
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

10-29-2010

Modeling and Predicting Taxi Times at Airports
Arjun Chauhan
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons, and the Civil Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Chauhan, Arjun, "Modeling and Predicting Taxi Times at Airports" (2010). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/3472

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=scholarcommons.usf.edu%2Fetd%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


 
 

Modeling and Predicting Taxi Times at Airports 

 

by 

 

Arjun Chauhan 

 

 

 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 

Master of Science in Civil Engineering 
Department of Civil Engineering 

College of Engineering 
University of South Florida 

 

 

Major Professor: Yu Zhang, Ph.D. 
Abdul Rawoof Pinjari, Ph.D. 

Zhenyu Wang, Ph.D. 
 

Date of Approval:  
October 29, 2010 

 

Keywords: nominal taxi times, ordered response model, predicting taxi-out time, 
iterative algorithm 

 

Copyright © 2010, Arjun Chauhan 



 
 

ACKNOWLEDGMENTS 

 

I would like to thank my advisor, Dr. Yu Zhang, for her invaluable support as a 

teacher and mentor. She has been generous with her time and support from the 

initial to the final stages of the project. This enabled me to understand the subject 

in greater detail. Her ability to manage time and multi-task is an example for all to 

follow. It was her generous nature that helped me stay financially supported 

throughout my master’s studies. Dr. Abdul Pinjari also has been like a mentor to 

me. His discipline and approach towards teaching students have made a 

remarkable and lasting impression on me and helped me develop an 

understanding of the basic concepts of statistics and modeling.  

 

 

 

 

 

 

 



 

i 
 

 

TABLE OF CONTENTS 

LIST OF TABLES ............................................................................................... iii 

LIST OF FIGURES   ...........................................................................................iv 

ACRONYMS ....................................................................................................... v 

ABSTRACT ........................................................................................................vi 

CHAPTER 1   INTRODUCTION ......................................................................... 1 

     1.1   Overview............................................................................................. 1 

    1.2   Scientific Contribution ......................................................................... 7 

     1.3   Content of the Thesis ......................................................................... 8 

CHAPTER 2   LITERATURE REVIEW ............................................................. 10 

CHAPTER 3   ORDERED RESPONSE MODEL  ............................................. 18 

   3.1 Introduction .................................................................................. 18 

   3.2 Explanation of Variables .............................................................. 21 

              3.2.1 Departure and Arrival Queues ....................................... 21 

              3.2.2 Expected Departure Clearance Times (EDCT) .............. 21 

              3.2.3 Time of Day.................................................................... 22 

              3.2.4 Holidays  ........................................................................ 22 

              3.2.5 Airport Supplied Departure Rate (ADR) ......................... 22 

              3.2.6 Season ........................................................................... 23 

              3.2.7 Weather ......................................................................... 23 

              3.2.8 Runway Configuration .................................................... 23 

              3.2.9 Arrival and Departure Runways in Use .......................... 23 

      3.3 Model Estimation ......................................................................... 26 

   3.4 Interpretation of Results ............................................................... 30 

              3.4.1 Departure Queue ........................................................... 30 

              3.4.2 Arrival Queue ................................................................. 30 

              3.4.3 EDCT ............................................................................. 31 



 

ii 
 

              3.4.4 Time of Day.................................................................... 31 

              3.4.5 Holidays ......................................................................... 32 

              3.4.6 ADR ............................................................................... 32 

              3.4.7 Season ........................................................................... 32 

              3.4.8 Runway Configuration .................................................... 33 

CHAPTER 4   PROPOSED REGRESSION MODEL ........................................ 34 

 4.1 Queue Length Calculation in the Alternate Model  ............................. 34              

        4.2  Comparison of Queue Length ............................................................ 35 

 4.3  Proposed Model ................................................................................ 36 

  4.3.1  Model Description .................................................................... 36 

  4.3.2  Regression Results and Comparison ....................................... 39 

CHAPTER 5   PREDICTING TAXI TIMES........................................................ 41 

 5.1  Iterative Algorithm .............................................................................. 41 

 5.2  Case Study and Performance of the Algorithm.................................. 44 

CHAPTER 6   CONCLUSION........................................................................... 46 

REFERENCES ................................................................................................. 48 

 



 

iii 
 

LIST OF TABLES 

 

Table 3-1 Descriptive Statistics .......................................................................... 25 

Table 3-2  Descriptive Statistics in terms of Percentages ................................... 26 

Table 3-3 Model Results ..................................................................................... 29 

Table 4-1 Comparison of Queue Length Calculation .......................................... 36 

Table 4-2 Regression Results ............................................................................ 39 

Table 4-3 Comparison of R2 Values……………………………………………….. 40 

Table 5-1 Comparison of CALTO vs ACCTO Statistics ...................................... 44 

 

 

 

 

 

 

 

 

 

 

 



 

iv 
 

LIST OF FIGURES 
 

Figure 1-1  Passenger Enplanements 1995-2009 ................................................ 2 

Figure 1-2  Departure Process of an Aircraft ........................................................ 3 

Figure 1-3  Taxing Delay Definition ...................................................................... 4 

Figure 1-4   Mean Taxi Time for Major U.S. Airports ............................................. 8 

Figure 2-1   Queue Length of APO Model ........................................................... 13 

Figure 3-1   Comparison of Trends of Flight Volume and Taxi Time ................... 19 

Figure 3-2   Runway Layout at LGA .................................................................... 24 

Figure 3-3 Histogram for Define the Categorization of Taxi-out Delay .............. 27 

Figure 4-1  Taxi-out Representation .................................................................. 35 

Figure 5-1  Comparison of Actual and Calculated Taxi-out Times during 

Different Hours of the Day  .............................................................. 45 

 

 

 

 

 

 

 

 

 



 

v 
 

ACRONYMS 

 

ATA   Air Transportation Association  

ATC   Air Traffic Control 

APO   Office of Aviation Policy and Plans 

ASDE-X  Airport Surface Detection Equipment Model - X 

ASQP   Airline Service Quality Performance 

BTS   Bureau of Transportation Statistics 

CDM    Collaborative Decision Making 

ETMS   Enhanced Traffic Management Systems 

FAA   Federal Aviation Administration 

NAS    National Airspace System 

NextGen    Next Generation Air Transportation  

SMS    Safety Management Systems 

 

 

 



 

vi 
 

ABSTRACT 

This research aims at providing methods in analyzing and estimating the taxi 

times of aircraft at airports, which are expected to be an important element for 

reducing taxiing delay and consequent excess fuel consumption and 

environmental costs. The proposed model involves a set of regression equations 

to model the taxi-out and taxi-in times at airports. The estimated results can be 

used to calculate the nominal taxi times, which are essential measures for 

evaluating the taxiing delays at airports. Given the outcomes of the regression 

model, an iterative algorithm is developed to predict taxi times. A case study at 

LGA shows that the proposed algorithm demonstrates higher accuracy in 

comparison to other algorithms in existing literature. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Increasing urbanization has taken its toll on the airline and many others. There 

has been gradual increase over the years in airline traffic. Today, there are about 

7,000 flights in America’s skies during the peak hours. This is despite a slump in 

air traffic recently due to the global market meltdown. Air traffic has still been up 

when compared to the periods before the recession.  

 

Figure 1-1 shows the trend of passenger enplanements from 1995 to 2009. This 

rise in air traffic has seen major delays in the National Airspace System (NAS). 

This trend is expected to continue through the next decade and cause 

heightened congestion. Expanding the infrastructure of the airport system is one 

of the options to alleviate congestion and reduce flight delay at airports. These 

improvements are in the form of increasing the number of runways or adding new 

airports; however, these come at a large capital cost. As an alternative for these 

improvements, the Next Generation Air Transportation System (NextGen) calls 

for improved management of flights at airfields and in airspace to increase the 

capacity of the NAS. 
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Figure 1-1  Passenger Enplanements 1995 – 2009 

 

A large percentage of flight delay is due to ground holding and ground transit, 

which includes taxiing delay [1]. In the Aviation System Performance Metric 

(ASPM) data system, taxi times are defined as the times spent by an aircraft 

between rolling from a gate to when it takes off or from the entrance of taxiways 

to a gate after it lands. Figure 1-2 shows a representation of taxi-out time.  

 

According to Figure 1-2, assume that t0 is the time when the aircraft is at the gate 

and it takes off at time t1. Then, the taxi time of the aircraft will be t1 – t0. In other 

words, the time taken by the aircraft to leave the gate and enter the taxiway, from 

the taxiway onto the runway, and then take off is known as taxi time. This figure 

shows the departure process in brief, so taxi-out time is the time taken by the 
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aircraft from the first step, i.e., leaving the gate, to the last step, i.e., taking off. 

Similarly, for taxi-in time it would be in reverse, with the time taken from when the 

aircraft lands onto the runway to the time it reaches the gate. 

 

 

 

 

 

 

 

Figure 1-2   Departure Process of an Aircraft 

Considering the distribution of delays experienced by a flight, taxi-out delay 

contributes to 26 percent of the total delay experienced by a departing flight [2].  

 

According to Figure 1-3, for a departing flight, given the actual taxi-out time of a 

flight, which is the difference between actual wheel-off time and actual push-back 

time, and the nominal taxi-out time, which is defined on the basis of the airline 

queue lengths (which are discussed in detail in Chapter 2) of departing and 

arriving flights, etc., the taxiing delay of an aircraft is determined by computing 

the difference between the actual and nominal taxi-out times. The nominal time 

can be defined more precisely by adding new variables that affect the taxi-out 

time of an aircraft such as the terminal or gate the aircraft uses and its distance 

from the runway that is in use during that particular quarter hour. 

Aircraft leaves the 

gate and enters the 
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Figure 1-3  Taxiing Delay Definition 

According to Bureau of Transportation Statistics (BTS), 2007 has had the highest 

taxi times recorded, surpassing the previous peak in 2000 [2]. This has also been 

observed by looking at the average block times between busy city pairs in the 

U.S., which have increased accordingly.  For example, according to Air Transport 

Association (ATA), in the New York LaGuardia (LGA) – Ronald Reagan 

Washington National (DCA) route segment, the average block time grew by nine 

minutes from 1995 to 2005 [3]. Longer taxi times have elevated the direct 

operating and maintenance costs as well as negative environmental impacts in 

terms of amplified noise and augmented air pollution on and around the airport. 

  

To mitigate delay problems, the Federal Aviation Authority (FAA) implemented 

the Collaborative Decision Making (CDM) approach in 1998. The CDM is 

intended to improve air traffic flow issues in the NAS through the exchange of 

information among air traffic flow managers, air traffic controllers, and airlines. In 

the U.S., the initial focus of the CDM was the Ground Delay Program 

Enhancements (GDP-E), in which the airlines share flight cancellation and 
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reordering information with the Air Traffic Control System Command Center 

(ATCSCC). Users of the NAS also apply CDM tools to share information on 

safety and efficiency among themselves. The CDM concept applied to some 

European Union (EU) airports is known as Airport CDM (A-CDM) [4]. The focal 

point of A-CDM is to bring together major airport partners such as air traffic 

controllers, aircraft operators, and ground handlers to share data in a clear 

manner. This becomes significant for achieving a common situational 

understanding, consequently leading to better decision-making processes.  

 

Presently, NextGen is under way.  Its objective is to improve the NAS to meet 

future demand, avoid congestion, and make the skies safer.  NextGen suggests 

using various technologies, equipment, and procedures to enhance pilot control 

over flight paths while the controllers on the ground focus more on traffic flow 

management [5]. NextGen looks to implement new tools that are being 

developed to help manage aircraft flow at airports in order to mitigate taxiing 

delays and reduce engine run times and the consequent environmental impacts. 

Such new tools require a better understanding of taxiing times and taxiing delays 

and also call for a way to accurately predict taxiing times. Accurate prediction of 

departure taxi times are essential to help airlines manage push back times and to 

obtain and pass on delay information to en-route control centers and destination 

airports. Accurate prediction is also a key component of the CDM operations and 

leads to better gate management and reduced arrival and departure delays. Air 
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Traffic Control will benefit as well via improved demand forecasts for airports and 

en-route air sectors.  

 

This study contains four parts. In the first part, a literature review is presented. 

The second part presents an ordered response model that shows the propensity 

of various factors on taxi-out times. In the third part, an alternative model is 

proposed that, in addition to offering inputs for the predicting model, is used to 

calculate the nominal taxi times by adding certain factors that were not 

considered in the present Aviation Policy and Plans Office (APO) model 

introduced in the literature review. This model provides us with essential 

measures that can be used to evaluate the taxiing delays at the airports. In the 

fourth and final part, an iterative algorithm is proposed to predict the taxi-out time 

with the outcomes from the regression models and other inputs. In comparison to 

other existing taxi time predicting models, the outcomes of the case study with 

our model provide higher accuracy and reliability.  
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1.2  Scientific Contribution 

The primary contribution of this thesis is to better model taxi times and to 

propose a method to predict taxi-out time effectively. Flight delays cause the 

government to incur huge losses every year. Figure 1-4 shows the average 

amount of time a flight needs to take off after it leaves the gate and to reach the 

gate once it lands. It shows LGA has a high mean taxi time when compared to 

other airports and, since it is in the busy northeast corridor of the United States, 

the delay at this airport also affects delay for other flights, due to the ripple effect 

causing losses [10]. These losses are also environmentally hazardous due to the 

burning of excess fuel during longer times spent by the aircraft on the tarmac. 

Therefore, it is important to address these issues. While this thesis does not 

declare to solve the problem completely, it provides ways to estimate the nominal 

taxi times more precisely and also proposes a better model to predict the taxi-out 

times of an aircraft. 
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Figure 1-4  Mean Taxi Time for Major U.S. Airports 

 

1.3  Content of the Thesis 

Chapter 2 presents the literature review and explains the APO model that is used 

currently to define the unimpeded (nominal) taxi times recorded in ASPM. 

 

Chapter 3 proposes an ordered response model that looks at the propensity of 

various factors affecting the taxi-out delay of a departing flight. The model is run 

in Gauss 9.0, and the results are tabulated to show the effects of the variables on 

taxi-out delay. These results are discussed in this chapter as well. 

 

Chapter 4 proposes a new model that includes additional factors that have 

effects on the time taken by flights on the surface of the airport before they wheel 
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off. When compared with the APO model, the proposed model shows higher R-

square values. 

 

Chapter 5 introduces an iterative algorithm that applies estimated coefficients 

from the previous regression models as the inputs along with data from ASPM. 

The iterative steps in the algorithm find successive approximations, and this 

process is repeated until the difference between each iteration is lower than a 

given convergence parameter. The algorithm predicts the taxi times for departing 

and arriving aircrafts, which are then compared to their respective reported 

values in the ASPM database. The results show a higher accuracy when 

compared to a previous study, which is discussed in this chapter.   

Chapter 6 includes remarks and recommendations for future work in this area. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The existing model for estimating unimpeded taxi times recorded in the ASPM 

database developed by Kondo is based on two linear equations, one for taxi-in, 

the other for taxi-out, while containing both taxi-in and taxi-out queue lengths [6]. 

Given the actual flight information, such as actual gate-out and wheel-off times, 

which are available from the ASPM database, Kondo defines departure queue 

length as the number of aircraft ahead of the flight at the queue entry time and 

arrival queue length as the number of aircraft ahead of the flight at the wheels-on 

time.  

 

This model is described in this section along with a description of the data 

sources, selection of the data set, and the steps performed in imitating the 

model. The data used for this imitation and for all the other models described in 

this thesis is obtained from ASPM, which are records created by the Federal 

Aviation Administration (FAA) using data from a variety of sources. Enhanced 

Traffic Management System (ETMS) supplies next-day operational data, and 

Innovata provides flight schedule data, while Airline Service Quality Performance 

(ASQP) provides finalized schedule data, Out Off On In (OOOI) data, and delay 

causes as reported by the carriers after the close of each month [5]. The data
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 include detailed information on IFR flights to and from ASPM airports (currently 

77) and all flights by ASPM carriers (currently 22), including flights by those 

carriers to international and domestic non-ASPM airports. ASPM also includes 

airport weather, runway configuration, and arrival and departure rates. This 

combination of data provides a full-bodied picture of air traffic activity for these 

airports and air carriers. This data set contains, for every flight, scheduled and 

actual departure times, actual take-off and landing times, scheduled and actual 

gate arrival times. ASPM data are available on a next-day basis, and updated 

records are not available until three or four weeks after the end of each calendar 

month.  These data are Internet accessible.  

 

To select the case study, we studied airport characteristics, and it was observed 

that airports with the longest taxi-out times are typically those with a higher 

volume of air traffic. These airports are mostly either hub airports or focus cities 

for airlines. According to BTS, for 2007, the top three airports with longest ground 

times waiting for takeoff in 2007 were from the New York area, and LGA was 

ranked at number three with average taxi-out times of 29 minutes [2]. This was 

also seen in Figure 4 in Chapter 1. Among the three New York airports, LGA is 

an ideal airport for our case study because it has only two cross runways, one for 

arrival and one for departure, and since not only the runway configuration but 

also the information of specific runways that flights are assigned to affects the 

taxi times, this works out to be an ideal data set. The imitation of the existing 

APO model using the data set selected is performed and is then compared with 
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the proposed model that was introduced in Chapter 1. The data are obtained 

individually for departure and arrival flights. A code is developed using SAS 9.2 

to clean the data and keep the required data columns for further analysis. A 

season parameter is also set up that divides the months of a year into four 

seasons. The parameter defines winter as all days from December through 

February, spring as March through May, summer as June through August, and 

fall as September through November. The departure data contain the date, 

airport, carrier, season, actual gate-out time, and actual wheels-off time. The 

arrival data contains the date, airport, carrier, season, actual wheels-on time, and 

actual gate-in time. Bins are then set up for each minute of a single day that 

count how many departing aircraft ahead of a reference flight at its queue entry 

time, i.e., its gate-out time. The number of aircraft ahead is considered as the 

departure queue length for that flight. Arrival queue length can be obtained in a 

similar way by considering wheel-on and gate-in times. Figure 2-1 explains the 

queue length of a departing aircraft. 

 

The X axis is the location on the airport surface and the Y axis is the time. Four 

aircraft are taxing-out from the gate and taking off from the end of the runway. 

The reference aircraft leaves the gate at a time t1 and takes-off at a time t2. The 

taxi-out duration of the reference aircraft is t2 - t1. There are three aircraft that 

have a gate-out time before t1. They have entered onto the airport surface at a 

time before t1 and are, therefore, a part of the departure queue of the reference 

aircraft. Departure queue is defined as the number of flights ahead of the aircraft 



 

13 
 

at queue entry time (gate-out time). In this case, that number is 3. For arrival 

flights, the queue length estimation method is similar. Arrival queue length is 

defined as the number of aircraft ahead of the flight at queue entry time, which is 

wheels-on time. 

 

 

Figure 2-1 Queue Length of APO Model 

The arrival queue lengths are merged into the departing flight data set according 

to date, time, and carrier, and the departure queue length is merged with the 

arrival data set by the same variables.  This is done so that every flight has an 

arrival and departure queue at a particular time, whether it is an arriving or a 

departing flight. The upper 25 percent of the data is excluded from further 

computation. This is done to avoid large values of taxi-out time from having an 

effect on the estimates. These high values of taxi time maybe due to other 

t2 

Reference 

Aircraft 

Aircraft 1 
t1 
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reasons such as delay in boarding of passengers onto the plane, baggage 

issues, or a technical problem with the aircraft. These large values of taxi time do 

not reflect the real reasons that affect the taxi time and will influence the 

regression estimates or coefficients; since this model estimates optimal taxi time 

assuming there is no obstruction in the taxiways, it makes this a valid 

assumption.  

 

For each group, defined according to carrier and season, the taxi-out time is then 

modeled as the linear combination of an intercept, weighted taxi-out queue 

length, and weighted taxi-in queue length, as well as the taxi-in time with a 

different set of coefficients. These weights (coefficients) can be regressed with 

the Ordinary Least Squares method. This model captured the major factor 

contributing to taxi times, the queue lengths of arrival and departure flights. 

However, it did not consider other factors such as runway configurations, 

weather impact, and others. These factors also affect the times that airplanes 

spend on the ground for their taxi time. The regression analysis is then 

performed for each part separately with taxi-out time (for departing flights) as the 

dependent variable and the independent variables being departure and arrival 

queues.  For arrival flights, the taxi-in time is the dependent variable, and the 

queue lengths are the independent variables. For the calculation of unimpeded 

taxi-out time, the taxi-out equation is substituted by a departure queue length of 1 

and arrival queue length is substituted by 0. This is because when we are 

estimating the unimpeded or nominal taxi time, we consider the aircraft to be the 
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only plane on the airport surface. Similarly, to estimate the nominal taxi-in time, 

the arrival queue length is considered to be 1 and the departure queue length is 

taken as 0. 

 

A research paper by Idris et al. [1] identified delay causal factors such as runway 

configuration, airline/terminal location, departure demand, departure queue size, 

weather, and downstream restrictions. They stated that the runway configuration 

determines the flow of aircraft at the airport, presents the level of interaction 

between the flows, and restricts the capacity of arrivals and departures. Idris et 

al. also discussed weather and downstream restrictions in view of the fact that 

adverse weather greatly reduces the capacity of the airport. They suggested 

another way of calculating the arrival and departure queue length, accounting for 

the passing of aircraft. This method of calculation of queue length is discussed in 

detail later. 

 

The queuing model proposed by Idris et al. for taxi-out estimation assumed 

takeoff queue to be the primary factor affecting the taxi-out time of an aircraft 

without taking into consideration the arrival queue. They set up different 

combinations of carriers and runway configurations as subsets. The data of the 

case study that they presented in the paper contained a total of 56 subsets. The 

downstream restrictions were not considered as separate variables but were 

assumed to be a part of the departure queue. Idris et al stated that, aircraft that 

experienced long taxi-out times due to passing and restrictions would have long 
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take-off queues. For all the subsets, a probability distribution function (PDF) is 

developed that gives the probability of a queue forming depending on the number 

of aircraft present on the airport surface at that particular time. An average taxi-

out time is calculated over all possible queue sizes, and then a second-order 

equation is fitted to these values. Their model was compared to the running 

average model that is used in the ETMS and showed a reduced mean absolute 

error by approximately twenty percent and an improved accuracy rate by about 

ten percent. The model predicted 66 percent of taxi-out times within 5 minutes of 

actual time and is applicable when the number of aircraft present on the airport 

surface is known. 

 

The Enhanced Traffic Management System (ETMS) model [7] estimates the taxi-

out time using the running averages of the last two weeks. The limitation of this 

model is that it does not take into consideration important factors affecting the 

taxi-out time of an aircraft such as runway configuration. Shumsky [8] proposed 

two linear models to predict the taxi-out time of an aircraft. One was a static 

model and the other was a dynamic one. The static model uses the variables 

such as carrier, runway configuration, weather, and a measure of airport 

congestion. To explain airport congestion, Shumsky projected two different 

measurements, the number of pushbacks in a given time period around the 

pushback of the aircraft and the number of departing aircrafts present on the 

runway at the pushback time. The results of this study showed that estimations 

using the queue size were better than using the number of aircrafts on the 
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runway as a measurement for airport congestion. Shumsky also claimed that the 

static model was as good as the dynamic model for short time horizon, such as a 

15-minute period. Nevertheless, for a longer time horizon, the static model yields 

superior results.  

 

Brinton et al. [9] described Surface Management System (SMS) architecture and 

presented results at four major airports. They then proposed enhancements to 

the algorithms to potentially improve the accuracy of predicting taxi times that are 

predicted by SMS. According to Brinton, the most significant aspects of surface 

activity include the number of available runways and their layout, runway 

occupancy time requirements, surface congestion, and gate availability. The goal 

of the research was to provide a coordinated motion plan for all vehicles currently 

using, and those anticipated to be using, the surface resources (runways, 

taxiways, gates) over a certain time horizon. Based on the inputs from SMS, the 

routing and de-confliction algorithms approximate the taxi routings and resource 

utilization (gates/runways) that are most likely to be realized by tower controllers 

and focused on algorithms defining the Trajectory Synthesis and Flow Modeling 

capability. They demonstrated each of the algorithms on a simple planning 

problem involving the simultaneous routing of three arrivals and three departures 

on a mock symmetric airport layout and found that the Event-Based A* 

outperformed the Co-Evolution strategy in terms of cumulative time of completion 

over the set of all vehicles. 
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CHAPTER 3 

ORDERED RESPONSE MODEL 

3.1 Introduction 

Figure 3-1 is taken from a 2008 report by the Bureau of Transportation Statistics 

(BTS), “Sitting on the Runway.”  Taking 2003 as the base, since this was the 

year when all certified carriers were required to report the traffic data, this figure 

compares yearly flight volume, taxi-out time, and taxi-in time from 2003 to 2007 

[2]. As the flight volume increased in the first year, so did the taxi times of the 

aircraft. From 2004 to 2005, there was an increase in flight volume and a 

decrease in the taxi-out times; the taxi-in times, on the other hand, remained 

almost the same. The year 2006 saw a decrease of flight volume with an 

increase in ground transit times of airplanes. The year 2007 showed a more 

drastic increase in taxi times compared to the flight volume. This shows that flight 

volume or congestion is not the only factor that effects the taxi times of flights; 

there are other factors as well that influence the times spent on the ground.   
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Figure 3-1   Comparison of Trends of Flight Volume and Taxi Time 

 

The ordered response model in this sections aims to look at the propensity of 

various factors affecting taxi-out delay. Taxi-out delay was explained in Chapter 1 

and is defined as the difference in time between actual taxi-out time and nominal 

or unimpeded taxi-out time. The purpose of using this model is to identify the 

propensity of various factors that may have an effect on the taxi-out delay. 

 

The data used for this model estimation are taken from the ASPM complete 

database mentioned in the previous chapter. The data, however, do not reflect the 

actual on-site circumstances that may cause large differences in gate-out and 

wheel-off times (taxi-out times). Another data source that allows the analyst to see 

the movement of the airplanes on the surface of the airport is the Airport Surface 

Detection Equipment – Model X (ASDE-X) surveillance data. This was developed 

at the Sensis Corporation and provides seamless coverage and aircraft 

identification to air traffic controllers. This system is able to determine the position 
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and identification of aircraft and transponder-equipped vehicles on the airport 

movement data, which will give a detailed understanding of the movement of 

aircraft. However, these data are not available for all airports; there is a plan to 

make it available for the OEP-35 airports. The data set considered is of the 

LaGuardia International Airport (LGA) from January 2007 to December 2007. 

Some of the variables used in the analysis are not present in the individual flights 

database and, therefore, have to be obtained from the airport data.  These are 

then merged to form a single data set with all the required variables. These 

variables are then checked for any missing values or any discrepancy by 

conducting a descriptive statistic test, so that the model estimation performed in 

gauss does not alter the desired results. The model used is an ordered response 

model, and the dependent variable is categorized into different classifications. 

The dependent variable in this case is the taxi-out delay, and this is classified into 

four categories, as discussed later.  
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3.2 Explanation of Variables 

 

3.2.1 Departure and Arrival Queues  

These are the departure and arrival queue lengths at that particular time for each 

departing aircraft. These are calculated separately and are not a part of the data 

available. The departure queue is one of the most important factors of taxi-out 

delay. This is because during high departure flows there are longer queues for 

departure. When an aircraft gates out, it spends some time on the runway in the 

departure queue waiting to use the runway. This leads to longer taxi-out times as 

the aircraft have to wait for their turn to depart. There are similar conditions with 

arrival queues. The arrival queues are longer when the number of arrivals is 

higher. This has little effect on taxi-out time; however, due to the interactions 

between arriving and departing aircraft, the arrival queue also affects the taxi-out 

time. 

 

3.2.2 Expected Departure Clearance Times (EDCT) 

Traffic management personnel assess the traffic coming in and going out of the 

airports and then use strategies to hold the aircraft and give it a new departure 

time so that the demand and capacity remain balanced. Once the EDCT time is 

allotted, the aircraft have around 15 minutes to depart or else they will be 

assigned a new EDCT time and there will be more delay. So the premise is if a 

new EDCT is assigned, then there will be longer taxi-out time and the aircraft will 

experience more delay. 



 

22 
 

3.2.3 Time of Day 

This variable is a dummy variable for the time of day. There are peak and off-

peak hours of airline traffic, with is a high volume of traffic during the peak hours. 

During this time, the taxi-out delay is expected to be larger compared to off-peak 

hours. The dummy variables are divided into four categories: category A is a 

departure time of between 6:00 hrs and 8:59 hrs, B is a departure time of 

between 9:00 hrs and 14:00 hrs, C is a departure time of between 14:00 hrs and 

21:00 hrs, and D is a departure time greater than 21:00 hrs.  

 

3.2.4 Holidays  

This variable is a dummy variable for all federal holidays in the U.S. The premise 

is that holidays are the times when people travel a lot and, therefore, there will be 

high volumes of aircraft and an increase in taxi-out delay. Only federal holidays 

were included; a total of 8 holidays have been considered. 

 

3.2.5 Airport Supplied Departure Rate (ADR) 

This is the actual departure rate of the airport during a particular quarter hour. 

This is important factor in that it reflects the capacity of the airport based on the 

runway configurations selected at that particular hour. 
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3.2.6 Season 

Dummy variables for season are used in the estimation. Season is divided into 

four categories: S1 for March through May, S2 for June through August, S3 for 

September through November, and S4 for December through February. Season 

represents, to an extent, the weather conditions at the airports and also the 

volume of traffic.  

 

3.2.7 Weather 

A dummy variable for IMC ratio is used and tested in the model; however, it was 

not significant since the effect of weather is taken into account by the season 

variable and the queue lengths.  

 

3.2.8 Runway Configuration 

Several different runway configurations that are possible at LGA, and they differ 

in capacity depending on which type is used and which airlines are using them. 

Figure 3-2 shows the runway configuration of LGA. For each runway 

configuration, the dummy variable is set to be 1 if the configuration was operated 

while one flight taxiing-in or taxiing-out or 0 if it was not.  

 

3.2.9 Arrival and departure runways in use 

Arrival and departure runways in use define the distances from gates to the end 

of runway(s) and the distances from runway exist(s) to the gates. This 

information can be difficult to obtain. In the ASPM data used to conduct the case 
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study, there were no arrival and departure runways in use recorded. Fortunately, 

we found some airports (LGA was one of them) that have only one arrival runway 

and one departure runway. Thus, given the runway configuration, it is easy to 

know the arrival and departure runways in use. For modeling other airports with a 

more complex runway configuration, an additional database, such as the 

Performance Data Analysis and Reporting System (PDARS), needs to be used 

for obtaining such information. 

`  

Figure 3-2   Runway Layout at LGA 
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Runway 04/22 and Runway 13/31 are the runways at LGA. Different 

combinations of these runways are used for arrivals and departures, and there 

are different taxi times for these combinations. This is because of the various 

interactions between the arriving and departure flights and the distance of the 

runways from the gates. 

Descriptive statistics are shown in Table 3-1 and Table 3-2. The statistics in 

Table 3-2 show the percentage of the dummy variables that are involved in the 

model. 

Table 3-1  Descriptive Statistics 

Explanatory Variables No. of Cases Mean 
Standard 
Deviation 

Actual Departure Demand 13,283 9.425807 1.065949 

Actual Arrival Demand 13,283 9.240006 1.130768 

Nominal Taxi-out 13,283 12.38345 1.307837 

Actual Taxi-Out 13,283 20.67929 6.689501 

Departure Queue 13,283 11.45351 5.237472 

Arrival Queue 13,283 3.134307 1.879049 
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Table 3-2  Descriptive Statistics in terms of Percentages 

Explanatory Variables No. of Cases Percentage 

EDCT 13,283 0.159509 

Dummy variable for runway configuration  13,283 0.5947 

Dummy variable for runway configuration  13,283 1.4831 

Dummy variable for runway configuration  13,283 28.5628 

Dummy variable for runway configuration  13,283 00.9862 

Dummy variable for runway configuration  13,283 25.6042 

Dummy variable for runway configuration 13,283 00.128 

Dummy variable for runway configuration 13,283 06.2938 

Dummy variable for runway configuration 13,283 19.7019 

Dummy variable for runway configuration 13,283 12.5725 

Dummy variable for runway configuration 13,283 00.3538 

Dummy variable for runway configuration 13,283 03.1318 

Dummy variable for hour of day 13,283 14.9063 

Dummy variable for hour of day 13,283 36.6182 

Dummy variable for hour of day 13,283 38.5003 

Dummy variable for hour of day 13,283 07.3477 

 

3.3 Model Estimation 

Gauss 9.0 is used to perform the model estimation. Since the dataset is very 

large, a random sample is taken using SPSS. The random sample is 10 percent 

of the data set. The data set is reduced to around 13,000 cases. Since a sample 

is used, the weights need to be calculated. These weights are calculated using a 

ratio shown below.                 

 

Weight of taxi-out delay = (market share / sample share) of taxi-out delay 
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The dependent variable is taxi-out delay, and it is calculated as the difference 

between actual taxi-out time and nominal taxi-out time.  The dependent variable 

is classified into four categories, and an ordered probit model is used for 

estimation. The categories for delay are as follows: 

 

Category 1 =  no delay 

Category 2 =  >0 and <8 minutes of delay 

Category 3 =  >= 8 minutes and <16 minutes of delay 

Category 4 =  >= 16 minutes of delay 

 

This was defined using a histogram of the taxi-out delay 

 

Figure 3-3 Histogram to Define the Categorization of Taxi-out Delay 
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Ordered probit model is used for estimation, and the resultant equation is: 

                                              

                                 
   

 
                            

 

Where, 

Dlto = taxi-out delay 

Qd = departure queue 

Qa = arrival queue 

E = expected departure clearance times 

A = dummy variable for time between 6 am to 8 am 

C = dummy variable for time between 2 pm to 9 pm 

D = dummy variable for time greater than 9 pm 

H = dummy variable for all federal holidays in the US. 

S1 = months between March and May 

S3 = months between September and November 

S4 = months between December and February 

Rn = dummy variable for runway configuration in use 

 

The Ordered-Response Model estimated the factors causing delay and 

determined the propensity of these factors on taxi-out delay. The taxi-out delay is 

a continuous variable was ordered in the classes mentioned above. 
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The Ordered-Probit Model has the following form: 

 

                                    

                                       

                        

   is the probability that the subject n belongs to category k. 

Once the model is set up the results1 are tabulated and shown in Table 3-3. 

Table 3-3  Model Results 

Explanatory Variables 
Parameter 
Estimate 

T-Stat 

Thresh01 0.1389 1.523 

Thresh02 1.6637 18.1 

Thresh03 2.9472 31.44 

Departure Queue 0.1599 68.54 

Arrival Queue 0.0097 1.659 

EDCT 0.2607 4.305 

Holidays -0.1176 -2.198 

Actual Departure Rate -0.0366 -3.959 

Time of the day   

Dummy for time between 6am and 8 am -0.0744 -2.456 

Dummy for time between 3pm to 9 pm 0.0609 2.751 

Dummy for time greater than 9 pm 0.1585 3.974 

Season   

Dummy for months from March to May 0.0481 1.75 

Dummy for months from Dec to Feb 0.0174 0.634 

Dummy for months from Sep to Nov 0.1593 5.655 

 

                                                           
1
  The results of the model will yield better estimates of the parameters if the thresholds 

are provided with start values. In this model the thresholds were estimated and not given. 
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Table 3-3 (Continued.) 
 

Runway Configuration   

Dummy for runway conf 0.1965 2.436 

Dummy for runway conf 0.2841 2.913 

Dummy for runway conf 0.4473 1.599 

Dummy for runway conf 0.3222 1.907 

Dummy for runway conf 0.2127 1.689 

Number of cases 13283 

Log likelihood at convergence -14016.62 

Log likelihood for constants-only model -16754.91 

Rho2  0.1634 

Adjusted Rho2  0.1625 

 

 

3.4 Interpretation of Results 

3.4.1 Departure Queue 

This estimate is positive and is correct according to the premise of the longer the 

departure queue, the higher the taxi-out delay. The t-stat of this variable is 

extremely high, indicating that this may lead to a positive feedback cycle; in other 

words, as the delay increases, the departure queue increases as well. 

 

3.4.2 Arrival Queue 

The parameter estimate of arrival queue is positive as well and, according to the 

t-stat, the variable is not statistically significant (>=1.96). However, this is an 

important variable and so it needs to be considered in the estimation. This is 

because when there is an aircraft taxiing out, there are interactions with arriving 



 

31 
 

aircraft and this increases the taxi time. So, if the arrival queue is longer, there 

will be more interactions, and the taxi-out delay will increase slightly as well. 

 

3.4.3 EDCT 

This variable is positive, and the basic assumption that if EDCT is assigned, then 

the taxi-out delay will be higher when compared to airlines that have not 

assigned an EDCT. So, if an aircraft is assigned an EDCT time, the taxi-out time 

of that aircraft increases as it adds up to the departure queue for a longer time. 

The t-stat of this variable is also significant. 

 

 

3.4.4 Time of Day 

The peak time of the day is in the afternoons and evenings. The departures are 

greater in the afternoons and the arrivals are greater later in the day. According 

to the model estimation, the premise of taxi-out delay being greater during peak 

hours is true. The first parameter is negative, that is, the taxi-out delay is less if 

the departure time is between 6 am to 8 am when compared to a departure time 

of 9 am to 2 pm (which is taken as a base). The other two parameters are 

positive, indicating higher taxi-out delay when compared to the base, that is, a 

departure time between 9 am to 2 pm. The t-stat of all the three are significant 

(>=1.96). 
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3.4.5 Holidays 

The premise that holidays are higher volume days and therefore will have high 

taxi-out delays has failed here, as the estimate is negative. The could be 

because, since air traffic has declined the over the past 2-3 years because of the 

recession, people have started to avoid traveling to far-away destinations and are 

sticking to the road and going to destinations that are easily accessible and close 

by. Also, people are tired of paying for things that were once free in the airline 

industry. Perhaps air travel is now being used more for business than for leisure. 

The t-stat is significant as well. 

 

3.4.6 ADR 

Capacity of the airport is a straightforward variable that should be negative, and 

is. If the capacity is greater than the demand, then the taxi-out delay reduces and 

there is smoother travel with fewer delays. The t-stat is significant. 

 

3.4.7 Season 

The dummy variable for season reflects the weather and volume delays 

combined. All the variables are positive, meaning that these months have higher 

taxi-out delay when compared to June, July, and August when the weather is 

good and there are very few delays. Even though the t-stats are not significant, 

these are important variables and are required for model estimation. 
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3.4.8 Runway Configuration 

Runway configuration shows that some types of configurations have higher taxi-

out delay than others because of their proximity to the gates of certain airlines. 

This is an important variable and taxi-out delay is different under different runway 

configurations.   

 

The results of this model provide an idea of what effect certain factors have on 

taxi-out delay, which is used as a reference in selecting the variables that are 

used in the proposed model. All the variables tested by this model cannot be 

used in the proposed regression model that is discussed in the next chapter, 

since, although the t-square values are significant, the variables that are actually 

used in the proposed model take account of the left out variables.  
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CHAPTER 4 

PROPOSED REGRESSION MODEL 

 

4.1 Queue Length Calculation in the Alternate Model 

A different approach can be used to calculate the queue lengths in this model. 

This alternate model uses the concept of aircraft passing and over-passing. 

Aircraft passing and over-passing occur if the reference aircraft is held up for 

certain reasons and other aircraft pass it, or if other aircraft are held up and the 

reference aircraft passes them. Consider this in Figure 4-1. The reference aircraft 

leaves the gate at a time t1 and wheels off at time t2. Aircraft 1 has a gate-out 

time before t1, and a wheel-off time after t2 (wheel-off time of the reference 

aircraft). This aircraft has been passed by the reference aircraft and will not be 

counted in the queue length of the reference aircraft. Now consider aircraft 4; this 

aircraft has a gate-out time after the reference aircraft has left the gate but takes 

off before the reference aircraft. This aircraft will be a part of the departure queue 

of the reference aircraft since it has passed the reference aircraft. In other words, 

the departure queue of an aircraft is defined as the number of flights that have a 

take-off time during its taxi-out, and the arrival queue is defined as the number of 

flights that have a gate-in time falling into its taxi-in duration. 
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Figure 4-1  Taxi-out Representation 

 

4.2 Comparison of Queue Length 

Table 4-1 illustrates the difference in the calculation of queue lengths between 

the APO model and the proposed model. According to the definition by the FAA 

APO model, the departure queue for NWA at 7:10 am is 7, which is the number 

of aircraft on the airport surface at its gate-out time. The departure queue for that 

flight is 5, according to Idris et al.’s definition, because it has passed the two 

flights DAL and FLG that had a gate-out time of 7:08 am but took off later than 

the NWA flight. 

t2 

Reference Aircraft 

Aircraft 1 

t1 

Aircraft 4 
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Table 4-1  Comparison of Queue Length Calculation 

Carrier Gate-Out Wheels-Off 
Dep_Queue 

(Kondo) 
Dep_Queue 

(Idris) 

USA 6:57:00 7:13:00   

NKS 7:00:00 7:15:00   

NWA 7:00:00 7:18:00   

UAL 7:02:00 7:19:00   

UAL 7:04:00 7:22:00   

DAL 7:08:00 7:29:00   

FLG 7:08:00 7:26:00   

NWA 7:10:00 7:24:00 7 5 

AAL 7:14:00 7:27:00   

 

4.3  Proposed Model 

4.3.1 Model Description 

The imitation of the existing APO model shows that there is very little variance of 

the observed data captured by this model. Although the existing model has 

included major contributors, such as arrival and departure queue lengths, it did 

not include other factors that may influence the taxi time, as discussed earlier. To 

make the estimation more accurate, this study proposes another set of linear 

equations to model the taxi-in and taxi-out times. Explanatory variables include 

arrival and departure queue lengths, runway configuration, arrival and departure 

runways, and dummy variables indicating time of day and EDCT that reflect air 

traffic flow management activities. Arrival and departure queue lengths and 

runway configuration have been discussed extensively in the previous section and 

are widely accepted as major causal factors of taxi-in and taxi-out delay. 

Nevertheless, the way of counting the queue lengths in proposed model follows 
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what have been defined in the paper of Idris et al., which is different from those in 

APO model. There are dummy variables created for runway configuration as well. 

The information on arrival and departure runways in use are also important 

because it gives the distance from gates to the end of the runway and the 

distance from runway exits to gates. If the gates are farther away from the ends of 

the runways, the aircraft will have a longer ground transit time. This kind of 

information is not available in ASPM. Fortunately, for LGA, the selected case 

study, only one departure runway and one arrival runway are usually used in daily 

operation. So runway configuration virtually contains the information of runway 

usage. Peak and non-peak hours in the day could cause contrasting performance 

of taxi-in and taxi-out delay due to different gate constraints. In addition, flights 

experiencing EDCT could perform differently from others. Dummy variables are 

set up for the time of the day and EDCT to account for these effects. Considering 

the physical interaction between aircraft in the taxiway systems, quadratic terms 

of the queue lengths are introduced in this regression model. Similar as the APO 

model, flights are grouped according to carriers and seasons, and the flights with 

taxi times in the upper 25th percentile are filtered from the data. The case study of 

this model with 2007 data at LGA shows higher R square values when compared 

to the outcomes of the APO model. The regression equation is of the form: 
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Where, 

Qd =  departure queue length 

Qa =  arrival queue length 

E =  dummy variable for EDCT, 1 if EDCT is assigned, else 0 

D =  dummy variable for time of the day, 1 if the time is between 6am and 

8 am, else 0 

C =  dummy variable for time of the day, 1 if the time is between 3pm and 

9pm, else 0 

T =  dummy variable for time of the day, 1 if the time is greater than 9pm, 

else 0 

R =  dummy variable for runway configuration, 1 if the one in question is 

in use, else 0 

The equation for taxi-in time has similar explanatory variables taken from the 

arriving flights data. The equation is given below: 

          
       

    
    

    
    

          
      

   

   
      

      
          

 

  

   

 

For unimpeded taxi-out times, such as in the previous model, consider the 

departure queue length to be equal to 1 and arrival queue length to be equal to 0 

and vice-versa for the taxi-in time of an aircraft. The arrival queue length is taken 

to be 1 and the departing queue length is taken as 0.  
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4.3.2 Regression Results and Comparison 

With the same data, we conducted the regressions of our proposed model and 

the existing model used to calculate the nominal taxi times recorded in ASPM 

database. Table 4-2 shows a sample group of the regression results. 

 
 

Table 4-2  Regression Results 

YEAR  DAY CARRIER Arr_locid NOMTO Tm season Intercept Queue_D Queue_D2 

200703 15 AAL STL 11.6 8.9 1 11.95 0.93151 0.01111 

200706 10 EGF BGR 11.1 23.02 2 8.78716 1.26215 0 

200707 23 EGF BOS 11.1 18.15 2 8.78716 1.26215 0 

200711 2 EGF CVG 10.8 22.45 3 6.63839 1.27988 0 

200708 28 FFT DEN 13.7 8.38 2 13.06356 0.36974 0.03663 

200711 2 FFT DEN 11.2 6.92 3 8.97368 0.79762 0.01902 

200707 30 MEP MCI 12.4 7.28 2 11.07828 0.47851 0.02719 

200703 6 NKS FLL 12.4 8.63 1 16.26751 0.33255 0.03649 

 

rwyconf4c rwyconf7c rwyconf8c rwyconf9c rwyconf10c EDCTc Bc Cc Dc CALNOMTO 

0.32419 -0.93117 -1.67999 -1.552 -0.22996 0.66876 -1.3393 -0.9733 1.06031 11.87742 

2.0454 -0.30627 -0.86094 0.42271 0 2.04619 -1.4349 -0.7435 -0.0024 10.46962 

2.0454 -0.30627 -0.86094 0.42271 0 2.04619 -1.4349 -0.7435 -0.0024 11.77462 

4.07483 1.9921 1.12718 2.26146 2.21779 0.97062 -0.8929 -0.6164 0.46266 10.59872 

-0.80952 0.15225 -1.18024 0.27664 0 -3.0128 -0.4509 -0.3580 0 13.2956 

-2.20914 0.21465 1.23372 2.59556 -2.40829 0 0.19207 -0.2593 0.96412 11.02404 

1.64769 -0.28301 -0.91466 0.5142 0 0 0.15634 0.8448 2.81792 12.09818 

-3.97864 -3.33951 -4.27865 -3.26161 0.13974 1.67606 -0.8902 -0.240 0.95519 12.4068 

 

 
The comparison of the performance of the two models is shown in Table 4-3. The 

proposed model has an average R2 value of 0.758 for taxi-out estimation across 
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all groups while the average R2 value of the APO model is only 0.429. In 

addition, the standard error of the R2 values for the proposed model is smaller.  

 

Table 4-3  Comparison of R2 Values 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 Statistics Alternate Model Existing Model 
Mean 0.758 0.429 
Standard Error 0.004 0.008 

Median 0.753 0.434 
Mode 0.738 0.455 
Standard Deviation 0.044 0.084 

Sample Variance 0.002 0.007 
Kurtosis 0.814 -0.120 
Skewness 0.627 -0.303 
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CHAPTER 5 

PREDICTING TAXI TIMES 

 

5.1 Iterative Algorithm 

Given the regression results and other inputs from flight scheduling, we propose 

an iterative algorithm to predict taxi-out times. The basic idea is to revise arrival 

and departure queue lengths and update the taxi-out times of the flights in each 

iteration until the difference between two iterations becomes less than the 

convergence parameter set up at the beginning, i.e.,  

 

    
        

      

  
    for arrival flights 

         
    

        
      

  
    for departures flights 

 

Initially, the arrival and departure queue lengths are set as 0. The iteration count 

variable n is set as 1 and the convergence parameter is defined as 0.005. Given 

the estimated coefficients and other input variables, the taxi-in time and taxi-out 

times can be calculated. Given gate-out times and arrival times, we can calculate 

departure times for departure flights and gate-in times for arrival flights. 

Assuming there are no gate constraints holding arrival flights from getting a gate,
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we check the extra taxi-out times that could cause by departure capacity. The 15-

minute airport departure rate (ADR) is used as departure capacity of the airport. 

With the previous calculation, we can determine if the 15-minute ADR is 

exceeded or not. If exceeded, affected flights are postponed to the next 15-

minute time window. The same procedure is repeated until no demand exceeds 

supply in all 15-minute time windows in the day. Assuming there is no over-

passing, we can calculate the arrival or departure queue lengths and then the 

taxi-in or taxi-out time for each flight.  Compare the two sets of taxi-in and taxi-out 

times mentioned so far, if the differences are smaller than the convergence 

parameter, the iterative algorithm stops; otherwise, the iteration counts increase 

one unit and the iteration continues from calculating the departure times for 

departure flights and gate in times for arrival flights. The iterative steps of the 

algorithm are now summarized in the form of a pseudo-code. 

 

 

Goal:  Stop when the convergence parameter is met to find the taxi-out time. 

1. Initialization:    xo
(0) = 0 and xi

(0) = 0 (queue lengths), Iteration 

count n = 1 Convergence parameter is set, ε = 

0.005 

 

2. Calculate taxi times:   Using the estimated coefficients from the model as 

input, calculate to
(n) and ti

(n). 
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3. Calculate departure 

and gate-in times: 

Using gate out (go) and arrival times (ai) as inputs, 

departure time do
(n) =  go+ to

(n) and  

gate in time gi
(n) = ai+ ti

(n). 

 

4. Check for 15-minute 

total departures: 

If the capacity (ADR) is exceeded, affected flights 

are moved to the next time window. This stops 

when all ADR constraints are satisfied.  

 

5. Calculate queue 

lengths: 

 

xo
(n) and xi

(n) the departure and arrival queue lengths 

that are calculated. 

 

6. Calculate taxi times: Given the estimated coefficients from the regression 

model, to
(n+1) and ti

(n+1). 

 

7. Convergence Test: 
If  

  
        

   

  
         

  
        

   

  
      

   , 

Stop,  

Else n = n+1 and go to step 3. 
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5.2 Case Study and Performance of the Algorithm 

One day in 2007 was selected, July 13, at LGA to test the performance of the 

algorithm. More experiments should be conducted later to get a more general 

idea about the performance. It shows that the model is able to predict 74 percent 

of taxi-out times within five minutes of the actual times. With a different date set, 

the model proposed by Idris et al. predicted 66 percent of taxi-out times within 

five minutes of actual times. Table 5-1 lists the descriptive statistics when 

comparing the predicted taxi-out times (CALTO) and actual taxi-out (ACTTO) 

times recorded in ASPM data. 

 

Table 5-1  Comparison of CALTO vs. ACTTO Statistics 

Statistics ACTTO CALTO 

Mean 18.55 18.95 

Standard Error 0.23 0.22 

Median 18.00 18.38 

Mode 12.00 19.32 

Standard Deviation 5.48 5.25 

Sample Variance 29.98 27.56 

Kurtosis 0.00 0.72 

Skewness 0.63 0.47 

 

Figure 5-1 demonstrates the comparison of average taxi-out times for different 

hours of the day. It is observed that in the evening, there are larger discrepancies 

between predicted taxi-out times and actual taxi-out times. This could be caused 

by the gate constraints that we have ignored in our iterative algorithm or other 
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factors. To predict taxi times more accurately, it is worth more investigation to 

look into surface movement data, observing the real-time operations at airports 

and evaluating the impact of gate constraints on arrival queues. 

 

 

Figure 5-1  Comparison of Actual and Calculated Taxi-out Times  
during Different Hours of the Day 
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CHAPTER 6 

CONCLUSION 

 

Taxiing delay has always been a major problem for most major airports. In 

general, there are huge losses associated with taxiing delay due to gas 

emissions, fuel wastage, ground-holding, etc. This research illustrates the utility 

of the ordered-probit model to study the taxi-time delay at LaGuardia Airport, one 

the most congested airports in the U.S. The model developed takes into account 

all the delay-causing factors previously discussed and estimates the significance 

of each of them. The dependent variable in this model is taxi-out delay, which is 

the delay experienced by the aircraft once it departs from the gate to the runway 

for take-off.  The taxi-out delay at LGA airport significantly depends upon 

departure queue, arrival queue, runway configuration, season, EDCT, and time 

of day. It was observed that the delay is less during morning period and 

increases as the day passes, reaching its peak in the evening. It was also seen 

that the delay generally is reduced during holiday periods due to fewer aircraft 

using the airport. 

 

This research proposes a set of regression equations to model the taxi times at 

airports by considering the queuing effect, runway configuration and runways in 

use, EDCT effect, time of day, and others. The comparison of the proposed
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model and the model used to calculate the nominal times recorded in ASPM 

database show that with the expansion of independent variables, the proposed 

model explains double of the variation of the taxi times. The iterative algorithm for 

predicting taxi times proposes an alternate method of predicting the taxi times. 

The inputs for the algorithm include the estimated coefficients from 

aforementioned regression model, flight gate-out times or arrival times. ADR is 

taken as the airport departure capacity. Procedures are taken to ensure the 

departure capacity is not exceeded in each iteration. The algorithm is tested with 

the data of one day’s operations in 2007 at LGA. The predicted results are 

compared with the actual taxi-out times recorded in ASPM. Overall, 74 percent of 

predicted value falls into the range within five minutes of the actual times. This is 

higher than the 66 percent claimed by one of the existing models, although with 

data from a different airport. 
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