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ABSTRACT 

 

An innovative wastewater treatment technology was developed to recover 

renewable resources, such as water, energy and nutrients, from sewage.  First, a novel 

synthetic sewage was evaluated for its suitability to serve as an alternative substrate for 

lab-scale wastewater treatment (WWT) research. Based on granular dried cat food, 

Complex Organic Particulate Artificial Sewage (COPAS) is a commercially-available,  

flexible, and easy to preserve feed.  Characteristics of COPAS, namely chemical 

composition, disintegration/dissolution kinetics, and anaerobic biodegradability, were 

determined.  Anaerobic bioassays indicate that COPAS is highly biodegradable at the 

concentration used to simulate household sewage (1000 mg/L), with more than 72% of 

the theoretical methane content reached after 30 d of incubation.  Results indicate that 

COPAS is a suitable substrate as a surrogate of domestic sewage. 

 

In the second stage of the research, a lab-scale, 10L gas-lift anaerobic 

membrane bioreactor (Gl-AnMBR) was designed, fabricated and tested.  The AnMBR is a 

hybrid treatment technology that combines anaerobic biological treatment with low-

pressure membrane filtration.  Although AnMBR has been used in many instances for 

the treatment of high strength industrial or agricultural wastewater, relatively little has 

been reported about its application for the treatment of domestic sewage and further 

conversion and recovery of resources embedded in sewage, such as energy and nutrient 

enriched water.  The 10L column reactor uses a tubular PVDF ultrafiltration membrane 



xi 
 

(with biogas as sparge gas) for sludge/water separation.  COPAS was used as synthetic 

feed (at 1000 mg/L) to represent household wastewater.  The configuration showed 

excellent removal efficiencies of organic matter (up to 98% and 95% in COD and TOC 

removal, respectively) while producing energy in the form of methane at quantities 

suitable for maintaining membrane scrubbing (4.5 L/d of biogas).  Soluble nutrients 

were recovered in the effluent in the forms of NH4, (9.1±4.2 mg/L), NO3 (2.2±0.9 mg/L) 

and PO4 (20±7.13 mg/L). The energy footprint (net energy) of this reactor was 

evaluated and the energy requirements per volume of permeate produced was found to 

be in the range of -1.2 to 0.7 kWh/m3, depending on final conversion of methane to 

electric or thermal energy respectively.  These values could potentially be improved 

towards energy surplus (-2.3 to -0.5 kWh/m3) if applied to plant scale operation, which 

would employ more efficient pumps than those used in the lab.  Results from this study 

suggest that the Gl-AnMBR can be applied as a sustainable treatment tool for resource 

recovery from sewage, which can further be optimized for large scale operation. 

 

In the final stage of this research, further resource recovery from sewage was 

investigated by coupling the Gl-AnMBR with an innovative gas-lift algal photo MBR 

(APMBR).  To our knowledge, this is the first reported application of membranes (in 

particular gas-lift tubular) for separation of algal cells from effluent in a continuous-flow 

photobioreactor.  Nutrient rich effluent (9 mg/L NH4-N and 20 mg/L PO4-P) from the Gl-

AnMBR treating domestic wastewater was used as substrate to grow the biofuel 

producing microalgae Chlorella sorokiniana (Cs). The initial set of operational conditions 

tested in this study (HRT of 24 hours, operational flux of 4.5 LMH, air-lift flow rate (Qa) 

of 0.1 L/min and 0.1 bars of membrane inlet pressure), achieved 100% removal 



xii 
 

efficiencies for NH4 and PO4.  Flux remained constant during the experimental period 

which demonstrated the efficacy of gas lift as a membrane fouling control strategy for 

an algae bioreactor.  Because the algae is photoautotrophic, little removal of organic 

carbon was expected nor observed. Further studies are required to better understand 

the fate and cycling of carbon in the APMBR.  Limited information is available in the 

literature regarding biofuel-producing, algal photo MBRs utilizing anaerobic effluents as 

feedstock, which makes this study an important step in understanding the design and 

performance of combined anaerobic/algal biotechnology for large scale application of 

wastewater resource recovery.   
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1 INTRODUCTION

 

The availability of indispensable resources for our modern societies has reached 

a critical point in this century. Hubbert’s global peak oil prediction has already surpassed 

(i.e. May 2005) and oil price has particularly increased during 2008 to highest historical 

values (e.g. $146.69 in UK and $145.85 in US as July 3, 2008) (McPherson and Weltzin, 

2008; BBC, 2008). More than 1.1 billion people do not have access to safe water supply 

and 2.6 billion lack of adequate sanitation around the world (UNDP, 2006). Availability of 

fresh water sources is declining at an overwhelming rate and around 20% of world’s 

population already lives in water stressed areas (FAO, 2007). Growing societies demand 

from agricultural production to accelerate its pace and around 197 trillion tons of 

fertilizers are used in the world for this purpose (FAO, 2008).  Additionally, green house 

gases emissions due to human activity promote global warming and its devastating 

environmental effects. It is evident that what once was a concern about depletion of 

natural resources today is a latent crisis that requires immediate and sustainable 

solutions. 

 

To address the current situation, broad-based commitments towards sustainable 

development were established in the Kyoto Protocol and the United Nations’ Millennium 

Development Goals to counterbalance global warming and improve quality of life for 

people in developing countries, respectively. Specifically, research has been directed 

towards alternative, environmentally-friendly and sustainable ways to overcome 
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resources depletion, and a wide range of possibilities can be found within the waste and 

wastewater field.  Typically, wastewater represents a problem for urban development 

and a risk for public health, but if adequate and sustainable treatment is provided, it 

could also represent an invaluable resource. Wastewater is a renewable material and full 

realization of its maximum potential is a pending subject that offers great opportunity 

for research and future implementation. Currently, conventional technologies for 

wastewater treatment (i.e., activated sludge) comply with regulatory requirements for 

discharge into the environment, or for possible reuse activities. However, these 

technologies are typically centralized in wastewater treatment plants (WWTP) that 

consume large amounts of energy (e.g. aeration of the activated sludge basin).  Also, 

significant portion of the wastewater biodegradable organic matter is converted to 

sludge, which requires further treatment and disposition.  Growing populations also 

exert more pressure to the WWTPs by discharging more spent water into the sewerage 

collection system. Furthermore, sprawling and expanding urban regions oblige 

developers and municipalities to incur additional costs of infrastructure to adequately 

serve remote areas with water and wastewater networks. In developing nations, the 

lack of infrastructure to centralized wastewater treatment plants leaves isolated rural 

areas with inadequate or altogether lacking potable water supply and/or basic sanitation 

conditions.  Finally, the quality of surface water bodies is compromised when 

wastewater is inadequately treated before final discharge (Anh et al., 2002).  Overall, 

conventional treatment does not fully take advantage of wastewater as a renewable 

resource.  
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To improve effluent quality of wastewater treatment and further applications of 

reclaimed wastewater, advanced technologies such as the membrane bioreactor (MBR) 

have been developed. MBRs couple biological treatment with a membrane filtration unit 

and their major advantage over conventional treatment is related to its effluent quality. 

Additionally, retention of biomass by the membrane allows separation of sludge 

retention time (SRT) and hydraulic retention time (HRT), which are basic parameters in 

conventional wastewater treatment operation. As a result, rapid sewage treatment and 

smaller space requirement are obtained from this technology.  However, these 

advantages could be offset by the greater energy requirement to drive membrane 

filtration (Judd, 2006). 

 

In the search of alternative technologies to improve recovery of wastewater 

intrinsic resources and provide efficient sanitation as well, anaerobic membrane 

bioreactor (AnMBR) is a treatment processes that should be investigated in more depth. 

Although MBR is generally known for its high quality effluent and small footprint, AnMBR 

has the additional benefits of energy generation (e.g. biogas), fertilizer recovery (e.g. 

nutrients), and low sludge generation. Under optimum operational conditions, an AnMBR 

can be used not only for on-site wastewater treatment, but generation of reusable water 

for agricultural applications. Additionally, biogas produced in the anaerobic process could 

potentially more than satisfy energy requirements of the system (Liao, 2006).  More 

information, however, is required regarding maximization of the overall energy balance 

(energy footprint) in AnMBR.  Recent studies have demonstrated improved energy 

efficiency of membrane technology by enhancing shear over membrane surface in 

vacuum-driven modules using air scouring (e.g. reducing cake layer deposition in 
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submerged membranes).  This approach is also applied to sidestream membrane 

configurations in aerobic airlift supported modules, which has gained increased attention 

for municipal wastewater treatment, but little is known about the application of this 

configuration in anaerobic mode by using biogas for gas-lift. 

 

In this work, a decentralized anaerobic treatment process to treat wastewater 

generated by a community (hundreds to thousands) is developed. The aim is to reduce, 

eliminate and even generate surplus energy from wastewater treatment, with a focus on 

resource recovery (energy via methane, N and P for fertilizer, and clean water) rather 

than removal.  An anaerobic bioreactor coupled with a gas-lift supported membrane unit 

(Gl-AnMBR) is used to treat synthetic sewage, which combines anaerobic digestion with 

low pressure membrane filtration.  The ultrafiltration membrane used has micropores 

small enough such that practically all pathogens are removed (four log removal for virus, 

six log for bacteria and 8 log for helminths).  This system has a small physical and 

ecological footprint, and focuses on routing the embedded energy in waste organic 

matter to methane, while liberating organically bound N and P. Additional value is added 

to this innovative wastewater treatment system by adding a gas-lift Algal Photo MBR 

(APMBR). The APMBR not only provides a polishing step (tertiary treatment) for Gl-

AnMBR effluent by fixing downstream nutrient in algal cells, but increases the potential 

of energy recovery through carbon conversion to algal biofuel.   Preliminary finding of 

this second stage of the two stage treatment process called Anaerobic-Algal MBR 

(A2MBR) will be shown in the subsequent chapters.  
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2 BACKGROUND 

 

2.1  Literature Review 

2.1.1  “Waste” Water: Problem or Solution 

In 2005, a total of 410 billion gallons per day were withdrawn from different 

sources or fresh water in the US and 44.2 billion gallons per day were used for public 

supply and domestic uses (USGS, 2005). It is safe to assume that almost the totality of 

domestic water served is used and disregarded as wastewater.  Massive amounts of 

water are treated every day in centralized wastewater treatment plants (WWTP) to 

remove organic matter, nutrients, pathogens and other contaminants; while expending 

equally massive amounts of energy at increased operational costs.  

From a sustainable point of view, a WWTP is a factory of embedded wastewater 

resources (Table 2.1). Through the optimization of the treatment processes within the 

plant, the life cycle of many materials added upstream into the drinking water 

distribution system, can be extended to the point where the resulting waste products 

are minimal. Howard F. Curren WWTP is an excellent example of wastewater resources 

recovery. While providing effective sanitation to the Tampa Bay Area, nutrients are 

recovered as Class A pelletized fertilizer, clean water is returned to the grid for recycle, 

and energy is reused onsite by using the digesters biogas to generate electricity. 

However, some of these resource recovery practices can be maximized by including 

other techniques such as cultivation biofuel producing algae. At different treatment 
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stages, soluble forms of nitrogen and phosphorous are readily available for algal 

proliferation, which naturally grows on site and constitutes a problem for WWTPs in 

terms of maintenance (figure 2.1). Parallel and controlled cultivation of algae within a 

wwtp represents an opportunity to maximize downstream resources recovery.   

 

Table 2.1: Water quality parameters in the treatment stages of conventional WWTP (Howard. F Curren 

AWTP, Tampa, FL) for June 2009. Concentrations reported in mg/L. 

Parameter Plant 
Influent 

Primary 
settling 
effluent 

CBOD 
removal 
effluent 

Nitrification 
effluent 

Denitrification 
Effluent 

Final 
Effluent 

NO3+NO2  10.71 24.31 1.22 
TOTAL N 2.32 
NH3    26.96 13.90 0.04 0.07 
TKN 26.77 38.16 16.22 1.34 1.10 
SS 97.17 99.00 9.91 8.01 0.37 0.42 
TOTAL P     5.12 3.00 
PO4 4.02 4.02 4.02 2.91 
BOD 158.87 134.77 25.92 1.58 1.46 
CBOD 122.80 1.29 
COD 18.27 
TOC 9.48 
ALK 281.73 188.67 

 
 

     
 

Figure 2.1:  Native algae growing at different stages of treatment train at the Howard F. Curren AWTP. 

Post carbonaceous BOD removal clarifier (left), post nitrification clarifier (center) and denitrification filter 

(right). 
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2.1.2  Centralized vs. Decentralized Wastewater Treatment 

Wastewater treatment in centralized facilities is a successful approach and a 

common denominator in urban areas of developed nations.  Centralized systems 

represent a robust and effective treatment technology that has provided adequate 

sanitation for urban centers with a relatively small treatment capacity per inhabitant 

(Otterpohl et al., 1997). In spite of being well established technologies, centralized 

systems have certain characteristics that make them less desirable from a perspective of 

sustainability. According to Otterpohl et al. (1997), the traditional wastewater treatment 

causes a linear material flow that produces accumulation of contaminants (e.g. P, N, K 

and C) in water and food natural cycles. Also, high volumes of potable water are used to 

mobilize household wastewater to central facilities through extended sewage lines that 

require frequent maintenance. Recovery of nutrients for fertilization purposes is less 

feasible due to their dilution in large sewage volumes and mixed influent characteristics 

(Kujawa-Roeleveld and Zeeman, 2006).  Conventional wastewater treatment is known 

for its large consumption of energy and resources. Activated sludge utilizes large 

amounts of energy for aeration (0.25 to 1.0 kWh/m3 for a wastewater with 500 mg/L 

COD) (Speece, 1996), and depending on influent strength, primary and tertiary 

treatment consume chemicals for solids precipitation and further disinfection (Kujawa-

Roeleveld and Zeeman, 2006). Table 2 presents an example of energy consumption of a 

municipal treatment plant (Nouri et al., 2007). Moreover, isolated areas and new urban 

developments require extension of current sewer infrastructure to reach centralized 

WWTPs. This additional investment might not be a feasible solution for remote rural 

areas in developing nations. 
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Table 2.2: Average energy consumption in various processes of WWTP. Adapted from Nouri et al. (2007). 

Process Average energy consumption (kWh) of m3 
of crude sewage) 

Primary Treatment 0.01267 

Primary sedimentation 0.00091 

Recirculation pumping of activated sludge 0.03419 

Aeration (Mixing and pumping) 0.23084 

Digestion tank 0.02086 

Final sedimentation 0.00068 

Total Input 0.30015 
 

Decentralized systems on the other hand, could overcome these problems 

because, besides providing efficient sanitation, they offer the possibility of on-site water 

reclamation, energy generation (anaerobic processes) and nutrients recovery (Kujawa-

Roeleveld and Zeeman, 2006). Additionally, cluster systems should be able to avoid 

problems to the WWTP operation due to shock loads generated in certain points of the 

sewage net. Unfortunately due to the public misperception of system performance and 

discouraging liability laws from regulatory agencies (EPA, 2002), decentralized treatment 

is restrained to non-potable uses, and their potential as a water conservation alternative 

have been underestimated.  Alternatives technologies or improvement of the current 

ones is necessary to assert feasibility of decentralized wastewater treatment towards 

water and energy conservation. 

2.1.3  Anaerobic Biological Treatment 

For decades, anaerobic biological treatment has been used to treat all type of 

waste streams. Implementation of anaerobic biotechnology presents numerous 

advantages over aerobic processes such as process stability, reduction of produced 

biomass (5% to 20% of aerobic process), smaller footprint, energy bio-generation 

(12x106 BTU per 1000 kg of COD), less maintenance requirement, reduced endogenous 
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decay during starvation, among others (Speece, 1996). Most of the decentralized 

treatment technologies currently in use are anaerobic units. In the United States, 1990 

census showed that around 24% of wastewater treatment was accomplished using 

septic tanks (EPA, 2002). Thirty percent (30%) of sanitation in Latin American countries 

is achieved using septic tanks and pit latrines (Noyola, 2007). Also, countries like Brazil, 

Colombia and India have relied on anaerobic technologies for the treatment of domestic 

sewage because of their lower cost, low or no energy demand and simpler operation 

(Foresti, 2002; Chernicharo, 2006).  

Although there are many configurations for decentralized anaerobic treatment 

units, septic tanks (anaerobic baffled reactors - ABR) and upflow anaerobic sludge 

blanket (UASB) are most commonly found in literature for real and laboratory scale 

applications. Besides all the advantages offered by anaerobic processes, a comparison of 

the two systems is summarized in Table 2.3. 

 

Table 2.3: Comparison between ABR and UASB 

Configuration Advantages Disadvantages Source 

ABR 

High stability to hydraulic and 
organic influent shocks 

Shallow depth of reactor to 
maintain acceptable upflow 
velocities 

Barber and 
Stuckey, 

1999 

Longer SRT due to baffle 
elongation of water path 

Larger footprint due to shallow 
deep of reactors at large scale 

Separation of anaerobic 
metabolism phases in baffled 
compartments 

Uneven distribution of influent 

UASB 

Increased contact of biomass 
with influent stream due to 
sludge blanket's depth 

Dependence on upflow 
velocity for solids removal 

Seghezzo et 
al., 1998 

Higher depth allows less 
footprint and reactor size 

Shorter SRT due to reactor’s 
column configuration 

Natural mixing due to influent 
flow and biogas generation 

No separation of acidogenesis  
and methanogenesis  
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Energy generation is one of the most attractive characteristics of anaerobic 

processes. Biogas produced from influent wastewater contains about 50% of methane 

(Emcon Associates, 1982), which is considered the cleanest combustible fuel available.  

Additionally, methane has been applied for direct electricity generation as hydrogen 

source for fuel cells (AMI, 2000); also this gas is vastly used in industrial applications to 

propel pneumatic devices. Over 500,000 pneumatic devices are used in gas industry in 

the United States and some examples are liquid level controllers, pressure regulators, 

and valve controllers (EPA, 2006; Kirchgessner et al., 1997). Nevertheless, there is little 

information regarding application of biogas pneumatic potential within the wastewater 

treatment field. Biogas has been examined as a future alternative source of energy and 

promising opportunity for energy conservation. 

 

In spite of these advantages, anaerobic processes are not known to reach 

acceptable quality level for immediate reuse and a post-treatment is required to meet 

water quality standards for reclamation. Table 2.4 summarizes the most relevant values 

of contaminants in wastewater after treatment with BAF and UASB.  

 

Table 2.4: Example values of contaminant concentration in ABR and UASB effluents. Adapted from EPA 

(2002) and Chernicharo (2006). 

 

Parameter BOD5 COD TSS  Ammonia TKN   
as N 

TP  
as P O&G  

Fecal 
coliforms 
(log#/L) 

Helminthes 
(egg/L) 

Septic Tank 
(ST) 

132 - 
217 

327-
445 

49-
161 - 39-

82 
11-
21.8 36-37 4.6 - 8.2 - 

UASB 70–
100 

180–
270 

60–
100 >15 >20 >4 - 7 - 8 > 1 

*All units in mg/L unless indicated 
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2.1.4  The Anaerobic Membrane Bioreactor (AnMBR) 

By coupling an anaerobic bioreactor with a membrane filtration unit, effluent 

quality of solely anaerobic treatment can be significantly improved.  AnMBRs have been 

studied in the past decade, and their potential as sustainable sanitation and wastewater 

reclamation solution have been highlighted (DiGiano et al., 2004; Hu and Stuckey, 

2006). In either submerged or sidestream configuration, a supplementary ultrafiltration 

(UF) (average pore diameter of 10 to 1000 Ǻ) or microfiltration (MF) (average pore 

diameter of 0.1 to 10 um) (Baker, 2000) membrane, will provide tertiary treatment to 

wastewater by removing remaining pathogens and organic matter from anaerobic 

effluent. However, applications of AnMBRs with no auxiliary nutrient removal process 

(i.e. subsequent aerobic or anoxic treatment) are scarce and limited to high strength 

wastewaters. Table 2.5 summarizes some important application of AnMBR for 

wastewater treatment in the last decade.  

 

Although MBR technology is widely known for providing excellent quality effluent, 

additional energy is required to drive filtration through membrane units (Zhang et al., 

2003), and constant maintenance has to be performed to prevent and control 

membrane fouling. These two aspects represent the major challenges within the 

membrane biotechnology field and newer and more efficient mechanisms have to be 

developed to increase accessibility to MBR processes. Membrane fouling in wastewater 

treatment is basically produced by cake layer deposition on the membrane surface 

(Chang and Judd, 2002; Saddoud and Sayadi 2007; Jeison and van Lier, 2008). Many 

mechanisms of fouling prevention and cleaning have been developed to improve MBRs 
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performance. According to Yang et al. (2005), the techniques that have been used to 

prevent and control membrane fouling can be categorized as:  

 Modification of membrane module design by optimizing the packing density of 

hollow fibers or flat sheets, the location of aerators, the orientation of fibers and 

diameters of fibers.   

 Reduction of cake formation on membrane surfaces by controlling the filtration 

process below the critical flux, by air-sparging in the vicinity of membranes, and 

by operating in intermittent mode.   

 Improvement of the filtration characteristics of the mixed liquor by adding 

powdered activated carbon (PAC).   

 Removal of the fouling material after its formation by back-washing, by back-

pulsing, and by chemical cleaning. But majority of these methods are chemically 

and energy intensive. 
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Table 2.5: Various applications of AnMBR for wastewater treatment 

 

 

Research Description Biological Treatment Configuration Membrane Influent
In-situ Fouling 

Control Mechanism
Reference

Performance evaluation of 
anaerobic/aerobic staged 
reactor treating high 
strength wastewater
with high concentrations of 
ammonium 

UASB/Activated sludge
Submerged in 
aerobic zone

Capillary membrane 
polyethersulfone (Membrane Gmbh 
Company,
Germany)

Three kinds of synthetic wastewater: 
1300 mg COD L−1 and 110 mg NH4+- 
N L−1, 5250 mg COD L−1 and 610 mg 
NH4+-N L−1, and 10 500 mg COD L−1 
and 1220 mg NH4+-N L−1

Air backwash and aeration 
around the membrane 
module

2002 - Zhang and 
Verstraete

Comparison between fine 
and coarse bubbles for air 
scouring in MBR

Denitrication/nitrification 
tank

Submerged
flat-sheet polyoletine microfiltration
membrane (Kubota Co. Japan). PS 
= 0.4 um

Raw domestic sewage Air sparging for nitrification 2004 - Sofia et al.

Eavalution of jet-loop 
circulating system to 
increase nitrification

Aerobic tank
Submerged in 
aerobic zone

Sterapore-L, Mitsubishi

Synthetic medium for nitrifying 
microorganisms growth. Mineral salts 
(NH4Cl, KH2PO4, MgSO4·7H2O, CaCl2 
and FeSO4·7H2O) = 0.48 g/L

Air blowing and 
recirculated water (jet-
loop)

2005 - Kouakou et al.

Performance of AnMBr for 
sulfate reduction of high 
salinity wastewater

Anerobic tower Submerged
Cylindrical polysulfone membranes 
(Triqua B.V., Wageningen, The
Nethelands). PS = 0.2 um

Acetate and ethanol as the sole electron 
donors operated at high salinity (50 g 
NaCl/L and 1 g  MgCl2·6H2O/L)

External supply and 
recycled N2, relaxation and 
backflush

2005 - Vallero et al.

Performance of a SND-
MBR system treating 
domestic sewage

Microaerobic tower (mixed 
microorganisms) 

Submerged
U-shaped hollow-fiber membranes 
of polyethylene (Daiki, Japan). PS = 
0.1 μm

Synthetic wastewater consisting of 
sugar, potato starch, peptone, meat 
extract, urea, NH4Cl, KH2PO4 and a 
mineral solution containing MgSO4 
H2O, CaCl2 H2O, and FeSO4 H2O

None 2006 - Chu et al.

Performance of an Airlift 
External Circulation-MBR 
sytem for treatment and 
resuse of toilet sewage

AEC/MBR
Submerged in 
aerobic zone

Hollow fiber PVDF (Tianjing Motimo 
Membrane Technology Ltd., China). 
PS = 0.2 um 

Raw toilet wastewater Air blowing and PAC 2006 - Fan et al.

Performance of and AnMBr 
for dilute wastewater 
treatment 

Anaerobic baffled (1) tank Submerged

Hollow-fiber membranes  
(Mitsubishi Rayon,
Tokyo, Japan) and flat sheet
membrane (Kubota membranes). PS 
= 0.4  um.

glucose, peptone  0.2 g L−1 , meat 
extract  0.14 g L−1 , urea  0.01 g L−1 , 
and NaHCO3  300 mg L−1 .

Biogas recirculation 2006 - Hu and Stuckey

Anoxic/oxic MBR retention 
time evaluation

Anoxic tank
Submerged in 
aerobic zone

A flat sheet MF membrane. PS = 
0.4um 

Raw domestic sewage Air sparging for nitrification 2006 - Ng et al.
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Table 2.5: Various applications of AnMBR for wastewater treatment (cont.) 

 

 

Research Description Biological Treatment Configuration Membrane Influent
In-situ Fouling 

Control Mechanism
Reference

Hydrogen dependant 
denitrification

Anaerobic tank Submerged Zenon ZW1

Synthetic: tap water, was composed of 
25 mg l−1 NO3–N, 1000 mg l−1 
NaHCO3, 25 mg l−1 KH2PO4, 5 mg l−1 
CaCl2, 25 mg l−1 MgSO47H2O, and 1 
mg l−1 FeSO4.

Nitrogen gas produced 
during denitrification was 
internally recycled to the 
membranes for scouring 
and reactor mixing

2006 - Rezania et al.

NORIT Arilift MBR system 
application

Activated slude Sidestream Norit X-Flow 8" Raw municipal wastewater
Airlift, and  a combination 
of forward and back 
flushing

2007 - Futselaar et al.

Application of MBR 
Technology to treat glue 
and dye wastewater

UASB/Activated sludge
Submerged in 
aerobic zone

UF capillar membrane 
module (Green Environmental 
Technology Company). PS = 0.036 
um

wastewater from the liquid crystal 
display (LCD)-related industry

None (but aeration was 
supplied below membrane)

2007 - You et al.

Determination of optimal 
carbon surce 

SAAR/AR (Sequencing 
anoxic/anaerobic and 
aerobic reactor)

Submerged Flat sheet membrane 
Acetate, propiuonate, glucose and 
methanol

Airlift was installed 
underneath the membrane 
module

2008 - Ahmed et al.

Treatment of municipal 
wastewater for the 
comparison of recirculation 
configurations in MBR

Anoxic/anaerobic/aerobic
Submerged in 
aerobic zone

Double-sided plate-frame cellulose 
membrane (Kubota Co., Japan). PS 
= 0.2 um

Medium-strength synthetic municipal 
wastewater

Air was introduced using
filtered in-house 
compressed air via air 
diffusers placed at the
bottom of the oxic 
compartment of the

2008 - Ersu et al.

Comparison of different 
AnMBR configurations for 
treatment of high strengh 
VFA wastewater

UASB Sidestream 
Polymeric inside/out microfiltration 
tubular membrane (Norit, The 
Netherlands). PS = 0.2 um

Highly saline acidified VFA stream 
(acetate, propionate andbutyrate). COD 
= 10 g/L

Biogas was recirculated and 
sparged inside membrane 
tube

2008 - Jaison and Van 
Lier 

Performance of a SND 
(simultaneous nitrification 
and denitrification) process 
with an internal-loop airlift 
MBR

AS-MBR and BPAC-MBR
Submerged in 
aerobic zone

Hollow fiber PVDF. PS = 0.2 um 
(Tianjing Motimo Membrane 
Technology Ltd., China)

Synthetic wastewater was used as the 
influent with glucose, starch, 
ammonium chloride and sodium 
bicarbonate being the macro nutrients 
while peptone, KH2PO4, MgSO4-7H2O, 
MnSO4-7H2O, CaCl2 and FeSO4 were 
used as the trace nutrients.

Air blowing and PAC 2008 - Li et al.

Application of AnMBR to 
treat high strength 
dissolved petrochemical
effluent 

Anaerobic tank Submerged
Flat panel Kubotaw membranes. PS 
= 0.45 um

High strengh Fischer-Tropsch Acid 
Water. COD = 18 g/L) Compressed biogas recycle 2008 - Van Zyl
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2.1.5  Airlift Fouling Control 

Recently, special attention has been given to physical fouling prevention through 

membrane scouring with air bubbles for sidestream MBRs. Table 2.5 also presents the 

fouling control mechanism selected by several researchers. In those, variations in the 

bubble scrubbing system, according to membrane configuration, can be highlighted as 

the primary fouling control technique. From these methodologies, airlift membranes 

(using ultrafiltration capillary tubes) present a promising approach to prevent fouling, 

increase membrane flux and decrease energy consumption. By arranging the sidestream 

capillary membrane tubes vertically and supplying pressurized air at the bottom, right 

where the bioreactor’s effluent gets into the membrane; the sparged air is responsible 

for sludge recirculation through the membrane (inside-out filtration) and it also 

increases turbulence and shear over membrane surface.  Results of airlift MBR 

configurations indicate longer operation (up to 8 months) before off-site cleaning (Sofia 

et al., 2004), up to 43% improvement of permeate flux (Chan and Judd, 2002), 

decreased transmembrane pressure requirement, and considerably less energy used for 

pumping (Table 2.6) (Yeh et al, 2006). Commercially available airlift membrane modules 

(e.g., Norit X-Flow* and HyperFlux†) are evidence of efficient performance of airlift 

system. Nevertheless, there is no published information regarding performance of 

biogas gas-lift for domestic wastewater treatment in an AnMBR.  

                                                 
* Norit X-Flow company. http://www.norit.com/?RubriekID=2029  

† Berghof Filtration. http://www.berghof-filtration.de/en/Products+and+Solutions/Tubular+Modules.html 
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Figure 2.2: Example of air-lift MBR system using capillary membranes (inside-out filtration) by Norit X-Flow 
(Futselaar et al., 2007).  Air introduced at the bottom of the membrane module creates two phase 

gas/liquid flow inside the capillary membrane tubes, thereby generating lift for the recirculating sludge and 
turbulence to mitigate membrane fouling. 

 

Table 2.6: Comparison of external power consumption of tubular membrane configurations for treatment 
capacity of 100,000 GPD. Adapted from Yeh et al, 2006 

 

Item Cross-Flow Airlift 
Membrane pumps (bHP) 65 4.0 

Membrane blower (bHP) - 6.0 

Backwash pump (bHP) - 0.2 

Permeate pump (bHP) - 0.1 

Total power (bHP) 65 10.3 

Annual power (0.11/kWh) $46,976 $7,444 

bkW/m3 3.1 0.5 
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Table 2.7: Removal efficiencies and energy demand in different WWT technologies 

Parameter 
Removal Efficiency (%) 

ST1 UASB2 CAS3 Sub-
AnMBR4 

Sub-AnMBR 
(gas-scouring)5 

Cf-
AnMBR6 

Sub-
MBR7 

Sub-MBR 
(air-scour)8 

AL-
MBR9 

Cf-
MBR10 

SS 83 80 100 100 100 100 100 100 100 100 

COD 72 70 88 97 95 96 96 95 96 98.4 

Nitrogen 26 60 81 60 60* 60* 90 80 80* 80* 

Phosphorus  -- 35 90 35* 35* 35* 30 40 40* 40* 

Parasites -- 75 -- 100 100 100 100 100 100 100 

Bacteria 90 90 99.99 100 100 100 100 100 100 100 

Viruses -- -- 99.9 100 100 100 100 100 100 100 
Energy 
(KWh/m3) 0 0 0.30 -- -- -- 0.55 0.45 0.5 3.5 

Data from: 1) EPA; 2)  Chernicharo (2006); 3) Lopez-Vazquez et al. (2008), Zhang and Farahbakhsh (2007), Nouri et al. (2007); 4) Wen et 
al. (1999), Anh et al. (2003); 5) Hu and Stuckey (2006); 6) Saddoud and Sayadi (2007); 7) Judd (2006); 8) Rosenberg (2002), Cote 
(2000); 9) Judd (2006), Yeh et al. (2006); 10) Judd (2006). 
*Nutrient removal efficiencies for anaerobic and aerobic MBRs were assumed to follow the same pattern as UASB and CAS respectively  

 

Various studies have looked into low strength wastewater treatment using 

AnMBRs and reported successful control of membrane fouling by gas scouring (Valero et 

al., 2005; Hu and Stuckey, 2006; Rezania et al., 2006; Jeison and Van Lier, 2008; Van 

Zyl et al., 2008).  Still, there is little discussion regarding effect of biogas bubbling on 

the chemistry of anaerobic sludge recycled through a gas-lift anaerobic MBR (GL-

AnMBR) system. Decreased pH by gas bubbling has been reported by Lei et al. (2007) 

as part of the pretreatment for an anaerobic digestion effluent. This is due to the 

dissolution in water of the CO2 contained in the biogas. Additionally, there are no reports 

related to stripping of volatile organic carbons (VOC) by biogas produced in anaerobic 

reactors (Farhadian et al., 2008). Change in sludge composition and characteristics due 

to gas-lift configuration, is another potential issue requiring investigation. 
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2.1.6  Energy Considerations in a MBR System 

Zhang et al. (2003) evaluated the energy requirement of a transverse flow 

membrane module by identifying the principal points of energy demand in this type of 

aerobic MBR. Using a similar approach and including other considerations related to 

MBR’s usual requirements, the energy demand in an AnMBR compared to an aerobic 

MBR can be discriminate as follows: 

Aerobic MBR  

E1 = energy consumption by oxygen supply in aeration tank 
E2 = energy consumption by pipe system  
E3 = velocity energy loss 
E4 = energy consumption by membrane module (function of permeate and recirculation flow 
rates) 
E5 = energy consumption for air scrubbing 
E6 = energy consumption by pump  
E = E1 + E2 + E3 + E4 + E5 + E6 
 

Anaerobic MBR 

E1 = energy consumption by heating bioreactor 
E2 = energy consumption by pipe system  
E3 = velocity energy lost 
E4 = energy consumption by membrane module 
E5 = energy consumption for gas scrubbing 
E6 = energy consumption by pump 
E7 = energy produced in biogas 
E = E1 + E2 + E3 + E4 + E5 + E6 – E7 
 

 

In the case of an AnMBR, energy for aeration was replaced by heating demand 

in the bioreactor and an additional term is added to account for biogas production. It 

has been stated that produce biogas can offset heating requirement, which reduced 

total energy demand in and AnMBR to five terms (E = E2 + E3 + E4 + E5 + E6). 

Additionally, operational parameters adapted from optimized aerobic MBR systems to 

anaerobic conditions (i.e. AL-MBR to GL-AnMBR), could potentially decrease energy 

requirement even further:  
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 For an air-lift supported configuration, energy loss due to friction in the pipeline 

is minimal due to very low recycle flows (van 't Oever, 2007), therefore E3 

decreases. 

 Two-phase flow in an air-lift supported membrane allows turbulence to create 

shear over membrane surface which improves membrane flux, and decreases 

energy demand for sludge recirculation, bubbling and filtration (i.e. E4, E5 and 

E6) (Futselaar et al., 2006) 

 

Presently, overall energy requirements for AL-MBR (NORIT X-Flow) are in the 

range of 0.4 - 0.7 kWh/m³ and recent optimization of the system at pilot plant scale (i.e. 

San Diego, California) has reached 0.25 KWh/m3 (Miller et al., 2008); which is lower 

than current energy values for conventional activated sludge systems (0.3 - 0.4KWh/m3) 

(Zhang et al., 2003; Nouri et al., 2007).  If AL-MBR concepts are applied in anaerobic 

conditions to GL-AnMBR, this technology could result in a sustainable solution for low 

strength wastewater treatment and resource recovery.  

 

2.1.7  Alternative Energy Production from Anaerobic WWT 

Besides the mentioned advantage of anaerobic WWT for energy production 

through methane generation, an indirect source of energy derived from this process 

could be localize in biomass growth.  As it was mentioned before, the effluent from 

anaerobic processes are characterized by high concentrations of nutrients that usually 

require a further polishing step for either reuse applications or to meet local legislation 

discharge requirements.  Taking advantage of the fertilizing potential of wastewater 
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embedded nutrients, is a task that can be easily fulfilled by photosynthetic organisms 

(i.e. biomass growth). Further conversion of biomass into energy such as biofuel and 

biogas, provides an additional value to the resource recovery cycle and opens an 

opportunity in the blooming market of renewable energy. 

 

In the United States, the current clean energy market has localized its efforts in 

the production of biofuel from feedstock related technologies that include corn, soy, 

woodchips and algae (F2F Summit, 2009). Within this range of possibilities, algae 

provide a unique opportunity of making clean energy development possible.  The 

aquatic plant naturally stores its energy as lipids, which can eventually be converted into 

various types of fuel.  Algae can be artificially induced in freshwater or wastewater 

therefore it does not take up valuable cropland or conflict with food prices.  Also, algae 

can be grown very fast which can enhance production efficiency over time.  Growth is 

stimulated through the introduction of nutrients which facilitate artificial development of 

cultures.  In fact, algae can produce a number of different energy fuel types and can be 

refined using existing oil infrastructure.  Additionally, harmful global warming emissions 

are mitigated, as algae consume carbon dioxide. 

 

Although different types of algae have been proven to grow in aggressive and 

very diverse environments (Table 2.8), the potential of biofuel producing algae to grow 

from wastewater has recently gained a lot of interested since it has been highlighted as 

one of the most sustainable source of clean energy (Farm to fuel summit, 2009). Readily 

available nutrients, water and carbon in a wastewater treatment plant, make it an ideal 

location for cultivation of biofuel producing algae, but information about the feasibility of 
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implementing an algal photoreactor in an AWTP scenario is limited, specifically referring 

to nutrient recovery, savings on chemical demand and energy consumption. Table 2.8 

summarizes some of the most relevant studies on biofuel algal growth from wastewater. 

Although several studies have emphasized on the effectiveness of microalgae to remove 

nutrients, carbon and even organic matter through heterotrophic growth (Hammouda et 

al., 1995; Travieso et al., 2006; Wang et al., 2010a and 2010b), the application of 

continuous-flow algal bioreactor configurations present some limitation for microalgal 

growth since optimal operation of these systems with such slow growing organism 

requires extended acclimation stages, enhanced cell biomass concentration (e.g. 

overcome wash out of algal cells) and steady nutrient removal performance with 

variable influent conditions (Mallick, 2002).  
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Table 2.8: Algal production form wastewater effluents 

Substrate /Pretreatment 
Reactor type 
(batch/flow 

through) 
Algal strain Removal efficiencies Reference 

Cheese  factory anaerobic/aerobic 
digestion effluent 

B – 1.8 L Phormidium bohneri 
Micractinium pusilum 

100% NH4 removal and 2.9 and 2.5 mg 
P-PO4/L-d respectively 

Blier et a., 1995 

Aquaculture wastewater B and F – 15 and 16 
L respectively 

Chlorella sp 
Scenedesmus sp. 

83% BOD. ~90% COD and 100% NO3 
and NH4  

Hammouda et al, 1995 

Agroindustrial waste B – 4 L and  
50 L  
 

Chlorella vulgaris 
Scenedesmus dimorphus 

--- Gonzalez et a.,l 1997 

Synthetic wastewater B - 500-mL  Rhodobacter sphaeroides 
Chlorella sorokiniana 
Spirulina platensis 

--- Ogbonna et al., 2000 
 

WW from ethanol and citric acid 
production 

 Chlorella vulgaris 
Lemna minuscula 

73% NH4 and 51% PO4 Valderrama et al., 2003 

Secondarily treated sewage/AS B - 3 L  Botryococcus braunii Nitrate: 99.9% 
Phosphate: from 0.02 to <0.01 mg P/L 
 

Tsukahara and Sawayama, 2005 

Settled and diluted piggery waste B – 1 L  Chlorella vulgaris COD removed at 190h HRT: were 
88.0%, 57.5%, 55.6%, 56.5%, 60.6% 
and 20.6% for initial COD 
concentrations of 250, 400, 520, 650, 
800 and 1100 mg/l, respectively. 

Travieso et al., 2006 

Sterilized effluent from two-stage 
AD of two-phase olive mill solid 
waste (OMSW) 

B – 500 ml  Chlorella zofingiensis TCOD and SCOD removals of 37% and 
45% 
respectively at HRT 11 days 

Travieso et al., 2008 

WW obtained from the inlet 
channel to the Nehru Vihar OPS at 
Delhi 

 Chlorella minutissima --- Bhatnagar et al., 2009 

Effluent of AD of livestock waste B – 1 L Scenedesmus sp --- Park et al., 2010 
AD of dairy manure B – 250 ml Chlorella sp. Removal of NH4, TN, TP and 

COD:100%, 75.7–82.5%, 62.5–74.7%, 
and 27.4–38.4%, respectively 

Wang et al, 2010a 

Effluent from WWTP. 
Before primary settling (#1), 
after primary settling (#2), after  
activated sludge tank (#3), and  
centrate (#4) 

B – 250 ml Chlorella sp. Removals of NH3-N, PO4-P, TN and 
COD respectively: 
#1: 82.4%, 83.2%, 68.4, 50.9% 
#2: 74.7%, 90.6%, 68.5%, 56.6% 
#3: n/a (62.5% removal of NO3-N), 
4.69%, 50.8%, -22.7% 
#4: 78.3%, 85.6%, 82.8%, 83.0% 

Wang et al., 2010b 
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In terms of energy generation, algal biofuel extraction and processing, and 

anaerobic digestion of algal biomass are established methodologies that have been 

extensively reported (Golueke et al., 1956; Sialve et al., 2009). Other techniques such as 

bio-hydrogen generation will not be discussed in detail since limitations regarding 

specificity of algal strains and growth conditions (Li, 2008), establishes a gap between 

this particular energy generation process and the intrinsic randomness of wastewater 

based media. Table 7 also presents some of the most studied microalgal species either 

acclimated to, or isolated from wastewater substrates. The first species of green algae, 

Botryococcus braunii, can contain up to 75% of its dry weight as hydrocarbon oil (Chisti, 

2007). This oil is similar enough in composition to crude oil, that it can be processed in 

the same cracking facilities, to yield 67% gasoline, 15% aviation fuel, 15% diesel, and 

3% residual oil (Hillen et al., 1982). The latter one, Chlorella sorokiniana, have been 

widely known for its capacity to grow from sub optimal substrates such as wastewater 

and produce lipids at concentrations up to 32% of its dry weight (de Bashan et al., 

2008; Chisti, 2007). However, quantification of the specific algae derived energy 

depends on the initial cultivation methods, nutrient demand and final conversion 

approach. Table 2.9 summarizes the overall energy inputs and outputs for algal oil 

production (Chisty, 2008).  
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Table 2.9: Generalized inputs and outputs for algal biofuel production. Adapted from Chisty (2008) 

Inputs MJ/Kg oil kWh/kg oil 

Energy in fertilizers 14.12 3.92 

Energy for cultivation 8.77 2.44 

Energy for harvesting 0.30 0.08 

Energy for oil recovery 3.17 0.88 

Energy for biogas production 0.88 0.24 

Energy for construction (entire facility including maintenance) 4.00 1.11 

Energy embodied in equipment (including maintenance) 0.00 0.00 

Outputs 

Energy in algal oil 37.90 10.53 

Energy in biogas from residual biomass digestion 50.00 13.89 

 

2.2  Problem Statement 

From the above review, the following challenges regarding domestic sewage 

treatment using AnMBR and algal photobioreactor are identified: 

 

 For laboratory bioreactor studies, access to actual sewage is often not possible.  

Yet, there is a lack of suitable synthetic surrogates which resemble the major 

properties of actual sewage, namely complex particulate organic matter.  

 Although energy production is an attractive outcome of anaerobic treatment, 

AnMBRs are generally not yet optimized to decrease energy consumption 

associated with membrane operation. Typically, the energy balance of inputs and 

output has not been optimized towards energy surplus. 

 Analogous to air scouring, biogas scouring can potentially improve membrane 

flux in anaerobic systems. However, there is little knowledge regarding effects of 

extensive biogas bubbling on solution chemistry and anaerobic process stability.  

For example, possible loss of substrate compounds such as volatile fatty acids 
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(VFA) and CO2 can be caused by stripping.  The potential CO2 loss in this type of 

systems can lead to pH changes and system instability. 

 There is lack of information related to maximizing biogas production rate in an 

AnMBR treating low strength wastewater for the specific purpose of satisfying 

gas-lift system bubbling demand. Furthermore, membrane fouling in GL-AnMBR 

systems is not at all characterized. 

 The design and operation of AnMBR have not yet been optimized to fully recover 

wastewater intrinsic resources (e.g. water, energy and nutrients). Also, a suitable 

decision making process has not yet been established for this purpose. 

 Relatively little information is available on the use of anaerobic effluent, 

especially from AnMBR, to support the growth of algae for further energy 

recovery and nutrient utilization. 

 Cell separation (for biomass retention and clarified effluent) remains a challenge 

in continuous flow algae photobioreactors used for wastewater treatment, 

thereby limiting hydraulic loading.  The application of cell-separation membranes 

in an algal photobioreactors, or algae photo MBR, has not been reported. 

 

2.3  Research Hypotheses and Objectives 

The overall goal of this investigation is to develop a combined process, utilizing 

AnMBR and algae photobioreactor, to treat domestic wastewater for the targets of 

improving sanitation and recovering and reusing wastewater intrinsic resources (water, 

energy and nutrients).  Research is driven by the following hypotheses: 
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 For laboratory studies, sewage can be represented by a surrogate material that 

is readily available commercially and represents the salient complexities of actual 

sewage. 

 A tubular gas lift ultrafiltration membrane can be used in an anaerobic 

membrane bioreactor to create a low energy footprint approach to recover 

energy from wastewater, and potentially be energy surplus. 

 Anaerobic MBR effluent, which is nutrient rich and optically clear, can be a 

suitable feedstock for growing and sustaining biofuel-producing microalgae in a 

photobioreactor. 

 Similar to aerobic and anaerobic MBRs which separate sludge from effluent, 

solid/liquid-separation ultrafiltration membranes (in particular gas lift) can be 

combined with an algal photobioreactor to create an algal photo MBR.  The 

continuous flow system will be characterized by concentrated algal biomass and 

high quality effluent. 

 Anaerobic and algae bioprocesses can be combined to maximize resource 

recovery from wastewater 

 

The overall research goal is pursued through the following research objectives:  

 

The first objective is to identify, evaluate and characterize a synthetic surrogate 

for domestic sewage which is suitable for laboratory wastewater treatment studies. 

The second objective is to construct a prototype GL-AnMBR for domestic 

wastewater treatment. Specific objectives consist of: 

 Characterization of treatment performance using the synthetic sewage 
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 Evaluation of effluent quality for different reuse applications 

The third objective is to evaluate suitability of using biogas for gas-lift membrane 

filtration in an anaerobic bioreactor. Specific objectives consist of: 

 Determining the sufficiency of the produced biogas to sustain membrane gas 

scrubbing 

 Determining the effects of short- and long-term gas-lift operation on possible 

membrane fouling under anaerobic conditions 

 Devising strategies for maintaining sustainable membrane flux using gas-lift 

The objective four corresponds to the exploration of the Gl-AnMBR design and 

operation to minimize energy footprint 

 Minimize energy consumption (kWh/m3) for gas-lift membrane operation 

 Identify and harness available energy associated with system to offset 

treatment demands  

Lastly, the fifth objective is to develop a continuous-flow algal photobioreactor 

using a cell-separation membrane to retain biomass and clarify the effluent 

 Couple the APMBR to the AnMBR to grow algae using AnMBR effluent for further 

resource recovery 

 Evaluate APMBR performance and effluent quality 

 Determine overall performance of combined A2MBR 

 

2.4  Phases of Study 

The performance of the sequential anaerobic and algal membrane bioreactor 

system for treatment of domestic wastewater for resource recovery was conducted in 

three major study phases:  
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2.4.1  Phase 1: Substrate Characterization for Anaerobic Biodegradability 

During this phase, a synthetic domestic sewage was characterized and evaluated 

as a surrogate of domestic wastewater. Complex organic particulate artificial sewage 

(COPAS) was used for its similarities in COD, nutrients and particulate matter content to 

actual sewage. Since this proposed substrate is introduced as solid granules, the 

suitability of COPAS as a reliable carbon and nitrogen source was evaluated through 

dissolution tests. Additionally, biological degradation of COPAS was investigated based 

on methanogenic activity and hydrolysis (i.e. VFAs production) of the compound in an 

anaerobic environment. Acclimation of anaerobic sludge flora to COPAS was also 

performed during this phase. Results from this phase were used for later on in the 

research for mass balance calculations in lab scale operation and further applications. 

 

2.4.2  Phase 2: GL-AnMBR Design, Fabrication and Performance Evaluation  

An anaerobic bioreactor column coupled with a sidestream gas lift membrane 

unit (i.e., Norit X-Flow) was selected as the most advantageous configuration for this 

study. A gas-lift system was evaluated for its performance in domestic wastewater 

treatability. Preliminary sludge filterability tests defined the hydraulic conditions for the 

continuous operation of the membrane module.  Results from the extended operation of 

the Gl-AnMBR are also presented during this phase. Average biogas production was 

evaluated in this stage and obtained values were used in for energy estimations of net 

power demand. 
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2.4.3  Phase 3: Development of a Proof-of-Concept APMBR   

In this stage, the resource recovery potential of the Gl-AnMBR is highlighted in 

an application that includes photosynthetic biomass growth and generation of green 

energy. Batch experiments using Gl-AnMBR permeate for the growth the biofuel 

producing microalgae Chlorella sorokiniana were performed. Nutrient 

consumption/removal efficiencies of this algal strain are reported.  A gas-lift APMBR was 

designed, fabricated, and tested, using AnMBR effluent as feedstock, to demonstrate the 

feasibility of the integrated system for resource recovery from wastewater. 
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3 ANALYTICAL METHODS AND GENERAL PROCEDURE 

 

3.1  Analytical Methods 

In all samples, pH was measured with a digital pH meter (Corning pH/ion 

analyzer 350) and a gel-filled combination pH electrode (Model 2411-10, Cole Palmer, 

Vernon Hills, IL). The meter was calibrated before every measurement with standard 

buffer solutions of pH 4.0, 7.0 and 10.0 (Fisher Scientific, Pittsburg, PA). The electrode 

was rinsed with distilled water and dried with a tissue before and after every sample 

measurements. 

 

Chemical oxygen demand (COD) values were obtained using Hach HR COD 

digestion vials (Hach Company, Loveland, CO). Each vial contains a 5 ml of reagent 

solution ready to be used. The main ingredients of the reagent solution are mercuric 

sulfate, silver sulfate, chromic acid, sulfuric acid and demineralized water in proportions 

described somewhere else (MSDS for Digestion Solution for COD 20-1500 mg/l Range, 

Hach Company). For COD measurement, 2 ml of sample should be added to each vial 

and digested for 2 hours at a temperature of 150oC. During digestion, oxidizable organic 

compounds react reducing the dichromate ion (Cr2O7
2–) to green chromic ion (Cr3+) 

(HACH procedures). The concentration of Cr3+ is determined using colorimetric method 
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at a wavelength of 620 nm in a spectrophotometer (Model DR/4000U, Hach Company, 

Loveland, CO).  This method is approved by USEPA (USEPA, 1980). 

 

DOC and DN content in liquid samples were measured using a Total Organic 

Carbon analyzer (Shimadzu TOC-V CSH) coupled with a Total Nitrogen detector 

(Shimadzu TNM-1) (Shimadzu Scientific Instruments, Inc., Columbia, MD). Carbon 

analysis (Total, Organic and Inorganic) were based on catalytic combustion of sample at 

680oC and Non-Dispersive Infrared (NDRI) method. Nitrogen measurement was based 

on detection of produced NO (nitrogen monoxide) from combusted sample by 

chemiluminescence method. Depending on their initial solids concentration, liquid 

samples were taken for DOC measurement after filtration through a 0.45 um filter 

(TS<1000 ppm), or from the supernatant after centrifugation (e.g. Sludge samples). 

Acidification was done externally by adding 1N HCl to a pH below 2. Samples were 

sparged with Ultra Zero Grade Air for 2 minutes, to remove inorganic carbon (i.e. CO2) 

before measuring. Calibration curves for organic carbon and nitrogen were done using 

standard solutions of reagent grade potassium hydrogen phthalate (KHP) and potassium 

nitrate respectively (KNO3).  

 

POC was measured on the fraction of suspended solids in samples with high 

content of organics. A Shimadzu TOC-V CSH coupled with a Solid Sample Module 

(Shimadzu SSM-5000A) was used for this purpose (Shimadzu, Columbia, MD). Carbon 

analysis (Total, Organic and Inorganic) were based on catalytic combustion of sample at 

900oC and Non-Dispersive Infrared (NDRI) method.  Before analysis, samples of known 

volume (0.3 ml) were filtered through a 2.5 mm diameter Whatman GF 934/AH glass 



32 
 

fiber filter (Whatman Ltd. 2007-2009) as recommended by the ALPHA (2005) standard 

methods for separation of suspended solids in wastewater samples. To correct for the 

additional carbon content available on the filter, clean filters were combusted prior to 

each set of measurements and the obtained value was used as blank for each run.  

 

The total biogas production in batch experiments (i.e. serum bottles) was 

measured using the volume displacement method in a graduated burette. The 

accumulated pressurized gas in the headspace of the sealed bottles is released through 

rubber tubing connected to the top of a graduated burette. The burette, acting as a 

manometer, is filled with water to a known initial volume. The gas is left to equilibrate to 

atmospheric pressure while displacing the water in the burette to a final volume. The 

change is volume (DV) is quantified as produced gas (generally in ml). To measure the 

produced gas in a larger scale (e.g. bioreactor), a wet tip meter (WTM) was used 

(www.wettipgasmeter.com). A submerged double sided inverted tipping bucket receives 

the raising gas produced in the reactor. When one side of the bucket is filled (calibrated 

to a volume of 100 ml/tip), it tips to allow the other side to be filled. Every tip generates 

a pulse that is quantified over time by an on line data collection system.  

 

Gas composition was analyzed for carbon dioxide (CO2) and methane (CH4) using 

a gas chromatography (GC) unit (Agilent 7820A) equipped with a  thermal conductivity 

detector (TCD) and a 30-m J&W 113-3133 GS-CarbonPLOT, 0.32 mm diameter column 

(Agilent Technologies, Lexington, MA). The inlet, oven and detector temperature were 

set at 185oC, 50oC and 160oC respectively. Helium was used as carrier gas at 1.3 

mL/min. A volume of 200 ul of gas samples was manually injected to the instrument 
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using a 500 ul glass gas-tight syringe (National Scientific, Rockwood, TN). Calibration 

curves were done using CO2 and CH4 with a purity >99.9%. A sample of atmospheric air 

was injected before every run to check for anaerobic conditions in each bottle. The 

output signal of the instrument was processed in personal computer using the GC 

Chemstation software (Agilent Technologies, Lexington, MA) software included with the 

instrument.  

 

The volatile fatty acids (VFAs) (i.e. acetic, propionic, butyric and valeric acids) 

were monitored in liquid samples using a GC unit equipped with a flame ionization 

detector (FID) and a 30-m Restek 11025 Stabilwax DAm 0.53 mm ID column (Restek 

Corp. Bellefonte, PA). The inlet and detector temperature were both set at 250oC. 

Helium was used as carrier gas at 4.5 mL/min and the following program was used for 

the oven temperature: 90 °C for 0.5 min, 2 °C/min to 100 °C, 6 °C/min to 120 °C, 30 

°C/min to 230 °C for 15 min. The total run time was 27.5 min. Before measurement, 

samples were filtered through 0.22 um membrane filter and acidified with equal volumes 

of 2.5% phosphoric acid. Calibration curves for VFAs were done using pure acids (i.e. 

>99.0% purity acetic, propionic, butyric and valeric acids) dissolved in deionized water 

with 1.25% phosphoric acid. 

 

Ammonia (NH4
+) values were determined using Hach Test’N TubeTM Nitrogen-

Ammonia vials, Salicylate Method for 0.4-50 mg/L range concentration (Hach Company, 

Loveland, CO). Each vial contains 5 ml of demineralized water, to which 0.1 ml of 

sample be added. Ammonia Salicylate reagent powder and Ammonia Cyanurate reagent 

powder are added to each vial to react with the ammonia present in the sample. The 
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main ingredients of the Ammonia Salicylate reagent are Sodium Salicylate and Sodium 

Nitroferricyanide in proportions described somewhere else (MSDS for Ammonia 

Salicylate and Ammonia Cyanurate Reagents for NH3-N 0.4-50 mg/l Range, Hach 

Company). For the  Ammonia Cyanurate reagent, the main ingredients are Sodium 

Dichloroisocyanurate, Lithium Hydroxide, Sodium Citrate and Sodium Tartrate; in 

proportions described somewhere else (MSDS for Ammonia Salicylate and Ammonia 

Cyanurate Reagents for NH3-N 0.4-50 mg/l Range, Hach Company). Prior to NH3 

measurement, prepared vials should be allowed to react during 20 minutes where the 

chloramines present in solution react with salicylate to form 5-aminosalicylate that 

oxidizes in the presence of a sodium nitroprusside catalyst. The product of the reaction 

is a blue colored compound that, combined with the remaining excess reagent, turns 

into a green colored solution that can be measured through colorimetric. A 

spectrophotometer is used for this purpose at a wavelength of 655 nm (Model 

DR/4000U, Hach Company, Loveland, CO).   

 

Nitrate (NO3) values were determined using Hach Test NitraVer® X Test’N 

TubeTM vials, for 0-30 mg/L range NO3 concentration (Hach Company, Loveland, CO). 

Each vial contains a solution of demineralized water and sulfuric acid, to which 1 ml of 

sample is added. This sample is measured as the blank. In a following step, a reagent 

powder is added to each vial to react with the NO3 present in the sample. The main 

ingredients of the powder reagent are Urea, Chromatropic Acid (disodium salt), White 

Quartz Sand and Sodium Metabisulfite in proportions described somewhere else (MSDS 

for Nitrate NitraVer® X Nitrogen, Nitrate Reagent B, Hach Company). Prior to NO3 

measurement, prepared vials should be allowed to react during 5 minutes where the 
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NO3 present in solution reacts with the chromotropic acid under strongly acidic 

conditions. The product of the reaction is a yellow colored compound that can be 

measured through colorimetric methods. A spectrophotometer is used for this purpose 

at a wavelength of 410 nm (Model DR/4000U, Hach Company, Loveland, CO).   

 

Phosphate (PO4) values were determined using Hach Test Total Phosphorus High 

Range (HR) Test 'N TubeTM vials, for 1-100 mg/L range PO4
3- concentration (Hach 

Company, Loveland, CO). Each vial contains a solution of demineralized water and 

sulfuric acid, to which 5 ml of sample is added. In a following step, Potassium Persulfate 

powder is added to each vial to react with the organic and condensed inorganic forms of 

PO4
3- present in the sample. Prepared vials should be digested during 30 minutes 

allowing the persulfate, heat and acid conditions to convert the organic PO4
3- into 

orthophosphates. After digestion, 2.0 mL of 1.54 N Sodium Hydroxide and 0.5 mL of 

Molybdovanadate Reagent are added to each vial to allow orthophosphates to react with 

molybdate in an acid medium to produce yellow molybdovanadophosphoric acid forms in 

the presence of vanadium. The product of the reaction can be measured through 

colorimetric methods. A spectrophotometer is used for this purpose at a wavelength of 

420 nm (Model DR/4000, Hach Company, Loveland, CO).  The main ingredients of the 

Molybdovanadate Reagent are Ammonium Molybdate, Ammonium Metavanadate, 

Sulfuric Acid and Deminerilized Water, in proportions described somewhere else (MSDS 

for Phophorous Total Phosphorus HR, Molybdovanadate Reagent, Hach Company). This 

method is an adaptation of the 4500-P B-C ALPHA methods (ALPHA, 2005). 
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Solid concentrations in different samples were measured according to the 2540 

ALPHA standard methods for the examination of water and wastewater (ALPHA, 2005). 

For TS, a pre-weighted aluminum plate was filled with a known volume of sample and 

then dried at a temperature of 105oC in an oven. Dried samples are then removed from 

the oven, allowed to cool down in a desiccator and weighted again. The difference 

between the final minus the initial weight, divided by the sample volume results in the 

TS concentration. This value is usually corrected to have mg/L o ppm units. For VS, the 

sample is then ignited in a muffle furnace at a temperature of 550oC. After 5 to 15 

minutes, the sample is removed from the furnace, cooled down in a desiccator and 

weighted again. The difference between the final weight of the plate after dried at 

105oC and the final weight after ignited at 550oC divided by the sample volume results in 

the VS concentration (usually corrected to mg/L or ppm).  

 

For TSS, a similar procedure to the TS concentration is followed. The sample has 

to be prepared to separate the suspended solids and dissolved solids by filtration. A 1.5 

um fiber glass filter (2.5 mm diameter Whatman GF 934/AH - Whatman Ltd. 2007-2009) 

is used for this purpose. In this case, the aluminum plate and the filter (pre-dried in an 

oven during 2 hours at 105oC) are weighted together on a balance (AE 260 DeltaRange, 

Mettler Toledo Inc., Columbus, OH). The filter is then used to filter a known volume of 

sample. After filtration is complete, suspended solids remain on the filter that is put back 

into the aluminum plate and dried at a temperature of 105oC in an oven. Dried samples 

are then removed from the oven, allowed to cool down in a desiccator and weighted 

again. The difference between the final minus the initial weight, divided by the sample 

volume results in the TSS concentration. This value is usually corrected to have mg/L o 
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ppm units. For VSS, the dried plate-filter is then ignited in a muffle furnace at a 

temperature of 550oC. After 5 to 15 minutes, the plate is removed from the furnace, 

cooled down in a desiccator and weighted again. The difference between the final 

weight of the plate-filter after dried at 105oC and the final weight after ignited at 550oC, 

divided by the sample volume results in the VSS concentration (usually corrected to 

mg/L or ppm).  

 

3.2  Membrane Filtration System  

3.2.1  The Ultrafiltration Membrane 

Ultrafiltration membrane tubes (e.g., X-Flow by Norit Membrane Technology, 

Enschede, NL) have been used in this investigation, as they have been successfully 

applied in airlift MBR systems (e.g., Dynalift MBR).  The membrane used is a 5.2 mm 

diameter polyvinylidene fluoride (PVDF) tubular membrane (Norit X-Flow, F4785) (Norit 

Membrane Technology, Enschede, NL) with a mean pore size of 0.3 um and active 

filtration area of 0.013 m2. Custom membrane modules were fabricated in the lab to 

better control the membrane performance. The main components of the membrane 

module are showed in Figure 3.1.  

 

3.2.2  The Experimental Set Up 

The Gl-AnMBR experimental set-up shown in Figure 3.1 consists of an 8.5 L 

Anaerobic Bioreactor, coupled with a sidestream gas-lift ultrafiltration module. Due to 

the particulate nature of the influent, the reactor was fed in batches every 6 hours using 

a piston pump (FMI Q pump with a 3/8” diameter piston, Fluid Metering Inc., Oysterbay, 
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NY). Filtration is mainly driven by applying vacuum to the membrane permeate side with 

a variable speed pump (Masterflex L/S, Cole Palmer, Vernon Hills, IL). Membrane Cross 

flow velocity (CFV) was controlled using a peristaltic pump (Masterflex L/S, Cole Palmer, 

Vernon Hills, IL). Membrane effluent was measured with an on-line rain gage and 

transmembrane pressure (TMP) was measured by placing on-line pressure transducers 

at the feed (Pf), permeate (Pp) and recycle (Pr) lines of the membrane module. Gas 

from the head space was compressed using a peristaltic pump (Masterflex 7520-25, Cole 

Palmer, Vernon Hills, IL) and applied for membrane scrubbing. The gas flow rate (Qg) 

was controlled visually with a gas flow meter and a needle. Total biogas exiting the MBR 

was measured using a wet tip meter (WTP). The retentate is separated from the gas in 

an intermediate tank prior to recycling it back to the anaerobic reactor. Temperature at 

the bioreactor was regulated with hot water circulating in a hose around the column and 

continuously monitored inside the reactor and at the membrane feed line using on-line 

sensors. 

Originally, the anaerobic reactor configuration to be used in these studies was an 

Upflow Anaerobic Sludge Blanket (UASB). However, several modifications to the original 

airlift filtration concept had to be considered for its application to an anaerobic 

bioreactor such as the UASB. First, the supernatant of the UASB is used as influent for 

the membrane, which requires the placement of a recycle pump that controls membrane 

feed the flow rate (Qf) and CFV. The hydrostatic head available from the reactor column 

becomes irrelevant for this particular UASB-membrane application.  Second, Qf has to be 

maintained at a point where upflow velocity of the reactor and the CFV are within 

acceptable operational conditions for both UASB and membrane. For these reasons and 
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to maintain the MBR operation at minimum energy consumption, the biological reactor 

was mainly maintained as a complete mixed anaerobic column.  
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Figure 3.1: Schematic of the final Gl-AnMBR configuration 
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 3.2.3  Data Collection and Processing 

During continuous MBR operation, the on-line sensors were connected to a real 

time data acquisition device (HOBO® Weather Station Data Logger model H21-001, 

ONSET Computer Corporation, Cap Cod, MA), which was connected to a personal 

computer at all times. Since the on-line sensors only transmit voltage differentials (e.g. 

pressure transducers and temperature probes) and/or pulse outputs (e.g. rain gage and 

WTM), each sensor was calibrated for the desired measurement before allocating it on 

the reactor.  

For the membrane module used in this configuration, the TMP was calculated 

using the equation: 

TMP=
Pf-Pr

2
-Pp 

Where Pf corresponds to the pressure at the membrane feed line, Pr corresponds 

to the pressure at the recycle/concentrate line, and Pp corresponds to the pressure at 

the permeate side. All measurements are reported in Bars. Since the membrane module 

is placed in a vertical fashion, the average of the feed and recycle pressures is a 

simplified calculation of the pressure differential throughout the length of the membrane 

before filtration. Since the permeate flowrate (Qp) is measured in real time with a rain 

gage, the permeate flux is calculated using the following equation:  

J=
Qp
Am

×
60

1000
 

Where: 

J = measured flux reported in units of L/m2-hr (LMH) 

Qp = permeate flow rate in units of mL/min 

Am = active membrane filtration area in units of m2 
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The total filtration resistance is calculated based on the measured TMP and J. A 

modified version of the Darcy’s law for the discharge of liquid through a porous media, 

the total filtration resistance using a membrane given by: 

Rt=
TMP
J×μ

 

Where: 

Rt = total resistance reported in units of 1/m 

Although the permeate is assumed to have a viscosity close to pure water, it is 

also influence by temperature changes. In this study, the anaerobic reactor is 

maintained at thermophilic conditions at all times, the effluent temperature rapidly 

decreases after exiting the bioreactor. The feed temperature is continuously measured 

and used in the following empirical equation to correct the value of viscosity at a given 

temperature (USEPA, 2003). 

                              μ=1.784- 0.0575T + 0.0011T2 - 10-3T3                     (3.4) 

In this case, dynamic viscosity has units of centipoises (cp) and temperature is in 

degrees Celsius. 

3.2.4  Fouling Control Mechanisms 

In this investigation, gas scrubbing was established as the main anti-fouling 

mechanism for continuous membrane performance. Declining operation of the 

membrane module was assessed by monitoring TMP and J. Due operational restriction 

described later in this document (Chapter 5), J was used as the main parameter 

determining membrane fouling. Forward flushing and Backwashing were applied weekly 

to maintain and improve the performance of the gas-lift filtration. However, for 

significant reduction in permeate generation (i.e. more than 30% reduction of 
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sustainable flux), the following cleaning protocol was adapted from Evenblij (2006) to 

recover membrane performance: 

 Forward flush: tap water is used to flush the membrane at an increased CFV of 1 

m/s during 15 minutes. 

 Backwash: tap water is used to backwash the membrane at a constant flow rate 

of 2 L/hr during 15 minutes. 

 Chemical cleaning: commercially available NaOCl (i.e. Bleach) is used to supply 

the active chlorine necessary to clean the membrane. A solution of 500 ppm is 

prepared and fed to the membrane at regular operational conditions during 15 

minutes. In extreme cases of porous blockage, the same solution is used in an 

additional backwash step.  

Before, in between and after each fouling control step, tap water is filtered 

through the membrane to assess the recovery in membrane total resistance and 

establish the effectiveness of the cleaning procedure. 

 

3.3  Seed Sludge 

Seed sludge from the anaerobic digesters of the Howard F. Curran Advanced 

Wastewater Treatment Facility (Tampa, FL) was used throughout this investigation. 

Typical values of VFA, TS, volatile fraction, alkalinity and pH for the seed sludge are 333 

mg/L, 2.54%, 72.6%, 5673 mg/L, and 7.34-7.57; respectively (Plant’s laboratory report 

as June 2007).  
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3.4  Synthetic Substrate 

A new formulation developed between USF and Stanford University is used in 

this investigation. Complex Organic Particulate Artificial Sewage (COPAS), to simulate 

domestic wastewater.  This particular substrate presents advantages over other 

synthetic sewage such as: 

 Low cost and commercially available substrate 

 Ease of preparation  

 No special conditions required to preserve its integrity (e.g. lower pH or 

refrigeration) 

 Slowly-disintegrating and hydrolyzing particles with tunable particle distribution 

 Contain complex organic matter typical of domestic sewage 

Characterization of COPAS is presented later on in this thesis (Chapter 4), as well as its 

application as feed for the Gl-AnMBR (Chapter 5). 
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4 CHARACTERIZATION AND BIODEGRADABILITY ASSESSMENT OF COMPLEX 
ORGANIC PARTICULATE ARTIFICIAL SEWAGE (COPAS)

4.1  Introduction 

Laboratory scale based research is commonly conducted to improve the 

understanding on physical, chemical and biological processes in WWT.  Ideally, actual 

sewage should be used for these studies.  However, constraints related to accessibility 

to the sewage, and even health considerations, prevent researchers from using actual 

sewage.  Moreover, raw WW is highly variable in composition, which presents a 

reproducibility problem in laboratory-scale investigations.  As a result, lab-scale 

investigations often use some sort of synthetic wastewater that is easy to prepare with a 

highly reproducible composition.  Several studies use a readily biodegradable carbon 

source such as glucose or acetate; however, the simplicity in the composition of some 

synthetic WWs may not adequately represent actual sewage. 

The main objective of synthetic sewage is to reproduce as close as possible the 

characteristics of domestic WW (Tables 4.1 and 4.2). For this purpose, commonly used 

ingredients for synthetic sewage include chemicals such as K2HPO4, MgSO4 and Urea, 

food ingredients (e.g. starch, soy oil, beef extract, etc.) and even animal feed (e.g. 

canned dog food).  In some cases, the ingredients in synthetic sewage are fine-tuned to 

obtain the desired concentration of chemical oxygen demand (COD) and nutrients 

(especially nitrogen and phosphorous) for a better process performance (Kato et al., 

1997; Gao et al., 2004; Kurian et al. 2006, Kofina and Koutsoukos, 2005), thus 
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increasing the non-uniformity among synthetic domestic sewage.  Preparation of 

synthetic sewage recipes often also requires the use of expensive chemicals.  

Frequently, most of these recipes are prepared in concentrated solution and preserved 

by refrigeration or acidification (Nopens et al., 2001), bringing into question potential 

changes in chemical integrity during storage.  It is important to highlight the presence of 

particulate matter in sewage, which sometimes cannot be simulated by combining 

soluble chemicals in water, and require the addition slowly degradable constituents (e.g. 

starch) to mimic particulate compounds in synthetic waters.  However, mono-component 

particles such as starch do not adequately simulate the complex, heterogeneous 

compositions of natural sewage particles.   

Several research labs have presented different combinations of chemicals, food 

ingredients and other constituents to imitate the composition of real domestic sewage. 

Although some of these formulas have similar characteristics to raw sewage, such as 

SYNTHO and SYNTHES (Boeije et al., 1998; and Aiyuk and Verstratete, 2004); others 

are customized to the treatment process under study (e.g.,  Iaquinta et al., 2006; and 

Lin et al., 2004). A summary of different synthetic sewage used for research is 

presented in Table 4.2. This table shows the composition, concentrations and specific 

application for every recipe.  

Although standardization of synthetic sewage would be difficult to accomplish, 

the concept of an economical, consistent, and easy to obtain and preserve recipe is an 

attractive resource for laboratory research.  In this study, a new option for domestic 

synthetic sewage is proposed.  Based on dried granular cat food, Complex Organic 

Particulate Artificial Sewage (COPAS) is an unexploited material for mimicking domestic 

wastewater.  The chemical composition, solution quality (COD, TOC and TN) and 
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anaerobic biodegradability of COPAS were determined in this investigation, in order to 

evaluate the suitability of COPAS for use in developing new lab-scale sewage treatment 

processes. 

Dried granular cat food an inexpensive, commercially available product that does 

not require any special preparation and can be easily manipulated to reach desired 

particle size by simply grinding the pellets.  The amount of cat food used for COPAS can 

be tailored to match the TS and COD concentrations typical of domestic sewage.  

Although dried dog food is another candidate, cat food kibbles are much easier to break 

than dog food kibbles, making cat food-based COPAS easier to prepare.  Further, 

according to the Association of American Feed Control Officials, cat food is required to 

have more protein and fat than dog food due to the dietary necessities of felines 

(Dzanis, 1994). Also, the mineral composition of cat food differs from dog food in metals 

concentrations (i.e. iron, copper and manganese) and salts (i.e. sodium, chloride and 

magnesium) (Table 4.3).  A main advantage of using dried granular pet food for COPAS 

is that no special preservation is required.  A single batch of dried pet food can maintain 

its chemical composition during extended storage under ambient conditions in the lab 

(room temperature of 25 to 28oC). This statement was substantiated by testing and 

comparing the moisture, fat, protein, fiber, carbohydrates, ash, nitrogen and 

phosphorous from a brand new batch of cat food to one that has been used for lab 

experiments for more than a year.  The characteristics varied for less than five percent 

(<5%) despite the elapsed time (Table 4.4).  Using COPAS as synthetic sewage could 

avoid: preparing complicated and concentrated chemical solutions to be diluted in a 

further step (i.e. error accumulation in influent variables), adding additional particulate 

material to feed solution, and losing solution chemical integrity due to storage. 
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Table 4.1: Examples of actual domestic wastewater composition reported in treatment studies 

Application Water quality parameters of wastewater Source 
Evaluation of protein , carbohydrates and lipids 
content in domestic wastewater by using Lowry, 
phenol and anthrone, and infrared lipid methods 

Percentages of total COD in the influent: 
Proteins: 28±4%; Carbohydrates: 18±6%; Lipids: 31±10%; 
Other organics: 23%; VFA within other organics < 1% 

Raunkjaer et al., 1994 

Comparison among CAS, Behrtest KLD4® and 
CAS-UCT for biological nutrient removal. Duffel 
WWTP (Belgium) 

CODt: 400±200 mg/L; TN: 25±7 mg/L; TP: 7±3 mg/L; pH: 6.9-
7.5  Rottiers et al., 1998 

Anaerobic digestion of domestic sewage and black 
water CODt: 634 mg/L and CODs: 217 mg/L Elmiatwalli et al., 2000 

Application of Molinga oleifera to UASB reactor for 
process  enhancement. Ossermeersen WTP 
(Ghent, Belgium) 

CODt: 320±58 mg/L; CODs: 140±35 mg/L; SS: 165±41 mg/L; 
VSS: 132±22 mg/L; TKN: 33±12 mg/L; NH4-N: 23±9 mg/L; TP: 
10±1 mg/L; Alk: 412±45 mg CaCO3/L; pH: 7.7±0.2 

Kalogo et al., 2001 
This WTP influent was 

also used by Aiyuk et al., 
2004; 

Biodegradation of settleable COD by interpretation 
of hydrolysis rate in an aerated batch reactor.  
Atakoy WTP (Istanbul, Turkey) 

CODt: 425 mg/L; CODs: 120 mg/L; SS: 240 mg/L; VSS: 150 mg/L Orhon et al., 2002 

Application of UASB for treating domestic sewage 
at moderate based on COD removal efficiencies 
(Salta, Argentina) 

CODt: 224.2±10.1 mg/L and CODs: 65.4±5.5 mg/L Seghezzo et al., 2002 

Performance of a pilot-scale treatment wetland for 
low-cost domestic wastewater treatment (Santa 
Maria Nativitas, Mexico) 

CODt: 1569.2±81.2 mg/L; TN: 164.9±14.3 mg/L; NH4-N: 
66.3±4.5 mg/L; NO3: 28.4±7.3mg/L; DO: 1.9±0.2 mg/L; TSS: 
406.1±33.4 mg/L; pH: 8.2±0.1 

Belmonte et al., 2004 

Evaluation of wastewater characteristics and 
treatment of domestic sewage in tropical 
monsoon areas. Ruamrudee sewer pipe (Bangkok, 
Thailand) 

BOD5: 241.5 mg/L; CODt: 320.6 mg/L; TN: 42.4 mg/L; NO3: 0.9 
mg/L Giri et al., 2006 

Evaluation of performance of a DHS system for 
treating UASB effluent (Japan) 

BODt: 162±37 mg/L; BODs: 78±19 mg/L; CODt: 373±83 mg/L; 
CODs: 168±38 mg/L; SS: 134±48 mg/L; TN: 61±11 mg/L; NH4-
N: 33±6mg/L; pH: 7.3 

Tandukar et al., 2006 

Performance of submerged NF MBR for treating 
domestic wastewater (Tokyo Bay, Japan) 

TOC: 35.3-91.2 mg/L; SS: 40-180 mg/L; DO: 6.07-7.59 mg/L; TN 
(dissolved): 7.2-31.9 mg N/L; TP: 2.27-31.1 mgP/L; pH: 7.27-
7.85 

Choi et al., 2007 

Characterization of domestic wastewater and 
treatability approach. Beishiqiao Wastewater 
Purification Center (Xi’an, China) 

CODt:257.8 mg/L; BOD5: 134.7 mg/L; SS: 162.3 mg/L; TN: 38.8 
mg/L; NH3-N: 26.2 mg/L; NO3-N: 0.48 mg/L; TP: 8.16 mg/L; pH: 
7.6 

Xiaochang et al., 2007 
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Table 4.2: Summary of representative synthetic wastewaters used in literature 

Application Composition Water quality parameters Source 

Performance of an anaerobic-aerobic 
domestic sewage treatment using UASB 
and SBR 

Meat extract, sucrose, starch, cellulose and 
vegetable oil 

CODt: 422±68 mg/L; CODs: 169±45 mg/L; BOD5: 
257±26 mg/L; TSS: 246±130 mg/L; VSS: 158±65 
mg/L; TKN: 57±11 mg N/L; NH4-N: 26±7 mg/L; 
Alk: 288±85 mg CaCO3/L; pH: 7.0±0.36 

Sousa and 
Foresti, 1996 

Evaluation of degradation kinetics and heat 
and mass transfer in an aerated static bed 
reactor  

Dry dog Food and hard maple wood chips as bulking 
agent and carbon source 

Dog food C: 44.6% and N: 5.3%; Wood chips C: 
29.7% and N: 4.1% 

VanderGheyns
t et al., 1996  

Performance of UASB and EGSB reactor for  
low strength wastewater treatment Ethanol or whey Whey CODt: 113 – 630 mg/L; Ethanol CODt: 146 - 

722 mg/L 
Kato et al., 

1997 

Development of a risk assessment tool for 
chemical fate prediction in aquatic 
environment 

Syntho (precursor) 
Urea, ammonium chloride, uric acid,  sodium 
acetate, dried yeast, lauric acid,  diet fiber, LAS, AE, 
meat extract, peptone, potato starch, low fat milk 
powder, mineral salts and trace elements 

CODt: 390 mg/L, TN:, 34.6 mg/L and TP: 7.9 
mg/L; pH: 7.25 Boeije, 1998 

Introduction of an improved option for 
synthetic sewage and potential applications 
for lab and pilot scale WWT. 

SYNTHO CODt: 470 mg/L, TN:, 31.6 mg/L and TP: 8.3 mg/L Boieje et al., 
1998 

Immobilization of  sludge using PVA and  
performance evaluation 

Peptone, beef extract, NaCl, KCl, MgSO4-7H2O, 
Na2HPO4 and CaCl2-2H2O 

COD: 360 mg/L, TKN: 48 mg/L, BOD: 240 mg/L 
and TOC: 150 mg/L 

Chen et al., 
1998 

Comparison among CAS, Behrtest KLD4® 
and CAS-UCT for biological nutrient 
removal   

BSR3 and SYNTHO 
Urea, ammonium chloride, uric acid, dried yeast, 
lauric acid, sodium acetate, diet fiber, LAS, AE, meat 
extract, peptone, starch, low fat milk powder, 
mineral salts and trace elements 

BSR3 (Syntho precursor) 
CODt: 390 mg/L, TN:, 34.6 mg/L and TP: 7.9 mg/L 
SYNTHO 
CODt: 470 mg/L, TN:, 31.6 mg/L and TP: 8.3 mg/L 

Rottiers et al., 
1998 

Evaluation of two-stage treatment 
configuration by comparison of CAS and 
MBR performance for reduced sludge 
production 

Skimmed milk powder and antifoam 

CODt: 360 - 1033 mg O2/L Average C/N/P ratio: 
100/8.3/4.0 
100 g of dry skimmed milk powder contains: 
Carbohydrates: 51.9 g; proteins: 35.5 g; lipids 1 g; 
minerals: 7.8 g  

Ghyoot and 
Verstraete., 

1999 

Performance of ABR for treating complex 
(soluble and colloidal) dilute wastewaters 

Semi-skimmed milk (soluble feed), dry dog food and 
rice (colloidal feed >500um) and trace chemicals  COD: 500 mg/L Langenhoff et 

al., 1999 

Evaluation of novel biosensor for BOD 
measurement using HCF(III) as mediator 

OECD synthetic sewage (also adapted by the EPA) 
Peptone, meat extract, urea, NaCl, CaCl2-2H2O, 
MgSO4-7H2O and K2HPO4 

BOD5 of solution: 14000 mg of O/L 
BOD values from 15 to 200 mg of O/L used to 
show sensor response 

Yoshida et al., 
2000 

Evaluation of the reliability of synthetic 
wastewater for breeding stable activated 
sludge in an SBR 

SYNTHO (modified) 
Urea, NH4Cl, Na-Acetate, Peptone, MgHPO4-3H2O, 
KHPO4, FeSO4-7H2O, starch, milk powder, yeast, 
soy oil, trace metals 

COD: 439.47 mg/L, N: 60.23 mg/L and P: 9.42 
mg/L 

Nopens et al., 
2001 

pH effect on anaerobic solubilization of 
synthetic and domestic sludge Dry dog food  Protein: 21%, Fat: 8% and Fiber: 5% 

VS: 90% of TS; VSS: 30000 mg/L  
Gomec et al., 

2002 
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Table 4.2: Summary of representative synthetic wastewaters used in literature (Cont.) 

Application Composition Water quality parameters Source 
Process optimization of a trickling filter by 
using off-gas analysis SYNTHO (Boeije et al., 1998) Same as Boeije et al. (1998) Vanhooren et al., 

2002 

Evolution of the sludge bed sedimentology 
for a UASB 

SYNTHES 
Urea, NH4Cl, Na-Acetate, Peptone, MgHPO4-3H2O, 
KHPO4, FeSO4-7H2O, CaCl2, starch, milk powder, 
dried yeast, soy oil, trace metals 

CODt: 500±50 mg/L; CODs: 170±40 mg/L; 
TKN: 49±8 mg/L; NH4-N: 27±7 mg/L; PO43-P: 
21±2 mg/L; SS: 200±50 mg/L; COD/N/P ratio: 
30/3/1 

Aiyuk and 
Verstraete, 2004 

Performance of an SMBR for the treatment 
of highly concentrated ammonia influent 

NH4HCO3, K2HPO4, MgSO4-7H2O, MnSO4-4H2O, 
FeCL3-6H2O and NaCl NH4-N: 180 – 1300 mg/L Gao et al., 2004 

Performance evaluation of BASR for 
wastewater treatment application 

C2H5OH, K2HPO4, MgSO4, NH4Cl and trace 
elements  

SCOD: 298-694 mg/L 
COD/NH4-N: 6/1 
COD/P: 78/1 

Lin et al., 2004 

Study of struvite kinetics for salt 
precipitation 

MgSO4-7H2O, NH4H2PO4, glucose, NaHCO3, NaCl, 
NaNO3 and NaSO4 Not reported Kofina and 

Koutsoukos, 2005 
Performance of microarobic MBR and 
anaerobic granular sludge domestic 
wastewater treatment 

Sugar, potato starch, peptone, meat extract, urea, 
NH4Cl, KH2PO4, MgSO4-H2O, CaCl2-H2O, FeSO4-
H2O and trace metals 

COD: 500±46 – 214±30 mg/L 
TN: 45.1±2.2 – 18.9±0.4 mg/L Chu et al., 2006 

Performance of and AnMBr for dilute 
wastewater treatment glucose, peptone , meat extract, urea, and NaHCO3  COD: 460±20 mg/L Hu and Stuckey 

2006 

Determination of biokinetics of aerobic 
biomass in MBR using oily wastewater 

Ammonium sulphate, K2HPO4, MgSO4-7H2O,  
CaCl2-2H2O, glycerol, FeCl3, CuSO4-5H2O, 
NaMoO4-2H2O, MnSO4-2H2O, ZnCl2, CoCl2 and 
NaHCO3 

TCOD: 18700±3100 mg/L; SCDO: 15000±1900 
mg/L; TBOD: 9050±1510 mg/L; SBOD: 
7200±900 mg/L; Oil and grease: 670±86 mg/L; 
TSS: 1750±890 mg/L; VSS: 1400±780 mg/L 

Kurian et al., 
2006 

Evaluation of alternating pumped 
sequencing batch biofilm reactor  
performance 

Glucose, yeast, extract, dried milk, NH4Cl, urea, 
Na2HPO4-12H2O, NaHCO3, MgSO4-7H2O, MnSO4-
H2O, CaCl2-6H2O and KHCO3 

CODt: 346±32 mg/L; CODs: 319±25 mg/L; TN: 
33±1.3 mg/L; P: 18±2.7 mg/L 

Rodgers et al., 
2006 

Evaluation of befouling in attached and 
suspended growth media MBR 

Glucose, soy starch, NH4Cl, KH2PO4, CaCl2, MgSO4-
7H2O, FeCl3 and NaHCO3 

COD: 500 mg/L 
COD/N/P ratio: 100/10/2 

Sombatsompop et 
al., 2006 

Performance improvement of an aerobic 
MBR system by ozone gas backwashing as 
fouling control 

Glucose, Poly-peptone, NH4Cl, CaCl2· 2H2O, FeCl3· 
6H2O, MgSO4· 7H2O, NaHCO3 and KH2PO4 

BOD: 250 mg O2/L, Alkalinity: 270 mg 
CaCO3/L, NH4+ -N: 22.3 mg N/L, TN: 42.3 mg 
N/L, TP: 6.8 mg P/L 

Kim et al., 2007 

Evaluation of the degradation of non-ionic 
surfactants by activated sludge’s bacterial 
community 

peptone, yeast extract, urea, NaCl, CaCl2.2H2O, 
MgSO4. 7H2O, K2HPO4, KH2PO4, and nonylphenol 
ethoxylates (NPE) 

COD: 190 mg/L Lozada et al., 
2007 

Determination of optimal carbon source  in  
a SAAR/AR (Sequencing anoxic/anaerobic 
and aerobic reactor) 

Acetate, propionate, glucose and methanol.  
Combinations of VFAs at different ratios.  

COD from 250 to 400, TN from 5.2 to 6.2 and 
TP from 9 to 41.  

Ahmed et al. 
2008 

Performance of a SND (simultaneous 
nitrification and denitrification) process 
with an internal-loop airlift MBR 

Glucose, starch, ammonium chloride, NaHCO3, 
peptone, KH2PO4, MgSO4-7H2O, MnSO4-7H2O, 
CaCl2 and FeSO4 

TN: ~60 mg/L Li et al. 2008 

Assessment of the fate of PPCPs in aerobic 
MBR treating domestic wastewater 

AcNa · 3H2O, NH4Cl, Na2HPO4, KH2PO4, NaHCO3, 
and PPCPs Not reported Reif et al., 2008 
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Table 4.3: Nutrient profile for dog food and cat food. Adapted from Dzaniz, 1994. AAFCO dog and Cat 

Nutrients profiles (minimum values for adult pet maintenance) 

Feeding component Units dry matter Dog food Cat food 
Protein g/Kg 180 260 

Fat g/Kg 50 90 
Minerals    

Ca g/Kg 6 6 
P g/Kg 5 5 
K g/Kg 6 6 
Na g/Kg 0.6 2 

Chloride g/Kg 0.9 3 
Mg g/Kg 0.4 0.4 
Fe mg/Kg 80 80 
Cu mg/Kg 7.3 5 
Mn mg/Kg 5 7.5 
Zn mg/Kg 120 75 
I mg/Kg 1.5 0.35 

Se mg/Kg 0.11 0.1 

 

Table 4.4: Comparison between old and new bags of COPAS 

Concentration As specified by 
manufacturer** 

Old lot* (No. 
71230850318L02)

New lot* (No. 
71240850554L07)

Moisture 12% (max) 1.49% 2.56% 
Fat 11.5% (min) 15.17% 15.50% 
Protein 31% (min) 36.69% 35.35% 
Fiber 4.5% (max) 1.70% 2.40% 
Ash 8.11% 8.23% 
Carbohydrates 38.54 38.27% 
Nitrogen 5.87% 5.66% 
NFE (Nitrogen free extract) 36.84% 35.87% 
Phosphorous 1% (min) 1.46% 1.40% 
Urea 0.14% 0.12% 
Linoleic Acid (Min) 1.50% 
Calcium (Min) 1.20% 
Zinc (Min) 125 mg/kg 
Vitamin A (Min) 15000 IU/kg 
Vitamin E (Min) 60 IU/kg 
Taurine (Min) 0.12%     
*Analysis performed by Borrow-Agee Laboratories, LLC. Memphis, TN  
**COPAS Ingredients: Ground yellow corn, corn gluten meal, poultry by-product meal, meat and 
bone meal, corn germ meal, animal fat preserved with mixed-tocopherols (form of Vitamin E), 
ocean fish meal, soybean meal, brewers dried yeast, phosphoric acid, animal digest, potassium 
chloride, tetra sodium pyrophosphate, salt, choline chloride, tuna meal, salmon meal, added color 
(Yellow 6, Red 40, Yellow 5), taurine, zinc sulfate, ferrous sulfate, Vitamin E supplement, niacin, 
manganese sulfate, calcium carbonate, Vitamin A supplement, calcium pantothenate, thiamine 
mononitrate (Vitamin B-1), copper sulfate, riboflavin supplement (Vitamin B-2), Vitamin B-12 
supplement, pyridoxine hydrochloride (Vitamin B-6), folic acid, Vitamin D-3 supplement, calcium 
iodate, biotin, menadione sodium bisulfite complex (source of Vitamin K activity), sodium 
selenite. D-5007 
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4.2  Materials and Methods 

The cat food used for this study was a commercial brand (Purina Friskies® Ocean 

Fish Flavor) obtained from a popular discount superstore (Walmart). To assess its 

nutritional composition, a sample of ground cat food (particle size 0.472 to 1.7 mm) was 

sent to a registered animal feeding analysis laboratory (Borrow-Agee Laboratories, LLC. 

Memphis, TN).  Chemical composition of COPAS was calculated based on dry weight of 

COPAS sample. Chemical oxygen demand (COD) values were measured using Hach HR 

COD digestion vials (Hach Company, Loveland, CO). Dissolved organic carbon (DOC) 

and dissolved nitrogen (DN) content in liquid samples were measured using a Total 

Organic Carbon analyzer (Shimadzu TOC-V) coupled with a Total Nitrogen detector 

(Shimadzu TNM-1). A Solid Sample Module (Shimadzu SSM-5000A) coupled to the TOC-

V was used for particulate organic carbon (POC) in solid phase samples, (Shimadzu, 

Columbia, MD).  Biological Oxygen Demand BOD) was measured in an external 

laboratory (Howard Curren AWT Environmental Laboratory, Tampa, FL) using the 

method 5210 for BOD5 and BOD20 described in ALPHA 2008. 

 

To evaluate the feasibility of COPAS as a readily available carbon and nitrogen 

source, a dissolution test was performed and the DOC and DN concentrations were 

closely monitored during a 24 hours period. For this test, two 1 liter batch reactors were 

filled with a solution of 500 mg/L of ground COPAS (particle size between 0.425 to 1.7 

mm). For homogenization, the reactors were mixed at controlled speeds of 20, 50 and 

100 rpm.  Samples were filtered through a 0.45 um SFAC syringe filter and acidified with 

1 N HCl to a pH of 2 to 3 to avoid biological activity and to facilitate removal of inorganic 

carbon.  DOC and DN were measured using the Shimadzu TOC-V/TNM-1 analyzer.  
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The effect of COPAS on solution pH was evaluated by closely monitoring this 

parameter during the first hour of the dissolution test.  The initial pH of DI water was 

7.10 and decreased after cat food addition to a minimum value of 6.52 at t = 30 min. 

The pH then stabilized in the range of 6.52 to 6.56. These pH values do not differ 

significantly from the initial pH concentration and are acceptable for wastewater 

treatment. 

 

Anaerobic biodegradability of the proposed synthetic sewage was assessed 

through serum bottle assays seeded with anaerobic digester sludge seed from a local 

wastewater treatment plant (Howard Curren AWT, Tampa, FL.). For the serum bottles 

(clear 118 ml glass bottles, 60 ml liquid sample) (Fisher Scientific, Pittsburg, PA), the 

sludge was previously screened using 1 mm wire mesh to remove grit, hair, and other 

things that might interfere in the biodegradability assay. The serum bottles were 

maintained at 37oC and fed with COPAS at different solids concentrations within a range 

typical of domestic wastewater (i.e., 100, 200, 500, 1000 and 2000 mg/L).  Chemical 

oxygen demand (COD), volatile fatty acids (VFAs), biogas production and particulate 

organic carbon (POC) were continuously measured in each bottle. Sludge samples were 

centrifuged at 3000 rpm for 20 minutes and supernatant was used for COD and VFA 

measurements. Dissolved COD was measured using HACH HR COD digestion vials 

(HACH Company, Loveland, CO). POC was measured on filtered sludge samples (i.e., 

1.5 um fiber glass filters) using the Shimadzu TOC-V/SSM-5000A. Biogas volume was 

determined using a water displacement burette. Gas composition was analyzed for CO2 

and CH4 using a gas chromatography (GC) unit (Agilent 7820A) equipped with a  

thermal conductivity detector (TCD) and a 30-m J&W 113-3133 GS-CarbonPLOT, 0.32 
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mm diameter column (Agilent Technologies, Lexington, MA). The inlet, oven and 

detector temperature were set at 185oC, 50oC and 160oC respectively. Helium was used 

as carrier gas at 1.3 mL/min. VFAs (i.e. acetic, propionic, butyric and valeric acids) were 

monitored using a GC unit equipped with a flame ionization detector (FID) and a 30-m 

Restek 11025 Stabilwax DAm 0.53 mm ID column (Restek Corp. Bellefonte, PA). The 

inlet and detector temperature were both set at 250oC. Helium was used as carrier gas 

at 4.5 mL/min and the following program was used for the oven temperature: 90 °C for 

0.5 min, 2 °C/min to 100 °C, 6 °C/min to 120 °C, 30 °C/min to 230 °C for 15 min. The 

total run time was 27.5 min. 

 

4.3  Results and Discussion 

On dry weight basis of the organic portion, COPAS granules are mainly 

composed by proteins (40%), carbohydrates (43%) and fats (17%).  Other constituents 

such as metals are found in trace concentrations and are accounted in the ash fraction 

of COPAS particles. Elemental constituents such as carbon, nitrogen and phosphorus 

were found in COPAS in proportions of 48.1% C, 6.35% N and 1.57% P of the organic 

fraction. Theoretically, an organic molecule of domestic wastewater is represented by 

the formula C10H18O3N (Rittman and McCarthy, 2001), where the C:N ratio is about 5:1,  

and a COD/wt and COD/TOC ratios of approximately 2 and 2.5 respectively. COPAS has 

a similar C:N ratio to wastewater and direct measurement of COPAS total COD/wt and 

COD/TOC resulted in values of 1.5 and 2.6 respectively. Figure 4.1 and Table 4.5 

summarize the composition of COPAS, with emphasis on the organic fraction. However, 

this particulate substrate is intrinsically heterogenic and a definite empirical formula 
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cannot be established. The heterogenic nature of COPAS substrate can be easily 

assessed by direct observation of the individual particles (Figure 4.2).  

 

  

Figure 4.1: Characterization of COPAS 
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Table 4.5: COPAS composition 

Characteristics 
Total 

weight 
Dry wt. 
solids Organic solids 

% of total weight 100% 97.35% 91.55% 
Moisture (%) 2.65% n/a n/a 
Ash (%) 8.23% 8.45% n/a 
Carbohydrates (%) 38.27% 39.31% 42.94% 
Protein (%) 35.35% 36.31% 39.67% 
Fat (%) 15.50% 15.92% 17.39% 
Fiber (%) 2.40% 2.47% 2.69% 

Phosphorous (%) 1.40% 1.44% 1.57% 
TKN (%) n/a 4.65% 5.08% 
Nitrates (%) 0.0019% 0.002% 0.002% 
Nitrite (%) 0.0040% 0.004% 0.004% 
Nitrogen Free Extract 
(%) 35.87% 36.85% 40.25% 
Urea (%) 0.12% 0.12% 0.13% 

COD/wt (g/g) 1.15 1.26 
OC/wt (g/g) 0.48 0.52 
COD/OC (g/g)     2.5   

 

 

 

 

 

Figure 4.2: Image of COPAS substrate from kibble (a) to ground particle (b). Heterogenic sub-particles can 

be identified in a closer view (10X) (c). 

 

 

a b c
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4.3.1  Availability of COPAS as Substrate 

A summary of the dissolution profiles for DOC and DN in COPAS is presented in 

Figure 4.3. The available concentration of organic carbon in water showed a rapid 

increment of about 20 mg/L during the first 1 hour of each experiment followed by 

slower DOC increment over the following 23 h.  The first stage of this dissolution 

behavior corresponds to the breakage of COPAS particles (i.e. secondary particles) into 

smaller primary particles due to the dissolution of the gelling agent (e.g. gums, gelatin, 

carrageenan, or other starches and thickeners) used to aggregate the COPAS 

ingredients. In this case, this readily available fraction of COPAS is assumed to be 

soluble substrate incoming the reactor (So). The following stage would be the result of 

carbon leaching from the COPAS primary particles plus additional DOC from the gelling 

agent (Figure 4.4). 

  

Figure 4.3: Summary of COPAS dissolution curves for different mixing conditions. Dissolution stages 

correspond to I) Breakage of secondary particle (i.e. gelling agent dissolving in water), II and III) Gradual 

disintegration of primary particle 
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Figure 4.4: Schematic of COPAS particle and different components (left). At t>0 the gelling agent dissolves 

and the the primary particles are released (i.e. particle disintegration starts) (right). 

 

 

While the dissolution of carbon and nitrogen observed in this study seems to 

asymptotically approach a limit around 25 mg DOC/L and 5 mg TN/L, these values only 

correspond to 10% and 17% of the organic carbon and nitrogen present in the COPAS 

sample. This means that the remaining 90% of TOC and 83% of TN still available in 

particulate form either for dissolution or biodegradation. It is also possible that the 

dissolution curves have reached a saturation level that is function of the total 

concentration of carbon or nitrogen (CT), and their solubility limit in water (Cs). Due to 

the heterogeneity of the carbon and nitrogen forms in COPAS, Cs cannot be assumed to 

correspond to those of carbon or nitrogen. Instead, an approximation of those can be 

derived from data fitting using a pre-defined dissolution model. In the pharmaceutical 

field, dissolution models are widely used to quantitatively interpret the results from 

dissolution assays and to define drug release kinetics. For this study, the Weibull model 

has been used for its simple application to time-dependant dissolution assays where 

variables such as particle surface area, length of diffusion layer, and diffusion coefficient 

COPAS at t>0COPAS at t=0

Primary 
particle

Particle gelling 
agent

Biodegradable 
fraction 

Non‐
biodegradable 
fraction 

Secondary particle
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are unknown. Costa et al., (2001) explains a modified version of the Weibull dissolution 

profile in terms of the fraction of solute present in water (m) and is defined as: 

C(t) = mCT 

m = 1 – exp [-(t-Ti)b/a] 

Where Ti represent a lag time before dissolution starts, b is a shape parameter, 

and a defines the time scale of the process. By applying this equation to obtained DOC 

data and using CT,DOC=248 mg/L, an approximate dissolution profile of carbon in COPAS 

was obtained (Figure 4.5). 

 

Figure 4.5: COPAS dissolution data fitted to Weibull and modified Weibull dissolution models 

 

Although this experiment was conducted at different mixing speeds, the 

dissolution/hydrolysis rate of COPAS does not seem to be affected by this variable, 

which highlights the possibility of avoiding extra cost or effort in homogenizing influent 

with reactor content.  It was also observed that the nitrogen released into water 

followed the same dissolution pattern as carbon.  
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The COD contained in the fraction of particulate matter in domestic sewage (Spo) 

is usually difficult to account for at lab scale with other synthetic substrates. However for 

COPAS, hydrolysis of the particulate fraction is evident through the slow dissolution of 

the particulate substrate during the second stage of the dissolution profile. Assuming a 

first order reaction kinetics for the hydrolysis of the particulate COPAS, its hydrolysis rate 

can be identified as follows: 

Sp=Sp
oe-khydt 

Where Sp
o is the initial biodegradable fraction of COPAS,  khyd is the constant of 

hydrolysis (1/hr) and Sp is the concentration of particulate COPAS available in the water 

phase over time (mg COD/L). Additionally, the initial substrate available in 

biodegradable COPAS can be expressed as: 

Sp
o=γβCin 

Where γ is the COD/wt in COPAs, β is the percentage biodegradability of the 

substrate and Cin is the concentration of COPAS in the influent. Data fitting of the DOC 

dissolution profile as COD to first order hydrolysis kinetics results in khyd of -0.9x10-3 hr-1. 

 

By considering the above hydrolysis kinetics in a bioreactor model (e.g. steady 

state continuous flow complete mixed reactor), a mass balance of the soluble COD can 

be expressed as: 

In – Out + Sources – Sinks = 0 

[Incoming COD] – [Effluent COD] + [Particulate COD hydrolysis] – [Biological utilization] = 0 
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The available COD for biological utilization is provided by the incoming COD to 

the reactor and the hydrolyzing COD from the particulate fraction. The effective 

substrate (Seff
o) available for biodegradation can be expressed as:  

Seff
o =So+

khydθx

1+khydθx
 Sp

o 

Where Seff
o is the effective substrate available for biodegradation and θx is the 

sludge retention time. The effective substrate available for COPAS biodegradation at 

different SRT is summarized in Figure 4.6.  

 

Figure 4.6: Effective substrate availability (Seffo) for COPAS at a TS of 500 mg/L 

 

4.3.2 Biodegradability 

Table 4.6: Characterization of COPAS as synthetic sewage 

Sample 
TS TSS COD 

BOD5 BOD20 
TKN 

mg/L mg/L mg/L mg/L 

COPAS  
500 215 625 191 540 19.8 
1000 520 1250 382 906 53.9 
2000 1184 2500 680 3,144 92.1 

HFC AWTP Primary Influent 1200 190 401.9 254 716 43.7 
HFC AWTP Primary Effluent 1200 132 150 198 538 45.8 

* As reported by the HCF Environmental lab 
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COPAS not only contains the particulate fraction missing in other synthetic 

recipes but has environmental characteristics very similar to actual sewage. A summary 

of these characteristics for COPAS solution is presented in Table 4.6. By comparing it to 

raw sewage (raw and primary effluent), available nutrients and organic matter in COPAS 

are found in similar concentrations. COPAS has also been demonstrated as a highly 

biodegradable substrate under anaerobic conditions. The distribution of the available 

COPAS for degradation was evaluated by continuously measuring methane production 

as well as the fraction of substrate dissolved in the liquid and remaining in the biomass.  

Measurements were corrected for the background activity of the sludge. For the 

particulate COPAS, POC was measured in the biomass and converted to COD 

equivalents. Results for the specific methane production of COPAS at different 

concentrations suggested that at least 50% of methane can be obtained from this 

substrate. Up to 72% of the biogas produced from the anaerobic biodegradation of 

COPAS was methane, even at concentrations as low as 200 mg/L. These values were 

obtained daily and converted to COD equivalents as well. Dissolved COPAS was assessed 

by direct measurement on the liquid phase after centrifugation. A mass balance of the 

substrate partitioning into different phases is expressed as: 

Total CODCOPAS=CODparticulate- CODdissolved-CODmethane 

Where: 

Total CODCOPAS=γ×COPAS dry sample 

CODparticulate=ω×POC 

The COD corresponding to CH4 generation were calculated based on the 

theoretical COD equivalence: 

CH4+2O2=CO2+2H2O 
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Since one mole of CH4 as an ideal gas is equivalent to 22.4 L at STP (i.e. 0oC and 

1 Atm), approximately 350 ml of CH4 are produced per 1 gram of COD available for 

biodegradation at STP. By correcting this value for an incubation temperature of 37oC, 

the COD equivalents corresponding to methane generation can be expressed as: 

CODmethane=VCH4÷397.4 ml CH4/g COD 

The methane production profile for different COPAS concentration is presented in 

Figures 4.7, 4.8 and 4.9. At lower COPAS concentration (100 and 200 mg COPAS/l), the 

substrate is efficiently converted to methane by day 5 (more than 90% COD conversion) 

and little remains in the dissolve and particulate fractions. However, at concentrations 

above 200 mg COPAS/l, a more defined COD phase distribution can be observed since 

the methane generation declines with increasing substrate availability. Due to the 

heterogeneous composition of COPAS, identification of the specific component affecting 

biodegradability at higher concentrations was not assessed in this study. However, the 

biodegradable COD fraction of COPAS at higher concentration was about 90%, 65%, 

and 60% for COPAS concentrations 500, 1000 and 2000 mg/L respectively. A summary 

of the COD balance for COPAS concentrations of 500, 1000 and 2000 mg/l is presented 

in Figures 4.10 and 4.11.   

 

Figure 4.7: Methane production from COPAS digestion at different concentrations 
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Figure 4.8: Blank corrected methane production from COPAS digestion at different concentrations 

 

 

 

Figure 4.9: Specific methane production from COPAS digestion at 500, 1000 and 2000 mg/L 
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Figure 4.10: COD distribution of COPAS in the liquid, gas and particulate phases at 500, 1000 and 2000 

mg/L. COD values below zero were obtained at 500 mg/L after correcting for sludge background activity. 



 

66 
 

 

Figure 4.11: COD distribution of COPAS in the liquid, gas and particulate phases at 500, 1000 and 2000 

mg/L. Data presented as percent of total COD added. 
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4.4  Conclusions 

Besides the satisfactory characteristics of COPAS for representing domestic 

wastewater, it also can be manipulated to simulate complex particulate organic matter in 

any desired particle size range, without presenting extra cost or effort in homogenization 

of substrate with bioreactor content. The following conclusion could be assessed during 

this study: 

 COPAS mimicked sewage well in terms of its composition of complex organic 

matter (proteins, carbohydrates and lipids) from animal and plant origins. 

 The biodegradable fraction of COPAS was estimated at 65% of available COD in 

the COPAS sample. In comparison, the recalcitrant content in COPAS (35%) is 

similar to those exerted by actual sewage (i.e Primary influent BOD5/COD = 

0.63). 

 COPAS is a highly biodegradable compound that can be used as a bioreactor 

substrate for anaerobic activity evaluation. The substrate was completely utilized 

at TS concentration lower than 500 mg/L, and up to 47% conversion of COPAS 

into CH4 could be assessed at higher concentration (e.g. 500, 1000 and 2000 

mg/L). In batch experiments, the anaerobic degradability was more limited at 

high COPAS concentrations. Since average concentrations of solids in domestic 

sewage usually do not exceed 2000 mg/L, this limiting factor should not restrict 

the use of COPAS in continuous flow bioreactors.  

 The slow hydrolysis of particles and good biodegradability make COPAS an ideal 

surrogate for raw sewage for lab-scale wastewater treatment applications 

targeting complete resource recovery, such as anaerobic MBR. 
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5 GAS-LIFT ANAEROBIC MEMBRANE BIOREACTOR (GL-ANMBR) FOR 
CONVERSION OF SEWAGE TO ENERGY, WATER AND NUTRIENTS 

5.1  Introduction 

Although MBR is generally known for its high quality effluent and small footprint, 

AnMBR has the additional benefits of energy generation (e.g. biogas), fertilizer recovery 

(e.g. nutrients), and low sludge generation. Under optimum operational conditions, an 

AnMBR can be used not only for on-site wastewater treatment, but generation of 

reusable water for agricultural applications. Additionally, biogas produced in the 

anaerobic process could satisfy the energy requirements of the system (Liao, 2006).  

More information, however, is required regarding maximization of the overall energy 

balance (energy footprint) in AnMBR.  Recent studies have demonstrated improved 

energy efficiency of membrane technology by enhancing shear over membrane surface 

in vacuum-driven modules using air scouring (e.g. reducing cake layer deposition in 

submerged membranes).  This approach is also applied to sidestream membrane 

configurations in aerobic airlift supported modules, which has gained increased attention 

for municipal wastewater treatment, but little is known about the application of this 

configuration in anaerobic mode by using biogas for gas-lift. 

 

In this in chapter, the performance of the Gas-lift Anaerobic MBR (Gl-AnMBR) to 

treat domestic water has been tested and evaluated for its energy footprint. Analog to 
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the air-lift MBR, this system uses biogas to provide two phase flow through the vertically 

placed tubular membranes. By including biogas bubbles into the membrane feed, the 

potential of membrane fouling is decreased due to additional shear over the membrane 

surface provided by the raising bubbles. Additionally, concentrate recirculation is 

improved by the gas-lift and less crossflow velocity is necessary to drive filtration. 

Pumping requirements for recirculation and filtration are minimized allowing less energy 

consumption. In this study, a preliminary filterability assessment defined the operational 

parameters for subsequent operation. Extended performance of the Gl-AnMBR is 

reported as prove of concept for the application of this technology in the treatment of 

low strength streams (i.e sewage).  The concept of energy footprint for this treatment 

technology is evaluated as indicator of the feasibility of this system compared to its 

aerobic counterparts in terms of energy efficiency for water treatment.  

 

5.2  Construction of the Gl-AnMBR  

5.2.1 Materials and Methods 

The Gl-AnMBR experimental set-up shown in Figure 5.1 consists of an 8.5 L 

anaerobic bioreactor column, coupled with a sidestream gas-lift ultrafiltration module. 

The membrane used is a 5.2 mm diameter polyvinylidene fluoride (PVDF) tubular 

membrane (Norit X-Flow, F4785) with a mean pore size of 0.03 um and active filtration 

area of 0.013 m2.   As a starting point, the membrane influent and scouring gas flow 

rates were set to assure cross flow velocities (CFV) of more than 0.3 m/s as reported 

optimal for airlift operation (Futselaar et al., 2009). Filtration was driven by applying 

negative pressure to the membrane permeate side with a variable speed pump 

(Masterflex I/P). Membrane effluent was measured with an in-line rain gage and 
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transmembrane pressure (TMP) was measured by placing pressure gauges at the 

influent (Pin), effluent (Peff) and recycle (Pr) lines of the membrane module. Compressed 

helium supplied for membrane scrubbing and the gas flow rate (Qg) was controlled 

visually with a gas flow meter and a needle. The retentate is separated from the gas in 

an intermediate tank prior to recycling it back to the bioreactor. Sludge temperature was 

regulated with a heat exchanger around the column and continuously monitored inside 

the reactor and at the membrane feed line using in-line sensors. 

 

Several modifications to the original airlift filtration concept had to be considered 

for its application to an anaerobic bioreactor such as the UASB. First, the supernatant of 

the UASB is used as influent for the membrane, which requires the placement of a 

recycle pump that controls membrane feed the flow rate (Qf) and CFV. The hydrostatic 

head available from the reactor column becomes irrelevant for this particular UASB-

membrane application.  Second, Qf has to be maintained at a point where upflow 

velocity of the reactor and the CFV are within acceptable operational conditions for both 

UASB and membrane. Additionally, a recycle loop was introduced to decrease the 

bioreactor effluent flow rate by half, while providing adequate membrane shear and 

controllable CFV. The CFV was set at 0.3 m/s during the length of the preliminary 

filterability assessment. Since gas scrubbing is the main anti-fouling method considered 

for gas-lift filtration, backwashing and relaxation were also evaluated as support 

mechanisms.  
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Figure 5.1: Gl-AnMBR configuration. Detail of the membrane (right) shows the complete retention of sludge while providing high quality permeate. 
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Digester sludge from the local municipal wastewater treatment plant in Tampa 

Bay Area (Florida, US) was used as seed for Gl-AnMBR operation. The seed anaerobic 

sludge was obtained from the solids digester at the. For the preliminary assessment, the 

raw sludge was diluted to a concentration comparable to MLSS in aerobic configuration 

(Judd, 2006). Sludge and Gl-AnMBR effluent characteristics are summarized in Table 

5.1. Solids characterization was performed as described in the Standard Methods (APHA, 

2005). Dissolved organic carbon and dissolved nitrogen was measured with a Shimadzu 

TOC V-CSH Analyzer.  

Table 5.1: Anaerobic sludge and Gl-AnMBR effluent characteristics 

Parameter UASB Permeate 

Reactor volume 8.5 L 

MLSS 8105 mg/L ---- 

TOC 1088 mg/L 487.9 mg/L 

TN 516.1 mg/L 466.9 mg/L 

Turbidity 197 NTU (supernatant) 6.5 NTU 

Temperature 22-25 oC ---- 

 

5.3  Filterability Tests Using Anaerobic Mixed Liquor 

Full scale operation of airlift membrane filtration systems has proven to be 

successful by decreasing energy consumption while showing increased flux and lower 

membrane fouling. Under aerobic conditions, the membrane configuration used in this 

study has presented optimal performance at CFV between 0.3 – 0.5 m/s, while having 

air flow velocities in the same range (Futselaar et al., 2007 and 2009). Taking these 

values as a precedent and knowing that the two-phase flow pattern (slug flow)  in this 

type of configuration is characterized by ratio of an injection factor (ε) from 0.2 to 0.9 
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(Cabassaud et al., 2001; Chang and Judd., 2002), the membrane was tested at the 

conditions shown in Table 5.2. 

 

Table 5.2: Experimental conditions for two-phase flow in anaerobic sludge filterability 

Liquid velocity (CFV), 
m/s 

Gas velocity, 
m/s ε*

Flux, Lm-2hr-1 Membrane 
Resistance, 1012x m-1

Mean 

0.31 

0.00 0.0 34.9 5.14 

0.31 0.5 17.5 13.8 

0.47 0.6 16.0 15.1 

0.78 0.7 17.5 13.2 

*Where  , or fraction of gas in two-phase flow. 

 
The effect of increasing gas flow rate on sludge filterability is almost 

unperceivable. By maintaining the injection factor (ε) within the two-phase flow range, 

the membrane flux can be sustained at values up to 20 LMH with no significant effect in 

TMP (Figure 5.2). However, it could be observed that the measured membrane 

resistance was affected by increasing Qg. This was originally accounted to the resistance 

of the cake layer (Rc), but after quantifying Rc by filtering distilled water, this value 

represented only 12% of the Rt. As discussed in other air-lift studies (Chang and Judd, 

2002), the cake layer is not offering much resistance since the bubbles in the two-phase 

flow are continuously scrubbing the membrane, nevertheless this statement should be 

confirmed in extended operation since continuous sludge pumping could shear sludge 

flocs and increase colloidal deposition on membrane surface.  Additionally, it was 

observed that the scrubbing gas was drawn to the permeate side in the filtration 

process, therefore decreasing the permeate volume and increasing the Rt value.   
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Figure 5.2: Effect of Qg on Flux and TMP 

 

5.3.1  Critical Flux  

Determination of the critical flux for was carried out as described in other studies 

(Defrane and Jaffrrin, 1999; Cho and Fane, 2002). Flux was increased in steps while 

monitoring TMP and a sudden jump in TMP was expected to be indicator of the critical 

flux. However, it was observed that the flux reached a steady condition soon after 

starting gas-lift assisted filtration (Figure 5.3). This behavior has been identified by 

Defrane and Jaffrrin (1999) when operating at constant CFV and the flux is mainly 

imposed by the permeate pump. Their system consists on solely cross flow filtration and 

larger fluxes could be obtained by increasing the permeate flow rate. Nevertheless, the 

presence of gas in the membrane significantly drops the flux to a stable value below the 

maximum flux allowed by the permeate pump (Figure 2a). Even though a flux higher 20 

LMH could not be obtained under the conditions set in this experiment (i.e. CFV = 0.3 

m/s and ε = 0.5), the TMP stabilizes and remains constant during operation. This fact 

indicates that the Gl-AnMBR is being operated at sub-critical conditions (Cho and Fane, 
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2002), which is expected to maintain reliable flux before irreversible fouling occurs. A 

sustainable flux of 20 LMH was obtained while maintaining constant TMP of 0.6 bar.  

 

Figure 5.3: Sustainable flux during this study 

 

5.3.2  Temperature Influence in Membrane Performance 

Although all the others test in this study were performed at room temperature 

(22-25oC), the effect of temperature in the sludge filterability was assessed by the 

temperature in the reactor column (Figure 5.4). No significant change in flux was 

observed at mesophilic conditions in the bioreactor; however TMP decreased with 

ascending temperature. Higher temperatures for the membrane influent were not 

reached since the heat loss from the bioreactor to the membrane feed is significant. For 

the extended performance, the temperature will be set at 35oC to 40oC, which is 

expected to allow maximum flux without affecting the biological reactions that favor 

biogas production. 
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Figure 5.4: Influence of temperature in sludge filterability 
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5.3.3 Additional Fouling Control Mechanisms 

Although the initial 20 LMH were maintained for the most part of the 

experimental runs, flux progressively declined due to sludge deposition o (cake layer 

formation) on the membrane surface. This contradicts the statement above presented 

for short term filtration and cake deposition. As reported in other studies (Table 2.5), 

the most common fouling control mechanisms, besides gas scrubbing, are relaxation 

and backwashing. In gas assisted filtration, relaxation is applied by periodically ceasing 

filtration to allow the cross flow and bubbles to scrub the membrane lumen. As a more 

aggressive mechanism, the permeate flow is reversed towards the lumen side during 

backwash. Theoretically, the majority of the reversible fouling should be remediated 

during the process. To evaluate their effect on filterability, these two mechanisms were 

applied and compared to continuous gas-lift operation. In the case of relaxation, the 

permeate pump was stopped every hour during 15 minutes. Likewise, backwashing was 

applied hourly for 15 minutes. Results from these experiments are presented in Figure 

5.5. It could be observed that relaxation and backwash have similar effect in gas-lift 

filtration. After relaxation, 75% of the maximum flux (40 LMH) was recovered to but 

rapidly decayed to the flux before relaxation. There was not any effect on TMP during 

the testing period. Even though it had a very similar effect on membrane flux, 

backwashing demonstrated to slightly improve TMP while decreasing membrane Rt. 

These results confirm that for the set operational conditions, flux is completely 

independent from TMP. Relaxation and backwash did not have a significant consequence 

on flux improvement in the short term, which also confirms the two phase flow is the 

limiting factor for higher flux.  
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Figure 5.5: Effect of additional fouling control mechanism in Gl-AnMBR filtration 
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Figure 5.6: Influence of additional fouling control mechanism on Rt and power demand. Lighter area corresponds to a minor disruption of permeate 

pump. 
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5.3.4  Conclusions 

A Gl-AnMBR was tested to identify its optimal operational conditions. Some of the 

most important conclusions from this study are listed: 

 Critical flux during short term operation is mainly governed by the fraction of gas 

phase in the two phase flow. Further testing during extended periods should be 

done to evaluate the sustainability of the limited flux established in this 

preliminary study. 

 When coupled with an UASB, minimum CFV through the membrane had to be 

applied to avoid disturbance of the bioreactor and guarantee minimum shear 

over the membrane surface. However, the applied CFV was not sufficient to drive 

high flux/low TMP filtration as described in previous air-lift and cross flow 

filtration studies. Additional changes to the flow rates in the membrane feed line 

(e.g. recycle loop) had to be done to provide higher CFV. 

 Temperature proved to favor filtration at mesophilic conditions, which is an 

intrinsic advantage for anaerobic biological reactions. 

 The power required for membrane operation under the tested operational 

conditions is comparable with those in literature for air-lift systems. However, the 

total energy consumption of the Gl-AnMBR still not quantified. Further studies 

with optimized membrane operation will be used for this purpose. 

 Additional fouling control mechanism to gas-lift filtration did not improve 

significantly the flux values under the conditions tested in this study. 

Backwashing the membrane yet decreased TMP and total resistance, which could 

help to maintain a stable flux in the long run before irreversible fouling occurs.  
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5.4  Performance Evaluation: UNESCO-IHE Case Study 

A similar GL-AnMBR was constructed at UNESCO-IHE (Delft, The Netherlands) to 

assess the reproducibility in the performance of Gl-AnMBR and to evaluate additional 

conditions in order to improve previous results. This study was done as a part of the 

International Research Experience for Students (IRES) program during 12 weeks. 

5.4.1  Methodology 

The experimental set-up at UNESCO-IHE lab consists of a 4 L complete mixed 

anaerobic bioreactor, coupled with a sidestream gas-lift ultrafiltration module (Figure 

5.7). The membrane used is a 5.2 mm diameter polyvinylidene fluoride (PVDF) tubular 

membrane (Norit X-Flow, F4785) with a mean pore size of 0.03 um and active filtration 

area of 0.013 m2.   Previous work had shown that maintaining a cross flow velocity of 

0.3 m/s for the liquid side did not provide flux values larger than 20 LMH. In this case, 

the CFV was tested at higher values to improve cross flow filtration and membrane 

surface shear.  Although filtration was possible without additional filtration drivers 

except for gas lift and CFV, vacuum was applied to the permeate side to increase 

permeate production. A variable speed peristaltic (Masterflex I/P) was used to control 

permeate flow rate. Permeate volume over time was measured with an in-line rain 

gauge and transmembrane pressure (TMP) was measured by placing pressure gauges at 

the feed (Pf), permeate (Pp) and recycle (Pr) lines of the membrane module.  For this 

study, compressed hydrogen gas was used for membrane scrubbing since it was readily 

available at the IHE facility.  The gas flow rate (Qg) was controlled visually with a gas 

flow meter.  The retentate is recycled back to the reactor by a peristaltic pump. 

Temperature of the membrane feed was continuously monitored using in-line sensors. 
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The membrane was thoroughly cleaned after finishing sludge each test as described in 

Chapter 3, section 3.2.4. Gas-lift was the main antifouling mechanism used in this study. 

 

The set-up was fed with flocculent anaerobic digestion sludge from a local 

wastewater treatment plant in Delft (Hoek van Holland, The Netherlands). Raw sludge 

had a solids concentration of around 29 g/L and the reactor was operated under room 

temperature during the summer season (23oC to 25oC) at neutral pH (6.5 to 7.5). The 

sludge was diluted to a concentration of 17g/L, similar to the maximum concentration of 

solids attainable in the previous filterability assessment. Table 5.3 summarizes the set of 

operational conditions evaluated. An additional scope of this study was to evaluate the 

effect of high oil content on the membrane performance since COPAS, as well as 

domestic wastewater effluents, are usually rich in oil and fats that can interfere with the 

performance of conventional MBR (Chang et al., 2002; Cheryan and Rajagopalan, 1998). 

Once the reactor was operating at stable conditions (constant flux and TMP), oleic acid 

in the form of sodium oleate was added to the sludge to mimic the content of oily 

compounds in wastewater. Oleic acid is one of the main long chain fatty acid (LCFAs) 

present in wastewater (both municipal and food processing), and concentrations of 100, 

300 and 600 mg/L were selected to be tested for filterability purposes. Even though 

these final experiments could not be concluded due to time limitations (e.g. length of 

research experience at IHE was only 12 weeks), early results are presented in Appendix 

A.1.  
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Figure 5.7: Gl-AnMBR configuration for UNESCO-IHE case study 

Table 5.3: Summary of operational conditions tested on the Gl-AnMBR at UNESCO-IHE 

Experiment Feed CFV (m/s) Qg (LMP) Qp 
Membrane start-up 
1) Rm calculation/Qp det. Tap water 0.3, 0.5, 0.75 

and 1 
Not applied Increasing 

values per CFV 
2) Rm calculation Tap water 0.3, 0.5, 0.75 

and 1 
Not applied No permeate 

pump 
3) Gas-lift effect – CW1 Tap water 0.3, 0.5, 0.75 

and 1 
0, 0.2, 0.4, 

0.6, 0.8 and 1 
No permeate 

pump 
4) Gas lift effect – CW2 Tap water 0.3, 0.5, 0.75 

and 1 
0, 0.2, 0.4, 

0.6, 0.8 and 1 
Qp det. In 1) 

5) Critical flux Raw sludge 0.3, 0.5, 0.75 
and 1 

Not applied Increasing values 
per CFV 

6) Gas-lift effect – RS Raw sludge CFV det. In 5) 0, 0.2, 0.4, 
0.6, 0.8 and 1 

Qp det. In 5) 

7) Synthetic sludge 1 Raw sludge CFV det. In 5) Qg det. In 6) Qp. det in 5) 
Synthetic sludge filterability 
8) Synthetic sludge 2 Raw sludge + 

oleic acid 
CFV det. in 5) Qg det. in 6) Qp. det in 5) 

9) Synthetic sludge 3 Raw sludge + 
palmitic acid 

CFV det. in 5) Qg det. in 6) Qp. det in 5) 

10) Synthetic sludge 4 Raw sludge + 
stearic acid 

CFV det. in 5) Qg det. in 6) Qp. det in 5) 

11) Synthetic sludge 5 Raw sludge + 3 
oily compounds 

CFV det. in 5) Qg det. in 6) Qp. det in 5) 
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5.4.2  Influent of Operational Parameters in Membrane Flux 

A maximum operational flux of 20 LMH could be maintained for MLSS of around 

17 g/L at CFV of 0.52 m/s. These operational conditions were achieved after comparing 

the reactor performance at CFV of 0.52, 0.75 and 1.05 m/s (Figure 5.8). Selection of 

CFV was based on the lowest observed TMP value that allowed a maximum possible 

flux. Fluxes larger than 30 LMH were not attainable during the length of the operation 

due to intrinsic limitations of the MBR configuration (Defrance L. and Jaffrin M.Y., 1999). 

In this case, the maximum possible flux depends upon the flow rate established by the 

permeate pump and only lasts a few minutes after reaching a stable state. For this set 

up, 20 LMH could be maintained for at least 72 hours without applying any fouling 

control mechanism such as backwashing or relaxation. TMP for this type of configuration 

was maintained at 1 Bar. This value could not be decreased at the set operational 

condition without sacrificing the permeate production (Figure 5.9). A minimum TMP of 

0.7 Bar was obtained by decreasing permeate flow rate, therefore decreasing flux. 

 

Figure 5.8: Comparison of CFV for sludge filterability 
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Figure 5.9: Effect of permeate pump flow rate on flux for 72 hours operation 

 

Variation in the gas flow rate for larger values of E did not favor significantly 

filterability of sludge as established in previous work (Figure 5.10). Increasing the 

fraction of gas in the gas-sludge mixture does not considerably improve membrane flux 

but increased filtration resistance.  Table 5.4 summarizes the effect of increasing gas 

fraction on resistance while operating at CFV of 0.52 m/s. A gas fraction for the two 

phase flow of 0.1 was sufficient for the MBR operation. This result suggests that the gas 

present in the gas-liquid mixture is only scrubbing the membrane as it rises and not 

lifting the fluid according to the gas-lift concept. In this case, the performance of the 

GL-AnMBR in the long run (i.e. more than 72 hours) has to be evaluated to assess the 

effectiveness of the “gas-lift” to improve membrane operation and decrease irreversible 

fouling.  
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Figure 5.10: Effect of gas fraction in two-phase flow filtration. Notice the effect of permeate pump (PP) on 

membrane TMP and Flux. 

 

Table 5.4: Effect of gas fraction in filtration resistance 

ε 
Tap water Sludge 

Avg. Flux (LMH) Rt (1/m x 1012) Avg. Flux (LMH) Rt (1/m x 1012) 

0 105.59 0.14 40.32 9.04 

0.13 97.47 0.15 24.54 16.38 

0.23 101.53 0.14 21.04 19.42 

0.31 101.53 0.14 21.04 19.57 

0.37 97.47 0.15 21.04 19.54 

0.43 97.47 0.16 22.21 19.63 
 

5.4.3  Summary and Conclusions 

A lab scale Gl-AnMBR was built at UNESCO-IHE and tested to identify its optimal 

operational conditions and the following statements were confirmed during this study: 

 An operational flux of 20 LMH could be maintained for a solids concentration of 

17 g MLSS/L at a CFV of 0.52 m/s and permeate flow rate (Qp) of 2 L/hr. A gas 

fraction of 0.13 was sufficient for GL-AnMBR operation. The concept of gas-lift 

should be reevaluated and better described as gas scrubbing. 
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 More testing on the long run (i.e. more than 72 hours) should be performed to 

assess the effectiveness of gas-lift/scrubbing as fouling control mechanism. 

 Although other studies have reached TMPs as low as 0.1 bars in aerobic 

configurations (Futselaar et al., 2007 and 2009), the current set-up does not 

allow TMP lower than 0.7 bars without sacrificing permeate production. However, 

fouling control mechanisms coupled with lower Qps should be evaluated to 

overcome increased TMP. 

 Future work includes testing of filterability at higher concentrations of solids to 

evaluate its effect on membrane performance and operational parameters. 

 

5.5  Extended Operation of The Gl-AnMBR  

By considering the operational conditions with potential of least energy 

consumption in Gl-AnMBR operation, the CFV, Qp and temperature were established at 

0.5 m/s, 1 L/hr and 37oC respectively for extended operation of the reactor. Under these 

conditions, continuous operation of the Gl-AnMBR was evaluated during three months 

where the performance is only interrupted by short periods of membrane cleaning. 

Cleaning of the membrane module was performed weekly as indicated in Chapter 3, 

Section 3.2.4. Although similar MBR configurations require more frequent and intensive 

cleaning protocols to maintain operational fluxes much larger than the ones presented in 

this work, this specific configuration was operated under suboptimal conditions to 

evaluate the sustainability of long term/low cost operation of this reactor.  

Since full operation of the Gl-AnMBR is assessed in this stage of the research, 

biogas produced form the anaerobic digestion of COPAS is used for membrane 

scrubbing. Gas from the headspace was continuously recirculated to provide a gas 
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fraction in the two-phase (ε) flow of about 0.1. Additional challenges to the Gl-AnMBR 

operation were assessed in this stage, specifically related to the reactor feeding with 

particulate substrate, sufficiency of biogas to support gas scrubbing and system gas 

leaks.  

5.5.1 Feed Sewage and Seed Sludge 

For the extended operation of the Gl-AnMBR, COPAS was used at a TS 

concentration of 1000 mg/L. The reactor was restarted with fresh flocculant digester 

sludge from the local WWTP (i.e. Howard F. Current AWTP). In this case, the sludge 

was used as it was obtained from the plant with a TS concentration of 17 g/L and 70% 

TSS.   

Environmental characteristics of the feed are summarized in Table 5.5, however 

a more detail description of the COPAS feed is presented in Chapter 4. The sludge was 

sieved through the No. 20 mesh to remove any debris that could clog the membrane 

lumen or block in the reactor tubing. Influent flow rate was determined by the limiting 

flux assessed in previous studies (i.e. 20 LMH). For conservative purposes, an 

operational flux of 10 LMH was assumed and a feeding flow rate 2.1 mL/min was set. 

Since COPAS is a particulate substrate, there is an additional challenge to reactor’s 

feeding protocol. As common practice at lab scale, soluble synthetic influents are easily 

pumped into the biological at the desired flow rate. In our case, COPAS had to be 

pumped in batches every 6 hours at a higher rate so particulate matter do not 

precipitate within the feed line and become remain.  
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Table 5.5: Environmental characteristics of the influent, effluent and liquid fraction of the Gl-AnMBR MLSS. 

Concentrations are reported in units of mg/L. 

Parameter Influent Effluent MLSS 
Supernatant 

 Total Soluble   
CODt 1267±6.4    
CODs  257.3±195.5 70±22.1 438.5±198.3 
TOC 528.5±2.7 73.29±44.29 25.44±4.5 118.16±2.38 
TKN 54.3±0.3 21.7±9.5 75.43±9.7  

NH4-N  5.7±3.3 9.1±4.2  
NO3-N  1.8±0.7 2.2±0.9  
PO4-P  15.5±7.8 20±7.13  

Concentrations are reported in mg/L 

5.5.2  Filtration Performance 

As expected, a sustainable flux of 20 LMH was achieved during the start of the 

extended operation period. However, this performance could not be maintained for 

more than 24 hours since the flux rapidly declined to a stable value of 12 LMH (Figure 

5.11). During the first month of operation, filtration was aided only by gas scrubbing 

generated from the gas-lift and no other anti-fouling mechanism was applied. Only 

when an increment of TMP of more than 15% was observed, a weekly additional 

cleaning protocol was applied to the module to sustain filtration. Such protocol is 

described in Chapter 3 and consists of forward flushing, backwashing and relaxation. 

Chemical cleaning was only applied when severe fouling was observed (i.e. more than 

30% increase in TMP).  

A maximum flux of 30 LMH was obtained momentarily during the first hour of 

operation when using a new membrane. This value has been reported elsewhere as a 

sustainable flux with analog aerobic configurations (Futselaar et al., 2007 and 2009; 

Evenblij, 2006), yet requiring a more intensive cleaning protocol.  Overall hydraulic 

performance of the Gl-AnMBR treating domestic synthetic sewage was satisfactory. 
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Under suboptimal operational conditions, filtration of flocculent anaerobic sludge could 

be sustained by allowing gas scrubbing to be the main fouling control mechanism.  

5.5.3 Biological Treatment 

After reaching stable performance, total COD removal efficiencies up to 98% 

were assessed with average values of 93±6%. Average soluble COD (CODs) in the 

influent comprises about 23% of the total and varies upon feed sampling. Since the 

majority of the COD in COPAS is located in its particulate fraction, freshly prepared feed 

have very low concentrations of CODs compared to those of feed samples taken after 

more than 24 hours of remaining on the feed tank under continuous mixing. A summary 

of the environmental characteristics of the influent, effluent and liquid fraction within the 

reactor are presented in table 5.5.   

 

As discussed in Chapter 4, biogas composition from the digestion of COPAS is 

characterized by 47% CH4 and 37% CO2 at a MLSS of about 2%. Since the reactor was 

seeded with the same sludge, these values were used to calculate the COD equivalence 

of methane in the biogas generated from the Gl-AnMBR. At steady state, average biogas 

production was about 4.5 L/day which was more than enough biogas to sustain 

membrane gas-lift. Although the biogas produced with this configuration was not used 

for any other purpose than membrane scrubbing, the potential applications of this 

digestion product as recovered resource (i.e. energy) are to be evaluated in further     

research.  

The overall COD mass balance of the Gl-AnMBR can be represented with the 

following expression: 

dM(total)/dt = dM(effluent)/dt +dM(CH4)/dt 
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Where dM(total)/dt the total COD mass load on COPAS influent, dM(effluent)/dt -

is the effluent soluble COD, and COD-CH4 is the COD embedded in methane production. 

COD assimilated for cell growth is not taken into account for this calculation since 

anaerobic biomass growth is a very slow process and direct measurement of this 

fraction in MLSS was usually covered by the background COPAS particulate fraction 

accumulated within the reactor. A similar approach to the COD balance in Chapter 4 is 

done to calculate each term of the equation. In this occasion, the values are reported in 

g/d and are expressed as follows: 

dM total
dt

=Qinfluent×CCOPAS×γ 

Where Qinfluent is 3 L/d, CCOPAS-In is 1 g/L, and γ corresponds to the COD/wt ratio in 

COPAS of 1.26. 

dM effluent
dt

=Qeffluent×CODs-Eff(t) 

Where Qeffluent is 3 L/d and CODs-Eff(t) is the soluble COD in the effluent at time t 

(g/L). 

dM CH4

dt
= 

PCH4×Qbiogas

(0.35 ×(273oK+T(t)/273oK))
  

Where PCH4 is the concentration of CH4 in the biogas form COPAS degradation 

(i.e. 47%), Qbiogas is the daily biogas production (L/d), 0.35 is theoretical production of 

CH4 per g of COD (L CH4/g COD), and T(t) is the sludge temperature at time t (K).   

 

The estimated difference between the inflows and outflows of the Gl-AnMBR is 

less than 15%, corroborating the assumptions taken into account in this balance. 

Nevertheless, further research should include a more detailed COD balance that account 
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for biological growth. A summary of the COD profiles of the influent, effluent and sludge 

liquid fraction is presented in figure 5.12.  
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Figure 5.11: Gl-AnMBR extended operation performance 
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Figure 5.12: COD profiles of the influent, effluent and sludge liquid fraction of the Gl-AnMBR during extended operation. The peak concentrations from 

day 45 to 50 are due to excess addition of COPAS to recover biogas production. 
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Although anaerobic processed are very efficient in the removal of organic matter, 

nutrients on the other hand are hardly utilized in the biological process and represent a 

weakness of this type of treatment application. Although TOC was successfully removed 

with an average efficiency of 95.2±0.9% (Figure 5.13), results for nitrogen removal are 

almost unnoticeable. The apparent removal of nitrogen and phosphorous is mainly due 

to the retention of particulate COPAS within the reactor (Figure 5.14). Membrane 

filtration is therefore, the principal mechanism for nutrients removal. Retention of 

biomass and particulate matter allows more time for degradation of complex forms of 

nitrogen and carbon in proteins and fats respectively. However, soluble forms of 

nitrogen and phosphorous (i.e. NH4, NO3 and PO4) simply pass through the system, 

providing a nutrient rich effluent. Average concentrations of specific nutrient species are 

presented in Table 5.5. 
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Figure 5.13: Organic carbon (top) and Nitrogen (bottom) profiles of the influent, effluent and sludge liquid fraction of the Gl-AnMBR during extended 

operation. 
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Figure 5.14: NH4, NO3 and PO4 profiles of the influent, effluent and sludge liquid fraction of the Gl-AnMBR 

during extended operation. 
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5.6  Estimation of Energy Footprint in a Gl-AnMBR 

In Chapter 3, the general energy demand for an AnMBRs was expressed as: 

Enet = Eh+Ep+Ev+Em+Es+Epp-Eg 

Where Eh corresponds to bioreactor heating, Ep is the pipe system energy loss, Ev 

is the velocity energy loss, Em is the energy required for membrane module operation, Es 

is the energy required for gas scrubbing, Epp is the energy for permeate pump operation, 

and Eg is the energy produced in biogas. Additionally some considerations regarding Gl-

AnMBR were discussed in terms of overall energy production:  

 For an air/gas lift supported configuration, energy loss due to friction in the 

pipeline is minimal due to very low recycle flows (van 't Oever, 2007) 

 Energy loss for low recirculating flow rates (i.e. low CFV) can be negligible 

(Zhang et al.,2003) 

 Gas scrubbing improves membrane flux, and decreases energy demand for 

sludge recirculation, bubbling and filtration (Futselaar et al., 2006) 

 Power requirements for biogas recycle/scrubbing (Es) are defined depending on 

the type of recirculation device (pump or compressor) 

These considerations reduce the overall energy expression to: 

Enet = Eh+Em+Es+Epp-Eg 

Where the overall energy demand per treated effluent for the system is given by: 

ET = Enet/Qp/3600; ET = KWh/m3 

Power demand due to membrane operation, pumping and biogas recycle has to 

be calculated to evaluate the overall energy consumption of the Gl-AnMBR. Additionally, 

energy generated through biogas production has to be quantified depending upon on-

site application (e.g. biogas for sludge recirculation) and/or potential uses. Based on 
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Zhang et al. (2003) and Judd (2006), equations related to power requirements in an air-

lift filtration system are stated as follows:  

5.6.1 Power for Membrane Operation 

Em = Qr(Pin – Pr) x 100 + Qp(TMP) x 100 

Where Em is the power for membrane operation (KW), Qr is the recycle flow rate 

(m3/s), Qp is the permeate flow rate (m3/s), Pin is the liquid pressure in the membrane 

influent (bar), Pr is the liquid pressure in the recycle line (bar), TMP is membrane trans 

membrane pressure, and Pout is the liquid pressure in the membrane effluent. 

During preliminary operation (i.e. performance at room temperature, CFV = 0.3 

m/s and ε = 0.5), the energy required for membrane performance reached an estimated 

maximum of 0.9 kWh/m3, which is comparable to those obtained in full scale application. 

Although these findings are not conclusive, extended operation of the Gl-AnMBR at 

upgraded operational conditions (i.e. thermophilic operation, CFV= 0.5 m/s and ε = 0.1) 

did not show major improvement in power demand for membrane filtration since this 

estimation directly depends on produced permeate and pressure (Figure 5.15). At an 

operational flux of 20 LMH, an energy demand of about 1.4 kWh per cubic meter of 

permeate is estimated under suboptimal operational conditions.  In this case, higher 

fluxes should be obtained to decrease power demand which can be easily attained by 

applying frequent fouling control techniques.  



 

100 

Figure 5.15: Relation between power demand for membrane operation and permeate production during 

extended operation. 

5.6.2  Power for Pumping Requirements 

Ep = ρgHTQpump/1000η 

Where Ep is the power for liquid pumping (KW), ρ is the liquid density (kg/m3), g 

is 9.81 m/s2, HT is the pump head including system losses (m), Qpump is the pump 

capacity (m3/s), and η is the pump efficiency. 

 

Since the gas recycle in the Gl-AnMBR is done by pumping the headspace gas 

back to the membrane module, the above equation applies for the calculations of Es. 

However, energy for pumping requirements depends of the choice of pump, and 

efficiency (η) and density of the pumped fluid. For practical purposes the assessment of 

the latter variable is not attained in this work therefore; any pumping energy 

consumption at lab scale is monitored using a commercial electricity load meter. 

Average daily power demand for pumping requirements in the Gl-AnMBR is presented in 

Table 5.6.  
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Table 5.6: Average daily power demand for pumping requirements in the Gl-AnMBR. Values measured with 

a load meter at lab scale 

 Item 
Power demand 

(kW) 
Permeate pump 0.9x10-2  
Sludge recycle pump 1.2x10-2 
Gas recycle pump 1.6x10-2 
Total power for pumping 3.7x10-3 

 

If normalized to the permeate generated from the lab scale set-up, the values of 

power demand for pumping requirements are largely overestimated and they are not 

representative of large scale operation. Actual values for backwash and permeate pump 

requirements in a large scale Air-lift MBR (i.e. 100000 GPD treatment capacity) were 

reported by Yeh et al. (2006) as 0.2 HP (0.9x10-2 kWh/m3) and 0.1 HP (0.5x10-2 

kWh/m3) respectively.  

5.6.3 Power for Reactor Heating 

Although it have been stated in previous chapters that the produced biogas in 

anaerobic digestion can offset reactor heating requirement, the Eh factor have been 

included in the Enet estimations during extended operation to evaluate the certainty of 

this statement. Edelman et al. (2000), established the energy demand for reactor 

heating at mesophilic conditions in about 50 kWh/ton of waste. In our case, the daily 

load of COPAS to the Gl-AnMBR is about 3.5 g/day and the energy requirement for 

heating can be estimated in 1.5x10-4 kWh/d or 0.05 kWh/m3 of permeate.  
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5.6.4  Power from Biogas Production 

On the other hand, power generation from biogas can be accounted depending 

upon final application. Lubken et al. (2007) defines power generation for electricity 

and/or thermal application as: 

Eg = QgPCH4Hcη 

Where Qg is the biogas flow rate (m3/d), PCH4 is the percentage of CH4 in biogas 

(%), Hc is calorific value of methane (kWh/m3 of methane), and η is the efficiency of the 

final conversion process. According to Zupancic and Ros (2003) the value of Hc is 

approximately 35800 kJ/m3 of CH4 at STP (11.2 kWh/m3 at 35oC). Lubken also identifies 

the efficiency of methane conversion to electricity in about 35% and the efficiency of 

methane conversion to thermal in about 55% (for a combined heat and power unit). For 

an average biogas flow rate of 4.5 L/d and 47% CH4 content, an estimated value of 0.01 

KWh/d is obtained for the power generated through produced methane conversion to 

electricity. This value is surprisingly small compared to the actual energy embedded in 

CH4. An estimation of potential in power generation from Gl-AnMBR biogas is 

summarized in Table 5.7. As discussed in Chapter 4, COPAS exerts about 1.26 g of COD 

per g of sample (i.e., γ = 1.26) and about 65% of this substrate is easily biodegradable 

to methane. Rows 3 and 4 were calculated using the conversion factors for methane 

equivalence to COD of 0.25 g CH4 /g COD an 0.35 L CH4/g COD respectively.  The fifth 

row is obtained using Hc in units of kJ/g CH4 at 35oC.  
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Table 5.7: Potential power generation from COPAS in the Gl-AnMBR 

  Concentration  
(unit /m3 of sewage) 

Load normalized rate 
(unit/day) 

Load normalized rate 
per reactor volume 

Total COD 1260.0 g COD/m3 3.8 g COD/day 381.0 g COD/m3-d 
Biodegradable COD  819.0 g COD/m3 2.5 g COD/day 247.7 g COD/m3-d 
Methane equivalent  204.8 g CH4/m3 0.6 g CH4/day 61.9 g CH4/m3-d 
Volume equivalent at 
35oC 497.5 L CH4/m3 1.5 L CH4/day 150.5 L CH4/m3-d 
Power from 
combustion (η=100%) 

10258.0 kJ/m3 31.0 kJ/day 3102.0 kJ/m3-d 
2.8 kWh/m3 8.6E-03 kWh/day 0.9 KWh/m3-d 

Power from CHP 
conversion (η=55%) 

5641.9 kJ/m3 17.1 kJ/day 1706.1 kJ/m3-d 
1.6 kWh/m3 4.7E-03 kWh/day 0.5 KWh/m3-d 

Power from electric 
conversion (η=35%) 

3590.3 kJ/m3 10.9 kJ/day 1085.7 kJ/m3-d 
1.0 kWh/m3 3.0E-03 kWh/day 0.3 KWh/m3-d 

 

In summary, the total power (ET) or energy footprint of the Gl-AnMBR is 

summarized in Table 5.8.  An energy footprint in the range of -1.2 to 0.7 kWh/m3 and -

2.3 to -0.5 kWh/m3 was determined for lab-scale and full-scale systems, respectively, 

under different methane to energy conversion options.  The energy requirement to 

operate lab-scale membrane systems (1.4 kWh/m3 as directly measured using plug-in 

watt meters) is higher than that expected for full-scale systems (0.2 kWh/m3 as reported 

by equipment vendor Dynatech) due to the inherent inefficiency of small peristaltic 

pumps. The values presented in Table 5.8 are based on conservative estimations of 

itemized energy input requirements. However, these values can be easily improved in a 

large scale scenario by improved biogas generation and conversion mechanisms, 

optimized permeate production for lower TMP and higher flux.  Meanwhile, biogas 

production can offset reactor’s heating requirements and moreover, can lower the 

overall energy footprint and even shift it to energy surplus.   A number of options are 

available for methane conversion to energy.  The most efficient is complete combustion 

for heat (η=100%), followed by combined heat and power (η=55%), with electricity 

conversion (η=35%) the least efficient.  CHP could be a suitable option, using a portion 
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of the produced methane to heat the reactor and the rest to generate electricity to run 

the pumps.   

 

Table 5.8: Comparison of energy footprint of lab-scale and full-scale Gl-AnMBR under different methane-to-

energy conversion options 

Gl-AnMBR energy requirements 
 Case based Net Energy (kWh/m3) 

Full biogas conversion CHP conversion Electricity 
Conversion 

Membrane operation 1.4a 0.2b 1.4a 0.2b 1.4a 0.2b 
Pump requirements c 0.2 0.2 0.2 0.2 0.2 0.2 
Reactor heatingd 0.05 0.05 0.05 0.05 0.05 0.05 
Power from biogas -2.8e -2.8e -1.6f -1.6f -1.0g -1.0g 
Energy footprint -1.2 -2.3 0.1 -1.1 0.7 -0.5 
a) Energy required for membrane operation at lab-scale; b) Energy required for membrane operation at 
plant-scale (Yeh et al., 2006); c) Energy for pumping at plant-scale; d) Energy required for mesophilic 
digestion at plant-scale; e) Energy from full conversion of methane in combustion; f) Energy from CHP 
conversion of methane; and g) Energy from electricity conversion of methane 

 

5.7  Summary and Conclusions 

 Although air-lift aided filtration have been widely used to decrease membrane 

fouling and increase permeate production, its application in anaerobic conditions 

is still under development and more research is required to get this MBR 

configuration to a commercial stage.  

 The set of operational parameters established in this study allowed the reactor to 

sustain filtration at suboptimal conditions for an extended period while providing 

a maximum operational flux of 20 LMH.  

 Under the tested operational conditions, the Gl-AnMBR present excellent removal 

efficiencies of organic matter (i.e. up to 98% and 95% in COD and TOC removal 

respectively) while producing energy in the form of methane at a amounts 

suitable for maintaining membrane scrubbing (4.5 L/d of biogas). Removal of 
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nutrient is less relevant since the effluent of this reactor is suitable for immediate 

reuse applications, allowing the recovery of soluble fertilizers from sewage.  

 Depending on methane conversion options, the energy footprint of this 

configuration ranged from -1.2 to 0.7 kWh/m3 and -2.3 to -0.5 kWh/m3, for lab-

scale and full-scale systems, respectively.  These are values comparable to actual 

energy consumption from anaerobic and aerobic commercial MBRs discussed in 

Chapter 3.   

 Energy demand per treated sewage can be easily improved in a plant scale 

scenario by using more efficient pumps, improved biogas generation rates and 

energy conversion mechanisms, and optimized permeate production for lower 

TMP and higher flux.  

 Results from this study suggest that the Gl-AnMBR can be applied as sustainable 

treatment tool for wastewater resources recovery, which can further be 

optimized.  

 Further research should include comparison of the obtained values to actual 

domestic sewage in terms of organic matter removal, sufficiency of biogas 

production for membrane scrubbing and methane production, and recovery of 

soluble forms of nutrients for further reuse applications. 
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6 REUSE OF GL-ANMBR EFFLUENT BY ALGAL-PHOTO MEMBRANE 
BIOREACTOR (APMBR) 

 

6.1  Introduction 

Among the innumerable reuse applications for wastewater, biofuel producing 

algal growth has become an extremely attractive option to maximize the utilization of 

wastewater embedded materials. In 2008, an article written by Clarens et al. (2010) 

highlighted the weak points of the current practices on biofuel algae mass production, 

pointing put the high demand of resources like water and fertilizers and the low 

efficiency in the current harvesting methods. On the other hand, algal growth from 

wastewater has been used as treatment technique for decades and its application 

towards biofuel production has gained a lot of attention lately since algae not only 

provide an additional polishing step to ww treatment, but wastewater itself provides a 

fertile medium for algal development (Table 2.8). An established limitation of algal 

growth form wastewater rests on the necessity of a “clean”, particle free medium that 

allows algae maximum uptake of soluble nutrients in wastewater. Moreover, adequate 

light penetration should be allowed to the algal reactors, while minimizing the exposure 

of the algal cultures to exogenous microorganisms that could outcompete the algae for 

the available nutrients.  With the aim to overcome some of these challenges, membrane 

filtration units have been identified as a feasible pre/post treatment technology to algal 

reactors. Concentration of algal slurry using membrane filtration provides excellent 

results in terms of retention of algal cell and high quality effluent (Danquah et al., 2009; 
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Zhang et al., 2010; Zou et al., 2011). More specialized membrane applications to algal 

biotechnology include, and are not limited to, energy recovery and improvement of 

operational parameters within algal reactors. For example, gas permeable/selective 

membranes have been wildly used for recovery of gaseous algal byproducts such as 

hydrogen (Teplyakov et al., 2002), as well as to improve algal growth through optimized 

CO2 mass transfer using capillary membranes (Kumar et al., 2010). Table 6.1 present 

some examples of membrane filtration recently applied in algal technology.  

 

Table 6.1: Applications of membrane technologies to algal bioreactors 

 

Major limitations regarding membrane filtration systems are localized in their 

energy consumption and membrane fouling propensity. In the case of algal filtration, 

fouling mechanisms have been extensively studied, especially when applied to surface 

Application Algal strain Membrane module References 
Recovery of pigment from 

marine algae 
Haslea ostrearia Flat sheet ultra-filtration 

membrane (Rayflow, rhodia-
Orelis Co., Maribel, France) 

 

Rossinnol et al., 
2000 

Filterability of algal 
monocultures responsive to 

seasonal variation of 
temperature and radiation 

Chlorella sp. PVDF Disc filters 0.45 um 
(hydrophilic Durapore 

membrane; Millipore HVLP 
090-50) 

 

Babel et al., 2002 

Recovery of high quality fuel 
gases using an active 
membrane systems 

(membrane contactors) 

Algae or 
Cyanobacteria 
(not specified) 

0.2 um flat sheet asymmetric 
polyvinyltrimethylsilane 

(PVTMS) membrane 
 

Teplyakov et al., 
2002 

Optimizing CO2 mass 
transfer to algal cultures 

grown on industrial 
wastewater 

Spirulina 
platensis 

Composite laminated hollow 
fibers  

(MHF200TL; Mitsubishi Rayon, 
Tokyo, Japan) 

 

Kumar et al., 2010 

Membrane filtration for 
harvesting of algal biomass 

Scenedesmus 
quadricauda 

Polyvinylchloride (PVC) hollow 
fiber ultrafiltration (UF) 

membrane module (LU8A-4A, 
Litree Co., Hainan, China) 

 

Zhang et al., 2010 

Separation of biofuel algae 
cultures using FO 

Chlorella 
sorokiniana 

flat-sheet FO membrane from 
Hydration Technology Inc. 

(Hydrowell Filter, HTI, 
Albany, OR). 

Zou et al., 2011 



 

108 

water filtration.  As part of the organic matter in surface water, algae actively 

participates in membrane biofouling, which is characterized cake layer deposition and  

adsorption of intercellular and/or extracellular organic matter (EOM) (proteins, 

polysaccharides or polysaccharide-like substances) on the membrane surface (Babel et 

al., 2002; Lee et al., 2006; Zhang et al., 2010). In this case, controlled environmental 

conditions within closed algal reactors might have a great effect in algal biofouling since 

EOM characteristics depend on nutrient concentrations, CO2 availability, temperature 

and light exposure (Babel et al., 2002).  

On the other hand, only a few investigations have focused on decreasing 

membrane filtration energy consumption in algal related applications. Zou et al., (2011) 

recently evaluated the use of forward osmosis as a mean to improve algal dewatering 

while decreasing the energy demand related to pressurized filtration (e.g. power for 

pumping requirements). In this case, fluxes higher than 35 LMH could be obtained by 

using only the concentration differential between a low concentration feed water and a 

high concentration draw solution. Zhang et al., (2010), evaluated a more conventional 

approach using cross flow filtration with hollow fiber membranes. Although low TMP of 

0.3 bars (CFV 0.17 m/s) at fluxes up to 45 LMH were obtained, rapid fouling occurred in 

all experiments and concerns related to algal cells integrity are not considered in this 

study since dewatering is the main objective. This investigation however, highlights the 

use of gas scrubbing to improve extended membrane operation. 

Although gas-lift assisted filtration has been proven as a successful approach to 

overcome both, fouling and energy demand problems of conventional MBRs (Table 2.8, 

Chapter 2), little information is available in its application to algal-MBR systems. 

Troubleshooting membrane operational constrains while providing optimum conditions 
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for biofuel algal growth, is task that gas lift filtration can easily target since it provides 

membrane scrubbing (i.e. fouling control mechanism), gentle recycle of algal liquor (i.e. 

pumping requirement and biomass shearing is avoided). In the meantime, complete 

retention of algal biomass allows extended contact times for carbon and nutrient 

removal.  

In this chapter, a gas-lift algal photo membrane bireactor (APMBR) has been 

developed as a new tool for algal growth/harvesting and polishing treatment of reusable 

wastewater. Details about the reactor configuration, algal flora and further uses of algal 

biomass and reactor effluent will be discussed. Performance of flow through extended 

operation is presented, while identifying mayor limitation of this treatment application.  

 

6.2  Materials and Methods  

The green algae Chlorella sorokiniana (Cs) (UTEX 2805), obtained from the 

Culture Collection of Alga at the University of Texas (Austin, Texas), was used in these 

experiments for its rapid adaptability to harsh environments such as sewage (Ogbonna 

et al., 2000; de Bashan et al., 2002; de Bashan et al., 2008; Muñoz 2006). A pure 

culture of Cs was acclimated in batch configuration (500 ml bottles) to sterilized effluent 

of the Gl-AnMBR during a period of 1 month (Figure 6.1). Light and temperature 

conditions were maintained at 12 W/m2 and 25oC respectively. The bottles were exposed 

to atmospheric CO2 at all times without additional enriched gas was provided.  After 

reaching medium saturation (i.e. plateau of exponential growth), the acclimated culture 

was used for seeding the APMBR. Characterization of the Gl-AnMBR permeate 

experiments are summarized in Table 5.5.  
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Figure 6.1: Batch acclimation of Chlorella sorokiniana in diluted concentration of Gl-AnMBR effluent 

 

The experimental set-up shown in Figure 6.2 consists of a 1.8 L photoreactor 

column, coupled with a sidestream gas-lift ultrafiltration module. Filtration is mainly 

driven by applying vacuum to the membrane permeate side with a double head variable 

speed pump (Masterflex L/S, Cole Palmer, Vernon Hills, IL). This pump also controls the 

incoming flow rate to the reactor (Qin).  Membrane cross flow velocity CFV is controlled 

by the gas lift resulting from pumping atmospheric air at the bottom of the membrane 

module. Air is compressed using a peristaltic pump (Masterflex 7520-25, Cole Palmer, 

Vernon Hills, IL) and applied for membrane scrubbing. The air flow rate (Qa) was 

controlled visually with a gas flow meter and a needle valve. Membrane effluent was 

measured with an on-line rain gauge (Model WS-9004U-IT, La Crosse Technology, La 

Crosse, MA) and transmembrane pressure (TMP) was measured by placing on-line 
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pressure transducers at the feed (Pf), permeate (Pp) and recycle (Pr) lines of the 

membrane module (Model EW-68075-32, Cole Palmer, Vernon Hills, IL). The two phase 

(gas/liquid) retentate is recycled back to the top of the column, providing continuous 

mixing to the algal suspension. Temperature at the bioreactor was maintained at room 

temperature and continuously monitored at the membrane feed line using an on-line 

sensor (Model S-TMB-M002, Onset Computer Corporation, Bourne, MA). 

 

 

Figure 6.2: Schematic of the gas-lift APMBR  
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6.3  Algal Photo-MBR Performance   

 

Several considerations were taken into account to define the operational 

parameters during the startup of the algal photo-MBR: 

Typical HRT values for wastewater treatment are located between 6 to 24 hours 

depending on the type of stream to be treated. In the case of algal bioreactors, the HRT 

not only depends on nutrient concentrations, but on levels of dissolved oxygen which 

have been reported to be toxic at values of 29 mg OD/L (Munoz and Guieysse, 2006). 

Several studies have shown that shorter SRTs (i.e. less than 2 days) allow to maintain 

these values under dangerous/toxic levels for algae and, moreover, under favorable DO 

concentration for exogenous bacteria (Munoz and Guieysse, 2006). For this 

configuration, a HRT of 1 day was selected as starting point. 

For a biofuel-algal photoreactor, SRT is directly related to harvesting events. 

While maintaining exponential growth and a considerably high algal biomass 

concentration within the reactor, harvesting should occur before light penetration and 

self-shading become limiting factors for growth (Figure 6.3). However, it was observed 

that the algae tend to attach to surfaces of lower turbulence within the reactor while 

remaining at exponential growth. Additionally, growing biomass stars to agglomerate 

and settles to the bottom of the column. In this case, light penetration becomes less of 

a concern since the actual concentration of suspended biomass is about 75% lower than 

the total algal biomass. On the other hand, higher removal of nutrients is accounted 

when having larger concentrations of algal biomass. For this specific configuration, 

harvesting was provided after reaching a biomass density of 0.5 kg/m3 (OD larger than 

0.9), which translated in an SRT of 15 days. 
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Figure 6.3: Algal biomass growth in the Gl-Photo MBR 

 

Since one pump controls the flow rate incoming and leaving the reactor, the 

operational flux of the MBR was initially set at constant 4.5 LMH; allowing an HRT of 1 

day.  Inlet pressure was provided by the hydrostatic head of the photoreactor and 

maintained constant around 0.1±0.9% Bar. Shear and recirculation of membrane 

concentrate was controlled using air-lift, at a rate of 0.1 L/min.   

 

6.3.1  Biomass Retention and Algal Growth  

Exponential growth was reached after a short acclimation period of 2 weeks. 

Complete retention of the algal biomass was assessed without significantly affecting 

membrane performance. Algal biomass concentration reached a maximum of 0.5 g/L 

after leaving the reactor to run without harvesting. This maximum also determined a 

short period of stable biomass density (plateau) and subsequent decrement in 

suspended algal biomass (Figure 6.4). At this point, severe aggregation of algal cells and 

attachment to photo reactor walls were the dominant limitations to reactor operation. 

On the other hand, biomass density under flow through operation did not reach 
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concentrations superior to those in batch configuration. Expected biomass 

concentrations were about 50% larger than those obtained in continuous operation, 

which might be the response of algae to the drastic change in growth conditions when 

in the photo reactor.   

In terms of membrane operation, even after reaching higher algal biomass 

density (i.e. VSS higher than 500 mg/L), the TMP at the membrane module remained 

constant at average value of 0.06 Bar. This value for pressure differential is extremely 

low compared to dewatering applications of membrane filtration in literature (Zhang et 

al., 2010; Danquah et al., 2008; Danquah et al., 2009), as well as those reported for low 

pressure/low energy MBR systems in wastewater treatment. TMP values of 0.1 Bars 

have been reported for higher solids concentrations in activated sludge treatment 

coupled with air-lift filtration (Futselaar et al., 2008), leaving some room for increasing 

concentrations of algal biomass before low pressure filtration is affected. Although close 

monitoring of TMP is necessary to assess membrane fouling, shear provided by the air 

bubbles in the two-phase flow have satisfied the need for additional antifouling 

mechanisms. For this type of configuration, the CFV will be controlled by the provided 

air flow rate (Qa) which did not show any advantage for filtration if increased (results 

not presented). On the contrary, higher Qa tends to increase TMP and the air in the two-

phase flow competes with the liquid to exit the membrane. A summary of the 

preliminary operation of the APMBR are presented in Figure 6.5. 
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Figure 6.4: Cs growth profile during extended operation of the Gl-APMBR. The dashed line to the left 

corresponds to back-extrapolated values of dry weight based on actual data (square dots). 

 

 

Figure 6.5: Extended performance of the Gl-PhotoMBR 

 

Dissolved oxygen within the reactor did not exceed the 4.1 mg DO/L during the 

exponential growth or after harvesting events. This value is found in literature to be 

below toxic levels for algae cultures and was observed not to affect algal growth. In the 

case of pH, the reactor was maintained below 8.5 by acidifying the feed to a neutral 

value with 1 N hydrochloric acid. Acidification was necessary since the reactor feed 

reached basic pH values while stored exposed to atmospheric air for periods longer than 

6 hours.  
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6.3.2  Nitrogen, Phosphorous and Carbon Removal 

Removals of nutrients depend on biomass density. A TN removal efficiency of 

30% was observed when reaching VSS concentrations larger than 0.5 g/L. Although 

removal of TN seems not to be as remarkable as those obtained in other batch studies 

(Wang et al., 2010a and 2010b), up to 100% removal of specific nitrogen species such 

NH4 were obtained after maximum biomass concentration was achieved within the 

reactor (Figure 6.6). A sudden drop in nitrogen TN concentration results from the 

change in the feed. Permeate from the Gl-AnMBR is stored and sterilized to avoid 

contamination in the reactor. TN for the 30 to 50 corresponds to a new batch of Gl-

AnMBR permeate after reached stable performance. Nitrate on the other hand, was 

observed not be utilized by the algae which elucidates the preference of Cs to ammonia 

as an N source for metabolic purposes. A more detailed characterization of the nitrogen 

uptake to the particulate fraction (biomass) should be done to assess the different 

pathways of the N within this reactor configuration, especially since previous studies 

have reported proteins as one of the mayor components of algal EOM contributing to 

membrane biofouling.  

A similar behavior was observed for phosphate removal. After reaching maximum 

biomass concentration, up to 100% reduction of phosphate was observed (Figure 6.7). 

With improved nutrient removal efficiencies, a minor concern arises since nutrient 

availability might become a limiting factor for algal growth. To corroborate this 

statement, a comparison between the cumulative APMBR removal of ammonia and 

phosphate and the stoichiometric nutrient demand for algal growth is presented in 

Figures 6.8 and 6.9.  Since the algal biomass nutrient requirements correspond to a 

small fraction of the NH3 and PO4 removed from the APMBR, nutrient limitation is not a   
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concern for this configuration and instead, nutrient removal can perhaps be attributed to 

NH3 stripping and/or salt precipitation/filtration due to the high pH values (i.e. 8.5 to 9) 

observed during this study. The specific nutrient removal mechanisms of the APMBR are 

yet to be established in future studies.  

At an HRT of 1 day, complete removal of ammonia and phosphate could be 

assessed by the APMBR. Reduction of HRT might be possible for this configuration, 

consequently reactor’s permeate production (i.e. higher flux) can be increased as well. 

Further studies are necessary to optimize HRT with this configuration. 

 

Figure 6.6: Soluble nitrogen profiles for the Gl-Photo MBR during extended operation. Sudden drop in TN 

concentration can be observed around day 30 after feed batch changed. 

Figure 6.7: Soluble phosphorous profiles for the Gl-Photo MBR during extended operation. Sudden drop in 

TN concentration can be observed around day 30 after feed batch changed. 
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Figure 6.8: Comparison between cumulative ammonia removal of the Gl-Photo MBR and cumulative 

ammonia uptake for algal growth. 

 

Figure 6.9: Comparison between cumulative phosphate removal of the Gl-Photo MBR and cumulative 

phosphate uptake for algal growth. 

 

In the case of carbon utilization, COD and TOC were closely monitored mainly to 

assess dominant metabolic preferences (heterotrophic and/or autotrophic). During the 

first exponential growth phase, removal of organic carbon was not observed, but up to 

50% removal COD was obtained. Results for TOC and COD profiles are presented in 

Figure 6.8. After day 30, only COD was monitored for carbon removal. Since membrane 

filtration has been uninterrupted and no additional antifouling methods have been used, 

removal of carbon might also be caused by membrane biofouling. In a worst case 
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scenario, contamination of the algal culture might have cause removals of COD, 

however this statement is less probable since the algal photo reactor was closed at all 

times and measured DO and pH conditions were not favorable for bacterial proliferation. 

Furthermore, additional sources of carbon may come from algal lipids and EOMs due to 

the continuous changes in feed characteristics. In this study, the specific source of 

carbon preferred by the algal culture and specific COD and TC removal mechanisms 

taking place within the reactor were not conclusive.  Further research has to be done to 

confirm the previous statements. Effect of variable alkalinity on algal growth should be 

investigated since this condition is intrinsic to anaerobic treatment. Lipid content is 

another parameter that should be assessed in future studies, especially if algal biomass 

is used for digestion experiments. 

 

Figure 6.10: Soluble COD and carbon profiles. TOC and TC measurements are presented before and after 

day 30 respectively. 

6.4  Conclusions 

Limited information is available regarding in biofuel algae photo-MBRs treating 

anaerobic effluents, which makes of this study an important step in the feasibility of the 

gas-lift APMBR as an advanced wastewater treatment tool. Nutrient rich effluent from 
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the Gl-AnMRB treating domestic wastewater has been used for these experiments and 

the following conclusions are established: 

 Although successful growth of the biofuel producing algae Chlorella sorokiniana 

was achieved in the continuous-flow photobioreactor, operational conditions are 

not yet optimized to yield biomass concentrations at similar or superior 

concentrations than those obtained in batch experiments.  

 At the operational conditions tested in this study (HRT 24 hours, operational flux 

of 4.5 LMH, air-lift flow rate (Qa) of 0.1 L/min and 0.1 Bars of membrane inlet 

pressure), complete removal of ammonia and phosphate was achieved by the 

APMBR. In this case, further concerns regarding nutrient limitation for algal 

growth can be easily targeted by decreasing the HRT, hence improving APMBR 

permeate production and overall efficiency in providing tertiary treatment to Gl-

AnMBR effluent.   

 The carbon removal mechanisms assessed by the gas-lift APMBR require further 

studies since removal of TOC, TC and COD were not conclusive in determining 

the dominant metabolic preferences of algae used (heterotrophic, autotrophic or 

mixotrophic growth). Besides algal carbon utilization, other biological and 

physical processes taking place in this reactor (membrane biofouling, EOM 

formation and air scrubbing) can contribute to the sources and/or sinks of carbon 

in this set up.  

 Nutrient removal mechanisms in this configuration require further 

characterization specifically due to the influence of pH in the chemistry of NH3 

and PO4. Removal of ammonia due to the intense scrubbing characteristic of this 
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configuration needs to be identified as the baseline for future biological removal 

assessments in the APMBR.    

 Variability of reactor feed challenges the resiliency of algae to sustain growth 

while continuously adapting to variable growth conditions. Although successfully 

achieved, variable conditions also affect the characteristics of algal products such 

as lipid content, EOM and removal efficiencies. 

 Light penetration did not represent a limiting factor during this study, mainly 

because algae naturally aggregate after reaching a critical biomass 

concentration. Continuous harvesting needs to be applied to maintain adequate 

biomass suspension during extended operation should be evaluated. Other 

factors such as higher gas-lift flow rate should be evaluated to improve biomass 

suspension. 
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7 CONCLUSIONS AND RECOMMENDATIONS 

 

In the past two decades, efforts to recover intrinsic resources in sewage has 

steadily grown in the wastewater treatment industry.  Biosolids are land applied and 

reclaimed water is piped throughout many municipalities. Methane recovery for energy 

production is a common practice at anaerobic digestion facilities throughout the 

developed world.  However, most “recovery” efforts result from convenient byproducts 

of the removal process, and are not the focus of technology development.  With rising 

energy costs, depletion of mineral reserves, increasing fertilizer costs, and increasing 

population stress on resources, alternative wastewater treatment technologies have to 

evolve to cope with resources depletion.  Focused efforts to recover renewable 

resources such as energy, nitrogen, phosphorus, and clean water from sewage are now 

becoming the basis of new technology innovation.  Perhaps society is on the brink of a 

paradigm shift where recovery of resources from wastewater is not only sustainable but 

also makes good business sense. 

In this work, new wastewater treatment technologies were developed and 

evaluated for their potential to recover valuable resources from sewage such as water, 

energy and fertilizers. First, COPAS (complex organic particulate artificial sewage) was 

identified as a surrogate sewage organic material and characterized in its capability to 

mimic domestic wastewater in both particulate organic matter content and 

environmentally relevant parameters such as BOD, COD, OC and TN. Secondly, an 
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advance wastewater treatment technology based on low pressure membrane filtration 

and anaerobic bioprocess was used as a tool to recover embedded nutrients and energy 

from sewage. The gas lift anaerobic MBR (Gl-AnMBR) coverts N and P in sewage to 

mineralized soluble forms of nutrients (i.e. ammonium and phosphate), providing a 

clear, nutrient-rich effluent for direct reuse in applications as fertilizer. Additionally, 

anaerobic digestion of COPAS produces methane, which can be converted to different 

forms of energy (directly combusted, electricity and/or heat energy conversion). The 

energy footprint estimation from the lab-scale configuration ratified this system as a 

sustainable low energy treatment MBR technology, although performance at plant scale 

is necessary to establish the Gl-AnMBR’s competitively among low energy aerobic 

counterparts.  

Finally, the resource recovery cycle was closed by introducing a reuse application 

to the Gl-AnMBR effluent with a gas-lift algal photo membrane bioreactor (APMBR). 

Biofuel-producing microalgae utilized carbon-dioxide and AnMBR nutrients for biomass 

growth, which can be further converted to biofuels.  Similar to the Gl-AnMBR, the 

principle of gas-lift was applied to the APMBR to decrease energy consumption 

associated with membrane filtration while providing continuous recycle of algal liquor for 

mixing and even a continuous source of atmospheric CO2 for algae growth.  As the 

objective of the present study was to demonstrate proof of concept for gas-lift APMBR, 

the dynamics taking place in this bioreactor (e.g., potential generation of algal 

metabolites) were not fully characterized and require further studies.  Since limited 

information is available in the literature regarding biofuel-producing algal 

photobioreactors utilizing anaerobic process effluents, the present study provides an 

important contribution towards better understanding of the design and performance of 



 

124 

combined anaerobic/algal biotechnology for full-scale application of sewage resources 

recovery.   

 

The sequential two phase treatment process, the anaerobic/algal MBR (A2MBR), 

is a promising treatment technology for closing the Water-Energy-Nutrient (WEN) cycle. 

The evolution of sewage through the A2MBR is graphically depicted and summarized in 

Figure 7.1.  

 

Figure 7.1: Waste to Water in the A2MBR. From left to right: COPAS synthetic sewage, Gl-AnMBR sludge, 

Gl-AnMBR permeate, Gas lift APMBR mixed liquor and APMBR permeate and final product. 
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Table 7.1: Summary of the water quality changes in different treatment stages of the A2MBR. Values 

reported in mg/L. 

Parameter COPAS Gl-AnMBR 
permeate 

Gas-lift APMBR 
permeate 

Total Soluble Soluble Soluble 

CODt 1267±6.4 

CODs 257.3±195.5 70±22.1 33.24±21.9 

TOC 528.5±2.7* 73.29±44.29 25.44±4.5 N/A 

TKN 54.3±0.3 21.7±9.5 75.43±9.7 20±1.9 

NH4-N 5.7±3.3 9.1±4.2 Non detected 

NO3-N 1.8±0.7 2.2±0.9 1.8±0.5 

PO4-P 15.5±7.8 20±7.13 Non detected 

NTU 447±8.4 6.9±2.3 1.34±0.3 
              * Calculated from OC/wt ratio based on 1000 mg/L COPAS added 

7.1  Intellectual Merit and Broader Impacts of Present Research 

This investigation helped to expand the current knowledge regarding low 

strength wastewater treatment using AnMBR technology. Because it is an unexplored 

technology, Gl-AnMBR represents a novel alternative for sewage treatment, especially if 

its energy footprint is optimized for maximum resource recovery. Findings regarding 

optimization of energy balance within the GL-AnMBR served as a model to improve 

performance of similar configurations. Additionally, this study demonstrated the 

feasibility of a Gl-AnMBR to renovate low strength sewage and recover water, energy 

and nutrients.  Extension of the nutrient and carbon cycle through algal growth in the 

proof-of-concept gas-lift APMBR demonstrated the paradigm shift of viewing wastewater 

as a matrix of valuable resources rather than a disposable commodity.  The coupling of 

these two advanced processes in the A2MBR system established a novel approach to 

closing the WEN cycle, as depicted in Figure 7.2.    
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The innovative technology developed in this investigation could have many 

potential applications in different fields related to freshwater and natural environments. 

This technology could be applied to a variety of communities that consider decentralized 

wastewater treatment as a feasible way of recovering and reusing valuable resources.  

The performance of the Gl-AnMBR in other scenarios such as remote communities (e.g. 

countryside populations, touristic resorts and suburban neighborhoods) and low income 

localities (i.e. developing regions) should be target of further studies. Extension of this 

research foresees application of the resulting reactor as a low-cost solution for the water 

and sanitation problem in developing countries. Contribution to Goal 7 of the UN’s 

Millennium Development Goals regarding natural resources conservation and basic 

sanitation for less privileged communities around the world is an additional contribution 

of this study. 

 

Figure 7.2: Flow of material in the sequential A2MBR
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Appendix A. Gas-Lift Anaerobic Membrane Bioreactor (Gl-AnMBR): 

Filterability Of Anaerobic Mixed Liquor With High Content Of Oily Compounds 

 

Ana Lucia Prieto1, Davood Karimi2, Amit Kumar2, Piet Lens2 and Daniel H Yeh1 

1. Department of Civil and Environmantal Engineering, University of South Florida 

(Tampa, FL – USA) 

2. Department of Environemntal Resources, UN Institute for Water Education UNESCO-

IHE (Delft, the Netehrlands) 

A.1  Introduction 

During this study, a gas lift anaerobic membrane bioreactor (GL-AnMBR) was 

constructed at UNESCO-IHE. Its performance in the filtration of flocculent anaerobic 

sludge with high concentration of oily compounds was evaluated. Although air-lift aided 

filtration have been widely used to decrease membrane fouling and increase permeate 

production, its application in anaerobic conditions is still under development and more 

research is required to get this MBR configuration to a commercial stage. Its 

performance under different wastewater scenarios is also under evaluation. With this 

premise, treatment of food processing effluents is one of the major applications for 

anaerobic technologies. Specifically, highly oily influents are often used since they favor 

the biogas production in anaerobic set ups. Problems regarding sludge settleability and 

inhibition of anaerobic processes due to highly oily streams have been highlighted as 

drawbacks for this type of biological treatment. Coupling a membrane separation unit to 

an anaerobic bioreactor could allow longer hydraulic retention times (HRT) that allow  
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Appendix A (Continued) 

adequate digestibility of oily compounds. Filterability of highly oily compounds is 

evaluated in the short and long run. 

 

A.2  Methodology 

A GL-AnMBR was built at UNESCO-IHE (Figure 1). This set up was fed with 

flocculent anaerobic digestion sludge from a local wastewater treatment plant in Delft 

(The Netherlands). The sludge had a total solids concentration of around 32 g/L and 

MLSS concentrations of 7.3, 17 and 29.4 g/L were used to evaluate the effect of  solids 

content on filtration. The reactor was operated under room temperature (23oC to 25oC) 

at neutral pH (6.5 to 7.5). During the preliminary operational stage of the MBR, the 

following conditions were established for its continuous operation:  

• Cross flow velocity (CFV) = 0.5 m/s 

• Fraction of gas in the two-phase flow (E) = 0.1 

• Permeate flow rate (Qp) = 2 L/hr 

• Backwash frequency = determined by increment in total resistance or start of 

new experiment  

Once the reactor was operating at stable conditions (constant flux and TMP), oleic acid 

in the form of sodium oleate was added to mimic the content of oily compounds in 

wastewater. Oleic acid is one of the main long chain fatty acid (LCFAs) present in 

wastewater (both municipal and food processing), and concentrations of 100, 300 and 

600 mg/L were selected to be tested for filterability purposes.  
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Figure A.1: Schematic of Gl-AnMBR configuration for this study 

A.3  Results and Conclusions 

A continuous flux of 20 LMH could be maintained for MLSS of around 17 g/L at 

CFV of 0.52 m/s. This CFV was selected since it was minimum maximum value of CFV 

that allows minimum TMP at a maximum flux of 20 LMH. Fluxes larger than 20 LMH 

were not attainable during the length of the operation. Variation in the gas flow rate for 

larger values of ε did not favor significantly filterability of sludge. TMP for this type of 

configuration was maintained at 1 Bar. This value could not be decreased at the set 

operational condition without sacrificing the permeate production. A minimum TMP of 

0.7 Bar was obtained by decreasing permeate flow rate, therefore decreasing flux. 

Additionally, a gas fraction for the two phase flow of 0.1 was sufficient for the MBR 

operation. 
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This result suggests that the gas present in the gas-liquid mixture is only 

scrubbing the membrane as it rises and not lifting the fluid according to the gas-lift 

concept. In this case, the performance of the GL-AnMBR in the long run has to be 

evaluated to assess the effectiveness of the “gas-lift” to improve membrane operation 

and decrease irreversible fouling. Future work includes testing of filterability of higher 

concentrations of oleic acid since no change was observed when filtering anaerobic 

sludge with an oleic acid concentration of 100 mg/L (Figure A2). 

Results regarding filtration of different concentrations of MLSS are not conclusive 

yet. However, preliminary testing suggests that at the set operational conditions the 

permeate production was significantly affected by sludge solids concentration (figure 

A3). Further studies should be done to corroborate these statements.  

 

Figure A.2: Filtration of anaerobic sludge. Comparison between sludge with and without oleic acid 
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Figure A.3: Membrane resistance development per volume of permeate produced for different MLSS 

concentrations  
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