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A Roof Runoff Strategy and Model for Augmenting Public Water Supply 
 

Robert P. Carnahan, Jr. 
 

ABSTRACT 
 

Water is the essential resource that is becoming extremely scarce worldwide. The 

21st century will further stress all available water resources through the growth and 

expansion of developing nations. It is not only the quantity of cheap water that is being 

depleted, but the quality of these waters is being endangered. Florida is an example where 

rapid development and an exploding population are competing for shrinking groundwater 

resources. Current water use does not address the use of alternative supplies and reuses in 

the United States.  

The objective of this research was to determine a strategy for augmenting existing 

water supplies with alternative sources that could be developed economically. Having 

reviewed numerous alternative sources, it was determined that runoff from roofs 

potentially provides a source that might meet the augmentation requirement for a small 

community of a population of 30,000 or less.  

This research has shown that the quality of water collected from five different 

roof surfaces meets the drinking water standards and will not degrade the current quality 

of the main source of water supply. This work not only required the collection of 

hydrological data from the roof systems, but chemically and biological analyzes samples 

for contaminants. Since rainfall events vary periodically and in duration, 100,000 

meteorological events were analyzed for wind speed, relative humidity, rainfall intensity, 
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and the rainwater runoff across five roofing surfaces to analyze variables that contribute 

to the effects on the water quality of the source. The model establishes the economics and 

the public health value of this water. The research assesses the local regulatory aspects of 

using the water with the outcome of a working objective and rational decision matrix that 

will permit agencies to select an optimal and safe utilization of the water sources. 
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CHAPTER I: INTRODUCTION 
 

Background  

Water is the essence of life—the most precious resource of the 21st century. 

Florida is an example of a region where rapid development and an exploding population 

are competing for shrinking groundwater resources. The Floridian peninsula is unique in 

that it is on the same latitude as some of the world’s major deserts, yet its average yearly 

rainfall is 53 inches. The most common climate classification is the Köppen, which 

divides the state of Florida into two climate types. Most of Florida has a humid 

subtropical climate, as at the study site, with the southern portion of the state as a tropical 

savanna from approximately Ft. Pierce to Miami to the Keys (Fernald & Purdem, 1998).  

The study site was located in a suburban neighborhood in West-Central Florida area in 

the City of Temple Terrace. This area is considered a humid mesothermal climate using 

the Thornthwaite classification system which uses evapotranspiration and rainfall to 

determine boundaries which divides the state into three climate types and is most often 

used by water resource professionals (Fernald & Purdem, 1998).  Florida exhibits a 

bimodal annual rainfall pattern: the dry season from December  through May, which has 

an average seasonal total precipitation of 14.73 inches and average temperature of 67.3 

°F; and the rainy season from June through November, which has an average seasonal 

total precipitation of 30.04 inches and average temperature of 78.9 °F (NOAA, 2005). 
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Table 1-1: Seasonal Temperature and Precipitation for Tampa Florida.  
Pcpn 

inches
Season Max Min Avg Heating  Cooling Total

Winter 
(Dec/Jan/Feb)  71.2  53.6  62.4 467 192 7.24

Spring
(Mar/Apr/ May) 81.1 63.3 72.2 76 721 7.49

Summer 
(Jun/Jul/Aug) 89.5 74.9 82.2 0 1600  19.59 

Autumn 
(Sep/Oct/Nov) 83.7 67.5 75.6 48 969 10.45

Degree DaysTemperature °F

Ref: National Weather Service Ruskin, Florida
 

Table 1-1 illustrates the seasonal temperatures for Tampa, especially the 

maximum temperature during the seasons and the importance of the inland heating and 

evaporation effect that drive the weather patterns of Florida. The degree-days provides 

the ability to compare different years’ seasons to each other; for example, degree-days 

cooling is the average daily temperature degrees F minus 65 F degrees equal the cooling 

days. The degree-days are accumulated each day over the course of a heating/cooling 

season and can be compared to a long-term (multi-year) average, or normal, to see if that 

season was warmer or cooler than usual. The precipitation in total inches is 44.77, which 

is deficit from the norm of 53 inches.  

The highest evaporation period is during the rainy season, when it ranges from 46 

to 50 inches in central Florida (Fernald & Purdem, 1998).  In the dry winter months, there 

is a dramatic increase in demand for water by agriculture and industry. This seasonality 

of rainfall and water demand affects the water budget of local communities. In Florida, a 

bimodal annual rainfall pattern provided extremes during this investigation. Other 

locations throughout the country, such as Asheville, North Carolina, with an annual 
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rainfall of 47.7 inches, are consistent each month in the average rainfall. Likewise, 

Lexington, Kentucky has an average rainfall of 45.68 inches. Both locations usually have  

consistent precipitation with three (3) to four (4) inches per month based upon a standard 

30 year period recorded between 1951 to 1980 (Leeden, et al., 1990). 

Florida’s significant drainage systems move the water in the rainy season. 

Florida’s gulf coastal lowlands are flat, with productive agricultural land interspersed 

with wetlands. The same drainage system carries urban runoff in a highly populated area. 

When the soil becomes saturated, the precipitation exceeds the infiltration capacity of the 

soil and the soil can no longer absorb water, reducing the amount of infiltrated water that 

reaches the aquifer. Instead, the overland water flows commence as surface runoff, thus 

bypassing aquifer recharge to the system that local communities rely on for their water 

supply. 

According to the United States Geological Survey (USGS) in 2000, 

approximately 85 percent of the population of the United States receives their water from 

a public supplier; 63 percent is from surface water sources. California and Florida public 

suppliers have the largest groundwater withdrawals (Hutson, et al., 2004). Approximately 

80 percent of the water used in the Tampa Bay region is groundwater, with coastal areas 

experiencing saltwater intrusion due to over-pumping of the Floridian aquifer system 

(Hydrologic Evaluation Section, 2002). Florida's population grew by more than 3 million 

between 1990 and 2000, more than any other state except California and Texas. This 

represented a 23.5 percent increase, the seventh largest growth rate of any state, and 

Florida is expected to surpass New York by around 2010 to become the nation’s third 

largest state. If the projections are correct, Florida’s population is expected to reach 
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almost 26 million by 2030 (Smith, 2005). Florida is a microcosm of the scarcity of 

freshwater and the demands of an increasing population growth around the globe.  

To meet the ever-growing population’s water demands, local municipalities and 

counties in the Tampa Bay area have created a regional water supplier, which supplies 

approximately 172 million-gallons-per-day to the region. Florida's population is 

approximately 13 million persons. Previous estimates had Florida growing at a rate of 

487 persons-per-day. This does not include the influx of approximately 100,000 

temporary residents to the Tampa Bay area during the winter months, in the same period 

as decreased rainfall. According to the 2003 United States Geological Survey’s “Water 

Use Report,” the average Florida resident uses 174 gallons-per-day for household use 

(USGS, 2004).  The growth in population and high demand for water requires that new 

alternative water sources be utilized. 

 

Statement of the Problem 

Fresh water worldwide is a limited resource. Florida is an example where rapid 

development and an exploding population are competing for finite or shrinking 

groundwater resources. Current water use does not address the use of alternative supplies 

such as roof runoff and reuse in the United States. There is a need for planning and 

development of alternative fresh water sources that are economically available and viable 

to develop, while assessing public health aspects and government policies towards this 

proposed alternative.  
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Problem Identification 

The current rate of housing development in Florida has increased by 23.5 percent, 

which exceeds the capacity and the ability of governmental agencies to supply adequate 

water to consumers (Smith, 2005).  One example of increased demand in Florida for 

potable water was the formation of a regional water supplier: Tampa Bay Water. The 

focus changed from local counties and cities to regional planning to create projects to 

supply regional needs for water to approximately two million persons in three counties 

and three metropolitan cities. The current strategy is to continue groundwater and surface 

water withdrawals and examine the feasibility of creating large reservoirs for impounding 

the water. There are other potential alternative sources for potable water, such as capture 

of rainfall from roofs, brackish water sources, and seawater desalination.  

The use of Domestic Roof Rainwater Harvesting (DRRH) represents a feasible 

supplemental water supply.  It appears to be the most economical alternative, because of 

the low capital investment of implementation, but there are seasonal limitations. Both 

brackish and seawater sources present high capital, operation and maintenance costs for 

the amount of water production, but the source is sustainable. There is a need for a 

rational model that provides a method for selecting the appropriate use of roof runoff 

water.  

 

Purpose of the Study 

The objective of this investigation was to determine if roof runoff from five 

common roof surfaces could be a viable potable source considering regional treatment. 

The scope of this research was to assess the quantity, quality and economics of recovered 
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water from roofs delivered to a regional treatment facility. The concentrations of the 

metal elements were used as water quality indices because these would be the most costly 

public health risks to assess and treat. The economics of using the roof runoff for a 

smaller community with a population of approximately 30,000 was examined. The 

research briefly investigated the local and state regulatory issues of using the recovered 

water, but social acceptance issues were not examined. The results and outcomes of the 

investigations is an objective and rational decision matrix that will permit agencies to 

determine if this is an operational alternative for safe, economical, and optimal use of 

water sources for their community and their consumers. 

The factors that contribute to the quantity and quality of the roof runoff were 

identified, such as the physiographic elements of the roofing material composition and 

climatic and atmospheric deposition factors that are essential to the development of the 

model.   

The types of climatic factors and variables are precipitation type, convective, 

orographic, and cyclonic type precipitation, the direction and trajectory of the storm, 

temperature, and humidity, which can all affect the constituents and particle deposition 

within the water. In addition, the time and duration, intensity, and the antecedent period 

between rain events can affect the concentration of the constituents in the sample. These 

variables provided insight to the variation and the larger weather system factors that need 

to be included in the development of a model. Physiographic variables of significant 

concern consist of the composition of the roof surface materials, slope, and roughness of 

the material. These characteristics are important variables in high-intensity and short 

duration storms when determining the capacity of the roof for runoff production.   
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Roofing material has a potential for leaching metals along with potential of 

collecting atmospheric deposition of suspended metals, which are major factors in 

evaluating the quality of the water. The physical and chemical processes of the 

interaction of roofing material with the atmospheric constituents has a potential to pose 

an increase in concentration of a complex in the water runoff and, hence, an increase in 

exposure. 

Precipitation is geographically and spatially temporal and random. Because of 

these properties, this experiment requires that samples be taken and tested to assess the 

variability in concentration. The chemical analysis of the water from each event provided 

guidance as to the required treatment level needed to remediate water quality to a safe 

level for potable use that meet the requirements of the EPA and/or local regulatory 

agencies. 

The combination of on-site climatic data, field sampling, and laboratory analysis 

of the control and five different roofing surfaces' water samples for each event provided a 

mechanism to compare the water quality. Using statistical methods and analyses, a 

comparison of the water quality and quantity between the control sample and roofing 

samples allowed for the selection of the roofing material that is preferred from a water 

quality perspective. The development of the model incorporated these nuances of the 

experimental research findings for selecting appropriate use of the water resource. 
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Methodology of the Dissertation  

The significance and uniqueness of this research is the integration of engineering 

and public health risks in assessing the use of DRRH. The experimental research phase of 

this study with the utilization of hydrological and chemical data adds to the knowledge of 

the effects of metal leaching from different roofing materials and provides basic 

understanding of the water quality discharged from the roofs located in the Southeastern 

United States. 

One research outcome was to develop a management model for use of roof runoff 

as a potable water source. The purpose of this work was to accurately calculate the 

quality and quantity of the water that is recovered from roofs. Meteorological data and 

roof surfaces were used to analyze the effects of the variables on the water quality of the 

roof runoff. Next, the economics and the public health value, the potential risk of 

concentration levels found in this water, was established. The research briefly examined 

the regulatory issue of using the water. The analyses of the data collected allowed the 

creation and the development that resulted in a formulated decision matrix model that 

permits agencies to select an optimal and safe utilization of this alternative water source. 

This dissertation was structured as compilations of independent research chapters 

with specific study objectives. 

Chapter II: Background consists of a review of current literature to identify gaps 

in the body of knowledge of the use of potable DRRH for regional treatment. Despite the 

years of using rooftop harvesting, there are not many references in literature as to the 

constituents and elements found in the water runoff. The review did not find specific roof 

runoff information on the materials used in this study in Florida, and a study in Texas on 
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roof runoff had only one similar material of the five that were tested in this study. The 

majority of the literature investigates the labor savings and quality of life improvement in 

water access and the role it plays in poverty-stricken regions and countries. Other 

research investigators concentrated on the storage of water in cisterns and based their 

investigations upon the types of construction materials and how the structures and 

materials affected the overall water quality. The area of concern in investigating 

alternative water sources is the public health safety issues and their long-term exposure 

effects. 

Chapter III: Methodology presents the means in which the selection and 

description of the experimental apparatus was determined. In order to provide more 

accurate estimates of the temporal quantity and quality variation of the water from the 

various types of roofing material, an experimental design was initiated. Five different 

roofing materials were selected based upon the frequency and popularity of the customers 

in the region according to a local roofing and construction company. This chapter 

presents the instrumentation and standard methods necessary to conduct the experiments 

and the standards in addition to the data collection procedures. The chapter includes the 

data analysis of the variables and limitations with a final summary. 

Chapter IV: Results, the outcomes of the water quality data analyses are 

presented, with specific item analysis and implications of the results.  

In Chapter V: Water Quality Results and Discussion, the outcomes of data 

analysis are discussed in the context of the implication of drinking water standards and 

public health issues for the potable use of the roof runoff water. 
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Chapter VI: Model Development and Discussion presents the parameters that are 

needed for inclusion in the regional collection system design. This chapter discusses the 

modules, elements, and conditions in the development of a model. The model constraints 

and piping for optimal use of roof runoff are discussed. 

Chapter VII: Conclusions, describes the outcomes of the investigation, field 

research and the augmentation model.  

Finally, Chapter VIII: Recommendations presents suggestions for further study 

and future investigations. 
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CHAPTER II: BACKGROUND 
 

Overview 

This chapter background and literature review was divided into smaller sections, 

such as meteorological effects on rainwater, biogeochemical processes, and stormwater 

compared to roof runoff. This interdisciplinary approach to roof runoff identifies gaps 

within the literature in some of the sections, whereas other section topics had significant 

information available for review. 

The scientific literature discusses several approaches to the collection and use of 

rainwater. Sur, Bhardwaj, & Jindal (2001) reported that in Australia, India, and parts of 

Southeast Asia, DRRH is a traditional practice and part of the national water policy. 

Taiwan has successfully incorporated a DRRH system to supplement its potable water 

supply (Liaw & Tsai, 2004). Studies of rainwater collection in the U.S. have focused 

mainly on cisterns and cistern microbiology (Lye, 2002), while the Australian 

government recommends above-ground storage to prevent seepage and overflow into the 

tanks (Cunliffe, 1998).  

The thrust of most of this literature is the use of DRRH as a water source in 

remote or arid regions. It is understandable that in arid locations, the need for water takes 

precedence over the concern for its quality. However, there is new research emerging on 

the microbacterial interaction on roof surface and cisterns, interaction of rainwater with 

roofing materials, and the subsequent health risks to the population. There are numerous 

studies throughout the world examining the different concentrations of the various 
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elements, metals, and other items of interest. The object was to review the literature, in 

the context of asking what are the processes and variables that affect the concentration of 

elements that might pose a risk.    

 

Meteorological Effects on Rainwater 

Water vapor can be considered the start of the hydrological cycle. The quantity of 

atmosphere water varies with location and time. On occasions, there may not be any 

relationship between the amount of water vapor over a region and resulting precipitation. 

For example, at times there is more water vapor over the dry southwest than in the humid 

northern regions of the U.S. that receive the precipitation (Viessman & Lewis, 2003 ). 

The anthropogenic use of fossil fuel, slash and burn clearing of forest, forest fires, and 

smelting emissions all contribute to the already existing fine particulate in the 

atmospheric addition to the natural occurring geochemical processes. 

 

Thunderstorms  

It is the unique chemical properties of rainwater in equilibrium with the 

atmospheric gases and the particulates combined with the geography of the state of 

Florida that creates the largest number of thunderstorms in North America (Cooper, et al., 

1998; Fernald & Purdem, 1998; Parker & Corbitt, 1993; Viessman & Lewis, 1996, 2003). 

Cooper et al., (1998) examined the effects of a convective storm’s wind trajectory 

velocity both horizontally and vertically, inland temperatures, and the atmospheric 

pressures that develop as cooler sea breezes converge over the latent heated peninsula 

land in summertime. The undisturbed large-scale flow over the peninsula is strongly 
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influenced by the relative position of the Azores Bermuda high. This position of the high 

during the summer creates the higher temperatures over a peninsula and a strong breeze 

that induces rising air while enhancing rainfall. These summer months are the most active 

times on both coasts; the variation in rainfall is lowest during the summer because of the 

consistency of the summertime pattern of the daily rainfall from thunderstorm cells which 

form from the sea breeze. Studies have shown summer thunderstorms have a higher 

frequency on the east coast, and the convective storms occur earlier in the day on the 

west coast than they do on the east coast (Cooper, et al., 1998; Fernald & Purdem, 1998). 

Under these conditions, evaporation of the rainfall after a storm's passage is greater for 

the west coast, attenuating post-storm evaporation and diminishing the amount of rainfall 

available for roof runoff. Numerous studies have shown that there is a general trend 

under a westerly flow; convection storms develop earlier in the day on the west coast and 

then propagate eastward across the peninsula (Cooper, et al., 1998; Fernald & Purdem, 

1998). The opposite occurs for easterly flow: convective storms have a general tendency 

of convection starting on the east coast early in the day and then propagating towards the 

west coast later in the day (Cooper, et al., 1998; Fernald & Purdem, 1998). In the winter 

months, however, storms in Florida are generally cyclonic and characterized as broad 

north-to-south trajectory cross-peninsula fronts. The remaining seasons, spring and 

autumn, are characterized by an uneven rainfall intermittent frontal sea breeze and 

random tropical storms (Cooper, et al., 1998; Fernald & Purdem, 1998).  

Large quantities of African dust are carried long distances by trade wind transport 

processes that affect Florida during the summer months (Garcia, et al., 2006; Guentzel, et 

al., 2001; Petersen, et al., 1998). Several European researchers have investigated the 
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effects of the African dust. All have found that calcium (Ca) ions dominate as the 

precipitation-neutralizing agent of the strong acidity of marine aerosols. Thus, alkaline 

precipitation prevails, and when there is the lack of the calcium dust, more acidic rain is 

observed (Glavas & Moschonas, 2002; Loye-Pilot & Morelli, 1988).  

 

Scavenging Effects of Rain  

The origins of the trajectories are important because of the scavenging activities 

of convective storms and frontal storms for the spatial and temporal trends in 

concentration and deposition. The transport of metals to the atmosphere is integral to 

biogeochemical cycling, and the dynamic nature of these transports accounts for deposits 

in remote areas far from the original sources. Long-range atmospheric transport occurs 

worldwide, and there are known natural sources of metals in the atmosphere from soil, 

sea salt, water, volcanic dust, and gas as well as anthropogenic emissions from fossil fuel 

combustion, industrial gas and particulates, and tillage. There is no national program in 

the United States or worldwide for assessing trace metals in atmospheric deposition. A 

review and assessment of trace metals and atmospheric deposition data from numerous 

studies were compiled to give a reference point for researchers (Galloway, et al., 1982). 

Galloway et al., (1982) reviewed the literature and compared the concentrations of metals 

in rainwater emission rates from “human sources and natural sources with a mobilization 

factor.” A modified version of the findings is illustrated in Table 2-1. 
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Table 2-1: Global Mobilization Factors Based on Annual Emission Rates. 
   Emissions(10μ gy¯¹) 

  
  

  Elements Natural Anthropogenic Mobilization Factor 

Cadmium(Cd) 2.90 55.00 19.00 

Chromium (Cr) 580.00 940.00 1.60 

Copper (Cu) 190.00 2,600.00 14.00 

Lead (Pb) 59.00 20,000.00 340.00 

Manganese (Mn) 6,100.00 3,200.00 0.52 

Nickel (Ni) 280.00 980.00 3.50 

Zinc (Zn) 360.00 8,400.00 23.00 

Source: Galloway et al., (1980) 

 

Table 2-1 illustrates the mobilization factor results which is one of the three 

different techniques examined by Galloway, et al., (1982). The mobilization factor is the 

measurement of the flux between the actual metal emission between natural, and 

anthropogenic sources. Upon examining the mobilization factor and enrichment factor, a 

comparison of atmospheric concentrations to the earth's crust concentration, which are 

predictive measures and the third technique, is the actual measurement of metal 

concentrations over time, historical trends. All three techniques, both the predictive 

conditions were in agreement with the historical trends, for the concentrations of Cd, Cu, 

Pb, and Zn had an increased rate of deposition. Galloway et al. (1982) argues that the 

processes that control the rate of atmospheric deposition of Cd, Cu, Pb, and Zn in the 
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eastern United States is at a minimum strongly influenced by the anthropogenic process. 

At the time, because of a lack of data from a systematic collection of metals in wet 

deposition, the investigations were divided into three categories: remote, rural and urban.  

The working definition of "…remote [is] any area of the lowest concentration 

[excluding] Antarctica and Arctic. Rural is defined as representing the regional 

backgrounds and not directly influenced by local anthropogenic emissions, [and] Urban 

any site in a city or elsewhere directly influenced by local anthropogenic emissions” 

(Galloway, et al., 1982). 

 

Table 2-2: Concentrations of Metals Ranges Found in Wet Deposition. 
Urban
Elements  Range (μgℓˉ¹) Median (μgℓˉ¹)

Cadmium (Cd) 0.48 ‐ 2.30 0.7

Chromium (Cr) 0.51 ‐ 15.00 3.2

Copper (Cu) 6.80 ‐120.00 41

Lead (Pb) 5.40 ‐147.00 44

Manganese (Mn) 1.90 ‐ 80.00 23

Nickel (Ni) 2.40 ‐114.00 12

Zinc (Zn) 18.00 ‐280.00 34
Rural
Elements Range (μgℓˉ¹) Median (μgℓˉ¹)

Cadmium (Cd) 0.08 ‐ 46.00 0.5

Chromium (Cr) <0.10 ‐ 30.00 0.88

Copper (Cu) 0.40 ‐ 150.00 5.4

Lead (Pb) 0.59 ‐ 64.00 12

Manganese (Mn) 0.20 ‐ 84.00 5.7

Nickel (Ni) 0.60 ‐ 48.00 2.4

Zinc (Zn) <1.00 ‐ 311.00 36
Remote
Elements Range (μgℓˉ¹) Median (μgℓˉ¹)

Cadmium (Cd) 0.004  ‐ 0.639 0.008

Chromium (Cr) ‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐

Copper (Cu) 0.035 ‐ 0.850 0.06

Lead (Pb) 0.020 ‐ 0.410 0.09

Manganese (Mn) 0.018 ‐ 0.320 0.194

Nickel (Ni) ‐‐‐‐‐‐‐‐‐ ‐‐‐‐

Zinc (Zn) 0.007 ‐ 1.100 0.22  

Source: Galloway et al., (1982) 
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Table 2-2 illustrates the wide ranges of rainwater concentrations of metals from 

wet depositions for the three different categories, with the median within these categories. 

It is noted there are orders of magnitude differences in observed concentrations for any 

constituent, which reflects different locations and sampling techniques. The urban median 

concentrations are higher, possibly because of the influence of point sources, whereas the 

remote sites were consistently lower. It is the physical characteristics of the metal and its 

compounds, in particle size, vapor pressure, heats of solution, and solubility, where the 

process affects the raindrop formation. Rain deposition is dependent on particle size and 

is determined by the rainout and the washout or scavenging. Fine particles and gases 

from convective thunderstorms which are considered tall and in the range of 12 to 16 km 

in altitude are generated in Florida in the wet season and have been recorded to scavenge 

particles from the middle and upper troposphere and are transformed in rain drops 

(Guentzel, et al., 2001). Several researchers in Florida have, ''…reported these tall 

convective thunderstorms entrain 60 percent of the air from the boundary level and 40 

percent from the troposphere." (Garcia, et al., 2006; Guentzel, et al., 2001; Petersen, et 

al., 1998; Viessman & Lewis, 2003). 

As the primary input for the hydrological cycle, precipitation type is defined by 

the vertical transport conditions generated, with the two most common found in Florida: 

convective precipitation in the summer and cyclonic precipitation in the winter (Fernald 

& Purdem, 1998; Viessman & Lewis, 2003). Convective type precipitation is typical of 

the tropics where the precipitation is created by the process of heated water vapor at the 

land surface that rises, creating an upwelling of vertical wind and downdrafts. The 

dynamic cooling of the water vapor results in condensation and precipitation; this 
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typically takes the form of light showers or extremely high intensity thunderstorms. 

Cyclonic type precipitation is associated with the uneven heating of the earth that creates 

high and low pressure large-scale air movement of non-frontal or frontal origin. Hence, 

precipitation varies geographically, temporally, and seasonally. Spatially, precipitation 

varies within the same storm precipitation and can considerably vary within a distance 20 

feet apart from two recording devices as much as 20 percent (Fernald & Purdem, 1998; 

Viessman & Lewis, 2003).   

 

Biogeochemical Processes 

These complex processes and interactions in a heterotrophic atmospheric 

environment is where the biogeochemical cycling of metal species occurs, and some are 

toxic (James N. Galloway, et al., 1982; Tanner & Wong, 2000). Atmospheric gases such 

as NOx(g) are adsorbed, causing acidification by nitric acid (HNO3
-) into the raindrop 

under the coexistence of gaseous sulfur dioxide (SO2(g)), gaseous nitrous oxide 

(HNO2(g)), and gaseous hydrogen peroxide (H2O2(g)) in washout and rainout 

scavenging. The atmospheric fluxes are important because increased pollution emissions 

alter the pH levels, metal deposition, and concentration of toxic metals. The chemical 

reactions caused by the disassociation and oxidation reactions of gases with the raindrops 

generates sulfate ions (SO4
2-) and hydrogen ions (H+) from the oxidation reaction of 

hydrogen sulfite ions (HSO3
-) with hydrogen peroxide (H2O2(aq)) in the raindrops. The 

oxidation reaction of hydrogen peroxide (H2O2(aq)) is an irreversible reaction, as shown 

in Equation 2.0. According to Henry’s Law of Constants (solubilities) characterize the 

equilibrium distribution between gas and liquid phases, where the equilibrium ratio in 
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liquid phase concentration to gas concentration is much larger than in gaseous sulfur 

dioxide (SO2(g)). The gaseous hydrogen peroxide (H2O2(g)) and gaseous nitric acid 

(HNO3
-(g)) are more soluble in water than gaseous sulfur dioxide (SO2(g)) (Alfonso & 

Raga, 2002; Bachmann, et al., 1993; Mudgal, et al., 2007; Seinfeld, 1975). Equations 2.1, 

and 2.2 illustrate these processes.  

HSO3
 H2O2 aq SO4

2‐ H  O       (Equation 2.0) 

       (Equation 2.1) 

       (Equation 2.2) 

 

Microbial Effects on Water Quality 

There are two modes of microbial contamination of harvested water from roof 

runoff:  roof contamination and cistern contamination. 

 

Roof Surface  

Numerous studies have analyzed the chemical composition of water. The 

prevalence of microbiological contaminants on rooftops has been less studied. The 

bacterial composition of roof runoff has not been widely explored in the published 

literature nor has the prevalence of microbiological contaminants. The literature review 

for the microbial presence on the rooftop and in the catchment entrainment to the storage 

tank is still of controversy, with Lye's (2002) data in Kentucky where he states the high 

bacteria was from the process of the catchment. Others disagree and regard the roof 

runoff as a source of clean water (Gould, 1999). Other researchers attribute the increased 
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coliform and fecal coliform counts to the antecedent period on the roof surface area 

(Yaziz, et al., 1989). Yaziz et al. (1989) reports a positive correlation between the 

Heterotrophic Plate Counts (HPC) and the duration of the antecedent dry period. 

 

Meteorological Influences on Microbial Concentrations on Roofs  

Aerobiological studies have found diurnal rhythms and a positive correlation with 

daily maximum temperatures, with monthly rainfall average, and temperature day-to-day 

spore levels for the fungal spores Alternaria (Corden & Millington, 2001). This research 

confirms the importance of rainfall and temperature on spore concentration where the 

occasional rainfall resulted in higher monthly concentration of Alternaria spores. This 

further demonstrates the seasonal meteorological influences on concentrations, which has 

been positively correlated, with the incidence of allergic and infectious outbreaks in 

United States, Australia, and the United Kingdom (Corden & Millington, 2001; Evans, et 

al., 2006) . The physical mass, size, shape of a virus, bacteria, and/or spore plays a role in 

efficient atmospheric dispersion. The wind velocity and other meteorological conditions 

such as relative humidity, direction of the air trajectory, and the frontal system have been 

shown under suitable conditions to spread airborne viruses more than 100 km (Jones & 

Harrison, 2004). Evans et al. (2007) reports wind direction influences the contribution of 

the total bacteria load on the roof area. There is a strong correlation of the HPC and the 

wind velocity, which is a function of the prevailing wind and location of the source 

contamination (Evans, et al., 2006; Evans, et al., 2007). The natural processes of UV 

exposures, temperature of the roof, physiochemical reactions of contact, surface 

complexation reactions, the surface charges on the suspended particles, the rate of 
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intensities and quantities of rainfall, and the microtransport and macrotransport 

mechanical movements across the roof surfaces are all processes that improve water 

quality. This improvement is supported by the observed microbial improvement in 

bacteria water quality in a collection system (Benjamin, 2002; Coombes, et al., 2000; 

Evans, et al., 2006; Tchobanoglous & Schroeder, 1985; Viesssman & Lewis, 2003; Zhu, 

et al., 2004). The roof surface collection system is the sum of the process of the 

catchment water entrainment as the first phase towards an integrated system.  

 

Cisterns 

There are risks associated with rainwater storage; yet in arid regions such as 

southern Australia, approximately 800,000 systems are in use by the rural population 

along with the urban population of Aliadiae (Heyworth et al., 1998). In a study of the five 

different types of cisterns in Micronesia, the examination  and report found that of the 

acceptable drinking quality, the ferro-cement cistern had the best water quality, and the 

metal cisterns had the poorest water quality (Dillaha & Zolan, 1985). In a comparative 

study of the water quality of cisterns in the area, receiving acidic deposition–Kentucky 

and Tennessee–compared to regions that had not received acidic deposition–St. Maarten, 

Netherlands Antilles–the rainwater was neutralized upon contact with masonry cisterns 

(Olem & Berthouex, 1989).  

Samples from stored rainwater in tanks (in place) reported by Thomas and Greene 

(1993) were high in bacteria counts due to the tanks’ environments. In contrast, other 

researchers state that it is the stored rainwater tank environment that reduces the bacteria 

counts, and different water depths in the tanks foster different bacteria counts within that 
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particular zone within the cistern tank (Spinks, et al., 2006). In some circumstances, 

geography dictates that the only viable water source is to harvest roof runoff, particularly 

on the islands of the South Pacific (Connell & Lea, 1992; Ebi, et al., 2006; White, et al., 

2007), on the United States Virgin Islands (Crabtree, et al., 1996; Heymann, 2004; 

Robertson, et al., 1992; Wyngaarden & Smith, 1985) and on some of the Greek islands 

(Sazakli, et al., 2007).  

 

Cisterns Founded in the South Pacific 

In these small island countries in the Pacific, the water resources are limited due 

to the scarcity of potable fresh water. These land masses are relatively small, preventing 

adequate groundwater storage on islands that have an elevation of a few meters above sea 

level, whereas others are several meters above sea level (Connell & Lea, 1992). The 

population of these islands range from inhabited and rural to urban concentrations of 

large, unorganized population migrations into urban areas that have no water or sanitation 

infrastructure, a situation typically found in most Third World cities. Many small island 

countries have relatively high rainfalls that are constrained by small land areas and atoll 

geology, and water is usually treated as a common resource (White, et al., 2007). The 

socio-economical pressures, combined with cultural value (or lack of value) of water 

resources, and an increasing population growth competing for limited resources such as 

water, housing, and employment creates an unsustainable situation for these islands. In 

higher density population areas, pit latrines replace defecation on the beach, while the 

water supply source moves to shallow groundwater wells because of demand, where the 

pits lead to groundwater contamination (Ebi, et al., 2006; White, et al., 2007).  
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Usually in small tropical islands and rural areas of larger islands, drinking water is 

from roof catchments because the shallow wells have a high risk of contamination due to 

the lack of sanitation and the presence of industrial pollution (Taylor, 2001). The South 

Pacific island region is climatically sensitive. This region also has experienced extreme 

droughts as well as several severe storms and any changes in precipitation or rising sea 

levels will present challenges to the water supply and public health (Ebi, et al., 2006). 

The United Nations’ recommendations for the atolls and many of the other small islands 

of the South Pacific include a strategy of conjunctive use of different sources of water 

such as combining the use of rainwater with groundwater (Taylor, 2001). The South 

Pacific’s haphazard approach to waters resources is a contrast to the methodical 

development and reliance of the U.S. Virgin Islands on harvested roof runoff. 

 

Cisterns Founded in the U.S. and British Virgins Islands 

The U.S. and British Virgin Islands have a compulsory requirement in design and 

construction that a cistern must be used in every building (Crabtree, et al., 1996; Lye, 

2002). Title 29, chapter 3, of the Virgin Islands Building Code, requires ten gallons-per-

square foot of roof for a single story dwelling and requires fifteen gallons-per-square-foot 

of roof for a multi-story dwelling. Crabtree et al. (1996) “…found no significant 

correlations…between cysts and oocysts and the bacteria or turbidity.” However, they 

reported a statistically significant association between the heterotrophic plate counts and 

total coliform counts (r = 0.42638, P = 0.0061), and they also reported the association of 

the heterotrophic plate and the turbidity readings (r = 0.3249, P = 0.0305) (Crabtree, et 

al., 1996). The robustness of Giardia cysts' and Cryptosporidium oocysts' viability and 
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hardiness to resist disinfection are a public health concern in drinking water. There are 

many species of Cryptosporidium; it can be found in 45 vertebrate species, including 

birds, rodents, reptiles, lizards, frogs, small mammals (squirrels, cats and dogs), and large 

mammals (cattle and sheep). Giardia is similarly found in a large variety of invertebrate 

species like Cryptosporidium (Crabtree, et al., 1996; Heymann, 2004; Robertson, et al., 

1992). The species Cryptosporidium parvum from mammals is the only species 

associated with disease for humans, whereas Guardia lamblia is the species associated 

with human infections (Heymann, 2004; Wyngaarden & Smith, 1985). An investigation 

of cisterns in the U.S. and British Virgin Islands over a one-year period concluded that 81 

percent of the samples from public cisterns were positive for Cryptosporidium or 

Giardia, and only 47 percent of the private cisterns were positive for both (Crabtree, et 

al., 1996). However, the study did not examine the cysts and oocysts for viability. The 

researchers alluded to the fact that more research needs to be done in reference to 

viability and suggested that the warm temperatures of 30°C may facilitate inactivation. 

Investigators in a non-laboratory setting monitoring the oocysts' viability found 

desiccation was 100 percent lethal, freezing was also lethal (but a small portion can 

survive for extended periods of time), whereas a significant portion of oocysts were killed 

in all the environments investigated over a six-month period (Robertson, et al., 1992). 

The vast majority of the investigations in the literature, counted the presence of cysts or 

oocysts in excretions as infections, and the measures used are not determined by illness 

(Heymann, 2004; Stites, et al., 1987; Waterborne Pathogens: manual of water supply 

practices, 1999). There are conflicting reports in the literature regarding the high 

percentage of asymptomatic children and adults in the population, which will be 
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presented in more detail in the discussion section (Eisenberg, et al., 2007; Eisenberg, et 

al., 1998; Haas, et al., 1996; Haas, et al., 1991). These findings in the cisterns and water 

supply of the U.S. and British Virgin Islands are very different from the findings in 

Kefalonia Island, Greece.  

 

Cisterns Founded in the Greece Islands 

The island of Kefalonia has the similar limited water resources as all islands 

which have tourism as the major industry. Kefalonia’s population of 2,000 doubles in the 

winter and triples in the summer according to the investigator (Sazakli, et al., 2007). The 

investigation of the water quality of rainwater, catchment runoff, and cisterns over a 

period of three years resulted in favorable physiochemical water quality for rainwater 

collection. The microbiological water quality of the rainwater is in concordance with 

previous studies (Crabtree, et al., 1996; Evans, et al., 2006; Evans, et al., 2007), with the 

microbial indicators and pathogens counts found to vary greatly. Sazakli et al. (2007) 

investigation, found the microbial indicators counts were in low numbers but in high 

percentages of the samples. The microbiological quality using common microbial indices 

were contaminated in 80.3 percent of the samples (n= 156) (Sazakli, et al., 2007).  These 

results are similar to the U.S. Virgin Islands’ contamination of 81 percent (n=16) for 

public cisterns and 47 percent for private cisterns (n=30) (Crabtree, et al., 1996). In this 

particular investigation, the microbial contamination was a result of the contact with the 

catchment area rather than the water itself (Crabtree, et al., 1996). Upon examination of a 

number of the samples taken during rainfall events, the investigators found there was no 

microbiological contamination present in a rainfall sample (Sazakli, et al., 2007). The 
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investigators also detected a statistical difference (p< 0.05) in the microbiological counts 

at 22°C and 37°C, indicating that there were higher count values with a higher 

temperature. This contrasts to Crabtree et al. (1996), who suggested the possible 

inactivation of bacteria cysts and oocysts at higher temperatures. Sazakli, et al. (2007) 

found the microbiological indicators showed the seasonal variations with a high count in 

autumn and a decreased count in winter. In addition, they found that microbiological 

indicators have a high negative correlation with chlorides, which illustrates the 

importance of location of the cistern, environment, and meteorological effects on the 

water quality. 

 

Process That Changes Rainwater pH 

According to several researchers, usually 80 percent of the wet deposition of the 

heavy metals are dissolved in rainwater (Garcia, et al., 2006; Kaya & Tuncel, 1997). The 

solubility of elements depends on a variety of factors including rainwater pH and the type 

of particles that are associated in the atmosphere. If the element is already soluble in the 

rainwater, the higher the solubility and less significant effect the pH has on the element. 

Variation may be related to differences in particle size and the efficiency of scavenging 

(J.N. Galloway, et al., 1993). The reactions within the raindrop become a function of the 

drop size, where oxidation by H2O2  at a pH of less than 5 occurs in small raindrops 

where oxidation by O3 at pH values greater than five occurs in large raindrops 

(Bachmann, et al., 1993). Bachmann et al. (1993) states the radius variations of the 

raindrops appear to be dependent on the efficiency of scavenged raindrops. Industrial 

aerosol particles such as Fe3+ and Mn2+ may influence the oxidation of SO2. Likewise, the 
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aerosol particles of Ca2+ and Mg2+  may have a significant effect on the droplet pH 

(Williams, et al., 1988).  

The presence of H2S4, HN3, and organic acids, small ligands, organic 

macromolecules, and natural particles, depend on the availability of the acidic and basic 

species, but the reaction, and reaction between the reactions can be neutralized 

predominantly by NH3 and CaCO3 (Kaya & Tuncel, 1997; Manahan, 1990, 1994). An 

example of neutralizing the acidic raindrop conditions is the effect of long distance 

transport of soil particulates from Ca found in desert areas and African dust on the 

precipitation and atmospheric deposition.  

The main effect on rainwater pH is not from a local anthropogenic source; rather, 

this regional long transport of aerosol particles neutralizes an acidic rain event (Glavas & 

Moschonas, 2002; Herut, et al., 2000). Likewise, the examination of storm origin 

suggests Cu is present in higher concentrations in continental storms when compared to 

marine dominated storms. These continental storms had elevated concentrations 

hydrogen ion in rainwater relative to marine dominated events, where a concentration of 

hydrogen ion has differed by an order of magnitude (Tanner & Fai, 2000; Tanner & 

Wong, 2000). This would imply that Cu is an anthropogenic source similar to Fe.  

In contrast to the impact and effect of storm origin, the Cr total concentrations 

were statistically equivalent, for both continental and marine origins have no effect on the 

concentration of Cr. (Kieber, et al., 2004; Kieber, et al., 2002). A negative correlation of 

the total copper concentrations in rain amounts indicates that Cu is a storm washout, 

which implies the origin is of anthropogenic local sources, and the copper concentration 

decreases as rain increases (Kieber, et al., 2005; Kieber, et al., 2004; Kieber, et al., 2002). 
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However, Fe and Cr had no correlation with rain volume, suggesting that concentrations 

are the result of the  long distance transport at the site (Kieber, et al., 2003; Kieber, et al., 

2002). 

In addition to the complexities of thunderstorms, there is a variety of processes 

occurring simultaneously, such as activity within the storm itself, besides the oxidations 

of various metals (Bachmann, et al., 1993). Recent literature suggests that lightning 

affects the dynamics of pH in the atmosphere of rainwater, subsequently affecting the 

solubility of metals within a storm event (Railsback, 1997). Railsback (1997) suggests the 

lightning generates in-cloud oxidization of SO2 and NO2, which contribute to rainwater 

having a lower pH associated with lightning. A comparison of solubilities of metals in 

rainwater from the literature in two different research locations is illustrated in Table 2-3.  
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Table 2-3: pH Effects on Solubilities of Metals in Rainwater Between Locations in 
Turkey and Mexico. 

 Ankara 
 Turkey 

 Ankara 
 Turkey 

Rancho Viejo 
Edo.

 Mexico
 Ankara 
 Turkey 

Rancho 
Viejo Edo.
 Mexico

solubility of solubility of solubility of solubility of solubility of
element in element in element in element in element in 
whole data sample with sample with sample with sample with

set pH < 5 pH < 5 pH > 5 pH > 5
% % % % %

Mg2 + 61 ± 26 64 ± 23 ma 50 ± 25 na

Cd 88 ± 17 93 ± 10 82.6 79 ± t9 73.9

Cu 49 ± 27 53 ± 22 na 30 ± 27 na

Cr 35 ± 29 31 ± 28 66.7 Il ± 15 39.3

Zn 43 ± 29 46 ± 27 na 38 ± 30 na

Pb 40 ± 35 40 ± 33 62.4 II ± 15 43.3

Fe 17 ± 16 21 ± 19 na 12 ± 11 na

Ni 72 ± 31 84 ± 19 56.2 18 ± 21 63.4

Mn na na 74.6 na 75.6

Element

Source: (Baez, et al., 2006; Kaya & Tuncel, 1997)  

 

In Table 2-3, illustrates the solubilities are different and the range in variance 

between different locations.  One example of this was for Ni at the pH values > 5 in the 

individual samples; yet in the bulk samples for Ankara, Turkey, the corresponding values 

are all in the same range as the Rancho Viejo Endo, Mexico samples.  
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Public Policy for Drinking Water 

Federal Regulations for Drinking Water in the United States 

There was not a federal program to protect drinking water quality in the United 

States until Congress passed the Safe Drinking Water Act (SDWA) in 1974, which was 

subsequently amended in 1996 and again in 1999. This Act created a federal-state 

partnership, which ensures compliance with federal regulation to protect the public from 

a variety of contaminants in drinking water. The Environmental Protection Agency 

(EPA) establishes maximum contaminant levels (MCLs) for more than 90 biological, 

chemical, and radioactive pollutants (E.P.A., 2002a, 2002b). These are federal legally 

enforceable mandatory compliances as the primary and secondary drinking standards 

whereas the primary standards require compliance and secondary are recommendations 

of unregulated drinking water contaminants that may pose a health risk (E.P.A., 2002a, 

2002b, 2005). The MCLs must be met by every community water system, which the EPA 

defines as any water conveyance having at least 15 connections year-round or serving 25 

or more people. Currently the EPA is investigating and researching an additional 

contaminant candidate list of 51 unregulated contaminants. If the investigation and data 

show specific contaminants present a public health risk, a regulatory determination is 

made to add these contaminants to the primary drinking standards (E.P.A., 2005).  

 

State of Texas Regulations for Rainwater Harvesting   

The Texas government does not regulate private water systems. According to a 

2004 report by the Texas Natural Resource Conservation Commission (TNRCC), “It is 

up to the individual to regulate their own water system” (Texas Natural Resource 
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Conservation Commission, 2004). The Texas population shows a growing awareness 

regarding the limit of water resources and the need for DRRH. For example, the cities of 

Austin and San Antonio are providing rebates of up to $450 to homeowners who install 

DRRH, and other counties waive application fees and exempt the DRRH system from 

property taxes as an incentive (TNRCC, 2004). No federal or Texas water quality 

standards exist currently; however, the Texas legislature established a rainwater 

harvesting evaluation committee in May 2005 to recommend minimum standards (Texas 

Water Development Board, 2005). 

 

State of Florida Regulations for Rainwater Harvesting   

Florida's Administrative Code Chapter 64 E-8 sets the standards for private and 

limited use of water systems, and it establishes requirements and MCLs for community 

public works systems in the state of Florida. The Department of Health administers 

Chapter 64E-8 through program coordination with all of Florida's 67 county health 

departments. A review of chapter 64E-8 and other Florida administrative codes did not 

produce a regulatory code for roof runoff. A further investigation of chapter 373 of the 

Florida Statutes and the State of Florida water policy set forth in Chapter 62-40 did not 

find regulations for use of roof runoff at this time.  
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Regulations for Drinking Water in the Western United States 

In the states located to the west of the Mississippi River, water rights are 

classified much like real property and whoever diverts the water first retains priority. In 

contrast, in the states located east of the Mississippi River, water rights are based upon 

the British Riparian Rights system, which allows a property owner the water rights to all 

water on their properties provided that usage will not impact downstream property 

owners. For example, in the Four Corners Region, which consists of the intersection of 

the states of Arizona, Colorado, New Mexico, and Utah, recently Colorado passed a law 

allowing limited rooftop rainfall collection. Prior to this 2009 ruling, it was illegal to 

gather the rainwater from a property’s rooftop unless the property owner also owned the 

water rights to said property. In Santa Fe, New Mexico, it is now mandatory that new 

construction have rainfall catchments and in Tucson, Arizona, rainfall catchment is 

actively promoted for all new construction as well (Johnson, 2009). However in Utah, it 

is still illegal to harvest rainwater from a property owner’s roof unless the property owner 

has water rights to said property. If the property owner does not have the water rights to a 

property, they must be appropriated via permit through the State Engineer and the 

original water rights' owner must agree to this arrangement. For most of the history of the 

United States, the water rights to states west of the Mississippi River were determined by 

diversion of a water body and have been sold off much like real estate properties (Utah 

Division of Water Rights, 2009). 
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Regulations for Drinking Water in Other Countries  

In Australia, 13 percent of all households use rainwater tanks as a source of 

drinking water. In southern Australia, the figure is 37 percent (Cunliffe, 1998). In the 

capital cities, 6.5 percent of households use the tanks, but the usage rate is 28 percent in 

the southern city of Adelaide (Australian Bureau of Statistics, 1994). Of rural dwellers, 

82 percent rely on DRRH as their primary water source (Heyworth, et al., 1998). 

Australian rainwater tanks are constructed in accordance with the Australian/New 

Zealand standards for material selection, installation, and associated fixtures and fittings. 

The Australian/New Zealand literature emphasizes the proper selection, construction, and 

maintenance of the tanks. The brief discussion of the types of roofing materials available 

(tiles, terracotta tiles, galvanized steel, polycarbonate sheeting, slate, and wooden 

shingles) recommends that consumers consult the manufacturer as to the materials’ 

suitability for DRRH. The Australian literature does not discuss the safety of different 

roofing materials.  

Regarding public attitudes toward DRRH, a survey of the Australian population 

found that most citizens thought DRRH was both necessary and safe (Australian Bureau 

of Statistics, 1994). This population preference is for rainwater; therefore, they utilize 

rainwater tanks in both urban and rural settings and even when the municipal water 

supply is available. Researchers also reported considerable support for water 

conservation and recognition that water is a limited resource (Australian Bureau of 

Statistics, 1994). In summary, specific research on rooftop materials’ effects on the 

quality of DRRH water is lacking. Research on public perception of DRRH is limited to 

the Australian case.  
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Stormwater Compared to Roof Runoff 

Numerous effects of urban stormwater runoff shows that the best management 

practices are to manage the stormwater using low-impact development and community 

design (Gaffield, et al., 2003). The authors raise concern that the stormwater, while more 

readily accessible than rooftop runoff, contains more potential risk factors such as high 

nitrogen, vehicle exhaust, and various other sediments. In general, there is more literature 

on impervious area, and highway runoff conveyance such as solids, hydrocarbons, heavy 

metals, and chemicals. Researchers found high concentrations of zinc and other metals in 

the dissolved form in 35 to 65 percent of the stormwater runoff whole-water samples. 

The high proportions of the metals were bioavailable in the water and soil sediment 

samples (Marsalek, et al., 1997; Stumm & Morgan, 1996). Tire-wear is a source of Zn 

where it is used in the manufacturing process to facilitate the vulcanization of the rubber 

(Councell, et al., 2004). The research on stormwater runoff quality in Texas found that 

the maximum contaminant levels MCLs for the EPA's drinking water regulations were 

exceeded 42 times for mercury (Hg) and 23 times for lead (Pb) in the total 272 samples 

(Zartman, et al., 2001). There is research that is beginning to fill the gap in the literature, 

quantifying water quality difference between the rooftop runoff and stormwater runoff 

per se in the context of urban roads and highways (Gobel, et al., 2007). Table 2-4 

illustrates the difference in the concentration of the various locations and the differences 

found in the literature review. 
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Table 2-4: Comparisons of Concentrations from Rainfall and Roof Runoff. 
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CHAPTER III: METHODOLOGY 
 

This chapter addresses the methodology of water quality sampling and collection 

roof runoff, and includes the following subsections: material selection and description, 

instrumentation, data collection procedures, and data analysis.  

 
Material Selection and Description 

Roof Panels 

Two 4' X 8' roofing panels were constructed in accordance with the local and 

Florida state building codes. The panels were constructed from CDX roofing plywood, 

with 1"X 2" pine boards for the frame and 1"X 6" fascia boards for the gutter framing. 

The panel’s surface was covered with roofing paper, and the edges were encased with a 

galvanized drip edge. The wooden panels were then fitted with the five experimental 

surfaces. The first panel was topped with S4, galvanized steel, half painted with the 

manufacturer’s acrylic paint, and the other half with S5, galvanized steel unpainted. The 

second panel was fitted one-third with S1, a natural clay barrel, one-third with S2, a 

glazed clay barrel, and the remaining third with S3, a flat shaker impregnated tile. Each 

section of the panels had its own gutter and downspout made of painted galvanized steel, 

since conventional plastic materials tend to accumulate trace metals. The water samples 

drained directly into individual high-density polyethylene HDPE five-gallon containers. 

Each roofing panel was supported with concrete blocks; one side was 44½ inches above 

the ground and the other was 30½ inches above the ground. This slope was set to 
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accommodate most building codes in the southeastern United States, and similar to those 

of the majority of Florida roofs, with an approximate fifteen-degree pitch. 

 

Control or Reference Sample   

A sixth container was used for collection of the control samples. The HDPE five-

gallon control container was elevated to the same height as the experimental panels, 30½ 

inches above the ground, and placed three feet from the corner of the nearest 

experimental panel to prevent collection of deflected rainwater bouncing from the panels. 

This container was left open to the air and subject to natural rain events. The collected 

water was tested after each rain event. The differences between the control sample and 

the rooftop-collected samples clearly showed the influence of surface materials on water 

quality.  

 

Instrumentation 

This section briefly describes the instrumentation sensitivity, accuracy and 

detection limits of water quality testing.  

 

Field Sample Instrumentation 

The pH was measured using the Oakton Instruments Acorn series pH 5, with 

resolution at 0.01 pH, and with accuracy +/-0.01 pH at the field site. The meter was 

calibrated using three point USA pre-pack standardized solutions for pH 4.01, 7.00, and 

10.01. In order to avoid contamination, prior to inserting the probe into the next sample, 
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the probe was rinsed with pre-pack standardized rinse solution. Once the digital meter 

stabilized, the reading was recorded in the laboratory research notebook. 

The total dissolved solids (TDS) reading at the field site was accomplished using 

a Myron L deluxe DS meter model 532.  The calibration of the meter was built into the 

instrument, with accuracy of +/-2 percent of the full scale. The measuring cup was filled 

three times with the sample to receive an accurate reading. On the third measure, the 

scale was selected, and the reading recorded. The instrument’s measuring cup was then 

rinsed with distilled water before proceeding to the next sample. 

The alkalinity at the field site was measured using a Hach test kit model Al-Ap 

colorimetric test in accordance with the kit’s instructions and recommendations. After the 

titration was completed, the quantities of drops were recorded in the laboratory notebook 

and the titrated sample was disposed of, and the small vial was rinsed with distilled water 

prior to proceeding to the next sample. 

 

Biological Instrumentation   

If there was any sample volume left in the field, a sterile 1320 ml sample (volume 

permitting) was taken for biological testing. It was sealed and refrigerated, or transported 

to the laboratory in an ice chest. The sample was kept cold in the University of South 

Florida’s College of Public Health's walk-in laboratory research cooler until it was 

analyzed, and was plated within eight hours. Biological testing was according to the 

Millipore method. If sample volume permitted, the Standard Pour Plating Method was 

also performed. According to the Millipore method, each 500 ml of the sample was 

individually filtered through a sterile glass funnel, which has a sterile 45μg filter to 
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collect microorganisms. Using a standard laboratory vacuum pump, the water sample was 

filtered through a sterile paper filter with the water passing into a fritted flask. Once the 

sample had passed through the assemblage, the filter was removed with sterile tweezers 

and placed on a certified sterile media-specific agar plate for heterotrophic colonies. All 

of the above occurred in the University of South Florida’s College of Public Health’s Cell 

Media Laboratory in a sterile, negative hood environment. This procedure was performed 

twice for each sample, hence two individual plates per sample. The closed agar plate was 

sealed with parafilm from the outside environment, retaining its moisture content. The 

plates were placed in the College’s walk–in incubator assigned to this project at the 

temperature of 35°C for 48 hours to develop the culture colonies (Clesceri, et al., 1998). 

The plates were then examined in the media laboratory under the microscope for 

heterotrophic colonies. The specific heterotrophic agar’s colorimetric system aided in 

identification and colony counts, but quantifying the organisms precisely was out of the 

scope of this investigation. Afterwards, the assemblage used was sent for cleaning. After 

all the U.S. E.P.A. certified biological sterile samples jars had been used for the sample 

collection, a method was applied and used for the reuse of the bottles and caps in 

accordance with Standard Methods (Clesceri, et al., 1998; E.P.A., 1992). All the 

apparatus components and sample bottles along with sealing caps were washed and 

cleaned in the automatic laboratory instrument washing and drying machine. Then they 

were placed in the autoclave for sterilization of the apparatus and the dark certified glass 

sampling jars for future collection in accordance to operating procedures and Standard 

Methods (Clesceri, et al., 1998; E.P.A., 1992). There were numerous occasions that there 

was insufficient volume for the Standard Methods' Millipore plate method. 
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Meteorological Instrumentation  

Due to the specificity of the rain events in this subtropical region (weather can 

vary significantly within 20 m), the primary data was obtained at the research site-

specific weather station during the period of 28 August 2005 through 25 February 2006, 

using the Davis Instruments “Vantage Pro2 Plus.” 

At the station the following variables were monitored: 

• Date and time in minute intervals 

• Ambient temperature, temperature under each of the five surfaces, and 

temperature near collection containers  

• Humidity, dew point, and evapotranspiration rate 

• Wind speed, wind direction, wind run, wind chill, and wind sample 

• High wind speed and high direction of wind (shows trajectory of the 

rainstorm) 

• Barometric pressure 

• Rain and rain rate 

• Solar energy, solar radiation, and UV dose 

• Hot and cool days between rain events 

• Temp-humidity-wind (THW) index and temp-humidity-sun–wind 

(THSW) index 

• Wind chill factor and heat index. 
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The meteorological data recorded 296,113 individual records and resulted in 

11,844,520 data points. The data was collected on one-minute intervals continuously until 

the end of the research program. Measurements of ISS reception and Arc Interval 

monitored the function of the weather station itself. This indicator provided a mechanism 

as to the quality and integrity of the data at that particular time. The ISS and Arc Interval 

provided the strength of the wireless reception between the outside monitoring device and 

the data logger to the computer inside the house. It was scientifically prudent to data log 

all the variables possible so that bias and selection type errors could be diminished. Any 

of these variables may affect the quality of the samples. Temperatures of the panels were 

monitored because of possible effect on organism growth and of water evaporation on the 

panel. After the data was analyzed, only those variables that show statistically significant 

correlations were retained in the model. Figure 3-1 is a picture of the residential location 

of the meteorological apparatus and the experimental material in-situ used in the 

research. 
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Figure 3-1: Photo of the Apparatus and Monitoring Station  
 

Analytical Instrumentation 

Atomic Absorption Spectrophotometry (AAS) was used to measure the analyte 

concentration of a few trace metals found in several of the collected water samples from 

the six different panels (more details on this are in the Data Collection Procedures 

section, under Preliminary Testing). Some samples were split, with one part analyzed 

with instrumentation at the University, and all the others were analyzed at a certified 

reference laboratory: Benchmark Enviroanalytical Laboratories. An aliquot was retained 

for quality assurance. Using Varian Graphite Furnace AAS permits determination of the 

trace metals with sensitivities and detection limits 20 to 1000 times better than those of 

conventional flame techniques, without the need for extraction or sample concentration 

(Clesceri et al., 1998). Many elements can be detected at concentrations as low as 1.0 µg 

per liter. Some preliminary elements of interest for the investigation were Cd, Co, Cr, Cu, 

Fe, Ni, Mn, Pb, and Zn because of their known health effects; however, Pb was the 
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chosen for the preliminary go or no go analyses. Ascorbic acid and palladium solution 

(500-2000 μg/ml) were used as matrix modifiers to reduce background noise of the 

detector. These analyses confirmed the presence of the constituents’ concentration levels 

and different concentrations on different surfaces, and this exploratory investigation 

provided a valid reason to proceed with this completed study and final analyses. The data 

for the preliminary investigation is presented in a table format in Chapter IV. 

All of the final analyses were performed using Inductive Coupled Plasma-Mass 

Spectrometry (ICP-MS) which conforms to EPA standards at the certified EPA, Florida, 

and nationally certified reference laboratory, Benchmark Enviroanalytical Laboratories. 

The samples required that 5,364 individual chemical analyses were performed in 

triplicate to establish the mean for the final concentration of 1,788 individual chemical 

observations of the following elements: Cd, Cr, Cu, Fe, Ni, Mg, Mn, Pb, and Zn. These 

concentration levels included all the automated quality assurances and standard 

laboratory referenced calibrations after every twenty samples. The calibration required 

calibration for each element, several blanks of known reference solutions for the specific 

element, and quality assurance references for the sensitivity and accuracy of the specific. 

As discussed in the literature review, the concern for roof runoff water was to 

meet the EPA primary drinking water standards for Cd, Cu, Pb, whereas Fe, Mg, and Zn 

were secondary standards. The objective was to determine the concentrations of some 

elements that could pose a health risk in water roof runoff and to determine if the 

concentration exceeds the national drinking standards; if the concentration exceeded the 

standards, the objective was then to assess that risk (Aldrich & Griffith, 2002). The data 

for the elements' concentration analyses is presented in a table format in Chapter IV. 
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Data Collection Procedures 

Preliminary Testing 

In order to provide a baseline for future analysis, preliminary testing was 

performed before the actual research project commenced. The rainwater collected in the 

control container and rainwater runoff from the five panels' collection containers were 

tested for pH, alkalinity, and total dissolved solids, and Pb concentration was analyzed 

using the AA. There was a significant difference in pH and in levels of metals between 

the control rainwater and the panel runoff. The metals' concentration results from the five 

different panels varied significantly, enough to warrant proceeding with the multiple 

variable investigation. The preliminary data is discussed and illustrated in Chapter IV.  

 

Primary Meteorological Data Collection 

Prior to starting the research, a preliminary study, was conducted to ensure the 

meteorological station would properly function and integrate with the collection database. 

This site-specific station monitored 40 separate weather variables at one-minute intervals 

during this period. The meteorological system recorded 296,113 individual records and 

11,844,520 individual data points. The type of rainfall events in the region required a 

station on-site because of variation in rain and convective nature of storms, which can 

change within 20 meters of a location. Bias and selection type errors were diminished by 

logging all the variables possible. Any of these variables may affect the quality of the 

samples. Temperatures of the panels were monitored because this may affect organism 

growth on the panel and evaporation. After the data was analyzed, only those variables 

that showed statistically significant correlations were retained in the model. 
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Primary Water Data Collection 

Rainwater washed down each sloped surface, which was collected in each 

surface’s individual gutter, and then drained into individual collection containers. The 

composite samples were tested according to the EPA (E.P.A., 2002a, 2002b) and 

Standard Methods (Clesceri, et al., 1998). The water runoff samples contained dissolved, 

suspended material, and the particulate matter that had accumulated. Each vial or bottle 

met specifications established in the EPA's “Specification and Guidance for 

Contaminant–Free Sample Containers” (E.P.A., 1992). From each collection container, a 

one 40 ml sample was preserved with 1 ml trace metal-grade HNO3 that was added in the 

field at time of sampling to prevent speciation of the metals. The vial was sealed and 

taken to the laboratory for metals testing. The remainder of the sample was tested for pH, 

total dissolved solids, and alkalinity at the field site. If the volume remaining permitted, a 

sterile 1320 ml sample was taken for biological testing; the sterile bottle was sealed with 

the cap and refrigerated or transported to the laboratory in an ice chest. The sample was 

kept cold until it was analyzed and was plated within eight hours. The remaining water 

was discarded, and the container was placed back under its respective waterspout for the 

next rain event.  

The chemical and atmospheric processes at the surface of the panel are a major 

concern in periods of wet and dry deposition in the harvesting roof rainwater. The control 

sample provided the reference for establishing possible interaction between the roofing 

material and the rainwater. Water samples from each panel and the control were analyzed 

for dissolved heavy metals after each rain event. 
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The literature indicates that low dosage chronic exposure to metals in drinking 

water may lead to serious health conditions (Aldrich & Griffith, 2002; Hee, 1993; Louvar 

& Louvar, 1998; Manahan, 1991; Ness, 1994). The analysis of the water quality is critical 

in the development and design of the water model for water use. For drinking water, the 

EPA has established maximum contaminant level (MCL) for primary trace contaminants, 

which are arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and 

mercury (Hg); and secondary trace contaminants, which are iron (Fe), magnesium (Mn), 

total dissolved solids, and zinc (Zn). Based upon these criteria, it was decided that each 

panel sample would be analyzed for Cd, Cr, Cu, Fe, Ni, Mg, Mn, Pb, and Zn. The 

sampling and analyses for these trace metals occurred over a period of nine months, 

which permitted capturing conditions during the wet and dry season. These analyses 

contributed to the economics and public health portion of the model for determining if a 

particular roofing material increased or reduced water quality through the leaching or 

absorption processes.   
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Data Analysis 

Several programs were used to process and manage the dataset, in particular: 

Microsoft Access, for managing the 11,844,560 weather data-points; Microsoft Excel, for 

managing the parse data in a more efficient structure; and Origin Labs Origin 7.5, for 

analysis and charts. The statistical program used for the analysis was SAS 9.1.3 (SAS 

Institute, Carey, NC.); a number of statistical analyses were used in this study such as 

groups paired student t-test analyses, correlation testing, and parametric and 

nonparametric testing.    

 

Meteorological Data Analysis 

The weather data from the site location recorded 296,114 records of 40 different 

variables. The size of the database required the use of Microsoft Access to create queries 

to parse the data to only those events that produced sufficient rainfall to allow collection 

of water samples, since there were rain events that occurred which did not produce a 

sufficient volume of rainwater for a chemical analysis. Microsoft Access queries were 

used to determine the time the rain event occurred and to extract all data related to that 

event. The query rule for an event would require a positive indication of both rain and 

beginning intensity, while the query rule for the end of a storm was indicated by zero (0) 

for both rain rate and accumulation. In addition, the various Access queries were used to 

calculate the number of antecedent days prior to the rain event, and this information was 

added to the dataset. The parse data then was transferred to Microsoft Excel for 

additional graphing and analyses, creating a more manageable dataset. The categorical 

variables, such as wind direction, were analyzed using the program SAS (SAS Institute, 
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Carey, NC.), for the prevailing wind direction over the storm periods or periods during 

that sample date. The weather data was then compiled with concentration analyses from 

the water samples using Inductive Plasma–Mass Spectrometry (ICP-MS).  

 

Antecedent Historical Analysis 

The historical data obtained from the Southwest Water District Management was 

analyzed using SAS for the frequency analysis of the antecedents from 01 January 2000 

through 25 December 2006 for site-55, site-56, and site-396 (the closest government 

weather stations to the research site-specific station). These numbers were also used as 

parameters and as means for the development of the economical portion of the rational 

model.  

 

Rainfall Data Records for the Model  

The site locations provided accurate meteorological data over nine (9) months for 

both the dry and wet periods. However, rainfall data for a longer period was required to 

develop the model accurately. A digital data file was obtained from the National Climatic 

Data Center (NCDC) for a station site COOPID 84797 Lakeland, Florida (National 

Climatic Data Center, 2009). This weather station was the nearest to the research location 

site that was representative of general area conditions. This weather station had 

continuous 15-minute interval rainfall records over the most recent period of time 

from1997 through 1998.  If any of the individual records were flagged or the entry was 

questioned, it was removed from the dataset. The use of this data file in the development 

of the model is discussed in Chapter VI. 
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Experimental Design 

Precipitation and runoff are often considered random variables because of the 

complexity of understanding the atmospheric processes that are known to drive 

precipitation (Viessman & Lewis, 2003). An experimental design is based on collection 

of a control sample and the difference between the control concentration and the 

collected samples' concentrations from the various roof surfaces. The paired t-test 

analysis of data was used because the samples are not independent samples (Box, et al., 

2005; Frigon & Mathews, 1997; Kachigan, 1991; Sirkin, 1994). This statistical 

methodology provides a mechanism of comparison between the control and the other 

surface concentrations. Due to the Central Limit Theorem, a sample size of thirty will 

often result in sample distributions that appear normally distributed even if the original 

population deviates from a normal distribution, hence the need for thirty or more rain 

events for the experiment (Box, et al., 2005; Kachigan, 1991).    

 

Sample Size  

All measurements were performed in triplicate, and the number of event samples 

were sufficient (30+) to be statistically significant. The data collection enabled the 

parsing and combining of the various datasets into a dataset for water sample analyses 

and weather data that resulted in 31 unique events over the two distinct seasonal weather 

patterns. The data set was considered of sufficient and significant sample size to permit 

statistical analysis of the interaction of the variables. This comprehensive dataset 

permitted the development of a management decision-making model for water resources 

for roof runoff. 
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Data Exclusion Criteria   

The plots also revealed the need to analyze the outliers: thus the use of exclusion 

criteria. The data was examined first without any exclusion criterion. Graphical 

examination of the data illustrated that some exclusion criterion must be applied to the 

dataset. Outliers have an important impact on the conclusion of this study; by using the 

extreme studentized deviate (or ESD statistic) which allows the creation of decision rules 

for the outliers, the data is more readily manageable. After applying the decision rules for 

outliers, the analysis was run again without the outliers.  

The analysis of the ESD statistic was based on the following conditions: we 

hypothesize that = no outliers are present versus  and = a single outlier is present 

with a type I error of ∞ .  

…,  | |             (Equation 4-0) 

The sample value  such that …,  | |  is refer to as .  

Therefore, if ,   then we reject  and declare is an outlier; if 

,  then we declare that no outliers are present.  

Figures 4-1 and 4-2 are examples of the outlier’s effect on the study (Appendix I 

should be referred to for the complete analysis of all the elements examined in the study). 
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Figure 4-1: Outliers' Effect on the Lead Concentration Data 
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Figure 4-2: The Results of Removal of Outlier from the Lead Concentrations  
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CHAPTER IV: RESULTS 
 

This chapter reports the results of the experimental research and methods used to 

analyze the data collected. As previously noted, this research encompassed both field and 

analytical laboratory measures of key variables within meteorological, chemical, and 

biological areas. To ensure that all the measures were reliable and valid, replicate 

measures were taken prior to logging the data in the laboratory notebook. The objective 

of this investigation was to determine the chemical and biological water quality of roof 

runoff across the five selected roof surfaces commonly found in the southeastern United 

States. The purpose of the investigation was to quantify the potential health risk of small 

concentration of metals in potable water, due to the high cost to remediate those small 

concentrations of metals in potable water supply. 

Table 4-1 is the preliminary data from AA spectrometry that showed a difference 

in concentration of Pb over the different surfaces. The highlighted cells in the table are 

indication that Relative Standard Deviation in percent %RSD was at 100 percent. This is 

a measure of the reproducibility of the results of multiple measurement of the same 

sample. The measurements are more reproducible the larger the %RSD. For example, in 

row 2 the water off the clay tile had a lead concentration of 0.0014. mgℓ-1,whereas the 

water from the shaker tile had 0.0017 mgℓ-1. The interesting observation was that the 

actual rain contained only 0.0013 mgl-1 (control sample). The data showed that both clay 

tile and shaker tile were releasing lead. However, the data from the four rain events 

showed that the water from the clay tile was 0.0013 mgl-1 and the glazed tile was 0.0134 
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mgl-1 of lead. Table 4-1 is the summary of the data for this study. The values for the 

individual elements are detailed in Tables 4-2 through 4-14.  The concentrations in all 

these tables are expressed in mgℓ-1.
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Table 4-1: Preliminary Data Results for Samples at the Site Using the AA. 

Rain Tile Glazed
 Tile

Shaker
 Tile

Coated
Tin Tin 

Control 1 2 3 4 5
pH 5.82 6.86 -1.04 6.89 -1.07 6.89 -1.07 6.03 -0.21 5.94 -0.12
Alk 6.80 13.60 -6.80 13.60 -6.80 13.60 -6.80 13.60 -6.80 13.60 -6.80
TDS 9.00 9.50 -0.50 14.50 -5.50 20.00 -11.00 7.50 1.50 8.00 1.00
Pb 0.0012 0.0007 0.0005 0.0025 -0.0013 0.0023 -0.0011 0.0031 -0.0019 0.0004 0.0008
%RSD >100 >100 0.00 43.40 56.60 9.70 90.30 >100 0.00 >100 0
pH 4.15 4.33 -0.18 6.25 -2.10 6.63 -2.48 4.20 0.05 4.33 -0.18
Alk 13.6 6.8 6.8 6.8 6.8 13.6 0 13.6 0 13.6 0
TDS 19 15 4 12 7 18 1 16 3 13 6
Pb 0.0013 0.0014 -0.0001 0.0009 0.0004 0.0017 -0.0004 0.0007 0.0006 0.0027 -0.0014
%RSD 89.90 >100 -10.10 25.80 64.10 >100 -10.10 4.30 85.60 15.50 74.4
pH 3.7 4.27 -0.57 6.75 -3.05 7.2 -3.5 4.13 -0.43 4.57 -0.87
Alk 13.6 13.6 0.00 13.6 0 13.6 0 13.6 0 13.6 0
TDS 31.1 28 3.10 37 -5.9 45 -13.9 39 -7.9 30 1.1
Pb 0.0027 0.0045 -0.0018 0.0024 0.0003 0.0005 0.0022 0.0031 -0.0004 0.0039 -0.0012
%RSD 31.1 5 26.10 38.8 -7.7 41.3 -10.2 20.5 10.6 0.3 30.8
pH 7.5 7.28 0.22 7.26 0.24 7.37 0.13 4.85 2.65 5.83 1.67
Alk 13.6 13.6 0.00 13.6 0 13.6 0 13.6 0 13.6 0
TDS 50 25 25.00 30 20 36 14 25 25 25 25
Pb 0.0030 0.0003 0.0027 0.0158 -0.0128 0.0016 0.0014 0.0036 0.0006 0.0014 0.0016

DIFF.Elements DIFF. DIFF. DIFF. DIFF. DIFF.
Mean 
Temp
° F

High
Temp
° F

81.40 94.70 -13.30

NE

79.00 94.90 -15.90

80.90 94.30 -13.40

Wind 
Dir 

Date Event 

08-31-05

80.30 94.00 -13.70

SW

SSE

NE

09-02-05

09-03-05

09-06-05

1

2

3

4
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Table 4-2: Roof Runoff Concentrations Summary Results from the Site.  

.  
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Table 4-3: Roof Runoff Analyzed for pH Analyses from the Site.

 
  



 
T

 

Table 4-4: Rooof Runoff AAnalyzed for
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r Alkalinity ffrom the Sitee.
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Table 4-5: Roof Runoff Analyzed for Total Dissolved Solids at the Site.  
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Table 4-6: Roof Runoff Analyzed for Zinc from the Site. 
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Table 4-7: Roof Runoff Analyzed for Lead from the Site. 
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Table 4-8: Roof Runoff Analyzed for Cadmium from the Site.
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Table 4-9: Roof Runoff Analyzed for Nickel from the Site.
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Table 4-10: Roof Runoff Analyzed for Iron from the Site. 
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Table 4-11: Roof Runoff Analyzed for Manganese from the Site. 
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Table 4-12: Roof Runoff Analyzed for Chromium from the Site. 
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Table 4-13: Roof Runoff Analyzed for Copper from the Site. 
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Table 4-14: Roof Runoff Analyzed for Magnesium from the Site. 
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Regression Model and Transformation of the Data  

Based upon preliminary analysis, there was no apparent benefit in using more 

complex statistical methods, such as regression analysis. Chandler (1994) indicates that 

more complex statistics are justified only when considering similar results and methods 

derived from the same dataset. Therefore, the data was not transformed to create a better 

fit to the model, because the numeric transformation of the numeric concentration of 

chemical analysis would have no meaning and simply because there were only small 

differences exhibited overall.  

 

Correlation Matrix 

The next step required creating a correlation matrix, comparing data from the 

control with that from the various variables of interest. The significance of a correlation 

matrix is that the descriptive has the power potential for predicting information about the 

values on another variable. The correlation in the descriptive form serves as a mechanism 

in data reduction. Nevertheless, most of all the existence of a correlation between two 

variables does not imply causality; it is possible that there were confounding variables 

that were responsible for the observed correlation in whole or in part. 

The chemicals' analyses data were analyzed using descriptive statistical methods 

and presented in graphical plots and matrix, as shown below in Figure 4-2. Analyses of 

all of the variables of interest are also shown in Appendix I.  
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Table 4-15: Roof Surfaces and Variables’ Effect on the Copper Correlation. 

Correlation Matrix

ConCu S1 S2 S3 S4 S5 ancedent rain

ConCu  1.000 

S1  .953  1.000 

S2  .009  -.081  1.000 

S3  .736  .759  -.065  1.000 

S4  .912  .940  -.017  .839  1.000 

S5  .904  .934  -.042  .843  .985  1.000 

ancedent  -.010  .045  -.151  .068  .025  .016  1.000 

rain  -.185  -.150  -.087  -.172  -.063  -.130  -.182  1.000 

32 sample size
 

 

It should be noted that the correlation matrix in Table 4-15 is a square, with as 

many rows as there are columns. The multivariate data matrix’s first characteristic to be 

noticed is that the diagonal coefficients are equal to one by the perfect correlations with 
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each other. Each cell of the matrix contains a correlation coefficient between the 

variables represented by the particular column that the cell occupies. A visual inspection 

of the matrix provides information as to the relationship that exists among the variables. 

The darker yellow highlights represent a critical value of the two-tailed significance level 

at 0.01, and the lighter yellow highlights represent a critical value of the two-tailed 

significance level at 0.05. For example, the matrix in Table 4-15 illustrates that there is a 

positive correlation at the significance level 0.01 between the copper in the control 

sample and the samples for S1, S3, S4, and S5. The matrix also illustrates that S1, S4, 

and S5 are highly correlated to each other, whereas S3 is correlated to a lesser value to 

the other samples. In contrast, S2 is not correlated to the control for copper or the other 

samples and is not statistically significant. An inspection of the correlation matrix cannot 

assess the extent or joined effects of two variables with one another or to the extent of  

the effects of a third or fourth variable, etc. (Frigon & Mathews, 1997; Kachigan, 1991).  

The variables analysis requires the use of other analytical techniques to determine the 

relationship. 

 

Descriptive Statistical Analysis  

Paired T-Test 

After completing the various plots of the data, the next step was to analyze the 

data using the paired t-test and the Wilcoxon signed rank test to determine the 

relationship between the control and the following surfaces: S1-natural clay barrel, S2-

glazed tile, S3-flat, shaker impregnated tile, S4-painted, galvanized steel, and S5-

unpainted, galvanized steel. The data was collected simultaneously as samples for the 
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rain event; the data does not represent independent random sampling, and therefore, the 

paired t-test is appropriate. The assumptions for a valid t-test are that the samples are 

random from the population of differences and the set of differences come from a normal 

population. 

The assumption of normality for a t-test is only necessary for small samples (since 

for larger samples, the distribution of the sample mean has a normal distribution, 

regardless of the shape of the population from which the samples were selected). A 

sample size of 30 has been traditionally used to distinguish between “large” and “small” 

samples. However, it has been shown that as the sample size approaches 30 samples, the 

sample mean rapidly approaches normality. Since the samples sizes in the datasets were 

close to 30, there is no reason to doubt the validity of the procedure. 

The paired t-test analyses tested the null hypothesis that the population means of 

the control group for each of the contaminants is equal to the population mean of the 

“treatment” grouping (in this case the panel roof surface samples). The data for the 

analysis was a set of differences between the set of the treatment group and the control 

group. The null hypothesis is, therefore, the same as saying that the mean of the 

population of such differences equals zero. Symbolically the null hypothesis is: 

 0 : 0lreatment ControlH μ μ− =       (Equation 4-1)  

Since d treatment Controlμ μ μ= − , we can write the null hypothesis as: 

 0 : 0dH μ =       (Equation 4-2) 
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The alternative hypothesis is: 

 : 0A dH μ ≠        (Equation 4-3) 

The sample mean  dx  was calculated from the set of differences in the sample 

and sample standard deviation, ds . 

The test statistic in the analysis is: 

 

0

1

d

d

xt s
n

μ−
=

−        (Equation 4-4) 

Since the assumed value of 0μ in the null hypothesis is zero, the test statistic is: 

 1

d

d

xt s
n

=

− ,       (Equation 4-5) 

where    n  is the number of matched pairs in the sample, 

D  is the difference for each pair of scores in the sample,  

dx is the mean of all the sample’s differences scores,  

ds is the sample deviation of the difference scores, and   

0u  is the mean of the difference scores for all possible pairs in the population.  

2

d

D D
S

n

−⎛ ⎞−⎜ ⎟
⎝ ⎠=

∑
       (Equation 4-6) 

If the null hypothesis is true, each value calculated by this equation can be 

considered a randomly selected observation from a t distribution with 1n− degrees of 

freedom (sometimes called the null distribution).  
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The decision as to the validity of the null hypothesis or the alternative is based on 

the p-value. The p-value is the probability that a randomly selected observation from the 

stated t distribution is extreme or more extreme than the observed test statistic. If this 

probability is very small, then there is strong evidence that the observation did not come 

from the null distribution, and it can be concluded that the alternative is true. If the p-

value is not small, there is no reason to suspect the test statistic came from a distribution 

other than the null distribution, and there is no reason to disbelieve the null hypothesis. 

The significance level is usually determined by convention as p-values are normally 

considered either 0.05 or 0.01. For example, Table 4-16 illustrates the paired t-test of the 

control sample and S1-natural clay barrel; the significance level is 0.05, and there are 

statistically significant differences between the control and S1 sample. 
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Table 4-16: Copper Paired T-Test S1 and Control. 
0.0000000 hypothesized value
0.0058903 mean S1
0.0065871 mean ConCu

-0.0006968 mean difference  (S1 - ConCu)
0.0018837 std. dev.
0.0003383 std. error

31  n
30  df

-2.06  t
.0482  p-value (two-tailed)

-0.0013877 confidence interval 95.% lower
-0.0000058 confidence interval 95.% upper
0.0006909    half-width  
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Wilcoxon Signed Rank Test 

The chemical data was analyzed using the non-parametric equivalent of the paired 

t-test, the Wilcoxon signed rank test. The Wilcoxon signed rank test, also known as the 

Wilcoxon matched pairs test, is a non-parametric test used to test the median difference 

in paired data. As in the t-test, the null hypothesis is that the median of the population of 

differences (treatment–control) is zero, and the alternative is that the population of 

differences has a value other than zero. The Wilcoxon signed rank test is based on the 

concept of asymptotic relative efficiency. This test is appropriate for small sample sizes 

with an unknown distribution, as this test is more sensitive than the t-test. The p-values 

for this test are interpreted the same as the p-values for the t-test. Small p-values are 

evidence that we should reject the null hypothesis and conclude the alternative is true. 

Large p-values do not provide evidence against the assumption that the median is equal to 

zero. This provides a basis upon which to develop further analysis of the data. For 

example, in Table 4-17 the control and the glazed tile, S2, at the .01 significances level 

the control, and S2 is statistically significant. 

 
Table 4-17: Copper Wilcoxon S2-Control. 

variables: S2 - ConCu 
104 sum of positive ranks
361 sum of negative ranks

30  n
232.50  expected value

48.34  standard deviation
-2.66  z, corrected for ties
.0079  p-value (two-tailed)  
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CHAPTER V: WATER QUALITY RESULTS AND DISCUSSION 
 

The objective of this investigation was to determine the water quality of roof 

runoff across the five selected surfaces. The investigation analyzed and characterized the 

chemical composition for the various heavy metals in the roof runoff. The study samples 

were obtained using approved standard methods and approved EPA containers to avoid 

possible contamination of the sample.  

Ten (10) rain events that did not produce sufficient quantity of roof runoff for the 

analyses were: 1-Sep-05, 5-Sep-05, 9-Sep-05, 4-Oct-05, 7-Oct-05, 8-Dec-05, 9-Dec-05, 

11-Dec-05, 16-Dec-05, and 20-Jan-06. The paired t-test and the nonparametric test, the 

Wilcoxon test, were used in the statistical analyses of the data, which allows the 

examination of roofing material effects on the water quality.  

Using the National Primary Drinking Water Regulations as a standard, all results 

of the chemical analyses were examined for compliance with the maximum contaminant 

level (MCL) and their action level for all the roofing materials of S1, S2, S3, S4, and S5. 

If a specific substance exceeds the MCL, then the EPA requires that action be taken to 

lower the concentration of said substance. There was no exceedance of the regulatory 

standard in any of the thirty-one (31) samples obtained from the roofing materials S1, S2, 

S3, S4, and S5 over the nine (9) month investigation period. The examination of the data 

for all surfaces showed that there was no exceedance of the standard for chromium (Cr) 

0.1 mgℓ-1, and copper (Cu) 1.3 mgℓ-1 with an action level of 1.3 mgℓ-1. The national 

secondary drinking water regulations, which are manganese (Mn) 0.05 mgℓ-1, iron (Fe) 
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0.3 mgℓ-1, pH 6.5 – 8.5, zinc (Zn) 5.O mgℓ-1, and total dissolved solids (TDS) 500 mgℓ-1 

were not exceeded. 

The specific cause of a response to the environmental variable was difficult to 

determine due to the concentration levels and the spatial occurrence. For example, the 

examination of the data for Pb indicated that there were some underlying processes 

occurring with the S5-unpainted, galvanized steel surfaces, because the samples for S5 

were consistently lower than the control sample and lower than the S4-painted, 

galvanized steel. The data showed that S1-natural clay barrel, exhibited apparent 

adsorptive properties for lead (Pb) and zinc (Zn).  

The Zn concentrations' analyses are shown in Table 5-1. The samples for S5 were 

higher than all other roof samples, with concentrations as high as 3.7 mgℓ-1, which is 

approaching the MCL level of 5.0 mgℓ-1. The surface S2-glazed tile, had the lowest mean 

concentration for Zn at 0.0585 mgℓ-1, followed by S1-natural clay barrel, at 0.0722 mgℓ-

1, S3-flat, shaker impregnated tile, at 0.1164 mgℓ-1, and S4-painted, galvanized steel at 

0.1345 mgℓ-1. Only the runoff from surface S4 had Zn concentrations statistically equal 

to that of the control samples. This means that zinc was being absorbed or exchanged.  

 
Table 5-1: The Zinc Concentrations Analyses of the Roof Runoff mgℓ-1 at the Site. 
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Table 5-2: A Comparison of pH Levels at the Site. 

 

 

Table 5-2 shows that the pH of the samples taken from surfaces S2-glazed tile, 

and S3-flat, shaker impregnated tile, were consistently more basic than the control 

sample. Overall, the mean pH of the samples from S2 and S3 were 7.04 and 7.24, and 

were 0.77 and 0.97 larger than that of the control, respectively. The hydroxide 

concentration in the samples of S2 and S3 are approximately 9.3 times greater than the 

controls. Conversely, the pH of samples from surfaces S4 and S5 are consistently more 

acidic than the control. The S4 and S5 samples, with mean pHs of 5.83 and 5.92 

hydroxide concentration, is only 0.41 of that of the control, respectively. Only surface 

S1-natural clay barrel, had a sample pH close to the control. The control pH mean was 

6.30, with a minimum of 3.67 and a maximum of 8.21. The difference in pH (acidic 

versus basic) did affect the metals' removal or concentrations. 

The total dissolved solids' (TDS) mean concentration was 26.72 mgℓ-1 for the 

surface S2-glazed tile, and this was the only surface found to be statistically 

representative of the control. For surface S3-flat, shaker impregnated tile, TDS 

concentrations were consistently higher than the control sample, with mean 

concentrations of 37.73 mgℓ-1, which is approximately 1.43 times the control. This would 

imply that the material was dissolved from the roofing material, or atmospheric deposits 



 

79 

are being retained and re-dissolved during the rain event. The opposite is true for surfaces 

S1, S4, and S5, where the TDS concentration levels are consistently lower than the mean 

control concentrations, 26.41 mgℓ-1. In the latter case, the material would appear to be 

absorbed into the surface, as discussed previously. Samples from S1 had the lowest mean 

concentration levels 14.35 mgℓ-1 with S4 at 17.67 mgℓ-1 and S5 at 18.89 mgℓ-1. A change 

in the TDS did not affect the activity of the solution and any release would be a function 

of the pH rather than the TDS. Table 5-3 illustrates the comparison of the different roof 

runoff and the control for TDS.  

 

Table 5-3: Comparisons of Total Dissolved Solids mgℓ-1, Levels at the Site. 

 

 

The adsorption processes of S1-natural clay barrel consistently created lower 

mean concentrations of Fe, 0.0532 mgℓ-1, while all the other surfaces were statistically 

representative of the control. The unglazed surface of the clay barrel tile provides pores 

and adsorption sites for the deposition of iron (Fe). Many researchers suggest that the low 

surface energy charge between the tile surface and the adsorbed ions arises from 

adsorbate quadrupole interaction, with varying electrostatic field gradients lattice of the 

solid (Benjamin, 2002; Jensen, 2003; Schwarzenbach, et al., 1993).  Hydrogen is the 
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simplest chemical substance that accounts for adsorption and surface diffusion, as well as 

distribution and character of the adsorption of the sites (McMillan, 1960). The lower 

concentration of Fe on S1, while all other surfaces were statistically equivalent to the 

control, could be explained via this adsorbate quadrupole interaction mechanism on the 

clay barrel tile.   

From Table 5-4, it is evident that the Cr concentrations in the S1-natural clay 

barrel runoff samples were consistently lower than the control due to the adsorptive 

quadrupole interaction mechanism. The Cr mean concentrations in the sample runoff 

from the S2-glazed tile and S3-flat, shaker impregnated tile, were consistently higher than 

the control sample, with mean concentrations of 0.0012 mgℓ-1 and 0.0014 mgℓ-1, 

respectively. This is 1.50 and 1.75 times the mean concentration of the control. The 

samples from surfaces S4-painted, galvanized steel and S5-unpainted, galvanized steel 

were found to be statistically representative of the control sample. Based on my viewing 

of various tile-manufacturing machines, the rollers used to apply the ceramic glaze are 

manufactured in part from chromium (Cr). It is possible that there is a transfer effect that 

would add trace chromium (Cr) during the manufacturing process (Lyubenova, et al., 

2009).  
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Table 5-4: Comparisons of Chromium mgℓ-1, Levels at the Site. 

 

 

The analysis of Cu in the samples, is illustrated in Table 5-5, revealed that only 

surface S3 contained concentrations representative of the control mean concentration of 

0.0066 mgℓ-1, whereas all other surface samples had reduced concentrations of copper 

(Cu) except S3-flat, shaker impregnated tile. These concentrations are well below any 

action level of 1.3 mgℓ-1, required by the EPA primary drinking standards. An action 

level (AL) is the concentration of a contaminant over which a treatment is required. 

 

Table 5-5: Comparisons of Copper mgℓ-1 Levels at the Site. 

 

 

  



 

82 

The concentration dataset illustrated in Table 5-6 for the Mg is limited due to the 

sample size. The data suggests that the S1 adsorptive quadrupole interaction processes 

also operate with Mg as seen with other elements, but due to the small sample size, it is 

difficult to fully infer this interaction. The standard deviation of the control was larger 

than that of the all the tiles. 

 

Table 5-6: Comparisons of Magnesium  mgℓ-1 Levels at the Site. 

 

 

 

Table 5-7:  Roof Surfaces and Variables' Effect on the pH Correlation.
ConpH S1 S2 S3 S4 S5 ancedent rain

ConpH  1.000 
S1  .810  1.000 
S2  .703  .871  1.000 
S3  .562  .701  .916  1.000 
S4  .729  .836  .790  .615  1.000 
S5  .718  .902  .895  .747  .952  1.000 

ancedent  .510  .575  .518  .315  .688  .654  1.000 
rain  -.463  -.494  -.423  -.369  -.315  -.385  -.315  1.000 

28 sample size

± .374  critical value .05 (two-tail)
± .479  critical value .01 (two-tail)
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Table 5-8: Roof Surfaces and Variables' Effect on the Total Dissolved Solids Correlation. 
ConTDS S1 S2 S3 S4 S5 ancedent rain

ConTDS  1.000 
S1  .901  1.000 
S2  .907  .808  1.000 
S3  .872  .747  .971  1.000 
S4  .848  .888  .740  .750  1.000 
S5  .896  .875  .775  .766  .965  1.000 

ancedent  .332  .286  .217  .273  .444  .536  1.000 
rain  -.551  -.505  -.658  -.647  -.503  -.530  -.315  1.000 

28 sample size

± .374  critical value .05 (two-tail)
± .479  critical value .01 (two-tail)

 

 

Table 5-9: Roof Surfaces and Variables' Effect on the Zinc Correlation. 

ConZn S1 S2 S3 S4 S5 ancedent rain
ConZn  1.000 

S1  .887  1.000 
S2  .870  .885  1.000 
S3  .755  .882  .684  1.000 
S4  .779  .755  .832  .547  1.000 
S5  .129  .092  .267  -.016  .510  1.000 

ancedent  -.050  -.013  -.041  .068  .054  .452  1.000 
rain  -.145  -.163  -.220  -.092  -.375  -.632  -.353  1.000 

29 sample size

± .367  critical value .05 (two-tail)
± .471  critical value .01 (two-tail)
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Table 5-10: Roof Surfaces and Variables' Effect on the Lead Correlation. 
ConPb S1 S2 S3 S4 S5 ancedent rain

ConPb  1.000 
S1  .487  1.000 
S2  .738  .537  1.000 
S3  .578  .486  .334  1.000 
S4  .590  .426  .661  .217  1.000 
S5  .381  .566  .460  .352  .359  1.000 

ancedent  .353  .324  .248  .296  .109  .057  1.000 
rain  -.244  -.425  -.221  -.095  -.104  -.107  -.353  1.000 

29 sample size

± .367  critical value .05 (two-tail)
± .471  critical value .01 (two-tail)

 

 

Table 5-11: Roof Surfaces and Variables' Effect on the Cadmium Correlation. 
ConCd S1 S2 S3 S4 S5 ancedent rain

ConCd  1.000 
S1  -.043  1.000 
S2  .162  .022  1.000 
S3  .212  .373  -.068  1.000 
S4  -.014  .259  -.209  -.116  1.000 
S5  -.028  .076  -.209  .033  .165  1.000 

ancedent  -.089  -.093  .254  .185  -.173  -.118  1.000 
rain  .432  -.200  -.083  .422  -.171  .261  -.215  1.000 

30 sample size

± .361  critical value .05 (two-tail)
± .463  critical value .01 (two-tail)
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Table 5-12: Roof Surfaces and Variables' Effect on the Nickel Correlation. 
ConNi S1 S2 S3 S4 S5 ancedent rain

ConNi  1.000 
S1  .806  1.000 
S2  .786  .808  1.000 
S3  .396  .018  .194  1.000 
S4  .647  .547  .711  .102  1.000 
S5  .730  .632  .695  .088  .909  1.000 

ancedent  .020  -.058  -.035  -.159  .083  .061  1.000 
rain  -.170  -.113  -.150  .383  -.207  -.133  -.355  1.000 

23 sample size

± .413  critical value .05 (two-tail)
± .526  critical value .01 (two-tail)

 

 

Table 5-13: Roof Surfaces and Variables' Effect on the Manganese Correlation. 
ConMn S1 S2 S3 S4 S5 ancedent rain

ConMn  1.000 
S1  .468  1.000 
S2  .372  .958  1.000 
S3  .171  .681  .622  1.000 
S4  .321  .809  .755  .975  1.000 
S5  .230  .768  .723  .973  .980  1.000 

ancedent  .025  .577  .509  .694  .697  .727  1.000 
rain  -.404  -.545  -.510  -.320  -.414  -.384  -.355  1.000 

23 sample size

± .413  critical value .05 (two-tail)
± .526  critical value .01 (two-tail)
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Table 5-14:  Roof Surfaces and Variables' Effect on the Chromium Correlation. 
ConCr S1 S2 S3 S4 S5 ancedent rain

ConCr  1.000 
S1  .483  1.000 
S2  .148  .290  1.000 
S3  .161  .181  .078  1.000 
S4  .502  .428  .296  .298  1.000 
S5  .304  .575  .085  .037  .657  1.000 

ancedent  .056  .010  -.120  .054  .344  .061  1.000 
rain  .113  -.262  -.130  -.293  -.319  -.250  -.215  1.000 

30 sample size

± .361  critical value .05 (two-tail)
± .463  critical value .01 (two-tail)

 

Table 5-15: Roof Surfaces and Variables' Effect on the Copper Correlation. 
ConCu S1 S2 S3 S4 S5 ancedent rain

ConCu  1.000 
S1  .967  1.000 
S2  .980  .987  1.000 
S3  .752  .755  .792  1.000 
S4  .927  .942  .954  .838  1.000 
S5  .926  .936  .950  .840  .985  1.000 

ancedent  -.002  .017  .012  .038  .001  -.016  1.000 
rain  -.183  -.167  -.162  -.192  -.077  -.150  -.215  1.000 

30 sample size

± .361  critical value .05 (two-tail)
± .463  critical value .01 (two-tail)
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Table 5-16: Roof Surfaces and Variables' Effect on the Magnesium Correlation. 
ConMg S1 S2 S3 S4 S5 ancedent rain

ConMg  1.000 
S1  .853  1.000 
S2  .894  .965  1.000 
S3  .861  .840  .946  1.000 
S4  .913  .943  .986  .938  1.000 
S5  .921  .933  .981  .955  .994  1.000 

ancedent  .574  .646  .624  .595  .698  .731  1.000 
rain  -.109  -.536  -.541  -.492  -.478  -.449  -.302  1.000 

7 sample size

± .754  critical value .05 (two-tail)
± .875  critical value .01 (two-tail)

 

 

Table 5-17: Roof Surfaces and Variables' Effect on the Iron Correlation. 
ConFe S1 S2 S3 S4 S5 ancedent rain

ConFe  1.000 
S1  .617  1.000 
S2  .391  .613  1.000 
S3  .327  .636  .799  1.000 
S4  .201  .494  .534  .479  1.000 
S5  .479  .684  .628  .501  .238  1.000 

ancedent  .150  .084  -.089  -.083  .117  .133  1.000 
rain  -.063  .046  .180  .462  .092  .047  -.215  1.000 

30 sample size

± .361  critical value .05 (two-tail)
± .463  critical value .01 (two-tail)

 

The correlations in Table 5-7 through Table 5-17 show a negative correlation with 

the rain and this suggests that the deposition process is local; this finding is consistent 

with the literature (Kieber, et al., 2003; Kieber, et al., 2005; Kieber, et al., 2004; Kieber, 

et al., 2002; Luidold & Antrekowitsch., 2007). Similarly, the positive correlation of Fe 

with rainwater is consistent with the long transport cycle of Fe that is not of local sources 

(Kieber, et al., 2003; Kieber, et al., 2002; Tanner & Fai, 2000; Tanner & Wong, 2000).
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Summary of Chemical Analysis of Roof Runoff 

The metal concentration levels of (Cd, Cr, Fe, Mg, Mn, Ni, Pb, and Zn) in over 

thirty-one (31) samples collected in this study from each of the five (5) roof surfaces 

were within EPA drinking water quality criteria standards, as shown in Table 4-2. There 

was no exceedance of the primary and secondary drinking water standards. 
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Item Analysis 

Paired t-test and Wilcoxon statistical analysis are shown in Table 5-18. It can be 

seen from the data analysis that the roof surfaces are changing the quality of the water 

running off over these surfaces. The summary analysis suggests there is a preferred 

roofing material for collection of roof runoff. Table 5-18 suggests that the S1-natural clay 

barrel roof material and S4-painted, galvanized steel roof material, were the preferred 

roofing materials for collection of roof runoff. The S1 data illustrates that the adsorption 

properties are beneficial in that they lower the metals concentration below that of the 

control sample. S1-natural clay barrel, then later releases the adsorbed contaminant in a 

lower concentration, reducing the overall average concentration found in the runoff, but 

S1 did not reach an equilibrium. The data exhibits a strong decrease in the zinc 

concentration found in the S1-natural clay barrel, whereas S5-unpainted, galvanized steel, 

had concentrations that were 7.45 times that of the control samples of zinc (Zn). This 

research has shown that the analyte concentrations meet the primary and secondary 

drinking water standards set by the EPA. Thus, the study suggests the roofing material 

examined has only minimal impact on water quality. 
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Table 5-18: Summary of Statistical Analyses of the Surface Runoff Data for S1-S5.  
Roofing Surfaces 

Analyte S1 S2 S3 S4 S5

pH T-Test .8531 .0004 ** .0001 ** .0099 ** .0189 *
Wilcoxon .7211 .0003 ** .0002 ** .0175 * .0378 *

TDS T-Test 4.48E-05 ** .9199 1.20E-06 ** .0002 ** .0001 **
Wilcoxon 6.48E-07 ** .6328 2.81E-05 ** 2.73E-06 ** 6.10E-06 **

Zn T-Test .0009 ** .0008 ** .0563 .1920 6.57E-07 **
Wilcoxon 1.02E-05 ** 8.47E-06 ** .0060 ** .6884 1.92E-06 **

Pb T-Test .4580 .1396 .3777 .0966 .0586
Wilcoxon .5855 .3280 .2560 .1893 .0901

Cd T-Test .6979 .5087 .6201 .9006 .4671
Wilcoxon .3942 .7454 .8484 .9199 .7677

Ni T-Test .1466 .0578 .3705 .1257 .3382
Wilcoxon .1727 .0853 .7578 .3229 .8129

Fe T-Test .0066 ** .2018 .7678 .3782 .0570
Wilcoxon .0073 ** .3886 .8446 .6735 .1264

Mn T-Test .1832 .1193 .2282 .3453 .7477
Wilcoxon .4823 .0484 * .1225 .7076 .3452

Cr T-Test .0084 ** .0615 7.89E-07 ** .2102 .4232
Wilcoxon .0048 ** .0003 ** 1.13E-05 ** .1212 .3409

Cu T-Test .0482 * .0089 ** .7482 .0283 * .0229 *
Wilcoxon .0086 ** .0079 ** .5958 .0229 * .0047 **

Mg T-Test .0544 .0856 .1669 .1169 .1150
Wilcoxon .0180 * .0910 .1282 .1763 .2367

P=0.05 *
P=0.01**  
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Wind Direction Analysis 

The preliminary analysis suggested that the wind direction could have an effect on 

the outcome of the results, with eleven (11) events from the Southwest and five (5) events 

from the Northeast. The data analysis then sorted the data according to wind direction 

and examined if there were correlations, using SAS between the wind direction and 

outcome. The preliminary data suggests that wind direction could have an effect on the 

water quality; however, due to the small sample size, further investigations would be 

required to determine this with certainty. 
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Figure 

5-1: The Prevailing Wind Direction at the Research Site Over the Study Period. 
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There was an attempt to correlate the wind direction with the biological plate 

count where the thought was the dispersion process would affect the plate counts, as 

shown in the following Table 5-15. The effects of the wind direction and the velocity of 

the wind was a major contributor to biological media and dispersion of biological media 

found on rooftops. Figure 5-1 represents the prevailing wind direction of the study period 

of nine months, with 37 percent of the prevailing wind during this period coming from 

the southwest. Then there was a consolidation of the wind directions to the North and 

South to examine if there was an effect on the concentrations and biological counts.  An 

effect of the Northern winds on concentration was observed, which is plausible with 

continental land mass fronts.  In Tables 5-19 and 5-20, the mean Zn was 0.0844 mgℓ-1, 

from a Southern wind, whereas the Northern wind mean Zn concentration was 0.3297 

mgℓ-1, approximately 3.9 times greater. The mean concentration of copper exhibited a 

large difference in the mean concentration of 0.0049 mgℓ-1  from the South and the mean 

copper concentration from the North was 0.0085 mgℓ-1 , approximately 1.73 times 

greater. 

 
Table 5-19: The Southern Wind Effects on Concentration of the Control.  
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Table 5-20: The Northern Wind Effects on Concentration of the Control. 

 

 

Unfortunately, the study was unable to obtain sufficient biological plates count 

events. However, it was noted that Yaziz et al. (1989) reported in the literature that 

bacteria is always present in the air and on the roof surfaces of the 24 samples collected. 

Yaziz et al.’s (1989) plate count ranged from six (6) minimum to a maximum of 39 times 

10 ³ /100 ml, contrasting with some of the findings at our site location. In this study, there 

were several samples that did not produce heterotrophic colonies. For example, 08 Oct 05 

sample did not produce any colonies from any surfaces, whereas 02 Oct 05 sample did 

not produce any colonies on S1, S4, and S5, but colonies were present on S2 and S3, 

which is in contrast to Yaziz et al. (1989). In both cases, this study and that of Yaziz et al. 

(1989) need more data points for a conclusion. 

 

  



 

95 

Table 5-21: Effects of Changes in West by Southwestern Wind Direction on Plate 
Counts. 

Plate 1 Plate 2 Median Avg Std dev
22.2 0.0 22.2 0.0 0.0

25‐Dec‐05 control 
25‐Dec‐05 1 WSW 28 28
25‐Dec‐05 2 WSW 20 20
25‐Dec‐05 3 WSW 19 19
25‐Dec‐05 4 WSW 28 28
25‐Dec‐05 5 WSW 16 16

Sample date 
Total Values

Suface Wind Dir.

 

Table 5-22: Effects of Changes in East by Southeastern Wind Direction on Plate Counts. 

Plate 1 Plate 2 Median Avg Std dev
19.1 19.4 19.0 19.7 6.1

23‐Feb‐06 control 
23‐Feb‐06 1 ESE 28.0 28.0
23‐Feb‐06 2 ESE 11.0 11.0
23‐Feb‐06 3 ESE 21.0 21.0
23‐Feb‐06 4 ESE 0.0 0.0
23‐Feb‐06 5 ESE 31.0 31.0
1‐Nov‐05 control 
1‐Nov‐05 1 ESE 14.0 22.0 18.0 18.0 5.7
1‐Nov‐05 2 ESE 42.0 27.0 34.5 34.5 10.6
1‐Nov‐05 3 ESE 36.0 45.0 40.5 40.5 6.4
1‐Nov‐05 4 ESE 0.0 3.0 1.5 1.5 2.1
1‐Nov‐05 5 ESE 8.0 0.0 4.0 4.0 5.7

Sample date 
Total Values

Surface  Wind Dir.
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Table 5-23: Effects of Changes in Southern Wind Direction on Plate Counts. 

Plate 1 Plate 2 Median Avg Std dev
15.2 14.5 14.8 14.8 2.5

8‐Oct‐05 control 
8‐Oct‐05 1 S 0.0 0.0 0.0 0.0 0.0
8‐Oct‐05 2 S 0.0 0.0 0.0 0.0 0.0
8‐Oct‐05 3 S 0.0 0.0 0.0 0.0 0.0
8‐Oct‐05 4 S 0.0 0.0 0.0 0.0 0.0
8‐Oct‐05 5 S 0.0 0.0 0.0 0.0 0.0
2‐Oct‐05 control    
2‐Oct‐05 1 SE 0.0 0.0 0.0 0.0 0.0
2‐Oct‐05 2 SE 9.0 2.0 5.5 5.5 4.9
2‐Oct‐05 3 SE 3.0 6.0 4.5 4.5 2.1
2‐Oct‐05 4 SE 0.0 0.0 0.0 0.0 0.0
2‐Oct‐05 5 SE 0.0 0.0 0.0 0.0 0.0
29‐Jan‐06 1 SE 34.0 38.0 36.0 36.0 2.8
29‐Jan‐06 2 SE 31.0 33.0 32.0 32.0 1.4
29‐Jan‐06 3 SE 31.0 31.0 31.0 31.0 0.0
29‐Jan‐06 4 SE 27.0 36.0 31.5 31.5 6.4
29‐Jan‐06 5 SE 31.0 16.0 23.5 23.5 10.6
3‐Feb‐06 control 
3‐Feb‐06 1 SSE 28.0 18.0 23.0 23.0 7.1
3‐Feb‐06 2 SSE 31.0 30.0 30.5 30.5 0.7
3‐Feb‐06 3 SSE 29.0 33.0 31.0 31.0 2.8
3‐Feb‐06 4 SSE 20.0 26.0 23.0 23.0 4.2
3‐Feb‐06 5 SSE 29.0 20.0 24.5 24.5 6.4

Sample date 
Total Values

Season Wind Dir.
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Table 5-24: Effects of Changes in North Wind Direction on Plate Counts. 

Plate 1 Plate 2 Median Avg Std dev
15.8 13.0 14.1 14.1 4.2

7‐Dec‐05 control 
7‐Dec‐05 1 NE 20.0 18.0 19.0 19.0 1.4
7‐Dec‐05 2 NE 37.0 23.0 30.0 30.0 9.9
7‐Dec‐05 3 NE 29.0 22.0 25.5 25.5 4.9
7‐Dec‐05 4 NE 26.0 22.0 24.0 24.0 2.8
7‐Dec‐05 5 NE 25.0 31.0 28.0 28.0 4.2
23‐Oct‐05 control   
23‐Oct‐05 1 NE 0.0 0.0 0.0 0.0 0.0
23‐Oct‐05 2 NE 0.0 16.0 8.0 8.0 11.3
23‐Oct‐05 3 NE 42.0 6.0 24.0 24.0 25.5
23‐Oct‐05 4 NE 0.0 0.0 0.0 0.0 0.0
23‐Oct‐05 5 NE 0.0 0.0 0.0 0.0 0.0
17‐Dec‐05 control 
17‐Dec‐05 1 NE 10.0 7.0 8.5 8.5 2.1
17‐Dec‐05 2 NE 0.0 0.0 0.0 0.0 0.0
17‐Dec‐05 3 NE 0.0 . 0.0 0.0
17‐Dec‐05 4 NE 16.0 3.0 9.5 9.5 9.2
17‐Dec‐05 5 NE 0.0 0.0 0.0 0.0 0.0
1‐Oct‐05 control   
1‐Oct‐05 1 NNE 0.0 0.0 0.0 0.0 0.0
1‐Oct‐05 2 NNE 10.0 17.0 13.5 13.5 4.9
1‐Oct‐05 3 NNE 35.0 30.0 32.5 32.5 3.5
1‐Oct‐05 4 NNE 0.0 0.0 0.0 0.0 0.0
1‐Oct‐05 5 NNE 0.0 0.0 0.0 0.0 0.0

18‐Dec‐05 control 
18‐Dec‐05 1 NW 12.0 9.0 10.5 10.5 2.1
18‐Dec‐05 2 NW 33.0 32.0 32.5 32.5 0.7
18‐Dec‐05 3 NW 36.0 28.0 32.0 32.0 5.7
18‐Dec‐05 4 NW 34.0 20.0 27.0 27.0 9.9
18‐Dec‐05 5 NW 30.0 27.0 28.5 28.5 2.1

Sample date 
Total Values

Season Wind Dir.
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Table 5-25: Effects of Changes in Southwestern Wind Direction on Plate Counts. 

 

  

Plate 1 Plate 2 Median Avg Std dev
15.4 12.1 13.2 14.6 5.0

28‐Sep‐05 control 
28‐Sep‐05 1 SW 0.0 0.0 0.0 0.0 0.0
28‐Sep‐05 2 SW 0.0 0.0 0.0 0.0 0.0
28‐Sep‐05 3 SW 44.0 14.0 29.0 29.0 21.2
28‐Sep‐05 4 SW 0.0 0.0 0.0 0.0 0.0
28‐Sep‐05 5 SW 2.0 0.0 1.0 1.0 1.4
6‐Oct‐05 control 
6‐Oct‐05 1 SW 0.0 0.0 0.0 0.0 0.0
6‐Oct‐05 2 SW 0.0 0.0 0.0 0.0 0.0
6‐Oct‐05 3 SW 0.0 0.0 0.0 0.0 0.0
6‐Oct‐05 4 SW 0.0 0.0 0.0 0.0 0.0
6‐Oct‐05 5 SW 0.0 0.0 0.0 0.0 0.0

20‐Nov‐05 control   
20‐Nov‐05 1 SW 0.0 0.0
20‐Nov‐05 2 SW 17.0 17.0
20‐Nov‐05 3 SW 0.0 0.0
20‐Nov‐05 4 SW 0.0 0.0
20‐Nov‐05 5 SW 0.0 0.0

28‐Nov‐05 control 
28‐Nov‐05 1 SW 8.0 16.0 12.0 12.0 5.7
28‐Nov‐05 2 SW 35.0 16.0 25.5 25.5 13.4
28‐Nov‐05 3 SW 12.0 15.0 13.5 13.5 2.1
28‐Nov‐05 4 SW 7.0 2.0 4.5 4.5 3.5
28‐Nov‐05 5 SW 4.0 5.0 4.5 4.5 0.7
2‐Jan‐06 control 
2‐Jan‐06 1 SW 47.0 27.0 37.0 37.0 14.1
2‐Jan‐06 2 SW 32.0 29.0 30.5 30.5 2.1
2‐Jan‐06 3 SW 15.0 4.0 9.5 9.5 7.8
2‐Jan‐06 4 SW 16.0 0.0 8.0 8.0 11.3
2‐Jan‐06 5 SW 26.0 3.0 14.5 14.5 16.3
30‐Jan‐06 control 
30‐Jan‐06 1 SW 20.0 24.0 22.0 22.0 2.8
30‐Jan‐06 2 SW 30.0 32.0 31.0 31.0 1.4
30‐Jan‐06 3 SW 35.0 42.0 38.5 38.5 4.9
30‐Jan‐06 4 SW 41.0 31.0 36.0 36.0 7.1
30‐Jan‐06 5 SW 48.0 41.0 44.5 44.5 4.9
11‐Feb‐06 control      
11‐Feb‐06 1 SW 29.0 32.0 30.5 30.5 2.1
11‐Feb‐06 2 SW 9.0 0.0 4.5 4.5 6.4
11‐Feb‐06 3 SW 36.0 26.0 31.0 31.0 7.1
11‐Feb‐06 4 SW 14.0 0.0 7.0 7.0 9.9
11‐Feb‐06 5 SW 0.0 0.0 0.0 0.0 0.0
5‐Dec‐05 control 
5‐Dec‐05 1 SSW 12.0 8.0 10.0 10.0 2.8
5‐Dec‐05 2 SSW 16.0 7.0 11.5 11.5 6.4
5‐Dec‐05 3 SSW 37.0 30.0 33.5 33.5 4.9
5‐Dec‐05 4 SSW 5.0 13.0 9.0 9.0 5.7
5‐Dec‐05 5 SSW 19.0 7.0 13.0 13.0 8.5

Sample date 
Total Values

Season Wind Dir.



 

99 

Limitations of the Study and the Data 

One of the limitations of this study was the sample size of a few elements, such as 

Mg. However, the sample size was sufficient to examine the majority of the selected 

metals found in roof runoff, such as meeting the water quality standards for the metal in 

question because of the costly remediation to be in compliance. 

With respect to the chemical analysis because of cost and time constraints, it 

would have been advantageous to have a confirmation by another certified laboratory to 

ensure no variance within the analysis. While the analysis was performed by the same 

individual in the same readings in triplicate, there is a possibility of a variance between 

laboratories.  

Another limitation of the study was that the roof material was new. Further 

investigation and future study should include new material that has been followed 

through time to ascertain if corrosion or oxidation increases or decreases concentration 

release. 

Another reason for long-term research is that weather phenomena are spatial, 

temporal, and random. During the period of this study, these weather events were not 

indicative of nor representative of a normal cycle of weather phenomenon.  A study of 

longer duration would be beneficial to analyze trends over time. 

This research has provided information on roof runoff water quality for five 

different roofing materials. In conducting this part of the research, the following 

conclusions were reached: 

None of the water quality samples collected from the five roofing materials 

exceeds the primary or secondary drinking water standards. The metals were selected 
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because they were among the most expensive contaminants to remove, in order to meet 

these standards. Biological and TSS of the contaminants would be removed from regional 

treatment systems as part of the normal processes and therefore were not considered 

critical.  

There are preferred roofing materials such as the clay barrel tile, which was found 

to have adsorptive quadrupole interaction properties. The other preferred roofing material 

is the painted galvanized roofing material, because it decreases the concentrations of zinc 

(Zn) when compared to the unpainted galvanized material. The glazed tile, the flat shaker 

impregnated tile, and the unpainted galvanized steel were found to be less desirable 

roofing material for roof runoff collection, because of higher metal concentration levels. 

The research findings and analyses were congruent with the Cu, Fe, and Cr 

correlations associated with the long transport systems and anthropogenic sources (J. N. 

Galloway, et al., 1993; James N. Galloway, et al., 1982; Kieber, et al., 2003; Kieber, et 

al., 2002; Mudgal, et al., 2007). Another similar outcome of these analyses was the 

association of the wind direction on the HPC (Yaziz, et al., 1989). 

It is important to note that the experimental data were not compromised by using 

PVC or plastic products, which have been known to leach trace metals. Galloway et al., 

(1982) has stated that the older data in wet deposition are unreliable because at the time 

unknown leaching from the sample containers and plastics could raise the estimates 

higher by a factor of 10 for Cd, Cu, Pb and Zn (Barrie, et al., 1987). 

Because none of the water quality samples collected from the five roofing 

materials exceeds a concentration action level or a concentration for the primary or 

secondary drinking water standards, this water met potable water standards. This enables 
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us to examine the roof runoff as an alternative source for augmentation of potable water 

supplies. The results of this research potentially support the use of this roof runoff water 

to augment potable water supplies as a high quality source. 
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CHAPTER VI:  MODEL DEVELOPMENT AND DISCUSSION 
 

This chapter presents relevant design and cost consideration to address the 

economic feasibility of using roof runoff and regional treatment. The crucial aspect in the 

development of this model was to align and reflect the conditions of the community, 

followed by needs and inputs of the user. The applicability of this model design is that it 

incorporates the flexibility for the user to change a variety of variables and conditions 

found in the natural systems. This versatility allows the evaluation of the feasibility of the 

roof runoff augmentation system for large and diverse conditions found in a small-

defined community. This permits the user to balance between the economics and the 

integration system, which includes roof runoff augmentation to municipal supplies.   

This chapter discusses a strategy and assessment model that has been developed 

for determining the collection and cost of augmenting available water sources using roof 

runoff as a potential water source. The Rational Concept shown in Figure 6-1 is the 

cause-and-effect inputs on the outcome of the model. The water quality and quantity, the 

geographic and demographic, and roof materials all affect the feasibility and 

sustainability of model. These conceptual inputs, depicted in Figure 6-1, were parameters 

used to develop the modules of the Augmentation Model for the roof runoff as a potable 

water resource.  
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Water
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A Rational Concept in the Development of a Roof Runoff Resource Model 

 

Figure 6-1: Conceptual Inputs for Creating the Augmentation Model Matrix 
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The Design and Processes Used in the Model Development 

The framework used for the development of the Augmentation Model utilized a 

location in the city of Temple Terrace, Florida, as a test case. The model takes into 

consideration that each city has unique characteristics and therefore, some of the input 

variables must be changed in order to accurately represent the application. The model’s 

methodology uses three (3) categories for the water quality data, the meteorological data, 

and the geographical data analyses. These data were analyzed to ensure compliance with 

standards, as shown in Figure 6-2.  
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Water Quality Parameter in the Model Development  

Water quality was found to be a function of the environment, such as relevant 

location of potential polluters, like industrial complexes that produce atmospheric 

emissions. Thus, the water quality and environment were the first parameters assessed in 

the model. Water quality parameters dictate economics outcome, because water quality 

standards will determine the collection and treatment methods that are used. As 

previously discussed in Chapter V, this research has shown that there was no exceedance 

of the EPA's primary and secondary drinking water standards for the metals in question 

over a nine-month period. Hence, the metals do not present a remediation issue or 

additional treatment costs. Roof runoff water is a viable potable water resource. 

 

Meteorological Parameters in the Model Development  

In a preliminary analysis, the rainfall record from years 2000 through 2006 from 

the nearest gauging site from Southwest Florida Water Management District 

(SWFWMD) were analyzed and showed the average rainfall for this period was 47.38 

inches-per-year, which is similar to the finding of several researchers (Fernald & Purdem, 

1998; Wanielista, et al., 1997). Typical storms during the summer months in Florida are 

convective storms with high quantity of rainfall in short time periods. This water 

represents a substantial supplemental water supply to the city, based upon the research 

data collected. The meteorological characteristics will be unique for each site, thus 

effecting quantity of rainwater capture based upon demographics. 

 

 



 

106 

 
Figure 6-2: The Flow Chart of Processes for the Development of the Model 
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Demographic Parameters of the Model Development  

Use of a stormwater runoff from rooftops represents an overlooked water resource 

for small communities such as Temple Terrace, and other communities that have a 

population of approximately 30,000 to 40,000. The uniqueness of this design allows 

water from the roof to be transported directly to the water treatment facility through a 

collection system. This represents a substantial change in water source strategy for water 

treatment and delivery to the customer. For example, Temple Terrace has a population of 

approximately 30,000, and 11,600 residential residences with an occupancy of 2.5 

persons per home, as an average, within the community. This represents approximately 

12,000 homes in the corporate limits of the city of Temple Terrace. The average rooftop 

of these homes is approximately 3000 square feet (City of Temple Terrace Planning 

Department, 2006; City of Temple Terrace Public Works Department, 2006). 

 

Geographic and Demographics Conditions on the Model 

The structure of the collection and distribution systems of the current water 

distribution systems can be used in developing this new strategy. However, the collection 

process requires piping and routing of water to relatively small transfer storage tanks. The 

augmentation strategy is to have the water treatment plant reduce the dependence on well 

water systems during and following a rain event, thus maintaining a sustainable water 

strategy for the city. This research has shown that roof runoff can serve as an alternative 

potable source, without additional treatment processes for metals, hence minimal 

treatment. This proposed Augmentation strategy allows throughput directly to the 

demand, thus reducing the need for other more expensive alternatives.   
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Sector Concept for the Feasibility and Viability of the Model  

Demographics Conditions  

The model area was defined from data provided by the city of Temple Terrace. 

For example, the area noted in yellow in Figure 6-3 is one section of the city showing the 

density and the typical grid configuration of the neighborhoods. 

 

 

Figure 6-3: Temple Terrace Map Section of the  
Houses Used in the Model 

 

 

This sector area depicted in Table 6-3 is the single-family residential area between 

East 113th Avenue and Druid Hills Drive, and North 56th Street North to the Hillsborough 

River. This sector was utilized in the development of a model configuration. This 

neighborhood section is primarily a typical grid North-South, East-West configuration, 

which is representative of most neighborhoods in Temple Terrace and of most of the 

Southeastern United States. The area is defined by 1,031 lots with approximately 24 lots 

per street with the gross roof area of 3,041,108 square feet (City of Temple Terrace 

S 

E

N 
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Planning Department, 2006). Temple Terrace has a population of approximately 

29,000,with total residential water connections of 11,600 with a daily demand of 4.1674 

million-gallons-per-day (City of Temple Terrace Public Works Department, 2006). The 

state of Florida’s average daily demand is 174 gallons-per-capita-day, whereas Temple 

Terrace has an estimated water usage per capita of 143 gallons-per-capita-day, which is 

below the state average (City of Temple Terrace Public Works Department, 2006). The 

total numbers of homes in Temple Terrace are estimated to be 11,600 with a total roof 

surface area of 35.275 * 106 square feet (City of Temple Terrace Planning Department, 

2006). 

 

Geographic Conditions  

The total volume of roof runoff available from the average rainfall annually of 

47.38 inches-per-year is 139,268,068.8 cubic-feet-per-years, which equates to 1,041x109 

gallons-per-year. Temple Terrace’s annual demand is 1.523 x 109 gallons-per-year (City 

of Temple Terrace Public Works Department, 2006). The Augmentation strategy using 

the runoff has the potential of reducing groundwater withdrawals by 56.93 percent. This 

strategy is a significant leap toward sustainability and conservation of our precious 

resource: the Floridian aquifer.  

According to the State of Florida Department of Environmental Protection 

(FDEP) and the Florida Department of Transportation (FDOT), a “statistical analysis 

from Florida rainfall data and field investigations found that nearly 90 percent of all 

storm events that occur in any region of Florida in a given year will provide 1-inch of 

rainfall or less” (Florida Department of Environmental Protection, 2002).  Based on this, 
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we assume that a rain event of 60 minutes duration would have a volume of rainwater 1-

inch or less over 1,000 roof units in the model area, producing 215.4 or less, cubic-feet-

per-hour-per-roof or 26.85 or less, gallons-per-minute-per-roof of potable water. This 

was a preliminary analysis, and it was useful in determining if the strategy was feasible 

prior to modeling. 

 

The Configurations and Hydraulic Conditions Incorporated into the Model   

The hydraulic element of this model was based upon a gravity flow collection 

system and a forced main system returning collected water to the water treatment plant. 

The design of the system is a rational model that addresses the average approximate costs 

associated with components and appurtenances generally associated with the 

construction. All listed costs are presented as “general estimates” for the site: purchasing, 

designing, permitting, and construction; while also recognizing that each project is 

unique. A wide variety of site specifications and factors will come into play with 

individual projects in different areas, but the model purpose is to provide feasibility 

calculations for the Augmentation system. 

 

Conceptual Description of the Configuration Design  

In this analysis it was assumed that the homes’ roof gutters are connected to a 

leader pipe, which is subsequently connected to a lateral pipe. A typical lateral within 

Temple Terrace would have 12 to 24 connections, which equates to a flow of 322 to 

644.4 gallons-per-minute. These laterals are then connected to the mains, which transfer 

the water to a central collection point. In one scenario, there are mains located under 
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Druid Hills Road, Whiteway Drive, and East 113th Avenue, which are parallel and have 

diminishing elevation from North 56th Street towards the Hillsborough River. The ground 

storage tanks are to be located on a property currently owned by the city, which 

represents a savings for the city of Temple Terrace that is not realized in this analysis. 

The model includes the capacity input for the land costs variable in the calculations to be 

applicable to other municipalities.  

 

Hydraulic Conditions  

In the creation and analysis of the model components, the capacity of the 

collection system during a specific rain event was constrained by the configuration of the 

piping routing system. Another constraint of the system was the plant's ability to process 

the volume of water received from the roof runoff piping configuration. The storage tank 

size is also constrained by land availability and economic cost factors. This fluid 

mechanics problem is constrained by economics and operational strategy implementation 

(Chase, 2004). The strategy of augmenting use of the ground water source to the storage 

catchments requires that the inflow is greater than the pumping rate of the force main out 

of the storage tanks. Manning’s equation was used to calculate the piping system for the 

gravity flow systems, while Darcy's equation was used for the pressure-piping network 

(Sincero & Sincero, 1996; Viessman & Lewis, 2003 ; Wanielista, et al., 1997). 
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The Model Data Modules for the Input and Output Screens  

Water Data Module  

The model is a culmination of several models and numerous refinements that 

were developed over several months. Using a three-pronged approach shown in the flow 

chart in Figure 6-2, the water quality module used the data collected during this research 

that demonstrated that the water quality parameters met the EPA standards. 

 

Meteorological Data Module  

The meteorological module used 19-years of rain records from the National 

Climatic Data Center (NCDC) for the nearby town of Lakeland, Florida. These rain 

records were used because of the proximity to the site location and the long record will 

not skew the results due to the random, spatial, and episodic nature of rainfall. The 

NCDC had to be transformed because the data file only contained rainfall events. In order 

to proceed with the time series analysis of data, it had to be transformed to include all 15-

minute intervals throughout the record with or without indication of rain (Carnahan, et 

al., 1969). 
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Geographical and Demographic Module 

The model used the previously discussed variables and constraints for the 

feasibility of the Augmentation Model. The configuration was based upon the sector 

previously described in Temple Terrace, which is representative of small towns in the 

southeastern United States. The model was developed in Microsoft Excel. The hydraulic 

elements of the model, sizing the pipes, and the various calculations, are contained in 

Appendix II.  

 

The Model Elements for the Variables Sheet Input and Output Screens  

Figure 6-4 is the user input variables page where the user inputs the values into 

cells to produce the calculations and graphs.
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Figure 6-4.: Variable Input Screen 
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User Inputs Variables  

The variables can be changed by the user and are denoted by the white cells 

whereas the light blue tinted cells are calculated, or references that are not changeable. 

Under the model heading the “Catchment Variables” the user can adjust the number of 

groups, the number of roof sizes in square-feet, per capita information 2.5 persons-per-

home. For convenience under the same column, the light blue cell labeled the “Derived 

Participant the Demand/Day” calculates the demand for the model catchment. Under the 

heading “Community or Participant Demand per Day” the user must input the demand. 

The demand can be a sector, or a catchment demand found in the “Derived Participant 

Demand per Day.” The user can also input another demand, such as a larger community 

demand. The model is designed to allow the calculation of combining multiple sectors or 

catchments. The “Demand per 15 Minutes” is a calculated value based upon the 

“Community or Participant Demand per Day,” the result is found in the light blue tinted 

cell. This results in the value used in the subroutine of the model for the time series 

analyses and calculations of the data output. 

 

User Input Constraints  

This variable page, Figure 6-4, also allows the constraints to be entered into the 

model. Under the same heading “Model a Catchment Variables,” the user will find a 

“Maximum Reservoir Tank” size as a constraint of the model. This tank constraint value 

is zero, 4 million, 6 million, 8 million, or 10 million because this is linked to the financial 

reference module of the model. Using a value other than specified above will result in an 

output error.  
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Another constraint of consideration is the “Effective Rain Variables.” These 

variables are dependent on the location of the site and the surface interception value in 

inches, which accounts for the volume of water required to wet the surface. This volume 

is then lost subsequent to the rain to evaporation. For this research site 0.05 inches was 

used as the “Interception capture volume” value to be subtracted from the volume of the 

first rain period in any event. The “Interevent” in hours is the time that has elapsed since 

the last rainfall event, for example is not uncommon during the Florida summers that 

there is a morning rain followed by afternoon rainfall. The increased temperature 

increases the evaporation of the morning rain, hence the roof surface is no longer 

saturated for afternoon rainfall flow over the roof. The interevent variable constraint 

takes the intercept value and subtracts that value from the first rainfall. If there was no 

rainfall between the last recorded rainfall in the time interval specified by the user in the 

interevent input cell, then the intercept value is substracted from the rain event until the 

intercept value has been reached. For example, in Figure 6-4, the user has specified the 

interevent at six (6) hours.  

Since the design of the model is an optimization based upon the pumping rate to 

the water plant, the plant becomes a constraint. The system was designed for a forced 

main pump of 58 hp with variable speed capacity and user defined. Therefore, the 

pumping capacity will affect the utilization and optimization of the model outputs. The 

uniqueness of this approach is the immediate pumping from the collection and storage 

systems, a direct transfer of the roof runoff water to the treatment plant. This approach 

also creates a constraint based upon the capacity of the plant to process the transferred 

water. The capacity of the treatment plant at the site location was a maximum of 
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4,000,000 gallons-per-day. Located under the heading “Maximum Plant (Gal)” the user 

can define the constraint of the treatment plant at their specific location. 

 

Variable Input Screen Output  

The model outcomes of the variables are shown below the title heading “Model 

Analyses from 19 years of Data” in table format listing the supply percentage utilization 

of the captured roof runoff. Under the table heading “Supply” there are entries for use, 

such as groundwater, rain , partial and reservoir, with the adjacent column indicating the 

percentage of utilization based on the input demand. The partial is a combination of rain 

and groundwater. 

 

The Model Inputs Elements for the Sector Collection and Piping System  

The sector collection in piping system module consists of a user input page to 

facilitate the pipe sizing selection and to identify the piping constraints. Shown in Figure 

6-5 is the screen input page for the piping module. Under the heading, "Characteristics," 

the user can find the slope of the pipes by changing the top row labeled "Depth in feet" 

and "Distance in feet" for the corresponding pipe diameters listed below in inches. The 

"Max Flow in gallons/15 Min" will change based upon the input of the slope. The "Max 

Flow in gallons/15 Min" value is calculated from the light blue tinted data for specific 

pipe diameters in the columns. The calculation consists of the Manning equation, the 

slope, cross-sectional area, roughness coefficient, and the hydraulic radius, with output of 

the velocity full in ft/sec. Using the continuity equation flow at full is calculated in cfs, 
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gpm, and MGD, which are listed in the appropriate columns. The "Max Flow in 

gallons/15 Min" is the maximum carrying capacity for that "Pipe Size." 

The second lower half of the input page allows the user to select the "Pipe Size" 

from the drop window in the input cell. The user then must input the "Run," the distance 

in feet for each of the connections or runs for the length of pipe. The user then uses a 

matrix to complete the pipe configuration for that specific sector. For example, in Figure 

6-5 under the heading "Step 1" the "Pipe Size" is (8) inches, the "Run" is 100 feet, 

"Quantity units to connector” is 1, the "QA variable page" in tinted light blue indicates 

there are 1,200 homes from the user's previous entry, " Home to lateral" is 1, and “Home 

Connection flow to Lateral" duration is 24 homes. The previous inputs listed above 

calculate the "System Connection Flow" and the value is 14,645,190.52 gallons found in 

the tinted light blue cell.  

The same procedure is followed for the adjacent column labeled "Lateral." The 

user selected "Pipe Size" at 14 inches, followed by the "Run" of 1,200 feet, and the 

"Quantity units to connectors" at 50. Proceeding down to the next tinted light blue cell, 

the calculated value is 606,947.69 gallons, which represents the maximum flow that the 

piping can receive. Looking at this stair step matrix below the piping and/or trunks, we 

find in Figure 6-5 "System Connection Flow" the value is 14,645,190.52, under "Step 1" 

under the "Lateral,” the maximum value is 606,945.69 gallons.  



 
 

FFigure 6-5: Piping Routing Inpuut Page Screen 
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The trunk selection choice under labeled "Trunk 1" has the input value as one (1) 

trunk of 48 inch-diameter with a trunk line maximum of 347.584.79 gallons; whereas, the 

selection "Trunk 2" has a value of 649,169.58 gallons for two (2) trunks of 48 inch-

diameter. The preferred choice is “Trunk 2” because the maximum value is greater than 

the lateral capacity. The stair step matrix in this example has identified the constraints of 

the piping configuration, which is the "Lateral" in this case, the lowest maximum flow 

compared to "Trunk 2" flows. The ability of the user to change the various inputs that 

comprise the stair step matrix allows a multitude of combinations for the outcome of this 

sector and the ability to combine multiple sectors.  

 

Model Generated Results as Tables and Graphs  

After the user inputs have been assigned to the respective cells within the model, 

the model then begins to process the input variables and to perform various calculations. 

The model takes the routing portion in piping constraints in a subroutine and then 

incorporates the information into the main model. Because of the size of the files and 

data, the model may not have the capacity to run on a personal computer and may require 

a server to obtain the results.  
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Figure 6-6: The Variable Input Sheet Output Table for the Model 
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Variable Outcome Output 

The model outcomes of the variables are shown above in Figure 6-6 under the 

heading "Model Analyses from 19 years of Data" in table format listing the ”Supply” and 

the “Percentage” of utilization of the capture roof runoff. Under the heading “Supply” 

there is groundwater, rain, partial, and reservoir, with the adjacent column indicating the 

percentage utilization based on the input demand. The partial indication is a combination 

of rain and groundwater. This table was placed in the variable input for the ease of the 

user to see the effect of the changes on the input without referring to another section in 

the model output.  
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Figure 6-7: The Model Graphical Output of the Utilization 
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Output of the Utilization Results as Tables and Graphs 

The graphical output of the "Model Analyses from 19 years of Data" found on 

the variable input page is shown in Figure 6-5, with supply table in the right upper corner 

above the graph. In the upper left corner is the table for the sector frequency distribution 

of the rain in percentage, based upon the row label volumetric parameters. For example, 

91.66 percent of the sector rain is between zero (0) and 500,000 gallons.  

 

Output of Frequencies of Rain 

The model output frequency of rain provides the user a frequency table for the 

piping configuration limitations posed by the configuration to capture the rain. The rain 

not captured by the piping configuration is considered excess. Table 6-1 shows the 

frequencies for the sector piping configuration and counts the excess events under the 

heading "Count of Excess." This table is useful in the design of the configuration because 

the user utilizes the information from the frequency and the volume count. This tool 

allows the configuration for the best management practices and the highest probability of 

capture for the least amount of dollars spent on the Augmentation system. 
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Table 6-1: Model Output Frequency of the Piping and Rain Events. 
Row Labels  Count of Excess 

0.00  735296

118,880.78  109

446,130.78  287

773,380.78  66

1,100,630.78  153

1,427,880.78  35

1,755,130.78  91

2,082,380.78  30

2,409,630.78  71

2,736,880.78  12

3,064,130.78  36

3,391,380.78  7

3,718,630.78  32

4,045,880.78  3

4,373,130.78  15

4,700,380.78  5

5,027,630.78  8

5,682,130.78  6

6,336,630.78  6

6,991,130.78  4

7,645,630.78  2

7,972,880.78  1

9,281,880.78  1

10,590,880.78  1

Grand Total  736277

 

Table 6-2 provides the user a summary table of roof runoff utilization over the 19 

years of rain records. The table provides the total rain amount in gallons for that sector; 

maximum, mean, standard deviation; and the percent that the rain collector system could 

capture.   



 
T

 

1

v

 

T

 

 

Table 6-2: Su

Table 

9 years of ra

ariability in 

Table 6-3: Da

Year
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19

ummary of th

6-3 is a freq

ain records. T

rainfall over

ata Rain Rec

Rain in
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

he Sector Pip

quency table

This table is

r the period.

cords Annua

 Inches
69.8
46.1
33.4
62.5
64.3
35.6
35.7
51.7
56.7
61.6
51.8
38.6
57

48.9
50.6
63.3
58.8
55.5
64.7
63.4

 

126 

ping Constra

e of annual ra

 useful for th

 

al Rainfall. 

 

aints. 

ainfall for th

he user to ill

he given year

lustrate norm

 

r based upon

mal annual 

n the 



 

127 

The estimated cost for this project is $4,243,618.20. The model includes an 

interactive amortization schedule, which shows that the annual cost of $18.00 per 

connection over the next 30 years. This translates to a cost per homeowner of $1.50 

dollars per month of equal payments at an interest rate of three (3) percent. There is the 

possibility of a variety of funding opportunities for the implementation of the 

Augmentation system, such as direct funding from the federal government water 

improvement program, municipal bonds for the funding of capital. The payback period 

for the investment based upon the current wholesale water rate of $3.10 per 1,000 

gallons. The savings per year from the augmentation is $276,345.91, thus the system with 

the four (4) million gallon storage configuration would require a payback period of 15.36 

years. This does not take into account increased wholesale water rate increases. This 

scenario does not provide for increased population or connections to the city service area 

not in the City of Temple Terrace. The model output estimates and the amortization are in 

Appendix II. 

 

The Model as a Feasibility Tool for Alternative Sources  

This model is a tool for analyzing and evaluating flow, storage and economic 

considerations of roof runoff and determining the most economical strategy for 

augmenting a potable water supply using roof runoff. This source strategy may be more 

viable, considering a recent ruling by the South Florida Water Management District 

(SFWMD). Water providers can no longer use traditional resources such as the 

Everglades for their continued water supply per F.A.C. Section 3.2.1. (South Florida 

Water Management District, 2007a, 2007b). This ruling by the SFWMD has water 
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providers searching for alternative supplies, and this model could be used as a tool for a 

selection of augmentations to water supplies, along with other options. As this strategy 

revealed, the key to the storage issue is using the roof runoff as the events occur and 

processing the runoff as the demand increases.  

Current water use, consumption needs and public attitudes, appear to be changing 

in some parts of the United States due to multi-year droughts combined with increased 

populations. Communities are beginning to investigate use of alternative supplies such as 

roof runoff and reuse in the United States; such is the case in parts of Texas. The review 

of the literature did find many specific papers discussing the effects of trace metal 

concentration in roof runoff, and many researchers considered roof runoff only as a 

nonsource pollution–not a potential resource. In the literature worldwide, communities 

are looking for the sustainability of their communities and their resources. In order to 

collect and use runoff from roofs, the chemical composition of the runoff from a variety 

of roofing materials must be analyzed. DRRH is no longer just for developing countries. 

Rather, many industrialized countries are implementing programs that include DRRH in 

urban centers. While this area of DRRH is emerging in the United States, there are 

numerous international studies for developing countries and some industrial countries.  

Rain precipitation is a random even -  temporal and spatial in nature - that may present 

potential risks interacting with different roofing material in the Southeastern United 

States. At the time of this investigation and research, the review did not find any similar 

research in the state of Florida. However, the review found some generalized roof runoff 

research in the United States and around the world.  
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This situation of water scarcity is not unique to the investigation region of Tampa 

Bay Florida. This is a global issue, and with the increasing population, we need to search 

for alternatives and efficiencies. Rainwater systems such as a community-based system, 

as presented in the model, offer the capability for storage and using the rainwater 

immediately, increasing the efficiency and reducing possible evaporation. Florida's 

latitude creates a unique environment that allows the applicability of the model in most 

regions. Many of the world's communities are creating decentralized integrative systems 

versus large pipe centralized systems. Australia developed a strategy to use an integrated 

urban water management system and takes a comprehensive view of water supply, which 

includes DRRH, drainage, and sanitation (Coombes, et al., 2002; Mitchell, 2006). 

Globally and following the Australians’ concept, there are some other locations such as 

the US Virgin Islands and Taiwan, who have all incorporated this strategy of DRRH into 

their construction code. More states and countries such as Germany are also considering 

integration and code requirements for new construction (Cheng, et al., 2006; Herrmann & 

Schmida, 2000).  

 

The System Advantages Contrasted to Individual Units 

The advantage of an Augmentation Model is the economy of scale and the unique 

strategy of transferring collected water directly to the water treatment plant. The transfer 

strategy of collecting rain while using minimal size storage tanks to transfer water to the 

water treatment plant while the community is using the same water reduces the overall 

costs. The reductions in costs are associated with a reduction in the land cost and storage 

tank size. This same economy of scale allows monitoring of the Augmentation Model to 
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piggyback on pre-existing monitoring programs already in place at the water plant. This 

immediate transfer accomplishes several objectives, such as removing citizens from 

water quality monitoring and disinfection of potable water. A strategic objective is 

removing the issues with individual cisterns and allowing professionals to monitor the 

treatment process at the water plant. Using the services of water treatment professionals 

allows a mechanism to ensure the safety of the potable water and compliance to any 

future regulations.  

Another advantage of the Augmentation Model is sectors can be operated 

individually or combined to meet the needs of the city. This approach also allows for a 

phased development of sectors coming online with the water treatment plant. 

The contrast to the Augmentation system is the individual citizen cistern or system, 

which must manage water treatment and disinfection. The costs and economics are not to 

scale to provide saving of the chemicals treatment processes, or the construction of the 

cistern. This is further complicated by the responsibility of the individual to manage the 

water treatment. Repairs, maintenance and operation costs would have to be sustained by 

the individual. There would be additional costs for the installation of backflow valve 

devices to prevent contamination to the potable water from the city. In the test case, the 

individual system could only support the home for only a few months of the year. Then 

there are costs in time to the individual citizen, who has to spend time managing the 

water treatment process, instead of working in gainful employment or relaxing. 
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Regulatory and Policy Issues  

In the test case State of Florida, there were no statutes or regulatory policies 

preventing the implementation of the Augmentation system. Other states such as the 

Texas (TNRCC, 2004) have embraced the DRRH concept. Johnson in 2009, states 

Arizona is actively promoting rainfall catchment to be installed for all new construction. 

However, some states in the western part of the United States restrict or forbid rainwater 

harvesting because they have different water laws. According to the Utah Division of 

Water Rights, (2009), it is illegal to harvest rainwater unless the property owner has the 

water rights. Therefore, the implementation of the Augmentation Model might have some 

regulatory or policy issues depending on the location. There are social and policy 

behaviors that have not been addressed because they were outside the scope of this 

research. 

 

The Augmentation System Compared to Aquifer Storage and Recovery 

This study has provided a model, which is feasible for smaller communities to 

implement. The Augmentation Model is an inexpensive alternative compared to another 

strategy currently being used such as Aquifer Storage and Recovery (ASR). The 

alternative is a full-scale aquifer storage and recovery (ASR), which requires that potable 

water be injected typically into a brackish water aquifer where it forms a bubble within 

the existing aquifer. This allows for storage and allows the potable water to be withdrawn 

at will. ASR wells are classified as injection wells and are regulated by the Underground 

Injection Control (UIC) program under the federal SDWA, including chapters 528 F.A.C. 

Injected water must meet drinking water standards prior to pumping the water into the 
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storage zone. This regulation is justified for protection from contamination of the 

Floridian aquifer, our major potable water resource.  

Some of the considerations for ASR are site-specific due to the topography and 

the variable geochemical composition of the aquifer. The topography will affect the well 

depth required for permitting. The geochemical composition of the aquifer presents a 

challenge. Several studies have found that there has been leaching of arsenic and other 

metals that co-precipitate in the water-rock interface ,which results in causing the 

mobilization of metals into the extracted waters (Arthur, et al., 2002). This could require 

additional treatment of water to ensure it meets the MCLs of the water drinking 

standards. This possible additional treatment adds cost to recovering waters from the 

ASR. There are also site-specific efficiencies for reclaiming the potable water that were 

injected into the aquifer, with recovery that can be 65 to 75 percent of the original 

volume allotted. For example, the elevation of the site above the aquifer for storage and 

the TDS of the injected aquifer zone create additional costs to the project. 

Current cost estimations for ASR are $2,000,000 per-million-gallons-per-day; this 

includes testing and permitting (Southwest Florida Water Management District, 2006). 

This same estimation can be used to estimate the cost of adding additional wells to the 

current well field. The capturing of roof runoff strategy maximizes the throughput of 

resources by eliminating expensive ASR; currently the largest ASRs found in the state 

are 2 MGD and on the average permitting and testing requires a five-year lead-time or 

more. Then there is the problematic question as to where to find the additional water 

source. The Hillsborough River cannot supply the surface water that is currently needed 

to meet the permitted demand of municipalities and regional water supplier. It is not 
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feasible or reasonable to store 458,410,950 gallons at a cost of $ 2M per–million-gallons 

for a total cost of $229,205,475. The permitting and regulatory issues for this size ASR 

have not been addressed. The lead times for large scale ASR are unknown at this point.  

In contrast to the ASR, this roof runoff strategy and model is based upon actual 

collected data and historical rainfall data records from the years 1979 through 1998. The 

user inputs the catchment area in square-feet, number of homes, and 15-minute demand 

into the model. After the specific location, parameters are entered into the model. The 

result is calculated as a percentage of demand for this specific site, and this determines 

the volume available for augmentation. The model calculates at fifteen (15) minute 

intervals the amount of water that can be used for potable water from roof runoff. This 

model indicated in the test case that over the 19-year period, 56.93 percent of demand 

was met.  
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CHAPTER VII: CONCLUSIONS 
 

This research has provided information and data to the literature on roof runoff 

water quality on five different roofing materials in a non-arid area. In conducting this 

research, the following conclusions were reached. 

None of the water quality samples collected from the five roofing materials 

exceeds the primary or secondary drinking water standards. There are preferred roofing 

materials such as the clay tile, which was found to have absorptive and desorptive 

properties. The other preferred roofing material is the painted galvanized roofing 

material, because of decreased concentrations of zinc when compared to the galvanized 

material. The water quality and model strategy of using the water plant as part of the 

system avoids most problems associated with individual water supplies and/ or cisterns. 

Water quality of the roof runoff was of high quality when compared to stormwater water 

recovery.   

The model also illustrated the cost benefits of capturing roof runoff for 

augmenting the potable water supply. The versatility of the model allows the analyses of 

individual sector systems, and community systems or a combination the unique ability to 

examine this alternative source strategy parameters of pipe routing system, cost analysis 

and feasibility of a system's cost-effectiveness. The model provides a management tool 

for examining alternative best management practices.   
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CHAPTER VIII: RECOMMENDATIONS 
 

The study revealed that this is a viable and feasible method of augmenting an 

existing water supply with the following recommendations. 

Continue monitoring the apparatus for changes in water quality and 

meteorological conditions.  

Continue to work with the City of Temple Terrace and the water management 

district to incorporate the strategy and test a prototype or pilot study sized system 

potentially in a new development.  

Propose a pilot plant to test the efficiency of the model.  

Explore further refinements to the model and collect additional data to refine the 

model.  

Provide additional options and improvements for the users based upon their 

needs.  

Future research is needed on the clay tile and other roofing materials to define 

their water quality aspects. 

  



 

136 

 
 
 
 

REFERENCES 
 

Aldrich, T. E., & Griffith, J. (2002). Environmental Epidemiology and Risk Assessment 
Hoboken: John Wiley & Sons, Inc. .274 

 
Alfonso, L., & Raga, G. B. (2002). Estimating the impact of natural and anthropogenic 

emissions on cloud chemistry: Part I. Sulfur cycle. Atmospheric Research, 62(1-
2), 33-55. 

 
Arthur, J. D., Dabous, A. A., & Cowart, J. B. (2002). Mobilization of Arsenic and Other 

Trace Elements during Aquifer Storage and Recovery Southwest Florida Paper 
presented at the U.S. Geological Survey Artifical Recharge Workshop 
Proceedings Sacramento. 

 
Australian Bureau of Statistics. (1994). Environmental issues peoples views and practices 

Canberra: Australian  Bureau of Statistics. 
 
Bachmann, K., Haag, I., & Roder, A. (1993). A field study to determine the chemical 

content of individual raindrops as a function of their size. Atmospheric 
Environment. Part A. General Topics, 27(13), 1951-1958. 

 
Baez, A. P., Belmont, R. D., Garcia, R. M., Torres, M. C. B., & Padilla, H. G. (2006). 

Rainwater chemical composition at two sites in Central Mexico. Atmospheric 
Research, 80(1), 67-85. 

 
Barrie, L. A., Lindberg, S. E., Chan, W. H., Ross, H. B., Arimoto, R., & Church, T. M. 

(1987). On the concentration of trace metals in precipitation. Atmospheric 
Environment (1967), 21(5), 1133-1135. 

 
Benjamin, M. M. (2002). Water Chemistry (1 ed.). Boston, Ma.: Mc Graw Hill 668 
 
Box, G. E. P., Hunter, J. S., & Hunter, W. G. (2005). Statistics for Experimenters (2 ed.). 

Hoboken: John Wiley & Sons.633. 
 
Carnahan, B., Luther, H. A., & Wilkes, J. O. (1969). Applied Numerical Methods. New 

York: John Wiley and Sons Inc.604 
 
Chase, R., Jacobs, R., Aquilano, N.,. . (2004). Operations Management for Competitive 

Advantage (10 ed.). New York: McGraw-Hill /Irwin.765 
  



 

137 

Cheng, C. L., Liao, M. C., & Lee, M. C. (2006). A quantitative evaluation method for 
rainwater use guideline. Building Services Engineering Research & Technology, 
27(3), 209 -218. 

 
City of Temple Terrace Planning Department. (2006). Roof Runoff Collection Project. In 

R. Carnahan (Ed.). Temple Terrace. 
 
City of Temple Terrace Public Works Department. (2006). Plant Water Stats 2006 City 

of Temple Terrace: City of Temple Terrace.10 
 
Clesceri, L. S., Greenberg, A. R., & Eaton, A. D. (Eds.). (1998). Standard Methods for 

Examination of Water and Wastewater (20 ed.). Washington  D.C.: American 
Public Health Association 1152 

 
Connell, J., & Lea, J. (1992). My country will not be there : Global warming, 

development and the planning response in small island states. Cities, 9(4), 295-
309. 

 
Coombes, P. J., Argue, J. R., & Kuczera, G. (2000). Figtree Place: a case study in water 

sensitive urban development (WSUD). Urban Water, 1(4), 335-343. 
 
Coombes, P. J., Kuczera, G., Kalma, J. D., & Argue, J. R. (2002). An evaluation of the 

benefits of source control measures at the regional scale. Urban Water, 4(4), 307-
320. 

 
Cooper, H. J., Smith, E. A., & Rubes, M. T. (1998). Relevance of Surface Energy Budget 

within Florida Sea-Breeze Front to Cross-Peninsula Rainwater Runoff Gradient. 
Journal of Applied Meteorology, 37,(9), 939–950  

 
Corden, J. M., & Millington, W. M. (2001). The long-term trends and seasonal variation 

of the aeroallergen Alternaria in Derby, UK. Aerobiologia, 17(2), 127-136. 
 
Councell, T. B., Duckenfield, K. U., Landa, E. R., & Callender, E. (2004). Tire-Wear 

Particles as a Source of Zinc to the Environment. Environ. Sci. Technol., 38(15), 
4206-4214. 

 
Crabtree, K. D., Ruskin, R. H., Shaw, S. B., & Rose, J. B. (1996). The detection of 

Cryptosporidium oocysts and Giardia cysts in cistern water in the U.S. Virgin 
Islands. Water Research, 30(1), 208-216. 

 
Cunliffe, D. A. (1998). Guidance on the use of rainwater tanks Rundle Mall SA National 

Environmental Health Forum.30 
 
Dillaha, T. A., & Zolan, W. J. (1985). Rainwater catchment water quality in Micronesia. 

Water Research, 19(6), 741-746. 



 

138 

E.P.A. (1992). "Specifications and Guidance for Contaminant-Free Samples Containers" 
U.S. Government Printing Office.28 

 
E.P.A. (2002a). Code Of Federal Regulation Title 40-Protection of the Environment: 

Part141 National Primary Drinking Water Regulations United States 
Government Printing Office.228 

 
E.P.A. (2002b). Code Of Federal Regulation Title 40-Protection of the Environment; 

Part 143 National Secondary Drinking Water Regulations: United States 
Government Printing Office.184 

 
E.P.A. (2005). The Drinking Water Contaminant Candidate List : --A Source of Priority 

Contaminants for the Drinking Water Program: United States Government 
Printing Office.6 

 
Ebi, K. L., Lewis, N. D., & Corvalan, C. (2006). Climate Variability and Change and 

Their Potential Health Effects in Small Island States: Information for Adaptation 
Planning in the Health Sector. Environmental Health Perspectives, 114(12), 1957-
1963. 

 
Eisenberg, J. N. S., Desai, M. A., Levy, K., Bates, S. J., Song, L., Naumoff, K., & Scott, 

J. C. (2007). Environmental Determinants of Infectious Disease: A Framework 
for Tracking Causal Links and Guiding Public Health Research. Environmental 
Health Perspectives, 115(8), 1216-1223. 

 
Eisenberg, J. N. S., Seto, E. Y. W., John M. Colford, J., Olivieri, A., & Spear, R. C. 

(1998). An Analysis of the Milwaukee Cryptosporidiosis Outbreak Based on a 
Dynamic Model of the Infection Process. Epidemiology, 9(3 ), 255-263. 

 
Evans, C. A., Coombes, P. J., & Dunstan, R. H. (2006). Wind, rain and bacteria: The 

effect of weather on the microbial composition of roof-harvested rainwater. Water 
Research, 40(1), 37-44. 

 
Evans, C. A., Coombes, P. J., Dunstan, R. H., & Harrison, T. (2007). Indentifying the 

major influences on the microbial composition of roof harvested rainwater and the 
implication for water quality. Water Science and Technology, 55(4), 245-253. 

 
Fernald, E. A., & Purdem, E. D. (Eds.). (1998). Water resources Atlas of Florida. 

Tallahassee: Institute of Science and Public Affairs 312 
 
Florida Department of Environmental Protection. (2002). The Florida Stormwater, 

Erosion and Sedimentation Control Inspector Manual. 
 
Frigon, N. L., & Mathews, D. (1997). Practical Guide to Experimental Design New York 

John Wiley & Sons 342 



 

139 

Gaffield, S. J., Goo, R. L., Richards, L. A., & Jackson, R. J. (2003). Public health effects 
of inadequately managed stormwater runoff. American Journal of Public Health, 
93(9), 1527. 

 
Galloway, J. N., Savoie, D. L., Keene, W. C., & Prospero, J. M. (1993). The temporal 

and spatial variability of scavenging ratios for NSS sulfate, nitrate, 
methanesulfonate and sodium in the Atmosphere over the North Atlantic Ocean. 
Atmospheric Environment. Part A. General Topics, 27(2), 235-250. 

 
Galloway, J. N., Thornton, D. J., Norton, S. A., Volchok, H. L., & McLean, R. A. N. 

(1982). Trace metals in atmospheric deposition: A review and assessment. 
Atmospheric Environment (1967), 16(7), 1677-1700. 

 
Garcia, R., del Torres Ma, C., Padilla, H., Belmont, R., Azpra, E., Arcega-Cabrera, F., & 

Baez, A. (2006). Measurement of chemical elements in rain from Rancho Viejo, a 
rural wooded area in the State of Mexico, Mexico. Atmospheric Environment, 
40(32), 6088-6100. 

 
Glavas, S., & Moschonas, N. (2002). Origin of observed acidic-alkaline rains in a wet-

only precipitation study in a Mediterranean coastal site, Patras, Greece. 
Atmospheric Environment, 36(19), 3089-3099. 

 
Gobel, P., Dierkes, C., & Coldewey, W. G. (2007). Storm water runoff concentration 

matrix for urban areas. Journal of Contaminant Hydrology, 91(1-2), 26-42. 
 
Gould, J. E. (1999). Is rainwater safe to drink? A review of recent findings. Paper 

presented at the 9th International Rainwater Catchment Systems., Petrolina, 
Brazil. 

 
Guentzel, J. L., Landing, W. M., Gill, G. A., & Pollman, C. D. (2001). Processes 

Influencing Rainfall Deposition of Mercury in Florida. Environ. Sci. Technol., 
35(5), 863-873. 

 
Haas, C. N., Crockett, C. S., Rose, J. B., Gerba, C. P., & Fazil, A. M. (1996). Assessing 

the risk posed by oocysts in drinking water. American Water Works Association. 
Journal, 88(9), 131-136. 

 
Haas, C. N., Rose, J. B., & Regli, S. (1991). Risk Assessment and Control of Waterborne 

Giardiasis. American Journal of Public Health, 81(6), 709-713. 
 
Hee, S. S. Q. (Ed.). (1993). Biological Monitoring New York: Van Nostrand Reinhold 

650 
 
Herrmann, T., & Schmida, U. (2000). Rainwater utilisation in Germany: efficiency, 

dimensioning, hydraulic and environmental aspects. Urban Water, 1(4), 307-316.



 

140 

Herut, B., Starinsky, A., Katz, A., & Rosenfeld, D. (2000). Relationship between the 
acidity and chemical composition of rainwater and climatological conditions 
along a transition zone between large deserts and Mediterranean climate, Israel. 
Atmospheric Environment, 34(8), 1281-1292. 

 
Heymann, D. L. (Ed.). (2004). Control of Communicable Disease Manual (18 ed.). 

Washington,  D.C.: American Public Health Association.698 
 
Heyworth, J. S., Maynard, E. J., & Cunliffe, D. A. (1998). Who consumes what potable 

water consuption in South Australia. Water, 25(1), 9-13. 
 
Hutson, S. S., Barber, N. L., Kenny, J. K., Linsey, K. S., Lumia , D. S., & Maupin, M. A. 

(2004). Estimated Use of Water in the United States in 2000 (Vol. U.S. 
Geological Survey circular  1268). Reston,Va: US Department of the Interior 42 

 
Hydrologic Evaluation Section. (2002). Saltwater Intrusion and the Minimum Aquifer 

Level in the Southern Water Use Caution Area: Southwest Florida Water 
Management District.48 

 
Jensen, J. N. (2003). A Problem-Solving Approach to Aquatic Chemistry. New York: 

John Wiley & Sons, Inc.585 
 
Johnson, K. (2009, June,29). It's Now Legal to Catch a Raindrop in Colorado. New York 

Times  
 
Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on 

atmospheric bioaerosol concentrations--a review. Science of The Total 
Environment, 326(1-3), 151-180. 

 
Kachigan, S. K. (1991). Multivariate Statistical Analysis (2 ed.). New York Raduis 

Press.303 
 
Kaya, G., & Tuncel, G. (1997). Trace element and major ion composition of wet and dry 

depositon in Ankara, Turkey. Atmospheric Environment, 31(23), 3985-3998. 
 
Kieber, R. J., Hardison, D. R., Whitehead, R. F., & Willey, J. D. (2003). Photochemical 

Production of Fe(II) in Rainwater. Environ. Sci. Technol., 37(20), 4610-4616. 
 
Kieber, R. J., Skrabal, S. A., Smith, B. J., & Willey, J. D. (2005). Organic Complexation 

of Fe(II) and Its Impact on the Redox Cycling of Iron in Rain. Environ. Sci. 
Technol., 39(6), 1576-1583. 

 
Kieber, R. J., Skrabal, S. A., Smith, C., & Willey, J. D. (2004). Redox Speciation of 

Copper in Rainwater: Temporal Variability and Atmospheric Deposition. 
Environ. Sci. Technol., 38(13), 3587-3594.  



 

141 

Kieber, R. J., Willey, J. D., & Zvalaren, S. D. (2002). Chromium Speciation in 
Rainwater: Temporal Variability and Atmospheric Deposition. Environ. Sci. 
Technol., 36(24), 5321-5327. 

 
Leeden, F. v. d., Troise, F. L., & Todd, D. K. (1990). The Water Encyclopedia (2 ed.). 

Chelsa Lewis Publishers.808 
 
Liaw, C.-H., & Tsai, Y.-L. (2004). Optimum storage volume of rooftop rain water 

harvesting systems for domestic use. Journal of the American Water Resources 
Association, 40(4), 901-912. 

 
Louvar, J. F., & Louvar, B. D. (1998). Health and Environmental Risk 

Analysis:Fundamentals with Applications. Upper Saddle Creek Prentice-Hall 678 
 
Loye-Pilot, M. D., & Morelli, J. (1988). Fluctuations of ionic composition of 

precipitations collected in Corsica related to changes in the origins of incoming 
aerosols. Journal of Aerosol Science, 19(5), 577-585. 

 
Luidold, S., & Antrekowitsch., H. (2007). Hydrogen as A Reducing Agent: 

Thermodynamic Possibilities. Journal of the Minerals, Metals and Materials 
Society, 59(10), 58 - 62. 

 
Lye, D. J. (2002). Health risks associated with consumption of untreated water from 

household roof catchment systems. Journal of the American Water Resources 
Association, 38(5), 1301 -1307. 

 
Lyubenova, T. S., Matteucci, F., Costa, A., Dondi, M., & Carda, J. (2009). Ceramic 

pigments with sphene structure obtained by both spray- and freeze-drying 
techniques. [doi: DOI: 10.1016/j.powtec.2009.01.020]. Powder Technology, 
193(1), 1-5. 

 
Manahan, S. E. (1991). Toxicology Chemistry: a guide to Toxic Substances in Chemistry. 

Chelsea Lewis Publishers Inc. 
 
Manahan, S. E. (Ed.). (1990). Environmental Chemistry (4 ed.). Boston Lewis Publisher 

612 
 
Manahan, S. E. (Ed.). (1994). Environmental Chemistry (6 ed.). Boca Raton Lewis 

Publishers 811 
 
Marsalek, J., Brownlee, B., Mayer, T., Lawal, S., & Larkin, G. (1997). Heavy Metals and 

PAHs in Stormwater Runoff from the Skyway Bridge in Burlington, Ontario. 
Water Quality Research Journal of Canada, 32, 815- 827. 

 
  



 

142 

McMillan, W. G. (1960). Surface Chemistry. Annual Review of Physical Chemistry, 
11(1), 449-476. 

 
Mitchell, V. (2006). Applying Integrated Urban Water Management Concepts: A Review 

of Australian Experience. Environmental Management, 37(5), 589-605. 
 
Mudgal, P. K., Bansal, S. P., & Gupta, K. S. (2007). Kinetics of atmospheric oxidation of 

nitrous acid by oxygen in aqueous medium. Atmospheric Environment, 41(19), 
4097-4105. 

 
National Climatic Data Center. (2009). COOPID 84797. Retrieved Fed 20, from NOAA: 

www.ncdc.noaa.gov/oa/ncdc.html 
 
Ness, S. (1994). Surface and Dermal Monitoring for Toxic Exposures. New York: John 

Wiley & Sons Inc. 
 
NOAA. (2005). Monthly /Annual Normals for Tampa. Retrieved from 

http://www.srh.noaa.gov/tbw/html/tbw/climate/tpa/TPAANNNorm.htm. 
 
Olem, H., & Berthouex, P. M. (1989). Acidic deposition and cistern drinking water 

supplies. Environ. Sci. Technol., 23(3), 333-340. 
 
Parker, S. P., & Corbitt, R. A. (Eds.). (1993). McGraw- Hill encyclopedia of 

environmental science & engineering (3 ed.). New York McGraw-Hill.749 
 
Petersen, G., Munthe, J., Pleijel, K., Bloxam, R., & Kumar, A. V. (1998). A 

comprehensive Eulerian modeling framework for airborne mercury species: 
Development and testing of the Tropospheric Chemistry module (TCM). 
Atmospheric Environment, 32(5), 829-843. 

 
Railsback, L. B. (1997). Lower pH of acid rain associated with lightning: evidence from 

sampling within 14 showers and storms in the Georgia Piedmont in summer 1996. 
Science of The Total Environment, 198(3), 233-241. 

 
Robertson, L. J., Campbell, A. T., & Smith, H. V. (1992). Survival of Cryptosporidium 

parvum oocysts under various environmental pressures. Appl. Environ. 
Microbiol., 58(11), 3494-3500. 

 
Sazakli, E., Alexopoulos, A., & Leotsinidis, M. (2007). Rainwater harvesting, quality 

assessment and utilization in Kefalonia Island, Greece. Water Research, 41(9), 
2039-2047. 

 
Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (1993). Environmental 

organic chemistry. New York: John Wiley & Sons.681 
 



 

143 

Seinfeld, J. H. (1975). Air pollution: physical and chemical fundamentals. New York: 
McGraw-Hill.523 

 
Sincero, A., & Sincero, G. (1996). Environmental Engineering: A design Appproach. 

Upper Saddle River , NJ: Prentice Hall.795 
 
Sirkin, R. M. (1994). Statistics for the Social Sciences (2 ed.). Thousand Oaks Sage 

Publications.569 
 
Smith, S. K. (2005). Florida Population Growth : Past, Present and Future. Gainesville 

University of Florida: Bureau of Economic and Business Research.40 
 
Restricted Allocation § 3.2.1 (2007a). 
 
South Florida Water Management District. (2007b). Restricted Allocation South Florida 

Water Management District.5 
 
Southwest Florida Water Management District. (2006). Capital Cost Southwest Florida 

Water Management District  
 
Spinks, A. T., Dunstan, R. H., Harrison, T., Coombes, P., & Kuczera, G. (2006). Thermal 

inactivation of water-borne pathogenic and indicator bacteria at sub-boiling 
temperatures. Water Research, 40(6), 1326-1332. 

 
Stites, D. P., Stobo, J. D., & Wells, J. V. (Eds.). (1987). Basic & Clinical Immunology (6 

ed.). Norwalk Connecticut: Appleton & Lange.734 
 
Stumm, W., & Morgan, J. J. (1996). Aquatic Chemistry :Chemical Equilbria and Rates in 

Natural Waters (3 ed.). New York John Wiley & Sons Inc.1022 
 
Tanner, P., & Fai, T. (2000). Small-Scale Horizontal Variations in Ionic Concentrations 

of Bulk Deposition from Hong Kong. Water, Air, & Soil Pollution, 122(3), 433-
448. 

 
Tanner, P., & Wong, A. (2000). Soluble Trace Metals and Major Ionic Species in the 

Bulk Deposition and Atmosphere of Hong Kong. Water, Air, & Soil Pollution, 
122(3), 261-279. 

 
Taylor, P. (2001). Experiences in water resources management: Survey of issues for 

water resources management in the Pacific subregion [Electronic version] 
Economic and social commission for Asia and the Pacific 236 -267 

 
Tchobanoglous, G., & Schroeder, E. D. (1985). Water Quality Reading, Ma. : Addison- 

Wesley Publishing Company.768 
 



 

144 

Texas Natural Resource Conservation Commission. (2004). Rainwater Treatment  
 
Texas Water Development Board. (2005). The Texas Manual on Rainwater Harvesting (3 

ed.). Austin 88 
 
USGS. (2004). Public-supplied population, wateruse, withdrawals, and transfers in 

Florida by county ,2000. Retrieved from http://www.fl.water.usgs.gov 
 
Utah Division of Water Rights. (2009). Water Rights.   Retrieved Feb, 02, 2009, from 

www.waterrights.utah.gov 
 
Viessman, W., & Lewis, G. L. (1996 ). Introduction to Hydrology (4 ed.). Upper Saddle 

River Pearson Education.760 
 
Viessman, W., & Lewis, G. L. (2003 ). Introduction to Hydrology (5 ed.). Upper Saddle 

River Pearson Education.612 
 
Viesssman, W., & Lewis, G. L. (2003 ). Introduction to Hydrology (5 ed.). Upper Saddle 

River Pearson Education.612 
 
Wanielista, M., Kerten, R., & Eaglin, R. (1997). Hydrology: water quantity and quality 

control (2 ed.). New York John Wiley & Sons Inc. 
 
Waterborne Pathogens: manual of water supply practices. (1999). Denver American 

Water Works Association.285 
 
White, I., Falkland, T., Perez, P., Dray, A., Metutera, T., Metai, E., & Overmars, M. 

(2007). Challenges in freshwater management in low coral atolls. Journal of 
Cleaner Production, 15(16), 1522-1528. 

 
Williams, P. T., Radojevic, M., & Clarke, A. G. (1988). Dissolution of trace metals from 

particles of industrial origin and its influence on the composition of rainwater. 
Atmospheric Environment (1967), 22(7), 1433-1442. 

 
Wyngaarden, J. B., & Smith, L. H. (Eds.). (1985). Cecil Textbook of Medicine (17 ed.). 

Philadelphia W.B Saunders Company.2436 
 
Yaziz, M. I., Gunting, H., Sapari, N., & Ghazali, A. W. (1989). Variations in rainwater 

quality from roof catchments. Water Research, 23(6), 761-765. 
 
Zartman, R. E., R H Ramsey III, & Huang, A. (2001). Variability of total and dissolved 

elements in stormwater runoff. Journal of Soil and Water Conservation, 56(3), 
263. 

 
  



 

145 

Zhu, K., Zhang, L., Hart, W., Liu, M., & Chen, H. (2004). Quality issues in harvested 
rainwater in arid and semi-arid Loess Plateau of northern China. Journal of Arid 
Environments, 57(4), 487-505. 

 
  



 

146 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

  



 

147 

Appendix I: Standards and Analysis 
 

This section contains the various outputs of the analysis. 

 

Table A-1: pH Descriptive Statistical Analysis Material Surfaces S1-S5. 
S1 S2 S3 S4 S5 

count 29 29 29 29 29 
mean 0.0237 0.7054 0.8857 -0.4098 -0.3701 
sample variance 0.4644 0.8876 1.0315 0.6366 0.6404 
sample standard deviation 0.6814 0.9421 1.0156 0.7979 0.8003 
minimum -1.61 -1.08 -1.11 -2.6 -1.78 
maximum 1.3 2.37 2.64 0.81 1.13 
range 2.91 3.45 3.75 3.41 2.91 

normal curve GOF
p-value .7023 .0100 .0376 .0258 .8013 
chi-square(df=3) 1.41 11.34 8.45 9.28 1.00 
E 4.83 4.83 4.83 4.83 4.83 
O(-0.97) 4 4 3 6 6 
O(-0.43) 5 5 7 3 4 
O(+0.00) 5 10 8 1 4 
O(+0.43) 6 2 3 7 4 
O(+0.97) 3 1 1 9 5 
O(inf.) 6 7 7 3 6  
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Appendix I (Continued) 

 

 

 

 

 

Figure A-1: pH Frequency Plot Analysis of Material Surface  
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Appendix I (Continued)  
 
Table A-2: pH Paired T-Test Analysis S1 and Control. 

0.000000 hypothesized value
6.380690 mean S1
6.357034 mean ConpH
0.023655 mean difference  (S1 - ConpH)
0.681438 std. dev.
0.126540 std. error

29  n
28  df

0.19  t
.8531  p-value (two-tailed)

-0.235550 confidence interval 95.% lower
0.282860 confidence interval 95.% upper
0.259205    half-width  

 

Table A-3: pH Paired T-Test Analysis S2 and Control. 
0.000000 hypothesized value
7.062414 mean S2
6.357034 mean ConpH
0.705379 mean difference  (S2 - ConpH)
0.942127 std. dev.
0.174949 std. error

29  n
28  df

4.03  t
.0004  p-value (two-tailed)

0.347013 confidence interval 95.% lower
1.063745 confidence interval 95.% upper
0.358366    half-width  

 

 

  



 

150 

Appendix I (Continued)  
 
Table A-4: pH Paired T-Test Analysis S3 and Control. 

0.000000 hypothesized value
7.242759 mean S3
6.357034 mean ConpH
0.885724 mean difference  (S3 - ConpH)
1.015612 std. dev.
0.188594 std. error

29  n
28  df

4.70  t
.0001  p-value (two-tailed)

0.499406 confidence interval 95.% lower
1.272042 confidence interval 95.% upper
0.386318    half-width  

 

Table A-5: pH Paired T-Test Analysis S4 and Control. 
0.000000 hypothesized value
5.947241 mean S4
6.357034 mean ConpH

-0.409793 mean difference  (S4 - ConpH)
0.797875 std. dev.
0.148162 std. error

29  n
28  df

-2.77  t
.0099  p-value (two-tailed)

-0.713288 confidence interval 95.% lower
-0.106298 confidence interval 95.% upper
0.303495    half-width  
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Appendix I (Continued)  
 
Table A-6: pH Paired T-Test Analysis S5 and Control. 

0.000000 hypothesized value
5.986897 mean S5
6.357034 mean ConpH

-0.370138 mean difference  (S5 - ConpH)
0.800264 std. dev.
0.148605 std. error

29  n
28  df

-2.49  t
.0189  p-value (two-tailed)

-0.674542 confidence interval 95.% lower
-0.065734 confidence interval 95.% upper
0.304404    half-width  

 

Table A-7: pH Wilcoxon Analysis S1-Control. 
variables: S1 - ConpH

234 sum of positive ranks
201 sum of negative ranks

29  n
217.50  expected value

46.21  standard deviation
0.36  z, corrected for ties

.7211  p-value (two-tailed)  
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Appendix I (Continued)  
 
Table A-8: pH Wilcoxon Analysis S2-Control. 

variables: S2 - ConpH
383 sum of positive ranks

52 sum of negative ranks

29  n
217.50  expected value

46.21  standard deviation
3.58  z, corrected for ties

.0003  p-value (two-tailed)  

 

Table A-9: pH Wilcoxon Analysis S3-Control. 
variables: S3 - ConpH

391 sum of positive ranks
44 sum of negative ranks

29  n
217.50  expected value
46.18  standard deviation
3.76  z, corrected for ties

.0002  p-value (two-tailed)  

 
Table A-10: pH Wilcoxon Analysis S4-Control. 

variables: S4 - ConpH
99 sum of positive ranks

307 sum of negative ranks

28  n
203.00  expected value
43.78  standard deviation
-2.38  z, corrected for ties
.0175  p-value (two-tailed)  
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Appendix I (Continued)  
 
Table A-11: pH Wilcoxon Analysis S5-Control. 

variables: S5 - ConpH
121.5 sum of positive ranks
313.5 sum of negative ranks

29  n
217.50  expected value

46.21  standard deviation
-2.08  z, corrected for ties
.0378  p-value (two-tailed)

 

 

Table A-12: TDS Descriptive Statistical Analysis Material Surfaces S1-S5. 
S1 S2 S3 S4 S5 

count 29 29 29 29 29 
mean -10.637931 0.155172 10.413793 -8.293103 -7.534483 
sample variance 140.980296 67.805419 82.965517 106.098522 75.891626 
sample standard deviation 11.873512 8.234405 9.108541 10.300414 8.711580 
minimum -44 -20 -14 -42 -33 
maximum 0.5 15 33 2 4 
range 44.5 35 47 44 37 

normal curve GOF
p-value 2.82E-07 .3230 .3230 .0001 .0012 
chi-square(df=3) 33.28 3.48 3.48 21.28 15.90 
E 4.83 4.83 4.83 4.83 4.83 
O(-0.97) 4 5 4 4 3 
O(-0.43) 2 3 4 1 1 
O(+0.00) 3 4 8 2 5 
O(+0.43) 4 7 6 10 10 
O(+0.97) 16 7 3 11 9 
O(inf.) 0 3 4 1 1 
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Appendix I (Continued) 

 

 

 

 

 

Figure A-2: TDS Frequency Plot Analysis of Material  
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Appendix I (Continued)  
 
Table A-13: TDS Paired T-Test Analysis S1 and Control. 

0.0000 hypothesized value
13.4655 mean S1
24.1034 mean ConTDS

-10.6379 mean difference  (S1 - ConTDS)
11.8735 std. dev.

2.2049 std. error
29  n
28  df

-4.82  t
4.48E-05  p-value (two-tailed)

-15.1544 confidence interval 95.% lower
-6.1215 confidence interval 95.% upper
4.5164    half-width  

 

Table A-14: TDS Paired T-Test Analysis S2 and Control. 
0.0000 hypothesized value

24.2586 mean S2
24.1034 mean ConTDS

0.1552 mean difference  (S2 - ConTDS)
8.2344 std. dev.
1.5291 std. error

29  n
28  df

0.10  t
.9199  p-value (two-tailed)

-2.9770 confidence interval 95.% lower
3.2874 confidence interval 95.% upper
3.1322    half-width  
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Appendix I (Continued)  
 
Table A-15: TDS Paired T-Test Analysis S3 and Control. 

0.000 hypothesized value
34.517 mean S3
24.103 mean ConTDS
10.414 mean difference  (S3 - ConTDS)

9.109 std. dev.
1.691 std. error

29  n
28  df

6.16  t
1.20E-06  p-value (two-tailed)

6.949 confidence interval 95.% lower
13.878 confidence interval 95.% upper

3.465    half-width  

 

Table A-16: TDS Paired T-Test Analysis S4 and Control. 
0.0000 hypothesized value

15.8103 mean S4
24.1034 mean ConTDS
-8.2931 mean difference  (S4 - ConTDS)
10.3004 std. dev.

1.9127 std. error
29  n
28  df

-4.34  t
.0002  p-value (two-tailed)

-12.2112 confidence interval 95.% lower
-4.3750 confidence interval 95.% upper
3.9181    half-width  
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Appendix I (Continued)  
 
Table A-17: TDS Paired T-Test Analysis S5 and Control. 

0.0000 hypothesized value
16.5690 mean S5
24.1034 mean ConTDS
-7.5345 mean difference  (S5 - ConTDS)
8.7116 std. dev.
1.6177 std. error

29  n
28  df

-4.66  t
.0001  p-value (two-tailed)

-10.8482 confidence interval 95.% lower
-4.2208 confidence interval 95.% upper
3.3137    half-width  

 

 

Table A-18: TDS Wilcoxon Analysis S1-Control. 
variables: S1 - ConTDS

1 sum of positive ranks
434 sum of negative ranks

29  n
217.50  expected value

43.51  standard deviation
-4.98  z, corrected for ties

6.48E-07  p-value (two-tailed)  
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Appendix I (Continued)  
 
Table A-19: TDS Wilcoxon Analysis S2-Control. 

variables: S2 - ConTDS
194 sum of positive ranks
157 sum of negative ranks

26  n
175.50  expected value

38.72  standard deviation
0.48  z, corrected for ties

.6328  p-value (two-tailed)  

 

Table A-20: TDS Wilcoxon Analysis S3-Control. 
variables: S3 - ConTDS

382 sum of positive ranks
24 sum of negative ranks

28  n
203.00  expected value

42.74  standard deviation
4.19  z, corrected for ties

2.81E-05  p-value (two-tailed)  

 

Table A-21: TDS Wilcoxon Analysis S4-Control. 
variables: S4 - ConTDS

6 sum of positive ranks
429 sum of negative ranks

29  n
217.50  expected value

45.10  standard deviation
-4.69  z, corrected for ties

2.73E-06  p-value (two-tailed)  
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Appendix I (Continued)  
 
Table A-22: TDS Wilcoxon Analysis S5-Control. 

variables: S5 - ConTDS
10.5 sum of positive ranks

395.5 sum of negative ranks

28  n
203.00  expected value

42.56  standard deviation
-4.52  z, corrected for ties

6.10E-06  p-value (two-tailed)  

 

Table A-23: Zinc Descriptive Statistical Analysis Material Surfaces S1-S5. 
S1 S2 S3 S4 S5 

count 30 30 30 30 30 
mean -0.099563 -0.113567 -0.054190 -0.035647 1.122243 
sample variance 0.021732 0.027803 0.022279 0.021365 0.944698 
sample standard deviation 0.147419 0.166741 0.149261 0.146169 0.971956 
minimum -0.5081 -0.5703 -0.4312 -0.4122 -0.0016 
maximum 0.0149 0.0175 0.3535 0.1975 3.3669 
range 0.523 0.5878 0.7847 0.6097 3.3685 

normal curve GOF
p-value 6.90E-10 2.83E-08 9.10E-08 .0035 9.37E-07 
chi-square(df=3) 45.60 38.00 35.60 13.60 30.80 
E 5.00 5.00 5.00 5.00 5.00 
O(-0.97) 6 4 3 4 1 
O(-0.43) 1 3 3 3 15 
O(+0.00) 1 1 2 2 7 
O(+0.43) 4 5 17 12 0 
O(+0.97) 18 17 4 6 2 
O(inf.) 0 0 1 3 5 
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Appendix I (Continued)  
 

 

 

 

 

 

Figure A-3: Zinc Frequency Plot Analysis of Material Surface  
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Appendix I (Continued)  
 
Table A-24: Zinc Paired T-Test Analysis S1 and Control. 

0.0000000 hypothesized value
0.0743600 mean S1
0.1739233 mean ConZn

-0.0995633 mean difference  (S1 - ConZn)
0.1474187 std. dev.
0.0269149 std. error

30  n
29  df

-3.70  t
.0009  p-value (two-tailed)

-0.1546104 confidence interval 95.% lower
-0.0445163 confidence interval 95.% upper
0.0550471    half-width  

 

Table A-25: Zinc Paired T-Test Analysis S2 and Control. 
0.0000000 hypothesized value
0.0603567 mean S2
0.1739233 mean ConZn

-0.1135667 mean difference  (S2 - ConZn)
0.1667415 std. dev.
0.0304427 std. error

30  n
29  df

-3.73  t
.0008  p-value (two-tailed)

-0.1758289 confidence interval 95.% lower
-0.0513044 confidence interval 95.% upper
0.0622623    half-width  
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Appendix I (Continued)  
 
Table A-26: Zinc Paired T-Test Analysis S3 and Control. 

0.0000000 hypothesized value
0.1197333 mean S3
0.1739233 mean ConZn

-0.0541900 mean difference  (S3 - ConZn)
0.1492615 std. dev.
0.0272513 std. error

30  n
29  df

-1.99  t
.0563  p-value (two-tailed)

-0.1099252 confidence interval 95.% lower
0.0015452 confidence interval 95.% upper
0.0557352    half-width  

 

Table A-27: Zinc Paired T-Test Analysis S4 and Control. 
0.0000000 hypothesized value
0.1382767 mean S4
0.1739233 mean ConZn

-0.0356467 mean difference  (S4 - ConZn)
0.1461687 std. dev.
0.0266866 std. error

30  n
29  df

-1.34  t
.1920  p-value (two-tailed)

-0.0902270 confidence interval 95.% lower
0.0189336 confidence interval 95.% upper
0.0545803    half-width  
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Appendix I (Continued)  
 
Table A-28: Zinc Paired T-Test Analysis S5 and Control. 

0.0000000 hypothesized value
1.2961667 mean S5
0.1739233 mean ConZn
1.1222433 mean difference  (S5 - ConZn)
0.9719555 std. dev.
0.1774540 std. error

30  n
29  df

6.32  t
6.57E-07  p-value (two-tailed)

0.7593092 confidence interval 95.% lower
1.4851775 confidence interval 95.% upper
0.3629342    half-width  

 

Table A-29: Zinc Wilcoxon Analysis S1-Control. 
variables: S1 - ConZn

18 sum of positive ranks
447 sum of negative ranks

30  n
232.50  expected value
48.62  standard deviation
-4.41  z

1.02E-05  p-value (two-tailed)  

 

Table A-30: Zinc Wilcoxon Analysis S2-Control. 
variables: S2 - ConZn

16 sum of positive ranks
449 sum of negative ranks

30  n
232.50  expected value

48.62  standard deviation
-4.45  z

8.47E-06  p-value (two-tailed)  
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Appendix I (Continued)  
 
Table A-31: Zinc Wilcoxon Analysis S3-Control. 

variables: S3 - ConZn
99 sum of positive ranks

366 sum of negative ranks

30  n
232.50  expected value

48.62  standard deviation
-2.75  z
.0060  p-value (two-tailed)  

 
Table A-32: Zinc Wilcoxon Analysis S4-Control. 

variables: S4 - ConZn
213 sum of positive ranks
252 sum of negative ranks

30  n
232.50  expected value

48.62  standard deviation
-0.40  z
.6884  p-value (two-tailed)  

 

Table A-33: Zinc Wilcoxon Analysis S5-Control. 
variables: S5 - ConZn

464 sum of positive ranks
1 sum of negative ranks

30  n
232.50  expected value

48.62  standard deviation
4.76  z

1.92E-06  p-value (two-tailed)
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Appendix I (Continued)  
 
Table A-34: Lead Descriptive Statistical Analysis Material Surfaces S1-S5. 

S1 S2 S3 S4 S5 
count 30 30 30 30 30 
mean -0.000317 -0.000460 -0.000370 -0.000630 -0.000823 
sample variance 0.000005 0.000003 0.000005 0.000004 0.000005 
sample standard deviation 0.002306 0.001659 0.002262 0.002009 0.002290 
minimum -0.0054 -0.0043 -0.005 -0.0056 -0.007 
maximum 0.004 0.0027 0.0058 0.0022 0.0028 
range 0.0094 0.007 0.0108 0.0078 0.0098 

normal curve GOF
p-value .1870 .0267 .3618 .4936 .2615 
chi-square(df=3) 4.80 9.20 3.20 2.40 4.00 
E 5.00 5.00 5.00 5.00 5.00 
O(-0.97) 6 5 4 4 4 
O(-0.43) 4 3 5 5 2 
O(+0.00) 3 4 6 5 8 
O(+0.43) 4 4 8 4 6 
O(+0.97) 9 11 3 8 5 
O(inf.) 4 3 4 4 5  
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Appendix I (Continued) 

 

 

 

 

 

Figure A-4: Lead Frequency Plot Analysis of Material Surface 
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Appendix I (Continued) 
 
Table A-35: Lead T-Test S1 Analysis and Control. 

0.0000000 hypothesized value
0.0027833 mean S1
0.0031000 mean ConPb

-0.0003167 mean difference  (S1 - ConPb)
0.0023059 std. dev.
0.0004210 std. error

30  n
29  df

-0.75  t
.4580  p-value (two-tailed)

-0.0011777 confidence interval 95.% lower
0.0005444 confidence interval 95.% upper
0.0008610    half-width  

 

 

Table A-36: Lead Paired T-Test Analysis S2 and Control. 
0.0000000 hypothesized value
0.0026400 mean S2
0.0031000 mean ConPb

-0.0004600 mean difference  (S2 - ConPb)
0.0016587 std. dev.
0.0003028 std. error

30  n
29  df

-1.52  t
.1396  p-value (two-tailed)

-0.0010794 confidence interval 95.% lower
0.0001594 confidence interval 95.% upper
0.0006194    half-width  
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Appendix I (Continued)  
 
Table A-37: Lead Paired T-Test Analysis S3 and Control. 

0.0000000 hypothesized value
0.0027300 mean S3
0.0031000 mean ConPb

-0.0003700 mean difference  (S3 - ConPb)
0.0022622 std. dev.
0.0004130 std. error

30  n
29  df

-0.90  t
.3777  p-value (two-tailed)

-0.0012147 confidence interval 95.% lower
0.0004747 confidence interval 95.% upper
0.0008447    half-width  

 

Table A-38: Lead Paired T-Test Analysis S4 and Control. 
0.0000000 hypothesized value
0.0024700 mean S4
0.0031000 mean ConPb

-0.0006300 mean difference  (S4 - ConPb)
0.0020093 std. dev.
0.0003668 std. error

30  n
29  df

-1.72  t
.0966  p-value (two-tailed)

-0.0013803 confidence interval 95.% lower
0.0001203 confidence interval 95.% upper
0.0007503    half-width  
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Appendix I (Continued)  
 
Table A-39: Lead Paired T-Test S5 Analysis and Control. 

0.0000000 hypothesized value
0.0022767 mean S5
0.0031000 mean ConPb

-0.0008233 mean difference  (S5 - ConPb)
0.0022901 std. dev.
0.0004181 std. error

30  n
29  df

-1.97  t
.0586  p-value (two-tailed)

-0.0016785 confidence interval 95.% lower
0.0000318 confidence interval 95.% upper
0.0008551    half-width  

 

Table A-40: Lead Wilcoxon Analysis S1-Control. 
variables: S1 - ConPb

206 sum of positive ranks
259 sum of negative ranks

30  n
232.50  expected value

48.59  standard deviation
-0.55  z, corrected for ties
.5855  p-value (two-tailed)  

 
Table A-41: Lead Wilcoxon Analysis S2-Control. 

variables: S2 - ConPb
185 sum of positive ranks
280 sum of negative ranks

30  n
232.50  expected value

48.56  standard deviation
-0.98  z, corrected for ties
.3280  p-value (two-tailed)   
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Appendix I (Continued)  
 
Table A-42: Lead Wilcoxon Analysis S3-Control. 

variables: S3 - ConPb
165 sum of positive ranks
270 sum of negative ranks

29  n
217.50  expected value

46.21  standard deviation
-1.14  z, corrected for ties
.2560  p-value (two-tailed)  

 

Table A-43: Lead Wilcoxon Analysis S4-Control. 
variables: S4 - ConPb

169 sum of positive ranks
296 sum of negative ranks

30  n
232.50  expected value

48.37  standard deviation
-1.31  z, corrected for ties
.1893  p-value (two-tailed)  

 

Table A-44: Lead Wilcoxon Analysis S5-Control. 
variables: S5 - ConPb

139.5 sum of positive ranks
295.5 sum of negative ranks

29  n
217.50  expected value

46.02  standard deviation
-1.69  z, corrected for ties
.0901  p-value (two-tailed)  
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Table A-45: Cadmium Descriptive Statistical Analysis Material Surfaces S1-S5. 

S1 S2 S3 S4 S5 
count 31 31 31 31 31 
mean -0.000010 0.000042 0.000010 0.000003 0.000023 
sample variance 0.000000 0.000000 0.000000 0.000000 0.000000 
sample standard deviation 0.000137 0.000349 0.000108 0.000143 0.000171 
minimum -0.0003 -0.0003 -0.0001 -0.0003 -0.0002 
maximum 0.0004 0.0018 0.0003 0.0003 0.0007 
range 0.0007 0.0021 0.0004 0.0006 0.0009 

normal curve GOF
p-value 1.92E-05 8.36E-08 4.04E-05 .0019 .0019 
chi-square(df=3) 24.55 35.77 23.00 14.87 14.87 
E 5.17 5.17 5.17 5.17 5.17 
O(-0.97) 3 1 11 5 2 
O(-0.43) 8 3 0 4 9 
O(+0.00) 0 17 10 12 10 
O(+0.43) 14 6 0 0 0 
O(+0.97) 3 3 7 6 6 
O(inf.) 3 1 3 4 4 
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Figure A-5: Cadmium Frequency Plot Analysis of Material Surface   
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Appendix I (Continued)  
 
Table A-46: Cadmium Paired T-Test Analysis S1 and Control. 

0.0000000 hypothesized value
0.0001000 mean S1
0.0001097 mean ConCd

-0.0000097 mean difference  (S1 - ConCd)
0.0001375 std. dev.
0.0000247 std. error

31  n
30  df

-0.39  t
.6979  p-value (two-tailed)

-0.0000601 confidence interval 95.% lower
0.0000408 confidence interval 95.% upper
0.0000504    half-width  

 

Table A-47: Cadmium Paired T-Test Analysis S2 and Control. 
0.0000000 hypothesized value
0.0001516 mean S2
0.0001097 mean ConCd
0.0000419 mean difference  (S2 - ConCd)
0.0003491 std. dev.
0.0000627 std. error

31  n
30  df

0.67  t
.5087  p-value (two-tailed)

-0.0000861 confidence interval 95.% lower
0.0001700 confidence interval 95.% upper
0.0001280    half-width  
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Table A-48: Cadmium Paired T-Test Analysis S3 and Control. 

0.0000000 hypothesized value
0.0001194 mean S3
0.0001097 mean ConCd
0.0000097 mean difference  (S3 - ConCd)
0.0001076 std. dev.
0.0000193 std. error

31  n
30  df

0.50  t
.6201  p-value (two-tailed)

-0.0000298 confidence interval 95.% lower
0.0000491 confidence interval 95.% upper
0.0000395    half-width  

 

Table A-49: Cadmium Paired T-Test Analysis S4 and Control. 
0.0000000 hypothesized value
0.0001129 mean S4
0.0001097 mean ConCd
0.0000032 mean difference  (S4 - ConCd)
0.0001426 std. dev.
0.0000256 std. error

31  n
30  df

0.13  t
.9006  p-value (two-tailed)

-0.0000491 confidence interval 95.% lower
0.0000555 confidence interval 95.% upper
0.0000523    half-width  
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Appendix I (Continued)  
 
Table A-50: Cadmium Paired T-Test Analysis S5 and Control. 

0.0000000 hypothesized value
0.0001323 mean S5
0.0001097 mean ConCd
0.0000226 mean difference  (S5 - ConCd)
0.0001707 std. dev.
0.0000307 std. error

31  n
30  df

0.74  t
.4671  p-value (two-tailed)

-0.0000400 confidence interval 95.% lower
0.0000852 confidence interval 95.% upper
0.0000626    half-width  

 

Table A-51: Cadmium Wilcoxon Analysis S1-Control. 
variables: S1 - ConCd

58.5 sum of positive ranks
94.5 sum of negative ranks

17  n
76.50  expected value
21.12  standard deviation
-0.85  z
.3942  p-value (two-tailed)  

 

Table A-52: Cadmium Wilcoxon Analysis S2-Control. 
variables: S2 - ConCd

116.5 sum of positive ranks
136.5 sum of negative ranks

22  n
126.50  expected value

30.80  standard deviation
-0.32  z
.7454  p-value (two-tailed)   
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Table A-53: Cadmium Wilcoxon Analysis S3-Control. 

variables: S3 - ConCd
121 sum of positive ranks
110 sum of negative ranks

21  n
115.50  expected value

28.77  standard deviation
0.19  z

.8484  p-value (two-tailed)  

 

Table A-54: Cadmium Wilcoxon Analysis S4-Control. 
variables: S4 - ConCd

92.5 sum of positive ranks
97.5 sum of negative ranks

19  n
95.00  expected value
24.85  standard deviation
-0.10  z
.9199  p-value (two-tailed)  

 
Table A-55: Cadmium Wilcoxon Analysis S5-Control. 

variables: S5 - ConCd
124 sum of positive ranks
107 sum of negative ranks

21  n
115.50  expected value

28.77  standard deviation
0.30  z

.7677  p-value (two-tailed)  
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Table A-56: Nickel Descriptive Statistical Analysis Material Surfaces S1-S5. 

S1 S2 S3 S4 S5 
count 24 24 24 24 24 
mean -0.000258 -0.000358 0.001208 -0.000354 -0.000196 
sample variance 0.000001 0.000001 0.000042 0.000001 0.000001 
sample standard deviation 0.000842 0.000879 0.006481 0.001092 0.000981 
minimum -0.0026 -0.002 -0.0032 -0.0041 -0.0033 
maximum 0.0011 0.0012 0.0312 0.0008 0.001 
range 0.0037 0.0032 0.0344 0.0049 0.0043 

normal curve GOF
p-value .5724 .8013 1.05E-16 .0117 .0186 
chi-square(df=3) 2.00 1.00 77.50 11.00 10.00 
E 4.00 4.00 4.00 4.00 4.00 
O(-0.97) 2 4 0 3 3 
O(-0.43) 6 4 2 1 1 
O(+0.00) 4 3 20 4 4 
O(+0.43) 4 5 1 8 9 
O(+0.97) 4 5 0 7 5 
O(inf.) 4 3 1 1 2  
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Figure A-6: Nickel Frequency Plot Analysis of Material Surface  
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Table A-57: Nickel Paired T-Test Analysis S1 and Control. 

0.0000000 hypothesized value
0.0017000 mean S1
0.0019583 mean ConNi

-0.0002583 mean difference  (S1 - ConNi)
0.0008423 std. dev.
0.0001719 std. error

24  n
23  df

-1.50  t
.1466  p-value (two-tailed)

-0.0006140 confidence interval 95.% lower
0.0000973 confidence interval 95.% upper
0.0003557    half-width  

 

Table A-58: Nickel Paired T-Test Analysis S2 and Control. 
0.0000000 hypothesized value
0.0016000 mean S2
0.0019583 mean ConNi

-0.0003583 mean difference  (S2 - ConNi)
0.0008792 std. dev.
0.0001795 std. error

24  n
23  df

-2.00  t
.0578  p-value (two-tailed)

-0.0007296 confidence interval 95.% lower
0.0000129 confidence interval 95.% upper
0.0003712    half-width  
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Table A-59: Nickel Paired T-Test Analysis S3 and Control. 

0.0000000 hypothesized value
0.0031667 mean S3
0.0019583 mean ConNi
0.0012083 mean difference  (S3 - ConNi)
0.0064808 std. dev.
0.0013229 std. error

24  n
23  df

0.91  t
.3705  p-value (two-tailed)

-0.0015283 confidence interval 95.% lower
0.0039449 confidence interval 95.% upper
0.0027366    half-width  

 

Table A-60: Nickel Paired T-Test Analysis S4 and Control. 
0.0000000 hypothesized value
0.0016042 mean S4
0.0019583 mean ConNi

-0.0003542 mean difference  (S4 - ConNi)
0.0010919 std. dev.
0.0002229 std. error

24  n
23  df

-1.59  t
.1257  p-value (two-tailed)

-0.0008152 confidence interval 95.% lower
0.0001069 confidence interval 95.% upper
0.0004611    half-width  
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Table A-61: Nickel Paired T-Test Analysis S5 and Control. 

0.0000000 hypothesized value
0.0017625 mean S5
0.0019583 mean ConNi

-0.0001958 mean difference  (S5 - ConNi)
0.0009809 std. dev.
0.0002002 std. error

24  n
23  df

-0.98  t
.3382  p-value (two-tailed)

-0.0006100 confidence interval 95.% lower
0.0002184 confidence interval 95.% upper
0.0004142    half-width  

 

Table A-62: Nickel Wilcoxon Analysis S1-Control. 
variables: S1 - ConNi

84.5 sum of positive ranks
168.5 sum of negative ranks

22  n
126.50  expected value

30.80  standard deviation
-1.36  z
.1727  p-value (two-tailed)  

 

Table A-63: Nickel Wilcoxon Analysis S2-Control. 
variables: S2 - ConNi

73.5 sum of positive ranks
179.5 sum of negative ranks

22  n
126.50  expected value

30.80  standard deviation
-1.72  z
.0853  p-value (two-tailed)  
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Appendix I (Continued)  
 
Table A-64: Nickel Wilcoxon Analysis S3-Control. 

variables: S3 - ConNi
136 sum of positive ranks
117 sum of negative ranks

22  n
126.50  expected value

30.80  standard deviation
0.31  z

.7578  p-value (two-tailed)  

 

Table A-65: Nickel Wilcoxon Analysis S4-Control. 
variables: S4 - ConNi

105.5 sum of positive ranks
170.5 sum of negative ranks

23  n
138.00  expected value

32.88  standard deviation
-0.99  z
.3229  p-value (two-tailed)  

 

Table A-66: Nickel Wilcoxon Analysis S5-Control. 
variables: S5 - ConNi

71.5 sum of positive ranks
81.5 sum of negative ranks

17  n
76.50  expected value
21.12  standard deviation
-0.24  z
.8129  p-value (two-tailed)  

 

  



 

183 

Appendix I (Continued)  
 
Table A-67: Iron Descriptive Statistical Analysis Material Surfaces S1-S5. 

S1 S2 S3 S4 S5 
count 31 31 31 31 31 
mean -0.017303 -0.009474 0.002945 -0.007084 -0.013416 
sample variance 0.001091 0.001634 0.003030 0.001945 0.001424 
sample standard deviation 0.033028 0.040419 0.055047 0.044098 0.037733 
minimum -0.1273 -0.1261 -0.1 -0.1294 -0.116 
maximum 0.0387 0.0526 0.1499 0.0685 0.0411 
range 0.166 0.1787 0.2499 0.1979 0.1571 

normal curve GOF
p-value .2196 .0571 .6348 .4120 .1132 
chi-square(df=3) 4.42 7.52 1.71 2.87 5.97 
E 5.17 5.17 5.17 5.17 5.17 
O(-0.97) 4 6 5 3 5 
O(-0.43) 5 3 6 4 4 
O(+0.00) 7 3 7 7 4 
O(+0.43) 2 10 5 6 5 
O(+0.97) 8 6 3 7 10 
O(inf.) 5 3 5 4 3  
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Figure A-7: Iron Frequency Plot Analysis of Material Surface  
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Appendix I (Continued)  
 
Table A-68: Iron Paired T-Test Analysis S1 and Control. 

0.0000000 hypothesized value
0.0532387 mean S1
0.0705419 mean ConFe

-0.0173032 mean difference  (S1 - ConFe)
0.0330278 std. dev.
0.0059320 std. error

31  n
30  df

-2.92  t
.0066  p-value (two-tailed)

-0.0294179 confidence interval 95.% lower
-0.0051885 confidence interval 95.% upper
0.0121147    half-width       

 

Table A-69: Iron Paired T-Test Analysis S2 and Control. 
0.0000000 hypothesized value
0.0610677 mean S2
0.0705419 mean ConFe

-0.0094742 mean difference  (S2 - ConFe)
0.0404191 std. dev.
0.0072595 std. error

31  n
30  df

-1.31  t
.2018  p-value (two-tailed)

-0.0243000 confidence interval 95.% lower
0.0053516 confidence interval 95.% upper
0.0148258    half-width  
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Table A-70: Iron Paired T-Test Analysis S3 and Control. 

0.0000000 hypothesized value
0.0734871 mean S3
0.0705419 mean ConFe
0.0029452 mean difference  (S3 - ConFe)
0.0550470 std. dev.
0.0098867 std. error

31  n
30  df

0.30  t
.7678  p-value (two-tailed)

-0.0172463 confidence interval 95.% lower
0.0231366 confidence interval 95.% upper
0.0201914    half-width  

 

Table A-71: Iron Paired T-Test Analysis S4 and Control. 
0.0000000 hypothesized value
0.0634581 mean S4
0.0705419 mean ConFe

-0.0070839 mean difference  (S4 - ConFe)
0.0440980 std. dev.
0.0079202 std. error

31  n
30  df

-0.89  t
.3782  p-value (two-tailed)

-0.0232592 confidence interval 95.% lower
0.0090914 confidence interval 95.% upper
0.0161753    half-width  

 

 

  



 

187 

Appendix I (Continued)  
 
Table A-72: Iron Paired T-Test Analysis S5 and Control. 
0.0000000 hypothesized value
0.0571258 mean S5
0.0705419 mean ConFe

-0.0134161 mean difference  (S5 - ConFe)
0.0377327 std. dev.
0.0067770 std. error

31  n
30  df

-1.98  t
.0570  p-value (two-tailed)

-0.0272566 confidence interval 95.% lower
0.0004243 confidence interval 95.% upper
0.0138405    half-width  

 

Table A-73: Iron Wilcoxon Analysis S1-Control. 
variables: S1 - ConFe

111 sum of positive ranks
385 sum of negative ranks

31  n
248.00  expected value

51.03  standard deviation
-2.68  z
.0073  p-value (two-tailed)  

 

Table A-74: Iron Wilcoxon Analysis S2-Control. 
variables: S1 - ConFe

111 sum of positive ranks
385 sum of negative ranks

31  n
248.00  expected value

51.03  standard deviation
-2.68  z
.0073  p-value (two-tailed)  
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Appendix I (Continued)  
 
Table A-75: Iron Wilcoxon Analysis S3-Control. 

variables: S3 - ConFe
238 sum of positive ranks
258 sum of negative ranks

31  n
248.00  expected value

51.03  standard deviation
-0.20  z
.8446  p-value (two-tailed)  

 

Table A-76: Iron Wilcoxon Analysis S4-Control. 
variables: S4 - ConFe

226.5 sum of positive ranks
269.5 sum of negative ranks

31  n
248.00  expected value

51.03  standard deviation
-0.42  z
.6735  p-value (two-tailed)  

 

Table A-77: Iron Wilcoxon Analysis S5-Control. 
variables: S5 - ConFe

170 sum of positive ranks
326 sum of negative ranks

31  n
248.00  expected value

51.03  standard deviation
-1.53  z
.1264  p-value (two-tailed)  

 

  



 

189 

Appendix I (Continued)  
 
Table A-78:  Manganese Descriptive Statistical Analysis Material Surfaces S1-S5. 

S1 S2 S3 S4 S5 
count 24 24 24 24 24 
mean -0.002908 -0.003513 -0.002925 -0.002146 -0.000842 
sample variance 0.000108 0.000113 0.000134 0.000119 0.000160 
sample standard deviation 0.010384 0.010634 0.011575 0.010909 0.012666 
minimum -0.0501 -0.0518 -0.0527 -0.0491 -0.0503 
maximum 0.0015 0.001 0.0149 0.0163 0.0325 
range 0.0516 0.0528 0.0676 0.0654 0.0828 

normal curve GOF
p-value 6.99E-15 6.99E-15 7.52E-13 1.14E-14 5.88E-13 
chi-square(df=3) 69.00 69.00 59.50 68.00 60.00 
E 4.00 4.00 4.00 4.00 4.00 
O(-0.97) 1 1 1 1 1 
O(-0.43) 1 1 2 2 1 
O(+0.00) 3 3 2 1 3 
O(+0.43) 19 19 18 19 18 
O(+0.97) 0 0 0 0 0 
O(inf.) 0 0 1 1 1  
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Figure A-8: Manganese Frequency Plot Analysis of Material Surface  
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Table A-79: Manganese Paired T-Test Analysis S1 and Control. 

0.0000000 hypothesized value
0.0036042 mean S1
0.0065125 mean ConMn

-0.0029083 mean difference  (S1 - ConMn)
0.0103835 std. dev.
0.0021195 std. error

24  n
23  df

-1.37  t
.1832  p-value (two-tailed)

-0.0072929 confidence interval 95.% lower
0.0014762 confidence interval 95.% upper
0.0043846    half-width  

 
 
Table A-80: Manganese Paired T-Test Analysis S2 and Control. 

0.0000000 hypothesized value
0.0030000 mean S2
0.0065125 mean ConMn

-0.0035125 mean difference  (S2 - ConMn)
0.0106340 std. dev.
0.0021706 std. error

24  n
23  df

-1.62  t
.1193  p-value (two-tailed)

-0.0080028 confidence interval 95.% lower
0.0009778 confidence interval 95.% upper
0.0044903    half-width  
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Table A-81: Manganese Paired T-Test Analysis S3 and Control. 

0.0000000 hypothesized value
0.0035875 mean S3
0.0065125 mean ConMn

-0.0029250 mean difference  (S3 - ConMn)
0.0115752 std. dev.
0.0023628 std. error

24  n
23  df

-1.24  t
.2282  p-value (two-tailed)

-0.0078128 confidence interval 95.% lower
0.0019628 confidence interval 95.% upper
0.0048878    half-width  

 

Table A-82: Manganese Paired T-Test Analysis S4 and Control. 
0.0000000 hypothesized value
0.0043667 mean S4
0.0065125 mean ConMn

-0.0021458 mean difference  (S4 - ConMn)
0.0109091 std. dev.
0.0022268 std. error

24  n
23  df

-0.96  t
.3453  p-value (two-tailed)

-0.0067524 confidence interval 95.% lower
0.0024607 confidence interval 95.% upper
0.0046065    half-width  
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Appendix I (Continued)  
 
Table A-83: Manganese Paired T-Test Analysis S5 and Control. 

0.0000000 hypothesized value
0.0056708 mean S5
0.0065125 mean ConMn

-0.0008417 mean difference  (S5 - ConMn)
0.0126659 std. dev.
0.0025854 std. error

24  n
23  df

-0.33  t
.7477  p-value (two-tailed)

-0.0061900 confidence interval 95.% lower
0.0045067 confidence interval 95.% upper
0.0053484    half-width  

 

Table A-84: Manganese Wilcoxon Analysis S1-Control. 
variables: S1 - ConMn

125.5 sum of positive ranks
174.5 sum of negative ranks

24  n
150.00  expected value

34.87  standard deviation
-0.70  z, corrected for ties
.4823  p-value (two-tailed)  

 

Table A-85: Manganese Wilcoxon Analysis S2-Control. 
variables: S2 - ConMn

81 sum of positive ranks
219 sum of negative ranks

24  n
150.00  expected value

34.96  standard deviation
-1.97  z, corrected for ties
.0484  p-value (two-tailed)  
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Table A-86: Manganese Wilcoxon Analysis S3-Control. 

variables: S3 - ConMn
88 sum of positive ranks

188 sum of negative ranks

23  n
138.00  expected value
32.37  standard deviation
-1.54  z, corrected for ties
.1225  p-value (two-tailed)  

 

Table A-87: Manganese Wilcoxon Analysis S4-Control. 
variables: S4 - ConMn

115 sum of positive ranks
138 sum of negative ranks

22  n
126.50  expected value

30.66  standard deviation
-0.38  z, corrected for ties
.7076  p-value (two-tailed)  

 

Table A-88: Manganese Wilcoxon Analysis S5-Control. 
variables: S5 - ConMn

183 sum of positive ranks
117 sum of negative ranks

24  n
150.00  expected value

34.96  standard deviation
0.94  z, corrected for ties

.3452  p-value (two-tailed)  
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Table A-89: Chromium Descriptive Statistical Analysis Material Surfaces S1-S5. 

S1 S2 S3 S4 S5 
count 31 31 31 31 31 
mean -0.000142 0.000455 0.000648 0.000090 -0.000058 
sample variance 0.000000 0.000002 0.000000 0.000000 0.000000 
sample standard deviation 0.000280 0.001304 0.000582 0.000393 0.000398 
minimum -0.0009 -0.0007 -0.0004 -0.0009 -0.0011 
maximum 0.0005 0.0072 0.0022 0.001 0.0009 
range 0.0014 0.0079 0.0026 0.0019 0.002 

normal curve GOF
p-value .4782 5.76E-18 .4120 .7238 .0239 
chi-square(df=3) 2.48 83.39 2.87 1.32 9.45 
E 5.17 5.17 5.17 5.17 5.17 
O(-0.97) 4 0 5 5 4 
O(-0.43) 4 2 6 6 2 
O(+0.00) 6 24 7 4 8 
O(+0.43) 5 3 2 5 10 
O(+0.97) 8 1 6 7 4 
O(inf.) 4 1 5 4 3  
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Figure A-9: Chromium Frequency Plot Analysis of Material Surface  
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Table A-90: Chromium Paired T-Test Analysis S1 and Control. 

0.0000000 hypothesized value
0.0006129 mean S1
0.0007548 mean ConCr

-0.0001419 mean difference  (S1 - ConCr)
0.0002802 std. dev.
0.0000503 std. error

31  n
30  df

-2.82  t
.0084  p-value (two-tailed)

-0.0002447 confidence interval 95.% lower
-0.0000392 confidence interval 95.% upper
0.0001028    half-width  

 

Table A-91: Chromium Paired T-Test Analysis S2 and Control. 
0.0000000 hypothesized value
0.0012097 mean S2
0.0007548 mean ConCr
0.0004548 mean difference  (S2 - ConCr)
0.0013038 std. dev.
0.0002342 std. error

31  n
30  df

1.94  t
.0615  p-value (two-tailed)

-0.0000234 confidence interval 95.% lower
0.0009331 confidence interval 95.% upper
0.0004782    half-width  

  



 

198 

Appendix I (Continued)  
 
Table A-92: Chromium Paired T-Test Analysis S3 and Control. 

0.0000000 hypothesized value
0.0014032 mean S3
0.0007548 mean ConCr
0.0006484 mean difference  (S3 - ConCr)
0.0005819 std. dev.
0.0001045 std. error

31  n
30  df

6.20  t
7.89E-07  p-value (two-tailed)

0.0004350 confidence interval 95.% lower
0.0008618 confidence interval 95.% upper
0.0002134    half-width  

 

Table A-93: Chromium Paired T-Test Analysis S4 and Control. 
0.0000000 hypothesized value
0.0008452 mean S4
0.0007548 mean ConCr
0.0000903 mean difference  (S4 - ConCr)
0.0003927 std. dev.
0.0000705 std. error

31  n
30  df

1.28  t
.2102  p-value (two-tailed)

-0.0000537 confidence interval 95.% lower
0.0002344 confidence interval 95.% upper
0.0001441    half-width  
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Appendix I (Continued)  
 
Table A-94: Chromium Paired T-Test Analysis S5 and Control. 

0.0000000 hypothesized value
0.0006968 mean S5
0.0007548 mean ConCr

-0.0000581 mean difference  (S5 - ConCr)
0.0003981 std. dev.
0.0000715 std. error

31  n
30  df

-0.81  t
.4232  p-value (two-tailed)

-0.0002041 confidence interval 95.% lower
0.0000880 confidence interval 95.% upper
0.0001460    half-width  

 

Table A-95: Chromium Wilcoxon Analysis S1-Control. 
variables: S1 - ConCr

63.5 sum of positive ranks
261.5 sum of negative ranks

25  n
162.50  expected value

35.13  standard deviation
-2.82  z, corrected for ties
.0048  p-value (two-tailed)  

 

Table A-96: Chromium Wilcoxon Analysis S2-Control. 
variables: S2 - ConCr

312 sum of positive ranks
39 sum of negative ranks

26  n
175.50  expected value

37.90  standard deviation
3.60  z, corrected for ties

.0003  p-value (two-tailed)  
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Appendix I (Continued)  
 
Table A-97: Chromium Wilcoxon Analysis S3-Control. 

variables: S3 - ConCr
394.5 sum of positive ranks
11.5 sum of negative ranks

28  n
203.00  expected value
43.61  standard deviation
4.39  z, corrected for ties

1.13E-05  p-value (two-tailed)  

 

Table A-98: Chromium Wilcoxon Analysis S4-Control. 
variables: S4 - ConCr

251 sum of positive ranks
127 sum of negative ranks

27  n
189.00  expected value

40.01  standard deviation
1.55  z, corrected for ties

.1212  p-value (two-tailed)  

 

Table A-99: Chromium Wilcoxon Analysis S5-Control. 
variables: S5 - ConCr

118 sum of positive ranks
182 sum of negative ranks

24  n
150.00  expected value

33.60  standard deviation
-0.95  z, corrected for ties
.3409  p-value (two-tailed)  
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Appendix I (Continued)  
 
Table A-100: Copper Descriptive Statistical Analysis Material Surfaces S1-S5. 

S1 S2 S3 S4 S5 
count 31 31 31 31 31 
mean -0.000697 -0.000718 0.000284 -0.001119 -0.001168 
sample variance 0.000004 0.000002 0.000024 0.000007 0.000007 
sample standard deviation 0.001884 0.001430 0.004879 0.002703 0.002712 
minimum -0.0069 -0.0062 -0.0148 -0.0119 -0.0131 
maximum 0.0049 0.0014 0.0173 0.0024 0.0013 
range 0.0118 0.0076 0.0321 0.0143 0.0144 

normal curve GOF
p-value .0098 .0284 .0028 .0140 .0001 
chi-square(df=3) 11.39 9.06 14.10 10.61 21.84 
E 5.17 5.17 5.17 5.17 5.17 
O(-0.97) 2 3 2 3 3 
O(-0.43) 5 4 4 2 0 
O(+0.00) 7 6 10 7 8 
O(+0.43) 11 4 10 7 10 
O(+0.97) 4 11 3 10 10 
O(inf.) 2 3 2 2 0  
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Appendix I (Continued)  
 

 

 

 

 

 

Figure A-10: Copper Frequency Plot Analysis 
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Appendix I (Continued)  
 
Table A-101: Copper Paired T-Test Analysis S1 and Control. 

0.0000000 hypothesized value
0.0058903 mean S1
0.0065871 mean ConCu

-0.0006968 mean difference  (S1 - ConCu)
0.0018837 std. dev.
0.0003383 std. error

31  n
30  df

-2.06  t
.0482  p-value (two-tailed)

-0.0013877 confidence interval 95.% lower
-0.0000058 confidence interval 95.% upper
0.0006909    half-width  

 

Table A-102: Copper Paired T-Test Analysis S2 and Control. 
0.0000000 hypothesized value
0.0058687 mean S2
0.0065871 mean ConCu

-0.0007184 mean difference  (S2 - ConCu)
0.0014299 std. dev.
0.0002568 std. error

31  n
30  df

-2.80  t
.0089  p-value (two-tailed)

-0.0012429 confidence interval 95.% lower
-0.0001939 confidence interval 95.% upper
0.0005245    half-width  
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Appendix I (Continued)  
 
Table A-103: Copper Paired T-Test Analysis S3 and Control. 

0.0000000 hypothesized value
0.0068710 mean S3
0.0065871 mean ConCu
0.0002839 mean difference  (S3 - ConCu)
0.0048785 std. dev.
0.0008762 std. error

31  n
30  df

0.32  t
.7482  p-value (two-tailed)

-0.0015056 confidence interval 95.% lower
0.0020733 confidence interval 95.% upper
0.0017895    half-width  

 

Table A-104: Copper Paired T-Test Analysis S4 and Control. 
0.0000000 hypothesized value
0.0054681 mean S4
0.0065871 mean ConCu

-0.0011190 mean difference  (S4 - ConCu)
0.0027034 std. dev.
0.0004855 std. error

31  n
30  df

-2.30  t
.0283  p-value (two-tailed)

-0.0021106 confidence interval 95.% lower
-0.0001274 confidence interval 95.% upper
0.0009916    half-width  
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Appendix I (Continued)  
 
Table A-105: Copper Paired T-Test Analysis S5 and Control. 

 
 
Table A-106: Copper Wilcoxon Analysis S1-Control. 

variables: S1 - ConCu 
105 sum of positive ranks
360 sum of negative ranks

30  n
232.50  expected value

48.49  standard deviation
-2.63  z, corrected for ties
.0086  p-value (two-tailed)  

 

Table A-107: Copper Wilcoxon Analysis S2-Control. 
variables: S2 - ConCu 

104 sum of positive ranks
361 sum of negative ranks

30  n
232.50  expected value

48.34  standard deviation
-2.66  z, corrected for ties
.0079  p-value (two-tailed)  

  

0.0000000 hypothesized value
0.0054194 mean S5
0.0065871 mean ConCu

-0.0011677 mean difference  (S5 - ConCu)
0.0027121 std. dev.
0.0004871 std. error

31  n
30  df

-2.40  t
.0229  p-value (two-tailed)

-0.0021626 confidence interval 95.% lower
-0.0001729 confidence interval 95.% upper
0.0009948    half-width
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Appendix I (Continued)  
 
Table A-108: Copper TDS Analysis Wilcoxon S3-Control. 

variables: S3 - ConCu 
242 sum of positive ranks
193 sum of negative ranks

29  n
217.50  expected value
46.18  standard deviation
0.53  z, corrected for ties

.5958  p-value (two-tailed)  

 

Table A-109: Copper TDS Analysis Wilcoxon S4-Control. 
variables: S4 - ConCu 

122 sum of positive ranks
343 sum of negative ranks

30  n
232.50  expected value

48.56  standard deviation
-2.28  z, corrected for ties
.0229  p-value (two-tailed)  

 

Table A-110: Copper TDS Analysis Wilcoxon S5-Control. 
variables: S5 - ConCu 

87 sum of positive ranks
348 sum of negative ranks

29  n
217.50  expected value
46.21  standard deviation
-2.82  z, corrected for ties
.0047  p-value (two-tailed)   
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Appendix II: Model Development 
 
Hydraulic Model  
 

Conceptually the hydraulic model consists of two elements, one of which is a 

collection system and the other being a discharge system. The collection system is a 

gravity flow system and its design is based upon Manning’s equation, while the discharge 

system is based upon Darcy’s equation. These calculations are averages used prior to 

developing the Excel model to examine the potential of such a system. 

 

Collection System  

The model requires that following data be collected or estimated from historical 

records: 

• Community population = 

• Population /home = 

• Total daily demand = 

• Total number of lots = 

• Lots/ street = 

• Total roof area = (usually not available)  

• Average lot size = 

• Home square footage = 

• Roof area/ home =  

• Rainfall data =   
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Appendix II (Continued)  
 

• Rainfall frequency data =  

• Capacity of treatment plant/ system = 

• Topographic Maps = 

 

The model requires that following calculations be done: 

• Calculations of available volume to be collected 

• Estimation of the total volume of water that is available /year 

• Estimation of total number of homes assuming 2.5-person occupancy  

• Area of Total Roof Surface, for example: 

Surface Area roof = No. Homes x 3041 sf/home (Temple Terrace) 

• Per capita consumption rate  

• Total volume of rainfall available from roof catchment 

• Total rainfall received per year 

Annual volume = (annual rainfall ft/yr) total roof area x eff 

• Annual consumptive demand  

Cons demand = average daily demand x 365 days/year x pop 

• Percentage of demand  

• Percentage = total volume available   

• Total consumptive demand 

• Assessment of rainfall volume to collect  
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Appendix II (Continued)  
 

The model requires that following constraints be determined: 

• Constraints of volume to collect 

• Capacity of treatment plant  

• Economic capital investment 

• Water quality  

 

Rainfall frequency analysis must be done and piping system selection (for 

example, based upon the data collected, 90% of the time rainfall events in this area are 

equal to or less than 1 inch-per-hour.) 

• Unit volume = intensity (in/hr) x eff x roof area unit x 7.48 gal/cf  

• Required capacity of lateral pipe to carry water. 

• Qlateral  = volumetric rate per unit x connections per length 

• Selection of pipe diameter  

 

Manning’s Equation Estimated Max Flow Rate           

.
4                                    (Equation B-1) 

  
 

                                                          (Equation B-2) 

30.86 .                                       (Equation B-3) 
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Appendix II (Continued)  
 

• Cost of Pipe in Suburban area  $7.00/inch diameter-feet of length 

For example, assume that the connection included 12 homes and the length of run 

was 500 feet  slope from the map is 7 feet in 500 feet and n = 0.015. The flow from the 

12 homes would be: 

Q = 26.85 gpm x 12 = 322 gpm or 0.72 cfs     (Equation B-4) 

The required pipe diameter is calculated from: 

Q = 30.86 (D)2.667 ( S)0.5 = 0.54ft = 6.5” or use an 8 inch pipe 

Cost @  $7.00/ inch-ft = $56/ft x 500 ft = $28,000 

 

The same approach is used to determine main piping that connects the laterals to 

the storage and pumping stations. Total connections, slope of pipe, and volume to be 

transported are established to determine the diameter of the pipe.  

For example, assume the change in elevation is 45 feet and there are 500 home 

connected to the main through laterals. The total flow for a 1 inch/ hour storm would be 

13,425 gallons per minute and would require a 30-inch diameter main 6,500 feet long 

costing $1,365,000. 
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Appendix II (Continued) 
 
Storage  

Storage is controlled by the capacity of the treatment plant.  

• Augmentation Demand = Daily Demand  x  augmentation  fraction  

• Storage = Volume recovered from selected Units  -  Augmentation 

demand 

 

Pumping System  

• Daily demand equals capacity of plant.  

• Pumping Q = Plant capacity in gallons/ minute  

• Total Horsepower required  

Pump Requirements for Force Main 16Θ ”     (Equation B-5) 

• Power = Q(gpm) x  Total Head(static + dynamic) x  Pump efficiency 

    
3960        

Cost  

Estimated cost of 59hp pump is $ 350,000.  Note: Various configurations of the 

piping network strongly influence the Capital Cost of this type of project. 

 

NOTE: Variables for these hydraulic calculations can be found in Table B-1, below. 
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Appendix II (Continued) 
 
Table B-1: Model Variables for the Hydraulic Calculations. 
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Appendix II (Continued) 
 
 

 
Figure B-1: Rain Model Analyses for Demand 
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Appendix II (Continued) 
 
Table B-3: Model Estimated Cost and Payback Period Analysis. 
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Appendix II (Continued) 
 
Table B-4: Model Loan Schedule Analysis. 
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