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Summary 
The human GI tract has evolved to simultaneously absorb nutrients and be the frontline in 

host defence. These seemingly mutually exclusive goals are achieved by a single cell thick 

epithelial barrier, and a complex resident immune system which lives in symbiosis with the 

intestinal microflora and is also able to rapidly respond to invading pathogens. An 

immunological balance is therefore required to permit tolerance to the normal intestinal 

microflora, but also prevent the dissemination of pathogenic micro-organisms to the rest of 

the host. Inappropriate immune responses in genetically susceptible individuals are the 

hallmark of human inflammatory bowel disease (IBD) and are thus targeting effector immune 

cells and their cytokines remains the mainstay of treatment. However despite vigorous 

efforts to delineate the genetic contribution to IBD disease susceptibility using large 

multinational cohorts, the majority of disease heritability remains unknown. Epigenetics 

describes heritable changes in chromatin that are not conferred by DNA sequence. These 

incorporate changes to histones, chromatin structure and DNA methylation, which confer 

changes to gene transcription and thus gene expression and cellular function. Methyl-

binding proteins (MBD) have the ability to bind to methylated DNA and recruit large 

chromatin remodeling complexes that underpin a variety of epigenetic modifications. Methyl-

CpG-binding domain protein 2 (MBD2) is one such MBD that is required for appropriate 

innate (dendritic cell) and adaptive (T cell) immune function, though its role has not been 

investigated in the GI tract.  

 

We hypothesized that alterations in chromatin are central to the reprogramming of normal 

gene expression that occurs in disease states. By defining the phenotype of immune cells in 

the absence of MBDs we hope to understand the mechanisms of chromatin-dysregulation 

that lead to immune-mediated diseases such as IBD. We therefore aimed to assess the role 

of MBD2 in colon immune cells in the steady state and in murine models of GI tract 

inflammation, thereafter identifying the culprit cell types and genes responsible for any 

observed changes. We envisaged that investigating heritable, epigenetic changes in gene 

expression that are inherently more amenable to environmental manipulation than our DNA 

code, may provide novel insight to a poorly understood mechanism of disease 

predisposition. In addition identifying the cellular and gene targets of Mbd2 mediated 

changes to immune homeostasis that may provide exciting and novel approaches to 

therapeutic modulation of pathological inflammatory responses. 

 

In chapter 3 we assessed the expression of Mbd2/MBD2 in the murine/human GI tract. 

Consistent with existing mouse data, levels of Mbd2 mRNA increased between anatomical 

divisions of small (duodenum, ileum, terminal ileum) and large intestine (caecum, colon, 

rectum). In addition MBD2 mRNA was greater in the rectum versus ileum, with active IBD 

associated with lower rectal MBD2 mRNA compared to quiescent IBD controls. Thus we 
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sought to understand the role of Mbd2 in the colon, where mRNA levels were the highest in 

the GI tract and where appropriate immune function is central to prevent damaging 

inflammation. To address these aims required the development of existing methods of cell 

surface marker expression analysis using flow cytometry techniques to simultaneously 

identify multiple innate and adaptive immune populations. Using naïve Mbd2 deficient mice 

(Mbd2-/-) we observed CD11b+ CD103+ DCs were significantly reduced in number in Mbd2 

deficiency. 

 

To understand the role of Mbd2 in colonic inflammation we employed a mouse model of 

chemical (DSS) and infectious (T. gondii) colitis comparing Mbd2-/- and littermate controls 

(WT). Mbd2-/- were extremely sensitive to DSS and T. gondii mediated colonic inflammation, 

characterized by increased symptom score, weight loss and histological score of tissue 

inflammation (DSS) and increased antibody specific cytokine responses (T. gondii) in Mbd2 

deficient animals. Flow cytometry analysis of colon LP cells in both infectious and chemical 

colitis revealed significant accumulation of monocytes and neutrophils in Mbd2-/-. Indeed 

monocytes and neutrophils were the principal myeloid sources of IL-1b and TNF in DSS 

colitis and the number of IL-1b/TNF+ monocytes/neutrophils was significantly greater in 

Mbd2-/-. Lastly we employed our colon LP isolation techniques to analyse immune 

populations in active and quiescent IBD and healthy controls, using endoscopically acquired 

biopsy samples. Analysis revealed that as in murine colitis, active human IBD is 

characterized by the accumulation of CD14High monocyte-like cells, with an associated 

increased ratio of macrophage:monocyte-like cells. 

In Chapter 4 we sought to understand the cellular sources of Mbd2 that may explain the pre-

disposition of Mbd2-/- to colitis. Firstly we restricted Mbd2 deficiency to haematopoietic cells 

using grafting Mbd2-/- bone marrow (BM) into lethally irradiated WT mice. These animals 

treated with DSS displayed increased weight loss, symptom score, neutrophil accumulation 

and histopathology score compared to mice irradiated and grafted with WT BM. Given the 

accumulation of monocytes in Mbd2-/- DSS treated mice, and existing literature supporting a 

pathogenic role in this model, we then investigated the role of Mbd2 in monocyte function. 

Colon monocytes sorted from Mbd2-/- and WT DSS treated mice displayed similar 

expression for many pro-inflammatory genes (Il6, Il1a, Il1b, Tnf), but demonstrated 

significantly dysregulated expression for some others (Regb, Lyz1, Ido1, C4a). To 

investigate this in a more refined model, we lethally irradiated WT mice and repopulated 

them with a WT:Mbd2-/- BM mix. This enabled the analysis of WT and Mbd2-/- haematopoietic 

cells in the same animal. Colon WT and Mbd2-/- monocyte recruitment and cytokine 

production in DSS treated mixed BM chimeras was equivalent between genotypes 

suggesting that Mbd2 deficiency in monocytes alone did not explain the increased 

susceptibility of Mbd2-/- to DSS colitis. We then restricted Mbd2 deficiency to CD11c 
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expressing cells, given the known role for Mbd2 in their function, and for CD11c+ cells in 

DSS, using a CD11cCreMbd2Fl/Fl system. DSS treated mice with Mbd2 deficient CD11c+ 

cells demonstrated increased weight loss, symptoms score, histolopathology score, 

monocyte and neutrophil colon accumulation compared to controls. To further explore the 

role of Mbd2 in colon CD11c+ cells, macrophage and DCs from DSS treated WT and Mbd2-/- 

mice were purified and their gene expression analysed. Mbd2-/- versus WT macrophages 

demonstrated significantly altered expression of both pro- (Il1a, C6, Ido1, Trem2) and anti-

inflammatory (Tgfbi, Retnla) pathways that we hypothesized was a method for attempted 

host control of excessive colon damage in Mbd2-/- mice. DC gene expression analysis was 

hampered by small sample size, but demonstrated a large number of small expression 

changes, including IL-12/IL-23 (Jak2) and autophagy (Lrrk2) pathways. Lastly levels of co-

stimualtory molecules (CD40/CD80) were increased in Mbd2-/- but not CD11cΔMbd2 colon 

LP DCs/macrophages suggesting that non-CD11c+ cellular sources of Mbd2 were required 

to produce increased activation phenotype in these cells.  

Finally in Chapter 5 we explored the role for Mbd2 in non-haematopoietic cells, namely the 

colonic epithelium. Here we first developed a novel method for identifying and purifying 

these cells using flow cytometry. Mbd2 deficient colonic epithelium demonstrated increased 

expression of activation markers MHC II and LY6A/E in the steady state and in DSS / T. 

muris mediated colonic inflammation. Indeed FACS purified colon epithelial cells from naive 

and DSS treated, Mbd2-/- and WT mice revealed conserved dysregulated gene expression 

independent of inflammation: Both naïve and inflamed Mbd2 deficient epithelium displayed 

significantly increased expression of genes responsible for antigen processing/presentation 

(MHC I, MHC II, immunoproteasome) and decreased expression of genes involved in cell-

cell adhesion (Cldn1, Cldn4). Lastly we investigated whether the observed differences in 

Mbd2-/- cell types conferred alterations in the makeup of the intestinal microflora. 

Interestingly independent of co-housing of Mbd2-/- and WT animals, Mbd2 deficiency 

consistently predicted the microbial composition, with increased levels of Clostridales and 

decreased levels of Parabacteroides bacteria. 

 

Collectively we have identified CD11c+ cells, monocytes and colon epithelial cells as key cell 

types for Mbd2 mediated changes in gene expression that affect mucosal immune 

responses. These data thus identify Mbd2 gene targets within these cell types as exciting 

new areas for investigation and therapeutic modulation to limit damaging GI tract 

inflammation.   
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Lay Abstract 
The gastrointestinal tract is comprised of specialised tissues that permit the absorption of 

nutrients whilst also providing an important barrier to infection. The gastrointestinal immune 

system must therefore provide an ability to survey the bowel contents for potential infection, 

but not respond inappropriately to the ‘good bacteria’ that live in our gut, with the resultant 

damage that may cause. Inappropriate immune responses are therefore at the heart of many 

common illnesses today, in particular the inflammatory bowel diseases. These diseases 

affect young people, are in part genetic, and commonly require medicines and surgery to 

control bowel inflammation which is part driven by an overactive immune response. The way 

we understand how genetic information is passed onto our children has changed in recent 

years. In particular, an additional layer of information that co-ordinates how our DNA is 

folded and interpreted and used by our cells, but that doesn’t affect our DNA sequence is 

now appreciated. This layer of information is termed epigenetics and can passed down the 

generations. Because epigenetic information isn’t as tightly regulated as our DNA code, it 

can be altered much more easily in response to changes in our environment, such as 

infection, ageing, smoking etc. MBD2 is a protein that can affect epigenetic changes to our 

DNA and has previously been shown to be important in how immune cells function. The 

purpose of this thesis was therefore to understand if MBD2 can alter the way our immune 

cells function in our bowel, in particular in response to inflammation.  

 

We identified that without MBD2 the bowel was more susceptible to inflammation and that 

this was caused in part by altered immune cell function. In particular MBD2 was important in 

particular cell types called dendritic cells and macrophages that co-ordinate the detection 

and response to microorganisms. In an additional unexpected finding, we also observed that 

MBD2 acts in the epithelial lining of the bowel to prevent inappropriate surveillance of the 

‘good bacteria’. The combination of altered epithelial and immune cell function in the 

absence of MBD2 also resulted in an altered make-up of the ‘good bacteria’ that live in our 

bowel.  

 

Overall epigenetic mediated changes to how our DNA is expressed by immune and epithelial 

cells not only alters their function, but may explain why some people develop immune 

conditions like inflammatory bowel disease and others do not. Understanding how our 

immune system uses epigenetics may therefore in the future offer a different approach to 

treatment of such conditions.  
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1.1 Introduction 

The human gastrointestinal (GI) tract comprises the oral cavity, oesophagus, stomach, small 

and large intestines (1). The small intestine is subdivided into the duodenum, jejenum and 

ileum and the large intestine into the caecum, colon, rectum and anus (1). Each of these 

discreet anatomical sub divisions also confers distinct morphological and functional traits to 

facilitate the main purpose of this organ system, namely the absorption of nutrients and 

expulsion of waste (1). The former is reliant on a large, 400m2 surface area of single cell 

thick epithelium formed of fingerlike villi projections that must not only permit the passage of 

vital nutrients, but also form a physical barrier to separate host from environment (1). A thin 

epithelial surface may facilitate the absorption of foodstuffs, but has the potential to 

compromise host defence. The human GI tract has therefore evolved a highly selectively 

permeable surface, with an abundant immune presence exemplified by the copious lymphoid 

tissue and immune cells it harbours (1). Indeed in addition to the diverse array of dietary 

antigens consumed each day, the GI tract is colonised by a dense population (1014) of micro-

organisms that numerically exceeds both the genetic material and cellularity of the host (2). 

Despite a robust epithelial barrier, luminal antigens are not entirely prevented from entering 

tissues. Intact food proteins can be detected in the blood and small numbers of GI tract 

dwelling micro-organisms can be found in the draining lymph nodes of healthy animals (3). 

An intimate relationship therefore exists between commensal organisms, the host immune 

system and selective barrier function. 

 

1.2 The inflammatory bowel diseases 

Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s disease 

(CD), are chronic inflammatory conditions of the gastrointestinal tract. They most frequently 

present in the 2nd and 3rd decades with rectal bleeding, abdominal pain or diarrhoea (4), (5). 

Anti-inflammatory and/or immunomodulator therapy, although effective, does not completely 

eliminate the substantial morbidity associated with these conditions, which have a major 

population health impact given their preponderance in young people. CD is characterised by 

transmural inflammation, affecting any part of the GI tract, with a prevalence of 144/100,000 

population (6). The incidence is highest amongst young people in Scotland and continues to 

rise (1.9 per 105/year 1981-3, 2.9 per 105/year 1990-2) (7). UC is characterised by 

inflammation confined to the mucosa and may spread proximally from the rectum to 

encompass the entire colon. UC is similarly common with a reported UK incidence of 

between 6.5-15.1 per 105 / year and an age-sex adjusted point prevalence in Northern 

England of 243/100,000 population (6), (8).  

 

Historical data have shown up to 75% of patients will undergo surgery at least once during 

their disease course, with resection not curative and further surgical intervention often 

required (9), (10). Despite increasing use of immunomodulatory treatments such as 
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thiopurines, methotrexate and monoclonal antibodies against TNF, 25% of newly diagnosed 

patients managed with conventional medical treatment will still require intestinal surgery 

within 5 years of diagnosis (11). Operative management remains effective for managing 

disease complications and improving quality of life, but does not eliminate the pathogenic 

process, so most patients develop recurrence of the disease (12),(13),(14). 

 

1.3 The Gastrointestinal immune system 

Healthy individuals possess an abundant and highly active GI tract immune system that is 

tightly regulated to prevent excessive immune responses to foods and commensal 

microbiota (15). The host response to infection by pathogens are known as immune 

responses. A specific response to a particular pathogen or its products is known as an 

adaptive immune response, as it represents an organisms adaption to its environment (16). 

In many organisms this results in lifelong protection against said pathogen, mediated by 

immunological memory (16). In contrast the innate immune response mobilises immediately 

to combat a wide range of pathogens but does not lead to long lasting immunity or a specific 

response to a particular pathogen (16). The defence systems of the innate immune response 

rely on a limited number of receptors that recognize micro-organisms. Pattern recognition 

receptors (PRRs) recognize simple molecules and regular patterns of molecular structure 

known as pathogen-associated molecular patterns (PAMPs) present on micro-organisms but 

not host cells (16). PRRs include toll-like receptors (TLRs) that recognize PAMPs 

characteristic of bacteria, fungi and viruses (16). Stimulation of TLRs results in the release of 

antimicrobial peptides (AMP), with this pathway being conserved in all animals and plants 

(16). Another important family of PRRs are nucleotide-binding oligomerisation domain (NOD) 

like receptors that are intracellular sensors for microbial products that activate nuclear factor 

kappa-B (NF-κB) in a similar manner to TLRs (16).  

 

Cytokines are key effectors of the immune response. They are small proteins that are 

released from cells in response to an stimulus that can induce responses by binding to 

specific receptors on the cells that secrete them (autocrine), adjacent cells (paracrine) or 

distant cells (endocrine) (16). Among the first cytokines released in early immune response, 

is a group of chemoattractant cytokines termed chemokines. These small proteins induce 

chemotaxis in nearby cells, resulting in movement of cells towards the source of the 

chemokine (16).  

 

The systemic and mucosal immune systems differ in an anatomical separation of the 

inductive and effector sites. Lymphoid aggregates, such as Peyer’s patches (PP) in the small 

intestine, contain large numbers of T and B cells, which when activated migrate via the 

blood, back to the lamina propria (LP) and epithelium, a process mediated by their 

expression of α4β7 integrin and chemokine release by effector sites in the GI tract (17), (18). 
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The LP in addition contains large numbers of IgA-producing plasma cells, CD4+ T cells, 

macrophages, dendritic cells (DCs), mast cells and eosinophils, with a significant leucocyte 

population, notably CD8+ T cells expressing the γδ T cell receptor, residing within the 

epithelium (intra-epithelial lymphocytes (IEL)) (19),(20). We now consider these relative cell 

types and their contribution to mucosal immunity in health and disease. 

 

1.3.1 Neutrophils  

Polymorphonuclear leucocytes (PMN), also called neutrophils, are critical components of the 

innate immune response. They protect the host from microbial pathogens and from the 

damaging effects of injured cells. As such they possess an arsenal of antimicrobial functions 

including degranulation and phagocytosis that mitigate against invading pathogens by 

massive release of reactive oxygen species and other toxic molecules (21). As such 

neutrophil depletion exacerbates certain models of mucosal inflammation suggesting a 

beneficial role, perhaps by limiting translocation of bacteria and producing wound-healing 

mediators (22). However it is also clear that neutrophils can directly contribute to disease 

pathology whereby excessive recruitment, such as in IBD, and activation leads to release of 

toxic products, trans-epithelial migration and extensive mucosal injury (23). Neutrophils 

similarly have the ability to produce metalloproteases (MMP) that can cleave chemokine 

precursors augmenting their potency, and may acquire antigen presenting and T cell 

activation functions during colitis (24). Thus the regulatory or inflammatory phenotype of 

intestinal neutrophils is determined by a range of factors, including the type of stimulus, the 

production of chemoattractants and the interaction with other immune cells that modulate 

their function.  

 

1.3.2 Eosinophils  

Eosinophils develop from eosinophil progenitor cells that are derived from haematopoietic 

cells, express CD34 and interleukin (IL) 5Rα and undergo differentiation on exposure to IL-5, 

IL-3 and granulocyte-macrophage colony stimulating factor (GM-CSF). Eosinophils are able 

to detect pathogens and promote innate and adaptive immune responses via the expression 

of complement receptors (e.g. CD11b), Fc receptors (FcαR, FcγRII) and pattern recognition 

receptors (PRR) (25). Upon activation eosinopihls release a variety of mediators such as 

cytokines (IL-12, IFN-γ, IL-4 and TGF-β), chemokines and growth factors (26). Eosinophils in 

the GI tract are poorly described, traffic to non-oesophageal GI tract portions in an eotaxin-1 

dependent manner and are distinct phenotypically and functionally from eosinophils in other 

tissues (27). Eosinophils are regulated by epithelial derived cytokines such as thymic stromal 

lymphopoietin (TSLP) and IL-33 that directly activate eosinophils and promote their 

recruitment by augmenting Th2 responses (28). An important role is suggested by their 

abundance and low turnover in vivo with activated eosinophils found in greater numbers in 

those with active IBD compared to quiescent IBD and healthy controls (29) (30). Eosinophils 
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are capable of presenting antigen to CD4+ T cells and releasing secretory IgA (sIgA), 

suggesting a role in the initiation and polarisation of adaptive immune responses (31). 

Indeed, murine eosinophils are able to express major histocompatibility complex class II 

(MHC-II), and co-stimulatory molecules (CD40, CD80 and CD86) under certain conditions 

(32). In addition deficiency eotaxin-1 or eosinophils themselves protects against murine 

models of colitis, though not in all reports, with eotaxin-1 levels in the intestine or circulation 

correlating with disease severity in UC (33). Lastly, Griseri et al. have shown that eosinophils 

accumulate in an IL-23 driven model of colitis, with blockade of IL-5 or eosinophil depletion 

associated with ameliorated disease (34). They further show that GM-CSF is a potent 

activator of eosinophil function and that eosinophil peroxidase release promotes colitis, 

suggesting a direct tissue-toxic mechanism for eosinophils in this model of intestinal 

inflammation (34). Such is the interest in the pro-inflammatory potential of mucosal 

eosinophils that a phase II trial assessing the role of bertilimumab, an eotaxin-1 neutralising 

antibody is underway assessing eosinophil depletion in the treatment of acute UC (Clinical 

trials no. NCT01671956).  

 

1.3.3 Monocytes  

Monocytes are mononuclear phagocytes (MP) that originate from progenitors in the bone 

marrow and traffic via the bloodstream to peripheral tissues. Monocytes mediate 

antimicrobial defence, are implicated in inflammatory diseases such as atherosclerosis and 

inhibit tumour-specific immune-evading mechanisms.  Monocytes are divided on the basis of 

chemokine receptor expression and the presence of specific surface molecules (35,36). 

Murine expression of LY6C and CD11b defines a monocyte subset with high levels of CC-

chemokine receptor 2 (CCR2) and low levels of CX3C-chemokine receptor 1 (CX3CR1). 

These are termed inflammatory or LY6CHigh monocytes, account for 2-5% of circulating white 

blood cells in homeostatic conditions, and are rapidly recruited to sites of inflammation 

((37)). A second subset of circulating monocytes in mice expresses high levels of CX3CR1, 

low level LY6C and CCR2 and adheres to the luminal surface of endothelial cells in a 

process termed ‘patrolling’ (35,36). Human monocytes are divided into subsets on the basis 

of surface CD14 and CD16 expression (38). CD14+ CD16-  (classical) monocytes are the 

most numerous in human blood and, like murine LY6CHigh monocytes, express CCR2. 

CD16+ monocytes may be further subdivided into CD16++ CD14+ (intermediate) and CD16+ 

CD14++ (non-classical) monocyte groups (39). CD16++ CD14+ monocytes are thought similar 

to murine LY6CLow monocytes given their similar role in in vivo patrolling (40). Therefore 

whilst monocytes in humans and mice are not identical, their differentiation and function in 

immune response appear to be similar (41).  

 

It has recently been reported that blood monocytes are the precursors for intestinal 

macrophages (42,43). Indeed the murine colonic macrophage compartment is entirely 
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dependent on constant replenishment from LY6CHigh monocytes, in contrast to embryonic 

precursors propagating tissue macrophages in other sites (42). In addition to their role in 

replenishing tissue macrophages in the steady state, monocytes are recruited to infected 

tissue sites to mediate direct antimicrobial activity. For example infection with the 

intracellular Gram-positive bacterium Listeria monocytogenes is exacerbated in mice with 

CCR2 deficiency, reducing the recruitment of tumour necrosis factor (TNF) and inducible 

nitric oxide synthase (iNOS) capable monocytes and their progeny (44,45). However it has 

also been suggested that monocytes may have a regulatory role in limiting commensal-

mediated damage to the GI tract. Grainger et al. have eloquently shown that in response to 

commensals, inflammatory monocytes can directly inhibit neutrophil-mediated pathology in 

response to pathogen challenge by production of the lipoid mediator prostaglandin E2 

(PGE2) (46).  

 

Thus whilst monocytes maintain intestinal macrophages in the steady state via a low level 

constitutive presence, they accumulate in inflammation, expressing high levels of IL-1β, IL-6 

and PRRs, facilitating a vigorous inflammatory immune response and in addition may also 

have a dual regulatory role on other local inflammatory cells (43,46,47).  

 

1.3.4 Macrophages  

Macrophages are one of the most abundant immune cells in the mammalian intestine and 

are the largest population of MPs in the body (48). As described above, adult mouse 

intestinal macrophages are exclusively derived from blood-borne inflammatory monocytes, 

and are long-lived, present to at least 8 weeks post monocyte-differentiation (43). Within the 

mononuclear phagocyte pool, murine macrophages are often distinguished from DCs by 

differential expression of surface markers such as F4/80, CD11b, CD18, CD64, CD68 and 

Fc receptors (49). In contrast identifying macrophages and their M1 and M2 subsets in 

humans has proved challenging (49). For example human macrophages do not express 

Ym1 or Retnla, 2 of the most studied identifiers of alternatively activated macrophages in 

mice (49). Similarly neither ARG1 or iNOS are expressed by in vitro polarized macrophages 

stimulated with IL-4 or IFN-γ, perhaps suggesting that macrophage effector molecules will be 

diverse between species based upon the specific pathogen challenges that they face (49).  

 

Macrophage density in the intestine is poorly understood, though thought to correlate to 

bacterial load, and is thus highest in the colon where commensal bacteria number in excess 

of 1012 organisms/ml (50). Intestinal macrophages have been shown to demonstrate a 

tolerogenic phenotype, poorly responsive to TLR stimuli, which underlies one of the principal 

mechanisms for host control against inappropriate reactions to commensal microflora (51). 

As such, unlike macrophages from other tissues, mucosal macrophages in the steady state 

secrete low levels of pro-inflammatory cytokines and chemokines such as IL-12, Il-23, TNF, 
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IL-1, IL-6 or CXCL10 in response to TLR ligands but secrete higher levels of the anti-

inflammatory cytokine IL-10 (52), (53), (54), (55). However intestinal macrophages retain an 

avid phagocytic ability, able to uptake apoptotic cells via expression of CD36, and have 

potent anti-bacterial activity (56). Indeed in inflammatory conditions, macrophages are 

capable of upregulating the expression of TLRs, co-stimulatory molecules and pro-

inflammatory receptors, resulting in the production of large quantities of TNF, IL-6, iNOS, IL-

1 and MMPs (57), (50), (58). Thus macrophages are a fundamental component of innate 

responses in the healthy and inflamed GI tract, limiting inappropriate reaction to the resident 

commensal microflora, but capable of facilitating a robust response in disease states.  

 

1.3.5 Dendritic cells 

DCs are specialised antigen presenting cells (APCs) that orchestrate innate and adaptive 

immune responses. In the intestine, DCs are present in peyers patches (PP), isolated 

lymphoid follicles (ILF) and the LP, constitutively migrating in lymphatics to mesenteric lymph 

nodes (MLN) and presenting antigen to T lymphocytes - a process fundamental to the 

induction of oral tolerance (59),(3).  

 

Murine intestinal DCs are characterised by high expression of CD11c and MHC-II and a lack 

of expression of CD64. The majority of intestinal CD11c+ MHC-II+ CD64- cells express the 

integrin-αE (CD103) whose ligand E-cadherin is expressed on the basolateral surface of 

epithelial cells (60). It is thought that rather than representing a distinct lineage of DCs in the 

intestine, CD103 is likely induced on DCs during their residence in the intestine (61).  

 

Intestinal CD103+ DCs can be divided into 2 distinct populations on the basis of CD11b 

expression that differ in transcriptional factor requirements and function (Diagram 1.1). 

CD103+ CD11b- DCs are related to lymph node resident CD8α+ DCs and share with these 

cells expression of the chemokine receptor XCR1 (62), (63). In addition genetic deletion of 

the transcription factors Id2, Irf8 and Batf3 leads to selective loss of CD11b- CD103+ cells 

(64). By contrast, CD103+ CD11b+ intestinal DCs appear similar to CD11b+ lymph node 

resident DCs, sharing expression of signal regulatory protein-α (SIRPα) and DC inhibitory 

receptor 2 (DCIR2) and are dependent on different transcription factors in their development 

and maintenance, namely Irf4 and Notch2 (65), (66). Both CD103+/- CD11b+ DCs have been 

shown to promote TGF-β T helper (Th) 1 and Th17 cell differentiation with TLR5+ CD11b+ 

DCs able to induce B Cell IgA class switching via production of a proliferation inducing ligand 

(APRIL) (65), (67).  

 

There are also 2 distinct, less well-defined CD103- populations of DC that can similarly be 

described by expression of CD11b. CD103- CD11b+ DCs do not express CD64 or XCR1, but 

are under control of the DC-specific transcription factor Zbtb46 (62), (63), (65), (68) (Diagram 
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1.1). Lastly a population of CD103- CD11b- DCs have been described, that like CD103- 

CD11b+ DCs migrate to MLN in a CCR7 dependent manner, expand in response to Flt3 

ligand, prime T cell responses and induce T cell CCR9 (69). In addition both CD103- 

CD11b+/- cells have recently been shown to express higher levels of IL-12 and IL-23 mRNA 

and induce higher IFN-γ and IL-17 production from proliferating T cells compared to CD103+ 

LP DCs, even in the absence of TLR stimulation (65). 

 

Regarding the ontogeny of intestinal DCs, adoptive transfer of DC progenitors into CD11c 

depleted mice demonstrated that pre-cDCs but not LY6CHigh monocytes were able to give 

rise to CD103+ CD11b+ and CD103+ CD11b- DC in the intestinal mucosa, whereas 

macrophage and DC progenitor (MDP) were able to give rise to all DC and macrophage 

subsets (70), (71). Underlining the rapid advancement in our understanding of DC surface 

markers, this study was not able to address the ability of MDPs or pre-cDCs to produce 

CD103- DCs, as markers that would have distinguished them from macrophages (such as 

CD64) were not used (71). However other studies of LY6CHigh adoptive transfer have shown 

that they give rise exclusively to F4/80+ CD64+ cells suggesting CD103- DCs are not 

monocyte derived (72), (43). Lastly, it has been shown that removing the transcription factor 

Zbtb64 in Zbtb46-DTR mice decreases CD103+ CD11b+ DCs by 50%, in contrast to CD103+ 

CD11b- DCs which were almost completely removed (73).   

 

Many of the initial markers used to define DC subsets in mice and humans are not 

conserved, leading to difficulties in generalizing data between species. However a human 

intestinal CD103+ DC population has been identified, and can be further subdivided into 2 

subsets (65), (66). A CD103+ SIRPα- subset that display similarities to human CD8α-like 

cDCs, expressing CD141 and DNGR-1, that likely represent the human equivalent of murine 

CD103+ CD11b- DCs and a larger population of CD103+ SIRPα+ DCs that were CD141- and 

DNGR-1- that likely represent the murine equivalent of CD103+ CD11b+ DCs (74), (75), (76), 

(66). Lastly, a CD103- CD64- SIRPα+ DC population has been identified that likely represent 

the human counterpart of CD103- CD11b+ DC (66),  (62), (63).  
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Diagram 1.1 DC subsets in the mouse and human intestinal lamina propria  

(adapted from Bekiaris et al. 2014) 
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1.3.6 T cells 

The intestinal mucosa contains a large number of T cells localised within gut-associated 

lymphoid tissue (GALT) including PPs and ILFs, and throughout the LP and intestinal 

epithelium (19). Colon LP T cells express the surface markers TCRαβ and are then 

subdivided into 4 populations based on the expression of CD8αβ, CD8αα or CD4 (CD8αβ+, 

CD8αβ+ CD8αα+, CD4+ and CD4+CD8αα+). LP T cells display a previously activated or 

memory phenotype, entering the mucosa after priming in secondary lymphoid organs, drive 

excessive inflammation and cytotoxicity in response to microbiota derived antigens and may 

exacerbate IBD in humans (19). Intra epithelial lymphocytes (IELs) are more heterogeneous, 

their composition dependent on their anatomical location in the GI tract and are dominated 

by T lymphocytes (there are estimated to be more T cells in the intestinal epithelium than the 

spleen) (77), (78). Colon IELs contain the same LP T cell populations mentioned above, but 

in addition contain CD4- CD8- and CD8αα+ populations that express either TCRαβ or TCRγδ 

((79).  IELs display both protective and inflammatory qualities dependent on the stimuli they 

receive and their local environment. They can condition and repair the epithelial barrier and 

control epithelial cell growth and turnover by secreting TGFβ1/3, keratinocyte growth factor 

(KGF) and junctional adhesion-like (JAM) molecule which directly interacts with the 

epithelium to promote restoration of barrier integrity (80), (81), (82). In contrast they can also 

secrete TNF and IFNγ, are found in increased numbers in patients with active IBD and 

coeliac disease and may promote immunopathology in mouse models of intestinal 

inflammation (77).  

 

T cells can be further subdivided based upon their effector subtypes (Th1, Th2, Th17, and 

regulatory T cells). Th1 cells are induced by IL-12 and characteristically secrete copious 

amounts of IFNγ, TNF and IL-12 controlled by the master transcription factor TBET. Th2 

cells by contrast secrete IL-4, IL-5 and IL-13 controlled by the master transcription factor 

GATA3 (83). Th17 cells are a further subset of T cells induced by IL-6 and TGFβ, secreting 

large amounts of IL-17A, IL-17F, IL-21 and IL-22 and controlled by the master transcription 

factor RORγt (84), (85), (86). 

 

Regulatory T cells (Tregs) 

Tregs characterised by the expression of CD4, CD25 and FoxP3, are defined as T cells with 

an ability to supress naïve T cell proliferation in vitro and in vivo (87). Mice that are depleted 

of Tregs spontaneously develop multiorgan autoimmunity including gastrointestinal 

inflammation (88). Indeed a genetic defect in FOXP3 results in immune polyendocrinopathy 

enteropathy X-linked (IPEX) characterised by a lack of Tregs, producing a severe pan-

enteric inflammatory enteropathy that resembles CD (89). Tregs perform a vital role in 

tolerance supressing abnormal immune responses to commensal micro-organisms and 



 28 

dietary antigen by the expression of anti-inflammatory cytokines IL-10 and TGF-β that 

prevent aberrant activation and effector function of other immune cells (90). 

 

1.3.7 Innate lymphoid cells 

ILCs are an emerging and diverse group of immune cells and derive from an ID2 expressing 

progenitor and are defined by 3 main features: They are of lymphoid morphology, are 

negative for other cell-lineage markers (CD3, B220, LY6G/C, CD11c, Ter119) and lastly then 

lack RAG-dependent antigen receptors (91). ILCs can further be sub categorized into 

groups: Group 1 ILCs are T-box expressed in T-cells (TBET) dependent and are comprised 

of ILC1 and NK cells. Group 2 ILCs are GATA-binding protein 3 (GATA3) and retinoic acid 

receptor ROR dependent and are comprised of ILC2 and lastly group 3 ILCs that are RORγt 

dependent and are comprised of ILC3s and lymphoid tissue-inducer (LTi) cells (92). ILCs 

tend to mirror the cytokine profile of T-helper cells and thus are thought to be the innate 

counterparts of T-helper lymphocytes. Group 1 ILCs produce Th1 associated cytokines, in 

particular IFNγ. Group2 ILCs produce Th2 cytokines, in particular IL-5 and IL-13 (93), (94). 

Group 3 ILCs are defined by their ability to secrete Th17 cytokines such as IL-17 and IL-22 

(95). Recent data has implicated Group3 ILCs in the development of IBD. Group 3 ILCs 

have been shown to be able to induce colitis in a Helicobacter hepaticus infection 

characterised by IL-17A and IFNγ production in Rag-/- mice (96). Subsequent data suggest 

that Group 3 ILCs can induce colitis in an IL-23R, IL-22 dependent mechanism, that Rorγt-/- 

mice do not develop CD40L induced colitis and lastly human ILC’s were found at increased 

levels in the LP in an IL-23 dependent manner (97), (96), (98), (99).  

 

1.3.8 Intestinal epithelial cells 

The intestinal epithelium is the largest mucosal surface in the human body (1). This surface 

is a single cell thick to permit efficient ion and nutrient absorption and yet must shield the 

host from a diverse and sustained antigenic load (100). At its most basic intestinal epithelial 

cells (IECs) regulate GI tract immunity by forming a physical barrier by separating luminal 

contents from the underlying LP. However IECs also display innate immune function through 

the production of anti-microbial products, including defensins, cathelicidins and calprotectin 

(101). Indeed IECs are able to process and present antigen via MHC II, express PRRs 

including TLRs, and secrete a number of immunoregulatory mediators such as IL-10, TGF-β 

and IL-12p70 (102). The epithelium covering ILFs contains a specialised sub division of 

epithelial cells termed M cells with the ability to directly uptake luminal antigen by 

endocytosis, presenting antigen unmodified to T cells given the lack of M cell lysosomes 

(103). IECs are therefore equipped with the necessary machinery to detect, process and 

respond to microbial signals in the intestinal lumen to facilitate local mucosal responses 

(Diagram 1.2).  
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1.4 IBD is characterised by a dysregulated immune response 

IBD is thought to be the result of a dysregulated immune system in genetically susceptible 

individuals. Genome wide association studies (GWAS) comparing patients with IBD to 

healthy controls have identified >100 polymorphic loci, including many genes involved in 

innate and adaptive immune response (104), (105). Susceptibility variants have been 

reported in genes associated with autophagy, (ATG16L1), the IL-23/Th17 pathway (IL-12B), 

TGFβ signaling (SMAD3) and T cell activation (TAGAP) (106), (104). NOD2 was the first CD 

susceptibility gene discovered and has the largest genetic effect on disease susceptibility to 

date (107), (108). A recent meta-analysis of over 2,500 patients with NOD2 mutations 

revealed the presence of any NOD2 mutation increased risk for surgery by 58% and 

complicated disease by 48% compared to IBD patients without NOD2 mutation (109).  

 

How these genes confer an increased risk of developing IBD is not clear, and is an area of 

research interest. Autophagy refers to the cellular process of ‘self-eating’, a process by 

which lysosomal degradation to intracellular organelles, unfolded proteins of extracellular 

material maintains cellular homeostasis under conditions of stress, such as infection or 

mitochondrial damage (110). Transgenic mice generated to express a hypomorphic isoform 

of the ATG16L1 protein display Paneth cell abnormalities similar to those found in ileal 

resections of CD patients, and are more susceptible to experimental colitis (111). Similarly 

DCs have been shown to require intact NOD2 and ATG16L1 pathways to permit effective 

autophagy processes, consistent with the hypothesis that the detection and isolation of 

intracellular pathogens are intimately linked (112).  

 

Infiltrating monocytes have been identified at increased levels in the intestinal mucosa of IBD 

patients (43). CD14High cells display increased production of TNF, IL-1β, IL-6 and respiratory 

burst activity and recruit other immune cells, such as eosinophils via release of eotaxin-1 

(113). It is hypothesised that monocytes are therefore key effector cells in mediating ongoing 

mucosal inflammation.  LP CD14High monocytes are derived from blood precursors, 

demonstrated using radio-labelled transfer of blood monocytes, and are recruited perhaps in 

response to increased circulating levels of chemokines such as CCL2 and CCL4 (47).  

 

Macrophage and DC subtypes form a central part of the functional mucosal barrier of the GI 

tract, however the exact definition of these cells using surface markers remains 

controversial. One such marker is CX3CR1, which appears to be highly expressed on 

macrophages but not cDCs (114), (52). CX3CR1+ LP macrophages are located in close 

proximity to the epithelium and are able to extend processes to sample luminal antigen 

(103). However it has also been shown that CD103+ CX3CR1- DC also present antigen via 

intestinal goblet cells, thus uptake of luminal antigen may not be confined to a particular MP 

cell subset (115). Genetic deletion of CX3CR1 results in decreased LP macrophage 
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numbers, increased bacterial translocation of commensal bacteria and increased 

susceptibility to experimental colitis that can be rescued by administration of CX3CR1 

sufficient macrophages or blockade of IL-17A (103), (116).  

 

Recent studies in man have also identified intestinal monocytes and monocyte-derived 

macrophages as critical perpetrators in driving inflammation in IBD (113), (117), (72). The 

human gastrointestinal mucosa represents the largest reservoir of macrophages in the body 

and, as in mice, resting human GI tract macrophages are relatively inert (118), (119). Human 

intestinal macrophages express CD68, CD33 and low levels of CD14, CX3CR1, CD11c and 

CD163 (113), (42). However under inflammatory conditions a discreet CD14High monocyte 

population accumulates which, like the analogous LY6C+ MHC-II- monocyte population seen 

in mice, is also present at reduced numbers in the steady state (113), (120). These CD14High 

cells seem to be derived from circulating classical blood monocytes, express higher levels of 

CD11c, CD64, CD163 and are heterogeneous in expression of HLA-DR and CD209 (120), 

(121). In addition CD14High cells can produce large amounts of inflammatory cytokines such 

as IL-6, IL-23 and TNF (113), (57). 

 

The evidence for the role of DCs in IBD pathogenesis is currently limited to observational 

studies in man, and transgenic studies in mice. DCs accumulate in the mucosa of IBD 

patients and experimental models of and interference with T cell-DC interactions via 

CD40/CD40L blockade can prevent T cell mediated colitis (122), (123), (124).  

 

GWAS have identified several IBD risk susceptibility loci involving Th17 cells and their 

differentiation including IL-23R, IL12B, JAK2, STAT3, CCR6 and TNFSF15 (105), (125). 

Indeed IBD patients have greater IL17A expression in the GI tract, and display greater 

numbers of Th17 cells (126), (127), (128).!However animal models suggest conflicting roles 

for the IL-17 axis in conferring susceptibility to colitis. IL-17A deficient mice, or those treated 

with IL-17A neutralising antibodies are more resistant to the development of experimental 

colitis using trinitrobenzene sulfonic acid (TNBS) (129). IL-17A has also been shown to 

directly inhibit Th1 cells and suppress the development of inflammation; experimental 

autoimmune encephalomyelitis is suppressed in Il17-/- mice and bone erosion is reduced in 

rats treated with IL-17 receptor IgG1 Fc fusion protein (130), (131). However using a model 

of chemical colitis, mucosal inflammation was ameliorated by IL-17F deficiency (132), (133).! 
 

In summary the patchy transmural inflammation of CD is associated with activation of Th1 

and Th17 cells in response to the production of IL-12, IL-18, IL-23 and TGFβ by APCs. In 

turn activated Th1 and Th17 cells increase section of pro-inflammatory mediators such as IL-

2, IL-17, IFNγ and TNF. This reinforces APC, macrophage and endothelial release of TNF, 

IL-1, IL-6, IL-8, IL-12 and IL-18. In contrast the mucosal inflammation in UC may be 
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associated with a Th2 immune response mediated by IL-4, IL-5 and IL-13 (134). However 

other reports have shown increased IFNγ and reduced IL-13 from intestinal biopsies of UC 

versus CD patients so distinguishing between IBD subtypes based on T cell cytokine profile 

alone may not be robust (126). In both CD and UC, T cells respond to presented antigen and 

can be regulated by anti-inflammatory mediators such as IL-10 in a similar manner. 

Therefore the bulk of current and emerging IBD treatments have focused on the reducing the 

action of pro-inflammatory cytokines, increasing anti-inflammatory cytokines, blocking T cell 

co-stimulation or inducing T cell apoptosis.  

 

Tregs have a marked anti-inflammatory capability in animal models of colitis, and are found 

in reduced numbers in the blood of active IBD patients (135), (136), (137). However Tregs 

are paradoxically found in increased levels in the LP of patient with active IBD, and 

demonstrate equivalence in suppressing effector T cells compared to healthy patients ex 

vivo, suggesting normal function (138), (139). This may be explained by the observation that 

T cells that experience TCR activation in the presence of TGF-β turn on FoxP3 expression 

(induced Tregs) (140). Whether iTregs maintain the same anti-inflammatory functions as 

constitutive Foxp3 expressing T cells (natural Tregs) is debated (141). 

 

Therefore decreased anti-inflammatory mechanisms may be equally important targets for 

therapeutic intervention as enhanced effector mechanisms. Lastly it has been noted that a 

large proportion of mucosal Tregs from IBD patients are able to produce IL-17, promoting 

further inflammation and neutrophil recruitment. Thus by sharing characteristics of potentially 

pathogenic T cells, copious Tregs in IBD may paradoxically promote rather than suppress 

intestinal inflammation (142), (143).  

 

Taken together there is a strong genetic association with immunological gene 

polymorphisms and the likelihood of developing IBD. However our understanding of the role 

of the innate immune system in IBD pathogenesis is poor, with conflicting evidence for pro 

and anti-inflammatory effects of the adaptive immune response.  

 

1.5 The Microbiome 

The human body harbours trillions of microbes located at host-environmental interfaces such 

as skin, gut, genital and respiratory surfaces (2). The genetic load of our microbial co-

habitants constitutes the microbiome, and outweighs the genetic contribution of the host by 

10 fold (2). The last decade has permitted identification of the microbial community via 

sequencing and high throughput technologies and analysis of their function. Numerous 

studies have now profiled the healthy human microbiome, with over 90% of all phylotypes 

belonging to 2 divisions; Bacteroidetes and Firmicutes (144). In addition whole-genome 

shotgun sequencing of faecal samples from a European adult cohort revealed 98% of genes 
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were bacterial, with the rest constituting yeasts, viruses, archaea and protozoa (145). Indeed 

commensal fungi interact with the innate immune receptor DECTIN-1 and its gene Clec7a in 

mice. Clec7a-/- mice are more susceptible to DSS colitis mediated by altered responses to 

commensal fungi, with CLEC7A polymorphisms in man predisposing to a severe form of UC 

(146). Thus it is likely the identification of non-bacterial facets of the microbiome will become 

increasingly recognised and analysed over the following decade as sequencing 

methodologies continue to advance.  

 

It has subsequently become apparent that our microbiota have evolved with us and are 

critical for normal development and homeostasis. The intestinal microflora interacts with the 

adjacent mucosal environment directly, affecting intestinal permeability and local immune 

responses, but also indirectly via microbial metabolites such as in the production of short 

chain fatty acids (SCFA) that mediate host responses including Treg induction (147), (148). 

The microbiota is a dynamic entity, its composition changing in response to age, sex, 

geography, diet and medication (149). Alteration in the dynamics of this balance may result 

in a dysbiosis, which is associated with the susceptibility to an array of GI tract and non-GI 

tract diseases, such as IBD, coeliac disease, obesity, multiple sclerosis, malignancy and 

liver disease (150).  

 

Evidence supporting the role of luminal antigens in exacerbating IBD comes from treatments 

that modify the faecal stream. Notably diversion of faeces from active inflammation induces 

remission and mucosal healing and infusion of faeces re-activates the disease (151). In 

addition specific taxonomic shifts have been reported in IBD. Enterobacteriaceae are 

increased in relative abundance in both patients with IBD and animal models of intestinal 

inflammation (152). Adherent invasive E. coli (AIEC) strains in particular have been isolated 

from ileal CD biopsies and are enriched in patients with UC (153). This may simply represent 

an increased preference of these organisms to survive in an inflammatory environment, with 

administration of anti-inflammatory treatments, such as mesalazine, reducing their frequency 

(154), (155). In contrast some bacteria have known protective effects on host immunity. 

Bacteroiodes and Clostridium species for example have been shown to induce the 

expansion of Tregs, thereby reducing intestinal inflammation, with other organisms shown to 

attenuate inflammation by regulating NF-κB activation (156). Similarly the Bifidobacterium, 

Lactobacillus and Faecalibacterium genera may protect the host from inflammation by down-

regulating inflammatory cytokines or augmenting IL-10 production (157,158). F. prausnitzii 

has received much attention in recent years, underrepresented in IBD patients, with lower 

levels of mucosa associated F. prausnitzii correlating with higher risk of recurrent CD after 

surgery (158), (159). Conversely, recovery of F. prausnitzii after relapse is associated with 

clinical remission in UC (160). In addition to the immunomodulatory effects noted above, the 

Faecalibacterium genus is also responsible for the fermentation of dietary fibre to produce 
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SCFAs, which are the primary energy source for colon IECs (161). Indeed IECs express a 

range of PRRs to sense the presence of the microflora (162). TLRs and NLRs are the best 

documented and play a key role in the induction of innate effectors and inflammation (162). 

PRR signaling in IECs therefore serves to maintain the barrier functions of the epithelium, 

including the production of sIgA, and setting a tolerogenic phenotype of the mucosa to inhibit 

overreaction to the innocuous luminal dietary and microbial antigens (163).  

 

Host-microbial interactions are therefore pivotal in protection from pathogenic bacterial 

invasion. This consists of a first line defence comprised of facets of the innate immune 

system described above, namely mucins, the epithelium and immune cells such as DCs, 

monocytes and macrophages. Mice that lack an adaptive immune system, such as Rag-/- 

and severe combined immunodeficient (SCID) mice do not develop spontaneous colitis, 

though this can be potently induced by chemical (DSS), immunological (anti-CD40) and 

infectious (Helicobacter hepaticus) challenge (164), (165,166). This would suggest that the 

innate immune system is sufficient for IBD development. Taken together the intestinal 

microbial community performs a range of useful functions for the host including digesting 

substrate inaccessible to host enzymes (163). In addition the microbiota shape host immune 

responses and vice versa, with dysbiosis strongly associated with disease states (163). GI 

tract microflora therefore represent an attractive, potentially modifiable, candidate to account 

for the environmental contribution to IBD. 
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Diagram 1.2 Interaction between colon LP immune cells and the epithelium   
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1.6 Animal models of IBD 

Much of the recent progress in understanding mucosal immunity has been achieved by the 

study of experimental animal models of intestinal inflammation. However no one model yet 

replicates all the complex facets of human IBD, nor replaces the value of studies using 

human material. Indeed the clinical manifestation and disease course of IBD is extremely 

heterogeneous; an observation reflected in the increasing transgenic mouse strains all 

displaying IBD-like intestinal changes (167). However animal models provide an opportunity 

to explore mechanisms of host response to GI tract inflammation that are not yet possible 

using human tissues. Animal models of intestinal inflammation can be broadly subdivided 

into infection, chemical induction, immune cell transfer or gene targeting (168).  

 

A compromised epithelial barrier may be a key component in the pathogenesis of IBD by 

permitting increased translocation of luminal antigen and micro-organism into the mucosa, 

resulting in a florid inflammatory response (169). A seminal paper by Hermiston et al. 

demonstrated that decreased intestinal epithelial cell-cell adhesion mediated by replacing E-

cadherin with a N-cadherin transgene resulted in LP inflammation but only at areas of 

defective epithelium, suggesting micro-organism entry can induce an inflammatory response 

(170). Indeed asymptomatic IBD patients display increased intestinal permeability prior to 

clinical relapse with variants in epithelial organic cation transporters (OCTN) 1 and OCTN2 

risk susceptibility loci for IBD (171). 

 

1.6.1 DSS colitis 

DSS is a sulphated polysaccharide of highly variable molecular weight ranging from 5kDa to 

1400kDa. Administration of 40kDa DSS to mice in drinking water can readily traverse the 

mucosal membrane, found in LP macrophages and MLN within 24hrs, resulting in distal 

colitis, rectal bleeding, diarrhoea and weight loss (164), (166). Molecular weight of DSS, 

manufacturer, mouse sex or strain, and intestinal microflora, but not volume of DSS 

ingested, have all been shown to affect the disease severity (167). It is believed that DSS is 

directly toxic to IECs, thereby affecting the integrity of the mucosal barrier. As T and B cell 

deficient, SCID or Rag1-/- mice also develop a severe colitis to DSS, the adaptive immune 

system is not thought to play a dominant role in the acute phase of this model (166). 

Therefore the acute DSS model is a useful tool for investigating the role of the innate 

immune system in intestinal inflammation. Typical histological changes of acute DSS colitis 

include mucin depletion, epithelial degeneration and eventually epithelial necrosis (167). 

This is accompanied by the infiltration of the LP and submucosa by neutrophils, resulting in 

cryptitis and crypt abscesses. Cycles of continuous DSS treatment (7 days) interspersed 

with normal drinking water (14 days) results in a chronic colitis which, if combined with the 

carcinogen azoxymethane results in inflammation-associated colorectal cancer (CAC) (172).  
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1.6.2 TNBS/Oxazolone colitis 

Intra-rectal administration of the haptenating agents TNBS or oxazolone renders autologous 

colonic or microbial proteins immunogenic to the host immune system (173), (174). This 

results in severe diarrhoea, weight loss and colonic thickening (175).  

 

Intra-rectal TNBS to SJL/L or C57BL/10 mice results in transmural colonic inflammation, 

driven by Th1 mediated responses and characterised by the accumulation of CD4+ T cells, 

neutrophils and macrophages in the LP (175). Given the dependence of chronic TNBS colitis 

on CD4+ T cells, this model has proved an important vehicle for investigating T-helper 

mucosal responses. TNBS colitis is associated with elevated IFNγ levels, with anti-IL-12p40 

treatments able to prevent its production and abrogate nascent and established disease 

(175), an observation that led to the development of humanised anti-IL12p40 antibody 

treatment for CD. However a Cochrane review of anti-IL12p40 efficacy assessed 4 

randomised trials of 955 patients and revealed only a very modest treatment benefit of 

inducing clinical response (176). TNBS has also contributed to our knowledge of oral 

tolerance, with mice fed TNBS-haptenised colonic proteins less susceptible to TNBS colitis 

due to TGFβ producing Tregs, a process dependent on IL-10 (177), (178). TNBS colitis 

susceptibility varies widely among mouse strains. BALB/c mice for example develop Th2 

mediated colonic hypertrophy, accentuated in the absence of IFNγ, with a Th2 component 

also observed in C57BL/6 mice deficient in IL-12 and IFNγ (179), (180). BALB/c mice are 

therefore used for modeling chronic TNBS-colitis induced fibrosis, given elevated IL-13 

drives TGFβ mediated fibrosis involving early growth response protein-1 (EGR-1), IGF-1 and 

myofibroblast production of collagen (181). Thus TNBS has proved a useful model for 

investigating Th1 and Th2 immune responses as well as the factors guiding the initiation and 

resolution of fibrosis in the GI tract.  

 

Oxazolone (4-ethoxymethylene-2-phenyl-2-oxazolin-5-one) is also an intra-rectally 

administered haptenating agent, which like TNBS elicits colonic inflammation (182). 

However in contrast to the transmural inflammation observed in TNBS colitis, single dose 

administration of oxazolone produces acute superficial inflammation more akin to the UC 

pathology seen in man (183), (184). Cellular and cytokine responses in oxazolone colitis 

also differ compared in TNBS. Data suggest that the host response to oxazolone is 

controlled by IL-13 production from LP CD4+ natural killer (NK) T cells, as IL-13 blockade 

and NKT deficient mice do not develop colitis (183). The IL-13 response in oxazolone colitis 

is poorly defined, but may be a result of IL-33 and IL-25 release from damaged epithelial 

cells (185). UC-like oxazolone colitis is characterised by increased IL-9 and IL-13 production 

and an LP infiltrate containing IL-13 producing NKT cells (186), (187). Thus the importance 
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and value of oxazolone colitis lies in its resemblance to human UC not only in respect to 

morphology, but in addition to immunopathogenesis.   

 

 

1.6.3 Adoptive transfer of CD45RBHigh+ T cells 

The balance of regulatory and effector T cells in the development of intestinal inflammation 

was first highlighted in the transfer of distinct T cell populations into immunodeficient mice 

(188). The transfer of naïve CD4+CD45RBHigh T cells from donor mice into immunodeficient 

SCID or Rag1-/- mice results in a wasting disease characterised by chronic colonic 

inflammation developing over 5-10 weeks (189), (188). Conversely the transfer of 

CD4+CD4RBLow cells does not produce colonic inflammation, owing to the presence of 

CD4+CD25+Foxp3+ Tregs that antagonise effector T cell function in the gut by the production 

of IL-10, TGFβ and IL-35 (188,189), (190), (191). Indeed Tregs deficient in the IL-10 receptor 

fail to protect mice from this model of colitis, and lose the ability to express FoxP3 

suggesting IL-10 signaling is required for the maintenance of their function (88). In addition 

TGFβ deficient Tregs, or the administration of anti-TGFβ antibodies, are unable to protect 

recipient mice from colitis (192). Indeed if naïve T cells are rendered incapable of responding 

to TGFβ by overexpression of a negative TGFβ receptor, Treg TGFβ production is unable to 

suppress colitis (193). Despite these insights into Treg and Teffector roles, the mechanism 

and source of inflammatory stimuli in this transfer model of colitis have been difficult to 

ascribe. Early studies suggested the model to rely on Th1 mediated responses, due to the 

presence of IFNγ and TNF producing LP T cells and the observation that transferred T cells 

lacking T-bet, the master transcription factor for Th1 responses, fail to induce colitis (189), 

(194). Subsequent studies support a role for T cell differentiation into IL-17 producing Th17 

cells under the influence of IL-23 in this transfer model, whereby transferred T cells lacking 

the IL-23 receptor or the Th17 master regulator RORγt and Rag1-/- recipient mice deficient in 

IL-23p19 do not develop colitis (195), (196). These mutually exclusive hypotheses have 

been combined with the observation that Th17 responses are plastic, able also to give rise to 

IFNγ producing Th1 cells (196), (197). Taken together, current data suggest that colitis 

induced by the adoptive transfer of T cells produces a Th1 IFNγ producing population that 

originates indirectly from a Th17 differentiation pathway dependent on IL-23, rather than 

exclusively from a Th1, IL-12 dependent mechanism. In addition, it underlines the 

importance of balance in mucosal homeostasis: balance between pro-inflammatory effector 

cell function and anti-inflammatory regulatory function, a balance that may be tipped by 

quantitative or qualitative defects in these cells in IBD. It also highlights that, as in other 

models of experimental colitis, bacterial antigens play a crucial role in mediating pathology, 

as mice treated with antibiotics or bred germ-free develop significantly ameliorated bowel 

inflammation.  
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1.6.4 Il10-/- transgenic mice 

IL-10 is a well-known suppressor of multiple facets of the immune system (198). Several 

studies have suggested that IL-10 inhibits IL-12 and TNF production, T cell proliferation and 

promotes the formation of antigen-specific Tregs (199). Mice with specific deletion of IL-10 

develop spontaneous colitis in specific pathogen free (SPF), but not germ free, conditions 

(198) suggesting an important role for the microbiota in generating IL-10 dependent immune 

responses. Indeed IL10 polymorphisms are risk susceptibility loci for IBD, with a familial form 

of paediatric onset CD identified that is due to mutations in the IL-10 receptor, which was 

rescued by bone marrow transplantation (200). Intestinal inflammation in IL-10 deficient mice 

is characterised by a Th1 T cell LP infiltrate that is reduced by the administration of anti-IL-

12p40 or anti-IFNγ (201). In addition IL-10 specific deletion in T cells or Tregs also results in 

spontaneous colitis, suggesting that T cell sources of IL-10 are necessary to maintain 

mucosal homeostasis (202), (203).  Similarly IL-10R deficient macrophages or systemic anti-

IL-10R antibody treatment, rendering the host unable to respond to IL-10, leads to a pro-

inflammatory phenotype and spontaneous colitis (204), (205). Finally, macrophages 

extracted from patients with CD as a result of a loss of function mutations in the IL-10R 

display impaired differentiation and function (206). Taken together this model of intestinal 

inflammation has identified LP naïve T cells, Tregs and macrophages as important sources 

and response elements to the IL-10 axis that are required to prevent damaging spontaneous 

enterocolitis (206).  

 

1.6.5 Other transgenic models 

There are numerous other transgenic animals which display altered susceptibility to 

intestinal inflammation and therefore have provided vital inflammation for our understanding 

of mucosal homeostasis. These include mice deficient in TBET and RAG2 proteins (TRUC 

mice), which develop spontaneous inflammation and a colitogenic microflora, that can 

transmit colitis to WT mice when co-housed (such as Proteus mirabilis and Helicobacter 

typhlonius) (207). Mice deficient in Mucin 2 (MUC2), a large gel-forming protein secreted by 

the intestinal epithelium, also develop spontaneous colitis as a result of increased barrier 

function, resulting in increased susceptibility to DSS and colorectal cancer models, 

characterised by the infiltrate of TNF and IL-1β producing lymphocytes (208), (209). 

Intestinal epithelial specific deletion of IKK-γ (also known as NEMO) disrupts NF-κB 

signaling, leading to a heightened sensitivity to TNF, epithelial apoptosis and translocation of 

bacteria, and increased susceptibility to the nematode parasite Trichuris muris, highlighting a 

role for pro-inflammatory cytokines such as TNF in barrier protection and defence as well as 

disruption (210). SAMP1/YitFc (SAMP) mice represents an excellent model system to 

understand the disease mechanisms of CD as it one of the only animal models that produce 

severe inflammation in the terminal ileum, the commonest location for CD in man (211). 

SAMP mice were discovered by in-breeding a colony of AKR/J mice, selecting for 
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accelerated senescence, noticing an autoimmune phenotype (212). Genome wide scanning 

of cohorts of SAMP mice with ileal inflammation versus healthy controls identified 4 areas of 

chromosomal loci that were strongly linked to the presence of inflammatory change, 

including allelic differences in IL-18, PPARγ and IL-10 receptor genes (212).  Therefore 

these mice are do not require genetic, chemical or immunological manipulation to produce 

intestinal symptoms.  

 

1.6.6 Trichuris muris 

Gastrointestinal infection with the parasite Trichuris muris, a mouse model of the human T. 

trichiura infection, is a much-studied model of colonic inflammation (213). Ingested infective 

eggs accumulate in the caecum, hatching within 2 hours, adhering and anchoring to the 

caecal epithelium, maturing from larval to adult life stages over the ensuing 32 days which, 

in the absence of appropriate immunity and expulsion, results in chronic local tissue 

destruction and inflammation (214). Successful resolution of infection requires a polarised 

Th2 immune response, with susceptibility conferred by a Th1, IFN- ! dominated response 

(215). The load of infected eggs delivered to the host is also critical in determining 

polarisation of the host immune response and thus susceptibility to chronic infection: Low 

dose (20 eggs) results in a Th1 polarised immune response, and therefore chronic 

inflammation, in immunocompetent animals. However, high dose (200eggs) results in an IL-

4, IL-13 polarised Th2 response (216), (217). Supporting the role of parasite-host evolution, 

wild mice are thought to accumulate worms through repeated low-level infections of 5-15 

eggs, with heavy infections confined to only a few individuals (218). Therefore T. muris 

infection load in nature favours parasite persistence and chronic infection by negating an 

expulsive Th2 response from the host. Thus the therapeutic use of helminths has been 

attempted in IBD to antagonise damaging host Th1 responses. Utilising the ability of 

helminths to modulate a Th2 host response and thus evade expulsion was hypothesised to 

explain the lack of IBD in less developed areas where parasites are endemic (219). However 

results have been conflicting with no consistent treatment benefit shown, which may be 

secondary to differences in methodology, dose, species and IBD phenotype (220), (219).  

 

Clearance of T. muris infection requires an intact adaptive immune system. Current data 

support the requirement for CD4+ but not CD8+ or NK T cells for an effective host response, 

with conflicting evidence for DCs or B cells, with eosinophils and basophils in addition 

showing redundant functions (221), (222), (223), (224), (225). Epithelial barrier function is 

also key to successful parasite clearance, with susceptible mice displaying reduced mucin 

production, epithelial cell turnover and muscle contractility (226), (227).     
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1.6.7 Citrobacter rodentium 

C. rodentium is a murine mucosal pathogen that induces a self-limiting colitis or death 

depending on strain susceptibility (228), (229). It shares several pathogenic mechanisms 

with enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC), two 

clinically important human GI pathogens, such as the formation of attaching and effacing 

(A/E) lesions, characterised by the intimate attachment of bacteria to the intestinal epithelium 

(228), (229). C. rodentium is transmitted via the faecal-oral route, with most infection studies 

favouring delivery by oral gavage with laboratory culture bacteria (230). After colonic 

colonisation, adherent bacteria undergo a virulence switch that facilitates further 

colonisation, with the infection clearing in less susceptible strains, mediated by epithelial 

shedding of colonised cells into the intestinal lumen (231). Myeloid differentiation primary 

response protein 99 (MYD88) is a key adaptor protein in innate immune signaling 

downstream of TLR and IL1R families, and plays a key role in response to C. rodentium 

infection by recruiting neutrophils, macrophages and DCs to the LP, expression of iNOS and 

triggering the proliferation of epithelial cells (232), (233). As such TLR2 deficient mice 

develop severe colonic pathology, weight loss and mortality (232).  

 

C. rodentium has also yielded insight into the role of inflammasomes in mucosal 

homeostasis. Inflammaosomes are scaffolds in the cytoplasm of immune cells that are 

responsible for the maturation of caspases and IL-1 family cytokines (234). Caspase-1 and 

NLRP3 mediated responses are crucial for resistance to C. rodentium, with caspase-1 and 

NLRP3 deficient mice displaying increased bacterial loads, severe immunopathology and 

rapid weight loss (235). C. rodentium triggers a florid Th17 cell response that exceeds the 

Th1 cell response, that is caused by epithelial cell apoptosis, as blocking apoptosis impairs 

Th17 responses in the LP (236). Similarly blockade of IL-17A and IL-17F results in increased 

mucosal inflammation, bacterial load and systemic translocation of bacteria (237). In addition 

to IL-17, ILC3s and other Th17 cells are important sources of IL-22, which is essential for C. 

rodentium protection (238). IL-22 is part of the IL-10 superfamily and triggers protection to C. 

rodentium by inducing the production of RegIII AMPs and promoting epithelial barrier 

integrity (238).  

 

Lastly, recent investigations have suggest that transfer of the microbiota from mice resistant 

to C. rodentium to mice that are susceptible, renders protection to infection to recipient mice, 

with neutralisation of IL-22 removing this protective effect (239), (240). Resistance to 

infection is associated with increased Bacteriotedes and reduced Firmicutes at phylum level, 

although segmented filamentous bacteria (SFB) that promote IL-17 protective mucosal 

responses, are equivalent (239), (240). Taken together C. rodentium elicits a co-ordinated 

immune response dependent on Th17 and innate cell responses also underlining the 

importance of the host microbiota in conferring susceptibility to enteric pathogens.  
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1.7 Epigenetics 

Epigenetics is one of the most rapidly expanding fields of biology that, like the microbiome, 

demonstrates an ability to interact with genetic and environmental factors. Waddington 

defined the term “epigenetics” as “the causal interactions between genes and their products, 

which bring the phenotype into being” (241). Subsequently, this term has been used to 

describe the molecular mechanisms that reinterpret the genetic code into a multitude of 

phenotypic outcomes. This has led to the modern definition of epigenetics as the heritable 

marking of DNA that leads to the alteration of gene expression independent of genetic 

information carried in the primary DNA sequence (242).  

 

Epigenetic modifications of DNA permit an ability to influence phenotype in a heritable 

fashion, retained after cell division and directly or indirectly affecting the transcription of the 

genetic code. DNA methylation, histone posttranslational modifications and nucleosome 

positioning are the best described epigenetic processes, but more recently have expanded 

to include microRNAs (miRNAs), chromatin remodeling complexes and polycomb group 

proteins (243), (244). Through changes in gene transcription, DNA-protein interactions, 

protein translation, and gene silencing epigenetic processes determine key developmental 

processes including growth, differentiation, genomic imprinting and immunity (245), (246).  

 

Epigenetic marks that are incorrectly established may confer human disease. Monozygotic 

twins who contain the same DNA sequence may have differing susceptibilities to 

autoimmune and malignant pathologies due to discordant DNA and histone modification 

profiles (247), (248). Whilst the relative plasticity of epigenetic marks is advantageous in 

adding an additional layer of cellular genetic control, it also renders them susceptible to 

environmental perturbations such as diet, nutrition, stress, chemical and pharmaceutical 

agents (249). Thus epigenetic processes may be mediators of gene-environment 

interactions and so may contribute to the penetrance of polygenic, environmentally 

influenced disorders such as IBD (250). It is now appreciated from studies in animals that 

environmental insult may induce specific phenotypes mediated by epigenetic processes and 

that are heritable (251), (252).  

 

1.7.1 DNA methylation 

DNA methylation occurs by the addition of a methyl group to the 5’ carbon of the cytosine 

residue of cytosine-guanine (CpG) dinucleotides. Methylation occurs at approx. 70% of CpG 

dinucleotides with marked region specific variation (253). Non-methylated CpG dinucleotides 

are often, but not exclusively clustered together at gene promoter sites and are referred to 

as CpG islands (253). Highly methylated areas of the mammalian genome are less 

transcriptionally active leading to gene silencing, a principle that is exploited by neoplastic 
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processes by aberrant de novo methylation of tumour suppressor genes, abrogating their 

function in favour of tumour development (254). DNA methylation is therefore strongly 

correlated with gene silencing and is widely believed to participate directly in transcriptional 

repression (255). Methyl-CpG-binding proteins (MBDs) serve as essential contributors for 

DNA demethylation independent of cell division and have potential roles in transcript splicing 

and chromatin compaction (256). MBDs and histone deacetylase (HDAC) recruitment may 

therefore represent mediators of transcriptional control through induction of heterochromatin 

(255). This is a developing area, and thus conflicting hypotheses exist regarding the causal 

nature of DNA methylation in mediating transcriptional repression (257), (258). Whether 

DNA methylation is a cause or consequence of repression therefore remains to be fully 

elucidated. DNA methyltransferases are a key family of enzymes responsible for the 

remethylation of hemi-methylated CpGs during cell division (DNMT1) (259). Indeed they also 

undertake de novo methylation in early development (DNMT3a/b), thereby conserving DNA 

methylation patterns, the importance of which is underlined by the embryonic lethality of 

DNMT1, DNMAT3a and DNMT3b deficiency (260), (261). Taken together genome 

methylation requires coordinated expression and function of DNMTs and MBDs to permit 

appropriate gene expression in normal growth and development. It is therefore perhaps 

unsurprising that altered DNA methylation and DNMT expression/regulation were amongst 

the first epigenetic changes reported in IBD and in CAC (262), (263), (264). 

 

1.7.2 Histone modification 
Eukaryotic DNA is tightly folded around specialised proteins termed histones (H) to from 

chromatin (265). The histone octamer forms the structural basis for which the fundamental 

unit of chromatin, nucleosomes, may form around (265). The nucleosome is a repeating 

subunit of 146base pairs of chromatin in a double helix around a core of H2A, H2B, H3 and 

H4 histone proteins (265). Current evidence suggest that each histone subtype maybe 

altered by numerous post-translational modifications including acetylation, methylation, 

ubiquitination, phosphorylation, sumoylation, citrullination, ADP ribosylation and proline 

isomerization, of which acetylation and methylation are the most widely described (266).  

These modifications determine the accessibility of DNA to transcriptional, replicative, 

recombination, condensation and mRNA splicing machinery (265). As a result, post-

translational modification of histones confer a diverse range of heritable transcriptional 

promotion or repressive abilities. For example, trimethylation of lysine residues on H3 

proteins can be associated with both open (H3K4, H3K36 and H3K79) and closed (H3K9 

and H3K27) regions of chromatin (267). In contrast highly acetylated regions are generally 

associated with euchromatin and leads to active transcription by increasing chromatin 

accessibility (267). This has led to hypothesis of a ‘histone code’ whereby the overall pattern, 

rather than individual histone marks, of post-translational histone modification fine-tunes 

higher order chromatin structural organisation, expression and repression (266). Enzymes 
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that catalyse the addition or removal of acetyl or methyl groups to HDACs; histone 

acetyltransferases (HATs) and histone methyltransferases (HMTs) therefore represent 

important mechanisms for mediating epigenetic patterns for inheritance (268). The 

mechanism(s) by which histone acetylation or methylation affects transcription is poorly 

understood. This may be the result of acetyl neutralisation of lysine positivity, destabilising 

negatively charged DNA promoting dissociation from histone to an ‘open’ position (268).  

 

1.7.3 Nucleosome remodeling 

Whilst the structure of individual nucleosomes is highly regulated and ordered, the overall 

structure of nucleosomes along DNA is highly variable (269). The precise positioning of 

nucleosomes can therefore be regulated by transcription factors and other accessory 

proteins and results in functional changes in gene expression (269). Nucleosomes can 

therefore represent a physical barrier to gene transcription, impeding the progression of RNA 

polymerases, demonstrated by the eviction of nucleosomes from transcriptionally active start 

sites (270). Nucleosome positioning may therefore impede or facilitate gene expression and 

is controlled by chromatin remodeling complexes, large multi protein scaffolds that alter the 

composition or organisation of nucleosome core proteins. There are currently 5 recognised 

families of chromatin remodeling complexes, SWI/SNF, ISWI, NuRD, INO80 and SWR1 

(271). Some associated family members, including the MBDs, facilitate the eviction or lateral 

sliding of nucleosomes and therefore gene activation. MBDs may also possess HDAC 

and/or methyl-CpG binding properties and thus promoting gene repression (272), (273).  

 

1.7.4 Methyl-CpG-binding proteins 

DNA methylation constitutes the addition of a methyl group to the cytosine of a CpG 

dinucleotide and is correlated to transcriptional repression ((274)). Approximately 70% of 

CpG dinucleotides in the mammalian genome are methylated (275) excluding areas of high 

CpG density termed ‘CpG islands’ that are usually unmethylated (276), but acquire 

methylation during differentiation (277) or be aberrantly methylated in cancer. It has been 

suggested that mechanisms for transcriptional repression mediated by CpG methylation 

involves MBDs binding to methylated cytosine and recruitment of a co-repressor complex 

(278). MBDs may be divided into the methyl-CpG-binding domain proteins (MBDs), Kaiso 

and SRA domain proteins (Table 1.1) (279). The MBD group includes MeCP2, MBD1, MBD2 

and MBD4 that have methyl-CpG binding domains, and MBD3, MBD5 and MBD6 that do not 

bind methylated DNA (280). Using tagged MBD proteins it has recently been shown that 

MBD1, MBD2, MBD4 and MeCP2 binding to chromatin increases linearly with methylation 

density, with binding not appearing to plateau with increased local density of methylated 

cytosines (280). Indeed in the absence of genome methylation, MBD binding is substantially 

reduced (280). The same authors find a strong negative correlation with MBD binding and 
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promotor activity and enhancer accessibility supporting a role for MBD proteins in DNA-

methlyation mediated genome regulation (280).  

 

MBD2 is capable of recruiting a large 2MDa nucleosome-remodelling (NuRD) complex 

(281). This complex contains a chromatin remodelling protein (Mi-2), HDACs 1 and 2, and 

has been shown to establish transcriptional repression in vertebrates, invertebrates and 

fungi (281). MBD2 is thought to recruit the NuRD complex to methylated sites within the 

genome to effect chromatin remodelling, histone deacetylation and methylation (281).  Given 

promoter methylation is a hallmark of cancer it was initially suggested that MBD2 may 

regulate genes critical during carcinogenesis, however more recent studies suggest that 

MBD2 may also regulate the activity of target genes (282). It was also initially thought from in 

vitro data that MBD2 selectively binds methylated DNA, recent data in vivo using genome 

wide mapping in mouse embryonic stem cells suggests that whilst binding largely occurs at 

highly methylated CpG regions, a subset of binding sites occurred at active unmethylated 

promoters (283), (280). Thus in one study 80% of MBD2 binding sites had DNA methylation 

levels between 80-100% with preferential binding to promoter and exon regions rather than 

introns or intergenic regions (279). The binding of MBD2 to non-methylated chromatin 

required protein interactions with the NuRD complex was demonstrated by engineering an 

MBD2 protein that lacked an MBD and assessing genome wide associations (280): Non-

methylated binding sites were also DNAse I hypersensitive, low in CpG density but enriched 

for H3K4me1 and H3K27ac, thus showing the hallmarks of active regulatory regions (280). 

In contrast to methylation-dependent binding, methylation independent binding was largely 

cell type specific, as most binding was seen to occur at tissue-specific regulatory regions 

(280).   

 

Thus based on their ability to bind methylated DNA, MBDs are prime candidates for 

interpreting the DNA methylome and may also be a role for binding non-methylated 

chromatin in a tissue specific manner. MBDs therefore represent attractive targets for 

investigating epigenetic regulation of chromatin expression. 
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1.7.5 Epigenetics in innate and adaptive immunity 

Emerging evidence supports a role for epigenetic mechanisms in affecting the innate and 

adaptive immune response (284). Indeed the inflammatory process itself may confer 

epigenetic reprogramming to drive or abate aberrant responses (242). Studies of epigenetic 

marks in tissue macrophages are currently predominantly limited to profiling of histone 

acetylation and methylation, but suggest combinations of active and repressive histone 

marks regulate the expression of key cytokines required for appropriate M1 ‘classical’ or M2 

‘alternatively activated’ polarisation (285). Defined combinations of active and repressive 

histone marks regulate the chromatin states of inflammatory cytokines, permitting a rapid, 

polarised immune response into classically activated M1 and alternatively activated M2 

macrophages (286). Epigenetic mechanisms might therefore explain the gene-specific 

signatures of tolerant GI tract macrophages.  

 

Likewise epigenetic processes can affect monocyte programming and response to bacterial 

pathogens. For example H3K4 tri methylation of NOD2 by mycobacterial components 

enhances innate immune responses (287). In addition bacillus Calmette-Guérin (BCG) 

vaccination induces methylation of cytokine promoters in human monocytes that can be 

reversed with methyltransferase inhibitors, suggesting plasticity of epigenetic programming 

(287). Thus epigenetic reprogramming may hold preventative and therapeutic roles in 

modulating aberrant immune response in autoimmunity and pathological inflammatory states 

(288).  

 

In addition, the chemotactic ability of monocyte derived DCs and macrophages can be 

modulated by nucleosome remodeling. The lipid-modulating agent simvastatin, which is 

widely used for its cholesterol synthesis blocking properties, also has immunomodulatory 

function (289). Simvastatin can induce closed heterochromatin at the chemokine ligand 2 

(CCL2) locus, accompanied by increased histone repressive marks (H3K27 and H3K9) and 

decreased active marks (H3ac and H3K4me3) at the CCL2 promoter resulting in decreased 

gene expression in monocyte derived cells (289).  

 

Genome-wide DNA methylation mapping of DC maturation revealed significant loss of DNA 

methylation across regions of binding sites for transcription factors affiliated with DC lineage 

fate and response to immune stimuli (290). Chronic repression of Il12 in DCs from mice 

recovering from severe sepsis correlates to promoter enrichment of histone marks H3K4me3 

and H3K27me2 (290). Similarly regulation of H3K9me2/3 marks by DC specific histone 

methyltransferases or demethylases are required for DC development and differentiation 

(291).  Lastly, neutrophils as noted above are key cells in pathogen clearance with potent 

antimicrobial activity, but their migration can be paradoxically impaired in severe sepsis and 
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is associated with reduction in H3ac marks at the CXCR2 promoter that mediates neutrophil 

migration to inflamed areas (292).  

 

The strongest evidence for epigenetic control of immune cell development comes from CD4+ 

T cell fate. CD4+ Th1, Th2, Th17 and Treg cells display a variety of distinguishing epigenetic 

motifs including different profiles of DNA methylation, repressive histone marks, RNA 

interference, with MBDs associated with active, inactive and silenced loci in Th cell types 

(293),  (294). The combination of these epigenetic processes ensure that lineage specific 

cytokines e.g. IFNγ for Th1 and IL-4 for Th2 are expressed by the appropriate cell types 

(293), (294), (295). Th1 cells for example demonstrate a demethylated Ifng promoter and 

repressive histone modifications at the Il4 locus, with the reverse in Th2 cells (296). Similarly 

active histone modifications (H3Kac and H3K4me3) were associated with Il17a and Il17f 

promoters in Th17 cells with DNA methylation at the Il17a promoter preventing STAT3-Il17a 

promoter binding, inhibiting the regulatory effect of STAT3 on Th17 differentiation (293),  

(297). In addition Tregs, which constitutively express FoxP3 to maintain their 

immunosupressive qualities, display histone modification in a FoxP3 dependent manner of a 

variety of genes (298), (299). Genes activated by FoxP3 show enrichment of active marks, 

H3K4me3, H3K9/14ac and H4K16ac and genes repressed by FoxP3 show enrichment of 

the repressive mark H3K27me3 (299), (298).  

 

Taken together, epigenetic regulation of cytokines and transcription factors within cells of the 

adaptive and innate immune systems can control their development, differentiation and 

function. This interaction between the genome and epigenome will likely have important 

implications for understanding the pathophysiology of heritable, immune mediated diseases 

such as IBD, the ultimate test of which will be the design of cell specific therapeutic 

epigenomic interventions to promote a favourable immunological phenotype.  

 

1.7.6 Epigenetics and the microbiome 

Recent data now suggest that intestinal bacteria can regulate epithelial cell immune 

responses through epigenetic mechanisms (300). Butyrate is a bacterial metabolite formed 

by the fermentation of dietary fibre, and is a powerful inhibitor of HDAC activity (301). 

Butyrate-dependent HDAC inhibition increases the expression of NOD2 and intestinal 

alkaline phosphatase (iALP), responsible for the metabolism of LPS, by increasing histone 

acetylation at these loci (301). Similarly the probiotic bacteria Bifidobacterium breve and 

Lactobacillus rhamnosus may confer anti-inflammatory effects by modulating host production 

of IL-23 and IL-17 by inhibiting histone acetylation and enhancing DNA methylation (302). 

The microbiota may also exert anti-inflammatory responses by direct interaction with the 

intestinal epithelium. TLR4, which detects the presence of LPS from Gram-negative bacteria, 

is suppressed by epigenetic mechanisms in IECs, presumably to prevent overactive host 
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response to commensals (303). In addition Tlr4 methylation levels are directly linked to the 

presence of bacteria, with levels significantly lower in germ free mice, suggesting that 

intestinal symbiosis is promoted by bacterial-led host epigenetic modifications (304). NKT 

cells are recruited to the intestinal LP during inflammation under the action of the chemokine 

CXCL16 released from intestinal epithelial cells (184). Germ free mice display 

hypermethylation of the Cxcl16 locus that normalises on the colonization of infant, but not 

adult murine GI tract, with commensals with corresponding reduction in Cxcl16 expression 

and NKT recruitment (184).  In keeping with age-related effects of the microbiome on the 

host epigenome, infant but not adult mice were more susceptible to DSS colitis after the 

administration of maternal, pre-natal methyl-donor diet that confers change in mucosal DNA 

methylation (184,304). These data support the intriguing assertion that dietary pre-natal 

modification of offspring epigenome confers long lasting reprogramming of the mucosal 

immune system.  

 
These emerging studies have highlighted an important area of microbial-host crosstalk, 

namely that the microbiota and their products can directly influence mucosal epigenetic 

marks, mediating changes in expression of immune related genes and pathways. Likewise 

changes in host gene expression can alter the composition and function of the luminal 

environment, underlining the intimate inter-relationship therein.  

 

1.7.7 Epigenetics and the “missing heritability” of IBD 
To date, relatively little is understood of the role of epigenetics in IBD. Data addressing the 

role of epigenetic processes in IBD are thus limited to DNA methylation analyses of intestinal 

biopsies or peripheral blood (262), (305), (263) (264). Comparison of affected IBD patients 

versus healthy controls revealed several pathways previously associated with IBD, namely 

differentially methylated IL-23/Th17, IL-12/Th1 and host response to bacteria loci. In 

corroboration of GWAS loci with epigenome-wide methylation loci reveal conserved genes 

including TNF, NOD2, IL19, IL27 and CARD9. miRNA and histone modifications on 

epigenetic processes and IBD susceptibility are currently poorly  described and remain a 

research focus ((263), (125)).  

 

MHC-II gene control represents a complex model of how immune regulatory genes are 

regulated by epigenetic control: The MHC is exposed to numerous modifications such as 

histone acetylation and deacetylation, histone methylation, and DNA methylation (306). The 

class II transactivator (CIITA) in particular is considered as the main factor responsible for 

MHC-II gene expression, and a target for epigenetic processes (307). Indeed CIITA recruits 

histone-modifying enzymes and ATPase–remodeling complexes to MHC-II promoters, and is 

itself regulated by a complex combination of DNA methylation and histone modifications 

(307).  
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The advent of GWAS has identified numerous variants conferring risk for complex disease, 

the primary purpose of gene discovery being to ultimately further our understanding of 

disease biology (105)), (308), (104).  However, the possibility of using an individual’s 

genotype to quantify risk prediction in a clinical setting based on statistical modeling (e.g. the 

cumulative number of risk variants) is an exciting prospect. There are >100 susceptibility loci 

for IBD to date with considerable overlap between CD & UC, with an area under the curve of 

0.71 for CD prediction compared to 0.56 for family history alone (309). However despite 

successes in identifying novel areas of IBD pathogenesis such as autophagy and ER stress 

using these methods, <30% of the heritability of IBD is explained using the aforementioned 

susceptibility loci (104). The reasons for this are complex, and include an overestimation of 

monozygotic disease concordance, underestimation of loci effects due to multiple allelic 

variants (most notable the NOD2 risk variant after deep re-sequencing increased its disease 

heritability from 0.8-5% after the identification of 3 novel causative variants), stringent 

statistical genome wide statistical cut-offs, gene-gene and gene-protein interactions (105), 

(310), (311). Intriguingly somatic alterations associated with methylation, acetylation or 

remodeling changes may alter gene expression, function and therefore disease susceptibility 

(250). It is indeed plausible that these somatic alterations may occur separately from 

germline variations in response to environmental stimuli such as cigarette smoking and diet, 

therefore altering gene expression in the absence of inherited variants.  

 

Taken together it has been suggested that the establishment of stable patterns of gene 

expression is a prerequisite of normal differentiation and is accomplished in part by a layer of 

lineage specific epigenetic information incorporated onto the genome. This information is 

plastic, changing with time and exposure to the environment, and has been shown 

particularly vulnerable at specific stages of human development. Intriguingly, long-term 

changes in gene expression patterns could therefore represent an attractive molecular 

hypothesis for early life experiences affecting adult phenotype. Understanding the role of 

DNA transcription and translation in the context of epigenomics may therefore have 

important and thus far poorly understood effects on human physiology, particularly in 

physiological and pathological immune responses. 
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1.8 Thesis Aims 

The GI tract immune system is complex and its research rapidly evolving thanks to an ever-

expanding understanding of cells within it. Indeed the GI tract immune system is not 

homogenous, and varies throughout its length to likely accommodate and react to the 

changing microbial and luminal composition therein. Importantly epigenetic processes are 

increasingly believed to be involved in controlling immune response at mucosal surfaces.  

 

The main aims of this thesis are therefore: 

1. Establish protocols that permit the simultaneous identification of multiple colonic LP 

immune populations by flow cytometry in mice and humans. 

2. Establish the role of the methyl-CpG-binding protein, MBD2, in the steady state colon LP 

using Mbd2 deficient mice.  

3. Establish the GI tract expression of MBD2 in healthy and IBD patients 

4. Establish the role of Mbd2 in chemical (DSS) and infectious (T. muris) models of colonic 

inflammation 

5. Identify the colon cell types and genes dysregulated in the absence of Mbd2 using 

targeted cell depletion and gene expression analyses 

6. Establish if Mbd2 deficient cells in the GI tract alter the steady state intestinal microbiota.  

 

Existing data suggest that alterations in chromatin are central to the reprogramming of 

normal gene expression that occurs in disease states. Defining the complex and diverse 

epigenetic profiles that underpin phenotypic plasticity will be a crucial starting point in 

understanding the mechanisms of chromatin dysregulation that leads to disease. We hope to 

understand if methyl-CpG-binding proteins such as MBD2 can explain altered immune 

responses in innate cells that confer altered responses to GI tract inflammation. Despite vast 

investment in advancing our understanding of the genetic contribution to common heritable 

disease states, we can only explain a fraction of this heritability with conventional 

approaches. Thus investigating heritable, epigenetic changes in gene expression that are 

inherently more amenable to environmental manipulation than our DNA code, may provide 

novel insight to a poorly understood mechanism of disease predisposition. This work will 

therefore aim to identify the cellular and gene targets of Mbd2 mediated changes to immune 

homeostasis that may provide exciting and novel approaches to therapeutic modulation of 

pathological inflammatory responses.  
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2.1 Mice 

All mice were maintained under SPF conditions in the School of Biological Sciences, 

University of Edinburgh or the Faculty of Life Sciences at the University of Manchester. Mice 

were used between 8-24 weeks of age on a C57BL/6 background unless specified 

otherwise. Table 2.1 details the mouse strains used in experiments. All procedures were 

carries out under license with UK Home Office Animals (Scientific Procedures) Act 1986.  

 

2.2 Isolation of Mesenteric Lymph node cells 

To obtain leucocytes from MLN, an established laboratory protocol, published by the 

MacDonald laboratory was used (312). Whole MLN were removed and placed in ice cold 

HBSS 2% FCS before mechanical disruption through a 70µm filter to liberate a single cell 

suspension. 

 

2.3 Isolation of Colon LP cells 

To obtain leucocytes from the colon LP, a laboratory protocol was adapted from the Mowatt 

Lab, University of Glasgow. The large intestines of mice were excised and soaked in ice cold 

PBS. Removing excess fat and faeces was an important step in improving cell yield and 

viability, and was performed before the intestines were opened longitudinally washed in 

Hank’s balanced salt solution (HBSS; Gibco) 2% foetal calf serum (FCS) and cut into 0.5cm 

sections. The tissue was then shaken vigorously in 10ml HBSS 2% FCS and the 

supernatant discarded. Tissue was then incubated in 10ml of calcium and magnesium free 

(CMF) HBSS containing 2mM EDTA at 37oC in a shaking incubator at 180rpm for 15mins to 

remove mucus. The supernatant was discarded, tissue washed in a further 20ml of CMF 

before a second incubation in CMF HBSS/2mM EDTA for 25mins to ensure removal of 

mucus layer and begin disruption of epithelial tight junctions. Tissue was once again washed 

with pre-warmed CMF HBSS before digestion in complete RPMI (RPMI 1640. 2mM L-

glutamine, 100µg/ml penicillin, 100µg/ml streptomycin and 10% FCS) containing 0.5U/ml 

Liberase TM (Roche) and 0.1mg/ml Type IV DNAse from bovine pancreas (SimgaAldrich) for 

45mins in a shaking incubator at 180rpm, 37OC. Enzyme digestion of the tissue is essential 

to disrupt the tissue and isolation single cell suspensions. To aid successful digestion of 

tissue, tissue was shaken vigorously every 5-10mins until complete digestion of tissue was 

achieved. The resulting suspension was passed through a 40µm cell strained (BD Falcon) 

and then washed in complete RMPI to remove residual enzymes. Cells were pelleted for 

5mins 500G at 4OC before re-suspension in 1ml of complete RPMI for cell counting. Cells 

were kept on ice until use.  

 

2.4 Isolation of colon epithelial cells 

Optimisation of colon epithelial cell isolation is described in detail in Chapter 5.2  
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2.5 Processing of whole blood 

Blood was isolated by cardiac puncture and combined with 200µl of 2mM EDTA 3% FCS to 

prevent coagulation. Serum was aspirated after pelleting of whole blood at 500G, 4OC for 

5mins before re-suspension of haematocrit in 5ml of red cell lysis buffer (SigmaAldrich) for 

7mins to lyse red blood cells. Cells were then washed twice in PBS and kept on ice before 

use.  

 

2.6 Histology 

1cm sections of distal colon were taken for histological analysis in selected experiments. 

Sections were taken from the most distal 1cm to the rectum for consistency. Samples were 

placed directly into 10% neutral buffered formalin for 24 hours before being transferred into 

20% ethanol. Samples were processed by the Queen’s Medical Research Institute Shared 

University Research Facilities at the University of Edinburgh, for sectioning and 

haematoxylin and eosin staining. This allowed the identification of nuclei, cytoplasm and 

collagen to permit assessment of inflammation by light microscopy.  

 

2.7 Flow Cytometry and Antibodies 

2.7.1 Surface Staining 

1-3x106 cells were washed in PBS and stained with LIVE/DEAD Blue (Invitrogen) at a 

1:2000 dilution in 10ul PBS, for 10mins at room temperature (RT) to remove any background 

staining artefact generated by apoptotic cells. Surface markers as described in Table 2.2 

and FcR block (αCD16/CD32, 2.4G2, produced in-house) were then added to cells in 50µl of 

PBS 1% FCS (FACS buffer), for 20mins at 4OC to identify different cell populations. Antibody 

dilutions for staining were derived by titrating a range of antibody concentrations in pilot 

experiments for optimum compensation parameters. Cells were then fixed in 1% 

paraformaldehyde (PFA) for 10mins at RT to prevent dissociation of antibody from target 

molecules. Marker expression was measured on BD Fortessa or LSRII (both BD 

Biosciences) flow cytometers and data analysed using FlowJo software (Tree Star). Flow 

cytometer photomultiplier tube (PMT) voltages were applies to ensure the best 

compensation whilst aligning with the latest cytometer setup and tracking (CS&T) settings.  

 

2.7.2 Intracellular staining 

For detection of intracellular proteins, 2x106 cells were plated in a 96-well round bottom plate 

(Costar) and cultured with 1µl/ml GolgiStop (BD) alone, in combination with 0.5µg/ml PMA 

(SigmaAldrich) and 1µg/ml ionomycin (SigmaAldrich), or with the following TLR ligands: LPS 

1µg/ml, Pam3Cys 1µg/ml, CpG 50mmol or Poly I:C 1µg/ml. Cells were cultured for 3hours at 

37OC with 5% CO2..  
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Cells were then stained with LIVE/DEAD, surface markers and fixed with PFA as described 

above. Cells were washed three times in FACS buffer and fixed or 20mins at 4OC in 

Cytofix/Cytoperm (BD Biosciences). Following this, cells were permeabilised to allow 

intracellular antibody staining by being washed three times in Perm/Wash (BD Biosciences) 

and stained with antibodies in 50µl of Perm/Wash at the concentrations described in Table 

2.2 for 60mins at 4OC. FoxP3 staining was performed using the eBioscience Foxp3 staining 

kit, as per the manufacturers instructions. Marker expression was measured on BD Fortessa 

or LSRII (both BD Biosciences) flow cytometers and data analysed using FlowJo software 

(Tree Star). Flow cytometer photomultiplier tube (PMT) voltages were applies to ensure the 

best compensation whilst aligning with the latest cytometer setup and tracking (CS&T) 

settings. 

 

2.7.3 Flow cytometry assisted cell sorting (FACS) 

For FACS and purification of target populations, cells were isolated and stained in the same 

manner as detailed above and acquired using a BD influx cell sorter (BD Biosciences). To 

establish optimum antibody concentrations for cell sorting, antibody concentrations were 

titrated across a range of dilutions over several pilot experiments to derive optimal conditions 

for cell yield and purity.   

 

2.8 Induction of DSS colitis 

To induce acute colitis, a well established protocol was used (Chapter 1.6), whereby mice 

received 2% dextran sodium sulphate (DSS) salt (reagent grade; MW 36,000-50,000 kDa; 

MP Biomedicals) in drinking water for up to 8 days. Mice were monitored daily for change in 

weight, rectal bleeding and diarrhoea to generate a symptom score (See Table 2.3). Mice 

scoring >9 as defined in the symptom score, that developed >20% weight loss of their initial 

body weight or that developed rectal prolapse were sacrificed immediately as per Home 

Office regulations.  

 

Assessment of histological severity was performed blinded using a well-established scoring 

method of DSS (Xu et al. 2008) using transverse sections of 1cm sections H&E stained 

colon.  

 

2.9 Induction of T. muris colitis  

Gastrointestinal infection with the parasite Trichuris muris, a mouse model of the human 

T.trichiura infection, is a much-studied model of colonic inflammation (Chapter 1.6). Ingested 

infective eggs accumulate in the caecum, hatching within 2 hours, adhering and anchoring to 

the caecal epithelium, maturing from larval to adult life stages over the ensuing 32days 

which in the absence of appropriate expulsion results in chronic local tissue destruction and 

inflammation (Hurst et al. 2013).  
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Stock infections of T. muris were maintained in susceptible mouse strains and adult worms 

harvested at day 42 post infection. 20-200 embryonated eggs were gavaged into mice and 

response to infection assessed at day 32. T. muris excretory antigen (ES) was prepared as 

described by Hayes et al. 2014: Adult worms were cultured in RPMI 1640 (Gibco) and the 

supernatant collected after 4 hours. ES was pelleted to remove eggs, concentrated using a 

Centriprep YM-10 (Ambicon) and then dialysed against PBS. Protein concentration was 

determined using a Lowry assay. ES was then used in restimulation assays at 50µg/ml: 

2x106 MLN cells in cRPMI obtained as per Chapter 2.2 were cultured for 24hours at 37oC for 

24hours, pelleted to remove cells and supernatant stored at -20oC until use to permit 

assessment of antigen specific cytokine responses. 

  

2.10 Enzyme Linked immunosorbent assays (ELISAs) 

To determine levels of cytokine, ELISAs were performed on culture supernatants of murine 

cells using paired mAb purified in house, purchased from eBioscience or BD Pharmingen 

and recombinant cytokine standards purchased from PeproTech or PBL. Primary/capture 

antibodies were coated onto 96 well plates (NUNC) in a volume of 50µl in PBS overnight at 

4ΟC (IL-4, IL-5, IL-6, IL-10, IL-12p40, IL-12p70, IL-13, IL-17). Plates were blocked using 10% 

NCS in PBS for>1hour. Supernatants and doubling concentrations of recombinant protein 

standards were added to 96 well plates in a volume of 50µl in duplicate or triplicate. 

Secondary/detection antibodies were added in a volume of 50µl in 10% neonatal calf 

serum(NCS)/PBS and allowed to bind for 1hour at 37OC (IL-4, IL-10, IL-13), 1hour at RT (IL-

12p40, IL-12p70, IL-5, IL-6, IL-17). Streptavidin-peroxidase was added to all plates in a 

volume of 50µl and incubated at 37OC for 30min. 100µl of the colorimetric substrate of 

peroxidase, TMB (Sigma) was added to each well, following development of blue colour, 

reaction was stopped by addition of 0.18M H2SO4 acid (Sigma). Between steps, plates were 

washed suing PBS 0.05% Tween-20 (Sigma). 

 

2.11 Human samples 
Colon biopsies were obtained from patients attending outpatient colonoscopy at Manchester 

Royal Infirmary. Patients were prospectively recruited for endoscopic biopsy samples and 

case note review for research purposes after approval from University of Manchester ethical 

committee. Endoscopic assessment of disease activity was made by the endoscopisy. 

Immune cells were liberated from samples by placement in 5mls ice cold PBS after 

collection, and digested over 12hours in 10mls of pre-warmed complete RPMI (RPMI 1640. 

2mM L-glutamine, 100µg/ml penicillin, 100µg/ml streptomycin and 10% FCS) containing 

0.5U/ml Collagenase (Roche) and 0.1mg/ml Type IV DNAse from bovine pancreas 

(SimgaAldrich) in a shaking incubator at 180rpm, 37OC (313).  

 



 56 

 

2.12 Generation of BM Chimeras 

BM chimeras, to restrict Mbd2 deficiency to specific cell types, were generated using 8 week 

old female C57BL/6 (CD45.1+ or CD45.1+ CD45.2+) mice were irradiated with a total dose of 

11 Gy 2hours apart. Mice then received 1x107 BM cells from C57BL/6 (CD45.2+ or CD45.1+ 

CD45.2) or Mbd2-/- (CD45.2+) mice and left for 8 weeks to permit BM engraftment. BM was 

obtained by collecting the tibias and fibulas of donor mice into ice cold PBS. Bones were 

then sterilized using 70% ethanol before washing in PBS to remove trace ethanol. Bone 

ends were removed using a scalpel and 5ml of OBS injected through the bone using a 5ml 

syringe (BD) and 21G needle (BD), flushing the bone marrow into a 50ml falcon tube (BD). 

BM cells were then combined with anti-CD90 beads and passes through a magnetic 

activation cell sort (MACS) column to remove CD90+ cells. Recipient mice were treated from 

7 days prior to irradiation to 4 weeks post irradiation with acidified water, irradiated food and 

enrofloxacin in drinking water to negate opportunistic infections in keeping with local 

guidelines. In some experiments a mixture of donor BM from Mbd2-/- and C57BL/6 mice was 

used to reconstitute chimeric mice. Starting ratios of BM were confirmed by flow cytometry 

by staining for CD45.1 and CD45.2 as described in section 2.7. All mice were screened at 8 

weeks post irradiation to assess for successful engraftment by analysis of CD45.1 and 

CD45.2 expression by flow cytometry from 50 µl of tail vein blood.  

 

2.13 RNA extraction 
2.13.1 Tissue 

1cm of distal colon, inferior right lobe liver or spleen were placed in 500µl of RNALater 

(Invitrogen) for 24hours at room temperature or 500µl of TRizol (Ambion) and kept on dry 

ice, before storage at -80OC. Phase separation of DNA/protein and RNA was performed 

using chloroform. RNA was precipitated using 2-propanol, with 75% ethanol used to wash 

RNA, prior to air-drying and resuspension in RNase free DEPC water (Ambion).  

 

2.13.2 Cells 
Cells purified by flow cytometry were sorted directly into RNA later, cells pelleted at 5000g 

for 5mins, and supernatant aspirated to a residual volume of 100µl, snap frozen on dry ice 

and stored at -80OC. RNA was then extracted using a protocol adapted from Pena-Llopis et 

al. 2013 using the mirVana miRNA isolation kit: 600µl of ice cold Ambion lysis buffer was 

added to the cell pellet and vortexed for 2mins (314). 60µl of miRNA homogenate additive 

was then added, vortexed briefly for 30secs and allowed to sit on ice for 10mins. 600µl of 

acid-phenol:chloroform (Ambion) was then added and the mixture vortexed for a further 

30secs. Samples were then centrifuged at 16,000g for 5 mins at room temperature to 

separate aqueous and organic phases. 700µl of the upper aqueous phase then transferred 

to a new RNAse free 1.5ml tube and mixed with 875µl (1.25 volumes) of 100% ethanol by 
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vortexing for 30secs. The mixture was then passed through a filter cartridge (Ambion) in 

700µl aliquots by centriguation at 10,000g for 30secs. The filter cartridge was then washed 

with 700µl of miRNA solution 1 (Ambion) and then x2 500µl washes of solution 2/3 (Ambion), 

centrifuged at 10,000g at each step. 30µl of 95OC RNAse free DEPC water for 1min was 

then used to elute the RNA. RNA was assessed qualitatively and quantitatively using 

BioAgilent Nano/Pico gel electrophoresis and NanoDrop respectively. Samples with a RNA 

integrity number (RIN) <8 were discarded.  

 

2.14 cDNA synthesis from RNA and qPCR 

50-500ng RNA was used for the synthesis of cDNA using Superscript-III and oligo-dT 

(Invitrogen). Relative quantification was performed by qPCR analysis using the Roche Light 

Cycler 480, with LightCycler SYBR Green I master mix (Roche). Five serial 1:4 dilutions of a 

positive control sample of cDNA were used to create standard curves. Expression was 

normalized to the housekeeping genes (gene expressed constitutively for the maintenance 

of cellular function) glyceraldehyde3-phophate dehydrogenase Gapdh. For primer 

sequences see Table 2.5 

 

2.15 Stool DNA extraction and 16S amplification 

To determine intestinal microbiota diversity, faecal contents from mouse colon was removed, 

snap frozen in dry ice and stored at -80OC. DNA was extracted using the QIAamp Fast DNA 

Stool Mini kit following the manufacturers instructions with one additional step: After the 

addition of InhibitEX buffer to faecal contents, LysisMatrixE (MP biomedical) was added and 

shaken in a TissueLyser for 6mins at 30Hz to increase the yield of capsulate bacteria 

(Kennedy et al 2013). Briefly, the DNA of 80-120mg of WT or Mbd2-/- stool was extracted 

using the QIAamp Fast DNA stool mini kits with 1 notable deviation: “Bead beating”!with inert 

spheres of ceramic, silica and glass 0.1-4mm in diameter at 30Hz has been shown to 

increase the detection rate of capsulate bacteria (Wu et al. 2010). Therefore this additional 

step was incorporated using MP biomedicals Lysing Matrix E. Faecal DNA was quantified by 

Nanodrop mass spectrophotometry, diluted to 5ng/µl and PCR amplified using KAPA HiFi 

HotStart Ready Mix and 16S amplicon primers;  

Forward 5’ TCGTCGGCAGGCGTCAGATGTGTATAAGAGACAG,  

Reverse 5’ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 

as per 16S metagenomic sequencing library protocol for the Illumina MiSeq platform. Total 

DNA was quantified using a Nanodrop spectrophotometer. 12.5ng of microbial DNA was 

then used to amplify gene-specific sequences targeting the 16S V3 and V4 region using 

primer sequences and protocols described in the Illumina 16S Metagenomic sequencing 

library preparation guide for the Illumina MiSeq system.  
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2.16 Illumina Ref6 Mouse Array 

To assess the impact of DSS treatment and mbd2 deficiency on gene expression of FACS 

isolated colonic populations, 50-200ng of RNA was biotin labeled with Illumina TotalPrep 

RNA amplification kit as per the manufacturers instructions. Samples were then hybridized to 

an Illumina Mouseref-6 array. Primary raw data were QC analysed using the 

arrayQualityMetrics Bioconductor package to identify sub-standard or outlier gene 

expression signatures. Arrays were scored on the basis of 3 metrics, namely mapplot, 

boxplot and heatmap. Raw data were then transformed using a variance stabilizing 

transformation method prior to normalization using the robust spline normalization method. 

Expression measures were then summarised in log base2 and presented as the fold change 

(logFC), with positive logFC representing up regulation, and a negative logFC indicating 

down-regulation. Statistical analysis was then performed using linear modeling and p value 

adjustment for multiple testing to control for false discovery (adjusted p<0.01 was deemed 

significant).  

 

2.17 Statistical analysis 

Statistical analyses were carried out using GraphPad Prism 6 and JMP v11 software. Where 

data for individual experiments is presented, ANOVA comparison tests were used to identify 

statistical differences between groups, p<0.05 was deemed significant. To increase the 

statistical power of our analysis and simultaneously comply with the 3Rs of ethical use of 

animals in research we consulted the advice of a local statistician and Professor of 

Ecological genetics, Richard Preziosi.  By employing a fit model construct in the JMP 11 

statistical package we were able to enter experimental day as an ordinal variable in our 

model, alongside nominal variables such as genotype, treatment and continuous variables 

such as weight loss. Thus the fit model platform in JMP allowed us to specify a model with 

complex effect structures to measure our variable of interest. All of the analyses used in this 

way in this thesis therefore used a Two-way analysis of variance fit model, with the model 

producing least square mean values for the y variable of interest.  

 

For example, to assess whether genotype, treatment or experimental day affected weight 

loss, weight loss was our continuous y role variable with genotype, treatment and 

experimental day all construct model effects to assess any affect on y. This permitted us to 

pool experiments of the same format together, using experimental day as a construct model 

effect to ensure day-day variation did not bias the dataset. This method has been published 

by Prof. Preziosi and his lab in the ecological literature (315).  

 

This had the benefit of allowing us to present data from all our experiments combined, rather 

than simply showing data from one experiment, which we felt was more statistically robust 

and more representative of our work.  
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Antibody  Fluorochrome Clone Dilution Source 

CD103 BV421 M290 1/400 BD biosciences 
CD103 BV421 2e7 1/400 BD biosciences 
FoxP3 e450 FJK-16s 1/200 eBioscience 
MHC-II e450 M5/114.15.2 1/200 eBioscience 

Rat IgG1 BV421 RTK2071 1/200 BD biosciences 
Rat IgG1 e450 eBRG1 1/200 eBioscience 

Rat IgG2b e450 eB19/10H5 1/200 eBioscience 
Rat IgG2a e450 eBR2a 1/200 eBioscience 

CD45 BV510 30-F11 1/400 BD biosciences 
TNF BV421 MP6-XT22 1/400 BD biosciences 

CD11c BV605 N418 1/600 BD biosciences 
CD45.1 BV650 A20 1/200 BD biosciences 

IL-10 BV650 JES5-16E3 1/100 BD biosciences 
CD11b BV711 M1/70 1/300 BD biosciences 

Rat IgG2b BV711 RTK4530 1/300 BD biosciences 
Rat IgG2a BV605 RTK2758 1/400 BD biosciences 
Rat IgG2a BV650 RTK2758 1/400 BD biosciences 

Ki67 Alexa 647 B56 1/200 BD biosciences 
CD45 Alexa700 30-F11 1/200 Biolegend 

EpCAM PE G8.8 1/400 eBioscience 
MHC-II Alexa700 M5/114.15.2 1/200 Biolegend 
SiglecF PE-CF594 E50-2440 1/400 Biolegend 
CD19 e780 eBio1D3 1/200 eBioscience 

CD11b PE M1/70 1/200 eBioscience 
CD64 PE X54-5/7.1 1/200 BD biosciences 
TNF PE MP6-XT22 1/200 Biolegend 
TLR3 PE TLR3.7 1/200 eBioscience 
IL-5 PE N/A 1/200 BD biosciences 

Rat IgG2a PE N/A 1/200 BD biosciences 
Rat IgG2b PE eB149/10H5 1/200 BD biosciences 

CD45.2 PE B169486 1/200 BD biosciences 
Rat IgG2a PE-CF594 R35-95 1/200 Biolegend 

CD25 PerCP Cy5.5 PC61 1/200 eBioscience 
Ly6G PerCP Cy5.5 1A8 1/400 eBioscience 
IL-10 PerCP Cy5.5 JES5-16E3 1/100 eBioscience 

EpCAM PerCP Cy5.5 G8.8 1/400 eBioscience 
Ly6C A700 HK1.4 1/400 eBioscience 

Rat IgG2a A700 RTK2758 1/400 BD biosciences 
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CD3 e780 17A2 1/200 BD biosciences 
CD11b e780 M1/70 1/200 BD biosciences 
Ly6G APC/Cy7 1A8 1/200 BD biosciences 
NK1.1 e780 PK136 1/200 BD biosciences 
TCRb e780 H57-597 1/200 BD biosciences 

Ter119 e780 TER-119 1/200 BD biosciences 
Rat IgG2a e780 eBR2a 1/200 BD biosciences 
Rat IgG2b e780 N/A 1/200 BD biosciences 

MerTk Biotinylated N/A 1/100 Goat IgG RD systems 
F4/80 APC BM8 1/400 Biolegend 
IL-6 APC MP5-20F3 1/100 Biolegend 

IL-22 APC IL22JOP 1/100 Biolegend 
TLR2 e660 6C2 1/200 BD biosciences 
F4/80 PECy7 BM8 1/400 BD biosciences 
Ly6C PECy7 HK1.4 1/600 BD biosciences 
IL-17 PECy7 N/A 1/200 BD biosciences 

Ly6A/E PECy7 E13-161.7 1/800 BD biosciences 
Rat IgG2a PECy7 N/A 1/200 BD Pharmigen 
Rat IgG2a APC RTK2758 1/200 BD biosciences 

MHC-II FITC M5/114.15.2 1/800 BD biosciences 
IL-1b FITC NJTEN3 1/200 BD biosciences 
TLR9 FITC M9.D6 1/200 BD biosciences 

Table 2.2 List of monoclonal antibodies used for flow cytometry  
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Parameter   Score 

Weight loss   
(% change of Day 0 weight) None 0 

 
1-5%  1 

 
5-10%  2 

 
10-20% 3 

 
>20% 4 

Occult or Gross Blood Loss None 0 

 
Blood staining around anus 2 

 
Gross bleeding 4 

Stool Consistency Well formed pellets 0 

 
Pasty/semi formed 2 

  Diarrhoea that doesn’t adhere to anus 4 
Table 2.3 Clinical disease score criteria used during DSS-induced colitis 
studies 
Score for each parameter summed to give the total symptom score. Score 
ranges from 0 (healthy) to 12 (maximum severity of colitis). Animals were 
euthanised if body weight loss is greater than 20%, total score is greater or equal 
to 9, or if rectal prolapse develops. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Criterion Score Add 

Inflammatory cells 0-4 0.5 each ulcer 
Goblet cells 0-4 0.5 each crypt abscess 
Mucosa thickening 0-4 

 Submucosa cell infiltration 0-4 
 Destruction of architecture 0-4   

Table 2.4 Histological disease score criteria used during DSS-induced 
colitis studies 
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Gene 
Primer Sequence 

Forward Reverse 

chgA CACAGCCACCAATACC TCTTCCTCCTCCTCTTC 
lrg5 ACCCGCCAGTCTCCTACATC GCATCTAGGCGCAGGGATTG 
Car2 CAAGCACAACGGACCAGA ATGAGCAGAGGCTGTAGG 
Klf4 GAAATTCGCCCGCTCCGAT CTGTGTGTTTGCGGTAGTGCC 
Car1 TTGATGACAGTAGCAACC CCAGTGAACTAAGTGAAG 
mbd2 CCTTAGCAGTTTTGACTTCAGG GGCCAATGTTGTGTTCAGGT 
gapdh AATGTGTCCGTCGTGGATCT CCCAGCTCTCCCCATACATA 
il5 ACATTGACCGCCAAAAAGAG CACCATGGAGCAGCTCAG 
il4 GAGAGATCATCGGCATTTTGA TCTGTGGTGTTCTTCGTTGC 
il10 CAGAGCCACATGCTCCTAGA TGTCCAGCTGGTCCTTTGTT 
il17 TGTGAAGGTCAACCTCAAAGTC AGGGATATCTATCAGGGTCTTCATT 
ifng GGAGGAACTGGCAAAAGGAT TTCAAGACTTCAAAGAGTCTGAGG 
tnf TGGTGGTTTGCTACGACGT ACCCTCACACTCAGATCAT 
il1b CCGACAGCACGAGGCTTT CTGGTGTGTGACGTTCCCATTA 
Table 2.5 Primers used in qRT-PCR  
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Chapter 3 
 

The role of Mbd2 in the steady state and inflamed 
colon 
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3.1 Introduction 

 

One of the key facets of the vertebrate immune system is an ability to rapidly respond to 

invading pathogens whilst promoting tolerance to self-antigens. The GI tract differs from this 

mantra in that immune reactivity to the commensal microbiota must be restrained to avert 

damaging inflammation. The innate and adaptive compartments of the immune system must 

therefore co-operate to promote tolerance and simultaneously be poised to negate invasive 

pathogens. There is increasing evidence that GI tract myeloid cells, in particular MP cells 

such as DCs and macrophages have a key role in manipulating these dual regulatory and 

pro-inflammatory responses (51), (316). Dysregulation of this innate immune response is a 

key component in the development of chronic, relapsing inflammatory disorders such as UC 

and CD, the mucosal immunology underpinning which is poorly understood (317).  

 

As alluded to in Chapter 1, only 30% of the heritable component to IBD can be accounted for 

despite multiple efforts in large multinational GWAS cohorts (104). Therefore understanding 

a heritable component to GI tract immune function that is not encoded in one s nucleotide 

sequence, for example by epigenetic processes, would represent an attractive, novel 

approach to developing treatments for inflammatory disorders such as IBD. As mentioned in 

Chapter 1.5.4, MBD2 is a methyl-CpG-binding protein that modulates dramatic changes in 

gene expression via recruitment of large chromatin remodelling complexes. Mbd2 has also 

been shown to be pivotal in effective DC and T cell function with its expression tightly 

regulated in the GI tract, the evidence for which is presented below. 

 

Firstly, it has recently been shown that Mbd2 deficient murine bone marrow derived DCs 

(BMDCs) display reduced mRNA transcript of several immunologically important processes 

such as antigen presentation (H2-Aam and Ciita) and co-stimulation (Cd40, Cd80 and Cd86) 

(318). Mbd2 deficient DCs are therefore less able to induce either na ve T cell proliferation or 

an appropriate Th2 response against helminths or allergens (318). As a result, deficient Th2 

inductive ability in Mbd2 deficient DC resulted in significantly ameliorated pathology to house 

dust mite mediated bronchial inflammation in mice (318).  

 

Secondly, it has been shown that Mbd2 deficient na ve T cells display a disordered 

developmental response to in vitro polarization. Both the progenitors and progeny of Mbd2 

deficient T cells express ectopic levels of IL-4 in a GATA-3 independent manner (319). 

Na ve uncommitted T cells cultured in polarising Th1 or Th2 conditions display augmented 

IFN- ! (Th1), IL-4 (Th2) and uniquely dual IFN- /IL-4 (Th1 and Th2) positive cells in the 

absence of Mbd2 (319). As such Mbd2 mediated changes in adaptive immune cells 
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produces excessive cytokine production that could be postulated to alter susceptibility of 

Mbd2 deficient animals to infectious challenge.  

 

Thirdly, Mbd2 is tightly regulated in the GI tract suggesting its expression has important 

physiological roles. Indeed altered Mbd2 expression affects response to infectious colitis and 

colorectal cancer susceptibility. MBD2 is expressed at significantly greater levels in the distal 

compared to proximal GI tract and abrogating high levels of colonic MBD2 in Mbd2-/- mice 

results in the expression of exocrine-pancreas genes in the colon (320). Just as the GI tract 

has evolved along its length to perform different functions, (nutrient absorption in the small 

intestine, water reabsorption in the colon etc.) it is conceivable that the cellular functions of 

these specialised areas are in part dependent on epigenetic-co-ordinated changes in gene 

expression. This suggests relative abundance of Mbd2 is essential in normal gut 

development and in co-ordinating region specific gene expression profiles. 

 

Finally, Mbd2-/- mice have been shown to be resistant to the intracellular protozoan infection 

Leishmania major, but develop florid intestinal inflammation with the gut dwelling helminth 

Trichuris muris. T. muris produces a colitis that is swiftly resolved in immunocompetent mice, 

characterised by parasite clearance and a strong IgG1 antibody response (215). Mbd2-/- 

mice are unable to successfully negotiate parasite expulsion resulting in a chronic colitis 

characterised by mucosal oedema, thickening and presence of intra-luminal worms (321), . 

However it is not clear from previous work what aspects of mucosal immune function are 

perturbed in the absence of Mbd2, underpinning this observation.  

 

Intestinal tumourgenesis in mice is dependent on DNA methylation (322), (323). The Min 

mouse lineage was observed to have multiple intestinal neoplasias, which was subsequently 

found to be caused by an autosomal dominant missense mutation in the tumour suppressor 

gene Apc (ApcMin/+ or Min) (324). Min mice therefore demonstrate GI tract adenoma 

development in a mouse model of colorectal cancer and have been used to study the effects 

of methyl-CpG binding protein deficiency by crossing Min and Mbd2-/- mice. When Min mice 

are rendered Mbd2 deficient, they develop 10fold fewer adenomas compared to Mbd2 

sufficient controls, doubling median life expectancy. The authors therefore suggest MBD2 

interpretation of DNA methylation signals promotes gene silencing required for 

tumourgenesis (325). The mechanism underpinning this observation is unclear, and has not 

been replicated in other models of GI tract cancer.  

 

Taken together these data demonstrate a role for Mbd2 in key facets of the innate and 

adaptive immune system and requirement for GI tract homeostasis. Mbd2 therefore 

represents an attractive regulatory gene of interest but this has not been examined 

immunologically in the GI tract. The focus in this chapter therefore is to identify where in the 
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GI tract Mbd2 expression might be relevant for normal function, simultaneously developing a 

method to characterise the intestinal immune cells robustly in the steady state and under 

experimental models of inflammation:  

 

Chapter aims: 

1. Determine and characterise expression of Mbd2/MBD2 mRNA transcript in the GI tract, 

confirming spatial expression and explore regional changes specifically in the colon 

2. Explore MBD2 GI tract expression changes in IBD, and MBD2 as a candidate risk 

susceptibility locus for IBD 

3. Define and characterise an integrated approach to identifying and phenotyping the 

colonic myeloid immune compartment using flow cytometry 

4. Characterise the colon LP myeloid cells in active IBD 

5. Characterise Mbd2 expression in colon LP myeloid cells 

6. Determine and characterise susceptibility of Mbd2-/- mice to experimental colitis with DSS 

7. Determine and characterise susceptibility of Mbd2-/- mice to infectious colitis with T. muris 
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3.2 Expression of Mbd2/MBD2 in the GI tract 

Previous studies have shown a spatial relationship for MBD2 in the murine GI tract: MBD2 is 

found at levels 5-fold higher in the colon, ileum and jejunum compared to the duodenum by 

Western blot analysis when normalised for GAPDH (320). However, these data do not 

assess if Mbd2 expression is uniform throughout the colon. Gene expression analysis of 

Mbd2 from intestinal tissue was performed by RT-qPCR to define if this spatial relationship 

of expression extended to different parts of the large intestine (Figure 3.1A). Expression of 

Mbd2 at the rectum was 4-fold greater than the duodenum. Similarly there was a significant 

1.8-fold increase in expression when comparing the distal (rectum) to proximal (caecum) 

sections of the colon (Figure 3.1A). These data suggest that Mbd2 gene expression matches 

previously known protein data, and that spatial changes in Mbd2 expression extend to within 

the colon, with the highest levels of Mbd2 in the GI tract found within the rectum.  

 

To address whether MBD2 is regulated in a similar manner in human intestine, previously 

published microarray data from 67 patients with UC and 31 healthy controls was examined 

(326). In this study, patients underwent endoscopic biopsy at specific anatomical locations 

for RNA extraction and whole genome microarray as previously described (326). Firstly we 

analysed healthy control data for mRNA levels of MBD2 comparing the terminal ileum and 

rectum for normalised log2 expression. As in the murine GI tract there was a significant 

increase in expression within distal versus proximal GI tract (mean log2 expression terminal 

ileum 0.068 0.04 versus 0.16 0.02 in rectum, Figure 3.1B). Taken together these data 

suggest that Mbd2/MBD2 is expressed at significantly higher levels in the distal compared to 

proximal GI tract in mice and man. 

 

3.3 Analysis of MBD2 as a candidate risk susceptibility locus in IBD 

As MBD2 follows a tightly coordinated expression pattern in the gut, we hypothesized this 

would alter during tissue inflammation. Analysis of rectal MBD2 expression from the above 

data set of patients with active UC or healthy controls was performed (Figure 3.1C) (326). 

This revealed that patients with active rectal UC had a significantly lower level of MBD2 than 

healthy controls (mean log2 expression 0.078 0.03 versus 0.16 0.02, Figure 3.1C). We 

therefore hypothesized that since Mbd2/MBD2 expression is tightly spatially regulated in the 

GI tract, reduced expression in pathological state could represent an important causative or 

contributing mechanism to inflammation. Given the existing literature suggesting a role for 

Mbd2 in innate and T cells, in addition to the above observation that active IBD is associated 

with reduced MBD2 expression we hypothesised that MBD2 is required for effective mucosal 

homeostasis, particularly in the distal colon which demonstrates the greatest level of mRNA 

transcript (319), (318). 
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The international IBD genetics consortium (IIBDGC) is a multinational organisation that has 

amassed some 20,000 cases for CD and UC, along with a similar number of healthy 

population controls (104). Sequencing single nucleotide polymorphisms (SNPs) from this 

large dataset has revealed great insight into the pathogenesis of IBD by proposing risk-

susceptibility  loci, i.e. SNPs that feature more frequently in cases versus controls to a high 

degree of statistical power. One notable success of this hypothesis-free ! testing has been 

the identification of previously unknown autophagy pathways in the pathogenesis of CD. 

Hypomorphic ATG16L1 was identified from GWAS as enriched at genome wide significance 

thresholds in CD patients and thereafter shown to confer aberrant bacterial handling in 

ATG16L1 mutant DC (112). To assess whether mutant MBD2 confers an increased risk of 

IBD the IIBDGC dataset of 16,054 CD and 12,153 UC cases with 17,575 healthy controls 

was examined (Figure 3.1D).  

 

SNPs at the MBD2 locus were not found more frequently in cases versus controls at 

genome wide significance, suggesting that MBD2 SNPs do not confer an increased 

susceptibility of IBD.  

However, this does not exclude the possibility that MBD2 is regulating other genes 

up/downstream that are required for mucosal homeostasis, or that rare variants in MBD2 

genotype have been excluded from this dataset.  Similarly this data does not exclude the 

importance of changes in MBD2 in IBD or indeed post-transcriptional/translation 

modifications of MBD2 on its function in disease states. However, previous murine studies 

have highlighted the importance of Mbd2 in driving colitis like inflammation mediated by a 

skewed immune response (321). In addition no studies have assessed whether expression 

of Mbd2/MBD2 by specific cell populations, rather than whole tissue expression, in the GI 

tract is important during health or disease.  

 
3.4 Identification of immune populations in the steady state colon LP 

Understanding the repercussions of Mbd2 mediated changes in GI tract immune cells 

requires an understanding of a) the complex and heterogeneous cellular milieu at mucosal 

barrier surfaces and b) the confirmation and characterisation of Mbd2 expression within 

these cell types. Neither of these 2 facets is completely understood, either in the steady 

state or inflammation and is considered below. 

 

There have been substantial recent developments in the ability of researchers to 

discriminate between MPs in mucosal tissue sites using flow cytometry (43), (65). This has 

built upon previous work using a limited number of phenotypic markers such as CD11c, 

CD11b and MHC-II, which are now recognised to be insufficient to sensitively delineate the 

heterogeneous immune populations of the intestinal tract (36). For example CD11c, once 
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thought of as a DC specific marker, is now appreciated to be expressed by a variety of cell 

types, not least tissue resident macrophages (See Table 3.1) (36), (327). GI tract DCs and 

macrophages share many phenotypic and functional facets, but also have very different 

roles in the initiation of tolerance and induction of immune response. Therefore the ability to 

robustly discriminate between these populations will not only enable us to understand their 

role in normal mucosal physiology, but to pinpoint dysregulated responses that manifest in 

disease. In particular, this will allow us to characterise a role for Mbd2 in modulating the 

balance and composition of immune cell types in steady state and inflammatory settings. 

 

Mutli-colour flow cytometry using an array of additional phenotypic markers such as CD103, 

CX3CR1, F4/80, MertK, CD64, SiglecF, LY6G and LY6C have been employed to 

characterise subdivisions of MP cells in the GI tract, predominately in the small intestine LP. 

These include monocytes, macrophages, eosinophils, neutrophils, and DCs based on their 

surface expression of CD11b and CD103. However a robust, integrated strategy to 

discriminate the spectrum of colon LP myeloid cells including eosinophils, neutrophils, 

monocytes, macrophages and CD11b+/- DC subsets simultaneously within the colon has not 

yet been shown. Recent studies have shown expression of the chemokine receptor CX3CR1 

on colon MP cells can distinguish between the maturation stages of blood derived 

inflammatory monocytes through to resident tissue macrophages (43). It is not currently 

possible to detect CX3CR1 directly by flow cytometry due to poor antibody affinity, and thus 

studies have relied upon CX3CR1gfp/+ transgenic mice to investigate expression of this 

receptor (43), (114).  

 

We therefore developed a gating strategy for colon LP myeloid cells that has previously 

been validated using CX3CR1gfp/+ mice (43), to identify different myeloid cells populations 

(Figure 3.2 and Table 3.1). This approach, presented in Figure 3.2 and summarised below, 

permitted analysis of colon LP myeloid cell types. We also adopted a similar approach for 

the characterisation of T, B and innate lymphoid cells and this data is presented in Figure 

3.3.  

 

Neutrophils (Figure 3.2 Population A: CD11b+ LY6G+) 

The first set of myeloid cells identified by our newly developed gating strategy in Figure 3.2, 

was a CD11b+ population positive for the lymphocyte surface antigen 6G (LY6G). LY6G 

identifies neutrophils, but not monocytes or lymphocytes, with anti-Ly6G monoclonal 

antibody offering selective depletion of neutrophils (22). Neutrophils possess an arsenal of 

antimicrobial functions including degranulation and phagocytosis that mitigate against 

invading pathogens by massive release of reactive oxygen species and other toxic 

molecules (21). Although these responses are clearly beneficial, excessive recruitment and 
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accumulation in the intestine under pathological conditions such as IBD is associated with 

mucosal injury and debilitating disease symptoms (21). 

  

Eosinophils (Figure 3.2 Population B: SiglecF+ SCC High) 

Eosinophils possess a characteristic SCC high profile and uniquely express the sialic acid-

binding immunoglobulin lectin. Eosinophils in the GI tract are poorly described, and are 

distinct phenotypically and functionally from those in other tissues (27). An important role is 

suggested by their abundance and low turnover in vivo, with activated eosinophils found in 

greater numbers in those with active IBD compared to quiescent IBD and healthy controls 

((30), (29). Early identification and removal from downstream gating analysis was found to 

be critical to avoid contamination of population E (Macrophages), due to these cells 

expressing CD11b and low levels of F4/80, MHC-II and CD11c.  

 

CD11b- DC (Figure 3.2 Population C: CD11b- CD11c+ CD103+/-) 

This was the only myeloid population seen to not express CD11b, with the majority of cells 

expressing the integrin- E (CD103). Population C1 (CD103+) were the most abundant DC 

population observed (around 1% of intact cells), while population C2 (CD103-) were the least 

abundant (around 0.4% of intact cells). CD11b- CD103+ DCs are CD8 +, require Flt3 and 

GM-CSF receptors for normal development and expand upon exogenous administration of 

their ligands (114). In addition, genetic deletion of the transcription factors Id2, Irf8 or Batf3 

leads to selective loss of SI CD11b- CD103+ cells (64). CD11b- CD103- DCs are poorly 

described, but like CD11b- CD103+ DCs migrate to MLNs in a Ccr7 dependent manner, 

expand in response to Flt3 ligand, prime T cell responses and induce T cell CCR9 (69). 

CD11b- CD103- DCs are observed to be unique amongst colon LP DCs in expressing both 

CD64 and the tyrosine kinase inhibitor MerTK. Both of these markers have been used to 

define DCs in other tissues as monocyte derived DCs (moDCs) with CD64+ DCs in the lung 

able to induce potent chemokine response after allergen challenge (Plantinga et al. 2013).  

  

Monocytes (Figure 3.2 Population D: CD11b+ Ly6C+ MHC-II+/-) 

It has recently been reported that blood monocytes are the precursors for intestinal 

macrophages in adult mice (42), (43). As such LY6C+ monocytes are found constitutively, 

though at low levels identified through our gating panel (around 1% of intact cells). On 

entering the colon LP, the LY6C+ cells enter a monocyte-waterfall !characterised by change 

in surface marker expression and phenotype over 48-96 hours en route to becoming stable 

tissue resident macrophages (43). This process involves the acquisition of MHC-II, loss of 

LY6C, before upregulation of CD11c, F4/80 and finally CX3CR1(43). Monocytes are thought 

to have little other role in the steady state, but accumulate in inflammation, constitutively 
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expressing high levels of IL-1 , IL-6 and TLR to disturb the tolerogenic status quo in 

preference of a vigorous, pro-inflammatory immune response (43), (47).  

 

Macrophages (Figure 3.2 Population E: CD11b+ CD11c+/- F4/80+ CD64+) 

Macrophages were the most populous myeloid cell in the steady state colon LP, accounting 

for just over 5.5% of all intact cells. Differentiating this population from DCs has been 

historically challenging, given the overlap in surface marker expression, particularly of 

CD11c. It is however possible to discriminate macrophages based upon their expression of 

CD11b, CD11c, F4/80 and CD64 (See Table 3.1). Here the inability to discriminate between 

population expression of CX3CR1 may have functional relevance as it has been reported 

that there are minor phenotypic differences between CX3CR1int/high maturation stages of 

macrophage. CX3CR1int macrophages demonstrate numerically lower, though non 

significant, expression changes of Il10 and Tgfb mRNA, and numerically higher, non 

significant changes in Tnf, Nos2 and Ccr2 mRNA versus CX3CR1High macrophages (43). It 

has also been reported that CX3CR1int macrophages possess a small though significant 

reduction in phagocytic ability, with a lower uptake of pHrodo E.coli bioparticles compared to 

CX3CR1High macrophages, though the functional significance of this change in vivo has not 

been shown (42). Therefore with the above caveats, the CX3CR1int and CX3CR1High subsets 

of macrophage are considered together for subsequent analysis.  
 

CD11b+ DCs (Figure 3.2 Population F: CD11b+ CD11c+ F4/80- CD103+/-) 

CD11b+ DCs, like their CD11b- counterparts, can be discriminated based on CD103 

expression. CD11b+CD103+ DCs (Population F1) were found at a frequency of 0.5% of intact 

cells, with CD11b+CD103- DCs (Population F2) found at 0.7% frequency, representing the 

3rd and 2nd most abundant colon LP DC populations, respectively. This observation contrasts 

with the small intestine LP where CD11b+ DCs are the most frequent DC population, 

underlying the heterogeneity of immune cells even with the GI tract, and the caution required 

therefore in generalizing these results (114). This altered balance of DC subsets has 

important implications for intestinal T cell priming, as CD11b- DCs are more potent at cross 

presentation to CD8 + T cells, and far less effective at priming CD4+ T cells than CD11b+ 

DCs (69). Like CD11b- DCs, CD11b+ DCs have been shown able to migrate to MLN in a 

Ccr7 dependent manner, expand to Flt3 ligand and induce T cell CCR9. In addition both 

CD11b+/-CD103- cells have recently been shown to express higher levels of IL-12 and IL-23 

mRNA and induce higher IFN- !and IL-17 production from proliferating T cells compared to 

CD103+ LP DCs, even in the absence of TLR stimulation (65).  
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B Cells (Figure 3.3A Population G: CD19+) 

The role of B-cells in intestinal inflammation and immune homeostasis is not well 

appreciated. At intestinal sites, B cells follow a distinct differentiation pathway and are 

specialised in IgA production as differentiated plasma cells (328). sIgA acts as a barrier to 

protect the epithelium from pathogens, and interacts within the lumen with food, self and 

intestinal antigens (329). As such sIgA limits access of intestinal antigens into the systemic 

circulation, and affects intestinal microbiota composition (329). In addition a subset of CD25 

expressing B cells have been described in other tissue sites and have been termed Bregs 

given their immunosuppressive capabilities, mediated by IL-10 and TGF-β production (330). 

Indeed functional impairment of TGF-β producing B cells is associated with food-allergy 

pathogenesis (331). Interestingly we were unable to detect any CD25 expressing CD19 cells 

in the colon LP.   

 

T cells (Figure 3.3A Population H: Naïve CD8+, I: CD8+ CD44+ CD69+, J: CD4+ FoxP3+, K: 

Naïve CD4+, L: CD4+ CD44+ CD69+) 

CD69 is considered an activation marker of T lymphocytes and is the earliest inducible cell 

surface glycoprotein acquired during lymphoid activation which once expressed acts as a co-

stimulatory molecules for T cell activation and proliferation (332). CD44 participates in cell 

adhesion, migration and lymphocyte activation with T cells expressing CD44 to permit rolling 

and adhesion to intestinal epithelium (333), (334). CD44 has also been extensively 

described as identifying memory T cells with CD44High cells more sensitive than CD44Low 

cells to TCR signaling response to antigen (335). Tregs characterised by the expression of 

FoxP3 may be defined as T cells able to suppress naïve T cell proliferation in vitro and in 

vivo. Tregs are crucially involved in the maintenance of gut homeostasis by suppressing 

abnormal immune responses against the commensal flora or dietary antigens, in part 

modulating this effect by anti-inflammatory cytokine production (IL-10 and TGF-β).  

 

A dysregulated T cell response with disordered development of activated T cell populations 

can lead to an exacerbated mucosal inflammatory response. Increased T cell derived 

cytokines and chemokines derived from IBD mucosa have therefore led to the hypothesis of 

a skewed, pro-inflammatory adaptive immune response in IBD patients. Inflammatory 

lesions develop in foetal gut explants cultured ex vivo with IL-12 and anti-CD3 (336), with 

inhibition of gut activated T cell activation, mediated by T cell specific calcium channel 

blockade, leading to a reduced pro-inflammatory cytokine production  (337). Indeed the 

national institute for clinical excellence (NICE) has recently approved the use of an α4β7 

blocking monoclonal antibody (vedolizumab) which limits activated T cell recruitment to the 

gut mucosa, which has been shown to be superior to placebo in inducing disease remission 

in IBD patients (338).    
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ILCs (Figure 3.3B Population M: CD90.2+ CD127+)  

ILCs are an emerging and diverse group of immune cells and derive from an ID2 expressing 

progenitor and have recently been implicated in the development of IBD. Group 3 ILCs have 

been shown to be able to induce colitis in a Helicobacter hepaticus infection characterised 

by IL-17A and IFNγ production in Rag-/- mice (96). Subsequent data suggest that Group 3 

ILCs can induce colitis in an IL-23R, IL-22 dependent mechanism, that Rorγt-/- mice do not 

develop CD40L induced colitis and lastly human ILC’s were found at increased levels in the 

LP in an IL-23 dependent manner (97), (96), (98), (99).  

 

3.5 Assessment of naïve Mbd2-/- mice 

In order to identify any gross pathological difference between WT and Mbd2-/- mice in the 

steady state, 1cm sections of distal colon were taken for histological analysis. We used H&E 

staining transverse sections to determine putative baseline differences in the structural 

architecture of Mbd2 deficient colonic mucosa (Figure 3.4A). There was no difference 

observed between genotypes.  In particular, there was no suggestion of spontaneous colitis 

in Mbd2-/- mice.  

 

We now sought to apply the gating strategy in Figures 3.2 and 3.3 to understand, allowing 

for the fact there was no gross histological difference between Mbd2-/- and WT mice, 

whether Mbd2 deficiency conferred changes in the cellular composition of colon LP immune 

populations.  

 

Firstly, there was a small but significant reduction in the proportion of CD45+ cells in Mbd2-/- 

mice (least square mean 40.1 1.37% versus 50.9 1.46% proportion of intact cells) (Figure 

3.4B). Interestingly in each of the 6 individual contributing experiments, this difference did 

not reach significance; only on linear regression comparing all 6 experiments together was 

the difference statistically significant (Figure 3.4B). This highlights the power of such 

methodology to detect small differences over multiple datasets, but also suggests that 

careful consideration of the biological significance of such small overall changes is required.  

 

T cells, B Cells and ILC 

We then sought to assess whether there was any perturbation of the adaptive immune 

system or ILC compartment in the steady state conferred by the absence of Mbd2. There 

was no difference in the number or proportion of TCRβ+, CD19+, CD4+, CD8+, CD4+ FoxP3+, 

CD4+ CD44+ CD69+ populations (Figure 3.4C), or in CD90+ CD127+ ILCs (Figure 3.4D).  

 

Myeloid Cells 

Within the CD45+ fraction, there was no significant difference observed in colon LP 

neutrophil, eosinophil, or CD11b- DC (CD103+/-) populations, either expressed as the 
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proportion of singlet cells or total cell number per colon, between Mbd2-/- or WT mice (Table 

3.1). There was a small but significant reduction in the proportion and total cell number of 

macrophages in Mbd2-/- versus WT naive mice (Table 3.1). In addition there was a 

significant reduction in the proportion and total cell number of CD11b+CD103+ and 

CD11b+CD103- DCs in Mbd2-/- versus WT mice (Table 3.1).   

 

However, once the reduction in total CD45+ cells was factored into the regression model, 

only the CD11b+CD103+ population differences were significant between genotypes, i.e. 

there was no difference between WT and Mbd2-/- proportion and total number of all other 

assessed cell types (Figure 3.4E and F).  

 

Thus na ve Mbd2-/- and WT mice were largely comparable in both the gross mucosal 

architecture and myeloid composition of immune cells within the colon, with the notable 

exception of a small reduction in total CD45+ cells and CD11b+CD103+ DCs. Given that 

CD11b+ CD103+ DCs did not develop normally in the absence of Mbd2, and that existing 

data support a role in vivo for Mbd2 in CD11c expressing cells, we then sought to assess the 

level of expression in WT colon LP DC and other myeloid cells.  

 

3.6 Assessment of Mbd2 expression in myeloid cells 

The previous expression analysis of Mbd2 shown in Figure 3.1A was performed on RNA 

extracted from whole tissue. Therefore we hypothesised that the contributing cell populations 

within this would demonstrate differing levels of Mbd2 expression. Given that Mbd2 has 

been shown to have a key role in controlling CD11c+ cell responses (318), with existing 

literature also supporting a key role for monocytes in intestinal homeostasis  (43,47), these 

populations were selected for further analysis by simultaneous FACS purification. To assess 

the relative expression of Mbd2 within these populations, the gating strategy in Figure 3.2 

was adapted to simultaneously FACS purify Ly6C+MHC-II+/- monocytes, Ly6C-MHC-II+F4/80+ 

macrophages, CD11b- (CD103+/-) and CD11b+ (CD103+/-) DCs from WT na ve colon LP 

(Figure 3.5A).  

 

RT-PCR of isolated mRNA from these populations revealed higher levels of Mbd2 

expression in myeloid cells than whole liver tissue control, with monocytes and macrophages 

demonstrating the highest levels of expression (Figure 3.5B). Therefore, in addition to 

observing increased Mbd2 at a tissue level in the distal GI tract, we have observed that 

within this, the colon LP monocyte-macrophage axis expresses more Mbd2 than other 

myeloid cells types and indeed other comparable whole tissue specimens.  
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We have therefore built upon previous work describing steady state intestinal MP and DC 

subsets separately, through development of a combined multi-parameter flow cytometry 

phenotyping strategy that enables simultaneous identification of each distinct cell type.  Our 

next step was to apply this new approach to the inflamed Mbd2-/- colon.  

 

3.7 Assessment of Mbd2-/- mice after acute colitis 
To assess whether Mbd2 is important for effective function of the mucosal immune system, 

we utilised the flow panel detailed in Figure 3.2 to assess cellular populations from the colon 

LP in the steady state and after acute colitis induced by feeding 2% DSS b/w in drinking 

water ad libitum for 6 days. As described in Chapter 1.6, this much-studied model of 

experimental colitis is characterised by disruption of colonic barrier integrity beginning 24hrs 

after onset of treatment (165), (164) (Chapter 1.6.1). The exposure of luminal contents and 

microbiota to the underlying LP results in colonic inflammation characterised by progressive 

weight loss, diarrhoea and PR bleeding (167). Experimental colitis induced by DSS is 

considered a T-cell independent model of intestinal inflammation, borne from observations 

that mice lacking T and B cells develop equivalent pathology as those that are 

immunocompetent when treated with DSS (166). Moreover, it has previously been shown 

that the number of colonic CD3+ T cells does not increase significantly during acute colitis, 

only increasing after the removal of DSS in the resolution  phase (339). Thus T cells were 

not considered in subsequent analysis in this model. 

 

3.7.1 Mbd2-/- mice display severe inflammation upon DSS treatment 

Daily assessment was made of weight and symptom score as defined in Table 2.3. At 

necropsy, Mbd2-/- mice had shortened colons with increased macroscopic evidence of 

inflammation (Figure 3.6A) Mbd2-/- mice had increased weight loss at day 6 (16.32 1.17% 

versus 8.90 1.17% least square mean change in day 0 weight) compared to WT mice (See 

Figure 3.6B). There were similarly increases in Mbd2-/- versus WT mean symptom score in 

DSS treated mice at day 4 (3.3 0.3 versus 0.8 0.5) day 5 (6.25 0.48 versus 1.0 0.7) and 

day 6 (12.0 0 versus 3.5 0.3) (Figure 3.6C). This reflected an increase in all parameters of 

the symptom score (PR bleeding, weight loss and diarrhoea). There were no symptoms 

recorded in untreated mice independent of genotype, with a non-significant increase in 

weight of both genotypes at day 6 (Figure 3.6B and C).  

 

Histological analysis (Table 2.4) of 1cm H&E stained sections of distal colon revealed a 

significantly greater tissue architecture destruction, goblet cell depletion and inflammatory 

infiltrate in DSS treated Mbd2-/- versus WT mice in keeping with a severe colitis (least square 

mean histology score 14.6 0.64 versus 4.8 0.54) (Figure 3.6D and E). This would suggest 
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that expression of Mbd2 is required to limit damaging inflammation incurred by DSS 

mediated intestinal barrier breakdown. 

 

3.7.2 mRNA expression of cytokine response 

To characterise the inflammatory cytokine response upon DSS treatment, mRNA was 

isolated from whole colonic tissue and analysed by RT-PCR (Figure 3.7). DSS treated Mbd2-

/- mice displayed significantly greater mRNA transcript for Ifng, Il1b, Il17, Tnf and Il10 with no 

significant difference seen in Il4 and Il5, compared to WT (Figure 3.7). In keeping with other 

na ve phenotyping data, there was no difference in cytokine expression between the 

genotypes in untreated mice.  

 

3.8 Effects of inflammation on the colon LP myeloid compartment 

Together, the above data showed the presence of an acute inflammatory infiltrate in Mbd2-/- 

DSS treated mice with significant tissue architecture disruption corresponding to a profound 

pro-inflammatory cytokine response. To understand the cellular biology underpinning these 

results, we next analysed the impact of MBD2 deficiency on colon LP myeloid populations 

during inflammation, using the logic outlined in Figure 3.2. Given that DSS colitis is 

considered a model of innate immune response, the myeloid compartment was the focus of 

all subsequent analysis (166).   

 

3.8.1 Effect of DSS on WT colon LP myeloid cells 

After the onset of intestinal inflammation with DSS there was a dramatic alteration in the 

cellular composition of the colon LP. At day 6 there was a 1.7 fold increase in the total 

number of CD11b+ cells comparing DSS treated versus control WT mice (Table 3.2). As 

previously reported, the myeloid populations with the largest increase in total number 

conferred by DSS treatment in WT mice were eosinophils (2.21 fold increase), neutrophils 

(8.93-fold increase) and monocytes (3.73 fold increase) (Table 3.2). There were smaller 

increases in the remaining myeloid cells examined, with between 1.2 and 1.8 fold increases 

in WT DC and macrophage total cell numbers. We then sought to compare changes in 

myeloid cells between WT and Mbd2-/- DSS treated mice: 

 

3.8.2 Comparison of Mbd2-/- versus WT colon LP in DSS 

There was a significant increase in the proportion of CD45+ cells comparing Mbd2-/- DSS 

versus steady state, but not in WT DSS versus steady state or Mbd2-/- versus WT in DSS 

(Figure 3.8A). This intriguingly suggested that despite a reduction in Mbd2-/- versus WT 

CD45+ cells in the steady state, DSS preferentially expands the CD45+ compartment in 

Mbd2-/- mice. When analysing the CD45+ compartment further, additional differences 

emerge. There was a 2.49 fold increase in Mbd2-/- CD11b+ cells after DSS treatment which 

represented a significantly greater increase in the number of CD11b+ cells compared to WT 
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mice  (Table 3.2). Given the increased accumulation of Mbd2-/- CD11b+ cells in DSS, we next 

investigated which myeloid populations accounted for this change:  

 

Monocytes and neutrophils, but not eosinophils, were found at significantly greater 

proportion and also in total cell number in Mbd2-/- mice (Table 3.2 and Figure 3.8B and C). 

As in na ve Mbd2-/- mice, there remained a significant reduction in the proportion and total 

number of CD11b+ DC (CD103+/-) after DSS treatment compared to WT, however the Mbd2-/- 

macrophage compartment increased in proportion by 1.6-fold (compared to 1.1-fold in WT 

mice) such that there was subsequently no difference in proportion or total cell number 

between WT or Mbd2-/- DSS treated colon LP macrophages (See Table 3.2).  

 

Thus the myeloid composition in DSS was defined by a substantial increase in monocytes, 

neutrophils and eosinophils, with Mbd2-/- treated mice displaying a significantly greater 

proportion and total number of neutrophils and monocytes compared to WT. 

 

3.8.3 Assessment of the role of Mbd2 in myeloid cytokine production 

Treatment of Mbd2-/- mice with DSS resulted in infiltration of pro-inflammatory cell 

populations along with an increase of gene expression of inflammatory cytokine burden 

(Figure 3.7 and 3.8A). In order to ascertain if the observed myeloid cell influx was a major 

factor in driving pro-inflammatory cytokine production (Figure 3.7), DSS treated or control 

Mbd2-/- or WT colon LP cells were cultured ex vivo with a protein transport inhibitor 

(Golgistop  1ug/ml), to assess IL-1 , TNF and IL-10 production by flow cytometry.  

In line with the total tissue cytokine expression in na ve mice (Figure 3.7), there was no 

difference in the total numbers of myeloid IL-1 + or TNF+ cells between genotypes in 

untreated mice (Figure 3.8D and E). However, the total number of all IL-1 + myeloid cells 

increased significantly in both genotypes after DSS treatment (mean fold change 4.03 in WT 

and 6.52 in Mbd2-/-) (Figure 3.8D). Indeed there was a significantly greater increase in total 

IL-1 + cells in Mbd2-/- versus WT mice (0.51 0.040 versus 0.24 0.038 x106 cells). Similar 

changes were seen in TNF expression, with a significantly greater increase in total TNF+ 

myeloid cells in Mbd2-/- versus WT mice (0.101 0.0083 versus 0.066 0.0080 x106 cells) 

(Figure 3.8E). In keeping with previous data suggesting a pro-inflammatory role for 

monocyte recruitment in DSS, this population was the largest overall contributor to myeloid 

IL-1  and TNF production. 

Alongside this increase in pro-inflammatory cytokine production, there was no observed 

difference in the number of IL-10+ populations between treated groups. Macrophages 



 79 

expressed the greatest levels of IL-10, in agreement with previous studies suggesting they 

are the key IL-10+ regulatory cell type in the colon (least square mean total number IL-10+ 

macrophages 0.012 0.0022 versus 0.017 0.0023 x106 cells in Mbd2-/- and WT respectively) 

(43). These data suggested that the increased pro-inflammatory phenotype in Mbd2-/- DSS 

treated mice was not due to an alteration of IL-10 production, a key regulatory cytokine in the 

GI tract. 

 

Taken together, the colon LP in DSS colitis was defined by a florid influx of IL-1 + TNF+ 

monocytes disturbing the steady state myeloid composition of IL-10+ resident macrophages. 

This imbalance describes an inflamed mucosal surface ready to respond to invading 

pathogens brought about by a breakdown in barrier integrity. Indeed this polarization 

towards a pro-inflammatory response is dramatically increased in the absence of Mbd2, 

suggesting that Mbd2 is required to limit damaging tissue pathology induced by DSS-

associated epithelial challenge.   

 

3.9 Assessment of Mbd2-/- response to Trichuris muris infection 

Despite normal colonic T cell development (Figure 3.4C) in the absence of Mbd2, in vitro 

data suggest that Mbd2-/- naïve T cells have the capability to co-express Th1 (IFN- ) and 

Th2 (IL-4) lineage specific cytokines. We therefore wanted to explore whether there was a 

role for Mbd2 in other experimental models of colitis that rely on the adaptive immune 

system for effective host response (Chapter 1.6.6). In contrast to DSS in which an innate 

immune response predominates, T. muris produces a vigorous T adaptive immune 

response. Successful resolution of infection requires a polarised Th2 immune response, with 

susceptibility conferred by a Th1, IFN- !dominated response (215). The load of infected eggs 

delivered to the host is also critical in determining polarisation of the host immune response 

and thus susceptibility to chronic infection: Low dose (20 eggs) results in a Th1 polarised 

immune response, and therefore chronic inflammation, in immunocompetent animals. 

However, high dose (200eggs) results in a IL-4, IL-13 polarised Th2 response (216) 

(Chapter 1.6.6).  

 

A previous report showed that Mbd2-/- mice are susceptible to high dose T. muris infection 

displaying chronic inflammation, increased worm burden and IFN- !mediated IgG2a antibody 

production (321). However the authors did not assess the infiltrating inflammatory cell types 

in the colon LP, the cellular sources of putative increased IFN- , or indeed if there was a 

dose-dependent effect on pathology. We sought to address these questions utilising our 

newly developed colon LP multi-parameter flow cytometry techniques: 
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3.9.1 General observations and experimental outline 

WT and Mbd2-/- mice were gavaged with either 20 or 200 infective T. muris eggs at day 0 

and monitored for 35 days. The main comparison was to be the effect of genotype at low 

and high dose infection on the development of colonic inflammation, in a pilot experiment. 

The below data therefore represent a single experiment with n=1 for the WT na ve control 

group, which prevented statistical comparison of na ve versus infected animals.  

 

There were no adverse effects (weight loss etc.) noted during the course of the experiment 

in either genotype or infection dose. As expected, in the low dose infection group at day 35 

there was evidence of mild colonic inflammation (caecal dilatation, increased colon weight), 

and scanty intraluminal worms, independent of genotype. Similarly at day 35 in the high 

dose infection group, WT mice as predicted had no evidence of colonic inflammation or intra-

luminal worms, consistent with previous work suggesting immunocompetent mice induce a 

Th2 response favouring worm clearance (215). In high dose infected Mbd2-/- mice, however, 

there was evidence of chronic colonic inflammatory change and heavy intraluminal adult 

worm burden, replicating the findings of Hutchins et al (321). However the worm count and 

therefore burden of parasitology was not formally enumerated in this pilot experiment, as the 

tissues were used for cellular analysis by flow cytometry.   

 

3.9.2 Serum antigen-specific responses in WT and Mbd2-/- mice 
The serum of Mbd2-/- and WT day 35 infected mice was analysed by ELISA for the presence 

of T. muris specific IgG2a and IgG1 to confirm successful infection of the experimental mice 

and to give an indication of the skewing of the T cell response - IgG1 being IL-4 and IgG2a 

being IFNγ driven (Figure 3.9A and B). Consistent with the expected immune response to T. 

muris, there was a significant increase in the presence of parasite specific IgG2a and IgG1 

in all infected versus control mice (Figure 3.9A and B) (321).  In low dose infected mice, 

there was no significant effect of genotype observed on serum IgG2a or IgG1 at any of the 

dilution ranges analysed (Figure 3.9A and B). Similarly, in high dose infected mice there was 

no effect of genotype on the levels of parasite specific Th2 associated IgG1. This is 

consistent with previous published data, suggesting any altered susceptibility of Mbd2-/- mice 

to high dose infection is not mediated by an inability to mount a Th2 response (321). In 

contrast, and again consistent with previous data, there was a dramatic increase in the 

levels of parasite specific, IFN- !associated IgG2a (1.15 0.16 versus 0.22 0.18 relative OD 

units at 1/1280 dilution) (Figure 3.8A) (321). These data confirm that all mice gavaged with 

T. muris were successfully infected, that WT mice produced an appropriate Th1-low dose 

and Th2-high dose antibody response, with Mbd2-/- mice developing an increased Th1 and 

equivalent Th2 antibody response in high dose infection (Figure 3.9).  
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3.9.3 Comparison of Mbd2-/- and WT colon LP cells in T. muris infection 

The colon LP cells from infected and control mice were isolated, enumerated and surface 

stained for the antibody cocktail of myeloid and T-cell markers as described in Figures 3.2 

and 3.3A.  

 

3.9.3.1 Myeloid cells 
The proportion of LP cells expressing CD45 was equivalent between genotypes in low dose 

infection. However, in keeping with a florid inflammatory process and increased total cell 

numbers (Figure 3.10A), there were a significantly greater number of CD45+ Mbd2-/- cells 

compared to WT in the high dose group (65.0 2.48 versus 34.3 3.9% of intact cells, Figure 

3.10B).  Exploring colon LP CD45+ cells in more detail revealed no effect of genotype on the 

total cell number of any of the myeloid sub-populations assessed in the low-dose group. 

However, in the high dose group, there were a significantly greater total number of colon LP 

monocytes (4.50 0.73 versus 0.19 0.17 x106 cells), neutrophils (1.96 0.42 versus 

0.015 0.0050 x106 cells) and macrophages (3.42 0.71 versus 0.56 0.44 x106 cells) in 

Mbd2-/- versus WT mice (Figure 3.10C). Thus, whilst there were increases in monocyte, 

neutrophil and eosinophil number in low dose infected versus na ve control, there was no 

effect of Mbd2 deficiency in altering the myeloid composition between low dose infected 

mice (Figure 3.10C). In stark contrast, the myeloid compartment in high dose infection 

differed greatly depending on the presence or absence of Mbd2. 

 

The colon LP of high dose infected WT mice closely resembled uninfected WT control, in 

keeping with existing data supporting parasite clearance in immunocompetent mice (213). 

However a significant proinflammatory monocyte and neutrophil dominated composition in 

Mbd2-/- high dose infection was observed (Figure 3.10C).   

 

3.9.3.2 T cells 

A robust host response to parasite infection requires an intact adaptive immune system. 

Indeed it has been suggested that the protective immunity against T. muris is almost 

completely dependent on CD4+ T lymphocytes (213).  

 

In the low dose infection group there was no difference in the total cell numbers of any of the 

T cell populations analysed between genotypes. Given this was a pilot experiment it may be 

that numerically greater differences between the genotypes will become statistically 

significant in follow up work. Thus there was no difference in the number of colon LP TCR + 

cells (3.16 0.76 versus 1.77 0.46 x106 cells), which was predominately composed of CD4+ 

T cells (1.98 0.51 versus 1.15 0.56 x106 cells, Figure 3.10D). In addition there was no 

significant difference in the total number of CD8+, FoxP3+ regulatory T cells or CD44+CD69+ 
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effector T cells (Figure 3.10D). Although there was no difference in the total number of Tregs 

between genotypes, Mbd2 deficiency did affect the proportion of CD4+ T cells expressing 

FoxP3; with a significant decrease seen in Mbd2-/- mice (5.33 0.47 versus 12.8 0.66 % of 

CD4+ T cells expressing FoxP3).  

 

In the high dose infection group, there were once again stark differences between genotypes 

(Figure 3.10D). There was a significant increase in the total number of Mbd2-/- TCR + cells 

(3.87 0.50 versus 0.60 0.47 x106 cells) and again this was predominately composed of 

CD4+ T cells (2.47 0.32 versus 0.38 0.34 x106 cells). Because of the substantial increase in 

the global Mbd2-/- T cell compartment, there was in addition a significant increase in the total 

number of Mbd2-/- CD8+ T cells (0.71 0.13 versus 0.055 0.041 x106 cells). However, the 

total number of Tregs and Teff were equivalent between Mbd2-/- and WT mice. In addition, 

and in contrast to low dose infection, the proportion of CD4+ T cells expressing FoxP3 was 

no different between genotypes (Figure 3.10D). 

 

To ascertain whether local (i.e. colonic) changes in T cell populations conferred changes at a 

systemic level, draining mesenteric lymph nodes from low and high dose, WT and Mbd2-/- 

mice were obtained and analysed as above. There was interestingly no difference between 

genotypes in the proportions or total numbers of any of the T cell populations analysed 

(Figure 3.10E).  

 

Thus, similar to the myeloid data, Mbd2 deficiency exerted its greatest effect in the high dose 

infection group, with large increases in the CD4+ T cell compartment. In addition there were 

also large numerical though not significant increases in colon LP T cells numbers in the low 

dose Mbd2 deficient group, which one might expect to reach statistical significance in a 

further work.  

 

3.9.4 Local and systemic cytokine responses in WT and Mbd2-/- mice 

Clearance of T. muris requires an appropriate Th2 response. IL-4 has subsequently been 

identified as the key Th2 cytokine dictating the host response, with IL-4 deficient mice, or 

treatment with IL-4 depleting monoclonal antibody, negating parasite clearance (340). In 

addition IL-13 and TNF mediated effects have also been identified to be required for 

resolution of infection and mediating downstream Th2 responses (341), (342). In contrast, an 

inappropriate Th1 response leads to chronic infection, with transgenic mice producing high 

levels of IFN- , IL-12 or IL-18 demonstrating increased susceptibility to chronic infection 

(215). Thus we next assessed host cytokine responses to help delineate the relative 

contribution of Th1/Th2 responses to Mbd2 deficient host susceptibility. 
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3.9.4.1 Antigen specific draining lymph node response 

Draining MLN cells from day 35 low and high dose infected WT or Mbd2-/- mice were isolated 

and cultured for 72 hours with T. muris antigen, the supernatants of which were then 

assessed for Th1/2 cytokines by ELISA (Figure 3.11). In low dose infection, there was no 

difference in IL-4, IL-13 and IFN-  from Mbd2-/- restimulated lymph nodes (Figure 3.11). In 

contrast, high dose infection was associated with significant increases in detected levels of 

IL-4, IL-5, IL-10, IL-13 and IFN- !from Mbd2-/- restimulated MLN (Figure 3.11).  

 

Given that the proportion and number of CD4+ T cells in draining MLN was equivalent 

independent of Mbd2 deficiency or infection load (Figure 3.10E), this suggested the 

increased antigen specific cytokine detection was not a by-product of unbalanced T cell 

proportions in the cultures.  

 

3.9.4.2 CD4+ T cell cytokine production 

To assess whether there was an increased per cell production of cytokines in Mbd2-/- high 

dose infection, we assessed cytokine production by flow cytometry from colon LP or MLN T 

cells. Day 35 colon LP or MLN cells were isolated as described above and cultured with 

PMA/ionomycin for 3 hours before being surface stained with the T cell markers described 

above and thereafter stained intracellularly for the presence of IL-4, IL-5, IL-10, IL-13, IL-22, 

TNF and IFN- . The proportion of CD4+ T cells expressing these cytokines was then 

calculated, and is presented in Table 3.3A and B.  

 

MLN 

In the low dose infected MLN, there was no significant difference in the proportion of CD4+ 

cells expressing any of the cytokines analysed.  

 

However, in the high dose infected MLN there was a significant increase in the Mbd2-/- CD4+ 

production of IFN-  (4.56 0.30 versus 1.09 0.11 % CD4+ cells), IL-4 (6.13 0.21 versus 

3.28 0.97 % CD4+ cells) and IL-13 (4.66 0.65 versus 2.73 0.72 % CD4+ cells) (Table 3.3A).  

 

Colon LP 

Regarding the low dose infected colon LP, there were no significant differences in the CD4+ 

T cell production of any of the cytokines analyzed, with the exception of IL-13. Here there 

was a surprising decrease in Mbd2-/- versus WT CD4+ T cell production of IL-13 (15.0 2.57% 

versus 43.40 4.18% proportion of CD4+ cells).  
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Unfortunately, in the high dose infected colon LP there was an unacceptable amount of dead 

cells (defined as >80% LiveDeadBlue staining of all events as assessed by flow cytometry) 

in 2 of the 3 WT samples that prohibited statistical analysis between high dose genotype 

groups (Table 3.3B).  

 

3.9.4.3 CD8+ T cell cytokine production 
Colon LP CD8+ T cells were too few in number to permit analysis independent of genotype 

or infection load. In addition there were no significant differences in any cytokine in each of 

the infection groups between genotypes in isolated MLN cells. This supports previous data 

reporting CD8+ T cells as dispensable for host response to T. muris infection (343). 

 

3.10 Colon LP monocytes in active IBD  

In the work described above, we have observed that both infectious and chemical models of 

murine colitis are defined by a dramatic accumulation of LP monocytes. These effector cells 

capable of producing large amounts of inflammatory cytokines have been the subject of a 

recent study (see below) to assess their role in man, and indeed therefore whether common 

pathways exist between experimental colitis and IBD.  

 

As described in Chapter 1.4, recent studies have identified intestinal monocytes and 

monocyte-derived macrophages as critical perpetrators in driving inflammation in IBD (113), 

(72). There is in addition heterogeneity seen in mice and human monocyte-macrophage 

expression of surface markers depending on their location within the GI tract (50). We 

therefore sought to identify whether CD14High monocyte-like and CD14Low resident 

macrophage populations could be identified in this homogenous colonic dataset both in 

healthy controls, quiescent and active IBD. 

 

3.10.1 Patient Demographics and experimental outline 

20 patients were consented for biopsy sampling for research purposes whilst undergoing a 

clinically indicated endoscopic procedure. Clinical phenotype data was collected on those 

patients with IBD including Vienna (CD) or Montreal (UC) classification of disease 

distribution and Harvey-Bradshaw (HBI) (CD) or Partial-Mayo (UC) clinical assessors of 

disease activity (Table 3.4 and Table 3.5). In addition a drug history was taken detailing the 

presence of any immunomodulator therapy. The mean age of the study population was 40.0 

years, with an equivalent sex distribution. 

 

Healthy controls 

4 of the 20 patients underwent colonoscopy for the investigation of IBS symptoms in the 

absence of any other past medical history, had a normal procedure and were thus 

considered normal, healthy controls.  
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Quiescent IBD 

10 of the 20 patients (3 UC, 7 CD) underwent colonoscopy for IBD assessment, 5 patients of 

which (3 UC, 2,CD) were asymptomatic, the remaining 5 patients (1 UC, 4 CD) had a mean 

HBI of 7.5 or partial Mayo score of 3 indicating mild disease activity. Only 1 patient was on 

immunomodulator therapy (azathioprine and infliximab). All 10 patients had a normal 

procedure; biopsies were taken of the transverse or sigmoid colon in areas of 

macroscopically normal mucosa and were thus considered quiescent IBD.  

 

Active IBD 

5 patients (2UC, 3CD) underwent colonoscopy for IBD assessment (note for 1 case biospes 

were taken from inflamed and uninflamed areas), with only 1 patient (CD) having clinical 

evidence of disease activity (HBI=7). 2 patients were taking azathioprine (1UC, 1 CD) with 1 

patient taking methotrexate and adalimumab (CD). All 5 patients had macroscopic evidence 

of inflammation thought by the treating clinician to be caused by disease activity and were 

thus considered active IBD.  

 

3.10.2 Colon LP analysis of healthy controls and IBD patients 

Colon LP cells were isolated and surface stained for a range of markers (HLA-DR, CD11c, 

CD45, CD163, CD64, CD14 and CD209) before analysis by flow cytometry (See Figure 

3.12A). As in mice, the number of CD14High monocyte-like cells in the steady state human 

colon was very low, accounting for approx. 0.2% of all intact cells (Figure 3.8B and (43)). 

This was similarly low in quiescent IBD, representing 0.4% of all intact cells. However in 

active IBD this population accumulated significantly in number to 2.0% of intact cells. In the 

active IBD group there was concordantly a significant increase in the ratio of CD14High : 

CD14Low cells compared to quiescent IBD (0.90 0.090 versus 0.067 0.070) or healthy 

controls (0.90 0.090 versus 0.11 0.11) (Figure 3.12B). The ratio of 

monocytes:macrophages was similarly disturbed in DSS colitis with day6 DSS treated WT 

mice demonstrating significant bias of this ratio towards monocyte accumulation (Figure 

3.12C). Thus, in mouse and human colonic inflammation there is an accumulation of 

monocyte-type cells.  

 

 !
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3.11 Discussion 

In chapter 3 we identified a key role for Mbd2 in intestinal homeostasis. Mbd2 displayed a 

tightly regulated spatial expression, with mRNA transcript increasing proximally to distally 

through anatomical divisions of murine GI tract (Figure 3.1A). Mbd2 was therefore expressed 

at greatest levels in the rectum, significantly greater than proximal colon and small intestine. 

This relationship was preserved in human GI tract, with significantly greater MBD2 mRNA 

transcript observed in human rectum versus small intestine (Figure 3.1B).  

 

However rectal MBD2 transcript fell significantly in patients with active IBD versus healthy 

controls (Figure 3.1C). We then interrogated the IIBDGC GWAS dataset to address whether 

MBD2 polymorphisms conferred an increased risk of developing IBD.  MBD2 was not seen 

to be a risk susceptibility locus for IBD using this methodology (Figure 3.1D). It should be 

pointed at there are limitations in this observation, namely GWAS rely on the comparison of 

a large number of cases and controls to detect risk susceptibility at genome wide 

significance (104). Rare variants in putative susceptibility loci that are either not in the 

affected cohort, or present at low numbers, will clearly not be detected. In addition IBD is an 

extremely heterogeneous set of conditions. Two patients presenting with similar initial 

disease may have very different disease natural histories reflecting a poor understanding of 

the predictors of disease and treatment response (344). In addition, whilst GWAS will detect 

common variations in DNA sequence, this does not permit us insight into any role of post 

transcription or translation modification or splice variants in altering disease susceptibility.  

 

As such analysing exosome sequencing of cases and controls may allow us to address the 

relationship of MBD2 and IBD pathogenesis more fully. In the case of Mbd2 it is notoriously 

difficult to identify epigenetic regulators without simultaneously monitoring for MBD targets, 

DNA methylation and histone acetylation status (345). Lastly MBD2 may not be a true IBD 

risk susceptibility locus, but has already been shown to control facets of the immune 

response in mice that may influence important areas of intestinal homeostasis in non-IBD 

pathways (318), (321), (319).  

 

Therefore we suggest the next step to address the role of MBD2 as an epigenetic risk locus 

in IBD will be to compare the acetylome, methylome and exosome of human intestinal 

samples comparing active IBD, quiescent IBD and healthy controls. As noted in Chapter 1.7, 

epigenetic processes are plastic, affected at key points in development and open to 

manipulation by environmental stimuli. Therefore it is perhaps more feasible that MBD2 

mediated changes in gene expression will be more likely detected by epigenetic analysis at 

mucosal surfaces, rather than germline changes in DNA sequence.  
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We next built upon previous work by simultaneously identifying multiple colon myeloid 

populations by flow cytometry (Figure 3.2) and used this gating logic to understand 

phenotypic differences in WT and Mbd2-/- mice in the steady state and under two models of 

GI tract inflammation (Figure 3.8 A,B,C and Figure 3.10 A,B,C).  

 

There have been substantial recent developments in the ability of researchers to 

discriminate between mucosal MPs by flow cytometry analysis of surface marker expression. 

We have therefore built upon previous work to produce adapted gating logic from others 

using CX3CR1gfp/+ mice, utilising an array of MP markers to produce an integrated strategy 

for identifying myeloid cells. As noted in Chapter 3.4, the fact that we have not used 

CX3CR1gfp mice in our studies is a limitation to our gating strategy. The absence of this tool 

precludes the discrimination of CX3CR1int and CX3CR1High macrophage stages of 

differentiation, and confirmation that the previously presented CX3CR1 expression data 

matches our dataset. With these caveats, and the resultant time delay that crossing Mbd2 

deficient and CX3CR1gfp mice would have produced, we decided to accept these limitations.  

 

Using these flow cytometry analysis techniques we have found that in the steady state there 

is a small but significant reduction in the proportion and number of CD45+ colon LP cells in 

steady state Mbd2-/- mice (Figure 3.3B). In addition there was a selective reduction in the 

CD11b+ CD103+ DC subset (Figure 3.3C). It has been shown that Notch2 and Irf4 

transcription factors are required for the normal development of CD11b+ CD103+ DCs (68) 

(65). However DC specific deletion of Notch2 for example has been shown to have 

alterations on DC subsets in other tissues (68). Given that DC development in Mbd2-/- mice 

is normal in other tissues (318) we consider 2 possible hypotheses for intestinal specific 

depletion of Mbd2 deficient CD11b+ CD103+ DCs; 1) that Mbd2 is required for appropriate 

DC development that occurs after pre-cDC differentiation or 2) that Mbd2 is required for 

surivival and/or conditioning of resident CD11b+ CD103+ DCs in the intestine.  

 

CD11b+ CD103+ DCs have previously been show to be indispensable for effective clearance 

of the colonic pathogen Citrobacter rodentium, and suggested to be the obligate source of 

IL-23, a cytokine essential in promoting epithelial barrier defense and integrity via their 

stimulation of innate lymphoid cell subsets to produce IL-22 (346). 

 

We then observed a striking susceptibility of Mbd2-/- mice to both chemical and infectious 

colitis. Mbd2-/- mice were exquisitely sensitive to the epithelial toxin DSS, resulting in 

increased weight loss, histological assessment of inflammation (Figure 3.6 B,C,D,E) and 

mRNA transcript of pro-inflammatory cytokines IL-1β and TNF (Figure 3.7). Flow cytometric 

analysis of the inflammatory infiltrate in the colon LP of Mbd2-/- mice revealed a significantly 

greater accumulation of monocyte and neutrophil populations compared to WT (Figure 3.8B 
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and C). In addition there was a significantly increased accumulation in the number of cells 

expressing TNF or IL-1β as assessed by Intracellular flow cytometry, with monocytes and 

neutrophils the largest producers of these cytokines (Figure 3.8D).  

 

Taken together, DSS treated mice demonstrated a marked accumulation of IL-1β and TNF 

expressing monocytes and neutrophils, with Mbd2 deficiency augmenting these aspects of 

the intestinal inflammatory response. Both in murine and human IBD it is now appreciated an 

inflammatory monocyte population accumulates with IL-1β and TNF producing capabilities 

(113).  We speculate that Mbd2 maybe acting in WT mice by directly limiting the pro-

inflammatory potential within monocytes that are recruited to mucosal surfaces.  

 

To test an intrinsic defect within monocytes, we will seek to address whether Mbd2-/- 

monocytes worsen colitis when in the presence of other Mbd2 sufficient cells. Given a 

satisfactory monocyte specific transgenic system or antibody does not currently exist, we 

could employ lethally irradiated WT BM chimeras repopulated with WT and Mbd2 deficient 

haemopoetic cells. This would permit assessment of both Mbd2 deficient and WT monocytes 

in the same inflammatory system, therefore normalising for the overall level of inflammation 

that may be affecting monocyte response in Mbd2-/- mice.  

 

To further pursue a monocyte specific role for Mbd2 we could also assess the pro-

inflammatory potential for these cells before they reach inflamed tissue sites. By performing 

analysis in this way, we negate the level of tissue inflammation as a variable in producing the 

observed phenotype. Alternatively, monocytosis in Mbd2-/- mice may simply represent an 

increased burden of inflammation, i.e. a readout of increased tissue destruction. In this 

hypothesis, other Mbd2 deficient cell types may be the primary catalyst for dysregulated 

immune response. Such candidate cell types would include macrophages, based on their 

known role in tolerating the intestinal surface to the microbiota, DCs based on existing data 

supporting the role of CD11c+ cells in DSS colitis, the epithelium, based on existing data 

supporting its role in barrier function and antigen presentation and lastly neutrophils, which 

have well documented pro-inflammatory potential. These candidates and methods to explore 

their function in Mbd2 deficient states is considered in Chapter 4.   

 

Taken together we have built upon previous work by suggesting a global role for Mbd2 that 

prevents aberrant accumulation of pathogenic cell types to the intestine thereby limiting 

inflammation after barrier disruption. Subsequent analysis in chapters 4 and 5 will seek to 

address the relative role of Mbd2 deficient epithelial and haematopoetic cells in producing 

this effect.  
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Whilst DSS is a well-described innate model of animal colitis, we also sought to address 

whether Mbd2 deficiency conferred increased predisposition to colonic inflammation 

mediated by adaptive immune responses. Indeed Mbd2 deficiency resulted in dramatic 

colonic inflammation with T. muris at high dose in contrast to parasite clearance and minimal 

pathology in Mbd2 sufficient mice. This was characterised by dramatic increases in CD4+ T 

cell, monocyte and neutrophil numbers (Figure 3.10B,C,D), in addition to exaggerated 

parasite-specific Th1 associated antibody responses (Figure 3.9A). There was in 

combination increased Th1 cytokine from CD4+ T cells both locally within the colon LP and 

distally in tissue draining lymph nodes (Table 3.3 A and B). However this was juxtaposed to 

an exaggerated Th2 cytokine response, and WT-equivalent Th2 antibody production that 

would normally herald successful parasite expulsion (Figure 3.9B and Table 3.3 A and B). 

Based upon the observed phenotype of increased susceptibility to infection, we expected to 

see an increased Th1-susceptibility conferring response and an absent Th2-resistance 

conferring response in Mbd2-/- mice.   

 

The observation of an augmented bilateral Th1 and Th2 response therefore was surprising. 

That said there are data supporting the role of Mbd2 in dual Th1/Th2 responses. Mbd2-/- 

na ve T cells and in vitro differentiated Th1/Th2 cells are capable of producing both 

increased IL-4 and IFN-  under in vitro culture conditions with the mitogen PMA (319).  

 

An alternate hypothesis however would be that the dysregulated inflammatory response we 

have observed in Mbd2 deficient animals is due to worm persistence. Mbd2 may be required 

by epithelial cells to prevent effacement of worms to the mucosal surface, or indeed for 

appropriate mucus production from colon epithelial goblet cells. Indeed the absence of Mbd2 

may confer a dysbiosis that renders the local environment more favourable for T. muris 

development in the colon. To address this hypothesis we could employ cell specific 

knockdown of epithelial (VillinCre), T cell (VavCre) or macrophage/DC (CD11cCre) Mbd2 to 

restrict Mbd2 deficiency to these cell types and assess the development of infection. 

Similarly pre-treating mice with broad-spectrum antibiotics to remove the gut microflora 

before T. muris infection could address the role of dysbiosis in infection development in WT 

and Mbd2-/-. Lastly we could perform a timecourse experiment assessing worm burden and 

inflammation at Day 5,10,15,20,25 and 30. In this way we could see if excessive 

inflammatory responses occur at equivalent levels of parasite burden.  

 

Taken together, we have expanded on the existing literature regarding the role of Mbd2 in 

modulating response to Th2 infection. We have replicated the findings of Hutchins et al. of 

increased Th1 (IgG1) and Th2 (IgG2a) T. muris antibody responses in chronic high dose 

infection in Mbd2 deficient mice, but in addition have suggested that Mbd2 is required to limit 
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a CD4+ rich colon LP infiltrate and concurrent Th1 and Th2 responses, both locally and 

systemically.  

 

In the work described above, we have observed that both infectious and chemical models of 

murine colitis are defined by a dramatic accumulation of LP monocytes in WT animals. 

These effector cells, capable of producing large amounts of inflammatory cytokines, have 

been the subject of recent study (described below). To assess their role in man, and indeed 

therefore whether common pathways exist between experimental colitis and IBD we sought 

to understand whether analogous populations existed in man. 

  

Human intestinal macrophages express CD68, CD33 and low levels of CD14, CX3CR1, 

CD11c and CD163 (113), (43). However under inflammatory conditions a discreet CD14High 

monocyte population accumulates, which like the analogous Ly6C+ MHC-II- monocyte 

population seen in mice is also present at reduced numbers in the steady state (120). These 

CD14High cells seem to be derived from circulating classical blood monocytes, express higher 

levels of CD11c, CD64, and CD163 and are heterogeneous in expression of HLA-DR and 

CD209 (121), (120). In addition CD14High cells produce large amounts of inflammatory 

cytokines such as IL-6, IL-23 and TNF (347). 

 

There is in addition heterogeneity seen in murine and human monocyte-macrophage 

expression of surface markers depending on their location within the GI tract. Study inclusion 

criteria and reporting of tissue site sampling is therefore critical in interpreting surface 

expression data. Previous studies have employed either the pooling of endoscopic biopsies / 

surgical resection specimens from IBD patients or healthy controls independent of 

anatomical location (43), (113), (120), (347). There are no published data to our knowledge 

that report the phenotype of monocytes/macrophages exclusively sampled from colons of 

IBD patients and healthy controls.  

 

These results support previous data reporting colonic inflammation in mouse and man is 

characterised by accumulation of pro-inflammatory TLR-expressing monocyte populations, 

capable of producing large amounts of IL-6, IL-23 and TNF and distinguished from resident 

inert macrophage populations by discreet surface marker expression (51), (113).  Whilst 

endoscopic assessment of inflammation correlated very well with monocyte influx, with all 5 

patients having a raised CD14High : CD14Low ratio, only 1 patient with monocyte influx 

reported symptoms of disease activity. This disparity is entirely in keeping with the current 

paradigm of objective assessment of intestinal inflammation correlating poorly with clinical 

symptoms, supporting the need for regular mutli-modality assessments of disease activity to 

limit the damaging effects of sustained disease activity (348).   
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We have also replicated previous work in a homogenous patient dataset of colon specific 

sampling, identifying a CD14High monocyte-like cell accumulation in active IBD analogous to 

LY6C+ MHC-II+/- cells in mice (Figure 3.12A). These data employed specific endoscopic 

biopsy sampling of inflamed (and in some cases non-inflamed areas in the same patient) 

tissues, in contrast to previously published data that has used a combination of whole tissue 

resections ± biopsy samples, often again combining multiple sections of GI tract (e.g. small 

and large intestine) and disease behaviours (stricturing, penetrating and pure inflammatory 

disease). One advantage of our dataset therefore is the more specific sampling of affected 

tissue (endoscopic sampling alone), from a single section of GI tract (colon) and from a 

single IBD disease behaviour (inflammatory).  

 

The identification of a CD14High monocyte-like cell infiltrate in IBD highlights perhaps the 

similarity in colon inflammatory responses in mouse and man, suggesting there are 

common, currently poorly understood, pathways of immunological recruitment to mucosal 

surfaces. In particular the cellular sources of chemokines and associated breakdown in 

barrier function remain unanswered questions. 

 

There are clearly caveats to the above observations.  Pilot data from T. muris infection data 

will need to be investigated and replicated in larger group sizes, similarly human colonic 

samples are limited by a small number of cases and controls, with the inherent difficulties of 

IBD patient stratification well documented.  Indeed CD14High expression of surface markers 

CD64 and CD163 has been shown to be increased compared to CD14Low
 cells in our and 

other cohorts, but not in all, underlining the distinction and perhaps ontogeny of the 

monocyte-macrophage axis is less clear in man.  

 

In the next chapter we sought to refine our investigation of Mbd2 deficiency to specific key 

cell types, to understand the respective roles of haemopoetic versus stromal cells and define 

the causative dysregulated genes in Mbd2 deficiency. 
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Figure 3.1 Mbd2/MBD2 expression in the gastrointestinal tract and association with IBD 

A. qPCR of 1cm sections of GI tract taken at measured intervals from the stomach pylorus*. Mbd2 mRNA expression 
was determined by qRT-PCR, the mean value relative to Gapdh expression is presented. Mean values were obtained 
from 4 individual mice, data representative of 3 separate experiments. Primer sequences are in Table 2.5 B. Log2 ratio 
of MBD2 expression from whole human genome microarray analysis of colonoscopic biopsies taken by Noble et al. 
2008 from 31 healthy controls and C. 67 patients with active ulcerative colitis. D. Manhattan plot of the genome-wide 
association meta-analysis of 9 independent IBD case control series (16,054 Crohn’s disease cases, 12,153 ulcerative 
colitis cases and 17,575 healthy controls) assessing MBD2 as a putative risk susceptibility loci for IBD. The x axis is 
position on chromosome 18, the y axis is significance (-log10 P 2 tailed) of association derived by logistic regression, 
the green line shows genome wide significance level (5x10-8). Statistical analysis for (B), (C) was performed by 2-way 
ANOVA, (* p<0.05) 

* Duodenum 1cm, Ileum 18cm, Terminal Ileum 35cm, Caecum 37cm, Transverse colon 41cm, Rectum 46cm
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Figure 3.2 Flow cytometry gating strategy for colon lamina propria myeloid populations

Colon lamina propria cells were isolated from naive WT mice and analsyed for the expression of the following by flow 
cytometry; Live Dead Blue, CD45, Lineage (NK1.1,CD19,CD3,Ter119), CD11b, Ly6G,SiglecF,CD11c,CD103,Mert-
K,Ly6C,MHC-II and F4/80. Representative contour plots display the following populations (as per Table 3.1) A. Neutro-
phils, B. Eosinophils, C. CD11b- DC (subdivided on CD103 and MertK expression), D. Monocytes, E. Macrophages, 
F. CD11b+ DC (subdivided on CD103 and MertK expression). 
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Figure 3.3 Colon LP Non-myeloid cell comparison in naive Mbd2-/- and WT mice
Colon lamina propria cells were isolated from naive WT mice and analsyed for the expression of the following by flow 
cytometry; Live Dead Blue, CD45, TCRβ, CD19, CD4, CD8, FoxP3, CD44, CD69, CD90, B220, CD3, CD11b, 
CD11c, Ly6G and Ly6C. Representative contour plots display the following populations G. B Cells, H. Naive CD8+ T 
cells I. CD8+ CD69+ T cells J. Tregs, K. Naive CD4+ T cells, L. CD4+ CD69+ T cells, M ILC
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Figure 3.4 Naive Colon LP phenotyping in WT and Mbd2-/- mice

A. H&E stained transverse sections of 1cm distal colon from WT or Mbd2-/- mice at x10 magnification. Colon LP cells 
were isolated and surface stained as per gating strategy in Figure 3.2 and 3.3 from WT and Mbd2-/- mice. B. The 
proportion of colon LP singlet cells expressing CD45. C. the total number of cells from populations identified using the 
gating strategy in Figure 3.3A per colon D. The total number of ILCs per colon identified using the gating strategy in 
Figure 3.3B. E. Representative flow cytometry contour plots of colon LP cells isolated from WT or Mbd2-/- mice. Live, 
singlet, CD45+, Lin- (SiglecF, CD3, Ly6G, CD19), CD11c+, F4/80- gated cells showing DC subsets. F. Least square 
mean proportion of singlet cells for selected populations comparing WT and Mbd2-/- mice after adjustment for differenc-
es in total CD45 cells using linear regression modelling. n=15-20 per group analysed over 5 independent experiments 
(**p<0.01, ****p<0.0001).   
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Figure 3.5 Mbd2 expression in selected FACS purified colon LP myeloid subsets

A. Contour plots of naive WT colon LP cells stained for expression of Live Dead Blue, CD45, CD11b, CD11c, F4/80, 
MHC-II and Lineage (CD3, NK1.1,Ly6G) markers. Representative pre- and post- sort purity is presented  for the popu-
lations described. B. mRNA expression of Mbd2 assessed by RT-PCR of the myeloid subsets in (A). Mean values are 
presented normalised for Gapdh, n=5 per group, representative of 3 independent experiments. 
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Figure 3.6 Susceptibility of Mbd2-/- mice to DSS colitis

Mbd2-/- or littermate WT mice recieved 2% DSS b/w in drinking water or normal drinking water for 6 consecutive days A. 

Photograph of WT and Mbd2-/- 
caecum and colon after division at the terminal ileum and anus post dissection. B. Least 

sqauare mean day 6 weight change of DSS treated and naive control, WT and Mbd2-/- 
mice as a percentage of starting 

body weight, n=15-25 analysed by linear regression modelling of 4 separate experiments. C. Mean symptom score per 

day over the duration of DSS treatment. Cumulative score as per Table 2.3 of weight loss (0-4), diarrhoea (0-4) and per 

rectal bleeding (0-4). n=4 per group, representative of 4 independent experiments D. H&E stained transverse sections of 

distal WT or Mbd2-/- 
DSS treated colon, x10 magnification. E. Least square mean±SEM blinded histology score of inflam-

mation of (D), as per Table 2.4, comprising inflammatory cell infiltrate (0-4, +0.5 per ulcer), Goblet cell depletion (0-4, +0.5 

per crypt abscess), Muscosal thickening (0-4), submucosal cell infiltration (0-4) and architecture destruction (0-4), n=8 

per group analysed by linear regression modelling of 2 separate experiments. Representative data from 4 independent 

experiments (*p<0.05, **p<0.001, ***p<0.0005, ****p<0.0001). 
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Figure 3.7 Colon mRNA expression of selected cytokines during DSS colitis

qPCR of 1cm sections of distal colon from Day6 2%DSS treated or drinking water control WT or Mbd2-/- mice. Selected 
cytokine mRNA expression was determined by qRT-PCR, the least square mean value relative to Gapdh expression is 
presented. Least square mean values were obtained from linear regression of 3 independent experiments, n=8-15 per 
group. Primer sequences are in Table 2.5. (*p<0.05, ***p<0.001).  
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Figure 3.8 Flow Cytometry analysis of the colon lamina propria in DSS colitis

Mbd2-/- or littermate WT mice recieved 2% DSS b/w in drinking water or normal drinking water for 6 consecutive days, 
colon LP cells were isolated and assessed for the expression of SiglecF, Ly6G, CD11b, CD11c, F4/80, MertK, CD64, 
CD45, CD103, and Lineage markers (CD3, CD19, NK1.1, Ter119) by flow cytometry. A. The proportion of singlet cells 
expressing CD45 in naive and DSS treated WT and Mbd2-/-  mice. B. The least square mean total number of cells x106 
per colon is presented for the populations outlined in Figure 3.2, n=15-25 per group, analysed by linear regression of 6 
independent experiments.  C. Representative flow cytometry contour plots in Day6 DSS treated WT and Mbd2-/- mice for 
neutrophil and monocyte populations as defined in Figure 3.2. The least square mean number of colon LP myeloid cells 
x106 per colon after 3 hr incubation with 1μl/ml GolgiStop expressing IL-1β (D) or TNF (E) as assesed by intracellular 
staining and flow cytometry compared to isotype antibody control, n=12-15 mice per group analysed by linear regression 
of 3 independent experiments. **p<0.01, ****p<0.0001 
 

C
D

11
b

Ly6G

Ly
6C

MHC-II

4.4 12.7

WT Mbd2-/-

Gated: Live/CD45+/Lin-

Gated: Live/CD45+/Lin-/
Ly6G-/SiglecF-/CD11b+

E

30.2 55.4

B

0

0.2

0.6

0.4

WT WT Mbd2-/-Mbd2-/-

Control DSS

N
um

be
r o

f I
L-

1β
+  

ce
lls

  x
 1

06  p
er

 c
ol

on

**** Monocytes
Neutrophils
Eosinophils
CD11b+CD103+DC
CD11b+CD103-DC
CD11b-CD103+DC
CD11b-CD103-DC
Macrophages

0

0.04

0.08

WT WT Mbd2-/-Mbd2-/-

Control DSS

N
um

be
r o

f T
N

F+  
ce

lls
  x

 1
06  p

er
 c

ol
on

0.12
**

0

2.0

WT WT Mbd2-/-Mbd2-/-

Control DSS

N
um

be
r o

f c
el

ls
  x

 1
06

pe
r c

ol
on

1.5

1.0

0.5

Monocytes
Neutrophils
Eosinophils
CD11b+CD103+DC
CD11b+CD103-DC
CD11b-CD103+DC
CD11b-CD103-DC
Macrophages

Monocytes
Neutrophils
Eosinophils
CD11b+CD103+DC
CD11b+CD103-DC
CD11b-CD103+DC
CD11b-CD103-DC
Macrophages

30

40

50

60

WT WT Mbd2-/-Mbd2-/-

Control DSS
C

D
45

 %
 s

in
gl

et
 c

el
ls

****
****



 100 

 
 

 

  

AA

B

Figure 3.9 Day35 20 or 200egg T.muris infection Mbd2-/- verus WT antigen specific serum IgG1 and IgG2a

Serum from day 35, 20 or 200egg T.muris infected Mbd2-/- or WT mice was collected and parasite-specific serum 

antibody titers performed by ELISA with T. muris Ag-coated dishes and anti-isotype detection antibody for IgG2a (A) and 

IgG1 (B) mean flouresence data is presented from n=1-4 mice per group analysed in duplicate.  1/1280 dilution data is 

presented in bar chart format, showing data±SEM from 1 pilot experiment n=1-4 per group analysed by 2-way ANOVA. 

(*p<0.05).    
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Figure 3.10 Day35 20 or 200egg T.muris infection Mbd2-/- verus WT FACS analysis of T cell and myeloid populations

Colon LP and MLN cells were isolated and assessed for the expression of SiglecF, Ly6G, CD11b, CD11c, F4/80, MertK, 
CD64, CD45, CD103, CD4, Foxp3, CD8, CD44, CD69 and Lineage markers by flow cytometry. A. Mean±SEM total LP cell 
counts enumerated per colon. B. The proportion of intact colon LP cells expressing the surface marker CD45. The mean 
total number of cells x10^6 per colon (C and D) and per MLN (E) is presented for the populations outlined in Figure 3.2 (D) 
and for Treg (CD4+ Foxp3+), Teff (CD4+ Foxp3-, CD44+ CD69+), CD4+ (CD4+, Foxp3- CD44- CD69-) and CD8+ T cells (C and 
E). n=1-4 mice per group from 1 pilot experiment analysed by 2 way ANOVA (**p<0.01). 

 

 C
D

45
+  c

el
ls

 
%

 o
f a

ll 
in

ta
ct

 c
el

ls

30

40

50

60

70

80

 N
o.

 c
el

ls
 p

er
 c

ol
on

x1
06

30

40

50

20

10

0

0

4.0

N
um

be
r o

f c
el

ls
  x

 1
06

pe
r c

ol
on

3.0

2.0

1.0

WT WT -/- WT -/-
Egg Dose 0 20 20 200 200

Control Day35 T.muris
Infection

WT WT -/- WT -/-
Egg Dose 0 20 20 200 200

Control Day35 T.muris
Infection

WT WT -/- WT -/-
Egg Dose 0 20 20 200 200

Control Day35 T.muris
Infection

0

8.0

N
um

be
r o

f c
el

ls
  x

 1
06

pe
r M

LN

10.0

2.0

6.0 Naive CD8+

CD4+ CD44+ CD69+

CD4+ FoxP3+

Naive CD4+

WT WT -/- WT -/-
Egg Dose 0 20 20 200 200

Control Day35 T.muris
Infection

4.0

CD8+ CD44+ CD69+

Naive CD8+

CD4+ CD44+ CD69+

CD4+ FoxP3+

Naive CD4+

CD8+ CD44+ CD69+

E

0

15.0

N
um

be
r o

f c
el

ls
  x

 1
06

pe
r c

ol
on 10.0

5.0

WT WT -/- WT -/-
Egg Dose 0 20 20 200 200

Control Day35 T.muris
Infection

Monocytes
Neutrophils
Eosinophils
CD11b+CD103+DC
CD11b+CD103-DC
CD11b-CD103+DC
CD11b-CD103-DC
Macrophages

**

B

D



 102 

 
 

 

 

 

A

Figure 3.11 Day35 20 or 200 egg T.muris infection WT versus Mbd2-/- MLN antigen specific cytokine response

MLN cells were isolated and stimulated for 72 hours with 1μg/ml T.muris antigen and cytokine levels in supernatants 
assessed by ELISA, performed in triplicate. n-1-4 mice per group, from 1 pilot experiment analysed by 2-way ANOVA 
(*p<0.05, **p<0.01). 
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Figure 3.12 Human colon LP CD14+ cells in IBD and healthy controls

Colon LP cells from endoscopic biopsies were isolated from patients with endoscopically active or quiescent IBD or 
healthy controls, enumerated and surface stained with the following antibody cocktail; CD45, HLADR, CD103, CD172a, 
CD141, CD11c, CD1c, CD64, CD163, CD14 and lineage markers CD3, CD19, CD20 and CD56 and analysed by flow 
cytometry. A. Representative FACS contour plots of Live, Lin- gated cells showing CD14high and CD14low populations. B. 
Mean±SEM for the ratio of CD14high to CD14low cells, n=4-10 per group analysed by 1-way ANOVA (****p<0.0001). 
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Disease Classification

A1 <40y
A2 >40y
L1 Ileal
L2 colonic
L3 Ileocolonic
L4 Upper
B1 Non-stricutring, non-penetrating
B2 stricturing
B3 penetrating

+p perianal disease, added to B1-3 if concomitant 
perianal involvement is present

E1 Ulcerative proctitis Involvement limited to the rectum

E2 Left sided Involvement limited to the colorectum distal to the 
splenic flexure

E3 Extensive Involvement extending proximal to the splenic 
flexure

Clinical Scoring 

Component Score Description
0 Normal
1 1-2stools/day more than normal
2 3-4stools/day more than normal
3 >4stools/day more than normal
0 None
1 Visible blood with stool less than half the time
2 Visible blood with stool half of the time or more
3 Passing blood alone

Component Score Description
0 very well
1 slightly below average
2 poor
3 very poor
4 terrible
0 none
1 mild
2 moderate
3 severe

Number of liquid stools per day
0 none
1 dubious
2 definite
3 tender

arthralgia
iritis / uveitis

erythema nodosum, pypderma gangrenosum or 
apthous ulcers

anal fissures, fistulae or abscesses
other fistula

fever during previous week 
Table 3.4 

Age at diagnosis

Location

Behaviour

Vienna Classification for Crohn's disease

Montreal Classification for Ulcerative colitis

Partial Mayo score for Ulcerative Colitis

Harvey Bradshaw Index for Crohn's disease

Rectal Bleeding

General well being

Overview of the classification of IBD phenotype and clinical severity scores

Abdominal pain

abdominal mass

Complications 1 point for each

Stool frequency
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4.1 Introduction 

In Chapter 3 we identified a role for Mbd2 in modulating an increased susceptibility to colonic 

inflammation. This was characterised by an accumulation of IL-1 + and TNF+ myeloid cells, 

particularly monocytes and neutrophils. We also identified myeloid cells as displaying high 

levels of Mbd2 transcript. Clearly in animals in which all cell types are Mbd2 deficient, it is 

difficult to make inferences on the respective roles of Mbd2 deficient populations to this 

phenotype. We therefore sought to delineate Mbd2 deficient populations in more detail, and 

hypothesized that Mbd2 deficient haematopoietic cells were likely candidates for further 

analysis for several reasons. 

 

Firstly, there is an increasing body of evidence to suggest inflammatory monocytes as 

directly pathogenic in DSS colitis: mice deficient in CCR2, a chemokine receptor expressed 

by blood monocytes, are less susceptible to colonic inflammation (51). Similarly, 

administration of an anti-CCR2 depleting antibody thought to selectively affect LY6CHigh 

blood monocytes, ameliorates colitis with lower levels of IL-6 and IL-1  in colonic tissue (47). 

Additionally, DSS colitis is significantly reduced in mice whose monocytes are unable to 

produce TNF (71). Supporting a more dominant role in intestinal inflammation for monocytes 

versus neutrophils, mice deficient in CCL2/CCR2 mediated monocyte recruitment are more 

susceptible to Toxoplasma gondii (T. gondii) infection, whereas in vivo neutrophil depletion 

has no effect on disease progression (349), (350), (351). 

 

Other candidate haematopoietic cells for Mbd2 mediated predisposition to colitis include 

macrophages and DCs. Both are critical in maintaining the immunological balance between 

tolerance and inflammation by pivoting the adaptive response through antigen presentation 

and local contribution to the cytokine milieu. DCs have the capacity to manipulate local 

inflammatory responses by release of cytokines and chemokines through activation of 

PRRs, which in turn can influence other myeloid cells (352). Indeed a dysregulated immune 

response to the commensal microbiota is one of the hallmarks of IBD in man, with mutations 

in the NOD2 pathogen recognition molecule (expressed by both DCs and macrophages), 

being the strongest heritable risk factor for CD (107), (108), (353).  

 

Previous data directly assessing the contribution of DCs in the DSS model again suggest a 

role in pathogenesis.  For example, Berndt et al. reported an exacerbated day 7 colitis 

conferred by transfer of BMDCs before DSS treatment, characterised by increased 

histological severity score and earlier development of PR bleeding (354). In addition, using a 

CD11c-DTR/GFP mouse to selectively deplete CD11c expressing cells, they identified a 

reduced severity of day 7 colitis characterised by less rectal bleeding and histological 

severity in those mice depleted of CD11c cells. Abe et al. similarly report an ameliorated 
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phenotype of DSS colitis in CD11c depleted animals, also suggesting that colon DC sources 

of IFN-I induced by TLR9 ligands, have an anti-inflammatory role by reducing neutrophil and 

monocyte trafficking (355).  

 

These data suggest a dual role for DCs in pro- and anti- inflammatory modes of action. It has 

been suggested this dual role permits DCs to respond to a variety of biological signals  

(355). However, as described in Chapter 3.4, whilst the terms CD11c+ cells  and DCs have 

previously been used interchangeably, this issue appears to be much more complex (Table 

3.1). It is therefore conceivable that said dual DC  roles in intestinal inflammation are 

actually conveyed by different CD11c+ populations. Therefore to build upon and clarify 

previous work, in this chapter we sought to interrogate the identity of colonic CD11c 

expressing cells during DSS colitis, before determining the impact of restricting Mbd2 

deficiency to defined populations. As published data would support the role of monocytes 

and CD11c expressing cells as key cell types in controlling host response to colonic 

inflammation the role of Mbd2 in these cells was the focus for further investigation in this 

chapter.  

 

Chapter aims: 

1. Examine the role of haematopoietic sources of Mbd2 in colonic inflammation 

2. Examine the role of Mbd2 in monocytes   

3. Describe the heterogeneity of CD11c+ cells in the colon LP 

4. Examine the role of CD11c sources of Mbd2 in colonic inflammation 

5. Compare the gene expression of colon MPs in Mbd2 deficiency 

6. Examine the role of Mbd2 in colon MPs activation in vivo 
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4.2 The role of haematopoietic Mbd2 in colonic inflammation 

To address the role of Mbd2-/- haematopoietic cells in the induction of DSS colitis, bone 

marrow chimeras were generated. Host haematopoietic cells were depleted by exposure of 

mice to lethal doses of radiation, thereafter mice were administered WT or Mbd2-/- BM such 

that haematopoietic cells were selectively rendered Mbd2 sufficient/deficient whilst non-

haematopoietic cells were Mbd2 sufficient. In addition, by using variant CD45 isoforms for 

host or donor chimera components it was possible to discriminate between residual host and 

donor haematopoietic cells by flow cytometry. 

 

Mice expressing the CD45.1 isoform were lethally irradiated and reconstituted with CD45.2 

WT (CD45.1WT) or Mbd2-/- (CD45.1Mbd2-/-), CD90 depleted bone marrow and monitored for 

successful engraftment (See Chapter 2.12). At 8 weeks post irradiation mice were assessed 

for the proportion of host (CD45.1) versus donor (CD45.2) cells in the colon LP.  

 

The frequency of donor CD45.2+ colon LP monocytes, neutrophils, eosinophils and 

macrophages was equivalent between CD45.1WT and CD45.1Mbd2-/- chimeras, with less than 

5% of each total population expressing the host CD45.1 isoform (Table 4.1). As in global 

Mbd2-/- mice, there was a reduced proportion of CD45.2+ CD11b+ CD103+ DCs in 

CD45.1Mbd2-/- chimeras (0.085 versus 0.189% of all intact cells in CD45.1Mbd2-/- versus 

CD45.1WT chimeras) (See Figure 4.1A). In addition the proportion of donor CD45.2+ colon LP 

CD11b- DCs was lower in CD45.1Mbd2-/- chimeras, however the overall number of host and 

donor CD11b- DCs was equivalent i.e. there were significantly greater CD45.1 host CD11b- 

DCs in CD45.1Mbd2-/- versus CD45.1WT chimeras, (79.1 versus 24.9% of all CD11b- CD103+ 

DCs and 83.8 versus 50.1% of all CD11b- CD103- DCs were CD45.2+) (See Figure 4.1B). 

 

These data suggest there is an inherent defect in the development of Mbd2-/- CD11b+ 

CD103+ DCs, and this is not rescued by the presence of Mbd2 sufficient stromal cells. In 

addition, on the presumption that radioresistance of host CD45.1+ cells was equivalent 

across the irradiated mice, the decreased CD45.2Mbd2-/- CD11b- DC populations would 

suggest these cells are being selectively outcompeted by the remnant CD45.1+ host 

populations.  

 

Thus we have observed both dysregulated development and maintenance of mature Mbd2-/- 

DCs in the colon LP. We next sought to assess the role of Mbd2-/- haematopoietic cells 

during colonic inflammation. 

 

Consistent with best practice in our animal facility, mice were treated with the oral 

fluroquinolone antibiotic enrofloxacin from weeks minus 1 to 4 relative to irradiation, to 

minimise the risk of opportunistic infection. Concurrent antibiotic use with DSS has been 
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shown to produce an ameliorated phenotype consistent with the key role of host microbiota 

in this model (356). Similarly pre-administration with antibiotics immediately followed by DSS 

treatment has been shown to increase susceptibility to colonic inflammation in a MYD88 

dependent manner (162). For these reasons, there was a 5-week washout period between 

cessation of the above prophylactic antibiotics and the commencement of DSS to permit 

commensal recolonisation.  

 

CD45.1WT or CD45.1Mbd2-/- chimeras were treated for 8 consecutive days with 2% DSS and 

monitored for weight loss and symptom severity as defined in Chapter 2.3. CD45.1Mbd2-/- 

chimeras lost a significantly greater percentage of starting weight at day 6 (-1.5 versus 

+2.1 1.4%, CD45.1Mbd2-/- versus CD45.1WT chimeras respectively, p=0.04), though there was 

no significant difference seen by day 8 (Figure 4.1C). There was a significantly increased 

symptom score at day 8 in Mbd2-/- donor chimeras (7.3 versus 2.5 1.5, Mbd2-/- versus WT 

respectively) (See Figure 4.1D). Histological assessment of 1cm sections of distal colon 

similarly revealed an increased severity score in Mbd2-/- donor chimeras (10.3 2.2 versus 

4.4 1.2) (Figure 4.1E and F). Taken together, there was a small but significant increased 

susceptibility of CD45.1Mbd2-/- versus CD45.1WT chimeras to DSS colitis. Assessment of the 

cellular composition of the colon LP by flow cytometry similarly revealed subtle differences. 

Firstly, as in the na ve chimeras, there was a significant reduction in the proportion and total 

number of CD45.2+ CD11b+ CD103+ DCs in CD45.1Mbd2-/- chimeras  (Table 4.1). Similarly, 

there was a significant reduction in the proportion of CD45.2+ CD11b- DCs in CD45.1Mbd2-/- 

chimeras (Table 4.1 and Figure 4.1B). 

 

In assessing the remaining colon LP populations, there were no significant differences seen 

in the total number of CD45.2+ eosinophils, monocytes or macrophages (Figure 4.2A and B). 

There was however a significant increase in the total number of CD45.2+ neutrophils in 

CD45.1Mbd2-/- chimeras  (Figure 4.2C and Table 4.1).  

 

Whilst this experiment did not directly compare DSS treated CD45.1Mbd2-/- chimeras to global 

Mbd2-/- (i.e. global Mbd2 deficient animals), CD45.1Mbd2-/- chimeras displayed an increased 

predisposition to DSS mediated inflammation, though less severe than that seen in global 

Mbd2-/- mice (Figure 3.6).  Overall these data support a role for Mbd2 deficient 

haematopoietic lineage cells in controlling the increased predisposition to colonic 

inflammation seen in Mbd2-/- mice and we therefore sought to understand which Mbd2 

deficient populations were culprit. 
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4.3 The role of monocytes in the susceptibility of Mbd2-/- to colonic inflammation. 

Based on the work detailed in Chapter 3, we proposed that infiltrating monocytes are the 

principal inflammatory population in the DSS model of colitis. Monocytes are the largest 

changing population by cell number comparing na ve to DSS treated mice, and are 

simultaneously the largest source of IL-1  and TNF (Figure 3.8D and E, Table 3.2). Despite 

equivalent accumulation of monocytes in CD45.1Mbd2-/- versus CD45.1WT DSS treated 

chimeras (Figure 4.2B and Table 4.1), based on the existing literature presented above and 

the results in Chapter 3, we hypothesized a role for Mbd2 in preventing uncontrolled pro-

inflammatory response in tissue monocytes in Mbd2-/- mice. 

 

4.3.1 Blood and colon LP monocyte cytokine response in Mbd2-/- and WT mice 

To assess this, we exposed WT or Mbd2-/- blood monocytes from na ve or DSS treated mice 

to TLR ligands and assessed cytokine response by flow cytometry. Mbd2-/- or WT whole 

blood was cultured with LPS (TLR4 ligand), Pam3Cys (TLR2 ligand) or CpG (TLR9 ligand), 

surface stained with LY6C, CD68 and CD11b and then stained intracellularly for the 

cytokines IL-1 , IL-6, IL-10, IL-12p40 or TNF. 

  

There was no significant difference between Mbd2-/- or WT na ve monocyte (LY6CHigh, 

CD11b+, CD68+) production of IL-1 , IL-6, IL-12p40, IL-10 or TNF in response to any of the 

TLR ligands as defined by the percentage of monocytes staining positive for these cytokines 

by flow cytometry versus isotype controls (See Figure 4.3A, B and Table 4.2). In addition, 

though we observed blood monocytes independent of genotype displayed a significantly 

increased IL-1  and IL-6 response to LPS and Pam3Cys after treatment with DSS (See 

Table 4.2), there was no significant difference between day 6 DSS treated Mbd2-/- or WT 

monocyte production of the assessed cytokines to TLR stimulation (See Table 4.2). These 

data suggest that circulating Mbd2-/- blood monocytes display equivalent production of 

cytokine for a given TLR stimulus, either in the steady state or during colonic inflammation. 

 

We next sought to assess whether Mbd2-/- monocytes on recruitment to the colon LP more 

readily promoted tissue inflammation. Na ve or day 6 DSS treated colon LP cells from WT or 

Mbd2-/- mice were isolated and cultured ex vivo and cytokine production determined by 

intracellular staining and flow cytometry. Monocytes were identified as in Figure 3.2 and 

assessed for IL-1  and TNF expression compared to isotype controls (See Figure 4.3B): 

 

As with blood monocytes, there was no significant difference in IL-1  or TNF production 

between Mbd2-/- or WT na ve colon LP monocytes (30.0 3.84 versus 23.6 4.42% of 

monocytes IL1 +, Mbd2-/- versus WT respectively). Similarly there was no difference in the 
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IL-1 + production between Mbd2-/- or WT DSS treated monocytes (51.8 3.44 versus 

43.8 3.28 % monocytes IL-1 +, Mbd2-/- versus WT respectively) (See Figure 4.3B & Table 

4.2). These data would support the assertion that like TLR ligand stimulated blood 

monocytes, Mbd2-/- colon LP monocytes are not inherently more able than WT to produce 

damaging cytokines. 

 

Additionally, as in the TLR-stimulated blood monocytes, there were interesting differences in 

the effect of treatment on monocyte cytokine response. Both Mbd2-/- and WT DSS treated LP 

monocytes produced significantly more IL-1  and TNF than monocytes from na ve mice of 

the same genotype, again suggesting that priming of circulating monocytes predisposes to 

an enhanced pro-inflammatory tissue phenotype on migration to inflamed mucosal surfaces 

(See Table 4.2).  

 

4.3.2 Gene expression profiles of colon LP monocytes from DSS treated Mbd2-/- and 

WT mice 

Whilst these data suggest equivalent monocyte pathogenicity in the absence of Mbd2, they 

did not assess the putative role of Mbd2 in monocyte migration, recruitment, or indeed IL-

1 /TNF independent pro-inflammatory pathways. To assess whether Mbd2 deficiency 

conferred such dysregulation, we undertook gene expression analyses of purified colon LP 

monocytes. 

 

We hypothesized that Mbd2-/- monocytes might display aberrant gene expression profiles for 

migration, recruitment or pathogen detection that could explain the increased susceptibility of 

Mbd2-/- mice to colonic inflammation. Using the sort logic in Figure 3.5, LY6CHigh MHC-II+ 

cells were purified by flow cytometry to sort colon LP cells from DSS treated Mbd2-/- or WT 

mice. The RNA component of these cells was isolated, purified and its integrity quantitatively 

and qualitatively assessed by spectrophotometry and gel electrophoresis before 

hybridization to an IlluminaMouseRef6 microarray. To ensure sufficient RNA yield, mice 

were pooled, n=2/3 per pool, with 5 biological replicates per genotype (See Figure 4.4A).  

 

Primary raw data were QC analysed using the arrayQualityMetrics Bioconductor package to 

identify sub-standard or outlier gene expression signatures. Arrays were scored on the basis 

of 3 metrics, namely maplot, boxplot and heatmap. Raw data were then transformed using a 

variance stabilizing transformation method prior to normalization using the robust spline 

normalization method. Expression measures were then summarized in log base2 and 

presented as the fold change (logFC), with positive logFC representing up regulation, and a 

negative logFC indicating down-regulation. Statistical analysis was then performed using 
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linear modeling and p value adjustment for multiple testing to control for false discovery 

(adjusted p<0.01 was deemed significant).  

 

In comparing Mbd2-/- relative to WT monocytes; 98 array features were statistically 

significant (57 genes upregulated, 41 downregulated), of which no genes were logFC>2 

(Table 4.3). 12 GO terms were statistically enriched (Table 4.4). Of the 11 upregulated 

genes logFC> 1, the following were selected for further discussion based on putative 

relationship to monocyte function, and analysing the current literature. 

 

4.3.2.1 Genes upregulated in Mbd2-/- monocytes  

Lyz1 (LogFC+1.8) encodes the lysozyme LYZ, which is a potent bacterolytic enzyme present 

in phagolysosomes that displays activity against Gram negative and positive bacteria (357). 

Lysozyme is found upregulated in the inflamed GI tract in conditions such as IBD, coeliac 

disease and collagaenous colitis, is influenced by the microbiota and is postulated in 

enhance mucosal defense against pathogenic bacteria (358), (359), (357).  

 

Apoc1 (LogFC+1.6) encodes the apolipoprotein C1 (APOC1), which plays a pivotal role in 

lipid metabolism and monocyte-macrophage differentiation. Modified lipoproteins such as 

APOC1 are thought to bind scavenger receptors including FCLRS and SCARB1-3, 

facilitating the clearance and uptake of pathogens and apoptotic cells  (360).  

 

Immunoresponsive gene 1 (Irg1, LogFC+1.6) is an LPS-inducible gene encoding a highly 

conserved enzyme that catabolises short chain fatty acids (361). IRG1 localises to 

mitochondria, is rapidly induced within macrophages on bacterial infection and is required by 

mitochondria to use fatty acid substrates in the formation of reactive oxygen species (ROS) 

and thus effective bacteriocidal activity (362).  

 

Reg3b (LogFC+1.4) encodes the REG3b protein (also known as pancreatitis associated 

protein1 (PAP1)), which is overexpressed in patients with active IBD and experimental 

models of colitis (363). It has anti-inflammatory properties, reducing pro-inflammatory 

cytokine release in a dose-dependent manner from epithelial and monocyte cells by 

preventing TNF induced NF-κB activation (363).  

 

C4a (C4a, LogFC+1.5) is an anaphlyatoxin that can trigger smooth muscle contraction, 

increased capillary permeability and chemotaxis of leucocytes in the direction of increasing 

concentration (364). C4b (C4b, LogFC+1.3) covalently binds to pathogen, thereafter forming 

part of the C3-convertase complex, which catalyses the proteolytic cleavage of C3 into C3a 

and C3b and the eventual formation of the membrane attack complex via C5, 6,7,8 (364). 

Serum C4 levels have been found to be increased in patients with active IBD (365).  
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4.3.2.2 Genes downregulated in Mbd2-/- monocytes  

Mucosa-associated lymphoid tissue (MALT) lymphoma translocation protein 1 (MALT1, 

Malt1, LogFC-1.0) is an intracellular NKKb activator provides both anti-apoptotic and 

proliferative signals (366). MALT1 is also a paracaspase which is able to cleave roquin1, 2 

and regnase-1, all of which are able to negatively regulate pro-inflammatory cytokine mRNA 

including Il6, Tnf, Icos and Tnfrsf4 mRNA by reducing their respective half lives (367).  

 

Fcrls LogFC-1.0 

Fc receptor-like S, scavenger receptor (FCRLS, formerly known as macrophage scavenger 

receptor 2 (MSR2)), is a poorly described transmembrane surface protein with scavenger 

receptor (SR) and immunoglobulin domains. FCRLS has been shown to be upregulated on 

the surface of tumour-associated macrophages (TAM), but its precise functional role is 

unknown (368). 

 

The absence of significant genes >2 logFC suggested a paucity of striking differences 

between the WT and Mbd2-/- gene expression. In particular there was no difference in mRNA 

expression for pro-inflammatory cytokines (IL-1 , TNF, IL-6, IL-12, IL-15, IL-18, iNOS, ROS), 

chemokines (CXCL9, CCR1, CCR2, CCR5), pattern recognition receptors (TLR2, 3, 4, 9), or 

adhesion molecules (CD62L, CD11b, ICAM1).  

 

Taken together these data support the assertion that Mbd2-/- monocytes display small 

increases in pro-inflammatory gene signatures such as Reg3b and Lyz1, but - more notably - 

there was a lack of difference in the majority of other regulatory genes that the existing 

literature would suggest could explain the increased susceptibility of Mbd2-/- mice to DSS 

colitis.  

 

4.3.3 Colon LP monocyte proliferation in na ve and DSS treated Mbd2-/- and WT mice 

To address the upregulated cell cycle and metabolic genes seen in Mbd2-/- monocytes from 

KEGG pathway analyses, we sought to address whether there was increased proliferation of 

Mbd2 deficient monocytes in vivo. Ki67 protein is a cellular marker of proliferation, present 

during all active phases of the cell cycle (G1, S, G2 and mitosis), but is absent from resting 

cells (G0). Colon LP cells were isolated from WT and Mbd2-/-, na ve and day 6 DSS treated 

mice, surface stained for the myeloid markers in Figure 3.2 and stained intracellularly for 

Ki67 (Figure 4.4B). The cells were assessed for the proportion of a given population that was 

in active cell cycle as an indicator of proliferation. There was no significant difference in WT 

or Mbd2-/- Ki67 staining in steady state or DSS treated monocytes (Figure 4.4B). Similarly 

monocyte turnover did not increase substantially with DSS treatment, in keeping with our 
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hypothesis that dramatic increases in this population are mediated by rapid recruitment 

rather than increased proliferation of resident colon monocytes (Figure 4.4B).  

 

4.3.4 Mbd2 deficient and sufficient monocytes in the same inflamed tissue site "

generating mixed BM chimeras 
To further address whether there may be a monocyte intrinsic role for Mbd2, we generated 

mixed BM chimeras to permit concurrent analysis of Mbd2-/- and WT monocytes in the 

presence of Mbd2 sufficient non-haematopoietic cells. We surmised this would permit 

simultaneous functional readouts of monocyte recruitment and pro-inflammatory ability, 

whilst controlling for other confounding factors, most notably the degree of colonic 

inflammation between treated mice.  

 

Mice homozygous for the haematopoietic cell surface marker CD45.1 (CD45host) were 

lethally irradiated and reconstituted with equal proportions of WT BM that co-expressed both 

CD45.1 and CD45.2 isoforms (CD45WT) and Mbd2-/- CD45.2+ (CD45Mbd2-/-) BM. Thus 

CD45host, CD45WT and CD45Mbd2-/- haematopoietic cells could be discriminated by flow 

cytometry based upon their expression of CD45.1 and CD45.2. 8weeks post irradiation, the 

blood of chimeric mice was examined to assess reconstitution of adoptively transferred 

CD45WT and CD45Mbd2-/- cells. To our surprise, there was an almost complete absence of 

CD45Mbd2-/- cells (Figure 4.5A). We hypothesized therefore that Mbd2-/- BM displays a 

developmental disadvantage compared to WT.  To address this possibility, we titrated the 

starting proportion of CD45Mbd2-/- BM.  Despite starting with a 9:1 (CD45Mbd2-/-:CD45WT) 

starting BM ratio, at 8 weeks this ratio had reversed to 2:5, consistent with an increased 

differentiation ability of Mbd2 sufficient derived BM cells (Figure 4.5A).  

 

Examination of Mbd2 mediated changes in haematopoietic development is an intriguing 

prospect, but falls outwith the main aims and focus of this project. With this in mind we 

proceeded to treat mixed BM chimeras with a starting ratio of CD45Mbd2-/-:CD45WT of 9:1, with 

2% DSS or normal drinking water for 8 consecutive days.  

 

We observed that in keeping with our previous titration data, Mbd2-/- cells were significantly 

less frequent in all populations and tissues examined, despite the striking starting excess of 

their BM progenitors (Figure 4.5B and Table 4.5). In keeping with previous DSS 

experiments, there was a significant increase in the eosinophil, monocyte and neutrophil 

populations in the colon LP (Figure 4.6A).  

Intriguingly we also observed that DSS treatment had no effect on the proportion of colon LP 

cells that were CD45WT or CD45Mbd2-/- i.e. colonic inflammation did not result in preferential 

recruitment of Mbd2-/- cells, particularly monocytes or neutrophils given their role in tissue 

inflammation (Figure 4.6B).  
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As Mbd2 deficiency did not significantly alter cellular recruitment to the colon, we next 

sought to address whether Mbd2 deficient myeloid cells displayed a more pro-inflammatory 

phenotype.  Ex vivo culture of LPS stimulated blood, or unstimulated colon LP cells was 

undertaken from DSS treated or na ve chimeric mice. Cells were then surface and 

intracellularly stained for flow cytometry markers as described in chapter 4.2. The proportion 

of CD45WT and CD45Mbd2-/- myeloid populations expressing the cytokines IL1- , TNF and IL-

10 (colon LP) or IL-1 , TNF, IL-6 and IL-12p40 (blood monocytes) is summarized in Table 

4.6 and Figure 4.6C. There was no significant affect of genotype for any of the cytokines 

measured in any of the myeloid populations described. We therefore concluded that Mbd2 

deficient blood monocytes and colon LP myeloid cells have the same pro-inflammatory 

ability as WT cells in the steady state or during DSS colitis.  

 

Taken together Mbd2 deficient monocytes have been observed to have equivalent pro-

inflammatory cytokine expression in the blood after TLR challenge and colon LP, in DSS and 

the steady state. This remained true after internally controlling for inflammatory signals and 

local milieu by combining Mbd2 sufficient and deficient monocytes in the same model. We 

hypothesise that increased susceptibility to DSS mediated inflammation in Mbd2-/- mice may 

therefore be secondary to the kinetics of monocyte recruitment, rather than intrinsic 

inflammatory capacity, and is considered further in the discussion.   

  

4.4 The role of Mbd2 in colon LP CD11c+ cells  

Given that genes coordinating response to bacteria and inflammation were increased in 

Mbd2 deficient monocytes (Lyz1, Ido1, Bdkrb1, Table 4.4) and that APCs such as 

macrophages and DCs are critical in coordinating such responses, not only in the steady 

state but also in DSS, we felt these represented attractive candidates for further investigation 

(355), (354). Indeed data presented in Figure 4.1D, E, F and 4.2C suggest an increased 

susceptibility of mice to DSS where Mbd2 is restricted to haematopoietic cells. Given 

CD11c+ cells are derived from bone marrow progenitors, and their development is altered in 

the absence of Mbd2 (Figure 3.4E and 4.1A), we hypothesized these cells may be important 

in explaining the Mbd2-/-  susceptibility to experimental colitis.  

 

As described above (Chapter 4.1), CD11c+ cells may have dual pro- and anti- inflammatory 

roles in DSS colitis, and it is not clear which CD11c+ cells are responsible. In addition Mbd2 

has been recently shown to control expression of molecules that enable CD11c+ cell 

promotion of Th2 immunity, with Mbd2 deficient CD11c+ cells displaying significantly 

impaired Th2 cytokine induction in response to S. mansoni egg Ag (SEA) or house dust mite 
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(HDM) and down regulated transcript of antigen presentation and co-stimulation genes 

(318).  

 

Thus, given that CD11c expressing cells have the ability to exacerbate or ameliorate DSS 

colitis and that Mbd2 controls key immunological pathways in these cells in other models, we 

hypothesized that Mbd2-/- predisposition to DSS colitis may in part due to dysregulated 

coordination of inflammatory responses by Mbd2 deficient CD11c expressing cells (355), 

(354).   

  

4.4.1 Defining CD11c expressing cells in the colon LP 

To address the range of colonic CD11c+ populations, colon LP cells were isolated from na ve 

mice and surface stained with the antibody cocktail described in Figure 3.2. All singlet, 

CD11c+ cells were then identified and gated as per the logic in Figure 3.2, which successfully 

categorized >95% of cells. Figure 4.7 shows the proportional breakdown of all CD11c+ cells 

(Figure 4.7A) and the MFI of the identified contributing cell types (Figure 4.7B). These data 

revealed that macrophages were the most frequent CD11c expressing cell in the colon LP 

(48.0%) followed by DCs (24.9%). However, per cell, macrophages displayed an overall low 

expression of CD11c as measured by mean fluorescent intensity (MFI) (6620 299), in 

contrast to DCs, which displayed the highest overall expression of CD11c (35660 2423 and 

51591 1898 MFI respectively for CD11b+CD103+ and CD11b-CD103+ DCs) (Figure 4.7B). 

Taken together, macrophages and DCs accounted for 94% of CD11c expressing cells in the 

colon LP. It also underlines the caution one must take in interpreting previous data attributing 

the action of CD11c+ cells in the GI tract to DCs alone.  

 

4.4.2 Selective depletion of Mbd2 in CD11c+ cells 
Given the previous literature supporting a role for Mbd2 in CD11c+ cells, and a role for 

CD11c+ cells in DSS colitis, we sought to restrict Mbd2 deficiency to these cells to 

understand their contribution to our DSS Mbd2-/- phenotype. We took advantage of a CD11c-

Cre+ Mbd2Fl/Fl mouse (CD11cΔMbd2), whereby mice with loxP sites flanking the first exon of 

Mbd2 were generated and bred with mice that express Cre recombinase in CD11c 

expressing cells, as previously described (318). To confirm reduction in Mbd2 transcript in 

CD11c+ cells, colon LP cells were sorted as per Figure 3.5 from CD11cΔMbd2 and CD11c-

Cre- littermate controls and Mbd2 expression assessed by RT-PCR (Figure 4.7C). There was 

an 85% reduction in CD11cΔMbd2 macrophage Mbd2 expression, with a 91% and 93% 

reduction in CD11cΔMbd2 CD11b- and CD11b+ DCs respectively. In comparison monocytes, 

which account for 1.5% of CD11c expressing cells had only a 19% reduction in Mbd2 

transcript. There was therefore a selective depletion of between 85-93% of Mbd2 in those 
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cells that account for 73% of CD11c expressing populations in the colon in CD11cΔMbd2 

mice (Figure 4.7A and C).  

 

4.4.3 The role of CD11c+ cell depletion of Mbd2 in the steady state  

CD11cΔMbd2 mice have been shown to have normal splenic DC development (318). To 

ensure that myeloid development was equivalent between CD11cΔMbd2 and CD11c-Cre- 

littermate controls in non-lymphoid tissue sites we assessed colon LP myeloid cells by flow 

cytometry using the antibody cocktail and gating strategy described in Figure 3.2 (Table 4.7). 

There were no significant differences in any of the populations examined. Indeed in contrast 

to global Mbd2-/- mice, which had a reduced proportion of CD45+ and CD11b+CD103+ cells 

(Figure 3.4B and E), these populations were equivalent between CD11cΔMbd2 and CD11c-

Cre- mice (Figure 4.7D). This data would be in keeping with the BM chimera data presented 

above (Figure 4.1A and B) suggesting a role for Mbd2 in DC progenitors. However, given 

CD11c expression occurs later in development, restricting Mbd2 deficiency to CD11c+ cells 

and thus more differentiated cell types, overcomes this dysregulated development.  

 

To ensure CD11c specific depletion of Mbd2 did not affect the normal intestinal structure or 

confer a spontaneous colitis, we examined transverse sections of colon by histology.  This 

revealed no significant differences between CD11cΔMbd2 and CD11c-Cre- na ve littermate 

controls in gross morphology and structure of the colonic epithelium and LP (Figure 4.7E).  

 

4.4.4 The role of CD11c+ cell depletion of Mbd2 in colonic inflammation  

We then sought to test whether CD11c restricted Mbd2 deficiency influenced the 

development of colonic inflammation by feeding CD11cΔMbd2 and CD11c-Cre- littermate 

controls 2% DSS or normal drinking water for 8 consecutive days.  Daily assessment was 

made of weight and symptom score as defined in Table 2.3. There was a significant increase 

in CD11cΔMbd2! versus CD11c-Cre- mean symptom score in DSS treated mice at day 4 

(2.2 0.3 versus 0.0 0), day 5 (3.6 0.6 versus 0.2 0.2), day 6 (4.2 0.6 versus 0 0), day 7 

(4.6 0.6 versus 1.8 0.5) and day 8 (5.4 1.0 versus 2.4 0.6) (Figure 4.8A). This reflected an 

increase in all parameters of the symptom score (PR bleeding, weight loss and diarrhoea) 

and a significantly increased weight loss at day 8 (8.7 1.17% versus 1.8 1.8% least square 

mean change in day 0 weight) in CD11cΔMbd2!versus CD11c-Cre- mice (Figure 4.8B). There 

were no symptoms recorded in untreated mice independent of genotype. 

 

Histological analysis (Table 2.4 for scoring methodology) of 1cm H&E stained sections of 

distal colon revealed a significantly greater tissue architecture destruction, goblet cell 

depletion and inflammatory infiltrate in DSS treated CD11cΔMbd2 versus CD11c-Cre- mice, 

indicative of elevated colonic inflammation (least square mean histology score 13.5 0.9 
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versus 9.8 0.9)(Figure 4.8C and D).  In keeping with this, whole colonic tissue from DSS 

treated CD11cΔMbd2 mice displayed significantly greater mRNA transcript for the 

inflammatory cytokine Ifng (least square mean expression 0.92 0.21 versus 0.12 0.20), but 

not Il1b or Tnf, as analysed by RT-PCR (Figure 4.8E). 

 

Taken together these data suggest CD11c+ cell expression of Mbd2 is required to limit 

colonic inflammation characterised by increased weight loss, symptom and histology score. 

However, in contrast to global Mbd2-/- mice, Il1b and Tnf colon transcript was equivalent in 

WT and CD11cΔMbd2 mice.  

 

4.4.4.1 Comparison of CD11cΔMbd2" and CD11c-Cre- colon LP cells in colonic 

inflammation 

Once again, DSS induced a significant increase in the number of eosinophils, neutrophils 

and monocytes, compared to untreated mice (Table 4.7).  There was an 11.0 fold change in 

the total number of neutrophils in CD11cΔMbd2 mice (7.0 in CD11c-Cre-), 9.4 fold change in 

monocytes in CD11cΔMbd2 mice (6.2 in CD11c-Cre-) and 1.4 fold change in eosinophils in 

CD11cΔMbd2 mice (1.8 in CD11c-Cre-) (Table 4.7) in DSS animals relative to untreated. 

There was, however, no significant difference between genotypes in total numbers of these 

cells present. 

 

Four independent experiments of CD11cΔMbd2 versus CD11c-Cre- DSS treated and 

drinking water control animals were conducted, with notable variation that may have affected 

statistical significance. Two of the four experiments displayed significant experimental 

variation in the proportion of CD45+ cells, but with no effect of genotype, suggesting that 

inter-experimental variation rather than true biological variation was manifest (Figure 4.9A), 

as this was not present in other DSS experiments presented in Chapter 3, 4 and 5. The 

combination of this variation biased the dataset in linear modeling, which limited the 

interpretation of the enumerated total colon population data. To counter this, statistical 

analysis was performed on the data normalized for the variation in CD45 proportions (i.e. by 

expressing proportional data as a % of all CD45+ rather than intact cells).   Once this was 

performed, we observed a significant increase in the proportion of CD11cΔMbd2 colon LP 

monocytes compared to CD11c-Cre- treated controls (8.63 0.72 versus 6.42 0.80 % of 

CD45+ cells) but not neutrophils (6.21 0.66 versus 4.50 0.74 p=0.06) or any other myeloid 

population (Figure 4.9B and C).  

 

By way of contrast to other assessments of Mbd2 deficiency in DSS colitis, CD11cΔMbd2 

had 1.57 fold more colon LP neutrophils and 1.51 fold more colon LP monocytes relative to 

WT after DSS, compared to 1.61 fold and 1.75 fold increases in Mbd2-/- mice and 1.56 fold 
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and 1.20 fold increases in 100% BM chimeras. Thus Mbd2 deficiency in the haematopoietic 

compartment, CD11c+ cells or all cells resulted in a 1.5-1.6 fold greater colon LP neutrophil 

accumulation post DSS, which was significant in all experiments except CD11cΔMbd2 

(p=0.06). However monocyte accumulation was more variable (range of fold increase 1.2-

1.8) and was significant in all experiments except haematopoietic restricted Mbd2 deficiency. 

These different experiments and animals are clearly not directly comparable, but serve as an 

overview of the effect of Mbd2 deficiency when restricted to different cell types. This 

suggested that increased neutrophil accumulation is consistent independent of the cell types 

that lack Mbd2, in those we have examined, and that the greatest increases in monocyte 

recruitment occur when non-haematopoietic cells are deficient in Mbd2 i.e. in Mbd2-/- 

animals 

 

4.4.4.2 The role of Mbd2 in CD11c+ cell cytokine production.  

We had therefore observed that DSS treatment of either CD11cΔMbd2 and CD11c-Cre- 

littermate controls resulted in eosinophil, monocyte and neutrophil accumulation in the colon 

LP and increased gene expression of Il1b, Tnf and Ifng (Figure 4.8E and Figure 4.9B). 

However there was no significant effect of Mbd2 deficiency in CD11c+ cells on the colonic 

gene expression of Il1b or Tnf after DSS treatment (Figure 4.8E). We next sought to 

understand whether, despite equivalent tissue levels of cytokine mRNA, there were changes 

in individual population cytokine expression conferred by CD11c+ cell Mbd2 deficiency.  

 

Colon LP cells from CD11cΔMbd2 and CD11c-Cre- littermate controls treated either with 2% 

DSS or normal drinking water for 8 consecutive days were surface, then intracellularly, 

stained for the myeloid markers and cytokines detailed in Figure 4.9D, then analysed by flow 

cytometry. Following normalisation of the datasets as mentioned above for inter-experiment 

variation in CD45+ proportions, we observed that there were significant increases in IL-1 + 

(1.95 0.34 versus 0.69 0.34 % of CD45+ cells) and TNF+  (1.00 0.10 versus 0.48 0.11 % of 

CD45+ cells) neutrophils and IL-1 + monocytes (4.47 0.63 versus 2.62 0.59 % of CD45+ 

cells) in DSS treated CD11cΔMbd2 mice, when expressed as % CD45+ cells (Figure 4.9D).  

 

Therefore, we have observed that CD11cΔMbd2 mice were more susceptible to DSS colitis, 

characterised by increased weight loss, symptom and histological score, with significant 

accumulation of IL-1 + neutrophils and monocytes, as compared to CD11c-Cre- littermate 

controls.  
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4.4.4.3 Gene expression profiles of colon LP CD11c+ cells from DSS treated Mbd2-/- 

and WT mice 

Given that Mbd2 deficiency in CD11c+ cells appeared to have an important role in the 

response to colonic inflammation, we next sought to identify the genes controlled by Mbd2 in 

CD11c+ cells that might be responsible for the increased inflammation observed in global 

Mbd2-/- or CD11cΔMbd2 mice. We therefore isolated colon LP cells from global Mbd2-/- or WT 

DSS treated mice, and purified macrophages and CD11b- DCs, as per the sort logic in 

Figure 3.5.  RNA was isolated from these cells, purified, and its integrity quantitatively and 

qualitatively assessed by spectrophotometry and gel electrophoresis before hybridization to 

an IlluminaMouseRef6 microarray. To ensure sufficient RNA yield, mice were pooled (n=2/3 

for macrophages and n=5 for CD11b- DCs), with 2-5 biological replicates per genotype.  

 

4.4.4.3.1 Colon LP Macrophages 

There were 40 genes logFC > 1 (38 up regulated and 2 down regulated) in day 6 DSS 

treated Mbd2-/- versus WT colon LP macrophages with an adjusted p value <0.05 that were 

considered for further analysis (Table 4.8). Candidate dysregulated genes based on GOterm 

pathway analysis (Table 4.9) and literature review were selected and presented below 

(Figure 4.10A):  

 

Genes upregulated in Mbd2-/- macrophages  

Lyz1 (LogFc +2.1), Irg1 (LogFc +1.7), Reg3b (LogFc +1.3) and Reg3g (LogFc +1.2) see 

entry in Chapter 4.3.2  

 

IL-1  (Il1a LogFc +1.8) and IL-1 , are the major IL-1 agonists and have been long 

recognised as integral components of innate immune processes (369). IL-1 expression 

corresponds to disease activity in the colons of IBD patients (370), (371).  

 

Transforming growth factor (TGF)- 1 has a decisive role in limiting inflammatory pathways, 

with IBD patients displaying defective downstream TGF-β signaling (372), (373). TGF- 1 

causes expression of TGF-β-induced (TGFBI, Tgfbi LogFc +1.5) which is produced by 

macrophages in response to apoptotic cell ingestion, leading to reduced fibroblast MMP 

levels and subsequent accumulation of collagen, thought to be pivotal in the resolution 

process post-inflammation (374).  

 

Indoleamine 2,3 dioxygenase (IDO1, Ido1 LogFc +1.1) catabolises tryptophan along the 

kynurenine pathway (375). Kynurenine metabolites act to promote T cell tolerance and exert 

antimicrobial effects that are attributed to IDO1 activity. IDO1 expression is stimulated by 



 125 

TNF, IFN-  and IL-1  and is one of the most highly upregulated genes in human IBD and 

animal models of colitis (376), (377).  

 

Genes downregulated in Mbd2-/- macrophages  

Fcrls (LogFc -1.6) see entry in Chapter 4.3.2 

 

Resistin-like molecule (RELM)  (Retnla LogFc -1.1) belongs to a family of secreted 

mammalian proteins with immunomodulatory properties and is upregulated in several 

infectious and inflammatory settings (378), (379). RELM-  administration promotes immune 

cell activation, pro-inflammatory chemokine and cytokine expression in DSS treated mice, 

with reduced IL-23p19 expression from RELM-  deficient macrophages thought to 

exacerbate colitis (380).  

 

Triggering receptor expressed on myeloid cells (TREM-2, Trem2 LogFc -0.99) is a surface 

receptor found on macrophages, DCs and microglia that binds motifs on bacteria and yeasts 

(381). TREM-2 is expressed at higher levels on CD11c+ LP cells isolated from patients with 

active IBD and mice with experimental colitis versus controls suggesting myeloid sources of 

TREM-2 are important in regulating inflammation (382). 

 

4.4.4.3.2 Colon LP CD11b- DCs 

There were 26 genes with logFC >1 (10 upregulated and 16 down regulated) in day 6 DSS 

treated Mbd2-/- versus WT colon LP CD11b- DCs with an adjusted p value <0.05 that were 

considered for further analysis (Table 4.10). Candidate dysregulated genes based on 

pathway analysis (Table 4.11) and literature review were selected and presented below. In 

addition, both significant and pertinent non-significant genes (genes that have previously 

been published to be important in DC responses in inflammation) are presented in heat 

maps of average expression in Figure 4.10B  

 

In total 370 (180 up, 182 down) genes were significantly affected irrespective of fold change, 

it was clear that the absolute difference for the majority of significantly dysregulated genes in 

CD11b- DCs was small. Indeed the mean LogFC for upregulated and downregulated genes 

was 0.41 (median 0.38), suggesting that there are a large number of small effect size 

dysregulated genes in Mbd2-/- CD11b- DCs. Thus significant genes with LogFc>0.5 were 

considered for analysis of candidiate genes. 

 

Given the analysis was limited by the presence of n=2 biological replicates for WT and n=3 

for Mbd2-/- due the rarity of these cells in the LP (aprox. 0.1% of total cells), it is possible that 

a larger sample size may have produced more differentially expressed genes. To investigate 
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the possibility of low sample number excluding genes with large fold changes that did not 

reach significance; the statistical threshold was relaxed to an adjusted p value of 0.1. 

However this did not further the number of candidate dysregulated genes with known 

immunological function.  

 

Genes upregulated in Mbd2-/- CD11b- DCs 
Reg3b (LogFc 0.94) See entry in Chapter 4.3.2 

 

Complement protein C1q (C1qb LogFc 0.75) is able to bind apoptotic cells, opsonizing and 

increasing their removal by phagocytes. Deficiency in C1Q is the strongest genetic predictor 

of systemic lupus erythematosis (SLE) in humans, thought to be due to persistence of 

apoptotic cells contributing to autoimmunity (383). In addition DCs are important cellular 

sources of C1q, its release acting in autocrine fashion to increase DC induction of Th1 cells 

(384), (385).  

 

Genes downregulated in Mbd2-/- CD11b- DCs  

CD103 (Itgae LogFc-1.5) expression defines DC populations that exhibit roles in co-

ordinating effector and Treg responses (386). The function of CD103 is poorly understood, 

thought to facilitate cellular adhesion via its ligand E-cadherin, expressed on the basolateral 

surface of epithelial cells, and affecting cell shape and motility to promote cellular attachment 

(387).  

 

Janus kinase-2 (JAK2, Jak2 LogFc -0.97) is an important component of the IL-12 and IL-23 

signaling pathway (388). Subsequent phosphorylation steps of STAT 1,3,4,5 eventually lead 

to STAT4 mediated changes in gene expression, particularly Th17 differentiation (389). 

Polymorphisms in JAK2 and other components of the IL-23 signaling pathway (IL23R, IL12 

and STAT3) have been identified as risk susceptibility loci for both CD and UC (308).  

 

Leucine-rich repeat kinase 2 (LRRK2, Lrrk2 LogFc -0.7) is large protein with 2 distinct 

enzymatic domains, although the precise physiological function is unknown (390). LRRK2 is 

known to associate with autophagy proteins p62 and LC3, is expressed preferentially by LP 

leucocytes, is found to be upregulated in inflamed CD colonic biopsy specimens, with 

LRRK2-deficient mice been shown to have poorer outcomes in response to DSS (391), 

(392), (393). 

 

4.4.4.3.3 Summary of dysregulated gene expression in Mbd2 deficient CD11c+ cells 

Taken together, colon LP Mbd2 deficient macrophages in DSS colitis displayed differentially 

expressed genes that would be hypothesised to dampen damaging inflammation, with 

increased expression of anti-inflammatory mediators (Il1a, Tgfbi, Reg3b, Reg3g) and 
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decreased pro-inflammatory response mechanisms (Retnla, Trem2, Ido1). However, in 

keeping with the dual role of GI tract macrophages, bacteriocidal pathways are also 

upregulated in Mbd2 deficiency (Lyz1, Irg1) consistent with previous literature supporting 

combined tolerogenic and pro-inflammatory capabilities (51), (43). An unexpected finding 

was the reduction of the scavenger receptor FCLRS. This poorly described scavenger 

receptor has no previous documented function in macrophage function. However given 

deficiency in other scavenger receptors, notably MSR1 confers up to a 50% reduction in 

macrophage phagocytic ability, one would hypothesise other scavenger receptor 

dysregulation could confer altered bacterial handling abilities, resulting in pathogen 

persistence. 

 

As can be seen in principal component analysis (Figure 4.10C), whilst displaying a number 

of significantly dysregulated genes, the effect size of each individual gene in the CD11b- 

analysis was small with few candidate genes with known or hypothesised function logFC 

> 1 between genotypes. As such, the overall gene expression differences conferred by 

Mbd2 deficiency in CD11b- DCs was low. Given that DC-dogma would suggest these cells 

have a dominant role in antigen presentation to the adaptive immune system, and that DSS 

colitis is considered a T cell independent model, it is perhaps unsurprising that these cells do 

not appear to be the dominant Mbd2 deficient cell type conferring increased susceptibility to 

acute colonic inflammation. 

 

Given the above gene expression changes in Mbd2 deficient macrophages, particularly in 

bacterial handling, and previous data underlining the importance of different TLRs in 

macrophage function (51), we sought to consolidate TLR expression data taken from the 

above dataset with detected levels of TLRs ex vivo using flow cytometry.  

 

4.4.5 Assessment of MP cell TLR expression in vivo 

Intestinal macrophages occupy a unique niche in the GI tract by demonstrating an anergy to 

TLR ligands incumbent to their tolerogenic phenotype and role in negating damaging host 

response to the commensal microbiota (51). We thus considered whether PRR and, in 

particular, TLRs were dysregulated in Mbd2-/- MP cells that might contribute to the increased 

myeloid inflammatory response in experimental colitis. Colon LP cells from Mbd2-/- or WT 

DSS treated (Figure 4.11A) or control mice were isolated and analysed by flow cytometry for 

TLR 2,3,4 and 9. In keeping with published data, colon monocytes were overwhelmingly 

positive for TLR2, 4 and 9, with macrophages demonstrating lower levels for these 

receptors, in both naïve and DSS treated settings (51) (Figure 4.11A). There were however 

no significant differences between Mbd2-/- and WT MP either in the steady state or in DSS 

colitis for TLRs as assessed by gene expression for TLR transcript or by flow cytometry for 

detected protein. Indeed the significant changes in TLR 2 and TLR4 protein seen between 
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monocytes and macrophage populations independent of genotype were not reflected in 

significant change in Tlr2/Tlr4 gene transcript.  

 

4.4.6 Assessment of MP cell co-stimulatory molecule expression in vivo 

CD40 is a 48kDa transmembrane glycoprotein that is a member of the TNF receptor 

superfamily (TNFRSF) (394). CD40 signaling in APCs induces upregulation of MHC II and 

co-stimulatory molecules CD80/CD86, and is used to distinguish between inactivated and 

activated DCs the end result leading to production of cytokines such as IL-12p40 and IL-6. 

Indeed Cd40-/- mice or WT mice treated with a CD40-CD40L inhibitor, treated with DSS 

develop attenuated colitis compared to controls, characterized by a reduction in colon 

leucocyte recruitment.  We therefore looked to assess whether Mbd2 deficiency in colon LP 

APCs conferred an increased surface expression of the cell markers (Table 4.12). 

Interestingly, in keeping with the increased level of inflammation seen in Mbd2-/- DSS treated 

mice, all Mbd2 deficient colon LP MP cells examined displayed significantly greater CD40 

expression as assessed by MFI (Table 4.12). In addition, all Mbd2 deficient colon LP MP 

cells, except CD11b- CD103+ DCs, displayed significantly greater CD40 expression in the 

steady state. However there was once again a discrepancy between gene expression and 

observed protein, in that Cd40 differences were not significant in colon LP macrophages and 

CD11b- DCs between Mbd2-/- and WT DSS treated mice.  

 

To understand whether increased CD40 on CD11c+ cells was dependent on Mbd2 deficiency 

in these cells alone, we performed the above analysis of CD40 expression on CD11cΔMbd2 

colon LP cells and controls (Table 4.12). Interestingly in the absence of other Mbd2 deficient 

cell types, the increased CD40 expression was abrogated. This suggested that non-CD11c+ 

cell sources of Mbd2 are required to increase surface activation of DCs and macrophages.  
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4.5 Discussion 

In chapter 4 we have identified the importance of haematopoetic Mbd2 in controlling 

susceptibility to colonic inflammation. We have built upon the work in Chapter 3 that 

demonstrated a marked susceptibility of Mbd2-/- mice to chemical and infectious colitis. In 

order to refine our understanding of the cellular sources of Mbd2 that were important in 

producing this observation, we sought to restrict Mbd2 to specific populations.  

 

4.5.1 Haematopoietic sources of Mbd2 and susceptibility to intestinal inflammation 

Firstly, using single BM chimeras, we restricted Mbd2 deficiency to haematopoetic cells and 

observed an increased susceptibility of these mice to DSS colitis. This was characterised by 

increased weight loss, symptom score histological severity score and neutrophil 

accumulation in the colon LP. There was a less severe phenotype in these DSS treated 

chimeric mice compared to Mbd2-/- animals (Weight loss 6.1 3.0 versus 16.32 1.2 % 

change in starting weight, histology score 10.3 2.2 versus 14.6! 3.6, CD45.1Mbd2-/- chimeric 

versus Mbd2-/- day 6 DSS treated mice respectively). Clearly to control for inter-experimental 

variation both these animals should be synchronously exposed to DSS and monitored for 

treatment effect.  Unfortunately, there were no DSS treated global Mbd2-/- mice or global 

Mbd2-/- irradiated host/Mbd2-/- BM reconstituted, control components to this experiment. This 

was considered in the experimental design as it would have served as a comparison for the 

severity of the phenotype observed in the chimeric mice, and in addition would have 

controlled for the effect of irradiation and antibiotic treatment on inflammation severity. 

However, as noted in Table 2.1 Mbd2-/- mice are maintained as a heterozygous line due to 

poor breeding, with a less than Mendelian yield of Mbd2-/- offspring. This meant the requisite 

number of Mbd2-/- mice for Mbd2-/- recipient chimeric controls was prohibitively large to 

undertake this experiment. 

 

Consistent with best practice in our animal facility, mice were treated with the oral 

fluroquinolone antibiotic enrofloxacin from weeks minus 1 to 4 relative to irradiation, to 

minimise the risk of opportunistic infection in the bone marrow reconstitution period. 

Concurrent antibiotic use with DSS has been shown to increase severity of inflammation, 

consistent with the key role of host commensal microbiota in limiting disease severity in this 

model (356). Similarly pre-administration with antibiotics immediately followed by DSS 

treatment has been shown to increase susceptibility to colonic inflammation in a MYD88 

dependent manner (162). For these reasons, there was a 5-week washout period between 

cessation of the above prophylactic antibiotics and the commencement of DSS to permit 

commensal recolonisation.  
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One must be mindful that in the process of generating these chimeric animals, they have 

undergone a) lethal irradiation and b) broad-spectrum antimicrobial treatment, which one 

could argue may have irrevocably altered their subsequent response to inflammatory 

challenge. For example 10-12Gy murine irradiation results in extensive p53 mediated crypt 

shortening, followed by a burst of proliferation in remaining cells and increased MHC-I and –

II expression (395), (396). Whether this perturbation affects future response to, or handling 

of, the commensal microbiota is not well described. Whilst this experiment was not designed 

to compare DSS treated CD45.1Mbd2-/- chimeras versus Mbd2-/- animals, and accepting the 

other above limitations, whilst we have observed an increased pre-disposition of CD45.1Mbd2-

/- chimeras to DSS mediated inflammation, this did not recapitulate the severe phenotype 

seen in Mbd2-/- mice.  Overall these data support a partial role for Mbd2 deficient 

haematopoietic lineage cells in controlling the increased predisposition to colonic 

inflammation seen in global Mbd2-/- mice, but highlight that non-haematopoietic sources of 

Mbd2 may also confer increased susceptibility.  

 

We therefore sought to understand in Chapter 4 the haematopoietic sources of Mbd2 that 

could be important. There is strong literature support for a dominant role of monocytes in the 

pathogenesis in the DSS model (47), (43). We therefore hypothesised that Mbd2 was acting 

in WT mice to limit damaging monocyte driven inflammation, and thus explain the increased 

susceptibility of CD45.1Mbd2-/- BM chimeras to DSS colitis described in Figure 4.1 and 4.2.  

 

4.5.2 The role of Mbd2 in monocytes  

Mbd2 deficient blood or colon LP monocytes from Mbd2-/- DSS treated or na ve mice 

demonstrated equivalent levels of pro-inflammatory cytokines when cultured ex vivo in 

isolation (colon) or with TLR ligands (blood). Interestingly, DSS treatment conferred 

increased IL-1β and IL-6 production from TLR stimulated blood monocytes independent of 

genotype. Whilst it is known that monocyte recruitment is in part CCL2/CCR2 dependent, 

and may depend on type-1 IFN and TLR dependent egress of monocytes from bone 

marrow, activation signals to circulating monocytes are poorly understood (397), (47).  

These data suggest that blood monocytes may receive currently undefined pro-inflammatory 

priming signals from distant inflamed tissue sites; perhaps to permit rapid response either 

locally e.g. to disseminated septiceamia, or once successfully migrated to sites of 

inflammation. Indeed it has recently been shown that monocytes may be pre-emptively 

educated during development based on their micro-environment to promote tissue specific 

function; during acute gastrointestinal infection with T. gondii NK cell derived IFN-γ promoted 

a regulatory program in monocyte progenitors that occurred before bone marrow egress or 

systemic inflammation (398).  
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In addition we undertook gene expression profiling of purified DSS treated colon LP 

monocytes to further understand Mbd2 mediated changes in other monocyte-inflammatory 

pathways such as recruitment, pattern recognition and bacterial handling (Figure 4.4A and 

4.10C).  

  

4.5.2.1 Key differences in Mbd2 deficient monocyte gene expression during DSS 
Lyz1 (Lyz1 LogFC +1.8) encodes a lysozyme enzyme, which is a bacterolytic enzyme 

present in phagolysosomes that displays activity against gram negative and positive bacteria 

(357). Indeed lysozyme was discovered by Alexander Fleming in 1921 during a search for 

medical antibiotics, functioning by damaging bacterial cell walls via hydrolysis of 

peptidoglycan residues (399). Lysozyme is found upregulated in the inflamed GI tract in 

conditions such as IBD, coeliac disease and collagaenous colitis, suggesting that the 

bacterial flora plays an important role in its expression (358), (359). Indeed lysozyme 

production is increased in patients with active colonic IBD, increases postulated to provide 

enhanced mucosal protection against proliferating pathogenic bacteria (357). Increased LYZ 

presence in Mbd2-/- monocytes could therefore be postulated to be a compensatory 

mechanism to the increased inflammation mediated microbial burden seen in Mbd2-/- DSS 

treated mice. To test this hypothesis future work could encompass measuring serum 

lysozyme before and during the induction of colitis to ascertain the kinetics of its expression 

(serum lysozyme has been shown to be a biomarker for monocyte/macrophage activity in 

rheumatoid arthritis) (400), or indeed we could purify monocytes using FACS during colitis 

from our mixed BM chimera mice and compare Lyz1 expression i.e. we would have Mbd2 

deficient and sufficient monocytes from the same inflammatory system. Lastly, to ensure that 

Mbd2 does not affect post-transcriptional modification of Lyz1 to render it less efficient at 

cleaving bacterial proteins (with compensatory increased levels of expression in Mbd2 

deficient cells) we could assess LYZ1 structure and function in Mbd2 deficient and sufficient 

monocytes.  

 

Apoc1 (Apoc1 LogFC +1.6) encodes the apolipoprotein C1 (APOC1), which plays a pivotal 

role in lipid metabolism and monocyte-macrophage differentiation, and was significantly 

upregulated in Mbd2-/- monocytes. Apolipoprotein functions in metabolic processes have 

consistently been found to be one of the most upregulated pathways in the macrophage 

differentiation process, and this is mirrored in our dataset (401). Modified lipoproteins such 

as APOC1 are thought to bind scavenger receptors including FCLRS and SCARB1-3, 

facilitating their function consistent with the role of macrophages in avid clearance and 

uptake of pathogens and apoptotic cells (360). The presence of upregulated metabolic and 

cell cycle pathways in Mbd2-/- monocytes could be hypothesised to suggest an increased 

ability to traverse the macrophage differentiation 'waterfall' via increases in turnover and 

proliferation. It could also be hypothesised that Mbd2-/- monocytes are recruited earlier to 
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inflamed tissue sites and that, at a given time point, Mbd2-/- monocytes may be at a later 

differentiation stage than WT counterparts. 

 

Identified as an LPS-inducible gene in macrophages, immunoresponsive gene 1 (Irg1) (Irg1 

LogFC +1.6) encodes a highly conserved enzyme which catabolises short chain fatty acids 

(361). IRG1 localises to mitochondria, is rapidly induced within macrophages on bacterial 

infection and is required by mitochondria to use fatty acid substrates in the formation of 

reactive oxygen species (ROS) and thus effective bacteriocidal activity (362). Irg1 therefore 

represents a key component of the immunometabolic axis connecting infection, macrophage 

function and the increased lipid metabolic pathways seen in monocyte-macrophage 

differentiation (402). The presence of upregulated Irg1 in Mbd2-/- monocytes would be 

consistent with the hypothesis of increased DSS mediated colonic inflammation, barrier 

breakdown and thus bacterial infiltration seen in Mbd2-/- mice.  

 

The Reg protein family is a group of small secretory proteins classified within the lectin super 

family (403). REG3B (also known as pancreatitis associated protein1 (PAP1)) (Reg3b 

LogFC +1.4), is overexpressed in intestinal tissues during inflammation and is found at 

elevated levels in patients with active IBD and in experimental models of colitis (363). It is 

believed to have anti-inflammatory properties, reducing pro-inflammatory cytokine release in 

a dose-dependent manner from epithelial and monocyte cells in part by preventing TNF 

induced NF-κB activation (363). Similarly, serum REG3B levels in IBD patients correlate with 

clinical and endoscopic assessment of disease severity (404). Thus one could hypothesise 

that elevated monocyte Reg3b levels in Mbd2-/- monocytes may reflect a compensatory anti-

inflammatory control mechanism to counter the vigorous colonic inflammation seen in Mbd2-

/- mice. To test this hypothesis, we could assess the level of Reg3b expression in steady 

state WT and Mbd2-/- monocytes, to confirm that Mbd2 deficient monocytes are not pre-

programmed to have anti-inflammatory tendencies. Similarly a time-course of Reg3b 

monocyte expression, or serum REG3B during DSS colitis might help confirm the dynamics 

of inflammation v compensatory mechanisms in the absence of Mbd2.  

 

Complement component C4 is a large glycoprotein that serves as a opsonin and anchor for 

the proteases of the classical and lectin complement pathways (364). C4a (C4a LogFC +1.5) 

is an anaphlyatoxin that can trigger smooth muscle contraction, increased capillary 

permeability and chemotaxis of leucocytes in the direction of increasing concentration (364). 

C4b (C4b LogFC +1.3) covalently binds to pathogens, thereafter forming part of the C3-

convertase complex, which catalyses the proteolytic cleavage of C3 into C3a and C3b and 

the eventual formation of the membrane attack complex via C5, 6,7,8 (364). Serum C4 

levels are increased in patients with active IBD (365). Increased Mbd2-/- monocyte C4 

expression would be in keeping with increased complement mediated binding to infiltrating 
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pathogens or commensals to control and contain bacterial invasion in a DSS-induced 

barrier-deficient environment. To test the hypothesis that Mbd2 deficient monocytes have the 

same ability to use complement to control invading pathogens, and that increased monocyte 

C4a and C4b in these cells is secondary to an increased bacterial exposure, we propose to 

culture naïve Mbd2 deficient and sufficient monocytes with a known concentration of luminal 

commensals from WT or Mbd2-/- mice and assess C4a/b expression. This would also have 

the benefit of comparing whether the composition of Mbd2-/- intestinal commensals have an 

increased pro-inflammatory effect on the innate immune system compared to WT microbiota.    

 

Mucosa-associated lymphoid tissue (MALT) (Malt LogFC-1.0) lymphoma translocation 

protein 1 (MALT1) is an intracellular NF-κB activator that is involved in human MALT 

lymphoma tumorigenesis via constitutive NF-κB activation (366). This constitutive activation 

induced by translocation provides both anti-apoptotic and proliferative signals. MALT1 is also 

a paracaspase which is able to cleave roquin1,2 and regnase-1, all of which are able to 

negatively regulate pro-inflammatory cytokine mRNA including Il6, Tnf, Icos and Tnfrsf4 by 

reducing their respective half lives (367). In addition Malt1-/- mice are resistant to 

experimentally induced autoimmune encephalitis (405). Thus the reduced Malt1 expression 

seen in Mbd2-/- monocytes would be hypothesised to reduce NF-κB activation and 

expression of pro-inflammatory mediators, consistent with an anti-inflammatory control 

mechanism to counter the vigorous inflammatory environment seen in Mbd2-/- DSS mediated 

colonic inflammation. We therefore hypothesise that Mbd2-/- mice have an earlier onset of 

inflammation during DSS colitis than WT mice. This would be supported by the data in 

Figure 3.6B and C which show an increased weight loss and symptom score from day4. To 

pursue this in more depth however, we propose to measure monocyte Malt1 expression 

earlier in the disease model, and would hypothesise that expression in Mbd2 deficient cells 

is greater at earlier time points compared to WT to permit a robust response to invading 

pathogens, before being switched off in an attempt to limit pathological, damaging 

inflammation.  

 

Fc receptor-like S, scavenger receptor (FCRLS, formerly known as macrophage scavenger 

receptor 2 (MSR2)) (Fclrs LogFC-1.0), is a poorly described transmembrane surface protein 

with scavenger receptor (SR) and immunoglobulin domains. FCRLS has been shown to be 

upregulated on the surface of tumour associated macrophages (TAM), but its precise 

functional role is unknown (368). The SR family however has been shown to have diverse 

roles, including in the innate immune response, cellular adhesion and phagocytosis of 

apoptotic cells, in addition to lipid uptake. MSR1 is the best-described scavenger receptor, 

with critical roles in phagocytosis and bacterial clearance (406). MSR1 and FCLRS share the 

same Cys-rich scavenger receptor domain (smart00202). MSR1 deficient mice are more 

susceptible to intraperitoneal infection with S. aureus, poorly clearing bacteria from the site 
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of infection and eventually succumbing to disseminated sepsis (407). Similarly MSR1 

deficient macrophages are unable to effectively phagocytose gram positive bacteria despite 

normal phagocytosis machinery (407). Monocytes are generally thought to play a limited role 

in phagocytosis, though clearly downregulation of SR in Mbd2-/- macrophage intermediaries 

could be hypothesised to decrease bacterial clearance, propagating inflammatory response. 

To test this hypothesis, we propose to assess the ability of Mbd2 deficient monocytes to 

phagocytose pathogen in comparison to WT. For example, we could assess the monocyte 

uptake of phRodo E. Coli bioparticles by flow cytometry, which fluoresce after uptake into 

phagolysosomes.  

 

However, as suggested by the absence of significant genes that were logFC>2 there were 

not striking differences between the datasets. In particular there was no significant difference 

in the expression of pro-inflammatory cytokines (IL-1β, TNF, IL-6, IL-12, IL-15, IL-18, iNOS, 

ROS), chemokines (CXCL9, CCR1, CCR2, CCR5), pattern recognition receptors (TLR2, 3, 

4, 9), or adhesion molecules (CD62L, CD11b, ICAM1). 

 

4.5.2.2 The role of Mbd2 in monocytes using mixed BM chimeras 

Given the increased severity of inflammation seen in the Mbd2-/- mice and upregulated 

bacteriocidal pathways seen in Mbd2 deficient monocytes, we sought to control for inter-

mouse variation in inflammation by combining Mbd2 deficient/sufficient monocytes within the 

same organism, using mixed BM chimeras. Once again this demonstrated equivalent pro-

inflammatory cytokine producing abilities irrespective of Mbd2 sufficiency or deficiency. 

Clearly we cannot exclude the possibility that Mbd2 sufficient cells, particularly residual 

radio-resistant host cells or WT transferred cells, in these mixed BM chimeras were 

modulating Mbd2 deficient cell types, particularly monocytes, to an ameliorated phenotype. 

To explore this possibility we would seek in future work to perform non-chimeric experiments 

to test the role of Mbd2 in monocytes. This would overcome the issue, albeit low, of 

radioresistant cells and could include the use of monoclonal antibodies to deplete monocytes 

in vivo during intestinal inflammation to address the relative contribution of Mbd2 versus WT 

monocytes in driving inflammation. Similarly we could purify monocytes from WT or Mbd2-/- 

mice and administer them to WT mice during DSS mediated inflammation to address if Mbd2 

deficient monocytes are delivered into a system that lacks any other Mbd2 deficient cell 

types, they can mediate increased susceptibility to colitis. Lastly if administration of WT or 

Mbd2-/- monocytes is performed at different time points one could discern whether a critical 

mass of inflammation is required early in the DSS time course that results in the inherent 

control mechanisms, or ‘brakes’ on the inflammatory cascade being irrevocably removed, 

and thus explain why anti-inflammatory genes are upregulated in Mbd2 deficient 

macrophages (Figure 4.10A).   
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One of the most striking findings derived from the production of mixed BM chimeras, was the 

out competition of Mbd2-/- BM by WT in producing differentiated progeny 8weeks post re-

constitution. Epigenetic changes are crucial in haematopoiesis as they regulate the 

successive gene expression programmes that give rise to all immune cell populations (408). 

Investigation into the participation of epigenetic events in haematopoiesis has revealed that 

both DNA and histone modifications are important in this process (408). For instance, the 

ablation of Hdac1 and Hdac2 in mouse bone marrow progenitor cells impedes the 

development of erythrocytes and megakaryocytes (409). In addition mice with reduced 

DNMT1 activity have a myeloerythroid bias, unable to develop lymphoid progeny (410). 

Given that Mbd2-/- mice display comparable development of terminally differentiated 

haematopoietic cells compared to WT in steady state tissues, it is conceivable that Mbd2 

deficiency renders the differentiation of HSC into myeloid progenitors less efficient, such that 

they are outcompeted in the presence of Mbd2 sufficient stem cells. To test this hypothesis 

we could raise short interfering RNAs (siRNAs) to MBD2 mRNA, and expose HSC from WT 

mice in vitro to MBD2 siRNA or control, assessing for effect on HSC development in 

particular the ability to generate differentiated progeny. We could interrogate this further by 

adding siRNA at defined time points to ascertain at what point in the differentiation pathway 

MBD2 is exerting its effects.  

 

Gene expression analysis of Mbd2-/- monocytes isolated from the site of inflammation 

revealed a subtly more pro-inflammatory signature, with increased expression of 

bacteriocidal genes (C4a, Irg1, Lyz1) and compensatory promotion of anti-inflammatory 

pathways (Reg3b, Malt1). This initially appeared counter-intuitive, that anti-inflammatory 

pathways were upregulated in the presence of a marked pro-inflammatory environment. We 

concluded therefore that the kinetics of inflammatory gene expression were important in this 

model, whereby had we sampled monocytes earlier in inflammation e.g. day 3, the dominant 

pathway may have been a pro-inflammatory, pro-antigen response mediated mechanism, 

and that compensatory anti-inflammatory genes are only expressed later in disease course 

(Diagram 4.1).  

 

We also observed that a monocyte maturation marker (ApoC1) associated with macrophage 

differentiation was increased in Mbd2 deficient monocytes, though this was not associated 

with changes in monocyte proliferation. Indeed monocyte egress to the inflamed colon was 

equivalent when both Mbd2-/- and WT populations were present in the same model. We 

therefore suggest that colon LP monocyte recruitment is a marker of the increased 

inflammatory burden in DSS colitis, and hypothesise that other Mbd2 deficient cell types in 

Mbd2-/- DSS treated mice are precipitating an earlier monocyte recruitment to the inflamed 

colon.  
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Diagram 4.1 

 
4.5.3 The role of Mbd2 in CD11c expressing cells 

Given the known role of CD11c expressing cells in DSS colitis, and Mbd2 in DC function, we 

sought to understand the role of Mbd2 expression in CD11c+ cells during colonic 

inflammation (355), (354), (318). First, we confirmed the relative abundance and composition 

of CD11c expressing cells, noting that >75% of this population was composed of 

macrophages and DC subsets (Figure 4.7A). Second, we confirmed that in a Cre-flox 

system of CD11c specific Mbd2 deletion, transcript levels from purified colon LP myeloid 

subsets demonstrated appropriate knock down in CD11c expressing cells to over 85% 

compared to CD11c-Cre- controls.  Interestingly we did not see a reduced number of CD11b+ 

CD103+ DCs in CD11c+ cell deletion of Mbd2. Referring to our early hypothesis in Chapter 

3.11 of 2 possible hypotheses for intestinal specific depletion of Mbd2 deficient CD11b+ 

CD103+ DCs; 1) that Mbd2 is required for appropriate DC development that occurs after pre-

cDC differentiation or 2) that Mbd2 is required for surivival and/or conditioning of resident 

CD11b+ CD103+ DCs in the intestine, we can now refine this hypothesis. Namely appropriate 

development of CD11b+ CD103+ DCs in CD11cΔMbd2 but not chimeric or Mbd2-/- animals 

would suggest it is less likely that Mbd2 is intrinsically required as a survival factor in CD11b+ 

CD103+ DCs. It is perhaps more likely that Mbd2 deficiency in other haematopoietic cells is 

required for impaired CD11b+ CD103+ DC development in chimeric or Mbd2-/- mice, or indeed 

that Mbd2 is required for appropriate development after pre-cDC differentiation but before 

CD11c expression in a currently unknown DC precursor specific to CD11b+ CD103+ DCs.  
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Proposed kinetics of pro- and anti- inflammatory pathways in DSS coltiis
To explain the increased pro- and anti- inflammatory pathways in Day6 DSS treated 
Mbd2-/- versus WT mice we propose the above hypothetical response to intestinal inflam-
mation. We suggest that pro-inflammatory response is earlier and greater in Mbd2-/- mice, 
expemplifed by greater weight loss at earlier time points in the disease model (Figure 
3.4). This triggers anti-inflammatory control mechanisms at an earlier stage in Mbd2-/- 

mice after reaching tissue limits for physiological infammation. Thus at our observed time 
point, day 6, both pro- and anti- inflammatory mechanisms can be seen to be increased 
in Mbd2-/- mice
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We then observed that CD11c restricted deficiency in Mbd2 resulted in an increased 

susceptibility to DSS mediated colonic inflammation, characterised by increased weight loss, 

symptom and histology scores, neutrophil and monocyte accumulation with an increased 

proportion of TNF+ neutrophils and IL-1 /TNF+ monocytes. Gene expression analyses of the 

2 largest CD11c expressing colon LP populations (macrophages and CD11b- DCs) revealed 

macrophage Mbd2 deficiency conferred increased expression of bacteriocidal, pro-

inflammatory and anti-inflammatory genes consistent with an ability of these cells to have 

dual roles in tolerance and pathogen response (Figure 4.10A and Table 4.8).  

 

4.5.3.1 Key differences in Mbd2 deficient macrophage gene expression during DSS 

The IL-1 family consists of eleven proteins, which are further organised into 3 subfamilies. 

IL-1α and IL-1β are the major IL-1 agonists and have been long recognised as integral 

components of innate immune processes (369). As such they are implicated in the 

pathogenesis of several inflammatory diseases, with high levels of IL-1 expression 

corresponding to disease activity in the colons of IBD patients (370), (371). There are 3 

approved IL-1 axis blocking treatments in clinical trials. Anakinra, an IL-1R anatagonist 

blocking IL-1α/β activity, Rilonacept, a soluble IL-1-decoy receptor and Canakinumab, a 

neutralising monoclonal anti-IL-1β antibody (411). IL-1α (Il1a LogFC+1.8) is a preformed 

intracellular precursor that can translocate to the nucleus upon inflammatory stimuli to 

control gene expression, proliferation and differentiation (369). Bersudsky et al. have 

recently reported the importance of IL-1α in exacerbating colonic inflammation as mice with 

global (Il1a-/-) or epithelial specific (Villin-Cre+ Il1afl/fl) removal of IL-1α displayed a less severe 

epithelial driven response to DSS (412). However the same study reported IL-1α co-staining 

with MPO+ cells in acute colitis and notably WT BM transplanted into Il1a-/- irradiated mice 

had the same severity of colitis as WT BM transplanted into WT mice, suggesting a 

conflicting role for IL-1α sources, that includes haematopoietic cells.  

 

Indoleamine 2,3 dioxygenase (IDO1) (Ido1 LogFC+1.1) is the first and rate-limiting step in 

tryptophan catabolism along the kynurenine pathway (375). Kynurenine metabolites act to 

promote T cell tolerance and exert antimicrobial effects that are attributed to IDO1 activity. In 

the steady state GI tract expression of IDO1 is low and occurs predominately within LP cells 

(413). IDO1 expression is stimulated by TNF, IFN-γ and IL-1β and is one of the most highly 

upregulated genes in human IBD and animal models of colitis (376), (377). GI tract APCs, 

notably CD103+ DCs, have been shown to demonstrate potent, IDO1 dependent 

suppressive effects on T cell proliferation mediated by Treg induction and by limiting 

Th1/Th17 differentiation (414). Indeed Ido1-/- exhibit greater colitis in a model of graft versus 

host disease, with TLR7/8 agonist mediated increases in APC sources of IDO1, limiting 

colon injury in the same model (415). Thus one would hypothesise increased Ido1 

expression from Mbd2 deficient macrophages is another mechanism for limiting intestinal 
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inflammation in Mbd2-/- colitic mice. To test this hypothesis, we propose culturing day6 Mbd2 

deficient and sufficient macrophages with naïve T cells, to confirm that increased Mbd2 

deficient macrophage sources of Ido1 can inhibit T cell proliferation, particularly the 

development of Th1/Th17 cells. In addition we propose an assessment of colon LP 

macrophages sources of Ido1 in Mbd2 deficient and sufficient animals earlier in the DSS 

inflammation model, to confirm that Ido1 is switched on earlier in Mbd2-/- to mirror earlier 

onset of inflammation, rather than constitutive activation.  

 

Resistin-like molecule (RELM) α (Retnla LogFC-1.1) belongs to a family of secreted 

mammalian proteins with putative immunomodulatory properties (416). RELM-α is 

upregulated in several infectious and inflammatory settings including helminth infection, 

allergic airway inflammation and colitis (378), (379). RELM-α administration promotes 

immune cell activation, pro-inflammatory chemokine and cytokine expression in DSS treated 

mice (379).  In addition, Retnla-/- mice demonstrate less severe DSS and C. rodentium 

induced colonic pathology that has been suggested to be a result of reduced IL-23p19 

expression from RELM-α deficient macrophages (380). Taken together, reduced expression 

of Retnla by Mbd2-/- macrophages in the context of severe intestinal inflammation would be 

hypothesised as a limiting mechanism to further damaging inflammation.  To test this 

hypothesis, as discussed above we could once again assess for expression of Retnla during 

the induction of intestinal inflammation, to confirm increased levels in Mbd2-/- earlier in the 

proposed pure pro-inflammatory stage of disease. Similarly to confirm that decreased pro-

inflammatory response in Mbd2 deficient macrophages is indeed a secondary response 

rather than a constitutive one, we propose to purify naïve colon LP macrophages from Mbd2-

/- and WT mice, culturing them ex vivo with bacterial products to confirm or refute an 

equivalent ability to uptake, process and respond to antigenic challenge.  

 

Triggering receptor expressed on myeloid cells (TREM-2) (Trem2 LogFC-0.99) is a surface 

receptor found on macrophages, DCs and microglia that binds motifs on bacteria and yeasts 

(417), (381). TREM-2 is expressed at higher levels on CD11c+ LP cells isolated from patients 

with active IBD and mice with experimental colitis versus controls suggesting myeloid 

sources of TREM-2 are important in regulating inflammation (382). Indeed Trem2-/- are 

protected from DSS colitis with Trem2 deficient CD11c+ cells demonstrating reduced pro-

inflammatory cytokine production, bacterial killing and T cell activation abilities (382). In 

addition administration of a TREM-1 agonist ameliorates DSS colitis and decreases TNF, IL-

6 and IL-1β production from CD11c+ cultured cells (418). However it has also been shown 

that TREM-2 blockade with mAb impairs apoptosis in microglial cells via a reduced 

interaction with TREM-2 ligands on apoptotic neurons leading to reduced neuronal healing 

(419). Similarly Trem2-/- display reduced wound healing, epithelial proliferation and increased 

M1 macrophage infiltrate (420). It is similarly not understood why increased expression of 
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TREM2 is found in IBD patients if it is indeed a pro-inflammatory mediator. To explore the 

role of TREM2 in DSS colitis further therefore, we would propose to use TREM-2 mAb to 

block TREM-2 downstream effects in WT mice in acute and chronic models of DSS colitis, to 

confirm firstly the results of Correale et al. in ameliorating acute colitis, and thereafter in the 

chronic phase of DSS ingestion its putative role in intestinal wound healing (382).  

 
4.5.3.2 Increased pro- and anti- inflammatory pathways in DSS colitis, possible 

explanations and relation to the literature 

The combination again of both pro- and anti-inflammatory gene dysregulation led us to 

speculate that in the context of severe disease pathology in Mbd2-/- DSS treated mice that a 

complex feedback mechanism may exist (Diagram 4.1). Reduced Mbd2-/- Retnla and Trem2 

macrophage expression for example would be expected to result in ameliorated macrophage 

response by limiting pro-inflammatory cytokine secretion, however increased Il1a should 

favour an increasing inflammation response by promoting further cytokine release. We 

speculate this dichotomous response likely represents a compensatory mechanism to limit 

overwhelming inflammation that is secondary to altered kinetics of immune response in 

Mbd2-/- mice. We suggest that due to an earlier onset of inflammation, precipitated perhaps 

by increased barrier dysfunction to DSS, that the role of pro-inflammatory mediators such as 

Retnla occurs at an earlier timepoint, and this reverses once the inflammatory response 

exceeds a given level and itself becomes pathological. Indeed initial inflammatory response 

is a necessary physiological response to protect the host, a response that must be mitigated 

by resolution of inflammation using anti-inflammatory and pro-resolution pathways (421). 

Inability to resolve inflammation is thought to be one of the key drivers for critical illness, the 

leading cause for admission to intensive care units, irrespective of the initial cause for 

inflammation (422), (423), (421).  Decision fates after acute inflammation depend on 

appropriate class switch of pro-inflammatory eicosanoid mediators such as leukotriene B4 to 

pro-resolution lipid mediators such as lipoxins, resolvins and protectins that promote a return 

to homeostasis versus chronic inflammatory response (424). We therefore consider 3 

different explanations: that increased pro- and anti- inflammatory gene expression in Mbd2 

deficient populations represents an ongoing exposure to the initial inflammatory insult 

mediated by 1) an inability to appropriately clear the influx of antigenic commensals or 2) 

because the initial inflammatory insult is much greater and more rapidly converted from local 

to systemic inflammation due to a primary defect in appropriate host response, namely 

defects in barrier function or lastly 3) that this imbalance represents a failure of pro-

resolution mediators to overcome the level of inflammation in Mbd2-/-  mice that favour a 

chronic inflammatory state.  

 

Interestingly, a novel gene (Fclrs) with scavenger receptor domains not previously known to 

be important in macrophage function was significantly down regulated, in Mbd2 deficient 
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macrophages suggesting Mbd2 may promote bacterial uptake and/or processing by colon 

LP macrophages that may also explain the increased susceptibility of CD11cΔMbd2!mice to 

DSS colitis. To test this hypothesis we would need to perform assays of phagocytosis and/or 

bacterial persistence and this may form the basis of future work. As mentioned above, we 

would propose to investigate this via assays of phagocytosis, pinocytosis and macro-

pinocytosis using E. coli bioparticles, FITC and DQ-OVA labelled beads in ex vivo culture of 

naïve and DSS treated Mbd2 versus WT colon LP macrophages.  

 

Taken together, colon LP Mbd2 deficient macrophages in DSS colitis displayed differentially 

expressed genes that would be hypothesised to dampen damaging inflammation, with 

increased expression of anti-inflammatory mediators (Il1a, Tgfbi, Reg3b, Reg3g) and 

decreased pro-inflammatory response mechanisms (Retnla, Trem2, Ido1). However, in 

keeping with the dual role of GI tract macrophages, bacteriocidal pathways were also 

upregulated in Mbd2 deficiency (Lyz1, Irg1) consistent with previous literature supporting 

combined tolerogenic and pro-inflammatory capabilities (51). An unexpected finding was the 

reduction of the scavenger receptor Fclrs. This poorly described scavenger receptor has no 

previous documented function in macrophage function. However given deficiency in other 

scavenger receptors, notably MSR1 confers up to a 50% reduction in macrophage 

phagocytic ability, one would hypothesise other scavenger receptor dysregulation could 

confer altered bacterial handling abilities, resulting in pathogen persistence. 

 

4.5.3.3 Key differences in Mbd2 deficient CD11b- DC gene expression during DSS 

Janus kinase-2 (JAK2) (Jak2 LogFC-0.97) is an important component of the IL-12 and IL-23 

signaling pathway (388). It is thought to bind to membrane bound IL-23R and IL-12Rβ2 

components in response to the p35 and p19 subunits of IL-12 and IL-23 respectively (388). 

Subsequent phosphorylation steps of STAT 1,3,4,5 eventually lead to STAT4 mediated 

changes in gene expression, particularly Th17 differentiation (389). Polymorphisms in JAK2 

and other components of the IL-23 signaling pathway (Il23r, Il12 and Stat3) have been 

identified as risk susceptibility loci for both CD and UC (308). Whilst it is not understood how 

these loci confer their increased risk in man, it has been shown that IL-23 production from 

murine LP CD11b+ DCs induces production of the antimicrobial peptide REG3G in an IL-22 

dependent manner, suggesting that aberrant IL-23 signaling may impair barrier function 

(346). However IL-23 has also been suggested to have a pro-inflammatory role in innate and 

T cell models of colitis.  Administration of anti-IL-23p19 treatment reduced pathology in a H. 

hepaticus model of intestinal inflammation and, similarly, mice incapable of producing p19 

were less susceptible to a well-established T-cell dependent model of colitis, with ROR-γt+ 

ILC3 suggested as the IL-23 responsive pro-inflammatory cell mediating this effect (96), 

(195). Aberrant IL-23 signaling in Mbd2-/- CD11b- DCs could therefore be hypothesised to 
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confer pro- or anti-inflammatory changes based on Th17 differentiation, ILC function or 

epithelial production of antimicrobial peptides.  

 

Leucine-rich repeat kinase 2 (LRRK2) (Lrkk2 LogFC-0.70) is large protein (2527 amino 

acids), with 2 distinct enzymatic domains, although its precise physiological function is 

unknown (390). It has been identified as a risk susceptibility locus for CD, leprosy and is the 

most common genetic cause for familial and sporadic Parkinsons disease (425). Alterations 

in autophagy have been proposed as potential pathogenic mechanisms in all 3 disorders 

(425). LRRK2 is known to associate with autophagy proteins p62 and LC3, is expressed 

preferentially by LP leucocytes, and is found to be upregulated in inflamed CD colonic biopsy 

specimens, with LRRK2-deficient mice been shown to have poorer outcomes in response to 

DSS (391), (392).  Other autophagy genes have been identified as IBD-susceptibility loci 

(ATG16L1, IRGM and NOD2) with macroautophagy of intracellular microbes hypothesised to 

be one of the defining features of CD (308). Thus dysregulated Lrrk2 mediated autophagy in 

Mbd2-/- CD11b- DCs would be hypothesised to perpetuate intracellular pathogens, potentially 

prompting cell death and further inflammatory response. To test this hypothesis, we could 

induce and compare autophagy in naïve ex vivo Mbd2-/- or WT colon LP CD11b- DCs by 

exerting a state of starvation.  By culturing in nutrient rich medium versus control, and using 

immunohistochemistry assessing induction of LC3 or p62, or scanning electron microscopy 

to detect autophagosomes. Lastly we could cross our existing Mbd2-/- mouse with a GFP 

labelled LC3 transgenic mouse, which would permit the direct visualisation of LC3 in a range 

of colon LP cell types ex vivo without the need to perform FACS to purify cells in advance.  

 

4.5.3.4 Activation of CD11c+ cells in Mbd2 deficiency 

The data presented in Table 4.12 suggested that Mbd2 deficient DCs and macrophages 

displayed higher levels of surface CD40 in DSS colitis and also in the steady state. In 

addition levels of CD80 on all DSS treated colon LP MP cells (except CD11b- CD103+ DCs), 

and in naïve macrophages / CD11b+ CD103+ DCs were higher in Mbd2 deficiency. We 

hypothesise that increased levels of APC CD40 in the steady state and inflamed colon would 

promote pro-inflammatory cytokines release (such as IL-12p40 and IL-6) and further 

leucocyte recruitment (426). Given that CD40/CD80 levels were equivalent to controls in 

CD11c+ cell specific Mbd2 deficiency, this would suggest that non-CD11c+ cell sources of 

Mbd2 are required to increase MP activation phenotype (Table 4.12). IECs have a well 

documented role in antigen presentation to LP APCs, therefore we hypothesise IEC sources 

of Mbd2 may alter the ability of IECs to process and present luminal / dietary antigens to 

colon LP cells, thereby altering their activation and function.  

 

To test this hypothesis, and further address whether increased CD40 in Mbd2 deficient cells 

is a primary (i.e. intrinsic to CD11c+ cells) or secondary (e.g. a byproduct of a more inflamed 
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microenvironment) phenomenon, we could use the CD40-CD40L inhibitor trapidil in naïve 

and DSS treated Mbd2-/- and WT mice. We would propose to assess the response to 

inflammation (e.g. weight loss, pathology score, inflammatory cell recruitment) and function 

of Mbd2 deficient CD11c+ cells (e.g. cytokine release, antigen processing and migration 

capabilities) in a system where CD40 signaling is impaired. Finally we would restrict Mbd2 

deficiency to IECs by generating a VillinCreΔMbd2 mouse, assessing the activation of colon 

LP MPs in the steady state and experimental colitis, thereby addressing a non-CD11c 

source of Mbd2 that might be expected to alter DC/macrophage function.  

 

4.5.4 Caveats to array data and proposed future genomic work 

Whilst microarray data has the advantage of hypothesis-free testing to limit investigator bias 

in understanding the role of key gene expression changes, there are clearly limitations to the 

interpretation of this data. For example, validation of the observed changes in gene 

expression should be performed by correlation to expression assessed by qPCR and then 

continue with assays to measure changes in protein. Similarly it is possible that in the 

analysis of the above array data, we have overlooked important gene expression changes 

due to a) limitation of sensitivity of the array process compared to other techniques, for 

example qPCR and b) an assumption that meaningful changes in cell biology are 

underwritten by large changes in fold expression. This is exemplified by the data presented 

in Figure 4.11, whereby significant differences in protein levels (CD40 and CD80) assessed 

by flow cytometry between Mbd2-/- and controls was not observed in gene expression. This 

underlines the importance of future work to correlate the observed changes in gene/protein 

by analysis of both in tandem, in addition to assessments of post-translational protein 

modification. 

 

Similarly we would look to address the possibility that mRNA alterations do not account for 

the entire phenotype we have observed. For example we have not measured changes in 

miRNAs, non-coding RNAs or pre-stored proteins, all of which may exert an important effect 

on the biology of intestinal inflammation that we have not addressed in these experiments 

thus far. There is an arbitrary limit of fold change that is set by individual investigators being 

deemed as biologically significant, however there is no accepted value for what this level 

might be, underlining the difficulties scientists face in ascribing biological and statistical 

significance. It is similarly conceivable that a multitude of small, yet statistically significant 

changes in a repertoire of key immune-regulatory genes confer together a profound 

biological effect that investigators may overlook by focusing simply on large quantitative 

rather than functional changes in expression.  

 

As can be seen in principal component analysis (Figure 4.10C), whilst displaying a number 

of significantly dysregulated genes, the effect size of each individual gene was small with no 



 143 

candidate genes with known or hypothesised function logFC > 1 between genotypes. As 

such, the overall gene expression differences conferred by Mbd2 deficiency in CD11b- DCs 

was low. Given that DC-dogma would suggest these cells have a dominant role in antigen 

presentation to the adaptive immune system, and that DSS colitis is considered a T cell 

independent model, it is perhaps unsurprising that these cells do not appear to be the 

dominant Mbd2 deficient cell type conferring increased susceptibility to acute colonic 

inflammation. 

 

As noted above, given the rarity of these cell types, it is possible that increasing the number 

of biological replicates would have increased sensitivity of detecting dysregulated genes. 

Similarly, due to the technical limitations of small numbers of the other DC subsets post 

isolation, we have only purified and assessed mRNA expression in CD11b- DCs. Thus, in 

combination with the macrophage data, we have performed expression analysis on 

approximately 65% of CD11c expressing cells, and cannot exclude that the remaining DC 

subsets are the most dysregulated in the absence of Mbd2. Adopting a different 

methodology that is less reliant on cell yield to permit analysis, e.g. single-cell RNAseq or 

laser capture dissection, would be an attractive method to address this. Given the variety of 

antigenic stimuli to APC in the GI tract, it is likely that a single isolated cell may not be 

representative of the entire population, despite recent advances in phenotyping by flow 

cytometry. Indeed a recent review of single cell sequencing technology suggest that 

“hundreds or thousands” of single cells must be analysed so that all representative cell types 

may be observed (427).   

 

RNA-seq offers many additional benefits compared to arrays. For example they permit the 

unbiased detection of novel transcripts. RNA-seq technology does not require species or 

transcript specific probes. It can therefore detect novel transcripts, gene fusions, SNP 

variants and other previously unknown changes that arrays cannot detect, based on their 

reliance on existing probes. There is also a broader dynamic range with RNA-seq 

technology. Array hybridization technology means that gene expression measurement is 

limited by background at the low end and signal saturation at the high end of expression. 

Lastly sequencing coverage depth is increased to detect rare transcripts or weakly 

expressed genes.  

 

It should also be noted that the gene expression analyses were performed from purified 

populations from global Mbd2-/-, not CD11cΔMbd2!mice. Thus whilst we may hypothesise 

the same culprit genes may be dysregulated in both strains, it is possible that Mbd2 

deficiency in other cell types in the global Mbd2-/- mice modulates the mRNA expression 

profiles observed. Quantitative RT-PCR validation of key dysregulated genes identified from 

the global Mbd2-/- microarrays in purified macrophages and DCs from the CD11cΔMbd2!



 144 

mice would be helpful to address this. Taking this a step further, we propose that an 

unselected microarray of all colon LP cells taken at day 0 and day 6 would be helpful in 

discerning the overall balance of gene expression in Mbd2-/- and WT mice. This would also 

have the added benefit of allowing analysis between our existing purified populations and 

the whole tissue, to delineate overlapping and distinct areas of mRNA expression to better 

understand the role of Mbd2 in other cell types and guide future investigation.  
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Diagram 4.2 Proposed mechanisms for Mbd2 mediated changes in haematopoietic 
cells in DSS colitis  
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4.6 Summary 

In the work detailed in this thesis, we have made several interesting observations regarding 

haematopoetic development and Mbd2 deficiency. In Chapter 3 we observed a decrease in 

the abundance of CD11b+CD103+ DCs. In Chapter 4 we similarly observed a decrease in 

this population when Mbd2 deficiency was limited to haematopoetic cells but, in addition, 

CD11b- DCs were found at reduced number when WT radioresistant host cells were present. 

We suggest that whilst CD11b- DCs develop normally in Mbd2-/- mice they are vigorously 

outcompeted when WT counterparts are present, which we speculate is unlikely due to 

intrinsic survival defects given normal levels of differentiated cell types in Mbd2-/- mice, but 

due to defective development from less differentiated progenitors. In support of this, 

CD11cΔMbd2mice showed equivalent proportions and numbers of fully differentiated DCs to 

WT mice, suggesting Mbd2 mediated affects on DC development occur in less differentiated 

precursors. CD11c expression occurs in differentiated DCs, but also in MHC-II- pre-DC 

precursors, but not common lymphoid or myeloid precursor cells. Pre-DCs are a population 

of DC committed precursors present in mouse blood that can fully reconstitute the CD8-, 

CD8+ and plasmacytoid B220+ DC subpopulations after transfer into irradiated recipients 

(428). This would argue that Mbd2 mediated changes in DC differentiation occur at early 

stages of development before CD11c expression occurs, perhaps at the common precursor 

stage.   

 

The most striking changes in DC development, however, were evident in the generation of 

mixed BM chimeras. We observed that equal starting proportions of WT and Mbd2-/- donor 

BM resulted in an absence of Mbd2-/- cells 8 weeks after reconstitution. It was necessary to 

titrate the starting proportion of Mbd2-/- BM to a nine fold excess to overcome this. Despite 

this starting excess, at 8 weeks post reconstitution this ratio had reversed such that WT 

differentiated cells were more now abundant than Mbd2-/- by more than two fold. Given 

starting viability of BM cells was equivalent between genotypes, we hypothesise that Mbd2 

deficiency renders HSC less able to enter lineage specific differentiation pathways, 

particularly given the importance of other epigenetic mechanisms notably in controlling 

differentiation dependent transcription factor function.  

 

Whilst we have used the literature to guide the identification and interrogation of candidate 

haematopoietic cell types important in colonic inflammation it was not possible to analyse all 

cell types. It is therefore possible that there is a role for Mbd2 in regulating additional cell 

types, for example neutrophil, eosinophil or ILC function that we have not accounted for. 

Future work will therefore include the analysis of dysregulated genes identified above in 

monocytes/macrophages and DCs by qPCR, in other purified cell types including eosinophils 

and neutrophils. Similarly the use of in vivo depleting antibodies (such as anti-Ly6G for 
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neutrophil depletion) could be employed to assess the role of other Mbd2 expressing 

populations.  

 

Taken together we have observed an increased susceptibility to colonic inflammation 

conferred by deficiency of Mbd2 in haematopoietic cells. The existing literature would 

support a role for monocytes as a pro-inflammatory cell type in colitis and were thus targeted 

for a role for Mbd2. Whilst colon monocytes isolated for colitic Mbd2-/- mice displayed 

increased expression of some genes involved in inflammatory response (Irg1, Ido1, C2, 

C4a/b) the majority of gene expression was similar between genotypes. Indeed we then 

have shown that Mbd2 deficient monocytes do not possess a more pro-inflammatory 

phenotype compared to Mbd2 sufficient monocytes when present in the same inflamed 

colon using mixed BM chimeras. We therefore suggest that per cell pro-inflammatory 

capacities of monocytes are equivalent independent of Mbd2 deficiency, and that increased 

tissue numbers of these cell types represent a readout rather than primary cause of 

increased DSS mediated colonic inflammation in Mbd2-/-  mice.   

 

Overall we therefore propose a model where Mbd2 mediated changes in gene expression in 

CD11c expressing cells predisposes to pathological inflammation that exceeds local control 

mechanisms in DSS colitis (Diagram 4.2). Candidate gene targets identified by gene 

expression analysis of CD11c+ cells isolated from Mbd2-/- mice suggest predominately 

increased pro- but also some anti- inflammatory processes the balance of which ultimately 

favours increasing monocyte and neutrophil recruitment.  Given that haematopoietic 

restriction of Mbd2 expression did not appear to recapitulate the phenotype of Mbd2-/- 

response to DSS, and the intriguing observation that non-CD11c+ cellular sources of Mbd2 

are required to increase MP activation phenotype, we proposed to investigate further non-

haematopoietic souces of Mbd2 in colonic inflammation. 

 

Given the suggestion from our chimera data that non-haematopoetic sources of Mbd2 may 

confer a significant burden of disease susceptibility of Mbd2-/- mice to colonic inflammation, 

particularly given the pathogenesis of DSS thought primarily due to breakdown of barrier 

integrity, we hypothesised that epithelial sources of Mbd2 may also have an important role in 

colonic homeostasis.  
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CD45.1WT CD45.1Mbd2-/-

A

C

Figure 4.1 Susceptibility of CD45.1WT versus CD45.1Mbd2-/- chimeras to DSS colitis

BM chimeras were generated by lethally irradiating CD45.1 congenic mice before reconstituion with either CD45.2+ 
Mbd2-/- (CD45.1Mbd2-/-) or CD45.2+ WT (CD45.1WT) CD90 depleted BM. Chimeras recieved 2% DSS b/w in drinking water 
or normal drinking water for 8 consecutive days. Colon LP cells were isolated and surface stained for the following 
antibodies; CD11b, CD45.1, CD45.2, CD11c, CD103, Ly6G, Ly6C, MHC-II, SiglecF, CD64 and analysed by flow cytome-
try as described in Figure 3.2. CD45.2+, CD11c+, Ly6G-, SigelcF- gated cells are presented (A) comparing DSS treated 
CD45.1WT and CD45.1Mbd2-/- chimeras and B CD11b-, CD11c+, F480-, Ly6G- and SiglecF- DC showing the CD45.2+ (i.e. 
donor) proportion of each CD103 subset. Proportion of  C. Least square mean day 8 weight change of DSS treated and 
naive control, CD45.1WT and CD45.1Mbd2-/-mice as a percentage of starting body weight, n=1-8 analysed by linear regres-
sion modelling of 2 separate experiments. D. Mean symptom score per day over the duration of DSS treatment. Cumula-
tive score as per Table 2.3 of weight loss (0-4), diarrhoea (0-4) and per rectal bleeding (0-4). n=4 per group, representa-
tive of 2 independent experiments E. H&E stained transverse sections of distal CD45.1WT and CD45.1Mbd2-/-DSS treated 
colon, x10 magnification. F. Least square mean±SEM blinded histology score of inflammation of (E), as per Table 2.4, 
comprising inflammatory cell infiltrate (0-4, +0.5 per ulcer), Goblet cell depletion (0-4, +0.5 per crypt abscess), Muscosal 
thickening (0-4), submucosal cell infiltration (0-4) and architecture destruction (0-4), n=8 per group analysed by linear 
regression modelling of 2 separate experiments. (*p<0.05). 
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A

C

B

Figure 4.2 Colon LP Flow Cytometry analysis of DSS treated CD45.1WT versus CD45.1Mbd2-/- chimeras

BM chimeras were generated by lethally irradiating CD45.1 congenic mice before reconstituion with either CD45.2+ 
Mbd2-/- (CD45.1Mbd2-/-) or CD45.2+ WT (CD45.1WT) CD90 depleted BM. Chimeras recieved 2% DSS b/w in drinking water 
or normal drinking water for 8 consecutive days. Colon LP cells were isolated and surface stained for the following 
antibodies; CD11b, CD45, CD11c, CD103, Ly6G, Ly6C, MHC-II, SiglecF, CD64 and analysed by flow cytometry as 
described in Figure 3.2. The least square mean total number of cells x106 per colon is presented for the populations (A) 
n=1-8 per group, analysed by linear regression of 2 independent experiments. B. Representative flow cytometry contour 
plots in Day8 DSS treated CD45.1WTand CD45.1Mbd2-/- mice for neutrophil and monocyte populations as defined in Figure 
3.2. n=1-8 mice per group analysed by linear regression of 2 independent experiments. (*p<0.05)
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Figure 4.3 Flow cytometry idenitification of cytokine producing colon LP and blood monocytes 

A. The cellular component of murine blood was isolated from naive WT mice and analsyed for the expression of the 
following by flow cytometry; Live Dead Blue, Ly6C, Lineage (NK1.1,CD19,CD3,Ter119,B220), CD11b and CD68.Rep-
resentative contour plots display the following sequential geting logic to identify blood monocytes; Live, Singlet cells, 
SSC/FSC-A low ‘intact’ cells, Lin- CD11b+, CD68+ CD11b+, Ly6CHi CD11b+ B. Representative contour plots (left) of 
colon LP cells and blood isolated from Day6 DSS treated WT or littermate Mbd2-/- mice and analysed for by flow cytom-
etry for the above markers (blood) or CD11b, CD45, CD11c, CD103, Ly6G, Ly6C, MHC-II, SiglecF, CD64 (colon LP) 
in addition to intracellular IL-1β staining. Cells were stimulated ex vivo for 3 hours with 1ug/ml LPS and GolgiStop 
1ul/ml(blood) or GolgiStop 1ul/ml alone (colon LP),  (right) least mean square proportion of IL-1β+ monocytes analysed 
by linear regression n=12-16 per group, 3 independent experiments. 



 151 

  

Figure 4.4 Gene expression analysis of DSS treated WT versus Mbd2-/- colon LP monocytes 

Colon LP cells from Day 6 2% DSS treated Mbd2-/- or littermate WT mice were isolated. A. Heat map of normalised 
gene expression from FACS purified WT or Mbd2-/-, Ly6C+ MHC-II+/- monocytes. Each group is comprised of 5 biologi-
cal replicates, n=2-3 mice pooled per bioligical replicate. Significant (adj p<0.01) genes presented (left, gene names 
in bold) with other selected non-significant genes (right). B. Representative flow cytometry contour plots and corre-
sponding bar chart detailing proportion of colon LP Mbd2-/- or WT monocytes idenitifed as CD11b+ CD11c-, Ly6G-, 
SiglecF-, Ly6C+ MHC+/-  expressing Ki67 compared to isotype control. representative data from 2 independent experi-
ments.   
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Figure 4.5 Reconstitution of CD45.2+ WT / 
Mbd2-/- mixed BM chimeras 

A. Representative flow cytometry countour 

plots showing relative proportions of CD45.1
+
 

WT or  CD45.2
+
 Mbd2-/-

 cells prior to transfer 

into irradiated mice (left) or at week 8 post 

reconstitution using 1:1 (centre) or 9:1 (right) 

starting ratio of donor BM. Representative data 

from 2 independent experiments B. Represent-

ative flow cytometry plots of Day 7 DSS treated 

colon LP cells isolated from mixed BM chimeras 

(generated using a 9:1 ratio of CD45.1
-
 CD45.2

+
 

(Mbd2-/-
) CD45.1

+
 CD45.2

+
 (WT) BM repective-

ly, injected into lethally irradiated CD45.1
+
 

CD45.2
-
 (host) mice).  The proportion of host, 

WT and Mbd2-/- 
cells is presented for 

CD11b
+/-

CD103
+/-

 DC (upper 4 panels), CD11b
+
 

F480
+
 CD64

+
 Macrophages, CD11b

+
 Ly6C

+
 

MHC-II+/- monocytes, Ly6G
+
 CD11b

+
 neutro-

phils and SiglecF+ SSC-Hi eosinophils. Repre-

sentative data from 3 independent experiments. 
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Figure 4.6 Flow Cytometry analysis of DSS treated CD45.2+ WT /  Mbd2-/- mixed BM chimeras

Mixed BM chimeras were generated by lethally irradiating CD45.1+ CD45.2- (host) mice and reconstituted with CD45.1+ 
CD45.2+ (WT) and CD45.1- CD45.2+ (Mbd2-/-) BM. Chimeras were treated for 7 consecutive days with 2% DSS or normal 
drinking water with colon LP and blood cells isolated for analysis by flow cytometry. Cells were stained with the following 
antibodies (CD11b, CD45.1, CD45.2, CD11c, CD103, Ly6G, Ly6C, MHC-II, SiglecF and CD64) The least square mean 
total number of cells x106 per colon is presented for the populations outlined in Figure 3.2 (A). B. Least mean square 
proportion of colon LP monocytes (left) and neutrophils (right) identified as host, WT or Mbd2-/- C. Representative flow 
cytometry contour plots of colon LP and blood CD45.2+ monocytes displaying CD45.1+ (Mbd2-/-) or CD45.1- (WT) cells. 
Cells were cultured for 4 hours with 1ul/ml GolgiStop and 1ug/ml LPS (blood only) surface stained as above and in addi-
tion stained intraceullarly for IL-1β. The least square mean proprotion compared to isotype control of IL-1β+ colon LP or 
blood monocytes is displayed, n=6-18 mice per group analysed by linear regression of 3 independent experiments.
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Figure 4.7 CD11c expressing populations in the Colon LP and naive phenotyping in CD11cΔMbd2 mice

Colon LP cells were isolated from WT mice and assessed by flow cytometry. Live, intact cells, CD11c+ cells were subdi-
vided into populations based on the surface expression and gating strategy outlines in Figure 3.2. Populations were then 
expressed as the proportion of all CD11c+ cells (A), or by their MFI of CD11c (B). C. Colon LP cells from WT or CD11cΔ
Mbd2 mice were FACS purified based on the sort logic in Figure 3.5, RNA was extracted and  gene expression of Mbd2 
quantified by RT-qPCR normalised to GAPDH, n=5 per group analysed by linear regression of 3 independent experi-
ments (Primer sequences in Table 2.5). D. Colon LP cells from WT or CD11cΔMbd2 mice were isolated and surface 
stained for the following antibodies (CD11b, CD45, CD11c, CD103, Ly6G, Ly6C, MHC-II, SiglecF and CD64), the propor-
tion of CD11b+ CD103+ cells as a proprotion of all DCs is presented, representative of 3 independent experiments. E. 
Transverse sections of 1cm H&E stained distal colon from WT or CD11cΔ mice. 
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Figure 4.8 Susceptibility of CD11cΔMbd2  mice to DSS colitis

CD11cΔ or littermate WT mice recieved 2% DSS b/w in drinking water or normal drinking water for 8 consecutive days 
A. Mean symptom score per day over the duration of DSS treatment. Cumulative score as per Table 2.3 of weight loss 
(0-4), diarrhoea (0-4) and per rectal bleeding (0-4). n=4 per group, representative of 4 independent experiments B. Least 
square mean day 8 weight change of DSS treated and naive control, WT and CD11cΔMbd2 mice as a percentage of 
starting body weight, n=15-20 analysed by linear regression modelling of 3 separate experiments. C. H&E stained trans-
verse sections of distal WT or CD11cΔMbd2 DSS treated colon, x10 magnification. D. Least square mean±SEM blinded 
histology score of inflammation of (C), as per Table 2.4, comprising inflammatory cell infiltrate (0-4, +0.5 per ulcer), 
Goblet cell depletion (0-4, +0.5 per crypt abscess), Muscosal thickening (0-4), submucosal cell infiltration (0-4) and archi-
tecture destruction (0-4), n=8 per group analysed by linear regression modelling of 2 separate experiments. E. mRNA 
expression of selected cytokines from 1cm sections of distal colon determined by qRT-PCR, the least square mean±SEM 
value relative to Gapdh expression is presented, n=12-18 per group, analysed by linear regression modelling of 3 sepa-
rate experiments. Primer sequences are in Table 2.5. Representative data from 4 independent experiments (*p<0.05, 
**p<0.001, ***p<0.0005). 
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Figure 4.9 Flow cytometry analysis of CD11cΔMbd2 colon lamina propria cells in DSS colitis

CD11cΔMbd2 or littermate WT mice recieved 2% DSS b/w in drinking water or normal drinking water for 8 consecutive 
days, colon LP cells were isolated and assessed for the expression of SiglecF, Ly6G, CD11b, CD11c, F4/80, MertK, 
CD64, CD45, CD103 and Lineage markers by flow cytometry. The % of CD45+ colon LP cells per experiment (A) and 
least square mean total total number of cells x106 per colon is presented for the populations outlined in Figure 3.2 (B) , 
n=15 per group, analysed by linear regression of 3 independent experiments C. Representative flow cytometry contour 
plots in Day8 DSS treated WT and CD11cΔMbd2 mice for neutrophil and monocyte populations as defined in Figure 3.2. 
The least square mean number of colon LP myeloid cells x106 per colon after 3 hr incubation with 1μl/ml GolgiStop 
expressing IL-1β (D) or TNF (E) as assesed by intracellular staining and flow cytometry compared to isotype antibody 
control, n=12-15 mice per group analysed by linear regression of 3 independent experiments. 
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Figure 4.10 Gene expression analysis of Mbd2-/- and WT DSS treated colon LP Macrophages and DC

Day 6 2%DSS treated Mbd2-/- or littermate WT mice colon LP macrophage, monocyte and CD11b- DC cells were 
isolated and purified by flow cytometry as described in Figure 3.5. RNA was extracted and gene expression assessed 
by hybridisation to IlluminaMouseRef6 microarray. Heat map of normalised gene expression from WT versus Mbd2-/- 
macrophages (A), or CD11b- DC (B) are presented with genes significantly up (upper panel) or down (middle panel) 
regulated in Mbd2-/- populations presented in bold (adj p<0.01). Selected equivalently expressed, non-significant 
genes are prented in the lower panel. Each individual heatmap represents a biolgical replicate composed of 2-3 (mac-
rophage) or 5 (CD11b- DC) pooled mice. C. Principal component analysis of gene expression profiles from mac-
rophage, monocyte and CD11b- DC populations, each data point representing an individual biological replicate com-
posed of 2-3 (macrophage and monocyte) or 5 (CD11b- DC) pooled mice. 
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Figure 4.11 TLR production and gene expression in Mbd2-/- and WT DSS treated colon LP cells.

A. Mean percentage±SEM of TLR+ cells per MP population. Day 6 DSS treated Mbd2-/- or WT colon LP cells were 
stained for monoclonal Ab against the named TLR and analysed by flow cytometry. Monocytes, Macrophages (MΦ) 
and CD11b- DC are defined as per Figure 3.2. B. Heatmap of normalised gene expression values for TLR expression 
in  Day 6 DSS treated Mbd2-/- versus WT MP populations purified by flow cytometry as per Figure 3.5 and hybridised 
to IlluminaMouseRef6 array. Significant genes are presented in bold (Adj p<0.01). Each individual heat map repre-
sents a biological replicate composed of 2-3 (Macrophage and monocyte) or 5 (CD11b- DC) pooled mice. 
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S
 or norm

al drinking w
ater (control). The cellular 

com
ponent of blood and colon LP

 cells w
ere isolated and stim

ulated w
ith either LP

S
 1ug/m

l, P
am

3C
ys (1ug/m

l) or C
pG

 
(50m

M
ol) (blood) or G

olgiS
top 1ul/m

l (colon LP
) for 3 hours. C

ells w
ere analysed by flow

 cytom
etry after staining w

ith 
the antibodies described in Figure 4.3 (blood) and Figure 3.2 (colon LP

) to identify m
onocyte cells. In addition cells w

ere 
stained w

ith intracellular antibodies for IL-1β, IL-6, IL-12p40 and TN
F (blood) or IL-1β and TN

F (colon LP
). The 

proportion of m
onocytes staining for these cytokines com

pared to isotype controls is presented. 

C
ytokine

C
ytokine

C
ytokine

C
ytokine

C
ontrol

D
S

S

C
ontrol

D
S

S

C
ontrol

D
S

S

C
ontrol

D
S

S

Table 4.2 B
lood and colon LP

 cytokine production in W
T and M

bd2-/- m
onocytes
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FeatureID
Sym

bol
D

escription
C

hrom
osom

e
logFC

A
verage 

Expression
P.Value

adj.P.Val

U
P

xlS
m

lW
j_1oE

_iJM
W

jA
A

poc1
apolipoprotein C

-I
7

1.1
7.4

1.10E
-10

9.00E
-07

0A
_I8S

O
O

K
r6ycO

5Tvo
N

A
N

A
-

1.1
9.4

6.20E
-05

0.013
W

R
U

t.W
F9dcJP

fU
JB

H
Y

P
2ry14

purinergic receptor P
2Y, G

-protein coupled, 14
3

1.1
9.6

0.00041
0.042

K
9eO

i9JJaq5S
u4pfK

E
C

4b
com

plem
ent com

ponent 4B
 (C

hildo blood group)
17

1.3
9.1

0.00018
0.026

9gV
N

x5fIW
5.e6S

ftC
I

R
eg3b

regenerating islet-derived 3 beta
6

1.4
11

0.00016
0.023

lW
2Y

r78iyS
R

1M
5K

0gY
V

cam
1

vascular cell adhesion m
olecule 1

3
1.5

10
4.60E

-07
0.00055

ZO
kieX

1t3_LU
I0V

C
14

C
4a

com
plem

ent com
ponent 4A (R

odgers blood group)
17

1.5
9.6

7.70E
-05

0.014
ZA

uC
iC

_C
FG

914kX
pqU

A
poc1

apolipoprotein C
-I

7
1.6

7.7
7.20E

-12
1.70E

-07
ceigFH

iU
oI3m

Q
Q

vW
JQ

Irg1
im

m
unoresponsive gene 1

14
1.6

8.5
0.00039

0.04
lxw

d4hIIn7FJQ
w

U
S

iQ
Lyz1

lysozym
e 1

10
1.8

9.6
6.70E

-09
3.20E

-05
D

O
W

N
rm

Q
uK

N
E

xO
5ep9Tesg4

Fcrls
Fc receptor-like S

, scavenger receptor
3

-1
8.5

1.60E
-06

0.0011
9uyQ

V
IkkgR

.f9P
qP

M
s

M
alt1

m
ucosa associated lym

phoid tissue lym
phom

a translocation gene 1
18

-1
9.2

7.40E
-06

0.0035

D
ay 6 2%

 D
S

S
 treated colon LP cells w

ere isolated from
 W

T and M
bd2

-/- m
ice. M

onocyte cells w
ere identified and purified by flow

 cytom
etry as described in Figure 3.5. 

R
N

A w
as isolated and hybridised to Illum

inaM
ouseR

ef6 array. The details of significant (adj p<0.05) >±1 log FC
 genes are presented. D

etails of raw
 data processing and 

norm
alisation m

ethods are presented in C
hapter 2.16  

Table 4.3 G
ene expression analysis in D

SS treated M
bd2-/- and W

T colon LP m
onocytes
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O
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G
O

_ID
G

oterm
Enrich_pValue
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bol

B
P

G
O

:0034612
response to tum

or necrosis factor
4.17E

-05
1100001G

20R
ik, U
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B

P
G

O
:0051704

m
ulti-organism

 process
1.05E

-04
1100001G

20R
ik, B

dkrb1, Ido1, Lyz1, M
st1r, V

cam
1

B
P

G
O

:0051707
response to other organism

1.51E
-04

1100001G
20R

ik, B
dkrb1, Ido1, Lyz1, M

st1r
B

P
G

O
:0060669

em
bryonic placenta m

orphogenesis
1.87E

-04
S

pint1, V
cam

1
B

P
G

O
:0032496

response to lipopolysaccharide
3.15E

-04
1100001G

20R
ik, B

dkrb1, Ido1

B
P

G
O

:0002532
production of m

olecular m
ediator involved in 

inflam
m

atory response
3.22E

-04
Ido1, S

lc7a2

B
P

G
O

:0009607
response to biotic stim

ulus
4.44E

-04
1100001G

20R
ik, B

dkrb1, Ido1, Lyz1, M
st1r

B
P

G
O

:0009617
response to bacterium

4.54E
-04

1100001G
20R

ik, B
dkrb1, Ido1, Lyz1

B
P

G
O

:0060713
labyrinthine layer m

orphogenesis
4.94E

-04
S

pint1, V
cam

1
B

P
G

O
:0006952

defense response
5.65E

-04
B

dkrb1, C
1rl, Ido1, Lyz1, S

lc7a2, U
bd

U
p-regulated

D
ow

n-regulated=N
one

Table 4.4 G
ene ontology analysis of D

SS treated M
bd2-/- and W

T colon LP m
onocytes

D
ay 6 2%

 D
S

S
 treated colon LP cells w

ere isolated from
 W

T and M
bd2

-/- m
ice. M

onocyte cells w
ere identified and purified by flow

 cytom
etry as described in Figure 3.5. R

N
A w

as isolated and 
hybridised to Illum

inaM
ouseR

ef6 array. The details of significant (adj p<0.05) pathw
ays as assessed by gene onotology (G

O
) analysis. D

etails of raw
 data processing and norm

alisation m
ethods are 

presented in C
hapter 2.16 . (B

P
=biological process). 
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Host Mbd2-/- WT Host Mbd2-/- WT
CD11b+ CD103+ 0.6 18.5 76.2 1.5 19.9 74.8
CD11b+ CD103- 0.0 15.8 81.5 1.4 17.8 78.4
CD11b- CD103+ 4.0 21.5 68.2 4.7 23.3 67.0
CD11b- CD103- 6.5 18.1 64.4 6.4 18.9 65.8
Macrophages 3.3 23.0 68.0 3.4 23.5 67.9

Monocytes 1.9 21.1 72.7 1.2 24.5 71.1
Eosinophils 0.1 32.2 58.8 0.4 36.4 58.7
Neutrophils 0.9 17.9 58.2 0.1 22.3 67.0

Control DSSPopulation

Mixed BM chimeras were generated by lethally irradiating CD45.1 mice (host) and 

reconstituted with CD45.1+ CD45.2+ (WT) and CD45.1- CD45.2+ (Mbd2-/-) CD90 depleted 
BM. 8 weeks post irradiation colon LP cells were isolated from day 8 DSS treated or normal 
drinking water (control) mixed BM chimeras and anlaysed by flow cytometry to identify the 
populations detailed in Figure 3.2. The proportion of each population is presented that was 

identified as host, Mbd2-/- or WT as defined by the expression of CD45.1 and CD45.2 (See 
Figure 4.5B). 

Table 4.5 Proportions of colon LP myeloid cells in Mbd2-/- : WT mixed BM chimeras
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B
lood - LP

S
 1µg/m

l
C

ytokine
W

T
M

bd2
-/-

W
T

M
bd2

-/-

IL-1β
54.7

44.0
59.4

50.4
IL-6

18.6
13.4

32.3
25.8

IL-12p40
25.2

20.6
29.6

26.7
TN

F
74.9

69.2
80.9

79.4

C
olon LPC

ytokine
W

T
M

bd2
-/-

W
T

M
bd2

-/-

IL-1β
20.1

16.9
33.9

32.4
TN

F
12.6

9.9
14.0

13.9

C
ontrol

D
S

S

C
ontrol

D
S

S

M
ixed B

M
 chim

eras w
ere generated by lethally irradiating C

D
45.1 m

ice (host) and reconstituted w
ith C

D
45.1

+ 

C
D

45.2
+ (W

T) and C
D

45.1
- C

D
45.2

+ (M
bd2

-/-) C
D

90 depleted B
M

. M
ixed B

M
 chim

eras  w
ere treated for 6 

consecutive days w
ith D

S
S

 or norm
al drinking w

ater (control). The cellular com
ponent of blood and colon LP

 cells 
w

ere isolated and stim
ulated w

ith either LP
S

 1µg/m
l (blood) or G

olgiS
top 1µl/m

l (colon LP
) for 3 hours. C

ells w
ere 

analysed by flow
 cytom

etry after staining w
ith the antibodies described in Figure 4.3 (blood) and Figure 3.2 (colon 

LP
) to identify m

onocyte cells. In addition cells w
ere stained w

ith intracellular antibodies for IL-1β, IL-6, IL-12p40 
and TN

F (blood) or IL-1β and TN
F (colon LP

). The proportion of m
onocytes staining for these cytokines com

pared 
to isotype controls is presented. 

Table 4.6 B
lood and colon LP

 cytokine production in M
bd2-/- : W

T m
ixed B

M
 chim

eras
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W
T

C
D

11cΔ
W

T
C

D
11cΔ

W
T

C
D

11cΔ
N

eutrophils
0.047

0.030
0.328

0.333
7.0

11.0
M

onocytes
0.066

0.045
0.414

0.423
6.2

9.4
C

D
11b+ C

D
103-

0.044
0.038

0.076
0.055

1.7
1.5

C
D

11b+ C
D

103+
0.055

0.043
0.075

0.052
1.4

1.2
C

D
11b+ C

ells
1.832

1.917
3.062

2.707
1.7

1.4
E

osinophils
0.494

0.641
0.865

0.902
1.8

1.4
C

D
45+ C

ells
4.237

4.322
5.487

4.247
1.3

1.0
C

D
11b- C

D
103+

0.181
0.171

0.232
0.147

1.3
0.9

C
D

11b- C
D

103-
0.011

0.015
0.019

0.019
1.7

1.3
M

acrophages
0.686

0.655
0.925

0.650
1.3

1.0

P
opulation

C
ontrol

D
S

S
Fold change

W
T or C

D
11cΔ m

ice w
ere treated w

ith 2%
 D

S
S

 or norm
al drinking w

ater (control) for 7 consecutive days. C
olon LP

 cells w
ere isolated, 

stained and analysed by flow
 cytom

etry using the antibody cocktail and logic described in Figure 3.2. The total num
ber of colon LP

 

m
yeloid cells x10^6 per colon w

as identified by analyzing the proportion of C
D

45
+ cells enum

erated against the total num
ber of cells 

isolated per colon. Fold change in least square m
ean total num

ber is presented, ordered from
 largest to sm

allest change after D
S

S
 

treatm
ent. n=8-15 per group, analysed by linear regression of 4 independent experim

ents. 

Table 4.7 S
um

m
ary of colon LP

 m
yeloid population cell num

bers in naïve and D
S

S
 treated, C

D
11cΔ

M
bd2 and control m

ice
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FeatureID Symbol Description Chromosome logFC
Average 
Expression P.Value adj.P.Val

UP
TOjpxbrtCenh6u78nQ Lyz1 lysozyme 1 10 2.1 7.9 2.00E-04 0.018
xVSgsX2S7KY6Ih7ov4 Gm11560 CCAAT-binding protein 11 1.9 9.6 0.00072 0.035
ukj.SfXnDS5dLTDtSI Gm10880 predicted gene 10880 6 1.8 9.5 3.00E-04 0.022
0JnQoghSVu_eCi_UgE Il1a interleukin 1 alpha 2 1.8 8 0.00036 0.025
ceigFHiUoI3mQQvWJQ Irg1 immunoresponsive gene 1 14 1.7 8.5 0.00019 0.018
HiNjjVE3oN6jgNpQtQ Rgs1 regulator of G-protein signaling 1 1 1.7 8.2 0.0013 0.045
Zj.SfXnDS7dLTDtSKE NA NA - 1.5 8.4 5.80E-05 0.0094

oSfXnDS5dLTHtSKED4 LOC100047316
similar to anti-MOG Z12 variable light 
chain 6 1.5 8.8 0.00023 0.02

cSfXnDS5dLTDtSKED4 Gm10880 predicted gene 10880 6 1.5 8.9 5.00E-04 0.03

rojiekh3lfgN9ASm0k Tgfbi transforming growth factor, beta induced 13 1.5 10 0.00055 0.031

TdDt374UHGyh66EXeQ Serpina3g
serine (or cysteine) peptidase inhibitor, 
clade A, member 3G 12 1.5 11 0.0012 0.043

cUSexDBLOt509_WgtM Gde1
glycerophosphodiester 
phosphodiesterase 1 7 1.4 8.4 8.40E-06 0.0033

9SfXnDS59LTDtSKED4 NA NA - 1.4 8.2 5.50E-05 0.0092

3V0s6UF40qcXS.AUeg Spic
Spi-C transcription factor (Spi-1/PU.1 
related) 10 1.3 8.1 2.30E-09 9.20E-06

EnDS5dLTDtSqED73RU NA NA - 1.3 8.2 3.90E-05 0.008
oSfXnDS5dLXDtSKED4 NA NA - 1.3 8.1 0.00021 0.019
9gVNx5fIW5.e6SftCI Reg3b regenerating islet-derived 3 beta 6 1.3 11 0.00031 0.023
ECIipcXoqZuTotnWSM H2-K2 histocompatibility 2, K region locus 2 17 1.3 9.7 0.00049 0.029

0VckdcNKEiC2XBXC7c Serpina3f
serine (or cysteine) peptidase inhibitor, 
clade A, member 3F 12 1.3 8.2 0.00096 0.039

HKegKHWgKUIQKa.VnY H2afz H2A histone family, member Z 3 1.3 11 0.0012 0.043

xi3iC26XgnhCx5aeiA Mgl2
macrophage galactose N-acetyl-
galactosamine specific lectin 2 11 1.3 9.1 0.0013 0.045

i5LnUoa3xX9S3q3q1Q Isg15 ISG15 ubiquitin-like modifier 4 1.3 9.8 0.0013 0.046

rF6UO00jH1UVKd0H.U Gm5560
solute carrier family 25 member 5 
pseudogene 5 1.3 9.2 0.0015 0.048

xefVO3Uii.jiO1aMuo Stat1
signal transducer and activator of 
transcription 1 1 1.2 8.3 1.00E-04 0.013

c_MoTh18vEyPX_kgdU NA NA - 1.2 9.4 0.00012 0.014
cIRI2UKlOJIv1iol4o H2-Q8 histocompatibility 2, Q region locus 8 17 1.2 9.1 0.00023 0.02
H4uXS0w7UqhA_90VLc NA NA - 1.2 8.5 0.00036 0.025
6PsHyLxXO3kD0KXIsQ Reg3g regenerating islet-derived 3 gamma 6 1.2 8.2 0.00039 0.027
EneSd_Y336Evw3nVHo NA selenoprotein 3 1.2 8.3 0.00092 0.039
xt16dROQdzQQTckF14 AI607873 expressed sequence AI607873 1 1.2 9.3 0.0014 0.047
Wife1LJ9CTES6yOUt0 Vcam1 vascular cell adhesion molecule 1 3 1.1 7.2 1.60E-10 1.90E-06
ZnfeL6Xy7JCdR9zSpE Ido1 indoleamine 2,3-dioxygenase 1 8 1.1 7.5 2.00E-06 0.0013
EdBqKsFMJSoeHF8BRc Arg1 arginase, liver 10 1.1 7.9 2.60E-06 0.0015
NIA9KudKMJ3O3bq6Lo Plin2 perilipin 2 4 1.1 8.4 4.20E-05 0.008

uFxd_p96OE.OL.UIH0 Ndufs2
NADH dehydrogenase (ubiquinone) Fe-
S protein 2 1 1.1 8.3 7.60E-05 0.011

iiK._I6UYied5Cchuo Gm12844 predicted gene 12844 4 1.1 9.9 3.00E-04 0.022
xqefud6NXolPqjPuOE NA NA - 1.1 8 0.00065 0.033

Nnl7rseMBIFfUW7nks Coq10b
coenzyme Q10 homolog B (S. 
cerevisiae) 1 1.1 8.3 0.0011 0.042

DOWN
BYId3fkcu0Ic4EjqXU Retnla resistin like alpha 16 -1.1 9 3.80E-05 0.0079
3VLofUh9J7p819CKHY Fcrls Fc receptor-like S, scavenger receptor 3 -1.4 7.8 1.70E-11 4.00E-07
rmQuKNExO5ep9Tesg4 Fcrls Fc receptor-like S, scavenger receptor 3 -1.6 8.5 1.40E-09 6.80E-06

Table 4.8 Gene expression analysis in DSS treated Mbd2-/- and WT colon LP macrophages

Day 6 2% DSS treated colon LP cells were isolated from WT and Mbd2-/- mice. Macrophage cells were identified and purified by flow cytometry 
as described in Figure 3.5. RNA was isolated and hybridised to IlluminaMouseRef6 array. The details of significant (adj p<0.05) >±1 log FC 
genes are presented. Details of raw data processing and normalisation methods are presented in Chapter 2.16  
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S
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bcb1b, A

gxt2l2, A
kr1c18, A

nxa2, A
rap3, A

rhgap18, A
tp6v0a1, B

cl6, C
etn4, C

hn2, C
hst3, C

hst7, C
lns1a, 

E
2f5, E

bpl, Fam
3c, H

tatsf1, Ilk, Lass5, Lbr, Ltc4s, Lxn, M
atr3, M

m
d, M

rpl33, M
terf, M

tf2, N
ars, N

av1, N
up210, O

lfm
1, 

P
dlim

7, P
id1, P

stpip1, R
rm

2b, S
coc, S

fxn3, S
m

o, S
oat2, S

pp1, S
rsf2, ... and others

M
F

G
O

:0034481
chondroitin sulfotransferase activity

4.34E
-05

C
hst3, C

hst7

C
C

G
O

:0043226
organelle

7.55E
-05

4930432O
21R

ik, A
bcb1b, A

gxt2l2, A
nxa2, A

rap3, A
tp6v0a1, B

cl6, C
etn4, C

hst3, C
hst7, C

lns1a, E
2f5, E

bpl, Fam
3c, H

tatsf1, 
Ilk, Lass5, Lbr, Ltc4s, M

atr3, M
m

d, M
rpl33, M

terf, M
tf2, N

ars, N
av1, N

up210, O
lfm

1, P
dlim

7, P
stpip1, R

rm
2b, S

coc, S
fxn3, 

S
oat2, S

pp1, S
rsf2, S

yn1, S
ynj2, Tle1, Tm

em
55a, Tram

1, Trib2 ... and others

C
C

G
O

:0044424
intracellular part

8.29E
-05

4930432O
21R

ik, A
bcb1b, A

gxt2l2, A
kr1c18, A

nxa2, A
rap3, A

tp6v0a1, B
cl6, C

etn4, C
hst3, C

hst7, C
lns1a, E

2f5, E
bpl, Fam

3c, 
H

tatsf1, Ilk, Lass5, Lbr, Ltc4s, Lxn, M
atr3, M

m
d, M

rpl33, M
terf, M

tf2, N
ars, N

av1, N
up210, O

lfm
1, P

dlim
7, P

id1, P
stpip1, 

R
rm

2b, S
coc, S

fxn3, S
m

o, S
oat2, S

pp1, S
rsf2, S

yn1, S
ynj2, Tl ... and others

U
p-regulated

D
ow
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Table 4.9 G
ene ontology analysis of D

SS treated M
bd2-/- and W

T colon LP m
acrophages

D
ay 6 2%

 D
S

S
 treated colon LP cells w

ere isolated from
 W

T and M
bd2

-/- m
ice. M

acrophage cells w
ere identified and purified by flow

 cytom
etry as described in Figure 3.5. R

N
A w

as isolated and hybridised to 
Illum

inaM
ouseR

ef6 array. The details of significant (adj p<0.05) pathw
ays as assessed by gene onotology (G

O
) analysis. D

etails of raw
 data processing and norm

alisation m
ethods are presented in C

hapter 2.16 
. (B

P
=biological process, C

C
=cellular com

ponent, M
F=m

olecular function). 
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Table 4.10 G
ene expression analysis in D

SS treated M
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T colon LP C
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11b- D
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Ontology GO_ID Goterm Enrich_pV
alue Symbol

CC GO:00056
22 intracellular 5.08E-07

3110056O03Rik, 5430437P03Rik, Abhd11, Adcy4, Ahcy, Aimp2, Akr7a5, Alg5, Ankrd54, 
Aprt, Avil, B3galt4, Blvrb, C030006K11Rik, Camk2b, Caskin2, Casz1, Cdk10, Cebpb, 

Chtf18, Cib1, Cox6a2, Cyp8b1, Dph1, Ece2, Ecsit, Edf1, Eif2b5, Eif3k, Etfb, Ets2, Exosc5, 
Fndc5, Gaa, Galns, Gipc1, Grhpr, Gstt2, Hip1r, H ... and others

CC GO:00057
37 cytoplasm 2.38E-06

3110056O03Rik, 5430437P03Rik, Abhd11, Ahcy, Aimp2, Akr7a5, Alg5, Ankrd54, Aprt, Avil, 
B3galt4, Blvrb, C030006K11Rik, Caskin2, Cebpb, Cib1, Cox6a2, Cyp8b1, Dph1, Ece2, 

Ecsit, Edf1, Eif2b5, Eif3k, Etfb, Fndc5, Gaa, Galns, Gipc1, Grhpr, Gstt2, Hip1r, Hn1l, Hps5, 
Hsdl1, Impa2, Map2k2, Mecr, Mrpl16, Mrps ... and others

CC GO:00444
24

intracellular 
part 2.87E-06

3110056O03Rik, 5430437P03Rik, Abhd11, Ahcy, Aimp2, Akr7a5, Alg5, Ankrd54, Aprt, Avil, 
B3galt4, Blvrb, C030006K11Rik, Camk2b, Caskin2, Casz1, Cdk10, Cebpb, Chtf18, Cib1, 
Cox6a2, Cyp8b1, Dph1, Ece2, Ecsit, Edf1, Eif2b5, Eif3k, Etfb, Ets2, Exosc5, Fndc5, Gaa, 

Galns, Gipc1, Grhpr, Gstt2, Hip1r, Hn1l, Hp ... and others

CC GO:00444
44

cytoplasmic 
part 4.04E-06

3110056O03Rik, Abhd11, Ahcy, Akr7a5, Alg5, B3galt4, C030006K11Rik, Cib1, Cox6a2, 
Cyp8b1, Ece2, Ecsit, Eif2b5, Eif3k, Etfb, Fndc5, Gaa, Galns, Gipc1, Grhpr, Gstt2, Hip1r, 
Hsdl1, Map2k2, Mecr, Mrpl16, Mrps12, Mtg1, Ndufb3, Ndufs7, Nit1, Omp, Otof, Pacsin1, 

Pafah1b3, Pard6a, Pdlim2, Pex16, Pkmyt1, Plin ... and others

MF GO:00038
24

catalytic 
activity 4.27E-05

3110056O03Rik, Abhd11, Adcy4, Ahcy, Akr7a5, Aldh3b1, Alg5, Aprt, B3galt4, Blvrb, 
Camk2b, Cdk10, Chtf18, Cox6a2, Cyp8b1, Ece2, Eif2b5, Epha1, Exosc5, Gaa, Galns, 

Gna15, Grhpr, Gstt2, Haghl, Hsdl1, Impa2, Kdm4a, Map2k2, Mecr, Mras, Mus81, N6amt2, 
Ndufb3, Ndufs7, Nit1, Nsun5, Nudt14, Pacsin1, Padi2, Pa ... and others

CC GO:00432
31

intracellular 
membrane-

bounded 
organelle

4.97E-05

3110056O03Rik, 5430437P03Rik, Abhd11, Ahcy, Aimp2, Akr7a5, Alg5, Ankrd54, B3galt4, 
C030006K11Rik, Casz1, Cdk10, Cebpb, Chtf18, Cib1, Cox6a2, Cyp8b1, Dph1, Ece2, 
Ecsit, Edf1, Eif2b5, Eif3k, Etfb, Ets2, Exosc5, Fndc5, Gaa, Galns, Gipc1, Gstt2, Hn1l, 

Hsdl1, Ints1, Kdm4a, Mecr, Med18, Mrpl16, Mrps12, Mt ... and others

CC GO:00432
27

membrane-
bounded 
organelle

5.28E-05

3110056O03Rik, 5430437P03Rik, Abhd11, Ahcy, Aimp2, Akr7a5, Alg5, Ankrd54, B3galt4, 
C030006K11Rik, Casz1, Cdk10, Cebpb, Chtf18, Cib1, Cox6a2, Cyp8b1, Dph1, Ece2, 
Ecsit, Edf1, Eif2b5, Eif3k, Etfb, Ets2, Exosc5, Fndc5, Gaa, Galns, Gipc1, Gstt2, Hn1l, 

Hsdl1, Ints1, Kdm4a, Mecr, Med18, Mrpl16, Mrps12, Mt ... and others

MF GO:00048
32

valine-tRNA 
ligase activity 5.99E-05 Vars, Vars2

BP GO:00064
38

valyl-tRNA 
aminoacylatio

n
6.26E-05 Vars, Vars2

CC GO:00432
29

intracellular 
organelle 7.22E-05

3110056O03Rik, 5430437P03Rik, Abhd11, Ahcy, Aimp2, Akr7a5, Alg5, Ankrd54, Avil, 
B3galt4, C030006K11Rik, Casz1, Cdk10, Cebpb, Chtf18, Cib1, Cox6a2, Cyp8b1, Dph1, 
Ece2, Ecsit, Edf1, Eif2b5, Eif3k, Etfb, Ets2, Exosc5, Fndc5, Gaa, Galns, Gipc1, Gstt2, 

Hip1r, Hn1l, Hsdl1, Ints1, Kdm4a, Mecr, Med18, Mrpl1 ... and others

CC GO:00056
34 nucleus 1.65E-09

Adk, Ank1, Appl1, Bclaf1, Camk1d, Cdk14, Chd1, Clk1, Clk2, Clk4, Dck, Dmtf1, Dyrk3, 
Elf1, Ep300, Ezh2, Gcfc1, Grasp, Gtpbp4, H2afy, Hhex, Jak2, Mdm2, Mll3, Mx1, Nab1, 
Ndel1, Nipbl, Nop2, Nr4a2, Pbrm1, Pbx1, Prkrir, Rabgap1l, Rev3l, Rgs2, Rgs9, Rheb, 

Ruvbl1, Sepsecs, Sesn3, Smg1, Ss18, Stag2, Syap1, ... and others

MF GO:00054
88 binding 7.13E-08

Adk, Akap11, Akap9, Alcam, Ank1, Arl6, Arpc5, Atad1, Bclaf1, Camk1d, Car9, Cd81, 
Cdk14, Cetn4, Chd1, Cldn1, Clk1, Clk2, Clk4, Dck, Dmtf1, Dock10, Dyrk3, Elf1, Elmo1, 

Ep300, Ezh2, Fam92a, Fmnl2, G3bp2, Gcfc1, Gfod1, Gphn, Grasp, Gtpbp4, H2afy, Hhex, 
Il17rd, Jak2, Klri1, Klrk1, Larp1b, Larp4, Lrrk2, L ... and others

CC GO:00432
29

intracellular 
organelle 7.82E-07

Adk, Akap11, Akap9, Ank1, Appl1, Arpc5, Atad1, Bclaf1, Camk1d, Cdk14, Cetn4, Chd1, 
Clk1, Clk2, Clk4, Dck, Dmtf1, Dnalc4, Dyrk3, Elf1, Elmo1, Eml5, Ep300, Ezh2, Gcfc1, 

Gphn, Grasp, Gtpbp4, H2afy, Hhex, Il17rd, Jak2, Lrrk2, Mdm2, Mll3, Mtap2, Mx1, Myo9a, 
Nab1, Ndel1, Nipbl, Nop2, Nr4a2, Pbrm1, Pbx1, P ... and others

CC GO:00432
26 organelle 8.92E-07

Adk, Akap11, Akap9, Ank1, Appl1, Arpc5, Atad1, Bclaf1, Camk1d, Cdk14, Cetn4, Chd1, 
Clk1, Clk2, Clk4, Dck, Dmtf1, Dnalc4, Dyrk3, Elf1, Elmo1, Eml5, Ep300, Ezh2, Gcfc1, 

Gphn, Grasp, Gtpbp4, H2afy, Hhex, Il17rd, Jak2, Lrrk2, Mdm2, Mll3, Mtap2, Mx1, Myo9a, 
Nab1, Ndel1, Nipbl, Nop2, Nr4a2, Pbrm1, Pbx1, P ... and others

CC GO:00056
22 intracellular 9.60E-07

Adk, Akap11, Akap9, Ank1, Appl1, Arl6, Arpc5, Atad1, Bclaf1, Camk1d, Cdk14, Cetn4, 
Chd1, Clk1, Clk2, Clk4, Dck, Dmtf1, Dnalc4, Dyrk3, Elf1, Elmo1, Eml5, Ep300, Ezh2, 

Fmnl2, G3bp2, Gcfc1, Gphn, Grasp, Gtpbp4, H2afy, Hhex, Il17rd, Jak2, Larp1b, Lrrk2, 
Map3k8, Mdm2, Mll3, Mtap2, Mx1, Myo9a, Nab1, Ndel1 ... and others

CC GO:00444
24

intracellular 
part 3.28E-06

Adk, Akap11, Akap9, Ank1, Appl1, Arl6, Arpc5, Atad1, Bclaf1, Camk1d, Cdk14, Cetn4, 
Chd1, Clk1, Clk2, Clk4, Dck, Dmtf1, Dnalc4, Dyrk3, Elf1, Elmo1, Eml5, Ep300, Ezh2, 

Fmnl2, Gcfc1, Gphn, Grasp, Gtpbp4, H2afy, Hhex, Il17rd, Jak2, Larp1b, Lrrk2, Map3k8, 
Mdm2, Mll3, Mtap2, Mx1, Myo9a, Nab1, Ndel1, Nipbl ... and others

MF GO:00001
66

nucleotide 
binding 3.29E-06

Adk, Arl6, Atad1, Camk1d, Cdk14, Chd1, Clk1, Clk2, Clk4, Dck, Dock10, Dyrk3, G3bp2, 
Gphn, Gtpbp4, Jak2, Lrrk2, Map3k8, Mx1, Myo9a, Rab18, Rab28, Rab5a, Rala, Rbm26, 

Rev3l, Rheb, Riok1, Riok3, Ruvbl1, Smg1, Tnrc6a, Top2a

BP GO:00442
37

cellular 
metabolic 
process

3.94E-06

Adk, Akap11, Ank1, Arl6, Bclaf1, Camk1d, Car9, Cdk14, Chd1, Clk1, Clk2, Clk4, Dck, 
Dmtf1, Dyrk3, Elf1, Ep300, Ezh2, Gcfc1, Gphn, Hhex, Jak2, Klrk1, Lrrk2, Map3k8, Mdm2, 

Mll3, Mtap2, Mx1, Nab1, Ndel1, Nop2, Nr4a2, Pbrm1, Pbx1, Pkib, Ppap2a, Ppfibp2, Ptpn2, 
Ptpre, Rab18, Rab5a, Rabgap1l, Rbm26, Rev3l, ... and others

MF GO:00325
55

purine 
ribonucleotide 

binding
5.21E-06

Adk, Arl6, Atad1, Camk1d, Cdk14, Chd1, Clk1, Clk2, Clk4, Dck, Dock10, Dyrk3, Gphn, 
Gtpbp4, Jak2, Lrrk2, Map3k8, Mx1, Myo9a, Rab18, Rab28, Rab5a, Rala, Rheb, Riok1, 

Riok3, Ruvbl1, Smg1, Top2a

MF GO:00325
53

ribonucleotide 
binding 5.27E-06

Adk, Arl6, Atad1, Camk1d, Cdk14, Chd1, Clk1, Clk2, Clk4, Dck, Dock10, Dyrk3, Gphn, 
Gtpbp4, Jak2, Lrrk2, Map3k8, Mx1, Myo9a, Rab18, Rab28, Rab5a, Rala, Rheb, Riok1, 

Riok3, 

Up-regulated

Down-regulated

Day 6 2% DSS treated colon LP cells were isolated from WT and Mbd2-/- mice. CD11b- DC were identified and purified by flow cytometry as 
described in Figure 3.5. RNA was isolated and hybridised to IlluminaMouseRef6 array. The details of significant (adj p<0.05) pathways as assessed 
by gene onotology (GO) analysis. Details of raw data processing and normalisation methods are presented in Chapter 2.16 . (BP=biological process, 

Table 4.11 Gene ontology analysis of DSS treated Mbd2-/- and WT colon LP CD11b- DC
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Chapter 5 
 

The role of Mbd2 on the colonic epithelium and 
intestinal microbiota 
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5.1 Introduction 

In chapter 4 we observed a role for haematopoietic cells in the development of severe 

colonic inflammation mediated by DSS in Mbd2-/- mice. However we also observed that 

restricting Mbd2 deficiency to haematopoietic cells or CD11c expressing cells alone did not 

reproduce the levels of disease severity seen in global Mbd2-/- mice. This led us to 

hypothesise that non-haematopoietic sources of MBD2 may play an important role in the 

control of inflammation responses in the colon. Given that the pathogenesis in DSS colitis is 

due to a primary breakdown of intestinal barrier function, exposing underlying tissues to the 

commensal microbiota, we hypothesised that colon epithelial sources of MBD2 may have 

important roles in epithelial-immune cell crosstalk.    

 

The intestinal epithelium is the largest mucosal surface in the human body. This surface is a 

single cell thick to permit efficient ion and nutrient absorption and yet must shield the host 

from a diverse and sustained antigenic load, including an estimated 1014 commensal bacteria 

(100). At its most basic, IECs regulate GI tract immunity by forming a physical barrier by 

separating luminal contents from the underlying LP. However IECs also display innate 

immune function through the production of anti-microbial products, including defensins, 

cathelicidins and calprotectin (101). Indeed IECs are able to process and present antigen on 

MHC molecules enabling interaction with the adaptive immune system (102). For example, 

IEC MHC expression has been shown to be upregulated in the presence of intestinal 

inflammation supporting a role for barrier surfaces in manipulating T cell responses. Indeed 

IECs from IBD patients promote increased Th1 derived IFNγ!when co-cultured with naïve 

CD4+ T cells (429). Secondly, IECs express a series of PRRs, including TLRs, which are 

down regulated in germfree mice, with MYD88 dependent IEC signaling required to prevent 

translocation of mucosa-associated bacteria (430). Thus presence of intestinal microbiota is 

required for TLR development and host barrier function.  Indeed almost all TLRs are 

expressed at mRNA level in the human colon (unselected populations), but our 

understanding of the precise spatial expression and function of PRRs is incomplete (431), 

(432). Thirdly, IECs secrete a number of immunoregulatory products. Co-culture of DCs with 

IEC supernatant favours a tolerogenic DC phenotype with lower levels of MHC II and CD86 

expression, increased TGFβ!and IL-10 secretion and reduced production of IL-12p70 (433). 

These effects are thought to be largely mediated by thymic stromal lymphopoetin (TSLP) via 

a NF-κB dependent mechanism (434), (435). Indeed, mice carrying an IEC specific deletion 

of IκB kinase, which is required for NF-κB activation, are unable to generate a protective Th2 

response to the colonic parasite T. muris, with increased DC release of TNF and IL-

12/23p40 and down-regulated TSLP expression (436). Finally, IECs are known to secrete 

TGFβ! in response to in vitro models of wound injury, with TGFβ documented to reduce 

alloantigen presentation on epithelial-DCs (437), (438). Indeed CD11c specific deletion of 
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αvβ8, required for TGFβ!activation, render these mice more susceptible to colitis with reduced 

Treg populations (439).  

 

Further evidence for the immunomodulatory properties of IECs is observed in antibody 

responses. Indeed, the GI tract is the largest antibody producing organ in humans, with 

>80% of activated B cells residing in mucosal tissue sites (440). Secretory antibody provides 

crucial defence against pathogens and shapes the ecology of the microbiota (441). Class 

switch of differentiated B cell production of IgM to IgA occurs within PP and is dependent on 

secretion of APRIL and TGFβ, sources of which include IECs (Mora et al. 2006). Indeed, 

increased TLR signaling induces APRIL and TSLP secretion from IECs, with microbial 

signaling also favouring IgA2 class switch which is a more proteolytically resistant IgA (442), 

(443). Thus microbiota-derived signals stimulate IEC release of mediators promoting IgA 

class switching.  

 

The intestinal epithelium is in close proximity to a vast array of gut-associated lymphoid 

cells, most notably in small intestine PP. However ILFs are present throughout the GI tract, 

including the colon. The IECs covering ILF include specialised antigen sampling cells (M 

cells) able to uptake luminal antigen directly by endocytosis (444), (445). As M cells lack 

lysosomes, antigen is presented intact to naïve T cells before their migration in efferent 

lymphatic vessels to other mucosal effector sites such as the LP. In addition, the epithelium 

has evolved to permit the passage of membrane extensions from DCs (dendrites) to directly 

sample luminal antigen without compromising barrier integrity, via the formation of tight 

junction (TJ) like complexes between DCs and IECs (445), and this process is induced via 

IEC TLR activation by microbial stimuli  (444).  

 

The luminal burden of antigen and thus daily challenge to IEC immune function is vast. 

Indeed the GI tract is the most heavily colonised organ in the body, with over 70% of 

bacteria in humans residing in the colon (446,447). Determining bacterial community 

structure in faecal samples through DNA sequencing is therefore an important facet of 

intestinal health research. Differences in intestinal microbial diversity and community 

structure have been implicated not only in GI tract diseases such as CD, UC and IBS but 

also in systemic metabolic disorders such as obesity and type II diabetes mellitus (448), 

(300).  

 

Taken together, it is increasingly appreciated that IECs are critical guardians of host 

immunity: able to sample luminal antigen, respond and function as APCs, secrete 

immunomodulatory proteins including cytokines such as TGFβ!and an array of chemokines, 

and respond to microbial signals via PRRs to augment barrier defence by facilitating 
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antibody and mucin production. Thus IECs represent attractive potential sources of Mbd2 to 

be investigated for dysregulated function.  

 

Chapter aims 

1. Identify and extract IECs from the colon 

2. Develop protocols for the purification of colon epithelial cells (CECs) by FACS 

3. Characterise the surface expression phenotype of Mbd2 deficient CECs in the steady 

state and in experimental colitis  

4. Characterise gene expression profiles of steady state and inflamed CECs in WT and 

Mbd2-/- mice 

5. Identify the impact of Mbd2 deficiency on the steady state colonic microbiota 
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5.2 Identifying and extracting colon epithelial cells 

The emerging field of epithelial-immune cell crosstalk has not yet provided a consensus on 

an accepted, robust extraction method for isolating CECs from murine tissue (449), (450). 

CEC isolation was a novel technique for the MacDonald laboratory, and thus the existing 

literature was interrogated for previously published methodology, as well as seeking local 

expertise. We therefore first sought to address this by developing a reproducible method for 

CEC extraction that permitted identification of a range of CEC types.  

 

The basic premise of colon LP isolation relies upon multiple wash steps to clean the luminal 

surface, exposure to a chelating agent such as EDTA to remove adherent mucus before 

enzymatic digestion to expose underlying LP cells. We therefore hypothesised that earlier 

steps of our existing isolation protocol would result in the extraction of a number of CEC 

subtypes (goblet cells, entero-endocrine cells, stem-cell niche cells and colonocytes). We 

therefore attempted to identify CECs using a modified version of our isolation protocol as 

described in Table 5.1 (protocol #1), assessing cells by flow cytometry (See Figure 5.1).  

 

The existing literature using flow cytometry to profile CECs is poorly described. However 

data suggest these cells are; epithelial cell adhesion molecule (EpCAM) positive, CD45-, with 

a characteristic SSC-AHi, FSC-AHi profile (450), (449). EpCAM is expressed uniquely by 

human epithelium, but the mouse homologue is also expressed by T cells and some APCs 

(451). Therefore to ensure CECs were not contaminated with other EpCAM expressing 

populations, we assessed for the presence of an array of leucocyte markers. Using this 

protocol we indeed identified an EpCAM+ CD45- SSC-AHi population (See Figure 5.1A) that 

was negative for a range of other leucocyte markers (See Figure 5.1B). However, we wished 

to compare this to two other published CEC isolation methodologies to establish differences 

in yield, viability and appearance by flow cytometry (See Table 5.1).  

 

The main points of comparison were the use of Percoll to purify CECs based on size 

(protocol #2), and the use of dispase in preference to collagenase (protocol #3), given 

anecdotal reports of enhanced CEC viability when using dispase (Sheena Cruickshank, 

personal communication). Table 5.1 outlines the differences between the 3 protocols, while 

Figure 5.2A and B detail differences in CEC phenotype based on isolation protocol.  
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We observed a greater viability using EDTA (protocol #1 and #2) versus dispase (protocol 

#3) and a greater yield of CECs using Liberase (protocol #1) versus dispase (protocol#3) 

(See Figure 5.2A and B). In addition we observed a reduction in CECs using protocol #2, 

characterised by a reduction in all SSC-AHi cells, likely due to a poorly optimised Percoll 

gradient step (See Figure 5.2A and B). We also identified an EpCAM+ CD45mid population in 

protocol #2 and #3. EpCAM+ CD45mid cells expressed low levels of F4/80 and CD3 

consistent with known EpCAM expression in both F4/80+ and CD3+ populations, but also 

expressed higher levels of viability dye Live/Dead Blue and had a greater SSC-A, FSC-A 

profile. Taken together we concluded that the longer incubation periods of protocol#3 led to 

a reduced viability of EpCAM+ leucocytes, with resultant reduced CD45 expression (See 

Figure 5.2C).  

 

Having identified that protocol #1 produced the highest yield and most discreet, viable CEC 

population as assessed by flow cytometry, we then sought to confirm protocol #1 EpCAM+ 

CD45- cells displayed a mRNA profile of epithelial cells to add further evidence to our 

argument supporting their identification as CECs, and to confirm our isolation techniques 

weren’t biasing towards a specific epithelial cell type. To pursue this, we optimised a FACS 

protocol to isolate CECs (Figure 3.3). 

 

The colonic epithelium is maintained through a process of continual cellular renewal in which 

stem cells, located at the base of crypts, produce 14 to 21 intermediate cells per hour that 

give rise to all terminally differentiated cell types (452), (453). The three main types of 

differentiated CECs (colonocytes, goblet cells and enteroendocrine cells) differentiate while 

migrating up to the surface epithelium with a turnover period of 4 to 6 days (454). 

Colonocytes possess absorptive and secretory functions, aiding the transport of sodium 

water and short chain fatty acids whilst secreting potassium and bicarbonate (454). Goblet 

cells produce mucins that help protect the mucosa from injury and enteroendocrine cells 

secrete hormones such as secretin and cholecystekinin, that regulate intestinal function 

(454).  

 

Protocol Number #1 #2 #3
EDTA incubation steps x1 x2 Nil
Enzyme Liberase TM Nil Dispase
Enzyme Duration 40mins N/A 120mins
DNAse 0.02mg/ml Nil Nil
Percoll Nil 30% gradient Nil
Table 5.1
Comparison of proposed CEC extraction methods
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Using the sort logic in Figure 5.3, we isolated EpCAM+ CD45- CECs from mouse colon and 

extracted the RNA for analysis by quantitative RT-PCR. We assessed mRNA levels of the 

stem cell marker, leucine-rich repeat-containing G-portein coupled receptor 5, Lgr5, the 

colonocyte marker carbonic anhydrase, Car1, the goblet cell markers mucin-2, Muc2, and 

Krüppel-like factor 4, Klf4, and the enteroendocrine marker chromogranin A, ChgA, 

compared to liver and spleen whole tissue homogenate controls (See Figure 5.4A) (454).  

 

We observed mRNA transcript expression in CECs for colonocyte, goblet cell and 

enteroendocrine markers that were not seen in spleen or liver tissues. There was in addition 

increased expression of the stem cell marker Lgr5 in CECs versus spleen, with equivalent 

levels of liver Lgr5, consistent with its known expression in this tissue (Figure 5.4A)(455), 

(456).  

 

We then sought to compare CEC Mbd2 expression versus other leucocyte populations we 

had previously identified in chapter 3. Using the sort logic in Figure 3.3 and 5.3 we identified 

and isolated CEC, macrophage, monocyte and CD11b+/- DC populations from colon LP, 

comparing expression of Mbd2 transcript versus liver whole tissue control (Figure 5.4B). 

CECs displayed high levels of Mbd2 transcript equivalent with monocytes and macrophages, 

in keeping with known data supporting constitutive expression of Mbd2 in other epithelial 

sites (GeneAtlas entryU133A). 

 

Taken together, we have identified and isolated an EpCAM+ CD45- population from mouse 

colon that displays a characteristic SSC-A profile, lacks expression of other colon LP 

leucocyte markers, and selectively expresses gene transcripts typical of known colon 

epithelial cell types. We also identified CECs as constitutively expressing high levels of 

Mbd2 and, given the data in Chapter 4 supporting a role for non-haematopoietic sources of 

Mbd2 in pre-disposition to colonic inflammation, we now sought to compare CECs from 

Mbd2-/- versus. WT mice.  

 

5.3 Characterisation of naïve CECs in Mbd2-/- and WT mice 

As noted above, CECs express an array of chemokines in response to inflammatory stimuli 

to mobilise immune cells such as neutrophils, T cells, macrophages and DCs to sites of 

tissue damage. In addition, CECs also increase expression of antigen processing molecules 

such as MHC and the LY6 family members on their basolateral surface after the induction of 

colitis (Il10-/- and CD45RBHigh T cell transfer models) (457), (458). LY6 family members are 

GPI anchored cell surface glycoproteins with broad distribution of cells of haematopoietic 

and some non-haematopoietic cells. They are widely used as differentiation markers of 

immune cells, though there exact functions are poorly understood. Data thus far support a 

role in T cell activation, olfaction and cellular adhesion (459), (460). It has recently been 
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demonstrated that LY6A and LY6C expression by IECs is regulated by inflammatory 

cytokines I including IFNγ, TNF and IL-22. Furthermore, cross-linking of LY6 family members 

on CECs increases cholesterol-mediated secretion of chemokines including the neutrophil 

attractant CXCL5 (457). Thus, in addition to forming a physical barrier between host and 

environment, CECs also play an important role in sensing and modulating intestinal 

inflammatory responses, with a suggestion that CEC LY6 molecules are upregulated during 

intestinal inflammation, increasing downstream signaling of leucocyte chemoattractants by 

currently unknown mechanism.  

 

Using the above developed methodology, we next assessed EpCAM+ CD45- cells from WT 

and Mbd2-/- mice using flow cytometry. To our surprise, there was a striking increase in the 

total number of CECs in naïve Mbd2-/- versus WT mice (23.9±1.5 versus 10.4±1.7 % of intact 

cells) (See Figure 5.5A). To address whether the increased frequency of CECs in Mbd2-/- 

was secondary to an increased proliferation of these cells we assessed intracellular 

expression of the cell cycle protein Ki67. However, there was no effect of genotype on the 

proportion of Ki67+ CECs and therefore in active cell cycle (See Figure 5.5B). In addition, 

there was no evidence of epithelial hyperplasia on H&E stained sections of distal colon, 

reviewed in chapter 3 (See Figure 3.4A). We therefore hypothesised that Mbd2-/- CECs were 

more readily released as part of the isolation procedure, perhaps due to defective cell-cell 

adhesion or TJ formation.  

 

Mbd2-/- mice also demonstrated a greater proportion of MHC II+ (23.2±3.1 versus 4.9±3.3 % 

of MHC II+ CECs, Mbd2-/- versus WT respectively) and LY6A/E+ (66.0±3.2 versus 50.0±3.0% 

Ly6A/E+, Mbd2-/- versus WT respectively) CECs compared to WT in keeping with a more 

activated epithelial phenotype (See Figure 5.5C).  

 

Taken together, steady state Mbd2-/- mice displayed an increased number of CECs despite 

equivalent proliferation, which we speculate might be secondary to decreased barrier 

integrity. In addition Mbd2 deficiency resulted in an activated CEC phenotype, with increased 

surface expression of MHC-antigen presenting, and LY6-chemoattract, molecules, 

consistent with a degree of indolent, sub-acute colonic inflammation.  

 

5.4 Characterisation of Mbd2-/- and WT CECs in colonic inflammation 

To address whether Mbd2-/- CECs were further dysregulated in colonic inflammation we 

isolated colon cells from day 6 DSS treated Mbd2-/- and WT mice (See Figure 5.5A, B and 

C).    

 

In contrast to naïve mice, there was no effect of genotype on the frequency of CECs as 

assessed by the proportion of EpCAM+ CD45- Lin- CECs of all intact cells (See Figure 5.5A). 
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Similarly there was no effect of genotype on the proportion of CECs in active cell cycle, as 

assessed by the presence of Ki67+ cells or the proportion of CECs that were MHC II+ (See 

Figure 5.5C). There was however a significant increase in the proportion of Mbd2-/- CECs 

expressing LY6A/E (68.0±3.2 versus 54.8±3.1 % of Ly6A/E+ CECs, Mbd2-/- versus WT 

respectively) (See Figure 5.5B). 

 

We also assessed epithelial activation in a model of infectious colitis with the parasitic 

nematode T. muris (as described in Chapter 3.6). Day 30 High (200egg) and Low (20egg) 

dose T. muris infected Mbd2-/- or WT mice were assessed for the presence of activated, 

MHC II+, CECs. Colon cells were isolated, identified and characterised as described above. 

There was a significantly greater proportion of activated MHC+ CECs in high (9.6±1.6 versus 

1.7±0.1 % of MHC II+ CECs) but not low (15.0±2.1 versus 6.3±2.5 % of MHC II+ CECs, Mbd2-

/- versus WT respectively) dose infected Mbd2-/- mice.  

 

Taken together, in the absence of Mbd2 there was increased CEC activation in naïve Mbd2-/- 

compared to WT mice. This increased CEC activation was only maintained in DSS in the 

LY6A/E analysis of CECs. To understand whether conserved pathways existed between 

naïve and DSS treated Mbd2-/- CECs that predisposed to epithelial activation, and whether 

these putative pathways could explain the increased susceptibility to inflammation, we 

undertook expression analyses of these cells using WT naïve and DSS CEC controls.  

 

5.5 Gene expression analyses of WT and Mbd2-/- CECs 

Colon cells were isolated from WT or littermate Mbd2-/- day 6 DSS treated or naïve drinking 

water control mice. CECs were then purified by FACS as described in Figure 5.3. The RNA 

component of these cells was isolated, purified and its integrity quantitatively and 

qualitatively assessed by spectrophotometry and gel electrophoresis before hybridisation to 

an IlluminaMouseRef6 microarray. Data analysis of gene expression is described in Chapter 

2.16 and 4.3.2. 5 biological replicates (4 for naïve analysis) of individual mice were analysed.  

 

5.5.1 Gene expression in naïve Mbd2-/-
 and WT mice 

In comparing Mbd2-/- to WT CECs, 351 genes were significantly different at an adjusted 

p<0.01 (191 up, 160 down), of which 61 were >logFC +1.0 and 37 >logFC-1.0 (See Table 

5.2). The most up-regulated pathway by GOterm and KEGG analysis was antigen 

processing and presentation, with leucocyte migration (KEGG) and small metabolic process 

(GOterm) the most down-regulated pathways (See Table 5.3 and 5.4).  

 

The genes below were selected from Table 5.2 as being significantly dysregulated and 

>logFC±1 based on literature review and known immunological function (See Figure 5.6A 

and B): 
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5.5.1.1 Genes upregulated in naïve Mbd2-/- CECs compared to WT 

MHC II loci 

H2-Ab1 LogFC +3.3 (MHC IIa) 

H2-Dmb1 LogFC+3.0 (MHC IIb) 

H2-Dmb2 LogFC +3.2 (MHC IIb) 

H2-Eb1 LogFC +2.7 (MHC IIa) 

H2-DMa LogFC +2.6 (MHC IIb) 

H2-Aa LogFC +2.5 (MHC IIa) 

 

MHC I loci 

H2-Q8 LogFC +2.4 (MHC Ib) 

H2-Q6 LogFC +1.6 (MHC Ib) 

H2-Q7 LogFC +1.4 (MHC Ib) 

H2-K2 LogFC +1.8 (MHC Ia) 

H2-K2 LogFC +1.2 (MHC Ia) 

H2-T23 LogFC +1.6 (MHC Ib) 

 

Other MHC-related genes 

Cd74 LogFC+3.8 

Psmb8 Log FC +2.8 

Psmb9 LogFC +2.1 

Tap1 LogFC +1.6 

Tap2 LogFC +1.2 

 

There was a striking up-regulation in multiple aspects of the MHC in naïve Mbd2-/- versus 

WT CECs. As detailed in Table 5.4, 17 genes and 33% of the known antigen processing 

pathway was dysregulated in KEGG analysis with p=1.32x10-19 significance.  

 

Ly6A LogFC +1.7 

Expression of LY6 molecules has previously focused on haematopoietic cells, used as 

markers of differentiation and activation. Diverse roles for LY6 molecules include T cell 

activation and adhesion but more recently have been described in IEC function (457).  

 

Retnlb LogFC +2.4 

RELMβ!belongs to the family of resistin like cytokine molecules consisting of small, cysteine-

rich secreted proteins. RELMβ! is produced by goblet cells in the intestinal epithelium, where 

it is secreted into the intestinal lumen (461).  
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Reg3b +3.0, Reg3g +1.9 

The antimicrobial peptide REG family is discussed in Chapter 4.3.2 in reference to myeloid 

function. Epithelial expression of REG3γ! and REG3β! is limited to the small intestine in 

steady state mouse and human, but are produced from colon enterocytes during pathogen 

infections or inflammatory conditions (462).  

 

Muc1 LogFC +1.3 

Mucin 1 (MUC1) is a membrane bound mucin expressed by goblet and absorptive cells 

which functions in promoting a cell surface protective barrier with extracellular portions 

cleaved with bioactive function for epithelial restitution (463).  

 

5.5.1.2 Genes downregulated in naïve Mbd2-/- CECs compared to WT 

Cldn4 LogFC-2.7 

Claudin 4 (CLDN4) is a key structural protein and integral component of the TJ complex, not 

only in forming an intact physical barrier between the host and the lumen, but also in 

permitting effective paracellular transport  (464).  

 

Ceacam1 LogFC-1.2 

CAECAM1 is a membrane bound, heavily glycosylated protein found on the apical surface of 

IECs, which has been shown to contribute to mucosal adherent mucus, directly interact with 

bacteria and viruses, and regulate CD8+ T cell activation (465).  

 

Tff3 LogFC -1.0 

TFF3 is the second most abundant goblet cell product with important roles in promoting 

mucosal protection and epithelial restitution (466): TFF3 and mucin together are more 

effective at epithelial protection than either one alone, with TFF3 mediating epithelial 

restitution by blockade of apoptosis, promotion of cell migration and mediating downstream 

effects of TLR2 signaling (467), (468).  

 

5.5.2 Gene expression in DSS treated Mbd2-/-
 and WT mice 

In comparing Mbd2-/- to WT CECs; 791 genes were significant at an adjusted p<0.01 (366 

up, 425 down), of which 83 were >logFC +1.0 and 52 >logFC-1.0 (See Table 5.5). The most 

up-regulated pathway by GOterm and KEGG analysis was antigen processing and 

presentation with leucocyte migration (KEGG) and small metabolic process (GOterm) most 

down-regulated (See Table 5.6 and 5.7).  

 

The genes below have been selected from Table 5.5 being significantly dysregulated and 

>logFC±1 based on literature review and known immunological function (See Figure 5.7A 

and B): 
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5.5.2.1 Genes upregulated in DSS colitis, Mbd2-/- CECs compared to WT 

MHC II molecules 

H2-DMb1 LogFC +3.2 (MHC IIb) 

H2-DMb2 LogFC +3.0 (MHC IIb) 

H2-DMa LogFC +2.7 (MHC IIb) 

H2-Ab1 LogFC +2.6 (MHC IIa) 

H2-Aa LogFC +2.5 (MHC IIa) 

H2-Eb1 LogFC+2.4 (MHC IIa) 

 

MHC-I molecules 

H2-Q8 LogFC +2.7 (MHC Ib) 

H2-K2 LogFC +2.0 (MHC Ia) 

H2-Q6 LogFC +2.0 (MHC Ib) 

H2-Q7 LogFC +1.6 (MHC Ib) 

H2-K1 LogFC +1.6 (MHC Ia) 

H2-T23 LofFC +1.4 (MHC Ib) 

 

Other MHC-related molecules 

CD74 LogFC +2.8 

Ciita LogFC +1.7 

Psmb8 LogFC +2.2 

Psmb9 LogFC +1.8 

Tap2 LogFC +1.3 

Tap1 LogFC +1.3 

C2 LogFC +1.7 

 

There was, as in naïve analysis, a striking upregulation in MHC expression. In pathway 

analysis, antigen processing and presentation pathways were significantly enriched at 

p=1.9x10-25, with 25 genes and 49% of the pathways up-regulated (See Table 5.6). The 

same 6 MHC IIa/b, 6 MHC Ia/b, and 6 ‘other’!MHC-molecules genes were dysregulated in 

both naïve and DSS treated mice.  

 

Hspa1a LogFC +2.2 

Hspa1b LogFC +2.0 

Hspa8 LogFC +2.0 

Following exposure to noxious stimuli, IECs respond by producing heat shock proteins 

(HSPs) that confer protection to stress, infection and inflammation (469). These effects are 

mediated by preventing the denaturation of intracellular proteins by chaperoning and re-
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folding partially denatured proteins. In addition HSPs participate in protein assembly, 

secretion, trafficking and regulation of transcription factors and kinases (470).  

 

Cxcl9 LogFC +1.5 

Chemokine (C-X-C motif) ligand 9 is encoded by the Cxcl9 gene, induced predominately by 

IFNγ, and is a T cell chemoattractant, binding to CXCR3 (471).  

 

Reg3b LogFC +1.5 

Reg3g LogFC +1.4 

As described in chapter 5.2.1 

 

Nlrc5 LogFC +1.1 

NOD-like receptor, CARD domain containing protein (NLRC) 5 is part of a family of 22 

known NLRs that are cytoplasmic, contributing to innate immune response by recognising 

microbial products and danger signals leading to inflammation and/or cell death (472).  

 

5.5.2.2 Genes downregulated in DSS colitis, Mbd2-/- CECs compared to WT 

Cldn4 LogFC -1.6 

As described in chapter 5.5.1.2 

 

Il1rn LogFC -1.3 

IL-1 receptor anatagonist (Ilrn/ILRA) is part of the IL-1 family mediating susceptibility to 

infection and in the pathogenesis of cancers by competes with the binding of IL-1 to its 

receptor. Polymorphisms in Ilrn producing increased circulating ILRA in humans is 

associated with increased risk of gastric cancer and septic shock, proposed to be due to 

prolonged and strengthened inflammatory response (473).  

 

Taken together, Mbd2 deficient CECs display a striking dysregulation of MHC I / II antigen 

processing and presentation compared to WT intestinal epithelium. An observation 

strengthened by the fact that WT and Mbd2-/- mice used in the above gene expression 

analyses were littermates, co-housed together from birth for a minimum of 2 months to 

minimise inter-group variation.  

 

There is clear evidence in the literature supporting direct and indirect crosstalk between the 

microbiome and host immune response, however the precise mechanism underpinning the 

microbial influence of disease pathogenesis remains elusive and is a current research focus 

(474), (150) (Chapter 1.5). Indeed many IBD susceptibility loci, notably NOD2, suggest an 

impaired response to microbes in disease (309). Gut microbiota is an essential factor in 

driving inflammation in IBD, exemplified by the efficacy of enterically coated antibiotics and 
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faecal diversion in reducing intestinal inflammation (475), (476). Many studies consistently 

report a reduction in biodiversity, or α!diversity, a measure of the species richness and total 

number of species in a community in CD patients versus healthy controls (300). 

 

We hypothesised therefore that the profound changes in antigen handling capabilities in 

naïve Mbd2-/- CECs may alter the composition of the intestinal microflora. To address this we 

performed sequencing of bacterial 16S rRNA genes from naïve WT and Mbd2-/- faeces. 

 

5.6 Composition of the intestinal microbiota in Mbd2 deficiency 

Differences in intestinal microbial diversity and community structure have been implicated 

not only in GI tract diseases such as CD, UC and IBS but also in systemic metabolic 

disorders such as obesity and type II diabetes mellitus (448), (300). 

 

Taken together there is strong evidence that the microbiota are implicated in the 

pathogenesis of IBD, with multiple bacterial handling gene polymorphisms acting as disease 

susceptibility loci (105). In addition, the IBD microbiota demonstrates a reduced biodiversity, 

with resultant changes in host inflammatory and anti-inflammatory responses (477), (478). 

The key question remains however, whether these observations represent a primary, 

disease inducing ability of the microbiota in genetically susceptible individuals, or whether a 

primary dysregulated immune response and subsequent inflammation causes secondary 

changes in the intestinal microbiota. Given identifying the requisite number of patients before 

the onset of IBD in a case-control study has proven thus far prohibitively large, this remains 

a key unanswered question in the development of IBD.  

 

It is well documented that the environment, particularly diet, age, co-habitation all have 

significant effects on the human microbiome (150). Murine experiments allow us to control 

for all these variables, though care must still be taken. Studies which have purported effects 

of genotype in murine microbiome composition have been subsequently shown to be 

secondary to changes in the above variables, particularly co-habitation (479), (480). To 

control for these variables we co-housed the offspring of heterozygous, Mbd2-/+, parents 

from birth before analysis of the microbiome at mean age 26 weeks (See Table 5.8). The 

colon faeces from 3 cages (total 12 mice), each cage containing Mbd2+/+ (i.e. WT) and 

Mbd2-/- littermates, was taken, extracted and processed in tandem to control for 

experimental error. The methods for extraction and analysis are outlined in section 2.15. 

  

Analysis of sequence data was performed using the Mothur software package (481). The 

“trim.seqs”! function was performed to filter reads for quality by truncating them for average 

quality scores. In addition, any reads with primer or barcode sequence mismatches or reads 

with ambiguous “N”!bases were discarded. Chimeras were removed using Perseus software 
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in Mothur before sequence alignment to the SILVA reference database. A distance matrix 

was generated before clustering into operational taxonomic units (OTU) at 97% similarity. 

Each OTU was assigned a taxonomic classification at all levels from phylum to genus, then 

using R and iTOL packages to calculate distance matrices and dendrograms using Jaccard, 

Yue and Clayton and Ward clustering respectively (See Figure 5.8A and B).  

 

5.6.1 iTOL dendrogram analysis 

The Jaccard calculator is used to describe the overlap in community membership between 

different samples and ignores the proportional abundance of each OTU, whilst in contrast 

the Yue and Clayton calculation takes the proportional abundance of each OTU into account 

when comparing similarities (482). Therefore the presence or absence of an OTU in a given 

sample has the same weight in Jaccard calculation, independent of the number of reads. It 

became apparent during the analysis there were a number of unique reads with only 1 or 2 

reads in the entire dataset, therefore to prevent biasing the dataset for only a small number 

of reads, we present the Yue and Clayton calculation to encompass proportional data as a 

more robust representation of the community composition (482). 

 

Figure 5.8A therefore shows the dendrogram of the representation of bacterial families 

derived from the 16S rRNA sequences within each sample clustered by Yue and Clayton 

distances. Mbd2-/- mice clustered together significantly independent of cage (p=0.0190). 

Interestingly, the microbiome isolated from sample #12 was an outlier in age (20weeks), 

compared to the remainder of the dataset (mean=26weeks) (Table 5.8).  The length of the 

dendrograms in Figure 5.8A is also a representation of the Yue and Clayton similarity, 

therefore with the exception of the above outlier, Mbd2-/- mice separate from WT 

counterparts at a very early stage in the analysis, suggestive of sizeable differences in their 

bacterial communities.  

 

5.6.2 Non metric multidimensional scaling analysis 

To display the distance matrices in 2D form, we took advantage of non metric 

multidimensional scaling (NMDS). This permits collapse of multiple dimensions of distance 

into 2 dimensions, using rank orders (483). This method plots every rank order of OTU 

abundance against every OTU in the sample and then condenses that distance to compare 

different samples against one another (See Figure 5.8B). Once again Mbd2-/- mice clustered 

together independently of cage. This was a highly surprising finding, that littermate mice 

display significantly different bacterial communities despite the same diet, age, parents and 

housing.  
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5.6.3 Dysbiosis in Mbd2-/- mice 

We then assessed whether there were organisms that were enriched or depleted in Mbd2-/- 

mice that accounted for the changes in Yue and Clayton distances (See Table 5.9). 4 OTU 

were significantly different after adjusting for multiple testing (Order, Family and Genus 

respectively):  

 

Clostridiales/Peptococcaceae/Peptococcus, 

Bacteriodales/Porphyromonadaceaea/Parabacteroides, 

Clostridiales/Lachnospiraceae/Roseburia 

Clostridiales/Lachnospiraceae/Clostrium_sp_Culture-54.  

 

Peptococcus, Roseburia and Clostridium_sp_Culture-54 were all enriched with 

Parabacteroides depleted in Mbd2-/- versus WT mice.  

 

Taken together, we have demonstrated that despite using stringent controls for assessing 

differences in bacterial communities, there exists a significantly altered microbiota in naïve 

mice in the absence of Mbd2. This was demonstrated by the effect of genotype on 

community similarity as measured by Yue and Clayton distance irrespective of co-housing. !
 

 !
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5.7 Discussion 

In this chapter we addressed the role of Mbd2 in non-haematopoietic cells, focusing on the 

colonic epithelium. Firstly we have built upon previous work in identifying colon epithelial 

cells from existing protocols, using multi-colour flow cytometry. We compared current 

methodologies for CEC extraction, before assessing these cells with a variety of flow 

cytometry markers to ensure our isolation technique was not compromised by the presence 

of other cell types. We have then, for the first time to our knowledge, purified colon epithelial 

cells using FACS and shown sorted EpCAM+ CD45- cells to express goblet cell, enterocyte, 

enteroenterocyte and stem cell niche specific markers (Figure 5.4A). We used these 

techniques to identify clear differences in surface expression of epithelial activation markers 

in Mbd2-/- mice. Namely we observed increased MHC II and LY6A/E molecule expression on 

the surface of Mbd2 deficient CECs (Figure 5.5B).  

 

Expression of LY6 molecules has previously focused on haematopoietic cells, used as 

makers of differentiation and activation (484). Diverse roles for LY6 molecules include T cell 

activation and adhesion but, more recently, have been described in IEC function (457). RNA 

and surface expression of LY6A and LY6C were increased in the IEC of colitic mice, and in a 

YAMC epithelial cell line after exposure to IL-22 and IFNγ (457). The ligands for LY6 

molecules are not well described, but cross-linking LY6A-C using mAbs results in LY6A and 

LY6C up-regulation, in addition to chemokines CXCL1, 5, 10, CCL5 and 7 (485). Given IBD 

is viewed as an unresolved inflammatory response, it is possible that dysregulated Ly6 

upregulation on IEC may cause positive feedback that propagates Ly6-mediated 

chemoattractant properties.  

 

Using genome-wide profiling of naïve and inflamed CECs we were able to identify striking 

differences in gene expression conferred by Mbd2 deficiency, notably up-regulated MHC I/II 

pathways.  Key dysregulated genes that reached genome-wide adjusted significance p<0.01 

are considered below, with the magnitude of change (LogFC) comparing Mbd2-/- to WT 

summarised in Table 5.13. 
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CD74 also known as the invariant chain or ‘Ii’ is a non-polymorphic glycoprotein with diverse 

immunological functions (486). CD74 forms a trimeric protein on which MHC II molecules 

assemble, blocking the peptide cleft of class-II MHC to prevent premature binding of 

antigenic peptides (487). CD74 expression is increased during chronic GI tract inflammation 

including IBD, also acting as an accessory molecule for cell proliferation in GI tract 

carcinogenesis (488). However CD74 is expressed in the absence of MHC II suggesting 

independent function (489). CD74 is a receptor for macrophage inhibitory protein (MIF), and 

CXCR2 in recruiting leucocytes to site of tissue damage and promoting pro-inflammatory 

cytokine release (490).  In addition CD74 can bind directly to GI tract pathogens, such as 

Helicobacter pylori (H. pylori) causing NF-κB mediated pro-inflammatory cytokine release 

including IL-8 (491).  CD74 is also strongly linked to carcinogenesis, with expression and 

associated MIF production increased in gastric and colorectal cancers, mediated perhaps by 

high levels preventing tumour antigen presentation, rendering tumours less immunogenic 

(492). Taken together, CD74 is a versatile molecule with multifaceted roles in immune 

response including antigen processing, perpetuating chronic inflammation and acting as a 

receptor for MIF and the microbiota.  

 

We hypothesise that increased Mbd2-/-
 CEC expression of CD74 may intensify inflammation 

by increasing free receptors for MIF +/- commensal microbiota attachment or by decreasing 

tolerance to the microbiota via increased epithelial MHC trafficking and presentation to LP 

DC and T cells. To test these hypotheses we propose to analyse sections of naive Mbd2-/- 

and WT colon for MIF by immunoflouresence to establish firstly expression in CECs, and 

then spatial localisation within areas of the crypt-cell niche in a method previously described 

(493). We would then seek to isolate and culture Mbd2-/- and WT CECs ex vivo, exposing 

them to MBD2 siRNA and measuring levels of MIF in supernatant ELISA. Lastly using mice 

Naïve DSS
Ciita NS 1.7

CD74 3.8 2.8
H2-Ab1 3.3 2.6

H2-Dmb1 3.0 3.2
H2-Dmb2 3.2 3.0
H2-Eb1 2.7 2.4
H2-Dma 2.6 2.7
H2-Aa 2.5 2.5
H2-Q8 2.4 2.7
H2-Q6 1.6 2.0
H2-Q7 1.4 1.6
H2-K1 1.2 1.6
H2-K2 1.8 2.0
H2-T23 1.6 1.4
Psmb8 2.8 2.2
Psmb9 2.1 1.8
Tap1 1.6 1.3
Tap2 1.2 1.3

Table 5.13
Summary of dysregulated MHC loci in Mbd2-/- CECs

LogFC Mbd2-/- : WTGene

M
H

C
-I

M
H

C
-II

Function
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with a GFP-tagged CD74 protein crossed to our Mbd2-/- line, we would be able to visualise 

CD74 localisation ex vivo in WT and MBD2 deficient CECs and in addition using electron 

microscopy assess for any direct interaction with the microbiota at the epithelial-luminal 

interface (494).  

 

MHC molecule expression on CECs renders them capable of activating CD4+ and CD8+ 

effector T cells under inflammatory conditions, though the exact mechanisms underpinning 

CEC MHC I and II up-regulation are unknown (429), (495). Both class I and II molecules are 

found at increased levels on IECs in active IBD, with MHC II controlled by a transcriptional 

complex that includes the MHC II transactivator (CIITA) (496). Ciita expression is tightly 

regulated to prevent uncontrolled immune responses. The precise mechanisms co-

ordinating Ciita expression are not known, but factors identified that increase MHC II 

expression include factors that inhibit IL-10 or upregulate IFNγ signalling (497). Ciita was 

found upregulated LogFC+0.97, p=0.03 in naïve Mbd2-/- CECs compared to WT (Figure 

5.6A). Interestingly in a genome wide RNAi screen of MHC control mechanisms, of 9 

transcriptional regulators of Ciita, only 4 altered Ciita expression levels – i.e. up-regulated 

MHC II expression occurred independent of changes in Ciita (498). One such Ciita regulator 

was the HIV Tat-interacting protein HTATIP (aka K(lysine) acetyltransferase 5, (KAT5)), a 

histone acetylase with roles in regulating chromatin remodeling and signal transduction, that 

in turn mediates TAT control of MHC expression (498).  

 

Increased expression of Ciita and multiple aspects of the MHC-II molecules in Mbd2-/- CECs 

may represent a primary dysregulation of Mbd2 mediated changes in Ciita or its regulators, 

such as KAT5, or indeed a manifestation of secondary epithelial inflammation and 

subsequent compensatory up-regulated antigen processing capabilities. To test this 

hypothesis we propose to measure the level histone acetylation at the Ciita promoter using 

antibodies against H3K9/K14ac, an epigenetic marker of active gene transcription as 

previously described (318) assessing FACS purified Mbd2-/- and WT CECs. In addition we 

propose to assess spatial expression of MHC-II ex vivo by confocal microscopy, as 

previously described by (499). Hershberg et al. describe that the normal basolateral function 

of MHC-II presentation IECs can be augmented in the absence of inflammation by co-

expressing Ciita, resulting in increased peptide presentation to T cells (499). Thus confocal 

microscopy staining for MHC-II in ex vivo Mbd2-/- CECs would assess the spatial expression 

of MHC-II molecules i.e. is the normal exclusive basolateral expression disturbed in the 

absence of MBD2. Thereafter we would assess peptide presentation using ex vivo Mbd2-/- 

and WT CECs in transwells cultured with T cells specific for chicken-ovalbumin (from 

C57Bl/6-Tg(TcraTcrb)425Cbn/Crl mice) measuring T cell proliferation as a readout of CEC-

presentation. To address whether MBD2 deficient CECs display an increased activation 

profile in the absence of other MBD2 deficient cell types, a VillinCre mouse will be crossed to 
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our existing Mbd2Fl/Fl mouse, to allow epithelial specific deletion of Mbd2. Assessing 

epithelial activation by flow cytometry and gene expression analyses described in Chapter 

5.3 and 5.4 will then aim to support or refute Mbd2-/- CECs as the primary driver for 

increased intestinal inflammatory responses in Mbd2-/- mice. Lastly it is well documented that 

CAC in IBD is strongly correlated with chronic inflammation. We hypothesise that indolent, 

sub-clinical inflammation in Mbd2-/- mice that is associated with basal activation of CECs will 

increase the incidence of colorectal cancer. To test this hypothesis we propose to age Mbd2-

/- and WT littermate controls to 12months under the same housing conditions that we 

performed the microbiome analyses, and assess the presence of colorectal adenomas by 

histological analysis of intestinal sections.  

 

MHC I antigen presentation pathways play an important role in alerting the immune system 

to infected, particularly virally infected, cells. MHC I molecules are expressed on the cell 

surface of all nucleated cells and present nucleotide fragments from intracellular proteins 

(497).  The majority of peptides presented by MHC I molecules are derived from defective 

ribosomal translation products degraded by the proteasome, as opposed to the turnover of 

mature proteins (497). Peptides are then translocated into the ER lumen by the transporter 

associated with antigen processing (TAP), which also functions as a scaffold for the final 

stage of MHC I assembly. Thereafter loaded MHC I molecules dissociate from TAP and are 

selectively transported in vesicles through the Golgi apparatus to the plasma membrane 

(497). This process has evolved therefore to permit rapid sampling of proteins immediately 

after their synthesis, rapidly alerting leucocytes to infected cells. IFNγ induces the 

expression of 3 additional subunits (PSMB/9 and LMP7), which replace constitutively 

expressed counterparts and are then termed the immunoproteasome (500). It has been 

suggested that enhanced proteasome activity in IBD accelerates NF-κΒ activation that may 

propagate sustained progressive inflammation (501). Indeed PSMB8 has a significant role in 

autoimmune diseases and inflammatory reactions: patients with a homozygous miss sense 

mutation (G197V) suffered from autoinflammatory responses characterised by increased 

assembly intermediates of immunoproteasomes from resultant reduced PSMB8 and 

increased IL-6 (500). Both Psmb8 (LogFC+2.8 and +2.2 in naive and inflamed CECs, Mbd2-/- 

versus WT respectively) and Psmb9 (LogFC+2.1 and +1.8 in naive and inflamed CECs, 

Mbd2-/- versus WT respectively) were upregulated in Mbd2-/- CECs.  

 

Thus we hypothesise that pro-inflammatory signals to Mbd2-/- CECs mediate replacement of 

constitutive proteasome with immunoproteasome subunits which permit an increased ability 

of inflamed epithelium to process and present antigen to cytotoxic T cells. To test this 

hypothesis we propose to measure T cell responses using an OT-I transwell system 

described above, in WT and Mbd2-/- CECs cultured with a selective inhibitor of the 

immunoprotesome subunit LMP-7 of PSMB8. We would hypothesise that negating the 
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increased immunoproteasome:protesome ratio in Mbd2-/- CECs using selective inhibitors 

would ameliorate T-cell responses to WT levels.  

 

In contrast, only MHC II molecules were upregulated in WT DSS versus WT naïve CECs 

(See Table 5.10). There were no MHC I molecules up regulated LogFC>1, with fewer MHC II 

genes upregulated (4; H2-DMa, H2-Aa, H2-Eb1 and H2-Ab1), and those upregulated had 

lower FC difference (LogFC range 1.1-1.8). The most up-regulated pathways when 

comparing WT DSS versus WT naïve CDCs were instead cytokine-cytokine receptor 

interaction and chemokine signaling pathway, with antigen processing not featuring in any of 

the top 10 most enriched pathways (See Table 5.11 and 5.12). Similarly there was no effect 

of treatment on WT expression of any TJ complex proteins (See Table 5.10). Taken 

together, these data are consistent with the hypothesis that Mbd2-/- predisposition to colonic 

inflammation is dependent on up-regulated CEC pathways out with the normal WT 

inflammatory response. We also observed a number of dysregulated cellular structural 

proteins involved in cell adhesion and epithelial barrier integrity, and these are considered 

below, comparing LogFC Mbd2-/- and WT.  

 

IECs are required to be selectively permeable to permit the passage of nutrients whilst 

maintaining a physical barrier. This selective permeability is underwritten by transcellular and 

paracellular capabilities (464). The paracellular pathway is regulated by an apical junctional 

complex, which is composed of TJ and adherence junctions (AJ) (502), (503). TJ barrier 

disruption and increased paracellular permeability, followed by increased translocation of 

luminal pro-inflammatory molecules, can induce activation of the mucosal immune system 

(504). TJs are comprised of 4 transmembrane proteins; occludins, claudins, JAM and 

tricellulin, the intracellular domains of which anchor to cytosolic scaffold proteins (464). 

Numerous studies have now identified claudins as the key component and backbone of TJs 

(505), (506). Cldn1-/- mice (Cldn1 naïve NS, inflamed LogFC -1.0) die within 24hours of birth 

because of dramatic fluid and electrolyte loss from an impaired epidermal barrier (505). 

Claudin 4 (Cldn4 naïve LogFC-2.7, inflamed LogFC-1.6) is a barrier forming claudin and as 

such decreases paracellular permeability (507). Phosphorylation processes are key in 

dictating claudin localisation and permeability function. Claudin 4 phosphorylation by ephrin 

receptor tyrosine kinase, largely expressed on various tumour cells, increases paracellular 

permeability by reducing interaction with the occluding protein, ZO-1 (508). It is well known 

that IFNγ alone, or in conjunction with other cytokines (particularly TNF) disrupts the barrier 

function of TJs across culture epithelial monolayers (509). Emerging evidence suggests this 

may be mediated by internalization of TJ proteins, decreased expression of occludin proteins 

or altered distribution of junctional proteins (510). Thus reduced CEC expression of Cldn1 

and 4, key barrier forming TJ components, would be hypothesised to increase paracellular 

permeability and therefore luminal antigen uptake leading to mucosal inflammation.  
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We would therefore propose Mbd2 as a key regulator of CEC function. It is not currently 

clear whether there is a primary defect in epithelial TJ formation caused by Mbd2 mediated 

dysregulation of CLDN4, leading to a greater influx of luminal antigen or indeed a primary 

dysregulation in antigen processing of the intestinal microbiota, predisposing to an 

inappropriate activation and a resultant inflamed microenvironment.  

 

In a further layer of complexity, we observed the selection of Clostridia and depletion of 

Parabacteroides communities in the Mbd2-/- microbiome. 4 OTU were significantly altered 

including the enrichment of 3 Clostridiales organisms. Interestingly reduced Clostridia 

species in man have been found in patients with IBD and atopy, with a recent study using 

the administration of a mixture of 17 human Clostridiales organisms to mice induced 

increased colon LP Treg numbers and protected against TNBS colitis (147). This mix of 

bacteria did not include any of the significant OTU in our dataset, however. Further, another 

study found an accumulation of Clostridiales species in a Chinese cohort with active UC or 

CD, underlining the difficulties in comparing human microbiota cohorts from different 

geographical areas, with all the resultant ethnic and dietary variation therein (511). 

Parabacteroides, a member of the Bacteroidetes phyla which is the most numerically 

abundant in the human gut and has been shown to predominate at the mucosal surface, is 

by contrast reduced in IBD patients and in Mbd2-/- mice (150). Parabacteroides distasonsis 

has been shown to be more common in healthy controls versus IBD patients, isolated from 

the colon mucosa by endoscopic biopsy (512). Similarly oral treatment of mice with P. 

distasonis significantly reduced the severity of intestinal inflammation mediated by DSS 

thought to be mediated by induction of anti-P. distasonis antibody responses and 

stabilisation of other members of the intestinal microbiota by negating DSS mediated 

changes in a Treg independent manner (513). 

 

An interesting observation was the presence of an outlier in the Mbd2-/- microbiota analyses 

(Figure 5.8A). Mbd2-/- microbiota associated together independent of cage, but whilst efforts 

were made to age-match all mice, 1 mouse was significantly younger and this mouse was an 

outlier in analysis (Table 5.8 and Figure 5.8A). Whilst this may represent outlying data based 

on unknown methodological issues or biological variation, it opens the possibility of 

epigenetic modification of the microbiome during the ageing process. The composition of 

intestinal bacteria changes in the elderly, with a decrease in anaerobes (e.g. Bifidobacteria) 

in both abundance and species diversity, and in increase in facultative anaerobes including 

streptococci, staphylococci and enterobacteria, a balance that is associated with IBD (514), 

(515).  
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We speculate this may be a product of increased susceptibility to intestinal Clostridia due to 

inappropriate CEC antigen processing or that these organisms may have been selected due 

to inappropriate host-driven steady state inflammation. This parallels the same key question 

of dysbiosis in IBD pathogenesis, namely whether this is a cause or an effect of 

inflammation. To address the hypothesis of a primary dysbiosis in MBD2 deficiency we 

propose to re-derive Mbd2-/- mice into germ-free conditions, assessing basal epithelial 

activation and response to DSS colitis. To supplement this, we propose to repeat our DSS 

experiments in WT and Mbd2-/- mice that have been pre-treated with broad spectrum 

antibiotics (amplicillin 1g/L, vancomycin 500mg/L, neomycin 1g/L and metronidazole 1g/L in 

drinking water for 4 weeks) to remove the commensal microbiome, as described by Rakoff-

Nahoum et al. (162). Lastly we propose to perform faecal transplantation of Mbd2-/- 

microflora into WT mice, to assess if this microbiome is capable of inducing aberrant CEC 

responses in an Mbd2 sufficient environment.  

 

We would therefore expect that if Mbd2 is controlling intestinal dysbiosis that is required the 

pro-inflammatory phenotype of Mbd2-/- then abrogating this as described above will 

ameliorate intestinal damage to that seen in WT animals.   

 

A significant limitation in our microbiota analyses is the assumption that non-bacterial 

members of the microbiome, namely viruses and fungi amongst others, do not contribute to 

IBD pathogenesis. It is likely this will become a key research focus of unbiased sequencing 

work in the future. Specific taxonomic shifts have been reported in IBD. Enterobacteriaceae 

are increased in relative abundance in both patients with IBD and animal models (152), while 

adherent invasive E. coli strains in particular have been isolated from ileal CD biopsies and 

in are enriched in patients with UC (153). This may simply represent an increased 

preference of these organisms to survive in an inflammatory environment, with 

administration of anti-inflammatory treatments, such as mesalazine, reducing their frequency 

(154). In contrast some bacteria have demonstrated protective effects on host immunity. 

Bacteroiodes and Clostridium species have been shown to induce the expansion of Tregs, 

reducing intestinal inflammation, with other organisms shown to attenuate inflammation by 

regulating NF-κB activation (156). Similarly the Bifidobacterium, Lactobacillus and 

Faecalibacterium genera may protect the host from inflammation by down-regulating 

inflammatory cytokine or augmenting IL-10 production (157). F. prausnitzii has received 

much attention in recent years, underrepresented in IBD patients, with lower levels of 

mucosa associated F. prausnitzii associated with higher risk of recurrent CD after surgery 

(158). In addition to immunomodualtory effects, the Faecalibacterium genus is also 

responsible for the fermentation of dietary fibre to produce SCFA, which are the primary 

energy source for CECs (161). SCFAs have been shown to modify leucocyte recruitment, 

chemotaxis and effector mechanisms (516). SCFAs activate the G protein coupled receptor 
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GPR43 that in turn activates mitogen-activated protein kinases and protein kinase C that 

induce directional migration of neutrophils (517). In addition SCFAs modulate the expression 

of IL-8, CCL2, and CXCL-1 by IEC in response to response to microbial-derived molecules 

such as peptidoglycan (518). Lastly SCFAs, mainly butyrate, have been shown to suppress 

LPS and cytokine stimulated production of pro-inflammatory mediators such as TNF, IL-6 

and NO from macrophages and monocytes (519). The main mechanism for this effect is the 

attenuation of HDAC activity. By directly inhibiting HDAC activity, SCFAs increase histone 

acetylation and therefore modulate gene expression (520). SCFAs may also increase 

prostaglandin E2
 (PGE2), production by inflammatory monocytes in response to commensals 

in acute gastrointestinal infection that inhibits neutrophil activation, suggesting dual anti- and 

pro- inflammatory roles for SCFAs and their downstream effectors (46). 

 

Therefore in addition to direct interaction of the microbiota with CECs, metabolism of luminal 

foodstuffs such as SCFAs may directly modulate host response. To assess this further we 

propose the analysis of SCFA content such as acetate, propionate and butyrate in faeces of 

Mbd2-/- and WT mice and thereafter culture of Mbd2 deficient and sufficient CECs ex vivo 

with SCFAs assessing release of chemokines (e.g. CCL2 and CXCL1) and pro-inflammatory 

cytokines (e.g. IL-1β) by ELISA to characterise potential meta-genomic interactions.  

 

Given the gene expression data is taken from Mbd2-/- mice, we also consider an additional 

explanation, that a non-epithelial Mbd2 deficient cell type is facilitating an activated epithelial 

phenotype. Mbd2-/- naïve splenic T cells are known to possess the potential to produce more 

IFNγ than WT when stimulated with PMA/iomomycin in vitro (319).  However it is not clear 

whether Mbd2-/- T cells constitutively express IFNγ without such stimulation. This is 

particularly relevant in the colon LP given TJ function; antigen processing and barrier 

defense mechanisms are all upregulated in an IFNγ rich environment (521). Whilst we 

cannot discount this possibility, given the level of whole colon Ifng transcript was equivalent 

between Mbd2-/- and WT mice, we suggest this explanation is less likely than the others 

considered (Figure 3.5).  

 

Epigenetic regulation of IECs has been described elsewhere in the literature. Alenghat et al. 

documented the role of histone deacteylase 3 (HDAC3) in exacerbating colonic 

inflammation, altering basal gene expression profiles and altering the intestinal microflora 

(449). IECs with an epithelial specific deletion of HDAC3 (HDAC3ΔIEC) displayed up-

regulated PPAR signaling and lipid synthesis with associated increased H3K9 acetylation 

and down-regulated antigen processing genes (including H2-Ab1) (449). However, there 

was no difference in acetylation at downregulated gene sites. HDAC3ΔIEC mice were more 

susceptible to chemical (DSS) and infectious (L. monocytogenes) colitis, had increased 

barrier permeability, reduced Paneth cells and increased levels of Proteobacteria. However 
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these differences were abrogated when HDAC3ΔIEC mice were re-derived into germ free 

conditions, suggesting that commensal-bacteria derived signals are required for HDAC3-

induced dysregulation (449). Similarly Turgeon et al. reported HDAC1/2ΔIEC but not 

HDAC2ΔIEC displayed increased susceptibility to DSS colitis and decreased barrier function 

suggesting not only differing roles for HDACs in IEC function, and also the combination of 

HDACs is important in determining the overall pre-disposition to intestinal pathology (522).  

Lastly, Marjoram et al. showed loss of the epigenetic regulator ubiquitin-like protein 

containing PHD and RING finger domains (UHRF1), itself an IBD risk susceptibility loci, 

predisoposes to intestinal inflammation in zebrafish (523). Mutant Uhrf1 zebrafish 

demonstrated reduced Tnfa promoter methylation and increased Tnfa IEC expression. This 

increase was microbe dependent and resulted in IEC shedding, immune cell recruitment and 

barrier dysfunction and was restored by Tnfa knockdown.  

 

We hypothesise that in a combined model in naïve Mbd2-/-, given the overwhelming 

upregulation of antigen processing and defence pathways, that the most likely primary 

candidate for Mbd2-mediated dysregulation are Cd74 and/or MHC II molecules. We 

speculate this results in inappropriate CEC activation and creation of an inflamed 

microenvironment at the mucosal surface with subsequent TJ breakdown and increased 

barrier permeability mediated by reduced Cldn4. This inflamed microenvironment thereafter 

selects out Clostridia and depletes protective Parabacteroides species in the commensal 

microbiome.  
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Figure 5.1 Flow cytometry analysis of CECs

Colon cells were isolated and stained with Live Dead (Blue) and thereafter an antibody cocktail consisting of SiglecF, 
Ly6G, CD11b, CD11c, F4/80, CD64, CD45, CD103 and Lineage markers (CD3, NK1.1 and CD19) and analysed by flow 
cytometry. A. Flow cytometry contour plot of EpCAM+, CD45- CECs after exclusion of CD3+ F4/80+ EpCAM+ cells, with  
SSC and FSC profile of CEC and CD45+ populations for comparison. B. Histogram of selected surface marker expres-
sion comparing CD45+ and CEC populations compared to isotype antibody control.  Representative of 3 independent 
experiments, n=5 mice per experiment. 
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Figure 5.2 Optimising CEC isolation by comparison of 3 established extraction protocols

Colon cells were isolated using 3 different protocols described in chapter 5.2 and table 5.1. Protocol #1 was our exisiting 
colon cell isolation protocol described in chapter 2.3, protocol #2 utilised a percoll gradient to enrich for CECs, protocol 
#3 involved a longer incubation period (90 versus 45 mins) with dispase instead of colangenase. Cells were stained for 
LiveDead(Blue) and thereafter surface stained with an antibody cocktail consisting of EpCAM, CD45, CD3 and F4/80 and 
analysed by flow cytometry. A. sequential vertical gating comparing protocols, gating live and intact cells before identify-
ing EpCAM+, CD45- CECs. B The number of CECs was enumerated per colon comparing isolation method. C Histogram 
comparison of CD3 expression on CECs and EpCAM+ CD45mid cells compared to isotype antibody controls.  
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Figure 5.3 Pre and post FACS purification analysis of CECs 
A. Contour plots of naive WT colon cells stained for expression of Live Dead Blue, CD45, EpCAM, F4/80 and CD3 
surface markers and then purified by FACS. Cells are pre-gated on Live and intact cells. Representative pre- and post- 
sort purity is presented for EpCAM+, CD45- CD3- F4/80- CECs from 1 individual mouse and from 5 independent experi-
ments
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Figure 5.4 mRNA expression of epithelial cell markers and Mbd2 in CECs

Colon cells were isolated and stained for the following antibody cocktail (CD3, CD45, EpcAM, F4/80) before purification 
of CECs using the sort logic presented in Figure 5.3. mRNA expression of the above epithelial cell markers (A) and Mbd2 
(B) was determined by qRT-PCR, the mean value relative to Gapdh expression is presented. Mean values were obtained 
from 3 independent experiments using 3 individual mice. Primer sequences are in Table 2.5. For the other presented 
populations in B, mice were pooled 3 mice per biological replicate, and 3 biological replicates presented, with whole 
tissue homogenate presented as a control. 
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Figure 5.5 Surface marker phenotype of Mbd2-/- CECs in chemical and infectious colitis

WT or Mbd2-/- mice were treated with 2% DSS or normal drinking water for 6 days (A,B,C) or 20 or 200 T. muris eggs 
for 35days (C). Colon cells were then isolated surface stained for the following antibody cocktail (CD3, F4/80, EpCAM, 
CD45, MHC-II and Ly6A/E) and then permeabilised and stained for intracellular Ki67 and analysed by flow cytometry. 
A. EpCAM+ CD45- CECs were identified and enumerated as the proportion of intact cells. B. CECs were analysed for 
the proportion of total CECs that expressed Ly6A/E or Ki67.C. Flow cytometry contour plots of low dose (20eggs) T. 
muris infected or Day6 DSS treated WT and Mbd2-/- CECs at day35 post infection, with the proportion of CECs 
expressing MHC-II presented. 1 T. muris experiment and 3 independent DSS experiments, n=1-5 per group are 
presented. *p<0.05, ***p<0.001, ****p<0.0001, analysed by linear regression modelling. 
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Figure 5.6 Gene expression analysis of naive WT versus Mbd2-/- CEC

Naive Mbd2-/- or littermate WT mice CECs were isolated and purified by flow cytometry as detailed in Figure 5.3. RNA 
was extracted and gene expression assessed by hybridisation to IlluminaMouseRef6 microarray. Heatmap of normal-
ised gene expression from WT versus Mbd2-/- CECs are presented with genes significantly upregulated (A), downregu-
lated (B) presented in bold (adj p<0.01). Selected non significant genes are presented based on literature review for 
pertient loci (C). Each individual heatmap represents a biological replicate composed of 1 individual mouse. (D) Princi-
pal component analysis of gene expression profiles from CECs each data point representing individual biological repli-
cate composed of 1 individual mouse. 
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Figure 5.7 Gene expression analysis of DSS treated WT versus Mbd2-/- CEC

Day 6 DSS treated Mbd2-/- or littermate WT mice CECs were isolated and purified by flow cytometry as detailed in 
Figure 5.3. RNA was extracted and gene expression assessed by hybridisation to IlluminaMouseRef6 microarray. 
Heatmap of normalised gene expression from WT versus Mbd2-/- CECs are presented with genes significantly upregu-
lated (A), downregulated (B) presented in bold (adj p<0.01). Selected non significant genes are presented based on 
literature review for pertient loci (C). Each individual heatmap represents a biological replicate composed of 1 individu-
al mouse. (D) Principal component analysis of gene expression profiles from CECs each data point representing 
individual biological replicate composed of 1 individual mouse. 
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Figure 5.8 Analysis of the colonic microbiota in naive WT and Mbd2-/- mice

The colonic contents from co-housed, age and sex matched naive WT and Mbd2-/- mice were obtained, and DNA 
extracted (There was one non-age matched Mbd2-/- sample in the analysis, this is discussed in chapter 5.6.1 and Table 
5.8 and is the outlier at the top of the dendrogram). The 16S region was amplified using primers overlapping the V3 
V4 region (See Chapter 2.15 for primer sequence) and assessed for 550bp product using gel electrophoresis. DNA 
was then sequenced using the IlluminaMiSeq platform and FASTQ files exported to the mothur software for analysis. 
OTUs were identified as described in Chapter 5.6 and analysed for differences in microbial populations by Yue and 
Clayton metrics. (A) Dendrograms were produced using iTOL dendrogram software analysing differences in OTU and 
by non linear multi dimensional modelling (NMDS) (B). 
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 analysis are presented. D
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ene pathw

ay analysis of M
bd2-/- and W
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Table 5.8 C

o-housing and age of m
ice used in 16S

 analysis
M

ice details for sam
ples subm

itted for 16S
 sequencing detailing co-habitation and age. 

C
age 1

C
age 3

C
age 2
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Table 5.9 O
TU

 classification of 16S sequencing in M
bd2-/- and W

T m
icrobiom

e

O
TU

 classification of bacteria identified from
 16S

 sequencing of naïve W
T and M

bd2
-/- colon faeces. O

rder, fam
ily and genus data are detailed above for the top 30 m

ost significant organism
s 

that w
ere differentially present. Those organism

s that reached statistical signficance (p<0.05) after adjustm
ent for m

ultiple testing are shaded in grey. 
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6.1 Introduction 

The human GI tract has evolved to simultaneously promote efficient nutrient absorption and 

negate pathogen entry. This is achieved by finger-like epithelial projections, villi, to produce 

a vast surface area, co-existing with a highly sophisticated network of specialised immune 

cells. Both innate and adaptive arms of the immune response are located at intestinal 

mucosal surfaces, operating the dichotomous roles of tolerance to the commensal 

microbiota and brisk response to luminal pathogens. Inappropriate, overactive response to 

the former would not only be a wasteful use of resources by the host, but may instigate a 

cascade of damaging inflammation that has the potential to disrupt normal physiological 

function, in particular, nutrient absorption. The components of the intestinal immune system 

therefore demonstrate phenotypes unique to this tissue site. For example intestinal 

macrophages exhibit ‘immune inertia’, poorly responsive to TLR stimuli and secreting large 

quantities of the regulatory cytokine IL-10 (43). IECs also display antigen-processing 

capabilities, with expression of such machinery tightly regulated and spatially expressed 

exclusively on their baso-lateral surface (499). These cells are also able to sense and 

respond to luminal pathogens via PRR, able to secrete a vast array of immune regulatory 

and recruitment products that shape the local immune response and micro-environment 

(100).  

 

These keys facets of intestinal immune response are perturbed in IBD. IBD is thought to be 

the result of a dysregulated immune system in genetically predisposed individuals with 

susceptibility variants described in autophagy, IL-23/Th17 and TGFβ pathways (104). Whilst 

recent studies have also identified intestinal monocytes and monocyte-derived precursors as 

critical perpetrators in driving IBD (113), (43), the immune mechanisms underpinning the 

dysregulated immune response in IBD pathogenesis are not well described. Previous work 

has therefore utilised animal models of IBD to describe the immune response in WT and 

transgenic animals to shed new light on existing control mechanisms, and uncover novel 

areas for therapeutic investigation in man.  

 

Despite large strides forward in our understanding of the genetic contribution to common, 

polygenic conditions such as IBD, we can currently only account for <30% of IBD heritability 

using GWAS disease susceptibility loci (Anderson et al. 2011). Heritable changes in gene 

expression not encoded in DNA sequence and thus not accounted for using existing 

techniques therefore represent an attractive hypothesis for explaining part of this heritable 

component to disease susceptibility. Epigenetic processes such as DNA methylation, 

histone modification and nucleosome remodelling have all been shown to influence the 

regulation of key cell functions, including immune response, and require the presence of 

MBD proteins to exert these effects efficiently (242). MBD2 binds preferentially, though not 
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exclusively, to methylated DNA recruiting a large nucleosome re-modelling complex, 

exerting alterations in chromatin folding and histone motifs that confer significant gene 

expression changes (280). As such MBD2 has been shown to be critical in both innate and 

adaptive immune response; in mediating appropriate T cell differentiation and DC activation 

and function in response to Th2 pathogens and allergens (318), (321), (319).  

 

Previous indications therefore suggest that Mbd2 may play an important role in immune cells 

and in the GI tract in response to infection and predisposition to colorectal malignancy 

((321), (325). However the immune mechanisms and cell types underlying these 

observations has not been explored in the GI tract. 

 

The aims of this project were therefore to delineate, for the first time, the role of Mbd2 in the 

intestinal immune response, specifically in animal models of colonic inflammation. We also 

sought to complement this with assessments of monocyte-like / macrophage populations in 

a homogenous colonic IBD dataset.  This necessitated the optimisation and in some cases 

development of novel techniques to simultaneously assess multiple colon LP innate 

populations and in addition extract, identify and phenotype CECs by flow cytometry. 
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Figure 6.1 Proposed mechanisms for Mbd2 mediated changes in colon homeostasis 
Naïve  
1. Absence of Mbd2 may increase Ag processing and presentation gene expression in naive 
Mbd2-/- CEC (versus naive WT) 
2. Absence of Mbd2 may reduce tight junction protein gene expression in naive Mbd2-/- CEC 
(versus naive WT), though this may be a secondary phenomena (e.g. due to increased local 
IFNγ)  
3. Absence of Mbd2 may increase LY6C A/E/Ly6c expression in naive Mbd2-/- CEC (versus 
naive WT) 
4. Mbd2 is required to prevent the observed reduced number of CD11b+ CD103+ DCs in 
naïve Mbd2-/- LP, the reasons for which are not clear but may include a role for Mbd2 in local 
DC survival or appropriate differentiation 
5. Result of 1-4 yields altered interactions with the steady state microbiota, leading to 
dysbiosis 
 
DSS 
1. The same process of dysregulated Ag processing, MHC-II, LY6A/E and AMPs (CECs) 
CD40, CD80 expression (CD11c+ cells) seen in naïve Mbd2-/- now occurs in WT, but this is 
less than the increases in the already activated Mbd2 deficient system 
2. The same chemokine/proinflammatory response elements are upregulated independent of 
Mbd2 deficiency in DSS 
3. Decreased Mbd2-/- MΦ Fcrls expression may impair phagocytosis and therefore response 
to invading pathogens, further exacerbating host inflammatory response 
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6.2 Concluding remarks 

We suggest that Mbd2 acts to limit damaging inflammation in the mouse colon by preventing 

excessive monocyte and neutrophil accumulation. This end-result of colonic inflammation is 

lessened by the action of Mbd2 in a multitude of cell types, underlining its functional 

importance. Firstly, Mbd2-mediated changes in CD11c expressing cells limits colonic 

inflammation (Figure 4.8), and we hypothesise this is due to its promotion of efficient 

phagocytosis in colon macrophages. Secondly, we have identified monocyte-like cells as 

increased in patients with endoscopic evidence of active IBD, irrespective of symptoms 

(Figure 3.12). This may have important implications for IBD management and we speculate 

that in the future phenotyping the proportion of immune cells at inflamed tissue sites may 

provide insight into disease activity, prognosis and disease natural history. Thirdly, our data 

strongly indicate that Mbd2-mediated changes in CECs prevents inappropriate antigen 

processing of luminal contents and promotes epithelial barrier integrity via TJ protein 

expression (Figure 5.6). Lastly, Mbd2 regulation of colonic immune and epithelial cells alters 

the local microbial environment, maintaining species of bacteria that promote intestinal 

health.  

 

One of the key unanswered questions of dysbiosis pathogenesis is whether observed 

dysbiosis in human IBD, or indeed in Mbd2-/-, is a primary or secondary phenomenon. 

Therefore future work, will seek to address whether the microbiota in Mbd2-/- are inherently 

colitogenic, or indeed if by abrogating dysbiosis under germ-free or antibiotic treated 

conditions Mbd2-/- mice continue to demonstrate impaired inflammatory responses.  

 

We foresee the main limitation in generalising these results is understanding the precise 

nature of Mbd2 action. Namely demonstrating that dysregulated gene expression in the 

absence of Mbd2 correlates to local binding of Mbd2 at these loci and subsequent NuRD 

complex mediated changes in epigenetic motifs, altering the binding of transcriptional 

apparatus and ultimately gene expression. Mbd2 chromatin immune precipitation has in our 

experience proved technically challenging due to poor antibody affinity, thus we are currently 

generating transgenic mice wherein a his-tagged Mbd2 protein will permit investigation of its 

binding sites to answer these important questions.  

 

Another limitation is that we have undertaken our gene expression analyses using mice 

globally deficient in Mbd2. At this point, we are therefore not able to exclude the possibility 

that other Mbd2-/- cell types may influence gene expression in our reported cells of 

investigation. For example, whether MBD2 deficient colon LP ILCs, neutrophils or 

eosinophils are directly influencing the gene expression profiles of MBD2 deficient 

macrophages, DCs or epithelial cells. To address this we are seeking to validate Mbd2-
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mediated gene expression changes in animals where Mbd2 deficiency is restricted to 

specific cell types, e.g. epithelial cells (Villin-CreMbd2Fl/Fl) and T cells (Vav-CreMbd2Fl/Fl).   

 

Whilst the gene expression data in chapters 4 and 5 have permitted the use of hypothesis-

free strategies to identify putative genes under the control of Mbd2, one of the most striking 

features in the DC, macrophage and monocyte expression data was the absence of a single, 

consistently dysregulated locus. This is perhaps re-inforces the multitude of small Mbd2 

mediated gene expression changes occurring within multiple different cell types. This further 

underlines simultaneously the importance of Mbd2 in a spectrum of immune cells, but also 

the difficultly in identifying the presence of a primary regulatory pathway. The second most 

striking feature was the complicated balance of pro- and anti-inflammatory feedback 

mechanisms (See Diagram 4.2). Despite a more severe disease phenotype in response to 

chemical colitis, Mbd2-/- cells displayed both enhanced inflammatory and regulatory 

pathways. We therefore speculate that the biological kinetics of macrophage and monocyte 

responses to inflammatory challenge change over time, with pro-inflammatory pathways 

predominating early in the response, with a tipping-point whereby inflammation is no longer 

physiological but pathological, with a rise in anti-inflammatory mechanisms to limit further 

tissue damage. Evidence for this hypothesis is seen in the upregulation of anti-inflammatory 

pathways in active IBD and adult respiratory distress syndrome (ARDS), both characterized 

by aberrant inflammation and failure of anti-inflammatory control mechanisms (524), (525).  

 

The data presented herein suggest that heritable changes in mucosal immune function may 

not be encoded in an organisms DNA sequence. ‘Epigenetic stress’, defined here as the 

perturbation on the host epigenome caused by environmental pressure, may explain the 

limitations of existing genetic techniques to explain common heritable disease susceptibility 

(250). We hypothesise therefore that environmental pressures at mucosal surfaces may lead 

to alterations in the epigenome, which is inherently more plastic than the genome, leading to 

altered expression of key regulatory immune processes and thus disposition to diseases 

characterised by aberrant inflammatory responses.  

 

Rather than suggesting that MBD2 is the ‘smoking gun’ for IBD pathogenesis, we speculate 

that our data support the principle of epigenetic processes forming a fundamental control 

mechanism for host defence and appropriate mucosal responses. This may in turn provide a 

plausible hypothesis for the observation that most NOD2 mutants, the largest genetic risk 

factor identified for CD, do not develop IBD (107). Indeed perhaps in a multi-hit hypothesis of 

heritable contribution to common disease, genetically susceptible individuals require either 

an inherited or environmentally-disturbed mutant epigenome that impairs host responses. 

Just as there is no one cell type that is dysregulated in IBD, our work using Mbd2-/- animals 

strongly suggests that Mbd2 regulation of gene expression impacts a network of mucosal 
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cell types that together are key for limiting excessive intestinal inflammation, underlining the 

importance of these mechanisms in controlling appropriate immune responses.  
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