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Abstract 

The prime function of classically activated macrophages (CAM; activated by Thi -type 

(or 'type 1') signals such as IFN-?) is microbial destruction. Alternatively activated 

macrophages (AAM; activated by Th2 (or 'type 2') cytokines, such as IL-4) play 

important roles in allergy and responses to parasite infection. A murine model for filarial 

infection has been used as an in vivo source of AAM, which we have termed nematode-

elicited Macrophages (NeM). Mice are surgically implanted into the peritoneal cavity 

with adult Brugia malayi. By one week post-infection, the PEC population is dominated 

by macrophages that display IL-4 dependent features such as the expression of Arginase 1, 

RELM-a and Ymi. 

In light of the increasing evidence that macrophages show functional adaptivity, it was 

decided to study the NeM response to pro-inflammatory Thi activating signals as a 

model to investigate whether the switch between alternative and classical activation can 

occur in macrophages differentiated in an in vivo infection setting. Despite the long-term 

exposure to Th2 cytokines and anti-inflammatory signals in vivo, we found that NeM 

were not terminally differentiated but could switch from alternative activation to a more 

classically activated phenotype in response to LPS/IFN-y. This was reflected by a switch 

in the enzymatic pathway for arginine metabolism from arginase to iNOS and the 

reduced expression of RELM-a and I'm]. 

To ask whether these AAM could be induced to become antimicrobial, we also carried 

out infections with "type 1 "-inducing pathogens, It was found that LPS/IFN-y, treated 

NeMp were able to control infection with Leishmania mexicana as effectively as 

LPS/IFN-y activated thioglycollate-elicited macrophages (ThioM) and parasite killing 

was mediated by nitric oxide production. NeM were also infected with the 

mycobacterium Mycobacterium bovis BCG. It was found that NeMO responded to low 



doses of BCG by controlling it for the entire timeframe of the study, i.e. 6 days. NeM 

responded to high doses of BCG infection with early control of infection and high levels 

of apoptosis, and that this phenotype is independent of IL-4. 

Next we asked whether the macrophage phenotype would alter during co-infection with 

both a 'type 1' and 'type 2'- inducing pathogen. Ym- 1 and RELM-cx were looked at in 

the lungs of mice co-infected with malaria (Plasmodium chabaudi; 'type 1' pathogen) 

and the helminth worm Nippostrongylus brasilisensis ('type 2' pathogen). After 7 days 

of infection it was found that there was less Ym- 1 and RELM-a present in co-infected, 

as compared with Nippostrongylus-only infected mice, which suggested that the immune 

system could switch from an alternative to a more classically activated state in order to 

deal with a type-i infection or that the malarial infection was causing a delay, or 

decrease in the Th2 response. 

Lastly, we wanted to look at what innate signals determine the AAM4 phenotype and its 

ability to switch towards classical activation. It is currently unknown whether signaling 

through toll-like receptors (TLRs) plays any role in the alternative activation of 

macrophages. In light of this, it was decided to investigate, using MyD88-/- animals, 

whether alternative activated macrophages could be recruited in the absence of the 

important adaptor molecule, MyD88, and thus determine whether TLR signals impact 

negatively or positively on the AAIvh. Of the NeM present in the peritoneal cell 

populations (PEC) of both wild type (WT) and MyD88-deficient mice we found no 

difference in terms of arginase production or the expression of RELM-a or YM 1. 

Therefore, lack of MyD88 had no apparent effect on the NeM phenotype. 
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CHAPTER 1 

INTRODUCTION 

1. Innate Vs Adaptive Immunity 

The immune system has evolved to protect against an array of pathogens that range from 

the microscopic that live within host cells, such as mycobacteria, to large parasites such 

as helminth worms that can be several metres long living in the gut of its host. Different 

parasites/pathogens use distinct methods for growth and survival, and so the host must 

also employ and activate diverse effector mechanisms in order to deal with them. For 

example, to respond to pathogens that live extracellularly, such as helminth worms, an 

immune response must be mounted that contains the parasite through encapsulation in 

the tissues or expulsion from the gut (Diaz & Allen, 2007; Nawa et al, 1994). This same 

response would not be effective against bacteria or protozoa that have carved out a niche 

within the cells of the host. In addition to pathogen control, collateral damage to the host 

is always a possible side effect of an aggressive immune response to a given pathogen, 

so the optimal response must also be one that minimises this damage, while still being 

the correct effective response against the invading organism (Graham et al, 2005a; 

O'Garra et al, 2004). 

There are two arms to the vertebrate immune system. The innate immune system is the 

first arm and initially detects any foreign invasion through the recognition of common 

components of microbial pathogens in a relatively non-specific manner. Recognition of 

foreign particles leads to the development of inflammation through the release of 

cytokines and chemokines, and this innate response is quite often sufficient in clearing 

the infection (Janeway & Medzhitov, 2002). However, when and if an infecting 

organism survives this initial response, the second arm of the immune response comes 

1 



into play. This adaptive immune response involves B and T lymphocytes recognising 

foreign molecules in a precise way through antigen-specific extracellular receptors. 1-

helper (Th) cells, specific for the cell surface marker CD4, orchestrate the employment 

of the suitable immune response, whether this is one particular type of response for the 

clearance of intracellular pathogens or another type for the expulsion of extracellular 

parasites such as helminths (Janeway, 2001). 

2. Diversity of CD4+ T Cell Subsets 

2.1 Thl/Th2 Paradigm 

CD4+ T cells coordinate the immune response by differentiating into discrete subsets 

and secreting distinct cytokines. This differentiation is thought to determine the success 

of the immune response against any particular pathogen, while limiting damage to the 

host. In the 1 970-80s, many groups were working with the hypothesis that more than 

one subset of helper CD4+ T cell existed with differing cytokine profiles induced after 

stimulation with activating agents. It was thought that different T helper cell (Th) 

subsets had divergent and contrasting roles in the immune response with regards to 

regulation and effector function. By the mid- 1980s,   CD4+ T cells had been divided into 

the Thi and Th2 subtypes based on cytokine profiles. Researchers, particularly 

Mossman, Coffman and colleagues had produced stable antigen-specific mouse T-cell 

clones and found certain patterns of cytokine production (Mosmann et al, 1986). The 

Thl/Th2 paradigm had been born. The type 1 T cell clones produced interleukin (IL)-2, 

interferon (IFN)-y and granulocyte—macrophage colony-stimulating factor (GM-CSF) in 

response to antigen presenting cells with antigen or ConA. The type 2 subtype was 

found to produce IL-4 and IL-5 (Mosmann et al, 1986). 
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It has been found that Th 1 development is regulated by transcription factors, such as 

signal transducer and activator of transcription-4 (STAT-4) and T-bet. These are 

different to the transcription factors controlling Th2 development, STAT-6, GATA-3 

and c-maf, and the two sets are mutually antagonistic (Figure 1) (Romagnani, 2006) 

(Szabo et al, 2003). STAT-4 and T-bet can be activated when IL-12 is produced by 

antigen presenting cells (more about that later). Cytokines produced by Thi cells, in 

particularly IFN-y, generally favour the production of IgG2a and IgG3 opsonising and 

complement fixing antibodies, and mediate protection against intracellular pathogens. 

On the other hand, Th2 cytokines induce IgE production by B cells and eosinophil 

differentiation and activation (Abbas et al, 1996). 

It is now known that after a T-cell receptor (TCR) encounters the appropriate peptide-

MHC complex, clonal expansion is triggered and the helper T cells undergo rapid 

differentiation into one of at least 2 functional phenotypes (Thi or Th2). Thl cells are 

responsible for cell-mediated immunity, and in terms of control of infection, this is 

thought to provide protection against intracellular pathogens, such as mycobacteria and 

Leishmania spp, as previously mentioned. Broadly speaking, Th2 cells are considered to 

be responsible for extracellular immunity, often against helminth infections (Janeway, 

2001). The effects of Thl and Th2 responses on macrophage phenotype will be 

discussed below. As well as roles in host defence against pathogens, both types of T 

helper cell have been implicated in pathological immune responses. Thl cells have been 

found to be involved in organ-specific autoimmunity and Th2 cells have been implicated 

in the pathogenesis of asthma, allergy and fibrosis (Murphy & Reiner, 2002; Wynn, 

2004). This immune dichotomy is not so clear-cut, however, and further CD4+ T cell 

populations exist. 

3 
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2.2 Regulatory T cells 

Regulatory T cell (Tregs) subsets have been described that have roles in 

immunomodulation and protection against self-antigens (Figure 2) (O'Garra et a!, 2004). 

Tregs are a heterogeneous family of CD4+ T cells that are involved in regulating both 

Thi and Th2 responses. Naturally occurring CD4+ Tregs arise during T cell 

development in the thymus and constitute approximately 10% of peripheral CD4+ T 

cells (Jordan et a!, 2001; Walsh et a!, 2004). This population can be defined by 

constitutive expression of the a chain of the IL-2 receptor, CD25 (Sakaguchi et a!, 

1995). Cell surface markers such as CTLA-4, glucocorticoid-induced TNF receptor 

family-related receptor (GITR), 0X40 and CD62L have been identified and relative 

expression levels used to define and isolate CD4+CD25+ Tregs. However, as with 

CD25, none of these markers alone represent a definite marker for naturally occurring 

Tregs. More recently, a molecule known as Foxp3 has been shown to be uniquely 

expressed by these Tregs and is thought to be an important transcription factor in 

controlling Treg differentiation (Fontenot et al, 2003; Hori et a!, 2003; Walsh et a!, 

2004). These Tregs are thought to exert their immunosuppressive effect on T cell 

proliferation in vitro through a contact-dependent mechanism that is also largely 

cytokine dependent. CTLA-4 and GITR expressed on the surface of these Tregs have 

been implicated to play a role in this suppression (Shimizu et a!, 2002; Takahashi et a!, 

2000). In in vivo models, blockade of both IL-10 and TGF-P have been reported to 

reverse the suppressive phenotype of these Tregs (Walsh et a!, 2004). 

Type 1 regulatory (Tn) cells are an inducible population of T cells that specifically 

produce IL-10 and, to a lesser extent, TGF-3 (Battaglia et a!, 2004; Groux et a!, 1997; 

van Roon et a!, 2006). They are induced in vitro by stimulation with IL-lO and mediate 

their suppression primarily by an IL-lO-dependent pathway. Trl cells have been shown 

to be involved in preventing the development of both Thi-mediated experimental 
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autoimmune diseases (Groux et al, 1997), as well as Th2-mediated allergy (Cottrez et a!, 

2000; van Roon et al, 2006). Th3 cells are another subset of regulatory I cells that 

produce large amounts of TGF-13 and have been shown to suppress experimental 

autoimmune encephalomyelitis (EAE; mouse model of multiple sclerosis) induction. 

Th3 cells were originally generated and identified in mice orally tolerised to myelin 

basic protein (MBP) (Chen et a!, 1994). They are induced in vitro upon mitogen 

stimulation in combination with IL-2 and TGF-13. 

2.3 Th17 Cells 

Most recently, another subset of effector CD4+ T cell has been described distinct from 

Thi or Th2 cells. They produce IL-17 and are known as Th17 cells. These cells have a 

suggested role in certain inflammatory and autoimmune diseases, such as systemic lupus 

erythematosus and EAE (Romagnani, 2006). It is also thought that IL- 17 may play an 

important role in the protection against extracellular bacteria, since this cytokine induces 

the recruitment of neutrophils (Mangan et a!, 2006; Romagnani, 2006; Steinman, 2007). 

Th17 cells are activated by the combined activity of IL-6 and TGF-P production by DCs 

and maintained by IL-23 (Bettelli et a!, 2006). Th17 cells do not express either T-bet nor 

GATA-3 transcription factors but upon stimulation with IL-6 and TGF-fl the orphan 

nuclear receptor RORyt is expressed. (Ivanov et a!, 2006). TGF-P is also involved in the 

generation of Tregs, but IL-6 has been shown to inhibit their development. This suggests 

that the presence/absence of IL-6 will dictate whether a pathogenic Thi 7 response will 

be generated inducing autoimmunity, or Treg cells initiated inhibiting autoimmune 

disease (Romagnani, 2006). IL-4 and IFN-y also inhibit the development of Th17 cells 

(Iwakura & Ishigame, 2006) but it is uncertain what the effects of Tregs are on this 

subset (Figure 2). 



Figure 2. Diversity of CD4+ T cell subsets 
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3. The Th2 Cytokines IL-4 and IL-13 

The Th2 cytokines IL-4 and IL- 13 have many roles in immunity including mediating 

resistance to many gastrointestinal parasites, promoting allergic inflammation, fibrosis 

and asthma (Chiaramonte et a!, 1999; Grunig et a!, 2002; Padilla et a!, 2005; Wills-Karp 

et al, 1998). These cytokines have overlapping and also distinct properties. Their unique 

properties can be shown in asthma and parasite models where IL- 13 plays a more 

important role than IL-4 in the development of airway hyperresponsiveness (AHR) 

(Wills-Karp, 1999), pulmonary fibrosis (Zhu ët a!, 1999) and the expulsion of 

Nzppostrongylus brasiliensis (Urban et al, 1998). IL-4 plays a central role in Th2 cell 

development. IL-4 and IL- 13 exert their effects on many different cell types, including 

macrophages (see below Alternatively Activated Macrophages), fibroblasts, eosinophils, 

mast cells, B and T cells (Ramalingam et a!, 2008; Wynn, 2004). 

IL-4 and IL-13 bind to, and send signals through, receptors composed to various 

combinations of four receptor subunits: IL-4Ra, IL-i 3Ra 1, IL- i 3Ra2 and the common 

y-chain (?c)  (Ramalingam et al, 2008) (Figure 3). IL-4Ra can pair with the yc to form 

the type 1 IL-4 receptor (IL-4R) or with IL-i3Rcxl to form the type 2 IL-4R. IL-4 can 

signal through both the type 1 and type 2 receptors, whereas IL- 13 can only signal 

through the type 2 receptor (Murata et a!, 1999). It is thought that the type 1 IL-4R 

mediates STAT6 signalling in haematopoietic cells and is responsible for the expansion 

of CD4+ Th2 cells. The type 2 IL-4R is thought to be the main route of STAT6 

signalling in nonhaematopoietic cells (Murata et a!, 1999; Ramalingam et al, 2008). IL-

13Ra2 binds IL-13 with high affinity, lacks a signaling motif and exists in membrane-

bound and soluble forms. These findings have led to the belief that IL-i 3Ra2 is a decoy 

receptor for IL-13 (Chiaramonte et a!, 2003). Indeed, it has been found to be an inhibitor 

of IL-13-induced inflammatory and remodeling responses in a murine ova-inflamed lung 

(Zheng et al, 2008). 



Figure 3. Receptors for IL-4/IL-13 
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4. Parasitic Helminths and the Th2 Response 

Even though individual species of helminth worms may be very distantly related to each 

other, inhabit distinct habitats within their hosts and have a range of different strategies 

of infectionlevasion (Knoll & Carroll, 1999; Maizels et al, 2004) they consistently 

induce Th2 immune responses in their hosts (Maizels et al, 2004; Maizels et al, 1993; 



Sher & Coffman, 1992). The mechanisms whereby these multicellular parasites drive a 

Th2 bias have not been clearly defined and a combination of factors are likely involved. 

These factors may include parasite antigens present on the surface, or excreted/secreted 

from the worm, that may cause signalling through pattern recognition receptors (PRR)s 

(discussed in more detail below) on cells of the innate immune response and mediate the 

early skewing towards the type-2 response (Tawill et a!, 2004). For example, it has been 

shown that the excretory-secretory products from Nippostrongylus brasiliensis (NES), 

which are made up of glycoproteins collected from adult worms cultured in vitro, can 

drive Th2 responses in mice without the requirement of infection with the helminth 

(Holland et a!, 2000). Also, soluble extracts of the filarial nematode Brugia malayi 

induce Th2 responses and this has been shown to depend on the presence of intact 

glycans (Tawill et a!, 2004). Schistosome soluble egg antigens (SEA) are strong 

activators of Th-2 responses. Carbohydrates present on these antigens have been found 

to be important for this process (Pearce & MacDonald, 2002). Lacto-N-fucopentaose III 

in particular acts as a Th2 adjuvant (Okano et al, 2001). Proteins, such as protease 

enzymes (potentially produced by helminth parasites) have also been implicated in 

driving Th2 responses (Sokol et a!, 2007). 

Signalling through PRRs could be responsible for the early and abundant production of 

IL-4, possibly from NK cells, in the response to helminths, or their extracts (Balmer & 

Devaney, 2002; Holland et a!, 2000; Medzhitov & Janeway, 2000; Osborne & Devaney, 

1998; Sabin et a!, 1996). More recently eosinophils, basophils and mast cells have been 

implicated as early sources of IL-4 (Loke et a!, 2007; Sokol et al. 2007; Voehringer et 

a!, 2006; Voehringer et a!, 2004). CD4+ T cells activated in the presence of this early 

IL-4 tend to differentiate into Th2 cells. A Th2 immune response is then mounted which 

typically involves the production of more IL-4, and also IL-5, IL-9 and IL-13, among 

others. IL- 10 is also secreted by this subset of T helper cells (also secreted by Th 1 cells, 

T regulatory cells, B cells and macrophages; (O'Garra & Vieira, 2007). Th2 cells 

promote the production of immunoglobulin (Ig) Gi and IgE from B cells and, also the 
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mobilisation of specific effector cells, e.g. macrophages, eosinophils, mast cells and 

basophils (Maizels et al, 2004). 

Although Th2 responses are protective for most infections with gastrointestinal 

nematodes in mice, such as with N. brasiliensis, their role in tissue infection is less 

clear-cut. Th2 response are protective in the gut since type 2 cytokines, such as IL-4 and 

13, act on mast cells and goblet cells to induce expulsion of the parasite through, for 

example, mucus production and muscle contraction (Maizels & Yazdanbakhsh, 2003; 

Nawa et a!, 1994; Urban et al, 1998). It has been suggested that helminths have evolved 

mechanisms to induce Th2 immunity in order to direct a response that benefits both 

parasite and host. The benefit to host may be protection against immune pathology due 

to Thi cell mediated inflammation (MacDonald et a!, 2002). Another idea proposed is 

that Th2 responses have evolved in mammals to be mounted upon innate recognition of 

worm molecules (shared among many taxa) and the parasites have evolved to 

downregulate the host immunity in order to evade this response (discussed in the 

following paragraph). The ideal Th2 response for the host is one that contains the 

parasite, while at the same time, healing tissue damaged by these tissue migratory 

mutlicellular animals (Diaz & Allen, 2007) (Maizels & Yazdanbakhsh, 2003). Indeed, 

the Th2 response induces wound-healing functions in certain cell types, for example 

macrophages (Goerdt et a!, 1999; Wynn, 2004). 

Parasitic helminths, as opposed to microbial intracellular pathogens, are large 

multicellular animals and are able to live for decades within a host. More than a third of 

the world's population are infected with parasitic helminths and this can be the cause of 

severe morbidity and disability. Although severe pathology, such as granulomas and 

organ failure can occur, it is more common for infections not to be overtly symptomatic 

(Maizels & Yazdanbakhsh, 2003). This is because many helminth infections are 

associated with a suppression of the host immune response and the long lifespan of these 

infections may be due to their ability to modulate or turn off their host's protective 

immunity. Also, although Thi and Th2 responses are required for resolution of various 
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infections, an exaggeration of either one can be damaging to the host (Specht et al, 

2004). Regulatory T cells produced by the host have been shown to be involved in 

downmodulating inflammatory and protective immune responses through production of 

IL-lO and TGF- (Maizels et al, 2004). Suppressive macrophages have also been shown 

to be induced by nematode infection, as will be discussed in more detail below (Loke et 

al, 2000b). Helminths can also modulate the immune response in many other ways. 

They may be able to exploit TGF-13 mediated immune downregulation by secreting 

homologues to this cytokine, such at the B. malayi TGF--like protein BM-TGH2 

(Gomez-Escobar et a!, 1998). They may also inhibit the recruitment of immune cells 

from the blood. For examples, some hookworms produce proteases that degrade eotaxin 

(Culley et a!, 2000; Maizels & Yazdanbakhsh, 2003). The most well characterised 

example of nematode mediated suppressive agent is probably ES-62, a glycoprotein 

produced by filarial parasites that has recently been demonstrated to have therapeutic 

potential in allergic diseases, such as asthma. ES-62 has been found to suppress mast 

cell function by blocking important signal transduction events through the FcE receptor 

and this action is protective against mast cell-dependent hypersensitivity (Melendez et 

a!, 2007). 

5. Lymphatic Fllariasis 

The work of the Allen parasite immunology lab involves the study of the interactions 

between nematode parasites and their hosts. The group is particularly interested in 

filarial nematodes that live in or migrate through the tissues, such as those that cause 

lymphatic filariasis (Elephantiasis). Filariasis is a mosquito-borne disease that currently 

affects approximately 120 million people in tropical regions. This thesis has mainly been 

concerned with Brugia malayi infection settings. 
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Lymphatic filariasis has a large economic impact. As well as the direct expense due to 

medical treatment, communities are indirectly affected by the cost associated with 

reduced work capacity and labour loss. In fact, this disease has been identified by the 

World Health Organisation (WHO) as the second leading cause of long-term and 

permanent disability in the world (WHO, 1997). The nematode Brugia malayi is found 

in Southeast and Eastern Asia and Brugia spp. are thought to account for about 10% of 

cases of lymphatic filariasis, with Wucheria bancrofti responsible for the remaining 90% 

(Melrose, 2002). It has been estimated that 44 million people have overt clinical disease 

due to filarial infection including lymphoedema and elephantiasis (WHO, 1997). 

Infection of human hosts occurs when an infected mosquito pierces the skin. The third-

stage larvae (L3) of the parasite enter the body and migrate through the tissue 

subcutaneously to the nearest lymphatic vessel. They mature by moulting to become 

fourth stage larvae at around 7 days post-infection (p.i.) and then moult to adults by 

around 30 days p.i. The male and female adults mate within the lymphatics and begin to 

produce millions of microfilariae (MI) by 60 days p.i. These are released out of the 

lymphatic system and pass into the bloodstream of the host (Freedman, 1998), from 

which some are taken up by feeding mosquitoes. The Mf mature in the mosquito when 

they leave the mid-gut and move to the flight muscles. Here they become L3s and move 

to the mosquito's proboscis where they are passed to the next host during a blood meal 

(outlined in Figure 4) (Lawrence, 2001). 

The average life span of filarial worms in infected humans is thought to be 8-16 years. 

The established view is that three groups of people are to be found in regions endemic 

for filarial nematodes (Figure 5). Firstly, 'endemic normals' are those who have been 

exposed to these helminths but have no evidence of disease, including no microfilariae 

in the bloodstream and no clinical evidence of infection. Secondly, there are those 

individuals with circulating microfilariae (Mf+) but no disease symptoms. This 

'asymptomatic microfilaraemia' is often the most common manifestation of filariasis. 

This form of filarial infection may not be quite so 'asymptomatic', however, as recent 
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Figure 4. Life cycle of Brugia inalayi 
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studies have shown that large-scale cryptic lymphatic and tissue damage may be 

occurring in the absence of obvious disease symptoms (Freedman et al, 1994; Melrose, 

2002). Lastly, there are those with chronic disease such as lymphoedema and 

elephantiasis. These people are generally without circulating microfilariae and are 

thought to be resistant to L3s and some may even be able to kill adult nematodes. 

However, this immunity appears to come with immunopathological consequences. 

Individuals in all three groups may also suffer from episodic acute filarial disease, which 

includes debilitating fevers and lymphadenitis (Lawrence, 2001; Melrose, 2002; WHO, 

1997). 
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Figure 5: The spectrum of filarial disease in endemic areas 
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It has been found that Mf+ patients have extremely raised levels of IL-4 driven filiarial-

specific IgG4, which can be as high as 95% of serum antibody (as opposed to 5% in 

uninfected individuals). IgE levels, also upregulated by IL-4, are raised in those with 

chronic pathology. Mf+ people also have raised IgE levels but have higher IgG4: IgE 

ratios than those with chronic pathology, suggesting that relative IgE levels may have a 

role in this filarial-induced pathology. It may be that Mf- individuals with chronic 
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filarial pathology and lots of IgE may have killed their adult parasites. The antibody 

isotypes IgG2 and IgG3 have also been associated with the chronic pathology of 

elephantiasis (Lawrence, 2001). 

When peripheral blood mononuclear cells (PBMC) are taken from actively infected 

individuals (Mf+), an immunosuppressive response is seen. Their PBMC fail to 

proliferate in vitro in response to filarial antigen. PBMC taken from endemic normals 

and those with chronic pathology do usually proliferate. Although PBMC from Mf+ 

individuals do not proliferate, they do produce cytokine and IL-4 responses tend to 

predominate. There is little IFN-y produced. JFN-y: IL-4 ratios are high in patients with 

chronic pathology but low in Mf+ individuals. Thus, downregulation of IFN-y seems to 

be a critical factor in the maintenance of filarial infection. There is also evidence that IL-

10 plays a key role in immunosuppression by filarial nematodes, which may or may not 

come from regulatory T cells (Lawrence, 2001). 

B. malayi harbour the endosymbiont Wolbachia that is an obligate intracellular 

bacterium most closely related to W. pipientis of arthropods (Bandi et al, 2001). They 

play an important role in the biology of filarial nematodes, with roles in sex 

determination and speciation. Targeting this bacterium with antibiotics also results in 

decreased fecundity, impaired molting and even worm death both in vitro and in vivo 

(Hise et al, 2007). Wolbachia bacteria are present in large numbers throughout all life 

stages of filiarial parasites of humans. This suggests that the host will be exposed to this 

endosymbiont following the death of the helminth or release of bacterial products 

(Taylor et al, 2001). Therefore, it is thought that individuals infected with B. malayi may 

respond to these bacteria, as well as to nematode products, and that Wolbachia can 

initiate or promote inflammation (Hise et al, 2007). Inflammatory responses can also be 

caused by filarial chemotherapy, which causes large quantities of parasite material to be 

released. The key pro-inflammatory cytokines IL-i 13  and TNF-a are produced mainly by 

macrophages and these potentiate further inflammatory mediator expression (Taylor et 

al, 2000). It has been proposed that the inflammation caused by B. malayi is mediated by 



LPS-like activity from Wolbachia (Daehnel et al, 2007; Hise et al, 2007; Taylor et al, 

2000). This idea will be discussed further in chapter 6 of this thesis. 

Although mice cannot support the full developmental cycle of Brugia malayi, single 

stage, short-term infections of mice have proven to be useful in dissecting immune 

responses to these filarial parasites. Indeed, these types of experiments have shown that 

L3 and adult stages of the parasite induce a Tb2 response, whereas Mf injections 

primarily induce a Thi response and only after prolonged infection induce Th2 

cytokines, such as IL-4, as well as IFN-y (Lawrence et a!, 1994). We have been using a 

mouse model of infection with B. malayi to understand host-parasite interactions and 

aspects of immunomodulation during filariasis. In order to do this, mice are surgically 

implanted with adult B. malayi filarial worms into the peritoneal cavity (Figure 6). These 

parasites survive for several weeks and result in recruitment of immune cells to the 

peritoneal cavity, of which approximately 70% are macrophages (MacDonald et al, 

1998). My work has involved the investigation of macrophages activated in the type-2 

environment brought on by this helminth, which have been termed nematode-elicited 

macrophages (NeM4; Loke et a!, 2000b). 
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6. Macrophages 

Macrophages are present in every tissue in the body. For example, they are found in the 

liver as Kupffer's cells and in the lung as alveolar macrophages, and indeed as the most 

abundant mononuclear cell in the intestines. Macrophages are mononuclear phagocytes 

with various roles in homeostasis, immunological processes, as well as in inflammation 

(Sasmono & Hume). Since they are so widely distributed in the body, they provide a 

first line of defence against invading organisms. As part of innate (non-specific) 

immunity they have the ability to recognise, engulf and kill potential pathogens such as 

mycobacteria and intracellular protozoan parasites such as Leishmania (Chan et a!, 

1992; Reiner & Locksley, 1995). They may also be involved in protection against larger 

invading organisms such as helminths, as has been found in vitro (Taylor et al, 1996; 

Thomas et a!, 1997). Macrophages can also cause the destruction of tumour cells 

through the production of tumour necrosis factor (TNF)-a and nitric oxide (NO) 

(Duerksen-Hughes et al, 1992). They can also recognise some virus-infected cells as 

well as cells undergoing apoptosis (Henson et a!, 2001; Sasmono & Hume). 

Macrophages also act as professional scavengers, phagocytosing microbes, apoptotic 

and necrotic cells, modified lipoprotein particles, and thus play important roles in 

homeostasis, as well as immunity (Ricote et a!, 2004). 

Through their function as antigen presenting cells (APC), macrophages bridge the gap 

between the innate and adaptive (specific) immune responses (Unanue, 1984). Upon 

phagocytosis, macrophages break down proteins and process the antigens for 

presentation on MITC molecules, where T-helper cells can recognise the substances as 

"foreign" and mount an adaptive immune response (Brodsky & Guagliardi, 1991). T 

cells require this antigen-specific signal through their T cell receptor (TCR) but also a 

second co-stimulatory signal for optimal T-cell activation. Co-stimulatory signal 

pathways promote the proliferation, effector function and cytokine production of T cells. 

One example is the B7-CD28 pathway, which provides essential signals for T cell 

activation. Inducible co-stimulatory molecule (ICOS) has also been found to be essential 
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for T cell activation and function (Dong et al, 2001) and it is thought to promote T 

cell/B cell collaboration through the CD40/CD40L pathway (McAdam et al, 2001). 

Macrophages also provide additional signals for the process of T cell activation. For 

example, if antigen presentation on the surface of infected macrophages (and other 

APCs, in particular dendritic cells; DC5), is in the context of MHC class II, along with 

Interleukin (IL)-12 from these APCs, this stimulates Thi (type 1 helper t-cells) to 

proliferate (Trinchieri, 1994). The link between innate and adaptive immunity comes full 

circle when signals, such as Interferon (IFN)-y, that macrophages receive from activated 

T cells allow them to become effector cells (see below "classical activation of 

macrophages") (Dalton et al, 1993). 

Since macrophages participate in both specific immunity via antigen presentation and 

nonspecific immunity against bacterial, viral, fungal, and protozoan pathogens, it is not 

surprising that macrophages display a range of functional and morphological 

phenotypes. Macrophages develop from blood monocytes, which also give rise to 

dendritic cells and osteoclasts. Although monocytes are often considered immature 

macrophages, they already possess migratory (Imhof & Aurrand-Lions, 2004), 

chemotactic (Marra et al, 1999), pinocytic and phagocytic activities, as well as receptors 

for IgG Fc-domains (FcyR) (Wyss et al, 1990) and iC3b complement (Payne & Horwitz, 

1987). Monocytes originate in the bone marrow from a common myeloid progenitor 

shared with neutrophils. Monocytes undergo further differentiation (at least one day) to 

become multifunctional tissue macrophages and it is signals that they encounter during 

migration to inflamed/infected sites in tissues of the body that induce highly distinct 

phenotypes and functions (Gordon, 2003; Gordon & Taylor, 2005). 
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Figure 7. Pathways of macrophage activation 
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7. The Th2 Response and Macrophage Activation: 

Alternatively Activated Macrophages (AAM4)) 

The function of macrophages once they reach the tissues is determined by signals they 

receive from the local environment. Possibly the most important of these are cytokine 

signals from T helper cells also recruited to the site of infection or injury. Macrophages 

activated by the Th2 cytokines IL-4 and IL 13 have been termed alternatively activated 

macrophages (AAM; Figure 7) (Gordon, 2003). More recently, the IL-2 1 receptor has 

also been identified as an important amplifier of the AAM phenotype, mainly by 

increasing IL-4Ra and IL-i 3Ra expression .(Pesce et al, 2006). The importance of 

AAM4 in type 2 conditions is strongly suggested by their prevalence in chronic Th2-

type inflammatory conditions such as helminth infection (Loke et al, 2000b; Nair et a!, 

2005; Rodriguez-Sosa et a!, 2002) and allergy (Holcomb et a!, 2000; Lee et a!, 1999; 

Zimmermann et a!, 2003). The first report that suggested the use of the term "alternative 

activation" came from Siamon Gordon's lab to describe cellular changes to macrophages 

induced by IL-4 that were distinct from those induced by IFN-y (Stein et a!, 1992). Both 

of these cytokines had been previously shown to upregulate MHC class II molecules on 

macrophages, but whereas IFN-y had been shown to downregulate murine mannose 

receptor (MMR) expression (Mokoena & Gordon, 1985), this in vitro study described 

IL-4-mediated upregulation of the MMR on elicited peritoneal macrophages (Stein et a!, 

1992). Prior to these studies, the effects of IL-4 and IL-13 were grouped with IL-b, as 

"deactivating" macrophages. Gordon and colleagues demonstrated that this is not the 

case. They showed that IL-4 and IL-13, in contrast to IL-lO, were "activating" and 

stimulated antigen presentation through upregulation of MIHC class II, co-stimulatory 

molecules and mannose receptor expression (Gordon, 2003). 

A few years later, Modolell and colleagues showed that the enzyme arginase (later found 

to be the isofonn arginase 1 (Munder et a!, 1999)) can be another marker of alternatively 

activated macrophages as it is potently induced by IL-4 in bone marrow-derived 
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macrophages (BMIM) (Modolell et al, 1995). There are two isoforms of arginase in 

vertebrates with distinct expression profiles. Arginase 1 is found in the cytosol of cells 

and is predominantly expressed in the liver of naïve mice and it has an important role in 

the urea cycle. Arginase 2 is a mitochondrial enzyme and is expressed in tissues such as 

the brain and kidneys at low levels, but its function is not well characterised (Mori & 

Gotoh, 2000). Macrophages can express both arginase 1 and 2, and expression of both 

isoforms may be driven by Lipopolysachharide (LPS). However, only arginase 1 has 

been shown in vitro to be inducible by IL-4 and IL- 13 in a Stat6 dependent manner 

(Louis et a!, 1999; Nair et al, 2006). Work from the Allen lab using a murine model for 

filarial infection with B. malayi implantation as a source of macrophages, has shown that 

Arginase 1 is an IL-4 dependent gene in vivo as NeM from IL-4-/- mice are impaired in 

their ability to produce Arginase 1 mRNA (Loke et a!, 2002). 

As well as Arginase 1, two other abundantly expressed genes are found expressed by 

NeM from B. malayi infection, which are also highly dependent on IL-4 in vivo, I'm-i 

and RELM-a (Loke et a!, 2002). Ym- 1 and RELM-a can also be upregulated in 

macrophages in vitro by IL-4 and IL-13 (Edwards et a!, 2006; Nair et a!, 2003; Raes et 

a!, 2002). Since then the expression of Arginase 1, YM- 1 and RELM-cx have been found 

to be a generalised feature of helminth infection. These proteins are induced at the sites 

of infection with the nematodes Litomoso ides sigmodontis and N. brasiliensis (Nair et 

a!, 2005; Pesce et a!, 2006; Reece et a!, 2006; Taylor et a!, 2006) and Heligmosomoides 

poiygyrus (Anthony et a!, 2006). Expression of these AAM4 markers has also been 

associated with the platyhelminthic infections of Schistosoma mansoni (Pesce et al, 

2006) and Taenia crassiceps (Terrazas et al, 2005). 

Ym-1 is a secreted 45-kDa chitinase-like lectin found in mice (Chang et a!, 2001; Jin et 

a!, 1998). Chitinase enzymes, with known protective function against chitin containing 

pathogens, have been well studied in plants, fish and microbes. Chitinase genes have 

been identified in mammals and are together known as the chitinase-like mammalian 

protein family (Boot et a!, 2001). Of these, only two functional chitinases have been 
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uncovered; chitotriosidase (Renkema et al, 1995) and acidic mammalian chitinase (Boot 

et a!, 2001). Ym-1 is member of this family but lacks chitinase function (Jin et al, 1998). 

RELM-a (Resistin-like molecule; also known as Fizz 1 (found in inflammatory zone), is 

a member of the RELM family of proteins, which share sequence homology to resistin, a 

protein secreted by adipocytes that can regulate responsiveness to insulin (Steppan et a!, 

2001). 

8. The Functions of AAM 

8.1 Wound Healing 

Increasing evidence suggests involvement of AAIvI in wound healing and tissue 

remodelling (Loke et a!, 2007; Sandler et a!, 2003). They may also play a role in 

tumorigenesis (Liu et al, 2003; Sinha et a!, 2005) and fibrotic scarring (Hesse et a!, 

2001) both of which have been described as wound-healing gone awry (Wynn, 2004). L-

arginine metabolism through arginase enzyme activity can eventually lead to the 

generation of polyamines and prolines (see iNOS/Arginase below and Figure 3). Proline 

has a role in collagen production and polyamines in cell proliferation (Albina et a!, 

1993; Bronte & Zanovello, 2005; Igarashi & Kashiwagi, 2000; Jackson et a!, 1986). 

These properties originally lead to the hypothesis that AAM4 are involved in wound 

healing (Goerdt et a!, 1999; Hesse et al, 2001; Wynn, 2004). Helminths are multicellular 

organisms and there is the potential for damage to tissue of infected hosts. Therefore, it 

is perhaps not surprising that an immune response would be induced with tissue repair 

and remodelling as an important function. For example, N. brasi!iensis has a migratory 

route through the lung and this causes substantial damage in the form of pulmonary 

haemorrhaging, which is quickly repaired (McNeil et a!, 2002). Indeed, I'm-i, RELM-cx 

and Arginase 1 gene expression, as well as known markers of lung remodelling such as 

Elastin and Firbronectin 1, are rapidly upregulated in the lung 2-4 days after infection 
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with N. brasiliensis indicating a role for AAM in innate immunity and repair (Reece et 

al, 2006). 

The induction of AAM also appears to be an innate response to injury in the B. malayi 

implant model (Loke et al, 2007). Early IL-4 or IL- 13 production has been found to be 

essential for AAM induction, but use of RAG-deficient animals has shown that CD4+ 

Th2 cells are not required for this early response to tissue damage. Mast cells were 

proposed as a possible source of this early IL-4/13 (Loke et al, 2007). Other evidence 

that AAM are involved in the response to tissue injury comes from the possible 

functions of highly expressed proteins Ym- 1 and RELM-a. Ym- 1 has been shown to 

bind to the glycan heparin, which is abundant on cell surfaces and extra-cellular matrix. 

Through this binding it is possible that Ym- 1 may have a role in remodelling of tissue by 

coordinating cell-to-cell and cell to matrix contacts (Chang et al, 2001; Nair et al, 2006). 

RELM-a has been found associated with fibrosis in the lung (Liu et a!, 2004). This 

protein has mitogenic properties and so may be involved in causing this fibrosis through 

inducing the proliferation of smooth muscle cells and actin production (Teng et a!, 

2003). RELM-a also has angiogenic properties (Teng et al, 2003), an essential 

component of wound healing. 

8.2 Regulation 

AAM4 have long been considered "anti-inflammatory" or downregulatory but direct 

evidence for this was scarce. A role for AAM in immune regulation has been 

demonstrated by an experimental model using conditional gene knockout mice in which 

IL-4Ra chain is absent in macrophages and neutrophils. AAIvI were shown to be 

essential for protection against organ injury during schistosomiasis. They may help to 

protect against hepatocellular damage during schistosomiasis by regulating nitric oxide 

production (see section 9. iNOS/Arginase). Therefore, data from this paper suggest that, 
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in contrast to CAM, one function of AAM4 is the regulation or dampening down of the 

immune response (Herbert et a!, 2004). In relation to this, work from our lab has shown 

that NeM4 from B. malayi—implanted mice are potent suppressors of proliferation of not 

just immune cells (Allen et a!, 1996) but a range of murine and human tumour cell lines. 

This suppression is dependent on IL-4 and is mediated by cell-to-cell contact (Loke et 

a!, 2000b; MacDonald et al, 1998). NeM from a L. sigmodontis infection model have 

also been shown to have suppressive properties, which is at least partially dependent on 

TGF-f3 expression (Taylor et a!, 2006). The suppression associated with AAM from the 

platyhelminthic infections with T. crassiceps (Terrazas et a!, 2005) and S. mansoni 

(Smith et a!, 2004) is associated with the upregulation of programmed death ligand 1 

(PD-Li) on the macrophages. In both cases, blockage of PD-Li blocked the ability of 

these AAM to dampen down T cell responses (Smith et al, 2004; Terrazas et a!, 2005). 

However, other mechanisms have also been proposed, including the production of 

12/15-lipoxygenase, reactive oxygen species (Brys eta!, 2005) and arginase 1 (chapter 2 

of this thesis). These suppressive mechanisms are outlined in Figure 8. 

8.3 Effector Function 

Anthony et al. have shown AAM to be effector cells in the protective memory response 

to the helminth parasite H. polygyrus. During this infection, AAIvI have a role in 

parasite expulsion, by impairing larval health and mobility in an arginase-dependent 

manner. Animals, in which the AAM population have been depleted with clodronate 

liposomes, cannot expel the parasite compared to PBS liposome treated controls 

(Anthony et a!, 2006). Effector function is also suggested by the finding that in S. 

mansoni—infected mice AAM are associated with the egg-induced liver granulomas. 

However, this same paper showed that AAM were not required to the expulsion of 

Nippostongylus brasiliensis (Herbert et al, 2004). They may also indirectly cause killing 

of helminth parasites through the recruitment of eosinophils, as mice deficient for 
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AAM had reduced recruitment of these effector cells when implanted with B. malayi 

(Loke et al, 2007). Related to this, Ym-1 may have eosinophil chemotactic properties 

(Owhashi et al, 2000). It has also been suggested that RELM-ct, due to its fibrotic 

properties, may play a role in the killing of helminth parasites by sequestering them in 

tissues, thus reducing their motility and facilitating killing by effector eosinophils or 

neutrophils at the site of infection (Nair et al, 2006). RELM-a could also contribute to 

expulsion of worms from the gastro-intestinal tract through its ability to regulate nerve 



growth factor (NGF) and possibly influencing enteric nerve cell function (Zhao et al, 

2003). With the exception of the Anthony study, all this data is circumstantial and 

definitive evidence for AAM involvement in killing of helminth parasites is still 

needed. 

9. The Thi Response and Macrophage Activation: 

Classical Activation of Macrophages (CAM) 

Classical activation is the archetypal mode of activation of macrophages (Figure 2). It is 

well defined and is dependent on the products of activated Thl lymphocytes and natural 

killer cells, in particular IFN-y (Dalton et al, 1993; Wherry et al, 1991). Other factors 

involved in this activation include danger signals, such as heat shock proteins (Byrd et 

al, 1999; Gordon, 2003) and innate recognition of microbial pathogen-associated 

molecular patterns (PAMPS; e.g. LPS) (Aderem & Ulevitch, 2000). Toll-like receptors 

(TLRs) that recognise PAMIPs such as LPS as part of the innate immune system (Rock et 

al, 1998) will be discussed in more detail in chapter 6. 

Classically activated macrophages (CAM) are the major effector cells of the Thi arm 

of the immune response and their prime function is microbial destruction. Activated 

murine macrophages generate a variety of oxygen- and nitrogen-derived radicals with 

anti-microbial properties (Chanock et a!, 1994; Nathan, 1983). The enzyme complex of 

NADPH oxidase produces reactive oxygen intermediates via reduction of molecular 

oxygen, such as hydrogen peroxide (H202), hydroxyl radicals (OW) and superoxide 

anion (02) (Wientjes & Segal, 1995). Inducible nitric oxide synthase (iNOS/NOSII) 

produces the primary reactive nitrogen intermediate, NO (Mori & Gotoh, 2000). These 

oxygen and nitrogen radical-based cytotoxic pathways can be triggered by 

proinflammatory cytokines, such as IFN-y and TNF-u (Ding et al, 1988). Destruction of 

intracellular microbial parasites such as Leishmania spp. and Mycobacterum bovis 
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(BCG) are know to require the classical activation of macrophages by a Thi response. 

Leishmanicidal activity is known to require NO generation by CAM (Evans et a!, 

1993; Lemesre et a!, 1997; Liew et a!, 1990). Mycobacteria that go on to survive and 

replicate within macrophages are thought to do so by a variety of strategies, including 

the avoidance of killing by reactive oxygen (Manca et al, 1999) and nitrogen 

intermediates (Yu et a!, 1999). A strong early Th 1 response is also mounted towards the 

protozoan parasites of the Plasmodium genus. IFN-y, and CAM induction by this 

cytokine seems to be important in the initial phase of infection with malaria parasites (Li 

et a!, 2001). Infections with these microbial pathogens will be discussed further in the 

subsequent chapters. 

10. iNOS and Nitric Oxide (NO) 

iNOS (or NOS2) has been found in macrophages from human, cow, sheep, mouse and 

chicken (MacMicking et al, 1997). NO is produced by this enzyme from the substrate L-

arginine and is a lipid and water-soluble radical gas. iNOS oxidises L-arginine in two 

steps; L-arginine is hydroxylated firstly to N°-hydroxyl-L-arginine (NOHA), which is 

then oxidised to L-citrulline and NO (Figure 9). NO reacts with oxygen in water and its 

reactive intermediates to produce other radicals such as NO2, and other conversion 

products such as NO 2  (nitrogen dioxide), NO3 (nitrate) and ONOO (peroxynitrite 

anion) (MacMicking et al, 1997; Stamler, 1995). In infected individuals, NO has be 

shown to have antiviral, antimicrobial, pro- and anti-inflammatory, cytotoxic and 

cytoprotective effects and these has been shown to be due to iNOS-derived NO through 

the use of iNOS-/- mice (Bogdan et al, 2000a; Bogdan et al, 2000b; Hesse et a!, 2000; 

Nathan & Shiloh, 2000). 

The cytotoxic effects of NO are mediated by the inhibition of iron-containing enzymes 

such as mitochondrial electron transfer proteins (Nathan, 1992). These effects lead to the 



mutation of DNA, inhibition of DNA repair and synthesis, inhibition of protein synthesis 

and inactivation of enzymes amongst other things (Bogdan et a!, 2000a; DeGroote, 

1999). In the case of Leishmania parasites, several parasite targets may be affected by 

NO toxicity including metabolic enzymes, such as GAPDH (glyceraldehydes-3-

phosphate dehydrogenase) (Mauel & Ransijn, 1997) and aconitase (Lemesre et a!, 1997) 

or cysteine proteinase (Salvati et a!, 2001). 

11. iNOS/Arginase 

The iNOS/Arginase balance in activated macrophages remains the best way to 

differentiate between AAM and CAM. Arginase 1, as well as iNOS, metabolises L-

arginine and the distinction between AAM and CAM can be best understood in terms 

of L-arginine metabolism (Figure 9). Under type 1 conditions, macrophages produce NO 

as a result of the up-regulation of iNOS, which is a catalyst of the L-arginine substrate. 

In AAM, IL-4 or 11-13 upregulate the enzyme Arginase 1, which converts L-arginine to 

L-ornithine and urea (Munder et a!, 1998). While the NO produced by CAM4 has 

antimicrobial and cytotoxic properties, L-ornithine produced by AAM4 is the substrate 

for two additional enzymes, ornithine decarboxylase (ODC) and ornithine amino 

transferase (OAT) which generate polyamines and prolines respectively. As mentioned 

above, proline has a role in collagen production and polyamines in cell proliferation 

(Albina et al, 1993; Bronte & Zanovello, 2005; Igarashi & Kashiwagi, 2000; Jackson et 

a!, 1986), making it likely that AAM are involved in wound healing (Goerdt et a!, 

1999; Hesse et a!, 2001; Wynn, 2004). The induction of either arginase or iNOS is 

usually coupled with suppression of the opposing enzyme, indicating a competitive 

nature in these alternative states of macrophage metabolism (Modolell et a!, 1995). 

Indeed, the intermediate iNOS pathway product, NOHA, is a competitive inhibitor of 

arginase (Hecker et a!, 1995; Wu & Morris, 1998). Conversely, polyamines produced by 

arginase metabolism of L-arginine are known iNOS inhibitors (Blachier et a!, 1997). 

I 

29 



Figure 9. Difference in L-arginine metabolic pathways 
used byiNOSand Arginase and negative feedback of 
opposing pathways 

Th2 condns. 
Thi condns. 

1FN-y 

CAM4 

C  )S  

rM 
IL-4 

AAM4/'  

Z_(;;;D 

NOH A 

/ 
Citrulline 

Nitric Oxide 
(NO) 
-antimicrobial, cytotoxic 
properties 

L-ornithine + urea 

ODC )~/ 

<Putresc ine  

Spermidine 	Prolines 
and spermine 	-collagen production 
-ccii proliferation 

Wound healing 

Competition for the L-arginine substrate and other negative feedback loops also 

contribute to this suppression of opposing enzymes (Figure 9). Thus, the counter 

regulation of M phenotype occurs not only at the level of opposing T cell phenotypes 

(i.e. Thi vs. Th2) but also at the level of the enzymatic pathway itself. 
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This separation of classical versus alternative activation of macrophages by their iNOS-

Arginase balance may be an oversimplification. For example, LPS, often referred to as 

an inducer of Thi cytokines, can activate both iNOS and arginase expression in 

macrophages (Bronte et a!, 2003). Indeed, if both enzymes were to be co-expressed, 

kinetic considerations indicate that there would not be great affect on NO production. 

Even though arginase has a lower affinity for the substrate (K m  about 3000 fold that of 

iNOS; lower Km = higher affinity) it catalyses the reaction (V m ) 1000-fold faster than 

iNOS, and this means that L-arginine can be metabolised by these two enzymes at 

approximately the same rate (Bronte & Zanovello, 2005; Fligger et a!, 1999). Therefore, 

production of either or both of these enzymes would depend on levels of external signals 

the macrophages were receiving and availability of L-arginine. 

12. Innate Recognition of Microbial Products 

Whereas adaptive immunity is mediated by B and T cells, and is characterised by 

specificity and memory, the innate immune system is mediated by phagocytes, including 

macrophages, neutrophils and DCs, and has until relatively recently been considered 

non-specific. However, it has been shown that the innate immune system must be 

sufficiently specific in order to discriminate between self and pathogenic organisms 

(Akira & Hoshino, 2003; Medzhitov, 2001). The innate immune system detects the 

presence of pathogens following infection by recognising conserved motifs in the 

microorganism. PRRs of innate immunity recognise these molecules that are broadly 

shared amongst pathogens, and are distinguishable from host molecules, called 

pathogen-associated molecular patterns (PAMPs). PAMPs have common features that 

make them targets for the innate immune system. They must be essential for microbial 

survival, incapable of developing mutations and conserved between a given class of 

microorganism (Medzhitov, 2001). PAMPs are usually produced only by invading 

31 



microbes, although some PRRS may recognise unique molecules displayed on stressed 

or injured mammalian cells, such as heat shock proteins (Vabulas et al, 2001). Examples 

of PAMPS include LPS from the outer membrane of gram-negative bacteria (Ulevitch & 

Tobias, 1999), flagellin found in the flagella of certain bacterial species. (Hayashi et a!, 

2001) and double-stranded RNA, which is unique to many viruses at certain stages of 

their replication (Alexopoulou eta!, 2001). 

There are many kinds of PPR that are expressed in different locations. These locations 

include the cell surface, intracellular compartments and in blood and tissue fluids. PRRs 

are involved in opsonisation, phagocytosis, activation of complement cascades and 

proinflammatory signalling pathways, among other actions of irmate immunity 

(Medzhitov, 2001). Secreted PPRs include mannan binding lectin (MIBL), which 

recognises terminal mannose residues and is involved in the activation of lectin 

complement pathway (Holmskov, 2000), and LPS-binding protein (LBP), which, as the 

name suggests, recognises LPS (Wright et al, 1989). Among PRRs present on the cell 

surface are CD14, which is a cell surface receptor that also recognises LPS, and also 

peptidoglycan (Wright et al, 1990), and the macrophage mannose receptor (MMR), 

which recognises terminal mannose residues (Fraser et al, 1998). Intracellularly, 

nucleotide-binding oligomerisation domain (NOD)-like receptors (NLRS) are found in 

the cytoplasm. NLRS include NOD-i and NOD-2 that allow recognition of 

peptidoglycan components of bacteria and leads to the induction of proinflammatory 

cytokines such as IL-i, TNF-a and IL-12 (Inohara et al, 1999; Medzhitov, 2001). 

Toll-like receptors (TLRs) are a family of PRRs that are present both intracellularly and 

on the cell surface of mammalian cells and recognise bacteria, viruses, fungi and 

protozoa (Creagh & O'Neill, 2006). Toll was originally identified in Drosophila as a 

gene involved in early development and later was found to be essential for anti-fungal 

immunity (Lemaitre et al, 1996). This discovery led to the search for Toll-related 

molecules in mammalian immune responses. At least 13 TLRs have been identified in 

humans and mice together, and the ligands for some have not been elucidated as yet 
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(Bowie & Haga, 2005). TLRs are part of a superfamily along with IL-i receptor (IL-i R) 

members (Rock et a!, 1998) and are believed to function as dimers (mostly homodimers) 

(Xu et al, 2000). TLR4 was the first characterised mammalian Toll and it has an 

essential role in LPS-dependent responses (Hoshino et a!, 1999). Other TLRs include 

TLR5 that recognises flagellin (Hayashi et al, 2001) and TLR9, which identifies 

bacterial DNA (unmethylated CpG DNA) (Hemmi et a!, 2000). TLR2 is involved in the 

recognition of a wide range of microbial products, including peptidoglycan from Gram-

positive bacteria, yeast cell walls and atypical LPS, which is structurally different from 

Gram-negative LPS. TLR2 forms heterodimers with at least two other TLRs, TLR1 and 

TLR6, and this dictates the specificity of the ligand recognition (Medzhitov, 2001). 

Signalling via the TLRs leads to the activation of various genes with functions in host 

defence, including proinflammatory cytokines, co-stimulatory molecules and effector 

molecules, such as iNOS and anti-microbial peptides (Medzhitov, 2001). The signalling 

cascades brought about via TLRs originate from the intracellular region known as the 

Toll/IL-i receptor (TIR) domain (Xu et a!, 2000). This leads to the recruitment of the 

myeloid differentiation factor 88 (MyD88), and downstream signalling to the nucleus 

and inflammatory cytokine induction (Figure 10; Adachi et a!, 1998). MyD88 is a 

critical adaptor molecule shared by many TLRs and signalling through many of these 

receptors is completely dependent on it (Akira et al, 2001). It is also an important 

component in the signalling cascades mediated by IL-1R and IL-18R (Adachi et a!, 

1998). 

MyD88-independent pathways also exist for some TLRs, i.e. TLR3 and TLR4 (Akira & 

Hoshino, 2003). The TRIF cascade is the MyD88-independent signalling pathway 

associated with TLR3 and TLR4 (Figure 10). TRIF-related adaptor molecule (TRAM) is 

an essential link between TRIF and TLR4. This MyD88-independent pathway leads to 

the activation of IRF-3 and the induction of IFN-a and 13 , 
which lead to an inflammatory 

response (Kawai et a!, 2001; Figure 10). 
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Classical activation of macrophages is not only dependent on the products of activated T 

helper 1 (Thi) cells, in particular IFN-y (Dalton et a!, 1993), but also the recognition of 

microbial PAMPS through TLRS (e.g. LPS and TLR4) (Aderem & Ulevitch, 2000). In 
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the absence of MyD88, Thi responses are greatly diminished and this indicates a role for 

TLRs and MyD88-dependent signalling in the control of adaptive Thi immunity 

(Adachi et al, 1998). Th2 responses, on the other hand, have been shown in some studies 

to be intact or even augmented in the absence of MyD88 (Kaisho et al, 2002; Muraille et 

al, 2003; Schnare et al, 2001) and this suggests that Th2 responses are elicited in a 

MyD88-independent manner. However, other work suggests that TLR signaling does 

play a role in Th2 responses (Eisenbarth et al, 2002). The effect of MyD88 signalling on 

the alterntative activation of macrophages will be discussed in chapter 6 of this thesis. 

13. Co-infection 

Ultimately, the dichotomy between AAM vs. CAM4 is important because it will 

detennine the outcome of infection with metazoan vs. microscopic pathogens 

respectively. However, this "decision" of which pathway to select becomes more 

complicated when one considers co-infection with both type-i and type-2 pathogens 

simultaneously. Estimates put those infected with parasitic helminths at over 2 billion 

people. Helminth infections in humans, such as gastrointestinal nematodes e.g. Ascaris 

lumbricoides, are highly prevalent in sub-Saharan Africa, South America and Southeast 

Asia, where the protozoan parasites, such as malaria are also endemic (Su et al, 2005). 

These are also the regions associated with high morbidity and mortality from infection 

with other microbial pathogens, such as Mycobacterium tuberculosis (Elias et al, 2001). 

Therefore, common locations result in high rates of co-infection between helminths and 

other pathogens. Different organisms occurring in the same host usually influence one 

another directly or indirectly (Cox, 2001). This may be especially apparent with 

helminths and microbial parasites since Thi responses, that clear intracellular pathogens, 

and Th2 induced by helminths, inhibit one another. 
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With relevance to this thesis, malaria-helminth co-infection has been found to either 

intensify (Graham et at, 2005b; Heimby et al, 1998; Su et at, 2005) or improve (Briand 

et at, 2005; Nacher et at, 2000) disease severity. Concurrent infection with the nematode 

H. potygyrus renders otherwise resistant mouse strains susceptible to Plasmodium 

chabaudi parasites, by impairing the development of protective immunity against 

malaria (Su et at, 2005). Infection with Ascaris lumbricoides, however, seems to confer 

some protection against cerebral malaria in humans (Nacher et at, 2000). Other factors, 

such as the presence or absence of a particular parasite stage, may also have an effect on 

the severity of the disease outcome with malaria. Graham et at found that mice co-

infected with L. sigmodontis and P. chabaudi have more severe malarial disease when 

they do not have blood-circulating microfilaraemia, compared to when they do (Graham 

et at, 2005b). 

With other protozoan parasites of the Leishmania genus, it has been found that prior 

infection with the cestode T. crassiceps favours infection with Leishmania major and L. 

mexicana. This is thought to be through the induction of AAM (Rodriguez-Sosa et at, 

2006) as arginase 1 induced in these macrophages supports the growth of intracellular 

Leishmania parasites (Iniesta et at, 2002; Kropf et at, 2005). In the case of 

mycobacteria, S. mansoni infection makes mice more susceptible to M bovis BCG by 

impairing antigen specific Thi responses (Elias et at, 2005b). However, when mice are 

co-infected with BCG and N. brasiliensis the helminth infection does not affect 

elimination of the mycobacteria from the lung, although the Th 1 response is impaired. 

This shows that an ongoing Th2 response in the lung does not necessarily lead to 

increased susceptibility to BCG (Erb et at, 2002). 

As well as the implant model with B. matayi, infection with N. brasitiensis a rodent 

model of hookworm, has also been used during this PhD. N. brasiliensis has a lung 

migration phase of its lifecycle and has been used to look at the effects of nematode 

infection on the phenotype of macrophages in the lungs of mice co-infected with 

Ptasmodium chabaudi rodent malaria. This wOrk will be discussed in chapter 5. 
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14. Aims of PhD 

Although our knowledge of macrophage function in the Th2 setting is rapidly increasing 

a number of questions remain to be addressed about their function, their development 

and their level of phenotypic plasticity. The main focus of this PhD was to consider Th2-

activated AAIvI in the context of Thi settings, both in vitro and in vivo. The aim was 

thus to address the level of M4 plasticity with relevance to "real" infection. For these 

reasons the following questions were asked: 

• How does treatment of AAM4 with type 1 signals alter their phenotype? Chapter 2. 

• How do AA1vI deal with intracellular pathogens where a Th 1 response is required 

in order to clear infection- Leishmania mexicana and Bacille Calmette-Guerin 

(BCG)? - Chapters 3 and 4. 

How does treatment of AAM with type 1 signals alter their susceptibility to 

infection? Chapters 3 and 4. 

What happens to the AAIvI phenotype during an in vivo co-infection between a 

Thi-inducing intracellular pathogen, Plasmodium chabaudi, and a Th2-inducing 

helminth, Nippostrongylus brasiliensis? Chapter 5 

• What role, if any, do Toll-like Receptors (TLRs), and more specifically the adaptor 

protein MyD88, have in the development of the alternatively activated phenotype in 

macrophages both in vitro and in vivo? Chapter 6. 
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CHAPTER 2 

Plasticity of Macrophage Function 

1. Introduction 

Signals encountered by developing macrophages during migration determine their 

functional properties at sites of inflammation or infection. Among these signals, 

cytokines, which can act synergistically or have opposing effects, are responsible for the 

development of highly divergent macrophage phenotypes. As previously mentioned, 

classical activation of macrophages is dependent on the products of activated T helper 1 

(Thi) cells, in particular interferon-y (IFN-'y) (Gordon, 2003), while alternatively 

activated macrophages (AAM) are activated by the Th2 cytokines interleukin (IL)-4 

and IL-13. Although macrophages have been usefully classified in this way, the range of 

actual phenotypes is likely to be much broader with AAM and CAM4 representing two 

points in a wide spectrum. Unlike T helper cells where activation leads to terminal 

differentiation into Th 1 and Th2 cells, macrophages appear to display a high degree of 

flexibility (Edwards et al, 2006; Mantovani et al, 2004; Porcheray et al, 2005; Stout & 

Suttles, 2004). Plasticity of function may be an economical strategy for the immune 

system since, in contrast to the high turnover of T cells, macrophages are longer-lived 

and may need to adapt their function to different pathogens or environments they will 

face during their lifespan. 

Many studies have shown that macrophage responsiveness to a given cytokine can be 

altered andlor suppressed by the cytokines to which it was previously exposed (Joyce & 

Steer, 1996; Lang et al, 2002). However, the flexibility of the AAIvI phenotype is still a 

subject of controversy. Whilst some reports show that IL-4 pre-treatment of 

macrophages renders them unresponsive to Thi activation (Erwig et al, 1998; Herbert et 



a!, 2004; Joyce & Steer, 1996; Lang et al, 2002; Modolell et a!, 1995), others have 

found that the previous IL-4 exposure enhanced the responsiveness to Thi activating 

signals (Major et a!, 2002). As these results were obtained by in vitro activation with IL-

4, the differences may be due to variation in the length and intensity of the activation 

stimuli. Indeed, Stout et al. recently demonstrated that two cytokines could have either 

antagonistic or synergistic effects on murine macrophage function dependent on the 

order and length of each cytokine treatment (Stout et al, 2005). In another study, human 

macrophages were stimulated with either pro- (e.g. TNF-a) or anti-inflammatory (e.g. 

IL- 10) cytokines and then cultured with a counterstimulatory cytokine or medium alone. 

They found that macrophages stimulated towards a specific activation state could switch 

their phenotype rapidly when given counterstimulatory signals or return to a quiescent 

state after signal arrest (Porcheray et al, 2005). Due to conflicting in vitro data, it is 

difficult to determine whether macrophages demonstrate functional adaptivity in vivo, 

and the physiological relevance of this phenomenon. 

Investigating macrophage plasticity in vivo could have important implications for 

therapeutic targeting of macrophages in chronic diseases but also for our general 

understanding of how the immune system copes with multiple infections that may 

require differing immune responses. In support of the hypothesis that macrophage 

plasticity may confer increased efficiency and flexibility for the immune response, 

Gratchev et al. recently demonstrated that in response to a second stimulation with IFN-

y, in vitro derived human AAM displayed significantly higher bactericidal activity 

(Gratchev et al, 2006). Also, in a murine model, pre-treatment with the Th2 cytokine IL-

13 was found to prime macrophages in their LPS-induced anti-Toxoplasma gondii 

ability (Authier et a!, 2007). However, the degree of flexibility of macrophages recruited 

to sites of infection is still unknown. 

In light of the increasing evidence that macrophages show functional adaptivity, we 

decided to study the NeM (from the B. malayi implant model) response to Th 1 

activating signals. In this chapter, we have used this to investigate whether the switch 
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between alternative and classical activation can occur in macrophages differentiated in 

an in vivo infection setting and, in subsequent chapters 3 and 4, whether this would 

translate into an ability to control an intracellular microbial infection. Despite the long-

term exposure to Th2 cytokines and anti-inflammatory signals in vivo, we found here 

that NeM were not terminally differentiated but could switch from alternative 

activation to a more classically activated phenotype in response to LPS/IFN-y. 

2. Materials and Methods 

2.1 Mice 

All experiments used WT or IL-4-/- mice on the C57BL/6 background, and these were 

bred in house or purchased from Harlan, UK. Mice were 6-8 weeks old at the start of the 

experiment. 

2.2 Brugia malay/infection 

Adult parasites were removed from the peritoneal cavity of infected gerbils purchased 

from TRS Laboratories (Athens, GA) or maintained in house. C57BL/6 males were 

surgically implanted intra-peritoneally (i.p.) with 5-6 live adult female B. malayi. Three 

weeks later, the mice were euthanized. The peritoneal exudate cells (PEC) were 

harvested by thorough washing of the peritoneal cavity with 15 ml of ice-cold 

Dulbecco's Modified Media (DMEM) (Gibco). As a control for non-Th2 polarised 

inflammation, mice were injected i.p. with 0.8 ml of 4% thioglycollate medium brewer 

modified (Becton Dickinson). Three days later, the PECs were harvested, as above. 



2.3 Macrophage Activation 

The recovered PECs were cultured in DMEM, supplemented with 10% Foetal Calf 

Serum (FCS), 2mM L-glutamine, 0.25U/ml penicillin and 100mg/mI streptomycin 

(Gibco). Thioglycollate-elicited PECs were plated in 9 cm petri dishes and left untreated 

or treated for 18-24 hours with IL-4 (20nglml; BD Pharmingen). The non-adherent cells 

were subsequently washed off and the remaining adherent macrophages were left 

untreated or treated with LPS (lOOngIml; Escherichia coil 011 1:134 Sigma-Aldrich) and 

JFN-y (1 OU/ml; BD Pharmingen) together or separately for 18-24 hours. NeM were 

similarly recovered and plated in medium alone or with LPS and/or IFN-y. Following 

treatment, the non-adherent cells were washed off and the adherent macrophages were 

recovered by a 15 minute incubation at 37 °C in warm 10mM glucose and 3mM EDTA 

in PBS. 

In order to obtain 'control' (but not necessarily completely naïve) macrophages from the 

same site as the Brugia implant i.e. the peritoneal cavity, thioglycollate-elicted 

macrophages (ThioM) were prepared (see materials and methods). Thioglycollate 

medium is widely uses as a stimulatory agent to induce non-infectious peritoneal 

inflammation and elicit macrophages in mice. It is a rich nutrient medium containing 

proteins and carbohydrates (Li et a!, 1997). Thioglycollate stimulus causes the 

recruitment of large numbers of cells to the site of inflammation but does not increase 

the microbicidal activity of macrophages and, therefore by this measure, does not 

activate them (Leijh et ai, 1984). Injection with this inflammatory agent is also a very 

quick and efficient method for eliciting macrophages and helps to reduce the number of 

animals used for research in this field (Li et al, 1997). This is unlike the use of resident 

peritoneal macrophages as controls whereby large numbers of animals must be 

sacrificed in order to obtain similar cell numbers. 
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Bone marrow derived macrophages (BMIM) were prepared by harvesting the bone 

marrow from the femur and tibia of C57BL/6 mice. Erythrocytes were lysed using 3 ml 

red blood cell lysis buffer (Sigma-Aldrich) for 5 minutes. Differentiation into 

macrophages was preformed according to published protocols (Dransfield, 1996). Cells 

were plated onto petri-dishes at 7.5 X 106  cells/plate and cultured in DMEM, 

supplemented with 25% Foetal Calf Serum (FCS) (GIBCO), 25% L929 supernatant (as a 

source of M-CSF), 2mM L-glutamine, 0.25U/ml penicillin and 100tg/ml streptomycin. 

The medium was replaced after four and six days to allow a pure population of 

macrophages to be present at day seven. They were then plated in medium alone or with 

LPS and/or IFN-y (as above). 

2.4 FACS staining 

For intracellular staining, cells were treated with brefeldin A (10 g/ml) for 4-6 hours at 

37°C before incubation at 4°C for 15 minutes in blocking buffer (1:20 mouse serum, 0.5 

mglml rat IgG in FACS buffer; PBS supplemented with 2mM EDTA and 0.5% BSA). 

This was followed by staining for 20 minutes on ice with the antibodies (Ab) of interest 

at the appropriate dilution as determined by titration. The antibodies were generally 

directly fluorochrome conjugated or biotinylated. When using biotinylated antibodies, an 

additional step involving incubation of the cells with fluochrome-conjugated streptavidin 

beads (in this case APC; Pharmingen) was performed. The Abs included anti-F4/80-

biotinylated (1:100); anti-MHC II-FITC (1:200) and PE-conjugated anti-CD86 (1:100) 

(BD), as well as the appropriate isotype control Abs (anti-IgG2a-FITC, anti-IgG2a-PE, 

anti-IgG2a-biotinylated). The cells were then fixed in 2% paraformaldehyde before 

resuspension in cytofix/cytoperm (BD) and washing in perm wash. The saponin in the 

perm wash permeabilises the cells. Perm wash also serves as antibody diluent and wash 

buffer during the rest of the intracellular cytokine staining process, as permeabilisation 

with saponin is reversible. Anti-Ymi (1:25; Stem Cell technologies) and anti-RELM-a 
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(1:100; Peprotech) antibodies (or isotype control- IgG from rabbit serum; Sigma) were 

then added (in perm wash) for one hour, before addition of Alexaflour488 (1:300 also in 

perm wash; Molecular Probes). The cells were then washed 2x in perm wash and once in 

FACS buffer before acquisition and analysis (BD FACStation and FlowJo software). 

2.5 Proliferation Assay 

Macrophages purified by adherence were co-cultured (1x10 5  cells/well) in 96-well flat-

bottomed plates with the EL-4 cells (IX104  cells/well) in the presence or absence of the 

inhibitor NG-monomethyl-L-arginine (L-NMIMA; 100 tM; Sigma-Aldrich) or N -

hydroxy-nor-l-arginine (nor-NOHA; 250 tiM; Sigma-Aldrich). Following a 48-hour 

incubation, 100 tl supernatant was removed -to measure nitric oxide (NO) production. 

1 Ci of [3H]TdR in 10ti complete medium was then added to each well, and plates 

were incubated overnight before harvesting and counting using a liquid scintillation 

counter (Microbeta 1450, Trilux). Quadruplicate measurements per sample were 

performed. Results were plotted in counts per minute (cpm). 

2.6 Quantification of NO and arginase activity 

NO production was assessed by nitrite accumulation in the culture media using the 

Greiss Reagent. in brief, 100ti culture supernatant was mixed with 100ii of 5.8% 

phosphoric acid, 1% sulphanilamide, 0.1% N-(1-naphthyl) ethylenediamine 

dihydrochioride. Absorbance was measured at 540 nm or 490nm (with background 

correction at 650nm) using a microplate reader. Concentration was determined 

according to a standard curve of sodium nitrite solution. - 
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Arginase activity was measured according to previously published protocols (Munder JI 

1998). Briefly, 1-2x10 5  cells were lysed with 100 IAI 0.1% Triton X-100. Following a 30 

minute incubation with shaking, 100 itl of 25 mM TrisHCL and 20 ..tl of 10 mM MnC12  

were added and the enzyme activated by heating to 56 °C for 10 minutes. L-Arginine 

hydrolysis was carried out by incubating 100 tl of this lysate with 100 tl of 0.5M L-

Arginine (pH 9.7) at 37 °C for various time-points between 15 and 60 minutes. The 

reaction was then stopped with 800 tl H2SO4 (96%)/H3PO4  (85%)/H20 (1/3/7, v/v/v), 

and 40 pA of 9% isonitroso-propiophenone (ISPF) added, followed by heating to 99 °C 

for 30 minutes before reading on the microplate reader at 540 nm. A standard curve of 

urea solution was used to determine concentrations. One unit of arginase enzyme 

activity is defined as the amount of enzyme that catalysed the formation of 1 mol of 

urea per minute at 37°C. Unless otherwise stated, all reagents were obtained from 

Sigma-Aldrich. 

2.7 RNA extraction and real-time RI PCR 

RNA was recovered from cells by re-suspension in TRizol (Invitrogen). Total RNA was 

extracted according to the manufacturer's instructions. Following DNAse1 treatment 

(Ambion) to remove contaminating genomic DNA, 1 ig of RNA was used for the 

synthesis of cDNA using MMLV reverse transcriptase (Stratagene). Relative 

quantification of the genes of interest was measured by real-time PCR, using the 

LightCycler (Roche Molecular Biochemicals). Five serial 1:4 dilutions of a positive 

control sample of cDNA were used as a standard curve in each reaction and the 

expression levels were estimated from the curve. Real-time PCR of the housekeeping 

gene -actin allowed normalisation of the expression of the genes of interest. PCR 

amplifications were performed in 10 pA, containing 1 [d cDNA, 4mM MgCl 2, 0.3mM 

primers and the LightCycler-DNA SYBR Green I mix. The amplification of /3-A ctin, 

Fizz], Arginase] and INOS was performed in the following conditions: 30s denaturation 

at 95°C, 5s annealing of primers at 55°C and 12s elongation at 72°C, for 40-50 cycles. 
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For Ymi amplification, the annealing temperature was increased to 63°C. Primers for 

lightcycler PCR analysis were: 

13-A ctin: TGGAATCCTGTGGCATCCATGAAAC and TAAAACGCAGCTCAGTAACAGTCCG. 

Arginase I: CAGAAGAATGGAAGAGTCAG and CAGATATGCAGGGAGTCACC. 

RELM-a: GGTCCCAGTGCATATGGATGAGACCATAGA, CACCTCTTCACTCGAGGGACAGTFGGCAGC. 

Ymi: TCACAGGTCTGGCAATFCTCTG and 1TFGTCCTTAGGAGGGCTI'CCTCG. 

1NOS: GCATrTGGGAATGTAGACTG and GTTGCATTGGAAGTGAAGCGTrFC. 

2.8 Immunofluorescence Assay 

For immunofluorescence assay (IFA), macrophages (on coverslips) were fixed in 1-2ml 

3% paraformaldehyde (in PBS) for 20 minutes and then washed in PBS. They were 

permeabilized in 1-2m1 0.25% Triton X100 (in PBS) for 10 mins and washed in PBS 

again. Blocking for 30 minutes was carried out with 1-2m1 1-3% w/v BSA in PBS. 

Binding of the primary antibody (a-YM1: Stemcell Technologies; 1:25 dilution in 

BSA!PBS or RELM-a; Peprotech 1:50 dilution BSAJPBS) was performed for 1 hour. 

Coverslips were washed three times in PBS for 5 min with shaking. Binding of 

secondary antibody (anti-rabbit Alexafluor488 (Molecular Probes); 1:200 in BSA/PBS) 

was carried out for 1 hour and then cells washed in PBS. For nuclear staining 1 tl 

1 Oml/ml DAPI during first wash and then cells washed three more times for 5 min with 

shaking. Coverslips were washed in dH20 and placed on top of gel/mount on slide and 

allow to dry in the dark. Cells visualised using an Olympus BXSO microscope and 

photographs taken with a Microcolor model RGB-MS-C camera. 

2.9 Cytokine quantification 

For measurement of cytokine production, 5x10 5  PECs were plated in 24-well plates for 

2-4 hours followed by removal of non-adherent cells. The remaining adherent 
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macrophages were left untreated or treated for 24 hours with LPS/IFN-y as described 

above, followed by recovery of the supernatants for cytokine quantification. TNF-a was 

measured using the DuoSet TNF-a ELISA kit (R&D Systems) according to 

manufacturer's instructions. IL-6 and IL-12p40 were measured according to standard 

sandwich ELISA protocols, using Ab pairs (unconjugated and biotinylated) from BD 

Pharmingen, and ExtrAvidin-alkaline phosphatase conjugate in conjunction with Sigma 

FastTM p-nitrophenyl phosphate tablet substrate (both from Sigma-Aldrich). IL-lO and 

MCP- 1 were quantified using the cytokine bead array (CBA) kit (BD Pharmingen) 

according to manufacturer's instructions. IL-27 was measured using the Quantikine® 

ELISA kit (R&D Systems) according to manufacturer's instructions. 

2.10 MFB-F1 1 TGF-beta Bioassay 

This assay was carried out by Henry McSorley. Levels of TGF-13 in the macrophage 

supernatants were measured using the MFB-F1 1 luciferase reporter bioassay, where 

levels of TGF-3 signaling are detected by TgJbl-/- mouse fibroblasts which have been 

stable transfected with a plasmid containing a secreted alkaline phosphatase reporter 

gene coupled to a Smad-binding element promoter (SBE-SEAP) (courtesy of Tony 

Wyss-Coray, Stanford University School of Medicine) (Tesseur et al, 2006). Cells were 

allowed to adhere to 96-well tissue culture plates at 4 x 104  cells/well in 50 tl DMEM 

with 10 % FCS, 100 U/ml penicillin, 100 ig/m1 streptomycin, 2mM L-glutamine and 15 

xg/ml hygromycin B (Invitrogen), at 37 °C for 4 h. 50 il samples were then added, and 

incubated at 37 °C overnight. 10 .tl samples of culture supernatant were then collected 

into white 96-well luminometer plates (BMG Biotechnologies), and were assayed using 

the SEAP detection kit (Clontech) and read on a LUMIstar luminometer (BMG 

Biotechnologies). 
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3. Results 

3.1 LPS/IFN1 causes a switch in L-Arginine metabolism from Arginase to 

iNOS and downregulates the expression of alternative activation markers 

Preferential expression of arginase over iNOS is a consistent feature of NeM (Loke et 

al, 2002). We decided to investigate whether the Thi activating signals (LPS andlor 

IFN-y) could alter the NeM iNOS/arginase balance. ThioM controls and NeM4 were 

left untreated or treated overnight with LPS and IFN-y, together or separately, and 

recovered for gene expression analysis by real-time RT-PCR (Figure 1 A, B). As 

expected, untreated NeM4 showed high Arginasel expression but low iNOS RNA 

levels, while untreated ThioM showed none or low expression of both genes. Both 

IFN-y and LPS could act alone or in concert to reduce the Arginase 1 expression in 

NeM. This decrease was paralleled by an increase in iNOS expression. In contrast, 

ThioM required both signals for the induction of iNOS. This could reflect the less 

mature activation state of this macrophage type (Leijh et a!, 1984), which may require 

signalling through a pathogen recognition receptor such as TLR-4 before becoming 

responsive to IFN-?. For subsequent experiments we decided to use LPS and IFN-y 

together to ensure classical activation of the ThioM4 group. 

Although ThioM exhibited increases in Arginase 1 mRNA in response to LPS/IFN-?, 

consistent with previous studies (Munder et a!, 1998), this induction in gene expression 

did not result in increased arginase enzyme activity (Figure 1 Q. However, arginase and 

iNOS enzyme activities of NeM did reflect the gene expression data (Figure 1 C, D). 

This included a downregulation in arginase activity in LPS/IFN-y treated NeM4 and a 

significant increase in NO production. In contrast to the mRNA levels, the NO produced 

by LPS/IFN-? treated NeM was lower than by LPS/IFN-y-treated ThioM. These 

differences may reflect timing, as mRNA levels precede protein production, or other 
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Figure 1. Reversal of the NeM phenotype from alternative 
to classical activation. 
Thioglycollate-elicited M or NeM from C5713L/6 mice were 
left untreated (clear) or treated overnight with LPS and IFN-y 
together or separately as indicated. The cells were recovered for 
RNA expression analysis of Arginase 1 (A), iNOS (B), by real-
time RT-PCR, and assessed for arginase activity (C). The 
supernatants were also recovered to assess the iNOS activity by 
measurement of nitrite production by the cells (D). Results are 
shown as the mean of replicate samples (+1- S.E.M) and are 
representative of three experiments. 



post-translational controls. For example, the higher level of arginase in LPS/IFN-y 

treated NeM may compete with iNOS for L-Arginine. Nevertheless, the significant 

increase in nitric oxide production coupled by a decrease in arginase activity 

demonstrates that NeM can switch to a more classical activation phenotype. 

Having identified RELM-a and I'm] as the main IL-4 dependent genes expressed in 

NeM (Loke et al, 2002), we investigated whether RELM-cx/Ym] expression was also 

altered by LPS/JFN-y treatment. As a control for non-differentiated macrophages, we 

measured RELM-a and I'm] expression in ThioM4 (Figure 2 A). Intriguingly, we 

observed induction of both genes by LPS/JFN-'y in a similar pattern to Arginase 1 

expression, although the expression levels were lower than in untreated NeM. Upon 

overnight treatment with LPS/IFN-y, RELM-a and I'm] expression in NeM was 

reduced by up to 90% (Figure 2 A). However, the extent of this reduction was variable 

in subsequent experiments usually ranging from 25% to 90%. These are shown in 

Appendix 1. 

We next decided to determine whether these decreases in I'm-i and RELM-a mRNA 

were reflected in decreased protein expression after treatment with LPS/JFN-y. In a 

separate experiment, levels of YM- 1 and RELM-a protein expression were investigated 

by IFA (Figure 2 B & C) and flow cytometry (Figure 2 D; another separate experiment) 

to detect intracellular levels. No reduction in Ym 1 was seen in NeM treated with 

LPS/IFN-y (Figure 2 B (by eye) and D; 66.8% +ve cells in untreated compared to 69.3% 

in LPS/IFN-'y treated). Indeed, expression of Ym 1 was still observed in NeM4 (untreated 

or LPS/IFN-y treated) after 3 days in culture (data not shown). RELM-a was also 

detected by IFA and as shown in figure 2 C, there was less RELM-a protein observed in 

NeM after overnight treatment with LPS/IFN-y than in NeM4 that were left untreated 

(Figure 2 C- by eye), consistent with the RNA data. However, we did not see this 

reduction by flow cytometry (Figure 2 D- 6.75% +ve cells in untreated NeM4 compared 

to 7.01% in LPSIIFN-y treated), although this was a separate experiment. Perhaps the 
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reduction of mRNA of these alternative activation markers in NeM4 fails to decrease at 

a protein level within cells in the time frame of these experiments. 

A. RELM-a and Ymi expression 
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Figure 2. Reversal of the NeM4 phenotype from alternative to classical 

activation continued. Thioglycollate-elicited M or NeM4 from C57BL/6 

mice were left untreated (clear) or treated overnight with IL-4 or LPS/IFN-

y as indicated. The cells were recovered for RNA expression analysis of 

RELM-a and Ymi (A) by real-time RT-PCR. Results are shown as the 

mean of replicate samples (+1- S.E.M) and are representative of three 

experiments. Shown over page: In a separate experiment, 

immunofluorescent assays (IFAs) were carried out to visualise Yml (B) 

and RELM-a protein expression (C) (both green). Nuclei were stained with 

DAPI (blue). In another experiment, flow cytometly analysis for Ym 1 and 

RELM-a expression was carried out and is also shown (D). 
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3.2 F4/80 expression on NeM4 in response to LPS/IFN-y 

The median fluorescence intensity (MFI) for F4/80 was higher in untreated NeM than 

ThioM (Figure 3). Since F4/80 has been implicated in immunological tolerance 

through the generation of regulatory T cells (Lin et a!, 2005), the higher surface 

expression on NeM points to a potential regulatory function. Macrophages are a 

prominent cell type in other filarial nematode infection models such as Litomosoides 

sigmodontis, where regulatory T cells play an important role in immunoregulation 

(Taylor et a!, 2006; Taylor et a!, 2005). LPS/IFN-y treatment of NeM did not affect 

174/80 staining in this experiment, but it did show a reduction in LPS/IFN-y treated 

ThioM4 (Figure 3). The significance of this result will not be clear until the function of 

174180 is known. However, it suggests that not all aspects of the NeM phenotype can be 

altered by LPS/IFN- y treatment. 

3.3 Suppressive phenotype of NeM4 is not reversed by LPS/IFN-y 

Since proliferative suppression is one of the well-defined regulatory properties of NeM4 

(Loke et al, 2000b; MacDonald et a!, 1998), we decided to investigate whether 

LPS/IFN-y affected the ability of NeM to suppress the proliferation of co-cultured EL-

4 thymoma cells (Figure 4). Although we have previously shown that nitric oxide is not 

involved in the NeM suppressive phenotype (MacDonald et a!, 1998) we included the 

nitric oxide inhibitor L-NMMA as a control since LPS/IFN-y treatment resulted in nitric 

oxide production from all macrophage groups (see Fig 1), and we wanted to distinguish 

the known suppressive effects of nitric oxide (Albina et al, 1991; Albina & Henry, 1991; 

Mills, 1991) from the suppressive mechanism mediated by NeM4. Having previously 

shown that the NeM suppressive phenotype is dependent on IL-4 (MacDonald et a!, 

1998), we also included NeM4 generated in IL-4-/- mice as a negative control for 
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Figure 3. F4/80 expression on NeM4 in response to LPSIIFN-y 

C57BL/6 mice were implanted intraperitoneally (i.p.) with B. malayi 

adult worms and the peritoneal exudate cells recovered three weeks 

later. As a control, C5713L16 mice were injected i.p. with 

thioglycollate (thio) and the cells recovered at day 3. The cells were 

left untreated or treated with LPS/IFN-y overnight followed by flow 

cytometry analysis to identify the M4i population by 174/80. These 

results are representative of three experiments. 
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Figure 4. NeM4 can produce nitric oxide in response to LPSIIFN-y but will still 
retain the ability to suppress cell proliferation in a nitric oxide independent 
manner. ThioM, ThioM +IL-4 and NeM from C5713L/6 mice were left untreated 
or treated with LPS/IFN-y overnight followed by replacement of the medium and co-
culture with EL-4 thymoma cells with or without the nitric oxide inhibitor L-NMMA. 
After 48 hours, the EL-4 cell proliferation was assessed by [31-1] thymidine 
incorporation (A) and supernatants were recovered for measurement of the nitric oxide 
levels (B). Data is representative of three separate experiments and is plotted as the 
mean of triplicate wells (+ S.E.M.). In a separate experiment, carried out only once, 
the arginase inhibitor nor-NOHA was used after LPS/IFN-y treatment of ThioM and 
NeM. They were co-cultured with EL-4 thymoma cells and again after 48 hours, the 
EL-4 cell proliferation was assessed by [31-1] thymidine incorporation (C). 
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proliferative suppression. Finally, we included ThioM pretreated with IL-4, allowing a 

comparison between in vitro-derived AAM and in vivo-derived NeM. 

As expected, the EL-4 cell proliferation was suppressed when co-cultured with NeM in 

comparison to control ThioM (Figure 4 A, clear bars). ThioM4 pre-treated with IL-4 

(in vitro AAM4) were equally suppressive while I1,44- NeM were unable to suppress 

EL-4 proliferation, confirming that IL-4 was essential for the development of this 

suppressive phenotype (Loke et al, 2000b). When treated with LPS/IFN-y (black bars), 

all macrophage cell types could significantly suppress proliferation. However, L-

NMIMA treatment (grey bars) reversed the LPS/IFN-y induced suppressive phenotype in 

the ThioM and the I1,44- NeM, demonstrating that this suppression was nitric oxide 

mediated. In response to LPS/IFN-y treatment NeM and in vitro AA1\44 still suppressed 

EL-4 thymoma proliferation. This was not mediated by nitric oxide since it was not 

altered by L-NIVIIMA. LPS/IFN-y is thus not sufficient to reverse the suppressive 

function of either in vitro or in vivo derived AAM4. 

While all macrophage groups produced NO in response to LPS/IFN-'y, NeM produced 

significantly less NO than ThioM4 (Figure 4 B), consistent with our previous data 

(Figure 1 D). Of note, WT NeM showed increased responsiveness to LPS/IFN-y in 

comparison to IL-4-/- NeM and produced higher levels of NQ. This implies that 

activation by IL-4 may in fact enhance responsiveness to classical activation stimuli as 

previously reported (Major et al, 2002; Stout et al, 2005). 

The IL-4 dependent mechanism of suppression in still unknown but one possibility is 

that arginase acts by depleting arginine needed for cell growth (Munder et al, 2006). To 

test this WT NeM were treated with nor-NOHA in order to inhibit arginase activity. 

This led to partial reversal of the suppressive phenotype, with nor-NOHA treatment 

enhancing proliferation of the EL-4 cells co-cultured with NeM (Figure 4 Q. 

However, EL-4 cells co-cultured with nor-NOHA treated ThioM, also exhibited 
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dramatically enhanced proliferation. This suggests that inhibition of even constitutive 

levels of arginase has significant effects on cellular proliferation. In the presence of nor-

NOHA, NeM4 permitted only one fifth the level of EL-4 proliferation as similarly 

treated ThioM4 suggesting arginine consumption is not the dominant mechanism of 

suppression. 

3.4 NeM4 express cell surface activation markers that can be further 

upregulated in response to LPS/IFN-y. 

We studied the surface expression of MIHC class II (MIHICII; Figure 5 A), and the co-

stimulatory molecule CD86 (Figure 5 B) to determine the activation status of NeM 

before and after LPS/IFN-y treatment. Untreated NeM expressed higher levels of 

MHCII and CD86 than ThioM, as shown by mean fluorescence intensity (MFI). 

However, the isotype controls were also higher in NeM (Figure 5 A, B) and thus 

comparing MFJ directly may overestimate the difference. The expression of these 

markers is consistent with the original classification of AAM as "activated" (Stein et 

al, 1992). It is also consistent with previous studies showing that NeM are efficient 

antigen presenting cells (Loke et al, 2000a). Upon LPS/IFN-y stimulation, the MIFI of 

both markers was increased significantly in NeM but not in ThioM. Indeed, MHC II 

and CD86 on ThioM4 do not appear to be upregulated by LPS/IFN-y but have been in a 

previous experiment (shown in Appendix 2 A). However, in both these experiments 

(Figure 5 and Appendix 2 A) the upregulation of MHCII and CD86 was highest in 

LPS/IFN-y treated NeM. 

PD-Li and PD-L2 are the most recently identified members of the B7 family of co-

stimulatory molecules and have been reported as useful markers to distinguish between 

classical and alternative activation of macrophages in vitro. Additionally, they have been 

implicated in the proliferative suppression observed by macrophages during infection 
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Figure 5. Effect of LPSJIFN-y on the cell surface activation markers in control 
macrophages and NeM4. Untreated ThioM or NeM4 from C5713L/6 mice were 
left untreated or treated overnight with LPS/IFN-y. The cells were recovered and 
double-stained for F4/80 and MHC Class 11(A) and CD86 (B). Flow cytometry 
graphs show histograms of F4/80-gated macrophages. Results are representative of 
three experiments. 
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with the platyhelminths, Taenia crassiceps and Schistosoma mansoni (Smith et a!, 2004; 

Terrazas et a!, 2005). We have previously measured surface expression of both PD-Li 

and PD-L2 on NeM4. It has been found that PD-Li surface expression was similar in 

both ThioM and NeM and was upregulated in both macrophage groups in response to 

LPS/IFN-y (Appendix 2 B), consistent with reports that classically activated 

macrophages show increased PD-Li expression (Loke & Allison, 2003). Surprisingly, 

despite previous studies reporting PD-L2 as a marker for in vitro AAM4 (Loke & 

Allison, 2003), both untreated and LPS/IFN-y treated NeM did not express PD-L2 

(Appendix 2 B). To confirm that the PD-L2 staining was optimal, it was found that in 

vitro IL-4 treatment could upregulate PD-L2 on ThioM (Appendix 2 B) as previously 

shown (Loke & Allison, 2003). Our finding that in vivo AAM display different surface 

expression profiles to in vitro derived AAM is consistent with previous studies that 

reported differences in gene expression profiles and cell morphology (Nair et a!, 2003), 

and reiterates the importance of in vivo models for the study of these activated 

macrophage subsets. Further, in contrast to suppressive macrophages found in 

platyhelminth infection (Smith et a!, 2004; Terrazas et al, 2005), this data suggests that 

the PD-Li/PD-L2 costimulatory molecules may not be responsible for the suppression 

we observe in nematode infection. 

3.5 TNF-a, IL-6, IL-lO and IL-27, but not IL-i 2p40 or TGF-, production are 

enhanced in response to LPS/IFNyc 

ThioM, in vitro AAM and NeM were again left untreated or treated overnight with 

LPS/IFN-y and then supernatants taken for cytokine measurement by sandwich ELISA, 

cytometric bead array (CBA) or MFB-F ii TGF-3 Bioassay. Figure 6 shows that TNF-a 

was absent in all groups but was induced in response to LPS/IFN-'y in both ThioM and 

ThioM + IL-4 and to a much lesser extent in NeM. Therefore, pre-treatment with IL-

4, or induction in an IL-4 environment, did not prevent TNF-a being induced by type-i 
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Figure 6 TNF-a, IL-6, IL-27 and IL-lO, but not IL-12p40 or TGF-tE, 
production are enhanced in response to LPS/IFN-y. Thioglycollate elicited 
macrophages (ThioM), ThioM + IL-4 and NeM From C57BL/6 mice were 
untreated or treated overnight with LPSIIFN-y. Supernatants were recovered 
and the levels of various cytokines were measured by sandwich ELISA (TNF-
cx, IL-6, IL-27p28 and IL-12p40) or cytometric bead array (CBA; IL-b) or 
TGF-P assay carried out- see materials and methods. Results are shown as the 
mean of replicate samples (+1- S.E.M) and are representative of three 
experiments. 
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stimuli, consistent with previous reports from Stout et al (Stout et al, 2005). This was 

also true for IL-27 production, which followed a similar pattern to TNF-a. Untreated 

NeM produced relatively high levels of IL-6 relative to ThioM and all groups 

displayed an increase in IL-6 expression with LPS/IFN-y treatment (Figure 6). Prior to 

LPSIIFN-y treatment, both NeM and IL-4 exposed ThioM produced TGF-f3 but this 

was reduced following treatment (Figure 6). 

Enchancement of TNF-a and IL-6 together with reduction in TGF-P levels provided 

more evidence that NeM4 can be reprogrammed to increase their pro-inflammatory 

capacity. However, the switch to a more classical activation state was not complete. 

Whereas ThioM and in vitro derived AAM produced IL-12p40 in response to 

LPS/IFN-y, NeM completely failed to do so (Figure 6). Additionally the 

downregulatory cytokine IL-lO followed a pattern more similar to IL-6 than TGF-13. 

Consistent with previous reports that IL- 10 is produced by AA1vI (Katakura et al, 2004) 

IL- 10 was produced to the greatest extent by NeM4 and increased following LPS/IFN-y-

treatment. Enhancement may not be surprising as LPS/IFN-'y are known to induce IL- 10 

production by macrophages (Correa et al, 2005). 

4. Discussion 

Macrophages can be involved in both pro- and anti-inflammatory responses, in tissue 

destructive as well as restorative activities (Gordon, 2003; Stout & Suttles, 1997). 

Increasing evidence suggests that macrophages activated in a Th2 setting have tissue 

repair as a primary function. This hypothesis has been driven by the knowledge that 

proline, which is an important precursor of collagen and polyamines, is produced by 

AAM under the control of arginase (Hesse et a!, 2001) and supported by subsequent 

data that AAM are involved in fibrosis (Wynn, 2004). Recent data from our lab 

strongly supports this hypothesis as the key features of alternative activation are induced 
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solely in response to tissue injury (Loke et al, 2007; Nair et al, 2005). It is 

understandable that a strong wound healing response would occur in the context of 

helminth infection as tissue migratory or tissue invasive parasite often lead to physical 

trauma to host tissue. Additionally, helminth infections are generally not life threatening 

and can live for decades within a human host by downregulating the host immune 

response and protecting themselves from elimination while minimizing severe damage 

to the host (King et a!, 1993; Maizels & Yazdanbakhsh, 2003; Muller, 2002). 

Importantly, the entire process of tissue repair requires the production of anti-

inflammatory factors (Eming et a!, 2007). Consistent with this, NeM produce many 

factors associated with tissue repair and reduced inflammation (e.g. arginase 1, IL- 10 and 

TGF-13; Figure 1 A and 6 respectively) (Albina et a!, 1990; Pierce et a!, 1989) . We 

wanted to ask if the immune system, faced with a potentially more life-threatening 

situation, had the capacity to rapidly switch from a wound healing to a pro-inflammatory 

response (e.g. against a bacterial infection). Such functional plasticity would allow 

AAM to take on a more classically-activated phenotype that might be beneficial prior 

to the recruitment of new cells to the site of infection. 

We show here that a M population generated in the Th2 environment of helminth 

infection in vivo can respond to pro-inflammatory stimuli ex vivo. This was reflected by 

a switch in the enzymatic arginine metabolism pathway of NeM for from arginase to 

iNOS (Figure 1), as well as reduced expression of RELM-a and Ymi mRNA transcripts 

in response to the Thi activating signals LPS/IFN-y (Figure 2 A). However, the 

reduction of mRNA did not translate into a reduction of protein (Figure 2 B-D) within 

the timeframe studied in vitro. Even so, this switch allowed resources to be devoted to 

the expression of antimicrobial factors, such as iNOS (observed in Figure 1 Q. We also 

observed an increase in surface expression of class II and the co-stimulatory molecule 

CD86 (Figure 5 and Appendix 2 A) under the influence of LPSIIFN-y suggesting that 

these AAM have enhanced APC function. 
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Analysis of the NeM cytokine profile (Figure 6) presented an intriguing picture with 

implications for APC function. Although LPS/IFN-y treatment appeared to promote a 

more classically activated phenotype in the AAM through elevated TNF-a, IL-6 and 

iNOS, this switch was not complete, and they failed to produce any detectable IL-12p40 

(Figure 6). Thus, although these cells had increased markers of classical activation, they 

could not promote Thi cell development (Hsieh et al, 1993). LPS/IFN-y treatment also 

caused the upregulation of EL-10 in NeM (Figure 6), which inhibits Thi responses 

(Hsieh et al, 1992). This is consistent with a recent study of lamina propria macrophages 

from the intestine of mice, which like NeM express relatively high IL-lO and TGF-. 

These M also produce little or no IL-12 after stimulation with Toll-like receptor 

ligands. IL-lO produced by these lamina propria macrophages may act in an autocrine 

manner to mediate this lack of IL- 12 since lamina propria M from IL- 10-deficient mice 

produce more IL-12p40 and p70 after stimulation with TLR ligands then wild type 

animals (Denning et al, 2007). This study concludes that IL-10 producing M cannot 

respond to TLR signals. However, no other pro-inflammatory mediators apart from IL-

12 were studied. Therefore, it is not possible to say whether these lamina propria 

macrophages would have been unable to produce other pro-inflammatory cytokines 

(apart from 11-12) upon stimulation with TLR ligands or other type-i cytokines 

(Denning et al, 2007). 

Also in relation to the finding that NeM cannot be induced to produce IL-12, recent 

work from Foster et al has shown that TLR-induced genes with different functions may 

have diverse regulatory requirements. On an epigenetic level this means that, with a 

continuing exposure to a toll-like stimulus (i.e. LPS), gene-specific modifications of 

chromatin lead to the priming of antimicrobial effectors (e.g. Cnlp) while pro-

inflammatory mediators, such as IL-6, are transiently silenced. This would potentially 

allow the immune system to effectively deal with microbial pathogens, while controlling 

the pathology associated with inflammation (Foster et al, 2007). The fact that we have 



seen the products of some genes associated with an anti-microbial response upregulated 

in response to LPS/IFN-y in NeM (i.e. iNOS) but not IL-12, suggest that these AAM 

could have undergone similar epigenetic modifications in vivo. Therefore, IL-12 may not 

be the definitive pro-inflammatory marker to measure when assessing a switch of 

macrophage phenotype from alternative activation. 

Untreated NeM4 produced abundant quantities of both TGF-P and IL-6 (Figure 6), 

which are known to be involved in tissue repair (Pierce et al, 1989) and chronic 

helminth infection (Rodriguez-Sosa et a!, 2002) respectively. It has also been recently 

recognized that these two cytokines act cooperatively and non-redundantly to achieve 

Th17 commitment (Bettelli et a!, 2006; Mangan et al, 2006; Veldhoen & Stockinger, 

2006). Recently, it has also be found that although they drive Th-17 lineage 

commitment, they also induce the upregulation of IL- 10 which is probably important in 

regulating this potentially pathogenic Th- 17 mediated response (McGeachy et al, 2007). 

However, as they were unable to produce IL- l2p4O, they would not have the ability to 

make IL-23 (Oppmann et a!, 2000) and therefore could not sustain the Th 17 induction 

process (Aggarwal et a!, 2003). The reduction in TGF-P and increase in TNF-a 

following IFN-y and LPS are more modest than the changes in the arginase/iNOS 

balance or other markers associated with healing such as Ym 1 and RELM-a. Thus, 

although the macrophages appear to change functional phenotype, the complete absence 

of IL-12p40 suggests that are not contributing to the further development of either Thi 

or Th 17 responses. 

One question to ask next would be whether NeM4 could actively inhibit the Th 17 

response as part of their anti-inflammatory wound healing function. In such 

circumstances, induction of a proinflammatory Th 17 response would be undesirable 

(Kolls & Linden, 2004). IL-27 acts directly upon naïve T cells to suppress the 

development of Th17 effectors (Batten et a!, 2006; Stumhofer et al, 2006). It may carry 

this out in part through competition with IL-6 for binding of the receptor component 

gpl3O, which is shared by both IL-6 and IL-27 (Heinrich et a!, 1998; Pflanz et a!, 2004). 



If NeM4 did produce IL-27 they could inhibit the development of an unwelcome pro-

inflammatory Th17 response. We thus measured IL-27 but did not detect any from 

unstimulated NeM4 (Figure 6), although they did produce some IL-27 after LPS/IFN-y 

treatment (although only around 11% of that produced by ThioM treated with 

LPS/IFN-y), which correlated with an increase in JL-6 (Figure 6). However, IL-27 could 

possibly act to inhibit Th 17 development under these circumstances. 

A consistent feature of NeM and other helm inth induced macrophages is that they act 

as potent suppressors of cellular proliferation (Loke et al, 2000b; MacDonald et a!, 

1998), and several different mechanisms for the suppression have been proposed. We 

recently provided evidence that TGF-P may be involved to some degree (Taylor et a!, 

2006) and our ability to detect production of this cytokine by NeM4 is consistent with 

this (Figure 6). We have now seen that arginase contributes to this suppression since 

inhibition with nor-NOHA caused a partial reversal of this phenotype. However, both 

arginase (Figure 1 A+C) and TGF-13 (Figure 6) production were partially reversed upon 

treatment with LPS/IFN-y and yet these cells retained full suppressive abilities (Figure 4 

A), so additional factors must be involved. PD-Li has been implicated in the 

proliferative suppression observed by macrophages during infection with the 

platyhelminths, T crassiceps and S mansoni (Smith et al, 2004; Terrazas et a!, 2005) 

and would be consistent with a contact dependent mechanism. However, evidence for an 

upregulation of this ligand on NeM compared with the ThioM controls has not been 

found in this lab (Appendix 2 B). Also, NeM did not upregulate another marker of 

AAM generated in in vitro, PD-L2 (Appendix 2 B). Data now emerging from several 

labs would suggest that the profound suppression observed may be due to multiple anti-

proliferative mechanisms at play (Matlack et a!, 2006; Bronte et a!, 2003; O'Connor et 

al, 2000; Smith et a!, 2004; Taylor et a!, 2006). 

Here we showed that macrophages in the context of chronic nematode infection were not 

terminally differentiated but could switch from alternative activation to a more 

rMl 



classically activated phenotype in response to the Thi activating signals LPS/JFN-y. 

This was despite the long-term exposure to Th2 cytokines and anti-inflammatory signals 

in vivo. 

We 



CHAPTER 3 

LPSIIFN-y treatment confers resistance of NeM to 

infection with Leishmania mexicana promastigotes. 

1. Introduction 

All parasites of the genus Leishmania are obligate, intracellular parasites that infect cells 

of the mononuclear phagocyte lineage of their vertebrate hosts (Alexander et a!, 1999). 

Leishmanicidal activity is known to require NO generation by (classically) activated M 

(Evans et a!, 1993; Lemesre et a!, 1997; Liew et a!, 1990). Leishmania parasites are 

responsible for the disease leishmaniasis, which emcompasses a wide spectrum of 

disease from the self-healing cutaneous lesions to fatal visceral infections. Their primary 

hosts are vertebrates, including dogs, rodents, and humans. Leishmania currently affects 

12 million people in 88 countries (WHO). Since these parasites live within macrophages 

they require the ability to withstand or prevent their killing functions. To sustain a 

chronic infection, these parasites must also subvert degradation, and the antigen 

presenting and accessory cell functions of macrophages, to prevent the development of 

adaptive immunity. 

The sandfly vector of the leishmania parasite is the blood-sucking female of the genus 

Phiebotomus in the Old World and Lutzomyia in the New World. These insects are 

found throughout the tropical and temperate regions of the world. The sandfly ingest 

macrophages containing the round, non-motile form of the parasite while feeding on 

blood from an infected animal. These amastigotes are released into the stomach of the 

insect, where they develop quickly into the flagellated, elongated and motile 

promastigotes. The promastigotes then migrate to the alimentary tract, where they live 

extracellularly and multiply by binary fission. After some days (4-5), the promastigotes 
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move to the oesophagus and salivary glands and then are injected into a new host along 

with the saliva when the insect's proboscis pierces the skin during a blood meal. The 

promastigotes are taken up by macrophages and rapidly convert to amastigotes 

(Alexander et al, 1999; Farrell, 2002). 

In the murine models of Leishmania infection, it has been observed that there is often 

dichotomy in resistance/susceptibility to infection depending on the strain of mouse and 

species of parasite. An oversimplification of this would be to state that Th 1 responses 

are induced by IL-12 and lead to the production of IFN-y and this confers protection in 

resistant strains (e.g. C57BL/6) to L. major. Susceptible mouse strains (e.g. BALB/c) 

produce a skewed Th2-type response, producing IL-4 (Reiner & Locksley, 1995). This 

paradigm of Th 1 /Th2 induced resistance/susceptibility to intracellular infection, 

although useful, is predominately based on infection with L. major. However, different 

Leishmania species display different virulence factors and, therefore, there are profound 

differences in the immune mechanisms that mediate resistance/susceptibility to infection 

and pathology in response to different Leishmania species. For example, most mouse 

strains are resistant to L. major but not to L. mexicana (Alexander & Bryson, 2005; 

McMahon-Pratt & Alexander, 2004). Also, although IL-4 has been shown to have a 

predominant role in susceptibility to L. major in BALB/c mice, this cytokine does not 

necessarily indicate non-healing infection, as resistant C57BL/6 mice produce IL-4 early 

in infection, but can still develop a protective Thi response (Alexander & Bryson, 2005; 

Scott et al, 1996). Linked to this, C57BL/6 mice can control L. mexicana independently 

of IL- 12 (Buxbaum et al, 2002), further illustrating how much of an oversimplification 

the Thl/Th2 paradigm of resistance/susceptibility is. Human visceral leishmaniasis is 

associated with a mixed Th 1 -Th2 response whereby both IFN-y and IL- 10 are co-

expressed. Therefore, the outcome of infection is probably determined by the balance 

between the effects of protective (IFN-y, IL-12) and nonprotective (IL-b, TGF-13) 

cytokines during the early phases of infection (Holaday et al, 1993; Karp et a!, 1993; 

Saha et a!, 2007). 



Predominantly, the promastigote form of Leishmania gains entry to host M4 after 

opsonisation with the complement component C3b and, more particularly a breakdown 

product of C3b, C3bi. These bind to the macrophage receptors CR1 and CR3 

respectively. gp63, a metalloprotease upregulated in metacyclic promastigotes, promotes 

this uptake by cleaving C3 to C3bi, and also inhibiting complement-mediated lysis 

(Alexander et al, 1999; Brittingham et al, 1995; Brittingham & Mosser, 1996). By 

preferentially accessing macrophages via these receptors, the promastigotes also fail to 

trigger the respiratory burst (Brittingham & Mosser, 1996). Other receptors involved in 

the macrophage uptake of promastigotes include the mannose receptor (Wilson & 

Pearson, 1986), CR4 (Alexander et al, 1999), and the Fc receptor (Chang, 1981). 

Leishmania have been used widely in recent years as model organisms for the study of 

intracellular infection. Since they produce a wide spectrum of disease in mice, they have 

provided good models of for the study of the mechanisms by which successful 

intracellular parasitism occurs and how the mammalian immune system deals with such 

infections. In Chapter 2 it was shown that the macrophages were not terminally 

differentiated but could switch from alternative activation to a more classically activated 

phenotype in response to the Thi activating signals LPS/IFN-y, despite the long-term 

exposure to Th2 cytokines and anti-inflammatory signals in vivo. So we next wanted to 

elucidate whether this would translate into an ability to control an intracellular microbial 

infection. NeM from our Brugia malayi infection setting were therefore infected with 

L. mexicana parasites and it was found that they could switch to an NO-producing 

classically activated macrophage phenotype that effectively dealt with an intracellular 

Leishmania infection. 

2. Materials and Methods 

2.1 Mice 

As in Chapter 2 

Ze 



2.2 Brugia malayi infection 

As in Chapter 2 

2.3 Macrophage Activation 

As in Chapter 2 

2.4 Quantification of NO 

As in Chapter 2 

2.5 RNA extraction and real-time RT PCR 

As in Chapter 2. Real-time PCR of the housekeeping gene f3-actin allowed normalisation 

of the expression of the gene of interest i.e. C3. 

C3: CACCGCCAAGAATCGCTAC and GATCAGGTGTFCAGCCGC 

13  -A ctin: TGGAATCCTGTGGCATCCATGAAAC and TAAAACGCAGCTCAGTAACAGTCCG. 

2.6 Immunofluorescent Assays (IFA) 

As in Chapter 2-Ym- 1 

2.7 Cytokine quantification 

IL-12p70, IL-6, TNF-a, IL-lO and MCP-1 were quantified using the cytokine bead array 

(CBA) kit (BD Pharmingen) according to manufacturer's instructions. 50 p1 of antibody-

bead reagent and 50 p1 of antibody phycoerythrin reagent were added to 25 tI sample. 

The mixture was incubated for 2 hours at room temperature and washed to remove the 

unbound phycoerythrin before further analysis. Two-color flow cytometric analysis was 

performed using a FACSCalibur flow cytometer (BD Biosciences). Data were acquired 

and analyzed using BD cytometric bead array software. 
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2.8 Macrophage infection with L. mexicana 

L. mexicana (strain MNYC/BZ/62/M379) or MNYC/BZ/62/M379 (DsRed integrated 

into sRNA locus) (Sorensen et a!, 2003) promastigotes were cultured in vitro in Semi-

Defined Medium (SDM; (Misslitz et a!, 2000) with 10% FCS and 1% penicillin-

streptomycin (complete SDM) at 26°C. Promastigotes were added to macrophages, 

purified by adherence and plated on coverslips (BDH) in 24-well plates, at a ratio of 

10:1 for 3 hours or 3 0: 1 for 3 hours, in the case of the red strain. The macrophages were 

then washed (2x) with complete DMEM to remove non-phagocytosed parasites and 

wells were replenished with complete medium. Where indicated, the nitric oxide 

inhibitor L-NMIvIA was added to the final concentration of 400.tM. At 3 hours or day 3 

post infection, cells were fixed with 2% formaldehyde for 20 min at room temperature, 

washed (2x) with PBS, then stained with 0.5-1 ml Giemsa for 5-10 minutes, followed by 

washing (2x) with distilled H 20. Coverslips were removed from wells, allowed to dry 

and mounted onto slides with DPX mount (BDH), before microscopic examination. 

Approximately 200 cells per group were counted and percentage infection recorded. 

Alternatively, a leishmanicidal assay was carried out at 3 hours after infection as 

previously described (Proudfoot et a!, 1995). The cells were lysed using 0.0 1% SDS in 

lOOul DMEM (FCS free) for 30 mm. To assist this lysis, pipetting up and down 5-10 

times was carried out. Released amastigotes were resuspended in SDM (10% FCS, 1% 

penicillin-streptomycin) in a total of 600 d per well and cultured for 72 hours at 26°C. 

Four aliquots of 1 50tl for each sample was then transferred to quadruplicate wells of a 

96-well plate and pulsed with methyl-[ 3H]thymidine (1tCi/well) for a further 18 hours 

at 26°C. Leishmanicidal activity was measured as reduction in the incorporation of this 

[3H] thymidine by surviving parasites as described. Counts were conducted on a liquid 

scintillation counter (Mictobeta 1450, Trilux). Unless otherwise stated, all reagents were 

obtained from Sigma-Aldrich. For immunofluorescence assay (IFA), macrophages 

infected with on coverslips were fixed in 1-2m1 3% paraformaldehyde (in PBS) for 20 
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minutes and then washed in PBS. They were permeabilized in 1-2m1 0.25% Triton X100 

(in PBS) for 10 mins and washed in PBS again. Blocking for 30 minutes was carried out 

with 1-2m1 1-3% w/v BSA in PBS. Binding of the primary antibody, a-YM1 (Stemcell 

Technologies; 1:25 dilution in BSAIPBS) was performed for 1 hour. Coverslips were 

washed three times in PBS for 5 min with shaking. Binding of secondary antibody (anti-

rabbit Alexafluor488 (Molecular Probes); 1:200 in BSA/PBS) was carried out for 1 hour 

and then cells washed in PBS. For nuclear staining 1tl lOml/ml DAPI during first wash 

and then cells washed three more times for 5 min with shaking. Coverslips were washed 

in dH20 and placed on top of gel/mount on slide and allow to dry in the dark. Cells were 

visualised using an Olympus BX50 microscope and photographs taken with a 

Microcolor model RGB-MS-C camera. 

2.9 Data analysis 

Graphs were prepared using PRISM (GraphPad software, Berkeley, CA). 

3. Results 

3.1 LPS/IFN1 enables NeM4 to control Leishmania infection. 

As LPS/IFN-y treatment could switch alternatively activated NeM to a NO-producing 

classically activated macrophage phenotype (Chapter 2), we asked whether this 

flexibility of function is reflected in the ability to control infection by an intracellular 

pathogen. To address this question, infections were carried out with L. mexicana 

promastigotes, and parasite survival after three hours was determined in order to give an 
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estimate of parasite uptake. This was done by lysis of the M and measurement of 

parasite proliferation by [3H] thymidine incorporation (Figure 1). 

Leishmania viability after 3 hours 
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Figure 1. NeM4 contain the largest number of viable 
Leishmania mexicana parasites after 3 hours. Bone marrow 
derived macrophages (BMM) and NeM from C57BL/6 mice 
were untreated (clear) treated overnight with LPS/IFN-y (black) 
followed by infection with L. mexicana at 10:1 parasite to 
macrophage ratio. Parasites that were not taken up were washed off 
3 hours post infection, and parasite viability determined by lysis of 
the M4 and measurement of the parasite proliferation by [3H] 
thymidine incorporation. Results are shown as the mean of replicate 
samples (+1- S.E.M) and are representative of three experiments. 
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Untreated NeM had the most surviving promastigotes after three hours since this group 

recorded more than 10,000 counts per minute (CPM) reflecting parasite number, 

compared to bone marrow-derived M (BM1vI; +1- LPSIIFN-y), which had less than a 
10th  of this (Figure 1; 1,000 CPM). NeM may have encountered signals in vivo that 

increase expression of the receptors involved in the phagocytosis of Leishmania (e.g. 

complement receptors) (Mosser & Edelson, 1985). The thymidine count for NeM 

treated with LPS/IFN-y was 2500 CPM. There are two possibilities for this difference 

with untreated NeM. Firstly, LPS/IFN-y may downregulate receptors for Leishmania 

uptake or the NO produced in the first three hours is rendering the parasites unviable, so 

that it appears that the uptake for this groups is lower (Figure 1). However, the latter is 

likely to be the case, as will be discussed below (Figure 5 A). 

To assess the capacity of different M4 populations to control L. mexicana growth we 

determined the percent of M infected after three days by microscopy. Figure 2 A shows 

that LPS/IFN-y treatment, and to a lesser extent with IFN-y alone, conferred resistance to 

L. mexicana in both BMM and NeM4. Indeed NeM seemed better able to clear 

infection when treated with IFN-'y alone than BMIM. 

In a separate experiment we chose to examine the role of NO in the leishmanicidal 

activity observed by NeM treated with LPS/IFN-y. L-NMMA was used to inhibit iNOS 

activity as verified by nitrate levels of the day3 supernatant (Figure 2 B) and the 

macrophages were again examined after three days of infection (Figure 2 Q. In 

agreement with the previous experiment, LPS/IFN-y treatment of NeM conferred an 

increased ability to kill Leishmania but in the presence of iNOS inhibitors, NeM treated 

with LPS/IFN-y were rendered as susceptible to infection as those not treated (Figure 2 

Q. These data demonstrate that NO is playing an important role in this microbicidal 

activity of LPS/IFN-y activated NeM4. 
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Figure 2. LPS/IFN-y or IFN-y alone confer resistance of NeM to L. 
mexicana infection. BMM and NeM from C57BL/6 mice were untreated 
(clear) or treated overnight with IFN-? (grey) or LPS/IFN-y (black). The nitric 
oxide inhibitor L-NMMA was also added (B+C). Infection with L. mexicana 
was at a 10:1 parasite to macrophage ratio. Parasite levels after 3 days 
measured by microscopic examination of the number of infected macrophages 
(approx. 200 macrophages counted per group) (A+C) The supernatants were 
recovered for measurement of the nitric oxide levels (B). Results are 
representative of one experiment. 
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Figure 3. LPSILFN-y confer resistance of NeM4 to L. mexicana infection. In 
another experiment, ThioM, ThioM +IL-4 and NeMO from C57BL/6 mice 
were untreated (clear) or treated overnight with LPSIIFN-y (black) followed by 
a 30:1 infection ratio. Parasite levels after 3 days again measured by giemsa 
examination (B). Immunofluoresence Assays (IFAs) were carried out using a L. 
mexicana strain that displayed red fluoresence, along with Ym-1 staining 
(green) (A). Results are representative of three experiments. 
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Experiments were also carried out with promastigotes of a L. mexicana strain that 

displays red fluorescence (Sorensen et al, 2003) at a 30:1 ratio, this time using ThioM 

as controls. Figure 3 A shows that in the untreated groups there is an abundance of red 

intracellular parasites at day three but in all LPS/IFN-y treated groups we see an almost 

complete absence of L. mexicana parasites. Thus, these type-i stimuli were again 

conferring full resistance to this intracellular parasite, regardless of macrophage history. 

These results were confirmed by microscopic examination (Figure 3 B). M were also 

stained with a-Ym 1 antibody to confirm their AA1vI status prior to infection. Ym 1 

staining was still detectable following LPS/IFN-'y treatment (Figure 3 A-green). We have 

already shown in other experiments that while I'm] mRNA decreases upon LPS/IFN-y 

treatment (Chapter 2, Figure 2 A), protein can still be detected by IFA (Chapter 2-Figure 

3 B&C). 

3.2 TNF-a, IL-6 but not IL-12p70 production are enhanced in response to 

infection in NeM4. 

We next decided to assess the cytokine profiles of our Leishmania infected macrophages 

by measuring levels of cytokines in the supernatants after 24 hours of infection from the 

same experiment as is shown in Figure 3 i.e. red promastigotes, 30:1 ratio. Figure 4 

shows that NeM were unable to produce IL- 12, even after infection with this parasite 

(Figure 4). This is in agreement with the lack of IL-12p40 produced by NeM, after 

treatment with LPS/IFN-y (Chapter 2, Figure 7). ThioM and in vitro derived AAM4 

produced IL-12 in response to infection alone (Figure 4 A). The fact that NeM failed to 

do so shows that the switch to a more classical activation state was not complete. 

IL-6 was produced in high quantities by LPS/IFN-y-treated NeM, which increased 

further with Leishmania infection (Figure 4 B). Untreated/uninfected NeM did not 

produce IL-6 (Figure 4 B), which is contrast to our previous data. In chapter 2 figure 4, 
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Figure 4. Expression of cyto- and chemokines during L. mexicana infection. 
ThioM4), ThioM +IL-4 and NeM4) from C57BL/6 mice were untreated (clear) or 
treated overnight with LPS/IFN-y (black) followed by a 30:1 infection ratio. IL-
12p7O (a), IL-6 (b), TNF-a (c) and MCP-1 (d) levels after 24 hours measured by 
cytometric bead arrayTM (BD). Inf:: infected with L. mexicana, uninf:uninfected. 
Results are shown as the mean of replicate samples (+1- S.E.M) and are 
representative of three experiments. 
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it is clear that NeM produce a lot of this cytokine initially (- 400ng/ml). Thus, it seems 

that prolonged culture (48 hours, with washing of cells during that time) causes a 

decrease in the production of IL-6. 

TNF-a was increased with LPS/IFN-y treatment in all groups regardless of infection 

status. Only in untreated NeM was infection alone sufficient to induce production of 

this proinflammatory cytokine. This, along with the fact that MCP- 1 chemokine levels 

are elevated in LPSITFN-?/infected cells (Figure 4), indicates that NeM had the 

potential to induce a pro-inflammatory response after infection with L. mexicana, albeit 

a limited one. 

3.3 The pattern of C3 expression by cultured ThioM4 and NeM correlates 

with "uptake" of L. mexicana parasites 

Infections were once again carried out with L. mexicana promastigotes at a ratio of 10 

parasites per macrophage after treatment with LPS/JFN-?, and pre-treatment with IL-4 in 

some cases. After three hours, cells were washed, fixed and Giemsa stained (see 

materials and methods). In this case the proportion of parasites taken up by the 

macrophages was quantified by microscopic examination rather than determined by lysis 

of the M and measurement of the parasite proliferation by [3H] thymidine 

incorporation. This may give a more accurate measurement of the actual "uptake" of 

Leishmania by infected macrophages after three hours, since it also takes into account 

parasites that have gained access to the M but may have been rendered unviable 

subsequently by antimicrobial mediators. 

The results of this microscopic examination are shown in Figure 5 A. Untreated ThioM 

contained relatively few parasites (-25%) compared with those pretreated with IL-4 and 



Figure 5. Similar pattern of infection with L. mexicana promastigotes after 
3 hours and expression of complement 3. ThioM (pretreated or not with IL-
4) and NeM were left untreated or treated overnight with IFN-y and LPS. 
They were then infected with Leishmania promastigotes at a 10:1 ratio. 
Microscopic examination was carried out after an infection time of 3 hours (a). 
Cells not infected with Leishmania were recovered for RNA expression 
analysis of C3 (b). Results of B are shown as the mean of replicate samples 
(+1- S.E.M) and are representative of one experiment. 
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then LPS/IFN-'y. NeM had the highest proportion of parasite-infected cells (-70%) and 

this was increased with LPS/IFN-y treatment to about 80% of macrophages infected. 

NeM may have encountered signals in vivo that increased expression of the receptors 

involved in the phagocytosis of Leishmania e.g. CR3 (Mosser & Edelson, 1985). This 

result appears to contradict the result in Figure 1 whereby LPS/IFN-y treated NeM4 

contain fewer viable L. mexicana parasites after three hours than untreated NeM. 

However, microscopic examination (as in Figure 5 A) takes into account all parasites 

taken up by the macrophages, including those rendered unviable after uptake. Therefore, 

Figures 1 and 5 may both be true indicators of what is occurring. Whereas Figure 5 

indicates total uptake, Figure 1 shows how many up-taken parasites remain alive and 

able to replicate after three hours of exposure to different M groups. 

As mentioned before, the promastigote form of Leishmania gains entry to host M after 

opsonisation with the complement component C3b (Brittingham & Mosser, 1996; 

Mosser & Edelson, 1985). Heat-treated foetal calf serum used in the cell culture medium 

should not contain any complement proteins. Therefore, we decided to investigate 

whether the macrophages themselves could be producing the complement proteins that 

were enabling the parasites to gain access to their intracellular environments. Indeed, 

real time RT-PCR showed that C3 expression of ThioM4, in vitro-derived AAM and 

NeM was upregulated in response to LPS/IFN-y (Figure 5 B). The pattern of C3 RNA 

expression (Figure 5 B) did correlate with the percentage of infected M (Figure 5 A,B), 

implying that complement produced by M4 may indeed be playing some role in 

allowing Leishmania to enter the cells. 

4. Discussion 

We have shown that LPS/JFN-y treatment could confer resistance of NeM to infection 

with L. mexicana promastigotes. The prototypical model of murine Leishmania spp. 

RE 



clearance involves a dominant Thi response leading to the classical activation of 

macrophages and elimination of the parasites through the production of NO (Alexander 

et a!, 1999). NeM could clear the parasites almost as well as naïve M given the same 

treatment of LPS/IFN-y (Figure 2 A). In fact, when given IFN-y alone, they were 

possibly less susceptible to infection with this parasite than the control M under the 

same conditions (Figure 2 A). Upregulation of IFN-yR on NeM may have already 

occurred in vivo and we have previously seen nitric oxide produced from NeM treated 

with IFN-?, but not ThioM (data not shown), which supports this notion. 

Previous work in the field has shown that helminth infection may favour Leishmania 

establishment by inducing alternative activated macrophages (Kropf et a!, 2005; 

Rodriguez-Sosa et al, 2006). This is because L-ornithine synthesised from arginasel 

activity, which is largely controlled by IL-4, can be used by the parasites to generate 

polyamines and proliferate (Iniesta et al, 2002; Kropf et a!, 2005). The role of IL-4 in 

promoting susceptibility in non-healing murine L. mexicana infections has been 

demonstrated, since normally susceptible mice lacking IL-4 or STAT6 acquire a Thi 

response and fail to develop lesions (Noben-Trauth et a!, 1996; Satoskar et a!, 1995; 

Satoskar et a!, 1997). Although these findings may seem at odds with the results 

presented here, IL-4 does not always promote susceptibility. IL-4 has been shown to 

provide a strong stimulus for the killing of intracellular amastigotes of L. major, as long 

as low concentrations of IFN-7 are present (Bogdan et al, 1991). Indeed, we found that 

susceptibility of NeM to L. mexicana decreased dramatically when treated with even 

IFN-y alone, as well as LPS/IFN-y (Figure 2 A), as already discussed (above). Although 

NeM from our B. malayi infection model produced lower levels of nitric oxide after 

LPS/IFN-y treatment than ThioM (Chapter 2, Figure 1 D) or IL-4 pretreated ThioM 

(data not shown), it was still enough to confer resistance. This is illustrated in Figure 2 C 

whereby LPS/IFN-7 treated NeM became as susceptible to infection as untreated when 

the metabolic inhibitor of NO (L-NMMA) was added, if not more so. Even when NeM 

were infected at a 30:1 ratio of parasite:M, they still managed to clear the parasite upon 



LPS/IFN-y treatment (Figure 3 A&B). The presence of Ym 1 protein in the macrophages 

controlling infection demonstrates that it was the NeM that were indeed dealing with 

the parasites (Figure 3 A). 

Although IL-12 is an important contributor for the induction of protective immunity 

against Leishmania (Li et al, 1996), Figure 4 A demonstrates that NeM were still 

unable to produce this cytokine, even after infection with this parasite (Figure 4), and 

thus would be unable to promote Thi development. Leishmania promasitoges are known 

to be potent inhibitors of macrophage IL-12 production, both in vitro (in bone marrow 

derived M; Carrera et al, 1996) and in vivo (Belkaid et al, 1998), although this may 

depend on species of Leishmania (McMahon-Pratt & Alexander, 2004). 

Lipophosphoglycan (LPG), present on the surface of the parasite is thought to be 

involved in the regulation of IL-12 production in macrophages by promastigotes of 

Leishmania parasites (Alexander et al, 1999). Given all the information thus far gleaned 

from this experimental study, it appears that LPS/IFN-'y exposure confers the ability to 

NeM to kill the parasites, but not the ability to promote a protective adaptive response. 

Instead one could postulate that NeM might function to control infection with an 

intracellular pathogen until such time that a more suitable phenotype of M4, and other 

leukocytes, could be recruited to the site of infection. 

NeM4 did have some pro-inflammatory ability following LPS/IFN-'y stimulation, 

however, since they could produce TNF-a and MCP-1 (Figure 4). MCP-1 is a 

chemoattractant with an essential role in the recruitment of monocytes to sites of 

inflammation by the production of a chemotactic gradient. LPG from Leishmania 

parasites is also thought to have a role in suppressing this chemokine, (Lo et a!, 1998) 

but this does not appear to be the case here. NeM were just as able as ThioM and 

ThioM4+IL-4, to produce this protein (Figure 4 D) and would thus be involved in 

recruiting more cells to the site of infection. 



IL-6 was produced to the highest degree in NeM treated with LPS/IFN-y and infected 

with L. mexicana, implying that infection was causing this increase (Figure 4 B). 

Although IL-6 is often thought of as a pro-inflammatory cytokine (Hirano et al, 1990), 

in the context of Leishmania infection, it is known to downregulate IFN-y and therefore 

downmodulate leishmanicidal activity by in macrophages, and may play a role in the 

pathogenesis of leishmaniasis (Alexander et al, 1999; Hatzigeorgiou et al, 1993). It may 

therefore be the case that the parasite is in some circumstances promoting the production 

of IL-6 in order to escape killing. 

Finally, we showed in Figure 5 that the NeM are producing complement products 

(complement 3), which may have aided the entry of the L. mexicana promastigotes. 

Indeed it has been previously suggested that when Leishmania parasites successfully 

bind to intact macrophages without exogenous complement present, they may fix the 

small amount of C3 that has been generated endogenously by macrophages (Mosser et 

al, 1992). The pattern of C3 RNA expression (Figure 5 B) correlated with the percentage 

of infected M (Figure 5 A,B), which supports this hypothesis. Given more time it 

would also be informative to measure levels of the relevant complement receptors (i.e. 

CR1 and CR3), and perhaps block the actions of these receptors with antibody 

antagonists to investigate whether this would lower the uptake of parasites into the 

macrophages. 

The work from this and chapter 2 has shown that macrophages were not terminally 

differentiated but could switch from alternative activation to a more classically activated 

phenotype in response to the Thi activating signals LPS/IFN-?, despite the long-term 

exposure to Th2 cytokines and anti-inflammatory signals in vivo. NeM could switch to 

a NO-producing classically activated macrophage phenotype that effectively dealt with 

an intracellular Leishmania infection. 



CHAPTER 4 

Mycobacterial infection: 

NeM exhibit control of infection at low dose, and early control 

of infection and apoptosis at high doses of Mycobacterium 

bovisBCG 	- 

This study was carried out in collaboration with Dr. Ian Fairbairn of the University of 

Edinburgh Medical School. Dr. Fairbairn carried out all the work involving infection 

with Mycobacterium bovis Bacille Calmette Guerin (BCG) due to access to the 

appropriate facilities. 

1. Introduction 

M tuberculosis and M bovis are facultative intracellular parasites, which inhabit 

macrophages and can cause tuberculosis in humans and livestock (Erb et al, 2002). M 

tuberculosis infects approximately one-third of the world's population and TB kills more 

than 2 million people a year, therefore it is a major health issue. These facts emphasise 

the need to understand the interaction of mycobacteria with host phagocytic cells i.e. 

macrophages. 

Macrophages infected with these pathogens interact with both CD4+ and CD8+ T cells 

by presenting antigen on class II and class I MI4C molecules respectively. The T cells in 

turn activate macrophages to become antimicrobial. Macrophages promote Thi activity 

by producing IL-12 (Altare et al, 1998), IL-18 (Sugawara et a!, 1999) and IL-23 

(Fairbairn et al, 2001) and the T cells activate macrophages though the release of IFN-y 

(Jouanguy et al, 1996) and TNF-a (Fairbairn et a!, 2001; Flynn et al, 1995). These 



effector macrophages and T cells are thought to interact by positive feedback and this 

usually leads to the control of the mycobacterial infection (Erb et al, 2002; Fairbairn et 

al, 2001). This immune response to mycobacterial infection can more often than not 

contain, rather than completely eliminate, the infection (Flynn & Chan, 2001). During 

tuberculosis infection of the lung, granulomas are formed at sites of mycobacterial 

infections and are an essential part of this control by host immunity. They consist of 

macrophages, T cells, B cells and fibroblasts. Cells are positioned in granulomas in such 

a way that it allows infected macrophages to become surrounded by effector cells and 

allows for the activation of the antimicrobial mechanisms in these macrophages by the 

cytokines derived from T cells (see above). Granulomas contain mycobacterial infection 

and prevent spread to other tissue, but also cause immunopathology in the lung if 

persistent infection leads to chronic granuloma infection (Roach et a!, 2002). 

But how do mycobacteria enter and survive in the macrophages in the first place? 

Several receptors involved in the internalisation of mycobacteria by macrophages have 

been characterised. Binding of mycobacteria to host cells is thought to involve the 

complement receptors CR3 and CR4, as well as other molecules including the mannose 

receptor (MR), CD14 and TLR2 (Sendide et al, 2005). The mycobacterial cell surface 

glycolipid lipoarabinomannan (LAM) is known to enhance the phagocytosis of these 

pathogens (Strohmeier & Fenton, 1999). LAM is a complex polysaccharide composed of 

arabinan and mannan linked to the cell membrane (Hunter et al, 1986) which also has 

roles in inhibiting IFN-?-induced functions including macrophage microbicidal activity 

(Sibley et al, 1988), in diminishing T cell activation (Kaplan et a!, 1987), and 

scavenging of potential cytotoxic oxygen free radicals (Chan et al, 1991). 

Mycobacteria that go on to survive and replicate within macrophages are thought to do 

so by a variety of strategies, including the avoidance of killing by reactive oxygen 

(Manca et al, 1999) and nitrogen intermediates (Yu et a!, 1999). For example, M 

tuberculosis has been shown to be highly resistant to killing by up to mmol of H 202  and 

this ability is thought to be mediated by the mycobacterial catalase-peroxidase protein 



(KatG) and the akyl hydroperoxide reductase protein (AhpC), which are both enzymes 

with H202 as a substrate that neutralise its killing capacity (Manca et al, 1999). 

Although NO and NO2 exhibit strong antimycobacterial activity, more virulent strains of 

the mycobacteria M tuberculosis and M bovis are resistant to the reactive nitrogen 

intermediate 0N00 which may also enhance intracellular survival of these pathogens 

(Yu et al, 1999). 

Mycobacterial species are also thought to survive intracellularly by actively inhibiting 

phagolysosome fusion (Clemens & Horwitz, 1995; Hart et al, 1987). Phagocytosed 

microorganisms can be degraded by the acidic hydrolases present in lysosomes when 

fusion with phagosomes takes place. The antimicrobial effect of fusion may also be in 

part due to the direct or indirect effects of acidification (Flynn & Chan, 2001). It has 

been reported that M tuberculosis generate large amounts of ammonia which helps 

prevent phagolysosome fusion through undefined mechanisms (Gordon et al, 1980). 

This ammonia production also leads to alkalinisation of the acidic environment, which 

decreases the potency of the degradative enzymes which function best at an acidic pH 

(Flynn & Chan, 2001). If these pathogens survive and undergo intracellular replication, 

infected macrophages are thought to become progressively unresponsive to further 

activation by cytokines released by Th 1 cells (Fairbairn et al, 2001; Reiner, 1994). 

In Chapter 2 it was shown that NeM were not terminally differentiated but could switch 

from alternative activation to a more classically activated phenotype and in chapter 3 

this was found to translate into an ability to control an intracellular microbial infection 

with Leishmania mexicana parasites in response to LPS/IFN-y. As with Leishmania 

infection, it is thought that Th2 immune responses, with high IL-4, IL-S and IL-b 

levels, may promote disease during infections caused by mycobacteria (Cooper & Flynn, 

1995; Erb et al, 2002). Therefore, to assess how in vivo-derived AAM cope with 

another "type 1" pathogen, NeM were infected with the mycobacterium M bovis BCG. 

M bovis BCG is an attenuated vaccine strain of the mycobacterium produced by 

M. 



sequential passage of a virulent M bovis strain by Calmette and Guerin in the 1920s   

(Smith, 2003) 

It was found that NeM responded to low doses of BCG by controlling it for the entire 

timeframe of the study, i.e. 6 days. NeM responded to high doses of BCG infection 

with early control of infection and high levels of apoptosis, and that this phenotype is 

independent of IL-4. 

2. Materials and Methods 

2.1 Mice 

As in Chapter 2 

2.2 Brugia ma/ay/infection 

As in Chapter 2 

2.3 Macrophage Activation 

As in Chapter 2, except that cell culture was carried out in the absence of any antibiotic. 

2.4 Quantification of NO 

As in Chapter 2 

2.5 Cytokine quantification 

IL-6, TNF-a, IL-b, IL-12p70 and MCP-i were quantified using the cytokine bead array 

(CBA) kit (BD Pharmingen) according to manufacturer's instructions. As in Chapter 3. 

Cells and bacteria, BCG viability assay, TIJNEL staining —all work of Ian Fairbairn.-

Appendix 3 material and methods 
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3. Results 

3.1 NeM control a low dose of BCG infection 

ThioM4, WT and IL-44- NeM were exposed to a set number of bacteria per 

macrophage (1, 2 or 10 bacteria). It was found that phagocytosis was approximately 

10%, and was similar between both ThioM and NeM4. To infect the macrophages at a 

"low dose", they were exposedto 2 bacteria for every cell, which resulted in a final 

infection rate of 1 BCG per 5 macrophages. M were lysed on days 1, 3 and 6 and BCG 

survival was assessed by the number of colony forming units (CFU) in the lysate. 

Results are expressed as growth indices. An index of above 1 indicated the mycobacteria 

were surviving and their numbers are increasing, and values below one indicated that 

they are being killed. At a low dose of infection, WT and IL-4-/- NeM could control 

the BCG infection up until day 6. The growth indices were below 1 up until day 3 and it 

rose only slightly above 1 thereafter (Figure 1). Control of the BCG was more efficient 

in NeM4 than ThioM, since the growth indices for BCG in the WT and IL-4-/- NeM 

infections was lower that than of the ThioM up to day 6. Indeed, until day 3 NeM 

were killing the BCG since the growth index was below 1 (Figure 1). This shows that 

although NeM had been generated in type 2 conditions, they were able to cope with 

this type 1 pathogen, at least at this low dose of infection with BCG. 

3.2 At a high infection dose NeM4 control mycobacterial growth in the 

early stages of infection and are highly susceptible to apoptosis. 

For the "high dose" experiments, macrophages were exposed to 10 mycobacteria per 

cell. At the 10% phagocytosis rate, the final infection was 1 bacterium per M. NeM 

had the ability to control and even kill the BCG for up to three days (Figure 2 A and B) 

since the growth indices of the BCG at this time point was below 1 in both the WT and 
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Figure 1. Infection with Mycobacterium bovis BCG (low dose). 
ThioM, WT and IL-4-/- NeM4 from C5713L/6 mice were infected with 
BCG to give a final infection ratio of approximately 1 BCG per 5 
macrophages. Cells were incubated for the indicated times and the cell 
lysate then evaluated for BCG colony forming units. Results are expressed 
as the growth index so that values above 1 indicate the BCG is growing and 
values below one indicate it is being killed. Infection of M was performed 
by Ian Fairbairn who produced this figure. Results are representative of 
three experiments. 
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Figure 2. Infection with M. bovis BCG (high dose). ThioM, WT and IL-4-/-
NeM from C5713L/6 mice were infected with BCG to give a final infection ratio 
of approximately 1 BCG per macrophage. Cells were incubated for the indicated 
times and the cell lysate then evaluated for BCG colony forming units. Where 
IFN-y was present, it was given immediately after infection. Figure 2A shows the 
course of infection over 6 days. B and C show the extent of infection with or 
without IFN-y treatment at 3 and 6 days respectively. Again the results are 
expressed as the growth index as in Figure 1. Results are representative of three 
experiments. Infection of M4 was performed by Ian Fairbairn who produced this 
figure. 
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IL-44- NeM groups. When the high dose-infected M were treated with IFN-y at the 

time of infection, this appeared to benefit the ThioM4 in terms of killing BCG at both 

days 3 and 6, as indicated by the growth indices of about 1 and below 1 respectively 

(Figure 2 B and Q. This means that treatment with IFN-y was conferring the ability to 

kill these intracellular pathogens in ThioM. This was at least in part due to NO since L-

NMIVIA, an inhibitor of nitric oxide production, limited the ability of IFN'y stimulated 

ThioM to control mycobacterial infection (data not shown). However, IFN-y treatment 

did not lead to enhanced killing capacity in the NeM at this infection dose (Figure 2 B 

and C) and killing ability was unaffected by L-NMMA treatment (data not shown), so 

NO must not have been involved here. We saw little difference in the growth indices of 

the mycobacteria between the untreated and IFN-y treated NeM from either WT or IL-

4-I- animals (Figure 2 B and Q. From day 3 to day 6 there is large growth in BCG for 

both WT and IL-4-I- NeM (growth indices increased exponentially; Figure 2 A and C), 

but microscopic examination showed that the NeM were dead and dying, and this was 

the result of uncontrolled growth of the bacteria in the media (Ian Fairbairn personal 

communication). 

Cell death was very pronounced, and unique to the NeM4, so it was decided to 

determine the nature of this cell death. While death by necrosis is accidental and caused 

by physical damage to the cell, apoptosis is a strictly regulated programme of suicide 

with biochemical and morphological features very distinct from those seen in necrosis. 

When cells are undergoing apoptosis their DNA becomes fragmented. Terminal 

transferase-mediated dUTP-biotin nick end labelling (TIJNEL) detects DNA 

fragmentation and therefore stains cells undergoing apoptosis (Janeway, 2001). TUNEL 

staining was carried out on M with a high dose infection after 16 hours. When TUNEL 

is carried out, apoptotic cells appear green when observed under a fluorescent 

microscope. Both WT and IL-4-I- NeM appeared green (Figure 3 C and E), but not 

ThioM, even after IL-4 pre-treatment (Figure 3 A and G). This apoptosis occurred in 

IL-4-I- NeM, and therefore, this aspect of the NeM phenotype is IL-4 independent. 
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Figure 3. NeMO undergo apoptosis when infected with high doses of BCG. 
ThioM, WT and IL-4-/- NeMO from C57BL/6 mice were infected with BCG 
to give a final ratio of approximately 1 BCG per macrophage. 16 hours later 
they were fixed, permeabilized and DNA fragmentation detected with the 
TUNEL assay. Apoptotic cells stain green using florescent microscopy (a, c, e, 
g). Phase contrast microscopy of the relevant fields is shown (b, d, e, h). 
Infection of MO and microscopy was performed by Ian Fairbairn. Results are 
representative of one experiment. 
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3.3 NeM4 from low dose BCG infection produce Nitric Oxide in response 

to IFNi but NeM4 from the high does infection do not (Day 6). 

Figure 4 shows the results of NO assays carried out from the supernatants of M4 

infected for 6 days at either a high (a) or low (b) dose of infection with BCG. The results 

in figure 4 B are expressed as optical density units (O.D) since there was a failure in the 

standard curve and nitrite concentrations could not be assessed. There was no 

opportunity to repeat this particular assay, but the O.D. value gave an indication of the 

relative NO production between the M groups. ThioM4 from both high and low 

infections produced the most NO when treated with IFN-? (Figure 4 A and B). Infected 

WT and IL-4-/- NeM4 upregulated NO production upon IFN-y stimulation at low dose 

infection, although this is quite a lot less than ThioM4 (approximately 3.5-fold less; 

Figure 4 B). At a high dose of infection, WT NeM4 did not upregulate the production of 

NO upon infection and IFN-y treatment (Figure 4 A). The induction of apoptosis by high 

dose infection maybe have been so rapid in NeM (Figure 3) that they did not have time 

to produce NO. 

3.4 NeM4 demonstrate a distinct cytokine profile following mycobacterial 

infection 

A cytometric bead array was carried out to assess the cytokine profile in the supernatants 

of BCG infected NeM and this was compared to ThioM at a high infection dose after 

48 hours (Table 1). Both ThioM4 and NeM produced TNF-a upon infection, although 

this was less in NeM. This indicates that NeM have the ability to induce a pro-

inflammatory response when infected with BCG. NeM4 produced more than three times 

as much IL-6 as ThioM4 during BCG infection, and we have already shown that NeM 

already produce large amounts of IL-6 before infection (Chapter 2 Figure 6). 
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Figure 4. Nitric Oxide assays from supernatants of BCG infected 
macrophages. ThioM4, WT and IL-4-/- NeM from C57BL/6 mice 
were infected with BCG at a high dose (a) or low dose (b). These were 
incubated with or without IFN-y for 6 days and the supernatants taken 
for measurement of nitrite production. Results are shown as the mean 
of replicate samples (+1- S.E.M) and are representative of three 
experiments. 
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IL- 10 levels were also elevated in NeM, as compared to ThioM, although these levels 

of cytokine (3.3pg/ml in ThioM4 and 50.85 pg/mi in NeM) are very low considering 

the fact that we have seen NeM producing up to 15 ng/ml of IL- 10 in Chapter 2 (Figure 

6; although this was only after overnight culture compared to 2 days here). This may 

indicate that NeM4 are in fact switching from an anti- to a more pro-inflammatory 

phenotype upon infection with mycobacteria. NeM were also producing the chemokine 

MCP-1 (Table 1), albeit nearly four times less than ThioM. Expression of IL-12p70 

could not be detected in this array to any extent in either ThioM or NeM. 

Table 1. Cytokine expression of BCG infected Macrophages. ThioM4 and 
NeM from C57BL/6 mice were infected with BCG to give an approximate 
final ratio of 1 BCG per macrophage. They were incubated for 48 hours and 
than the supernatants were removed and the indicated cytokines assessed by 
cytometric bead assay. This experiment was carried out once. 

Mean (pg/rn!) SEM 
TNF-cz ThioM4 1454. 473.9 

NeM4 1184 253.3 

MCP-1 ThioM 1306.4 1077.2 

NeM 343.5 51.3 

IL-lO ThioM4 3.3  
NeM4 50.85 1 15.75 

IL-6 ThioM4 173.3 83.8 
NeM4 636.75 352.10 



4. Discussion 

Despite the fact that TB affects so many people, the vast majority of people exposed can 

effectively control infection with M tuberculosis. The mechanisms responsible for 

effective host immunity to, as opposed to immune escape by mycobacteria is only 

partially understood (Verreck et al, 2004). As previously mentioned, it is supposed that 

Th2 immune responses with high IL-4, IL-5 and IL-lO levels promote disease during 

infections caused by mycobacteria (Cooper & Flynn, 1995; Erb et al, 2002). However, 

the impact of a Th2 response on the course of mycobacterial disease has been 

insufficiently characterised and is the subject of some controversy. Using gene-deficient 

mice, IL- 10 has been found to cause a delay in mycobacterial clearance, probably 

through its role in downmodulating macrophage function (Bogdan & Nathan, 1993; 

Jacobs et al, 2000), although other studies have failed to repeat this finding (Erb et al, 

1998; Erb et al, 2002). It has also been proposed that the alternative activation of 

macrophages leaves them without a coordinated defence programme to M tuberculosis 

(Kahnert et al, 2006). 

In general, however, it is actually unclear what the impact of Th2 responses are on the 

efficient elimination of mycobacteria in vivo. Indeed, it was found that previous 

infection with a Th2-inducing helminth Nippostrongylus bras iliensis did not interfere 

with the elimination of M bovis BCG from the lungs of mice (Erb et al, 2002). Perhaps 

in support of this, we found that AA1vI from an in vivo type 2 setting (NeM4) could 

effectively control infection with M bovis BCG up until day 6 when they were infected 

at a low dose (Figure 1). We have shown in previous chapters that NeM4 can produce 

antimicrobial mediators such as NO when given appropriate stimulus (Chapter 2, Figure 

1 B and D). Indeed, Figure 4 shows that infected NeM could produce NO upon IFN-y 

stimulation at low dose infection (Figure 4 B). However, NeM4 were also controlling 

BCG infection both without IFN-? (Figure 1) and NO production (Figure 4 B). Contrary 

to this, ThioM4 at high dose of infection did control BCG to a greater degree after IFN-y 



treatment (Figure 2 B), and this was shown to be through the generation of NO, since 

treatment with L-NMIvIA impaired killing (data not shown). Although the role of iNOS 

in host defence against M tuberculosis is well established, it is not essential for early 

control of infection (Cooper et al, 2000a) and a role for reactive oxygen intermediates 

(ROIs) in mycobacterial killing cannot be excluded (Flynn & Chan, 2001). Indeed, mice 

deficient in NADPH oxidase exhibit enhanced susceptibility to M tuberculosis infection 

(Cooper et al, 2000b) so perhaps in this case reactive oxygen intermediates are playing a 

role in killing the mycobacteria. To test this theory it would be necessary to prevent 

production of these with an inhibitor such as superoxide dismutase (SOD) and see if 

NeM could no longer control infection. 

As previously mentioned, an effective Th 1 response clears mycobacterial infections, and 

this has been attributed to the ability of the mediators IFN-y and TNF-a to induce NO 

generation in macrophages in mice (Chan et al, 1992). However, with human 

macrophages these mediators may be unable to induce NO (although this inability of 

human macrophages to make NO is controversial (Fang & Nathan, 2007; Schneemann 

& Schoeden, 2007)) but mycobacterial infection is nonetheless controlled for the 

majority of individuals (Fairbairn et al, 2001). Other mechanisms may also exist in order 

to clear infection. One such antimycobacterial mechanism may be apoptosis-mediated 

killing (Fairbairn et al, 2001). It has been reported that macrophages undergoing 

apoptosis can kill intracellular mycobacteria whereas those dying by necrosis do not. 

Indeed during tuberculosis infection macrophage apoptosis within the granuloma is 

essential for eradication of the pathogen (Fairbairn, 2004). What is more, the avoidance 

of macrophage apoptosis induction has been found to be a virulence factor in 

mycobacteria (Keane et al, 2000). Here it was found that at earlier timepoints during the 

high dose infection rates NeM could control BCG infection (Figure 2 A and B) while at 

the same time dying by apoptosis (Figure 3 Q. Perhaps this means that an alternatively 

activated M population generated in vivo due to a nematode infection, could control an 

intracellular pathogen for a number of days by apoptosing, after which time a more 

specialised M4i type would have to be recruited to the site. Infected apoptotic 



macrophages are also known to release apoptotic blebs with mycobacterial antigens, 

which are taken up by uninfected APCs. These are processed and presented to T-cells 

and thus apoptosis is also essential for stimulation of the adaptive immune response 

(Fairbairn, 2004; Schaible et al, 2003). 

It has been found that IL-12 is an important cytokine for controlling infection with M 

tuberculosis (Cooper et a!, 1995) and, therefore, it was surprising not to find any in 

infected ThioM (data not shown). In previous chapters it has been shown that 

uninfected ThioM do not tend to produce any IL-12p70 (Chapter 3, Figure 4) or IL-

l2p40 (Chapter 2, Figure 6), except after LPS/IFN-y treatment. However, we did find 

some IL-12p70 induced in L. mexicana infected ThioM (Chapter 3, Figure 4). It seems 

that BCG infection did not cause an upregulation of this cytokine in ThioM4. Less 

surprising was the lack of IL-12 being produced by NeM4 since we were unable to 

detect any IL-12p40 in response to treatment with LPS/IFN-y (Chapter 2, Figure 6) or 

IL- l2p'7O in response to L. mexicana infection (Chapter 3 figure 4). These infected M4 

would therefore presumably be unable to drive the development of a Thi response. 

Another cytokine required for the control of mycobacterial infections is TNF-a, as mice 

deficient in TNF-a, or its receptor, die rapidly and with higher bacterial burdens than 

control mice when infected with M tuberculosis (Bean et al, 1999; Flynn et al, 1995). 

Both ThioM and NeM4 produced this cytokine (Table 1). TNF-a's importance in the 

control of mycobacterial infection is probably due in part to its role in macrophage 

activation, but it is also involved in the important process of granuloma formation. 

Evidence for this has come from studies using TNF-/- animals, which have shown that 

the granulomatous response is deficient following acute M tuberculosis and the 

granulomas that do form are disorganised with fewer activated macrophages. Although 

our experiments were carried out in vitro they show that NeM could potentially aid 

granuloma formation in an in vivo setting through the production of this important 



cytokine. Cell recruitment and lymphocyte co-localisation with the macrophages is also 

impaired in TNF-a deficient animals (Flynn & Chan, 2001; Roach et al, 2002). Related 

to this TNF-a is thought to upregulate chemokine expression, including MCP- 1 which 

effects the recruitment of macrophages (Czermak et a!, 1999). NeM4 produced less 

TNF-a than ThioM, which correlates with less MCP- 1 production, so perhaps these 

facts are related (Table 1) i.e. the TNF-u maybe be having an autocrine effect on the 

macrophages, inducing MCP- 1 production. 

IL-6 has also been implicated in the response to mycobacteria, with a potential role in 

suppression of T cell responses (VanHeyningen et al, 1997). NeM produced much 

higher levels of IL-6 than ThioM during BCG infection (Table 1). IL-6 has been shown 

to downregulate RNA expression of the anti-apoptotic signal bcl-2, thus leading to 

apopotosis (Tanaka et al, 2000). Therefore, these elevated levels of IL-6 observed in 

NeM4 (Table 1) may have contributed to the programmed death of these cells upon 

infection with high doses of BCG. This may also be why ThioM were not dying by 

apoptosis, since they produced 3.6X less IL-6 (Table 1). 

IL-10 is anti-inflammatory and it has been suggested that IL-lO may prevent IFN-'y 

activation of M4. However, as mentioned above IL- 10 gene-deficient mice are not more 

resistant to M tuberculosis (Erb et al, 1998; North, 1998). Indeed, NeM4 produce more 

IL-10 than ThioM4 at 48 hours (16X more; Table 1) but actually control infection at 

high dose better at this time point (Figure 2 A). However, levels of IL- 10 cytokine are 

relatively low for both ThioM and NeM, so IL- 10 and its anti-inflammatory affect 

may actually be downregulated in response to mycobacterial infection. 

From this work we have shown that AAM generated in a Th2 environment in vivo can 

control infection with a second intracellular microorganism, M bovis BCG. In this case, 

type- 1 stimuli such as IFN-y are not required for control of the potential pathogens. 

NeM4, generated in vivo, have an ability to die by apoptosis for successful control of 
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mycobacterial infection, that ThioM and in vitro-derived AA1vt do not. It is hoped that 

this study may contribute to the fundamental understanding of the important process of 

mycobacterial clearance, which could lead to more effective treatments for TB. 
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CHAPTER 5 

AAM4 markers in the lungs from an in vivo co-infection setting: 

Co-infection with the helminth Nippostrongylus brasiliensis 

and rodent malaria Plasmodium chabaudi 

This work was carried out in collaboration with, and data shown in appendices 

performed by, Dr. Andrea Graham, Dr. Simmi Majahan and Karen Grocock. 

1. Introduction 

The parasitic nematode Nippostrongylus brasiliensis is a potent activator of Th2 

responses. In murine models of infection, mice are infected with third stage larvae 

through the skin. These larvae then migrate to the lungs, move up the trachea and down 

the oesophagus to the intestinal tract where they develop into mature adults in the small 

intestine. The adult worms live within the gut lumen and produce eggs, which are 

excreted in the faeces. A Th2 response is required to clear this parasite, which is 

characterised by the production of IL-4, IL-5, and, perhaps most importantly, IL-13 

(Urban et al, 1998). These lead to increased IgE and eosinophilia in the blood 

(Liesenfeld et al, 2004). Within the intestine, mast cell hyperplasia and goblet cell 

proliferation take place, along with expulsion of the parasite. Goblet cells, and the 

mucins they discharge into the lumen of the intestine, have been shown to be involved in 

this expulsion of the worms (Nawa et al, 1994). It is less clear whether mucosal mast 

cell are required for this, although these cells are thought to mediate immunity to other 

intestinal nematodes, such as Heligmosomoides polygyrus and Trichuris spiralis 

(Lawrence et a!, 1996). High levels of alternative activation markers, Ym- 1 and RELM-

a, have been found in the lungs of N. brasiliensis-infected mice (Nair et al, 2005; Reece 

et a!, 2006), although it has been shown, through the use of macrophage/neutrophil IL-4 
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receptor a-deficient mice, that AAM are not required for expulsion of this worm 

(Herbert et al, 2004). 

Helminth parasite infections in humans, such as gastrointestinal nematodes e.g. Ascaris 

lumbricoides and hookworm species e.g. XTeactor  americanus (of which N. brasilensis 

serves as a model) are highly prevalent in sub-Saharan Africa, South America and 

Southeast Asia, where the protozoan parasite malaria is also endemic (Su et al, 2005). 

Immune responses to protozoan parasites can be modulated by a concurrent helminth 

infection, as observed in both epidemiology studies in humans and animal models (Cox, 

2001). With relevance to this work and as mentioned in the introductory chapter, 

malaria-helminth co-infection has been found to either intensify (Graham et al, 2005b; 

Helmby et al, 1998; Su et a!, 2005) or improve (Briand et a!, 2005; Nacher et al, 2000) 

disease severity. Infection with, and control of, malaria is associated with an early Thi 

response, which is maintained for the first 14 days of infection (Li et a!, 2001). An 

overly vigorous response can result in immunopathology, so the response must also be 

controlled by immunomodulatory cytokines such as TGF-13 (Omer & Riley, 1998). In 

this way the parasite is killed but hyperinflammation avoided. This suggests that 

resolving malaria infection requires a fine balance within the immune response, which 

may,  be disrupted by concurrent infection with a helminth parasite (Graham et a!, 

2005b). 

In previous chapters we have focussed on the ability of in vivo-derived NeM4 to switch 

from an alternatively activated to a more classically activated phenotype upon in vitro 

treatment with type-i signals LPS/IFN-y, to better cope with intracellular infection by 

Leishmania mexicana (Chapter 3) or Mycobacterium bovis (BCG; Chapter 4). While 

these ex vivo experimental settings have been very useful in deciphering the functional 

plasticity of macrophages, it is still important to determine the relevance of this in vivo. 

In order to investigate macrophage activation during co-infection in vivo we collaborated 

with the Graham lab in experIments using the Th 1-inducing blood-stage malaria parasite 

Plasmodium chabaudi and the Th2-inducing helminth N. brasiliensis. 
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As mentioned above, many studies have focussed on the effect of concurrent helminth 

infection on malarial disease severity. Less emphasis has been placed on the effects of 

infection with a protozoan parasite on a developing Th2 response, although some studies 

have looked at Th2 responses in co-infection settings (Helmby et al, 1998; Liesenfeld et 

a!, 2004). We investigated the effect of co-infection on the expression of alternative 

activation markers Ym- 1 and RELM-a in the lung over time. As these markers are 

highly dependent on Th2 cytokines, we took this as an indication of the effect of a 

concurrent malaria infection on a developing Th2 response, as well as assessing the 

capacity of animals to cope with both infections. We decided to focus on the lung since 

both parasites are known to be present in this organ for at least a portion of their 

lifespan. As previously mentioned N. bras iliensis worms migrate through the lung in the 

first 1-3 days, inducing Ym-1 and RELM-a expression (Nair et al, 2005). Infected red 

blood cells (RBC) of many species of malaria parasites adhere to the endothelial cells of 

the microvasculature of various organs, including the lung, and the rodent malaria P. 

chabaudi has been found to sequester there (Coquelin et a!, 1999). Indeed, the lung may 

be a preferred site for the invasion of erythrocytes by the malaria parasite, since blood 

circulation in the alveoli has been shown to be slow compared to other sites and 

merozoites (the RBC infective stage) are often found to be free and dispersed within the 

lung (Coquelin eta!, 1999). 

Mice were infected simultaneously with P. chabaudi parasites and N. brasiliensis L3 

larvae, either together or separately. It was found that by day 7 post infection, there was 

a reduction in expression of Ym- 1 and RELM-a in co-infected compared to animals 

infected with N. brasiliensis alone. This correlated with Th2-cytokine levels in the 

draining lymph nodes, with co-infected animals releasing less IL-4, IL- 13 and IL-S than 

those singly infected with the helminth. 20 days after infection, this pattern had reversed, 

with co-infected animals expression higher levels of Ym-1 and RELM-a than singly-

helminth infected. This work indicates that animals co-infected with parasites that elicit 

opposite responses may deal with the malaria infection by down-modulating the Th2 
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response to the helminth at earlier timepoints, when perhaps the malarial infection is 

most critical (e.g. in terms of anaemia) but may be able to compensate for this later on, 

when the malaria parasite has been successfully cleared. 

2. Materials and Methods 

2.1 Mice and infections 

8-10 week old female BALB/c mice were purchased from Harlan UK. For the 

timecourse experiment, mice were injected with 200 (in 50 tl in PBS) N. brasiliensis L3 

larvae only s.c on Day 0 and sacrificed on days 3, 5, 7, 15, 20 and 26. Controls were 

injected with 50 tl PBS. For co-infection experiments mice were divided into 4 

treatment groups: Uninfected, infected with malaria only (i.p injection of lx 10 5  

P.c.chabaudi parasitised red blood cells; pRBC), infected with N. brasiliensis only (200 

N. brasiliensis L3 larvae were injected s.c) and co-infected (Appendix 4). The animal 

infections were carried out by Karen Gilmour, Simmi Mahajan and Andrea Graham. As 

a control for the Nippostrongylus infection, mice were injected with PBS only (50 d) 

and for malaria infection, they were injected with naïve blood cells (100 .tl). At days 3, 

5, 7 and 20 mice were sacrificed as usual. 

To obtain broncho-alveolar lavage (BAL), the trachea was cannulated and lungs lavaged 

with lml PBS. Cannulae were prepared from fine bore polythene tubing (Portex) cut 

into the appropriate length (approximately 4 cm) and a 23 G needle (0.6mm X 25mm; 

BD) inserted into one end. The small incision was made in the trachea at an appropriate 

point and the cannula inserted and tied in position with Mersilk black braided silk suture 

thread (Ethicon) before perfusion to remove RBCs and lavage. Occasionally, one lobe 

was cut off with suture thread before lavage and placed in RNAlater (Ambion) before 

homogenisation and TRIZOL (Invitrogen) RNA extraction. Otherwise, whole lungs 
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were treated in this way for RNA extraction. Recovered BAL cells were counted, RNA 

extracted and realtime PCR analysis carried out (see below). BAL fluid was retained for 

western blotting analysis of Ym- 1 and RELM-a protein content (see below). Other 

lungs were placed in 4% formalin and processed (j1aced in paraffin blocks and sections 

made by in-house facility at the QMRI, Little France) and sections prepared for 

immunohistochemistry (see below). Photographs were taken of whole lungs using a 

Nikon Coolpix 4500 digital camera. The gross pathology of day 3 and day 7 lungs from 

one experiment was scored blindly. Score values of 1 to 4 were given as follows- 1-

completely intact, pink and smooth, 2- slightly lumpy, some blood spots, 3- very bumpy, 

lots of blood spots, 4- shrunken and very bumpy, almost black in appearance. 

2.2 Immunohistochemistry (IHC) 

Sections were placed in 300m1 Xylene for 10 min and then rehydrated from absolute 

alcohol to 64 OP for 1 min each. The sections were rinsed in deionised water for 1 mm. 

They were then placed (in a plastic rack) into 1% antigen retrieval solution (Vector) and 

microwaved for a total of 15min at 1000W. The sections were transferred into running 

tap water to cool for 20min and then placed in 2% H202 block (Sigma) for 15min with 

rocking. The sections were then transferred into PBS and loaded into Sequenza racks 

and washed 2x with PBS. 3 drops of protein block (Dako) were added to each slide for 

10mm. After this time 125p1 of the primary antibody (diluted in Dako diluent) was 

added to each slide for 60 mm (Ym-1 used 1:100; Stemcell technologies; RELM-u was 

produced in house and used at 1:400 dilution). As a negative control, Dako diluent only 

was added to slides. Slides were washed twice in PBS and then 125d of the secondary 

antibody (Goat (xrabbit I gG*bi0t ;Dako) diluted in Dako diluent added to each slide for 

30mm. Slides were again washed twice in PBS. 3 drops of Vector ABC elite reagent was 

added to each slide for 30mm. They were washed three times in PBS, before 125p1 of 

DAB (Dako) was added to each slide for 5mm. The slides were washed once in PBS and 

then removed from sequenza racks and transfered into H20. The sections were 

counterstained for 30 seconds in haematoxylin, rinsed in tap water, then in Scott's water 
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and then transfered back into tap water, before dehydration back through the alcohols 

into xylene for 10 secs each. Slides were finally mounted in Pertex and allowed to dry 

overnight. Slides were examined microscopically and given "blind" scores based on 

"protein level" (darkness of brown stain) and "area" of staining. A protein level score of 

1 = no staining, 2 = weakly stained, 3 = moderate staining and 4 = strong staining. For 

the area of staining, 1 =0, 2 = < 30% of the area had stained, 3 = 30-60% and 4 => 60% 

of the area stained. These values were averaged over 5 fields and multiplied together to 

give a final score in arbitrary units (i.e. if a slide stained for Ym- 1 had an average 

'protein level' score of 3 (moderate) and this was over 50% of the area (i.e. area score of 

3) over 5 fields the combined score would be 3 x 3 =9. The highest score possible is 

therefore 4 x 4 (darkest staining over >60% area) = 16. This gave an indication of the 

relative protein levels of Ym- 1 and Fizz 1 from the lungs of the various groups. Figure 5 

C shows representative slides from IHC using the a-Ym- 1 antibody at 7 days post 

infection. Generally speaking most alveolar macrophages in the lung were positive for 

Ym- 1 and, as most of the visible differences in staining intensity occurred in the 

bronchial epithelia, so we decided to focus on this area for future work. 

2.3 RNA extraction and real-time RT PCR 

Whole lung tissue was firstly placed in RNAlater (Ambion) and homogenised, before 

being placed in TRIZOL for RNA extraction and real-time RT PCR, as in Chapter 2. 

Control cDNA was taken from NeM from the Brugia malayi implant model. 

2.4 Western Blotting 

The BAL fluid was analysed for Ym-1 and RELM-u protein expression. This procedure 

was undertaken by Marieke Hoeve in this instance but the method is outlined in Chapter 

rol 
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3. Results 

3.1 A timecourse of Ym-1 and RELM-a expression in lungs of mice 

infected with N. brasiliensis 

To provide baseline information prior to the main co-infection experiments the patterns 

of Ym- 1 and RELM-a protein expression in N. brasiliensis infected mice (also referred 

to as nippo-infected or helminth-infected) were ascertained over the timecourse planned 

for the main experiment i.e. beyond 20 days. Female BALB/c mice were infected with 

200 L3s or injected with 50 tl PBS as a control. At days 3, 5, 7, 15, 20 and 26 mice 

were sacrificed and BAL fluid recovered for Western blot analysis of the proteins in 

question. 

Ym-1 protein started to appear in the BAL fluid (BALF) at day 3, but it increased 

significantly by day 5 and was at its peak by day 7 (Figure 1 A). By day 15, Ym-1 levels 

had decreased and continued to do so until day 20 (Figure 1 A). RELM-a expression 

followed a similar expression pattern to Ym-1 (Figure 1 B). RELM-a protein levels had 

also started to rise by day 3 and the peak of expression was at days 5-7 levels. RELM-a 

levels were almost absent by day 15 (Figure 1 B). These peaks of expression for both 

Ym-1 and RELM-a (around days 5-7) probably correlate with the adaptive immune 

response and arrival of Th2 cells in the lung (Voehringer et al, 2004). This peak of 

expression at days 5-7, and the inflammation of the lung tissue due to helminth 

infection, are illustrated in the pictures of anti-Ymi IHC (Figure 1 Q. There was little to 

no protein detected by days 20 and 26. This illustrated the kinetics of expression in the 

lungs of Ym- 1 and RELM-ct in mice infected with N. brasiliensis. 
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Figure 1. Ymi and RELM-a expression in the lung in response to N. 
brasiliensis infection. BAL fluid was recovered from the lungs of BALB/c 
mice after various days of infection and western blot analysis of Ymi (a) 
and RELM-a (b) protein expression carried out. Significant differences 
were determined by the Mann-Whitney test * p<0.05. BALF: broncho-
alveolar lavage fluid. This experiment was carried out once. Sections of 
lungs were prepared and IHC carried out. Section photographs of IHC for 
Ym-1 are shown (c) 
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3.2 Gross pathology of lungs from co-infections 

In the next experiment, mice were infected with malaria only, N. brasiliensis or both 

parasites. Control animals were uninfected but injected with PBS alone and naïve red 

blood cells (materials and methods). At days 3 and 7, whole lungs were removed and 

after lavage was carried out, photographs of the lungs taken. In this way we could 

observe the gross damage caused to the lung by infection. Damage to the 

Nippostrongylus-infected lungs was expected but we wished to see whether co-infection 

with malaria had any effect on this damage. These photographs were blind-scored and 

the results shown in Figure 2. Representative photographs are also presented. 

Infection with this helminth was detrimental to the overall health of the mice, causing 

transient anaemia in singly and doubly infected animals between days 4 and 6 post 

infection (Appendix 5 A). Helminth-infected animals also had lower minimum body 

mass than uninfected and malaria only mice (Appendix 5 B). N. brasiliensis migration 

caused considerable damage to the lungs, with the worst affected becoming shrunken 

and bloody in appearance (Figure 2 A; bottom left co-infected). There was no significant 

difference found between the lung damage of those singly infected with the helminth 

and the co-infected ones at day 3, although more co-infected lungs were given values at 

the higher end of the pathology scores (four of the co-infected lungs had scores above 3 

AUs, as opposed to only one from the singly-infected group; Figure 2 A). By day 7, no 

difference was seen (Figure 2 B). 
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Figure 2. Pathology of lungs. Whole lungs were removed 
from BALB/c mice after 3 (a) and 7 (b), photographs taken 
(right) and gross pathologies scored (left). Nippo = N. 
brasiliensis-infected. 
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3.3 At day 3 post-infection, co-infection is not affecting Ym-1 and RELM-a 

expression 

Three days after infection, whole lung tissue was taken for RNA extraction. Figure 3 A 

shows the Realtime RT-PCR results of Ym-] and RELM-a expression from the various 

experimental groups. Ym-1 RNA was found in whole lung tissue from Nippostrongylus-

and co-infected animals, but only at low levels (up to approx. 0.5% control cDNA; 

Figure 3 Ai). There were higher levels of RELM-a present (up to approx. 200% control 

cDNA) than YM-1, but again only in Nippostrongylus- and co-infected groups (Figure 3 

A ii). There was a slight trend towards higher levels of both Ym-1 and RELM-a in co-

infected than Nippostrongylus-infected lungs. 

Ym- 1 protein levels in the lung were measured at day 3 in this particular experiment 

(Figure 3 B), as measured by immunohistochemistry (IHC; Figure 3 B i) and western 

blots of BAL fluid (Figure 3 B ii) and did not go above background levels of Ym- 1. 

There is always detectable Ym- 1 protein in alveolar M of naïve mice (personal 

observation and Nio 2004 (Nio et al, 2004)). RELM-a protein expression from western 

blots of BALF (Figure 3 B iv) correlated with the expression of RNA from whole lung 

tissue, with some expression in Nippostrongylus-only infected mice, which was lower 

than that in co-infection. 

We presume that Ym- 1 and RELM-a expression at day 3 are mainly a reflection of the 

innate response to N. brasiliensis migration as seen previously (Reece et a!, 2006). 

These early increases in YM- 1 and RELM-a RNA or protein show an insignificant trend 

towards higher levels in the lungs of mice co-infected (with malaria and N. bras iliensis) 

than those infected with the helminth alone. 
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Figure 3. Day 3 Ym-1 and RELM-a mRNA and protein expression. RNA 
was recovered from whole lung tissue of BALB/c mice and real time RT-PCR 
carried out for Ymi and RELM-a RNA expression (a). Sections of lungs were 
prepared and IHC carried out (b; left), along with western blots of BALF for 
Ymi and RELM-a protein expression (b; right). Nippo: N. brasiliensis-

infected. BALF: broncho-alveolar lavage fluid. ep.: epithelium. ------: level 
of background stain. Results are representative of three experiments. 
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3.4 At day 5 post-infection singly Nippostrongylus-infected mice have 

begun to express higher levels Ym-1 and RELM-a than those co-infected 

with malaria 

By 5 days post infection, Ym-1 mRNA was present in Nippostrongylus- and co-infected 

lungs, with a trend towards a higher level in Nippostrongylus-only ( Figure 4 A i). This 

trend was reflected in protein expression where Nippostrongylus-only infected lung 

sections expressed Ym- 1 above background and this was significantly higher than in co-

infected lung sections (Figure 4 B i). This pattern was also seen from protein in the 

BALF as measured by western blot of Ym-1 (Figure 4 B ii), although in this instance the 

difference between Nippostrongylus-only and co-infected lungs was not significant. 

RELM-a mRNA expression (Figure 4 A ii) and protein expression (Figure 4 B iii and iv) 

also followed this trend, whereby expression tended to be higher in Nippostrongylus-

only than co-infected mice, although again this was also only significant when measured 

by IHC (Figure 4 B iii). 

These data demonstrate that Ym- 1 and RELM-a expression began to increase in the 

lungs of mice after 5 days of infection with N. brasiliensis (either singly or co-infected 

with malaria), as indicated by an increase in both mRNA (Figure 4 A) and protein levels 

(Figure 4 B). This was in agreement with the initial timecourse (Figure 1) and perhaps 

reflects an influx of helminth-specific Th2 cells in the lung at this timepoint. There was 

also a definite trend towards higher expression of these proteins in Nippostrongylus-only 

than in co-infected animal, indicating that the Th2 response may be downregulated in 

the co-infected mice. 
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Figure 4. Day 5 Ym-1 and RELM-a mRNA and protein expression. 
RNA was recovered from whole lung tissue of BALB/c mice and real 
time RT-PCR carried out for Ymi and RELM-a RNA expression (a). 
Sections of lungs were prepared and IHC carried out (b; left), along with 
western blots of BALF for Ymi and RELM-a protein expression (b; 

right). Nippo: N. brasiliensis-infected. BALF: broncho-alveolar lavage 
fluid. ep.: epithelium. Significant differences were determined by the 
Mann-Whitney test. *p<0.05. ------: level of background stain. 
Results are representative of three experiments. 
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3.5 At day 7 post-infection singly Nippostrongylus-infected mice express 

higher levels Ym-1 and RELM-a than co-infected animals, reflected by the 

Th2-type cytokine production in the draining lymph node 

Similarly to day 5, there was a trend for higher Ym-1 expression in Nippostrongylus-

only infected than in co-infected lungs at day 7. In the whole lung, Ym-1 expression was 

higher in Nippostrongylus-only than in co-infected animals, although this did not quite 

reach significance (p=0.059; Figure 5 B ii). Ym- 1 protein expression was significantly 

higher in animals singly infected with N. brasiliensis than those co-infected with 

malaria, shown by both IHC (Figure 5 B i and 5 C) and western blot of the BALF 

(Figure 5 B ii). With regards to RELM-a mRNA expression, Nippostrongylus-only 

infected lungs again displayed significantly higher levels of RELM-a RNA expression 

than co-infected (Figure 5 A ii). This was also reflected in protein expression, but did 

not reach significance (Figure 5 B iii and iv). 

Of note, IHC showed that alveolar macrophages were positive for Ym-1 in animals from 

all treatment groups on all days (including naives; data not shown). In general, alveolar 

macrophages were not positive for RELM-a in any treatment group. Any differences in 

expression levels of Ym 1 and RELM-a were only clearly seen in the bronchial epithelial 

cells (see Figure 5 C for Ymi IHC example). Therefore, it was these cells that were used 

to intensity of staining scores for both Ym 1 and RELM-a, as previously mentioned 

(materials and methods). 

The trend from day 5 post infection, with higher expression of both Ym- 1 and RELM-a 

in the lungs of mice singly infected with N. brasiliensis than in mice co-infected along 

with the rodent malaria P. chabaudi, continued and became significant at day 7, adding 

further evidence that the Th2 response is downregulated in the co-infected mice. Since 

this pattern was so pronounced it was decided to measure the cytokine production of the 

thoracic lymph nodes. Cultured lymph node cells from co-infected animals produced 
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Figure 5. Day 7 Ym-1 and RELM-a mRNA and protein 
expression. RNA was recovered from whole lung tissue of BALB/c 
mice and real time RT-PCR carried out for Ymi and RELM-a RNA 
expression (a). Sections of lungs were prepared and IHC carried out 
(b; left), along with western blots of BALF for Ymi and RELM-a 
protein expression (b; right). Section photographs of IHC for Ym-1 
are shown (c). Nippo: N. brasiliensis-infected. BALF: broncho-
alveolar lavage fluid. ep.: epithelium. Significant differences were 
determined by the Mann-Whitney test. *p<0.05 ------: level of 
background stain. Results are representative of three experiments. 
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(C) a-Ym-1 immunohistochemistry 

Figure 5 continued. At day 7 post-infection mice infected with 
Nippostrongylus brasiliensis only display greater expression of Ym-1 
in lung sections than those coinfected with the helminth and 
Plasmodium chabaudi rodent malaria. X 200 magnification 
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less IL-4, 13, 5, and 10 both spontaneously (Appendix 6 A-D) and in response to ConA 

(Appendix 6 F-I) than Nippostrongylus-only mice, reflecting the pattern seen with 

AAM markers, Ym- 1 and RELM-a. Conversely, IFN-y was produced by co-infected 

animals as well as the malaria-only infected mice (Appendix 6 E and J). This is reflected 

in the fact that malaria parasitemia is starting to rise at this time in malaria infected 

animals, as seen by % parasitized red blood cells (Appendix 5 Q. 

3.6 By 20 days post-infection, expression of Ym-1 and RELM-a in the 

lungs of co-infected mice has now overtaken that in singly 

Nippostrongylus-i nfected mice. 

As reflected in the original timecourse experiment Ym- 1 and RELM-a mRNA and 

protein levels had diminished substantially by day 20. However there was a shift in the 

pattern of expression. I'm-i mRNA expression in whole lung now showed a trend 

towards higher expression in co-infected than in Nippostrongylus-only ( Figure 6 A i). 

Ym- 1 protein was now also higher in the BAL fluid of co-infected mice (Figure 6 B ii), 

but not as measured by IHC (Figure 6 B i). RELM-a expression also followed this 

pattern. Realtime RT-PCR of the whole lung both showed higher levels of RELM-a in 

co-infected animals compared to Nippostrongylus-only ( Figure 6 A ii). There was a 

trend towards this in terms of protein expression of RELM-a in the lungs, but this did 

not reach significance (Figure 6 B iii and iv). 
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Figure 6. Day 20 Ym-1 and RELM-a mRNA and protein 
expression. RNA was recovered from whole lung tissue of 
BALB/c mice and real time RT-PCR carried out for Ymi and 

RELM-a RNA expression (a). Sections of lungs were prepared 
and IHC carried out (b; left), along with western blots of BALF 
for Ymi and RELM-a protein expression (b; right). Nippo: N. 

brasiliensis-infected. BALF: broncho-alveolar lavage fluid. ep.: 
epithelium. Significant differences were determined by the 
Mann-Whitney test *p<O.05.-------level of background stain. 
Results are representative of three experiments. 
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4. Discussion 

Most work involving helminth-malaria co-infection situation has seen malaria parasites 

introduced to a setting where the helminth is already established (Graham et al, 2005b; 

Helmby et a!, 1998; Su et al, 2005). Our work differs in that respect since both parasites 

are introduced simultaneously, and also in the fact that we have used alternative 

activation markers of macrophages, Ym-1 and RELM-a, as a read-out of the Th2 

effector response, as well as cytokine measurements, in the tissue in which both 

parasites are present. Direct evidence for the presence of malaria parasites in the lung 

came from the fact that high numbers were detected in the lung tissues of infected 

animals by quantitative PCR of malaria DNA (Marieke Hoeve -personal 

communication). Before we looked at how malaria was affecting N. brasiliensis-induced 

Ym- 1 and RELM-a in the lung, a timecourse experiment was carried out to investigate 

the patterns of expression of these proteins in singly infected mice (Figure 1). Peak 

expression of both occurred at a time when an adaptive Th2 immune response would be 

coming into play around day 5-7. This is in agreement with work by Voehringer et al. 

Using IL-4 reporter mice, they have found that Th2 cells have begun entering the lung 

by day 5 post-infection in N. brasiliensis-infected animals and this reaches a peak at day 

9 (a timepoint we did not look at). Th2 cell numbers in the lung then begin to decline by 

day 13 (Voehringer et al, 2004). We also showed that Ym-1 upregulation lasted longer 

in the BALF of the lung than RELM-a in that particular experiment. Co-infection with 

malaria prolonged the expression of both of these proteins in the lung (Figure 6 B ii and 

iv), perhaps due to a delayed or prolonged Th2 response. 

The markers of alternatively activated M, Ym- 1 and RELM-a, were used here to 

demonstrate that malarial parasites are able to modulate responses to helminth co-

infections. Seven days after infection with blood stage malaria parasites and L3 of N. 

brasiliensis, co-infection with malaria was having the effect of down-regulating the Th2 

immune response (and the resultant alternative activation markers) elicited against the 

121 



helminth (Figure 5 and Appendix 6), when compared to animals singly infected. 

Downregulated Th2 responses to a helminth infection due to malaria infection have 

previously been observed with Schistosoma mansoni and P. chabaudi. In that study Th2 

responses to the schistosome antigens were suppressed for up to 1 month after malaria 

infection (Heimby et a!, 1998). In our experiments, RELM-a and Ym- 1 expression was 

higher in co-infected individuals at day 20 post-infection (Figure 6) than helminth only 

infected mice (although these levels of expression are lower overall than day 7; Figure 5 

e.g. RELM-a mRNA levels peak at 1000% control cDNA on day 7, and only approx. 

50% control cDNA on day 20). This suggests that the Th2 response may have recovered 

after clearance of the Thi-inducing malaria by Day 15 (Appendix 5 Q. Another 

possibility is that the type 2 response began in the co-infected animals at a similar time 

to the singly N. brasiliensis infected mice but rose more slowly, peaked at a lower level 

but lasted a little longer. These two possible scenarios are outlined in Figure 7. 

On the other hand, the co-infected individuals in this study were still able to elicit a 

sufficient Th 1 response against the potentially life threatening malaria, as measured by 

IFN-y production (Appendix 6 E & J) and the ability to clear the malaria within 15 days 

(the same amount of time as malaria-only mice; Appendix 5 B). The malarial disease 

severity was not detrimentally affected by concurrent helminth infection, and may even 

have been improved, as measured by slightly higher red blood cell density (less 

anaemia), and lower parasitemia, in co-infected compared with malaria-only mice 

(Appendix 5 A & B). It has been suggested that the transient anaemia seen early on in 

the Nippostrongylus-infected mice around day 5 post-infection (Appendix 5 A) may 

have resulted in the lower peak parasitemia seen in co-infected mice (Appendix 5 Q. 

This is because a lower availability of RBCs early on would result in fewer malaria 

parasites gaining access to a host cell and thus, peak parasitemia would indeed be lower 

in the co-infected individuals (Andrea Graham, in press). Indeed, previous co-infection 

studies involving other helminths and malaria have shown that these worms can limit 

RBC availability to malarial parasites (Fagbemi et al, 1985; Lwin et a!, 1982). 

Therefore, the early N. brasiliensis-induced transient anaemia (Appendix 5 A), coupled 
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with a sufficient Thi response (as measured by day 7 IFN-y production; Appendix 6 E & 

J), may allow co-infected individuals to clear the malaria parasites as well as, if not 

better, than singly malaria-infected mice. 

In the early stages of malaria infection in resistant mouse strains there is a rapid 

production of IFN-y, produced by CD4+ T cells and this is maintained for the first 14 

days of infection (Meding et al, 1990). One of the major ways in which IFN-y is thought 

to be beneficial against malaria parasites is through the classical activation of 

macrophages and the consequent production of TNF-a, IL-i, ]IL-6 and soluble mediators 

such as nitric oxide (NO) and reactive oxygen species (ROS) (Li et al, 2001). Despite 

these facts, we did not detect any iNOS or TNF-a mRNA in the lung tissue of malaria-

only or co-infected mice at any timepoint (data not shown), so these do not seem to be 

involved in malaria clearance, at least from within the lung. This may be consistent with 

data that NO is not important for control of parasitemia in blood-stage malaria, although 

it is important against liver-stage parasites (Favre et a!, 1999; Nussler et al, 1993; 

Saeftel et a!, 2004). 

It may be considered surprising that we did not detect the pro-inflammatory mediators 

TNF-a or iNOS in the lung, despite the presence of malaria parasites. However, there is 

little inflammation in the lungs even under normal conditions, which is surprising 

considering the potential of inhaled microbes to gain access to the interior of the lung 

during breathing. Indeed, a pool of alveolar macrophages can handle up to one billion 

bacteria injected intratracheally before adaptive immunity is induced (Lambrecht, 2006). 

Alveolar macrophages are important in the defence of the lung but may be kept in a 

quiescent state, by consistent exposure to TGF-13 in the alveolar spaces induced by the 

integrin aVI36, in order to prevent collateral damage to the alveolar epithelial cells 

involved in gaseous exchange. Perhaps the numbers of malaria parasites that made their 

way to the lung were not enough to cause the upregulation of TNF-a or iNOS. Just as 

likely is that they were induced but upregulation was transient, and turned off 
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sufficiently quickly, that we did not detect these pro-inflammatory mediators at the 

timepoints investigated. Indeed, it is known that the pro-inflammatory activation of 

alveolar macrophages caused by signalling through TLRs is quickly turned off by IFN-y 

production (Takabayshi et a!, 2006). Malaria parasites are thought to cause signalling 

through TLRs, such TLR9 (Coban et a!, 2005) and, as we saw in Appendix 6 E, IFN-y 

was produced in the draining lymph nodes at day 7 post-infection. IFN-y stimulates 

production of matrix metalloproteinase (MMP)-9 by alveolar macrophages. This may 

activate latent TGF-, which again inhibits macrophage activation (Takabayshi et a!, 

2006). Another reason why we may have not seen iNOS or TNF-ct in the lung is the 

possibility that activation of alveolar macrophages does not occur if the malaria parasites 

stay in the microvasculature of the lung and do not cross into the tissue. This is unlikely 

to be the case, however, given the extensive damage to the lung due to Nippostrongylus, 

at least in the co-infected mice, and the evidence from other labs that merozoites are 

often found to be free and dispersed within the lung (Coquelin et a!, 1999). 

TNF-a has been shown to be important against malaria, despite the fact that we did not 

detect any in the lungs of infected mice. Treatment with exogenous TNF-a protects 

susceptible strains against otherwise lethal infection with P. chabaudi (Stevenson & 

Ghadirian, 1989). This suggests that TNF-u was probably present in malaria-infected 

mice but did not exert its affects in the lung (or at least was undetectable here by our 

measures). Increases in levels of TNF-a could be an alternative explanation (other than 

RBC availability) for why there was reduced parasitemia in co-infected animals relative 

to those infected with malaria alone (Appendix 5 C). Production of TNF-a has been 

reported to be increased shortly after N. brasiliensis infection (Benbernou et a!, 1992). 

This may mean that animals co-infected with N. brasiliensis and malaria parasites (at the 

same time) have a higher level of TNF-ct initially than mice singly infected with 

malaria, and this may be having the protective effect in the co-infected animals. 
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TNF-a cytokine has been shown to play a major role in pathogenesis of malarial disease 

and levels in the serum of individuals infected with the human malaria P. falciparum 

correlates with disease severity (Mordmuller et al, 1997). For example, TNF-a may play 

a role in the anaemia associated with disease through suppression of erythropoiesis (Li et 

al, 2001). TNF-u may also be a cause of cerebral malarial pathology, since TNF-a 

production causes the upregulation of adhesion molecules, such as ICAM-1 and CD36, 

on endothelial cells and this is thought to be involved in the sequestration of monocytes 

and parasites in the brain, amongst other organs (Lucas et a!, 1997). Regulating the 

production of this cytokine during co-infection with a helminth parasite may contribute 

to the protection against cerebral malaria in individuals with concurrent infections. 

The importance of studying co-infection between malaria and helminths is clear when 

thinking about the design of possible vaccine strategies against these often deadly 

protozoan parasites. Vaccines are supposed to ideally evoke an efficient Thi response 

and induce specific antibodies against the pathogens. It is possible that concurrent 

helminth infection would interfere with the induction, or modulate, a Thi response to a 

potential vaccine candidate, as has been shown to be the case with BCG (Elias et a!, 

2005 a). These considerations should be taken into account before vaccination plans are 

implemented. 

In this chapter, it has been shown that infection with P. chabaudi malaria parasites could 

modulate the Th2 response against a concurrent helminth infection with N. brasiliensis, 

as measured by Ym-1 and RELM-a expression, as well as cytokine measurements. Co-

infected individuals could mount a Th 1 response sufficient to clear the protozoan 

parasite as well as singly infected animals. This shows that the immune system can 

respond to both types of infection simultaneously and deal adequately with a potentially 

life threatening Thi inducing pathogen, malaria, by perhaps delaying or reducing the 

peak Th2 response against the concurrent helminth infection. 
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CHAPTER 6 

MyD88 and the Alternative Activation of Macrophages 

1. Introduction 

The immune system must detect and destroy invading pathogenic microorganisms by 

discriminating between self and non-self. Adaptive immunity is carried out through the 

detection of non-self through the recognition of peptide antigens using receptors 

expressed on the surface of B and T cells. This adaptive system is only observed in 

vertebrates, whereas the innate immune system is phylogenetically conserved and is 

present in even primitive multicellular organisms (Hoffmann et al, 1999; Takeda et a!, 

2003). The mechanisms by which the innate immune system recognises non-self have 

been the subject of intense research for the past ten years (Medzhitov et a!, 1997). 

Pattern recognition receptors (PRRs) of innate immunity recognise molecules that are 

broadly shared amongst pathogens, and are distinguishable from host molecules, called 

pathogen-associated molecular patterns (PAMPs). These PRRs include the mannose 

receptor, NOD-like receptors (NLRs) and Toll-like Receptors (TLRs), among others. 

Antigen presenting cells, such as macrophages, express a range of TLRs and thus help 

regulate the activation of the innate and, further down the line, adaptive immune 

responses (Janeway & Medzhitov, 2002; Medzhitov, 2001). Myeloid Differentiation 

Factor 88 (MyD88) is a critical adaptor molecule shared by many TLRs and signalling 

through many of these receptors is completely dependent on MyD88. However, MyD88-

independent pathways also exist for some TLRs, e.g. TLR4 (Akira & Hoshino, 2003). 

Classical activation of macrophages is dependent on the products of activated T helper 1 

(Thi) cells, in particular interferon-y (IFN-y) (Dalton et al, 1993) and, importantly, the 
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recognition of microbial PAMPS through TLRs (e.g. LPS and TLR4) (Aderem & 

Ulevitch, 2000). In the absence of MyD88, Thi responses are greatly diminished and 

this indicates a role for TLRs and MyD88-dependent signalling in the control of 

adaptive Thi immunity (Adachi et al, 1998). Th2 responses, on the other hand, have 

been shown in some studies to be intact or even augmented in the absence of MyD88 

(Kaisho et al, 2002; Muraille et al, 2003; Schnare et al, 2001) and this suggests that Th2 

responses are elicited in a MyD8 8-independent manner. However, other work suggests 

that TLR signaling does play a role in Th2 responses. For example, Eisenbarth et al, 

found that low levels of LPS-induced signaling through TLR4 is necessary to induce 

Th2 responses to inhaled antigens (OVA) in a mouse model of allergic sensitization 

(Eisenbarth et al, 2002). This was later found to be MyD88-dependent in a site-specific 

manner (i.e. governed by initial route of antigen exposure) (Piggott et al, 2005). 

Therefore, whether signaling through MyD88 is a requirement of a Th2 response may 

depend on the particular model under investigation. However, it is still not known 

whether signalling through TLRs is required for the induction of the alternative 

macrophage activation pathway. 

Another reason to investigate MyD88 in the context of filarial infection is the extensive 

literature implicating TLRs in macrophage activation by the bacterial endosymbiont 

Wolbachia. During lymphatic filiariasis caused by the nematode Brugia malayi, 

inflammatory pathology can lead to lymphoedema and elephantiasis. Inflammatory 

responses can also be caused by filarial chemotherapy, which causes large quantities of 

parasite material to be released. The key pro-inflammatory cytokines IL-i 13  and TNF-a 

are produced mainly by macrophages and these potentiate further inflammatory 

mediator expression (Taylor et al, 2000). It has been proposed that the inflammation 

caused by B. malayi is mediated by LPS-like activity from Wolbachia signalling through 

TLRs in a MyD88-dependent manner (Daehnel et al, 2007; Hise et al, 2007; Taylor et 

al, 2000). It was proposed originally that that Wolbachia contained LPS activity acting 

through TLR-4 (Taylor et al, 2000). However, it was subsequently found that it contains 

no LPS and fails to signal through TLR-4. The pro-inflammatory activity of Wolbachia 

128 



(at least in vitro) has more recently be found to occur through TLR-2 in a MyD88-

dependent manner (Hise et al, 2007), although the ligand is not known. 

Other than the requirement for IL-4/IL- 13 little is actually known about what determines 

the alternative activation phenotype in macrophages. In light of these studies above, we 

decided to investigate whether alternatively activated macrophages could be recruited in 

the absence of the important adaptor molecule, MyD88, and thus determine whether 

TLR signals impact negatively or positively on the AAM4. We first investigated AAIVI 

generated in vitro by using bone marrow-derived M4 (BMM) treated with IL-4. We 

found that there was some reduction of arginase activity in the absence MyD88, but 

intact levels of Arginasel , RELM-a and YM-] mRNA. Interestingly, we also found that 

MyD88-/- BMM, unlike WT, only produced NO when treated with LPS and IFN-y 

together, but not separately. For the in vivo studies, B. malayi worms were implanted 

into both WT and MyD88-/- mice and the peritoneal cell populations investigated after 

19 days. The results were somewhat surprising, considering previous published reports 

showing evidence of significantly enhanced Th2 responses during nematode infection 

(Heimby & Grencis, 2003). No differences in cell numbers and type (with regards to 

proportions of M, eosinophils and lymphocytes) were found. We also found no 

difference in terms of arginase activity, suppressive ability or the expression of RELM-a 

or YM1 in purified NeM. In agreement with this, the Th2 bias was not significantly 

affected in the MyD88-/- implanted mice when compared to the wild type. 

2. Materials and Methods 

2.1 Mice 

All experiments used were C5713L/6 or MyD88-/- male mice, bred in house or 

purchased from Harlan, UK. Mice were 6-10 weeks old at the start of the experiment. 

2.2 Brugia malayi infection 
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As in Chapter 2 

2.3 Macrophage Activation 

As in Chapter 2 

2.4 Quantification of NO and arginase activity 

As in Chapter 2 

2.5 RNA extraction and real-time RT PCR 

As in Chapter 2 

2.6 Proliferation Assay 

As in Chapter 2 

2.7 Western Blotting 

17 tl samples were mixed with 9.5 1ul of loading mix (6.8 .tl NuPAGE LDS sample 

loading buffer + 2.7 jil Nu PAGE Sample Reducing Agent) in eppendorf tubes. The lids 

were pierced and vials heated to 99°C on heat block for at least 10 minutes. Each sample 

was run on SDS-PAGE gel, with NuPAGE MES running buffer (20mls x20 NuPAGE 

MES buffer plus 380 mls dH20) at 150 volts (V) for 55 mm. The blotting apparatus was 

assembled and filter paper pre-soaked in NuPAGE transfer buffer (12.5m1 x20 Transfer 

buffer, 25m1 Methanol, 212.5 ml dH20). NuPage reagents were from Invitrogen. The 

gel and nitrocellulose membrane (kept moist with transfer buffer) were placed in the 

blotting device and transfer carried out at 30V for ihour. The transfer filter (BioRad 

Trans Blot) was then stained with Ponceau Red (Sigma) to check that the transfer was 

successful. Washing with TBS-Tween (lOOmls xlO TBS, 2ml Triton-X100 (Sigma), 

500il Tween 20 (Sigma), 897.5mls dH20 for 1 litre) was then carried out twice for 10 

minutes. Another wash with x1TBS was carried out for 10 minutes. The blot was then 

blocked for 30 minutes in Pierce StartingBlock at room temperature with rocking. This 

was carried out in plastic bags (4 mls per bag). Primary Abs were then made to required 
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strength in Pierce StartingBlock + 0.05% Tween-20: Anti-Ymi (Allen lab (Nair et al, 

2005)): 1/2500 (0.3 .xg/ml, 0.12 ng/ml)) and Anti-RELMa Peprotech 0.2 gg/ml (=11500) 

(made up again in 4 mIs Ab-solution per filter/per bag). These were then incubated 

overnight at 4°C with rocking. They were then washed 3 times in TBS-Tween for 10 

minutes and the secondary Ab made up to the required strength in Pierce StartingBlock 

+ 0.05% Tween-20; Goat-anti-Rabbit HRP: 1/2000 (4 mIs Ab-solution per filter/per 

bag). These were then incubated at room temperature for 1 hour with rocking and 

washed twice for 5 minutes in TBS-Tween and then 3x5 minutes in TBS. For detection 

with ECL kit (Amersham) the solution was prepared using 4 ml reagent A and lOOpJ 

Reagent B. The blots were incubated with this for 5 minutes. Any signal produced was 

detected using film (Hyperfilm: Amersham ECL Hyperfilm) (generally exposure of 10 - 

180 seconds sufficient). A Multilmage light cabinet along with the Fluorchem 

programme (Alphainotech) were used to measure the relative concentrations of proteins 

on the blots. 

2.8 Flow Cytometry 

1 X 106  cells per group were incubated at 4°C for 15 minutes in blocking buffer; 2% 

mouse serum, in FACS buffer (PBS supplemented with 2mM EDTA and 0.5% BSA), 

followed by staining for 20 minutes on ice with the antibodies (Ab) of interest at the 

appropriate dilution as determined by titration. The antibodies were generally directly 

fluorochrome conjugated or biotinylated. When using biotinylated antibodies, an 

additional step involving incubation of the cells with fluorochrome-conjugated 

streptavidin beads (Pharmingen) was performed. The Abs included anti-F4/80-

biotinylated (1:100); anti-MIHC II-FITC (1:200); PE-conjugated anti-CD86 (1:100); 

anti-CD4-APC (1:100); anti-CD8-PE (1:100); anti-B220-PCP (1:100) and anti-SiglecF-

PE (1: 100), as well as the appropriate isotype control Abs (anti-IgG2a-FITC, anti-

IgG2a-PE, anti-IgG2a-biotinylated). The cells were then washed 3x in FACS buffer 

before acquisition and analysis (BD FACStation and FlowJo software). 
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2.9 Cytocentrifuge preparations 

Cytocentrifuge preparations from 400tl cells (2x10 6  cells/ml) in complete medium were 

made using a Shandon Cytospin. The slides were air-dried overnight and fixed for 10 

minutes in cold methanol, followed by staining with Diff-Quik (Dade) according to the 

manufacturer's instructions. The cell populations were determined by microscopic 

examination (x40 objective) of at least 100 cells per slide. 

2.10 Counting of Microfilaria 

Peritoneal lavages were spun for 10 mins at 1250rpm and then cells resuspended in 2 ml 

DMEM. 10 il of the cell suspensions was added to 190 tl FACS lysing solution (1X 

BD-Biosciences) to fix mfs. This was spun for 5 mins at 4000 rpm. 100 tl was removed 

and the cells/mfs resuspended in the remaining 100 tl of supernatant, which is spread on 

a slide. Counts are carried out by microscopic examination. 

2.11 Parasite Extract 

B. malavi adult male and female worms were used to make parasite extracts. Briefly, the 

worms in PBS were homogenised in a glass homogeniser on ice and the soluble fraction 

was collected after centrifugation twice at 13000 rpm for 15 minutes. The protein 

concentration was determined using the Coomassie plus protein assay (Pierce). Extracts 

were stored at -20 °C until use for immunisations and in vitro cultures. 
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2.12 in vitro splenocyte cultures 

The spleens were removed and single cell suspensions prepared. These were cultured in 

96-well round bottom plates at 106  cells per well containing either 1 Op.gIml parasite 

extract (BMA) or 1 jig/ml Concanavalin A (ConA) or medium alone (complete RPMI) at 

37°C. After 72h of culture, supernatants were removed for cytokine assay. 

2.13 Cytokine Assay 

The amount of cytokines (IL-5, IL-4, IL-13, IFNy and IL-b) in the culture supernatants 

was measured using BD Cytometric Bead Array Flex sets, with slight modifications 

from the manufacturer's instructions (BD Biosciences). Briefly, 50j.11 of sample or 

standard were incubated in round-bottom 96-well plates (Costar) with 25p1 of cytokine 

capture bead mixture (anti-cytokine-coated microspheres, 0.5 d/sample/cytokine) with 

protection from the light and gentle shaking for 10 minutes. They were then incubated 

on bench top for 50 mins (lh total incubation) at room temperature. Plates were washed 

with 200p.l of wash buffer and spun at 200g for 5mm. Samples and standards were then 

incubated with 25p1 of PE detection reagent (phycoerythrin-conjugated anti-mouse 

cytokine antibodies) in darkness for lh (again gently rocking for 10 mins and then 50 

minutes on bench). After another wash, beads were resuspended in 1 50l of wash buffer. 

Samples were acquired on FACSArray analyser (BD Biosciences) and amount of 

cytokines obtained using FCAP analysis software (BD Biosciences). 

2.14 Data analysis 

Graphs were prepared using PRISM (GraphPad software, Berkeley, CA). The Mann-

Whitney test was carried out to test for significance. 
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3. Results 

3.1 MyD88-/- bone marrow-derived macrophages display deficiencies in 

classical activation but can become alternatively activated when treated 

with lL-4. 

Arginase 1 expression is a consistent feature of alternatively activated macrophages and 

its expression is generally dependent on Th2-type signals, such as IL-4 (Louis et al, 

1999). To determine whether signalling through TLR, or more specifically MyD88, was 

necessary for the alternative activation of macrophages, we decided to investigate 

whether bone marrow-derived macrophages (BMM4), cultured from both WT and 

MyD88 deficient mice, could be activated in this way. The activity of the opposing 

enzyme, iNOS, which is a signature enzyme associated with the classical activation of 

macrophages was also measured (Mori & Gotoh, 2000). To further characterise the 

AAM phenotype, we measured the expression of other markers of alternative 

activation, RELM-a and YM-]. 

Macrophages were treated +1- IL-4 overnight before treatment with LPS and IFN-', 

either together or separately, or media alone, as indicated for 16-20 hours. After this 

time, arginase and iNOS enzyme activities were monitored (Figure 1 A and B), as well 

as mRNA expression of Arginase 1, RELM-a and YM-1 (Figure 1 Q. Both WT and 

MyD88-/- cells exhibited arginase activity in response to IL-4 and the MyD88-/- mice 

appeared to produce less than the WT mice in response to IL-4 (Figure 1 A). However, 

untreated WT BMM also produced arginase and this response was abolished in 

MyD88-/- mice. This suggests that some MyD88-dependent stimulus in the culture 

medium may have been contributing to arginase production by these macrophages (see 

discussion). Indeed, LPS is shown to induce arginase activity over the media 

background but only in WT animals. 
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Figure 1. Upon stimulation with IL-4 BMM4 from MyD88-/- mice 
produce arginase but only display iNOS activity when stimulated with 
LPS and IFN-y together. BMM4 from WT and MyD88-/- mice on the 
C57BL/6 background were grown in vitro as described in the materials and 
methods. M were preteated 0/n with IL-4 and then given LPS and IFN-y 
together or separately for 16-20 hours. Urea concentration is shown as a 
measure of arginase activity (a) and nitrite as a measure of iNOS activity (b). 
mRNA was extracted and realtime RT-PCR for Arginase 1, RELM-a and YM-
1 expression carried out (c). mRNA expression is shown as a % of a positive 
control sample and was normalised to 3-actin. Results are shown as the mean 
of replicate samples (+1- S.E.M) and are representative of three experiments. 
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Nitrite in the supernatants of the cultured macrophages was measured using the Greiss 

reagent and was used as a measure of iNOS activity. As expected, WT BMM4 produced 

nitrite when treated with LPS andlor IFN-'j. The two stimuli together had an additive 

effect on iNOS activity. WT BIvDvI4, pretreated with IL-4, did not produce NO when 

stimulated with LPS alone (Figure 1 B). This may be due to the contribution of LPS to 

the activity of the opposing enzyme arginase, which would have a negative effect on NO 

production. Intriguingly, MyD88-/- BMM4 only produced NO when treated with LPS 

and IFN-y together but not either stimulus alone. 

There was no impairment in the ability of MyD88-/- BMJvk treated with IL-4 to 

produce other markers of alternative activation, including RELM-a and Ym-1 (Figure 1 

Q. Notably, there was only a slight trend towards decreased Arginase 1 expression in 

MyD88-/- BMM, which was at odds with the arginase activity data (Figure 1). This 

RNA data implies that there is no deficiency in the ability to generate AA1vI in MyD88-

I- animals and that enhanced arginase enzyme activity seen in vitro by untreated WT 

cells depends on a MyD88-dependent mechanism. 

3.2 The Th2 bias is not significantly altered in B. ma/ayi-implanted mice in 

the absence of MyD88. 

Before determining the impact of MyD88 deficiency on macrophage activation status in 

vivo, it was important to first ascertain if there would be any impairment or enhancement 

in the overall Th2 response in Brugia implanted mice. For this, the Th2 cytokines IL-4, 

IL-5, IL-lO and IL-13, as well as IFN-y as a marker of Thi activation, were measured 

from the supernatants of cultured splenocytes treated with media alone, ConA or BMA 

(Figure 2 B-E). As expected, all Th2 cytokines were increased in an antigen-specific 

manner to BMA in WT implanted mice. The antigen-specific Th2 cytokines, IL-4, 5, 10 

and 13 were further elevated in the MyD88-/- implanted mice, but this did not reach 
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Figure 2. The Thi response is impaired in MyD88-/- mice but the Th2 bias 
is not significantly altered in B. malayi-implanted animals. Splenocytes 
from mice on the C5713L/6 background were treated with media alone, 
Concanavalin A (ConA) or Brugia malayi antigen (BMA) for 72 hours before 
the supernatants were removed and levels of IFN-y (a), IL-4 (b), IL-5 (c), IL- 10 
(d) and IL- 13 (d) measured by cytometric bead array. Significant differences 
were determined by the Mann-Whitney test * p<0.05, * *p<.o1. These results 
are representative of three experiments. 
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statistical significance as measured by a Mann-Whitney test (Figure 2 B-E). In 

agreement with previous reports, the Thi response was impaired in MyD88-/- animals, 

as measured by IFN-y production by cultured splenocytes (Figure 2 A). This was true for 

both MyD88-/- implanted mice and thioglycollate injected mice compared to their WT 

counterparts. The difference in IFN-'y production between WT and MyD88-/- implanted 

mice was found to be statistically significant in response to both ConA and BMA. This 

trend was also seen between the WT and MyD88-/- thioglycollate-treated mice. 

However, there were too few mice in these control groups (n=3) in this particular 

experiment to carry out the Mann-Whitney test with accuracy. Overall, these results 

showed that the Th2 response was not impaired in MyD88-/- mice that had been 

implanted with B. malayi and that there may have been some enhancement. 

3.3 Absence of MyD88 does not affect the cell recruitment after B. malayi 

implant but does result in reduced thioglycollate-elicited recruitment. 

Peritoneal exudates cells (PEC) were recovered and counted from WT and MyD88-/-

mice surgically implanted with B. malayi adult worms (d19) and some injected i.p. with 

thioglycollate for three days. There was no difference in cell numbers between WT and 

MyD88-/- mice implanted with B. malayi (Figure 3 A). However, there were 

significantly fewer cells recruited into the gene-deficient animals than WT after 

thioglycollate injection (Figure 3). In two further repeats of this experiment this 

difference in thioglycollate recruitment was not significant, but the trend continued. This 

indicates that a TLR stimulus may be at least partially required for cell recruitment by 

thioglycollate and is not surprising considering that it is likely to contain TLR ligands 

(see discussion). 
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Figure 3. No impairment in cell recruitment in MyD88-/-
mice after implantation with Brugia malayi worms. 19 
days after implant (imp), and 3 days after thioglycolate i.p. 
injection (thio) PECs (mice on C5713L/6 background) were 
recovered and counted. Significant differences were 
determined by the Mann-Whitney test * p<0.05. These results 
did not repeat in subsequent experiments. 
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3.4 The absence of MyD88 does not affect recruitment of different cells 

types to peritoneal cavity. 

Although there were no overall differences in cell numbers recruited to the peritoneal 

cavity in implanted WT vs. MyD88-/- mice, it was possible that a lack of MyD88 

affected the profile or quality of cells recruited. Therefore, we examined the proportion 

of F4/80 (Figure 4 A) and SiglecF positive cells (Figure 4 B) in the PEC by flow 

cytometry to determine the % macrophages and eosinophils present respectively. The 

cell populations were also determined by microscopic examination of cytocentrifuge 

preparations (cytospins; Figure 4 D & E). There was a discrepancy between the 

proportion of F4/80 +ve cells found by FACs staining (Figure. 4a) and macrophages 

enumerated under the microscope (Figure 4 D). Nonetheless, there was no difference in 

the proportion of macrophages recruited i.p. between WT and KO animals. The relative 

percentages of macrophages seen by cytospin (Figure 4 D) are more in agreement with 

previous work in the lab than the measure of F4/80 +ve cells by FACs (Figure 4a). We 

do not know the reasons for the differences between the FACs and cytospin data but 

they could reflect cell death during the FACs preparation or suboptimal staining of 

particular populations. There was also no difference seen between the WT and MyD88-

I- in terms of eosinophilia, although again there was a slight disparity between the FACS 

staining and cytospins (Figures 4 B & E). 

Figure 5 also shows there was no difference between WT and KU mice in terms of 

lymphocytes. Similar proportions of CD8 and CD4 T cells were found in the PECs of 

both WT and KU implanted mice (Figure 5 A & B). B220 was used as a marker of B 

cells and there may have been a slight decrease in these cells in the implanted animals 

that lacked MyD88 (Figure 5 Q. Total lymphocyte populations were determined by 

microscopic examination of cytocentrifuge preparations and there was no difference 

between the WT and KU mice (Figure 5 D). 
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Figure 4. Similar numbers of macrophages 
and eosinophils are recruited in wild type 
(WT) and MyD88-/- mice (KO). 19 days 
after implant (3 days after thioglycollate 
injection; Thio) PEC from mice on the 
C57BL/6 background were recovered and 
double-stained for F4180 (A) and SiglecF 
(B). Sample plots are given in C. 
Cytocentrifuge preparations were also made 
and macrophages (D) and eosinophils (E) 
enumerated by microscopic examination. 
imp; from implanted mice. These results are 
representative of three experiments. 
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Figure 5. Similar numbers of T and B cells are recruited in Wild 
Type (WT) and MyD88-/- (KO) mice. 19 days after implant (3 days 
after thioglycollate injection; Thio) PEC were recovered from mice on 
the C57BL/6 background and stained for CD8 (A), CD4 (B) and B220 
(C). Cytocentrifuge preparations were also made and total lymphocytes 

- (D) enumerated by microscopic examination. These results are 
representative of three experiments. 
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3.5 Absence of MyD88 does not aftect arginase production or suppressive 

ability of the NeM resulting from B. malayi implant. 

To determine the phenotype of the recruited cells, macrophages were purified from the 

PEC by adherence and the levels of arginase activity measured (Figure 6 A). As 

predicted, NeM4 produced more arginase than ThioM4 but there was no difference in 

the levels of arginase between WT and MyD88-/- mice NeM, but there was a 

significant difference between the WT and MyD88-/- ThioM populations (Figure 2 B). 

Although not as apparent as the in vitro result, thioglycollate induces a low level of 

arginase that may be MyD88 dependent. These results show that the impairment seen in 

arginase production in the absence of MyD88 after IL-4 treatment in BMM4 (Figure 1 

A) and in response to thioglycollate (Figure 6 A) was not evident in macrophages from a 

chronic in vivo Th2-type setting. 

Since proliferative suppression is a well-defined characteristic of NeM (Loke et a!, 

2000b) we decided to investigate whether the absence of MyD88 would affect this 

feature. As expected, EL-4 cell proliferation was suppressed when co-cultured with 

NeM4 in comparison to control ThioM4 (Figure 6 B). This was still true for NeM4 

generated in MyD88-deficient animals. Therefore, deficiency of signalling through 

TLRs did not have an effect on this NeM4 trait either. WT ThioM can also exhibit 

proliferative suppression, although this is not IL-4 dependent (unpublished data not 

shown). This suppressive activity was seen here (Figure 6 B) and, in contrast to NeM4 

mediated suppression, was MyD88-dependent. 
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Figure 6. There was no difference in the arginase activity or suppressive 
ability of recruited NeM4 (WT or MyD88-/- mice) after implantation with B. 
malayi worms. 19 days after implanting, PEC were recovered from mice on the 
C57BL/6 background and macrophages were purified by adherence and arginase 
enzyme activity calculated (A). Suppressive ability was measured by replacement 
of the medium and co-culture with EL-4 thymoma cells. After 48 hours, the EL-4 
cell proliferation was assessed by [3H] thymidine incorporation (B) In all cases 
thioglycollate (thio) was also injected i.p. for 3 days as a control. Significant 
differences were determined by the Mann-Whitney test * p<0.05. These results 
are representative of three experiments. 
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3.6 Absence of MyD88 does not affect numbers of microfilaria, or 

expression of the alternative activation markers Ymi or RELM-a, in the 

peritoneal fluid of implanted mice. 

We next wanted to address whether absence of MyD88 affected worm viability. A count 

of the first larval stage of a filarial worm, the microfilariae produced by the implanted 

female worms, can be an indication of worm viability (Rao & Well, 2002). After 19 

days of B. malayi infection, the peritoneal lavage fluid was extracted and the numbers of 

microfilaria were counted from both WT and MyD88-/- animals (Figure 7 A). No 

difference was detected between the two, suggesting that the absence of signalling 

through TLRs had neither a positive nor negative effect on worm survival and fecundity 

in this model of filarial nematode infection. 

Since the AAM markers Ym 1 and RELM-a are secreted proteins, western blots were 

carried out in order to detect these proteins in the peritoneal lavage fluid of implanted 

mice (Figure 7 B-C). Once again no detectable significant difference was found between 

the WT and MyD88-/- animals. If MyD88 was required for the alternative activation of 

macrophages we might expect less protein expression in the MyD88-/- mice, but on the 

contrary, there was a slight trend towards higher RELM-ct expressed by the MyD88-

deficient mice (Figure 7 B), consistent with the trend towards higher Th2 induction. 

RNA was also extracted from purified macrophages and Realtime RT-PCR carried out 

for Ym-1, RELM-a and Arginasel mRNA expression (Figure 8 A-C) to see whether 

these levels would correlate with YM- 1 and RELM-cx protein production (Figure 7) and 

arginase activity (Figure 6). Ym-1, RELM-a and Arginasel (Figure 8 A-C) mRNA levels 

correlated with what was measured for protein expression. In one experiment a large 

significant increase in RELM-a mRNA expression was measured in NeM4 in the 

absence of MyD88 (data not shown). However, this result did not repeat in subsequent 

experiments. 
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Figure 7. The absence of MyD88 had no effect on numbers of 
microfilaria, or the production of RELM-a or Ymi proteins by cells 
in the peritoneal cavity after B. malayi implant. At day 19 after B. 
malayi implant of mice on the C57BL/6 background, i.p. lavages were 
carried out and numbers of microfilaria present enumerated (A). Western 
blots were carried out using the lavage fluid for RELM-a (B) and YM- 1 
(C). These results are representative of three experiments. 
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mRNA expression by purified macrophages from the peritoneal cavity after 
B. malayi implant. At day 19 after B. malayi implant of mice on the C57BL/6 
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RNA extraction and realtime RT-PCR was carried out for Ymi (A), RELM-a (B) 

and Arginasel (C). mRNA expression is shown as a % of a positive control 
sample and was normalised to 13-actin. These results are representative of three 
experiments. 
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Despite a subtle enhancement in some aspects of the AAM4 phenotype, taken together 

these results indicate that an absence of MyD88 does not have a marked effect on the 

numbers or types of cells recruited to the peritoneal cavity due to the presence of a 

helminth infection. 

4. Discussion 

These results indicate that macrophages from a chronic in vivo Th2-type setting do not 

require signaling through TLRs for the induction of the alternative activation of 

macrophages. We found no impairment in the Th2 response in the absence of MyD88 in 

B. malayi implanted mice compared to WT when spleen cells were treated with antigen 

from this nematode (BMA; Figure 2), and even found a trend towards augmentation of 

the Th2 respOnse, although this was not statistically significant. Previous studies using 

MyD88-deficient mice showed evidence of significantly enhanced Th2 responses 

(Eisenbarth et al, 2002; Muraille et al, 2003). This is in agreement with work carried out 

with the gastrointestinal nematode Trichuris muris (Helmby & Grencis, 2003). 

Resistance to this parasite requires a Th2 response, which is impaired in susceptible 

strains. MyD88-/- animals are highly resistant to chronic infection with this parasite and 

display enhanced Th2 responses relative to wild type counterparts, as measured by IL-4 

and 13 production from mesenteric lymph node cells stimulated in vitro with T. muris 

antigen (Helmby & Grencis, 2003). This augmentation of type 2 cytokines is far greater 

than the trend we observed in this study. T. muris worms burrow within cecal epithelial 

cells, exposing these cells to commensal bacteria. It is likely that this acts as a powerful 

stimulus of the Thi response, through MyD88-dependent pathways. Thus the Th2 

response to the nematode may normally be impaired due to an elevated Thi response 

(deSchoolmeester et al, 2006). In the absence of MyD88, the Th2 response would be 

unleashed and these animals able to expel the parasite. Therefore, the increase in Th2 

response in the MyD88-/- animals infected by T. muris over the WT is likely due to the 



fact that they cannot mount an effective Th 1 response against the bacteria to which they 

are exposed. This is supported by reports that in the absence of MyD88, signalling 

through TLR4 (by the MyD88-independent pathway) can confer the ability to support 

Th2 responses (Kaisho et al, 2002). 

Relative to T. muris, the B. malayi implant model is essentially sterile, with no 

expectation of a type 1 response due to commensal bacteria. Therefore, it follows 

logically that we did not see a significant increase in the Th2 response in the absence of 

MyD88. However, as previously mentioned, B. malayi contains endosymbiotic bacteria, 

which may be expected to influence the immune response. Even so, despite the strong in 

vitro evidence that Wolbachia ligands can signal through TLRs in a MyD88-dependent 

fashion (Hise et al, 2007), we saw little effect of MyD88 deficiency. Thus, in the context 

of live infection, the role of Wolbachia may not be as great as previously presumed. 

Although we found no significant differences in the magnitude of the immune response 

elicited between WT and MyD88-/- implanted mice, MyD88 deficiency may still have 

influenced the ability of macrophages to respond appropriately to signals in vivo. 

However, this didnot seem to be the case as similar numbers (Figure 3) and types of 

cells (Figure 4 and 5) were recruited to the peritoneal cavity in both stains. In terms of 

functionality of AAM, MyD88 deficiency had no effect on the ability of NeM4 to 

suppress the proliferation of co-cultured EL-4 cells (Figure 6 B). Also, levels of arginase 

activity were the same in WT and MyD88-/- NeM (Figure 6 A). Protein expression of 

YM-1 and RELM-ct in the peritoneal cavity were also unaffected by MyD88-defiicency 

(Figures 7 B & Q. mRNA expression of YM1 (Figure 8 A) and Arginase 1 (Figure 8 C) 

correlated exactly with protein expression (Figure 7 C, YM- 1 and Figure 6 A; arginase 

respectively). Not surprisingly, the absence of any change in effector cell function or 

numbers translated into no effect on Brugia worm viability, as we found similar 

numbers of microfilariae in the peritoneal cavity of both WT and MyD88-/- animals 

(Figure 7 A). One significant difference was identified in that we found that RELM-a 

mRNA expression was greatly increased in NeM in the absence of MyD88 (Figure 8 
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B). However, this did not translate into changes in protein levels, as we have already 

seen. 

Although, for the most part, MyD88 deficiency had a limited impact on parasite-

implanted mice, we did see some effects on the response to thioglycollate treatment. 

There was a trend towards an impairment in cell recruitment to the peritoneal cavity in 

thioglycollate treated MyD88-/- mice (Figure 2). There was also a decrease in arginase 

activity in MyD88-deficient ThioM (Figure 6 A) and also a decrease in the suppressive 

ability of these M compared to WT (Figure 6 B), as measured by an increase in 

proliferation of co-cultured EL-4 cells. These facts may be linked, since in chapter 2 we 

observed that arginase could contribute to the suppressive ability of NeM4 (Chapter 2, 

Figure 4 Q. However, this effect of arginase is likely to reflect only a small part of the 

story, given the relatively large difference in suppressive, ability of WT ThioM4, in 

relation to MyD88-/- ThioM (WT approx. 10 X more suppressive; Figure 6 B), 

compared to the differences in arginase enzyme activity (WT display approx. 2X more 

arginase activity than MyD88-/-; Figure 6 A). 

Although the in vivo work from this study implied that MyD88 is not required for an 

optimal Th2 response, and resulting AAM4, the in vitro work using BMM4 treated with 

IL-4 tells a somewhat different (but not contradictory) story about the importance of 

MyD88. In figure 1 A we saw an impairment in the arginase activity in MyD88-/-

BMM4 compared to that of WT animals, even in the absence of IL-4. WT BM1VI also 

produced arginase suggesting that some stimulus in the culture medium was contributing 

to arginase production by these macrophages. The complete absence of arginase activity 

in MyD88-/- untreated cells demonstrates that this media-induced activity is MyD88 

dependent. Consistent with this, treatment with LPS, which signals through TLR4, also 

increased arginase production (Figure 1 a: left), which is in agreement with published 

reports that LPS can induce production of arginase, and indeed, both isoforms of this 

enzyme (arginase 1 and 2) can be induced by LPS (Louis et a!, 1999). There was only a 
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slight trend towards a decrease in Arginase 1 mRNA expression in MyD88-/- BMM 

and thus the increased MyD88-dependent arginase activity seen in WT animals (Figure 

1 a) may have been due to arginase 2, as the enzyme assay does not distinguish between 

the two. In both WT and MyD88-/- macrophages IL-4 was able to increase the level of 

arginase. Similar levels of the other markers of alternative activation, RELM-a and Ym-

1, were produced in WT and MyD88-/- BMM in response to IL-4 providing further 

evidence that there was no deficiency in the ability to produce AAM4 in MyD88-/-

animals. This also illustrates the importance of looking at several M4 readings, as 

measuring arginase activity alone could give a skewed impression of what was actually 

happening. 

Another intriguing aspect of the in vitro studies using BMM was the fact that nitric 

oxide was only produced by MyD88-/- M4 when LPS and IFN-y were given together 

but not separately (Figure 1 B), whereas WT BM1v14 produced nitric oxide with LPS 

and IFN-y independently. One interpretation of why this might be is as follows: In the 

absence of MyD88 (Figure 9 right) LPS signals through TLR4 via the MyD88-

independent pathway (through interferon regulatory factor (IRF)-3), which causes the 

upregulation of IFN-13, but not iNOS. IFN-3 in turn causes the upregulation of the 

transcription factor IRF- 1 (Fujita et al, 1989). IRF- 1 expression coupled with the IFN-y 

in the media then leads to the production of NO. This is supported by previous reports 

showing that LPS-dependent augmentation of INOS mRNA expression by IFN-y is due 

to IRF-1 upregulation by LPS (Koide et a!, 2007). IFN-y cannot induce iNOS alone 

because there is a lack of IRF- 1 (or some other molecule involved in IFN-y signalling) in 

the absence of MyD88. 

This theory relies on the presupposition that there is, for example, no IRF- 1 present in 

the absence of MyD88, and that it is upregulated by LPS through the MyD88-

independent pathway. When MyD88 is intact (Figure 9 left), LPS induces iNOS in a 

MyD88-dependent manner. IFN-y causes the upregulation of iNOS through IRF- 1, 
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Figure 9. Possible scenario to explain need for LPSIIFN-y together for the 
induction of NO in the absence of MyD88. When MyD88 is intact, LPS 
signaling through TLR4 causes the upregulation of iNOS and also IRF-1. 
IFN-y signaling through it's receptor produces NO if IRF- 1 is already present. 
In the absence of MyD88, LPS cannot produce NO but can produce IRF-1 
through the MyD88-independent pathway. IFN-y alone cannot produce NO 
due to a lack of IRF- 1. However, when LPS and IFN-y are together IRF- 1 is 
present and therefore IFN-y treatment can now lead to the upregulation of 
iNOS. 
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which is present since MyD88 is intact. Treating the macrophages with both LPS/IFN-y 

together causes a synergistic increase in iNOS, due to increased IRF-1 expression by 

LPS (IRF- 1 must be produced by LPS whether MyD88 is there or not). 

In summary, these results in this chapter have shown that MyD88 was not required for 

the alternative activation of macrophages either in vitro or in vivo. Further, the Th2 

response was fully intact in MyD88-/- mice implanted with the filarial nematode B. 

malayi. 
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CHAPTER 7 

General Discussion 

Macrophages display a wide range of phenotypes, which are dependent on the signals 

they have encountered during migration to sites of infection. Macrophages have been 

usefully classified as classically or alternatively activated depending on their exposure to 

Thi- or Th2-type stimuli respectively (Gordon, 2003). However, the range of 

macrophage phenotypes is likely to be much broader. It may be an economical strategy 

for macrophages to display plasticity of function, since they are long-lived and may need 

to adapt their function to different pathogens or environments faced during their 

lifespan. Investigating macrophage plasticity in vivo could have important implications 

for therapeutic targeting of macrophages in chronic diseases but also for our general 

understanding of how the immune system copes with multiple infections that may 

require differing immune responses. The main aim of this PhD was firstly to establish 

the level of functional plasticity in NeM when treated with Th- 1 type stimuli, such as 

LPSIIFN-y, and then to elucidate how these AAM behaved when infected with Thi-

inducing intracellular parasites. We then wished to investigate the possible in vivo 

relevance of this through a co-infection experiment involving a Th2-inducing helminth 

infection (N. brasiliensis) coupled with the Th- 1 inducing protozoan malaria parasite P. 

chabaudi. Finally, it was decided to use animals deficient in the ability to respond to 

type-i signals. This work, using MyD88-deficicent mice, would address whether there 

was a requirement for this adapter molecule, important in TLR signalling, in the 

alternative activation of macrophages. 
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1. NeM4 are not terminally differentiated but can respond to Th-

1 type stimuli 

In chapter 2 of this thesis it was found that, despite the long-term exposure to Th2 

cytokines and anti-inflammatory signals in vivo, NeM4 were not terminally 

differentiated but could switch from alternative activation to a more classically activated 

phenotype in response to LPS/IFN-?. This was reflected in the ability of NeM, from the 

B. malayi implant model, to rapidly swap L-arginine metabolism from the arginase 

enzymatic pathway to iNOS activity. This phenotype change was further demonstrated 

by the downregulation of messenger RNA for two AAM markers, Ymi and RELM-a, 

in NeM4 treated with LPS/IFN-y. However, protein expression remained elevated, 

suggesting that regulation occurs more rapidly at a transcriptional level. This could also 

mean that NeM can retain aspects of their AAM4 phenotype, while directing their 

transcriptional machinery to other priorities. These data imply that NeM can redirect 

their phenotype to allow resources to be devoted to antimicrobial factors, such as NO, 

and also pro-inflammatory cytokines, such as TNF-ct and IL-6, which also increased 

upon treatment with the type-i stimuli LPS/IFN-y (chapter 2). 

LPS/IFN-y treatment also led to an increase in MIHC II and the co-stimulatory molecule 

CD86 in NeM4, suggesting that they would have enhanced APC function. However, the 

phenotypic switch from AAM to CAM4 was not complete. LPS/IFN-y treated NeM 

retained their anti-proliferative capacity and failed to upregulate IL- l2p4O and so would 

be unable to promote Th 1 or sustain Th 17 cell development. This implies that NeM 

may have undergone epigenetic changes in vivo, which prevent them from producing IL-

12. This possibly reflects work from Foster and colleagues who have shown that 

continuing exposure to toll-like stimulus (such as LPS) can lead to gene-specific 

modifications of chromatin, causing the priming of antimicrobial effectors while 

silencing pro-inflammatory mediators (Foster et al, 2007). It would be of interest to 

investigate whether NeM4 have indeed undergone specific epigenetic modification at 
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the promoters for the IL- 12 genes, by using chromatin immunoprecipitation (ChIP) 

assays, as Foster et al. have done for other pro-inflammatory cytokines, such as IL-6. A 

lot of progress has been made in recent years in understanding the epigenetic control of 

gene expression of helper I cell differentiation (Reiner, 2001), as opposed to 

macrophages, where relatively little is known apart from the work mentioned above 

(Foster et a!, 2007). Further investigation of factors affecting chromatin remodelling, or 

other epigenetic changes, in macrophages will be essential to fully understand 

macrophages development and plasticity. 

This thesis has also added to our understanding of proliferative suppression by 

macrophages. We recently provided evidence that TGF-13 may be involved to some 

degree (Taylor et a!, 2006) and our ability to detect production of this cytokine by NeM 

is consistent with this (Chapter 2, Figure 6). We have now seen that arginase contributes 

to this suppression since inhibition with nor-NOHA caused a partial reversal of this 

phenotype (Chapter 2, Figure 4 Q. However, we also found that both arginase (Chapter 

2, Figure 1 A+C) and TGF-13 (Chapter 2, Figure 6) production were partially reversed 

upon treatment with LPS/IFN-y and yet NeM retained full suppressive abilities (Figure 

4 A), suggesting that these are not the main players in NeM4-mediated suppression. In 

addition to this, we found that PD-Li and 2, members of the B7 family implicated in the 

proliferative suppression observed by macrophages during infection with the 

platyhelminths, T crassiceps and S. mansoni (Smith et al, 2004; Terrazas et a!, 2005) 

are probably not responsible for the suppression we observe during infection with B. 

malayi (Chapter 2 and Appendix 2). We also found that, despite previous studies 

reporting PD-L2 as a marker for in vitro AAM (Loke & Allison, 2003), NeM did not 

express PD-L2 (Appendix 2 B). 
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2. Infection of NeM4 with intracellular pathogens 

Given that AAMO generated in vivo could switch to a more CAMO phenotype in 

response to Thi activating signals LPS/IFN-y, we decided to investigate whether this 

would translate into an ability to control the intracellular parasites L. mexicana and M. 

bovis BCG. We found that treated NeM4 could effectively control L. mexicana 

promastigotes, and that they did so through LPS/IFN-?-induced NO production, as 

shown through use of the NO inhibitor L-NMTVIA (chapter 3). We were able to visualise 

parasite infection using a strain of L. mexicana promastigotes that display red 

fluorescence. Simultaneous expression of Ym-1 fluorescent staining with red parasites 

demonstrated that AAM4 do not display a full switch in phenotype, despite gaining the 

ability to control Leishmania parasites. NeMo were also shown to produce the 

complement product C3, expression of which increased upon LPS/IFN-y treatment. The 

pattern of C3 expression correlated with uptake of these parasites and this adds evidence 

that complement produced may be contributing to Leishmania entrance. 

As with Leishmania infection, Th2 responses are thought to promote disease during 

mycobacterial infection (Cooper & Flynn, 1995; Erb et a!, 2002). In order to investigate 

how NeM4 cope with another type-i pathogen, we infected them with M. bovis BCG 

(chapter 4). NeM were able to control infection with BCG at a low dose with or 

without IFN-y treatment (and subsequent NO production). It would be possible to test 

whether reactive oxygen intermediates (ROIs) were involved in the NeM control of 

BCG by treating them with superoxide dismutase, which disrupts ROl production. IFN-y 

treated ThioM were more effective at controlling BCG than untreated cells. Unlike 

NeM, this killing was dependent on NO, as L-NMIvIA treated IFN-'y-treated ThioM 

could no longer to control BCG. 

Macrophages undergoing apoptosis can kill intracellular mycobacteria, while those 

dying by necrosis do not and it has been found that macrophage apoptosis is an 
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important mechanism to clear the parasite during tuberculosis infection (Fairbairn, 

2004). Indeed, at high doses of BCG infection, NeM4 were dying by apoptosis, whereas 

ThioM4 were not. This was independent of IL-4, as IL-44- NeM still underwent 

apoptosis at high infection dose. 

High IL-6 production may be involved in favouring apoptosis in NeM4, since they were 

producing much higher levels of this cytokine than ThioM, but this is unlikely to be the 

whole story. It would be interesting to investigate why the combination of NeM4 with 

high dose of infection with BCG uniquely led to apoptosis. M4 do not readily undergo 

apoptosis and thus detennining these factors would be of interest. This might be tested 

by treating ThioM with various cytokines (with or without BCG infection) and then 

carrying out TUNEL staining to see if any cytokines induced apoptosis along with 

infection. 

Chapters 3 and 4, taken together, indicate that NeM retain the ability to switch to an 

anti-microbial phenotype, either by LPS/IFN-y induction of NO against Leishmania 

parasites, or other mechanisms against mycobcateria including apoptosis-mediated 

killing. These abilities could confer the ability in AAM to effectively deal with a 

potentially life-threatening type-i infection until a more specialised cell could be 

recruited. To take these types of studies forward, it would be necessary to investigate 

NeM response to type-i pathogens in an in vivo setting. To carry this out, we could 

expose mice, already implanted with B. malayi, to type-i pathogens that can establish 

i.p. infections, such as Samonellae spp. We could establish whether AAM4 in a real 

type-2 setting could control a type-i pathogen, and perhaps measure the different levels 

of exposure to these differing infections the NeM4 could tolerate. This type of study 

would also finally allow us to test the hypothesis that NeM could potentially control 

infection with an intracellular pathogen until such time that a more suitable phenotype of 

M4, and other leukocytes, could be recruited to the site of infection. To investigate this, 
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the influx of macrophages and other cells types, plus their activation status, could be 

measured over time of co-infection. 

3. AAM4 markers from an in vivo co-infection setting 

There are definite limitations to the conclusions one can make from these in vitro 

infections of macrophages with L. mexicana and BCG. As mentioned above, in vivo 

studies would have to be carried out to question the validity of our finding that NeM 

can control these pathogens. An ecological/evolutionary analysis of co-infection with 

type-i versus type-2 parasites had been planned (by Andrea Graham's group, in 

collaboration with our lab) and we took this opportunity to study in vivo interactions 

using two well-established laboratory models. This involved the co-infection with the 

Thi-inducing malaria parasite P. chabaudi and the Th2-inducing helminth N. 

bras iliensis. A drawback for this PhD project was that this study could not address the 

question of how NeM handle intracellular pathogens directly. Nonetheless, malaria 

does require the classical activation of macrophages for its control (Li et al, 2001) so the 

fundamental questions regarding macrophage activation status in a situation where type 

1 and type-2 immunity co-exist could be asked. 

The effect of co-infection on markers of alternative activation in the lungs of mice was 

principally investigated in chapter 5. It was found that concurrent infection with malaria 

parasites could modulate the Th2 response to the helminth. By day 7 post-infection (a 

timepoint when the Th2 lymphocyte response against the helminth would be coming 

into play) singly infected N. brasiliensis-infected mice expressed higher levels of Ym 1 

and RELM-a than co-infected animals. This was reflected by the cytokine production in 

the draining lymph nodes, in which singly- N. brasiliensis infected mice produced more 

IL-4. IL-5. IL-13 and IL-lO than those co-infected with malaria. This trend was reversed 

by 20 days post infection, where there was higher expression of Ymi and RELM-a in 
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co-infected than in Nippostrongylus-only lungs, although mRNA and protein levels had 

diminished substantially. The reason for these patterns could be that malaria infection 

caused the Th2 response to the helminth to be delayed. Another possibility could be that 

the Th2 response is induced at the same time in the co-infected animals, but to a lesser 

extent, and persists longer in the co-infected animals. These two hypotheses could be 

tested by carrying out a timecourse experiment of Ymi and RELM-a expression in 

singly- and co-infected lungs and measuring the Th2 cytokines more frequently (e.g. 

every day for the first 7 days and then every second day thereafter) for the length of the 

experiment, i.e. 20 days. 

The importance of co-infection studies is evident when one considers that 740 million 

people are thought to be affected by hookworm infections, such as Neactor americanus, 

in the tropics where malaria is also endemic (WHO). It is now known that damage to 

the lung of mice previously infected with N. brasiliensis is evident even at very late time 

points after infection (>300 days) and this ongoing tissue damage is associated with the 

presence of AAM4. Marsland et al. postulate that these macrophages are either part of 

the host tissue response or may be perpetuating continuing disease (Marsland et al, 

2008). We do not yet know how the Th2 response or AAM contribute to healing of 

lung tissue, or indeed on-going lung disease in the case of Nippostrongylus infection. 

Nonetheless, our data (Chapter 5) suggest that co-infection with malaria, with a lowered 

Th2 response, could affect the repair process in the lung and, depending on the role of 

the AAM4 in this setting, concurrent malaria infection along with this helminth could 

have detrimental or advantageous consequences. This knowledge could have important 

implications when considering treatment of people with these types of concurrent 

infections. When the role of AAM4 in lung damage/repair is discovered, they could be 

used as potential therapeutic targets (for induction or destruction). 

Although the focus of this thesis has been on macrophages, it is important to consider 

that many of the findings may apply to other cells that respond to the Th2 cytokines IL-4 

or IL- 13. This is emphasised in chapter 5 as, in the malaria-Nippostronglyus co- 
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infection, we found that the markers associated with the alternative activation of 

macrophages Ym- 1 and RELM-a were found by another cell type, namely the bronchial 

epithelial cells of the lungs (chapter 5, materials and methods, Figure 5 Q. Studies from 

this, and other labs, have also suggested that Ym-1 may also be expressed by neutrophils 

and eosinophils, and RELM-a also by eosinophils (Harbord et al, 2002; Loke et al, 

2007; Voehringer et al, 2004). This suggests that other cell types can become 

"alternatively activated" perhaps as part of an innate response to injury (Loke et al, 

2007), and so may have importance during wound healing. 

Another interesting finding from this experiment was that the malaria parasitemia was 

lower in the animals co-infected with the helminth and malaria, than those infected with 

malaria alone. One reason proposed for this is that the transient anaemia early on caused 

by N. brasiliensis migration through the lungs is leaving fewer red blood cells (RBC) to 

be inhabited by malaria merozoites. To test this, co-infected animals could be treated 

with erythropoiten, which stimulates RBC formation in the bone marrow, at the time 

when this transient anaemia would usually be occurring. If a lack of RBC were causing 

this lowered parasitemia in co-infected, then erythropoietin treatment would cause co-

infected mice to have parasitemia levels as high as singly malaria-infected. Another 

reason for this lower parasitemia could be enhanced TNF-a in co-infected animals 

resulting in enhanced malaria parasite killing (discussed in chapter 5). 

Different organisms occurring in the same host usually influence one another directly or 

indirectly (Cox, 2001). This may be especially apparent with helminths and microbial 

parasites since Thi responses, that clear intracellular pathogens, and Th2 induced by 

helminths, inhibit one another. Anti-malaria vaccines are supposed to ideally evoke an 

efficient Th 1 response and induce specific antibodies against malaria pathogens. It is 

possible that concurrent helminth infection would interfere with the induction, or 

modulate, a Th 1 response to a potential vaccine candidate. Therefore, studying co-

infection between malaria and helminths is important when thinking about the design of 

possible vaccine strategies. Here we discovered that concurrent infection with malaria 
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and N. brasiliensis did not have a negative effect on the Th 1 response necessary to clear 

the merozoites and actually reduced the parasitemia in co-infected animals when 

compared to animals infected with malaria alone. Factors like this could have 

implications when considering deworming strategies in malaria-endemic regions. 

4. NeM4 do not require signalling through toll-like receptors to 

achieve an alternatively activated phenotype 

One of the aims of this thesis was to understand the development of AAM4 in the 

context of type-1 and Type-2 immunity. As part of this, we investigated the role of 

MyD88, the important adaptor protein in TLR signalling, in the in vivo induction of 

alternatively activated macrophages from the B. malayi implant model. This was 

undertaken to ask whether certain type 1 signals mediated via MyD88 contribute 

normally to AAM development. We found no impairment of the Th2 response or the 

NeM phenotype in MyD88-/- relative to WT animals. Both groups produced similar 

levels of arginase, Ymi, RELM-a and also had an equally suppressive phenotype, when 

co-cultured with EL-4 cells. This lack of any difference was perhaps surprising 

considering published data indicating that a lack of MyD88 should enhance Th2 

response to helminth parasites (Helmby & Grencis, 2003). This difference likely lies 

with the different habitats of these parasites. Whereas the B. malayi implant model is 

essentially sterile, with no expectation of a type 1 response, infection with T. muris in 

the gut is associated with burrowing into cecal epithelial cells and exposure to 

commensal bacteria and associated LPS (Heimby & Grencis, 2003). 

For future experiments it would be interesting to investigate how NeM4 lacking MyD88 

would respond to type-i stimuli, such as LPS. If MyD88-/- NeM4 were found to 

respond to LPS (e.g. by upregulating iNOS production) antagonistic antibodies for 

TLR4, through which our E. coli- derived LPS signals, could be used to test whether this 
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was signalling was mediated through the MyD8 8 -independent pathway. As we saw in 

chapter 6, naïve BM1v14 only produced nitric oxide when treated with LPSIIFN-y 

together, but not separately. It would be interesting to investigate whether NeM4, unlike 

B1V11v14, could respond to IFN-y in the absence of MyD88 (through potential signals 

encountered in vivo). Most importantly, we could ask whether the ability of these in 

vivo-derived AAMO to switch to a more CAM4 phenotype, in response to LPS and IFN-

? is MyD88 dependent and how a deficiency in TLR signalling would translate into the 

ability of NeM to control intracellular pathogens, such as L. mexicana. 

5. Conclusions 

This PhD has contributed to the knowledge of macrophage biology, through the 

illustration that the macrophage phenotype may be more flexible than previously 

realised. More specifically it has added to the understanding of macrophages from a Th2 

environment associated with helminth infection, and has shown that AAM4 can be 

induced to become anti-microbial, which may turn out to have importance when 

targeting macrophages in disease therapeutics. The work also contributed to the 

understanding of macrophage-mediated suppression and has shown that TLR-signalling 

does not contribute to the AAM phenotype. 
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Appendix 1. Various realtime RT-PCR results of I'm-i and RELM-a RNA 
expression on macrophages treated with LPS and IFN-y together or separately. 
Thioglycollate-elicited M4, bone marrow-derived macrophages (BMM4) or NeM 
from C57BL/6 mice were left untreated or treated overnight with IL-4 or LPS 
together or separately with IFN-y as indicated. The cells were recovered for RNA 
expression analysis of Ymi and RELM-a. 
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Appendix 2. Effect of LPS/IFN-y on the cell surface activation markers in 
naïve macrophages and NeM4. Untreated ThioM, IL-4 treated ThioM (tinted) 
or NeM were left untreated (bold line) or treated overnight with LPS/IFN-'y 
(dotted line). The cells were recovered and double-stained for F4/80 and MHC 
Class II, 137. 1, B7.2 (A) or PD-Li and PD-L2 (B) Flow cytometry graphs show 
histograms of F4/80-gated macrophages and dashed lines show the isotype control. 
Mean fluorescent intensity of histograms for untreated or treated (bold) are 
displayed. Experiment by Meera Nair. 
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APPENDIX 3 

Chapter 4— work of Dr. Ian Faribairn 

Materials and Methods 

Cells and bacteria 

M bovis BCG Danish Strain 1331 was obtained from Statens Serum Institut and 

maintained in log phase growth in 7H9 broth supplemented with 10% albumin dextrose 

catalase (ADC) enrichment medium and 0.2% Tween 80. Prior to infection BCG were 

passed through a 26 gauge needle and underwent water bath sonication for 60 seconds to 

reduce clumping. 

BCG viability assay 

Macrophages were plated in 96-well flat-bottom microtitre plates at a density of 5x 1 0 

cells per well. Either 5x104  (MOl 1:1) or 5x105  (MOl 10:1) per well were added. To aid 

infection plates were centrifuged at 700g for 5 minutes and incubated at 37 °C for 2 

hours. Excess BCG were removed by washing. As assessed by CFU, —10% of BCG 

were taken up, giving ratios of 0.1 and 1 viable BCG per macrophage. Where indicated 

IFNy (Sigma) (lOOuJml) and NGMonomethylL arginine  monoacetate (L-NMIMA) 

(Sigma) (400tM) were added immediately following infection. Following incubation at 

370C with 5%CO2 for the indicated number of days, 1 50tl supernatant was removed 

from each well and replaced with ice cold 0.1% Triton-100. Cell lysis was promoted 10 

minute incubation on ice followed by vigorous pipetting. 50i.tl aliquots from each well 
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were serially diluted in 7H9 supplemented with 10%ADC enrichment and 0.2% 

glycerol, and plated in 96-well flat-bottom microtitre plates. The plates were then 

incubated at 37 °C for 12 days. Microcolonies were counted at lOOx magnification. All 

experiments were performed in quadruplets. 

Tunel staining (Boehringer Mannheim) 

5x105  macrophages were plated on 13mm glass coverslips in 24-well plates, infected 

with BCG as described above and incubated for 16 hours. Macrophages were then fixed, 

permeabilised and stained as per manufacturer's instructions. 
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Appendix 4 

Chapter 6 -infection of mice 

Materials and Methods 

Hosts, parasites and experimental infection 

Age- and sex-matched female BALB/c mice were used in all experiments. All mice 

were purchased from Harlan UK and housed in filter top or individually ventilated cages 

(IVC), maintained in a 12h: 12h light- dark cycle. The mice were fed 41B maintenance 

diet and water ad libitum (Harlan UK). Plasmodium chabaudi chabaudi clone AS was 

originally isolated from thicket rats (Thamnomys rutilans) and was cloned by serial 

dilution and passage. Parasites, from frozen blood stabilates, were passaged twice 

through donor mice prior to experimental infection. Nippostrongylus brasiliensis worms 

were maintained by Yvonne Harcus by serial passage through Sprague-Dawley rats. L3 

larvae were obtained by culturing the faeces of infected rats at 26 °C for a minimum of 5 

days. Infection was initiated by subcutaneous (s.c) injection of 200 infective (L3) larvae. 

Co-infection with N. brasiliensis and P. c.cha baudi: 

8-10 week old BALB/c mice were divided into 4 treatment groups: Uninfected, infected 

with malaria only, infected with N. brasiliensis only and co-infected. For the helminth 

infected groups 200 N. brasiliensis L3 larvae were injected s.c on Day 0. An i.p injection 

of lx 105  P.c.chabaudi parasitised red blood cells (pRBC) was also given on Day 0 to 
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mice scheduled for malaria infection. Mice were sacrificed on Day 20 post-infection 

under terminal anaesthesia. Whole blood was collected from the brachial artery and was 

separated using Sera Sieve (Hughes & Hughes Ltd). Mice were monitored daily for 

body weight and red blood cell density was measured on a Beckman Coulter Counter by 

diluting 2tl tail blood into 80m1 Isoton solution (Beckman Coulter). Asexual malaria 

parasites were monitored daily throughout the infection, from day 2 to day 20 post 

infection (p.i) inclusive. Thin blood smears were taken with tail blood fixed in methanol 

and stained with 20% Giemsa and parasites were counted using x1000 microscopy. The 

number of parasites in 500 red blood cells (RBC) was counted per smear and the 

percentage calculated to give a measure of parasitemia. 

In vitro lymph node cultures 

The thoracic lymph nodes were removed and single cell suspensions prepared. These 

were cultured in 96-well round bottom plates at 106  cells per well containing either 

1 p.g/ml Concanavalin A (ConA) or medium alone (complete RPMI) at 3 7 °C. After 72h 

of culture, supernatants were removed for cytokine assay. 

Cytokine Assay 

The amount of cytokines (IL-5, IL-4, IL-13, IFN' and IL-b) in the culture supernatants 

was measured using BD Cytometric Bead Array Flex sets by Simmi Mahajan (as in 

Chapter 6 material and methods). 
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Appendix 5 Anaemia, body weight and malaria parasitemia day 0-
20. Mice were monitored daily for red blood cell density (a), body 
weight (b) and asexual malaria parasites (c) by Karen Grocock and 
Andrea Graham. Results are representative of three experiments. 
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Appendix 6. Day 7 cytokine production. Thoracic lymph nodes (TLN) were 
removed and single cell preparations cultured for three days +1- ConA (1 g/ml) 
Cytokine measurements were taken using the BD Cytometric Bead Array Flex 
sets by Simmi Mahajan. Results are representative of three experiments. 
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