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Abstract

Schistosomiasis is a major parasitic disease caused by parasitic helminths of the

genus Schistosoma which affects children in Africa, with negative impacts on

general health, growth and cognitive development. Infection and morbidity are

controlled by treatment with the antihelminthic drug praziquantel. Preschool

children (aged ≤5 years old) have been neglected both in terms of research and

control, and it is only recently that the World Health Organization (WHO)

recommended praziquantel treatment and the inclusion of preschool children

in control programmes. However, the burden of disease in this age group still

remains poorly understood, and the performance of the currently available tools

for detecting infection and morbidity is still yet to be systematically evaluated.

The aim of this thesis was to compare the utility of currently available tools

for diagnosing S. haematobium infection and related morbidity. The initial

study cohort consisted of 438 Zimbabwean children (age range: 1–10 years) who

were endemically exposed. Point-of-care schistosome-related morbidity markers

applicable in the field, as well as serological biomarkers (CHI3L1, CRP, ferritin,

resistin and SLPI) and inflammatory cytokines (IL-4, IL-5, IL-10, IL-13 and

IFN-γ) that could predict early stages of immune-mediated pathology due

to schistosomiasis were measured. Using a combination of applied statistical

methods, the effect of treatment on factors associated with S. haematobium

exposure, infection and morbidity in children aged 1–5 years was determined and

the findings compared with those observed in children aged between 6–10 years

old, who are the current targets of the schistosome control programmes.

In this thesis, I able to demonstrate that preschool children carried significant

infection, further reiterating the need for their inclusion in control programmes.

Furthermore, this study demonstrated the importance of using additional sensitive

diagnostic methods as this has implications on the required intervention strategies

for the targeted populations. This study further revealed that preschool children
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can be effectively screened for schistosome-related morbidity using the same cur-

rently available diagnostic tools applicable to older children. Urinalysis markers

microhaematuria, proteinuria and albuminuria are recommended in this thesis as

the best choice for rapid assessment of morbidity attributed to S. haematobium

infection in the field. Additionally, it was shown that the praziquantel treatment

regimens aimed at controlling schistosome infection and morbidity currently des-

ignated for primary school-aged children and older populations are applicable to

preschool-aged children. The involvement of serum biomarkers and immune cor-

relates in the biological processes of inflammation suggests that these markers can

be potential early predictors of schistosome-related pathology. Further research

efforts are required to establish the relationship between these biomarkers and

presence of schistosome-related morbidity as measured using point-of-care indica-

tors in larger cohorts of populations chronically exposed to schistosome infections.

In summary, the findings of this thesis highlight the need for the refinement

of existing diagnostic methods for accurate detection of infection and morbidity

in children. This will enable appropriate and timely intervention strategies,

aimed at improving the current and future health of preschool aged-children

to be implemented. The findings presented here will aid researchers and other

stakeholders in making informed choices about intervention tools for control

programmes targeting young children.
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Lay Summary

This thesis focused on urogenital schistosomiasis, an important, but neglected,

infectious tropical disease affecting over 100 million people, mainly in sub-Saharan

Africa. Infection and disease are controlled by treatment of infected individuals

with the antihelminthic drug, praziquantel. Until recently, schistosome-related

morbidity had been thought to be only dependent on infection intensity and most

studies have focused on older children (≥6 years) and adults. A growing number

of studies from Africa have reported high prevalences of infection and morbidity

in pre-school children (aged 5 years and below) but currently these children

have been excluded from schistosomiasis control programmes. Recent reports

suggest that the development of schistosome-related morbidity is influenced by

the nature of the induced immune response and its effects on the associated

pathology in target organs. Schistosome-associated immunopathology is mediated

by tissue damage and pro-inflammatory immune responses, whose markers can be

detected serologically. It is therefore considered that such circulating biomarkers

may provide a new valuable approach for early diagnosis of schistosome-related

morbidity. In this thesis, I assessed ways of improving the diagnosis of infection

and morbidity using existing tools, as well as investigated ways of refining the

existing drug regimen to improve the current and future health of pre-school

children using different statistical methodologies. This thesis focused on children

aged 1–10 years of age, comparing the performance of different diagnostic tools

applicable in the field and determine the impact of single vs. double treatment

with praziquantel on the current and future health status of the children.

I confirmed that pre-schoolchildren carry significant schistosome infections,

and that most of these infections are missed by the current standard egg count

diagnostic method. By using more sensitive serological methods, I was able to

demonstrate that the parasitological techniques might misclassify communities for

the treatment regimens recommended by the World Health Organization resulting
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in fewer treatments than those required. Furthermore, when evaluating current

point-of-care diagnostic tools for schistosome morbidity, I demonstrated that (i)

for both pre- and primary school children clinical diagnosis was the least reliable

tool, while the urinalysis method was the most reliable, (ii) preschool children

carried significant levels of morbidity and (iii) that treatment not only effectively

reduced infection levels but also significantly reduced morbidity levels both within

12 weeks and 12 months following initial treatment. My results also revealed

the involvement of serological biomarkers in the biological processes of acute

inflammation these results suggest that these biomarkers can help in identifying

the initial stages of schistosome-related pathology in young children.

In summary, the findings of this thesis highlight the need for the refinement of

existing diagnostic methods for accurate detection of infection and morbidity in

children. This will enable appropriate and timely treatment strategies, designed

to improve the current and future health of preschool children to be implemented.

The findings presented here will aid researchers and other stakeholders in making

informed choices about intervention tools for control programmes targeting young

children. Although I have focused on paediatric schistosomiasis, the issues raised

by my thesis are also relevant in older populations. Firstly, accurate diagnosis

of infection using more sensitive tools is important in older people suffering

from chronic but inactive schistosomiasis for successful mass drug administration

programmes. Secondly, poor markers of morbidity mean that pathology associated

with schistosomiasis is not detected early enough when it can still be reversed by

chemotherapy. Thus, a better understanding of morbidity due to schistosomiasis

is still desired in older populations for improved control strategies. Lastly, poor

indicators of improved health following antihelminthic treatment make it difficult

to fully appreciate the efforts of using praziquantel as a control tool beyond the

transient reduction of infection levels in endemic areas.
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Chapter 1

General introduction

1.1 Background

Schistosomiasis is an important, but neglected infectious tropical disease caused

by parasitic helminths of the genus Schistosoma. It affects over 230 million people

worldwide (Colley et al. 2014; Vos et al. 2012), mostly poverty stricken commu-

nities with limited access to clean water and inadequate sanitary facilities (WHO

2012). In endemic areas, children carry the heaviest burden of infection and due

to the chronic nature of the infection and continued susceptibility to re-infection,

they can remain infected for most of their lives (Dunne & Mountford 2001; Mutapi

et al. 2008; Stothard et al. 2011; WHO 2002). Consequently, they are subject to

schistosome-related complications including growth retardation, anaemia, reduced

physical activity, poor cognition and memory, and end-stage organ damage such as

bladder and kidney disorders (Fenwick et al. 2009; King 2007; King & Dangerfield-

Cha 2008; Odogwu et al. 2006). When adequately treated during childhood with

the antihelminthic drug of choice praziquantel (PZQ), symptoms of disease can

be reversed and development of severe morbidity alleviated (Bundy et al. 2013;

King 2007; WHO 2002).

In several countries currently implementing schistosome control programmes,

the control strategies follow the directive by the World Health Assembly resolution

(WHA54.19) in 2001 (WHO 2001a, 2002). This involves regular school-based

deworming using PZQ aimed at reducing morbidity, promoting school-child health

and improving the cognitive potential of children (WHO 2002, 2010). A growing

number of studies from Africa have shown that preschool-aged (≤ 5 years) children

are at a high risk of schistosomiasis (Dabo et al. 2011; Mutapi et al. 2011; Odogwu
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et al. 2006; Stothard et al. 2011). These findings and concerted efforts led to a

major recommendation by the World Health Organization (WHO) in 2010, stating

that preschool-aged children should be considered for treatment through regular

health services as well as in schistosome control programmes (WHO 2011a). These

recent developments in schistosome control policy have heightened the need for

a clear knowledge on optimal strategies required to improve the effectiveness of

interventions targeting this age group.

Among other reasons, preschool-aged children have been excluded from

schistosome control programmes because infection had been underestimated in

this age group and the resulting morbidity is still poorly defined or quantified.

The current thesis seeks to increase the understanding of the schistosome infection

and morbidity burden in children aged 1–5 years, and thereby contribute to

the planning and implementation of improved control programmes targeting

this age group using currently available intervention tools. The performance of

available rapid diagnostic tools in addition to using egg counts (widely acceptable

as the standard diagnostic technique) are investigated in children aged 1–5

years and compared to primary school-aged (6–10 years) children and their

implications for control elucidated. To date, the performance of the point-of-care

morbidity diagnostic tools has not yet been evaluated in preschool-aged children.

As a consequence, this can have negative impacts on the assessment of the

effectiveness of control programmes and thus their prioritization and sustenance

within ministries of health in affected countries, often with small health budgets,

and other stakeholders.

To address this knowledge gap, I seek to determine the utility of several

available diagnostic tools in identifying markers of morbidity associated with

schistosome infections in preschool children compared to children aged 6–10 years

old, who are the current specific targets of most schistosome control programmes.

These would provide an invaluable tool for diagnosis of schistosome-related

morbidity, and therefore aid timely treatment. The benefits of PZQ treatment

in older children (aged ≥6 years) have already been documented (Agnew-Blais

et al. 2010; Magnussen et al. 1997; Midzi et al. 2008). Additionally, in this thesis

I investigate the effects of PZQ treatment on health and morbidity measures in

preschool-aged children and determine whether the effects of chemotherapy are

age-dependent by comparing the findings to children aged 6–10 years old.

The findings of this thesis provide an initial operational recommendation for

2
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future studies on the subject, as well as giving further insights into the health

benefits of antihelminthic treatment in preschool-aged children. As such, these

findings are important for practitioners, policy makers and stakeholders involved

in the control of schistosomiasis and timely because of the current global drive to

address the health inequity created by the paucity of information on the disease

in infants and preschool children.

1.2 The schistosome life cycle

The main disease causing schistosomes infecting humans are S. haematobium, S.

mansoni and S. japonicum. Other species that can infect humans but are rarely

reported causes of infection include S. mekongi and S. intercalatum (Gryseels

et al. 2006). The intermediate hosts for S. haematobium and S. mansoni are

aquatic freshwater snails that prefer standing or slow-moving water bodies.

S. haematobium is transmitted by snails of the genus Bulinus and causes

urogenital schistosomiasis. S. mansoni is transmitted by snails of the genus

Biomphalaria and causes intestinal and hepatic schistosomiasis. The intermediate

hosts of S. japonicum are amphibian type of snails of the genus Oncomelania,

also found on moist ground or plants, causing intestinal and hepatosplenic

schistosomiasis (Colley et al. 2014; Gryseels et al. 2006).

Humans acquire schistosomiasis through contact with snail-infested waters

whilst performing domestic or occupational duties and through recreational

activities (King & Dangerfield-Cha 2008). The life cycle of human schistosomes

occurs in stages, and the species differ in their intermediate host (snails), the final

location in the human host (definitive host), and the size and shape of the eggs

they produce as illustrated in Figure 1.1. When eggs excreted (through urine or

stool) from infected individuals come in contact with water they hatch, releasing

miracidia which seek and infect the intermediate snail host. The miracidia

multiply asexually into sporocysts and later develop into free-living cercariae. The

cercariae are released from the snail and seek a definitive host, where they develop

into adult worms in the hepatic portal vein of the liver after 4–6 weeks (Gryseels

et al. 2006).

Fully grown schistosomes can range from 7–20 mm in length and have two

terminal suckers, a blind digestive tract and reproductive organs. The mature

adult male and female worms mate and migrate to their final destination, either
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in the venous plexus of the bladder (for S. haematobium) or mesenteric veins of

the intestine (for S. mansoni and S. japonicum) where the females lay hundreds

of eggs per day. The schistosomes can live in their human host for an average of 3–

10 years, although some species can live for more than 30 years, feeding on blood

and globulins through anaerobic glycolysis. The eggs penetrate into the lumen of

the intestines or bladder and are then expelled in the faeces or urine respectively,

and can remain viable for up to seven days (Colley et al. 2014; Gryseels et al.

2006).
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Figure 1.1: The life cycle of schistosomes. Snail infecting, free-
living water-borne, and human-dwelling stages of the lifecycle. Adapted from
the Centre for Disease Control and Prevention (CDC) online resources:
http://www.dpd.cdc.gov/dpdx [Accesed 27/12/2014].

1.3 Epidemiology of schistosomiasis

The geographical distribution of schistosomiasis depends on the ecology of the

intermediate snail hosts and their prevalence among freshwater habitats like

ponds, natural streams, lakes and man-made water reservoirs and irrigation

systems (WHO 2012). Of the estimated 230 million people infected with

schistosomiasis globally, 85% of the disease burden is concentrated in sub-Saharan

Africa (Colley et al. 2014; Engels et al. 2002; Lengeler et al. 2002; Vos et al. 2012).

The worldwide mortality due to schistosomiasis is estimated at more than 200,

000 deaths per year (King et al. 2005; van der Werf et al. 2003) and more than

1.5 million disability adjusted life years (DALYs) are estimated to be lost due to

schistosome infections (King 2010; WHO 2008). S. haematobium and S. mansoni
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are the major species commonly distributed throughout Africa (Figure 1.2). S.

haematobium is also found in the Middle East along the Tigris and Euphrates,

and southern parts of the Arabian Peninsula. S. mansoni also occurs in the

western parts of South America (mainly Brazil), and some parts of the South

Caribbean islands. S. japonicum occurs in parts of China, the Philippines, and

Indonesia (Colley et al. 2014; Gryseels et al. 2006).

In some countries the prevalence of schistosome infection has been successfully

reduced to very low levels, although ultimate elimination of the disease is yet to

be confirmed in these areas (WHO 2013). In these endemic regions, children tend

to carry the heaviest burden of infection, beginning to accumulate worm burdens

as soon as they are old enough to come into contact with water contaminated

with cercarial larvae (Mutapi et al. 2008; Stothard et al. 2011). Children are

most vulnerable to infection or re-infection due to their high patterns of exposure

such as playing, swimming or fishing in infested waters. Age-related changes in

infection levels have been reported in various epidemiological studies (Mitchell

et al. 2011; Mutapi et al. 2007; Woolhouse et al. 2000), and these characteristic

age-intensity profiles have been associated with the development of acquired

protective immunity in older individuals (see section 1.9.3). Reported sex-related

differences in schistosome infection prevalences in children are not high, with both

male and female children having relatively high water contact patterns (Chipeta

et al. 2013; Sacko et al. 2011; Sow et al. 2011).
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Figure 1.2: Map of the worldwide distribution of schistosomiasis
as of 2011. Source from the World Health Organization online resource:
http://gamapserver.who.int/mapLibrary/ [Accesed 28/12/2014].

1.4 Pathogenesis of schistosomiasis

The development of schistosome-related morbidity results from the damage caused

by the parasite eggs and as a consequence of the host immune reaction to

eggs trapped in tissues (Gryseels et al. 2006; Smith & Christie 1986). The

tissue damage caused by lodged or passing parasite eggs has been associated

with an increase in susceptibility to other infections such as bacterial or viral

infections (Fairfax et al. 2012; Kjetland et al. 2008; Mbabazi et al. 2011; Pearce

& Simpson 1994). The type of host immune response is crucial in determining

the pathological changes associated with schistosome infections and the severity

of disease (Gryseels et al. 2006; Pearce & MacDonald 2002). Antigens from the

eggs stimulate granulomatous reactions, mediated by T-cells, eosinophils and

macrophages. The chronic inflammatory response leads to collagen formation

and fibrosis, causing obstruction to portal blood flow and urine flow, eventually

resulting in organ damage (Colley et al. 2014; Pearce & MacDonald 2002; Warren

1978). Individual host variations in disease sequelae due to schistosome infections

are well documented in the literature, with some people showing more severe

7
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pathological changes compared to others despite a similar burden of infection

intensity (Chen & Mott 1989; Isnard et al. 2010; Kabatereine et al. 2007;

Mohamed-Ali et al. 1999; van der Werf & de Vlas 2004). More importantly, the

development of subtle morbidity due to schistosomiasis has significant impact

on the general childhood health, hence the need for timely prevention and other

control measures (Ekpo et al. 2012a; WHO 2002).

1.5 Morbidity due to schistosomiasis

The morbidity due to schistosome infections can be divided into three main stages:

migratory, acute and chronic schistosomiasis. The migratory stage is associated

with initial skin penetration by cercariae, resulting in a hypersensitivity reaction

(swimmer’s itch or cercarial dermatitis) that often occurs within a few hours

after exposure (Gryseels et al. 2006; Lambertucci 2010). Symptoms associated

with the acute stage schistosomiasis, also referred to as Katayama syndrome

(reviewed recently by Ross et al. (2007)) can develop between 4–10 weeks after

exposure and is characterized by fever, rash, abdominal pain, lymphadenopathy

and eosinophilia (Colley et al. 2014). Bloody diarrhea and tender hepatomegaly

have also been associated with heavy S. mansoni or S. japonicum infections at

this stage (Lambertucci 2010). These early (migratory and acute) inflammatory

reactions are rarely observed in residents of endemic regions (King & Dangerfield-

Cha 2008), possibly due to in utero sensitization (Rujeni et al. 2012). The chronic

phase of schistosomiasis is accompanied by a wide variety of symptoms, more

general and/or organ-specific, depending on the species (King & Dangerfield-Cha

2008; Smith & Christie 1986) as summarized in Table 1.1.

The reported major chronic forms of schistosome-related morbidity are

hepatosplenic (S. mansoni and S. japonicum) and obstructive urinary tract

(S. haematobium) disease. Chronic infection with schistosomes in children is

associated with iron deficiency anaemia and undernutrition which have significant

negative impacts on child growth (WHO 2001b). Nutritional deficiencies are

caused by the growth and development of the parasite inside the host and the

passing of their eggs through the host causing tissue damage and inflammation.

The damage to the organ tissues causes blood and iron loss resulting in

iron deficiency anaemia (Friedman et al. 2005). Malnutrition and anaemia are

associated with impaired child growth, reduced physical fitness, and poor cognitive

8
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and mental development (Haas & Brownlie 2001; Shaw & Friedman 2011).

In addition, the resulting tissue damage inflicted by the parasite eggs can

result in increased susceptibility to co-infections such as bacterial and viral

infections (Knopp et al. 2013).

The genital manifestations of S. haematobium infection can have an impact

on the reproductive health in adulthood (Feldmeier et al. 1999; Nour 2010). In

women, schistosome infection can lead to complications in the vulva or fallopian

tube, making them more vulnerable to HIV infection (Kjetland et al. 2008, 2006;

Mbabazi et al. 2011), and these effects have been recently reviewed in detail

elsewhere (Kjetland et al. 2012). In males, S. haematobium infection has been

associated with testicular and ejaculatory pain (Leutscher et al. 2000a; Lewis

et al. 1996). In addition, delayed or lack of treatment can result in more severe

and irreversible forms of disease including bladder cancer, kidney failure, and liver

or spleen damage which may eventually result in death (King & Dangerfield-Cha

2008; Olveda et al. 2014; Smith & Christie 1986).
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1.6 Treatment and control of schistosomiasis

Several drugs have been developed and used on a large scale for the treatment of

schistosomiasis. Treatment is judged to be successful when it cures the infection

either by completely eradicating the schistosomes from the host, or when there is

a significant reduction in egg counts (in stool or urine), or a significant decrease

in prevalence of infection and related morbidity (Forrester & Pearce 2006).

Older drugs that have been successfully used in the treatment of schistosomiasis

include metrifonate (Davis & Bailey 1969) and oxamniquine(Sleigh et al. 1981).

Praziquantel (PZQ), introduced into clinical practice in the late 1970s, is

currently the drug of choice for schistosomiasis treatment both at clinical and

community based level because of its high efficacy, low toxicity and ease of

administration (Cioli Livia et al. 1995; Danso-Appiah et al. 2008; Reich et al.

1998; WHO 2002).

Metrifonate (O,O-dimethylhydroxy-2,2,2-trichlorethyl-phosphonate) is only

effective against S. haematobium (Davis & Bailey 1969; Feldmeier et al. 1982),

and is administered in three doses of 10 mg/kg two weeks apart (Reich et al. 1998).

The known pharmacological action of metrifonate is its inhibitory effect on worm

cholinesterases (a group of enzymes associated with the parasite muscle tissue

and signal transduction), thereby inducing paralysis of the schistosome (Abdi

et al. 1995; Arnon et al. 1999; Bloom 1981). Previous studies suggest that S.

haematobium may be more susceptible to metrifonate than S. mansoni because

of much higher levels of cholinesterase activity in its tegument (Abdi et al. 1995;

Camacho et al. 1994). Metrifonate generally has a lower reported efficacy than

praziquantel due to poor compliance associated with the treatment schedule, and

thereby making it less ideal for mass treatment programmes for S. haematobium

in endemic areas (Abdi & Gustafsson 1989; Danso-Appiah et al. 2008).

Oxamniquine is a semi-synthetic tetrahydroquinoline derivative, and it acts by

inhibiting the nucleic acid metabolism of the parasites, resulting in contraction

and paralysis of the worms and eventually promoting damage of the dorsal

tegument, and death of the schistosomes (Abdi et al. 1995). Oxamniquine is only

effective against S. mansoni, and the effective dose varies between 15 mg/kg and

60 mg/kg administered over two to three days (Ferrari et al. 2003; Kilpatrick

et al. 1982; Sleigh et al. 1981). The drug is more effective against male than

female schistosomes and has no effect in other human schistosome species. Over
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the past two decades, oxamniquine has been successfully used in the national

control programmes of S. mansoni in South America, mainly in Brazil (Hotez

et al. 2006). Although highly efficacious, oxamniquine has more reported side-

effects and is more expensive compared to praziquantel (Ferrari et al. 2003).

Praziquantel is a pyrazinoisoquinoline derivative, well known for its biological

activity against schistosomes (Kim et al. 1998). The drug is administered at a

recommended single oral dosage of 40mg/kg and costs approximately US $0.08

per tablet (WHO 2002). PZQ has strong effects on the physiology and morphology

of the schistosomes, by modifying intracellular voltage-gated calcium ion (Ca2+)

levels in the adult worm. Immediate exposure of schistosomes to the PZQ drug

disrupts the homeostasis of Ca2+ thereby triggering a cascade of events that induce

a rapid and sustained contraction of the worm’s musculature (paralysis) and

damage to the tegument, which subsequently exposes the parasite antigens on

the surface of the worm to attack by the host immune system (Doenhoff et al.

2008; Greenberg 2006). The mechanism of action of PZQ, its pharmacological

properties, health benefits and side effects have been reviewed in detail else-

where (Bundy et al. 2013; Cioli Livia et al. 1995; Dayan 2003; Doenhoff et al.

2008; Greenberg 2006). Evidence from different studies has shown that treatment

also alters the host immune response (see section 1.9.6), resulting in changes

in the levels of schistosome-specific antibody responses (Jiz et al. 2009; Mutapi

et al. 2005, 2003). In addition, it has been shown that the exposure of previously

hidden antigens to the host immune system following the death of the parasites

due to the effects of praziquantel can boost antibody responses associated

with protection against re-infection, subsequently leading to the development of

acquired immunity to the parasite (Mitchell et al. 2012; Mutapi et al. 2005). PZQ

is highly efficacious, with cure rates of more than 80% reported within 6–8 weeks

following treatment (Tchuente et al. 2004). Furthermore, PZQ is effective against

all the major schistosome species and thus advantageous for the control of mixed

infections (Koukounari et al. 2010; Meurs et al. 2012). PZQ has been recently

shown to be safe for infants and preschool children (aged ≤5 years old) (Mutapi

et al. 2011; Sousa-Figueiredo et al. 2012; Stothard et al. 2011). These recent

findings have contributed towards a major policy change by the WHO in 2010,

recommending PZQ treatment for children aged 5 years and below through regular

health services and on-going schistosome control programmes (WHO 2011a).

Currently, most schistosome control programmes focus on preventive chemother-
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apy with PZQ to reduce infection and prevent the development of severe

morbidity, and thereby improving the health of the infected individuals and

communities (WHO 2002, 2010). Since PZQ chemotherapy targets mature

adult worms and the risk of re-infection is high in endemic areas, repeated

treatment of the target populations at regular intervals is necessary for effective

control (WHO 2002). Recommended additional measures for an integrated effort

aimed at achieving sustainable control of schistosomiasis in endemic regions

include improvements in clean water supply and sanitation, health education,

and snail control (WHO 2013).

To support the current control measures, scaled-up efforts have been geared

towards development of a vaccine for schistosomiasis (Capron et al. 2002).

However, there is no available licensed schistosome vaccine to date and the

most promising vaccine candidate Bilhvax, based on the 28-kDa glutathione S-

transferase from S. haematobium (Sh28GST) is in phase III clinical trials (Riveau

et al. 2012). Since praziquantel is only effective against adult worms, and although

not yet clinically proven, fears of schistosome resistance to the drug have also been

raised (noted by Doenhoff et al. (2008)). Thus, in an era of intensified control,

there is need to explore other alternative therapies. Artemisinin and its derivatives

have been found efficacious against immature worms and hence may prove to be

a potential treatment alternative targeting the larval stages of the parasite not

yet susceptible to praziquantel (Doenhoff et al. 2008; Liu et al. 2011, 2014). The

antihelminthic activity of mirazid, a derivative of myrrh has been suggested in

some previous studies (Barakat et al. 2005; Ebeid et al. 2005; Ramzy et al. 2010).

Further research studies on mirazid as a potential antischistosomal drug against

the developmental stages of the worms are still needed.

1.7 Diagnosis of schistosome infection

Accurate detection of infection and quantification of the morbidity burden is

important for the management of schistosomiasis both at a clinical and community

level. Correct diagnosis of infection will facilitate timely treatment of infected

individuals and prevent the development of severe morbidity associated with

chronic schistosomiasis (King 2007; Polman 2000; WHO 2007). In recent years,

there has been advances in the development of new methods aimed at improving

the detection of schistosome infections. The currently available techniques for
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the diagnosis and quantification of infection levels can be divided into two main

categories: direct and indirect diagnostic methods. The direct method is the

current standard diagnostic technique recommended by the WHO, and involves

the parasitological detection of parasite eggs in stool and/or urine (Katz et al.

1972; Mott et al. 1982). The parasitological diagnostic technique has high speci-

ficity and does not require costly equipment or advanced technical skills, hence

relatively easy to implement on a large scale under field conditions. However, day-

to-day variations in parasite egg excretion makes it difficult to determine infection

intensity levels with high precision using parasitology (Doenhoff et al. 2004; Engels

et al. 1996). To improve the accuracy of the parasitological technique, repeated

examinations of urine/stool samples is recommended, however collection of several

specimens is not always feasible in large-scale studies for logistic reasons and the

associated costs (Mutapi 2011; Stothard 2009). In addition, the parasitological

technique is less sensitive in detecting light infections, and does not diagnose

pre-patent and/or single-sex infections where there is no egg-production, but still

important for transmission (Bergquist et al. 2009; Doenhoff et al. 2004; Mutapi

2011; Smith & Christie 1986).

With recent advances in technology, several indirect methods aimed at

improving the diagnosis of schistosome infection under clinical or community

settings have been developed and validated in older children and adult popu-

lations. These indirect methods rely on biological or biochemical disease markers

and other clinical manifestations associated with schistosomiasis (Ambrosio &

De Waal 1990; Polman 2000; Smith & Christie 1986). Dipstick detection of

microhaematuria (Adesola et al. 2012; King & Bertsch 2013) and self-reported

questionnaires about symptoms associated with schistosomiasis, for example,

haematuria and dysuria (Clements et al. 2008; Lengeler et al. 2002) are examples

of available indirect tools that have been successfully used for large-scale screening

of urogenital schistosomiasis in the field. Serological detection of parasite-specific

antibodies has also been used as an indirect indicator of the presence of infection

in previously untreated individuals and communities (Alarcón de Noya et al.

2007; Smith et al. 2012; Sorgho et al. 2005; Wami et al. 2014; Xu et al. 2014).

The performance and applicability of antibody detection as a diagnostic tool

has been evaluated in several immuno-epidemiological studies (Dawson et al.

2013; Kanamura et al. 2002; Kinkel et al. 2012; Smith et al. 2012) and has

been reviewed in detail by Doenhoff et al. (2004). In particular, the serological
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detection of IgM antibody responses against soluble egg antigens (SEA) has been

identified as an attractive diagnostic tool due to its high sensitivity relative to

the parasitological technique, and thus is highly suitable for improved detection

of light infections (Doenhoff et al. 1992; Turner et al. 2004). Furthermore, a

positive association of SEA IgM with infection levels (intensity and prevalence)

has been demonstrated (Dawson et al. 2013; Stothard et al. 2011; Wami et al.

2014; Woolhouse et al. 2000).

Other indirect methods characterized to detect light infections include the

immunological detection of circulating adult-worm derived antigens in urine: cir-

culating anodic antigen (CAA), and circulating cathodic antigens (CCA) (Dawson

et al. 2013; Midzi et al. 2009; Stothard et al. 2006; van Lieshout et al. 2000). The

applicability of these antigen assays for large-scale screening has been hindered

by its cost and lack of sensitivity in detecting S. haematobium infections (Shane

et al. 2011; Stothard et al. 2009). DNA detection has been identified in recent

studies as a promising future tool for the diagnosis of schistosome infections

(reviewed by Cavalcanti et al. (2013)), however its applicability is still yet to

be fully investigated.

1.8 Immunity

1.8.1 Immune responses

In order to survive, the host must mount an effective immune response against

a wide variety of pathogens such as parasites, viruses, and bacteria (Murphy

2012). In addition, it is also important for the immune responses to be regulated,

failure to which may lead to autoimmunity, a condition where the immune system

starts attacking the healthy cells (Dunne & Cooke 2005; Klion & Nutman 2002;

Murphy 2012). The host immune system can be divided into two components that

complement each other to coordinate a given response against invading pathogens:

the innate, and adaptive (or acquired) immunity (Murphy 2012; Sompayrac 1999;

Warrington et al. 2011). In brief, the innate immune response is the first line

of defense to combat infection but does not result in a lasting immunological

memory and is non-specific to any individual pathogens. On the other hand,

acquired immunity takes time to develop, is highly specific against a particular

invading pathogen or its antigens and does result in immunological memory.
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Acquired immunity can be further separated into two forms: the humoral (or

antibody-mediated) and cellular (or cell-mediated) immunity (Murphy 2012).

Humoral immunity deals with infectious agents in the blood and body tissues,

i.e., it is directed against extracellular pathogens (Mak & Saunders 2006).

It involves secretion of antibodies and is mediated by B-cells. Antibodies,

also known as immunoglobulins (Ig) circulating in serum are classified into

five major categories: IgA, IgD, IgG, IgE, and IgM, with distinct biological

activities in protection against infections (Woof & Burton 2004). Antibodies

target the pathogens by binding onto their surface and thereby flagging them for

destruction through pathogen and toxin neutralization, and through promotion of

phagocytosis by other cells such as macrophages (Warrington et al. 2011). Cellular

immunity deals with body cells that have been infected, hence it is for defense

against abnormal cells and intracellular pathogens (Mak & Saunders 2006).

The cellular immune response involves the activation of phagocytes, antigen-

specific cytotoxic T-cells and the release of cytokines in response to an antigen,

and is mediated by T-cells (Murphy 2012; Warrington et al. 2011). Cytokines

secreted by many cells types interact with each other and with other cells of

the immune system in order to regulate the host response to infection. Some

cytokines inhibit the growth of other cells, hence controlling the expansion of

infected cells. Other cytokines have a direct effect on B-cells, controlling their

maturation, proliferation, antibody secretion and isotype switching (Murphy

2012). Plasma levels of systemic cytokines which have been previously reviewed

and shown to mediate inflammatory and anti-inflammatory responses associated

with schistosome infections include tumour necrosis factor (TNF)-α, transforming

growth factor (TGF)-β, interferon (IFN)-γ, and interleukins (IL)-4, IL-5, IL10,

IL-13 (Caldas et al. 2008; Coutinho et al. 2006; Imai et al. 2011; Macdonald et al.

2002; Milner et al. 2010; Mutapi et al. 2007).

1.8.2 Immunological memory and vaccination

Immunological memory is an important consequence of the acquired immune

response, resulting in protective immunity. Having been exposed to an infectious

agent, the host will be able to invoke a quicker and stronger immune response

on subsequent exposure to the same infectious agent (Crotty & Ahmed 2004).

The secondary immune response is characterised by a more vigorous and earlier

abundant production of antibodies than in the primary response. This rapid

16



CHAPTER 1. Introduction 1.9 Immunobiology of schistosomiasis

immune response can either prevent infection completely or reduce the severity

of the associated morbidity (Crotty & Ahmed 2004; Zanetti & Croft 2001).

Several conditions to ensure maintenance of immunological memory have been

suggested in literature and still remain an interesting area of research (Bourke

et al. 2011; Crotty & Ahmed 2004; Zanetti & Croft 2001; Zielinski et al. 2011).

Immunological memory can be sustained through periodic re-exposure to the

antigen, as this helps to maintain a high level of antibodies and serves as a natural

booster for the immune system. In the absence of re-exposure to the antigen, long-

lived plasma cells can also maintain immunological memory through continuous

secretion of antibodies (Crotty & Ahmed 2004). Immunological memory can be

induced by vaccination. The components of a vaccine contain antigens which may

be an inactivated, attenuated form of the pathogen, or purified components of

the pathogen that stimulates an immune response. This will prepare the host

immune system to induce a stronger and more rapid response on encounter with

the antigen later in life (Zielinski et al. 2011).

1.9 Immunobiology of schistosomiasis

1.9.1 Schistosome antigens

As highlighted in the preceding sections, most of the pathology associated with

schistosome infections is a consequence of the host immune response to antigens of

the parasite eggs (Burke et al. 2009; Wynn et al. 2004). The schistosome antigens

circulating inside the host can be classified according to the life cycle stage of

the parasite: cercarial, schistosomula, adult worm (tegument or gut-associated),

and egg antigens (Curwen et al. 2004; Lu et al. 2012). The life cycle stage-specific

immune responses are commonly assessed using crude homogenate preparations,

namely: cercarial antigen preparation (CAP), soluble adult worm preparation

(SWAP) and schistosome soluble egg antigen (SEA). These preparations consist

of the crude parasite molecules representing the wide range of parasite antigen

molecules present during natural infection (Bourke et al. 2011; Curwen et al.

2004). Detection of circulating parasite-specific antibodies in serum can be a useful

epidemiological tool for the diagnosis of pre-patent, single-sex, or light infections,

and quantifying levels of exposure to the parasite (Smith et al. 2012; Wami et al.

2014; Woolhouse et al. 2000).
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The surface of the cercariae is covered by a layer of carbohydrate-rich glyco-

calyx (Nanduri et al. 1991). Carbohydrate antigens released by the penetrating

cercariae, as they lose their outer layer to transform to schistosomula and migrate

to the lungs invokes a strong host immune response to facilitate the clearance of

the parasite at an early stage (Harrop et al. 2000; Xu et al. 1994). The tegument

is the outer layer covering the schistosomes which forms an interface between

the parasite and the host (Abath & Werkhauser 1996). Adult worm schistosome

antigens can be associated with the tegument or gut of the parasite, both are

involved in the feeding mechanisms of the parasite from the bloodstream of

the host (Skelly et al. 2014). The tegumental antigens consist of cytoplasmic

and membrane bound molecules of the parasite. Experimental evidence suggests

that not all live adult worm tegument-associated antigens are exposed to the

immune system during natural infection (Curwen et al. 2004; Harrop et al. 2000;

Silva et al. 2004). This reduced surface antigenicity enables the adult worms to

escape immune recognition (Gryseels et al. 2006; Pearce & MacDonald 2002),

and hence survive longer inside the host (see section 1.9.4). Since schistosomes

have a blind digestive system (i.e. have no anus), the waste products are

regurgitated into the blood stream of the host (Skelly et al. 2014). Thus, the

gut-associated antigens are the major circulating group of adult worm antigens

and can be detected in serum and urine of infected individuals (van Lieshout

et al. 2000). The most studied gut-associated circulating antigens include CAA

and CCA (introduced in section 1.7), and these have been investigated recently

as additional tools for serological diagnosis of the major human schistosome

infections in endemically exposed populations (Dawson et al. 2013; Lu et al.

2012; Midzi et al. 2009). Schistosome parasite eggs are highly immunogenic and

act as the main source of inflammatory responses leading to the development of

granulomatous lesions (Pearce 2005a). During chronic infection which coincides

with egg production, cytoplasmic proteins are secreted from various cells of the

parasite eggs, against which a strong immune response is initiated. The nature

and intensity of the host immune response against egg antigens (detailed in

section 1.9.2) play an important role in the severity of disease (Pearce 2005b).

1.9.2 Immune responses to schistosomes

The circulating antigens during the acute and chronic phases of schistosome

infections induce strong host immune responses that often cause a wide variety of

18



CHAPTER 1. Introduction 1.9 Immunobiology of schistosomiasis

pathological outcomes. Thus, it is important to understand the factors involved in

the immune response to schistosomes, as these can precede schistosome-immune

mediated pathology, and hence can be informative indicators of risk of current

and future disease. The mechanisms of the immune response to schistosomiasis is

a complex balance between T helper 1 (Th1) and Th2 cells, and it also involves

antibody-mediated immune responses (Caldas et al. 2008; King et al. 2001; Pearce

& MacDonald 2002; Zhang & Mutapi 2006). In addition, the regulatory immune

response (led by T regulatory cells) has been shown to play an important role in

modulating the detrimental effects of immune responses during infection (Milner

et al. 2010; Nausch et al. 2011; Watanabe et al. 2007).

During the early stages of infection, the host immune response stimulated by

the penetrating cercariae and the migrating schistosomula antigens is dominated

by the Th1 type of immune response. The antigen presentation from these

stages stimulates secretion of pro-inflammatory cytokines such as TNF-α, IFN-

γ, IL-1, IL-2, and IL-6 by activated CD4+ T-lymphocytes, associated with

early granuloma formation (Olveda et al. 2014; Pearce & MacDonald 2002).

The hypersensitivity reaction to cercarial antigens manifests as a skin rash

(swimmers itch or cercarial dermatitis), that sometimes persists for days as

pruritic lesions (Gryseels et al. 2006). Katayama fever is a clinical manifestation

of acute schistosomiasis that occurs as an immune reaction to the migrating

schistosomulae (Colley et al. 2014; Gryseels et al. 2006). The symptoms associated

with the acute stage of infection are commonly reported among migrants and

tourists who get exposed to the parasite for the first time whilst visiting endemic

regions, since they have not yet developed immunologic tolerance (Lambertucci

2010). As infection persists and egg laying by mated adult female worms

commences, the dominant immune response gradually shifts from a Th1 to a

Th2 type of response against the parasite egg antigens. The Th2 cells elevate

the secretion of cytokines such as IL-4, IL-5, IL-10 and IL-13, accompanied by

high production of eosinophils and contributing to granuloma formation and

maturation (Magalhães et al. 2004; Olveda et al. 2014). In recent studies, IL-

10 has been characterized as an immuno-regulatory cytokine during schistosome

infections which modulates Th1 and Th2 effector cytokine expression (Caldas

et al. 2008; Corrêa-Oliveira et al. 1998), and thus provides a balance in the immune

responses (Burke et al. 2009; Maizels & Yazdanbakhsh 2003).

The antibody-mediated response plays a crucial role in effector or regulatory
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immune response mechanisms against parasite-specific antigens and occurs during

both the acute and chronic stages of schistosomiasis (Caldas et al. 2008; Eberl

et al. 2001). IgM antibodies appear early in the course of an infection, and often

re-appear on further exposure and have been shown to increase with schistosome

infection levels (Imai et al. 2011; Kwame Nyame et al. 1997; Mutapi et al.

1997; Ndhlovu et al. 1996). In addition, they are often found to bind to specific

antigens (Warrington et al. 2011). These properties make IgM a useful additional

sensitive diagnostic tool for schistosome infections in untreated populations,

as demonstrated in S. haematobium field studies (Stothard et al. 2011; Wami

et al. 2014; Woolhouse et al. 2000). IgE has been associated with host immune

protection against schistosome infection (Jiz et al. 2009; Zhang & Mutapi 2006).

Circulating levels of IgA and IgG1 have also been implicated in the development

of protective immunity against re-infection in older individuals, whilst IgG4 has

been associated with susceptibility to infection. In addition, ratios of IgE:IgG4

and IgG1:IgA have been shown to increase with age (described in section 1.9.5),

also associated with the development of resistance to infection (Butterworth 1998;

Grogan et al. 1997; Mutapi et al. 2011, 1997). The switch between different

antibody isotypes has been reported in schistosomiasis. The progression of

infection from the acute to the chronic phase is characterized by a switch from IgM

to IgE antibody-mediated responses. In addition, changes in antibody production

after antihelminthic treatment associated with resistance to infection have been

reported, characterized by a shift from IgA to IgG1 antibody production (Mutapi

et al. 1998, 1999; Oliveira et al. 2005).

1.9.3 Protective immunity

Epidemiological studies have shown that in high transmission areas the infection

intensity follows a characteristic convex curve with age, rising rapidly in early

childhood as children accumulate worms, peaking between the ages of 9–15

years old, and subsequently declining in adulthood (Chandiwana & Woolhouse

1991; Mitchell et al. 2011; Woolhouse 1994). In addition, lower levels of re-

infection following chemotherapy among adults compared to children have been

reported (Pinot de Moira et al. 2010; Roberts et al. 1993). These age-related

changes in infection levels (see Figure 1.3) have been associated with the

development of acquired protective immunity in older individuals, an evidence

20



CHAPTER 1. Introduction 1.9 Immunobiology of schistosomiasis

supported by the observed peak shifts between areas with different transmission

levels (Appleby et al. 2012; Mitchell et al. 2011; Mutapi et al. 2007).

The association between levels of IgA, IgE and IgG subclasses responses

against different life-stage antigens and resistance to re-infection has been studied

in S. japonicum, S.mansoni and S. haematobium (Jiz et al. 2009; Langley et al.

1994; Mutapi et al. 2008; Naus et al. 1998; Ndhlovu et al. 1996). Immuno-

epidemiological studies in human schistosomiasis (more in section 1.9.5) have

demonstrated characteristic age-antibody profiles similar to the peak shifts

observed with infection intensity (Figure 1.4). These age-antibody profiles

further support the evidence of an involvement of protective immunity against

infection/re-infection (Mitchell et al. 2012; Mutapi et al. 2007).

Since the focus of this thesis is on paediatric schistosomiasis, the study

population was restricted to children aged between 1–10 years old, who are yet to

develop acquired protective immunity. Thus, antibody responses associated with

resistance to infection are not investigated in this thesis. A detailed discussion on

the subject can be found in Mitchell (2010).
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Figure 1.3: Age-infection intensity profiles indicating the peak shift.
The plot shows the age-intensity of S. haematobium infection between populations
of high and low transmission areas. The peak infection intensity in the area of
high transmission (dashed line) occurred earlier in age compared to that of low
transmission area (solid line). Adapted from Appleby et al. (2012).
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Figure 1.4: Age-related changes in the antibody profiles associated with
resistance to infection. (A) IgA and (B) IgG1 against S. haematobium soluble
egg antigen (SEA). Diamonds indicate areas of low infection and squares show
high infection areas. Reproduced from Mutapi et al. (1997).

1.9.4 Mechanisms of immune evasion

Schistosomes have evolved mechanisms for evading the immunological defences

of the host, thereby enabling them to survive for many years inside the body.

The mechanisms involved in the immune evasion include mimicking of the host

antigen presentation, modulation of the host immune response, and inhibition of

the immune response by the parasite. The quick transformation by the cercariae to

schitosomula enables them to easily migrate through the veins, avoiding the local

inflammatory reactions as a result of innate immune responses against the proteins

of the shed-off cercarial layer (Forrester & Pearce 2006; Pearce & MacDonald

2002). Research indicates that the schistosomula are able to manipulate the

initiation of the immune responses, acquiring additional ability to resist immune

attack and evade recognition by antigen-specific components of the immune

response as they develop and migrate to the lungs (Angeli et al. 2001; Hervé

et al. 2003). Despite being in constant contact with the immune system of the

infected host, adult worms are able to survive for extended periods in the blood

veins of the host. The large size of the mature adult worms makes it difficult for the

host immune system to eliminate them by phagocytosis. The tegument is made

of a lipid bilayer that enables the schistosomes to resist corrosion due to immune

responses (Loker & Mkoji 2005; Skelly 2005). In addition, adult worms seem to

incorporate host proteins into their outer surface structure to disguise themselves

as host and reduce their antigenicity. This reduced surface antigenicity gives the

schistosomes the unusual ability to escape immune recognition (Pearce 2005a;
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Wakelin 1996). The parasite also makes use of some of the cytokines released

during the infection for its survival. Several cytokines have been implicated as

important for the growth, maturation and survival of the schistosomes. The

cytokines IL-5, IL-6 and IL-7 have been associated with schistosome development

and migration (Forrester & Pearce 2006). IL-10, an important cytokine in the

regulation of pro-inflammatory responses is suggested to be important for evasion

of the immune response by the schistosomes and TNF-α is important for egg

production (Pearce & MacDonald 2002). The ability of the parasite to withstand

attack by the host immune system further complicates the task of controlling and

eradicating schistosomiasis in affected regions, highlighting the urgent need for

an effective vaccine.

1.9.5 Immunoepidemiology of schistosomiasis

In light of the host immune defenses discussed above, not every exposure to

the parasite will lead to the successful development of a mature infection.

Susceptibility of the host to schistosome infections may depend on various factors

as suggested by several immunological studies. Field studies on the epidemiology

of schistosomiasis have shown that in endemic areas some individuals are pre-

disposed to heavier infections than others (Kabatereine et al. 2004), a factor

attributed to genetic variations in the population (Isnard et al. 2010), also

reviewed by (Quinnell 2003). It has also been suggested in the literature that

biological factors such as hormonal changes (e.g. due to human development,

pregnancy or lactation) which influence the responsiveness of the immune

system may also affect susceptibility to schistosome infections (Fulford et al.

1998; Wakelin 1996). Other factors identified as potential confounders to the

immunoepidemiology of schistosomiasis include host age, sex, nutritional status,

and history of previous exposure to infection (Milner et al. 2010; Mutapi et al.

2011; Sacko et al. 2011; Woolhouse et al. 2000). The level of exposure to parasite

antigens in a population can also vary with patterns of exposure to infective

waters, which may also be dependent on sex and age (Chandiwana & Woolhouse

1991; Pinot de Moira et al. 2010). The study of epidemiological patterns is

important in understanding the pathology that occurs as a result of immune-

mediated responses to schistosome infections, as well as help identify correlates

of current and future morbidity that can be targeted for effective control by

facilitating timely treatment of affected individuals.
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The nutritional status of an individual contributes towards development of

a functioning immune system. Poor nutrition can result in immune suppression,

hence increased susceptibility to infections and severity of disease (Chandra 1997).

In paediatric schistosomiasis, malnutrition has been considered as a factor able

to modify immunity, increasing the severity of schistosome-related morbidity and

resulting in reduced physical growth and poor cognitive development (King et al.

2005; Sacko et al. 2011), reviewed in detail by McGarvey (2000).

Age-related changes in antibody responses have been reported in several

studies, indicative of differences in levels of exposure, susceptibility, or resistance

to infection at population level (Hagan 1992; Mutapi et al. 1997; Woolhouse

et al. 2000). IgM antibodies directed against the schistosome egg antigens have

been shown to increase with age, reflecting differences in cumulative exposure

to schistosome infection (Milner et al. 2010; Mutapi et al. 1997; Ndhlovu et al.

1996). In addition, IgM is a potential useful marker of current infection as it

has been shown to increase rapidly with infection prevalence (Mutapi et al.

1997; Woolhouse et al. 2000). Its utility as a serological diagnostic tool in young

children is evaluated in the current thesis. An increase in the levels of IgM

following treatment with praziquantel has been reported, occurring as a result

of an increased circulation of schistosome antigens resulting from the death of

the adult worms (Mutapi et al. 2003). Patterns described in field studies have

shown a convex shaped IgG1 and IgG4 response with age similar to the age-

infection intensity profiles and these observations have been associated with

susceptibility to infection (Naus et al. 1998; van Dam et al. 1996). In addition,

levels of IgG2 and IgG4 subclasses have been reported to follow a similar pattern

with IgM, suggesting the potential use of IgG subclasses as markers of current

or past exposure to the parasite (Butterworth 1998; Zhang & Mutapi 2006).

The increase in IgG3 levels with age has been associated with the development

of protective immunity (Mutapi et al. 2006). Levels of IgE against the adult

worm have been shown to increase progressively with age, but are negatively

associated with reinfection intensity (Hagan 1992; Mutapi et al. 1997), indicative

of the involvement of IgE in resistance to infection/re-infection (Jiz et al. 2009).

Furthermore, IgA antibody responses to the protective recombinant S. mansoni

antigen has been shown to increase with age, suggesting that IgA antibodies might

be involved in the protective immune response against schistosomiasis in addition

to IgE (Grzych et al. 1993).
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Cytokines play an important role in regulating the host immune response to

infection. However, chronic exposure to the cell-mediated immune response can

be damaging to the host, eventually resulting in inflammation and fibrosis (Pearce

& MacDonald 2002). The study of cytokine-age profiles can be useful in under-

standing the rate of development of parasite-specific immune responses (Mutapi

et al. 1997). In addition, levels of systemic cytokines which mediate pro-

inflammatory and anti-inflammatory responses can be useful risk indicators of

current and future schistosome-related morbidity in infected individuals (Caldas

et al. 2008; De Souza, Robson Da Paixão et al. 2012). The observed age-related

patterns of cytokines in the field are not well understood, with different studies

reporting varying patterns. In one study conducted in a S. haematobium endemic

population, plasma levels of IL-5 and IL-10 were shown to vary with host age

irrespective of the infection status (Milner et al. 2010). In two different studies

in S. mansoni and S. haematobium endemic areas in Uganda and Zimbabwe

respectively, contrasting age-cytokine profiles were reported (Joseph et al. 2004a;

Mutapi et al. 2007). Distinct age-related cytokine patterns were observed among

infected individuals in the Zimbabwean study (Mutapi et al. 2007), yet the study

in Uganda did not find any coherent patterns between cytokine production and

age (Joseph et al. 2004a). These differing patterns may be associated with species-

specific differences, variability in immune responses between the populations in

addition to other factors such as host genetics (Mutapi 2001).

1.9.6 Effects of treatment on immune responses

The damaging effects of praziquantel on the adult schistosome tegument expose

the worm antigens to the host immune system, resulting in susceptibility of the

parasite to cellular and antibody-mediated immune attack, eventually leading

to the death of the parasite (Doenhoff et al. 2008; Harnett 1988). Thus, the

schistosomes are killed as a result of the synergistic actions of chemotherapy and

host immune response (Doenhoff 1989; Harnett & Kusel 1986; Redman et al.

1996). Several studies have shown that treatment alters the immune response

to parasites, evidenced by changes in the levels and types of antibody responses

and cytokines following chemotherapy (Corrêa-Oliveira et al. 2000; Mutapi et al.

2005; Pinot de Moira et al. 2010). Some of these treatment-related changes have

been shown to vary with age, suggestive of the development of resistance to re-

infection following chemotherapy (Mutapi et al. 2003). In most studies, levels of
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IgM have been shown to increase after chemotherapy, and this has been attributed

to enhanced adult worm and egg antigen recognition by the host immune system

resulting from the effects of PZQ (Mutapi et al. 2003; Naus et al. 1998; Rujeni

et al. 2013). Studies in S. mansoni and S. haematobium have also reported an

increase in IgE levels following treatment, induced by the killing of the adult

worms (Caldas et al. 2000; Mutapi et al. 1998; Rujeni et al. 2013; Walter et al.

2010). In a study by Mutapi et al. (1998), a switch in predominantly schistosome-

specific IgA antibody responses 12 weeks post-treatment to a predominantly IgG1

response was observed. In addition, the findings showed that the isotype switch

occured slowly with age, suggesting a beneficial “immunizing effect” of PZQ

treatment (Mutapi et al. 1998). Treatment-induced changes in cytokine levels

have been observed in endemically exposed populations. An increase in levels

of cytokines IL-4, IL-5, and IL-13 have been reported, occurring immediately

or within a few weeks after antihelminthic treatment (Joseph et al. 2004b;

Mduluza et al. 2009). In a different study, IL-10 levels (a regulatory cytokine)

were shown to decrease one year after treatment in individuals endemically

exposed to S. mansoni infection (Martins-Leite et al. 2008). Although the effect

of chemotherapy on the immune responses to schistosomes has been widely

investigated in older individuals, there are quite few immunological studies

focusing on infants and preschool-aged children.

1.10 Diagnosis of schistosome-related morbidity

The damage due to chronic schistosomiasis manifests itself on several different

organs of the human host including the bladder, ureters, reproductive tract,

intestinal tract, liver, lungs, and kidney disorders, among many other clinical

complications. The symptoms of schistosomiasis varies with species and stage of

infection (section 1.5). Of all forms of human schistosomiasis, infection with S.

haematobium is associated with the highest prevalence of clinical morbidity. One

of the major objectives of control programmes is the reduction or elimination of

morbidity due to schistosome infection (WHO 2010). To achieve this goal, tools are

needed to accurately assess the burden of morbidity and monitor the effectiveness

of interventions (Vennervald & Dunne 2006). Several different methods have been

used as research tools or in control programmes to quantify schistosome-related

morbidity and these include:
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Urine examinations: Blood in urine (haematuria) is the classical sign of

urogenital schistosomiasis, occurring as a result of S. haematobium eggs passing

out of the body inflicting physical damage to the tissues of the urogenital tract

and bladder walls (Gryseels et al. 2006). Haematuria in infected individuals can

be either gross (visible or macrohaematuria) or microscopic (microhaematuria).

Evaluation of the presence of macrohaematuria can be easily performed by

visual inspection of urine specimens of infected individuals. Microhaematuria

can be detected either by microscopy or rapidly using urinalysis dipstick reagent

strips (Milford 2008). The results of urinalysis can be graded semi-quantitatively

to indicate total absence (negative) or severity levels (e.g. +, ++, +++) of the

detected microhaematuria (Sacko et al. 2011). In recent years, the use of dipsticks

has gained wide application in large-scale field studies as they are non-evasive

and do not require advanced technical skills to use (King & Bertsch 2013; Sousa-

Figueiredo et al. 2009; Stothard 2009). In addition, proteinuria and albuminuria,

also detectable semi-quantitatively by urinalysis using reagent strips have been

utilized as biological markers of urinary tract pathology and as early predictors of

progressive kidney disease associated with schistosomiasis (Eknoyan et al. 2003;

Houmsou et al. 2013; Sousa-Figueiredo et al. 2009; Stothard 2009).

Questionnaires: Symptoms commonly associated with schistosome infection

such as macrohaematuria, dysuria, suprapubic and/or abdominal pains usually

can be easily perceived by infected individuals (Chen & Mott 1989). Thus,

self-reported questionnaires can be used to assess current presence or history

of schistosome-related morbidity. The use of standardized questionnaire is rec-

ommended by the WHO for rapid screening of S. haematobium infection and

morbidity, and these have been extensively used in endemic regions (van der Werf

et al. 2002; WHO 2002).

Physical examination: Non-intrusive clinical examination conducted by

qualified medical personnel, involving abdominal palpation can be used to

determine current health status and screening for early schistosome-related

abnormalities (Gray et al. 2011; Müller et al. 2011). The frequency of detected

clinical symptoms can be used to estimate the prevalence of schistosome-related

morbidity in the population (Sacko et al. 2011). However, physical examination

has been shown to be less sensitive (Doehring 2010), requires skilled personnel,

and can be subjective and difficult to perform in non-cooperative subjects such

as very young children (Doehring 2010; Pinto-Silva et al. 2010).
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Ultrasonography: The use of ultrasonography has been shown to be

effective in detecting organ-specific morbidity due to schistosomiasis (Doehring-

Schwerdtfeger et al. 1992; King et al. 2003; Richter et al. 2000). Examples of

schistosome-related morbidity detected by ultrasonography include schistosomal

bladder and kidney lesions, thickened and irregular bladder walls, hydronephrosis

of the kidney, and liver or spleen abnormalities (Chen & Mott 1989; Leutscher

et al. 2000b; Sacko et al. 2011). Although a valuable tool for clinical diagnosis,

the need for specialized equipment and trained personnel reduces the utility of

ultrasonography for large population studies in the field (Richter et al. 2000).

Serological and immunological biomarkers: Several different molecular

biomarkers and immune correlates can be measured in the blood and used as

indirect indicators of infection or underlying morbidity. Examples of biomarkers

whose concentration levels can be quantified in serum are introduced in this

section. Their relevance as potential indicators of schistosome-related morbidity

will be further clarified in respective subsequent chapters. Serum biomarkers

such as YKL-40 or chitinase 3-like-1 protein (CHI3L1), C-reactive protein

(CRP), ferritin, resistin, secretory leukocyte protease inhibitor (SLPI) have

been evaluated and associated with disease conditions including liver cirrhosis,

asthma, viral hepatitis, HIV, pulmonary tuberculosis and other inflammatory

conditions (George et al. 2014; Jang et al. 2015; Lin et al. 2004; Olveda et al.

2014; Ribeiro 1997). CHI3L1 is a glycoprotein that is up-regulated in a variety of

human conditions including cancers. It is expressed by many different cells and has

been found to play a role in Th2 pro-inflammatory responses (Kzhyshkowska et al.

2007; Lee et al. 2011). Elevated serum levels of CHI3L1 are associated with chronic

inflammation and tissue remodelling (Bonneh-Barkay et al. 2010; Mizoguchi

2006). In addition, reports have indicated that increased levels of CHI3L1 correlate

with the severity of disease (Coffman 2008). In intestinal schistosomiasis, CHI3L1

has been identified as a marker of liver fibrosis (Olveda et al. 2014; Zheng et al.

2005), and more recently it has been shown to be associated with presence of

haematuria in individuals infected with S. haematobium (Appleby et al. 2012).

CRP is a known acute phase protein produced by the liver in response to

inflammation (Macy et al. 1997), and thus in schistosomiasis it can be utilized

as non-specific early predictor of morbidity due to chronic infection (Coutinho

et al. 2006; Macy et al. 1997; Ribeiro 1997). High concentration of serum ferritin

results as a leakage product of damaged cells (Kell & Pretorius 2014), and has
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been associated with iron deficiency anaemia associated with different disease

conditions (Beasley et al. 1999; Bhargava et al. 2003; Hall et al. 2008; Suominen

et al. 1998). Ferritin has been identified in other studies as a potential biomarker

of inflammation in helminth infections in humans (Lee et al. 2002; Mcsharry

et al. 1999). Other serological markers of inflammation that have been previously

shown to be important in the study of a variety of infections, reflecting disease

activity and/or severity include resistin (Nair et al. 2006; Silswal et al. 2005) and

SLPI (Gipson et al. 1999; Jin et al. 1997; Lin et al. 2004). However, their validity

as potential markers of schistosome-related morbidity is still yet to be elucidated.

Identification of serological correlates of current and future schistosome-related

morbidity may prove to be important tools for the assessment of treatment

interventions and hence aid in the design of improved future control programmes.

However, currently, research on the performance of such serological biomarkers in

the evaluation of morbidity due to schistosomiasis in children is still limited.

1.11 Quantifying immune response markers

Circulating levels of antibodies, cytokines and inflammatory protein biomarkers

can be quantified using laboratory based techniques such as the enzyme-linked

immunosorbent assay (ELISA). The basics of an ELISA makes use of the

immunological concept of antibodies produced in response to pathogens binding

to their antigen targets with great specificity, which allows the detection of

analytes produced by the immune system such as proteins, peptides or antibodies

in serum (Crowther 2001; Gan & Patel 2013). There are three main methods

of ELISAs, namely; the indirect, direct, and sandwich ELISA, as illustrated in

Figure 1.5. These three groups of assay can be used to form the basis of an

additional assay method, the competition ELISAs.

The typical steps involved in an ELISA protocol to detect a pathogen-specific

antigen are shown in Figure 1.6. These can be modified according to the type of the

ELISA method performed (Gan & Patel 2013). As shown in Figure 1.6, ELISAs

are performed in micro-titer plates (e.g. 96-well polystyrene plates), which can

bind antibodies and proteins. This micro-plate surface binds molecules through

hydrogen bond formation which immobilizes the reactants of the ELISA, making

it possible to washout the unbound material during the assay. The whole surface

of the plates must be blocked with non-specific protein solution (e.g. bovine serum
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Figure 1.5: Schematic representation of the different types of ELISAs.
Adapted from online resource: http://www.piercenet.com/method/overview-elisa
[Accessed: 10/06/2014], with kind permission of the copyrights holder.

albumin) to ensure the specific binding of the components added in the subsequent

steps. The enzyme attached to the secondary antibody has a negligible effect on

the binding properties of the antibody and following the addition of a substrate

for this enzyme there is a change in colour upon reaction with the enzyme.

A spectrophotometer is used to give quantitative values for colour strength,

read in optical densities at specific wavelengths for the distinctive colours obtained

with particular enzyme systems. The enzyme acts as an amplifier, even if only few

enzyme-linked antibodies remain bound, the enzyme molecules will produce many

signal molecules (Crowther 2001; Gan & Patel 2013; Walker 1995). The enzyme

can go on producing colour indefinitely, hence readings should be taken within

a limited time. However, an additional step is performed by adding reagents to

stop the reaction of the enzyme with the substrate.
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96-well microtiter plate 

1. Antigens coated onto 
the ELISA plate 

2. Serum/Sample containing 
primary antibodies is added 

3. Non-antigen binding 
antibodies are washed 

off the plate 

4. Secondary antibody-
conjugated with an enzyme is 

added 

E 

5. Excess secondary 
antibody is washed off the 

plate. 

6. Substrate for the enzyme 
(ABTS®) is added 

7. Enzyme reacts with the substrate, 
producing color. Intensity of the color 
correlates with the level of antigen. 
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ABTS Peroxidase 
solution 
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Primary antibody 

Figure 1.6: The basic steps for performing an enzyme-linked
immunosorbent assay (ELISA) procedure. Reproduced from (Gan & Patel
2013) with permission from the licensed content publisher.

1.12 Outline of the thesis

Preschool-aged children have been neglected in terms of research and control of

schistosomiasis. In light of the recent WHO recommendation to include these

children in control programmes (WHO 2011a), it is necessary that revisions are

made to the current control strategies. This thesis will address the present gap in

the knowledge about factors associated with infection and morbidity in preschool-

aged children to better inform the design and implementation of improved

programmes aimed at controlling morbidity associated with schistosomiasis in

this age group. An overview of each of the chapters within this thesis now follows.

In Chapter 2, the aims and design of the study are outlined. The methods

applied within the thesis chapters are also described. This chapter will also

provide a broad view of the choice of several statistical methodologies used in

this thesis. Basic notations, general definitions and fundamental concepts to be

used consistently throughout the thesis are also outlined in this chapter.
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The WHO guidelines for schistosomiasis control stipulate that infection preva-

lence must be determined prior to the implementation of control programmes.

Furthermore, the strategies adopted for intervention will depend on the pre-

determined infection levels. In Chapter 3, I compare the performance of the

serological and dipstick microhaematuria infection diagnostic techniques to the

standard parasitology (egg counts) method for detecting S. haematobium infection

in preschool-aged children. The implications of the infection levels determined

using the different diagnostic methods for control programmes in this age group

are also investigated in this chapter.

In Chapter 4, I compare the utility of available point-of-care (POC)

morbidity diagnostic tools in preschool vs. primary school-aged children (6–10

years old) and determine markers which can be used in the field to identify and

quantify S. haematobium-related morbidity. This is the first study to validate

several indicators of schistosome-related morbidity in preschool-aged children in

a single population, with findings of clinical and public health importance.

Comparative assessment of health benefits of single vs. repeated PZQ treat-

ment on schistosome-related morbidity in preschool and primary school-aged is the

subject of Chapter 5. To my knowledge, this is one of the few longitudinal studies

investigating the effects of antihelminthic treatment over a period of two years

(biennial vs. annual treatment) on schistosome-related morbidity in preschool-

aged children compared to children of primary school age. As such, it provides an

initial operational recommendation for future studies on the subject.

Chapter 6 aims to validate the potential of several serological biomarkers of

inflammation as indicators of current and future schistosome-related morbidity

in children aged 1–10 years naturally exposed to S. haematobium infection.

In addition, the effect of PZQ treatment on the circulating levels of validated

correlates of schistosome-related morbidity one year following chemotherapy is

investigated in this chapter.

Chapter 7 provides a general discussion of my findings, how these relate

to the existing literature, and recommendations for future control programmes

targeting children aged 5 years and below. Proposals for future research in the

field are also given.

Details that are excluded from the main text and publications are provided in

the Appendix sections of this thesis. Publications related to the work presented

in this thesis are also included at the end of this thesis.
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Chapter 2

Study Aims, Design and Methods

2.1 Introduction

Schistosomiasis can be a life-long chronic disease causing a wide range of morbidity

if left untreated, impacting on the general health and well-being of infected

individuals (Bergquist 1992; Caldas et al. 2008; King & Dangerfield-Cha 2008;

Müller et al. 2011). Chronic infection in children can result in stunted growth,

diminished physical fitness, and impaired memory and cognition (Colley et al.

2014; Gryseels et al. 2006). In recent years, there has been a growing number

of studies reporting high schistosome infection prevalence in children aged 5

years and below (Garba et al. 2010; Mutapi et al. 2011; Sousa-Figueiredo et al.

2008; Stothard et al. 2011). However, the burden of disease still remains poorly

understood, and the performance of the currently available tools for detecting

infection and morbidity have not yet been systematically evaluated in this age

group.

The study design outlined here uses quantitative analysis of several factors

measured in the field and in the laboratory associated with S. haematobium

exposure, infection and morbidity in children aged 1–5 years, previously neglected

in terms of research and schistosome control. The findings are compared with those

observed in children aged between 6–10 years old who are the current targets of

the schistosome control programmes. In this chapter, I describe the aims, study

design, and statistical methods applied to answer specific research questions. The

participants selection criteria and epidemiological features of the study cohorts

are also outlined. The overall objective of this project is to determine factors

associated with schistosome infection and related morbidity in children aged 1–
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5 years, and evaluate new ways of reducing the current and future burden of

urogenital schistosomiasis in preschool children using the antihelminthic drug

praziquantel.

2.2 Study aims

The specific aims of my research project were as follows:

1. Compare the levels of S. haematobium infection prevalence determined using

parasitological egg enumeration in urine to infection detected by serological

testing for parasite-specific IgM antibody responses against schistosome egg

antigens in children from an endemic area. Infection levels in 1–5 years vs.

6–10 years old children and their implications for control programmes were

investigated (Chapter 3).

2. Compare the performance of available point-of-care (POC) morbidity

diagnostic tools in children aged 1–5 years vs. 6–10 years old children, and

determine markers which can be used in the field to identify and quantify

schistosome-related morbidity (Chapter 4).

3. Relate serological inflammatory biomarkers to schistosome infection in

children aged 1–10 years. The relationship of these serological markers with

POC schistosome-related morbidity markers was also investigated (Chapter

5).

4. Determine if PZQ treatment improves the current health of children aged

1–5 years old by assessing schistosome-related morbidity detected by the

evaluated POC diagnostic tools and changes in serological markers of

morbidity. Changes in these indicators were compared with those observed

in children aged 6–10 years old to determine if treatment affects the two age

groups differently (Chapter 5 and 6).

5. Compare the effects of single vs. double PZQ treatment on the levels of

validated POC markers of schistosome-related morbidity in children aged

1–5 years. The effects of the treatment regimens on these indicators were

compared between the 1–5 years and 6–10 years old children to determine

if the effects of repeated PZQ treatment differed by age group (Chapter 5).
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2.3 Field study

2.3.1 Ethical approval and consent

The study received ethical and institutional approval from the Medical Research

Council of Zimbabwe and the University of Zimbabwe (UZ), respectively. Permis-

sion to conduct the work in this province was obtained from the Provincial Medical

Director through the District Educational Officer and Heads of schools in the

study area. Project aims and procedures were fully explained to the community,

primary-school aged children, teachers and parents/guardians in local language,

Shona. Written informed consent was obtained from parents/guardians prior to

enrolment of children into the study. The children were recruited into the study on

voluntary basis and were free to withdraw at any time with no further obligation.

2.3.2 Study area

The study was undertaken in the Murewa district, in the north-east of Zimbabwe

(31°90′E; 17°63′S) where S. haematobium is endemic. The study area lacks

sufficient safe water and sanitation facilities (Mutapi et al. 2011; Nausch et al.

2012). Older children get exposed to infective water actively whilst playing or

swimming, washing, and performing domestic chores (Imai et al. 2011; Mutapi

et al. 2011). The very young children get exposed whilst accompanying adults to

water sources through playing or being bathed in infected water, as confirmed

by questionnaire responses of their parents/guardians (Mutapi et al. 2011).

The area has low transmission of S. mansoni and soil-transmitted helminths

(hookworms, Ascaris lumbicoides, Trichuris trichuria) as previously reported in

other studies (Midzi et al. 2008; Reilly et al. 2008). Malaria transmission in this

area is largely unstable and sporadic, giving a low prevalence of co-infections

between schistosome infection and Plasmodium falciparum (Imai et al. 2011;

Mabaso et al. 2006). The specific villages (see Figure 2.1) from which the study

samples were drawn had not been involved in previous studies conducted in

the area nor had they previously received antihelminthic treatment through the

National Schistosomiasis Control Programme.
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Figure 2.1: A map showing the location of the study sites in the Murewa
district, North Eastern Zimbabwe. The educational recruitment centres for
the present study are indicated in yellow. Neighbouring study sites involved in
previous studies by my research group (Parasite Immuno-epidemiology Group)
are shown in red. Image from Google maps.

2.3.3 Study design

The data considered in this thesis were obtained from field studies as part of a

major project: “Health Benefits of Repeated Treatment in Paediatric Schistoso-

miasis” conducted in collaboration with the University of Zimbabwe (UZ), the

National Institute of Health Research, Zimbabwe (NIHRZ), and the University
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of Edinburgh, UK. The project consisted of cross-sectional and longitudinal

designs relating infection levels, markers of schistosome-related morbidity and

serological responses associated with inflammation to the number of praziquantel

(PZQ) treatments children received as well as to the age of the children (ages

1–5 years and 6–10 years). For this project, I was involved in the field work

that consisted of collection of urine samples for parasitology and urinalysis,

data entry and coding in the field. To ensure good-quality data I facilitated

double entry verification in Microsoft Excel. Prior to any statistical analyses,

data was cleaned to verify and correct for any inconsistencies, re-organised

and put in the format easy for storage and retrieval. Data cleaning involved

investigating missing information, age verifications and conversion of these

ages into standard unit (years). Blood collection for immunological assays was

facilitated by experienced local nursing staff and study clinicians. Antihelminthic

treatment with praziquantel was offered to all compliant children, administered by

the local physician. Laboratory based work, including measurement of serological

biomarkers of inflammation, antibody and plasma cytokine assays was conducted

by other members of the Parasite Immuno-epidemiology Group acknowledged in

this thesis (http://pig.bio.ed.ac.uk/people/edinburgh/ [Accessed 30/09/2015]).

The study design of the of the main project is a modification of the traditional

treatment re-infection study designs where all participants are treated at one time

point and followed up for specified time period (Figure 4.1). To ensure that the

study compared re-infection rates over the same time period, compliant children

received PZQ treatment 12 months into the study (antihelminthic treatment (1)

in Figure 4.1 below), with an efficacy check 12 weeks later. At the end of the 24

months study period, two different groups of children having different histories of

PZQ treatment were available for comparisons. Thus, Group 1 had received two

treatments; at the beginning of the study (antihelminthic treatment (0)) and 12

months later (antihelminthic treatment (1)), while Group 2 will have received a

single PZQ treatment (see Figure 4.1). The 12 month period between treatments

was chosen to reflect an achievable target for mass chemotherapy in developing

countries and in keeping with the recommendations of the 2001 World Health

Assembly resolution (54.19) for biennial treatments for moderate prevalence vs.

annual treatment in high infection areas (WHO 2002). The comparison of single

biennial to two annual treatments was to investigate the health benefits of an

additional treatment on infection levels and morbidity measures. Full details of
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the allocation of children into different treatment groups in my study to compare

the effect of single biennial vs. annual treatment regimens are described in chapter

5.

Figure 2.2: Field study design showing survey follow-up times of
children with different treatment histories.

2.3.4 Study participants

Children aged 1–10 years were recruited into the study. This age group was

chosen for a combination of the following scientific research, operational and

welfare reasons: 1) Most of my research questions in this thesis are directed at
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preschool children (aged 5 years and below) for which knowledge about the burden

of schistosome-related morbidity is still scarce, evaluating existing approaches to

reducing the current and future health burden of urogenital schistosomiasis in this

age group using the antihelminthic drug praziquantel; 2) For children aged below

1 year, obtaining blood samples as well as the required number of parasitology

samples (urine/stool samples) on designated survey days is operationally difficult;

3) Children younger than 1 year old in the study communities are not yet making

independent contact with infective water and therefore have different exposure

patterns to older children which can confound re-infection studies; 4) Since the

study site was a high transmission area where schistosome infections peak between

the ages of 9 and 10 years, by including 8–10 years old participants enabled

children carrying the heaviest infections to be incorporated; 4) Children progress

to secondary schools between the ages 13–14 years, therefore, in order to follow-up

children for at most two years, it was essential to select children who were going

to be at the same school for the study period. Eligibility criteria for inclusion in

the study were as follows:

- children should have been life-long residents of the study area.

- had no prior history of antihelminthic treatment (assessed by questionnaire

administered to parents/guardians for all children).

- had provided at least two urine samples for S. haematobium and two stool

samples for soil-transmitted helminths (STHs) and S. mansoni parasitological

examinations on consecutive days at baseline.

Children were excluded if they:

- had pre-existing known medical conditions or presented with clinical symptoms

of tuberculosis, fever, or showed signs of being unhealthy upon examination by

the study clinicians.

- had a recent major operation or illness as reported by parents/guardians.

- were found positive for STHs. None of the participants were positive for STHs

(Hookworms, Ascaris lumbricoides or Trichuris trichiura) in all the study

cohorts considered in this thesis.

For the longitudinal aspect of the study, treated children found egg-positive for

S. haematobium at 12 weeks or 12 months + 12 weeks post-treatment efficacy

checks were treated but excluded from follow-up to ensure that “true” re-infection

is measured as shown in Figure 4.1.
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2.3.5 Parasitology

At least two urine and two stool specimens were collected from each participant

on three consecutive survey days between 10:00h and 14:00h, and processed

within 2 hours of collection. For young children where it was operationally

difficult to obtain the samples on the spot, urine samples were collected overnight

by parents/guardians using urine collection bags (Hollister 7511 U-Bag Urine

Specimen Collector, Hollister Inc., Chicago, Illinois, USA), and stool samples were

collected using disposable dippers. Urine samples were examined microscopically

for S. haematobium infection using the standard filtration method (Mott et al.

1982). The urine filtration equipment used consisted of a nitrocellulose mesh filter

(reusable), 10 mL plastic syringe and a plastic extension tube, with the upper

part of the filter attached to the mouth of the syringe. Each urine sample was

thoroughly mixed and 10 mL of urine was aspirated and slowly passed through

the filter on which the parasite eggs were trapped in the filter. The filter was

observed under a 10X objective lens of a binoculars microscope, and number

of eggs/10 mL of urine enumerated. Stool samples collected on two consecutive

days were processed using the Kato-Katz method (Katz et al. 1972). Using this

method, the stool samples were sieved to remove large particles and at least two

slides per sample were prepared using standard 41.7 mg templates and stained

with glycerol-malachite green to easily identify helminth eggs (this method stains

stool components but does not penetrate parasite eggs). Slides were examined

microscopically and egg counts per gram of stool determined for the diagnosis of

S. mansoni and STH. Repeated parasitological examinations were performed to

improve the diagnostic accuracy of the tests.

2.3.6 Blood collection

Up to 5 mL of venous blood was collected for serological assays from each

participant, facilitated by experienced local nursing staff. The 5 mL blood

limit was within the guidelines for children issued by the MRCZ and other

institutes’ research ethics committees (see Blood Sampling Guildelines accessible

at: http://healthcare.partners.org/phsirb/abouthrc.htm [Accessed: 16/11/2014]).

Blood samples were allowed to clot at room temperature (24°C) and stored at 4°C

overnight. The clot was removed and serum extracted by centrifugation at 3000

revolutions per minute (rpm) for 10 minutes. The obtained serum samples were
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stored frozen at -20°C, transported on dry ice to Edinburgh, UK and kept under

storage at -80°C. Samples were thawed for the first time for the assays described

below.

2.3.7 Treatment

After sample collection at baseline and at 12 months follow-up, participating

compliant children (both negative and positive for schistosome infection) were

offered antihelminthic treatment with PZQ at the standard oral dosage of

40 mg/kg body weight. The PZQ drug was purchased from Sigma-Aldrich

(Dorset, UK), unless otherwise stated. Treatment was administered by the local

physician, and for very young children, the tablets were crushed as per current

recommendation by the (WHO 2011a). The PZQ tablets were swallowed under

close supervision by study clinicians and parents/guardian with squash juice

to reduce their bitter taste and a slice of bread to reduce the side effects of

PZQ (Mutapi et al. 2011; Sousa-Figueiredo et al. 2010).

2.3.8 Urinalysis

The urinalysis method was used to detect current point-of-care (POC) schistosome-

related morbidity markers. Urine samples collected on the first day of the

survey were examined for the presence of visible haematuria, one of the early

signs of urogenital schistosome-related morbidity (Gryseels et al. 2006). Uristix®

reagent strips (Uripath, Plasmatec, UK) were used for the rapid determination of

urobilinogen, glucose, blood, protein, nitrite, leukocyte, pH, and specific gravity

in urine. Briefly, the reagent end of the test strip was dipped into fresh, well-

mixed urine for 40 seconds. Upon removal, the test area was compared with

a standard colour chart. The dipstick test results were calibrated following the

manufacturer’s guidelines and data recoded for easy referencing of the results in

the field (see Table B.1 in Appendix B). In addition, a subset of urine specimens

chosen at random was further analysed using the Multistix® 10SG (Bayer, UK)

and the results (glucose, blood, protein, ketone, specific gravity, pH, nitrite, and

leukocyte) read automatically using Siemens’ CLINITEK Status®+ Analyzer

(Bayer, UK). CLINITEK® Microalbumin Reagent Strips (Bayer, UK) were used

to measure levels of albuminuria determined from the concentrations of urine

albumin-creatinine-ratio (UACR), a proxy for urinary tract damage and an early
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predictor of progressive kidney disease (Eknoyan et al. 2003; Levey et al. 2005;

Stothard et al. 2009).

2.3.9 Questionnaires

A questionnaire constructed in English and translated to the local language

(Shona) was used to assess dichotomous responses (‘yes’ or ‘no’) pertaining

to self-reported blood in urine (haematuria) and painful urination (dysuria).

Parents/guardians responded to the questions on behalf of preschool children

(1–5 years old) whilst primary school-aged children (6–10 years) responded to the

questions themselves. A copy of the questionnaire can be found in Appendix G.

2.3.10 Clinical examination

All participants underwent a non-intrusive physical clinical examination, involving

abdominal palpation, conducted by study clinicians to determine current health

status and schistosome-related anomalies (e.g., epigastric or abdominal pains).

2.4 Antibody assays

The sera obtained from blood samples were tested for parasite-specific IgM

antibody responses directed against cercarial antigen preparation (CAP) and

soluble egg antigens (SEA) using enzyme linked immunosorbent assays (ELISAs)

following previously published protocol (Mutapi et al. 1997). The antibody levels

were expressed as the mean optical density (OD) value of the duplicate assays

read with an Emax microplate reader at absorbance of 405nm. Full details on the

actual steps involved in the ELISAs can be found in Appendix A. IgM antibodies

are produced early in an infection (Warrington et al. 2011) and previous studies

have reported a positive association between anti-egg IgM antibody responses

with schistosome infection levels (Dawson et al. 2013; Mutapi et al. 2003; Stothard

et al. 2011). Previous studies have also shown that treatment induces changes in

IgM antibody response levels, a factor associated with increased exposure of the

antigens to the immune system (Mutapi et al. 2003; Naus et al. 1998). Thus, IgM

antibody responses were used in this project to indicate recent exposure of children

to schistosomes and for the serological diagnosis of infection only at baseline, i.e.

pre-treatment (Imai et al. 2011; Stothard et al. 2011; Woolhouse et al. 2000).
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High levels of heterogeneity of IgM antibody responses directed against soluble

adult worm (SWA) have been reported in previous field studies conducted in the

same region as the current study site (Mutapi et al. 1997; Woolhouse et al. 2000),

hence were not considered for investigation in this study.

2.5 Cytokines

Schistosome-related immunopathology results from the inflammatory responses

mounted against the eggs released by the parasite. This immunopathology is

mediated by pro-inflammatory immune responses whose markers can be detected

serologically (see Burke et al. (2009) for review). Measurement of these serological

markers can be informative indicators of risk of future and current disease

independent of schistosome infection intensity (Caldas et al. 2008; King et al.

2001). Therefore, in this thesis, plasma levels of systemic cytokines: IFN-γ, a

Th1-associated response, IL-4, IL-5 and IL-13, markers of Th2 responses, and IL-

10, a marker for regulatory responses were measured (Caldas et al. 2008; Pearce &

MacDonald 2002). Since there is no single immunological marker for schistosome-

related morbidity, I have chosen to assess a range of these cytokines that have been

previously shown to mediate inflammatory environment during infection, and thus

believed to play a key role in the pathogenesis of chronic schistosomiasis (Imai

et al. 2011; Milner et al. 2010; Mutapi et al. 2007). Furthermore, I included

both Th1 and Th2 type cytokines in the investigation to enhance understanding

of the nature and development of early immune responses associated with

disease in schistosomiasis, that still remain poorly defined in young children. The

cytokines were detected and quantified using capture (sandwich) ELISAs following

previously published protocol (Joseph et al. 2004a). The capture assay procedure

has an extra added step to the basic ELISA, involving the capture antibody.

ELISA kits to measure the systemic levels of the cytokines were obtained from

BD Biosciences (San Diego, CA, USA).

2.6 Serological inflammatory biomarkers

Five biomarkers of inflammation indicative of the immunopathological responses

were considered in this project and these included; C-reactive protein (CRP),

ferritin, chitinase 3-like-1 protein (CHI3L1), resistin, and secretory leukocyte
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protease inhibitor (SLPI). Some of these serological markers considered have

been shown in previous studies to be important inflammatory markers in

helminths (Appleby et al. 2012; Coutinho et al. 2006; Mcsharry et al. 1999). Serum

concentration levels of these markers were quantified using the capture ELISA

method, following the same principle protocol. Serum levels of CHI3L1, CRP

and resistin were quantified using ELISA kit from R&D Systems (Minneapolis,

USA, Catalogue number: DY2599 for CHI3L1, DY1707 for CRP, and DY1359

for resistin). Ferritin and SLPI were measured using reagents procured from the

National Institute for Biological Standards and Control (Hertfordshire, UK) and

Novus Biologicals (Cambridge, UK), respectively. Measurements were taken at

baseline and 12 months after treatment to determine whether PZQ had an effect

on the levels of these markers.

2.7 Statistical methods

In this section I present an overview of the main statistical methods considered

within the thesis to test different hypotheses, with specific details explained in

relevant chapters. Technical details or derivations that are excluded from the main

text are provided in the appendix section.

2.7.1 Parametric and non-parametric tests

In parametric statistics the data are assumed to come from a known underlying

distribution (e.g. normal distribution) and hypothesis testing is based on the

assumptions made. However, in non-parametric hypothesis testing, fewer or no

distributional assumptions are made, thus making it suitable for different types

of data (Rosnar 2000; Sprent & Smeeton 2001).

The following parametric techniques were used for exploratory data analysis

and to test for associations:

(i) Descriptive statistics, used to reveal the basic features of the data and

provide summaries about the means and variability (standard deviations:

SD and standard errors: SE) of the variables of interest.

(ii) The Pearson’s correlation coefficient (r), to estimate the strength of

association between pairs of continuous variables such as infection intensity

or antibody levels with age.
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(iii) The student’s t-tests: (a) two-sample t-test to compare means between two

independent groups (e.g. 1–5 years vs. 6–10 years age groups), and, (b)

paired t-test to compare two measurements taken from the same individual

before and after treatment.

(iv) Since the symptoms commonly associated with schistosomiasis are non-

specific, I used the method of attributable fractions to quantify the

proportion of morbidity attributable to S. haematobium infection rather

than due to other causes in the population and among infected children. The

attributable fractions for morbidity outcomes were estimated using adjusted

prevalence estimates obtained from the logistic regression models described

in section 2.7.3.

The non-parametric statistics used included:

(i). The Spearman’s rank correlation (ρ), used to measure the degree of

association between two variables, appropriate for discrete data or when

there were reasons to question the normality of the underlying data

distribution .

(ii). The Chi-square (χ2) test, used to test for associations between independent

categorical variables, and the McNemar’s statistic for paired categorical

data (used to compare pre-treatment vs. post treatment infection or

morbidity prevalence levels within the same age group of children).

(iii). The Fisher’s exact test, used for small sample size test for associations

between categorical variables.

Several statistical regression models were also applied to investigate the

research hypotheses, accounting for potential confounding factors as outlined in

the next sections.

2.7.2 General Linear Models

The main inferential statistical analysis used throughout this thesis is the

general linear model (GLM) technique, utilized to investigate the presence of

a relationship between variables of interest, accounting for potential confounders.

Since the predictor (explanatory) variables studied were measured on different

scales, the GLM was chosen for its flexibility to incorporate multiple explanatory
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variables (continuous or categorical) simultaneously. Thus under this framework,

the analysis of variance (ANOVA) models, where all explanatory variables are

categorical and the linear regression models, consisting of continuous explanatory

variables were considered (Kutner et al. 2005). The GLM may be written as:

Yi = β0 + β1X1i + . . . + βpXpi + εi, (2.1)

where Yi, for i = 1, . . . , n is the response variable, Xj, for j = 1, . . . , p are the

explanatory variables in the model, β0 is the intercept, β1, . . . , βp are the regression

parameters, reflecting the effect of the explanatory variables on the response, and

εi is the error (or residuals) term. For the results of a GLM analysis to be valid,

the following important conditions need to hold: 1) independence between the n

individual response cases; 2) normality of the residuals (the differences between

the predicted values and actual values); 3) constancy of variance of the residuals

(homogeneity).

In this thesis, the main explanatory factors adjusted for in the GLMs

investigating the association between the outcome (e.g., infection intensity,

antibody responses, serological markers of morbidity or systematic cytokine

levels) and explanatory variable of interest included: sex (M vs. F), age in

years (or categorized into two groups: 1–5 years vs. 6–10 years) and village of

permanent residency. Model building included all possible biologically meaningful

two-way interactions between the explanatory variables. Except for hypothesized

interaction terms, all insignificant interactions were dropped from the model

following the step-down (or backward selection) model building procedure. Briefly,

the step-down procedure begins with the model containing all candidate predictor

variables. At each modelling step, the variable that is least significant (i.e., with

the largest P-value) is dropped (Kutner et al. 2005). Using this model selection

criteria, I set the significance level at which variables could be removed from the

model at P>0.20.

Residual plots and normal probability plots were used to identify possible

deviations from the underlying assumptions on the error term and where

appropriate, transformation of the response variable was implemented as a

remedial measure. To test if there was any relationship between the response and

the explanatory variables based on the final model, the F -test of the analysis of

variance was used and P -values were considered statistically significant if P<0.05.
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2.7.3 Generalized Linear Models

Some response variables in the study were restricted to a binary scale, e.g.

presence/absence of schistosome infection or related morbidity. To model these

categorical responses as a function of explanatory variables, the method of

generalized linear models (McCullagh & Nelder 1989), an extension of the GLM

to encompass the non-normal response distributions was applied. The two main

generalized linear models used for cross-sectional data were the multiple logistic

regression (adjusted for sex, age and/or village of residency) and the parametric

age-dependent prevalence modelling approach first proposed by Diamond &

McDonald (1992) and Keiding (1991). Further details of this method are explained

in chapter 3.

To determine whether morbidity prevalence decreased after treatment and to

investigate the effect of single vs. two PZQ treatments between age groups, the

method of generalized linear models with a random intercept term to account for

correlation between repeated measures within each study subject, adjusting for

sex and baseline infection status was used. The mixed model was formulated as

follows:

logit(πij) = ln(
πij

1 − πij
) = β0 + β1X1i + . . . + βpXpi + bi (2.2)

where πij: is the probability of presence of morbidity at the jth survey time period

(pre- or post-treatment) for the ith child, and the parameters, βi’s, have the same

interpretation as described for the GLM. bi: is the random effect term to account

for the association between repeated measures for each child, where bi ∼ N(0, σ2
b)

is assumed.

Two-way interaction terms between the predictor variables were included

during model building, and insignificant parameters subsequently dropped using

the step-down model building procedure. The general form of the mixed models to

address specific study questions was the same. The generalized linear models were

run using PROC GLIMMIX with a logit link function in SAS® 9.3 (SAS Institute

Inc., Cary, NC, USA), and the parameter estimation was implemented using the

method of penalized quasi-likelihood to account for over-dispersion (Bolker et al.

2009; Molenberghs & Verbeke 2005). The likelihood ratio test was used for model

selection. The basic SAS code for this model is illustrated in Appendix E.1.
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2.7.4 Multivariate Analysis methods

In this thesis, I used the non-metric multidimensional scaling multivariate

statistical technique to identify urinary dipstick attributes associated with

schistosome-related morbidity. In addition, the statistical method of principal

component analysis was applied to validate different serological markers of

morbidity and inflammatory responses in children infected with schistosomiasis.

In what follows, I describe in detail the two methods and their implementation

using appropriate software.

2.7.5 Non-Metric Multidimensional Scaling

Non-metric multidimensional scaling (NMDS), a multivariate non-parametric

data reduction technique (Cox & Cox 2001) was used to identify urinary dipstick

markers that contributed most to the differences in S. haematobium-related

morbidity among a set of potential urinalysis markers (section 2.3.8). The NMDS

analysis was performed using PCORD 6.08 (MjM Software, Gleneden Beach,

Oregon, USA). The NMDS model runs were based on Bray-Curtis distances with

no penalty on handling ties. Five hundred iterations with real data were made

with 15 iterations used to evaluate model stability based on a stability criterion

of 0.000001. An initial 6-dimensional NMDS was performed to find the number of

axes that best represented the variation in the urinalysis data set. Using a scree

plot, it was determined that a 2-dimensional NMDS with final instability of 0.0

and stress of 8.5 was adequate to account for most of the observed variability.

Pearson’s correlation coefficients were used to identify the urinary dipstick

morbidity markers strongly contributing to overall variability and the proportion

of variability represented by each of the NMDS axes was measured using

the coefficient of determination (R2). A multi-response permutation procedure

(MRPP) test was performed to assess differences in the NMDS output by sex,

age-group and S. haematobium infection status. A total of 1, 000 permutations

of the data were executed to test for significance.

Pairwise comparisons between subgroups were conducted using a combination

of MRPP statistics, namely; the T -statistic: an equivalent of the Student’s t-

test describing the between-group separation, measure of effect size, A: indicating

the chance-corrected within-group similarity and the P -value: representing the

probability of having obtained as low an average within-group similarity as
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actually observed (Peck 2010). Significant group differences implied that children

belonging to one subgroup were more similar in terms of the morbidity markers

than they would be expected if they had belonged to the other group. In addition,

similarity percentage (SIMPER) analysis was conducted to further assess the

individual contribution of each of the urinary dipstick morbidity markers to the

overall dissimilarities between subgroups. Plots of the resultant two ordination

axes by subgroups were used to reflect patterns of variability in the original

multivariate dipstick morbidity responses among children as captured in the

NMDS. The distance between points in the ordination space is proportional to

the underlying distance measure between these points (Peck 2010).

2.7.6 Principal Components Analysis

Principal component analysis (PCA) is a multivariate data reduction technique

used to explain or summarize the underlying variability of a large set of variables

without loss of information through a few linear combinations of these variables,

each of which explains a percentage of the total variation in the data, known as the

principal components. The first component will possess maximum variability, the

second principal component will be the linear combination of maximum variance

that is uncorrelated with the first principal component. Thus, in general, the

ith principal component is the linear combination of maximum variance that is

uncorrelated with all previous principal components (Johnson & Wichern 2007).

In this thesis, reduction of the five serological morbidity markers (CHI3L1, CRP,

Ferritin, Resistin, and SLPI) or systemic cytokines (IL-13, IL-10, IL-5, IL-4, and

IFN-γ) was performed by preserving a few principal components that explain

about 80 to 90% of the total variability. The results of principal components

analysis were also used as inputs to regression analyses.

2.7.7 Post-hoc tests

Post-hoc comparisons were performed on the categorical explanatory variables

to identify which sub-groups differed significantly each other. In all the analyses

(unless otherwise stated), pairwise comparisons were adjusted for family-wise type

I error using the less conservative (i.e. has low rate of false negatives) simulation-

based approach (Edwards & Berry 1987). The simulation procedure provides
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adjusted P -values and confidence limits that are exact up to the Monte Carlo

error (Edwards & Berry 1987).

2.7.8 Calculation of diagnostic test parameters

Test parameters, sensitivity and specificity were used to evaluate the performance

of the serological diagnostic test and urinalysis dipstick microhaematuria test

compared to parasitological microscopic examination of eggs in urine to detect S.

haematobium infection. The relationship between the diagnostic test results and

the presence or absence of infection can be represented in a single 2×2 contingency

layout shown in Table 2.1.

Table 2.1: Illustration of infection status by diagnostic test result.

Diagnostic test result

Positive Negative

Infection status
Present a (true positives) b (false negatives)

Absent c (false positives) d (true negatives)

The sensitivity (Se) measures the proportion of infected individuals that test

positive and specificity (Sp) measures the probability that the test outcome

is negative in an uninfected individual, defined respectively by the conditional

probabilities:

Se = P(Test = positive∣Infection = present)

= True positive

True positives + False negatives
= a

a + b (2.3)

Sp = P(Test = negative∣Infection = absent)

= True negatives

True negatives + False positives
= d

c + d (2.4)

Other additional parameters such as positive and negative predictive values

can be used to investigate the probability that the screening test will give the

correct diagnosis. Positive predictive value (PPV) is the proportion of individuals

with a positive test who actually have the disease and negative predictive value
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(NPV) is the proportion of those individuals with a negative test who do

not have the disease. However, a limitation of these two parameters is that

they are dependent on the population being tested and are directly related to

the prevalence of the disease in the population, and hence their estimation is

influenced by how common or rare the disease is (Parikh et al. 2008). Thus, in

terms of schistosomiasis control programmes, the implications of PPVs and NPVs

would be more useful when evaluating the cost-effectiveness of screening tests and

hence were not estimated in the present thesis.

2.7.9 Bayesian modelling

In the absence of a perfect gold standard test (i.e. with 100% accuracy), the true

infection status is unknown and this can bias the estimates of Se and specificity Sp

as a result of misclassification (Hui & Zhou 1998). The parasitological technique,

commonly used as a standard reference is less sensitive in diagnosing individuals

with light infections (Bergquist et al. 2009).

The method of Bayesian analysis of the Hui-Walter latent model (Hui & Walter

1980) was used to estimate the diagnostic parameters Se and Sp in a single

population of children in the absence of a gold standard, assuming conditional

independence between the different tests. Information on priors used was elicited

from published studies (Table 2.2). A Beta prior distribution was assumed for the

prevalence (π), Se, and Sp in the Bayesian framework (Dendukuri & Joseph 2001).

A random variable X, is assumed to follow a beta distribution with parameters

(α, β), i.e., X ∼ beta(α; β) if it has a probability density function:

f(x;α,β) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
B(α,β)x

α−1(1 − x)β−1, 0 ≤ x ≤ 1, α, β > 0

0, Otherwise
(2.5)

The parameters for Beta prior distributions were calculated using BetaBuster

software (written by Chung-Lung Su, available at: http://www.epi.ucdavis.edu

[Accessed: 13/12/2013]). For the Bayesian analyses, three Markov chain Monte

carlo (MCMC) chains were run using WINBUGS (Spiegelhalter et al. 2003).

The first 50, 000 iterations were discarded as burn-in and the following 150,

000 iterations were kept and thinned to 100, 000 for posterior inference. Model

convergence was assessed after initial burn-in using the Gelman-Rubin diagnostic

51



2.7 Statistical methods CHAPTER 2. Study Aims, Design and Methods

plots (Toft et al. 2007). For the mathematical derivation of the parameter

estimates, see appendix D.1.

Table 2.2: Summary of literature sources for priors. Information
was obtained on percentage (%) infection prevalence, sensitivity (Se) and
specificity (Sp) used in the Bayesian modelling to evaluate diagnostic accuracy
in the absence of a gold standard test.

Reference Diagnostic Prevalence Se Sp

Webster et al. (2009) Parasitology 96.0 91.0

Garba et al. (2013) Parasitology 50.5

Mutapi et al. (2011) Parasitology 21.0

Sheele et al. (2013) Parasitology 97.0 96.0 81.0

Kahama et al. (1998) Parasitology 84.8

Serology 78.8 73.0

Kinkel et al. (2012) Serology 75.7 97.1

Dawson et al. (2013) Parasitology 91.6 100.0

Turner et al. (2004) Parasitology 84.0

King & Bertsch (2013) Microhaematuria 81.0 89.0

Houmsou et al. (2011) Microhaematuria 32.9 64.8 89.6

Adesola et al. (2012) Microhaematuria 53.9 59.3 65.8

Parasitology 54.8

Ayele et al. (2008) Microhaematuria 43.2 80.0 91.6

Parasitology 47.6 50.4 62.4

Bogoch et al. (2012) Microhaematuria 14.2 100.0 93.0

Robinson et al. (2009) Microhaematuria 7.5 97.8 58.8

Anosike et al. (2001) Microhaematuria 29.5 41.0 82.0

Parasitology 49.9

Literature search of publications on human schistosomes in PubMed
database using the key words: “schisto*” AND “infect*” AND “prev*”,
or “schisto*” AND “human*” AND “diagnos*”, or “schisto*” AND
“infect*” AND “sensit*” AND “specif*”, or “S. haematobium” AND
“parasit*” AND “sero*” AND “antibody*”.

Prior information on dipstick microhaematuria test was solicited from
literature using similar search criteria but replacing the search terms
“para*” or “sero*” by the search terms “dipstick” or “microhaem*” or
“haematuria”.
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Chapter 3

Comparing parasitological vs.

serological determination of S.

haematobium infection

prevalence: implications for

control programmes

Part of this work has been published (Wami et al. 2014), and a copy of the

publication is included in Appendix H.

3.1 Introduction

Urogenital schistosomiasis is among the most important parasitic diseases affect-

ing children in sub-Saharan Africa, with profound negative impacts on their health

and development. Preschool-aged children (≤5 years old) have been neglected

both in terms of research and control for the previously held (but now widely

refuted) view that they carry insignificant schistosome infections (Stothard &

Gabrielli 2007). This was further exacerbated by poor diagnosis of infection in

the field (Stothard et al. 2011; Vennervald et al. 2000). Despite recent studies in

Africa reporting high prevalence of schistosome infection in infants and preschool-

aged children (Mutapi et al. 2011; Sousa-Figueiredo et al. 2008; Stothard et al.

2011), the burden of infection and morbidity in this age group still remains
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poorly understood. Consequently, this oversight can have negative impacts on

the effectiveness of on-going schistosome control programmes (Garba et al. 2010).

In accordance with the World Health Organization (WHO) guidelines, in-

fection prevalence must be determined prior to implementation of intervention

strategies to control schistosome infection (WHO 2002). To ensure that trans-

mission levels are reduced and development of severe morbidity is alleviated,

repeated mass drug administration (MDA) at regular intervals, depending on

the pre-determined target population prevalence has been recommended by the

WHO (WHO 2002). Thus, it is important that sensitive diagnostic tools are used

in the field to detect schistosome infection with improved accuracy.

Microscopic examination of eggs in urine (parasitological diagnostic technique)

is currently the widely accepted approach for detecting and quantifying S.

haematobium infection levels in individuals or communities in need of inter-

vention (Kinkel et al. 2012; Pasvol & Hoffman 2001; van der Werf & de Vlas

2004; WHO 1998). However, this method is less sensitive in detecting light

infections (Bergquist et al. 2009; Turner et al. 2004), and is unable to diagnose

pre-patent or single-sex infections where there is no egg production (Mutapi 2011).

Such missed cases have an important role in transmission, and hence do impact

on the effectiveness of control programmes (Smith & Christie 1986). Several

additional methods aimed at improving the diagnosis of schistosome infection have

been evaluated, although the focus has mainly been on school-aged children and

adult populations. Examples of additional diagnostic techniques include antibody

detection (Alarcón de Noya et al. 2007; Smith et al. 2012), urine circulating

antigen detection (Ayele et al. 2008; Dawson et al. 2013; Stothard et al. 2006),

dipstick detection of microhaematuria (Adesola et al. 2012; King & Bertsch 2013)

and questionnaire-reported presence of haematuria (Clements et al. 2008; Lengeler

et al. 2002). The elegant dipstick meta-analysis study recently published by King

& Bertsch (2013) highlights the need for more investigations on different methods

for detecting infection in preschool-aged children.

3.2 Aims

The aim of this chapter is to compare the levels of S. haematobium infection

prevalence determined by the parasitological egg enumeration in urine vs. infection

detected by the serological testing for parasite-specific IgM antibody responses in
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an endemically exposed single population of children aged 1–5 years. In addition,

levels of schistosome infection detected using the two diagnostic techniques

are compared between the 1–5 years and 6–10 years old children to elucidate

the implications of the performance of these diagnostic tests on the required

interventions for preschool-aged children in control programmes. I also investigate

the utility of dipstick-detected microhaematuria as an indicator of S. haematobium

infection in addition to the parasitological technique on a subgroup of children

in this study population. The findings of this chapter will be important for

the planning and implementation of improved control programmes targeting

preschool-aged children.

3.3 Hypotheses

To estimate and compare the accuracies of diagnostic tests, in the present chapter

I sought to test the following null hypotheses:

1. The prevalence of S. haematobium infection determined by the parasitolog-

ical and serological methods does not differ in endemically exposed children

aged 1–5 years vs. 6–10 years old.

2. The current standard parasitological diagnostic method is not less sensitive

than the serological diagnostic approach for detecting schistosome infection

in children aged 1–5 years.

3.4 Materials and Methods

3.4.1 Study participants

To compare the available diagnostic tools for S. haematobium infection in children,

a cross-sectional survey was conducted in the Murewa district study site described

in chapter 2. 21 S. mansoni positive children were excluded in this study to

reduce the possibility of cross-reactivity in serological assays (Figure 3.1). The

study sample comprised of a total of 438 children considered for the final analysis

(Figure 3.1), aged between 1–10 years from two villages in the study area

(village 1, n=224; village 2, n=214). Since the study aimed to compare different

diagnostic techniques on a single population, only participants meeting the
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following inclusion criteria were considered in this current chapter: 1) had provided

at least three urine samples for parasitological detection of S. haematobium

infection, 2) had provided up to 5 mL of venous blood for serological examination,

and 3) were negative for S. mansoni as detected by parasitological examination

of at least two stool samples.

Figure 3.1: Study design flow chart indicating the number of children
enrolled in the study and included in the final analysis.

3.4.2 Urine examination

Urine samples were examined microscopically for presence of S. haematobium eggs

using the standard filtration method (Mott et al. 1982). Children were designated

egg positive if at least one egg was detected in any of their urine samples. The

infection intensity was expressed as the arithmetic mean egg counts/10 mL of the

three replicate urine specimens. Examination for microhaematuria was performed
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on urine samples collected on the first day of the survey using dipstick reagent

strips (Uristix®, Plasmatec, UK). In this current study, due to limited resources

in the field, only 190 of the initial 438 children had their urine samples examined

for microhaematuria in addition to parasitological examinations.

3.4.3 Serological examination

Levels of IgM antibody responses directed against cercariae (CAP) and soluble egg

(SEA) antigens were measured by the indirect ELISA method described in chapter

2. The parasite-specific antigen preparations (CAP and SEA) were sourced from

the Theodor Bilharz Institute (Egypt). The ELISAs were conducted in duplicate

per plate. In brief, 96-well microtiter plates (Greiner Bio-One, UK) were coated

with 100 µL per well of antigen at 5 µg/mL (for CAP) and 10 µg/mL (for SEA)

diluted in carbonate bicarbonate buffer at pH 9.6 per well and incubated overnight

at 4°C. Plates were washed, emptied and blocked with 200 µL per well of 5%

milk in phosphate buffered saline (PBS)/0.03% Tween 20 for an hour at room

temperature, washed again three times and sera added in duplicate using sample

dilutions 1:100. The plates were incubated for 2 hours at room temperature,

washed six times and a well of substrate (ABTS peroxidase solution) added. A

reaction time of 15 minutes was allowed to take place before plates were read at

an absorbance of 405 nm. The results were expressed as the mean optical density

(OD) value of the duplicates. Five CAP and four SEA IgM serum samples from

age-matched schistosome näıve European and 13 healthy (clinically examined

by experienced study clinicians) Zimbabwean donors were used as controls to

determine cut-off OD values for serodiagnosis. The European samples were drawn

from the Edinburgh anonymized clinical sample archive.

3.5 Data and Statistical methods

For each of the children meeting the inclusion criteria, data were available on

parasitology, parasite-specific IgM antibody responses, as well as demographic

information: sex (male vs. female), age in years, also categorized into age groups

(1–5 years vs. 6–10 years), and village of permanent residency (village 1 vs. village

2). As previously highlighted, dipstick test data were only available for a subset

of the study population, and as such was used for subgroup analysis.
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3.5.1 Cut-off values

Across different fields of research, there is no standard rule for determining cut-

offs for serological diagnosis (Baaten et al. 2011; Faria-Pinto et al. 2010; Pablo

Mart́ınez-Camblor 2011; Woolhouse et al. 2000), and the standardization of a

specific cut-offs will be limited due to diversity in the populations being studied

and the design of assay protocols (Mart́ın-Gandul et al. 2013). Since the choice of

cut-offs can influence the estimation of the test parameters (prevalence, sensitivity,

specificity), it is thus important to make sure that the choice of these cut-offs are

robust classification measures. A number of possible cut-offs can be considered and

the most suitable one found. For each of the parasite-specific raw IgM antibody

responses (CAP or SEA), the distribution of the raw antibody titres was initially

explored by means of histograms and density curves. Using antibody data from

negative controls, the cut-off values were calculated as the mean + 2 standard

deviations (SD), a less sophisticated approach commonly used in literature (Imai

et al. 2011; Kahama et al. 1998; Riley et al. 2000; Woolhouse et al. 2000). Antibody

optical density (OD) levels greater than this cut-off value were considered to

be seropositive. The robustness of the determined cut-offs to changes in sample

variability was assessed as outlined in appendix C. These cut-off values were

robust to changes in the mean OD variability and no bias due to individual

observations were observed.

3.5.2 Determination of S. haematobium exposure and

infection

Children were classified as exposed to the parasite if positive for CAP IgM. For

each child, S. haematobium infection was determined using the three diagnostic

methods: parasitology, serology (SEA IgM), and/or dipstick microhaematuria.

Based on results of each of these diagnostic tests, presence of schistosome infection

was defined as follows:

1. Parasitology: Egg positive, indicated by the presence of eggs in at least one

urine sample.

2. Serology: Positive for SEA IgM antibody response, based on the OD cut-off

threshold estimated from sera of negative controls.

3. Dipstick: Positive test for microhaematuria.
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3.5.3 Statistical analyses

Infection intensity was log-transformed using log10(egg count + 1) to meet the

underlying assumptions of parametric statistical tests. To investigate whether the

mean antibody levels or mean infection intensity differed significantly between

the two age groups (1–5 years vs. 6–10 years), independent t-tests were used. The

effect of sex, age group and village on the mean infection intensity or antibody

levels was investigated using general linear models (GLMs). To test for differences

in infection prevalence between the two age groups and compare prevalences

determined by parasitology vs. serology or dipstick microhaematuria, Chi-square

(χ2) tests were used.

Infection prevalence based on the binary response variable (Yi) derived from

the diagnostic test results (positive=1 or negative=0) as a function of age

was estimated parametrically using the method of generalized linear regression

modelling (Keiding 1991). Let n be the sample size under investigation, ai=the

age of the ith child (for i = 1, . . . , n) and q(a)=the proportion of uninfected children

aged a years in the study population. The prevalence, which is the probability

of being infected at age a, is given by: π(a) = 1 − q(a), and is estimated using

the binary response variable Yi as follows: π(a) = P (Yi = 1∣ai). The generalized

linear model with a complementary log-log link was fitted to take into account

the binary nature of the response variable (Mathei et al. 2006), and is expressed

parametrically as follows:

π(a) = 1 − exp(−αaβ), (3.1)

where α is the intercept and β is the slope, i.e. the coefficient representing the

effect of age on the probability of being infected with the S. haematobium parasite.

The parasitological technique, widely utilized as a standard reference test

is known to be less sensitive, especially in diagnosing individuals with light

infections (Bergquist et al. 2009). Thus to assess the accuracy of the serological

and dipstick microhaematuria tests in the absence of a gold standard, the

diagnostic parameters; sensitivity and specificity were estimated using the

method of Bayesian analysis of the Hui-Walter latent model (Hui & Walter

1980) as explained in chapter 2 (see section 2.5.8). This enabled the unbiased

estimation of these test parameters, accounting for uncertainty about the

diagnostic test outcomes through use of prior information in the Bayesian
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modelling framework (Branscum et al. 2005; de Clare Bronsvoort et al. 2010;

Dendukuri & Joseph 2001; Joseph et al. 1995). Information on priors used was

elicited from published studies (Table 2.2). Since the choice of priors may have

a strong influence on the Bayesian modelling results (Lewis & Torgerson 2012),

I further explored the estimates of sensitivity and specificity by making use of

vague (non-informative) priors, assuming a uniform distribution, i.e. U(0,1). The

results from the Bayesian analysis using vague priors were consistent with those

obtained from strong priors obtained from the literature search, hence results

from the latter were reported in this study. Model convergence was assessed after

initial burn-in using the Gelman-Rubin diagnostic plots (see appendix D.2). The

Markov chain Monte carlo (MCMC) chains in the Bayesian models were run using

WINBUGS (Spiegelhalter et al. 2003) following the steps outlined in chapter 2

(section 2.7.9).

3.6 Results

3.6.1 Demographics

The study population consisted of 239 (54.6%) female and 199 (45.4%) male

children. Within this study cohort, 97 (22.2%) children were aged 1–5 years

(median=4.0 years) and 341 (77.9%) were aged 6–10 years (median=8.0 years).

3.6.2 Infection intensity and antibody response levels

The overall mean S. haematobium infection intensity based on egg counts was

17.40 eggs/10 mL urine (SD=71.20) and the overall mean CAP and SEA IgM

antibody levels were 0.59 OD (SD=0.38) and 0.62 OD (SD=0.34) respectively. The

egg count data was further log-transformed: log10(x + 1) to meet the normality

assumption of parametric statistical tests. The independent t-tests, as shown

in Table 3.1, indicated that the mean infection intensity and antibody levels

were significantly higher in children aged 6–10 years compared to the 1–5 years

old children. A high variability in mean egg counts in urine among children

was observed as indicated by the large standard deviations in both age groups

(Table 3.1). Based on the mean egg counts in urine, 7.1% (n=31) of the study

participants carried heavy infection intensities, and 30.4% (n=133) carried light
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infections according to the WHO classification of infection intensity burden for S.

haematobium (WHO 2002).

Table 3.1: Mean S. haematobium infection intensity and IgM antibody
responses directed against cercariae (CAP) and schistosome egg antigens
(SEA). The independent t-tests were used to compare means between the two
age groups. For infection intensity, the comparison test was performed on the log-
transformed data [log10(egg count + 1)].

Variable Age group N Mean SD Range t P-value

Egg count
1–5 years 97 9.03 47.53 0.00–380.33 -4.49 <0.001
6–10 years 341 19.78 76.50 0.00–1013.00

IgM: CAP
1–5 years 97 0.42 0.36 0.00–1.39 -5.10 <0.001
6–10 years 341 0.63 0.37 0.03–1.90

IgM: SEA
1–5 years 97 0.46 0.31 0.01–1.27 -5.72 <0.001
6–10 years 341 0.67 0.33 0.07–2.39

SD=standard deviation; Range=minimum–maximum; CAP=cercarial antigen
preparation; SEA=soluble egg antigen.

3.6.3 Age-infection intensity and antibody response pro-

files

The distribution of the mean S. haematobium infection intensity and parasite-

specific IgM antibody responses with age are shown in Figure 3.2. Infection

intensity increased significantly with age (r=0.18; P <0.001). The IgM antibody

levels against schistosome antigens showed similar patterns and there was also

a significant positive correlation with age for both CAP (r=0.28; P <0.001)

and SEA (r=0.31; P <0.001). The highest infection and antibody levels were

observed between the ages of 8 and 10 years (Figure 3.2). There were no significant

differences in the mean infection intensity (F=2.11; P=0.147), CAP (F=0.03;

P=0.865), or SEA IgM (F=1.51; P=0.220) by sex (M vs. F), adjusting for the

effects of age and village of permanent residency in the GLMs.
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Figure 3.2: Age-infection intensity and IgM antibody response profiles.
Error bars indicate the standard error of the mean.

3.6.4 Levels of exposure to schistosomes

The level of exposure to S. haematobium among the children was 70.6% (95% CI:

66.3–74.8%) as quantified by positive IgM antibody responses against cercarial

antigens (CAP) shown in Table 3.2. In addition, a high proportion of children in

both age groups showed evidence of exposure to schistosomes; 1–5 years: 48.5%

(95% CI: 38.3–58.6%), and 6–10 years: 76.8% (95% CI: 72.3–81.3%). The level
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of exposure to schistosomes did not differ by village, allowing for sex and age-

related differences between the children (Wald χ2=2.13; P=0.144). Furthermore,

19 schistosome egg-positive children were classified as negative for CAP IgM

(Table 3.2), implying a sensitivity of 88.4% (95% CI: 83.5–93.3%) for CAP IgM

as a marker of exposure to schistosomes in comparison to the parasitological

diagnostic technique.

Table 3.2: Parasitological and serological diagnostic test results
by age group. Levels of exposure to S. haematobium was defined
as positive IgM antibody responses against cercarial antigens (CAP),
infection was determined by positive SEA IgM for the serological
diagnostic method, and by the presence of at least one egg in urine for
parasitological diagnosis.

1–5 years 6–10 years Overall

Parasitology CAP SEA n (%) n (%) n (%)

− − − 45 (46.4) 46 (13.5) 91 (20.8)

+ − − 1 (1.0) 13 (3.8) 14 (3.2)

− + − 6 (6.2) 12 (3.5) 18 (4.1)

+ + − 0 (0.0) 2 (0.6) 2 (0.5)

− − + 3 (3.1) 16 (4.7) 19 (4.3)

− + + 25 (25.8) 121 (35.5) 146 (33.3)

+ − + 1 (1.0) 4 (1.2) 5 (1.1)

+ + + 16 (16.5) 127 (37.2) 143 (32.6)

Total (N) 97 341 438

(+) Positive combinations of parasitological and serological diagnostic
results indicating exposure or infection.

3.6.5 Schistosome infection prevalence

The overall infection prevalences based on parasitology and serology (SEA IgM)

diagnostic tests were 37.4% (95% CI: 33.0–42.0%) and 71.5% (95% CI: 67.2–

75.7%) respectively, and these differences were significant (χ2=102.12; P <0.001).

In addition, results of comparisons by age group revealed that infection prevalence

was significantly higher in children aged 6–10 years compared with prevalence in

children aged 1–5 years old, and this was true for both diagnostic tests as shown
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in Figure 3.3. However, no significant differences in apparent prevalence between

male and female children were observed (parasitology: χ2=0.79, P=0.374; and

serology: χ2=0.15, P=0.703).
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Figure 3.3: Prevalence of S. haematobium infection determined using
parasitological and serological diagnostic methods. Schistosome specific
IgM antibody levels against egg antigens (SEA) were used for serological diagnosis
of infection. The error bars indicate 95% confidence intervals. The P -values are
from the χ2-test for differences in prevalence between the two diagnostic methods
by age group.

3.6.6 Age-dependent infection prevalence profiles

The estimated regression coefficients and standard errors from results of the gen-

eralized linear model described earlier to determine the age-dependent infection

prevalence based on parasitological vs. serological data were as follows: intercept,

α ∶ 0.04 (SE=0.02) vs. 0.12 (SE=0.05) and slope, β ∶ 1.23 (SE=0.27) vs. 1.25

(SE=0.19). These parameters were used to describe the curve represented in

Figure 3.4.

64



CHAPTER 3. Parasitology vs. Serology 3.6 Results

Infection prevalence increased with age in a similar pattern for both diagnostic

methods, however the rate of increase for the serology test was higher compared

to that of the parasitological technique as illustrated in Figure 3.4. In addition,

the overall age-dependent infection prevalence determined using the serological

technique was higher compared to the prevalence based on parasitology and

this discrepancy increased with age (Figure 3.4). Furthermore, infection levels

in children aged 5 years and above determined by serology belonged to the high

prevalence WHO category (prevalence ≥50%) compared to the moderate (10%≤
prevalence ≤50%) category implied by the parasitological diagnostic method.
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Figure 3.4: Predicted age-related S. haematobium infection prevalence
profiles derived from parasitological (dashed line) and serological (solid
line) diagnostic tests. The error bands indicate the 95% confidence intervals.
The horizontal dashed lines indicate the moderate (10%) and high (50%) infection-
risk cut-offs for treatment control regimens as defined by the World Health
Organization.
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3.7 Sensitivity and specificity

Cross-classified diagnostic results of the serology test and parasitological urine

examination to estimate the sensitivity and specificity are shown in Table 3.3.

Only 16 (3.7%) children (10 females and 6 males, all aged ≥5 years) were found

egg-positive but classified as infection negative using the serological diagnostic

method. In addition, the parasite eggs were detected in only one urine sample for

9 out of these 16 children, and the maximum recorded egg count was 4 eggs/10

mL urine.

Table 3.3: Detection of S. haematobium infection status by
parasitological examination of eggs in urine and serological testing for
IgM antibody response against egg antigens (SEA). Diagnostic test results
by age group.

Serology test

Age group Parasitology test + − Total

1–5 years + 17 1 18

− 28 51 79

6–10 years + 131 15 146

− 137 58 195

Total 313 125 438

The results from Bayesian analysis showed that the serological diagnostic

technique in comparison to the parasitology test had a higher sensitivity but

a lower specificity (estimated with high variability) as illustrated in Table 3.4.

The analysis further revealed that the sensitivity of the serological diagnostic

technique did not vary by age group or S. haematobium infection intensity burden

(Table 3.5).
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Table 3.4: Comparing the accuracy of serology vs. parasitology
diagnostic tests for detecting S. haematobium infection in the absence
of a gold standard. Estimates of posterior mean and median sensitivity and
specificity from the Bayesian model with 95% probability intervals (95% PI).

Diagnostic test Parameter Mean Median 95% PI
Parasitology Sensitivity 0.648 0.609 0.476 0.948
(Urine examination) Specificity 0.940 0.942 0.894 0.976

Serology Sensitivity 0.940 0.941 0.887 0.984
(SEA-IgM) Specificity 0.645 0.634 0.418 0.925

Table 3.5: Performance of the serology test in detecting
infection. Comparing sensitivity of the diagnostic test by age group
and infection intensity burden. Estimates of posterior mean and median
sensitivity and specificity from the Bayesian model with 95% probability
intervals (95% PI).

Sensitivity of serology test

Variable Subgroup Mean Median 95% PI
Age group 1–5 years 0.906 0.919 0.758 0.987

6–10 years 0.915 0.922 0.805 0.988

Infection Light intensity 0.945 0.947 0.885 0.990
Heavy intensity 0.927 0.934 0.828 0.989

Infection intensity burden defined according to the WHO classifica-
tion (WHO 2002).
Light intensity=1–49 eggs/10 mL urine; Heavy intensity ≥ 50/10 mL
urine.

3.8 Dipstick microhaematuria test

S. haematobium infection prevalence based on dipstick-detected microhaematuria

was compared to the prevalence determined by the parasitology test on a

subgroup of 190 children (1–5 years, n=51; 6–10 years, n=139). As highlighted

earlier, this subset consisted only of those children who microhaematuria dipstick

tests measured in addition to the parasitological and serological examinations.

The overall infection prevalence based on the presence of microhaematuria
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was 86.3% (95% CI: 81.9–91.7%) compared to 37.9% (95% CI: 30.9–44.9%)

determined by parasitology test in this subgroup. Furthermore, the results

revealed that infection levels based on dipstick-detected microhaematuria were

significantly higher compared to those based on parasitology test in both age

groups (Figure 3.5). Microhaematuria was detected in all egg-positive children

aged 1–5 years old. Four (2.9%) children aged 6–10 years old were found egg-

positive but tested negative for microhaematuria detected by the dipsticks. Since

a high proportion (Figure 3.5) of children in this subgroup analysis tested positive

for dipstick-detected microhaematuria, the age-dependent prevalence could not be

precisely estimated using the generalized linear regression model.
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Figure 3.5: Prevalence of S. haematobium infection determined using
parasitology, serology and dipstick microhaematuria diagnostic test
methods. Comparisons by age group on a subset of 190 children (1–5 years,
n=51; 6–10 years, n=139). The error bars indicate 95% confidence intervals. The
P -values are from χ2-tests for the differences in prevalence between the diagnostic
methods.

Further analysis to evaluate the accuracy of the dipstick microhaematuria

test in detecting infection compared with the parasitological technique revealed

that the dipstick test had a higher sensitivity (Table 3.6). However, the mean

specificity of the parasitology test was higher compared to that of the dipstick
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microhaematuria test. The dipsticks performed similarly among children carrying

light (n=58) or heavy (n=14) infection intensity burdens both with an overall

estimated sensitivity of 94.0%.

Table 3.6: Diagnostic performance of the dipstick test for microhaema-
turia compared to the parasitology test. Estimates of sensitivity and
specificity from the Bayesian model in the absence of a gold standard. Estimates
of posterior mean and median sensitivity and specificity from the Bayesian model
with 95% probability intervals (95% PI).

Diagnostic test Parameter Mean Median 95% PI
Parasitology Sensitivity 0.436 0.435 0.364 0.510
(Urine examination) Specificity 0.945 0.947 0.896 0.979

Microhaematuria Sensitivity 0.829 0.830 0.799 0.858
(Urine dipstick) Specificity 0.881 0.884 0.804 0.940
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3.9 Discussion

Following successful advocacy by the World Health Assembly in 2001 (WHO

2001a), repeated mass drug administration with PZQ has become the key

control strategy to combat schistosome infection and prevent development of

severe morbidity and is currently implemented in most control programmes

in Africa (Fenwick et al. 2009; Stothard et al. 2013). Since the required

treatment regimens for MDA depend on pre-determined infection prevalence

levels of the target groups (WHO 2002), it is of clinical and public health

importance that sensitive diagnostic tools are used to determine infection.

This will facilitate timely treatment of individuals and adequate interventions

for targeted populations (Mahfouz et al. 2011). Thus in this current chapter,

I hypothesized that the levels of S. haematobium prevalence determined by

serological detection of soluble egg antigens (SEA) would differ to those detected

by the parasitological egg examination in urine. In addition, these infection

levels were compared between preschool and primary school-aged children to

elucidate the need for inclusion of the neglected preschool age group into control

programmes. The implications of the prevalence of infection determined using the

different diagnostic methods for the WHO recommended treatment regimens were

also investigated.

The results of this chapter showed high levels of exposure to schistosomes

among preschool-aged children indicated by positive IgM antibody responses

against parasite antigens (CAP/SEA) and/or eggs in urine. This finding is

consistent with that of Woolhouse et al. (2000) who reported evidence of exposure

in children as young as four months old. Infection prevalence determined by

parasitological and serological diagnostic techniques increased significantly with

age. More importantly, the results of this chapter revealed significant infection

prevalence among preschool-aged children, further concurring with findings from

recent studies also reporting significant schistosome infection burden in this age

group (Garba et al. 2010; Mutapi et al. 2011; Sousa-Figueiredo et al. 2010;

Stothard et al. 2011). These findings corroborate the evidence that in endemic

populations young children are at risk of acquiring schistosome infection and may

develop severe morbidity if left untreated (Ekpo et al. 2012a; Stothard et al.

2013). The inclusion of these preschool children in the control programmes, as
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recently recommended by the WHO (WHO 2011a) will facilitate implementation

of improved effective and timely interventions (Garba et al. 2010).

In contrast to the serology test, the parasitological technique underestimated

infection prevalence in both age groups. These findings were also confirmed by

the Bayesian estimates for the sensitivity and specificity of the two tests applied

to evaluate the diagnostic performance when each test was used independently in

the absence of a gold standard test. The reduced sensitivity of the parasitological

technique despite repeated urine examinations can be attributed to the fact that

the majority of children in this study carried light infection intensities. It was

reassuring that the performance of the serological diagnostic test did not vary with

infection intensity burden or age group, indicative of its utility as an additional

diagnostic tool applicable in untreated preschool-aged children.

Based on the WHO guidelines (WHO, 2002), infection prevalence derived

from the serology test suggested a more frequent treatment intervention for this

study population compared to that implicated by the parasitological diagnostic

technique. These findings reveal the importance of the diagnostic tools used in

the field, as these have a bearing on the choice of treatment strategies required

for the targeted populations. These WHO recommended treatment strategies

for schistosome control are based upon parasitological examinations results, and

were developed before the contribution of light infections (often missed by the

parasitology test) to the development of morbidity was fully realised. The use

of additional diagnostic tools that can detect light infections, as demonstrated

in this study, and a better definition of morbidity arising from low schistosome

infections (as recently summarized by King & Bertsch (2013)) support the current

efforts (Mutapi et al. 2011; Stothard et al. 2013) and recommendations (WHO

2011a) for inclusion of preschool-aged children in schistosome control programmes.

Similar patterns of age-dependent infection prevalence profiles were observed

for the parasitological and serological diagnostic techniques, indicative of an

early exposure to infection and the accumulation of worm burden as children

grow older (Garba et al. 2010; Stothard et al. 2011). The discrepancy between

infection levels determined by the two diagnostic methods also increased with age.

Consequently, the observed age-prevalence patterns suggested that the required

intervention strategies may vary with age in young children. These above findings

are important for the planning of interventions and allocation of resources.

The proportion of schistosome egg-positive children classified as uninfected by
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the serological diagnostic technique can theoretically be attributed to two reasons:

1) contamination of the urine samples (Mutapi 2011), this can occur as a result

of instruments not being thoroughly cleaned or urine contamination with stool,

especially for young female children; and 2) individual variability in mounting an

immune response against the parasite antigens (Stothard et al. 2011). The high

level of technical expertise in conducting the parasitological examinations and

repeated urine examinations ensured that technical errors were kept minimal in

this study.

The use of dipstick-detected microhaematuria as an indicator of S. haemato-

bium infection was restricted to a subset of the study population and the results

indicated significantly higher prevalence levels in both age groups compared to

infection levels determined by the parasitological diagnostic technique. These

results are consistent with findings by King & Bertsch (2013), and highlighted the

potential utility of dipstick microhaematuria test as an additional rapid diagnostic

tool applicable in preschool children. However, these results need to be interpreted

with caution as bias can arise due to other conditions causing microhaematuria in

children (e.g. glomerular causes not attributable to schistosome infections (Meyers

2004)).

3.10 Conclusion

The current study showed significant S. haematobium infection levels in preschool

and primary school-aged children. Infection intensity and prevalence increased

rapidly from early childhood, stressing the need for treatment of preschool-

aged children. Infection prevalence based on the serological method suggested

a more frequent MDA regiment for the population than that suggested by the

parasitological diagnostic technique. In conclusion, the serological technique is a

valuable diagnostic tool that could be used in conjunction with the parasitological

technique to improve the detection of schistosome infections in preschool-aged

children. The choice of diagnostic tools used in the field has important implications

for treatment strategies required for the control of schistosome infections in young

children.
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Chapter 4

Identifying and evaluating field

indicators of schistosome-related

morbidity in children

Part of this work has been published (Wami et al. 2015), and a copy of the

manuscript is included in Appendix H.

4.1 Introduction

Chronic infection with S. haematobium, if left untreated can result in severe

clinical morbidity including anaemia, malnutrition, organ-specific complications

such as urinary tract and bladder pathology, enlarged liver and spleen, kidney

damage, and squamous bladder cancer (Colley et al. 2014; Gryseels et al. 2006;

King 2002; Smith & Christie 1986). Schistosome control programmes focus on

preventive chemotherapy with praziquantel to reduce or prevent the development

of severe morbidity due to schistosomiasis, and thereby improving the health

of the infected individuals and targeted communities (WHO 2010). In order to

appropriately plan and implement such interventions, as well as monitor their

effectiveness, a better understanding of infection levels and associated morbidity

due to schistosomiasis in the target populations is essential. This requires the use

of reliable rapid diagnostic tools that can be used in the field (Chen & Mott 1989;

van der Werf & de Vlas 2004).

In the past decade, progress has been made towards improving methods

of determining schistosome-related morbidity and various techniques have been
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evaluated under field conditions (van der Werf & de Vlas 2004). For example,

ultrasonography has been shown to be effective in detecting organ-specific

morbidity (King et al. 2003; Richter et al. 2000). Urinalysis has been widely

used as a rapid indirect assessment tool for early urinary tract morbidity due

to urogenital schistosomiasis (Stothard et al. 2009). In addition, standardized

questionnaires recommended by the WHO for rapid screening of S. haematobium

infection and morbidity have been extensively used in endemic regions (WHO

2002). However, most of these studies have focused in older children, typically

primary school-aged children (6–10 years), who are the current main targets of

schistosome control programmes or adults.

In a major effort to promote child health and development, and improve cog-

nitive potential of children in endemic regions, the WHO recently recommended

praziquantel treatment for schistosomiasis in preschool-aged children (aged 5

years and below) through regular health services and their inclusion in ongoing

schistosome control programmes (WHO 2011a). However, so far the performance

of available morbidity diagnostic tools has not been thoroughly evaluated in this

age group. In addition, although a few recent studies have been published on the

risk of morbidity due to S. mansoni infection in young children (Betson et al.

2010; Dawson et al. 2013), to date there is still paucity of studies quantifying the

burden of S. haematobium-related morbidity in preschool-aged children.

4.2 Aims

The aims of this chapter are to evaluate the utility of currently available diagnostic

tools for detecting schistosome-related morbidity and to determine markers

which can be used in the field to identify and quantify morbidity associated

with schistosomiasis. To address the knowledge gap about the performance of

available morbidity diagnostic tools in endemically exposed children, I have

compared the utility of several point-of-care (POC) tools for diagnosing S.

haematobium-related morbidity, namely: questionnaire-reported haematuria and

dysuria, clinical examination, dipstick urinalysis, and measurement of urine

albumin-to-creatinine ratio (UACR) in preschool (1–5 years) and primary school-

aged (6–10 years) children. I chose the above diagnostic techniques because

they are non-invasive and have close biological characteristics. Hence, these tools

are suitable for young children and their performances to detect morbidity are
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comparable. For example, reported painful urination and haematuria which can

be detected using the above tools, is associated with urinary tract morbidity due

to S. haematobium infection. In addition, presence of chemical components in

urine (e.g. albumin) detectable by urinalysis techniques can also be indicative

of S. haematobium induced kidney and urinary tract morbidity (Webster et al.

2009). Ultrasonography is one other non-invasive tool that could be used to detect

schistosome-associated morbidity at the point-of-care. However, for logistical

reasons (e.g. no power supply at schools) and associated costs ultrasonography

was not performed in the current study sample of preschool and primary school-

aged children.

This is the first study to validate several indicators of schistosome-related

morbidity in untreated preschool-aged children in a single population and

addresses the paucity of data on the morbidity burden due to schistosomiasis

in this age group.

4.3 Hypothesis

There is no difference in the performance of the currently available techniques for

detecting morbidity due to S. haematobium infection between children aged 1–5

years and 6–10 year olds.

4.4 Materials and Methods

4.4.1 Study design

Children meeting the study criteria described in chapter 2 (section 2.3.4) were

recruited into the study on voluntary basis and were free to withdraw at any

time with no further obligation. Figure 4.1 shows the study design flow chart

indicating the number of children enrolled in the study and included in the final

analysis. For this study, 384 participants were screened as some children in the

study population were absent for enrolment during the particular survey days.

After sample collection, participants were offered treatment with praziquantel at

the standard dosage of 40 mg/kg body weight, administered by the local physician.
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Figure 4.1: Flowchart indicating number of children enrolled in the
study and excluded from the final analysis.

4.4.2 Study population

A total of 298 children fulfilled the study criteria (Figure 4.1), and these comprised

of 142 (47.7%) males and 156 (52.3%) females, as reported in Table 4.1.
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Table 4.1: Demographic characteristics of the study population.

Age group Sample size (n) Median age Sex (Male/Female)

1–5 years 104 4.0 years 58/46

6–10 years 194 8.0 years 84/110

Overall 298 7.0 years 142/156

4.4.3 Determination of schistosome infection status

Urine and stool samples were collected for all the study participants and examined

using parasitological methods as already described in section 2.3.5 (chapter 2).

A small proportion, 6.0% (n=18) of the children in the current study were found

to be positive for S. mansoni. I compared the morbidity characteristics of these

children to those of a random sample drawn from age and sex matched S. mansoni

negative children and no differences were observed, hence these children were kept

in the study for the final analyses.

In chapter 3, I demonstrated that the parasitology technique lacked sensitivity

in detecting light infections in children. Thus, in addition to parasitology, IgM

antibody responses directed against soluble egg antigens (SEA) were used in the

current chapter to improve the diagnosis of S. haematobium infection. Details of

the protocols used to quantify the serum antibody levels are described chapter

2. Children were categorized as infected based on serology if their anti-egg IgM

antibody levels were more than two standard deviations (SD) above the mean

estimated from sera of negative controls, as described in chapter 3 and in the

recently published study (Wami et al. 2014).

4.4.4 Morbidity measurement

In addition to parasitology, urine samples collected for each of the participants

were examined for morbidity due to S. haematobium infection detected using

the different techniques following the procedures described in chapter 2. In this

study, dipstick reagent strips were used to detect the presence of the urine

attributes (nitrites, leukocytes, microhaematuria, proteinuria) and measure the

physical urine characteristics (pH and specific gravity). Visible haematuria was

assessed by inspection of first day urine samples and was characterised as positive
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for clearly red urine under the naked eye and negative if the urine sample did

not contain visible blood. Questionnaire responses to history/current presence

of haematuria and dysuria (yes/no) were used to ascertain the prevalence of

self-reported schistosome-related morbidity among children. Parents/guardians

responded on behalf of the children aged 5 years and below (section 2.3.9).

Following the manufacturer’s guidelines ( CLINITEK Microalbumin Reagent

Strips, Bayer, UK), a high abnormal threshold of urine albumin-creatinine-

ratio (UACR >33.9 mg/mmol) was used to ascertain presence of albuminuria,

a biological marker of urinary tract infection and an early predictor of progressive

kidney disease (Eknoyan et al. 2003; Stothard et al. 2009). Additionally, results

of clinical examination (performed by experienced health personnel) were used to

detect the presence of schistosome-related morbidity based on the observed signs

and symptoms.

4.5 Statistical Analysis

4.6 Identification of markers of morbidity

The method of non-metric multidimensional scaling (NMDS) was used to identify

urinary dipstick markers that contributed most to the differences in schistosome-

related morbidity observed in this population following the procedure already

described in section 2.7.5 (chapter 2). To test for the univariate associations

between different markers of morbidity by sex, age group or S. haematobium

infection status, I used the method of Chi-square (χ2) tests. In addition, the

phi-coefficient (φ) was used to determine the strength of correlation between

dichotomous markers (presence/absence) of schistosome-related morbidity.

4.6.1 Relating morbidity to S. haematobium infection

Using multiple logistic regressions, I investigated factors influencing the prevalence

of schistosome-related morbidity. Each of the morbidity indicators was included as

a response variable Y (1=presence or 0=absence), with sex (male vs. female), age

group (1–5 years vs. 6–10 years) and S. haematobium infection status (determined

by parasitology or serology) or infection intensity, transformed using log10(egg

count + 1) included as risk factors in the models. Two-way interaction effects
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were included in model building, however, none were found to be significant

and hence were subsequently dropped from the final models using the backward

method of selection (Agresti 2002). The Akaike information criterion (AIC) was

used for the model selection. The Hosmer-Lemeshow test was used for goodness

of fit tests of the logistic regression models (Agresti 2002). The model results

were expressed as odds ratios (OR), together with the corresponding Wald-test

P -values for significance of the parameters. For each binary morbidity response

marker Y , the main effects logistic regression was formulated as follows:

logit(πij) = ln( πij
1 − πij

) = β0 + β1Sex + β2Age group + β3Infection status (4.1)

where,

πij: is the probability of presence of schistosome-related morbidity at the jth

survey period for the ith child.

β0: is the intercept, and β1, . . . , β3 are the effects of the predictor variables on the

binary morbidity response outcome variable.

4.6.2 Morbidity attributable to S. haematobium infection

The risk of morbidity in each age group (1–5 years vs. 6–10 years) in relation

to presence of S. haematobium infection was estimated using prevalence ratios,

computed by dividing the prevalence of morbidity among infected children by the

prevalence in children negative for infection. A prevalence ratio (PR) greater than

one indicated a positive association between schistosome infection and presence

of associated morbidity. The Breslow-Day test with Tarone’s adjustment for small

sample sizes (Liu 2005) was used to assess whether the probability of detecting

morbidity using the different diagnostic tools in infected children differed between

1–5 years and 6–10 years old children. The population attributable fraction (AFP)

and attributable fraction infected (AFI) were used to estimate the proportion of

morbidity in the whole study population and among infected children that could

be attributed to S. haematobium infection, respectively, adjusting for the effects of

sex and age group. Furthermore, these estimates were used to compare the utility

of the different diagnostic tools for detecting schistosome-related morbidity.

The attributable fraction among the infected was formulated as:
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AFI = (PR − 1)
PR

(4.2)

The population attributable fraction was calculated as follows:

AFP = p × (PR − 1)
PR

(4.3)

where p is the prevalence of S. haematobium infection the children presenting

with schistosome-related morbidity.

Approximate 95% confidence intervals were calculated using the method

described by Rothman et al. (2008). For meaningful interpretations, attributable

fractions were only estimated for the morbidity markers with a prevalence ratio

(PR) significantly greater than one.

4.7 Results

4.7.1 Schistosome infection levels

The overall prevalence of S. haematobium infection determined by parasitological

examination was 35.9% (95% CI: 30.4–41.4%). Infection prevalence amongst

children aged 6–10 years was 47.9% (95% CI: 40.8–55.0%), and was significantly

higher (χ2=35.0; P <0.001) compared to the infection prevalence in 1–5 years

old children: 13.5% (95% CI: 6.8–20.1%). However, there was no significant

difference in the prevalence of infection between male and female children (χ2=0.5;

P=0.466). Infection intensity increased significantly with age (r=0.40; P <0.001),

with the highest levels observed between the ages of 8–10 years. Of the 298 children

in this study, 28.9% (95% CI: 23.7–34.0%) carried light infection intensities and

7.0% (95% CI: 4.1–10.0%) were heavily infected, as defined according to the

WHO categorizations (WHO 2002). The prevalence of S. haematobium infection

determined by serology was higher than that determined by egg counts in both

age groups; 1–5 years: 52.9% (95% CI: 38.8–67.1%), and 6–10 years: 84.1% (95%

CI: 78.3–89.9%).
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4.7.2 Urinary dipstick morbidity markers

Dipstick-detected microhaematuria and proteinuria contributed most to the

observed variability in morbidity among children (taking into account urine’s

physical characteristics, pH and specific gravity) as indicated by the strong

correlations in Table 4.2. The distribution of urinary markers differed significantly

between S. haematobium egg negative and positive children (T=-50.7; P <0.001)

and between the two age groups (T=-19.3; P <0.001). However, there were no

differences by sex (T=-1.5; P=0.089). Furthermore, the observed differences were

evident from the large NMDS ordination output distances between the respective

subgroup centres shown in Figure 4.2. Based on serological diagnosis of infection,

significant differences were also observed by infection status (T=-14.0; P <0.001),

age group (T=-6.5; P <0.001), but not sex (T=-2.5; P=0.068). In addition,

microhaematuria and proteinuria alone explained about two-thirds of the overall

variability due to differences between infected and uninfected children (detected

by either parasitology or serology).

Table 4.2: Non-metric multidimensional scaling (NMDS) correlations
(r) between urinary dipstick attributes and the two ordination axes. The
coefficient of determination (R2) indicates the percentage of the overall variability
explained. Strong correlations (absolute r ≥ 0.50) are highlighted and in in bold.

NMDS Axis 1: 71.4% NMDS Axis 2: 22.3%

Dipstick marker r R2 (%) r R2 (%)
Blood -0.77 59.3 0.51 26.0

pH -0.65 42.3 -0.68 46.2

Specific gravity 0.37 13.7 0.50 25.0

Proteins -0.79 62.4 0.01 0.0

Leukocytes -0.2 4.0 0.08 0.6

Nitrites -0.13 1.7 0.28 7.8
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Figure 4.2: Non-metric multidimensional scaling (NMDS) ordination
by sex, age-group and S. haematobium infection status. Subgroup centres
are represented by the bigger closed points, and the distance between these centres
is proportional to the level of dissimilarities between subgroups.
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4.7.3 Prevalence of morbidity

The prevalence of dipstick-detected microhaematuria was higher than questionnaire-

reported haematuria, which in turn was also higher than visible haematuria,

as illustrated in Figure 4.3. The morbidity prevalence results illustrated in

Figure 4.3 also revealed that children aged 6–10 years tended to report morbidity

more frequently compared to parents/guardians of 1–5 years old children. In

addition, albuminuria (detected by UACR) and dipstick proteinuria were observed

in both age groups (Figure 4.3). A positive association of albuminuria with

microhaematuria (φ=0.20; P=0.002), or proteinuria (φ=0.40; P <0.001) was

observed. In comparison to other diagnostic techniques investigated in this study,

visual urine inspection, and clinical examination detected the least number of

morbidity cases among the children (Figure 4.3).
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Figure 4.3: Observed prevalences of schistosome-related morbidity by
age group, assessed using different diagnostic tools. Error bars indicate
the 95% confidence intervals.
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4.7.4 Association between schistosome infection and

morbidity

Results of multiple logistic regression analyses revealed a significant positive

association (in order of strength of the association) of visible haematuria,

albuminuria, microhaematuria, and proteinuria with S. haematobium infection

detected by parasitology as shown in Table 4.3. In addition, S. haematobium

infection prevalence determined by serology was also found to be significantly

associated with albuminuria and proteinuria, adjusting for the effects of sex and

age group (Table 4.3). Significant increases in prevalence of albuminuria (OR=5.5;

P<0.001), visible haematuria (OR=4.7; P<0.001), microhaematuria (OR=3.4;

P=0.005), and proteinuria (OR=3.3; P<0.001) with infection intensity were

observed. However, no significant associations between infection intensity and

questionnaire-reported haematuria and dysuria, or clinical examination detected

morbidity were found.
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4.7.5 Morbidity attributable to S. haematobium infection

Since the morbidity markers are not specific to schistosomiasis but are general

markers of different physiological and biochemical processes, I went further to

determine how much of the morbidity was attributable to schistosome infection.

There was no significant difference in the estimated probability of detecting mor-

bidity between 1–5 years and 6–10 years old children using each of the diagnostic

tools (Table 4.4). In addition, it was observed from Table 4.4 that morbidity

detected by dipsticks (microhaematuria and proteinuria), UACR (albuminuria),

and urine inspection (visible haematuria) had prevalence ratios significantly

greater than one. Clinical examination detected morbidity had the lowest

prevalence ratio (Table 4.4). Furthermore, the results indicated that albuminuria

was the dominant marker of schistosome attributable morbidity at population

level, as well as amongst infected children (Figure 4.4). Proteinuria and visible

haematuria were also found to be highly attributable to schistosome infection

among infected children. Although a high crude prevalence of microhaematuria

was observed initially, the analyses revealed that a relatively smaller proportion

of microhaematuria was attributed to S. haematobium infection (Figure 4.4).

The attributable fractions among infected children estimated by age group strata

(Figure 4.5) showed a similar trend to the overall estimated attributable fractions

noted above.
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infection detected by parasitology, estimated by age group strata.

89



4.8 Discussion CHAPTER 4. Morbidity markers

4.8 Discussion

Until recently, most schistosome control programmes in Africa aimed at reducing

development of severe morbidity and improving child health have focused on

regular school-based de-worming strategies, targeting children above five years

old (Mutapi et al. 2011; Sousa-Figueiredo et al. 2010; Stothard et al. 2011). By

focusing treatment on the school-aged population, children of preschool-age have

been previously neglected in terms of research and control (Knopp et al. 2013).

Consequently, less is known about the levels of schistosome-related morbidity

in this age-group. Furthermore, research studies evaluating the performance of

the current POC markers of schistosome-related morbidity in children aged five

years and below are still limited (Betson et al. 2010). Estimation of disease

burden due to schistosome infections in children has been further complicated

by the fact that signs and symptoms commonly associated with schistosomiasis

can also be due to other causes (Webster et al. 2009). In the absence of a gold

standard POC morbidity diagnostic technique, several methods have been used

in studies from different endemic settings in older children (aged ≥6 years) and

adult populations (van der Werf & de Vlas 2004). In the current chapter, I focused

on tools currently used in the field, i.e., the WHO approved questionnaire-based

reporting of haematuria and dysuria, clinical examination by qualified clinicians,

routinely used dipstick tests measuring several urine attributes, and UACR

(for detecting albuminuria) which has previously been evaluated for schistosome

morbidity detection (Stothard et al. 2009). I evaluated how these tools performed

in preschool-aged children (1–5 years) compared to primary school-aged children

(6–10 years), who are the current targets of schistosome control programmes.

Results of this current study revealed that children of the two age groups

carried quantifiable levels of morbidity as determined by these different diag-

nostic tools. This finding is in accordance with a recent epidemiological study

by Sacko et al. (2011) who reported significant prevalence of urinary pathology

in endemically exposed children. Of the several urine attributes tested using

dipsticks, microhaematuria and proteinuria were significantly associated with

S. haematobium infection, as has been previously reported in several other

studies (Garba et al. 2010; Rollinson et al. 2005; Stete et al. 2012). A high

proportion of children aged 5 years and below presented with microhaematuria

in this study. More interestingly, the current study demonstrated that the
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performance of each of the different POC diagnostic tools for detecting morbidity

did not differ between preschool and primary school-aged children infected with

S. haematobium. These findings are important for planning of future interventions

as they provide evidence that preschool-aged children can be effectively screened

for praziquantel treatment using the available POC diagnostic tools applicable to

older children and adult populations in the field (Lyons et al. 2009; Sacko et al.

2011).

Since the physical and biological features determined by these diagnostics can

arise due to several conditions (Guyatt et al. 1995; van der Werf et al. 2003), it

was determined how much of the proportion of morbidity was attributed to S.

haematobium infection. Based on the results of prevalence ratios and attributable

fractions, UACR was identified as the most reliable tool for detecting schistosome-

related morbidity, followed by dipsticks, visual urine inspection, questionnaires

and lastly clinical examination. In addition, prevalence of albuminuria determined

using UACR was positively associated with presence of microhaematuria and

proteinuria detected by dipsticks. This finding suggests that these indicators

used in combination can be a better predictor of the presence of urinary tract

morbidity due to S. haematobium infection in children than using a single test

parameter, and thereby facilitating effective and timely interventions. The utility

of albuminuria as a valuable indicator of schistosome-related morbidity in our

study corroborates earlier findings in school-aged children by Sousa-Figueiredo

et al. (2009).

Although the proportion of children with visible haematuria was low in this

study, it was noted that S. haematobium egg-positive children were eight times

more likely to present with visible haematuria compared to egg-negative children.

In addition, all children with visible haematuria were positive for S. haematobium

infection detected using the serological diagnostic test. The majority of children

in this study carried light infections, and this could explain the observed low

prevalence of visible haematuria (King et al. 1988).

Since S. haematobium infection in endemic areas can easily be inferred from

presence of blood in urine, questionnaire responses about recent or current

presence of haematuria and dysuria can be used to assess schistosome-related

morbidity. However, the current study showed some level of bias in the reporting

of haematuria and dysuria between preschool-aged children, where the answers

were provided by the parents/guardians and primary school-aged children, who
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responded to the questions themselves. One theoretical explanation for these

observations could be that children easily mistook concentrated urine as blood

in urine, but less likely so by adults and hence resulting in the overestimation of

the prevalence of reported morbidity amongst the 6–10 years old children. These

results therefore need to be interpreted with caution. Physical clinical markers of

morbidity were the least attributable to schistosome infection. These findings are

consistent with a recent study by Agnew-Blais et al. (2010), who also reported

inadequacy of the physical examination method for assessing schistosome-related

pathology in school-aged populations.

Nevertheless, there are some limitations when interpreting the results of this

current study. Given that approximately 30% of the study participants were not

characterized for S. haematobium infection based on the more sensitive serological

diagnostic technique, caution must be applied when extrapolating the study

findings.

4.9 Conclusions

The results of this current chapter confirm that schistosome infection in preschool

children does result in significant morbidity. These findings are in agreement with

recent studies on S. mansoni in Uganda (Betson et al. 2010) and S. haematobium

in Malawi (Poole et al. 2014), reiterating the need for antihelminthic treatment in

preschool children. This study has gone further to identify morbidity diagnostics

with large fractions attributable to schistosome infection, highlighting detection of

albuminuria as the best choice for rapid assessment of morbidity attributed to S.

haematobium infection in children in the field. Finally the study showed that in S.

haematobium endemic areas, preschool-aged children can be effectively screened

for schistosome-related morbidity using the same diagnostic tools applicable to

primary school-aged children and adult populations. These findings are of clinical

and public health importance, as these tools can be used to identify affected

individuals or subgroups, thereby facilitating focused and timely delivery of

treatment, as well as evaluate the effectiveness of interventions for improved

control.
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Chapter 5

Health benefits of biennial vs.

annual praziquantel treatment in

children

5.1 Introduction

In endemic areas children carry the heaviest burden of schistosomiasis due to

their frequent contact with infective water (King 2006; Stothard et al. 2013;

Woolhouse et al. 2000). As a consequence, they suffer the most negative impacts

of the disease on health such as poor growth, malnutrition, and impaired cognitive

development (Colley et al. 2014; Gryseels et al. 2006). Younger children (≤5

years old) are also passively exposed to infection whilst being washed or bathed

with infested water (Stothard & Gabrielli 2007). However, it is only recently

that the burden of schistosome-related morbidity has become widely recognized

as a significant component to childhood health and development in infants and

preschool children (Gurarie et al. 2011; Stothard et al. 2013; WHO 2011b).

In the preceding chapters (chapter 3 and 4), I have demonstrated the presence

of significant schistosome infection and related morbidity in children aged 5

years and below, further reaffirming the need for early treatment to prevent

development of severe pathology in this age group. Results of my findings

and those from recent field studies demonstrating the need for interventions

in preschool children (Mutapi et al. 2011; Poole et al. 2014; Stothard et al.

2011; Wami et al. 2014, 2015) have heightened the need for a clear knowledge

of optimal praziquantel (PZQ) treatment regimens required for this age group
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to improve the effectiveness of present interventions (Mutapi 2015). Currently,

the WHO recommends different treatment regimens (e.g., annually or biennially)

depending on the schistosome infection prevalence in the targeted population,

usually assessed by surveying school-aged children (WHO 2002). Thus, having

established better diagnostic approach of schistosome infection (chapter 3) and

identified markers of schistosome-related morbidity that can be utilized for

post-intervention assessment (chapter 4), in the present chapter, I determined

the immediate and short-term effects of treatment with PZQ on infection and

morbidity by following treated children up to 24 months post-treatment.

5.2 Aims

The main aims of this chapter are two-fold: 1) To investigate the effects of PZQ

treatment in children aged 1–5 years old on S. haematobium infection and related

morbidity levels assessed using the three markers (microhaematuria, proteinuria,

and albuminuria) already identified and evaluated in chapter 4; and 2) To compare

the impact of biennial vs. annual treatments with PZQ on re-infection rates and

morbidity attributable to schistosomiasis, assessed over a period of 24 months.

In addition, changes in the morbidity indicators in children aged 1–5 years are

contrasted with those observed in primary school-aged children (6–10 years) to

assess whether repeated PZQ treatment affects the two age groups differently. This

is one of the few longitudinal studies investigating the effects of antihelminthic

treatment on schistosome-related morbidity in both preschool and primary school-

aged children. As such, it provides an initial operational recommendation for

future studies on the subject, as well as giving further insights into the health

benefits of antihelminthic treatment for preschool-aged children.

5.3 Hypotheses

Based on the analysis of the schistosome infection levels and related morbidity

markers: microhaematuria, proteinuria, and albuminuria, this chapter addresses

the following null hypotheses:

1. Treatment with praziquantel has no effect on S. haematobium infection

levels and related markers of morbidity in endemically exposed preschool

and primary school-aged children.

94



CHAPTER 5. PZQ treatment effect 5.4 Methods

2. There is no difference between biennial and annual praziquantel treatment

efficacy in reducing re-infection levels and schistosome-related morbidity in

children 24 months after treatment.

5.4 Methods

5.4.1 Study area and population

Children meeting the study selection criteria described in chapter 2 were recruited

only after the study objectives (including the treatment plan in compliance

with study ethics and following the WHO recommendations) had been explained

to them and their parents/guardians, and fully informed written consent from

parents/guardians had been obtained (see section 2.3.1). Care was taken to

identify and exclude children who had been treated as part of the national control

programme (mass drug administration) that was active at the same time in the

study area. In a recent nationwide survey in school-aged children in Zimbabwe,

Midzi et al. (2014) reported a S. haematobium infection prevalence of 31.2% for

Murewa district. This implied that the study area fell in the medium infections

level category area as defined by the WHO, and the recommended schistosome

treatment regimen is biennial treatment with PZQ of primary school-aged children

(see Table 5.1). In high-risk infection areas, the recommended regimen is an annual

PZQ treatment of primary school-aged children (Table 5.1). Thus, in this current

chapter, I was able to investigate if biennial PZQ treatment was adequate for this

current study population of young children.
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5.4.2 Study design

As already introduced in chapter 2, the study was designed to relate levels

of schistosome infection/re-infection rates and markers of schistosome-related

morbidity to the number of praziquantel (PZQ) treatments children received as

well as to the different age groups (ages 1–5 years vs. 6–10 years) treated in two

schools in different villages. The study design is a modification of the traditional

treatment re-infection study design where all people are treated at one time point

and followed up for specified time period (see Figure 5.2). The modifications were

to ensure that the treatment comparative study complied with the appropriate

ethical standards protocol.

5.4.3 Ethical statement

Ethical approval to conduct the study was obtained from Medical Research

Council in Zimbabwe (MRCZ). Only compliant participants were recruited into

the study and were free to drop out at any point during the study. Study

enrolment and sample collections were only performed after the study objectives,

including the treatment plan in compliance with study ethics and following

the WHO recommendations of PZQ treatment regimens had been explained

to them and their parents/guardians, and fully informed written consent from

parents/guardians had been obtained (see section 2.3.1).

5.4.4 Sampling design and Treatment group allocation

The villages within which the two schools, each with associated early child

development centres (ECDs) share the same river systems so that the transmission

dynamics in the study area are similar. A preliminary study was conducted on

primary school children (grades 3–6 from each school, age range: 6–10 years)

to confirm the levels of schistosome infection in the community and study site

as per sampling methods for mass drug administration and recommendations

by the WHO (Nagelkerke et al. 2000; WHO 2006). A clustered sample of 50

compliant children (25 children from each school) were parasitologically screened

for schistosome and soil transmitted helminth infections (see Figure 5.1). Children

found positive for infection during the pilot survey were treated with a single dose

of PZQ (40 mg/kg body weight), but were ineligible for participation in the main

study.
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In the Zimbabwean primary education system (grade 1–7), for each school

grade, children are divided mainly into classes A and B. In addition, children

transfer to secondary schools after the seventh grade, therefore, in order to follow

children for two years it was essential that the selected primary school children

were going to be at the same school for that study period. Thus, only children

attending class grades 1–6, in addition to the ECDs (for preschool children) were

considered in the present study (see Figure 5.1). The schools also served as feeding

centres for children not normally enrolled into any of the educational programmes.

Following the initial pre-study survey, pairs of compliant preschool/primary

school-aged children were registered and divided by age and sex, and allocated

into the two treatment groups (Figure 5.1), recruited at baseline but the initial

treatment was administered at different study time points using the following

criteria:

1. Selection of annual treatment Group 1; recruited at baseline (year 0) and

surveyed in year 1 and year 2.

� For each grade (1–6), select compliant children in A class from each

school and assign to treatment Group 1.

� Select first ECD from each village (associated with the corresponding

primary school) and assign to treatment Group 1.

2. Selection of biennial treatment Group 2; recruited in year 0 but not

screened for parasitology, and also surveyed in year 2.

� For each grade (1–6), select compliant children attending B class from

each school and assign to treatment Group 2.

� Select second ECD from each village (associated with the correspond-

ing primary school) and assign to treatment Group 2.

The baseline demographic characteristics of the two study groups were similar.
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Figure 5.1: Sampling design and allocation of the treatment groups by
primary schools and early child development centres (ECDs) within
the two study villages.

*Sample sizes for the pre-study survey were based on calculations determined from the
recent Zimbabwe National Schistosomiasis Survey (see Midzi et al. (2014)).

�Children attending these class grades fall within the age range constituting the high-risk
age group for schistosomiasis and STH in the community (WHO 2002).

� All children diagnosed positive for infection at any time point were offered antihelminthic
treatment with praziquantel.
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5.4.5 Study participants

Figure 5.2 shows the sample sizes of the study participants belonging to the

different treatment groups included in the final analyses. Treatment efficacy checks

were conducted at 12 weeks following initial treatment at baseline and at 12 weeks

following treatment administered at the 12 month study time point as shown in

Figure 5.2. The timing of the post-treatment efficacy check is important since

PZQ is most effective against adult worms (Greenberg 2006). The 12 month

period between treatments was chosen to reflect an achievable target for mass

chemotherapy in developing countries and in keeping with the recommendations

of the 2001 World Health Assembly resolution (54.19) for annual treatment in

high infection areas (WHO 2002).

The untreated children consisted of those who would not take Western

medication on religious grounds but were willing to take part in the study or

were absent on survey treatment days but were voluntarily included in the 12

week follow-up. At the end of the 24 months study, all compliant children were

offered antihelminthic treatment with PZQ.
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2nd treatment: 
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n=113 
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1st treatment 
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parasitology 
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Group 2: 

(1 PZQ treatment) 
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1st PZQ treatment 

70 egg positive 

(47.6%) 

 

 

12 weeks efficacy 

Dropped-out: 

(n=23) 

12 months (year 1) 

+ Treatment 
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follow-up: 

(n=27) 
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12 weeks 

efficacy 

Loss to 

follow-up: 

(n=0) 
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Treatment 

Figure 5.2: Flow chart of the treatment study design. Schematic
representation of the treatment effect study showing number of children at
baseline and post-treatment follow-up time periods.
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5.4.6 Determination of infection status

For each survey period, at least two urine and stool samples were collected for

parasitological diagnosis as already described in chapter 2 (section 2.3.5). Since

treatment induces changes in IgM antibody response levels, a factor associated

with increased exposure of the antigens to the immune system (Mutapi et al.

2003; Naus et al. 1998), the serological diagnostic technique described in Chapter

3 was not applied in this study.

5.4.7 Identifying markers of schistosome-related morbid-

ity

In chapter 4, I evaluated several different point-of-care morbidity diagnostics and

identified microhaematuria, proteinuria, and albuminuria as the main markers

showing the largest proportion of morbidity attributable to S. haematobium

infection. Therefore, these three morbidity markers were selected for the current

follow-on study on effects of PZQ treatment.

5.5 Statistical analyses

5.5.1 Data

The descriptions of variables measured in this study are displayed in Table 5.2.

5.5.2 Assessing treatment efficacy on infection levels

I assessed treatment efficacy against S. haematobium infection by means of cure

rates (CR) and egg reduction rates (ERR), limited to children who were present

at both baseline and 12 weeks follow-up, and defined as:

� CR=(number of children egg-positive before treatment and confirmed egg-

negative at 12 weeks post-treatment follow-up/number of children confirmed

egg-positive before treatment and followed up at 12 weeks) X 100;

� ERR=(arithmetic mean egg count for the study group before treatment –

arithmetic mean egg count for the study group at 12 weeks post-treatment/

arithmetic mean egg count for the study group before treatment) X 100.
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Table 5.2: Summary of variables measured in the study.

Variable Description

StudyID
Unique individual identification number for
each participant.

Age
Age of the participant at baseline or age group
(1–5 vs. 6–10 years).

Sex Gender of the participant (M vs. F).
Infection intensity Arithmetic mean egg counts/10 mL urine.

Infection status
Infection diagnosed by parasitological egg
count (positive/negative).

Survey period Pre- and post-treatment study periods

Treatment Group
Treatment group (Group 1=annual; Group
2=biennial treatment).

Morbidity
Schistosome-related morbidity outcomes indi-
cated by presence/absence
each of the markers microhaematuria, protein-
uria or albuminuria.

5.5.3 Assessing the effect of treatment on morbidity levels

The main outcome of interest in this study was whether PZQ treatment has an

effect on the levels of schistosome-related morbidity as measured using the three

urinalysis markers: microhaematuria, proteinuria, and albuminuria (Table 5.2).

The main design variables included host factors sex and age group as described

in Table 5.2. To determine whether schistosome-related morbidity prevalence

decreased after treatment and to investigate the effect of biennial vs. annual PZQ

treatments between the two age groups, I used the method of generalized linear

mixed models (GLMMs) described in section 2.7.3. Since the allocation of children

into different treatment groups was implemented at village level as opposed to

individual level, the GLMM technique adjusts for clustering by allowing both

fixed and random effects. Briefly, the GLMM was used to model the log odds of

the probability of a child presenting with morbidity, as assessed pre- and post-

treatment. A random intercept was included in the model to account for possible

correlation between children belonging to the same study group. The GLMM to

assess the effect of PZQ treatment on prevalence of schistosome-related morbidity

at 12 weeks post-treatment was formulated as follows:
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ln( πij
1 − πij

) = β0 + β1Sex + β2Agegroup + β3Treat + β4Agegroup ∗Treat + bi (5.1)

where πij: is the probability of presence of morbidity at the jth study time period

(pre- or post-treatment) for the ith child, β0 is the intercept, β1, . . . , β4 are the

regression parameters, reflecting the effect of the explanatory variables on the

response, bi: is the random effect term to account for the association repeated

observations within each child/treatment group, where bi ∼ N(0, σ2
b) is assumed.

F -tests and t-tests from the GLMMs were used to test for overall significant

effects and for pairwise comparisons, respectively. In all the analyses, pairwise

comparisons were adjusted for family-wise type I error using the less conservative

(i.e., has low rate of false negatives) simulation-based approach (Edwards & Berry

1987).

5.6 Results

5.6.1 Treatment efficacy on infection levels at 12 weeks

post-treatment

The baseline (Year 0) mean infection intensity in this study population determined

by parasitological egg count in urine was 14.0 eggs/10 mL urine (range: 0.0–

1013 eggs/10 mL urine). In Group 2, the pre-treatment (Year 1) mean infection

intensity was 9.5 eggs/10 mL urine (range: 0.0–195.0 eggs/10 mL urine). PZQ was

highly efficacious at reducing S. haematobium infection 12 weeks after treatment,

with high cure and egg reduction rates observed in both age groups of children

belonging to the different treatment groups (Table 5.3). All children belonging to

treatment Group 2 had successful curative treatment 12 weeks post-treatment.

For the two treatment groups, the observed cure rates at 12 weeks post-treatment

did not differ between children aged 1–5 years and the 6–10 year olds (Group1:

χ2=1.33; P=0.248; Group 2: χ2=0.17; P=0.675). In addition, it was further noted

that of the 14 heavily infected children in Group 1 at baseline, 85.7% (n=12)

had successfully cleared infection 12 weeks after treatment. Of the remaining 2

children, 1 had a change in mean infection intensity from baseline of 533.5 to 5.0
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eggs/10 mL urine, and for the other child, infection intensity decreased from 65.5

eggs/10 mL urine at baseline to 1.0 egg/10 mL at 12 weeks after treatment.
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5.6.2 Effect of annual vs. biennial PZQ treatment on

infection levels

Infection levels 12 months after treatment were significantly lower compared to

baseline levels for both treatment groups as shown in Figure 5.3. The effect of PZQ

treatment on overall infection prevalence levels 12 months after treatment did

not differ significantly (OR=0.42; χ2=0.70; P=0.405) between children receiving

annual (Group 1) vs. biennial (Group 2) PZQ treatments. None of the re-infected

children at 12 months post-treatment carried heavy infection intensities, and the

maximum recorded intensity was 27.5 eggs/10 mL urine for a child belonging to

treatment Group 1. The odds of re-infection among 1–5 year olds also did not

differ significantly: OR=0.76 (95% CI: 0.24–2.47; P=0.652) to those of children

aged 6–10 years old, adjusting for sex and treatment group. The overall rate

of re-infection 24 months after treatment for children receiving the annual PZQ

treatment regimen (Group 1) remained low 9.7% (95% CI: 4.3–15.2%) and was not

significantly different (χ2=2.14; P=0.143) from the re-infection levels observed at

12 months following initial treatment for children in Group 2 receiving biennial

treatment. The maximum recorded infection intensity at year 2 study time period

was 8.7 eggs/10 mL urine.
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Figure 5.3: Praziquantel efficacy in reducing infection levels in children
belonging to different treatment groups. Comparing infection levels at
baseline and 12 months after treatment. Group 1: annual and Group 2: biennial
PZQ treatment. Error bars indicate 95% CI.
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5.6.3 Short-term effects of praziquantel treatment on

morbidity levels

At 12 weeks post-treatment, data on markers of schistosome-related morbidity

were available for children belonging to Group 1 and untreated controls. Among

the treated children at 12 weeks, PZQ treatment significantly reduced levels of

proteinuria and albuminuria, but no change was observed for microhaematuria

(Figure 5.4). In addition, the odds of a treated child presenting with morbidity

12 weeks post-treatment did not significantly differ by age group (1–5, n=34;

6–10 years, n=92): microhaematuria (odds ratio, OR=0.57; 95% CI: 0.13–2.55),

proteinuria (OR=1.61; 95% CI: 0.54–4.76), and albuminuria (OR=0.84; 95% CI:

0.21–3.35). In untreated children who voluntarily remained in the study at 12

weeks, there was no significant change in morbidity prevalence as indicated by

the levels of the three markers of schistosome-related morbidity in Figure 5.4.

At 12 months post-treatment, the levels of the three markers of schistosome-

related morbidity among treated children receiving annual PZQ treatment

(Group 1) were significantly lower compared to baseline levels (Figure 5.5).

The effect of treatment on the markers of morbidity did not differ by age

group: microhaematuria (OR=1.69; 95% CI: 0.49–5.76; P=0.398), proteinuria

(OR=0.69; 95% CI: 0.24–1.99; P=0.494), and albuminuria (OR=0.67; 95% CI:

0.19–2.41; P=0.534).
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Figure 5.4: Praziquantel (PZQ) effect on prevalence of schistosome-
related morbidity. Baseline versus 12 weeks comparisons by treatment group.
The error bars indicate the 95% confidence intervals. The P -values are from
generalized linear mixed models investigating the probability of a child presenting
with morbidity pre- and post-treatment, adjusted for host factors sex and age
group.
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Figure 5.5: Effect of single praziquantel treatment on schistosome-
related markers of morbidity at 12 months post-treatment. The error bars
indicate the 95% confidence intervals. P -values were obtained from generalized
linear mixed models, adjusted for the effects of the host factors sex and age group.
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5.6.4 Effect of biennial vs. annual PZQ treatment on

morbidity

Following the first treatment administered at baseline (start of the field study),

children in Group 1 children received an additional PZQ treatment at 12 months,

whilst Group 2 children received their first treatment at 12 months survey (see

Figure 5.2). At the end of the 24 month study period, I investigated whether

within each treatment group (Group 1 vs. Group 2), the prevalence of the

markers of schistosome-related morbidity significantly changed from pre- vs. post-

treatment (Figure 5.6). The results of the GLMM analysis showed that treatment

significantly reduced levels of microhaematuria and albuminuria in both treatment

regimen groups (Figure 5.6). In the case of proteinuria, there was a significant

reduction relative to baseline in Group 1 children receiving the annual treatments,

but not in the Group 2 children who received the single biennial treatment

(Figure 5.6). This was despite the significant initial reduction in proteinuria levels

observed in treated children 12 weeks after treatment as shown in Figure 5.4. In

addition, at the end of the study period, the odds of presenting with morbidity

assessed using the three urinary markers did not differ between children receiving

single biennial and annual PZQ treatment regimens (Figure 5.6). When comparing

the effect treatment across the two age groups, the results also showed that for

children receiving biennial treatment, the odds of presenting with morbidity after

the treatment did not differ by age group to those of children who received the

annual PZQ treatment regimen (Table 5.4).
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Figure 5.6: Effect of biennial and annual praziquantel (PZQ) treatments
on schistosome-related morbidity. Levels of morbidity markers at baseline
(year 0) for Group 1 receiving annual treatments or year 1 for Group 2 (biennial
treatment) were compared to those at end of the 24 month study period (Year
2). The error bars indicate the 95% confidence intervals. The P -values adjusted
for pairwise comparisons were obtained from generalized linear mixed models
comparing levels of morbidity markers between treatment groups, allowing for
the effects of sex and age group.
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5.7 Discussion

PZQ is currently the antihelminthic drug of choice for treating schistosome

infections and reducing related morbidity. Early treatment of schistosome in-

fections in childhood may prevent the development of severe chronic morbidity

in adulthood (Richter 2003). In endemic areas, the WHO has recommended

frequent PZQ administration to school-aged children delivered at specific time

intervals as part of the intervention strategies for existing programmes aimed at

controlling subtle morbidity and preventing the development of chronic disease

due to schistosomiasis (WHO 2002, 2006). More recently, the recommendation by

the WHO has been extended to include preschool children (aged ≤5 years old)

in control programmes (WHO 2011a). However, it remains to be determined if

this age group can just be integrated into the existing treatment regimen or if

the optimal treatment regimen for this age group differs from older children. The

aims of this chapter were to determine the impact of PZQ treatment and compare

the effectiveness of biennial vs. annual PZQ treatments in reducing infection

and schistosome-related morbidity in endemically exposed children. Short-term

general health benefits of PZQ antihelminthic treatment in children of school-age

have already been documented (King 2006), therefore by including the primary

school-aged children (6–10 year olds) in this study, I was able to determine if

the effect of PZQ treatment on schistosome-related morbidity measures was age

group-dependent.

As already indicated in previous chapters (chapter 3 and 4), my findings on

infection and morbidity in preschool-aged children further support the premise

that if left untreated, these children are at an increased risk of developing severe

morbidity which may have serious consequences on child development and future

quality of life (Dabo et al. 2011; Stothard et al. 2011). My study results at 12

weeks after chemotherapy for both treatment groups indicated that PZQ was

highly efficacious against S. haematobium infection. The high cure rates and

egg reduction rates observed in this present study are consistent with findings

from previous studies that have also reported high treatment efficacy rates within

six weeks after treatment (Coulibaly et al. 2012; Mutapi et al. 2011; Tchuente

et al. 2004). Interestingly, my study further revealed that PZQ treatment was

equally efficacious in reducing S. haematobium infection levels in preschool-

aged children compared to their older counterparts (6–10 year olds), further
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supporting their inclusion in current schistosome control programs (Stothard

et al. 2013; WHO 2011a). Re-infection rates remained significantly low, with

marked reduction in infection intensities 12 months and 24 months (for Group 1)

after treatment. The results of comparisons of biennial vs. annual PZQ treatment

revealed beneficiary effects of both treatment regimens on infection levels, with no

significant differences observed between children belonging to the two treatment

groups. These results suggested that a biennial treatment regimen (following

the WHO guidelines for moderate infection prevalence areas) was sufficient in

reducing infection levels in this population.

Since schistosome-related morbidity is cumulative and progressive (King

2007), a decrease in current morbidity can reduce the long-term schistosomiasis

sequelae. At 12 weeks after the first treatment, there was a significant decrease

in the prevalence of morbidity markers among children successfully treated

for infection. The current study also showed that the prevalence of morbidity

diagnosed by microhaematuria declined slowly, with a significant reduction being

observed after 12 months post-treatment. These results showing persistently high

levels of microhaematuria differ from some published studies that reported a

considerable drop in microhaematuria within 8 weeks after treatment (Nkulila

et al. 1999; Sacko et al. 2009; Stete et al. 2012). However, these studies focused

on primary school or older children who may have developed chronic infection.

Another possible explanation for this delayed decrease in microhaematuria may

be that most of the observed microhaematuria in these children may have been

due to other conditions not attributable to schistosome infection. In the preceding

chapter, I demonstrated that the proportion of microhaematuria attributable to

schistosome infection was lower compared to that of albuminuria and proteinuria

(Chapter 4). The current study further revealed that a single PZQ treatment

dose had sustained effects on the reduction of schistosome-related morbidity, as

indicated by the prevalence of albuminuria that remained low after 24 months

in children receiving the single treatment. Furthermore, it is interesting to note

that despite the fact that children belonging to biennial treatment regiment only

received treatment a year later, they showed improved beneficial treatment effects

in terms of reduced re-infection rates and prevalence levels of schistosome-related

morbidity markers catching up with children who received treatment earlier

(annual treatment group).

In view of the current observations based on this study population, it is
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practically possible for control programmes in areas of moderate endemicity

targeting preschool-aged children to be implemented using the existing treatment

strategies designated for school-aged children (WHO 2002). Nevertheless, certain

limitations of the study must be considered when interpreting these results.

Firstly, since most of the children carried light infections in my study, the

parasitological cure rates at 12 weeks post-treatment efficacy check might have

been overestimated. However, it is reassuring that the efficacy rates (cure and

egg reduction rates) reported in my study are still within the range of those

observed from other previous epidemiological studies (Garba et al. 2013; Mutapi

et al. 2011). Secondly, children belonging to the two treatment regimen groups

were treated at different time points during the study. Thus, caution must be

applied, as my findings might not guarantee extrapolation strength to other study

designs. Lastly, participant drop-outs as well as other recruited children preferring

not to receive treatment for reasons highlighted in this study or having received

treatment through ongoing mass drug administration (MDA) programmes

(hence not considered in the current study) could have introduced additional

uncertainties in the levels of infection and schistosome-related morbidity markers

leading to a potential bias in the effects of treatment reported in this study.

Although a random effect was included in the statistical models to account for

some of this uncertainty, these results should be interpreted with caution.

5.8 Conclusions

The findings described in this chapter are important for practitioners, policy

makers and stakeholders involved in the control of schistosomiasis and timely

because of the current global drive to address the health iniquity created by the

paucity of information on the impact of PZQ treatment on schistosome-related

morbidity in children aged 5 years and below. The results of the current chapter

indicate that PZQ treatment not only effectively reduces schistosome infection

levels, but also the levels of schistosome-related morbidity in both preschool

and primary-school aged children, with marked reduction in morbidity levels

being recorded within the first year of treatment and sustained over a period of

two years. The study also demonstrated health benefits of biennial praziquantel

treatment regimen in reducing schistosome infection and related morbidity were

comparable to those observed in children receiving two annual treatments in
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this current population. Thus, in conclusion, the treatment regimens currently

designated for school-aged children aimed at controlling schistosome infections

and morbidity are adequate and applicable to preschool-aged children.
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Chapter 6

Evaluating serological biomarkers

of inflammation in urogenital

schistosomiasis in children

Part of the work in this chapter is in preparation for submission for peer review

and publication.

6.1 Introduction

Infection with S. haematobium in children commonly manifests itself with blood

in urine (haematuria) resulting from physical damage to the blood vessels and

the lining of the urogenital tract by parasite eggs exiting the body, as has been

introduced in chapter 1. Some of the parasite eggs get trapped in tissues, provoking

granulomatous inflammatory host immune responses that can eventually lead

to severe urogenital tract pathology, renal complications (hydroureter and

hydronephrosis), and squamous cell carcinoma of the bladder (Colley et al. 2014;

Gryseels et al. 2006; Smith & Christie 1986). Recent reports on the global

burden of disease indicate that schistosomiasis is responsible for an estimated

3.3 million disability-adjusted life years (Murray et al. 2012). In young children,

urogenital schistosomiasis can also cause a wide range of health-related conditions

(see section 1.5) including lethargy, anaemia and undernourishment which can

occur in infected individuals regardless of the level of their infection (King &

Dangerfield-Cha 2008; King et al. 2005; WHO 2001b). Malnutrition and anaemia

are associated with impaired child growth, reduced physical fitness, and poor
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cognitive and mental development (Friedman et al. 2005; Haas & Brownlie 2001;

Shaw & Friedman 2011). However, these clinical manifestations of schistosomiasis

may be mild and hence go unrecognised in some children (Knopp et al. 2013).

Continued efforts and new strategies to identify affected children earlier during

the course of infection are thus needed in endemic areas.

The main objective of the current control programmes as recommended by the

World Health Organization (WHO) is the reduction or elimination of morbidity

due to schistosomiasis (WHO 2012). As I have already discussed in great detail

in chapter 4, to achieve this goal there is a need for tools which accurately

assess morbidity and determine the effectiveness of interventions (Bergquist

et al. 2009; Vennervald & Dunne 2006). Several different biomarkers (proteins

or enzymes) measured in blood, serum or plasma have been suggested as

potentially useful diagnostic and prognostic indicators of underlying pathological

conditions in a variety of diseases (Anuradha et al. 2012; George et al. 2014;

Lee et al. 2002; Lin et al. 2004; Mcsharry et al. 1999; WHO 2011b; Zakynthinos

& Pappa 2009). In schistosome infections, measurement of such markers may

prove to be valuable tools for identifying individuals in need of interventions

and thereby facilitate timely treatment to prevent the development of severe

morbidity (Vennervald & Dunne 2006). As an example, anaemia is usually

assessed by measuring the haemoglobin concentration in blood, and the degree

of severity with anaemia classified according to WHO guidelines for age and/or

gender cut-offs (WHO 2001b). Previous studies in schistosomiasis suggest that

both iron deficiency and non-iron deficiency anaemia may contribute to low levels

of haemoglobin (Coutinho et al. 2005; King et al. 2005; McGarvey 2000), also

discussed in detain elsewhere (Hotez et al. 2006). Therefore, in face of these

challenges, the WHO also recommends measurement of additional indicators to

improve the assessment of anaemia in population surveys (WHO 2005, 2011c),

such serum ferritin, serum transferrin receptor (s-TfR) and the hormone hepcidin,

which regulates iron homeostasis (Ayoya et al. 2010; Lee & Beutler 2009).

However, the selection and interpretation of the most appropriate indicators for

assessing morbidity in large scale population-based studies is complicated by the

fact that these biomarkers are non-specific to the type of infection or inflammatory

disease condition (Ayoya et al. 2010).

In this chapter I sought to address this knowledge gap by evaluating several

serum circulating proteins associated with inflammation in children endemically
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exposed to schistosome infections. Focusing on several biomarkers instead of a

single indicator would aid in the identification of the most informative biomarkers

of inflammation that could be used in combination to detect the presence or

predict the risk of future morbidity in the field. In particular, I focused on the

following serum protein biomarkers applicable under field conditions: Chitinase 3-

like 1 protein (CHI3L1), C-reactive protein (CRP), ferritin, resistin, and secretory

leukocyte protease inhibitor (SLPI).

CHI3L1 is a known human carbohydrate-binding glycoprotein with no

enzymatic chitinase activity secreted by various cell types and is upregulated

in a number of human diseases (Kzhyshkowska et al. 2007; Lee et al. 2011). This

protein has been suggested to play an important role in Th2 cytokine-induced

inflammation (Mizoguchi 2006). Increased serum levels of CHI3L1 are associated

with disease severity and poorer prognosis in organ-specific conditions such as liver

fibrosis, inflammatory bowel disease and lung fibrosis (Coffman 2008; Johansen

2006; Kzhyshkowska et al. 2007). Recently, elevated serum levels of CHI3L1 have

been shown to be associated with presence of haematuria in individuals infected

with S. haematobium (Appleby et al. 2012) and related to hepatic fibrosis due to S.

japonicum infection (Zheng et al. 2005). Although CHI3L1 has been widely used

as a prognostic biomarker, there is still no standard reference cut-off for normal

serum concentration levels of CHI3L1. Recent attempts to determine reference

levels of normal CHI3L1 have been inconclusive, with different studies reporting

age-related changes in CHI3L1 levels in healthy individuals over time (Bojesen

et al. 2011; Korthagen et al. 2011).

CRP is a systemic marker of inflammation and tissue damage (Fakanya &

Tothill 2014; Macy et al. 1997; Ribeiro 1997). It is a non-specific biomarker

and its levels in serum have been shown to rise rapidly as a result of tissue

damage caused by infection or other acute inflammatory conditions (Fakanya

& Tothill 2014). In schistosomiasis, studies have shown that elevated levels of

CRP are correlated with presence and/ or severity of morbidity influenced by

the inflammatory processes during infection such as iron deficiency anaemia,

malnutrition and hepatic fibrosis (Ayoya et al. 2010; Coutinho et al. 2006, 2005).

The normal ranges of CRP vary with the laboratory purposes for which they are

measured and low levels of CRP do not always imply that inflammation is not

present (Greenland et al. 2010).

Ferritin is a major iron storage protein in humans (Wang et al. 2010),
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and has been widely utilized as a biomarker of iron deficiency anaemia and

pathological processes associated with soil-transmitted helminth infections in

humans recommended by the WHO for field use (WHO 2001b, 2011b). It has

also been suggested that ferritin arises as a leakage product of damaged cells, and

that its serum levels can be rapidly elevated in response to inflammation (Kell &

Pretorius 2014; Lee et al. 2002; Mcsharry et al. 1999). However, its potential as an

inflammatory biomarker in schistosome infections has not been widely explored.

Resistin and SLPI are other serological biomarkers of inflammation that have

also been previously shown to be important in the study of a variety of infections,

reflecting disease activity and/or severity (Gipson et al. 1999; Jin et al. 1997; Lin

et al. 2004; Nair et al. 2006; Silswal et al. 2005). Resistin is thought to promote

the release of pro-inflammatory cytokines such as IL-6, IL-10 and tumor necrosis

factor (TNF)-α, which also play a role in pathogenesis of schistosomiasis (Jang

et al. 2015; Silswal et al. 2005). SLPI is expressed in multiple cell types, and

has been implicated in regulating inflammatory processes (Adapala et al. 2011;

Devoogdt et al. 2004; Gipson et al. 1999). Knowledge about the expression of

SLPI in helminth infections is still lacking, although it has been suggested in

other diseases that its levels are upregulated during granulomatous inflammatory

responses (Ohlsson et al. 2003).

The host immune response to schistosome infection induces the secretion of

cytokines whose levels in plasma are important for the aetiology and regulation

of inflammation (Caldas et al. 2008). These immune responses involve an

interplay between Th1, Th2 and T regulatory (Treg) cells, and the cytokines they

produce (Mishra et al. 2014; Nausch et al. 2011). The Th1 acute pro-inflammatory

response to schistosome antigens is characterized by the production of IFN-

γ (Mwatha et al. 1998), which promotes activation of macrophages (Warrington

et al. 2011) and secretion of other cytokines such as TNF-α and IL-6 (Nair

et al. 2006; Pearce & MacDonald 2002). The schistosome egg antigens invoke Th2

responses, inducing the release of the cytokines IL-4, IL-5 and IL-13 (Caldas et al.

2008; Colley et al. 2014; Pearce & MacDonald 2002). These Th2 cytokines have

been associated with granuloma formation (Kaplan et al. 1998), also reviewed in

detail by (Fairfax et al. 2012). Previous immunoepidemiological and experimental

studies have shown that IL-10 plays a regulatory role in schistosome infections by

modulating the effects of Th1 and Th2 immune responses, and thereby preventing

damage to the host’s tissues (Corrêa-Oliveira et al. 1998; Hoffmann et al. 2000;
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Magalhães et al. 2004; Mutapi et al. 2007; Redpath et al. 2013; Smith & Maizels

2014), also reviewed in detail by Maizels & Yazdanbakhsh (2003). The immune

phenotype arising from the balance of these cytokines can be informative of

the risk of current and future morbidity associated with schistosome infection.

However, the growing number of different markers of morbidity and inflammation

still remain to be concurrently validated in preschool children (typically less than

5 years old).

6.1.1 Study aims

The aim of this chapter is to evaluate the utility of the five serological

inflammatory biomarkers (CHI3L1, CRP, ferritin, resistin, and SLPI) as indicators

of the risk of having schistosome-related morbidity. In addition, I sought

to investigate the effect of praziquantel treatment on the circulating levels

of the inflammatory biomarkers measured in children naturally exposed to

S. haematobium. To enhance understanding of the morbidity profile due to

schistosomiasis in children, these inflammatory biomarkers will be related to

the point-of-care markers of schistosome-related morbidity (microhaematuria,

proteinuria and albuminuria) identified and evaluated in chapters 4 and 5, and

the cytokines (IFN-γ, IL-4, IL-5, IL-10 and IL-13), that have been previously

evaluated and shown in other studies to play a potential role in schistosome

immunopathology (Magalhães et al. 2004; Milner et al. 2010; Mutapi et al. 2007;

Silveira et al. 2004). Establishment of these relationships would elucidate the

importance of the inflammatory biomarkers as parameters for the assessment of

schistosome-related morbidity.

6.2 Hypotheses

Based on the analysis of the five serum circulating inflammatory biomarkers

(CHI3L1, CRP, ferritin, resistin, SLPI), in relation to S. haematobium infection

levels, evaluated clinical markers of schistosome-related morbidity (microhaema-

turia, proteinuria and albuminuria) and a set of systemic cytokines (IL-4, IL-5,

IL-10, IL-13, IFN-γ), the objective of the current chapter was to test the following

null hypotheses:

1. There is no association between circulating levels of inflammatory biomark-
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ers and schistosome-related morbidity markers, and the set of systemic

cytokines responses.

2. Curative treatment with praziquantel has no effect on circulating levels

of the inflammatory biomarkers identified as valuable parameters for the

assessment of schistosome-related morbidity.

6.3 Methods

6.3.1 Study population

Children who met the eligibility criteria outlined in section 2.3.4 (chapter 2)

and had provided blood samples for serological tests were enrolled into the

current study. A total of 346 participants fulfilled the selection criteria and were

included in the study cohort for the final analyses as shown in Table 6.1. Of these

children, 136 (39.3%) were aged 1–5 years old and 210 (60.7%) were aged 6–10

years old. Participants were further categorized into four age groups following

the epidemiological age-prevalence curves for schistosome infections (Woolhouse

1998), as well as considering the balance of sample sizes between the different age

groups (Table 6.1). Stool and urine specimens were collected from each participant

as already described in section 2.3 of chapter 2. Following parasitology and blood

sample collection, children were offered treatment with the standard dose of

praziquantel (40 mg/kg body weight).

Table 6.1: Baseline demographic characteristics of the study popula-
tion.

Variable Number Percentage (%)
Sex:

Male 160 46.2
Female 186 53.8

Age group:
1–3 years 37 10.7
4–5 years 99 28.6
6–7 years 90 26.0
8–10 years 120 34.7
Total 346 100.0
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6.3.2 Determination of infection and morbidity

In chapter 3, I demonstrated the advantages of using the serological technique in

addition to the parasitological method in order to improve infection diagnostic

accuracy. Thus, in the current chapter, infection with S. haematobium was defined

as the presence of eggs in urine and/or positive IgM antibody response against

soluble egg antigens. The findings in chapter 4 showed that the urinary markers

identifying the largest proportion of morbidity attributable to S. haematobium

infection were albuminuria, microhaematuria and proteinuria. Therefore, these

three morbidity markers were chosen for investigation in the current chapter to

establish their relationship with the serological inflammatory biomarkers.

6.3.3 Assessment of inflammatory markers

Serum levels of the inflammatory biomarkers (CHI3L1, CRP, ferritin, resistin,

SLPI) as well as plasma levels of the cytokines (IL-4, IL-5, IL-10, IL-13, and

IFN-γ) were measured by ELISA as previously described in chapter 2 (see

section 2.5). Responders were defined as children with sample concentration levels

of biomarkers above 0 ng/mL (after subtraction of the blank control), while those

children with 0 ng/mL or below were designated as having no detectable levels of

the serum inflammatory biomarkers or plasma cytokine responses.

6.3.4 Assessment of praziquantel treatment effect

The treatment effect study focused on those inflammatory biomarkers differing

significantly in their levels by schistosome infection status (infected vs. uninfected)

and/or presence vs. absence of point-of-care markers of schistosome-related

morbidity. To be included in the post-treatment study, children fulfilling the study

selection criteria had to be confirmed egg negative 12 weeks after treatment, if they

had received the recommended dose of praziquantel (PZQ). As detailed earlier,

there was a group of children who were either absent from school on treatment

days or who would not take Western medication on religious grounds but were

willing to take part in the study. These effectively became untreated controls

who were also included in the 12 month post-treatment survey (Table 6.2).

All the study participants were not re-infected at 12 months, as determined by

parasitological examinations for eggs in urine.
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Table 6.2: Characteristic of participants selected for the treatment
study. Levels of the serological biomarkers of inflammation were assessed 12
months after treatment with a single dose of praziquantel (treated, n=120;
untreated control, n=23).

Variable Untreated controls PZQ treated Total
Sex, n (%)

Male 9 (391.) 55 (45.8) 64 (44.8)
Female 14 (60.9) 65 (54.2) 79 (55.2)

Age (years)
Mean (SD) 6.2 (2.63) 7.9 (1.98) 7.6 (2.18)

Age group, n(%)
1–3 years 3 (13.0) 1 (0.8) 4 (2.8)
4–5 years 7 (30.4) 14 (11.7) 21 (14.7)
6–7 years 4 (17.4) 32 (26.7) 36 (25.2)
8–10 years 9 (39.1) 73 (60.8) 82 (57.3)

6.3.5 Statistical analyses

The empirical distributions of the inflammatory biomarkers and cytokine re-

sponses were explored by means of histograms (Appendix F.1). In order to meet

the assumptions of the parametric statistical tests and reduce skewness, data for

infection intensity and all the cytokines and inflammatory biomarkers were log-

transformed: log10(x + 1), ascertained using the Box-Cox power transformations

method (Box & Cox 1964). For the formulation and results of the Box-Cox

transformation model, see Appendix F.2. I assessed the bivariate correlation

between inflammatory biomarkers and cytokines, as well as infection intensity

using Spearman’s rank test, partialling out the effects of age. I used the

non-parametric Wilcoxon Signed Rank Test to compare changes in the levels

of inflammatory markers post-treatment as the sample sizes for the different

subgroups were too small to reasonably assume normality. This non-parametric

approach was preferred as it takes into account the magnitude of the observed

differences between paired samples (Sprent & Smeeton 2001).

126



CHAPTER 6. Serological biomarkers 6.3 Methods

6.3.6 Assessing factors associated with levels of inflamma-

tory biomarkers

I used stepwise linear regression analysis to determine the relations between

biomarkers of inflammation, cytokines, infection status and markers of schistosome-

related morbidity, sequentially allowing for the effects of sex and age group. The

main effects general linear regression model was expressed as follows:

Yi = β0 + β1Sex + β2Age + β3Infection status + β4Morbidity marker + εi (6.1)

where:

Yi is the log-transformed response (inflammatory biomarker or cytokine) variable

β0 is the intercept term

β1, . . . , β4 are parameters indicating the main effects of the predictor variables

εi is a random error term, indicating the measurement error in the response

variable

The model-building process involved forward stepwise inclusion of the covariate

terms and their two-way interactions. In this analysis, the forward stepwise

procedure was preferred over the backward elimination method for two main

reasons: 1) the main effects model was used as the baseline model, hence there

was no potential of inflated mean square errors (MSEs) in model building because

of omitted important predictors; 2) since the number of possible interactions

between the potential confounding predictors was moderately large, by principle

of parsimony (Stone 1974), a saturated interactions model would compromise

the consistency and efficiency of model parameter estimations (Gould & Lawless

1988). The MSEs were used to compare the improvement in models with each of

the interaction predictor variables included. Based on this criterion, a model with

the smallest MSE was deemed the best model. Prior to making inferences based

on final models, Q-Q plots of the residuals were used to check for normality and

scatterplots of residuals on predicted values of each of the response variables were

used to check for constance of variance. In addition, the Brown-Forsythe test was

used to formally validate the homogeneity of variance assumption (Kutner et al.

2005).

During the model building process, inclusion of the interaction terms in
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stepwise regression analyses did not result in marked improvement of the main

effects models, assessed by comparing the mean square errors (see Appendix F.4).

Furthermore, since these two-way interactions were not statistically significant

(P>0.05), I limited all the interpretations of the findings to main predictor effects

only.

6.3.7 Assessing multivariate relations between

inflammatory biomarkers

Canonical Correlation Analysis

The method of canonical correlation analysis (CCA) was used to investigate

how the set of serum circulating inflammatory biomarker variables related to the

set of cytokine responses. Briefly, the aim of canonical correlation analysis is to

measure the correlation between two sets of variables and is suitable for situations

where there are multiple inter-correlated outcomes. This is done by finding pairs

of linear combinations that are maximally correlated with one another, then,

it determines a pair that has the largest correlation among all pairs (Johnson

& Wichern 2007). The strength of the overall relationship between two sets of

variables is measured by the canonical correlation coefficient (R), which represents

the bivariate correlation between the two canonical variates from the different

sets of variables. The absolute values of canonical coefficient loadings reflect

the contribution of each of the individual variables to the explained variation

between the two sets of variables (Johnson & Wichern 2007). In this current

chapter, I used the canonical loadings to explore the relative importance of each

of the cytokine responses to the inflammatory environment represented by serum

circulating levels of the protein biomarkers, adjusted for the effect of age. The

significance of the bivariate correlation was tested using the Wilks’ lambda (Λ)

multivariate statistic.
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Principal Component Analysis

To determine the multivariate relationships among the set of inflammatory

variables and explain the underlying variability structure associated with each

group of inflammatory markers, a principal component analysis (PCA) was carried

out. Principal components (PCs) with eigenvalues greater than 1 were extracted

and variables with absolute factor loadings greater than or equal to 0.5 were

interpreted (Johnson & Wichern 2007). The extracted PCs were then included in

linear regression models to test for the relationship between schistosome-related

morbidity markers and subgroups of biomarkers of inflammation, adjusted for sex,

age group, and infection status/intensity as outlined above.

6.4 Results

6.4.1 Schistosome infection levels

The prevalence and intensity of S. haematobium infection increased with age,

and the highest levels were observed between the ages of 8–10 years old as shown

in Table 6.3. Based on the WHO categorization of S. haematobium infection

intensity burden, it was noted that 5.7% (n=19) of the children carried heavy

infection intensities (mean=217.5 eggs/10 mL urine; range=58.3–1013.0 eggs/10

mL eggs) and 23.2% (n=77) of the children carried light infections (mean=11.6

eggs/10 mL urine; range=0.3–48.0 eggs/10 mL eggs).
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6.4.2 Detectable levels of inflammatory biomarkers and

cytokines

The histograms to explore the distribution of the inflammatory biomarkers and

cytokines indicated that there were some children who expressed elevated systemic

levels of these markers, while some children showed low levels (Figure F.1). Of

the assayed serum samples, more than 90% of the children produced detectable

levels of inflammatory protein biomarkers (see Figure F.2). The percentage of

plasma samples with detectable amounts of IL-10 and IL-13 was significantly

higher (P<0.001; see Figure F.2) in infected children compared to uninfected

children. Similar results were obtained when comparisons were made between S.

haematobium egg-positive and egg-negative children (Table F.5).

6.4.3 Levels of inflammatory biomarkers by age

Exploratory profile plots showed different trends of inflammatory biomarkers in

relation to age as illustrated in Figure 6.1. Without formally testing at this stage,

a slightly increasing trend with age among infected children was observed for for

all the inflammatory biomarkers except for CHI3L1, which seemed to drop with

age (Figure 6.1). Plasma levels of the cytokines also showed different patterns

with age between S. haematobium infected and uninfected children as illustrated

in Figure 6.1. However, the observed overall mean change in concentration levels

was relatively small in terms of magnitude for both inflammatory biomarkers and

cytokine responses.
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(A) Serum inflammatory biomarkers (B) Plasma cytokines
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Figure 6.1: Age profiles of inflammatory biomarkers and systemic
cytokine responses. Mean circulating levels by S. haematobium infection status
determined by parasitological and serological diagnostic techniques. Error bars
indicate the standard error of the mean.

6.4.4 Levels of inflammatory biomarkers by infection in-

tensity

Plots to explore the relationship between S. haematobium infection intensity and

levels of biomarkers are shown in Figure 6.2. The infection intensity determined by

egg examination in urine was not correlated with serum levels of the inflammatory

biomarkers or cytokine responses, partialling out the age effects (Figure 6.2). The

raw SEA IgM antibody titres significantly increased with serum levels of CRP

(r=0.15; P=0.005) and plasma levels of IL-4 (r=0.17; P=0.017) but not with the

other biomarkers studied.
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(A) Serum inflammatory biomarkers (B) Plasma cytokines
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Figure 6.2: Individual distribution of S. haematobium infection
intensity by levels of inflammatory biomarkers and cytokine responses.
Correlation between infection intensity and inflammatory biomarkers and
cytokines determined by Spearman’s rank test, adjusted for age.

6.4.5 Correlations between inflammatory biomarkers and

cytokines

Assessing the bivariate relations between the inflammatory biomarkers, levels

of CRP showed the strongest positive correlation with CHI3L1 (Table 6.4).

In addition, circulating levels of CRP were positively associated with the pro-

inflammatory cytokine, IL-13. Furthermore, IL-10, a regulatory cytokine was also

significantly correlated with levels of CRP and all the other pro-inflammatory

cytokines as shown in Table 6.4.

The set of inflammatory biomarkers correlated significantly with the set of

cytokine variables as shown by the results of the canonical correlation analysis
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Figure 6.3: Standardized canonical variate coefficients and canonical
correlation (R) analysis results. Canonical correlation analysis to identify and
quantify the multivariate association between the set of inflammatory biomarkers
and the cytokine responses. The absolute magnitudes of the canonical covariate
coefficients give the contributions of the individual biomarker or cytokine response
to the the corresponding canonical variable.

in Figure 6.3. As was observed in bivariate correlations (Table 6.4), CRP was

identified, together with SLPI as the inflammatory biomarkers contributing

most to the observed variation in the inflammatory processes observed in this

population (Figure 6.3). Among the cytokines, IL-10 and IL-13 contributed the

most to the inflammatory processes observed in this population (Figure 6.3).

Additional canonical correlation analysis to investigate whether the set of

inflammatory biomarkers could be related to the set of schistosome-related

morbidity markers and cytokine responses simultaneously revealed a positive,

but non-significant multivariate association (R=0.29; Wilk’s Λ=0.94; F=1.03;

P=0.422).

6.4.6 Clustering of inflammatory biomarkers

Table 6.5 summarizes the principal components analysis results to determine

multivariate relations between groups of inflammatory biomarkers and cytokines.

There was a reduction in the set of the original five inflammatory variables to two

distinct composite clusters, explaining 89.3% of the total variability in the data

(Table 6.5). CHI3L1 and CRP stood in a separate component, both with strong

positive factor loading coefficients. The rest of the biomarkers; ferritin, resistin,

and SLPI had a similar contribution to the other resulting component of the PCA

(Table 6.5). The pro-inflammatory cytokine IL-13 had the strongest contribution
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to the resulting components compared to other cytokines as indicated by its

high positive factor loading coefficient and belonged to a separate component

to the rest of the cytokines. The results showed that the cytokines IL-4, IL-10

and IFN-γ had similar contributions to the other resulting separate principal

component (Table 6.5). Further sub-group analysis on S. haematobium egg-

positive children to explore the inflammatory environment suggested by the above

results revealed that CHI3L1 and CRP had the strongest contributions compared

to the other biomarkers, with factor loadings 0.73 and 0.64, respectively.

Table 6.5: Principal Components Analysis (PCA) factor
loadings of the inflammatory biomarkers and plasma cytokine
responses. The PCA were conducted separately for the inflammatory
biomarkers and cytokines. Strong factor loadings in absolute
magnitude (≥0.5) are highlighted and indicated in bold.

Variable Principal Component Loadings
PC1 PC2

Inflammatory biomarkers:

% of variation explained 76.8% 12.5%

CHI3L1 0.12 0.75

CRP 0.37 0.57

Ferritin 0.55 -0.24

Resistin 0.57 -0.11

SLPI 0.50 -0.22

Plasma cytokine responses:

% of variation explained 71.7% 22.9%

IL-4 0.52 -0.22

IL-5 0.42 -0.39

IL-10 0.50 0.32

IL-13 0.27 0.82

IFN-γ 0.50 -0.18

The principal components were extracted according to the
proportion of variation in the study population they explained (i.e.,
at least ≥80%).
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6.4.7 Relations between inflammatory biomarkers and

morbidity markers

In the regression analyses to determine the relationship between the biomarkers of

inflammation and markers of schistosome-related morbidity, only ferritin showed

a significant association with proteinuria (Table 6.6). However, the pairwise

comparisons revealed that the mean levels of this biomarker were significantly

lower in proteinuria positive children (mean=1.17 ng/mL; SE=0.074) compared

to children negative for proteinuria (mean=1.34 ng/mL; SE=0.051). The adjusted

mean serum levels of the inflammatory biomarkers by presence/absence of

markers of schistosome-related morbidity are illustrated in Figure 6.4 to aid the

interpretation of these results. Furthermore, these results were consistent with

those from subgroup analyses focusing on S. haematobium egg-positive children

only (see Table F.6). The extracted principal components did not reveal significant

associations with any of the three urinary markers of schistosome-related, after

sequentially allowing for the effects of sex, age and infection status (Table 6.6).

Among the cytokine responses (see Table F.4), only IL-4 sowed a significant

(post-hoc t=2.2; P=0.027), but negative association with presence of proteinuria:

negative, mean IL-4=0.11 ng/mL (SE=0.040) vs. positive, mean IL-4=0.01 ng/mL

(SE=0.013).
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Figure 6.4: Adjusted mean levels of inflammatory biomarkers by
presence/absence of schistosome-related morbidity markers. The means
were adjusted for sex, age group and baseline infection status determined by a
combination of parasitological and serological techniques.
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6.5 Effect of praziquantel treatment

To address the research question of whether praziquantel had an effect on the

circulating inflammatory biomarkers, changes in the levels of CHI3L1 and CRP

were assessed 12 months after treatment (see Table 6.2). The two biomarkers

were selected based on the fact that they showed strong contribution to the

inflammatory clustering in principal components analysis, and when assessed

individually or in multivariate analyses they showed significant relations with

other biomarkers and pro-inflammatory cytokines or infection status.

6.5.1 Individual changes in levels of CHI3L1 and CRP

Exploring changes in individual levels of the two inflammatory biomarkers, it was

observed that of the 120 treated children, CHI3L1 levels decreased in only 9 (7.8%)

children (6 of which were infected at baseline) 12 months after treatment. CRP

levels dropped in 37.9% of the treated children 12 months after treatment and the

majority of these children were also positive for infection at baseline (Figure 6.5).

Similar patterns were observed when considering a subgroup of children egg-

positive at baseline (see Figure F.3). Individual serum levels of CHI3L1 increased

after 12 months in all untreated children who were infected at baseline, except

in one child whose levels remained unchanged (Figure 6.5). However, CRP levels

remained unchanged at 12 months in most of the untreated children (Figure 6.5).
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(A) Untreated controls (B) PZQ treated group
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Figure 6.5: Individual serum levels of CHI3L1 and CRP levels at
baseline and 12 months after treatment split by baseline infection status
determined by parasitology and serology. Changes in circulating levels of
inflammatory biomarkers in treated (n=120) and untreated (n=23) children.
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6.5.2 Effect of treatment on mean levels of inflammatory

biomarkers

Pre-treatment and 12 months post-treatment mean levels of the two inflammatory

biomarkers by baseline infection status are shown in Table 6.7. Levels of CHI3L1

increased significantly from baseline in both treated and untreated children

12 months post-treatment. However, when comparing the differences in post-

treatment mean changes in CHI3L1 among children diagnosed positive for

infection at baseline, no significant differences were observed between the treated

and untreated. On the other hand, PZQ treatment did not result in a significant

change in levels of CRP 12 months after treatment (Table 6.7). Furthermore, the

results of the subgroup analysis conducted in children found S. haematobium egg-

positive at baseline also revealed similar findings, showing a significant increase

in CHI3L1 in treated children at 12 months (Figure F.3).
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6.6 Discussion

In the preceding two chapters, I have demonstrated that subtle morbidity due

to S. haematobium infection does occur in young children and that the current

point-of-care markers of schistosome-related morbidity can be effectively reduced

by a single dose of antihelminthic treatment with praziquantel. Identification of

additional biomarkers that can be used under field conditions as early indicators of

underlying pathological changes and clinical outcomes related to schistosomiasis

in children would provide an invaluable tool for the design of improved control

programmes. In addition, these inflammatory responses can be targeted for early

treatment, thereby preventing development of chronic disease in the later years of

life (Bhargava et al. 2003; Vennervald & Dunne 2006). In recent years, a growing

number of inflammatory mediators have been investigated as indicators of disease

progression and severity (Ayoya et al. 2010; Ong’echa et al. 2011). However, the

manifold serum circulating biomarkers are non-specific (Knopp et al. 2013), hence

their utility as non-invasive tools to diagnose underlying pathology associated with

schistosomiasis in these young children still needs to be thoroughly validated.

In the current chapter, I examined five serum circulating proteins associated

with the inflammatory processes during diverse health conditions in order to

evaluate their potential as indicators of current morbidity and/or prognostic

markers of future S. haematobium-related morbidity in a single population of

children aged 1–10 years. This study is among the first to simultaneously evaluate

multiple inflammatory biomarkers in a single population of young children

naturally exposed to S. haematobium. As such, it adds data to the understanding

of the factors associated with pathogenesis of paediatric schistosomiasis.

The varying age patterns in levels of infection and inflammatory responses ob-

served in the current study are consistent with reports from other epidemiological

studies of human schistosomiasis, reflecting an accumulation of worm burden and

increased exposure to the parasite antigens as children grow older and make more

frequent independent contacts with infective waters (Mitchell et al. 2011; Mutapi

et al. 2011; Stothard et al. 2011). In the present study, I used both parasitological

and serological methods to detect infection. On one hand, it could be argued that

only children excreting eggs in urine matter in the investigation of inflammatory

processes in this current study. Yet on the other hand, the standard parasitology

egg count misses active infections as previously noted (Berhe et al. 2004; De Vlas
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et al. 1997). Furthermore, its limitations in detecting infections in young children

demonstrated in my findings in chapter 3, justify the use of the more sensitive

serological method as an additional diagnostic tool. Nonetheless, as an extra step,

I further confirmed the existence of an inflammatory environment among the

endemically exposed children by performing subgroup analysis on egg-positive

children only which resulted in similar findings to those observed in children

diagnosed by both parasitology and serology (see Appendix F).

In my study, a high proportion of infected children had detectable plasma levels

of IL-10 and IL-13, suggestive of an underlying immune-mediated inflammatory

environment in this population. These data also support previous findings in

which the percentage detectable cytokine levels were significantly associated with

presence of parasite eggs in stool or urine (De Souza, Robson Da Paixão et al.

2012; Imai et al. 2011; Magalhães et al. 2004; Milner et al. 2010; Mutapi et al. 2007;

Silveira et al. 2004). However, in my study the percentage with detectable levels

of inflammatory biomarkers was high in both infected and uninfected children (as

detected either by egg status only or using the combination of both parasitology

and serology methods). This finding may be plausibly be due to an increase in

background levels of these biomarkers influenced by other non-schistosome related

agents such as Giardia, Plasmodium antigens and house dust mite, also commonly

reported among rural Zimbabwean populations (Imai et al. 2011; Rujeni et al.

2013).

The inflammatory environment is characterized by a complex range of different

responses rather than a single immune response marker (Bourke et al. 2012). The

inter-correlations of inflammatory mediators during infection further complicates

the identification of useful biomarkers of morbidity (Charpentier et al. 2013;

Ong’echa et al. 2011; Zakynthinos & Pappa 2009). In my current study, two

inflammatory biomarkers, CHI3L1 and CRP emerged as the most contributors to

the underlying inflammatory environment suggested by the results of multivariate

analyses. The possibility of existence of an inflammatory environment in these

children was further strengthened by the different groupings of the cytokine

responses and their correlation with inflammatory biomarkers, in which IL-10

and IL-13 were cited as the major players in the inflammatory process. The

involvement of these cytokines as mediators of inflammatory responses associated

with schistosome-induced pathology has been reported in previous experimental

and human studies (Magalhães et al. 2004; Mutapi et al. 2007; Silveira et al.
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2004; Smith & Maizels 2014). However, more research focusing on parasite-

specific cytokine responses is needed in order to confirm the current findings and

further enhance the understanding of the interactions between these serological

biomarkers and cellular immune responses in relation to the risk of morbidity in

preschool-aged children.

The levels of the different inflammatory biomarkers and cytokines were not

correlated with infection intensity and only a weak association was established

between some of these biomarkers with schistosome infection status. In addition,

despite the distinct inflammatory profiles revealed by principal component

analysis, the results of regression analyses of individual inflammatory biomarkers

and cytokines or the extracted components did not reveal any robust associations

with the point-of-care (POC) markers of schistosome-related morbidity. In

contrast to my findings, Appleby et al. (2012) in their study showed that

elevated levels of CHI3L1 were significantly positively correlated with presence

of haematuria in individuals infected with S. haematobium. In a similar fashion,

other studies in Zimbabwe and Mali also reported significantly higher levels of

serum ferritin and CRP in schistosome infected school children compared to

uninfected individuals (Ayoya et al. 2010; Friis et al. 1996; Reilly et al. 2012).

However, when comparing the ranges in concentration levels of these indicators

of inflammation (CHI3L1, CRP and ferritin) between the reported studies, it was

noted that the circulating levels among children in my present study were on the

lower end of serum levels observed in the previous studies cited above.

The effect of chemotherapy on circulating inflammatory biomarkers during

diverse disorders has produced conflicting reports, and still has yet to be

elucidated in the context of schistosomiasis. In my present study, the effect of

curative treatment with praziquantel was assessed on CHI3L1 and CRP, the two

biomarkers identified as showing the most influence on the inflammatory processes

observed in this population. After 12 months of treatment, no changes were

observed in levels of CRP, but CHI3L1 levels increased, although these changes

were comparable to those of untreated controls. This, however contradicts with

results of other studies, which reported a significant reduction in CRP and CHI3L1

levels in schistosome infected individuals following antihelminthic chemotherapy

with PZQ (Appleby et al. 2012; Coutinho et al. 2006).

There are several possible explanations for the results presented here. Firstly,

the high percentage of detectable levels of biomarkers and some cytokines in
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uninfected children, as well as the lack of robust relationship between these

inflammatory biomarkers and schistosome infection levels could be attributed to

other unrelated confounding environmental background factors (Lee et al. 2008).

Changes over time in circulating inflammatory biomarkers arising from other

background sources and the ageing process have also been reported in healthy

individuals across general populations (Bojesen et al. 2011; Bottino et al. 2015;

Korthagen et al. 2011; Prescott 2013; Woods et al. 2012). Thus, it could simply

be the case that the inflammatory mechanisms observed in these children were

elicited by other pathogens since the inflammatory biomarkers are non-specific

and the cytokine responses investigated in this study were not exclusively targeted

to schistosome infection. Secondly, elevated levels of inflammatory mediators have

been associated with poorer prognosis and disease severity such as seen in chronic

inflammatory conditions (Libreros et al. 2012; Ong’echa et al. 2011). Thus, the

results from my study showing lack of association of the biomarkers with measures

of schistosome-related morbidity could be suggestive of that the levels of these

inflammatory biomarkers in this current population of young children who are

more likely to have acute infections may be too low to have apparent physiological

or biochemical consequences such as those reported in other studies (Appleby et al.

2012; Ayoya et al. 2010). To support this notion, evidence from a recent study

suggested an increased risk of developing bladder morbidity in the second decade

of life increased in children chronically infected with S. haematobium (Garba et al.

2010). More studies involving both preschool children (aged ≤5 years) and older

individuals with a longer cumulative history of exposure to schistosome infection

would be valuable in elucidating the conflicting evidence about relations between

inflammatory biomarkers and POC markers of schistosome-related morbidity.

Lastly, it is unsurprising that antihelminthic treatment with PZQ did not

result in a positive reduction in the levels of serum circulating proteins impli-

cated in exacerbating inflammation since no robust relationship between these

biomarkers and schistosome infection or related morbidity was observed, as

already discussed above. It has been shown in other unrelated studies that the

benefits of chemotherapy, effectively resulting in marked changes in circulating

levels of inflammatory biomarkers in serum are more pronounced in individuals

with chronic or more severe pathology, (discussed in detail by Zakynthinos &

Pappa (2009)). Another factor to consider is that some studies on schistosomiasis

that reported significant treatment effects had shorter post-treatment follow-ups
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of up to 6 weeks (Appleby et al. 2012; Coutinho et al. 2006). Hence, the 12 months

follow-up time at which treatment effects were assessed in the present study might

have been too long to show conclusive evidence for treatment related changes in

levels of inflammatory biomarkers.

A major strength of my study is that it concurrently investigated several

inflammatory biomarkers and cytokine responses to enhance understanding of

the relations between these biomarkers. However, the study had some limitations

to be acknowledged. Serum circulating biomarkers mainly reflect levels of systemic

inflammation, hence other potential confounding factors could influence the

current findings. This may limit the applicability of these biomarkers as tools

for control. Caution should be taken when extrapolating the results in relation to

populations other than of children aged below 10 years of age as this study did

not include data on chronic infections associated with older individuals.

6.7 Conclusions

Taken together, the results of this current chapter demonstrated the existence

of an underlying inflammatory environment characterised by different sets of

biomarkers of inflammation and cytokine responses. The interrelations found

in the present study suggest that CRP and CHI3L1 may be useful markers for

screening children who are at risk of developing chronic inflammatory conditions.

However, the relationship between these biomarkers and schistosome infection, as

well as the current point-of-care markers of morbidity was not robust and requires

to be explored further to determine their utility as tools for assessing morbidity

due to schistosomiasis. The present study revealed no effect of antihelminthic

treatment with praziquantel on circulating CRP levels and the magnitude of

change in CHI3L1 levels did not differ between treated and untreated children,

suggesting their limitation as potential indicators in children for evaluating the

impact of interventions in schistosome control programmes.
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Chapter 7

General discussion

7.1 Introduction

In this thesis, I focused on urogenital schistosomiasis, an important but neglected

infectious disease affecting over 100 million people, mainly in Africa (Gryseels

et al. 2006). In these endemic areas, urogenital schistosomiasis is associated with

high morbidity in children who carry the heaviest burden of infection (Fenwick

et al. 2009; Gryseels & de Vlas 1996; Hotez & Fenwick 2009). Preschool children

(aged ≤5 years old) have previously been neglected both in terms of research

and control, which has been further exacerbated by poor diagnosis of infection

in the field (also noted by Mutapi (2015)). It not until recently (2010) that the

WHO has recommended praziquantel treatment and the inclusion of preschool

children in national schistosome control programmes (WHO 2011b). However,

the burden of disease among these children still remains poorly understood and

consequently poorly quantified. Furthermore, the performance of the currently

available tools for detecting infection and morbidity is still yet to be thoroughly

and systematically evaluated.

I have assessed the utility of currently available methods for diagnosing

S. haematobium infection (chapter 3) in endemically exposed preschool (1–5

years) and primary school children (6–10 years). Selected point-of-care mark-

ers of schistosome-related morbidity applicable under field-based conditions

as recommend by the WHO, and several different serological biomarkers of

inflammation that could predict early stages of immune-mediated pathology due

to schistosomiasis were also investigated in this thesis (chapters 4 and 6). Using a

combination of applied statistical methods, I determined the effect of praziquantel
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treatment on factors associated with S. haematobium infection and morbidity in

children aged 1–5 years and the findings were compared with those observed

in children aged between 6–10 years old, who are the current targets of the

schistosome control programmes (chapter 5).

In this present chapter, the major findings with regard to the research

questions (see chapter 2) are summarized. The main conclusions based on the

findings of the studies set forth in the preceding chapters of this thesis are

outlined. Furthermore, the strengths and limitations of the methods used in thesis

are discussed and suggestions for further research into paediatric schistosomiasis

are presented. I will conclude the present chapter with key conclusions for the

diagnosis, morbidity assessment and treatment of paediatric schistosomiasis that

may aid to the design and monitoring of schistosome control programmes targeting

preschool-aged children.

7.2 Infection diagnostics: implications for

control

In accordance with the WHO guidelines, quantification of schistosome infec-

tion is a pre-requisite for developing intervention protocols for schistosomiasis

control programmes (WHO 2002). Accurate detection of schistosome infections

is important to ensure that adequate control interventions are implemented

and to facilitate timely treatment of infected individuals and hence prevent

the development of long-term morbidity sequelae associated with chronic in-

fection (King 2007; Polman 2000; WHO 2007). Childhood infections, if left

untreated can have long-term consequences on health in adulthood that may

not be reversible by chemotherapy (Stothard et al. 2013). The commonly used

schistosome infection diagnostic tool, microscopic enumeration of parasite eggs

excreted in urine performs poorly in individuals with low infections due to poor

sensitivity and cannot detect pre-patent or single sex infections where there is

no egg production (Bergquist et al. 2009; Engels et al. 1996; Mutapi 2011; Smith

& Christie 1986; Turner et al. 2004), also reviewed elsewhere (Doenhoff et al.

2004). In view of the above limitations of the parasitological technique that

can result in underestimation of the true prevalence of infection, there is an

urgent need for improved additional diagnostic methods, such as described in this
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thesis, particularly in young children (typically ≤5 years old) who harbour light

infections. In chapter 3 of this thesis, I focused on validating the performance

of additional tools for the diagnosis of urogenital schistosomiasis (serological

and dipstick detection of microhaematuria) in preschool vs. primary school-

aged children compared with the ‘standard’ parasitological examination and their

implications for control programmes were also investigated.

It has already been demonstrated in recent epidemiological studies that

young children in endemic areas do experience significant exposure to infective

waters (Ekpo et al. 2012b; Mutapi et al. 2011; Poole et al. 2014; Stothard et al.

2011). These findings were confirmed by the results of the present thesis, as

shown by a high proportion of children testing positive for detectable anti-cercarial

IgM antibodies (see Table 3.2, chapter 3), reaffirming the need for interventions

targeting preschool-aged children. Furthermore, I have also confirmed that

preschool children do carry significant schistosome infections and that most of

these infections are missed by the current standard parasitological diagnostic

technique compared to the serological detection method (see Figure 3.3). More

importantly, I noted that the discrepancy between infection levels obtained using

the two methods also increases with age. By using the serological technique in both

preschool and primary school-aged children, I was able to demonstrate that use of

parasitology alone might misclassify communities for the praziquantel treatment

regimens recommended by the WHO (guided by community infection levels),

resulting in fewer treatments than those required (WHO 2002). The consequence

of this is that the intervention programmes may fail to achieve maximum

effectiveness in terms of prevention and control of schistosomiasis and hence also

hamper the vision set out in 2012 by the World Health Assembly resolution 65.21,

advocating for the elimination of schistosome transmission (WHO 2010, 2013).

In addition, urine dipsticks detected a higher prevalence of infection based on

microhaematuria in both age groups compared to the parasitological method (see

section 3.8, chapter 3). These findings concur with those of a recent meta-analysis

study by King & Bertsch (2013), suggesting that dipstick microhaematuria can be

used in conjunction with egg counts to improve detection of schistosome infections

in children carrying light infections.

The parasitological technique performed poorly in detecting infection in

children with light infections as was shown by the estimate of sensitivity of

the test. In contrast, the serological and dipsticks methods performed similarly
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in children carrying light or heavy infections and showed good sensitivities in

diagnosing infection in both preschool and primary school-aged children compared

to the parasitological technique. In addition, it was reassuring to note that the

estimated levels of sensitivities of the additional diagnostic tools in the present

study were within the ranges reported in several other epidemiological studies of

human schistosomiasis conducted in endemically exposed populations (Adesola

et al. 2012; Bogoch et al. 2012; Dawson et al. 2013; Kahama et al. 1998; King &

Bertsch 2013; Kinkel et al. 2012). Unsurprisingly, the parasitological diagnostic

technique showed a higher specificity compared to serology or dipstick tests as has

been reported in other previous studies. The heterogeneity in immune responses

between individuals may contribute to false-positive results of the serological

test, particularly in older children with long-standing history of infection (van

Lieshout et al. 2000), resulting in reduced specificity of this technique. Dipsticks

are known to yield a high rate of ‘false positive’ results in children (Lunn & Forbes

2012; Meyers 2004; Patel 2006; Simerville et al. 2005), also reported in studies in

schistosomiasis (Eltoum et al. 1992; King & Bertsch 2013) and this could have

contributed to the reduced specificity observed in the present study.

The loss of sensitivity of the parasitological technique in detecting light

infections underscores the necessity to refine the methods for diagnosing infection

to enable correct epidemiological mapping of prevalence in targeted populations

including preschool-aged children. In this thesis, I was able to demonstrate

the importance of using sensitive diagnostic methods in children (based on a

combination of parasitological and serological methods) to improve diagnostic

accuracy, as this has implications on the required treatment regimens for the com-

munity recommended by the WHO (WHO 2002). Accurate diagnosis of infection

provides a foundation for treatment and management of schistosomiasis (De Vlas

et al. 2004). Thus, throughout this thesis, I have presented data pertaining to

baseline (pre-treatment) infection status determined by both parasitological and

serological methods to improve diagnostic accuracy. Since chemotherapy alters

the parasite-specific immune responses (Mutapi et al. 1998; Rujeni et al. 2013),

thus, the serological technique is only reliably applicable before treatment.
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7.3 Assessment of morbidity in preschool

children

The development of morbidity due to schistosomiasis early in childhood may

contribute to long-term irreversible consequences if treatment is delayed for too

long (Betson et al. 2010; Ekpo et al. 2012b; Stothard et al. 2013). Thus, the

basis of schistosome control in children is preventative chemotherapy to combat

the development of severe morbidity and promote child health and improve

cognitive potential of infected children (WHO 2010). However, uncertainties in

the levels of morbidity in preschool-aged children is among the reasons why

these children have been previously neglected in control programs (reviewed

by Mutapi (2015)). In addition, the performance of currently available point-of-

care morbidity diagnostics has not yet been evaluated in preschool-aged children.

Following the recent recommendation by the WHO for inclusion of preschool-aged

children in mass drug administration programmes (WHO 2011b), more studies are

needed to evaluate tools for assessing morbidity in this age group, which is crucial

for the development of effective and sustainable control strategies (Vennervald &

Dunne 2006). Having established better a diagnostic approach of schistosome

infection in young children, I sought to validate (in chapter 4) the currently

available methods for diagnosing schistosome morbidity in large scale population-

based studies as recommended by the WHO. These were questionnaire-based

reporting of haematuria and dysuria, clinical examination by qualified clinical

practitioners, visual inspection of urine for gross/visible haematuria, urinalysis by

dipsticks, urinalysis of the albumin-to-creatinine ratio (UACR). I compared the

utility of the available morbidity diagnostic tools in preschool vs. primary school-

aged children and identified markers which can be used in the field to quantify

morbidity attributable to S. haematobium infection. To my knowledge, these

methods have never been directly compared in a single population of children or

thoroughly validated in preschool-aged children. In addition, since the study area

had no previous history of treatment interventions, the approach presented in this

thesis would give a good estimate of the morbidity burden due to schistosomiasis

in children.

The results of my study indicated presence of quantifiable levels of morbidity

attributable to schistosomiasis in both preschool and primary school-aged chil-

dren, as determined by the different diagnostic tools. These results are consistent
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with another study in Mali, which also reported prevalence of urinary tract

pathology in school-aged children due to S. haematobium infection (Sacko et al.

2011). Such findings reiterate the importance of early anti-schistosomal treatment

for endemically exposed children to alleviate development of severe morbidity

sequelae. Interestingly, the results demonstrated that the performance of different

morbidity detection methods investigated in this thesis was similar in preschool

and primary school-aged children infected with S. haematobium. The current

findings suggest that the available methods could serve as screening tools for

schistosome-related morbidity in children aged ≤5 years old, important for the

planning of future public health interventions targeting this age group.

A complete dipstick urinalysis involves measurement of several physical and

chemical urine attributes that can be indicative of the presence of infection

or underlying medical conditions such as urinary tract morbidity, glomerular

and renal complications (Simerville et al. 2005). Urinary dipsticks have been

used extensively in S. haematobium endemic areas and have been recommended

in several studies as a relatively inexpensive method for detection of infection

or related morbidity in large-scale studies (King & Bertsch 2013; Rollinson

et al. 2005). In this thesis, instead of focusing on individual specific urine

attributes as markers of schistosome-related morbidity (a common approach

with many studies), I initially investigated several dipstick indicators, namely;

nitrites, leukocytes, microhaematuria, proteinuria, and the physical attributes

pH and specific gravity, suggested to be important clinical markers of some

bacterial/parasitic infections (Carlin 2014). Of the urinary dipstick attributes

tested, proteinuria and microhaematuria were the ones found to be related to

S. haematobium infection. These results are unsurprising; microhaematuria is a

well characterized classical sign of urogenital schistosomiasis in children resulting

from tissue damage caused by exiting parasite eggs (Adesola et al. 2012; Gryseels

et al. 2006). Renal changes leading to nephrotic syndrome have been reported

in individuals chronically infected with S. haematobium and this is commonly

clinically manifested by presence of proteinuria (Bichler et al. 2006; Eknoyan

et al. 2003; Stete et al. 2012).

One approach used to determine morbidity in schistosome-endemic areas is

questionnaire evaluation of morbidity, mainly haematuria (presence/absence),

recommended by the WHO (WHO 2002). In infected individuals, presence of

morbidity can also be perceived through dysuria (painful urination) which can
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be assessed by means of questionnaires (Lengeler et al. 2002). I compared

the levels of haematuria obtained from questionnaire vs. those measured by

dipstick (microhaematuria) or visual urine examination (visible haematuria) and

the results showed that the dipsticks detected more haematuric cases than

the questionnaires, which in turn detected more cases than the visual urine

examination (see Figure 4.3). These results match those observed in an earlier

meta-study by van der Werf & de Vlas (2004) conducted in older children and

adult populations. The high prevalence of dipstick detected microhaematuria may

be explained by the high sensitivity of the dipsticks as already observed in chapter

3 and reported in other studies (see comprehensive review by King & Bertsch

(2013)). Furthermore, the questionnaires showed some bias in reporting between

preschool children where the answers were provided by the parents/guardians and

in primary school children who responded to the questions themselves. This could

not be adjusted for in the statistical analysis, hence caution must be exercised

when extrapolating these results.

Since the different markers are general indicators of morbidity that can arise

from different disease conditions, in order to investigate the potential utility

of the five diagnostic methods in assessing schistosome-related morbidity in

this thesis, I employed the method of attributable fractions. This approach

is preferable to results based only on the apparent morbidity prevalence, in

that the attributable fraction estimates are adjusted for background causes of

the non-specific symptoms and hence more meaningful for biological interpreta-

tions (Guyatt et al. 1995). Based on these results, I was able to identify UACR

as the most reliable tool for detecting schistosome-related morbidity, followed by

dipsticks, visual urine inspection, questionnaires and lastly clinical examination.

More importantly, the potential of UACR as a morbidity assessment tool in

children was further demonstrated when the analysis was stratified by age group

(i.e., 1–5 years and 6–10 years old). However, it will be of practical importance

in future studies with large enough sample sizes, hence high enough power, to

confirm the results of stratified analysis for generalizability of the present findings.

The strong association between albuminuria (detected by UACR) and dipstick-

detected microhaematuria and proteinuria further suggests that these markers can

be used in combination to improve the diagnosis of morbidity in children infected

with S. haematobium in the field. These findings are of public health importance

as these tools can be used to screen affected children for treatment and thereby
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facilitating timely interventions. These tools can also be used to assess the impact

of treatment on morbidity (chapter 5).

7.4 Optimal treatment regimen: implications

for control

The antihelminthic drug praziquantel (PZQ) is effective against all schistosome

species and it presently forms the backbone for all public health interventions

aimed at prevention and control of schistosomiasis in endemic areas (Stothard

et al. 2014; WHO 2013). The WHO recommends different treatment regimens

(e.g. annually, biennially) depending on the schistosome infection intensity levels

in the community, usually assessed by surveying primary school children (WHO

2002). However, there is currently no evidence base to inform the PZQ regimen

when extended to include preschool children. Having established better diagnostic

approaches of schistosome infection and morbidity (chapters 3 and 4), I assessed

the short term effects of treatment on infection and morbidity markers (micro-

haematuria, proteinuria and albuminuria) by following treated children 12 weeks

post-treatment. The immediate health benefits of PZQ treatment in children aged

6–10 years of age have already been documented (Koukounari et al. 2007; Midzi

et al. 2008; Sacko et al. 2009) and therefore by including 6–10 year olds in the

present study, I was able to determine whether the effects of PZQ treatment on

health and morbidity measures were age dependent. Furthermore, I sought to

investigate ways of refining the existing drug regimen to improve the current and

future health of preschool children by comparing the impact of single biennial vs.

annual treatment with PZQ over a period of 24 months on the selected markers

of schistosome-related morbidity.

The results of chapter 5 showed that a single treatment with the recommended

dose of PZQ (40 mg/kg body weight) not only reduced infection levels, but was

also efficacious at significantly reducing morbidity markers in both preschool

and primary school-aged children within 12 weeks and 12 months of treatment.

However, some post-antihelminthic treatment changes in morbidity markers

may take time to appear, possibly due to slow bladder and urinary tract

tissue repair (Stete et al. 2012). In the present study, microhaematuria levels

showed a significant decline only after 12 months compared to other morbidity
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markers which showed a significant change within 12 weeks of treatment. Similar

observations of persistent haematuria for periods of up to 6 months following

curative chemotherapy have been reported in other studies (Nkulila et al. 1999).

Interestingly, I did not observe significant differences in the effects of treatment in

reducing morbidity markers between preschool and primary school-aged children.

The current findings therefore further support the idea that PZQ offers a

realistic opportunity as a control strategy for schistosome infections in preschool

children and reducing the current and future burden of morbidity related to

schistosomiasis (Koukounari et al. 2007; Mutapi et al. 2011; Stothard et al.

2013). In agreement with observations from previous studies (King 2006), I was

able to demonstrate the sustained benefits (over a period of 2 years) of PZQ

treatment in reversing morbidity in children. Such findings reaffirm the need

for preventive chemotherapy in preschool-aged children through ongoing MDAs

for effective and sustainable control as recently recommended (WHO 2011b).

Nevertheless, it is important that treatment administration is supported by other

complementary control measures such as improved sanitation to reduce the burden

of schistosomiasis in endemic regions (Fenwick et al. 2009; Ross et al. 2014).

In order to determine the optimal treatment regimen required to significantly

reduce morbidity attributable to schistosomiasis, I compared the changes in

schistosome-related morbidity markers in children who received biennial vs.

annual PZQ treatment over the 24 months study period (see section 5.4.2, chapter

5). The current study did not demonstrate differences in the efficacy of biennial

vs. annual PZQ treatment in reducing schistosome-related morbidity across the

two age groups. These findings suggest that the biennial praziquantel treatment

regimen currently recommended by the WHO for primary school-aged children in

medium schistosome infection areas is sufficient for preschool-aged children. The

current findings support those of previous S. haematobium studies in Ghana and

Burkina Faso among primary school and older children (6–15 years), indicating

that a single dose of praziquantel has lasting effects on schistosome-related

morbidity (Koukounari et al. 2007; Mott et al. 1985). My present findings provide

new information that would be important in the planning and implementation of

optimal control strategies targeting preschool children and help to inform resource

allocation in ongoing programmes to achieve the goals of sustainable control of

schistosomiasis (WHO 2013).
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7.5 Serological biomarkers of morbidity

The recent recommendation for the inclusion of preschool children in control

programmes (WHO 2011a) has heightened the need for tools that can assist

in detecting early morbidity due to schistosomiasis. Throughout this thesis,

I have attempted to identify and validate several methods to improve the

diagnosis of infection and related morbidity in young children. Early detection

of circulating biomarkers associated with initial immune-pathogenesis in children

could help in identifying and preventing disease progression in the later stages

of life (King 2007). In addition, such biomarkers could enhance understanding

of the mechanisms of development of morbidity, which can be important for

the implementation of timely and effective interventions (Vennervald & Dunne

2006). Thus, in chapter 6, I simultaneously examined several biomarkers known

to play an active role in different phases of the inflammatory process in a

population of young children endemically exposed to S. haematobium infection.

The relationships between CHI3L1, CRP, ferritin, resistin and levels of infection

(as diagnosed using the methods described in chapter 4), inflammatory cytokine

responses (IL-4, IL-5, IL-10, IL-13 and IFN-γ), and point-of-care markers of

morbidity (microhaematuria, proteinuria and albuminuria) already identified and

validated in chapters 4 and 5 were investigated to determine the value of these

inflammatory biomarkers as markers for the assessment of schistosome-related

pathology.

The inflammatory environment during infection is characterized by a range

of different responses rather than a single immune response marker (Bourke

et al. 2012). In my current study, the established positive association between the

different biomarkers of inflammation and their correlation with systemic levels of

pro-inflammatory cytokine responses suggested an ongoing inflammatory process

in children naturally exposed to schistosome infections. In particular, CHI3L1

and CRP, together with systemic cytokines IL-13 (pro-inflammatory) and IL-10

(playing a regulatory role) showed the strongest contribution to the inflammatory

environment in this population. However, I did not find a significant relationship

between inflammatory biomarkers and current point-of-care markers of morbidity

attributable to schistosomiasis. There are several possible explanations for this

result as noted in chapter 6, some of which may warrant further investigation in

future studies involving both preschool children as well as adult populations. The
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lack of association could be that the low schistosome infections in children are

associated with lower inflammatory responses not detectable by these markers,

raising the possibility that the levels of circulating inflammatory biomarkers

in my population were too low to have major physiological or biochemical

consequences such as proteinuria and nutritional deficiency observed in other

studies (Appleby et al. 2012; Ayoya et al. 2010; Friis et al. 1996; Reilly et al.

2012). Given that my study population consisted of the youngest members of

the community (≤10 years) with a shorter cumulative history of exposure to

schistosome infection relative to older members of the population, it could be that

the majority of these inflammatory biomarkers may be closely associated with

the severe pathology (Zakynthinos & Pappa 2009) that may not yet be observed

in most of these children in the current population. The non-specific nature of

the inflammatory biomarkers also allows the possibility that other potentially

confounding bystander antigens such as Plasmodium reported in Zimbabwean

populations (Rujeni et al. 2013) were causing their elevation in this population.

Assessment of the effect of treatment with praziquantel was limited to the

two biomarkers (CHI3L1 and CRP) identified as the most dominant players

in the inflammatory processes observed in this study and hence indicators of

the risk of schistosome-related morbidity (see section 6.7). PZQ treatment in

infected children did not result in significant changes from baseline in serum

CRP levels 12 months after chemotherapy, but resulted in a significant elevation

of CHI3L1 levels, in contrast with observations from recently published studies

in schistosomiasis (Appleby et al. 2012; Ayoya et al. 2010). As I have already

highlighted above, the application of these circulating protein biomarkers as

tools for assessing the impact of interventions is limited by the wide variety

of agents causing their elevation in serum and the variations in individual host

immune responses (Mutapi 2001; Zakynthinos & Pappa 2009). Further research

is warranted to better define the effects of PZQ in levels of protein biomarkers of

inflammation in young children by examining changes in their serum concentration

over shorter times before and after treatment compared to changes in older

individuals. Nonetheless, by examining several serological markers simultaneously

in a single population, my findings add to the current limited understanding of

the relationship between circulating biomarkers of inflammation and pathogenesis

of schistosomiasis.
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7.6 Issues of methodological approaches

My studies were carefully designed and data collected as planned in the study

protocol without deviations to guard against drawing faulty conclusions. Exposure

to the parasite in the current study was measured using IgM antibody responses

directed against the larval stages of the parasite (cercariae). However, cross-

reactivity with other parasitic antigens cannot be completely ruled out (Ndhlovu

et al. 1996). In my study I could have further explored details of exposure to

infective water to improve estimation of exposure rates among these preschool

children, captured using approaches such as direct observation and global

position system (GPS) logging of actual water contact behaviour that have

been successfully used in other studies of schistosomiasis (Brooker et al. 2009;

Chandiwana & Woolhouse 1991). Including vital statistics of health measures

such as temperature, blood pressure, heart rate and respiratory rate as well as

anthropometric data (weight, height, arm circumference and head circumference)

of each child measured before treatment and at 12 and 24 months after each

treatment would have enabled me to assess the impact of schistosomiasis on

childhood growth and physical activity. In addition to the serological biomarkers

of inflammation, the WHO recommends inclusion of indicators of iron deficiency

and anaemia contributing to malnourishment in children (WHO 2005). Measure-

ment of markers such as haemoglobin, serum transferrin receptor (sTfR), the

hormone hepcidin, which regulates iron homeostasis (Lee & Beutler 2009), and

eosinophils cationic protein (ECP) may aid in unravelling the immunopathology

of schistosomiasis in preschool and primary school-aged children.

The limitations of the different statistical methodologies performed to investi-

gate associations between several inflammatory biomarkers and immune correlates

of pathology in my study are mainly to do with the issues of multicollinearity

and multiplicity. A more powerful and flexible alternative technique would be

the structural equation modelling (SEM) technique (Pugesek et al. 2003), as

it allows multiple measures to be associated with a single latent construct.

SEM is largely confirmatory, rather than exploratory (Pugesek et al. 2003),

thus it will be interesting to confirm whether the established relations between

serological markers of inflammation, cytokine responses and point-of-care markers

of schistosome-related morbidity are valid using this technique.
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7.7 Future prospects and recommendations

In this thesis I have demonstrated that the shortcomings of the parasitological

method result in the underestimation of the levels of infection in preschool chil-

dren, and that diagnosis can be improved by use of the more sensitive serological

method in addition to the standard parasitological diagnostic technique. Despite

the limitations described here, egg counts continue to be utilized as a proxy for

the worm burden. However, in low infection settings this may not be a good

reflection of the true levels of the worm load. Previous studies in older children

and adults have suggested a strong relationship of urine and serum circulating

antigens with worm burden (van Lieshout et al. 2000; Van Lieshout et al. 1995).

Further research into other direct measures such as circulating anodic antigen

(CAA) and circulating cathodic antigen (CCA) in serum and urine as potential

indicators of the true worm load will further enhance the knowledge of the burden

of schistosomiasis in young children aged 5 years and below.

I have demonstrated that PZQ is efficacious in preschool-aged children.

However, it still remains to be established whether antihelminthic treatment of

preschool children induces immune responses associated with protection against

re-infection as has been reported in adult populations (Mutapi et al. 2005). Thus,

I propose further studies aimed at investigating a treatment strategy that will

induce protective immune responses against schistosome re-infection in children

aged 5 years and below. With improved knowledge of efficacy of treatment, the

ultimate goal of elimination of morbidity burden associated with schistosomiasis

in children is achievable.

The involvement of serum biomarkers and other immune correlates in the

biological processes of inflammation observed in this thesis suggests that CHI3L1

and CRP can be potential early predictors of schistosome-related pathology. I

recommend further research efforts with larger cohorts of children chronically

exposed to schistosome infection to establish the relationship between these

biomarkers and presence of schistosome-related morbidity by following changes

in the serum levels of these biomarkers over shorter time periods. Lastly, in terms

of control policy and practice, based on my current findings demonstrating the

benefits of PZQ in children, I encourage up-scaling of efforts (see section 7.8)

towards refining the timing of the treatment to optimize the health benefits of
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antihelminthic treatment in preschool-aged children using the currently available

tools for control.

7.8 Implications for control and policy

Approximately 90% of all malaria incidence and mortality occur in Africa, where

one child in 10 dies before the age of 5 years from malaria (WHO 2014). In

addition, in these tropical regions there is an overlapping distribution of helminth

infections and micronutrient deficiencies, contributing to anaemia among children,

a major cause of poor growth and development (WHO 2011c). According to the

Global Progress Report on Vitamin and Mineral deficiency, more than half of the

population in Africa lack critical vitamins and minerals (UNICEF 2010). Vitamin

A deficiency is a common form of micronutrient malnutrition affecting preschool-

aged children contributing to child mortality in these areas (WHO 2011c). Several

childhood health promoting activities such as the Expanded Programme on Immu-

nisation (EPI), distribution of vitamin and mineral supplements, administration

of STH antihelminthics (albendazole and mebendazole) have been put in place

in several African countries, including Zimbabwe (Gadaga et al. 2009; UNICEF

2010). In light of my present findings, these ongoing programmes could expand

to include praziquantel treatment for children under 5 years of age in an effort to

address multiple diseases at once (Hotez et al. 2006; WHO 2013).

Over the past three decades, praziquantel, which is currently the only

recommended drug for infection and disease has been used successfully to

control schistosome infection and disease in endemic countries (WHO 2002). The

recent scaled-up efforts for the control of neglected tropical diseases by various

stakeholders and commitment from the pharmaceutical industry to donate PZQ

tablets yearly to school-aged children (see (Mutapi 2015)) has led to a significant

increase in the accessibility of PZQ as control tool in large-scale mass drug

administration (MDA) programmes (WHO 2013). As highlighted in a recent

review by Mutapi (2015), the inclusion of preschool-aged children in currently

ongoing schistosome programmes is slow. One reason for the slow uptake is

concerns about the large size of PZQ tablets, which make it difficult for young

children to swallow them (WHO 2006). In addition, the dextro isomer which is

part of the PZQ compound (it consists of equal parts of levo and dextro-isomers)

gives the tablet a bitter taste that may cause gagging or vomiting (Meyer et al.
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2009). As of present, inventions to improve and deliver oral formulations of PZQ

for paediatric interventions are currently underway through partnership of Merck

KGaA, Astellas Pharma, and the Swiss Tropical and Public Health Institute.

These concerted efforts are directed at overcoming the operational hurdles slowing

the uptake of preschool children in MDA programmes (Mutapi 2015; Tuhebwe

et al. 2015).

Lastly, it is worth noting that part of my research work presented in this thesis

is already influencing research and policy development for control. Results of my

fieldwork informed the formulation of the Zimbabwe’s national schistosome and

soil transmitted helminths control program drafted in 2012 (Chimbari 2012), that

facilitated treatment of preschool-aged children within the first year of the ongoing

MDA in the country and making it one of the first national control programmes

to include this neglected age group.

7.9 Final conclusions

My thesis has generated several results of research interest, of importance

for practitioners, policy makers and stakeholders involved in the control of

schistosomiasis. These findings are timely because of the current global drive to

address the health iniquity created by the paucity of information on the disease

in preschool children (aged 1–5 years old):

� The study has confirmed that preschool children carry significant schis-

tosome infections, and that most of these infections are missed by the

current standard egg count diagnostic method. By using the more sensitive

SEA IgM serological diagnostic method, I have been able to demonstrate

that parasitology might misclassify communities for the treatment regimens

recommended by WHO (guided by community infection levels) resulting

in fewer treatments than those required. These findings further reiterate

the urgent need for schistosome infection control in this age group and

demonstrate the implications of poor diagnosis of infection for control

strategies adopted.

� Preschool-aged children can be effectively screened for schistosome-related

morbidity using the same diagnostic tools applicable in school-aged children

and adult populations. From my studies, UACR is recommended as the
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best choice for rapid assessment of morbidity attributable to schistosomiasis

in children under field conditions. Clinical examination is too costly and

requires advanced skills, but is poor at detecting morbidity attributable to

schistosome infections, hence not ideal for large-scale field use.

� A single treatment with a standard dose of praziquantel (40 mg/kg) is

efficacious at significantly reducing infection and morbidity in children. More

importantly, the biennial treatment regimen currently recommended by the

World Health Organization for primary school-aged children in the medium

schistosome infection areas is sufficient and applicable to preschool-aged

children.

� The involvement of serum circulating protein biomarkers in the biological

processes of inflammation in naturally exposed children suggests that these

markers can be potential early predictors of the risk of schistosome-related

pathology. In this thesis, CRP and CHI3L1 were identified as the potentially

useful inflammatory biomarkers for the assessment the risk of morbidity due

to schistosomiasis.

In summary, the findings of this thesis highlight the need for the refinement

of existing diagnostic methods for accurate detection of infection and morbidity

in children. This will enable appropriate and timely treatment strategies, aimed

at improving the current and future health of preschool aged-children to

be implemented. The findings presented here will aid researchers and other

stakeholders in making informed choices about intervention tools for control

programmes targeting young children.
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Appendix A

Antibody assays protocol

Serum levels of IgM antibodies targeted against CAP and SEA were measured

using indirect ELISA method, all of which have the same principle protocol as

described below:

1. Plate antigen coating: Assay plates (96-well microtiter, Greiner Bio-One,

UK) were coated with 100 µL/well of antigen at 5 µg/mL (for CAP), and 10

µg/mL (for SEA) diluted in carbonate bicarbonate buffer at pH 9.6, covered

with cling film and incubated overnight at 4°C.

2. Blocking: Plates were washed once in phosphate buffered saline (PBS)/0.03%

Tween 20, which was used for all washes, emptied and blocked with 200

µL/well of skimmed milk for an hour at 37°C to avoid non-specific binding.

3. Serum sample: The plates were washed three times in wash buffer to

remove unbound blocking agent, and 100 µL/well of sera were added in

duplicate using sample dilutions 1:100. The plates were incubated at 37°C

for two hours. Secondary antibodies were diluted in blocking buffer to

minimize the non-specific binding effect that could occur on the plate during

the assay.

4. Detection antibody: The plates were washed again three times in wash

buffer to remove excess serum components, and 100 µL/well of secondary

antibody (horseradish peroxidase (HRP) conjugated) was added at a

dilution of 1:1000. The plates were incubated at 37°C for 1 hour.

5. Substrate solution: Plates were washed six times and 100 µL/well of

2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) peroxidase
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substrate solution were added. The plates were incubated at 37°C covered

with aluminium foil and an enzyme-substrate reaction time of 15 minutes

was allowed to take place before plates were read.

6. Reaction stop and detection: The colorimetric reactions were stopped

by adding 25 µL x well of stop solution (25% hydrogen chloride, HCl).

The results were expressed as the mean optical density (OD) value of

the duplicate assays quantified by an Emax microplate reader (Molecular

Devices, USA) at a wavelength of 405 nm.

All the chemicals used for the assays were supplied by Melford (Melford

Laboratories Ltd., UK) or Sigma-Aldrich (Sigma-Aldrich Corporation, UK) unless

otherwise stated.
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Dipstick results coding in the

field
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Appendix C

Evaluating cut-offs for serological

diagnosis

C.1 Antibody cut-off levels

Potential bias can arise as a result of subjective cut-off thresholds or lack of

robustness in the chosen cut-offs to slight changes in sampling variability leading

to over- or underestimation of important epidemiological parameters such as

infection prevalence (Greiner et al. 1994). Since the choice of these cut-offs

can influence the inferences derived from subsequent analyses, I evaluated the

utility of the cut-off values determined from a pool of serum specimens obtained

from healthy donors (Figure C.1). The arithmetic mean is sensitive to outlying

observations, thus if the samples used to determine cut-offs are over-dispersed,

the computed thresholds may become too high, consequently failing to correctly

classify seropositive individuals. I investigated the influence of each observation on

the overall mean of the negative controls using the jackknife procedure (Sprent &

Smeeton 2001). The jackknife procedure is a cross-validation technique to estimate

the bias of an estimator (e.g., the mean OD value), through a series of iteration

steps (“omitted” or “leave one out”). Firstly, the mean is estimated from the whole

sample, and then one observation is dropped from the sample, and the mean is

estimated from the reduced sample. The jackknife bias of the mean can then be

determined by assessing the variability of the resulting sample of estimates with

one observation omitted (Sprent & Smeeton 2001). The robustness of these cut-

offs to changes in sample variability was assessed by shifting each cut-off values
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by a margin of 5% (i.e. change, δ=-5%; +5%; +10%), and assessing the impact

of the change on the fraction seropositive.

Village 1 Controls (Eu) Village 2 Controls (Zim)
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Village 1 Controls (Eu) Village 2 Controls (Zim)
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Cut-off threshold:
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Village 2    (OD=0.38)

Village 1    (OD=0.41)
(B) SEA IgM

Study group

Figure C.1: Distribution of IgM antibody levels directed against
schistosome cercariae and egg antigens for the study population by
village of residency and negative controls. The dashed line (- - -) represents
the cut-off threshold for children from village 1 derived from the schistosome
negative European (Eu) controls, and the solid line (—) represents the cut-off
threshold used in the diagnosis of children from village 2 derived from healthy
Zimbabwean (Zim) donors.

C.2 Identifying influential observations

Since the ELISAs for serum samples of children from the two study villages

were conducted at different time periods, thus to avoid bias due to experimental

variability, the cut-offs were investigated by village of permanent residency. None

of the individual IgM antibody titres from the negative controls were above

the cut-off thresholds for both CAP and SEA (Figure C.1). The variability in

the estimated mean of the negative controls using the jackknife (i.e. with one

observation omitted) did not change markedly as shown by the root-mean-square

errors (RMSE) in Figure C.2, indicating no potential bias in the estimated mean

OD due to individual observations for IgM CAP or SEA control samples.
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Figure C.2: Change in root-mean-square-error (RMSE). Investigation
with one observation omitted in the Jackknife procedure to assess the bias of
the mean optical density (OD) used to compute the cut-offs.
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C.3 Fraction positive

Varying the cut-offs did not result in a change in the proportion of seropositive

children (Figure C.3). In addition, reducing the cut-off levels by 5% resulted in

only 2 CAP false positives and no SEA false positives, as determined from the

negative controls. These findings indicated that the chosen cut-offs were robust

to reasonable shifts in sample variability.
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Figure C.3: Change in the fraction positive children for CAP and SEA
IgM with cut-off values scaled upwards or downwards by margins of
5% (∆ OD).
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Bayesian methods

D.1 Estimation of diagnostic test parameters

In the absence of a gold standard test, the true disease status (D) of the

study subjects is unknown and this can bias the estimates of sensitivity and

specificity as a result of misclassification (Hui & Zhou 1998). The model presented

here considers a two tests, one population scenario (see Dendukuri & Joseph

(2001), Branscum et al. (2005) for detailed descriptions). Under this setting, two

diagnostic tests are each applied to the same subject, assuming the the two test

outcomes for each subject are conditionally independent on the infection status.

The resulting test outcomes can be cross-classified in a single 2×2 contingency

table as shown in Table D.1.

Table D.1: Representation of two infection diagnostic test outcome
combinations. Cross-classification according to the infection status of each
detected by test 1 (T1) and test 2 (T2), neither of which is a perfect gold standard.

Diagnostic Test 2

T2 = 1 T2 = 0 Total

Diagnostic Test 1
T1 = 1 n11 n10 n11 + n10

T1 = 0 n01 n00 n01 + n00

Total n11 + n01 n01 + n00 n

The parameters of interest to compare the performance of the two diagnostic

tests include: 1) the population prevalence (π); 2) the sensitivities (Se1 and Se2);

and 3) the specificities (Sp1 and Sp2) of each test. For any individual chosen at
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random from the study population, infected or uninfected (D = 1 or D = 0), each

diagnostic test can either be positive or negative. Subsequently, this results in

eight possible combination of outcomes, conditional on the unobserved (latent)

true infection status, each with an associated probability given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (T1 = 1, T2 = 1∣D = 1) = Se1Se2
P (T1 = 1, T2 = 0∣D = 1) = Se1(1 − Se2)
P (T1 = 0, T2 = 1∣D = 1) = (1 − Se1)Se2
P (T1 = 0, T2 = 0∣D = 1) = (1 − Se1)(1 − Se2)
P (T1 = 1, T2 = 1∣D = 0) = (1 − Sp1)(1 − Sp2)
P (T1 = 1, T2 = 0∣D = 0) = (1 − Sp1)Sp2
P (T1 = 0, T2 = 1∣D = 0) = Sp1(1 − Sp2)
P (T1 = 0, T2 = 0∣D = 0) = Sp1Sp2

(D.1)

Let the latent true number of infected individuals for each of the combination

of the two diagnostic test results be denoted by Yt1t2 (where t1, t2 = 0,1), i.e.

[Y11, Y10, Y01, Y00]. It then follows from equation D.1 and Table D.1 that, the

multinomial likelihood function of the observed data given the latent data can

be written as:

L = P (n11, n10, n01, n00∣π,Se1, Se2, Sp1, Sp2, Y11, Y10, Y01, Y00)
∝ [π(Se1Se2)]Y11[π(Se1(1 − Se2))]Y10
×[π((1 − Se1)Se2)]Y01
×[π((1 − Se1)(1 − Se2))]Y00
×[(1 − π)((1 − Sp1)(1 − Sp2))]n11−Y11

×[(1 − π)((1 − Sp1)Sp2)]n10−Y10

×[(1 − π)(Sp1(1 − Sp2))]n01−Y01

×[(1 − π)(Sp1Sp2)]n00−Y00

(D.2)

To enable comparisons to be made between the diagnostic tests while

accounting for uncertainty in the test properties (sensitivity and specificity),

the Bayesian modelling approach is invoked (Branscum et al. 2005; de Clare

Bronsvoort et al. 2010; Dendukuri & Joseph 2001; Joseph et al. 1995). In

the Bayesian framework, prior distributions of all unknown parameters are

initially specified. The observed data, through the likelihood function, are then

176



CHAPTER D. Bayesian methods D.1 Diagnostic Parameter estimation

combined with the prior distributions to derive the posterior distributions. The

posterior distributions provide estimates of the test properties, taking into account

the information provided by the data (Joseph et al. 1995). Thus, improved

inferences on all parameters can be drawn simultaneously based on the posterior

distribution (Ahmad 2010; Joseph et al. 1995).
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D.2 Bayesian model diagnostics

Figure D.1: Trace plots of time series for parameter estimates for
parasitological and serological diagnostic techniques to detect S.
haematobium infection (Se=sensitivity; Se=specificity). The three chains
of the MCMC procedure converged to the same solution.

Figure D.2: Gelman-Rubin statistic plots for parameter estimates
for parasitological and serological diagnostic techniques to detect
S. haematobium infection (Se=sensitivity; Se=specificity). The three
MCMC chains converge to 1, showing no evidence of non-convergence issues.
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SAS software code

E.1 The basic SAS code for the GLMM

ods graphics on;

PROC GLIMMIX data=<> oddsratio plots=oddsratio;

CLASS Sex Agegroup Infection Treatment;

MODEL Morbidity=Sex|Age_group|Infection|Treatment / dist=binary;

RANDOM intercept /subject=<Study_ID>;

RUN;

179



E.1 SAS code: PROC GLIMMIX CHAPTER E. SAS software code

180



Appendix F

Distribution of serological

biomarkers of inflammation
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F.1 Frequency histograms CHAPTER F. Inflammatory biomarkers

F.1 Frequency histograms of serological inflam-

matory biomarkers and plasma cytokines
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F.2 Box-Cox power transformation

I used the Box-Cox power transformations to derive the potentially optimal

transformations of the inflammatory biomarkers. Assuming a simple general linear

model with a dependent variable of interest (Yi):

Yi = β0 + β1Xi + εi, (F.1)

where εi ∼ N (0, σ2). The family of power transformations (λ) as suggested

by Box & Cox (1964) is formulated as follows:

Y
(λ)
i =

⎧⎪⎪⎨⎪⎪⎩

(Y λi −1)

λ if λ ≠ 0

log(Yi) if λ =0
(F.2)

The log-likelihood of model F.2 used to derive the transformations can be

written as:

log L = −n
2

log(2π) − n logσ − 1

2σ2

n

∑
i=1

[Y (λ)i − (β0 + β1Xi)]
2

+(λ − 1)
n

∑
i=1

logYi (F.3)

The recommended power transformation λ-values are shown in Table F.1.

Table F.1: Recommended Box-Cox power transformations. Reference
source: (Kutner et al. 2005).

Family of power Transformation λ-value
Y (λ)=Y 2 Square λ = 2
Y (λ)=Y None λ = 1
Y (λ)=Y 1/2 Square-root λ = 0.5
Y (λ)=log(Y ) Natural log λ = 0
Y (λ)=1/Y 1/2 Inverse square-root λ = −0.5
Y (λ)=1/Y Reciprocal λ = −1
Y (λ)=1/Y 2 Inverse square λ = −2
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Table F.2: Calculated Box-Cox power transformation values for
inflammatory biomarkers and cytokines.

Response variable λ-value Recommended

Inflammatory biomarkers

CHI3L1 0.14 log-transformation

CRP 0.02 log-transformation

Ferritin 0.22 log-transformation

Resistin -0.14 log-transformation

SLPI 0.22 log-transformation

Cytokine responses

IL-4 -0.20 log-transformation

IL-5 0.00 log-transformation

IL-10 0.00 log-transformation

IL-13 0.30 log-transformation

IFN-γ 0.20 log-transformation

Based on the recommended transformations displayed in Table F.1 and for

meaningful biological interpretations, the log-transformation was chosen as

the best method for these inflammatory biomarkers and cytokines. The log-

transformation also enabled me to make comparisons of data on levels of

biomarkers presented in this thesis to those reported in other published studies

using the similar transformation scale.
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F.3 Proportion of detectable levels of

biomarkers
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F.5 Subgroup analysis by S. haematobium egg

status
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CHAPTER F. Inflammatory biomarkers F.6 Adjusted means

F.6 Adjusted means of inflammatory biomark-

ers in egg-positive children

Table F.6: Adjusted means of inflammatory serum biomarkers
of S.haematobium egg-positive children (n=96) at baseline by
schistosome-related urinary morbidity markers (negative or posi-
tive). The log-transformed mean levels (ng/mL) were adjusted for sex and
age group. The P -values were obtained from post-hoc tests for general linear
models.

Mean ± SE Mean difference

Negative Positive (95% CI) t P 1

(A) Microhaematuria

CHI3L1 1.88 ± 0.27 1.42 ± 0.09 0.46 (-0.04–0.96) 1.83 0.071

CRP 2.45 ± 0.37 2.45 ± 0.13 0.00 (-0.70–0.70) 0.01 0.991

Ferritin 0.31 ± 0.10 0.32 ± 0.03 -0.01 (-0.19–0.17) -0.16 0.873

Resistin 0.78 ± 0.18 0.62 ± 0.06 0.16 (-0.18–0.49) 0.93 0.353

SLPI 3.41 ± 0.69 2.71 ± 0.24 0.70 (-0.59–1.99) 1.08 0.282

(B) Proteinuria
CHI3L1 1.43 ± 0.10 1.42 ± 0.11 0.01 (-0.14–0.16) 0.11 0.914

CRP 2.47 ± 0.14 2.40 ± 0.15 0.06 (-0.15–0.27) 0.58 0.561

Ferritin 0.34 ± 0.03 0.29 ± 0.04 0.05 (-0.01–0.10) 1.78 0.078

Resistin 0.64 ± 0.06 0.58 ± 0.07 0.06 (-0.04–0.16) 1.27 0.206

SLPI 2.73 ± 0.25 2.70 ±0.28 0.02 (-0.36–0.41) 0.12 0.901

(C) Albuminuria
CHI3L1 1.36 ± 0.10 1.47 ± 0.10 -0.10 (-0.26–0.05) -1.30 0.197

CRP 2.39 ± 0.14 2.49 ± 0.14 -0.09 (-0.31–0.12) -0.84 0.405

Ferritin 0.33 ± 0.04 0.31 ± 0.04 0.02 (-0.04–0.07) 0.54 0.594

Resistin 0.60 ± 0.07 0.65 ± 0.08 -0.04 (-0.16–0.06) -0.93 0.357

SLPI 2.55 ± 2.03 2.86 ± 2.34 -0.31 (-0.71–0.10) -1.51 0.135

SE=standard error of the mean.
1P-values adjusted for multiple comparisons using the Bonferroni correction.
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F.7 Post-treatment CHI3L1 and CRP levels in

egg-positive children
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Figure F.3: Mean serum levels of CHI3L1 and CRP levels at baseline
and 12 months after treatment in children diagnosed egg-positive at
baseline. Error bars indicate the standard error of the mean. Tests for the change
from baseline in mean levels of biomarkers 12 months post-treatment�.

�Due to the small sample size of the untreated group, the analyses were performed using
the Wilcoxon Signed Rank Test.
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Appendix G

Survey Questionnaires

� Questionnaires for the preschool-aged children (1–5 years), answered on

their behalf by parents or guardians.

� Questionnaires for the primary school-aged children (6–10 years).
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1 

Questionnaire  
Bilharzia in Pre-School Children  

 

This questionnaire is 6 pages long- please complete ALL pages. 
 

 

Questionnaire to be completed at the time of visit with parents and enrollment of children into the 
study and only after obtaining parents consent and assent of participating child.  
 
Questions are all to be answered by the adult who brings the child for enrollment 

 

Date of questionnaire            __________________________  
 

Person administering questionnaire __________________________ 
 

Name of adult accompanying child  __________________________ 
 

Relationship of named adult to child  __________________________ 
 

Study ID# for named adult  __________________________ 
 

The following details/ questions are about the CHILD. 
 
 

 

Name  

Study ID  

Date of birth  

Age  

Sex  

Height (cm)  

Weight (kg)  

Arm circumference (cm)  

Head circumference  

Body temperature  

Village of residence  

 

Has the child lived in this village all their life? Yes No (circle either yes or no) 
 

If no, How long has the child lived in this village?  _____________ (years) 
 

 
 

QUESTIONS 
 
 

1. Does the child have brothers or sisters?  Yes No           (circle either yes or no) 
 

If yes, how many older? 1     2     3     more    (circle one) 
  

How many are in school? 1   2    3    more    (circle one) 
 
Please give name, school and grade for all brothers/sisters at school: 
 

Name     School    Grade 

______________________ ______________________ ___________ 
 

______________________ ______________________ ___________ 
 

______________________ ______________________ ___________ 
 

______________________ ______________________ ___________ 
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2. Has the child ever had Bilharzia?   
   

3. Has the child ever been given treatment for Bilharzia?  
 

If yes, do you remember  When? 
 

       Where? 
 

How? 
 

4. Have the child’s brothers/sisters ever had Bilharzia?   
 

5. Have the child’s brothers/sisters ever been given 
treatment for Bilharzia? 

 

If yes, do you remember  When? 
 

       Where? 
 

How? 
 

6. Has the child ever had Malaria?   
  

7. Has the child ever been given treatment for Malaria? 
 

If yes, do you remember  When? 
 

       Where? 
 

How? 
 
 

8. Have the child’s brothers/sisters ever had Malaria?   
 
 

9. Have the child’s brothers/sisters ever been given 
treatment for Malaria? 

 

If yes, do you remember  When? 
 

        Where? 
 

How? 
 

Yes  No  Do not know   (circle one) 
 

Yes No Do not know  (circle one) 
 

______________________(year) 
 

__________________________ 
 

Tablets / liquid/ other   (circle one) 
 

Yes  No  Do not know   (circle one) 
 
 

   

Yes No Do not know (circle one) 
 

______________________(year) 
 

__________________________ 
 

Tablets / liquid/ other   (circle one) 
 

Yes  No  Do not know   (circle one) 
 

Yes No Do not know  (circle one) 
 

______________________(year) 
 

__________________________ 
 

Tablets / liquid/ other   (circle one) 
 

 

Yes  No  Do not know   (circle one) 
 
 

 
Yes No Do not know (circle one) 
 

______________________(year) 
 

__________________________ 
 

Tablets / liquid/ other   (circle one) 

10. Has the child ever had: 
 

a) Blood in their urine?  Yes No Do not know (circle one) 

b) Difficulty in urinating? Yes No Do not know (circle one) 

c) Frequent urge to urinate? Yes No Do not know (circle one) 

d) Pain in their joints?  Yes No Do not know (circle one) 

e) Diarrhoea?    Yes No Do not know (circle one) 
 

11. Does the child currently have: 
 

a) Blood in their urine?  Yes No Do not know (circle one) 

b) Difficulty in urinating? Yes No Do not know (circle one) 

c) Frequent urge to urinate? Yes No Do not know (circle one) 

d) Pain in their joints?  Yes No Do not know (circle one) 

e) Diarrhoea?    Yes No Do not know (circle one) 

f) Other symptoms (specify) ________________________ 
 

12. Has the child ever been to hospital since birth  
 (other than for vaccinations)?    Yes No  (circle either yes or no) 
 

  If yes,   what for?  ______________________ 
 

     when?   ______________________ 
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(You do not have to disclose any results of tests undertaken)  

13. Has the child received  vaccination for:  
 

a. BCG vaccination (tuberculosis)?  Yes   No  Don’t know (circle  one) 

b. Mumps     Yes   No  Don’t know (circle  one) 

c. Measles     Yes   No    Don’t know (circle  one) 

d. Rubella               Yes   No   Don’t know (circle  one) 

e. Diphtheria     Yes   No   Don’t know (circle  one) 

f. others (specify)  _____________________________________ 
 

14. Where does your drinking water come from? (circle as many as appropriate) 
a. Unprotected well 
b. River 
c. Dam 
d. Upgraded well 
e. Borehole 
f. Tap 
g. Other (specify) _________________________________ 
 
15. Where does the child normally go to the toilet? (circle as many as appropriate) 
a. Bush 
b. cat sanitation 
c. Latrine/toilet 
d. Other (specify) _________________________________ 
 

16. Is there a latrine at your home?  Yes   No (circle  either yes or no) 
 

17. If yes, are there any problems in using it?      Yes No      (circle  either yes or no) 
 

   

If yes, explain ____________________________________________________________ 
 

18. Water contact questions:  

  Y/N 

How often? 
 
(tick √ one box - see scale 
below) 

Where do they 
normally go? 
(name of 
river/dam) 

What time of day 
do they normally 
do it?        
(morning/ midday/ 
afternoon/evening) 

Does the child ever play in the river 
or dam? 

           

Does the child ever bathe in the 
river or dam? 

           

Does the child ever collect water 
from the river or dam? 

           

Does the child ever cross any 
rivers? 

           

Does the child ever water the 
garden from the river or dam? 

           

Does the child ever go to the river 
or dam for any other reason? 
Reason _______________ 

           

            

18. 19. How often does the child go to the  
19. river or dam?  

           

 
 
 
 
 

  O
n
c
e
 a

 d
a
y
 

  O
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   O
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20. Where does the child normally get treated when unwell? (circle as many as appropriate) 
a. At home using herbal medicines 
b. At home using western medicine 
c. At the traditional healer 
d. At the local clinic 
e. Other please specify__________________________________________ 
 

21. Where do you normally get treated when unwell? (circle as many as appropriate) 
a. At home using herbal medicines 
b. At home using western medicine 
c. At the traditional healer 
d. At the local clinic 
e. Other please specify__________________________________________ 
 
[The following questions are simply to assess knowledge of the participants’ mothers and are not to 

be used for inclusion / exclusion. Ask the question given in bold and circle the answers which best 
match their response. DO NOT READ OUT THE LIST OF ANSWERS] 

 
22. What is Bilharzia? (circle one answer) 
a. Don’t know 
b. A disease 
c. A disease transmitted by drinking dirty water   
d. A disease transmitted by snails that live in rivers and ponds  
e. A disease caused by tiny parasitic worms which live in rivers and ponds  
f. A disease caused by tiny parasitic worms which are transmitted by snails that live in rivers and ponds 
g. Other, please state________________________ 
 
23. Where did you learn about Bilharzia? (circle  as many as appropriate) 
a. School 
b. Health centre 
c. Community 
d. Family 
e. Read book 
f. Nowhere 
g. Other ___________________________________________________________ 
 
24.  What are the main symptoms of Bilharzia? (circle as many as appropriate) 
a. Don’t know 
b. Vomiting 
c. Blood in urine  
d. Pain when urinating  
e. Frequent urination 
f. Headache 
g. Stomach ache 
h. Tiredness 
i. Loose and bloody stools 
j. Other,  please state_______________ 
 
25. How do you catch Bilharzia? (circle ONLY one answer which best describes their knowledge)  
a. Don’t know 
b. By being bitten by mosquitoes  
c. By drinking dirty water 
d. By playing or bathing in rivers or ponds where snails are present   
e. By playing or bathing in rivers or ponds  
f. Other  please state____________________ 
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26. How can you protect yourself from Bilharzia?  (circle  as many as appropriate)  
a. Don’t know 
b. By stopping to play or bathe in rivers and ponds 
c. By you (and others) always using a latrine. 
d. By taking medicines regularly 
e. By removing freshwater snails 
f. Other, please state____________________ 
 

27. Have you ever taken treatment for Bilharzia? Yes No      Do not know  (circle one) 
 

 

If yes, when? _______________(year) 
 

28.  Can you ever catch Bilharzia again after taking treatment? 
 

Yes No      Do not know  (circle one) 

 

29. What are the main symptoms of malaria? (circle as many as appropriate) 
a. Don’t know 
b. Tiredness 
c. Vomiting 
d. Headache 
e. Diarrhoea 
f. Fever and chills 
g. Other,  please state___________________ 
 
29. How do you catch malaria? (circle ONLY one answer which best describes their knowledge) 
a.        Don’t know 
b.        By drinking dirty water  
c.        By being bitten by mosquitoes that bite during day-time  
d.        By being bitten by mosquitoes that bite during night-time  
e.        Other, please state____________________ 
 
30. How can you protect yourself from malaria? (circle as many as appropriate) 
a. Don’t know  
b. By drinking clean water from the well    
c. By taking medicines 
d. By wearing insect repellents      
e. By sleeping each night under a mosquito bed net 
f. By regularly spraying insecticides inside the home 
g. Other, please state________________ 
 
31. Do you know anyone who has had malaria?  
 

Yes No       (circle either yes or no) 
 

 

If yes, who? __________________________________ 
 
32. Have you ever taken treatment for malaria?  
 

Yes No      Do not know  (circle one) 
 

 

If yes, when? _______________(year) 
 
33. Can you ever catch malaria again after taking treatment? 
 

Yes No      Do not know  (circle one) 
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COMMENTS FROM HEALTHWORKER EXAMINING CHILD 

 
____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________ 

 

 
 

ANY OTHER COMMENTS 
____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________ 

 

 
 
 



WT Bilharzia Questionnaire 
 

1. This questionnaire is 4 pages long- please complete ALL pages.  
 
2. Questionnaire to be completed at the time of enrollment of children into the study and 

only after obtaining parents consent and assent of participating child.   
 
Date of questionnaire________________________________________________ 
 

Person administering questionnaire_____________________________________ 
 

Parent’s name _____________________________________________________ 
 

 
Participant Name_________________________________________  ID #___________________ 
 
Gender    M   F   (circle one)   
 
Date of birth (DD MM YY)_____________  Age____________(years) 
 
Age group: 6-10    11-14       15-17        18-25        26-35        36+   (circle one) 
 
Body weight ________kg   Height _______________cm 
 
School _________________________  Village Name_____________________________ 
 
Have you lived in this village all your life? Y N  (circle either yes or no)  
 

If no, which other villages have you lived in and for how long? 
 

Order of residence      Village name     District     How long (years)? 

1 (born in)…. _____________________ __________________ _________________ 

2  _____________________ __________________ _________________ 

3 _____________________ __________________ _________________ 

4 _____________________ __________________ _________________ 

5 _____________________ __________________ _________________ 

 

Which primary school did you attend? _______________________ 
 
Which secondary school did you attend? _____________________ 
 
Do you make regular visits to other villages?  Y N (circle either yes or no)  

 

If yes,   Where? _______________________________ 
 

When? ________________________________ 
 
Do you participate in sports? Y N (circle either yes or no)  
  

If no, why not? _______________________ 



Have you ever had Schistosomiasis (bilharzia) infection? Yes  /  No /  Do not know  (circle one) 
 

If yes, were you treated?  Yes  /  No /  Do not know  (circle one) 
 

If yes, do you remember when you were treated?_________________ How?_______________ 
 
Have you ever had Malaria?  Yes  /  No /  Do not know (circle one)  
 

If yes, were you treated?  Yes  /  No /  Do not know  (circle one) 
 

If yes, do you remember when you were treated?__________________ How?______________ 
 
Other Signs and symptoms (ask then prompt from list) 
Hematuria (Blood in urine) __________________________________________  
Dysuria (Difficulty in urination)_______________________________________ 
Frequent urge to urinate (approximate estimate)________________________ 
Fever I (37.5-38.50C)  II (38.6-400C)   III (400C+) 
Chills___________________________________________________________  
Arthralgia (Pain in joints) ___________ 
Myalgia (Muscle pain) __________ 
Backache _______  
Lethargy (Sleepy)____________  
Diarrhea __________ 
Other symptoms__________________________________________________ 
Splenomegaly (enlarged spleen) ____________________________________ 
Hepatomegaly (enlarged liver) ______________________________________ 
Hepatitis B antibody (if known)_______________________________________ 
 
Which village were you born in?_____________________________  
(check this matches village they live in now – if not check have full list of all villages lived in) 
 

The following information is being collected to assess various likely or probable risk factors 
associated with malaria and / or schistosomiasis infection  
 
 

A. Domestic water source (circle as many as appropriate) 
1 unprotected well 

    2 river 
    3 dam 
    4 Upgraded well 
    5 Borehole 
    6 Tap 
    7 Other (specify) ______________________ 
 

B. Where do you normally go to the toilet?  (circle as many as appropriate) 
    1 bush 
    2 cat sanitation  
    3 Latrine/toilet 
    4 Other (specify) ______________________ 
 

C. Is there a latrine at your home?  Y N (circle either yes or no) 
 

D. If yes, are there any problems in using it?  Y   N (circle either yes or no) 
 

If yes, explain ________________________________________________________ 
 

E. Do you pass through water on your way to and from school?    Y    N  (circle one) 
 

If yes, where? (describe and/or give site name)______________________________  



F. Water contact activities  
 
     

 

 

Yes/No 
 

 
 

(code) 

 

How 
many 
times? 

 

Where?*  
 

 

At what time?*  
(e.g. 0800, 1200, 
1600)               

 
(code) 

 

River/Dam/Well/Other  
 
(if Other, specify) (code) 

 

If River or Dam,  
name of place or nearest 
village/school                       (code) 

(1) Did you go swimming yesterday?          

(2) Did you play in the water yesterday?          

(3) Did you go to bathe yesterday?          

(4) Did you do laundry yesterday?          

(5) Did you wash dishes yesterday?          

(6) Did you go to wash yesterday? (face 
and legs) 

         

 

(7) Did you collect water yesterday? 
         

(8) Did you go fishing yesterday?          

(9) Did you cross any rivers yesterday?          

(10) Did you go to the water for any other 
reason yesterday? 

         

(10 a) If answer to Q10 yes:  
 

 What did you do?__________________ 

 
 

       

 

*Answer for each contact  
 

G. In the last 7 days, have you carried out any of these activities at the river or dam? (circle  as many as appropriate) 
 

 

 If yes, how many times?  If yes, how many times? 

Swimming ______________ Washing (face and legs) ______________ 

Playing in the water ______________ Collecting water ______________ 

Bathing ______________ Fishing ______________ 

Laundry ______________ Crossing river ______________ 

Washing dishes ______________ Other_______________ ______________ 

 



 

The following questions are simply to assess knowledge of the participants and are not to be 
used for inclusion / exclusion)  

 

H. Do you know what bilharzia is?  Y N (circle either yes or no)     

If yes, where did you learn about bilharzia? (circle as many as appropriate) 
1. School 
2. Health centre 
3. Community 
4. Family 
5. Read book 
6. Nowhere 
7. Other __________________________________________________________ 

 
I. Do you know what the symptoms of bilharzia are? (circle as many as appropriate) 

1. Blood in urine 
2. Tiredness 
3. Mental illness 
4. Pain upon urination 
5. Other ___________________________________________________________ 

 
J. Do you know how bilharzia is spread? (circle as many as appropriate) 

1. Urinating in water 
2. Defecating in water 
3. Swimming 
4. Stepping on urine 
5. Drinking dirty water 
6. Snails 
7. Other ___________________________________________________________ 

 
K. Do you know what the long-term effects of bilharzia are? (circle as many as appropriate) 

1. Infertility 
2. Stomach/bladder damage 
3. Death 
4. Going mad 
5. Don’t know 
6. Other ___________________________________________________________ 

 
L. Do you try to protect yourself from getting bilharzia? Y N (circle one)  

 

If yes, how? _______________________________ 
 

If no, why not? (circle as many as appropriate) 
  Economic reasons    

Distance to clinic   
Lack of knowledge of treatment options,  
Religious reasons 
Other __________________________ 

 
M. Do you have any questions or comments concerning this study? 
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Publications of work related to

the thesis

� Poster presented at the British Society for Parasitology Autumn Symposium

2013 on “Advances in Diagnostics for Infectious Diseases”.

� Comparing parasitological vs. serological determination of Schistosoma

haematobium infection prevalence in preschool and primary school-aged

children: implications for control programmes. In Parasitology, 2014.

� Identifying and Evaluating Field Indicators of Urogenital Schistosomiasis-

Related Morbidity in Preschool-Aged Children. In PloS NTD, 2015.
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UROGENITAL SCHISTOSOMIASIS MORBIDITY IN PRE-AND

PRIMARY SCHOOL-AGED CHILDREN IN RURAL ZIMBABWE
W.M. Wami1∗, N. Nausch1, N. Midzi2, T. Mduluza3, M.E.J. Woolhouse4, F. Mutapi1

1 Institute for Immunology & Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, UK
2 National Institute of Health Research, PO Box CY 573, Harare, Zimbabwe,3 Department of Biochemistry, University of Zimbabwe, PO Box 167, Harare,Zimbabwe

4 Center for Immunity, Infection & Evolution, Ashworth Laboratories,University of Edinburgh, Edinburgh EH9 3JT, UK
∗w.m.wami@sms.ed.ac.uk

Introduction
• Urogenital schistosomiasis caused bySchistosoma haematobium, af-

fects 119 million people worldwide.

• Infection occurs on contact with infested waters and in endemic regions
re-infection is widespread.

• Treatment by praziquantel (PZQ), 40mg/kg single dosage.

• Pre-school children (≤5 years) still not targeted by treatment control
programs.

Water contacts, Male and Female Schistosomes and Urine samples.

Aim
The aim of this study was to assess urogenital schistosomiasis morbidity
prevalence in children residing in an endemic region and effect of PZQ
treatment 6 weeks post-treatment on infection levels.

Methods
Study area and Population

• Murehwa district, NE Zimbabwe (S. haematobiumendemic).

• Pre- and primary school children aged 1-10 years, lifelong residents.

• No previous/current geo-helminths infection.

• No previous history of anti-helminthic treatment.

Study Area (red star) and Study population

Treatment

• Single dosage of PZQ in tablet form with 6 weeks post-treatment effi-
cacy follow-up.

Parasitology and Morbidity

• 10ml urine samples collected on 3 consecutive days.

• Egg counts/10ml urine determined using urine filtration method.

• Reagent strip used to test for morbidity: Haematuria, Proteinuria and
Urine-Albumin/Creatine Ratio (UACR).

Statistical Analysis

To investigate whether PZQ treatment efficacy is associated with age, a
general linear model (GLM) was fitted with infection intensity at 6 weeks
post-treatment as response variable, adjusting for pre-treatment infection
intensity. A model with an interaction term between age and pre-treatment
infection intensity was first considered. Level of significance was set at
α = 0.05.

Results
Summary Statistics at Baseline (Pre-treatment).

Variable Parameter 1-5 years6-10 years Overall
Sample n 146 268 414

Sex (%)
Male 53.8 42.5 46.5
Female 46.2 57.5 53.5

Age mean(SD) 3 (1.4) 8 (1.4) 6 (2.9)

Egg count
mean(SD) 3 (18.3) 21 (81.3) 15 (67.6)
Minimum 0 0 0
Maximum 189 1013 1013

∗Egg count per 10ml urine; SD=standard deviation.

• Presence of heavy infections (egg count≥50) among children.

Infection intensity, Egg reduction rate (ERR) and Cure Rate (CR).
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Infection Intensity by Age

Before treatment
6 weeks post−treatment

Age group ERR CR
(95%CI) (95% CI)

1-5 years 86.2 91.7
(32.4-98.8)(64.6-98.5)

6-10 years 95.8 92.1
(77.3-99.2)(84.6-96.1)

Overall 93.3 92.1
(70.2-98.8)(85.1-95.9)

• Infection intensity higher in the older children pre-treatment.

• High efficacy in both age groups.

Prevalence of Haematuria, Proteinuria and UACR.
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• Decrease in prevalence of
morbidity post-treatment.

• Abnormal levels of UACR
observed 6 weeks post-treatment.
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Treatment Efficacy: Is there an age effect?.

• Interaction effect was not significant, hence reduced.

• No significant association between post-treatment infection intensity
and age (t=-1.3; p-val=0.18), adjusting for pre-treatment infection in-
tensity (t=1.5; p-val=0.13).

Conclusion
• Heavy infection intensity and high morbidity prevalences were

noted in this young population pre-treatment.

• Treatment reduces/clears infection and reverses morbidity.

• PZQ treatment efficacy high and is not age related.

• There is need for control programs to target younger children and
important to consider re-treatments to target immature infections.
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SUMMARY

To combat schistosomiasis, the World Health Organization (WHO) recommends that infection levels are determined prior
to designing and implementing control programmes, as the treatment regimens depend on the population infection
prevalence. However, the sensitivity of the parasitological infection diagnostic method is less reliable when infection levels
are low. The aim of this study was to compare levels of Schistosoma haematobium infection obtained by the parasitological
method vs serological technique. Infection levels in preschool and primary school-aged children and their implications for
control programmes were also investigated. Infection prevalence based on serology was significantly higher compared with
that based on parasitology for both age groups. The difference between infection levels obtained using the two methods
increased with age. Consequentially, in line with the WHO guidelines, the serological method suggested a more frequent
treatment regimen for this population compared with that implied by the parasitological method. These findings
highlighted the presence of infection in children aged 45 years, further reiterating the need for their inclusion in control
programmes. Furthermore, this study demonstrated the importance of using sensitive diagnostic methods as this has
implications on the required intervention controls for the population.

Key words: parasitology, serology, prevalence, schistosomiasis, diagnosis, neglected tropical diseases.

INTRODUCTION

Urogenital schistosomiasis is a waterborne disease
caused by infection with Schistosoma haematobium
and is a major public health problem among poor
communities in sub-Saharan Africa (Gryseels et al.
2006; Kabatereine et al. 2007; WHO, 2012). Eggs
laid by adult female S. haematobium worms are
excreted through urine, inflicting damage to the
genitourinary tract. Children living in endemic areas

tend to carry the highest disease burden (Hotez et al.
2006; Stothard et al. 2011a) and symptoms of
urogenital schistosomiasis amongst these children
are commonly characterized by the presence of blood
in urine (haematuria) and painful urination (van der
Werf et al. 2003; Sady et al. 2013). Chronic infection
results in severe pathologies such as kidney failure
and urinary tract and bladder wall fibrosis. Other
symptoms include malnutrition, stunted growth
and impaired memory and cognition (Pasvol and
Hoffman, 2001; Sousa-Figueiredo et al. 2008;WHO,
2010; Muller et al. 2011).

The infection and its associated morbidity can be
controlled with chemotherapy using praziquantel
(Doenhoff et al. 2008; Mutapi et al. 2011), adminis-
tered at a standard oral dosage of 40mg kg−1 body
weight (WHO, 2002). Praziquantel is safe and effi-
cacious in children aged 5 years or under (Mutapi
et al. 2011; Stothard et al. 2011b; Coulibaly et al.
2012), but so far treatment of children belonging to
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this age group has not yet been fully integrated
into the control programmes (Ekpo et al. 2012).
Preschool-aged (4 5 years) children have been
neglected both in terms of research and in control
programmes for the previously held view that they
carry insignificant infection levels (Stothard and
Gabrielli, 2007; Mutapi et al. 2011; WHO, 2011).
This was further exacerbated by poor diagnosis
of infection in the field (Vennervald et al. 2000;
Stothard et al. 2011a). The exclusion of preschool-
aged children from current control programmes
increases their risk of developing future morbidity
(Stothard and Gabrielli, 2007; Sousa-Figueiredo
et al. 2008) and also indicates that disease burden in
this age group is still not well defined (Garba et al.
2010). Consequently, this may have negative impacts
on the overall effectiveness of control programmes.
In line with the guidelines outlined by the World

Health Organization (WHO, 2002), infection pre-
valence must be determined prior to the implemen-
tation of a control programme (Dawson et al. 2013;
WHO, 2013). To ensure that infection transmission
levels are reduced and the associated morbidity
is alleviated, repeated mass drug administration
(MDA) at regular intervals depending on the popu-
lation prevalence has been recommended by the
WHO (Hotez et al. 2006; Kabatereine et al. 2007;
WHO, 2013). Thus, it is important that sensitive
diagnostic tools are applied to determine infection
levels in the population.
Egg count in urine (parasitology) is the widely

accepted approach for quantifying S. haematobium
infection levels in a population (WHO, 1998; Pasvol
and Hoffman, 2001; Kinkel et al. 2012). However,
the parasitological method is less sensitive in light
infections (Doenhoff et al. 2004; Bergquist et al.
2009). Furthermore, parasitology does not diagnose
pre-patent or single-sex infections where there is
no egg production (Mutapi, 2011). Several additional
methods aimed at improving the diagnosis of
schistosomiasis have been evaluated (Stothard et al.
2013), although the focus has been mainly on
Schistosoma mansoni (Sorgho et al. 2005; de Noya
et al. 2007; Stothard et al. 2011a). Examples of
additional diagnostic methods include antibody
detection (Sorgho et al. 2005; de Noya et al. 2007;
Smith et al. 2012), dipstick detection of haematuria
(Adesola et al. 2012; King and Bertsch, 2013) and
use of reported questionnaires about presence of
haematuria (Lengeler et al. 2002; Clements et al.
2008). There is currently a paucity of studies com-
paring different methods of detecting infection in
preschool-aged children. The elegant dipstick meta-
analysis study recently published by King and
Bertsch (2013) highlights the need for more investi-
gations on different methods for detecting infection
in preschool-aged children.
The first aim of our study was to compare levels

of S. haematobium infection determined by the

parasitological method with infection detected via
the serological technique and their implications for
the WHO recommended treatment regimens for this
study population. Dipstick microhaematuria was
also used as an additional tool to the parasitological
method on a subset of this study population to detect
S. haematobium infection. The second aim of this
study was to determine infection levels in preschool-
aged children in comparison to primary school-aged
children to elucidate the implications of these levels
of infection for childhood health and their inclusion
in the current control programmes.

MATERIALS AND METHODS

Ethical approval and consent

The study received ethical and institutional ap-
proval from the University of Zimbabwe and the
Research Council of Zimbabwe. Permission to
conduct the work in this province was obtained
from the Provincial Medical Director, the District
Educational Officer andHeads of schools in the study
area. Project aims and procedures were fully ex-
plained to the community, primary school-aged
children, teachers and parents/guardians in the local
language, Shona. Written informed consent/assent
was obtained from parents/guardians prior to enrol-
ment of children into the study. The children were
recruited into the study on a voluntary basis and
were free to withdraw at any time with no further
obligation. Children in this study were offered treat-
ment with the standard dose of praziquantel admi-
nistered by the local physician.

Study area and population

The study was conducted in two rural villages in
Murewa district, in the north-east of Zimbabwe
(31°90′E; 17°63′S). The area is a highS. haematobium
transmission area according to the WHO classifica-
tion of having a prevalence of infection >50% (WHO,
2002). Prevalence of S. mansoni and soil transmitted
helminths (STH) is low in this area (Ndhlovu
et al. 1996; Nausch et al. 2012). The children were
recruited from crèches, early child development
centres, preschools (typically for 3–5 years old) and
local primary schools (for 6–10 years old). Parents/
guardians with children not attending any of the
education programmes (e.g. children <3 years old) in
the area were invited to report to the school centre for
enrolment into the project.

Study design

The inclusion/exclusion criteria for this study were
as follows: children should have (1) been lifelong
residents of the study area; (2) had no prior history of
anthelmintic treatment (the above two criteria were
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assessed by means of questionnaires administered to
parents/guardians for all children); (3) had provided
at least 3 urine samples for S. haematobium detection
and 2 stool samples for STH and S. mansoni
parasitological examination; (4) been negative for
S. mansoni infection (21 children were excluded
from the study based on this criterion); and (5) been
negative for STH infections (no children were
excluded based on this criteria as no STH were
detected in any of the participants). A total of 438
children (54·6% females and 48·9% males) with
complete parasitological and serological data were
available for investigation in this study (Table A1).
Of the surveyed children, 224 (51·1%) resided in
village 1 and 214 (48·9%) were residents of village 2.

Parasitology

Urine samples collected on 3 consecutive days were
examined microscopically for S. haematobium infec-
tion using the standard filtration method (Mott et al.
1982). Schistosoma mansoni infection was diagnosed
from stool samples collected on 2 consecutive days
using the Kato-Katz method (Katz et al. 1972).
Children were designated infected with S. haema-
tobium if at least one egg was detected in any of their
urine samples and similarly for S. mansoni with a
single egg detected in stool. The S. haematobium
infection intensity was calculated using the arith-
metic mean egg count per 10mL of the collected
urine samples. For very young children where it was
difficult to obtain samples on the spot, the samples
were collected overnight by parents/guardians using
urine collection bags (Hollister 7511 U-Bag Urine
Specimen Collector, Hollister Inc., Chicago, IL,
USA) and stool samples were collected using disposal
dippers.

Serology

Serum was obtained from up to 5mL of venous
blood collected from each child, frozen at −20 °C in
the field and transferred to a −80 °C freezer in the
laboratory, prior to shipment to the University of
Edinburgh, UK and kept under storage at −80 °C.
Samples were thawed for the first time for use in this
study. The sera were tested for IgM (Dako, UK)
antibody responses directed against schistosome egg
antigens using enzyme linked immunosorbent assays
(ELISA). The ELISA were conducted in duplicate
per plate as previously described (Mutapi et al. 1997;
Imai et al. 2011). The results were expressed as the
mean optical density (OD) value of the duplicate
assay. IgM antibodies are produced early in an infec-
tion (Warrington et al. 2011) and previous studies
have reported a positive association between anti-egg
IgM antibody responses and schistosomiasis infec-
tion levels (Mutapi et al. 2003; Stothard et al. 2011a;
Dawson et al. 2013). Thus, for this study we used

anti-schistosome egg IgM antibody response as an
additional diagnostic indicator for S. haematobium
infection.

A total of 17 serum samples comprised of four
serum samples from age-matched schistosome naïve
European and 13 healthy Zimbabwean donors
(schistosome infection-free and with no anomalies
reported after clinical examination by the paediatri-
cian) were used as controls to determine cut-off
ELISA values for ‘infection’ status. The European
samples were drawn from the Edinburgh anon-
ymized clinical sample archive. The cut-offs were
calculated using the formula: mean (OD) +2*stan-
dard deviations of the mean (S.D.). Children were
classified as infected if their levels of parasite-specific
antibody levels were greater than the cut-off value,
and infection negative if equal or below the cut-off
value.

Dipstick microhaematuria

Out of the 438 children, 190 (51 preschool-aged and
139 primary school-aged) children in this study
population had their urine samples examined for
microhaematuria detectable by Uristix® reagent
strips (Plasmatec, UK) as an indicator for
S. haematobium infection in addition to the para-
sitological and serological diagnostic methods
(Table A2). No marked variability was noted in
dipstick tests of the urine samples for each child
collected on consecutive days, thus, only the dipstick
test results for urine samples collected on the first day
of the survey were used in this study. The levels
of dipstick microhaematuria were first graded semi-
quantitatively as: negative (−), single positive
(+ ; &10 erythrocytes μL−1), double positive (++;
&50 erythrocytes μL−1) and strong positive (+++;
&250 erythrocytes μL−1) following the manufac-
turer’s guidelines. In this study, a positive test for
microhaematuria was indicative of the presence of
S. haematobium infection, meaning that children
with scores of a single + and above were scored as
positive for microhaematuria. A random sample of
123 urine samples were tested using the Multistix®

10SG (Bayer, UK) in addition to the Uristix® test
to assess for differences in the quality of dipsticks
by manufacturer. A strong agreement between the
dipstick results from the two manufacturers using
the McNemar’s test (P<0·001) was observed,
hence no evidence of the influence of the dipstick
source on test results was noted for this study
population.

Statistical analyses

Statistical analyses were performed using SAS® 9.3
(SAS Institute Inc., Cary, NC, USA) and R 3.0.1
(R Development Core Team, Vienna, Austria).
Infection intensity was log-transformed (log10[egg
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count +1]) to meet the underlying assumptions of
parametric statistical tests. Pearson’s partial corre-
lation coefficient (r) was used to measure the strength
of the association between infection intensity and
antibody levels, controlling for the effect of age.
To investigate whether the mean antibody levels or
mean infection intensity differed significantly be-
tween preschool and primary school-aged children,
independent t tests were used. The effect of sex, age
group and village on the mean infection intensity and
on the antibody levels was investigated using general
linear regression models. To determine whether
infection prevalence differed between the two age
groups and that prevalence derived from parasito-
logical data differed from that based on serological
data, Chi-square (χ2) tests were used.

Age-dependent prevalence model

Infection prevalence based on the binary response
variables derived from parasitology and serology as a
function of age, was estimated parametrically using
the method of generalized linear regression model-
ling. Letting n be the sample size under investigation,
ai the age of the ith child (i= 1, . . . n) and q(a) the
proportion of infection-negative children at age a in
the study population. The prevalence, which is the
probability of being infected at age a, is given by: π(a)
= 1−q(a) and estimated using the binary response
variable Yi as follows: π(a) =P(Yi = 1|ai). The
generalized linear model with a complementary log-
log link was applied to take into account the binary
nature of the response (Mathei et al. 2006) and
expressed parametrically as follows:

π(a) = 1− exp(−αaβ)
where α is the intercept and β is the slope, i.e. the
coefficient representing the effect of age on the
probability of being infection positive.
P values less than 0·05 were considered statistically

significant in this study.

RESULTS

Infection intensity and antibody levels

The observed overall mean S. haematobium infection
intensity based on egg counts was 17·40 eggs/10 mL

urine (S.D. = 71·20) and the overall mean antibody
levels was 0·62 OD (S.D. = 0·34). The mean infection
intensity and antibody levels were significantly
higher for the primary-school aged children com-
pared with that for preschool-aged children as shown
in Table 1. A large variability in egg counts was
observed as indicated by the large S.D. of the mean for
both age groups in Table 1. Based on parasitology,
7·1% of all children participating in this study carried
heavy infections (550 eggs/10 mL urine), 30·4% had
light infections (1–49 eggs/10 mL urine) and 62·6%
had no infection burden (0 eggs/10 mL urine) ac-
cording to the WHO classes of infection intensity
(WHO, 2002). Among the preschool-aged children,
3·1% had heavy infections, 15·5% had light infections
and 81·4% had no infection and in primary school-
aged children, 8·2% had heavy infections, 34·6% had
light infections and 57·2% had no infection.
Both infection intensity (r = 0·18; P<0·001) and

antibody levels (r = 0·31; P<0·001) increased sign-
ificantly with age. In addition, a positive correlation
between infection intensity and antibody levels
was found (r = 0·23; P<0·001). Infection intensity
or antibody levels were not associated with sex
and village of origin allowing for the effect of age
(Table 2).

Infection prevalence: parasitology vs serology

The overall observed infection prevalence based on
the two diagnostic techniques was as follows:
parasitology, 37·4% (95% CI: 33·0–42·0%) and
serology, 71·5% (95% CI: 67·2–75·7%) and these

Table 1. Summary results for infection intensity using egg count per 10mL urine, IgM antibody response
in optical densities (OD) directed against schistosome egg antigens with standard deviation of the mean
(S.D.) and t-test (on transformed data for infection intensity) for mean difference between the two age groups

Variable Age group n Mean (S.D.) Median Minimum Maximum t P value

Egg count 1–5 years 97 9·03 (47·53) 0·00 0·00 380·33 −4·49 <0·001
6–10 years 341 19·78 (76·50) 0·00 0·00 1013·00

Antibody level 1–5 years 97 0·46 (0·31) 0·38 0·01 1·27 −5·72 <0·001
6–10 years 341 0·67 (0·33) 0·66 0·07 2·39

Table 2. F and P values from general linear
regression models to test for the difference in mean
infection intensity (transformed using log10[egg
count +1]) and IgM antibody response directed
against schistosome egg antigens by sex and village,
adjusting for the effect of age

Infection intensity Antibody level

Variable F (P value) F (P value)
Age (years) 13·92 (<0·001) 47·47 (<0·001)
Sex (F vs M) 2·11 (0·147) 1·51 (0·220)
Village (1 vs 2) 0·49 (0·483) 0·48 (0·491)
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differed significantly (χ2 = 102·12; P<0·001). In
addition, the infection prevalence based on serology
was found to be significantly higher than the pre-
valence derived from parasitology for both age
groups (Fig. 1). No significant difference in infection
prevalence between male and female children was
observed (parasitology, χ2 = 0·79; P= 0·374, and
serology, χ2 = 0·15; P= 0·703).

The proportion of children classified as infec-
tion negative using the parasitological technique
in preschool-aged children was significantly lower
(χ2 = 4·11; P= 0·043) compared with that in primary
school-aged children (Fig. 2). For this study, only
16 (3·7%) children (10 female and 6 male, age
55 years) were found egg positive but classified as
infection negative using the serological diagnostic
method. In addition, for 9 of these children, eggs
were detected only in one urine sample, with a mean
count of 4 eggs/10 mL urine or less.

Age-dependent prevalence profiles: parasitology
vs serology

The results for estimated regression coefficients and
S.E. used to determine the age-dependent infection
prevalence based on parasitological vs serological data
were as follows: intercept, α: 0·04 (S.E. = 0·02) vs 0·12
(S.E. = 0·05) and slope, β: 1·23 (S.E. = 0·27) vs 1·25
(S.E. = 0·19). Infection prevalence increased with age
in a similar pattern for both diagnostic methods,
however the rate of increase for serology was higher
compared with that of parasitology (Fig. 3). In
addition, the infection prevalence derived using the

serological technique was higher compared with
the prevalence based on parasitological diagnostic
method and this discrepancy increased with age
(Fig. 3). The infection levels for primary school-
aged children based on serology belonged to the high-
risk WHO category (prevalence 550%) compared
with the moderate-risk category implied by the
parasitological diagnostic method.

Fig. 1. Infection prevalence derived using parasitological
and serological diagnostic methods by age group. The
indicated bars are the 95% confidence intervals of the
observed prevalence and the P values test for the
differences in prevalence between the diagnostic methods
for each age group. White bars = prevalence based on
parasitology and grey bars = prevalence based on
serology.

Fig. 2. Percentage proportion positive (+) vs negative (−)
children diagnosed using parasitological and serological
methods by age group. White stack: (− −) = negative for
both diagnostic methods (1–5 years, n = 51; 6–10 years,
n= 58), light grey stack (− +) = negative for parasitology
but positive for serology (1–5 years, n= 28; 6–10 years,
n= 137), grey stack (+ −) = positive for parasitology but
negative for serology (1–5 years, n= 1; 6–10 years, n= 15)
and dark grey stack (+ +) = positive for both diagnostic
methods (1–5 years, n= 17; 6–10 years, n= 131).

Fig. 3. Predicted age-related infection prevalence profiles
derived from parasitological (dashed line) and serological
(solid line) diagnostic methods. The grey shadings around
the prevalence curves indicate the 95% confidence
intervals. The horizontal dashed lines indicate the
moderate (10%) and high (50%) infection-risk cut-offs for
control regimens as defined by the World Health
Organization (WHO, 2002).
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Dipstick microhaematuria diagnostic method

Infection prevalence derived using the dipstick
microhaematuria test was compared with the infec-
tion prevalence determined using the parasitological
diagnostic method on 190 children (Fig. 4). The
overall infection prevalence derived from the dipstick
microhaematuria in this subset of the study popu-
lation was 86·3% (95% CI: 81·9–91·7%) compared
with 37·9% (95% CI: 30·9–44·9%) based on parasit-
ology and 74·2% (95% CI: 67·9–80·5%) derived from
the serological diagnostic method. Furthermore,
infection prevalence based on dipstick microhaema-
turia was significantly higher compared with pre-
valence based on parasitology for both age groups.
It was further noted that none of the egg-positive
children were diagnosed as infection negative using
dipstick microhaematuria and 4 (2·9%) primary
school-aged children were found egg positive but
with no microhaematuria detected in urine.

DISCUSSION

Following successful advocacy by the World Health
Assembly (WHA, 2001), repeated MDA has become
the key control strategy to combat schistosomiasis
(WHO, 2002, 2013), with frequency of treatment
dependent on the pre-determined infection preva-
lence (WHO, 2002). However, taking into considera-
tion the reduced sensitivity of the parasitological
diagnostic technique in children carrying light infec-
tions (Engels et al. 1997; Coulibaly et al. 2013), it is
imperative that additional sensitive diagnostic tools

are incorporated to improve the determination of
infection levels. In this study we compared levels of
S. haematobium infection obtained by the parasitol-
ogical (egg count) method to the serological tech-
nique. In addition, these infection levels were
compared between preschool and primary school-
aged children to elucidate the need for inclusion of
the neglected preschool age group into control
programmes. The implications of infection levels
determined in this study for theWHO recommended
MDA regimens were also investigated.
In agreement with other studies using different

diagnostic tools (Kahama et al. 1998; Kanamura
et al. 2002; Lengeler et al. 2002; van Dam et al.
2004), infection levels (infection intensity and pre-
valence) increased significantly with age in this
study. Unsurprisingly, infection intensity was posi-
tively correlated with anti-egg IgM antibody levels,
since children accumulate infection with the asso-
ciated increase in exposure to schistosome antigens
(Stothard et al. 2011b). More importantly, the results
of this study revealed significant infection prevalence
in preschool-aged children, further concurring
with findings from recent studies on the infection
burden in this age group (Garba et al. 2010; Sousa-
Figueiredo et al. 2010; Mutapi et al. 2011; Stothard
et al. 2011a). These findings implicate a risk of
preschool-aged children developing severe pathology
due to chronic infection if left untreated (Stothard
et al. 2011b; Ekpo et al. 2012). Hence the inclusion
of these children in control programmes should be
considered fundamental for improved and balanced
childhood health (Garba et al. 2010).
This study revealed, in contrast with serology,

that the parasitological technique approach under-
estimated infection prevalence in both age groups.
These findings are indicative of reduced sensitivity
of the parasitological technique since the majority
of children in our study population carried light
infection. In addition, following theWHOguidelines
(WHO, 2002), infection prevalence derived from
the serological method suggested a more frequent
treatment intervention for this study population
compared with that implicated by the parasitological
technique. These findings further demonstrate that
the use of different diagnostic techniques can be of
importance in decision-making about suitable con-
trol strategies to implement. The WHO system is
based upon parasitology, and was developed before
the contribution of light infections (not detected
via egg counts) to pathology was fully realized.
The combination of additional diagnostics which
can detect low infection levels and better definition
of morbidity arising from low infections in
S. haematobium infections (as recently summarized
by King and Bertsch, 2013) support the current
efforts for including preschool-aged children in
schistosomiasis control programmes (Stothard et al.
2013).

Fig. 4. Infection prevalence derived using parasitological,
serological and dipstick microhaematuria diagnostic
methods by age group for a subset of the study
population (n= 190). The indicated bars are the 95%
confidence intervals of the observed prevalence and the
P-values test for the differences in prevalence between the
diagnostic methods for each age group. White
bars = prevalence based on parasitology, grey
bars = prevalence based on serology and dark grey
bars = prevalence based on dipstick microhaematuria.
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The small proportion of schistosome egg-positive
children in this study who were classified as infection
negative using the serological technique can theore-
tically be attributable to two reasons: (1) contami-
nation of the urine samples (Mutapi, 2011),which can
occur as a result of instruments not being thoroughly
cleaned or urine contamination with stool, especially
for young female children; and (2) individual
variability in mounting an immune response against
the parasite antigens (Stothard et al. 2011a).

Similar patterns of age-dependent infection pre-
valence profiles were observed for both diagnostic
methods, indicative of early exposure to infection and
the accumulation of infection as children grow older
(Garba et al. 2010; Stothard et al. 2011a). Overall, the
estimated age-dependent prevalence based on sero-
logy was higher compared with that derived from
parasitology, and this discrepancy between infection
levels obtained from the two diagnostic methods also
increased with age. Consequentially, the observed
age-prevalence patterns indicated that the required
intervention strategies varied with age.

The use of dipstick microhaematuria in this study
detected higher prevalence of infection equally for
both preschool and primary school-aged children
in comparison to the parasitological method. These
findings highlighted the usefulness of dipstick
microhaematuria as an additional diagnostic tool in
children carrying light infections, in agreement with
findings from other recent studies (King and Bertsch,
2013). Haematuria due to glomerular causes has been
reported in children (Meyers, 2004), thus caution
should be exercised when interpreting the high
prevalence of microhaematuria in preschool-aged
children. Further studies are needed to elucidate
levels of haematuria attributable to schistosome
infection in this age group. French et al. (2007)
recommended comparison of dipsticks sourced from
different manufacturers to assess the effect of quality
on the test results. In this study we used dipsticks
sourced from two different companies (Uristix® from
Plasmatec and Multistix® from Bayer) and they gave
comparable results, supporting the robustness of our
findings.

CONCLUSION

In conclusion, this study showed significant
S. haematobium infection levels among untreated
preschool and primary school-aged children who
were life-long residents of an endemic area. Infection
intensity and prevalence increased rapidly from
early childhood, highlighting the need for treatment
of the preschool-aged children. This study further
highlighted the essential need for incorporating
preschool-aged children into control programmes
for the health benefits of treatment currently being
offered to their older counterparts and thus prevent
creating a childhood health inequity (Mutapi et al.

2011; Stothard et al. 2011b, 2013). Infection pre-
valence based on serology suggested a more frequent
MDA regimen to that implied by the parasitological
technique. We reiterate the importance of using
sensitive diagnostic methods to improve accuracy in
estimating true infection prevalence as this has
implications on the required MDA regimen for the
population. In our study, serology was highlighted
as a valuable sensitive diagnostic tool that could be
applied in conjunction with the parasitological
technique. The findings of this study revealed that
dipstick microhaematuria was equally sensitive in
diagnosing infection in both preschool and primary-
school aged children. Further evaluation of detection
of microhaematuria using dipsticks as an additional
diagnostic tool for S. haematobium infection in
preschool-aged children is recommended.
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APPENDIX

Table A1. Description of the different sample sizes of the study
population (total, n = 438) for parasitology and serology data by
age group

Age group Parasitology

Serology

TotalNegative Positive

1–5 years Negative 51 28 79
Positive 1 17 18

6–10 years Negative 58 137 195
Positive 15 131 146

Total 125 313 438

Table A2. Description of the different sample sizes of the subset (total, n = 190) of the study population for
parasitology, serology and dipstick microhaematuria data by age group

Age group Parasitology

Serology Dipstick microhaematuria

Negative Positive Negative Positive

1–5 years Negative 25 17 9 33
Positive 0 9 0 9

6–10 years Negative 22 54 13 63
Positive 2 61 4 59

Total 49 141 26 164
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Abstract

Background

Several studies have been conducted quantifying the impact of schistosome infections on

health and development in school-aged children. In contrast, relatively little is known about

morbidity levels in preschool-aged children (�5 years) who have been neglected in terms of

schistosome research and control. The aim of this study was to compare the utility of avail-

able point-of-care (POC) morbidity diagnostic tools in preschool versus primary school-

aged children (6–10 years) and determine markers which can be used in the field to identify

and quantify Schistosoma haematobium-related morbidity.

Methods/Principal Findings

A comparative cross-sectional study was conducted to evaluate the performance of current-

ly available POCmorbidity diagnostic tools on Zimbabwean children aged 1–5 years

(n=104) and 6–10 years (n=194). Morbidity was determined using the POC diagnostics

questionnaire-based reporting of haematuria and dysuria, clinical examination, urinalysis

by dipsticks, and urine albumin-to-creatinine ratio (UACR). Attributable fractions were used

to quantify the proportion of morbidity attributable to S. haematobium infection. Based on re-

sults of attributable fractions, UACR was identified as the most reliable tool for detecting

schistosome-related morbidity, followed by dipsticks, visual urine inspection, question-

naires, and lastly clinical examination. The results of urine dipstick attributes showed that

proteinuria and microhaematuria accounted for most differences between schistosome

egg-positive and negative children (T=-50.1; p<0.001). These observations were consistent

in preschool vs. primary school-aged children.
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Conclusions/Significance

Preschool-aged children in endemic areas can be effectively screened for schistosome-

related morbidity using the same currently available diagnostic tools applicable to older

children. UACR for detecting albuminuria is recommended as the best choice for rapid as-

sessment of morbidity attributed to S. haematobium infection in children in the field. The use

of dipstick microhaematuria and proteinuria as additional indicators of schistosome-related

morbidity would improve the estimation of disease burden in young children.

Author Summary

Schistosomiasis is a major parasitic disease affecting children in Africa, with impacts on
health, growth and cognitive development. Recently, the World Health Organization has
recommended inclusion of preschool-aged children (�5 years) in schistosome control
programmes. However, so far the performance of available morbidity diagnostic tools has
not been thoroughly evaluated in this age group. To address this knowledge gap, we con-
ducted a study in preschool children comparing the utility of currently available point-of-
care tools for diagnosing Schistosoma haematobium-related morbidity, namely: question-
naire-reported haematuria and dysuria, clinical examination, dipstick urinalysis, and
measurement of urine albumin-to-creatinine ratio (UACR). We also investigated the per-
formance of these tools in older children (6–10 years). Our study identified UACR as the
most reliable tool for detecting schistosome-related morbidity in terms of the morbidity
attributable to schistosome infection, followed by dipsticks, visual urine inspection, ques-
tionnaires, and lastly clinical examination The study further showed that the tools current-
ly used in school-aged children for diagnosing schistosome-related morbidity can be
extended to preschool children, allowing easier integration of this age group into treatment
and monitoring programmes.

Introduction
Urogenital schistosomiasis is a major parasitic disease caused by Schistosoma haematobium af-
fecting children in Africa, with negative impacts on child health, growth and cognitive develop-
ment [1]. Chronic infection with the parasite can cause anaemia, malnutrition, and organ
complications such as bladder fibrosis and kidney failure [2]. Schistosome control programmes
focus on preventive chemotherapy with the antihelminthic drug of choice, praziquantel, to re-
duce or prevent the development of severe morbidity due to schistosome infection, and thereby
improving health of the infected individuals and communities [3]. In order to achieve these
goals and evaluate the effects of control programmes, an understanding of the morbidity due
to schistosome infection is essential [4]. This requires the use of reliable rapid diagnostic tools
that can be used in the field [5].

In recent years progress has been made towards improving methods for measuring S. hae-
matobium-related morbidity and various techniques have been evaluated in older children and
adult populations [5]. For example, ultrasonography has been shown to be effective in detect-
ing organ-specific morbidity [6,7]. However, the need for specialized equipment and trained
personnel reduces its utility for large population studies in the field. Urinalysis has been used
as a rapid indirect assessment tool for early urinary tract morbidity due to schistosomiasis [8].
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In addition, standardized questionnaires recommended by the WHO for rapid screening of S.
haematobium infection and morbidity have been extensively used in endemic regions [9].
Most of these studies have focused on older children, typically primary school-aged children
(6–10 years), or older individuals.

The WHO has recently recommended the inclusion of preschool children (aged 5 years and
below) in schistosome control programmes [10], but the performance of the currently available
point-of-care (POC) diagnostic tools for detecting schistosome-related morbidity have not yet
been systematically evaluated in this age group. In addition, the utility of these POC tools has
not been compared in a single study between preschool and primary school-aged (6–10 years)
children, who are the current main targets of schistosome control programmes. Measuring the
burden of schistosome disease in the whole population, including preschool children is impor-
tant for the assessment of the effectiveness of control programmes and thus their prioritization
and sustenance in affected countries (often with limited health budgets). Although extensive
work has been done and a few recent studies published on morbidity due to S.mansoni infec-
tion in preschool children [11], to date there is still a paucity of studies quantifying the burden
of S. haematobium-related morbidity in preschool children and the applicability of current
POC morbidity diagnostics in these young children has not been extensively evaluated. To ad-
dress this knowledge gap, we conducted a study in preschool and primary school children en-
demically exposed to S. haematobium infection assessing the utility of available diagnostic tools
in identifying POC markers of schistosome-related morbidity.

The first aim of the study was to characterise the morbidity in the children detected using
the available POC tools. Since the morbidity markers currently used are general as opposed to
being schistosome specific, they may detect morbidity unrelated to schistosome infection.
Therefore, the second aim of the study was to relate the measures of morbidity to schistosome
infection and determine the fraction of morbidity attributable to schistosome infection. The
overall results would allow us to determine if POC diagnostics available for use in primary
school-aged children can be reliably used in the field to quantify and monitor levels of morbidi-
ty attributable to S. haematobium infection in young children aged 5 years and below.

Materials and Methods

Ethical statement
Ethical and institutional approval for the study was obtained from theMedical Research Council
of Zimbabwe and the University of Zimbabwe, respectively. Permission to conduct the study
was received from the Provincial Medical Director, the District Educational Officer, and Heads
of schools in the study area. Study aims and procedures were explained to participants, and
their parents/guardians in the local language, Shona. Prior to enrolment of study participants,
written informed consent was obtained from parents/guardians and oral assent obtained from
children. The children were recruited into the study on voluntary basis and were free to with-
draw at any time with no further obligation. After sample collection, participants were offered
treatment with the standard dose of 40 mg/kg praziquantel, administered by the local physician.
The praziquantel drug was procured from a local supplier (Pharmaceutical and Chemical Dis-
tributors (Pvt) Ltd, Harare, Zimbabwe), registered and licensed to sell the drug in Zimbabwe.

Study area
The cross-sectional study was conducted in Murewa district, in the north-east of Zimbabwe
(31°90'E; 17°63'S) where S. haematobium is endemic. Prevalence of S.mansoni was low
(<10%) [9] in this current study population as previously reported in other studies conducted

Evaluating Field Indicators of Urogenital Schistosomiasis Morbidity

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003649 March 20, 2015 3 / 15



in the same area [12,13]. There were no soil-transmitted helminths infections detected in this
study population.

Participants
Children aged 1–10 years were recruited from crèches, early child development centres, and
local primary schools between February 28, and March 09, 2012. To be included in this study,
participants had to meet the following criteria: (1) been lifelong residents of the study area,
(2) had no prior history of antihelminthic treatment (assessed by questionnaires administered
to parents/guardians for all children), and (3) provided at least two urine, and two stool sam-
ples for parasitological examinations on consecutive days. The exclusion criteria were: (1) pre-
senting with clinical symptoms of tuberculosis or malaria/fever, (2) recent major illness/
operation, and (3) diagnosed positive for soil-transmitted helminths. None of the children
were excluded based on these criteria.

Parasitology and serology
S. haematobium infection was determined by microscopic enumeration of eggs in urine pro-
cessed using the standard urine filtration method [14]. Children were classified as infected if at
least one parasite egg was detected in any of their urine samples collected on consecutive days.
Infection intensity was defined as the arithmetic mean egg counts/10 mL of at least two urine
samples collected on three consecutive days. Stool samples were processed using the Kato-Katz
method, with duplicate thick smears (41.7 mg) performed per sample [15], and subsequent egg
enumeration by microscopy for the diagnosis of S.mansoni and soil-transmitted helminths.
Children were designated infected with S.mansoni or soil-transmitted helminths if at least one
parasite egg was detected in any of the two stool samples collected on consecutive days. A small
proportion, 6.0% (n = 18) of the children in our study was found positive for S. mansoni. We
compared the morbidity characteristics of these children to those of a random sample drawn
from age and sex matched S. mansoni negative children and no differences were observed,
hence these children were kept in our study for the final analyses. None of the children in this
study were found positive for STHs.

We have recently shown that egg count lacks sensitivity in diagnosing light schistosome in-
fections in children [16]. Thus, in addition to parasitology, IgM antibody responses directed
against soluble egg antigens (SEA) were used to improve the diagnosis of S. haematobium in-
fection. Details of the protocols used to quantify the serum antibody levels are published else-
where [17]. Children were categorized as infected based on serology if their anti-egg IgM
antibody levels were more than two standard deviations above the mean estimated from sera of
negative controls, as outlined in our recently published study [16].

Morbidity measurement
Urinalysis. Urine samples collected on the first day of the survey were examined for visible

haematuria. Uristix reagent strips (Uripath, Plasmatec, UK) were used to test for the presence of
nitrites, leucocytes, blood (microhaematuria), proteins (proteinuria), and physical characteris-
tics (pH, specific gravity). To assess observer bias in dipstick readings, a random sample of 102
of the 298 urine samples was further tested using theMultistix 10SG (Bayer, UK), and the results
read automatically using Siemens' CLINITEK Status+ Analyzer (Bayer, UK). For all the attri-
butes tested, a high proportion of overall agreement (poverall>60.0%) between the two dipstick
tests was noted, showing no evidence of significant observer effect. CLINITEKMicroalbumin
Reagent Strips (Bayer, UK) were used to determine urine albumin-to-creatinine ratio (UACR)
threshold levels on first day urine samples. Following manufacturer’s guidelines, high-abnormal
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UACR (>33.9 mg/mmol) was used to ascertain presence of albuminuria [18], a biological mark-
er of urinary tract infection and an early predictor of progressive kidney disease [8].

Questionnaires. A pre-tested questionnaire on recent/current presence of haematuria and
dysuria, constructed in English and translated to the local language, Shona, was administered
to parents/guardians of preschool-aged children. An alternative version of the questionnaire
was administered to the primary school-aged children.

Clinical examination. All participants underwent a non-intrusive clinical examination,
involving abdominal palpation, conducted by experienced study clinicians to determine cur-
rent health status and schistosome-related anomalies (e.g., epigastric or abdominal pains).

Statistical methods
Sample size calculation. Our pre-study simulations revealed that a sample size of 129 chil-

dren would provide 80.0% power to detect age group related differences in infection prevalence
differences at α = 0.05, allowing for 5.0% non-compliance loss. These sample size calculations
were based on the expected overall S. haematobium infection prevalence of 40.0% (for 1–5 years)
and 60.0% (for 6–10 years), with information obtained from preliminary studies conducted in
the same study area. Our final sample sizes for variables of interest were sufficiently large for sta-
tistical analyses (Fig. 1).

Statistical analyses. Correlations between continuous variables were measured using the
Pearson’s correlation coefficient (r). The phi-coefficient (φ) was used for dichotomous variables.
The chi-square (χ2) test was used to determine associations between different markers of mor-
bidity by sex, age-group or S. haematobium infection status. Multiple logistic regressions were
used to investigate factors influencing the prevalence of schistosome-related morbidity. Each of
the morbidity indicators was included as a response variable, with sex (male vs. female), age-
group (1–5 vs. 6–10 years) and S. haematobium infection status (determined by parasitology or
serology) or infection intensity (log10[egg count+1]-transformed) included as risk factors in the
models. Two-way interaction effects were included in model building, however, none were found
to be significant and hence were subsequently dropped from the final models used for inferences.

Non-metric multidimensional scaling (NMDS) was used to explore the variability in dipstick
attributes between children. For an outline of the NMDS modelling steps (see S1 File Supporting
Information which explains the algorithm steps followed in this study and the test statistics used
to evaluate the NMDS models). Correlation coefficients were used to identify dipstick attributes
contributing most to overall variability in schistosome-related morbidity. The proportion of var-
iability explained by each of the NMDS axes was measured using the coefficient of determina-
tion (R2R2). The multi-response permutation procedure (MRPP) was used to test the null
hypothesis of no significant differences between subgroups. For each pairwise comparison, the
resultant test-statistic (T) was reported along with the corresponding p-value [19].

The risk of morbidity for each age group was estimated using prevalence ratios, where a
prevalence ratio greater than one indicated a positive association between schistosome infec-
tion and presence of related morbidity. The Breslow-Day test with Tarone’s adjustment for
small sample sizes [20], was used to assess whether the probability of detecting morbidity using
the different diagnostic tools in infected children differed between 1–5 years and 6–10 years
old children. The population attributable fraction, and attributable fraction infected were used
to estimate the proportion of morbidity in the whole study population and among infected
children that could be attributed to S. haematobium infection respectively, adjusting for the ef-
fects of sex and age group. Furthermore, these estimates were used to compare the utility of the
different diagnostic tools for detecting schistosome-related morbidity. Approximate 95% confi-
dence intervals were calculated using the method described elsewhere [21]. For meaningful
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interpretations, attributable fractions were only estimated for the morbidity markers with a
prevalence ratio (PR) significantly greater than one.

Sample size calculations were performed using StatXact v.8 (Cystel Software Corp, Cam-
bridge, MA, USA). The NMDS analysis was performed using PCORD 6.08 (MjM Software,
Gleneden Beach, Oregon, USA). Statistical modelling and tests for associations were performed
using SAS 9.3 (SAS Institute Inc., Cary, NC, USA). In all analyses, the level of significance was
set at p<0.05.

Results

Demographics
298 children (1–5 years: n = 104, median = 4 years; 6–10 years: n = 194, median = 8 years) fulfilled
the study criteria (Fig. 1), and these comprised of 142 (47.7%) males, and 156 (52.3%) females.

Fig 1. Flowchart indicating number of children enrolled in the study and excluded from the final analysis.

doi:10.1371/journal.pntd.0003649.g001
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Schistosome infection levels
The overall prevalence of S. haematobium infection determined by parasitological examination
was 35.9% (95% CI: 30.4–41.4%). When looking at infection intensities, 28.9% (95% CI: 23.7–
34.0%) and 7.0% (95% CI: 4.1–10.0%) of these children carried respectively light and heavy in-
fection intensities according to the WHO categorizations [8]. Infection prevalence amongst
primary children aged 6–10 years was 47.9% (95% CI: 40.8–55.0%), and was significantly
higher (χ2 = 35.0; p<0.001) compared to infection prevalence of 13.5% (95% CI: 6.8–20.1%)
observed in 1–5 years old children. However, there was no significant difference (χ2 = 0.5;
p = 0.466) in the prevalence of infection between male and female children. Infection intensity
increased significantly with age (r = 0.4; p<0.001), with the highest levels observed between the
ages of 8–10 years. The prevalence of S. haematobium infection determined by serology was
higher than that determined by egg counts in both age groups, 1–5 years: 52.9% (95% CI:
38.8–67.1%), and 6–10 years: 84.1% (95% CI: 78.3–89.9%).

Urinary dipstick morbidity markers
Dipstick-detected microhaematuria and proteinuria, contributed most to the observed variability
in morbidity among children (taking into account urine’s physical characteristics, pH and specif-
ic gravity), as indicated by the strong correlations (see S1 Table). The variability of morbidity dif-
fered significantly between S. haematobium egg negative and positive children (T = -50.7;
p<0.001) and between the two age groups (T = -19.3; p<0.001), however there were no differ-
ences by sex (T = -1.5; p = 0.089). Furthermore, the observed differences were evident from the
large NMDS ordination output distances between the respective subgroup centres shown in
Fig. 2. Based on the serological diagnosis of infection, significant differences were also observed
by infection status (T = -14.0; p<0.001), age group (T = -6.5; p<0.001), but not by sex (T = -2.5;
p = 0.068). In addition, microhaematuria and proteinuria alone explained about two-thirds of
the overall variability due to differences between infected and uninfected children (detected by ei-
ther parasitology or serology).

Observed morbidity prevalence
The prevalence of dipstick microhaematuria was higher than questionnaire-reported haema-
turia, which in turn was also higher than visible haematuria (Fig. 3). The morbidity prevalence
results illustrated in Fig. 3 revealed that children aged 6–10 years tended to report morbidity
more frequently compared to parents/guardians of 1–5 years old children. In addition, albumin-
uria (detected by UACR) and dipstick proteinuria were observed in both age groups as shown
in Fig. 3. A positive association of albuminuria with microhaematuria (φ = 0.2, p = 0.002), or
proteinuria (φ = 0.4; p<0.001) was observed. In comparison to other diagnostic techniques in-
vestigated in this study, visual urine inspection, and clinical examination detected the least num-
ber of morbidity cases (Fig. 3).

Schistosome infection versus morbidity prevalence
Results of multiple logistic regression analyses revealed a significant positive association (in
order of strength of the association) of visible haematuria, albuminuria, microhaematuria, and
proteinuria with S. haematobium infection detected by parasitology as shown in Table 1. In ad-
dition, S. haematobium infection prevalence determined by serology was also found to be sig-
nificantly associated with albuminuria and proteinuria, adjusting for the effects of sex and age
group (Table 1). Significant increases in prevalence of albuminuria (Odds ratio (OR) = 5.5;
p<0.001), visible haematuria (OR = 4.7; p<0.001), microhaematuria (OR = 3.4; p = 0.005),
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and proteinuria (OR = 3.3; p<0.001) with infection intensity were observed. However, no sig-
nificant associations between infection intensity and questionnaire-reported haematuria and
dysuria, or clinical examination detected morbidity were found.

Fig 2. Non-metric multidimensional scaling (NMDS) ordination in 2-dimensional configurations by
sex, age-group and S. haematobium infection status determined using parasitological (A) and
serological diagnostic techniques (B). Subgroup centres are represented by the bigger closed (●), or open
(�) points, and the distance between these centres is proportional to the level of dissimilarities
between subgroups.

doi:10.1371/journal.pntd.0003649.g002
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Morbidity attributable to S. haematobium infection
Since the morbidity markers are not specific to schistosomes but are general markers of differ-
ent physiological and biochemical processes, we went further to determine how much of the
morbidity was attributable to schistosome infection. There was no significant difference in the
estimated probability of detecting morbidity between 1–5 years and 6–10 years old children
using each of the diagnostic tools (Table 2). In addition, from Table 2, it was observed that
morbidity detected by dipsticks (microhaematuria and proteinuria), UACR (albuminuria), and
urine inspection (visible haematuria) had prevalence ratios significantly greater than one. Clin-
ical examination detected morbidity had the lowest prevalence ratio (Table 2). Furthermore,
the results indicated that albuminuria was the dominant marker of schistosome attributable
morbidity at population level, as well as amongst infected children (Fig. 4). Proteinuria and vis-
ible haematuria were also found to be highly attributable to schistosome infection among

Fig 3. Observed prevalences of morbidity by age group, assessed using different diagnostic tools. Error bars indicate the 95% confidence intervals.

doi:10.1371/journal.pntd.0003649.g003
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Table 1. Multiple logistic regression odds ratios (OR) to investigate factors associated with the prevalence of morbidity assessed using different
diagnostic tools.

Infection detected by
parasitology

Infection detected by
serology

Type of morbidity Diagnostic tool used Variable OR (95% CI) p OR (95% CI) p

Microhaematuria Dipstick Sex (M vs. F) 1.8 (0.9–3.4) 0.089 2.7 (1.1–6.7) 0.031

Age group (1–5 vs. 6–10 years) 1.2 (0.6–2.4) 0.563 1.4 (0.5–3.9) 0.472

Infection status (negative vs. positive) 3.4 (1.5–7.9) 0.005 0.9 (0.3–2.7) 0.902

Proteinuria Dipstick Sex (M vs. F) 1.2 (0.6–2.1) 0.594 1.2 (0.6–2.3) 0.564

Age group (1–5 vs. 6–10 years) 2.5 (1.2–5.5) 0.019 2.0 (0.8–4.9) 0.145

Infection status (negative vs. positive) 3.3 (2.2–5.0) <0.0001 4.5 (1.5–13.6) 0.007

Albuminuria UACR Sex (M vs. F) 0.8 (0.4–1.5) 0.528 0.8 (0.4–1.5) 0.481

Age group (1–5 vs. 6–10 years) 3.1 (1.5–6.7) 0.004 3.4 (1.3–8.5) 0.011

Infection status (negative vs. positive) 5.5 (3.4–8.9) <0.0001 33.9 (4.5–254.0) 0.001

Haematuriaa Visual inspection Sex (M vs. F) 1.1 (0.3–3.6) 0.876 1.4 (0.3–5.9) 0.690

Age group (1–5 vs. 6–10 years) 0.5 (0.1–1.9) 0.299 1.0 (0.2–5.3) 0.991

Infection status (negative vs. positive) 7.8 (1.8–34.4) 0.007 - -

Haematuria Questionnaire Sex (M vs. F) 1.0 (0.5–2.4) 0.931 1.6 (0.6–4.2) 0.349

Age group (1–5 vs. 6–10 years) 3.9 (1.4–10.8) 0.009 5.5 (1.1–27.6) 0.037

Infection status (negative vs. positive) 1.4 (0.6–3.3) 0.443 2.1 (0.4–11.2) 0.385

Dysuria Questionnaire Sex (M vs. F) 0.6 (0.3–1.6) 0.325 0.6 (0.2–1.4) 0.223

Age group (1–5 vs. 6–10 years) 4.1 (1.3–12.6) 0.013 2.5 (0.7–9.1) 0.168

Infection status (negative vs. positive) 1.0 (0.4–2.4) 0.926 1.6 (0.4–6.9) 0.531

Abdominal/ Clinical exam Sex (M vs. F) 0.9 (0.3–2.5) 0.826 1.2 (0.4–3.5) 0.788

epigastricb Age group (1–5 vs. 6–10 years) - - - -

Infection status (negative vs. positive) 0.9 (0.3–2.6) 0.882 1.2 (0.3–4.4) 0.821

Significant effects (p<0.05) are shown in bold.
aOR not adjusted for serological infection status;
bOR not adjusted for age group effect.

doi:10.1371/journal.pntd.0003649.t001

Table 2. Estimates of prevalence ratios (PR) weighted by age group for each of the morbidity markers assessed using different diagnostic tools
and test for homogeneity of the probability of detectingmorbidity in infected children.

Infection detected by parasitology Infection detected by serology

Type of morbidity Diagnostic tool used PR (95% CI) χ2-statistic p PR (95% CI) χ2-statistic p

Microhaematuria Dipstick 3.3 (1.4–7.9) 1.4 0.231 0.9 (0.5–2.6) 0.4 0.509

Proteinuria Dipstick 1.5 (1.2–1.8) 0.2 0.666 1.3 (1.1–1.5) 2.5 0.114

Albuminuria UACR 2.4 (1.9–3.1) 0.01 0.927 1.7 (1.4–1.9) 0.3 0.571

Haematuria Visual inspection 1.1 (1.0–1.2) 0.002 0.989 1.5 (1.3–1.7) a a

Haematuria Questionnaire 1.1 (0.8–1.5) 5.1 0.024 1.1 (0.9–1.5) 1.5 0.225

Dysuria Questionnaire 1.0 (0.8–1.3) 3.1 0.078 1.1 (0.8–1.6) 5.5 0.017

Abdominal/epigastric Clinical exam 1.0 (0.3–2.9) 3.0 0.081 1.0 (0.9–1.1) a a

Comparisons between preschool-aged (1–5 years) versus primary school-aged (6–10 years) children. Prevalence ratios significantly higher than 1 are

shown in bold.
aTest statistic could not be computed.

doi:10.1371/journal.pntd.0003649.t002
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infected children. Although a high crude prevalence of microhaematuria was observed initially,
the analyses revealed that a relatively small proportion of microhaematuria was attributed to S.
haematobium infection (Fig. 4). The attributable fractions among infected children estimated
by age group strata (see S1 Fig) showed a similar trend to the overall estimated attributable
fractions noted above.

Discussion
Until recently, most schistosome control programmes in Africa aimed at reducing develop-
ment of severe morbidity and improving child health have focused on regular school-based de-
worming strategies, targeting children above five years old [22–24]. By focusing treatment
upon the school-aged population, children of preschool-age have been previously neglected in
terms of research and control [25]. Consequently, less is known about the levels of schisto-
some-related morbidity in this age-group. Furthermore, research studies evaluating the perfor-
mance of the current POC markers of schistosome-related morbidity in children aged five
years and below are still limited [11]. Estimation of disease burden due to schistosome infec-
tions in children has been further complicated by the fact that signs and symptoms commonly
associated with schistosomiasis can also be due to other causes [26]. In the absence of a gold
standard POC morbidity diagnostic technique, several methods have been used in studies from
different endemic settings in older children (�6 years) and adult populations [5]. Our study fo-
cused on the tools used in the field; the WHO approved questionnaire-based reporting of hae-
maturia and dysuria, clinical examination by qualified clinicians, routinely used dipstick tests
measuring several urine attributes, and UACR (for detecting albuminuria) which has previous-
ly been evaluated for schistosome morbidity detection [8]. We investigated how these tools per-
formed in preschool-aged children (1–5 years) compared to primary school-aged children (6–
10 years), who are the current targets of schistosome control programmes.

Our study revealed that children of the two age groups carried quantifiable levels of morbidi-
ty as determined by these different diagnostic tools. This finding is in accordance with a recent

Fig 4. Estimated proportion of morbidity attributable to S. haematobium infection. (A) Population attributable fraction, (B) Attributable fraction infected.

doi:10.1371/journal.pntd.0003649.g004
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epidemiological study by Sacko and colleagues [27] who reported significant prevalence of uri-
nary pathology in endemically exposed children. Of the several urine attributes tested using dip-
sticks, microhaematuria and proteinuria were significantly associated with S. haematobium
infection, as it has been previously reported in several other studies [28–30]. A high proportion
of children aged 5 years and below presented with microhaematuria in this study. More interest-
ingly, the current study demonstrated that the performance of each of the different POC diag-
nostic tools for detecting morbidity did not differ between preschool and primary school-aged
children infected with S. haematobium. These findings are important for planning of future in-
terventions as they provide evidence that children�5 years can be effectively screened for prazi-
quantel treatment using the available POC diagnostic tools applicable to older children and
adult populations in the field [27,31].

Since the physical and biological features determined by these diagnostics can arise due to
several conditions [32,33], we determined how much of the proportion of morbidity was attrib-
uted to S. haematobium infection. Based on the results of prevalence ratios and attributable
fractions, UACR was identified as the most reliable tool for detecting schistosome-related mor-
bidity, followed by dipsticks, visual urine inspection, questionnaires and lastly clinical exami-
nation. In addition, prevalence of albuminuria determined using UACR was positively
associated with presence of microhaematuria and proteinuria detected by dipsticks. This find-
ing suggests that these indicators used in combination can be a better predictor of the presence
of urinary tract morbidity due to S. haematobium infection in children than using one test pa-
rameter alone, and thereby facilitating effective and timely interventions. The utility of albu-
minuria as a valuable indicator of schistosome-related morbidity in our study corroborates
earlier findings in school-aged children by Sousa-Figueiredo and colleagues [34].

Although the proportion of children with visible haematuria was low in this study, it was
noted that S. haematobium egg-positive children were eight times more likely to present with
visible haematuria compared to egg-negative children. In addition, all children with visible hae-
maturia were positive for S. haematobium infection detected using the serological diagnostic
test. The majority of children in this study carried light infections, and this could explain the
observed low prevalence of visible haematuria [35].

Since S. haematobium infection in endemic areas can easily be inferred from presence of
blood in urine, questionnaire responses about recent/current presence of haematuria and dys-
uria can be used to assess schistosome-related morbidity. Our study showed some level of bias
in the reporting of haematuria and dysuria between preschool-aged children, where the an-
swers were provided by the parents/guardians and primary school-aged children, who re-
sponded to the questions themselves. One theoretical explanation for these observations could
be that children easily mistook concentrated urine as blood in urine, but less likely so by adults
and hence resulting in the overestimation of the prevalence of reported morbidity amongst the
6–10 years old children. These results therefore need to be interpreted with caution.

Physical clinical markers of morbidity were least attributable to schistosome infection, as
previously mentioned. Our findings are consistent with a recent study by Agnew-Blais and col-
leagues [36], who also reported inadequacy of the physical examination method for assessing
schistosome-related pathology in school-aged populations.

Nevertheless, there are some limitations when interpreting the results of our study. Firstly,
given that approximately 30% of our study participants were not characterized for S. haemato-
bium infection using the more sensitive serological diagnostic technique, caution must be ap-
plied when extrapolating the study findings. Secondly, in our stratified analysis the sample size
was too limited to give precise estimates of schistosome-related morbidity prevalence measured
using different markers; these results should be interpreted with caution.
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Conclusions
Our results confirm that schistosome infection in preschool children does result in significant
morbidity. These findings are in agreement with recent studies on S.mansoni in Uganda [11]
and S. haematobium in Malawi [37], reiterating the need for anthelminthic treatment in pre-
school children. This study has gone further to identify morbidity diagnostics with large frac-
tions attributable to schistosome infection, highlighting detection of albuminuria as the best
choice for rapid assessment of morbidity attributed to S. haematobium infection in children in
the field. Finally the study showed that in S. haematobium endemic areas, preschool-aged chil-
dren can be effectively screened for schistosome-related morbidity using the same diagnostic
tools applicable to primary school-aged children and adult populations These findings are of
clinical and public health importance, as these tools can be used to identify affected individuals
or subgroups, thereby facilitating focused and timely delivery of treatment, as well as evaluate
the effectiveness of interventions for improved control.
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Corrêa-Oliveira, R., Rodrigues Caldas, I., Martins-Filho, O. A., Carvalho Queiroz,
C., Lambertucci, J. R., Renan Cunha-Melo, J., Soares Silveira, A., Prata, A.,
Wilson, A. & Gazzinelli, G. (2000). Analysis of the effects of treatment of
human Schistosoma mansoni infection on the immune response of patients
from endemic areas. Acta Tropica, 77, 141–146.

Coulibaly, J. T., N’gbesso, Y. K., Knopp, S., Keiser, J., N’Goran, E. K. &
Utzinger, J. (2012). Efficacy and safety of praziquantel in preschool-aged
children in an area co-endemic for Schistosoma mansoni and S. haematobium.
PLoS Neglected Tropical Diseases, 6 (12), e1917.

Coutinho, H. M., Leenstra, T., Acosta, L. U. Z. P., Su, L. I., Jarilla, B., Jiz, M. A.,
Langdon, G. C., Olveda, R. M., Mcgarvey, S. T., Kurtis, J. D. & Friedman,
J. F. (2006). Pro-inflammatory cytokines and C-reactive protein are associated
with undernutrition in the context of Schistosoma japonicum infection. The
American Journal of Tropical Medicine and Hygiene, 75 (4), 720–726.

Coutinho, H. M., McGarvey, S. T., Acosta, L. P., Manalo, D. L., Langdon, G. C.,
Leenstra, T., Kanzaria, H. K., Solomon, J., Wu, H., Olveda, R. M., Kurtis,
J. D. & Friedman, J. F. (2005). Nutritional status and serum cytokine profiles in
children, adolescents, and young adults with Schistosoma japonicum-associated
hepatic fibrosis, in Leyte, Philippines. The Journal of Infectious Diseases, 192
(3), 528–536.

Cox, T. F. & Cox, M. A. A. (2001). Multidimensional Scaling. Chapman and
Hall/CRC, London.

238



REFERENCES REFERENCES

Crotty, S. & Ahmed, R. (2004). Immunological memory in humans. Seminars in
Immunology, 16 (3), 197–203.

Crowther, J. R. (2001). Systems in ELISA. In The ELISA Guidebook, (Walker,
J. M., ed.), pp. 9–44. Humana Press Inc. Totowa, New Jersey volume 149
edition.

Curwen, R. S., Ashton, P. D., Johnston, D. A. & Wilson, R. A. (2004). The
Schistosoma mansoni soluble proteome: a comparison across four life-cycle
stages. Molecular and Biochemical Parasitology, 138 (1), 57–66.

Dabo, A., Badawi, H. M., Bary, B. & Doumbo, O. K. (2011). Urinary
schistosomiasis among preschool-aged children in Sahelian rural communities
in Mali. Parasite Vectors, 4, 21.

Danso-Appiah, A., Utzinger, J., Liu, J. & Olliaro, P. (2008). Drugs for
treating urinary schistosomiasis. Cochrane Database Systematic Reviews, 3
(CD000053), 1–74.

Davis, A. & Bailey, D. R. (1969). Metrifonate in Urinary Schistosomiasis. Bulletin
of the World Health Organization, 41, 209–224.

Dawson, E. M., Sousa-Figueiredo, J. C., Kabatereine, N. B., Doenhoff, M. J. &
Stothard, J. R. (2013). Intestinal schistosomiasis in pre school-aged children of
Lake Albert, Uganda: diagnostic accuracy of a rapid test for detection of anti-
schistosome antibodies. Transactions of the Royal Society of Tropical Medicine
and Hygiene, 107 (10), 639–647.

Dayan, D. (2003). Albendazole, mebendazole and praziquantel. Review of non-
clinical toxicity and pharmacokinetics. Acta Tropica, 86 (2-3), 141–159.

de Clare Bronsvoort, B. M., von Wissmann, B., Fèvre, E. M., Handel, I. G.,
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