsaturated zone that is of practical interest. Therefore, the flow through unsaturated soils 

can be simplified assuming that the air phase is continuous throughout the soil matrix 
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with a pressure equal to that of the atmosphere. Using the “single- phase” flow approach 

which is accurate enough for many practical purposes, an unsaturated flow model was 

developed by Lam et al. [22]. If no external loads are applied on the soil mass during 

water flow ( 0
t
=

∂
σ∂ ) and if the air phase is continuous and open to the atmosphere (ua = 

0), Eqn 45a can be simplified to Eqn 45c. 

t
um

y
hk

yx
hk

x
ww

yx ∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

2          (45c) 

Ng and Shi [3] also used Eqn 48c to numerically investigate the stability of unsaturated 

soil slopes subjected to transient seepage. In Ng and Shi’s [3] work, a finite element 

model was used to investigate the influence of various rainfall events and initial ground 

water conditions during transient seepage. However, slope stability was analyzed without 

considering the localized zones of high pressure build-up and high hydraulic gradients 

within the slope.  

 

4.4 Overview of the New Model 

The model presented in this paper first uses a newly-developed packing algorithm to 

randomly pack a three dimensional discrete soil skeleton resembling a natural soil deposit 

that exists at a given relative density or particle size distribution. Then the model is used 

to determine the water flow behavior in a particulate saturated – partly saturated soil 

medium. The seepage of water through the particulate medium is modeled using the 

Navier Stokes (NS) equations which are discretized using the finite difference method 

(FDM) [13]. The new model is capable of predicting both transient and steady state flow 
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effects under both saturated and partly saturated conditions. First, the model is applied to 

simulate flow in a single layer of granular soil resulting from of a sudden surge of 

groundwater. Second, the model is applied to simulate flow around a retention pond built 

in granular soil. The comprehensive analytical procedure and the computer code 

developed for its implementation are illustrated in Figure 38. The analytical procedure 

consists of two primary tasks such as the random assembly of the particulate medium 

(granular soil) and the solution of the fluid flow governing equations. The flow chart also 

includes the section, equation and figure numbers corresponding to each stage. 
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Figure 38: Flow Chart Illustrating the Analytical Model for Flow through 
Unsaturated Soils 

No 

Yes 

Yes 

No 

Packing to determine maximum 
and minimum void ratios using 
a particle size distribution for a 
in-situ soil (Section 4.4) 

Application of Monte-Carlo 
simulation to obtain randomly 
distributed in-situ void ratios 
corresponding to in-situ relative 
density (Section 4.4.3)  

Assignment of random in-
situ void ratios for grid 
elements used in fluid flow 
analysis  

Application of Navier-Stokes 
equations to each grid element 
(Section 4.6) 

Numerical discretization based 
on a staggered grid (Section 4.7 
& Fig.45) 

Analysis of results  
- Plots on degree of saturation  
- Plots on water velocities and pressures 
- Plots of hydraulic gradients 

Solid phase Fluid phase  

Iterative solution for water pressure (p) 
distribution in the grid (Eqn 74 & 75 & 
Fig.47) 

Time marching 

Δp <  Tol 

Time-based 
change in 

water velocity 
(Δv) < Tol 

Assignment of initial negative 
water pressure due to capillary 
effects in unsaturated zone 
(Section 4.5) 

Determination of initial 
volumetric water content 
(water porosity, θ) using 
Eqn (57) 

Updating the 
water porosity 
(nw) using Eqn 
71b. 

Use available coefficients of 
permeability data (Fig.44) to modify 
drag force coefficients (Eqn 66) and 
analyze flow through unsaturated 
soils (Section 4.2). 

Determination of 
instantaneous 
volumetric water 
content (Eqn 57)  Solve for velocities (Eqns 60, 61)  
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4.5 Modeling of Soil Structure (3D Random Packing of Soil Particles) 

Fine sand represented by the Particle Size Distribution (PSD) curve in Figure 39 is used 

in this study.  

 

Figure 39: Particle Size Distribution for Fine Sand  

 

4.5.1 Simulation of Maximum and Minimum Void Ratios Using PSD 

In this model the soil particles are assumed to be of spherical shape. To determine the 

maximum and minimum void ratios (emax and emin) corresponding to fine sand in Figure 

39, a customized random packing algorithm was developed.  Using this algorithm, 3 mm 

× 3 mm × 3 mm cubes (Figure 40a) were packed using soil particles picked from the PSD 

in Figure 39. It must be noted that the PSD in Figure 43 is in fact the cumulative 

probability distribution of the fine sand particles. Therefore, by using an adequately large 

array of random numbers from a uniform distribution ranging from 0 and 100 (the y axis 

range in Figure 39), one can select the corresponding array of particle diameters that 
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conforms to the selected PSD, from the x axis. This technique, known as the Monte-Carlo 

simulation [14] is used to select the array of packing diameters for each cube (Figure 

40a). It is noted that the resulting maximum and minimum void ratio distributions change 

in each packing trial since the order of diameters used for packing is changed randomly. 

An adequate number of particles must be within the cube to determine the representative 

emax and emin for the fine sand. 

 

4.5.2 Implementation of the Packing Procedure 

In order to obtain the loosest state of fine sand (emax) within the cubes described above, 

different sizes of soil particles inscribed in boxes are packed as indicated in Figure 40a 

using a MATLAB code developed by the authors. The side length of each box is the 

same as the diameter of the inscribed soil particle. Based on the minimum particle 

diameter of fine sand (0.04 mm), the side length of each cube is divided into a finite 

number of sub-divisions (Figure 40a). Then, the packing algorithm tracks the total 

number of sub-divisions occupied by each incoming box, i.e. each packed soil particle, as 

packing proceeds based on the Monte-Carlo simulation corresponding to a given PSD 

(Figure 39). Finally, the automated algorithm fills all sub-divisions until it finds that not a 

single sub-division is available within the considered cube for further packing of soil 

particles from the given PSD. As packing of each cube approaches completion, the void 

ratio reaches a constant value of 0.9098 which can be identified as the maximum void 

ratio for simple cubical packing [15]. 
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On the other hand, in order to obtain the minimum void ratio (densest packing), the 

maximum number of spheres smaller than the inscribing sphere in each box is also 

packed into the unoccupied space at the corners of each box (Figure 40c and 40d) before 

that box is placed in the cube (Figure 40b). 50 such cubes (trials) were packed randomly 

using the Monte-Carlo simulation. Since the minimum void ratio obtained in each trial 

would be different depending on how the unoccupied space in each box filled, it can be 

considered as random variable. The range derived for emin as shown in Table 5 agrees 

with the typical values in [15]. 

Table 5: Soil Characteristics  

Soil type Fine sand 

Sizes of particle (mm) (Figure 39) 0.04 – 0.62 

D15 (mm)      (Figure 39) 0.16 

D50 (mm)      (Figure 39) 0.29 

D85 (mm)      (Figure 39) 0.49 

emax (Packing) 0.9098 

emin (Packing)  0.54 – 0.79 

Mean of emin 0.48 

Standard deviation of emin 0.0037 
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Figure 40: Packing Procedure 

 

4.5.3 Determination of the Natural Void Ratio Distribution 

The property of relative density is helpful in quantifying the level of compaction of 

coarse-grained soils. The relative density of a coarse-grained soil expresses the ratio of 

the reduction in the voids in the current state, to the maximum possible reduction in the 

voids (Eqn 2). The in-situ void ratio distribution (e) corresponding to a given relative 

density (Dr) is obtained using the previously obtained emax and emin (Eqns 46 or 47).  

minmax

max

ee
ee

Dr −
−

=               (46) 

or 
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( )rr DeeDe −+= 1maxmin             (47) 

Where, emax is the void ratio of fine sand in its loosest state (= 0.9098). emin is the 

randomly distributed void ratio of fine sand in its densest state. e is the randomly 

distributed void ratio of sand in its natural state in the field. 

For a relative density of 50%, Eqn 51 reduces to    

45.0e5.0e min +=              (48) 

The mean ( e ) and the standard deviation (Se) of natural void ratios are determined from 

Eqns 49 and 50 

)1(9098.0min rr DeDe −+=             (49) 

minere SDS =               (50)  

Where, mine  (Eqn 51a) and Se min (Eqn 51b) are the mean and standard deviation of the 

minimum void ratio (Table 5) obtained from the packing procedure described in Section 

4.4.  

( )∑=
50

minmin 50
1

i
iee             (51a) 

( )( )∑ −=
50 2

minminmin 50
1

i
ie eeS           (51b) 

Knowing the mean and standard deviation of the natural void ratio (Eqns 49 and 50) and 

assuming a normally distributed probability density function for the natural void ratio (e), 

its cumulative distribution (Figure 41) is obtained using Eqn 52.  

*
e ZSee +=            (52a) 
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Cumulative frequency, ( ) ( )** ZZPZ 〈=Ψ         (52b) 

Where, Z* is the standard normal variate corresponding to a cumulative probability of 

( )*ZΨ  in the standard normal distribution (Z). The cumulative distribution of natural 

void ratios corresponding to a Dr of 50% is shown in Figure 41. 

 

Figure 41: Cumulative Distribution for Natural Void Ratios for the Fine Sand with 
Dr = 50% 
   

Then, once more the Monte-Carlo simulation can be used to pick an array of natural void 

ratios for fine sand using Figure 39. Since the NS equations are written in terms of 

porosities (Section 4.6), the spatial probability distribution of natural void ratios is first 

converted to porosities using Eqn 53.  

e1
en
+

=                (53)  
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The spatial distributions of natural void ratios (porosities) so obtained assumed to be 

representative of the fine sand will be used in the seepage analysis model presented in 

Section 4.6.  

 

4.6 Modeling of Fluid Flow in Partially Saturated Soils 

When the developed model is applied to a partially saturated granular soil layer, the 

initial water pressures within the saturated and unsaturated zones are assumed to be due 

to hydrostatic pressure and the capillary suction effects respectively, as shown in Figure 

42.  

 

 

 

  

 

 

 

 

 

Figure 42: Initialization of Water Pressure in the Saturated and Unsaturated Zones  

 

 

 

Saturated soil 

Unsaturated soil  

Capillary fringe soil 

Suction due to capillary  

Hydrostatic pressures  

Groundwater table 
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4.6.1 Soil Water Characteristic Curve/Water Moisture Retention Curve 

The Soil Water Characteristic Curve (SWCC) [17] depicts the relationship between soil 

water content (θ) and soil water pressure potential (suction, Ψ). The soil parameters 

defining a typical Soil Water Characteristic Curve are shown in Figure 43a while the Soil 

Water Characteristic Curves for different particle size distributions are presented in 

Figure 43b. From Figure 43b, it is seen that sands and gravels lose water quite readily 

upon suction induced drainage while loams and clays lose much less water upon 

drainage. There are a number of empirical equations proposed to best-fit the Soil Water 

Characteristic Curves [19] using the soil parameters shown in Figure 43a. In this model, 

Eqn 54a –Eqn 54c are used to determine the volumetric water content (θ) for a particular 

suction (Ψ).  

Volumetric water content, 
V
V w=θ           (54a) 

Where, V is the total volume of a soil sample and Vw is the volume of water in that 

sample. 

                    

     
Figure 43a: Typical Soil Water Characteristic 
Curve and wm2 for a Saturated -Unsaturated 
Soil [10] 

Figure 43b: Soil Water Characteristic Curve 
for Specific Soil Types [23] 
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Where, C(Ψ) is a correction function defined as: 
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Where, e = 2.71828; Ψr is the suction corresponding to the residual water content, θr. θs is 

the (saturated) volumetric water content at zero pressure and a, m, and n are fitting 

parameters. In this model, θs in each grid element is set to the porosity of that element 

obtained from initial packing (Section 4.4). In the particulate approach, although the θs 

varies with the spatial distribution of porosity, the average θs corresponding to 50% of 

degree of compaction is used in this study for simplicity.  The parameters for Eqn 54b –

Eqn 54c relevant to the fine sand modeled in the current study are shown in Table 6.  

 

Table 6: Parameters Used to Define the SWCC for Sand [23] 

Ψr 50 kPa 
Average θs 0.45 
a 1.948 kPa 
m 2.708 
n 1.084 
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In Section 4.6, θ will also used as the water porosity in formulating the continuity 

equation and Navier Stokes equations for partly saturated soils. Furthermore, using 

fundamental soil mechanics, the degree of saturation can be shown that   

n
S θ

=                (55) 

Where, S- degree of saturation, n – total porosity of the soil. 

 

4.6.2 Determination of the Unsaturated Permeability Function 

The hydraulic conductivity is commonly referred to as the coefficient of permeability in 

geotechnical engineering. In unsaturated soils, the coefficient of permeability is primarily 

determined by the pore-size distribution and the degree of saturation. The permeability 

functions for unsaturated soils are used to represent the relationship between the 

coefficient of permeability and soil suction. Figure 44 illustrates the variation of the 

coefficient of permeability with suction for different types of soils. There are several 

empirical equations and statistical models used to determine the permeability functions 

[19]. One such approach uses the Soil Water Characteristic Curve (Figure 43a) to predict 

the permeability function [19].   
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Figure 44: Unsaturated Permeability Function for Selected Soil Types [23] 

 

The flow model presented in this paper does not directly involve the use of the coefficient 

of permeability. Alternatively, in this model the authors use an appropriate plot from 

Figure 44 to modify the drag forces in the Navier Stokes equations to account for the 

variation of the permeability of unsaturated soils with suction.  

 

4.7 Development of the Analytical Model 

4.7.1 Navier Stokes Equations  

Since the flow model presented in this paper is two-dimensional, the three dimensional 

porosities obtained from particle packing are coupled with two dimensional water flow. 

In this study, it is also assumed that the water paths through the pore channels are 
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continuous for partly saturated soils near saturation. Hence, Navier Stokes equations can 

be written as follows in a generalized form in terms of the water porosity, θ (= Sn) 

expressed by Eqn 56:  

Water mass Conservation (Continuity Equation): 
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∂

∂
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+
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Momentum Conservation (Momentum Equations): 

X direction: 
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Y direction: 
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Where, n and S – porosity and degree of saturation at the location (x, y) at time t 

respectively,  u, v – fluid velocities in the x and y directions respectively,    ρ – fluid 

density (1000 Kg/m3),   p – fluid pressure, μ - fluid viscosity (10-3 Pa.s), gy - gravitational 

force per unit mass in the y direction (9.81m/s2). The following conditions are assumed in 

the analysis: 

1) Under saturated conditions: S = 1 and n varies due to the compressibility of the 

soil skeleton as described in Section 4.4.  

2) Under unsaturated conditions: n is constant and S increases as suction decreases. 
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4.7.2 Modification of Drag Force for Water Flow through Unsaturated Soils 

The authors developed a modified expression for the drag force in unsaturated soils based 

on the variation of the hydraulic conductivity of unsaturated soils. Averaged water-

particle interactions (drag forces) can be quantified using the semi-empirical relationship 

provided by the standard Ergun equation [6]. Eqn 59 shows the drag force modified by 

the authors for application to unsaturated soils. 
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Where, Dx – averaged water-particle interaction force per unit volume of soil,
 pd  - 

averaged particle diameter. f is the correction factor to account for the space occupied by 

air that does not introduce a significant drag force. A similar expression for Dy is used for 

y directional averaged water-particle interactions.  

For fully saturated soils, S = 1.0 and f = 1.0 with no air. 

Assuming that the flow through soil pores to be primarily laminar flow with low 

velocities, the non-linear term contributing to the drag force can be neglected resulting in 

the simplified form of Eqn 6 for unsaturated soils as follows:  

 ( ) ( )
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−= u

dnS
nSfD

p
USx 22

21150 μ            (60) 

Similarly, the drag force under saturated conditions for the same porosity and flow can be 

written as  
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Drag forces cause resistance to water flow and hence they can be considered as being 

inversely proportional to the coefficient of hydraulic conductivity (K) as,  
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From Eqns 60 and 61, 
( )

( )2
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nS
nS

K
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US

S

−
−

=                       (63) 

Where, KS and KUS are the hydraulic conductivities of saturated and unsaturated soils 

respectively. 

  

4.8 Numerical Solution Technique 

A finite-difference scheme is used to discretize the Eqns 56, 57 and 58. This scheme is 

based on forward difference in time and porosity, and central difference in space with a 

two-dimensional staggered mesh arrangement [11, 13]. Eqn 64a expresses the x 

directional momentum equation in the numerical form for the sequential time steps of N 

and N+1 referring to the notation in Figure 45. 
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Figure 45: Computational Grid for the X-Momentum Equation 
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Where,  
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Within the staggered grid, some velocities need to be interpolated as shown in Eqns 64b 

and 67c. 

In a concise form, Eqn 64a can be re-written as 
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The numerical form of the y directional momentum equation can be written similarly 

based on Eqn 58 as Eqn 65. 
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The discretized continuity equation of water is given by Eqn 66. In computing the change 

in porosity in the transient continuity equation, the numerical scheme is made explicit by 

using porosity during the previous time step (N-1) in Eqn 66. 
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Finally, using either Eqn 67a or Eqn 67b, the change in water porosity ( SnΔ ) during a 

time step, ∆t, can be determined and used in the discretized continuity equation (Eqn 66).  

 

In the saturated zone (p > 0 and S = 1), the change in porosity is determined using Eqn 

67a. 
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Where, Cc - equivalent compression index of the soil, σ- total vertical stress in soil. 

Meanwhile, in the partly saturated zone (p < 0 and S < 1), the Soil-Water Characteristic 

Curve is used to determine the change in water porosity using Eqn 67b. 
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The slope of the Soil Water Characteristic Curve for fine sand, wm2 ,at a particular suction 

is obtained by curve-fitting the corresponding SWCC assumed for fine sand (Figure 46) 

in this study. 

Figure 46: Soil Water Characteristic Curve for Fine Sand 

Now, Eqn 64 and Eqn 65 can be written for two adjacent control volumes as shown in 

Eqn 68 and Eqn 69. 
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By substituting the Eqns 64, 65, 68, 69, 67a and 67b into Eqn 66 and rearranging the 

terms results in Eqn 70 and Eqn 71 for saturated zone and partly saturated zone 

respectively. 

 

Figure 47: Neighborhood Points Used in the Iterative Procedure 
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For the partly saturated zone: 
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4.9 Numerical Application of the Model 

4.9.1 Modeling Confined Flow through a Partly Saturated Fine Sand Layer (Case I) 

 

 

Figure 48: Illustration of the Flow through the Unsaturated Fine Sand Layer  

 

The fine sand layer (Figure 48) was divided into a 50 × 50 grid for the finite difference 

analysis. One fluid cell, known herein as a grid element, was selected to be 2.5 mm × 2.5 

mm × 1m. A unit width has been selected in the third direction assuming two 

dimensional water flow. First, natural porosities (void ratios) were assigned to each grid 

element based on the spatial probability distribution of natural void ratios determined 

from packing (Section 4.4). Within each grid element, the fluid-particle interaction is 

quantified considering the averaged particle diameter which is defined as the arithmetic 

mean of the diameters of all the particles in that grid.  

0.
12

5 
m
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4.9.2 Boundary Conditions  

The boundary conditions appropriate for the water flow through the single soil layer are 

specified in the computer code as indicated in Figure 49.  

1) At the inflow boundary, the pressure and velocities are specified.  

2) At the outflow boundary, the pressure is specified and velocity components are 

allowed to float.  

3) At the vertical walls, the slip conditions are maintained. Thus, the velocity 

component, u, normal to the walls is set to zero. 

 

Figure 49: Boundary Conditions Incorporated in the Flow through Saturated - 
Unsaturated Soil Layer 

 . A



99 
 

4.9.3 Results 

Upon the application of the elevated water pressure that causes a sudden hydraulic 

gradient across the pavement layer in Figure 50, the variation of water porosity 

(volumetric water content) with water pressure is illustrated in Figure 50. Figure 50 also 

shows that suction within the soil mass is gradually converted to a positive pressure under 

the application of elevated pressure at the bottom of the soil layer. The corresponding 

variations of degree of saturation are shown in Figure 51. 
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Figure 50: The Variation of Water Porosity with Water Pressure at a Point within 
the Unsaturated Zone (At Point A in Figure 49) 
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Figure 51: The Variation of the Degree of Saturation with Water Pressure (At Point 
A in Figure 49) 
 

Figures 52a -52c show how the partly saturated zone gradually becomes fully saturated 

due to the upward water seepage. From Figure 53, it is seen that it takes approximately 50 

time steps (5×10-3 seconds) for complete saturation of the layer and 80 time steps (8×10-3 

seconds) to reach the steady state flow through the fully saturated zone. 
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Figure 52: Velocity Vector Plots for Flow through Saturated and Partly-Saturated 
Soil Layer  

(d) t = 100 

(a) t = 1 

(c) t = 50 

(b) t = 25 
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Figure 53: Variation of Discharge Flow Rate with Time Step   

 

4.10 Conclusions  

The results show that  

1) The partly saturated zone having capillary pressures (suction) gradually becomes 

fully saturated due to seepage caused by an elevated water pressure at the bottom 

of the fine sand layer.  

2) It takes the fine sand layer almost 80 time steps (8×10-3 seconds) to become fully 

saturated.  

3) The water porosity Vs suction plot and the degree of saturation Vs suction plot 

show good agreement with the corresponding characteristics plots for fine sand.  

Based on the above it can be concluded that model is applicable to partly saturated soils 

as well. 

Time of saturation Time of steady flow 
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CHAPTER FIVE 

MODELING UNCONFINED FLOW AROUND A RETENTION POND 

 

5.1 Introduction  

Retention ponds are man-made or natural depressions into which stormwater runoff is 

directed for temporary storage [Figure 54] with the expectation of disposal by infiltration 

into a shallow groundwater aquifer. They are often created near areas of development and 

in many instances required with new development of buildings, parking lots, roads, etc by 

the permitting agencies. Retention ponds are developed primarily to serve two functions 

such as limit flooding and the removal of pollutants. 

 

Figure 54: Typical Retention Pond 
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5.2 Existing Design of Retention Pond  

The required size of a retention pond depends on the rate of inflow to the pond and the 

total quantity of flow as well as the rate of infiltration during a storm event, given the 

antecedent conditions of the receiving aquifer. In order to avoid the overflow or flooding, 

the retention volume recovery time should be adequate to completely dissipate the 

retained stormwater from the pond after the design storm event. The retention volume 

recovery time is defined as the time it takes to infiltrate the retention volume. This 

depends on subsurface soil conditions and the input due to surface runoff. 

In the conventional models that are used to design retention ponds, the soil skeleton is 

treated as a continuum and the dynamic flow of water through soil pores is commonly 

idealized using the Darcy’s law. MODFLOW [24] is a U.S. Geological Survey’s modular 

finite-difference saturated flow model, which is currently the most widely used numerical 

model in the U.S. Geological Survey (USGS) for analyzing groundwater flow problems. 

The above program is used by hydrogeologists to simulate the flow of groundwater 

through aquifers.  In MODFLOW, a groundwater flow equation derived from Darcy’s 

law is solved using the finite-difference approximation. The partial differential equation 

of groundwater flow used in MODFLOW is  
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Where, Kx, Ky and Kz are values of hydraulic conductivity along x, y and z coordinate 

axes respectively; h is the hydraulic head; W is a volumetric flux per unit volume 

representing sources and/or sinks of water (W < zero for flow out of the groundwater 
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system and W > zero for flow in) and Ss is the specific storage of the soil. Eqn 72, when 

combined with boundary and initial conditions, describes transient three-dimensional 

groundwater flow in a heterogeneous and anisotropic medium. 

MODRET (Computer MODEL to Design RETENTION Ponds) is an interactive 

computer program that can be used to calculate the unsaturated and saturated infiltration 

losses from stormwater retention ponds into unconfined aquifers using a modified version 

of MODFLOW. MODRET was originally developed in 1990 as a complement to a 

research and development project for South West Florida Water Management District 

(SWFWMD).  The Infiltration Module of the MODRET program uses a modified Green 

and Ampt infiltration equation [25] to calculate the unsaturated infiltration and a 

modified USGS’s model [24] to calculate the saturated infiltration. The Green and Ampt 

infiltration equation [25] was originally presented as an empirical description for 

unsaturated infiltration analysis; later, its empirical constants were theoretically 

investigated [26]. For all above analysis, the coefficients of hydraulic conductivities 

determined from the field tests or laboratory experiments are used in determining the 

infiltration losses through retention ponds. But, instead of using the a single value of 

coefficient of hydraulic conductivity for entire flow domain on a continuum basis, the 

current particulate model uses spatially localized coefficients of hydraulic conductivities 

in terms of drag forces between solid particles and pore fluid which are instantaneously 

determined from the average particle diameters and the localized porosities. 

 

 



106 
 

5.3 Modeling of Soil Structure (3D Random Packing of Soil Particles) 

The particle size distribution curve shown in Figure 55 was selected to model the 

retention pond. The soil particles are assumed to be of spherical shape and to determine 

the natural void ratio for coarse sand shown in Figure 55, a customized random packing 

algorithm was developed. In the case of coarse sand, 16 mm × 16 mm × 16 mm cubes 

were packed. It must be noted that the PSD in Figure 55 is cumulative probability 

distribution of particle size for coarse sand. Therefore, by using an adequately large array 

of random numbers from a uniform distribution between 0 and 100 (the y axis range in 

Figure 55), one can select the corresponding array of particle diameters that conforms to 

a selected PSD, from the x axis. This technique, known as the Monte-Carlo simulation 

[14] is used to select the array of packing diameters for each cube. It is noted that the 

resulting natural void ratio distribution change in each packing trial since the order of 

diameters used for packing is changed randomly. The detailed packing procedure can be 

found in [27]. A thousand of such cubes were randomly packed in order to model the half 

of the retention pond defined by mesh of 100 by 150. The asymmetry of the retention 

pond caused by the nature of random packing is neglected in this study. 
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Figure 55: Particle Size Distributions for Coarse Sand  

 

5.4 Numerical Procedure for Determination of the Free-Surface  

Determination of the free-surface is required in the analysis of unconfined seepage 

problems such as flow through earthen dams and retention ponds. One commonly used 

approach to determine the free-surface is the graphical approach based on Dupuit’s 

theory [1]. In addition, there are numerical techniques proposed by various researchers in 

the literature [28 – 32]. In this study, a modified technique resembling the extended 

pressure (EP) method first proposed by Brezis et al. [33] is employed with Navier Stokes 

equations in order to determine the free-surface for flow around a retention pond.  

The dry zone and wet zone around the retention pond are defined using the fundamentals 

of streamlines, i.e., the locus of the path of flow of an individual particle of water and 

continuity of flow quantity through a cross section.  Along any flow line, the path of 
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water passing through point P(x1, y1) can be expressed (Figure 56) in mathematical form 

as  

1

1
u
v

dx
dy

=                (73) 

Hence knowing one point, P(x1, y1) on the free-surface, the next point, Q (x2, y2) along 

the free-surface can be obtained using Eqn 74.  
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In generalized form, 
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Once, the extreme boundary point, Q, is determined along the free-surface, the dry zone 

is identified using a Heaviside step function in Section 5.5.    
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Figure 56: Determination of Dry and Wet Zones around the Retention Pond 

 

5.4.1 Navier Stokes Equations 

In the current formulation, water seepage is analyzed using Navier Stokes equations 

written in terms of water pressures and velocities. Hence, the authors use a Heaviside step 

function with water pressures and velocities in order to identify the dry and wet zones in 

conjunction with Navier Stokes equations. For this work, the Heaviside-step function 

(Eqn 75) is expressed in terms of the coordinates of the extreme boundary point on the 

free-surface at any horizontal level (xj) as follows: 

         0   , if   x > xj 

H (x) =                           (75) 

         1   , if   x < xj  

To achieve this objective, Navier Stokes equations are written incorporating the 

Heaviside step function as follows: 

Free-surface 
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Mass Conservation (Continuity Equation): 

( ) ( )
t
n

y
Hvn

x
Hun

∂
∂

−=
∂

∂
+

∂
∂                          (76) 

Momentum Conservation (Momentum Equations): 

X direction: 
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Y direction: 
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It is seen that Eqns 76 – 78 are inactivated in the dry zone (i ≥ i*). This can be assured by 

using the Heaviside-step function in Eqns 75. Now, Eqns 76-78 can be applied both in 

the wet and dry zones. 

 

5.4.2 Boundary Conditions  

The boundary conditions appropriate for the actual water flow around the retention pond 

are specified in the computer code as indicated in Figure 57.  

1) Hydrostatic pressure distribution (hγw) is specified along the retention pond walls 

based on the water level in the pond (h). 

2) Along the walls of the retention pond, non-slip velocity boundary conditions are 

specified as shown in Figure 57. 
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3) At the exterior vertical wall boundaries within the two-phase media, the slip 

conditions are maintained. Thus, the velocity component, u, normal to the walls is 

set to zero. 

4) At the groundwater table, water pressure is set to zero; water velocities allow 

floating. 

5) As an initial condition, the completely filled retention pond is considered.  

 

Figure 57: Boundary and Initial Conditions Incorporated in the Flow around the 
Retention Pond 

Groundwater table
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5.5 Determination of Free-Surface from Dupuit’s Theory 

 

Figure 58: Analytical Method to Determine the Free-Surface 

 

Using the configuration of the retention pond irrespective of soil properties, the free-

surface is analytically determined using Eqn 79.   

            

                         (79a) 

              (79b) 

 

5.6 Results on Free-Surface 

The free-surfaces around the retention pond obtained using the numerical procedure and 

Dupuit’s theory are compared as shown in Figure 58. There are discrepancies which can 

be due to the fact that the Dupuit’s theory does not take into account the hydraulic 

conductivities around the retention pond whereas the numerical procedure incorporates 
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the localized variations of hydraulic conductivities.  Therefore, the free-surface 

determined from the numerical method is more accurate than that of Dupuit’s theory.  

Moreover, it is seen from Figure 59, that the influence zone covered by the free-surface is 

getting wider as time increases. 

 

Figure 59: Comparison of Free-Surface around the Retention Pond 
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Figure 60: Location of Free-Surface around the Retention Pond with Time 

 

5.7 Prediction of Recovery Time 

Recovery time is defined as a length of time required for the design treatment volume in a 

pond to subside to the normal level or bottom of the pond. Three-dimensional Finite 

Difference Groundwater Flow Model (MODFLOW) developed by U.S. Geological 

Survey [24] for saturated groundwater flow modeling is used to compare the recovery 

time predicted using the model developed in this study. A schematic of an unconfined 

aquifer is shown in Figure 60 with the notations used in the equations. The aquifer is 

assumed to be homogeneous and isotropic, and it is underlain by an impervious 

horizontal layer. 
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Figure 61: Saturated Infiltration Analysis using MODFLOW 

 

Dimensionless parameters, Fx and Fy are defined in terms of 

1) Hydraulic parameters of the aquifer 

2) Recharge rate and duration,  

3) The physical configuration of the pond and the desired time period. 

 

               (80a) 

  

                         (80b) 

              (80c) 

Where, hc - Height of water level in the retention pond above the initial groundwater 

table, hb - Height of the pond bottom above the groundwater table, hv - Maximum height 
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of water level in pond, W - Average width of the pond, KH - Average horizontal 

hydraulic conductivity of the aquifer, D - Average saturated thickness of the aquifer (= H 

+ hc/2), H - Initial saturated thickness of aquifer, f - Effective porosity and t - Recovery 

time. 

A family of dimensionless curves similar to Figure 63 is plotted by USGS for different 

effective porosity of soil. According to Eqn 80, the estimated recovery time for the 

selected pond is 4.7 days whereas the numerical model predicts that of 4 days from the 

Figure 62.  

Determination of recovery time

0

0.2

0.4

0.6

0.8

1

0 50000 100000 150000
Time (sec)

W
at

er
 le

ve
l i

n 
Po

nd
 (m

)

Figure 62: Prediction of Recovery Time from Numerical Model 
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Figure 63: Sample Plot to Determine Recovery Time from MODFLOW  
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5.8 Conclusions 

The application of the model developed in the first phase of the study has been extended 

to predict the recovery time for the retention pond including the location of the free-

surface. The recovery time obtained from the developed model agrees with that of the 

MODFLOW analysis. Furthermore, the free-surface around the retention determined 

from the numerical model shows good agreement with that predicted by the Dupuit’s 

theory.  
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