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Abstract 

In the natural environment, filamentous fungi respond to a range of mechanical stimuli 

(e.g. physical surfaces, obstacles, microtopographical features, compression and shaking) 

and osmotic stresses which elicit various growth and developmental responses. There is a 

growing body of evidence that the responses of filamentous fungi to both mechanical and 

osmotic stimuli involve Ca 2  signalling. 

The aims of this research were to analyze the Ca 2  and physiological responses to 

mechanical perturbation and hypo-osmotic shock in Neurospora crassa. Cytosolic free 

Ca2  concentration ([Ca2])  was measured by expression of codon optimized aequorin in 

wild type and deletion mutants in which genes encoding different components of the Ca 2  

signalling machinery had been deleted. 

The [Ca2 ] responses of germ tubes, vegetative hyphae and conidia were characterized. 

Ca2  signatures produced in response to mechanical perturbation or hypo-osmotic shock 

were analysed to identify which components of the Ca 2  signalling machinery were 

responsible for generating these signatures. The involvement of multiple proteins in the 

[Ca2 ] responses to mechanical perturbation and hypo-osmotic shock of germ tubes was 

identified. The Ca 2+  signature and germ tube swelling produced in response to 

xi 



mechanical perturbation were both dependent on the influx of external Ca 2  and the 

MIDI mechanosensory protein. 

The plant antifungal proteins (defensins), MsDefl, RsAFP2, MtDef2, and MtDef4, were 

all found to have distinct, stimulus-specific effects on the [Ca 2+]responses to mechanical 

perturbation and hypo-osmotic shock. The mycovirus antifungal protein KP4 exhibited 

no inhibitory effect on the [Ca 2 ] response to either stimulus. This analysis provided the 

basis for the development of a high throughput assay for the discovery of antifungal 

compounds that target Ca2  signalling and homeostasis. 
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Chapter 1 

Introduction 

In the natural environment organisms are subjected to a wide range of changing 

conditions and stimuli. To survive and grow successfully they must adapt and respond to 

these changes in their surroundings. Sensing of and responding to stimuli are mediated by 

signal transduction cascades. All signal transduction cascades are composed of several 

key elements. A stimulus is perceived by a receptor which then acts to alter the activity of 

one or more enzymes responsible for coordination of the response to the stimulus. The 

activation of a target enzyme by the receptor may occur directly, if they are in close 

proximity, or commonly the receptors alter the concentration of one or more second 

messengers. Second messenger molecules then diffuse across the cell to activate target 

enzymes. The signal transduction cascade must be tightly regulated to prevent unwanted 

or prolonged activation leading to unnecessary expenditure of resources. 
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Ca 2+  ions have been identified to act as a second messenger in a huge range of different 

organisms from bacteria to higher eukaryotes (Berridge etal., 2000; Michiels etal., 2002; 

Sanders et al., 2002; Berridge et al., 2003; Dominguez, 2004). In mammalian cells Ca 2  

is believed to be the most important intracellular messenger discovered so far based on its 

involvement in, and regulation of almost all known cellular functions and reactions (Brini 

and Carafoli, 2000; Dominguez, 2004; Petersen et al., 2005). In plants, Ca2  responses 

are involved in a wide range of environmental, developmental and growth stimuli in a 

broad range of tissues and cell types (Sanders et al., 2002; Scrase-Field and Knight, 2003; 

Ng and McAinsh, 2003). 

The reasons for calcium acting as a second messenger in so many systems are related to 

its cellular toxicity. Ca2  ions bind to orthophosphate forming an insoluble product 

reducing the availability of orthophosphate for cellular energy metabolism (Sanders et al., 

1999). In the early stages of evolution organisms living in seawater would have been 
2+ required to develop mechanisms to maintain free cytosolic Ca 2+  concentration ([Ca 2+]  c) at 

a level far below the millimolar concentrations of their surroundings (Sanders et al., 

1999). This strict regulation of concentration is a key requirement for any second 

messenger. Generation and maintenance of a large concentration gradient facilitates rapid 

increases in [Ca2 ], another key feature for a second messenger (Sanders et al., 1999; 

Brini et al., 2000). The second messenger potential of Ca 2+  ions is further increased by 

the capacity of Ca2  to be coordinated to multiple ligands, namely 6 - 8 negatively 

charged or uncharged oxygen atoms. This enables Ca 2  ions to cross link different 

segments of a protein and induce large conformational changes (Stryer, 1997). The 

benefits of Ca2  ions compared to a potential competitor, such as Mg 2 , are further 

enhanced by their affinity for oxygen which facilitates highly specific binding. Ca 2  ions 

can form large asymmetric complexes whereas Mg 2+  ions demand perfectly octahedral 

cavities not found in proteins (Brini et al., 2000). These properties make Ca 2  ions well 

suited for binding irregularly shaped crevices in proteins and allow it to be selected over 

Mg 2+  even when Mg 2+  is in far greater abundance (Stryer, 1997). 
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1.1 An overview of calcium signalling 

1.1.1 The calcium transient 

The basic unit of calcium signalling is a temporary increase in the [Ca 24i, known as a 

calcium transient. Calcium transients are composed of two main phases: a period of 

[Caa2 ] increase, where influx of Ca2  into the cytoplasm predominates, and a second 

phase in which the removal of free Ca 2  from the cytoplasm exceeds the level of Ca 2+ 
 

influx. Ca2  ions enter the cytoplasm primarily through Ca 2+  permeable channels (CPCs) 

resulting in elevated [Ca 2+  ]. Increased [Ca2+  ] activates Ca2+ 2+ pumps, Ca exchangers, 

Ca 2+  binding proteins and this, combined with cytoplasmic buffering, returns [Ca 2+] c  to 

the resting level (Berridge et al., 2000; Sanders et al., 2002; Berridge et al., 2003). The 

shape, or signature, of the [Ca 2 ] transient is defined by the activities of all factors 

involved in the response to a specific stimulus. The [Ca 21 ] transient may activate a broad 

range of enzymes either directly, or indirectly via binding of Ca 2  ions to calmodulin 

(CaM) leading to regulation of a wide range of physiological processes (Berridge et al., 

2000; Sanders etal., 2002; Berridge etal., 2003). 

1.1.2 Induction of the Ca 2+  transient 

Influx of Ca2  ions into the cytoplasm may originate from either intracellular Ca 2  stores 

or from external sources of Ca 2 . Ca2  entry from the external environment is driven by 

the large electrochemical gradient across the plasma membrane and may occur via many 

different Ca2  selective channels in animals or non specific CPCs in plants (Sanders et 

al., 1999; Berridge et al., 2000; Sanders et al., 2002; Berridge et al., 2003; Hetherington 

and Brownlee, 2004). Plasma membrane Ca 2+  channels are activated by diverse stimuli 

including membrane depolarization, binding of hormones or intracellular messengers and 

mechanical stretching (Berridge etal., 2000; Berridge etal., 2003). 
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Mammalian intracellular Ca 2+  stores are contained within the endoplasmic or 

sarcoplasmic reticulum (ER/SR), the mitochondria and the Golgi (Berridge et al., 2000; 

Dolman and Tepikin, 2006). Release of Ca 2  from endoplasmic or sarcoplasmic reticulum 

is principally modulated by Ca 2  in the process of Ca2  induced Ca2  release (CICR) 

(Berridge et al., 2000). In CICR [Ca 2+]on either side of the ER/SR membrane may alter 

the sensitivity of different receptors. This sensitivity to activation by Ca 2  ions is further 

modulated by the binding of Ca 2+  mobilizing second messengers generated by activation 

of cell surface receptors. The inositol- 1 ,4,5-trisphosphate receptor (InsP 3R, activated by 

Jnositol- 1 ,4,5-trisphosphate (InsP 3)) and the ryanodine receptor families (RYR, activated 

by cyclic ADP ribose (cADPR)) are the most studied examples of these channels. Other 

second messengers acting on, currently unidentified, Ca 2+  channels are nicotinic acid 

dinucleotide phosphate (NAADP) and sphingosine-l-phosphate (SIP) (Berridge et al., 

2000). 

Intracellular Ca 2+  stores in plant cells include the ER, vacuoles, nucleus, the chioroplasts, 

and the mitochondria (Sanders et al., 1999; Sanders et al., 2002; Xiong et al., 2006). 

Vacuolar CPCs may be activated by InsP 3 , cADPR, membrane hyperpolarization and 

membrane depolarization. The Ca 2  activation of slowly activating vacuolar (SV) 

channels led to identification of CICR in plants (Sanders et al., 2002). Despite much 

functional evidence for InsP 3, cADPR and NAADP activated Ca 2+  channels no obvious 

homologues of the mammalian genes have been identified (Hetherington et al., 2004). 

1.1.3 Removal of Ca 2+  ions from the cytoplasm 

The second stage of a [Ca 2+] c  transient is the removal of Ca 2  ions from the cytoplasm. 

Ca2  ions entering the cytoplasm are rapidly bound to a large range of cytosolic Ca 2  

buffers such as parvalbumin, calbindin-D 28K  and cairetinin (Berridge et al., 2000; 

Berridge et al., 2003). Buffers bind Ca2  ions in the influx phase of a [CW +] c  transient and 

unload Ca 2+  ions during the efflux phase, and by doing so may shape the [Ca 2 ] transient 

(Sanders et al., 1999; Berridge et al., 2000; Berridge et al., 2003). These proteins are 
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important in generating the cytoplasmic Ca 2  buffering capacity which varies in activity 

between different cell types. The small proportion of Ca 2  ions that remain unbound 

increase [Ca 2 ] which activates 5 different pumping mechanisms that remove Ca 2+  from 

the cytoplasm of mammalian cells (Berridge et al., 2000; Berridge et al., 2003). These 

mechanisms include the plasma membrane Ca 2  ATPases (PMCA), ER / SR reticulum 

Ca2  ATPases (SERCA ATPases), Na/Ca 2  exchangers and Ca 2+  ATPases present in the 

Golgi membrane (Berridge et al., 2000; Dolman et al., 2006). The fifth mechanism of 
. Ca2+  removal m mammalian cells involves Ca 2+  uptake by mitochondria. Mitochondria 

accumulate very large amounts of Ca 2+  via Ca2  pumps. Buffers in the mitochondrial 

matrix then prevent large elevation in [Ca 2 ] mjt  (Berridge et al., 2000; Pozzan et al., 2000; 

Berridge et al., 2003). Once resting [Ca 2 ] is restored mitochondria unload the 

accumulated Ca 2+  by the action of a Na/Ca2  exchanger (Berridge et al., 2000). The 

diverse range of different Ca 2  pumps and exchangers is supplemented by different 

characteristics of activation by [Ca 2 ] (Berridge et al., 2003). Variations in different C2 

transporters and buffering give the potential for a huge range of different Ca 2+  uptake 

systems. 

Ca2  removal in plants is similar to mammalian cells but involves different classes of 

proteins. A range of ATPases transport Ca 2  ions into the ER, the vacuole, mitochondria 

and chloroplasts, across the plasma membrane and a range of other endomembranes 

(Sanders et al., 1999; Xiong et al., 2006). Vacuoles are the most prominent Ca 2+  sink in 

plant cells due to their size and capacity for Ca 2  accumulation. Plant cells do not possess 

Na/Ca2  antiporters, but instead have a range of Ca 2 /H antiporters localized primarily 

to the vacuole (Sanders et al., 2002). Ca2  transporters have been less studied in plant 

cells than in animal cells. However there is growing evidence that their activity may be 

regulated (Sanders et al., 2002; Hetherington et al., 2004) and may influence signal 

transduction (Sanders et al., 1999). 

In addition to its role in the termination of [Ca 2 ] transients, sequestration of Ca 2+  into 

organellar Ca2  stores provides Ca2  for release in response to external stimuli (Sanders et 

al., 1999; Sanders et al., 2002). Ca 2+  is also required to support specific organellar 
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functions such as protein folding in the ER and the passage of proteins along the 

secretory pathway (Sanders et al., 1999; Sanders etal., 2002; Dolman etal., 2006). 

1.1.4 Mechanisms by which Ca 2+  affects a cell 

Elevated [Ca2+] c  increases binding of Ca 2  ions to numerous Ca 2+  sensor proteins such as 

troponin C and, most commonly, CaM (Sanders et al., 1999; Berridge et al., 2000). 

Conformational changes induced by Ca 2  binding activate effector proteins directly or via 

activation of Ca 2+  sensor proteins. Activation of downstream effectors can then influence 

a very diverse range of processes in both plant and animal cells (Berridge et al., 2000; 

Sanders et al., 2002; Petersen et al., 2005). 

Ca2  ions affect protein phosphorylation via Ca 2 /CaM dependent protein kinases 

(CAMKs) (Cruzalegui and Bading, 2000). In plants a unique family of Ca 2+  dependent 

protein kinases (CDPKs) have been identified which contain Ca 2+  binding CaM like 

regulatory domains (Sanders et al., 1999; Sanders et al., 2002). In both animal and plant 

cells Ca 2+  has been found to regulate the activity of protein phosphates such as the 

conserved protein phosphatase calcineurin (Sanders et al., 1999). Activated calcineurin 

can influence transcription via regulation of numerous Ca 2  activated transcription 

factors. Interaction with other protein phosphorylation cascades such as mitogen activated 

protein kinase (MAPK) cascades may lead to even more wide ranging effects of a [Ca 24 ] 

transient (Berridge et al., 2000; Cruzalegui et al., 2000). 

The potential influence of [Ca 2 ] transients on signal transduction is enhanced by 

widespread interactions with other signalling pathways (Berridge et al., 2000). Ca2  

activated adenylyl cyclase or cAMP phosphodiesterase may alter [cAMP]. cAMP levels 
. can then feed back to the Ca 2+  system by modulating the activities of Ca 2+  channels and 

pumps. Nitric oxide synthase is activated by the binding of C2. Increased levels of nitric 

oxide diffuse into local cells activating guanylyl cyclase to increase [cGMP]. cGMP may 

modulate activity of Ca24  channels and pumps (Berridge et al., 2000). 
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Phosphatidylinositol-3-OH kinase may influence [Ca 2 ] via modulation of InsP3 levels 

within a cell. In addition to feed back via cyclic nucleotide signalling, Ca 2  ions can alter 

production and catabolism of InsP 3  via phospholipase C (PLC) or Ins(1,4,5)P3 kinase 

(Berridge et aL, 2000). Self feedback of Ca 2  signalling also occurs by modulation of 

Ca 2+  pump and channel activity by Ca 2  binding (Berridge et al., 2000). Another 

important regulator of Ca 2  signalling is the cellular oxidation state which, either directly 

or indirectly modulates the activity of all the major components of the mammalian Ca 2  

signalling machinery (Davidson and Duchen, 2006). 

1.1.5 Ca2  waves and oscillations 

In mammalian cells the versatility of Ca 2  signalling is further enhanced by spatial and 

temporal variation in [Ca 2 ] (Berridge et al., 2000; Berridge, 2006). Ca2  transients may 

range from influx via a single channel to coordinated opening of clusters of Ca 2  

channels. These signalling events may function within highly localized regions of a cell 

or may become part of an intracellular Ca 2+  wave. When Ca2  channel receptors are 

sufficiently sensitive, the diffusion of Ca 2  from one cluster of activated channels may 

lead to activation of another cluster of channels. This self propagation can spread to 

additional clusters of Ca 2  channels, potentially leading to generation of a [Ca 2 ] wave. 

Where cells are connected by gap junctions, intracellular Ca 2  waves may spread to 

neighbouring cells leading to intercellular Ca 2  waves capable of coordinating the activity 

of many cells (Berridge et al., 2000). The unitary [Ca 2+]c signalling events characterized 

in detail in mammalian systems have recently begun to be revealed in plant Ca 2+  

signalling (Ng et al., 2003). A range of different elemental events that are capable of 

combining to form Ca 2  waves have been observed in plants that are similar to those in 

mammalian systems (Mahlo etal., 1998; Ng etal., 2003). 

Further diversity in [Ca 2+] c  signals may arise from repeated oscillations in [Ca 2+]C. 

Although individual [Ca 2 ] transients trigger many cellular responses, longer periods of 

signalling may involve multiple [Ca2+] c  transients. There is massive variation in the 
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frequency of these oscillations ranging from 1 - 60 seconds up to 24 hours. To decode 

signals encoded by multiple oscillations two proteins have been found to have particular 

importance, namely CAIvUGI and protein kinase C (PKC). Frequency encoding of Ca 
2+ 

signals has been identified in various processes including liver metabolism, smooth 

muscle contractility and differential gene transcription, particularly in developing systems 

(Berridge et al., 2000). The ability of cells to respond differently to specific oscillations 

has a key role in the specificity of Ca 2+  signalling. 

1.1.6 Specificity in Ca 2+  signalling and the Ca 2+  signature 

1.1.6.1 Localization of [Ca 2+  transients 

A fundamental question with regards to Ca 2+  signalling is how one signalling mechanism 

can generate a huge range of different responses. Spatial aspects of Ca 2 ' signalling have a 

significant role in the generation of specificity (Berridge, 2006). Ca 2+  ions entering the 

cytoplasm diffuse a small distance from the initial site of influx, thus restricting their 

influence within a cell (Berridge, 2006). If the presence of different Ca 2+  sensitive 

processes varies with subcellular location, localized Ca 2+  signals may only activate 

processes within the area of increased [Ca 2 ']. Ca2  signalling components can be 

organized into macromolecular complexes, known as Ca 2  microdomains, that are 

capable of functioning independently in mammals and possibly in plants too (Berridge et 

aL, 2003; Ng et al., 2003). Where Ca2  microdomains are multiplied or mixed with 

different Ca2 ' signalling units more diverse signalling systems may be created. [Ca 2 ] 

responses over larger scales can be coordinated by Ca 2+  waves (section 1. 1.5) which may 

spread throughout many cells or be highly localized to specific regions (Berridge et al., 

2003). 

In plant cells the specificity of Ca2  signalling is intimately linked to generation of 

specific patterns of Ca 2  elevation (Sanders et al., 2002; Ng et al., 2003). Separate 

cytosolic and distinct nuclear elevations of [Ca 2 ] may regulate different processes in 
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plants (Pauly et al., 2001; Sanders et al., 2002) and the multicellular alga Fucus (Sanders 

et al., 2002). The existence of distinct nuclear [Ca 2 ] elevations that are independent of 

changes in [Ca2 ] has received intensive study but is the source of much controversy 

(Bootman et al., 2000; Brini et al., 2000). Despite this, there is still a large body of 

evidence indicating differential Ca 2+  signalling in the nuclei of animal cells (Bootman et 

al., 2000). [Ca2+] c  waves have also been described in Fucus but not in other plant cells 

(Sanders et al., 2002). 

1.1.6.2 The [Ca 24 ] signature 

The spatial and temporal characteristics of stimulus specific Ca 2  transients are known as 

their Ca2  signatures (Scrase-Field et al., 2003). In the Ca 2+  signature hypothesis a 

particular Ca2+  signature will trigger a particular response while a different Ca 2+  signature 

will not trigger the same response. This hypothesis has become accepted within animal 

cell signalling however the existence of this mechanism within all plant cells has been 

strongly questioned. An alternative hypothesis was proposed in which [Ca 2+] c  acts as a 

switch where elevation of [Ca2+] c  past a threshold level initiates a downstream response 

(Scrase-Field et al., 2003). However, there is still strong support for the signature 

hypothesis in plant cells and the mechanisms of interpreting Ca 2+  signals await resolution 

(Sanders etal., 1999; Scrase-Field etal., 2003; Ng etal., 2003). 

1.1.6.3 Input from other signalling systems 

In cells where the calcium switch hypothesis functions, the overall outcome of a stimulus 

may be determined by the balance and interactions of Ca 2  signalling with other signal 

transduction pathways (Mahlo et al., 1998; Scrase-Field et al., 2003). This idea leads to 

specificity being defined by signalling cascades other than Ca2. 
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1.1.6.4 Differentiation of cell types 

Specificity may arise from the presence of the appropriate Ca 2  signalling machinery or 

specific downstream elements. Differentiation in particular, may give rise to cell types 

expressing different Ca 2  modulating, sensing or response elements for interpretation of a 

Ca2  signal (Berridge et al., 2000; Sanders et al., 2002; Berridge et al., 2003). There is a 

huge variety of different [Ca 2 ] modulating proteins with different characteristics, such 

as methods of activation, rates of transport and differential localization. Variation in the 

characteristics of individual proteins is further expanded by alternative splicing which 

leads to formation of different isomers with subtly different properties (Berridge et al., 

2003). Different proteins may lead to incredible degrees of variation in the properties of a 

[Ca 2+] c transient potentially facilitating differentiation of separate signals by 

interpretation of the [Ca2+] c  signature. Differential expression of other pathways in 

different cell types or locations within a cell may alter the nature and levels of these 

interactions (Sanders et al., 2002). 

The combined features and differences in the Ca 2  signalling machinery enable incredible 

versatility in the processes controlled by this mechanism and contribute to its ever 

growing significance in the cellular signalling of many organisms. 

1.2 Fungal Ca 2+  signalling 

1.2.1 Ca 2+  signalling in Saccharomyces cerevisiae 

Of all fungal species, the mechanisms of Ca 2  signalling have been studied in the greatest 

detail in Saccharomyces cerevisiae (budding yeast). In S. cerevisiae Ca2  signalling is 

involved in a wide range of important physiological responses Table 1.1. 
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Table 1.1. Responses involving Ca 2+  signalling in S. cerevisiae. 

Stimulus References 

Glucose re-addition to starved Nakajima-Shimada et al., 1991; Cunningham and 

cells Fink, 1996; Batiza et al., 1996; Coccetti et al., 1998; 

Tisi etal., 2002; Tokes-Fuzesi etal., 2002; 

Yoshimura et al., 2004; Kellermayer et al., 2004; 

Tropia et al., 2006 

Response to mating lida etal., 1994; Fischer et al., 1997; Paidhungat and 

pheromone Garrett, 1997; Locke etal., 2000; Muller etal., 2001; 

Muller et al., 2003 

Hypo-osmotic shock Batiza etal., 1996; Loukin etal., 2007 

Hyper-osmotic shock Matsumoto et al., 2002; Denis and Cyert, 2002; Zhou 

etal., 2003 

High external calcium Miseta et al., 1999a; 1999b; Forster and Kane, 2000 

Alkaline stress Serrano etal., 2002; Viladevall etal., 2004 

Antifungal treatment Edlind etal., 2002; Courchesne and Ozturk, 2003 

Cold shock Batiza et al., 1996; Peiter et al., 2005 

Iron toxicity Peiter et al., 2005 

Endoplasmic reticulum stress Cronin et al., 2002; Bonilla and Cunningham, 2003 

Salt tolerance Mendoza etal., 1996; Matheos etal., 1997; 

Stathopoulos and Cyert, 1997; Matsumoto etal., 

2002 

Salicylic acid Mori etal., 1998 

Much of the focus of the research into the Ca 2  signalling of budding yeast has centred on 

the proteins that may be responsible for generating the Ca 2+  transient summarized in 

Table 1.2. 
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Table 1.2 Calcium signalling proteins in S. cerevisiae 

Protein Class Protein name References 

Ca2  permeable channel Cchlp Fischer et al., 1997; Paidhungat et al., 

1997 

Midip Iidaetal., 1994 

Yvclp Palmer et al., 2001 

Ca 2+  ATPase Pmclp Cunningham and Fink, 1994 

Pmrlp Rudolph etal., 1989 

Ca2 /H exchanger Vcxlp Cunningham etal., 1996 

Calmodulin Cmdlp Davis etal., 1986 

Calcineurin A (catalytic Cnalp, Cna2p Cyert etal., 1991 

subunit) 

Calcineurin B (regulatory 

subunit) 

Calcineurin activated 

transcription factor 

Calcineurin binding protein 

CaM dependent protein 

kinase 

Calnexin 

Phospholipase C 

Cnb ip 	Kuno et al., 1991 

Crzlp / Tcnlp Matheos etal., 1997; Stathopoulos et 

al., 1997 

Rcnlp 	Kingsbury and Cunningham, 2000 

Cmklp, 	Cyert, 2001 

Cmk2p 

Cnelp 	Dc Virgilio etal., 1993 

Picip 	Flick and Thorner, 1993; Payne and 

Fitzgerald-Hayes, 1993; Yoko-o etal., 

1993 

1.2.1.1 Ca 2+  permeable channels in S. cerevisiae 

Three CPCs have been identified in S. cerevisiae (Table 1.2; lida et al., 1994; Fischer et 

al., 1997; Paidhungat et al., 1997; Palmer et al., 2001). The midi and cchl genes were 

both identified by their role in mating pheromone induced Ca 2  accumulation (lida et al., 
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1994; Fischer et al., 1997; Paidhungat et al., 1997). Although mid] has little homology 

with existing Ca2  channels (lida et al., 1994), cch] has significant levels of similarity to 

mammalian L-type Ca2  channels (Fischer et al., 1997; Paidhungat et al., 1997). 

Similarity of mid] A and cchlA phenotypes, and the lack of cumulative effects when both 

were deleted, led to the proposal that they acted as a single CPC (Fischer et al., 1997; 

Paidhungat et al., 1997). This theory was supported by analysis of their role in a high 

affinity calcium uptake system (HACS) for Ca 2  accumulation upon a factor addition 

(Locke et al., 2000; Muller et al., 2001). GFP tagging and immunofluorescence 

microscopy found both Midip and Cchlp to be localized to the plasma membrane and 

that Midip also localized to the endoplasmic reticulum (lida et al., 2004; Yoshimura et 

al., 2004; Ozeki-Miyawaki et al., 2005). Independent localization of Midip suggested it 

might be capable of Ca 2  channel activity without Cchlp. This was supported by 

generation of stretch activated Ca 2+  influx when Midip was expressed in Chinese 

hamster ovary cells (Kanzaki et al., 1999). Midip may form a homotetrameric CPC 

(Kanzaki et al., 1999) or may form a complex with other proteins apart from Cchlp 

(Yoshimura et al., 2004). The [Ca2+] c  response to the amiodarone antifungal agent 

treatment was specifically inhibited in a midlA strain (Courchesne et al., 2003), and 

deletion of either cchl or mid] failed to abolish Ca2  influx in response to alkaline stress 

that was independent of the third yeast Ca 2  channel, Yvclp (Viladevall et al., 2004). The 

combined evidence suggests that budding yeast may contain a Cchlp/Midlp CPC in the 

plasma membrane and an oligomeric Midip CPC in the endoplasmic reticulum. 

The third CPC channel in S. cerevisiae is the vacuolar homolog of mammalian TRP 

conductance channels, Yvclp (Palmer et al., 2001). Yvclp is activated by Ca 2  and 

mechanical stretch applied to vacuolar membranes (Zhou et al., 2003). Yvclp is 

responsible for Ca2  influx in response to hyper-osmotic shock where activation results 

from membrane stretch (Denis and Cyert, 2002; Zhou et al., 2003). Unlike previous 

examples of transient receptor potential (TRP) conductance channels, Yvclp was not 

activated by a range of known Ca 2+  channel agonists including InsP 3, arachidonic acid, 

linolemc acid and cAMP. The identification of Yvclp releasing Ca 2+  from an internal 

store was the first demonstration of release of Ca 2+  from intracellular stores by a TRP 
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channel (Denis and Cyert, 2002). These findings have led to the proposal that the family 

of fungal TRP channels (Denis and Cyert, 2002) may represent a unique class of TRP 

channels (Zhou et al., 2003). 

In low Ca2  conditions a low affinity Ca2  uptake systems (LACS) was identified that did 

not involve Cchlp/Midlp Ca2+  channel activity (Muller et al., 2001). The LACS activity 

was dependent on the Fig! p  protein of unknown function (Muller et al., 2001; Muller et 

al., 2003). When the LACS was active Ca 2  uptake was prevented by either direct 

inhibition by calcineurin (Muller etal., 2001). 

1.2.1.2 Removal of Ca 2+  from the cytoplasm 

Intracellular Ca2  storage in S. cerevisiae is a flexible system principally involving the 

vacuoles and Golgi apparatus. Although the Golgi has little role in Ca 2  accumulation in 

wild type (wt) cells, when [Ca2+] c  exceeds the capacity of the vacuolar Ca 2+  uptake 

system Golgi Ca2  uptake is increased (Cunningham et al., 1994; Miseta etal., 1999a). 

Ca 2+  accumulation in vacuoles is driven by a pH gradient generated by a vacuolar H 

ATPase essential for Ca2  accumulation and for Ca 2+  homeostasis (Ohsumi and Anraku, 

1983; Ohya et al., 1991; Forster et al., 2000). Ca2  is sequestered into the vacuole by the 

Vcxlp Ca 2+1W exchanger (Pozos etal., 1996) and the Pmc!p Ca 2  ATPase (Cunningham 

et al., 1994; Cunningham et al., 1996). Rapid sequestration Ca 2  ions, after elevation in 

response to a stimulus, is predominantly the role of Vcx!p whereas Pmclp is the major 

determinant in Ca2  homeostasis (Cunningham et al., 1996; Catty et al., 1997; Miseta et 

al., 1999b; Forster et al., 2000; Denis and Cyert, 2002). Vcxlp is believed to be the only 

Ca 2+/H+  exchanger in S. cerevisiae (Pozos et al., 1996). However Ca 2+/H+  exchange was 

observed in a vcxlA strain suggesting the existence of additional Ca 2 /H exchangers for 

which YNL321w may be a possibility (Marchi etal., 1999; Miseta et al., 1999b). 
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For Ca2  accumulation into the Golgi the Pmrlp Ca 2 /Mn2  ATPase was identified and 

found to be required for secretory protein folding and processing (Rudolph et al., 1989; 

Antebi and Fink, 1992; Sorin et al., 1997; Durr et al., 1998; Marchi et al., 1999; Strayle 

et al., 1999; Okorokov et al., 2001; Bonilla et al., 2002). Before the discovery of Pmrlp 

in the ER (Strayle et al., 1999), ATPase activity was believed to be absent from S. 

cerevisiae ER (Marchi et al., 1999; Strayle et al., 1999). There is also a limited amount of 

biochemical and genetic evidence that suggests there may be additional, as yet 

unidentified, Ca2  ATPases in S. cerevisiae (Catty and Goffeau, 1996; Sorin et al., 1997). 

The ER localized Codlp protein encodes a P-type ATPase whose deletion perturbs C2 

homeostasis in a similar, and synergistic, fashion to deletion of pmrl (Cronin et al., 

2002). Biochemical characterization of Codip failed to demonstrate Ca 2  transport. 

However, despite this Codip has a clear role in [Ca2+] c  homeostasis and ER function 

(Cronin et al., 2002). 

1.2.1.3 Mediators of Ca 2+  signalling 

1.2.1.3.1 	Phospholipase C 

Saccharomyces cerevisiae contains a single phospholipase C (PLC) gene encoding a 

phosphatidyl inositol PLC with in vitro Ca 2+  activation (Flick et al., 1993; Payne et al., 

1993; Yoko-o T et al., 1993). Phospholipase C is associated with the plasma membrane 

and is responsible for converting phosphatidyl inositol-4,5-bis phosphate (PIP 2) into InsP3 

and diacylglycerol (DAG). S. cerevisiae Plc ip is involved in a diverse range of cellular 

processes (Flick and Thorner, 1998) including filamentation induced by nitrogen 

depletion (Ansari et aL, 1999) and the activation of glucose catabolism (Coccetti et al., 

1998; Tisi et al., 2002; Tisi et al., 2004; Kellermayer et al., 2004). Despite the 

widespread involvement of Plclp in different physiological processes, no genes encoding 

InsP3 receptors have been identified and Picip mediated activation of PKC by DAG has 

not been proven (Wera et al., 2001). 
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1.2.1.3.2 	Calcineurin 

The conserved phosphoprotein phosphatase, calcineurin, has a key role in the 

interpretation and regulation of Ca 2  signals in S. cerevisiae. Two genes encoding the 

catalytic subunit (Cyert et al., 1991) and one gene encoding the regulatory subunit of 

calcineurin were identified in S. cerevisiae (Kuno et al., 1991). The activity of the 

catalytic subunit of calcineurin is dependent upon the regulatory subunit in vivo 

(Mendoza et al., 1996). Calcineurin may exert its effects by altering the phosphorylation 

state of a protein or by inducing the expression of a wide variety of genes. Calcineurin 

activity of S. cerevisiae is both positively and negatively regulated by direct binding of 

Rcnlp (Kingsbury et al., 2000; Fox and Heitman, 2002). The interaction between 

calcineurin and Rcnlp stabilizes Rcnlp, increases calcineurin expression and allows 

regulation of calcineurin activity by Rcnlp. These features, combined with the 

requirement of Ca2  signalling via CaM, calcineurin and the transcription factor Crz 1 p  for 

expression of Rcnlp above basal levels provide a potential negative feedback loop for 

calcineurin mediated Ca 2+  signalling in S. cerevisiae (Kingsbury etal., 2000). 

One major function of calcineurin is the regulation of C2 homeostasis. In response to 

mating pheromone the activity of the Midlp/Cchlp HACS is inhibited by calcineurin in a 

mechanism independent from other known targets of calcineurin (Muller et al., 2001). 

The activities of Pmrlp, Pmclp and Vcxlp were found to be regulated by calcineurin 

(Cunningham et al., 1996). Calcineurin inhibited both the in vivo activity and also 

decreased the expression of the vcxl gene whereas activation of calcineurin by Ca 2 /CaM 

induced expression the pmcl and pmrl genes (Cunningham et al., 1996). Despite the 

modulation of Ca 2+  transporter activity by calcineurin, all three enzymes appeared to have 

calcineurin independent activity (Cunningham et al., 1996). These findings were in 

marked contrast to the regulation of mammalian Ca 2  ATPases whose activity is 

predominantly regulated by direct binding of Ca 2 /CaM (Cunningham etal., 1996). 

Calcineurin mediates transcription responses of numerous genes to a variety of different 

stimuli via the Tcnlp/Crzlp transcriptional activator (Matheos et al., 1997; Stathopoulos 



Chapter 1. Introduction 	 17 

et al., 1997; Serrano et al., 2002; Yoshimoto et al., 2002; Matsumoto et al., 2002; 

Viladevall et al., 2004; Yokoyama et al., 2006). Activated calcineurin dephosphorylates 

Crzlp resulting in Crzlp localization shifting from the cytosol to the nucleus 

(Stathopoulos-Gerontides et al., 1999). Crzlp then activates transcription by binding to 

Ca 2+  dependent responsive elements (CDREs) in the promotors of target genes leading to 

changes in their expression (Stathopoulos et al., 1997). Calcineurin and Crzlp are 

capable of generating distinct expression responses to different stimuli (Matheos et al., 

1997; Stathopoulos et al., 1997; Yoshimoto et al., 2002). Crzlp mediated transcription is 

also inhibited by various protein kinases including Hrr25p and cAMP dependent protein 

kinase (PKA) which antagonise the shift to nuclear localization induced by calcineurin 

mediated dephosphorylation (Kafadar et al., 2003; Kafadar and Cyert, 2004). This 

interaction demonstrates a biochemical mechanism through which different stress 

signalling pathways may be integrated in vivo (Kafadar et al., 2004). The distinct 

responses may result from different features of [Ca 2+] c  responses to a stimuli or a balance 

between other signalling pathways present in the cell (Matheos et al., 1997; Stathopoulos 

et al., 1997; Yoshimoto etal., 2002). This mechanism of transcriptional activation is very 

similar to the effect of calcineurin on the NF-AT transcription factor in mammalian cells 

suggesting it is a highly conserved mechanism (Stathopoulos-Gerontides etal., 1999). 

1.2.2 Ca 2+  signalling in Neurospora crassa 

1.2.2.1 The roles of Ca 2+  signalling in Neurospora crassa 

Of the filamentous fungi, Ca2  signalling has been best studied in the ascomycete 

Neurospora crassa and is involved in a broad range of physiological processes (Table 

1.3). 
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Table 1.3 Processes involving Ca 2+ 
 signalling in N crassa 

Process Reference 

Hyphal tip growth Takeuchi etal., 1988; Levina et al., 1995; Rao 

etal., 1997; Bowman etal., 1997; Prokisch et 

al., 1997; Silverman-Gavrila and Lew, 2000; 

2001; 2002; 2003; Yang etal., 2001b 

Hyphal branching Reissig and Kinney, 1983; Dicker and Turian, 

1990; Prokisch etal., 1997; Kothe and Free, 

1998; Sone and Griffiths, 1999; Silverman- 

Gavrila and Lew, 2000; 2001; 2002; Bok et al., 

2001 

Circadian rhythm Techel etal., 1990; Sadakane and Nakashima, 

1996; Yang etal., 2001b 

Conidiation Rao etal., 1997; Yang etal., 200 lb 

Germination Rao etal., 1997; Silverman-Gavrila etal., 

2003 

Heat shock response Kallies etal., 1998 

Trehalose metabolism d'Enfert et al., 1999 

As with other filamentous fungi an important role of Ca 2  signalling in N crassa is in 

hyphal growth and branching (see references within Table 1.5). A tip high [Ca 2+1c

gradient was first reported in growing hyphae of N crassa by the use of Ca2  selective 

dyes (see section 1.5.1) (Levina et al., 1995). The generation of this gradient did not 

involve the influx of Ca2  ions from the extracellular medium (Levina et al., 1995; Lew, 

1999; Silverman-Gavnla et al., 2000). Disruption of this [Ca 2 ] gradient correlated with 

a cessation of apical extension (Silverman-Gavrila et al., 2000) and the gradient was 

never observed in non-growing hyphae (Levina et al., 1995). A model was proposed, 

based upon extensive inhibitor studies, in which Ca 2+  containing vesicles are transported 

to the hyphal tip (Fig 1.1; Silverman-Gavrila et al., 2002). Before fusing with the plasma 

membrane, Ca 2+  was proposed to be released via InsP3 activated Ca 2+  channels. This Ca 2+ 
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release then activates fusion of the vesicles with the plasma membrane. As evidence for 

InsP3  induced Ca 2+  release in N. crassa hyphae was obtained, it was suggested that tip 

localized, and possibly stretch activated PLC activity was responsible for the localized 

generation of InsP3. 

r" 2+ 

Jiisiwi 

phospl;olipas: C 

Fig. 1.1 Proposed model for generation of the apical [Ca 2 ] gradient of N. crassa 

(Silverman-Gavrila et al., 2002). 

Patch clamping of fractionated membranes identified two distinct, InsP 3  activated Ca2  

channels of different conductances (Silverman-Gavrila et aL, 2002). The large 

conductance channel, enriched in vacuolar membranes, was believed to be responsible for 

Ca 2+  release from isolated vacuoles in response to InsP3 (Cornelius et al., 1989; Schultz 

et al., 1990). However, evidence was obtained that this Ca 2  channel was not involved in 

the generation of the tip high [Ca 2+] c  gradient (Silverman-Gavrila et al., 2002). The 

second, small conductance, Ca 2+  channel was enriched in plasma membrane and 

endoplasmic reticulum fractions and was susceptible to inhibition by a range of 

compounds which disrupted the apical [Ca 2 ] gradient (Silverman-Gavrila et al., 2002). 

This work, combined with the identification of an apical gradient of Ca 2  containing 

vesicles (Torralba et al., 2001), implicated the small conductance Ca 2  channel as being 

responsible for generating the [Ca 2 ] gradient (Silverman-Gavrila et al., 2002). As InsP3 

activated Ca2  release was not specific for the tip (Silverman-Gavrila et al., 2001) the 

generation of InsP3 must be tip localized in this model (Silverman-Gavrila et al., 2002). 

DAG production was found to be stretch activated and it was proposed that expansion of 
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the plasma membrane could generate membrane tension and therefore stretch activation 

of PLC (Silverman-Gavrila et al., 2002; 2003). 

In N. crassa, calcineunn may also act to regulate the tip high Ca 2+  gradient (Prokisch et 

al., 1997) possibly involving the spray gene product (Bok et al., 2001). Disruption of 

calcineurin activity was reported to abolish the tip high [Ca 2+]c  gradient resulting in 

increased branching (Prokisch et al., 1997). Inhibition of phosphoinositide turnover 

inhibits germination, hyphal extension and causes increased branching providing further 

support for this hypothesis (Hosking et al., 1995). The effects of the Ca 2+  gradient may be 

mediated by the actin cytoskeleton potentially via a CaM and actin binding protein 

(Capelli et aL, 1997; Silverman-Gavrila et al., 2001). 

1.2.2.2 The Ca2  signaling machinery of Neurospora crassa 

Efflux of Ca2  across the plasma membrane of N crassa is an energy driven process 

mediated by Ca2  ATPase activity (Stroobant and Scarborough, 1979; Miller et al., 

1990). Vacuolar Ca 2+  uptake in N crassa involves H/Ca2  exchange by the CAX protein 

(Margolles-Clark et al., 1999) and is dependent upon vacuolar H ATPase activity 

(Miller et al., 1990). In addition to large scale Ca2  storage the vacuole act as a buffer for 

short term perturbations in [Ca 2 i homeostasis (Cornelius and Nakashima, 1987; Miller 

et al., 1990). Characterization of Ca 2  ATPases in N crassa identified the NCA-1 protein 

as a potential SERCA ATPase, the NCA-2 and NCA-3 homologues of mammalian 

plasma membrane ATPases, the PMR-1 homolog of the yeast golgi and ER Ca 2 7Mn2  

ATPase and the PH-7 protein (Benito et al., 2000). With the exception of PMR-1, 

expression of all of these ATPases was induced by stress conditions. PMR-1 is 

continually expressed at a low level suggesting an essential role for PMR-1 in N crassa 

(Benito etal., 2000). 

Influx of Ca2  ions into the cytoplasm of N crassa may involve InsP3 activated Ca 2+ 
 

channels (Cornelius et al., 1989; Schultz et al., 1990; Silverman-Gavrila et al., 2002). 
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Micromolar amounts of InsP 3  caused release of Ca 2+  from isolated vacuoles (Cornelius et 

al., 1989; Schultz et al., 1990) although the unidentified InsP3  receptor appears to be far 

less specific for inositol polyphosphates than the mammalian receptor (Schultz et al., 

1990). 

Ca2  signalling may interact with cAMP signalling in N. crassa via modulation of both 

cAMP phosphodiesterase and adenylyl cyclase activity (Reig et al., 1984; Tellez-Inon et 

al., 1985). cAMP-mediated protein kinase A dependent protein phosphorylation may also 

activate Ca2  channels as has been shown in A. niger (Bencina et al., 2005). Further 

interaction between these pathways may be via cAMP induced increases in the levels of 

inositol polyphosphates in response to heat shock, although increased [Ca 2 ] was not 

demonstrated in this work (Kallies et al., 1998). 

Interpretation of Ca 2  signals in N. crassa may be mediated by calcineurin. N. crassa 

contains a single gene with homology to the catalytic subunit of other systems (Higuchi 

et al., 1991) and a gene with homology to the regulatory B subunit (Kothe and Free, 

1998). The effects of calcineurin may involve the COT-1 protein kinase which may 

interact with calcineurin (Gorovits et al., 1999) and its signalling pathway may also 

involve the frost gene product (Sone and Griffiths, 1999). Further interaction between 

[Ca2+] c  and protein phosphorylation may be mediated by the CAMK-1 Ca 2+  / CaM 

dependent protein kinase (Yang et al., 2001b). 

The substantial body of functional evidence was further enhanced by a comparative 

genomic analysis of N. crassa, Magnaporthe grisea and S. cerevisiae (Zelter et al., 2004). 

This study identified a large number of genes encoding potential Ca 2  signalling proteins 

(see summary in Tables 1.4 and 1.5). These results demonstrate that N. crassa may 

possesses a complex Ca2  signalling machinery capable of generating and interpreting 

Ca2  signals. 
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Table 1.4 Predicted [Ca 2 ] modulating proteins in N. crassa adapted from (Zelter et al., 

'Indicates 2004). Indicates a Na+  -ATPase. indicates a Ca2+  /Na+  exchanger. 

Protein class Proteins in N. crassa Closest S. cerevisiae 

homologue 

Ca2  permable channel NCU02762.2 Cchlp 

NCU06703.2 Midip 

NCU07605.2 Yvclp 

Cation pump NCA-1 Pmrlp 

(Ca 21  unless otherwise stated) NCA-2 Pmclp 

NCA-3 Pmclp 

PMR-1 Pmrlp 

PH-7 Ena2p 

ENA- 1b Ena2pa 

none 

Spflp 

Neolp, Ena2pa 

Vcxlp 

Vcxlp 

NCU07966.2 

NCU04898.2 

NCU03818.2 

Ca2 - Transporters 	 CAX 

(Ca 2+/H+  unless otherwise 	NCU009 16.2 

stated) 

NCU00795.2 Vcxlp 

NCU06366.2 none 

NCU07711.2 Vcxlp 

NCU05360.2 YNL231W 

NCU02826.2" YDL206Wb ,  Ecm27p" 

NCU08490.2" none 
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Table 1.5 Proteins involved in downstream stages of Ca 2+  signalling, adapted from 

(Zelter et al., 2004) 

Protein class 	 Proteins in 	Closest S. cerevisiae 

Neurospora 	homologue 

Phospholipase C-ö NCU01266.2 Picip 

NCU06245.2 Picip 

NCU09655.2 Picip 

NCU02175.2 Picip 

Calmodulin CMD Cmdlp 

Calcineurin A (catalytic subunit) CAN-1 Cnaip, Cna2p 

Calcineurin B (regulatory subunit) CNB-1 Cnblp 

Ca2  / CaM dependent protein kinase CAMK1 Cmk2p 

Ca 2+  and or CaM binding proteins 	NCU02283.2 	Cmkip, Cmk2p 

	

NCU09123.2 	Cmklp, Cmk2p 

NCU06177.2 Pakip 

NCU09212.2 Rck2p, Rcklp 

NCU00914.2 Kin4p, Arp8p 

NCU028 14.2 Dunip, Rad53p 

NCU06347.2 End3p 

Calnexin 	 NCU09265.2 Cnelp 

Calpactin I heavy chain 	 NCU0442 1.2 no hit 

Caireticulin 	 NCU09265.2 Cnelp 

1.2.3 Ca 2+  signalling in other filamentous fungi 

As with N crassa, Ca2  signalling has been shown to be involved a substantial number of 

processes in a diverse range of other filamentous fungi (Table 1.6). Many Ca 2  signalling 
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proteins have also been identified in filamentous fungi other than N. crassa (Table 1.7). 

Table 1.6 Processes involving Ca 2-1-  signalling in filamentous fungi other than N crassa. 

Process 	 Fungus 	 Reference 

Magalhaes et al., 1991; Robson 

etal., 1991a; 1991b; Garrill et 

al., 1993; Hudecovaetal., 1994; 

Cruz etal., 2001; Fox and 

Heitman, 2005 

Robson etal., 1991a; 1991b; 

Hudecova et al., 1994 

Magalhaes etal., 1991 

Adamikova et al., 2004 

Odom et al., 1997; Fox etal., 

2001; Kraus etal., 2005 

Cruz etal., 2001; Fox etal., 

2005 

Greene et al., 2002 

Nelson et al., 2004; Bencina et 

al., 2005; Brand etal., 2007 

Rasmussen et al., 1990; 

Rasmussen etal., 1994; Joseph 

and Means, 2000 

Hyphal tip growth 
	

Fusarium graminearum, 

Zoophthora radicans, 

Botrytis cinerea, 

Cryptococcus neoformans 

Hyphal branching 
	

Botrytis cinerea, Fusarium 

gram inearum 

Appressorium 
	

Z. radicans 

formation 

Microtubule stability Usti!ago maydis 

Virulence (including C. neoformans 

growth at high temp, 

alkaline pH and high 

CO2) 

Mating 
	

C. neoforinans 

Oxidative stress 
	

Aspergi!!us nidu!ans 

Touch sensing 
	

A. awamori, Aspergi!!us 

niger, Candida albicans 

Cell cycle 
	

A. nidulans 

progression 
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Table 1.7 Ca2  signalling proteins identified in filamentous fungi other than N crassa. 

Protein class 	 Protein name Fungus 	References 

/ locus 

Ca" permeable channel 	Midip 	C. albicans 	Brand et al., 2007 

Ca2  permeable channel Cchlp 

Ca 2+  ATPase PMRA 

Ca2  ATPase ECA- 1 

Calcineurin A (catalytic CNAA 

subunit) 

Calcineurin A (catalytic CNAA 

subunit) 

Calcineurin A (catalytic CNA1 

subunit) 

Calcineurin B (regulatory CNB 1 

subunit) 

Calcineurin binding CBP1 

protein 

Calmodulin AAK69619 

Calmodulin 	 CAM! 

Calmodulin 	 CMDA 

Ca 2+ / CaM dependent 	CMKA 

protein kinase 

Ca 2+ / CaM dependent 	CMKB 

protein kinase 

Ca2  / CaM dependent 	CMKC 

protein kinase  

C. albicans 	Brand et al., 2007 

A. niger 	Yang etal., 2001a 

Ustilago maydis Adamikova et al., 2004 

A. oryzae 	Juvvadi et al., 2001 

A. nidu!ans 	Rasmussen etal., 1994 

Cryptococcus 	Odom etal., 1997 

neoformans 

C. neoformans Fox et al., 2001 

C. neoformans Gorlach et al., 2000 

Fusarium 	Kwon et al., 2001 

pro4feratum 

C. neoformans Kraus et al., 2005 

A. nidu!ans 	Rasmussen etal., 1990 

A. nidu!ans 	Kornstein et al., 1992 

A. nidu!ans 	Joseph etal., 2000 

A. nidu!ans 	Joseph et al., 2000 
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Protein class Protein name Fungus References 

/ locus 

Ca2  / CaM dependent FCaMK Arthrobotrys Tsai et aL, 2002 

protein kinase dactyloides 

Ca 2+ 
/ CaM dependent CpkA, CpkB, Stagnospora Solomon etal., 2006 

protein kinase CpkC nodorum 

Phospholipase C ANPLC1 A. nidulans Jung et al., 1997 

Phospholipase C BCPLC1 Boliyotina Jung etal., 1997 

fuckeliana 

Phospholipase C MPLC1 M grisea Zelter etal., 2004 

1.3 Neurospora crassa as an experimental system 

1.3.1 Basic characteristics of growth and the cell cycle 

Neurospora crassa is an extensively studied model filamentous fungus with numerous 

advantages for experimental research. A principle benefit of N. crassa is its ease of 

culture on defined media with rapid growth and large hyphae making it highly suited for 

cytological examination. The total genome size of N. crassa is about 43 Mbp from which 

10082 proteins are predicted. As N. crassa is haploid throughout the majority of its life 

cycle recessive mutant alleles are not masked by dominant alleles on homologous 

chromosomes (Zelter, 2004). Furthermore, repeat induced point mutation (RIP), in which 

repeated DNA sequences are subjected to G:C to A:T mutations, has contributed to low 

levels of gene redundancy. In 2003 N. crassa became the first filamentous fungus to have 

its genome sequenced and annotated (Galagan etal., 2003; Borkovich etal., 2004). 

In addition to the experimental advantages of N. crassa, an established scientific 

community exists in which resources and strains are easily and readily shared. A 

foundation of this community is the Fungal Genetics Stock Centre (FGSC) based at the 
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University of Kansas, Missouri (http://www.fgsc.net ). The FGSC makes many resources, 

including protocols, strains and plasmid readily available for a range of different 

filamentous fungi. An important function of the FGSC is to distribute strains, plasmids 

and other materials produced by the Neurospora Genome project 

(http://www.dartmouth.edu/—neurosporagenome/index.html). The Neurospora Genome 

Project is currently engaged in 4 projects designed to increase understanding and assist 

research in N crassa (Dunlap et al., 2007). The first of these projects is the creation of 

deletion mutants for all of the 10082 genes identified in the genome. Once a deletion 

mutant strain has been created it is then sent to the FGSC for storage and to allow 

distribution to the N. crassa scientific community. 

1.3.2 High throughput generation of Neurospora crassa deletion 

mutants 

Historically it has proven difficult to produce deletion mutant strains on a large scale in 

filamentous fungi (Colot et al., 2006). In contrast to S. cerevisiae, N crassa wt strains 

exhibit low levels of homologous recombination after transformation and high levels of 

non homologous ectopic insertions. The requirements for screening large numbers of 

transformants, along with the creation of many deletion mutant cassettes by traditional 

methods, has so far prevented the establishment of large scale gene deletion in N crassa. 

To increase the speed of deletion cassette creation a method was developed which takes 

advantage of the recombination machinery of yeast (Fig. 1.2). The automation of both the 

wet lab work and primer design has allowed this process to be used to generate deletion 

mutant cassettes far more efficiently than by traditional methods (Colot et al., 2006). 



Chapter 1. Introduction 	 28 

ORF 

+ M 
5' flank + 3' flank 

hph cassette 

5'flank x X 	3' flank 

1ll •  + 
<z TTA3 

Fig. 1.2 Strategy for creation of deletion mutants used by the Neurospora Genome 

Project (Colot et al., 2006). 5' and 3' flanks are created separately by amplification from 

genomic DNA using the 5f + 5r and 3f + 3r, primers respectively. Flanking regions and 

the hph cassette are then cotransformed into yeast in which they are assembled by 

homologous recombination. The completed deletion cassette is then amplified from yeast 

DNA using the 5f and 3r primers and linearised before transformation into N. crassa. 

The problem of ectopic insertion was removed by the development of two N. crassa 

strains, Amus-51 and A,nus-52 in which non homologous end joining DNA repair was 

virtually eliminated (Ninomiya et al., 2004). When Amus-51 or Amus-52 were 

transformed with a deletion mutant cassette (created as described in Fig. 1.2) the target 

gene was disrupted by insertion of the hygromycin resistance gene. The heterokaryotic 

knock out mutants, identified by hygromycin resistance screening, were then crossed with 

N. crassa wt after which the ascospores produced are collected and screened again for 

hygromycin resistance. Successful strains are then verified by examination of ignite 

resistance and Southern blotting. These protocols are described in full detail on the 

Neurospora Genome project website 

(http://www/dartmouth.edul-'neurosporagenome/protocols.html).  
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1.4 Measurement of [Ca 2 '] in filamentous fungi 

1.4.1 Measurement of [Ca 2i with Ca 2+  selective dyes 

In mammalian and plant systems a variety of methods have been developed for 

measuring [Ca2 ]. The use of Ca2  sensitive fluourescent dyes has enabled huge 

advances in the understanding of mammalian Ca2  signalling (Petersen et al., 2005). 

Despite their success in mammalian cells these dyes have encountered a variety of 

problems in plants which have since been overcome by careful controls and the use of 

membrane impermeable dextran conjugated dyes (Read et al., 1993; Knight et al., 1993). 

In filamentous fungi there are multiple and serious problems encountered with 

measurement of [Ca 2+] c  by use of Ca2  selective dyes (Hickey et al., 2005). Loading of 

dyes into the fungal cell by microinjection often results in altered morphology and growth 

(Silverman-Gavrila et al., 2000; 2001; Zelter, 2004). Once a dye has been introduced it 

may be cyto-toxic or be rapidly sequestered into organelles. Sequestration of a dye by sub 

200 nm vesicles (e.g. secretory vesicles) may be erroneously interpreted as ionic 

gradients (Hickey et al., 2005). To ensure the accuracy of [CW +] c  measurement by Ca2  

selective dyes two important controls must be performed. Firstly, membrane 

impermeable dextran conjugated dyes should be injected into the cells. Second, the 

sensitivity of the dyes to increased [Ca 2+] c  should be confirmed by artificial elevation of 

[Ca2+] c  by methods such as the use of Ca2  selective ionophores. All of the studies 

reporting tip high [Ca2+] c  gradients in hyphae using dual dye ratio imaging of Fluo3-AM 

and Fura-Red-AM dyes (section 1.2.3.1, Silverman-Gavrila et al., 2000; 2001; 2003) 

lacked these controls (Hickey et al., 2005). Another dye extensively used in N. crassa 

[Ca2+] c  measurement is chlortetracycline (CTC) (Prokisch et al., 1997; Silverman-Gavrila 

et al., 2002; 2003; Lew and Levina, 2004; Levina and Lew, 2006). CTC fluoresces in 

response to membrane associated Ca 2  and does not report [Ca 2 ]. Further more, it has 

been recently reported that CTC fluorescence only increases in responses to [Ca 2 ] in 
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excess of 0.75 mM, far above previously reported fungal [Ca2+] c  concentrations (Levina 

et al., 2006). 

1.4.2 [Ca 2+1 ' measurement with recombinant aequorin 

Aequorin is a luminescent Ca 2' reporter protein isolated from Aequoria victoria where it 

is encoded for by the aeqA and aeqD genes (Inouye et al., 1985; Prasher et al., 1985). 

Active aequorin capable of binding Ca 2  forms when apoaequorin binds 02 and 

coelenterazine. Binding of Ca2  to active aequorin then returns aequorin to the inactive 

apoaequorin. Coelenteramide, CO 2  are released as biproducts of this reaction along with 

energy released in the form of luminescence (X = 470 rum). Aequorin luminescence is 

dependent on [Ca 2+
]allowing it to be calibrated and provide a readout of [Ca 2 ]. Further 

advantages of aequorin include: large dynamic range over which [Ca 2 ] can be 

measured, lack of Ca  2+ buffering, high selectivity for free Ca2 , and its retention within 

the cellular compartment it has been targeted to. 

Recombinant aequorin has been used to measure [Ca 2+] c  in a wide range of different 

fungi (Nakajima-Shimada et al., 1991; Shaw and Hoch, 2000; Greene et al., 2002; 

Nelson et al., 2004). The initial attempts to express native aequorin in filamentous fungi 

encountered problems with low levels of protein production (Shaw etal., 2000; Nelson et 

al., 2004). However, codon optimization of the aeqD gene led to substantially increased 

aequorin production in several filamentous fungal species, including N crassa (Nelson et 

al., 2004; Zelter, 2004). 

Aequorin luminescence can be rapidly converted [Ca 2+] C  values using the following 

empirically derived equation (Fricker et al., 1999; Zelter, 2004). 
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pCa = 0.332588(-log k) + 5.5593 

where 

k= Relative Light Units (RLU).s' 

total RLU available 

This equation allows determination of [Ca 2 ] by comparison of the luminescence at any 

one timepoint with the total available aequorin luminescence, and has been incorporated 

into automated software for aequorin based [Ca 2 ] measurements in N. crassa (Zelter, 

2004). 

The speed, simplicity and accuracy of [Ca 2+]c  measurement by expression of recombinant 

aequorin provide a versatile, accurate and non perturbing method for determining [Ca 2 ] 

within filamentous fungal cells. 

1.5 Involvement of Ca 2+  signalling in touch sensing and 

osmotic stress 

1.5.1 Touch sensing and Ca 2+  signalling 

The involvement of calcium signalling in plant touch sensing is well established (Braam 

and Davis, 1990; Knight et al., 1991; Knight et al., 1992; Knight et al., 1993; Legue et 

al., 1997; Bibikova et al., 1997). In Arabidopsis, a protein that may mediate mechanically 

stimulated Ca2  influx, and can partially complement the yeast mid] mutant, has recently 

been identified (Nakagawa et al., 2007). In mammalian cells the involvement of Ca2  

signaling in mechanotransduction is typically via activation of phospholipase C by 

integrin mechano-receptors (Iqbal and Zaidi, 2005). In addition to the release of Ca2 
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from intracellular stores in mammalian mechano sensing, there is also evidence for influx 

of Ca2  through the plasma membrane of osteocytes (Mikuni-Takagaki, 1999) and in the 

cell to cell contact sensing of He-La cells (Hashido et al., 2006). 

Conidia of many plant pathogenic fungi sense physical signals from the plant surface as 

part of the trigger for germination and initiation of appressorium formation (Hoch et al., 

1987; Read et al., 1997; Collins and Read, 1997; Kim et al., 1998; Shaw et al., 2000). 

Ca 2+  is required for germination and appressorium formation in Phyllosticita ampelicida 

(Shaw et al., 2000) and for appressorium formation in Zoophthora radicans (Magalhaes 

et al., 1991). In Colletotrichum gloeosporioides external Ca2 , CaM and CAMK activity 

were all found to be required for appressoria formation after hard surface contact (Kim et 

al., 1998). The nematode trapping of Arthrobotrys dactyloides involves inflation of a ring 

structure upon pressure applied when the nematode moves through the ring. Inhibitor 

studies of this response led to identification of a pathway in which G protein activation in 

response to touch activates InsP 3  production resulting in Ca2  release, CaM activation and 

the influx of water required for the inflation response (Chen etal., 2001). 

Mechanical stimulation by injection of iso-osmotic media has been shown to induce 

[Ca 2 ] transients with highly reproducible Ca 2  signatures in hyphae of filamentous fungi 

(Nelson et al., 2004; Bencina et al., 2005). However, no similar [Ca2+] c  response has been 

reported for cells of S. cerevisiae (Batiza et al., 1996). The [Ca 2 ] response to 

mechanical perturbation of Aspergillus niger involves regulation of Ca2  homeostasis by 

PKA dependent phosporylation (Bencina et al., 2005). This demonstrated that [Ca 2 ] 

signalling mechanisms of filamentous fungi are capable of interaction with other 

signalling pathways (Bencina et al., 2005). The abrogation of growth inhibition by the 

fungal killer toxin KP4 by cAMP further supports the idea that cAMP and Ca 2  signalling 

are linked in filamentous fungi (Gage et al., 2001). Inhibitors of stretch activated and L-

type Ca 2+  channel activity significantly inhibit contact sensing of substratum topography 

by hyphae of the fungal pathogen C. albicans (Watts et al., 1998). This inhibition was 

believed to be mediated by a stretch-activated channel in yeast cell protoplasts of C. 

albicans (Watts etal., 1998). Orthologs of the S. cerevisiae Cchlp and Midip CPCs were 
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found to be required for high affinity Ca 2+  uptake in C. albicans similar to that in the 

budding yeast. Deletion of CaCchl and CaMidi caused significant inhibition of contact 

sensing by C. albicans hyphae (Brand et al., 2007). These proteins are the likely target of 

Ca 2+  channel inhibition and demonstrate a clear example of touch mediated Ca 2+  influx 

acting in the process of fungal touch sensing. 

1.5.2 The role of Ca 2+  in osmotic stress responses 

Hypo-osmotic stress may be sensed via Ca 2+  signalling mediated processes in a range of 

fungal and plant cells (Taylor et al., 1996; Takahashi et al., 1997; Pauly et al., 2001; 

Nelson et al., 2004). In plants, these [Ca 2+] c  responses vary between cell types with 

specific localization and biphasic responses in different species (Taylor et al., 1996; 

Takahashi et al., 1997). Both the nuclear and cytosolic responses of BY-2 cells generate 

specific and distinct responses to graded levels of osmotic stress (Pauly et al., 2001). 

Transfer of algal rhizoid cells into hypo-osmotic media caused swelling in the cells 

shortly before the onset of a [Ca 2 ] response (Taylor et al., 1996). The swelling activated 

Ca2  influx by increasing membrane tension which activated stretch activated CPC 

activity (Taylor et al., 1996). Membrane tension activation of stretch activated CPCs is 

the primary mechanism by which osmotic stress may induce a [Ca 2 ] response in these 

cells. 

S. cerevisiae produces a [Ca 2 ] transient in response to hypo-osmotic shock believed to 

result from membrane tension (Batiza et al., 1996; Loukin et al., 2007). The amplitude of 

this [Ca 2+]response is increased by mutations which perturb the lipid content of the 

plasma membrane. Altered membrane lipid content may increase membrane tension 

under hypo-osmotic shock leading to greater activation of the stretch activated channels 

(Loukin et al., 2007). This hypothesis was further supported by the S. cerevisiae [Caa2 ] 

response to hyper-osmotic stress (Zhou et al., 2003). Application of hyper-osmotic stress 

to isolated vacuoles increased membrane tension resulting in activation of the stretch 

activated Yvclp Ca 2+  channel (Zhou et al., 2003). [Ca2+] c  responses to hypo-osmotic 
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shock have also been reported in filamentous fungi including Aspergillus awamori and N 

crassa (Nelson et al., 2004; Zelter, 2004). In these experiments the hypo-osmotic shock 

stimulus was administered by injection of diluted growth into microwell plates. Despite 

administration by the method used to generate the mechanical perturbation stimulus 

(section 1.5.1) the [Ca 2+]responses to the two stimuli were found to be distinct in both 

fungi (Nelson etal., 2004; Zelter, 2004). 

1.6 Aims of the work described in the thesis 

There is now significant evidence implicating the role of Ca 2  signalling in fungal touch 

sensing. In the last 5 years there have been huge advances in both the understanding of 

fungal genomes and in the resources available to researchers. This project aimed to take 

advantage of these resources for N crassa to provide direct evidence for a role for Ca 2  

signalling in response to mechanical perturbation in this species. The aims of this 

research were to: 

- Identify and characterise the responses to mechanical perturbation in different cell 

types (conidia, germ tubes and vegetative hyphae). 

- Discover a physiological response to mechanical perturbation that can be 

quantified and determine whether the response is Ca 2 - mediated. 

- Identify and investigate the role of [Ca 2 ] modulating proteins involved in the 

mechanical perturbation response by expressing the aequorin gene in deletion 

mutants in which genes encoding different components of the Ca 2  signalling 

machinery have been deleted. 

- Investigate the influence of defensin antifungal proteins (MsDefl, RsAFP2, 

MtDef2, MtDef4) on Ca 2+  signalling. 
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Develop a high throughput aequorin-based [Ca2 ] assay for antifungal compounds 

which target Ca 2  signalling and homeostasis. 



Chapter 2 

Materials and Methods 

2.1 Chemicals 

Unless otherwise stated all chemicals used in this study were purchased from Sigma-

Aldrich (Sigma-Aldrich Company Ltd., Poole, Dorset, UK). 

2.2 Media 

All media and salt solutions were made using distilled water (dH20) and sterilized before 

use by autoclaving at 121 °C , 15 psi for 20 mm. Heat-sensitive components were filter 

36 
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sterilized (using Sartorius Minisart 0.2 tm filters, Goettingen, Germany) and added to the 

main solution after the latter was autoclaved and allowed to cool to 50 °C. 

2.3 Organisms and strains 

Genetically modified Neurospora crassa and Escherichia coli are containment level 1 

organisms and the relevant procedures for their handling and disposal (Published by the 

Genetic Manipulation and Biological Safety Committee, University of Edinburgh) were 

followed at all times. Established sterile technique was used when appropriate. 

A total of 13 N. crassa strains were used and or produced in this study. The genotype, 

source and Fungal Genetics Stock Centre (FGSC) number of all strains is shown in Table 

2.1. All deletion mutants used in this study were created by the Neurospora Genome 

project and supplied by the Fungal Genetics Stock Centre by the methods described in 

(Colot et al., 2006) (FGSC, School of Biological Sciences, University of Missouri, 

Kansas City, USA). 

Table 2.1 	N crassa strains used and generated in this study. hygR encodes for the 

hygromycin resistance gene. bar encodes for ignite (also known as phosphinothricin or 

basta) resistance. aeqS encodes codon optimized aequorin (Nelson et al., 2004). 

Strain FGSC 
number 

Mating 
type 

Genotype Source 

74-0R231A 987 A wt FGSC 

22A3AWTAZ6 - A hygR ,aeq S Alex Zelter 

11708 A Amid-1, hygR FGSC 

11253 A Ayvc-1,hygR FGSC 

11256 A Aph-7,hygR FGSC 

11237 A Aena-1, hygR FGSC 

11249 A Acax, hygR FGSC 

wt74Ap37b - A bar, aeqS, hygR - Chapter 5 
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Strain 	FGSC 
number 

Mating 
type 

Genotype Source 

11708p8 	- A Amid-], aeqS, Chapter 5 
bar, hygR 

1 1253p10flb1 	- A Ayvc-1, aeqS, Chapter 5 
bar, hygR 

1 1256p16b1a3 	- A Aph-7, aeqS, bar, Chapter 5 
hygR 

1 1237p64b 	- A Aena-1, aeqS, Chapter 5 
bar, hygR 

1 1249p15a2a 	- A Acax, aeqS, bar, Chapter 5 
hygR 

2.4 Plasmids 

The plasmids used in this study are listed in Table 2.2. 

Table 2.2 	Plasmids used in this study. 

Plasmid 	Description 	 Source 

pAZ6 	CpC 1 protomor aeqS expression vector, hygR 	Alex Zelter 

selection 

pBARGRG1 bar containing expression vector 	 (Pall and 

Brunelli, 1994) 

pAB19 	cpc 1 protomor aeqS expression vector, bar 	Chapter 5 

selection 

Plasmid maps can be found in Appendix B. 
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2.5 Culture Media and Growth Conditions 

2.5.1 Culturing E. coli 

2.5.1.1 	Culture media 

E. co/i was grown on solid or in liquid Luria-Bertani (LB) medium (Appendix A). 

Glycerol stocks, made as Sambrook and Russell (Sambrook and Russell, 2001), were 

used for long term storage of E. co/i. 

2.5.1.2 	Inoculation procedure 

Liquid medium was inoculated with a sterile pipette tip used to capture individual 

colonies growing on solid media. Solid LB plates were inoculated with 50-200 p1 of LB-

bacterial cell suspension. A sterile bent glass rod was used to disperse the inoculum. 

2.5.1.3 	Antibiotics and other selective media 

For selection of strains transformed with plasmids containing ampicillin or 

chioramphenicol resistance genes, 100 tgmF' ampicillin or 170 tgmF 1  chloramphenicol, 

respectively, were added to the media after autoclaving and once media had cooled to 50 

ON 

2.5.1.4 	Types of culture and growth conditions 

Solid LB plates contained 15 to 20 ml LB per 8.5 cm plastic Petri dish. Media were 

made, autoclaved and allowed to cool to 50 °C before addition of the appropriate 
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antibiotics. Plates were poured before media solidification, allowed to solidify, inoculated 

and incubated upside down at 37 °C. 

Liquid LB cultures consisted of 100 ml liquid LB in a sterile 250 ml conical flask sealed 

with a foam bung and covered with foil. Where appropriate, antibiotics were added 

before inoculation. Cultures were incubated upright in a shaking incubator at 37 °C and 

200 rpm. 

2.5.2 Culturing N. crassa 

2.5.2.1 Culture Media 

N crassa was grown on solid or in liquid Vogel's media (VgS) (Vougel, 1956) using 

sucrose (20 gIl) as the carbon source (Appendix A). For solid media 2% Oxoid agar was 

added before autoclaving. All media and salt solutions were made using distilled water 

(dH20) and sterilized before use by autoclaving at 121 °C, 15 psi for 20 mm. 

For VgS media to be used with ignite selection, NH 4NO3  was omitted from VgS x  50 

stock solution. To replace the nitrogen source, 0.5 % (w:v) proline was used as an 

alternative nitrogen source as this had been found to increase the potency of ignite 

selection (Hays and Selker, 2000). 

For Ca2  the free VgS media the CaC1 2  was replaced with KC1 to give an equivalent 

amount of chloride ions in the stock solution. 

2.5.2.2 	Culture Types 

Solid VgS plates contained 20 ml solid VgS per 8.5 cm Petri dish. Plates were poured 

before medium solidification, inoculated, and incubated at the required temperature. 
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Solid VgS flasks contained 100 ml solid VgS in a 250 ml conical flask with a sponge 

bung and foil cover. Flasks were inoculated and grown for 7 to 10 days at 24 °C by which 

time maximal conidiation had occurred. 

Slants consisted of 1 ml solid VgS in a sterile 75 x  12 mm glass tube sealed with a cotton 

wool bung. Tubes were tilted before medium solidification. After inoculation, slants were 

incubated at 24 °C for 7 days until maximum conidiation had occurred. 

	

2.5.2.3 	Antibiotics and other selective media 

For selection of strains containing the bacterial hygromycin phosphotransferase (hph) 

gene, which confers resistance to hygromycin B (hyg), 150 j.tgmF' hygromycin B was 

added to the plating media after autoclaving once media had cooled to 50 °C. 

For selection using the ignite/basta resistance (bar) gene, which confers resistance to 

ignite (also known as phosphinothricin), ignite was extracted from the "Harvest" 

herbicide, generously donated by Marris Foston Ltd. (Bayer Crop Science Ltd., 

Monheim, Germany). Extraction was performed using the methods described in the 

protocol of Hays and Selker, (2000). The effective concentration of ignite was titrated 

against Neurospora wt 74A for each extraction (typical effective concentration was 400 

j.tgmF 1  ignite). All media for use with ignite selection was made from 50 x  VgS salts in 

which the NH4NO3 was removed and 0.5% proline was added to the media before 

autoclaving. 

2.5.3 Inoculation Procedures 

	

2.5.3.1 	Stock Cultures 

Stock cultures of N. crassa were grown in VgS slants (section 2.5.2.2). Hygromycin B or 
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ignite was added where appropriate. Liquid VgS (2 ml) was added to mature slants and 

the tube vortexed (5-10 s) to produce a conidial suspension. 15 p.! aliquots of conidial 

suspension were transferred to the top of solid VgS slants which were then incubated at 

24 °C under intermittent illumination for 10 days until maximum conidiation was 

achieved. Stock cultures were stored at -20 °C until required or for up to 6 months. 

2.5.3.2 	Microwell Plates set up for 0 h, 6 h and 18 h assays 

Conidia of hygromycin resistant strains used to prepare microwell plates were grown in 

VgS slants with no selection and incubated for 7 days at 24 °C under constant 

illumination. In section 3.2.1, repeated culturing of 22A3AWTAZ6 in the absence of 

hygromycin B was found to have no effect on discharge luminescence over 30 

generations. This method of culturing ensured that comdia used in [Ca] assays had 

normal morphology and were unaffected by growth in the presence of hygromycin. As 

this experiment was not performed with ignite resistant strains, conidia of ignite resistant 

strains for use in microwell plates were grown in ignite containing VgS slants for 7 days. 

Microwell plates (flat bottomed 96 well opaque white 12.8 cm x  8.8 cm plates, Thermo 

Fisher Scientific, Loughborough, UK) were inoculated with 100 p.1 of liquid VgS 

containing 2.5 p.M or 10 p.M native coelenterazine (Lux Biotechnology, Edinburgh, UK) 

and 1 xl 06  conidia ml-1 . Coelenterazine was added by dissolving 15 nmol aliquots in 15 p.1 

pre-cooled methanol in the dark before addition to the cell suspension. The final 

methanol concentration was not more than 0.5% which is known not to affect spore 

germination or hyphal growth (Kozlova-Zwinderman, 2002). After inoculation microwell 

plates were covered with a microplate lid (Greiner Bio One, Gloucestershire, UK), 

individually wrapped in tin foil and incubated in the dark at the appropriate temperature. 

A set of three GlowellTht  were added to all plates at the point of inoculation to determine 

any variations in luminometer sensitivity (96 microwell plate blue light standard. Lux 

Biotechnology, Edinburgh, UK). 
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2.5.3.3 	Microwell plates set up for aequorin high throughput screen 

Ninety three wells of flat bottomed microwell plates (flat bottomed 96 well opaque white 

12.8 cm x  8.8 cm plates (Thermo Fisher Scientific, Loughborough, UK) were inoculated 

with 50 til liquid VgS containing 20 iM native coelenterazine (Lux Biotechnology, 

Edinburgh, UK) and 2x106  comdia ml-1 . Plates were then incubated in the dark for 6 h at 

24 °C. A set of three Gloweils were added to all plates at the time of inoculation (96 

microweil plate blue light standard, Lux Biotechnology, Edinburgh, UK). 

2. 6 Characterization of N. crassa growth 

2.6.1 Germination rate determination 

Germination rates of N. crassa strains were determined by inoculating an 8 well 

microweil culture chamber with 200 p.1 aliquots of conidial suspension (lxi 06  cells m1 1 , 

liquid VgS). The slide was then incubated at 24 °C in the dark for 6 h. Germination was 

measured every hour (including 0 h) by recording 5-10 images of the cell suspension 

using the x20/0.5 NA plan fluor DIC M dry objective lens of a Nikon T2000-E 

Microscope. Images were recorded by a Nikon DXM1200F camera and the Nikon ACT-1 

image capture program (Nikon, Kingston-upon-Thames, UK). The images were then used 

to count 4 sets of 100 cells to measure the germination percentage. Germination was 

defined as a cellular emergence from a conidium that was equal to the length of the 

conidium. 
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2.6.2 Measurement of germ tube sweffing 

Six rows of flat bottomed, clear plastic, 96 well microwell plates (Sterilin, Middlesex, 

UK) were inoculated with 100 p1 aliquots of N. crassa conidial suspension (0.5x 10 6  

cells/ml, liquid VgS). The plate was then wrapped in foil and incubated at 24 °C for 6 h. 

A Nikon T2000-E microscope was used to image cultures using the x20/0.5 NA plan 

fluor DIC M dry objective lens with a 1.5 x intermediate lens inserted. Six h after 

inoculation the plate was transferred to the Microlumat LB96P luminometer (Berthold 

Technologies, Bad Wilbad, Germany) and run on a repeated measurement protocol for 2 

cycles (6 wells, cycle time 11.51 s) with no injection for control experiments and an 

injection of 100 p1 liquid VgS on the second cycle for mechanical perturbation 

experiments. Immediately after the second cycle, the plate was transferred to a Nikon 

T2000-E microscope. A Nikon DXM 1200F digital camera and the Nikon ACT-i image 

capture programme (Nikon, Kingston-upon-Thames, UK) was then used to record 10 

images of control hyphae or 10 images of mechanically perturbed hyphae. Once all 

images were recorded the occurrence of swelling was determined. For a germ tube to be 

counted the following rules had to be satisfied; 

The germ tube had to be greater than or equal to three times the length of the 

conidium. 

Any swelling immediately after emergence of the germ tube from the conidium 

could not be counted. 

The whole cell had to be visible in the recorded image. 

There had to be no other cells near the tip of the germ tubes. 

Any swelling to be counted had to be adjacent to the tip. 

Images were quantified using Simple PCI (Compix Inc., Imaging Systems, USA) and 

annotation files were used to identify all germ tubes counted in swelling assays. Where 

these rules were satisfied a germ tube was counted as being swollen when the cell wall 

curved outwards on both sides. Cells in all the recorded images were analyzed and the 

percentage occurrence of hyphal swelling was determined for control and perturbed 

wells. 
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2.7 In vivo [Ca 2i measurement by luminometry 

Luminometry was done using two different luminometers. Routine work was performed 

using an LB96P Microlumat luminometer (Berthold Technologies Bad Wilbad, 

Germany) controlled by a dedicated PC running the Microsoft Windows based Berthold 

WinGlow software. The luminometer allowed a maximum of two 100 xl injections 

into each well through built in injectors. Such injections were used to stimulate samples, 

or discharge aequorin from samples, when required. The luminometer was calibrated to 

the optimal working voltage of 1496 volts. 

For experiments investigating the effects of variations in the force of the mechanical 

perturbation stimulus or the high throughput [Ca 2+]assay, the Mithras LB 940 

Luminometer (Berthold Technolgies, Bad Wilbad, Germany) was used. The Mithras 

luminometer was controlled by a dedicated PC running the Microsoft Windows based 

Mikrowin 2000 (Berthold Technolgies, Bad Wilbad, Germany). The Mithras Lumi-

nometer has three injectors each of which can deliver a single injection of 1-100 ill liquid 

at three different speeds in a repeated luminometry protocol. 

Flat bottomed 96 well opaque white 12.8 cm x  8.8 cm microtitre plates (Thermo Fisher 

Scientific, Loughborough, UK) were used in all experiments involving microwell plate 

luminometry. Each well has a capacity of 350 il. 

In this study repeated measurement protocols were used. The repeated protocol measures 

light emitted from a number of samples over the course of one experiment. To achieve 

this, the detector of the luminometer must move from one sample to next. The time it 

takes to measure every sample in the experiment and return to the starting sample is 

called the cycle time. The time that each sample is measured for per cycle is called the 

measurement time. The standard measurement time was 1 s and the standard cycle time 

was 11.51 s for all luminometry. 
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2.7.1 Standard luminometry for 0 h, 6 h and 18 h [Ca 2+1 assays 

Microwell plates containing N crassa colonies (inoculated and grown as described in 

section 2.5.3.2) were placed in the temperature-controlled luminometer 10 min prior to 

measurement. Luminescence was then measured for 11 min with one of three stimuli 

being provided after 57 sec. Stimuli consisted of one 100 tl injection of liquid VgS 

medium (mechanical perturbation), VgS medium diluted in dH 20 [1:20 v/v] (hypo-

osmotic shock) or 10 mM CaCl2  (high external Ca2 ) (Zelter, 2004). A repeated 

measurement protocol was used to measure luminescence, for 1 sec intervals, of six 

sample wells every 11.51 sec for a total of 11 min 8 sec. Six extra wells in each plate 

were inoculated to determine the total amount of aequorin available to bind [Ca 2 ]. This 

was measured using a repeated measurement protocol lasting 11 min with one 100 p.1 

injection of 3 M CaCl 2, 20% ethanol after 57 sec and one 100 p.1 injection of 100 MM 

CaC12  after 5 min 57 sec for vegetative hyphae (Nelson et al., 2004). For experiments 

using germ tubes the injection of 3 M CaCl 2, 20% ethanol was sufficient. This protocol 

was known as a discharge protocol. Average background luminescence levels were 

measured by a repeated measurement protocol which took 5 readings from 96 wells 

(cycle time 176.2 s, measurement time 1 s). The average background luminescence for a 

well was subtracted from the experimental luminescence during calibration of [C2]. 

2.7.2 Luminometry with chemical treatments 

To investigate the effects of [Ca 2+] c  modulators chemicals were added to mmcrowells in 

100 p.1 aliquots 12 min prior to luminometry. Chemicals were dissolved in liquid VgS to 

minimise any osmotic stress. In cases where this was not possible, appropriate solvent 

controls were included. All chemical concentrations given refer to the final concentration 

in a microwell after addition of the chemical and any stimulus injection into the well. 
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The [Ca2 ] modulators used in this study included chemicals and defensin plant proteins. 

The defensins used in this study were MsDefl, RsAFP2, MtDef4 and KP4 initially 

dissolved in 10 mM or 20 mM Tris HCl pH 7.6 and were generously supplied by Dr. 

Dilip Shah, Rob Spellbrink and Anita Snyder (Donald Danforth Plant Science Centre, St. 

Louis, USA). 

2.7.3 Luminometry for high throughput [Ca 2+1  assay 

Ten min or 1 h before luminometry 50 p.1 aliquots of test compounds (40 p.1 VgS + 10 p.1 

chemical solution) were added to 93 wells of microwell plates containing N. crassa 

colonies (inoculated and grown as described in section 2.5.3.3). Microwell plates were 

then transferred to the Mithras Luminometer set to 24 °C and ran on a repeated 

luminometry protocol, designated HTS 5. This protocol recorded luminescence of 93 

wells for 10 cycles with a measurement time of 0.5 s and a cycle time of 83 s without 

injection or 168 s when an injection was administered in a cycle. After 4 cycles to 

establish resting [Ca 2 ], an injection of 50 p.1 liquid VgS was administered as the 

mechanical perturbation stimulus in cycle 5. One hundered p.1 3M CaCl 2  (25% ethanol) 

was injected in cycle 9 to allow calibration of [Ca 2+  ]. The ethanol concentration in this 

protocol was higher than in the standard protocol to give the same final ethanol 

concentration of 10%. 

2.7.4 Calibration and analysis of luminometer data 

2.7.4.1 Conversion of luminescence to [Ca 2+ 

Measurements of Relative Luminescence Units (RLU) obtained by the LB96P 

Microlumat luminometer were converted to values of [Ca 2+] c  by the term bert program 

developed by Alex Zelter (Zelter, 2004). Term bert was written in perl 
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(http://www.perl.com) and used the per! data language [PDL] (http://pdl.perl.org ) for 

complex multidimensional data manipulation. Three files were read into the program for 

each experiment: (1) background data, from measurement of wells containing media 

only; (2) sample data, from the actual experimental sample; and (3) discharge data, from 

samples assigned for discharge. Error type could be set to variance, standard deviation or 

standard error. 

Measurements of RLUs obtained by the Mithras LB 940 Lummometer were recorded in 

different file types to those generated by the LB96P Microlumat Luminometer. These 

files were not compatible with the Term Bert programme. In order to determine values of 

[Ca 2+]a formatted Microsoft Excel spreadsheet was used (created by Prof. Marc Knight, 

University of Durham). This spreadsheet used data from the same three files as term bert 

to determine [Ca2+] c  values for each time point where luminescence was measured. From 

this data average [Ca 2+] c  values along with standard deviation were determined using 

Microsoft Excel. 

For calibration of [Ca2+1 c  values for data produced by the high through put [Ca 2 ] assay a 

new Excel spread sheet was produced. This file used the same calculations as the original 

worksheet created by Mark Knight but adapted them for use with the different format and 

methods used in the high through put assay. 

2.7.4.2 	Determining characteristics of the Ca 2+  response 

In order to compare individual [Ca2+] c  responses, several characteristics of the response 

were calculated (Fig. 2.1): (1) average resting [Ca 2+]c  before stimulus application; (2) 

amplitude of the [Ca2+] c  transient; and (3) the full width half maximum (FWHM) (the 

width of the [Ca2+] c  transient at half maximum amplitude). Average resting [Ca 2+] c  before 

stimulus application was calculated as the average [Ca 2 ] for the 5 time points at the start 

of an experiment or the average of the 4 time points prior to mechanical perturbation for 

high through put assays (see section 2.7.3). The amplitude of the [C2] transient was 
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determined as the increase in [Ca 21 ] from the time point immediately before stimulus 

application to the highest value of [Ca 2+] c  reached after stimulus application. To calculate 

the values of FWHM linear interpolation was used. 

The points described in Fig. 2.1 refer to the calculation of the FWHM by the following 

equation: 

FWJIIIVI = (0.5 

This equation uses linear interpolation to determine the x value between x 1  and y. This is 

done by the assumption that the ratio of distance between Ymt & y(int+1) : Xjnt & X(mt+1) is 

the same as the ratio of distance between yt & y : xint  & y. 

This equation was setup in Microsoft Excel and was used for the routine determination of 

average values of FWHM for experimental data 
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Fig 2.1. Determination of FWI{M values by linear interpolation. Xpre  = time point before 

stimulus application (s). x m,,x  = time point at max [Ca2+] c  in response to stimulus (s). xint =  

time point before y < h12 (s). x11it+i = time point after y < h/2 (s). Yint = [Ca2 ] before y < 

h/2 ([Ca 2+].). Yint+I = [Ca2 ] after y < h/2 ([Ca2]).  y = half maximum [Ca 2+]([Ca2]).  h 

= maximum [Ca2+] c  in response to stimulus ([Ca 2+]C). 

2.8 Transformation and homokaryon purification of N. crassa 

2.8.1 Preparation of conidia for electroporation 

Two hundered and fifty ml conical flasks containing 100 ml solid VgS media were 

inoculated with conidial suspension and incubated at 24 °C for 7 days or until maximum 
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comdiation. The conidial suspension for inoculation was made by suspending conidia 

from a stock culture (see section 2.5.2.2) in 2 ml VgS media with 10 s vortexing. Three 

hundered p.1 aliquots of the resulting conidial suspension were then used for inoculation 

of each flask. Conidia were harvested by addition of 75 ml 1 M sorbitol (cooled to 4 °C) 

to the flask which was then mixed for 60 s. The suspension was then filtered through 3 

layers of sterile compressor pad material (8 cm 2, 17 threads/cm2) into a sterile 50 ml 

falcon tube. The filtrate was then centrifuged for 8 min at 4°C and 4000 rpm, supernatant 

was discarded and the pellet was resuspended in 50 ml 1 M sorbitol. This was then 

repeated 3 more times and after the last centrifugation the pellet was resuspended in the 

sorbitol remaining after decanting. Conidial concentration was then determined using a 

haemocytometer and the suspension was adjusted to 2.5 x  109  conidia! ml. 

2.8.2 Electroporation of N. crassa 

In a sterile 40 p.1 of the conidial suspension from section 2.8.1 was mixed with 2 pi DNA 

(1-5 p.g) and incubated on ice for 5 mm. The solution was then transferred to a 0.2 ml 

electro-poration cuvette and electroporated (resistance: 600 Ohms, voltage: 1.5 kVcm 1 , 

capacitance 25 oF, BioRad Gene Pulsertm, BioRad Laboratories Ltd., Herts, UK). When 

a beep was heard 1 ml 1 M sorbitol was added to the electroporation cuvette and mixed 

gently by Pasteur pipetting. Electroporated conidia were then added to 10 ml top agar at 

50 °C and poured onto a 20 ml bottom agar plate (Appendix A). After the agar had set, 

plates were inverted and incubated at 24 °C until colonies appeared (after 2-3 days). Once 

individual colonies were visible they were picked and transferred to VgS slants 

containing appropriate selection and incubated for 7 days at 24 °C. 
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2.8.3 Transformant screening and homokaryon purification 

Once transformants picked in section 2.8.2 had grown for 7 days they were screened for 

aequorin expression. A loop of conidia was suspended in 0.25 ml liquid VgS and 80 il 

aliquots of the resulting cell suspension were then transferred to 2 wells of a 96 well 

plate. Once all transformants had been added to the plate, a 15 nmol aliquot of coelen-

terazine dissolved in 15 tl methanol was added to 1.2 ml liquid VgS. Twenty i1 aliquots 

of this solution were added to each inoculated well in the microplate. The plate was then 

wrapped in foil and incubated for 24 h at 24 °C. After incubation the plate was 

transferred to the Microlumat Luminometer set to 24 °C and groups of six wells were ran 

under a 1.5 min discharge protocol with an injection of 3 M CaC1 2, 20% ethanol, at 57 s 

(repeated measurement, cycle time; 11.51 s, measurement time; 1 s). The luminescence 

emitted by each well at discharge injection was examined to identify any wells expressing 

aequorin. 

Any transformants shown to be expressing aequorin were then entered into homokaryon 

purification. Loops of spores from a transformant were suspended in 0.5 ml liquid VgS 

and the concentration of this suspension was determined by a haemocytometer. The cell 

suspension was then diluted to 1000 cells/ml in liquid VgS and a 150 tl aliquot of the 

diluted suspension was spread on a drug amended VgS plate (section 2.5.2.2). The plate 

was then sealed with paraflim and incubated overnight at 24 °C. The following morning 2 

colonies were excised from the plate and transferred into separate drug amended VgS 

slants. These slants were incubated at 24 °C for 7-10 days until maximum conidiation 

was achieved. The plating was then repeated until each initial transformant had been 

plated at least three times. 

To identify any transformants that had lost aequorin expression, 80 tl aliquots of the 

initial, more concentrated, cell suspension were inoculated into 2 wells of a 96 well 

microplate. Once all transformants had been added to the plate a 15 nmol aliquot of 

coelenterazine dissolved in 15 t1 methanol was added to 1.2 ml liquid VgS. 20 p.1 aliquots 

of this solution were added to each inoculated well in the microplate to give final 
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coelenterazine concentration of 2.5 xM in all wells. The plate was then wrapped in foil 

and incubated for 24 h at 24 °C. After incubation the plate was transferred to the 

Microlumat luminometer set to 24 °C and groups of six wells were ran under a 1.5 mm 

discharge protocol with an injection of 3 M CaC12, 20% ethanol, at 57 s (repeated 

measurement, cycle time; 11.51 s, measurement time; 1 s). No colonies were picked from 

any transformant strain that did not express aequorin. 

2.8.4 Modification of pAZ6 for expression of codon optimized aequorin 

with ignite selection 

The wild type aequorin expressing strain used in chapters 3, 4 and 6 used aequorin 

hygromycin selection. Knock out strains created by the Neurospora genome project 

http://dartmouth.edu/—neurosporagenome acquire hygromycin resistance during gene 

deletion (Section 1.3.2). Therefore, an alternative selection marker was required to 

express aequorin in deletion mutant strains. 

Hygromycin resistance is the most effective and best established antibiotic resistance 

marker for N. crassa. Phleomycin and bleomycin resistance were reported as potential 

antibiotic selection markers in N. crassa and Aspergillus fumigatus (Vogt et al., 2005). 

However I found that toxicity tests with phleomycin did not give reproducible growth 

inhibition of N. crassa (data not shown). An alternative selection marker is ignite (also 

known as basta, phosphinothricin or PPT) resistance conferred by expression of the bar 

gene (Pall, 1993). 

HpaI (NEB UK) was used to excise the hygromycin resistance gene from pAZ6 

(Appendix B) and the linearized pAZ6 fragment was dephosphorylated by antarctic 

phosphatase (NEB UK). A fragment containing a TrpC promoter, the bar gene for ignite 

resistance, and a TrpC terminator was excised from the pBARGRG1 plasmid ((Pall and 

Brunelli, 1994) Appendix B) using PmlI (NEB, UK) and EcoRV (Promega, UK). From 

this digest the 2.3 kb fragment was isolated and ligated to the pA7-6 fragment using DNA 



Chapter 2. Materials and Methods 	 54 

ligase (Promega UK) to give the pAB plasmid. pAB was extracted from multiple E. coli 

colonies and a restriction analysis using XbaI (Promega, UK) was performed. From 

plasmids showing correct orientation of the bar gene, the pAB13 and pAB19 plasmids 

were selected for sequencing. To confirm the correct orientation of the bar fragment the 

junction between the fl on of pAZ6 and the bar fragment of pAB13 and pAB19 was 

sequenced using a primer with reverse complementary sequence to bp 235 to 255 of the 

fl. on - 3' TGA TTA GGG TGA TGG TTC AC 5'. The sequencing reaction identified 

the HindIII, ClaI, XhoI, ApaI and KpnI restriction sites of the pBARGRG1 polylinker 

adjacent to the fl origin of replication in both plasmids. In pABl9 the MluI and NsiI sites 

from the pBARGRG1 TrpC terminator were clearly identified providing further 

confirmation that the fragment had been inserted in the correct orientation. On the basis 

of the sequencing reaction pABl9 was selected for future use (Fig. 5.1). 
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Fig. 5.1. Restriction map of the pAB19 plasmid. Polylinker 1: T7.KpnI.ApaLXhoI.SalI. 

ClaI.HindIII; Polylinker 2: XbaI.NotI.SacI.T3; Polylinker 3: KpnI.ApaI.XhoI. ClaI. 

HindIII. 
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2.9 Replication, Extraction and Analysis of Plasmid DNA 

2.9.1 Transforming E. coli 

Amplification of plasmid DNA was performed by transformation of competent E. co/i 

DH5a by electroporation (BioRad Gene Pulser, BioRad Laboratories Ltd., Herts, UK) 

with appropriate DNA as described in (Sambrook et a/., 200 1) 

2.9.2 Extraction of plasmid DNA 

Plasmid MiniPrep (GenElute, Sigma, St. Louis, USA) and Plasmid Midiprep (PureLink 

Hi Pure, Invitrogen, Paisley, UK) plasmid isolations were performed according to the 

manufacturer's instructions. 

2.9.3 Determination of DNA concentration 

Eight hundered p1 of a 1:100 dilution of DNA:dH20 was pipetted into a quartz cuvette 

placed in a spectrophotometer (BioRad Smart Spec 3000TM, BioRad Laboratories Ltd., 

Herts, UK). A260 and A 280  were measured, with 800 p1 dH 20 as a blank, and used to 

determine the DNA concentration (mg/ml). Sample purity was assessed by the A 260:A280 

ratio in which a ratio of less than 1.8 indicates protein contamination. 

2.9.4 Restriction and Analysis of DNA 

Restriction digests were performed according to the manufacturer's instructions for the 

enzymes used. Restriction enzymes were purchased from New England Biolabs (New 
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England Biolabs Ltd., Hitchin, UK) or Promega (Promega Biosciences, Inc., Southam-

pton, UK). DNA agarose gel electrophoresis was performed as described in Sambrook 

and Russet (Sambrook et al., 2001), and a 1 kb X DNA ladder (NEB) was used as a 

standard. Gels were run in BioRad MiniSubTM (BioRad Laboratories Ltd., Herts, UK) 

DNA cells at 5 V/cm then visualized using ethidium bromide and UV light. 

2.9.5 DNA extraction and purification from agarose gels 

DNA bands were excised from agarose gels, transferred to a tube and weighed. DNA was 

then purified with a GenEluteTh  gel extraction kit (Sigma, Poole, UK) according to the 

manufacturer's instructions. 

2.9.6 Ethanol Precipitation of DNA 

Ten % 3M sodium acetate (pH 5.2) was added to DNA in an Eppendorf tube. Two 

volumes of chilled ethanol were then added and the solution was centrifuged at 13000 

rpm, 4 °C for 30 mm. After centrifugation the supernatant was removed and the pellet 

was dried in a speed vacuum. 1 vol. of 70% ethanol was then added and the pellet was 

centrifuged for 5 min at 13000 rpm. The supernatant was then removed and the pellet was 

dried again before the DNA was resuspended in the desired volume of dH 20. 

2.9.7 Preparation and ligation of DNA 

DNA fragments for ligation were prepared by restriction digest, separated by agarose gel 

electrophoresis and extracted, as described in sections 2.9.4 and 2.9.5. Where appropriate, 

DNA was dephosphorytated using Antartic phosphatase (New England Biolabs Ltd., 

Hitchin, UK) which was then removed by ethanol precipitation as described in section 
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2.9.6. DNA was ligated using T4 DNA polymerase (Promega Biosciences, Inc., South-

ampton, UK), according to the manufacturer's instructions. After ligation the reaction 

mixture was transformed as described in section 2.9.1, and E. co/i transformants were 

analysed by STET plasmid DNA extraction (section 2.9.8) and restriction digests (section 

2.9.4). 

2.9.8 STET plasmid DNA extraction from E. coli 

An E. co/i colony was transferred from an LB plate culture to 50 p1 of STET buffer in an 

Eppendorf tube using a sterile glass rod. 4 jil of lysozyme was added and the solution was 

mixed by repeated pipetting. After 10 min incubation at room temperature the tube was 

placed in a heating block set to 95 °C for 50 s and centrifuged for 10 mm (13000 rpm, 

room temperature). The resulting pellet was removed and 40 p1 of isopropanol was added 

to the supernatant. The mixture was then centrifuged at 13000 rpm for 30 min at 4 °C 

after which the supernatant was removed and the pellet was washed with 70% ethanol. 

The pellet was then dried in a speed vacuum for 2 min and a restriction digest and 

analysis was performed (section 2.9.4). 

2.9.9 Primer design and DNA sequencing 

Primers were supplied by Sigma Genosys (Sigma-Aldrich Company Ltd., Poole, Dorset, 

UK). DNA sequencing was performed by the School of Biological Sciences Sequencing 

Service, Ashworth Laboratories, University of Edinburgh, Edinburgh. 



Chapter 3 

Characterisation of the [Ca 2+  1 and 

Physiological Responses to Mechanical 

Perturbation 

3.1 Introduction 

Expression of recombinant aequorin is now a well established technique for measurement 

of [Ca2 ] in filamentous fungi. Codon optimization of the aeqD gene facilitated great 

58 
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increases in the levels of recombinant aequorin production in a range of species (Nelson 

et al., 2004). These methods were further improved by the creation of software for fast, 

automated calibration of luminescence into values of [Ca 2 ] (Zelter, 2004). [Ca2 ] 

responses to three external stimuli, namely mechanical perturbation, hypo-osmotic shock 

and high external Ca2 , were identified and characterized in established colonies of 

Aspergillus awamori and Neurospora crassa (Nelson, 1999; Nelson et al., 2004; Zelter, 

2004). These [Ca2+]c  responses had stimulus specific characteristics but the physiological 

roles of the responses were not assessed (Nelson et al., 2004; Zelter, 2004). 

These stimuli were all administered by injection of different liquids into microwell 

cultures: iso-osmotic growth media for mechanical perturbation, growth media diluted 

1:20 with dH20 for hypo-osmotic shock and 100 mM CaC12 for high external Ca 2 . This 

method of application results in there being elements of mechanical perturbation in both 

the hypo-osmotic and high external Ca 2  stimuli. The CaC12  in the solution used for the 

high external Ca 2+  stimulus is dissolved in dH 20 and therefore there may be an element 

of osmotic stress in this stimulus. As mechanical perturbation is administered by injection 

of iso-osmotic growth media into a microwell no other stimuli are involved. For these 

reasons the 'cleaner', more specific mechanical perturbation stimulus was investigated in 

more detail in the research described in this chapter. 

The aims of the work described in this chapter were: (1) to determine the [CW +] c  response 

to mechanical perturbation of three different cell types (conidia, germ tubes and 

vegetative hyphae); (2) to develop a robust and accurate assay for the effects of Ca 2  

modulators on [Ca2 ] responses in N crassa; (3) to identify a quantifiable response to 

mechanical perturbation. 
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3.2 Results 

3.2.1 Refinement of [Ca 2+1 measurement using recombinant codon 

optimized aequorin 

Previous studies used the presence of hygromycin B in the growth media as selective 

pressure to maintain expression of codon optimized aequorin (Nelson, 1999; Kozlova-

Zwinderman, 2002; Nelson et aL, 2004; Zelter, 2004). To improve the comparison of 

results obtained with transformed cultures with results from wild type cultures, 

hygromycin B was removed from the growth medium used to prepare conidia for [Ca 2 ] 

measurement. Three N crassa cultures were grown in the absence of hygromycin B for 

30 sub cultures and no significant reduction in discharge luminescence was observed. For 

these reasons all N. crassa cultures to be used for luminometry were grown in the 

absence of hygromycin B for 7 days after which conidia were harvested and used for the 

measurement of [Ca2 ]. 

3.2.2 [Ca 2+1  responses in vegetative hyphae 

To assess whether my experimental approach for preparing and manipulating N. crassa 

produced the same results as previously obtained by Zelter (2004), vegetative hyphae in 

18 h cultures were subjected to mechanical perturbation, hypo-osmotic shock and high 

external Ca 2+  treatments. 
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Figure 3.1. [Ca 2 ] responses to mechanical perturbation, hypo-osmotic shock and high 

external Ca2 . The arrow at 57 seconds shows the point when the stimulus was applied. 

The [Ca 2+]response to hypo-osmotic shock was slightly more prolonged than the 

response to mechanical perturbation with a significantly larger FWHM value (p = < 0.01) 

(Fig. 3.1). The response to high external Ca 2+  resulted in a greater amplitude compared 

with the response to mechanical perturbation. This occurred despite a more rapid removal 

of Ca2  from the cytoplasm as the FWHM was significantly smaller than in the 

mechanical perturbation response (p = < 0.05). The features of these responses are in 

accordance with the results obtained by Zelter (2004) providing validation of the assay 

method used in this study. 

3.2.2.1 Dose dependency of the mechanical perturbation response 

As the mechanical perturbation stimulus is generated by the injection of iso-osmotic 

growth medium into a microwell, altering the speed with which media is injected into a 

microwell, and the volume of medium injected at a given speed, will alter the strength of 

the mechanical perturbation stimulus (Haley et al., 1995). The Berthold Mithras 

Luminometer has three different speeds of injection and injection volume can be set to 

any value between 1 and 100 p.1. These features were used to test the dose dependency of 

the [Ca 2 ] response to mechanical perturbation. 
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Fig 3.2. A. The [Ca2+] c  response of vegetative hyphae to mechanical perturbation at 

varying injection speeds. Arrow represents the administration of a 100 p.1 injection of iso-

osmotic growth medium. B. Amplitude of the [Ca 2+] c  response to mechanical perturbation 

with varying injection volume and injection speed. 

Figure 3.2 demonstrates that amplitude of the [Ca 2+] c  response to mechanical perturbation 

is dose dependent with respect to the strength of mechanical perturbation. The small 

increases with differing injection volumes suggest that further increases in the strength of 

mechanical perturbation may cause further increases in the amplitude of the [Ca 2 ] 

response. One potential problem with these measurements is that with the increased force 

hyphae may have ruptured allowing Ca2  in the external media to mix with cytoplasmic 

aequorin. This could result in artificially high [Ca2+] c  response amplitudes. When 

luminescence values from experimental and discharge protocols were examined, the 

luminescence readings in the discharge protocols were vastly in excess of the 

experimental readings. This demonstrates that the total pool of aequorin in the hyphae did 

not interact with external Ca 2 , and therefore hyphae were not ruptured. It should be 

noted that this data shows the [Ca2+] c  response of a population of N. crassa to mechanical 

perturbation. Increased forces of mechanical perturbation may result in a greater 

percentage of the population within a microwell responding or an increased response in a 

fixed population of cells. The data presented in Fig. 3.2 cannot distinguish these two 

possibilities. 
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3.2.2.2 	The role of extra-cellular Ca 2+ in the [Ca 2+1 response to mechanical 

perturbation in vegetative hyphae 

Despite a range of in vitro evidence, release of Ca2  ions from intracellular stores of 

filamentous fungal cells has not been previously demonstrated satisfactorily in vivo. The 

highly selective Ca 2  chelator BAPTA was used to remove Ca 2+  ions from the 

extracellular medium (initial [Ca 2 ] 0.68 mM in liquid VgS medium). 
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Fig. 3.3. A. [Ca2 ] response of vegetative hyphae to mechanical perturbation in the 

presence of BA-PTA. Arrow represents time of administration of mechanical perturbation 

stimulus. B. Amplitude of the [Ca 2+] c  response in the presence of varying concentrations 

of BAPTA. 

. Figure 3.3 shows that extracellular Ca 2+  is involved in the [Ca2+] c  response to mechanical 

perturbation. Figure 3.313 suggests the inhibition by BAPTA is dose dependent. In Fig. 

33A there is a reduction in resting [Ca 2 i caused by 5 mM BAPTA. At this 

concentration, Ca 2  chelation may be complete to the extent that the concentration 

gradient across the plasma membrane is reversed. If this is the case, and removal of C2 

at 5 mM BA-PTA is complete, then Ca2  ions released in response to mechanical 

perturbation must have originated from intracellular Ca 2  stores. 
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3.2.3 The effects of mechanical perturbation on germ tubes 

In the vegetative hyphal cultures examined in section 3.2.2 a hyphal mat formed above 

the growth medium in the microwell. This growth outside of the liquid media may inhibit 

the even distribution of chemical agents to all of the vegetative hyphae in a [CW +] c  assay, 

potentially resulting in local concentrations varying significantly. The hyphal mat will 

encounter the mechanical perturbation stimulus before hyphae in the liquid medium 

below the mat which might generate an uneven stimulus distribution. A further problem 

is that an 18 h culture contains different types of differentiated hyphae. It is important to 

emphasise that when examining the [Ca 2+] c  response in this assay we are observing the 

[Ca2 ] response of an entire culture, not the response of individual hyphae. In order to 

gain more reliable information, the individual colonies in a microwell should be as 

homogeneous as possible. As germ tubes have not differentiated into different cell types 

and do not form a hyphal mat they should represent a more homogeneous culture to 

investigate with this [Ca2+] c  assay. 
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3.2.3.1 	Sensitivity of germ tubes to mechanical perturbation 
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Fig. 3.4. The [Ca2 ] response of germ tubes of different ages to mechanical perturbation. 

A. Percentage germination of wild type N. crassa strain 22A3AWTAZ6 with time. 

B-F. Mechanical perturbation responses of germ tubes from 2-6 h after inoculation. 

Arrows represent point of stimulus administration. 
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The rate of conidial germination was measured in 200 .tl aliquots from conidial 

suspensions containing lx 106  comdia per ml. Conidial germination was initiated within 1 

h of inoculation and was close to 100% after 6 h (Fig. 3.4A). From 2-5 h the amplitudes 

of the [Ca2+] c  response to mechanical perturbation successively increased. There was 

little difference in the amplitudes of [Ca2 ] responses at 5 and 6 h. 

The rate of germination correlated well with the increase in total aequorin present (Fig. 

3.5). The amount of aequorin present in conidia and conidial germ tubes at the 0 and 1 h 

timepoints were too low to obtain reliable [Ca 2+] c  measurements (see section 3.2.3.2). 
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Fig. 3.5. Correlation of rate of conidial germination with amount of aequorin in conidial 

germlings. Bars = total discharge luminescence. Solid line = percentage germination. 

When the experiment was repeated, [Ca 2+] c  responses, aequorin accumulation and 

germination rates were all very similar. This demonstrates that germ tube cultures are 

physiologically homogeneous, produce sufficient cytoplasmic aequorin for reliable 

assaying of [Ca 21 ], and produce a robust [Ca2 ], response to mechanical perturbation. 

After 6 h growth, germination was found to be repeatedly above 95% with sufficient 

levels of aequorin production. The results of Fig. 3.4 and Fig. 3.5 demonstrate that 

assaying N. crassa at 6 h post inoculation provides a uniform cell population producing 

sufficient aequorin for accurate measurement of [Ca 2 ]. Six h cultures of germlings were 

selected for future experiments because they had reached> 95% germination and they 
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had accumulated sufficient aequorin to generate highly reproducible Ca 2  signatures in 

response to mechanical perturbation. 

3.2.3.2 Measurement of [Ca 2+1  responses at low levels of aequorin expression 

In the last section I concluded that when aequorin expression is too low, measurements of 

[Ca 2+
]are invalid. This is because the calibration used to convert aequorin luminescence 

to [Ca2+] c  produces artificially elevated values for resting [Ca 2+  ]. This is shown by 

plotting resting [Ca2 ] as the y axis, and the total RLU emitted in the discharge protocol 

as the x axis (Fig. 3.6). 
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Fig. 3.6. Graph demonstrating effect of the level of available aequorin on resting [Ca 2+]C. 

The two data points labelled on the graph have values as follows: A, total RLU = 3364, 

Resting [Ca 2 J = 0.122 pM; B, total RLU = 7805, Resting [Ca 2 ] = 0.0837 jiM. 

The data presented in Fig. 3.6 was compiled from [Ca 2+]assays performed by the 

standard method described in section 2.7.1. The length of culture incubation varied (0-30 

h) as did the temperature of incubation prior to luminometry (4 °C or 24 °C). However all 

cultures were transferred to the luminometer (set at 24 °C) 10 min prior to measurement 

to allow the measurement temperature to reach 24 °C. 
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Figure 3.6 shows that for quantitative measurement of [Ca 2+] c  a threshold level of cellular 

aequorin, determined from discharge data, is required. From the information presented in 

Fig. 3.6 this level should be 7800 RLU (point B, Fig. 3.6). 

3.2.3.3 	[Ca 2lc  responses of germ tubes to mechanical perturbation, hypo-osmotic 

shock and high external Ca 2+ 
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Fig. 3.7. The [Ca2 ] responses of 6 h cultures to various stimuli. The arrow at 57 seconds 

shows the point of stimulus application. 

Figure 3.7 shows the [Ca 2 ] responses of germ tubes to mechanical perturbation, hypo-

osmotic shock and high external Ca 2 . The responses of germ tubes were similar to those 

obtained by vegetative hyphae (section 3.2.2). The [Ca 2+]response to hypo-osmotic 

shock again exhibited a significantly greater FWHM value than the response to 

mechanical perturbation (p = < 0.01 ). An interesting difference in the data between the 

two cell types was that the FWHM values were much more variable in vegetative hyphae 

than in germ tubes. This was demonstrated by the standard deviations for the FWHM 

values in vegetative hyphae being typically 10 times greater than in germ tubes. This 

provides further evidence that germ tubes provide a more consistent and reliable cell 

population in which to analyse [Ca 2 ] responses to various stimuli. 
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3.2.3.4 Dose-dependency of the [Ca 2+1 response to mechanical perturbation in 

germ tubes 

In vegetative hyphae the amplitude of the [Ca 2 i response to mechanical perturbation 

was found to be dose-dependent with respect to the strength of mechanical perturbation 

(see section 3.2.2.1). This showed that either the amplitude of [Ca 2+]responses increases 

in all cells that respond or that the number of cells that respond to the mechanical 

perturbation stimulus is increasing. 
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Fig 3.8. Dose-dependency of [Ca 2+] c  response to mechanical perturbation in germ tubes. 

A. [Ca2-'-] c  responses to injection of 100 Lil VgS media at different injection rates. Arrow 

represents point of medium injection. B. Amplitudes of [Ca 2+] c  responses to a range of 

different injection volumes at different rates of injection. 

Figure 3.8 shows that the amplitude of the [Ca 2 ] response to mechanical perturbation in 

germ tubes is also dose-dependent with respect to the strength of the mechanical 

perturbation. Figure 3.8A clearly shows a significant increase in the amplitude of the 

[Ca2+] c  response when injection speed, and therefore strength of mechanical perturbation, 

was increased (p = < 0.01). Figure 3.813 shows that successive increases in injection 

volume caused a progressive increase in the amplitude of [Ca 2 ] responses. This was 

observed at both injection speeds but was more pronounced and more consistent at the 

fast injection speed. 
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The gradual increase in [Ca 2 ] amplitudes at fast injection speed was greater and more 

consistent than the increase observed in vegetative hyphae (see section 3.2.2.1). The 

results presented in Figure 3.2 and Figure 3.8 shows that [Ca 2+]responses to mechanical 

perturbation of germ tubes are more reproducible than vegetative hyphae. 

3.2.3.5 Effects of extracellular pH on the [Ca 21  response to mechanical 

perturbation 

[Ca 2+] c modulating agents may modify the pH of media in which they are dissolved. Any 

alteration of external pH may effect the movement of ions across the plasma membrane 

and increased alkalinity inhibits Ca 2  removal after high external Ca 2  treatment in 

S. cerevisiae (Forster and Kane, 2000). In previous work chemicals were administered in 

the medium used to generate the mechanical perturbation stimulus. An alternative 

approach is to add aliquots of the chemical dissolved in VgS media before the stimulus is 

applied. This method gives chemicals the chance to spread throughout a cell suspension 

and to interact with any potential targets in the cells. To examine the effects of these 

different approaches aliquots of VgS media were adjusted to a range of pH values using 

hydrochloric acid or sodium hydroxide. 

Table 3.1 Effects of injection and pre-treatment of pH adjusted VgS media. Effects on 

amplitude were tested using students t-test and all effects were found to be significant at 

the 0.01 level. 

pH of VgS 	Effect on amplitude of [Ca 2i 	Effect on amplitude of [Ca 2+1' 

medium 	response when injected 	 response when pre-treated 

4.1 Decrease 	- Decrease 

7.6 Increase No significant effect 

8.0 Increase No significant effect 

9.6 Increase No significant effect 
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Table 3.1 summarizes the results of the pH effects on [Ca 2 ] responses to mechanical 

perturbation. In all experiments, increasing the alkalinity of the VgS media added 

increased the resting [Ca 21 ] (data not shown). This effect became progressively more 

pronounced with increasing alkalinity. In the two different methods used to alter pH, pre-

treatment displayed far less effect on the [Ca 2+] c  transient. Adding solutions prior to 

stimulation allows the solutions time to mix with the cell suspension, potentially giving 

better distribution of a possible [CW +] c  modulator. Better distribution will reduce 

localized variations in concentration and provide a more reliable and accurate assessment 

of a [Ca2+]c  modulator. For these reasons it was decided that in all future [Ca 2 ] assays 

pre-treatment should be the method of addition for all potential [Ca 2+] c  modulators. 

3.2.3.6 Involvement of extracellular Ca 2+  in the [Ca 24i response to mechanical 

perturbation 

Saccharomyces cervisiae produces a [Ca 2 ] response to hypo-osmotic shock but not 

mechanical perturbation (Batiza et al., 1996). The [Ca2 ] response to hypo-osmotic 

shock involves influx of both external Ca2+ 2+ and Ca from internal stores (Batiza et al., 

1996). In section 3.2.2.2, evidence was presented that showed the [Ca 2+] c  response to 

mechanical perturbation in vegetative hyphae may involve intracellular Ca 2  release. 
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Fig. 3.9. A. The effect of 3 mM and 5 mM BAPTA on the [Ca2 ] response to mechanical 

perturbation. B. The effect of 3 mM and 5 mM BAPTA on the [Ca2+] c  response to hypo-

osmotic shock. Arrows represent time of stimulus administration. 

In the initial test 3 mM and 5 mM BAPTA were found to completely abolish the [Ca 2 ] 

responses to both mechanical perturbation and hypo-osmotic shock (Fig. 3.9). This 

suggests that Ca 2+  chelation was complete and that the [Ca 2+] c responses to both 

mechanical perturbation and hypo-osmotic shock were completely dependent upon influx 

of external Ca 2 . 

To confirm the results of Ca 2  chelation, the responses to mechanical perturbation and 

hypo-osmotic shock were analysed in media in which all Ca 2+  ions had been omitted (Fig. 

3.10). To ensure normal morphology and viability of the conidia used in this experiment, 

the conidia were harvested from cultures grown on normal Ca 2  containing media. For 

the Ca2t free experiments 5 ml Ca2  free liquid VgS medium was added to a slant which 

was then vortexed and the resulting cell suspension was removed as quickly as possible. 

Removing Ca2  ions from around conidia by this method completely abolished the 

[Ca 2+]response to mechanical perturbation (Fig. 3.10A). In contrast, the response to 

i hypo-osmotic shock in the Ca 2+  -free medium resulted n a much reduced [Ca 2+ 
 ] 

amplitude (Fig. 3.10B). 
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Fig. 3.10. A. [Ca +] c  responses to mechanical perturbation and hypo-osmotic shock in 

standard, Ca2 -containing VgS media. B. [Ca 2+]responses to mechanical perturbation 

and hypo-osmotic shock where Ca 2+  ions were omitted from all media used in the 

experiment. Arrows represent time of stimulus administration. 

To further assess whether the [Ca 2+] c  response to hypo-osmotic shock involves a small 

element of intracellular Ca 2  release, the effects of lower concentrations of BAPTA were 

investigated (Fig. 3.11). 
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Fig. 3.11. [Ca 2+]responses to mechanical perturbation and hypo-osmotic shock in the 

presence of low BAPTA concentrations A. [Ca 2+]response to mechanical perturbation. 

B. The [Ca2+] c  response to hypo-osmotic shock. Arrows represent time of stimulus 

administration. 
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At 1 mM and 0.75 mM BAPTA there was a stimulus-specific effect on the Ca 2  

responses to mechanical perturbation and hypo-osmotic shock (Fig. 3.11). At 

concentrations of> 1.5 mM the [Ca2 ] responses to both stimuli were abolished (data not 

shown). The difference in the sensitivity of both responses to external [Ca 2 ] suggests 

that there may be variations in the mechanisms by which the [Ca 2+] c  responses are 

generated. 

3.2.3.7 Physiological response of germ tubes to mechanical perturbation - the 

hyphal swelling assay 

The next stage of this work was to determine if germ tubes exhibited a physiological 

response to mechanical perturbation, and if the [Ca 2+]and the physiological responses 

were part of the same signalling process. Germ tubes grown and subjected to mechanical 

stimulation were imaged with a 20 x  dry objective in a clear plastic microwell plate. 

When 6 h cultures of N crassa were subjected to mechanical perturbation by injection of 

iso-osmotic growth media, swelling at the germ tube tip was observed in a large 

proportion of the cells (Fig. 3.12). Figure 3.12A shows an image of an unperturbed germ 

tube (control) recorded before administration of mechanical perturbation. Figure 3.1213 

shows a germ tube 20 min after having been subjected to mechanical perturbation in 

which the tip of the germ tube has swollen. The emergence of a new hypha is also visible 

in this image and recovery of polarized growth typically began 20 min or more after 

mechanical perturbation. 
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Fig. 3.12. Germ tube swelling caused by mechanical perturbation. A. Unperturbed germ 

tube with no hyphal swelling. B. Germ tube after mechanical perturbation. Note the 

emergence of a new germ tube from the swelling. 

Mechanical perturbation appeared to temporarily disrupt polarized growth and cause a 

transient non-polar growth of germ tube tips. The extent of swelling varied between 

different germ tubes and due to the nature of the mechanical perturbation stimulus it was 

not possible to image a specific individual germ tube before and after the stimulus was 

administered. 

Because of this variation, the swelling response was measured in populations of 6 h old 

germ tubes subjected to mechanical stimulation (Fig. 3.13). To assess the physiological 

response in more detail the method of microplate preparation used in the [Ca 2 i assay 

was optimized for microscopy (section 2.6.3). 
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Fig. 3.13 Requirement of external Ca 2  for the germ tube swelling in response to 

mechanical perturbation. The y-axis represents the percentage increase in occurrence of 

swelling in germ tubes compared with the unperturbed control germ tubes. 

The occurrence of swelling in response to mechanical perturbation was significantly 

higher than in unperturbed germ tubes (n = 6, p < 0.05) (Fig. 3.13). The mechanical 

perturbation stimulus responsible for the increase in apical swelling was identical to that 

used in [Ca2+] c  assays. To determine the involvement of the [Ca 2 ] response to 

mechanical perturbation in the swelling response, Ca 2 -free VgS medium was used. In 

Fig. 3. 10, removal of external Ca 2+  abolished the [Ca2+] c  response to mechanical 

perturbation and Fig. 3.13 shows it caused a clear and significant inhibition of apical 

swelling (n = 6, p = <0.01). Despite the large inhibition of apical swelling, the failure of 

Ca 2+  removal to completely abolish apical swelling provides evidence that other factors 

may be involved in this swelling response. 

3.2.5 Conidial response to mechanical perturbation 

In section 3.2.3.1, it was shown that insufficient aequorin was available for accurate 

measurement of [Ca2+]c  in the 0 h and 1 h cultures. In this section experiments are 

described in which possible changes in [Ca 2+]were analysed in ungerminated conidia 

producing very low levels of aequorin. 
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At low levels of aequorin, the amount of luminescence detected during the response to 

mechanical perturbation may be very close to that of background luminescence. It was 

therefore possible that conidia do produce a [Ca 2 ] response to mechanical perturbation 

but because of the low levels of aequorin this response may not normally be detected. 

In an attempt to increase the level of aequorin in a conidial suspension, inoculated clear 

plastic microwell plates were incubated in the dark at 4 °C for 0, 1, 2, 3, 4, 5, 6 and 24 h 

prior to luminometry. Percentage conidial germination and the [Ca 2+] c  responses of the 

samples were analysed in plates prepared in parallel. Incubation at 4 °C had previously 

been found to increase aequorin production without affecting the [Ca 2 ] response to 

hypo-osmotic shock in S. cerevisiae (Batiza et al., 1996). For luminometry, microwell 

plates were transferred to the Microlumat luminometer (set to 24 °C) 10 min prior to 

experimentation to reach normal measurement temperature. 
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Fig. 3.14. Average total RLU in control RLU profiles and conidial suspenions subjected 

to standard discharge protocols. Control 1- injection of liquid VgS medium into liquid 

VgS medium; Control 2 - injection of liquid VgS medium into wild type N. crassa 

conidial suspension containing 2.5 tM coelenterazine; Control 3 - injection of liquid 

VgS into aequorin expressing N. crassa conidial suspensions in the absence of 

coelenterazine. n values for controls were all n = 30 and for all other experiments n = 6. 
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Discharging the total aequorin in conidial suspensions incubated for different periods at 4 

°C showed that the amount of aequorin present increased with time (Fig. 3.14) despite 

there being no increase in germination (Fig. 3.15). Even after 24 h incubation at 4 °C, 

however, conidial suspensions did not produce enough luminescence (>7800 RLU) 

required for accurate calibration of [Ca 2+] 
 (

see section 3.2.3.2). Nevertheless, mechanical 

perturbation of these conidial suspensions suggested that there might be a very small 

increase in luminescence at the time of mechanostimulation (Fig. 3.15). 

0 	 200 	 400 	 600 	 0 	 200 	 400 	 600 

Time (s) 	 Time (s) 

Fig. 3.15. [Ca2+] c  responses of conidia to mechanical perturbation. A. Response to 

mechanical perturbation after 6 h incubation at 4 °C. B. Response to mechanical 

perturbation after 24 h incubation at 4 °C. Arrows represent the application of the 

mechanical perturbation stimulus. 

To investigate the possibility that the luminescence increase might have been caused by 

the injection of the mechanical perturbation stimulus, three controls were analysed: (1) 

injection of liquid VgS medium into a microwell plate containing liquid VgS medium on 

its own; (2) injection of liquid VgS medium into a microwell containing untransformed 

wild type N. crassa and 2.5 iM coelenterazine; and (3) injection of liquid VgS medium 

into a microwell containing liquid VgS medium with an aequorin-expressing N. crassa 

strain in the absence of coelenterazine. 
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Fig. 3.16 RLU profiles of injection controls. Arrows represent time of injection. 

Individual controls are as follows: 

injection of liquid VgS into Vogel's media 

injection of liquid VgS into wild type N. crassa solution and 2.5 M coelenterazine 

injection of liquid VgS into aequorin expressing N. crassa strain 22A3AWTAZ6 in 

the absence of coelenterazine. 

In each case the microwell plates were incubated in the dark at 24 °C for 6 h prior to 

luminometry. The mean RLU profiles are shown in Fig. 3.16. Despite the generation of 

aequorin luminescence being impossible for each treatment, injection of VgS media still 

caused a significant increase in luminescence in every control (p = < 0.01). Thus the very 

small increase in luminescence observed in Fig. 3.15 is an artefact due to the forceful 

addition of VgS liquid medium through the injectors into the microwell. 

The results from these experiments demonstrate that conidia, in contrast to germ tubes or 

vegetative hyphae, do not produce a [Ca 2 ] response to mechanical perturbation. 
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3.3 Discussion 

3.3.1 Germ tubes provide a sensitive and reliable population for [Ca 2+1' 
 

assays 

Previous analyses of the [Ca 2 ] responses in filamentous fungi using the aequorin [Ca 2 i 
assay have used established mature hyphal colonies. The results obtained here 

demonstrate that 6 h old cultures containing germ tubes produce more reproducible 

results and are thus more suitable for the aequorin assay. After a 6 h incubation germ 

tubes contained sufficient aequonn for accurate and reliable [Ca 2+  ] measurement. When 

aequorin consumption in an experiment represents a large proportion of the available 

aequorin present, the linear relationship between aequorin luminescence and Ca 2  binding 

may be adversely affected (Zelter, 2004). For this purpose the previously developed term-

bert software for [C2] calibration (section 2.7.4) flags any experiment in which 

aequorin consumption exceeds 50% of total available aequorin. Results obtained here 

indicated that when the total aequorin produced < 7800 RLU then the resting [Ca 2 ] 
calculated was artificially increased. 

3.3.2 [Ca 2+1  responses to mechanical perturbation and hypo-osmotic 

shock 

Previous work has examined the [Ca 2+]responses to three stimuli administered by 

automated injection. Of these stimuli, mechanical perturbation was the only stimulus that 

did not contain an element of the other stimuli. For this reason it was selected for more 

thorough examination. Removing Ca 2  from the external medium was found to inhibit 

both the [Ca2+] c  responses to mechanical perturbation and hypo-osmotic shock although 

inhibition of the latter was only partial. 
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Although the difference in FWHM between hypo-osmotic shock and mechanical 

perturbation was small, it was consistent and significant. These fmdings suggest that the 

kinetics, and the Ca 2+  signalling proteins involved in each, of the two [Ca2+] c  responses 

may differ. Hypo-osmotic stress has been previously used to apply membrane tension to 

N crassa hyphae (Silverman-Gavrila and Lew, 2003). Increased membrane tension may 

alter the activation of stretch activated CPCs which may be involved in Ca 2  influx. 

Although the differences between the [Ca 2+] c  responses were small, the different results 

obtained with BAPTA suggest that chemical [Ca 2+] c  modulators may assist in 

distinguishing the different components of the Ca 2  signalling machinery that are 

responsible for the generation of the different Ca 2+  signatures. 

3.3.3 Germ tubes respond to mechanical perturbation by Ca 2+ 
 

dependent apical swelling 

Mechanical perturbation resulted in a reproducible increase in apical germ tube swelling. 

The connection between the physiological and [Ca 2+] c  response was established by 

removal of Ca2  from the media. Previous studies on the effects of mechanical 

perturbation have focussed solely on the [Ca 2+] c  response. Mechano-stimulation of germ 

tube tips by using optical tweezers to trap a bead in the path of a growing germ tube tip 

was found to cause transient cessation of apical extension and swelling at the tip (Wright 

et al., 2007). These effects show striking similarity to those caused by the injection of 

iso-osmotic media into a microwell culture. A relationship between Ca 2  influx and 

hyphal swelling is further supported by A23187 treatment which was found to cause 

apical swelling in N crassa (Reissig and Kinney, 1983). 

The apical [Ca 2 ] gradient identified in N crassa (Levina etal., 1995; Silverman-Gavrila 

and Lew, 2000; Silverman-Gavrila et al., 2003) may represent a potential mechanism by 

which the swelling and [Ca 2 ] responses to mechanical perturbation are connected. The 

[Ca 21 ] transient initiated by mechanical perturbation may temporarily disrupt this 
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gradient leading to the cessation of growth and apical swelling. A potential sensor for the 

mechanical perturbation stimulus may be the predicted stretch activated CPCs identified 

in N. crassa hyphae (Levina et al., 1995). 

Despite the large inhibition of swelling due to the removal of Ca 2+  , the swelling response 

was not completely abolished. This suggests there may be additional components 

involved in the swelling response to mechanical perturbation. A possible candidate may 

be the actin cytoskeleton which has previously been connected to Ca 2+  signalling in N. 

crassa (Silverman-Gavrila and Lew, 2001). A further potential candidate may be integrin 

proteins which are involved in the thigmotropic induction of appressoria formation in 

Uromyces appendiculatus (Corrêa et al., 1996). 

3.3.4 Summary of results 

• Germ tubes and vegetative hyphae produce distinct [Ca 2+]responses to 

mechanical perturbation, hypo-osmotic shock and high external Ca 2 . 

Conidia do not respond to mechanical perturbation with a [Ca 2 ] transient. 

• Germ tubes from 6 h old cultures provide more reproducible and reliable 

measurements of [Ca 2 ] for the aequorin [Ca 2 ] assay than older vegetative 

hyphae. 

• Germ tubes respond to mechanical perturbation by Ca 2+  dependent apical 

swelling. 



Chapter 4 

Effects of anti-fungal proteins on the 

[Ca 2+1  responses to mechanical 

perturbation and hypo-osmotic shock 

4.1 Introduction 

The production of small, antimicrobial peptides by animals, plants and fungi is a 

widespread mechanism for defence against microorganisms (Broekaert et al., 1995). 

83 
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Defensins are an important class of these antimicrobial peptides and have been found in 

mammals, insects and plants (Broekaert et al., 1995). Plant defensins are cysteine rich, 

typically between 45 to 54 amino acids long, and influence fungal morphogenesis in 

different ways suggesting different mechanisms of antifungal action (Gu et al., 1995; 

Osborn et al., 1995; Broekaert et al., 1995). Plant defensins were divided into several 

classes based upon the nature of their antifungal effects. 'Morphogenic defensins' inhibit 

hyphal elongation with a concomitant increase in hyphal branching whilst the 'non-

morphogenic defensins' only inhibit hyphal elongation (Osborn et al., 1995; Thevissen et 

al., 1996). 

A role for Ca2  in the antifungal mode of action of plant defensins was first suggested 

because the addition of Ca 2+  inhibited the antifungal activity of several defensins. 

Inhibition varied between species and defensins providing further support for different 

modes of action (Osborn et al., 1995). Two plant defensins, the morphogenic RsAFP2 

from Raphanus sativus and the nonmorphogenic DmAMP1 from Dahlia merckii, were 

found to increase Ca 2+  accumulation in both N. crassa and Fusarium colmorum 

(Thevissen et al., 1996). Both defensins also caused a small but significant alkalinisation 

of the external medium and K efflux from the treated fungal cells. Significantly, the Ca 2  

uptake by F. culmorum was shown to be required for RsAFP2 antifungal activity (De 

Samblanx et al., 1997). A modified form of RsAFP2 was found to have both increased 

antifungal activity and cause increased Ca 2  uptake by the fungal cells (De Samblanx et 
. 	 .n 	 45 al., 1997). The increased Ca 2+  uptake m these experiments was measured using the Ca 2+ 

 

technique (Thevissen et al., 1996; De Samblanx et al., 1997). Increased Ca2  uptake has 

been proposed to inhibit hyphal growth by disruption of the apical [Ca 2+] r  gradient in 

growing hyphae of N crassa (Levina et al., 1995; Thevissen et al., 1996). Despite the 

findings of increased Ca2  uptake, no direct measurements of [Ca 2 ] in living fungal cells 

have been previously made. 

This evidence, and the inability of RsAFP2 and DmAIvIP1 to form pores in artificial 

membranes, led to the proposal of a mechanism for the mode of action of RsAFP2 

(Thevissen et al., 1996; Thevissen et al., 2003a). This mechanism involves RsAFP2 
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interacting with a receptor in the fungal plasma membrane. It was proposed that the 

receptor may mediate antifungal activity by transduction of a signal or facilitate insertion 

of RsAFP2 into the membrane resulting in ion channel formation. A single defensin 

binding receptor may mediate the effects of many defensins in N. crassa, and defensins 

may bind the receptor with different affinities or at different subsites of this receptor 

(Thevissen et al., 1997). There is growing evidence that membrane lipids may act as a 

defensin binding receptor (Thevissen et al., 2000; Thevissen et al., 2003b; Thevissen et 

al., 2004). RsAFP2 specifically interacts with glucosyl ceramide in Pichia pastoris 

membranes (Thevissen et al., 2004). This interaction is required for growth arrest and 

membrane permeabilization in the antifungal action of this defensin (Thevissen et al., 

2004). The glucosyl ceramide content of membranes had no effect on DmAMP1 

antifungal activity and the interaction of DniAMP1 with sphingolipids in S. cerevisiae 

membranes was not required for this antifungal activity (Thevissen et al., 2000; 

Thevissen etal., 2003a). 

Other antifungal plant defensins reported to alter [Ca 2 ] homeostasis include the 

morphogenic MsDefl isolated from Medicago sativa (Spelbrink et al., 2004). MsDefl 

i was found to inhibit mammalian L-type Ca2+  channel activity n a similar fashion to the 

structurally unrelated antifungal protein KP4 (Spelbrink et al., 2004). KP4 is a virally 

encoded antifungal toxin produced by infected strains of Ustilago maydis which inhibits 

voltage gated, L-type Ca 2  channel activity in mammalian cells (Gu et al., 1995). The 

involvement of Ca2  signalling in the KP4 mechanism of action is supported by the 

abolition of its antifungal activity by the addition of exogenous Ca 2  (Gu et al., 1995; 

Gage et al., 2001). KP4 inhibits growth by reversible binding to U maydis which is 

believed to inhibit Ca2  uptake via Ca2  channel inhibition (Gage et al., 2001). 

In chapter 3 of this study [Ca2+] c  responses to mechanical perturbation and hypo-osmotic 

shock were identified and characterized in germ tubes. Evidence from experiments in 

which Ca 2+  was removed from the external medium suggested that the two responses may 

be generated by different mechanisms. The aims of this chapter were: (1) to determine the 

effects of antifungal proteins on [Ca 2+] c  homeostasis in N. crassa; and (2) to identify 
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differences in the effects of these antifungal proteins on Ca 2  signatures to mechanical 

perturbation and hypo-osmotic shock. 

4.2 Results 

To characterise the effects of four plant defensins and KP4, [Ca 2+] c  responses to 

mechanical perturbation and hypo-osmotic shock were assayed at two protein 

concentrations. It has been reported that defensin concentrations> 10 j.tM typically cause 

a large, cation sensitive, membrane permeabilization whilst permeabilization at lower 

defensin concentrations is more resistant to increased cation strength (Thomma et al., 

2003). Permeabilization of fungal membranes with defensins at concentrations above 10 

pM is believed to be independent of the interaction of defensins with receptors in the 

plasma membrane (Thevissen et al., 1999). Therefore, in order to provide a reliable and 

accurate assessment of the defensin effects on the Ca 2  signalling machinery and 

homeostasis in N. crassa, all antifungal proteins were assayed at 1 p.M and 4 pM. 

4.2.1 Effects of MsDefl on the [Ca 2+1  responses to mechanical 

perturbation and hypo-osmotic shock 

MsDefl, isolated from M sativa, is a morphogenic plant defensin that inhibited growth 

of F. graminearum by inducing hyphal hyper branching (Spelbrink et al., 2004). 
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Fig. 4.1. A. Effects of MsDefl on the [Ca 2+  ] c  response to mechanical perturbation. B. 

Effects of MsDefl on the [Ca 2 ] response to hypo-osmotic shock. Arrows at 57 s 

represent time of stimulus administration. 

MsDefl caused significant inhibition (p = < 0.01) of the amplitude of the [Ca 2+]

responses to mechanical perturbation and hypo-osmotic shock (Fig. 4.1). MsDefl also 

caused a concentration dependent increase in resting [Ca 2+ ] (Fig. 4.1). The [Ca2+ 
 ] 

response to hypo-osmotic shock was more prolonged in the presence of MsDefl and, in 

the presence of 4 jiM MsDefl the time to reach the maximum amplitude was delayed by 

11.51 s (Fig. 4.1B). At both concentrations of MsDefl the return to the elevated resting 

[Ca 2+] c was completed 10 min after mechanical perturbation, but not after hypo-osmotic 

shock was applied. 

4.2.2 Effects of MtDef2 on the [Ca 2+1  responses to mechanical 

perturbation and hypo-osmotic shock 

MtDef2 isolated from Medicago truncatula had previously been found to little antifungal 

activity against N. crassa despite exhibiting significant similarity in its molecular 

structure to MsDefl (Spelbrink etal., 2004). 
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Fig. 4.2. A. Effects of MtDef2 on the [Ca 2 ] response to mechanical perturbation. B. 

Effects of MtDef2 on the [Ca 2+] c  response to hypo-osmotic shock. Arrows at 57 s 

represent time of stimulus administration. 

MtDef2 had no significant effect on the [Ca 2 ] amplitudes in response to both 

mechanical perturbation and hypo-osmotic shock (Fig. 4.2). Resting [Ca 2+] c  was only 

increased after hypo-osmotic shock when 4 .tM MtDef2 was applied (Fig. 4.2B). 

4.2.3 Effects of MtDef4 on the [Ca 2+1  responses to mechanical 

perturbation and hypo-osmotic shock 

MtDef4, isolated from M truncatula is a non-morphogenic defensin that caused potent 

inhibition of conidial germination in Fusarium graminearum germination but did not 

induce hyphal hyper branching (Ramamoorthy etal., 2007). 
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Fig. 4.3. A. Effects of MtDef4 on the [Ca 2+] r  response to mechanical perturbation. B. 

Effects of MtDef4 on the [Ca 2 ] response to hypo-osmotic shock. Arrows at 57 s 

represent time of stimulus administration. 

MtDef4 caused significant inhibition (p = < 0.01) of the amplitude of the [Ca 2+] c

responses to mechanical perturbation and hypo-osmotic shock when applied at both 1 j.tM 

and 4 p.M concentrations (Fig. 4.3). There was consistently a small increase in resting 

[Ca2 ] with 1 p.M MtDef4 and a much larger increase when 4 p.M was applied (Fig. 4.3). 

This increase in resting [Ca2+] c  was larger than that caused by MsDefl. In contrast to 

MsDefl, the maximum [Ca 2+
] 

in response to hypo-osmotic shock was not delayed by 4 

p.M MtDef4. However after an initial reduction in the [Ca 2 ], a small but extended 

secondary [Caa 2 ] transient was observed (Fig. 43B). At both concentrations of MtDef4 

the return to resting [Ca 21i was complete 10 min after mechanical perturbation but not 

hypo-osmotic shock. 

4.2.4 Effects of RsAFP2 on the [Ca 2+1 responses to mechanical 

perturbation and hypo-osmotic shock 
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RsAFP2, isolated from R. sativus, is a morphogenic plant defensin that inhibited growth 

of F. graminearum by inducing hyphal hyper branching (Speibrink et al., 2004). 
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Fig. 4.4. A. Effects of RsAFP2 on the [Ca2+] c  response to mechanical perturbation. B. 

Effects of RsAFP2 on the [Ca 2+]response to hypo-osmotic shock. Arrows at 57 s 

represent time of stimulus administration. 

One 1.iM and 4 j.tM RsAFP2 significantly inhibited (p = < 0.01) the amplitudes of the 

[Ca 2+]responses to mechanical perturbation and hypo-osmotic shock (Fig. 4.4). RsAFP2 

increased the resting [Ca 2+]and this was concentration dependent (Fig. 4.4). As with 

MsDefl, MtDef2 and MtDef4 (Figs. 4.1-4.3), the elevated [Ca 2+]recovered within 10 

min after the application of mechanical perturbation but not after hypo-osmotic shock. 

The [Ca 2+]response to hypo-osmotic shock was biphasic in the presence of RsAFP2 

with a small [Ca2+] c  peak following an initial larger [Ca 2+] c peak (Fig. 4.4B). 

4.2.5 Effects of KP4 on the [Ca 2+1 c  responses to mechanical 

perturbation and hypo-osmotic shock 

The antifungal protein, KP4, produced by U. maydis, inhibits voltage gated, L-type Ca 2+ 
 

channel activity in mammalian cells (Gu et al., 1995) and inhibits growth by dose 

dependent hyper branching of F. graminearum hyphae (Speibrink et al., 2004). 
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Fig. 4.5. A. Effects of KP4 on the [Ca 2 i response to mechanical perturbation. B. Effects 

of KP4 on the [Ca2 ] response to hypo-osmotic shock. Arrows at 57 s represent time of 

stimulus administration. 

KP4 caused no significant or reproducible effect on the [Ca 2 i responses to mechanical 

perturbation or hypo-osmotic shock and resting [Ca 2 ] (Fig. 4.5). 

4.2.6 Comparison of defensin effects on the [Ca 2+1  responses to 

mechanical perturbation and hypo-osmotic shock 
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the [Ca 2+]responses to mechanical perturbation and hypo-osmotic shock. Data from 
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and standard deviations were plotted (n = 18). A. Reduction in amplitude of the [Ca 2 ] 

response to mechanical perturbation. B. Reduction in amplitude of the [Ca 2 ] response to 

hypo-osmotic shock. 

MsDefl and MtDef4 caused large, dose dependent reduction in the amplitudes of the 

[Ca 2+]responses to mechanical perturbation and hypo-osmotic shock (Fig. 4.6). The 

inhibition of the [Ca2+] c  amplitude caused by RsAFP2 was less affected by defensin 

concentration, especially in the [Ca 2+] c  response to mechanical perturbation (Fig. 4.6). 

4.3 Discussion 

4.3.1 The effects of antifungal proteins on Ca 2+  signalling in N. crassa 

The increased resting [Ca2 ] and inhibition of the amplitude of the [Ca 2+] c  response to 

mechanical perturbation after treatment with MsDefl support the findings of Spelbrink et 

al. (2004) who demonstrated that MsDefl inhibited L-type Ca 2  channel activity in 

mammalian cells and increased the accumulation of 45Ca2  by hyphae of N. crassa. 

Spelibrink et al. (2004). Increased Ca 2+  uptake was also observed after treatment with 

four known Ca2  channel blockers, including KP4, leading to the proposal that the 

increased Ca 2+  uptake was an artefact of the methodology. My data showed that the 

[Ca2+] r, resting level was increased (Fig. 4.1) suggesting that MsDefl either permeabilizes 

N crassa germlings allowing Ca 2+  entry or inhibited the active efflux of Ca 2  from the 

cytoplasm (Fig. 4.1). Although there was not complete inhibition of amplitude with 4 iM 

MsDefl treatment, 10 pM MsDefl was previously shown to be required to block 90% of 

Ca2  current through the Cal .2 L-type Ca 2  channels in mammalian cells (Spelbrink et 

al., 2004). Despite increasing 45Ca2  accumulation in F. graminearum (Speibrink et al., 

2004) and inhibiting the [Ca 2+]response to hypo-osmotic shock in Aspergillus awamori 

(Nelson et al., 2004) KP4 had no effect on the [Ca 2 ] responses or resting [Ca2 ] in this 

study. 
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RsAFP2, MtDef4 and MsDefl were all found to inhibit the amplitude of the [Ca 2 ] 

responses to mechanical perturbation and hypo-osmotic shock. Of these defensins, only 

MsDefl has previously been found to inhibit Ca 2  channel activity (Spelbrink et al., 

2004). As these defensins increased resting [Ca 2 ], the inhibition of Ca 2  influx may be 

due to permeabilization of the plasma membrane or perturbation of the [Ca 2 i 

2 homeostatic mechanism (e.g. by inhibition of a Ca 2+  pump or Ca +  antiporter). Increased 

growth inhibition may be linked to either of these processes occurring and there is a clear 

correlation between the dose response curves for growth inhibition and Ca 2+  uptake for 

RsAFP2 (Thevissen et al., 1996). Proteins with potent antifungal activity against both N 

crassa and F. gram inearum (Spelbrink et al., 2004; Dilip Shah, personal 

communication), namely MsDefl, MtDef4 and RsAFP2, had severe effects on the [Ca 2 ] 

responses to mechanical perturbation and hypo-osmotic shock and resting [Ca 2 ] in this 

study. MtDef2 and KP4 were less potent in inhibiting fungal growth (Spelbrink et al., 

2004) and had little, if any, effects on Ca 2  signalling in N. crassa. The findings of this 

work and of previous investigations provide strong evidence of correlation between 
2+ antifungal activity and perturbation of Ca 2+  signalling and Ca homeostasis. 

4.3.2 Mechanical perturbation and hypo-osmotic shock 

The more pronounced effects of defensins on the [Ca 2+] c  response to hypo-osmotic shock 

may be due to osmotic stress increasing plasma membrane permeabilization. Application 

of various plant defensins to N crassa resulted in more rapid permeabilization to SYTOX 

green in water than in growth media (Thevissen et al., 1999). Resting [Ca2+  ] after 

application of hypo-osmotic shock was increased by MsDefl, MtDef2, MtDef4 and 

RsAFP2, suggesting that following this treatment the germ tubes were more impaired in 

their [Ca2+] c  homeostatic mechanisms, perhaps because of increased permeability of their 

plasma membrane. 

Hypo-osmotic stress applied to germlings may cause influx of water into the fungal cells 

potentially resulting in cell swelling and increased tension of the plasma membrane. If 
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defensins form pores in the plasma membrane as previously suggested (Thevissen et al., 

2003a), increased tension may result in a greater opening of these pores and therefore a 

greater influx of Ca 2  into the cytoplasm. This membrane tension may also increase the 

flux through CPCs activated by the application of hypo-osmotic shock, resulting in the 

increased FWHM for the [Ca2+] c  responses to hypo-osmotic shock in both vegetative 

hyphae and germ tubes (sections 3.2.2 and 3.2.3.3). Hypo-osmotic shock may result in 

the activation of different Ca 2  pump and transporter proteins that remove Ca 2  from the 

cytoplasm compared to those activated by mechanical perturbation. Reduced activation of 

these proteins in response to hypo-osmotic shock could explain both the increased 

FWT-[M in the absence of defensins and the increased resting [Ca 2 ] after hypo-osmotic 

shock in the presence of MsDefl, RsAFP2, MtDef2 or MtDef4. 

4.3.3 Mechanism of antifungal protein action 

The increased resting [Ca 2+]c  that resulted from the addition of each of the defensins used 

here suggest that they may be inserted into the plasma membrane as had been previously 

suggested for DmAMP1 (Thevissen et al., 2000). The increase in resting [Ca 2 ] was 

similar in both MsDefl and RsAFP2 treatment and both treatments caused an increased 

duration in the [Ca2+] c  response to hypo-osmotic shock. Alkalinization of the external 

medium by RsAFP2 treatment (Thevissen et al., 1996) could not have caused the 

increased resting [Ca21 ] in Fig. 4.4 as the previously reported alkalinization was at pH 

levels far below those found to increase resting [Ca 2+] c  in section 3.2.3.5. MtDef4 caused 

a greater increase in resting [Ca 2+] c  than the other defensins although the effect on the 

[Ca 2+]response to hypo-osmotic shock was notably different to both RsAFP2 and 

MsDefl. Despite its low antifungal activity against N. crassa, MtDef2 still increased 

resting [Ca2 ] although only after hypo-osmotic shock. The differential effects of the 

four defensins on the [Ca 2 ] responses to mechanical perturbation and hypo-osmotic 

shock suggest they may target different proteins in N. crassa. The common increase in 

resting [Ca2+] c  observed after defensin treatment suggests a shared basic mechanism of 

interaction with the plasma membrane although this interaction may occur at different 
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sites or involve different lipids or receptors. If the defensins bind to different sites on the 

plasma membrane they may come into contact with different proteins (e.g. MtDef4 and 

MsDefl may directly or indirectly interact with CPCs because both defensins inhibited 

the amplitudes of the [Ca 2-1]responses in this study). 

Despite significantly increasing the resting [Ca 2 ], MtDef4 did not induce hyphal hyper 

branching in F. graminearum (Ramamoorthy et aL, 2007) suggesting that increased 

[Ca 2+]does not provide a signal for hyphal branching. This finding is consistent with 

recent results obtained by Zelter (2004) who found that hyphal hyper branching in the 

spray, frost and cot-] mutants was not accompanied by increases in resting [Ca 2 ]. The 

hyper branching response of N crassa to MtDef4 and MsDefl may be regulated by MAP 

kinase signalling. Disruption of MAP kinase signalling in F. graminearum resulted in 

increased sensitivity to these defensins (Ramamoorthy et al., 2007). Recent evidence has 

revealed that the Pisum sativum defensin 1 (Psd 1) inhibits cell cycle progression via 

interaction with a cyclin F protein (Lobo et al., 2007). If permeabilization of the plasma 

membrane is required for the internalization of defensins, perturbation of [Ca 2+]c

homoeostasis may be a bi-product of defensin action and not the cause of antifungal 

activity. 

4.4 Summary 

The main findings of this chapter were: 
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• Defensin antifungal plant proteins increased resting [Ca 2+] in N. crassa. 

• Perturbation of [Ca 2 ] homeostasis by antifungal proteins correlates with potency 

of fungal growth inhibition. 

• Defensins have differential effects on the [Ca 2+] c  responses to mechanical 

perturbation and hypo-osmotic shock suggesting that different components of the 

Ca2  signalling machinery contribute to their Ca 2+  signatures 

• Both morphogenic and nonmorphogenic defensins are capable of increasing 

[Ca 2+]yet only the morphogenic defensins increase hyphal branching. 
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5.1 Introduction 

Mechanical stimulation and hypo-osmotic shock by media injection have been shown to 

induce [Ca2+] c  transients with highly reproducible Ca 2+  signatures in hyphae of 

filamentous fungi (Nelson et al., 2004; Zelter, 2004; Bencina et al., 2005). In both germ 

tubes and vegetative hyphae of N. crassa the [Ca2+] c  response to hypo-osmotic shock had 

a greater FWHM than the response to mechanical perturbation (Chapter 3; Zelter, 2004). 

Removal of external Ca2  (section 3.2.3.6, Fig. 3.10) and treatment with four defensin 
2+ plant proteins (Chapter 4) had stimulus specific effects on the [Ca ] responses to the 

two stimuli. This suggested the [Ca 2+] c  responses may be generated by different 

mechanisms and potentially involve different components of the Ca 2  signalling 

machinery. Neurospora crassa possesses many predicted Ca2  signalling proteins that 

may influence [Ca2 ] (Zelter et al., 2004), and the activity of these proteins may differ in 

the [Ca2 ] responses to mechanical perturbation and hypo-osmotic shock. 

The aims of the research described in this chapter were: (1) to express codon optimized 

aequorin and measure [Ca2 '1 in deletion mutants in which genes encoding different 

components of the Ca 2+  signalling machinery had been deleted; (2) by using these 

deletion mutants, to identify proteins responsible for generating the [Ca 24 ] responses of 

germ tubes to mechanical perturbation and hypo-osmotic shock; (3) to determine if 

responses to these stimuli involve different components of the Ca 2  signalling machinery; 

(4) to determine which proteins were involved in both the [Ca 2 ] and germ tube swelling 

responses to mechanical perturbation. 
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5.2 Results 

5.2.1 Transformation of Neurospora wt 74A and deletion mutants with 

pAB19 

To identify proteins involved in the [Ca 2+] c  response to mechanical perturbation a range 

of deletion mutants were transformed with the pAB19 plasmid (as described in section 

2.8). Transformants were screened for aequorin expression and homokaryons were 

purified from 8-12 of these heterokaryotic aequorin expressing strains (section 2.8.3). 

The purified homokaryotic transformants were then analysed for aequorin expression and 

conidial germination (section 2.8.3). For a strain to be suitable for analysis of [C2] 

responses, a germination rate that was > 90% and total discharge of aequorin that 

generated luminescence> 8000 RLUs in germ tubes 6 h after inoculation, was required. 

Knock out strains encoding the following predicted proteins were selected: MID-1 (a 

CPC), YVC-1 (a CPC), ENA-1 (a cation ATPase), PH-7 (a cation ATPase) and CAX (a 

Ca2 /H exchanger). Two knockout strains that would have been desirable to transform 

with the aequorin gene (Acchl that lacked the CPC, CCH- 1, and Anca-1 that lacked the 

Ca 2+  NCA-1) were ascospore lethal and only available as heterokaryons in the 

Lmus genetic background (see section 1.3.2). Ascospore lethal heterokaryons could not 

be transformed with the plasmids used in this study as they carried both ignite and 

hygromycin resistance markers. To overcome these problems, the roles of CCH-1 and 

NCA- 1 were analysed by disrupting their activity with pharmacological inhibitors. 

5.2.3 Use of elevated coelenterazine concentrations in deletion mutants 

transformed with aequorin 

Despite homokaiyon purification and optimization of the [Ca 2 ] assay, it was not 
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possible to achieve sufficient aequorin luminescence in all strains using 2.5 gM 

coelenterazine that had been previously optimized for the aequorin assay in Aspergillus 

awamori (Nelson, 1999). 

To determine if an increased coelenterazine concentration could be used to increase the 

aequorin luminescence in N. crassa, the amount of aequorin luminescence obtained after 

total aequorin discharge was compared after the conidial germlings were incubated with 

2.5 p.M or 10 p.M coelenterazine. Increasing the coelenterazine concentration to 10 PM 

caused no significant increase in background luminescence but increased the total 

discharge luminescence by an average factor of 5.6 in 3 aequorin transformed strains 

(wild type, wt74Ap37b; Acax, 11 249p I  5a2a; and Aph-7, 1 1256p I 6b I a3). 

A 
0.7 

0.6 

0.5 

3 0.4 

0.3 
C) 

0.2 

0.1 

0.0 

B 
0.7 

0.6 

0.5 

3 0.4 

0.3 
C) 

0.2 

0.1 

0.0 

4 	-.-- wt 74A 2.5 LM coelenterazine 
-v-- wt 74A 10 IM coelenterazine 

4 	-.- wt 74A 2.5 iM coelenterazine 
-v--- wt 74A 10 tM coelenterazine 

0 	 200 	 400 	 600 	 0 	 200 	 400 	 600 

Time (s) 	 Time (s) 

Fig. 5.2. [Ca2 ] responses of aequorin expression wild type N. crassa to mechanical 

perturbation and hypo-osmotic shock at 2.5 p.M and 10 pM coelenterazine. A. [Ca 2 ] 

response to mechanical perturbation. B. [Ca 2+]response to hypo-osmotic shock. Arrows 

represent points of stimulus administration. 

In all experiments 10 p.M coelenterazine decreased resting [Ca 2 ] (Fig. 5.2). This finding 

correlates with results presented in section 3.2.3.2 in which increased levels of 

luminescence resulting from complete aequorin discharge decreased the resting [Ca 2 ]. 

10 p.M coelenterazine increased the amplitude of all [Ca 2+] c  responses to both mechanical 

perturbation and hypo-osmotic shock in all strains tested (Fig. 5.2). 
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These results show that 10 jiM coelenterazine provides reliable measurement of [Ca 2+] c  in 

strains producing low levels of aequorin. Whenever 10 jiM coelenterazine was required, 

all associated controls were assayed at this concentration. 

5.2.4 Involvement of CPCs in the [Ca 2+1  responses to mechanical 

perturbation and hypo-osmotic shock 

5.2.4.1 Ayvc caused an increased [Ca 2+1  amplitude in response to mechanical 

perturbation and hypo-osmotic shock 

In S. cerevisiae the yvcl gene encodes a stretch activated, vacuolar CPC (Palmer et aL, 

2001; Zhou et al., 2003) involved in Ca 2+  influx in response to hyper-osmotic shock 

(Denis and Cyert, 2002). Saccharomyces cerevisiae responds to hypo-osmotic shock, but 

not mechanical perturbation, with a transient [Ca 2+] c  increase involving Ca 2+  influx from 

internal Ca2  stores and the extracellular media (Batiza et al., 1996). 
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Fig. 5.3. Effects of yvc deletion on the [Ca2 ] responses to mechanical perturbation and 

hypo-osmotic shock in N. crassa. A. [Ca2 ] response to mechanical perturbation in 

wt74Ap37b (wild type) and 1 1253p10f1b1 (Ayvc) strains. B. [Ca2+] c  response to hypo-

osmotic shock in wt74Ap37b and 1 1253p10flb1 strains. Arrows represent points of 

stimulus administration. Coelenterazine concentration = 2.5 ji1vI. 
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Deletion of the yvc gene caused a significant increase in the amplitude of the [Ca 2 ] 

responses to mechanical perturbation and hypo-osmotic shock (both stimuli 

p = < 0.01)(Fig. 5.3). Ayvc had no effect on the resting [Ca 2 ] or on the FWHM of the 

[Ca 2+]response to both stimuli. 

5.2.4.2 MED-i is involved in the [Ca 2 J responses to mechanical perturbation and 

hypo-osmotic shock 

Yeast mid] was first identified due to its involvement in the Ca 2+  accumulation that was 

found to occur in response to a factor treatment (lida et al., 1994). Midip is believed to 

act in the same pathway as the Cchlp protein, or potentially as a component of a CPC 

along with Cchlp (Fischer et al., 1997; Paidhungat and Garrett, 1997). Midip expressed 

in mammalian cells has stretch activated Ca 2  permeable channel activity (Kanzaki et al., 

1999). The [Ca2+] c  responses of S. cerevisiae to a range of stimuli including glucose 

readdition to glucose starved cells (Tokes-Fuzesi et al., 2002), alkaline stress (Viladevall 

et al., 2004) and amiodarone treatment (Courchesne and Ozturk, 2003), were all inhibited 

by deletion of the mid] gene. 
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Fig. 5.4. Effects of the mid-1 deletion on the [Ca 2+]responses to mechanical perturbation 

and hypo-osmotic shock. A. [Ca2+]c  response to mechanical perturbation in wt74Ap37b 

(wild type) and 1 l708p8g (Amid-]) strains. B. [Ca2+] c  response to hypo-osmotic shock in 

wt74Ap37b and 1 1708p8g strains. Arrows represent points of stimulus administration. 

Coelenterazine concentration = 10 pM. 

Deletion of mid-] abolished the [Ca 2 ] response to mechanical perturbation (Fig. 5.4A). 

The [Ca 2+]  response to hypo-osmotic shock was not totally abolished with a small, 

slightly delayed increase in [Ca2 ] (Fig. 5.4B). To confirm that the aequorin expressing 

mid-] deletion mutant was capable of measuring changes in [Ca 21 ]

, H202 was used to 

permeabilize the plasma membrane (Fig. 5.5). 
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Fig. 5.5. Effects of H202  on resting [Ca2+ 
 ] 

in germ tubes of the wt74Ap37b and 

1 1708p8g strains. Coelenterazine concentration = 10 pM. 
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Twelve min pre-treatment with 0.66% H202 causes increased [Ca2+] c  without completely 

permeabilizing the plasma membrane (section 6.2.2.1). 0.66% H202  caused a large 

increase in resting [Ca 2 ] in both the wild type and Amid-] strain (Fig. 5.5). This 

demonstrated that it was possible to readily detect changes in [Ca 2+] c  in the aequorin 

expressing Amid-1 strain. 

5.2.4.2 The MID-i protein is involved in the germ tube swelling response to 

mechanical perturbation 

Ca 2+  dependent apical swelling occurs when germ tubes are subjected to mechanical 

perturbation (section 3.2.3.7). Abolition of the [Ca 2 i response to mechanical 

perturbation by mid-] deletion suggested MID-1 may be involved in the germ tube 

swelling response to mechanical perturbation. 
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Fig. 5.6. The effect of Amid-] on the increase in apical swelling due to mechanical 

perturbation. The data for the ± Ca 2  experiments shown here is the same as that shown in 

Fig. 3.13. Strains used in the experiment to assess the influence of the mid-] experiments 

were wt74Ap37b (wild type) and 1 1708p8g (Amid-]). 

In all 6 experiments performed the increase in apical swelling due to mechanical 

perturbation was significantly lower in the Amid-1 (p= < 0.05) than in wild type 

germlings (Fig. 5.6). As with the effects of Ca 2+  removal from the wild type, deletion of 

the mid-] gene did not completely abolish the apical swelling response of germ tubes 
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suggesting other mechanisms may be additionally involved in the swelling response to 

mechanical perturbation in N. crassa. 

5.2.4.3 L-type Ca2  channel activity may be involved in the [Ca 21i responses to 

mechanical perturbation and hypo-osmotic shock 

The N. crassa CCH-1 protein has significant similarity to the yeast Cchlp and 

mammalian L-type Ca2+  channels (Zelter et al., 2004). The effects of two L-type Ca 2+ 
 

channel inhibitors (verapamil and diltiazem), were tested. Verapamil and diltiazem 

inhibited the Ca 2+  dependent thigotropism and galvanotropism of C. albicans at 

concentrations of 0.25 mM and 0.5 mM respectively (Watts et al., 1998; Brand et al., 

2007). 
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Fig. 5.7. Effects of verapamil on the [Ca 2+] c  responses to mechanical perturbation and 

hypo-osmotic shock. A. Effect of 0.25 mM verapamil on the [Ca 2+]response to 

mechanical perturbation. B. Effect of 0.25 mM verapamil on the [Ca 2 ] response to 

hypo-osmotic shock. Arrows represent points of stimulus administration. The strain used 

was wild type 22A3AWTAZ6. 
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Fig. 5.8. Effects of diltiazem on the [Ca 2 ] responses to mechanical perturbation and 

hypo-osmotic shock. A. Effect of 0.5 mM diltiazem on the [Ca 2+]response to 

mechanical perturbation. B. Effect of 0.5 mM diltiazem on the [Ca 2+]  response to hypo-

osmotic shock. Arrows represent points of stimulus administration. The strain used was 

wild type 22A3AWTAZ6. 

Both inhibitors significantly (both p = < 0.01) reduced the amplitudes of the [Ca 2 ] 

responses to mechanical perturbation and hypo-osmotic shock (Fig. 5.7 and 5.8). Both 

verapamil and diltiazem also increased the resting [Ca 2 ]. The effects of verapamil and 

diltiazem on the amplitude of the [Ca 2 ] response to mechanical perturbation and resting 

[Ca2 ] were concentration dependent (data not shown). 

5.2.5 Involvement of cation ATPases in the [Ca 2+1  responses to 

mechanical perturbation and hypo-osmotic shock 

5.2.5.3 SERCA type Ca 2+  ATPase activity is involved in the [Caa 24i responses to 

mechanical perturbation and hypo-osmotic shock 

The nca-1 gene is predicted to encode a protein similar to mammalian SERCA-type 

ATPases (Benito et al., 2000; Zelter et al., 2004). As the Anca-1 strain was ascospore 

lethal, it was not transformed with the aequorin gene in this study (see section 5.2.2). 
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Cyclopiazomc acid (CPA) is a highly selective inhibitor of SERCA ATPases (Seidler et 

al., 1989) and was used to inhibit NCA-1 activity instead. 
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Fig. 5.9. Effects of CPA on the [Ca 2 ] responses to mechanical perturbation and hypo-

osmotic shock. A. Effect of 100 jtM CPA on the [Ca 2 ] response to mechanical 

perturbation. B. Effect of 100 p.M CPA on the [Ca 2 ] response to hypo-osmotic shock. 

Arrows represent times of stimulus administration. Coelenterazine concentration = 2.5 

pM. Wild type strain used was 22A3AWTAZ6. 

Inhibition of SERCA activity by 100 p.M CPA significantly increased the amplitude of 

the [Ca 2 ] response to mechanical perturbation (p = < 0.01 for two of three experiments, 

p = < 0.05 for a third) (Fig. 5.9). In contrast, 100 p.M CPA had no significant effect on the 

amplitude of the [Ca21 ] response to hypo-osmotic shock (Fig. 5.9B). 100 PM CPA 

caused a significant increase in the resting [Ca 2 ] (p = < 0.01)(Fig. 5.9). 100 p.M CPA 

caused an average increase of 5.35 s in FHWM in response to hypo-osmotic shock whilst 

the average increase in FWI-IM in response to mechanical perturbation was 0.49 s, and an 

increase was only observed in two out of three experiments. 
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5.2.5.1 PH-7 and ENA-1 are involved in the [Ca 21 responses to mechanical 

perturbation and hypo-osmotic shock 

ph-7 was predicted to encode a Ca 2  ATPase based upon genetic and functional evidence 

(Benito et al., 2000). In contrast to ph-7, ena-1 was predicted to encode a Na-ATPase 

and expression of ENA- 1 complemented a Natsensitive  mutant of S. cerevisiae (Benito 

etal., 2000). 

A 	 B 

0 	 200 	 400 	 600 	 0 	 200 	 400 	 600 

Time (s) 	 Time (s) 

Fig. 5.10. Effects of the ph-7 deletion on the [Ca2 ] responses to mechanical perturbation 

and hypo-osmotic shock. A. [Ca2+] c  response to mechanical perturbation in wt74Ap37b 

(wild type) and 1 1256p16b1a3 (Aph-7) strains. B. [Ca2+] c  response to hypo-osmotic 

shock in wt74Ap37b and 1 1256p16b1a3 strains. Arrows represent points of stimulus 

administration. Coelenterazine concentration = 10 pM. 
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Fig. 5.11. Effects of the ena-1 deletion on the [Ca2 ] responses to mechanical 

perturbation and hypo-osmotic shock. A. [Ca 2+]response to mechanical perturbation in 

wt74Ap37b (wild type) and 1 1237p64b (Aena-1) strains. B. [Ca 2+]response to hypo-

osmotic shock in wt74Ap37b and 1123 7p64b strains. Arrows represent points of stimulus 

administration. Coelenterazine concentration = 2.5 IM. 

Deletion of the ph-? gene significantly increased the the amplitudes of the [Ca ] c  responses 

to mechanical perturbation (p = < 0.01) and hypo-osmotic shock (p = < 0.05)(Fig. 5.10). 

Similarly, deletion of ena-1 caused significantly increased the amplitude of the [Ca 2+] 
 

responses to mechanical perturbation (p = < 0.01) and hypo-osmotic shock (p = 

0.01)(Fig. 5.11). Deletion of neither gene had any effect on resting [Ca 2+ 
 ]. 

5.2.6 Role of CAX in the [Ca 2+1  responses to mechanical perturbation 

and hypo-osmotic shock 

CAX is a vacuolar Ca 2 /H exchanger which influences vacuolar Ca 2+  accumulation and 

has homology to the vacuolar Vcxlp Ca 2+/H+  exchanger of S. cerevisiae (Margolles-

Clark et al., 1999; Zelter et al., 2004). 
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Fig. 5.12. Effects of cax gene deletion on the [Ca2 ] responses to mechanical 

perturbation and hypo-osmotic shock. A. [Ca 2+]response to mechanical perturbation in 

wt74Ap37b (wild type) and 1 1249p15a2a (Acax) strains. B. B. [Ca ] c  response to hypo-

osmotic shock in wt74Ap37b and 1 1249p15a2a. Arrows represent points of stimulus 

administration. Coelenterazine concentration = 10 riM. 

Deletion of the ccix gene had no reproducibly significant effect on the amplitudes of the 

[Ca 2+]responses to mechanical perturbation or hypo-osmotic shock (Fig. 5.12). Figure 

5.12 suggests CAX may be involved in the regulation of resting [Ca 23 ]. However, there 

was no significant difference in resting luminescence before [Ca 2+] c  calibration of wild 

type and Acax strains. The apparent increased resting [Ca 2+] c  is an artefact in the Acax 

strain and is a result of the low amount of aequorin present in this strain (see section 

3.2.3.2). 
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5.3 Conclusions 

5.3.1 CPCs are involved in the [Ca 2+1 and swelling responses to 

mechanical perturbation 

5.3.1.2 Roles for MID-i and CCH-1 

Since the original identification of the mid-] gene in the N. crassa genome (Borkovich et 

al., 2004; Zelter et aL, 2004), further annotation has indicated that it lacks the C terminal 

transmembrane domain reported in Zelter et al. (2004). N crassa MID-1 contains a 

glucosylphoshpatidylinositol (GPI) attachment domain that may attach MID-1 to the cell 

wall or plasma membrane (de Groot et al., 2003). This strongly suggests that the N 

crassa MID-I protein is incapable of independent CPC activity. Despite this, deletion of 

mid-] in N. crassa caused complete abolition of the [CW +] c  increase and inhibited the 

swelling response to mechanical perturbation, indicating an essential requirement for 

MID-1 in these responses. Inhibition of L-type Ca 2 -channel activity caused inhibition of 

Ca 2+  mediated galvanotropism that was comparable to deletion of the CaCchip protein in 

C. albicans (Brand et al., 2007). Deletion of CaMidip and CaCchip caused similar 

inhibition of thigmotropism and double deletion of these genes in the same strain had no 

cumulative effect providing strong evidence that the two proteins function together as a 

mechano-sensing activator of Ca 2  influx (Brand et al., 2007). Despite strong evidence 

for Midip and Cchlp in S. cerevisiae functioning in the same pathway, a direct 

interaction between the two proteins has not been shown (Yoshimura et al., 2004). 

Although both Cchlp and Midip localize to the plasma membrane colocalization was not 

observed (Yoshimura et al., 2004). The predicted structure of N crassa MID-i shows no 

similarity to any known mammalian or plant Ca 2  channels (Zelter et al., 2004). This 

evidence, combined with the data presented in this chapter, suggest that MID-i and CCH-

1 may act in the same pathway or form a mechano-sensing C2 CPC in N crassa. 

The increased resting [Ca2+] c  caused by the L-type C a2tchannel inhibitors verapamil and 
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diltiazem was a surprising result that cannot be explained by inhibition of L-type Ca 2  

channel activity. The increase in resting [Ca 2+] c  may have been due to an unspecific 

increase in plasma membrane permeability. Both verapamil and diltiazem are 

amphipathic compounds with properties similar to certain local anaesthetics, such as 

dibucaine. These properties give them the potential to disturb the plasma membrane 

bilayer by causing increasing membrane fluidity, as found for dibucaine in E. coli 

(Andersen et al., 2006). 

The effects of verapamil and diltiazem are in marked contrast to the findings of KP4 

(section 4.2.5) which has been previously shown to block mammalian L-type Ca 2+ 
 

channels (Gage et al., 2002). The lack of an inhibitory effect for KP4 may be because its 

specific target in the mammalian L-type Ca 2  channel is lacking in the CCH- 1 protein. 

5.3.1.2 Role for WC 

The increased amplitude in response to mechanical perturbation caused by the yvc 

deletion was initially unexpected. This increase is considerably larger than any caused by 

impairment of ATPase activity. The N. crassa YVC protein has high levels of similarity 

to the S. cerevisiae Yvclp protein (Zelter et al., 2004) which has been found to mediate 

Ca2  influx from the vacuole in response to hyper-osmotic shock (Denis and Cyert, 

2002). A possible explanation for this finding may be related to the phenomenon of Ca 2  

induced Ca2  release which has been well characterized in mammalian cells (Berridge et 

al., 2003). Mechanical perturbation may cause the uptake of Ca 2  via CCH-1 and MID-1 

and an initially small elevation in [Ca2 ] may activate YVC on the vacuolar membrane. 

Y\TC activation may cause a much larger [Ca 2 ] increase close to the vacuolar membrane 

which in turn activates Ca2  pumps and or Ca2  transporters located in the vacuolar 

membrane. If yvc is deleted the Ca 2+  pumps/transporters may not be activated until 

sufficient Ca2  has diffused from the plasma membrane to provide a suitably high [Ca 2 ] 

level at the vacuolar membrane. 
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5.3.2 Removal of Ca 2+  from the cytoplasm 

5.3.2.1 Role for NCA-1 

SERCA Ca  2+ ATPases in other systems have low transport rates but high affinities for 

Ca 2+  ions. This feature allows them to respond to modest elevations in Ca 2  levels and set 

basal [Ca2 ] (Berridge et al., 2003). Inhibition of C2 removal from the cytoplasm and 

the increased resting [Ca 2 ] shown in Fig. 5.9 correspond with these characteristics and 

provide evidence of SERCA ATPase activity playing an important role in N. crassa 

[Ca2 ] homeostasis. NCA- 1 in Neurospora is predicted to encode a SERCA Ca 2  

ATPase localized to the endoplasmic reticulum (Benito et al., 2000; Zelter et a!, 2004). 

These results suggest that the endoplasmic reticulum may act as an intracellular C2 

store in N. crassa and is involved in the regulation of resting [Ca 2+] c  and elevated [Ca 2 ] 

produced in response to different stimuli. 

5.3.2.2 Roles for ENA-1 and PH-7 

Deletion of either the ph- 7 or ena-1 gene increased the amplitude of the [Ca 2+ 
 ] c  response 

to mechanical perturbation and hypo-osmotic shock. Previously, ph-7 was predicted to 

encode a Ca2  ATPase (Benito et aL, 2000). This result supports the theory and shows 

PH-7 to be involved in the removal of C2 from the cytoplasm. In contrast toph-7, ena-1 

was predicted to encode a NatATPase.  The increased [Ca2+] c  amplitude due to ena-1 

deletion may be because ENA-1 is involved in unspecific Ca 2  transport, or it may be due 

to perturbations in Na +  transport affecting the activity of a Ca 2+  pump or transporter. 

Although disruption of no single ATPase abolished the [Ca 2 ] response, investigations 

of mammalian Ca2  signalling and SERCA ATPases have found that the [Caa 2 ] 

signalling machinery may be able to compensate for reduced activity of its individual 

components (Berridge et al., 2003). The results presented here suggest that some of the 
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large number of Ca2  pumps and transporters may act cooperatively to remove increased 

Ca 2+ from the cytosol. 

5.3.3 Specificity of [Ca 2+]responses to mechanical perturbation and 

hypo-osmotic shock 

Of all the conditions examined in this chapter only Amid-] and inhibition of SERCA 

activity caused different effects on the [Ca 2+] c  responses to mechanical perturbation and 

hypo-osmotic shock. The effect of Amid-] on the [Ca 2+1 response to hypo-osmotic shock 

was similar to the effect of Ca 2+  removal from the media (section 3.2.3.6, Fig 3.10). The 

small increase in [Ca 2 ] may represent release of [Ca 2 ] from intracellular stores. 

However deletion of the predicted vacuolar CPC, YVC, had the same effect on [Ca 2 ] 

responses to both mechanical perturbation and hypo-osmotic shock. 

Treatment with 100 iM CPA increased the amplitude of the [Ca 2 ] response to 

mechanical perturbation but not hypo-osmotic shock. This, combined with the increased 

effect on FWHM in response to hypo-osmotic shock, suggests SERCA ATPase activity 

differs in the two [Ca 2+] c  responses. In the study by Nelson et al. (2004) the effect of 20 

jiM CPA on resting [Ca2+]c  was much more severe in A. awamori than the effect seen in 

Fig. 5.9. This may reflect differences in the Ca 2  signalling machinery between these two 

species and may be explained by some of the large number of Ca 2  transporters identified 

in the genome of N. crassa (Zelter et aL, 2004) acting to compensate for the inhibited 

activity of the CPA target. 

Overall the results of this chapter provide little evidence for the [Ca 2 ] responses to 

mechanical perturbation and hypo-osmotic shock being mediated by different [Ca 2 ] 

modulating proteins. However as indicated in section 3.3.2, it should be remembered that 

a major component of the Ca2  response to hypo-osmotic shock is the Ca2  response to 

mechanical perturbation because of the way in which the hypo-osmotic shock is 
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administered by squirting diluted medium into the cultures in the individual wells of the 

microwell plates. 

5.4 Summary 

. MID-1 is required for both the [Ca2+] c  and germ tube swelling responses to 

mechanical perturbation. 

. MID-i in N. crassa is predicted to be attached to the cell wall or plasma 

membrane via a GPI domain (de Groot et al., 2003) and is probably not capable of 

Ca2  channel activity on its own. 

. MID-1 may act as mechanosensor and mediate Ca 2  influx via regulation of the 

CCH-i protein. 

• Efflux of Ca2  from the cytoplasm requires the activity of multiple ATPases 

including PH-7 and possibly ENA- 1. 

• SERCA ATPase activity is involved in the regulation of [Ca 2+] c  homeostasis. 
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6.1 Introduction 

Strong evidence for the involvement of Ca 2  signalling in the mode of action of 

antifungal compounds comes from work in S. cerevisiae. The antifungal activity of 

miconazole, itraconazole and terbinafine, all medically important antifungal drugs, 

was enhanced by treatment with a range of antagonists of Ca 2  signalling (Edlind et 

aL, 2002). The antifungal activity of these compounds was significantly increased by 

disruption of calcineurin and the Crzlp transcription factor. Increased resting [Ca 2 ] 

due to azole or terbinafine treatment would normally activate calcineurin, leading to 

alterations in Ca2+  transporter activity that result in the normal [Ca 2+] c  resting level 

being restored (Edlind et al., 2002). Furthermore, treatment with the antifungal agent 

amiodarone has recently been shown to induce a [Ca 2 ] transient response in S. 

cerevisiae (Courchesne and Ozturk, 2003). 

The primary objective of a high throughput screening assay is to rapidly identify 

active compounds from large chemical libraries (Zhang et al., 1999) and high 

throughput assays are now an essential aspect of pharmaceutical drug discovery 

(Inglese et al., 2006). Advantageous properties for a high throughput screen include: 

• Simplicity, ideally avoiding technically demanding processes (Baniecki et al., 

2007). 

Avoiding the involvement of components that require excessive safety and 

disposal precautions (Baniecki et al., 2007). 

A high throughput screen (HTS) using living cells: for any compound to be 

effective it needs to exert its antimicrobial activity on living cells (Baniecki et 

al., 2007). 

A high signal to noise ratio to provide clear distinction of positive results 

(Baniecki et al., 2007). 

• The identification of false positive or false negative results; this represents a 

significant problem with HTS assays (Inglese et al., 2006). 

• Sufficient sensitivity to recognize compounds with low or partial activity 

(Inglese et al., 2006). 

• Potential for adaptation to provide greater information or to examine different 
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types of cell culture is highly beneficial (Bamecki et al., 2007). 

. Above all, a HTS assay should be highly robust and reproducible (Baniecki et 

al., 2007). 

High throughput screens have been developed with the potential to identify different 

species of opportunistic fungal pathogens (Diaz and Fell, 2004; Leinberger et al., 

2005). Rapid identification of fungal pathogens is crucial for the treatment of 

immuno-compromised patients (Diaz et al., 2004; Leinberger et al., 2005). Detection 

of potential antifungal compounds is another key potential application of high 

throughput screens. A colorimetric assay for the measurement of the activity of 

antifungal compounds on C. albicans bioflim formation has been developed with the 

potential for application as a HTS (Ramage et al., 2001). Further work developed a 

HTS capable of testing combinations of different potential antifungal compounds to 

identify additive effects on C. albicans growth (Borisy et al., 2003). Another high 

throughput assay developed for C. albicans measured plasma membrane 

permeablization, a common feature of many antifungal compounds (Ziegelbauer et 

al., 1999). The potential for plant antifungal proteins to target Ca 2+  signalling (see 

Chapter 4) also generates potential benefit for screening Ca 2  modulating chemicals in 

the identification of fungicides. 

The aequorin assay developed in Chapter 3 and previous studies (Nelson et al., 2004; 

Zelter, 2004) generated a robust and reliable method for [Ca 2+] c  measurement in N 

crassa. Because of the rapidity of the Ca 2+  response, it is possible to distinguish 

primary effects and secondary effects of agonists or inhibitors acting on Ca 2  

signalling. This was demonstrated with antifungal proteins (Chapter 4) and 

pharmacological agents (Chapter 5). Despite providing detailed, reliable, and 

reproducible results, when using the standard protocol for [Ca 2 ] measurement 

(section 2.7.1), relatively few compounds can be analyzed in a single day. With pre-

addition of compounds and measurement of luminescence and discharge data the 

analysis of two samples using the standard aequorin assay takes approximately 1 h. 

This is in addition to the period required for inoculation and incubation of the fungal 

samples in the 96 microwell plates prior to luminometry. 
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The potential role for Ca2  signalling in antifungal activity, the homology between the 

Ca2  signalling mechanisms of N. crassa with other fungi, including the pathogenic 

Magnaporthe grisea (Zelter et al., 2004), and the robust nature of the [Ca 2+] c  response 

to mechanical perturbation led to an investigation of its potential for use as a high 

throughput screen to discover novel antifungal compounds that target Ca 2  signalling 

and/or Ca 2+  homeostasis. The aims of the results described in this chapter were: (1) to 

increase the throughput of the aequorin [Ca 2 ] assay; (2) to evaluate the effects of a 

wider range of antifungal compounds on the [Ca 2+] c  response to mechanical 

perturbation in N. crassa; (3) to perform blind testing of compounds using an 

aequorin based high throughput assay and compare the results obtained with the same 

compounds but using the standard aequorin assay; (4) to critically evaluate the 

potential of antifungal screening by examining perturbations in Ca 2+  signalling. 

6.2 Results 

6.2.1 Optimization of experimental procedure 

6.2.1.1 	Development of assay method 

The primary objective was to adapt the aequorin assay for [Ca 2 ] measurement using 

the whole of a 96 microwell plate in a single experiment. The assay needed to provide 

detailed, reproducible [C2] measurements with a greatly increased rate of 

throughput. For this purpose, a routine assay method for measurement of [Ca 2 ] in a 

96 well plate was designed. In each plate, 93 wells were available for measurement of 

[Ca2 ] responses with 3 wells being used for Glowell standards (Lux Biotechnology, 

Edinburgh UK). 

For luminescence measurements across 93 wells, the luminometry protocol was 

reduced to the smallest possible number of measurements necessary. The [Ca 21 ] 

response needed to provide information on resting [Ca 2 ], amplitude of the [Ca2] 
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transient and the duration of the [Ca 2+] c  transient. For [Ca2+] c  calibration a 

measurement of discharge luminescence was also required. 

Measuring luminescence in 93 wells for 0.5 s per well (compared to measuring 

luminescence for 1 s per well in 6 wells in the standard assay) increased the cycle 

time (i.e. the time required for one measurement of luminescence in each well) from 

11.51 s to 83 s. As calibration of the [Ca2+] c  uses the RLU.s' that are measured, the 

reduced measurement time was taken account of by appropriately modifying the 

[Ca2+] c  calibration. Considering the key requirements of the assay and the increased 

cycle time, a protocol was designed. This protocol consisted of 10 cycles beginning 

10 min after sample pre-treatment. Cycles 1-4 determined resting [Ca 2+  ]; in cycle 5 

mechanical perturbation was applied and amplitude was recorded; cycles 6-8 

measured the duration of the [Ca 2 ] transient; at cycle 9 an aequorin discharge 

injection was applied to each well; and there was a final reading of luminescence at 

cycle 10. A luminescence trace produced by this protocol is shown in Fig. 6.1A and 

the calibrated [Ca24 ] response is shown in Fig. 6.1B. A greater number of solutions 

(i.e. cell suspension, chemical treatment, mechanical perturbation stimulus and 

discharge solution instead of just cell suspension, chemical treatment and mechanical 

perturbation stimulus) were required to be added to each well during this protocol so 

an alternative method of microplate inoculation was designed which involved reduced 

volumes of each solution (see section 2.5.3.3). The protocol for the high throughput 

method is described in section 2.7.3. 
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Fig. 6.1. Luminescence and [Ca 24] 0  traces produced by the high throughput assay 

protocol described in section 2.7.3. A. Luminescence trace of the high throughput 

assay protocol. Mechanical perturbation was administered at 923 s (first arrow) and 

discharge was administered at 1342 s (second arrow). B. [Ca 2 ]
0  response of the wild 

type (22A3AWFAZ6) to mechanical perturbation, administration represented by 

arrow. n = 3 wells for this experiment. 

This method provided readings of the [Ca 2 ]0  amplitude following stimulation, resting 

[Ca2 ]0, and the return to resting [Ca 24]0  following stimulation. The increased cycle 

time of the high throughput assay was further increased from 83 s to 168 s by 

introducing two steps: injection of iso-osmotic medium for mechanical perturbation 

and injection of 3 M CaCl 2  (25% ethanol) to fully discharge the remaining aequorin. 

The reduced resolution of this assay, due to the reduced number of RLU 

measurements, meant that FWHM values were not reliable as the measurement taken 

after the mechanical perturbation measurement was 168 s later. 

The high throughput assay protocol is based upon a single discharge reading taken at 

the point of discharge injection, as discussed in the next section. 

6.2.1.2 	Discharge calibration for high throughput assay 

. 	 2+ In the 6 h [Ca 2+ ] assay using germ tubes, the total aequorm available to bind Ca per 

well was determined by discharging the aequorin in a separate set of wells, from those 

containing the experimental sample. To increase the throughput, and also to reduce 
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running time of the assay, the use of a single discharge injection per well was 

investigated. 

To determine the relationship between RLU values measured immediately after the 

discharge injection and the total RLU values following discharge, an additional 7 

cycles were added to the end of the luminometry protocol described in section 6.2.1.1. 

This experiment determined whether RLU values after discharge were elevated past 

cycle 9 (i.e. immediately after discharge). In all wells the RLU values returned to 

resting level in cycle 10. The total area under the trace of discharge was plotted 

against luminescence emitted at the discharge injection (see Fig. 6.1A), and was also 

plotted with a linear regression for this data (Fig. 6.2). 

RLUs at discharge injection 

Fig. 6.2. Graph of luminescence at discharge injection against total area under the 

discharge trace (see Fig. 6.1A). A linear regression for this data was also plotted. 

Total discharge area was calculated using the equation in section 1.4.2. 

Figure 6.2 shows a strong correlation between RLU values at the discharge injection 

and the total area under the discharge trace. The strength of the correlation was 

confirmed by an r2  value of 0.9997. For [Ca 2 ] calibration an average value of total 

discharge area divided by RLU at discharge injection was determined. This value was 

used for [Ca21 ] calibration to allow the discharge measurement to be obtained by 
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using a single reading instead of from a more complex, separate discharge protocol 

(see section 2.7.1). 

When aequorin consumption exceeds 50% of the total available aequorin, the 

relationship between [Ca 2+] c  and aequorin luminescence may lose the linear nature 

upon which the [Ca2 ] calibration is based (Zelter, 2004; section 1.4.2). To prevent 

misinterpretation of data produced by this assay, aequorin consumption was 

determined for each well and incorporated into the [Ca 2 ] calibration (section 

6.2.1.4) 

6.2.1.3 	The effects of reducing the number of wells per sample for the high 

throughput assay 

In the standard [Ca 2 ] assay performed with germ tubes (section 2.7.1), [Ca 2 ] 
responses are measured in six wells. Use of fewer wells per sample increased the 

throughput of the [Ca 2+] c  assay. Previous work used 6 wells per experiment to provide 

a compromise between the time taken to measure [Ca 2+] c  in multiple samples and the 

accuracy of the data obtained. The effects of reducing the numbers of wells on these 

parameters needed to be assessed. 

Table 6.1. Effects of wells per sample on the number of samples per plate. 

Wells per sample Samples per plate 

3 	 31 

4 	 23 

5 	 18 

6 	 15 

Table 6.1 demonstrates the relationship between wells per sample and samples per 

plate. To assess the importance of the number of wells per sample, data from previous 

experiments on germ tubes in which the dose-dependency of the [Ca 2+] c  response in 

germ tubes was measured by using the fast injection speed but varying the volume of 

iso-osmotic medium injected, was used (section 3.2.3.4). This data contained a range 
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of different [Ca 2 ] amplitudes at which there were varying levels of standard 

deviation (Figs. 3.8 and 6.3). However the use of different injection speeds in the high 

throughput assay was not considered. This data was only used here to assess, using 

the students t-test, how varying the number of wells influenced the accuracy of the 

data collected. The high throughput protocol only used fast injection with 50 x1 of iso-

osmotic medium (section 2.7.3). 

0.4 

. 0.3 

0.2 

04 
cc 0.1 

C) 

0.0 
0 	20 	40 	bO 	bU 	1UU 

Volume of injection (tI) 

Fig. 6.3. Effects of increased injection volume on the amplitude of [Ca 2+] c  responses 

to mechanical perturbation in germ tubes. This experiment is described fully in 

section 3.2.3.4. This Figure was previously shown as Fig. 3.8, but is also included 

here for convenience. 

Amplitudes of the [Ca2 ] responses to injecting different volumes of medium from 3, 

4, 5 or 6 wells were compared by the student's t test to determine their p values. The p 

values provided by this analysis were then plotted (Fig. 6.4). The p value given by the 

students t-test is a description of the probability of a difference in two sets of results 

occurring at random. The p value may range from 1 to 0 and low levels of p 

demonstrate a small probability that the results may occur by random and therefore a 

high probability that the difference in results was due to a variable examined in an 

experiment. The two threshold levels below which a p value is considered significant 

are 0.05 and 0.01. 
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Fig. 6.4 A graph showing the influence of well number on the student's t-test p value 

when the amplitudes of [Ca2+] c  responses to mechanical perturbation by the injection 

of different volumes of iso-osmotic medium was compared. 

Figure 6.4 shows that increasing the number of wells from 3 to 4 substantially reduced 

the p values in the different comparisons. For comparisons of 40 p.1 vs 60 p.1 and 80 p.1 

vs 100 p.l injection volumes, this decrease in p values was over the range at which 

results become significantly different. On the basis of these results, 4 wells per sample 

were selected for use in the high throughput assay. 

6.2.1.4 Development of a Microsoft Excel Tm  worksheet for calibration of [Caa 2 i 

Calibration of [Ca 2 ] in the standard 6 h assay used either the term bert program 

(section 2.7.4.1; Zelter, 2004) developed from a Microsoft Excel worksheet created 

by Professor Marc Knight (Durham University) or the Microsoft Excel Tm  worksheet 

itself. Section 6.2.1.2 demonstrated that an accurate measurement of total aequorin 

could be performed from a single RLU measurement immediately following a 
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discharge injection. The change in methodology and format of the data required 

adaptation of Marc Knights Microsoft Excel worksheet for [Ca 2 ] calibration. 
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To use the adapted aequorm [Ca 2 ] assay in a commercial high throughput screen. 

The data produced by the assay should be rapidly calibrated and easy to understand. 

The Microsoft Excel' worksheet was designed with several key functions: 

Macros and cell referencing were used to automate the data analysis as far as 

possible by reducing manual operation of the worksheet to a minimum. 

Luminescence data was easy to insert and sorted automatically. 

Statistical comparisons between sample data and control values were 

performed for amplitude and resting [Ca 21 ], warnings when low levels of 

aequorin were recorded, were included. 

Data from each experiment were summarized separately from calibration. 

6.2.2 The use of the high through put [Ca 2+1  assay 

The aequorin HTS was designed to identify potential antifungal compounds that 

influenced the [Ca2+  ] response to mechanical perturbation. To provide a proof of 

concept for this assay, a range of compounds were screened by blind testing. All 

compounds included in the assay (Table 6.2) had been previously examined for their 

effects of the [Ca2+] c  response to mechanical perturbation or were examined in the 

next section. 

6.2.2.1 Effect of ICa2 II modulators in the standard ICa2 1 assay 

To provide a baseline of data for subsequent comparison with data from a blind 

testing using the high throughput assay, all the compounds to be used in the blind 

testing were initially assessed using the standard assay. The effects of several of these 

compounds on the [Ca2 ] response to mechanical perturbation have already been 

described in this thesis (Table 6.2). 
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Table 6.2. Compounds used in the blind testing described in section 6.2.2.2. 

Compound Concentrations used Results 

BAPTA 0.75 mM, 3.0mM Section 3.2.3.6, Figs. 3.9 and 3.11 

RsAFP2 1 jiM, 4 jiM Section 4.2.4, Fig. 4.4 

MtDef2 1 jiM, 4 jiM Section 4.2.2, Fig. 4.2 

Verapamil 0.25 mM Section 5.2.4.3, Fig. 5.7 

Diltiazem 0.5 mlvi Section 5.2.4.3, Fig. 5.8 

Cyclopiazomc acid 100 jiM Section 5.2.5.3, Fig. 5.9 

DMSO 1% Section 6.2.2.1, Fig. 6.5A 

10 mM Tris HC1 4.8% Section 6.2.2.1, Fig. 6.5A 

Ethanol 1% Section 6.2.2.1, Fig. 6.513 

Methanol 1% Section 6.2.2.1, Fig. 6.5B, D 

NaCl 0.2 M Section 6.2.2.1, Fig. 6.5C 

Triton X-100 0.1% Section 6.2.2.1, Fig. 6.5C 

Ketoconazole 0.75 jig.m1 1  Section 6.2.2.1, Fig. 6.5D 

Amphotericin B 6 jig.m1 1 , 60 j.tg.mF' Section 6.2.2.1, Fig. 6.5E 

H202  0.66%,6.6% Section 6.2.2.1, Fig. 6.5F 

All compounds tested were dissolved into stock solutions using dH20, DMSO, 

methanol or ethanol. Stock solutions were then added to liquid VgS media before 

treatment of fungal samples (final solvent concentration 1%). Defensin samples were 

dissolved in 10 mM Tris HC1 before addition to VgS media (final concentration 4.8% 

Tris HC1). A control of 12.3% dH 20 (i.e. 12.3% dH20 in VgS medium) was required 

to give equivalent dH20 concentration in hydrogen peroxide (1-120 2) experiments. The 

results obtained with these compounds are summarized in Table 6.3. 
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Table 6.3. Effects of compounds tested for the high throughput assay. - = compound 

had no significant effect. 
,[. 

= compound caused a significant reduction (p <0.05) in 

[Ca2+] c  amplitude or resting [Ca 2 ]. I = compound caused a significant increase (p = 
- <0.05) in [Ca2+  ] amplitude or resting[Ca2+ 

 ]. 

Compound Effect on ICai amplitude Effect on resting [C ahi c  

BAPTA - 

RsAFP2 •1' 

MtDef2 

Verapamil '1 

Diltiazem 

Cyclopiazomc 

acid 1 1' 

DMSO 

Tris HC1 

Ethanol 

Methanol - - 

NaCl 

Triton X-100 I 

Ketoconazole - - 

Amphotericin B  

11202 1 
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Of the new compounds assessed and not previously described (see Tables 6.2 and 

6.3), triton X- 100 exhibited effects on the [Ca 2 ] response to mechanical perturbation 

which were consistent with plasma membrane permeabilization. 0.1% Triton X-100 

significantly increased resting [Ca 2+] c  and severely inhibited, or totally abolished, the 

[Ca 2+]response to mechanical perturbation (p = <0.01 in all cases)(Fig. 6.5 Q. 0.2 

M NaC1 significantly inhibited the amplitude of the [Ca 2+] c  response to mechanical 

perturbation (p = < 0.01) and delayed the maximum [Ca 2+] c  reached by 11.51 s (Fig. 

6.5C). 0.2 M NaCl caused a small but significant increase in resting [Ca 2 ] (p = 

0.05)(Fig. 6.5Q. The effects of NaCl are most likely due to ionic stress although 

effects on putative Na/Ca 2  exchangers in N crassa (Zelter et al., 2004) may be 

involved. Amphotericin B and ketoconazole are two known antifungal compounds. 

0.75 tgml 1  ketoconazole had no effect on the [Ca 2+] c  response to mechanical 

perturbation or resting [Ca 2 ] (Fig. 6.5D). Both 6 and 60 tgml' amphotericin B 

significantly increased resting [Ca2 ] (p = < 0.01) and nearly abolished the [Ca 2 ] 

response to mechanical perturbation (Fig. 6.5E). 0.66% and 6.6% hydrogen peroxide 

significantly increased the resting [Ca2 ] (p = < 0.01) and nearly abolished the [Ca 2+]c

response to mechanical perturbation (Fig. 6.5F). The increased the resting [Ca 2 ] 

following H202  treatment is likely to be the result of plasma membrane 

permeabilization due to oxidative stress (Price et al., 1994). 
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Fig. 6.5. Effects of compounds used in blind testing on the [Ca 2 ] response to 

mechanical perturbation. A, B. Effect of the solvents 1% DMSO, 4.8% 10 mM Tris 

HC1, 1% ethanol, and 1% methanol. C. Effects of NaCl and Triton X-100. D. Effect 

of ketoconazole. E. Effects of amphotericin B, dissolved in 1% DMSO. F. Effects of 

H202 against 12.3% dH20 control. 

	

6.2.2.2 	Blind testing of unknown compounds using the high throughput 

assay 

In the standard 6 h assay cultures were pre-treated with compounds for 12 min before 

luminometry to allow time for mixing. As part of the blind testing, 6 h old germ tube 

suspensions were pretreated in the microwell plates with the unknown compounds for 
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10 min and 1 h to determine which method produced the best results. This experiment 

was performed on two successive days to allow assessment of the variability in the 

high throughput assay. 

The unknown compounds were initially distributed in the wells of a 96 microwell 

plate by Dr. Emma Perfect (Lux Biotechnology). Fifty pi samples of each of these 

compounds were then added to corresponding wells in a microwell plate pre-

inoculated as described in section 2.5.3.3 using a multi-channel pipette. Compounds 

were labelled in groups based upon their solvent and each group was identified by a 

letter. Different samples within each group were given a number which was combined 

with the group letter to allow identification in a plate map e.g Al, C2 etc.. To allow 

comparison of experimental and control samples in blind testing assays, the control 

for each solvent was number 1. 

The sample in each well was subjected to mechanical perturbation and [Ca 2 ] 

measurements were obtained according to the high throughput assay protocol 

described in section 2.7.3. The sample identities were revealed after [Ca 2 ] 

calibration and were compared with the results obtained using the standard germ tube 

assay (section 6.2.2.1). The findings of the high throughput assay (Fig. 6.6) were 

compared with those obtained by the germ tube assay and classified into three groups: 

(1) correct; (2) missed positive; and (3) false positive (Table 6.4). 
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Fig. 6.6. Examples of results obtained by the standard and high throughput [Ca 24 ] 

assays. A. The effects of NaCl in the standard [Ca 2 ] assay. B. Effect in NaCl on the 

high throughput [Ca2+  ] 2+ assay. C. The effect of CPA in the standard [Ca ] C  assay. D. 

The effect of CPA in the high throughput assay. E. The effect of amphotericin B in 

the standard [Ca 2 ] assay. F. The effect of amphotericin B in the high throughput 

assay. In relation to table 6.4, A and B. Example of a "correct result". C and D. 

Example of a "missed positive". E and F. Example of a "false positive" result. 
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Table 6.4. Definitions of comparison between results obtained by the high throughput 

and standard [Ca2 ] assays. 

Classification Definition Example 

Correct Finding for a sample in the high throughput Fig. 6.6 A,B, 

assay agreed with that of the standard assay amplitude and 

resting [Ca 2 ] 

Missed positive An effect detected in the standard assay was Fig. 6.6 C, D, 

not detected by the high throughput assay amplitude and 

resting [Caa 2 ] 

False positive An effect detected by the high throughput Fig. 6.6 E, F, 

assay which was not observed in the standard resting [Ca2 ] 

assay 

Figures 6.6A and B show a "correct" detection by the high throughput assay in which 

the effects of NaCl on increasing [Ca 2 i amplitude and resting [Ca 2 ] were detected. 

Figure 6.6C and D provide an example of "missed positive" results for both resting 
2+ 	 2+ 	 2+ [Ca ] and [Ca 2+] c  amplitude. The resting [Ca 2+] c  in Fig. 6.6 E and F show an 

example of a "false positive" result. 
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Fig. 6.7 A. Comparison of results obtained with the high throughput [Ca 2 ] assay 

compared with those obtained using the standard [Ca 2 ] assay. This comparison 

involved compiling all the results for each assay and classifing them as described in 

Table 6.4 and Fig. 6.6. A. Comparison of the [Ca 2+]amplitudes. B. Comparison of 

the resting [Ca2 ] values. 
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Accuracy for the high throughput assay was defined as the proportion of correct 

detections across all samples for results involving the measurement of resting [Ca 21 ] 

and [Ca2+] c  amplitude. The length of pre-treatment had little effect on the accuracy of 

the high throughput assay and no obvious trends were apparent (Fig. 6.7). For 

detection of changes in the [Ca 2+] c  amplitude, the high throughput assay had an 

accuracy that varied between 61% and 89% (Fig. 6.7A). All errors in the detection of 

[Ca2+] c  amplitude changes were missed positives (Fig. 6.7A). Failure to detect 

changes in [Ca2 ] amplitude was observed in compounds that caused a small 

inhibition or elevation of the [Ca 21 ] amplitude or resting level particularly 0.75 MM 

BAPTA (not detected in 3 out of 4 experiments), 100 gM CPA and 4 M RsAFP2 

(nothing detected in any high throughput assay). A significant level of errors also 

occurred in the detection of the inhibition of the [Ca 2+] c amplitude by Triton X-100 

(inhibition not detected in 2 out of 4 samples) and 6.6% H202 (inhibition not detected 

in 3 out of 4 samples). Errors obtained with these compounds may be related to 

aequorin consumption as> 50% consumption was always observed after adding 6.6% 

H202, and frequently observed after adding 0.1% Triton X-100. 

The overall level of accuracy for detecting changes in resting [Ca 2 ] (62% to 72%) 

was slightly greater than for detecting changes in [Ca 2 ] amplitude (61-89%; compare 

Figs. 6.7A with 6.7B). The detection of large increases in resting [Ca 21i was very 

accurate, and thus increases in [Ca 2+] c  were detected for all tests involving treatment 

with H202, verapamil, diltiazem, Triton X-100, amphotericin B (60 p.g.mF) and 

RsAFP2. Small increases in resting [Ca 2+] c  were less accurately detected especially 

those caused by CPA (no effect on resting [Ca 2 ] was detected in the high throughput 

assay) and NaCl (an increased resting [Ca 2 ] was detected in only 2 out of 4 assays). 

The greatest occurrence of error in the detection of changes in resting [C2] was due 

to false positive results (Fig. 6.7B). 
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6.3 Discussion 

6.3.1 Increase in throughput of the aequorin [Ca 2+1  assay 

Development of the standard aequorin [Ca 2+] c  assay into a high throughput assay 

facilitated the measurement of 23 samples per experiment. The time required for 

setup, experimentation, and [Ca 2 ] calibration of the high throughput assay, was 

similar to the standard aequorin assay. Despite the large increase in throughput here, 

many other high throughput screens in drug discovery are capable of considerably 

more rapid screening. The possibility of increasing the throughput of compounds 

tested by the use of a 384 well plate was considered. However the capacity of 120 tl 

per well (compared to 350 xl per well in a 96 well plate) would limit inoculation 

volume and therefore aequorin luminescence. Reduced levels of aequorin caused by 

smaller sample volumes would decrease the ratio between background luminescence 

and signal luminescence thus decreasing the reliability of the [Ca 2+] c  assay (Chapter 

3). The use of increased coelenterazine concentrations, or coelenterazine derivatives 

with increased activity, may be advantageous in adapting the assay developed in this 

chapter for use in a 384 well plate. 

Although the aequorin high throughput assay has limited throughput, its specificity 

may provide benefits for future investigations. In chapters 4 and 5 the effects of 

defensin plant proteins and the deletion of putative [Ca 2 ] modulating proteins on the 

[Ca 2+]responses to mechanical perturbation and hypo-osmotic shock, were 

described. Insights into the mode of action of the defensin plant proteins may be 

obtained by treating each of the deletion mutants, compromised in different 

components of the Ca 2+  signalling machinery, with them. If the defensin treatment 

had no effect on the [Ca2+] c  signature of the mutant, this would provide evidence that 

the protein encoded by the deleted gene may be a target of the defensin. The assay 

developed in this chapter would represent a rapid and efficient mechanism of 

screening multiple deletion mutants against defensin proteins. 
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6.3.2 Sensitivity of the aequorin high throughput assay 

Adaptation of the aequorin [Ca 2+] c  assay into a high throughput screen required 

significant reduction in the measurement of RLU values from 59 to 9 measurements 

over 11 mm. This prevented the calculation of FWHM. The higher throughput 

method developed allowed measurement of the resting [Ca 2 ], amplitude of the 

[Ca 2-1]response and luminescence from total aequorin in a simple and rapid manner. 

Comparison of the high throughput assay with the standard assay for [Ca 2 ] 

measurement confirmed that the high throughput method provided reasonably reliable 

identification of increased [Ca21 ] (62-72% accuracy) and amplitude inhibition (61-

89% accuracy). The duration of compound pre-treatment had little effect on the 

accuracy of the assay. The high throughput screen provided consistent identification 

of large changes in amplitude or resting [Ca 2+  ]. Where effects on resting [Ca 2+] c  or 

amplitude were less pronounced, the efficiency of detection was reduced. The smaller 

changes in the [Ca2+] c  amplitude or resting [Ca 2 ] may be detected in future 

experiments by increasing the number of wells used for each sample, although this 

would reduce throughput of samples. 

6.3.3 The aequorin [Ca 2+1 assay as a high throughput screen 

For an effective and viable high throughput screen a range of characteristics and 

features are required. The key advantages of the aequorin [Ca 2 ] assay as a high 

throughput screen are: 

• Capable of identifying perturbations in fungal [Ca 2+] c  homeostasis (i.e. 

resting [Ca2 ]). 

• Can detect perturbations in a [Ca 2 ] response of physiological significance 

in N crassa. 

• Allows the effects of potential antifungal compounds to be analysed in a 

living population of cells. 

• The assay is based upon an extensively analysed model filamentous fungus 
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(N crassa), which is well suited for genetic, molecular and physiological 

studies. 

• The assay can be developed to screen for the involvement of specific 

[Ca 2+]modulating proteins (e.g. defensins) in antifungal mechanisms of 

action. 

6.4 Summary 

The main findings described in this chapter were: 

• A high throughput assay for measurement [Ca 2 ] has been developed and 

optimized for screening large numbers of potential antifungal compounds. 

• A proof-of-concept for the use of a high throughput aequorin assay to detect 

effects of antifungal compounds on Ca 2+  signalling, and homeostasis, has been 

provided. 



Chapter 7 

Summary and future work 

In the research described in this thesis I have developed and optimized the existing 

aequorin [Ca 2+]assay for fungal mycelia (Nelson et al., 2004; Zelter, 2004) for use 

with germ tubes of Neurospora crassa. This assay was then used to analyse the 

[Ca2 ] responses to mechanical perturbation and hypo-osmotic shock, examine the 

influences of antifungal proteins on these processes, and identify proteins that are 

involved in generating the [Ca 2 ] responses. The final stage of this work evaluated 

how the aequorin [Ca2- ' -] c  assay could be developed into a high throughput screen to 

discover antifungal agents that target Ca 2+  signalling and/or homeostasis. 

Germ tubes of N. crassa were selected to provide a more homogenous cell population 

than the vegetative hyphal cultures previously examined (Zelter, 2004). Optimization 

of the assay confirmed that germ tubes produced sufficient recombinant aequorin for 

138 
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accurate [Ca 2 ] measurement in cell populations. The germ tube [Ca 2+] c  response was 

more reproducible than vegetative hyphae when subjected to increasing strengths of 

mechanical perturbation. The increased reproducibility was most likely due to a more 

even distribution of the mechanical perturbation stimulus to the germ tubes than can 

be achieved with the vegetative hyphal cultures. The lack of a hyphal matt may also 

be advantageous for even and effective distribution of potential [Ca 2+] c  modulating 

compounds added to the germ tubes in this assay. On the basis of these benefits, 6 h 

germ tubes were selected for further experimentation in subsequent work described in 

this thesis. 

Investigation of the apical hyphal swelling effects of mechanical perturbation on germ 

tubes identified a morphological response in the form of a transient cessation of apical 

extension accompanied by apical hyphal swelling that could be quantified. Removal 

of external Ca2  abolished the [Ca2+] c  response to mechanical perturbation and 

severely inhibited the swelling response. This established a physiological link 

between the two responses. Polarized apical extension in N. crassa has been reported 

to require an apical [Ca2+] c  gradient (Levina et al., 1995; Silverman-Gavrila and Lew, 

2000; Silverman-Gavnla and Lew, 2003). Ca 2+  influx in response to mechanical 

perturbation via stretch activated CPCs in the plasma membrane (Levina et al., 1995) 

may increase [Ca 2+] c  behind the tip. Sub-apical [Ca 2+] c  elevation may temporarily 

disrupt the [Ca2+] c  gradient leading to apical swelling and cessation of extension in 

germ tubes. 

Defensins are an important group of antifungal plant proteins, which may exert 

antifungal activity by perturbation of Ca 2  signalling (Osborn et al., 1995). Despite 

considerable evidence that defensins increase Ca 2  accumulation (Thevissen et al., 

1996; Dc Samblanx et al., 1997; Spelbrink et al., 2004) and inhibit Ca 2+  channel 

activity (Spelbrink et al., 2004), their effects on fungal [Ca 2+] c  had not been 

examined. MsDefl, RsAFP2 and MtDef4 were all found to substantially increase 

resting [Ca2+] c  and exert specific effects on the [Ca 2 ] responses to mechanical 

perturbation and hypo-osmotic shock. Morphogenic defensins, such as MsDefl and 

RsAFP2, inhibit growth by inducing hyperbranching and inhibiting hyphal elongation 

(Thevissen et al., 1996). Non-morphogenic defensins, such as MtDef4, inhibit hyphal 

elongation without affecting branching (Ramamoorthy et al., 2007). Although 
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branching in N crassa has been proposed to be initiated by localized increases in 

[Ca2 ] (Silverman-Gavrila et al., 2000), this is not consistent with my finding that 

MtDef4 increases [Ca2 ] without inducing branching. 

This process of membrane permeabilization may facilitate the defensin targeting 

CPCs, Ca 2+  pumps and transporters located on intracellular membranes. My results 

indicated that the different defensins targeted different components of the Ca 2+  

signalling machinery either directly or indirectly. I obtained evidence for some 

targeting both CPCs and Ca 2+  pumps or transporters (MsDefl and MtDef4) whilst 

others (RsAFP2 and MtDef2) may only target Ca 2  pumps or transporters. A 

mechanism of action for defensins has been proposed in which they bind specific sites 

at the plasma membrane where they become inserted into the membrane resulting in 

pore formation and permeabilization the membrane to Ca 2  (Thevissen et al., 2003a). 

The increased [Ca 2+]c  resting level which consistently resulted from treatment with 

defensins may then have been a non-specific effect of membrane permeabilization. 

There is increasing evidence that defensins may also inhibit fungal growth by 

interaction with intracellular components other than [CW +] c  signalling (Lobo et al., 

2007; Ramamoorthy et al., 2007). This evidence is supported by my results which 

showed weak effects of MtDef2 on Ca 2  signalling at concentrations capable of 

inhibiting N crassa growth. Future studies should focus on biochemical assays to 

analyse the interaction between the defensins and different Ca 2  signalling proteins as 

well as analysing cross talk with other signalling pathways (e.g. MAP kinase 

signalling, Ramamoorthy et al., 2007) that may also be targets of defensins. 

Creation of deletion mutants by the Neurospora Genome Project 

(http://www.dartmouth.eduJ-neurosporagenome/index.html)  facilitated analysis of 

predicted [Ca2-']c  modulating proteins in the responses to mechanical perturbation and 

hypo-osmotic shock. Deletion mutants were selected on the basis of existing genetic 

and functional evidence (Margolles-Clark et al., 1999; Benito et al., 2000; Zelter et 

al., 2004), and knock out strains were transformed with codon optimized aequorin. 

My work found that N crassa MID-1 was essential for the [Ca 2+] c response to 

mechanical perturbation despite being predicted to be unable to form a functional 

CPC on its own. MID-I may act as a mechanosensor and mediate Ca 2  influx via 
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regulation of CCH- 1; the two proteins are believed to act cooperatively in both 

Saccharomyces cerevisiae (Paidhungat and Garrett, 1997) and Candida albicans 

(Brand et al., 2007). This theory was supported by my results that showed inhibition 

of Ca2  influx by L-type Ca2  channel blockers which are predicted to inhibit CCH- 1 

activity. 

Future work will need to examine whether the reintroduction of the mid-] gene in the 

aequorin expressing Amid-] strain can restore the [Ca 2 ] response. GFP localization 

of MID-1 would also be useful to determine whether MID-1 is localized in the germ 

tube tip (where swelling occurs). 

Work with the deletion mutants also revealed the involvement of multiple ATPases in 

the reduction of [Ca 2+] c  following its transient increase after mechanical perturbation 

and hypo-osmotic shock. N. crassa possesses 18 proteins that are predicted to remove 

Ca2  from the cytoplasm (Zelter et al., 2004). These proteins include predicted 

ATPases, Ca2 7ff exchangers and Ca2 /Na exchangers. Deletion mutants are now 

available from the FGSC (www.fgsc.net) for 14 of these proteins. However, the 

remaining deletion mutants, along with the putative CCH-i protein, were ascospore 

lethal. Ascospore lethal deletion mutants are available as heterokaryons which have 

not been put through a sexual cross and thus contain both antibiotic selection markers 

for N. crassa used in this study (hygromycin and ignite resistance, see section 1.3.2). 

In order to complete the analysis of Ca 2  signalling in response to mechanical 

perturbation and hypo-osmotic shock recombinant aequorin must be expressed in 

these strains. A potential third selection marker which could be used to select for 

aequorin expressing transformants of these strains is histidine auxotrophy. 

In future work it will be important to identify the location of different components of 

the Ca2  signalling machinery by using GFP labelling. The roles of different Ca2  

storage organelles (e.g. vacuoles, ER, mitochondria and Golgi) should also be 

analysed by targeting aequorin to these organelles in order to measure organellar free 

Ca2  changes following stimulation. The targeting of aequorin to subcellular 

organelles was been developed in mammalian cells (e.g. Brini et al., 1999) and 

aequorin has since been targeted to ER in S. cerevisiae (Strayle et al., 1999) and 

mitochondria in Aspergillus nidulans (Greene et al., 2002). 
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Despite the considerable progress made with the aequorin method in this work, 

investigation of Ca 2+ 
 signalling in filamentous fungi is still limited by the inability to 

reliably image [Ca2 ] in single, living fungal cells. At present there are major 

problems because the Ca 2 -sensitive dyes do not work (see section 1.4.1). 

The final section of my work examined how the aequorin [Ca 2+]assay could be 

adapted and optimized for use for a high throughput screen to discover antifungal 

agents that target Ca 2+ 
 signalling and/or homeostasis. Assay protocols were designed, 

and optimized. Although the high throughput assay displayed reduced accuracy and 

resolution of the Ca2  signal compared with the standard assay, the level of 

throughput was substantially increased. 



Appendix A 

Media and Solutions 

A-i E. coli growth media 

A-1.1 Luria-Bertani (LB) medium 

Ingredient 	 Amount 

Bacto Tryptone 	 log 

Bacto Yeast Extract 	 5 g 

NaCl 	 lOg 

4H20 	 to 1 litre 

Oxoid Agar (for solid media) 	15 mgml 1  
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A-2 Neurospora crassa growth media 

A-2.1 Vogel's Medium 

A-2.1.1 Vogel's 50x stock solution 

Ingredient Amount 

Na3 citrate.21-120 126.7 g 

KH2PO4 250g 

NH4NO3  100  

MgSO4.71-120 lOg 

CaC12 .21-120 5 g 

D-Biotin solution 5 ml 

Trace element solution 5 ml 

d17120 to 1 litre 

Chloroform was added as a preservative and the solution was stored in the dark at room 

temperature. Biotin solution - 5 mg of D-biotin dissolved in 100 ml of 50 % v/v ethanol 

(EtOH) and was stored at 4 °C. 

A-2.1.2 Biotin Stock Solution 

Dissolve 5 mg Biotin in 100 ml 50% ethanol, filter sterilize and store at 4 °C. 
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A-2.1.3 Vogels Medium Trace Element Solution 

Ingredient Amount 

citric acid. 1H20 5.0 g 

ZnSO4.71-120 5.0 g 

Fe(NH4)2(SO4)2.6H20 1.0 g 

CuSO4 .51-120 0.25 g 

MnSO4.1H20 0.05 g 

H3B03 0.05 g 

Na2Mo04.21-120 0.05 g 

dH20 to 100 ml 

Chloroform (1 ml) was added as a preservative and the solution was stored at room 

temperature. 

A-2.1.4 Vogel's medium (complete) 

Ingredient Amount 

Vogels 50x  stock solution 20 ml 

Sucrose 15 g 

Agar 18g 

dH20 to 1 litre 
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A-2.2 Neurospora crassa transformation media 

A-2.2.1 lOx Fructose Sucrose Sorbose solution (FGS) 

Ingredient Amount 

Sorbose 100  

Fructose 2.5 g 

Glucose 2.5 g 

d17120 to 500 ml 

A-2.2.2 Bottom agar 

Ingredient 	 Amount 

50x Nitrogen free Vogels stock solution 10 ml 

Bacto Agar 	 7.5g 

L-Arginine hydrochloride 	 1.5 g 

d17120 	 to 450 ml 

Autoclave then add 50 ml lOx FIGS. Cool to 50-60 °C then add antibiotic for selection. 

A-2.2.3 Top agar for hygromycin B selection 

Ingredient Amount 

50x Vogels stock solution 10 ml 

Sorbitol 91 g 

Oxoid agar 5 g 

dH20 to 450 ml 

Autoclave then add 50 ml lOx FIGS. 
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A-2.2.4 Top agar for ignite selection 

Ingredient 	 Amount 

Sorbitol 	 91 g 

Oxoid agar 	 5 g 

dH20 	 to 450 ml 

Autoclave then add 50 ml lOx FIGS. Cool to 50-60 °C then add ignite. 
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B-i pAZ6 

HpaI 7259 

AL 	 Polylinker 1 650 

Safi 690 

	

fi Oil 	 XbaI 690 

PsII 680 

hygR 
TrpC 

	

terminator 	 EcoRl 1570 

Ba,nHI 1591 

TAA (Stop codon) 1602 
HpaI 5759 

pAZ6 
7329bp 	 aeqS —Safi 1827 

ATG (Start codon) 2195 

	

chloramphenicol 	 BspHI 2197 

cpc I 	 PslI 2319 	EcoRl 2199 

	

promotor 	BamHI 2449 

Sad 2559 

colE! 

HindlII 2899 

Polylinker 23329 

Fig B.! The pAZ6 plasmid (from Zelter, 2004). Polylinker 

1 :T7.KpnL4paI.XhoI.SalI . ClaI. HindIII. Polylinker 2: XbaI.NotI.SacI.T3. 

B-2 pBARGRG1 

KpnIApo1ni Mal HindIIIEcoRV 

EcoRI Psti Smal BaniHI 

polylinker 

MIUI 
Nail 

ttpC 
Noti 	terminator 	(ccg-1) 

	

promoter 	
PVIIII 

S el 
Nail 

	

pBARGRG1 	NcoI 

6.35 kb 
bar 	 pUC 	Bglll 

origin 
unique restriction 

trpc sites underlined 
promoter 

	

xbai 	 Ampr 	
A1wNI 

PME 
AatlI 	uI 	BglIl 

Fig B.2. The pBARGRG1 plasmid. Figure from Pall and Brunelli (1994). 
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B-3 pAB19 

Polylin er 38059 	

Polylinker 1 650 MIL' 

Sail 690 
Trp 

terminator 
C 

Psil 680 

TrPC  
EcoRl 1570 

terminator 	 BamHI 1591 

TAA (Stop codon) 1602 

5759 

bar 

TrpC 	 pABI9 
promotor 	-81 29bp 

chioramphenicol 

ririr 	 colE! 

SaIl 1827 
aeqS 

I 	

ATG (Start codon) 2195 
BspHl 2197 

EcoRl 2199 
Psd 2319 

JBamHI 2499 promotor 	
Sad 2559 

HindlII 2899 

23329 

Fig B.3. The pABl9 plasmid. Polylinker 1: T7.KpnL4paLXhoI.SalI.ClaI.HindIII; 

Polylinker 2: XbaI.NotI.SacI.T3; Polylinker 3: KpnI.ApaIXhoI. ClaI.HindIII. 
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