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Abstract 
Murine cytomegalovirus (MCMV) encodes a non-coding RNA, m169, that inhibits 

the cellular miRNA, miR-27. Previous studies have shown that the overexpression of 

miR-27 in vitro suppresses replication of MCMV and degradation of miR-27 by 

m169 is important for the viral replication during the lytic stage of infection in vivo. 

To understand why the virus specifically targets this cellular miRNA for degradation, 

this thesis focuses on identification of cellular target genes of miR-27 that are 

involved in viral growth in the lytic infection. 

Microarray analysis was conducted to globally examine cellular genes differentially 

expressed following miR-27 overexpression or repression during MCMV infection. 

Data obtained from the microarray analysis were analysed in order to select potential 

targets of miR-27 for functional screening. Functional screening involved siRNA 

knockdown of individual genes followed by infection with a GFP reporter virus 

(GFP-MCMV) to assess the effects on viral growth. Knockdown of 5 out of 55 genes 

(Rpl18a, Lyar, Itga5, Mapkapk3 and Pik3r1) led to a significant reduction in GFP 

expression. Based on luciferase reporter assays, Mapkapk3 was validated as a direct 

target of miR-27 with a seed site interaction in its 3’UTR. Mutation of this site in the 

mRNA was shown to eliminate miR-27-mediated repression. Analysis of 

MAPKAPK3 protein levels upon infection demonstrates that the protein levels are 

higher in cells infected with wild type MCMV versus the m169 deletion virus 

(MCMV Δm169). This is in line with the difference in miR-27 levels in the two 

infections showing a decrease of miR-27 in wild type MCMV and unaltered levels in 

MCMV Δm169 infection. 

Mapkapk3 is a direct downstream target of p38 mitogen-activated protein (MAP) 

kinase within the p38 MAP kinase pathway, which has previously been shown to be 

an essential pathway for CMV replication. Expression levels of substrates of 

MAPKAPK3 including HSP27 and ATF1 were examined during infection to 

evaluate whether they are regulated by miR-27. The level of phosphorylation of 

HSP27 was shown to correlate with the levels of MAPKAPK3 during infection and 

was higher in cells infected with wild type MCMV versus MCMV Δm169. This 
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suggests that MAPKAPK3 and its substrate, HSP27, are regulated by miR-27 during 

MCMV infection. This work provides an important foundation for further functional 

studies on the role of Mapkapk3 and its substrates in MCMV infection and its 

capacity to be dynamically regulated by miR-27. 

Based on the microarray analysis upon miR-27 overexpression, it was shown that 

miR-27 has an impact on the cell cycle, consistent with previous studies. Functional 

analysis of miR-27 in the cell cycle using miR-27 mimics and inhibitors 

demonstrated that the mimics cause an increase of cells in S phase at early time 

points (12 and 14 h), whereas the inhibition of miR-27 results in a significant 

reduction in the S phase population and accumulation of cells in G1 phase. 

Luciferase reporter assays confirmed that two genes known to be associated with the 

cell cycle are direct targets of miR-27: polycomb ring finger oncogene 1 (Bmi1) and 

caveolin 1 (Cav1). Knockdown of Bmi1 and Cav1 leads to a significant decrease in 

the number of cells in S phase and accumulation of cells in the G1 phase; however, 

this is the opposite result to that observed with the miR-27 mimics. These results 

suggest that the increase in cells in the S phase induced by miR-27 mimics is 

unlikely to be associated with targeting of Bmi1 and Cav1. Furthermore, knockdown 

of Bmi1 and Cav1 does not affect viral replication in vitro. Since miR-27 induces the 

transition of cells from the G1 to S phase, further studies are required to identify the 

miR-27 targets involved in this function. 

To identify direct targets of miR-27 through biochemical methods, one chapter of 

this thesis was devoted to developing CLASH datasets (cross-linking, ligation and 

sequencing of hybrid). This technique can directly map miRNA-mRNA interactions 

within the Argonaute protein (AGO). Initially, a NIH 3T3 stable cell line expressing 

AGO2 with a double affinity tag at the N terminus was generated. Analysis of the 

stable cell line revealed no significant alteration of miR-27 regulation or change in 

permissiveness to MCMV compared to wild type cells, making this amenable to 

further studies. Using the stable cell line, the CLASH protocol was carried out and 

preliminary data collected. 
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In summary, this thesis identifies a direct target of miR-27, Mapkapk3, that is an 

important gene in MCMV replication that requires further investigation. Mapkapk3 is 

a substrate of p38 in the p38 MAP kinase pathway which is a signal transduction 

mediating numerous biological processes in response to cellular stresses including 

CMV infection. Furthermore, miR-27 overexpression was found to stimulate the 

G1/S transition of the cell cycle, and miR-27 inhibition had the opposite effect. 

Previous evidence has shown that MCMV and HCMV arrest the cell cycle in the G1 

phase and inhibit host DNA synthesis to create an optimal condition for viral gene 

expression and DNA replication. Given that MCMV arrests host cells in the G1 

phase, it is possible that degradation of miR-27 by MCMV contributes to this effect. 

Since miR-27 regulates both Mapkapk3 and the cell cycle, it seems likely that a 

number of targets and pathways underlie the antiviral properties of this miRNA. 
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Lay summary 
Cytomegalovirus (CMV) is a virus infecting a majority of the world’s population. 

The infection usually asymptomatic in healthy individuals; however, it can cause 

serious diseases in patients who have a defect or suppression of immune system such 

as patients with HIV and organ transplant recipients who are on immunosuppressive 

drugs. Furthermore, CMV infection is the most common congenital infection and 

CMV-infected neonates are at risks of hearing, mental and motor defects. Currently, 

no anti-viral medication for individuals with normal immunity is recommended. 

Drugs used for patients with congenital infection or symptoms usually cause side 

effects. Moreover, no vaccine for the prevention of CMV infection is licensed, 

although vaccines have been evaluated in clinical trials. 

A class of small non-coding RNAs, miRNAs, have been reported to be involved in 

host defences against viral infection. This thesis focuses on a mouse miRNA, miR-

27, which has been shown to suppress the replication of mouse CMV (MCMV) in 

tissue culture. Importantly, it was shown that the virus mediates the degradation of 

miR-27 and this is important for viral replication in mice. The broad aim of this 

thesis is to identify host target genes of miR-27 in order to understand its anti-viral 

role and why the virus specifically targets miR-27 for degradation. One gene was 

validated as a direct target of miR-27 and shown to be important for MCMV 

replication. This gene is involved in a cellular pathway essential for CMV 

replication. Functional studies of the gene may elucidate the anti-viral mechanism of 

miR-27 and explain why the virus has evolved the strategy to inhibit miR-27. 

Moreover, studies of miR-27 in the cell cycle showed that miR-27 induces the 

progression of the cell cycle at a certain stage, which has shown to be arrested by the 

virus. Since miR-27 was shown to regulate the gene in the important pathway 

required for the virus, and the cell cycle, it is possible that a number of genes and 

pathways contribute to the anti-viral properties of miR-27. 
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°C Degrees Celsius 
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AKT V-Akt murine thymoma viral oncogene homolog 
ANOVA Analysis of variance 
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APS Ammonium persulfate 
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ATP Adenosine triphosphate 
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CCND3 Cyclin D3 
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HIV human immunodeficiency virus 
hpi Hours post infection 
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MAP Mitogen-activated protein 
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MCMV Murine cytomegalovirus 
MCMV Δm169 m169 deletion MCMV 
MEF Mouse embryonic fibroblast 
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miRNA microRNA 
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Chapter 1: Introduction 
1.1 miRNAs 
In 1993, the discovery of the first miRNA, lin-4 in Caenorhabditis elegans (C. 

elegans) that regulates gene expression during larval development opened up the 

field of miRNA research. Ambros V. and Ruvkun G. found that lin-4 gene encoded 

two small non-coding RNA transcripts of 61 nt and 22 nt in length that were found to 

be complementary to the 3’UTR of the lin-14 gene, which controls the transition 

from the first to the second larval stage (Lee et al., 1993; Wightman et al., 1993). In 

2000, Reinhart et al. found a second miRNA, let-7, in C. elegans that positively 

controls the L4-to-adult transition of larval development via the regulation of the lin-

41 gene (Reinhart et al., 2000). The fact that let-7 gene is conserved across many 

species from flies to humans (Pasquinelli et al., 2000) then triggered extensive 

research in the field of miRNAs. 

1.1.1 Biogenesis of miRNAs 
miRNAs are small non-coding RNAs ~22 nt in length that are encoded by animals, 

plants and some viruses (Griffiths-Jones et al., 2008). Approximately 50% of 

mammalian miRNA-coding genes are located within the intergenic space, ~40% of 

them within introns and ~10% of them within exons of protein-coding genes 

(reviewed in (O'Carroll and Schaefer, 2013)). The biogenesis pathway of miRNAs is 

shown in Fig 1.1. miRNA genes are generally transcribed by RNA polymerase II 

(Pol II) (Cai et al., 2004; Lee et al., 2004), with a minority being transcribed by Pol 

III (Borchert et al., 2006), giving rise to pri-miRNAs. The pri-miRNAs are usually 

long transcripts often over several kilobases in length and contain cap structures and 

poly(A) tails, which are the unique feature of class II gene transcripts (Han et al., 

2004). The maturation of miRNAs begins with the cleavage of pri-miRNAs by the 

nuclear microprocessor complex containing RNAse-III enzyme (Drosha) and its 

cofactor, DiGeorge syndrome critical region 8 (DGCR8). DGCR8 directly interacts 

with pri-miRNAs to determine the precise cleavage site (Han et al., 2006) and 

Drosha cleaves the 5’ and 3’ of the pri-miRNAs to generate precursor-miRNAs (pre-

miRNAs), which are generally ~60-70 nt in length (Han et al., 2004). Besides the 
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canonical miRNA biogenesis with Drosha/DGCR8, a non-canonical pathway called 

the “mirtron pathway” has also been described. Initially identified in D. 

melanogaster and C.elegans (Okamura et al., 2007; Ruby et al., 2007), this pathway 

was found to be conserved in mammals (Babiarz et al., 2011; Berezikov et al., 2007). 

Mirtrons are short intronic hairpins of mRNA-coding genes that are debranched to 

become pre-miRNAs that are able to enter the miRNA-processing pathway in a 

Drosha/DGCR8-independent manner (Ruby et al., 2007). 

Nascent pre-miRNAs including mirtrons are exported from the nucleus to the 

cytoplasm via Exportin 5 in a GTP-dependent fashion (Lund et al., 2004; Yi et al., 

2003). In the cytoplasm, the pre-miRNA is cleaved by the RNase III endonuclease 

Dicer, which interacts with transactivation-response RNA-binding protein (TRBP) 

and protein activator of PKR (PACT) (reviewed in (Ha and Kim, 2014)). It was 

shown that TRBP and PACT facilitate Dicer-mediated cleavage of the pre-miRNAs 

(Haase et al., 2005; Lee et al., 2006). Dicer cleaves pre-miRNAs into ~22 nt long 

miRNA duplexes (miRNA:miRNA* duplexes), which are loaded into the RISC. One 

strand of the duplex called the “guide strand” remains incorporated in the RISC 

through specific association with an AGO protein, whereas the other strand 

(miRNA*) namely the “passenger strand” is usually degraded (Bartel, 2004; Castilla-

Llorente et al., 2013). AGO proteins are key components of RISC that mediate gene 

silencing. Four AGO proteins (AGO1-4) have been reported in mammals and each of 

them appears to bind to a similar pool of miRNAs and target mRNAs (Burroughs et 

al., 2011; Czech and Hannon, 2011), though some differences in specificity have 

been reported (Li et al., 2014). All AGO proteins contain two conserved domains: 

the N-terminal, PAZ (piwi–argonaute–zwille) domain and the C-terminal lobe 

containing MID (middle) domain and PIWI (P-element–induced wimpy testis) 

domain. Biochemical and structural studies reveal that the PAZ domain binds to the 

characteristic 2 nt overhangs at the 3’ end of miRNAs, whereas PIWI domain 

resembles to RNase H and contains an active site that enables cleaving of target 

mRNAs (reviewed in (Ha and Kim, 2014). Among mammalian AGO proteins, only 

AGO2 has endonucleolytic activity and can thereby cleave the phosphodiester bond 

of perfectly matched target mRNAs (Liu et al., 2004; Meister et al., 2004).  
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The specific function of AGO1, 3 and 4 is still unclear; however, their functions 

appear to be redundant. A functional study of AGOs in mouse embryonic stem cells 

lacking AGO1-4 showed that the AGO-deficient cells were unable to perform 

miRNA silencing and undergo apoptosis (Su et al., 2009). The reintroduction of any 

individual AGO into the AGO-deficient cells is capable of rescuing miRNA 

silencing machinery, suggesting that AGO proteins have overlapping functions in 

this biological event. The role of AGO4 was emphasised by a study showing that 

AGO4 is required for spermatogenesis and Ago4−/− mice had a dramatic loss (>20%) 

of miRNAs, leading to premature meiotic initiation (Modzelewski et al., 2012). 

Possibly, the expression pattern of individual AGOs may dictate their importance as 

well, as it was found that AGO3 and AGO4 are highly expressed in the male mouse 

germ line (Gonzalez-Gonzalez et al., 2008). 
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Figure 1.1 Schematic picture of miRNA biogenesis.  
In the canonical pathway of miRNA biogenesis (left), pri-miRNAs are transcribed by RNA pol II and 
contain a 7-methylguanosine cap (m7Gppp) and poly(A) tail at their 3’end. In the nucleus, the stem 
loop pri-miRNAs are cleaved by the endonuclease Drosha associating with DiGeorge syndrome 
critical region 8 (DGCR8) to become 60-70 nt pre-miRNAs. The pre-miRNAs are exported via 
exportin 5 from the nucleus into the cytoplasm where they are further cleaved by the endonuclease 
Dicer interacting with transactivation-response RNA-binding protein (TRBP) and protein activator of 
PKR (PACT) to generate a ~22 nt long miRNA:miRNA* duplex. The duplex is incorporated into the 
RISC with the support of the HSC70-HSP90 chaperone. The guide strand of the duplex remains 
associated to AGO, whereas the passenger strand (miRNA*) dissociates from the RISC and is 
subsequently degraded. The guide strand within the RISC binds to a target mRNA through base-pair 
complementarity. ORF: open reading frame. In the mirtron pathway (right), a debranched intron 
(mirtron) from a mRNA resembles to the structure of a pre-miRNA and enters the miRNA-processing 
pathway independent of Drosha-mediated cleavage. This figure is adaped from (Ha and Kim, 2014; 
O'Carroll and Schaefer, 2013). 
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1.1.2 Regulatory functions of miRNAs 
miRNAs regulate gene expression at the post-transcriptional level by binding to 

target mRNAs with Watson-Crick base-pair complementarity, usually within the 

3’UTR of target mRNAs. Targeting specificity by miRNAs is generally dictated by 

the “seed sequence” at nucleotides 2 to 8 of the 5’ end of miRNAs (Bartel, 2009). 

The modes of target repression in different organisms depend on the degree of 

complementarity between the miRNA and the target mRNA. In plants, perfect 

complementarity between miRNAs and mRNAs triggers mRNA degradation based 

on the endonuclease activity of AGO2. In animals, miRNAs generally bind with 

partial complementarity to target sites within the 3’UTR of mRNAs, resulting in 

mRNA destabilisation and translational suppression (Fabian et al., 2010), whereas 

the binding of miRNAs and targets at the 5’ UTR leads to translation repression 

(reviewed in (Da Sacco and Masotti, 2012)). Although it is clear that miRNAs 

regulate gene expression post-transcriptionally, the mechanistic details of gene 

silencing are still under a debate with several proposed mechanisms involved in 

mRNA destabilisation/degradation and translational inhibition at initiation or 

elongation step (reviewed in (Ameres and Zamore, 2013). 

1.1.2.1 miRNA-directed degradation of target mRNAs 
In plants, miRNAs recognise fully or nearly complementary mRNA targets, and 

mediate endonucleolytic mRNA cleavage (Llave et al., 2002; Rhoades et al., 2002). 

In animals, miRNAs are partially complementary to the binding sites within target 

mRNAs and degradation of the mRNAs occurs via a 5’ to 3’ mRNA decay pathway 

whereby mRNAs are initially deadenylated by the CAF1–CCR4–NOT deadenylase 

complex (Fig 1.2) (reviewed in (Wilczynska and Bushell, 2015)). This process 

requires AGO and GW182 protein (Behm-Ansmant et al., 2006). GW182 is 

characterised by the presence of glycine and tryptophan repeats (GW repeats) and is 

crucially involved in miRNA-induced target mRNA repression. GW182, when 

associated with AGO, interacts with the poly (A) binding protein (PABPC) bound to 

poly(A) of a mRNA and recruits the CCR4-NOT deadenylase complex leading to 

deadenylation of the target mRNA (Behm-Ansmant et al., 2006; Braun et al., 2011; 

Chekulaeva et al., 2011). Further, the decapping process is mediated by the 
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decapping enzyme DCP2 enhanced by co-factor DCP1, DDX6 and EDC4. 

Subsequently, the decapped mRNAs are degraded by 5’-to-3’ exonuclease XRN1. 

 
Figure 1.2 miRNAs-mediated mRNA degradation in animals 
miRNAs bind to partially complementary sites within the 3’UTR of target mRNAs. GW182 
associated with AGO interacts with PABPC bound to the poly(A) tails, leading to mRNA 
deadenylation. Following deadenylation, the mRNAs undergo decapping through the activity of the 
decapping enzyme 2 (DCP2) and associated cofactors (DCP1, DDX6 and EDC4). The mRNAs are 
then further degraded by the 5’-to-3’ exonuclease XRN1. The figure is adapted from (Huntzinger and 
Izaurralde, 2011a). 

1.1.2.2 miRNAs mediate translational repression 
A number of studies have demonstrated that miRNAs repress translation; however, 

the mechanism of translation repression has remained unclear and controversial. It is 

important to note that a majority of studies has focused on miRNA regulating 

translation through the 3’ UTR of target mRNAs and little is known about 

mechanism of miRNA-regulated translation via the 5’UTR of mRNAs. Several 
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models suggest that miRNAs repress translation at the initiation and post-initiation 

steps (reviewed in (Wilczynska and Bushell, 2015). To put in context the mechanism 

of miRNA-mediated translational repression, the basic mechanism of translation 

requires description. The predominant mode of translation is cap-dependent. The 

process is initiated by recognition of the 5’ m7G by the cap-binding protein and 

eIF4E, which is a part of the eIF4F initiation complex. The eIF4F further recruits two 

complexes: a complex consisting of eIF3, the 40S subunit of the ribosome and the 

others containing eIF2, GTP and the methionyl-tRNA. The 40S subunit scans the 

mRNA to identify AUG. When AUG codon is located, the 60S subunit joins the 

initiation complex to proceed elongation phase of the translation (Kapp and Lorsch, 

2004).  

Using sucrose gradients to fractionate polysomes, Pillai et al. demonstrated that let-7 

miRNA inhibited translation initiation through the observation that mRNAs 

expressed from the reporter vector containing binding sites of let-7 shifted to lighter 

fractions, which contain less ribosomes, compared to the control vector without the 

sites of let-7 (Pillai et al., 2005). Moreover, Humphreys et al. showed that the 

miRNA-mediated repression of mRNA translation required the 5’ cap and the 3’ 

poly(A) structure as the replacement of the 5’cap with an internal ribosome entry site 

(IRES) diminished the repression effect (Humphreys et al., 2005). In line with the 

previous studies, it was later shown that miRNAs interfere with translation initiation, 

specifically the 5’cap recognition process (Mathonnet et al., 2007). Presumably, 

miRNAs inhibit translation at the initiation step by interfering with the function of 

the cap-binding complex eIF4F (Ding and Grosshans, 2009; Zdanowicz et al., 2009).  

In other studies however, it has been demonstrated that miRNAs repress translation 

at the post-initiation step. The first evidence for this was presented in C.elegans since 

no change of the lin-14 polysomal sedimentation profile was observed in response to 

lin-4 miRNA (Olsen and Ambros, 1999). In HeLa cells, the vast majority of three 

abundantly expressed miRNAs: miR-21, miR-17 and let-7 associated with mRNAs 

were found to be co-sedimented with the polysome fractions, suggesting that 

miRNAs bind to mRNAs that are being translated (Maroney et al., 2006).  
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As detailed above, it was historically thought that mammalian miRNAs regulate gene 

expression at the translation level (Olsen and Ambros, 1999). However, Guo et al. 

have shown that the reduction of protein mediated by miRNAs is a result of mRNA 

degradation. The authors compared data of ribosomal profiling, which involves 

sequencing ribosome-protected mRNA fragments (RPFs) to evaluate effects of 

miRNAs on protein production, to simultaneously measured mRNA levels. The 

effect of a miRNA on the protein production was calculated by dividing changes in 

RPFs with that of mRNA levels. The authors found that the decrease of mRNA 

levels accounted for ≥84% of the decrease of protein production, suggesting that 

destabilisation of mRNAs by miRNAs might explain the protein reduction (Guo et 

al., 2010). 

However, further studies in zebrafish suggested that the translational inhibition could 

in fact cause mRNA degradation. (Bazzini et al., 2012; Giraldez et al., 2006). 

Ribosome profiling showed that miR-430 reduced occupancy of ribosomes on target 

mRNAs and later on caused mRNA decay (Bazzini et al., 2012). In line with this, 

kinetic studies of miRNA-mediated gene silencing in D. melanogaster and 

mammalian cells demonstrated that miRNAs initially repressed mRNA translation 

before triggering mRNA deadenylation and decay (Bethune et al., 2012; Djuranovic 

et al., 2012).  

Based on the functions of miRNAs in regulation of gene expression through specific 

interactions with target mRNAs, cellular miRNAs have been reported to play a role 

in virus-host interaction by which miRNAs regulate cellular or viral gene expression. 

This interaction can lead to suppression or promotion of viral replication, depending 

on functions of cellular and viral genes contributing to the viral life cycle (reviewed 

in (Ghosh et al., 2009)). This thesis focuses on the miRNAs that have anti-viral 

activities. 

1.1.3 Roles of host miRNAs in viral infection 
Host miRNAs have been reported to be a part of host defences against viral 

infections, either by directly repressing expression of viral genes or by regulating 

host pathways involved in viral replication (Grassmann and Jeang, 2008; Skalsky 
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and Cullen, 2010). For example, miR-32 was reported to inhibit viral RNAs in 

retrovirus primate foamy virus type 1 (PFV-1), resulting in repression of viral growth 

in HeLa and baby hamster kidney cells (BHK-21). The virus contains several target 

sites of miR-32 including Gag, Pol, Env and Tas transcript and open reading frame 2 

(ORF) shared by Bet and EnvBet protein (Lecellier et al., 2005). It has also been 

found that host miRNAs suppress viral RNAs in diverse viral infection including 

HIV-1, HCV, VSV, influenza, HBV and EEEV as summarised in Table 1.1. For 

example, in HIV-1 infection, resting primary CD4+ T cells a cluster of miRNAs are 

highly expressed that target the sequence near 3’ends of HIV-1 mRNAs, leading to 

inhibition of viral production (Huang et al., 2007). It is thought that these miRNAs 

(miR-28, miR-125b, miR-150, miR-223 and miR-382) are involved in the 

establishment of viral latency during the resting stage (Huang et al., 2007). Another 

example of regulation of HIV-1 replication by miRNAs has been published by 

Ahluwalia and colleagues. They showed that miR-29a targets the viral gene, Nef 

(Ahluwalia et al., 2008), a critical gene for progression of HIV-1 infection (Gorry et 

al., 2007). ELISA assays revealed that the regulation of Nef by miR-29a lead to a 

reduction in HIV-1 p24 antigen (Ahluwalia et al., 2008). Interestingly, miR-29a was 

found to enhance the association of HIV-1 mRNAs, RISC and P body protein 

RCK/p54, which plays a role in miRNA-dependent translational repression (Nathans 

et al., 2009). Collectively, it is clear that miRNAs can restrict viral gene expression 

via the direct association with viral RNAs.  

Although there is evidence that host miRNAs can directly target viral RNAs leading 

to suppression of viral replication, it seems unlikely that host miRNAs specifically 

evolved to target certain viral genes, since due to the high mutation rate of viruses 

they could readily escape this targeting (Umbach and Cullen, 2009). For example, 

the stable expression of siRNAs-directed against the viral Nef gene of HIV induced a 

siRNA-resistant virus carrying mutations in or near the target sequences after several 

weeks in culture. This leads to attenuation of the anti-viral effects of the siRNA (Das 

et al., 2004; Westerhout et al., 2005). These data demonstrate that viruses could 

escape from inhibitory effects of RNA interference mediated by siRNAs and 

possibly miRNAs. Hence, if miRNA-binding sites are presented in viruses it seems 
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likely that they must confer some advantages to these viruses, as suggested by 

(Mahajan et al., 2009). 

The other mechanism by which miRNAs can operate in host defense is through the 

regulation of host genes that are required for viral replication. During HIV infection, 

overexpression of two cellular miRNAs, miR-17-5p and miR-20 were demonstrated 

to target histone acetyltransferase p300/CBP-associated factor (PCAF), a cofactor of 

the viral transactivator protein Tat, leading to a dramatic reduction in HIV-1 

production (Triboulet et al., 2007). Other evidence comes from Wang et al. who 

demonstrated that miR-100 and miR-101 regulate components of the mammalian 

target of rapamycin (mTOR) essential during HCMV infection, leading to 

attenuation of viral progeny production (Wang et al., 2008). More examples of 

miRNA-regulated cellular genes resulting in the inhibition of viral infection are 

provided in Table 1.2.  

In addition to hosts, viruses, predominantly herpesviruses were also found to encode 

viral miRNAs using host miRNA biogenesis machinery to modulate expression of 

viral and host genes (reviewed in (Kincaid and Sullivan, 2012; Skalsky and Cullen, 

2010). Studies of herpesvirus-encoded miRNAs have shown that viral miRNAs are 

involved in inhibition of apoptosis and latency. It was demonstrated that HCMV, 

KSHV and EBV encode miRNAs targeting pro-apoptotic host genes to prevent cell 

death. The viral miRNAs have been implicated in maintaining latent infection by 

which the miRNAs regulate either viral or host gene. For example, KSHV encodes 

two miRNAs: miR-K12-9-5p and miR-K12-7-5p that can regulate a lytic gene, RTA. 

KSHV also encodes several miRNAs to target host genes involved in latency. One of 

which is miR-K12-1-5p regulating IκBα, a critical regulator of NF-κB pathway, 

leading to attenuation of lytic activation. 
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Table 1.1 Host miRNAs targeting viral genes  
Virus miRNA Target of miRNA Reference 

PFV-1 (primate 

foamy virus type 1) 

miR-32 PFV-1 transcript (Lecellier et al., 2005) 

HIV-1 (human 

immunodeficiency 

virus type 1) 

miR-28, miR-125b, 

miR-150, miR-223 

and miR-382 

3’ends of HIV-1 

messenger RNAs 

(Huang et al., 2007) 

miR-29a Nef gene of HIV-1 (Ahluwalia et al., 2008) 

HCV (hepatitis C 

virus) 

miR-448 Core region in HCV 

genome 

(Pedersen et al., 2007) 

miR-196 NS5A region in HCV 

genome 

miR-199a HCV-1b or -2a (Murakami et al., 2009) 

VSV (vesicular 

stomatitis virus 

miR-24 Viral large protein (L 

protein) 

(Otsuka et al., 2007) 

miR-93 Phosphoprotein (P 

protein) genes 

Influenza (H1N1) miR-323, miR-491, 

miR-654 

PB1 gene of H1N1 

(encoding the subunit 

of viral RNA 

polymerase) 

(Song et al., 2010) 

HBV (hepatitis B 

virus) 

miR-125a HBV mRNA (Potenza et al., 2011) 

EEEV (Wild-type 

North American 

eastern equine 

encephalitis virus) 

miR-142-3p The 3’UTR of viral 

RNA genome 

(Trobaugh et al., 2014) 
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Table 1.2 Indirect inhibition of viral replication by miRNAs targeting host genes 
Virus miRNA Target of miRNA Reference 

HIV (human 

immunodeficiency 

virus type) 

miR-17-5p and miR-

20 

Histone acetyltransferase 

PCAF, which is a cofactor 

for the viral transactivator 

protein Tat 

(Triboulet et al., 2007) 

HCMV (human 

cytomegalovirus) 

miR100 and 101 The mammalian target of 

rapamycin (mTOR) 

(Wang et al., 2008) 

miR-100 Rapter 

HBV (hepatitis B 

virus) 

miR-155 Suppressor of cytokine 

signaling 1 (SOCS1) 

(Su et al., 2011) 

RSV (respiratory 

syncytial virus) 

miR-221 Neurotrophin nerve growth 

factor (NGF) 

(Othumpangat et al., 

2012) 

HCV (hepatitis C 

virus) 

miR-27a The lipid synthetic 

transcription factor RXRα 

and the lipid transporter 

ATP-binding cassette 

subfamily A member 1 

(ABCA1) 

(Shirasaki et al., 2013) 

 

1.1.4 Host miRNAs influenced by viral infection 
Accumulating evidence has shown that host miRNA levels are also regulated during 

viral infection and some are part of innate immune response. Studies of interferon 

(IFN)-induced gene expression have demonstrated that interferons can influence the 

expression of specific miRNAs together with other IFN-stimulated genes (ISGs). 

Interferons (IFNs) are a family of cytokines that play key roles in anti-viral defence 

(Randall and Goodbourn, 2008) and are classified into three types: I, II and III. Type 

I IFNs comprise IFN-α, IFN- β, IFN-ε, IFN-κ and IFN-ω. Among the five of Type I 

IFNs, IFN-α and IFN- β are directly induced in response to viral infection, whereas 

IFN-ε, IFN-κ and IFN-ω are not well characterised. IFN-γ is the only member of type 
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II IFNs and Type III IFNs consist of three members: IFN-λ1, IFN-λ2 and IFN-λ3 

(reviewed in (Schneider et al., 2014)). Several studies have exclusively provided 

evidence that type I IFNs induce the expression of miRNAs upon viral infection, 

whereas the studies of type II and III IFNs were conducted in absence of viral 

infection. Pedersen et al. demonstrated that in HCV infection, IFN-β modulates the 

expression of a number of cellular miRNAs and eight IFN-β-induced miRNAs exert 

anti-viral effects against HCV (Pedersen et al., 2007). Likewise, cellular miR-29a is 

induced by IFN-α and IFN-β in HIV-infected cells and the expression of miR-29a 

suppressed HIV replication (Nathans et al., 2009). Another example of IFN-induced 

miRNAs was shown in cells infected with Sendai virus, a potent activator of IFN 

responses. In this study, it was demonstrated that miR-203 is dramatically induced 

(~15 fold) in virus-infected cells compared to mock infection, largely due to IFN-α 

induction upon infection; however, neither in vitro overexpression nor inhibition of 

miR-203 significantly impacted the viral replication compared to the control 

miRNAs (Buggele and Horvath, 2013). 

Changes of miRNA expression following viral infection can also result from virus 

mechanisms. For example, miRNA cluster miR-17/92 was shown to be suppressed 

during HIV-1 infection compared to mock infection and the suppression of pri-miR-

17/92 with siRNAs enhanced viral production (Triboulet et al., 2007). In HCMV-

infected fibroblasts, miR-100 and miR-101 are downregulated. The authors 

hypothesised that HCMV selectively reduces miR-100 and miR-101 to help the viral 

replication since these miRNAs were shown to have anti-viral effects via regulation 

of mTOR (Wang et al., 2008). In human papillomavirus (HPV)-infected cells, a 

tumor-suppressive miR-34a was reduced as a result of viral protein E6 destabilising 

tumor suppressor p53, a known activator of miR-34a (Wang et al., 2009). A global 

miRNA expression analysis in HCMV and MCMV infection revealed that miR-

199a-3p is downregulated upon infection and overexpression of this miRNA leads to 

a reduction in viral growth (Santhakumar et al., 2010). The anti-viral properties of 

miR-199a-3p could be relevant to its functions in regulation of genes involved in 

CMV infection such as viral entry and signaling pathway required for viral 

replication and survival (Santhakumar et al., 2010). Another anti-viral miRNA, miR-
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27, was also found to be downregulated during MCMV infection by which the virus 

encodes a non-coding RNA, m169, to mediate the degradation of the miRNA; 

however, it is unclear why the virus specifically targets this miRNA, perhaps to 

interfere with functions of miR-27 to manipulate cellular processes disadvantageous 

to viral life cycle (Buck et al., 2010; Libri et al., 2012; Marcinowski et al., 2012). In 

addition, miR-27 was also inhibited by U-rich non-coding RNAs (HSURs1 and 2) of 

herpesvirus saimiri (HVS) (Cazalla et al., 2010). As mentioned above, it seems that 

many host miRNAs are regulated by members of herpesviruses, suggesting a mode 

of virus-host interaction and it would be interesting to study the significance of 

miRNA regulation in these viruses. 

1.2 Herpesviridae 
The herpesvirus family, Herpesviridae, is made up of large enveloped viruses 

(approximately 200 nm of diameter) with double stranded DNA genomes 120 to 240 

kb in length. The virions are spherical and consist of four major components: the 

DNA core, capsid, tegument and lipid bilayer envelope (Fig 1.3). The DNA core 

contains a single copy of linear double-stranded DNAs. Surrounding the core, the 

capsid is an icosahedron constructed of 162 capsomeres containing capsid proteins 

(reviewed in (Arvin et al., 2007)). The tegument surrounding the capsid consists of 

thirty or more viral proteins that have been shown to play diverse roles in the viral 

life cycle such as capsid transportation (Pasdeloup et al., 2013), viral DNA 

packaging (Thurlow et al., 2005) and latency (Penkert and Kalejta, 2011). The 

envelope is the outer part of viruses and is composed of viral glycoproteins and the 

host membrane. 

The herpesvirus family is divided into three subfamilies based on their biology and 

genome characteristics: Alpha-, Beta-, and Gamma-herpesvirinae (Table 1.3). The 

three subfamilies exhibit common viral structures, genome replication processes as 

well as similar entry and egress mechanisms. Gene products common to all families 

include envelope glycoprotein B, DNA polymerase, alkaline exonuclease and single 

stranded DNA-binding proteins. The homology of these common gene products 
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suggests similarities of the viral life cycle across the diverse viruses involving viral 

entry, DNA replication and viral assembly (Arvin et al., 2007). 

 

Figure 1.3 Diagram depicting structure of herpesviruses 
Herpersvirus particles consist of four distinct structures: the core, capsid, tegument and envelope. This 
figure is adapted from (Amen and Griffiths, 2011). 
 
 
Table 1.3 The characteristics of three herpesvirus subfamilies 

Characteristic Alphaherpesvirinae Betaherpesvirinae Gammaherpesvirinae 

Host range Variable host Very restricted host 
range 

Very restricted host 
range 

Replicative 
cycle 

Short replicative 
cycle (hours) 

Long replicative 
cycle (days) 

Short replicative 
cycle 

Latent infection Sensory ganglia Endothelial cells and 
myeloid cells 
(particularly 
monocyte and 
macrophage lineage) 

T or B lymphocytes 

Viruses 
infecting human 

HSV-1, HSV-2, 
VZV 

HCMV, HHV-6A, 
HHV-6B, HHV-7 

EBV, KSHV 

Summarized from (Arvin et al., 2007) 

HSV: Herpes simplex virus 
VZV:  Varicella-zoster virus 
HCMV: Human cytomegalovirus 
HHV: Human herpes virus 
EBV: Epstein-Barr virus 
KSHV: Kaposi’s sarcoma-associated herpesvirus 
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1.2.1 Human Cytomegalovirus (HCMV) 
Human cytomegalovirus (HCMV) is a member of the Betaherpesvirinae subfamily 

that infects approximately 40-100% of the world’s population indicated by the 

presence of CMV antibody in the blood (Mocarski, 2007). After a primary infection, 

HCMV establishes lifelong latency that usually causes mild or subclinical diseases in 

immunocompetent hosts. However, the virus can result in more serious conditions in 

immunocompromised patients such as patients with HIV and organ transplant 

recipients who are receiving immunosuppressive therapy (Hodinka, 2007). The 

clinical manifestation of HCMV infection is found in up to 40% of patients with 

advanced HIV infection with symptoms including retinitis, colitis, esophagitis, 

pneumonitis and neurological disorders (Cheung and Teich, 1999). In haematopoietic 

stem-cell transplantation, pneumonitis caused by HCMV is associated with a high 

mortality rate (Chaisson et al., 1998).  

In developed countries, HCMV is the most common congenital infection with an 

estimated prevalence between 0.5% and 2% (Demmler, 1996). A literature review of 

11 studies conducted in developing countries in Africa, Asia and Latin America 

revealed that maternal CMV seroprevalence ranged from 84% to 100% and CMV 

birth prevalence varied from 0.6% to 6.1% (Lanzieri et al., 2014). HCMV can be 

transmitted from mother to child via three routes 1) intrauterine, 2) intrapartum and 

3) post-natal (breast-feeding), leading to birth defects. It was found that CMV-

infected neonates with symptomatic diseases show sensorineural hearing loss, 

microcephaly, motor defects, mental retardation, chorioretinitis and dental defects. 

Although ~90% of infants born in the USA with congenital CMV infection do not 

show clinical manifestations, they are at high risk for hearing loss (reviewed in 

(Nassetta et al., 2009)). 

Moreover, studies in human malignancies indicated the presence of HCMV DNA, 

mRNA and viral proteins in certain tumours including breast cancer (Herbein and 

Kumar, 2014) and glioblastoma (Cobbs et al., 2002). However, the mechanism by 

which HCMV might contribute to oncogenesis is still elusive. Based on the fact that 

HCMV is not an oncogenic virus, it was postulated that the virus might modulate 
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cellular processes such as cell proliferation, differentiation, migration and 

angiogenesis, contributing to the progression of tumours (Michaelis et al., 2009).  

1.2.2 Mouse cytomegalovirus (MCMV) as a model study for 
HCMV 

Because CMVs are highly host-specific, HCMV cannot be used in any animal 

model. Thus, MCMV has become an invaluable model for the study of HCMV since 

it shares many features with HCMV infection of humans. MCMV and HCMV share 

approximately 78 homologous open reading frames (ORFs), accounting for ~50% of 

total ORFs encoded by these viruses (Brocchieri et al., 2005; Rawlinson et al., 1996). 

As both MCMV and HCMV belong to β-herpesvirinae, they exhibit the similar 

features including the viral structure, biology, and the ability to establish persistent 

and latent infection in their respective host species (reviewed in (Shellam et al., 

2007)). More importantly, MCMV develops pathogenesis in mice similar to that of 

HCMV in humans such as congenital infection, retinitis, hepatitis, myocarditis and 

atherosclerosis (reviewed in (Shellam et al., 2007)). Thus, this model provides an 

excellent tool for the study of virus-host interaction. 

Below is more detailed introduction to the genomic features of CMV, its life cycle 

and its impacts on host cell biology. Where possible studies with MCMV are cited 

however given that there is more information on HCMV. 

1.2.3 Biology and life cycle of CMV 
1.2.3.1 CMV genome 
Genome of HCMV and MCMV is a linear DNA approximately 235 kb. The genome 

of HCMV encodes an estimated 165-252 open reading frames (ORFs) (Davison et 

al., 2003; Murphy et al., 2003) and that of MCMV was shown to transcribe 172 

ORFs(Tang et al., 2006). The genome of HCMV is organised into two unique 

regions: long (UL) and short unique regions (US) that both are flanked by direct 

repeats (TRL and IRL; TRS and IRS), yielding the overall genome configuration TRL–

UL-IRL-IRS-US-TRS (Davison et al., 2003). Fig 1.4 presents the genome structure of 

HCMV laboratory stain, AD169 as an example. To date, six strains of HCMV have 

been sequenced: two laboratory strains (AD169 and Towne) and four clinical 
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isolated strains (Toledo, FIX, PH, and TR) (Shenk T.E, 2008). The first complete 

genome sequence of HCMV was obtained from the laboratory-adapted strain AD169 

that had been extensively passaged in human fibroblast cell lines (Bankier et al., 

1991; Chee et al., 1990). When seronegative individuals were infected with AD169 

during the vaccine studies, the virus caused no or very low virulence (Neff et al., 

1979). DNA sequencing data of a clinical strain Toledo, which had been passaged 

significantly less than AD169 revealed that Toledo contains an extra 15 kb at the 

3’end of UL, encoding for additional 19 ORFs (Cha, 1996). This indicates the genetic 

loss in AD169 is due to the selection that occurs during passaging in human 

fibroblasts and suggests that this 15 kb long fragment is essential for the virulence in 

vivo (Prichard, 2001). The details of genomic rearrangements and protein-coding 

ORFs of each strain are further described in (Shenk T.E, 2008). Unlike the HCMV 

genome, MCMV genome does not have the long unique regions and it consists of a 

single unique sequence with short terminal direct repeats and several short internal 

repeats (Shellam et al., 2007). 

CMV genomes contain cis-acting elements responsible for DNA replication, packing 

and transcription. In HCMV genome, the replication origin (oriLyt) is mapped to an 

approximately 1500 bp domain, situated close to the middle of the UL domain, 

whereas a latency origin has not been identified. Due to evolutionary conservation of 

herpesviruses, the genome of HCMV contains ORFs common to all herpesviruses 

encoding for core functional proteins involved in viral DNA replication and 

assembly. The UL domain contains 40 core HCMV genomes and the US domain 

accommodates CMV-specific genes that are usually nonessential for the viral 

replication in cell cultures (Shenk T.E, 2008). 
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Figure 1.4 Conventional ORF map of HCMV AD169 laboratory strain 
The genome of AD169 is organised as two regions: unique long (UL) and unique short (US). The UL 
and US are flanked by two sets of inverted repeats (TRL/IRL) and IRS/TRS, respectively. The UL 
region contains 132 ORFs and US domain comprises 34 ORFs. This figure is adapted from (Shenk 
T.E, 2008).  
 
1.2.3.2 CMV life cycle 
Like other viruses, CMV is an obligate intracellular pathogen that requires host cells 

to produce viral progenies. The major steps of the infection involve virus entry, the 

release of virus content into cells, virus DNA replication, virus assembly and the 

release of virions from the cells (Fig 1.5). HCMV has been shown to enter the cells 

through either membrane fusion in fibroblasts or endocytosis of epithelial cells via 

the interaction of enveloped glycoproteins with receptors of host cells (Bodaghi et 

al., 1999; Conti et al., 2000). The most abundant and essential glycoproteins of 

HCMV entry are gB (UL55), gM:gN (UL100:UL73) and gH:gL (UL75:UL115) 

(Mocarski ES, 2007). At viral entry, HCMV glycoproteins interact with multiple host 

receptors. The ability of HCMV to infect a wide variety of cells suggests the 

presence of a number of the cellular receptors. Many studies have identified 

receptors in permissive cells for HCMV infection. Initially, the virus interacts with 

heparin sulfate proteoglycans (HSPGs) on the cell surface, mediated by gB and gM 

(Compton et al., 1993). Following the viral attachment, it is thought that the virus 

required other cellular receptors for viral entry, including EGFR and integrin 

heterodimers (Wang and Shenk, 2005). In the case of MCMV, MHC I, beta-2-

microglobulin heparan sulfate proteoglycans were shown to facilitate entry of 

MCMV in vitro (reviewed in (Shellam et al., 2007)). 

Once the virus enters the host cell, viral teguments are released into the cytoplasm. 

The teguments associate with the microtubule network and play a role in 
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transportation of the viral capsid from the cytoplasm to the nucleus where viral DNA 

replication takes place (Wolfstein et al., 2006). The viral genes are expressed in the 

following order: immediate-early genes encoding essential regulatory proteins, early 

genes encoding enzymes for viral DNA replication and late genes encoding viral 

structural proteins. The first viral genes that are expressed after infection are 

immediate early genes (IE): IE1 and IE2 in HCMV, or IE1 and IE3 in MCMV, and 

their expression does not require de novo viral protein synthesis. The function of IE 

genes is to optimise cells for expression of other viral genes and DNA replication. 

The expression of IE2 mRNA is predominant during the first two hours of the 

infection and the IE1 expression peaks at later time points between six to eight hours 

post-infection (hpi) (Stamminger et al., 1991). The IE1 and IE3 protein of MCMV 

are detected at ~3 hpi and shown to gradually increase over time of infection up to 72 

h (Martinez et al., 2010). It appears that IE1 of HCMV is required for infection at 

low MOI (0.001 to 0.05 PFU/ml), enhancing the potency of IE2 (Greaves and 

Mocarski, 1998; Mocarski et al., 1996), whereas the absence of IE1 gene is 

dispensable at high MOI (1 to 5 PFU/cell). The knowledge of IE1 function is not 

completely understood; however, the possible function of IE1 protein (IE72, 72 kDa) 

may be involved in anti-apoptosis and promotion of host cell conditions for viral 

replication (Zhu et al., 1995). It was proposed that the IE1 activates cellular 

promoters by association with TATA box-associated factors (TAFs) and 

transcription factors (Sp-1, E2F-1, CTF-1) (Hayhurst et al., 1995; Lukac et al., 1997; 

Margolis et al., 1995). In addition, IE1 protein was demonstrated to have kinase 

activities to phosphorylate Rb family (p107 and p130) and the E2F transcription 

factor, leading to activation of transcription (Pajovic et al., 1997).  

HCMV IE2 gene and its functional homologue IE3 in MCMV are absolutely 

essential for the cascade of viral gene expression and the efficiency of viral 

replication. The activation of viral early genes along with cellular genes is required 

in order to prepare the cell for viral DNA synthesis (Shenk T.E, 2008). The DNA 

synthesis is initiated at the lytic replication origin (oriLyt) (Shenk T.E, 2008). Lastly, 

the late genes coding structural proteins for virions are expressed.  

In the nucleus, the viral DNA is encapsidated into procapsids, giving rise to 
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nucleocapsids. Once the viral DNA is packed, the nucleocapsid interacts with 

tegument proteins as well as non-structural proteins. The nucleocapsid passes into 

the perinuclear space through the inner nuclear membrane, leading to the primary 

envelopment. The viral particle in the perinuclear space then buds through the outer 

nuclear membrane and becomes the non-enveloped cytoplasmic particle. Once in the 

cytoplasm, the nucleocapsid buds into the Golgi apparatus-derived vesicles 

containing viral glycoproteins, resulting in re-envelopment. The vesicles containing 

the mature virions are transported to the cell surface to release the virions by fusion 

of an exocytic vesicle with the plasma membrane (Arvin et al., 2007). 

 

Figure 1.5 CMV life cycle 
The virus enters the cell via membrane fusion or using viral glycoproteins to bind to receptors on the 
cell membrane. This figure shows membrane fusion as an example. The viral envelope fuses with the 
cell membrane and the nucleocapsid is released into the cytoplasm. The nucleocapsid is translocated 
into the nucleus where viral DNA is released. In the nucleus, viral and cellular genes are expressed 
and viral DNA is replicated. The viral DNA is transcribed into the late mRNAs coding for capsids and 
envelope proteins. The capsid proteins are imported from the ER into the nucleus where the newly 
synthesised genomes are encapsidated. This capsid egresses from the nucleus into the cytoplasm and 
buds into the Golgi apparatus-derived vesicle. The vesicle containing virions is transported to and 
fuses with the plasma membrane to release the infectious virus from the cell. This figure is adapted 
from (Li and Hayward, 2013). 
 
 



Chapter 1: Introduction 

  22 

Both HCMV and MCMV have a number of effects on host cellular pathways by 

which the viruses manipulate biological processes of host cells to achieve conditions 

advantageous to infection. This thesis focuses on the cell cycle and the p38 mitogen-

activated protein (MAP) kinase signalling pathway that have been reported to be 

manipulated by the virus and this is important for viral replication. 

1.2.4 Manipulation of the cell cycle by CMV 
CMV has a complex relationship with the host cell and has evolved numerous 

strategies that allow it to effectively replicate and disseminate within the host. It is 

known that HCMV manipulates the host cell cycle from the first stage of the 

infection, controlling the checkpoints of the cell cycle to create conditions optimal 

for viral replication. In addition, manipulation of the cell cycle by HCMV may 

inhibit apoptosis to allow the virus sufficient time for the assembly (Shenk T.E, 

2008). Likewise, MCMV was shown to arrest the cell cycle and allowed replication 

of the virus during the arrest (Wiebusch et al., 2008). 

1.2.4.1 The eukaryotic cell cycle 
The cell cycle is a vital biological process whereby the cell prepares for division. 

Cell division is separated into four phases: G1 (Gap1), S (Synthesis), G2 (Gap2) and 

M (Mitosis) (Fig 1.6). Before G1, G0 is an additional state of temporary or 

permanent quiescence by which the cell is withdrawn from the cell cycle. The G0 

cell can enter the cell cycle when the cell is induced by proliferative signals such as 

growth factors and serum. The transition of cell cycle phases is tightly regulated by a 

family of cyclin-dependent kinases (CDKs) whose activity is dependent on their 

association with a cyclin protein (reviewed in (Lim and Kaldis, 2013; Malumbres 

and Barbacid, 2009)). Upon the stimulation of G0 cells, CDK4/6 is expressed and 

forms a complex with cyclin D, inducing cells to enter into G1. The complex of 

CDK4/6 and cyclin D phosphorylates the tumour suppressor retinoblastoma (Rb), 

which forms a complex with the E2F family of transcription factors. The 

phosphorylated Rb liberates E2F, activating transcription of essential genes. The G1 

phase is the state when the cell expresses genes that are involved in nucleic acid 

metabolism and DNA replication. Thus, the cell is metabolically active and grows, 

but does not synthesise DNA. At the late phase of G1, cyclin E expression is induced 



Chapter 1: Introduction 

  23 

and associates with CDK2 to form the CDK2/cyclin E complex, which promotes the 

transition into S phase. In S phase, cyclin A is induced and forms a complex with 

CDK2, promoting DNA replication. The cell with a newly complete set of 

chromosomes enters G2 phase when the cell accumulates proteins involved in 

mitosis (M phase). The progression from G2 to M is mediated by CDK1/cyclin B or 

CDK1/cyclin A which phosphorylate many substrates essential for condensation and 

segregation of the chromosomes to daughter cells. At late mitosis, CDK1 is 

inactivated by degradation of cyclin B and cyclin A through the anaphase-promoting 

complex (APC) E3 ubiquitin ligase and the proteasome (Morgan, 1999). 

 

Figure 1.6 The eukaryotic cell cycle 
The cell cycle contains four major phases: G1 (Gap1), S (Synthesis), G2 (Gap2) and M (Mitosis). G0 
is an additional phase when the cell is in quiescence. The progression through different phases of the 
cell cycle is strictly regulated by CDK-cyclin complexes. In response to mitogenic signals, cyclin D is 
synthesised and binds to CDK4/6, directing CDK4/6 to phosphorylate the tumour suppressor Rb. The 
hyperphosphorylated Rb liberates E2F transcription factor, inducing expression of genes essential for 
cell cycle progression. CDK2/cyclin E functions at the G1/S transition and triggers the entry into S 
phase. CDK2/cyclin A collaborates with CDK2/cyclin E to regulate DNA replication. CDK1/cyclin B 
and CDK1/cyclin A are responsible for mitosis. 
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1.2.4.2 Effects of CMV on the cell cycle 
A number of studies have shown that HCMV has profound effects on the cell cycle 

although it is still a matter of controversy whether HCMV arrests or promotes the 

cell cycle since Salvant et al. have demonstrated that HCMV affects several points of 

the cell cycle depending on the cell cycle phase in which the virus infects. The 

authors showed that infection of cells in G0 and G1 leads to a severe impairment of 

cellular DNA synthesis, whereas cells infected near or during S phase can proceed 

through S phase and mitosis prior to cell cycle arrest in G1 at 24 hpi (Salvant et al., 

1998). Studies have demonstrated that HCMV causes G1 arrest that is concomitant 

with the induction of cyclin E and its binding partner CDK2 (Bresnahan et al., 1996; 

Jault et al., 1995). This evidence is unexpected however because the primary role of 

cyclin E/CDK2 is to promote the G1/S transition. Importantly, it was shown that 

cyclin E/CDK2 is required for HCMV DNA replication. The authors showed that 

transfection of a vector encoding CDK2 mutant followed by HCMV infection leads 

to suppression of viral replication compared to cells transfected with wild type 

CDK2 (Bresnahan et al., 1997). The Rb-related protein p107 and Rb are implicated 

as negative regulators of the cell cycle via interaction with the E2F family of 

transcription factors. In addition to HCMV-mediated induction of cyclin E/CDK2 

levels, it has been reported that viral immediate early protein IE72 and IE86 mediate 

the G1/S progression by binding to p107 (Poma et al., 1996) and pRB (Hagemeier et 

al., 1994), respectively. This leads to the release of E2F transcription factors, 

activating the expression of S-phase genes including cyclin E, thus indicating that IE 

proteins are also involved in the regulation of cyclin E/CDK2. Taken together, it 

seems that HCMV specifically induces the certain regulators of the cell cycle (cyclin 

E and CDK2), presumably to provide a cellular environment at the G1/S boundary 

that can be exploited by the virus for DNA replication. 

In contrast to the ability of IE72 and IE86 to promote the G1/S transition, it was 

shown that the viral protein IE86 induces G1 arrest in several cell lines (Wiebusch 

and Hagemeier, 1999). Other groups have shown that IE72 (Muganda et al., 1994) 

and IE86 (Bonin and McDougall, 1997; Muganda et al., 1994; Speir et al., 1994) 

increase the level of p53, the tumour suppressor that functions as a transcription 
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factor inducing expression of genes involved in various cellular processes including 

the cell cycle arrest, apoptosis and senescence (Giono and Manfredi, 2006). In 

addition to IE proteins, the viral capsid protein UL69, a homologue of the herpes 

simplex virus ICP27 protein was shown to induce G1 arrest (Hayashi et al., 2000; Lu 

and Shenk, 1999). Deletion of UL69 impaired viral DNA replication, suggesting the 

significance of cell cycle regulation during infection. Similar to G1 arrest in HCMV 

infection, MCMV was also shown to arrest cells in both G1 and G2 phase and that is 

dependent on MCMV IE3, the homologue of HCMV IE2 (Wiebusch et al., 2008). 

Interestingly, several studies have shown that although HCMV induces S-phase 

entry, it blocks further progression of the cell cycle and inhibits cellular DNA 

synthesis (Bresnahan et al., 1996; Dittmer and Mocarski, 1997; Murphy et al., 2000; 

Wiebusch et al., 2003a). Thus, this strategy probably allows virus to avoid competing 

with cellular DNA synthesis, providing further resources for viral DNA replication. 

The ability of HCMV to block cellular DNA synthesis is linked to the assembly of 

pre-replication complexes (preRCs), critical protein complexes for the initiation of 

cellular DNA replication. Two independent studies have demonstrated that the virus 

interferes with the loading of the mini-chromosome maintenance (MCM) complex 

into preRCs, inhibiting the activation of replication (Biswas et al., 2003; Wiebusch et 

al., 2003b). Biswas et al. observed the reduction of the chromatin licensing and DNA 

replication factor 1 (Cdt1), which plays a role in the loading of the MCM proteins 

(Biswas et al., 2003). Moreover, the authors observed the accumulation of a 

replication inhibitor geminin (Biswas et al., 2003). Collectively, the data suggest that 

the virus has evolved multiple strategies to dysregulate the host cell cycle. 

1.2.5 Manipulation of the p38 mitogen-activated protein 
(MAP) kinase signalling pathway by CMV 

The MAP kinase signalling is a signal transduction pathway that mediates a wide 

variety of cellular processes in response to extracellular stimuli such as growth 

factors, mitogens and stresses (reviewed in (Dhillon et al., 2007; Morrison, 2012)). 

Four distinct cascades within the MAP kinase signalling have been identified: p38, 

JNKs, ERK1/2 and ERK5. In response to stimuli, the signalling cascade is initiated 

by activation of a small G protein and/or phosphorylation by kinases downstream 
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from cell receptors (Fig 1.7). This leads to sequential activation of MAP kinase 

kinase kinase (MAPKKK), MAP kinase kinase (MAPKK) and MAP kinase (p38, 

JNKs, ERK1/2 and ERK5). Depending on cell lines and types of stimuli, each 

cascade can regulate several distinct or overlapping cellular processes. Activation of 

p38 usually contributes to inflammation, apoptosis, cell differentiation, and cell cycle 

regulation. Similarly, JNKs plays a role in apoptosis, inflammation, cytokine 

production and metabolism. The ERK1/2 induces cell growth and differentiation. 

The ERK5 has been implicated in survival, proliferation and cytoskeleton 

remodelling (Nithianandarajah-Jones et al., 2012).  

In mammals, the family of p38 MAP kinase consists of four members: p38α, p38β, 

p38γ and p38δ sharing ~60% identity in their amino acid sequence with the 

conserved Thr-Gly-Tyr (TGY) phosphorylation motif in the activation loop 

(reviewed in (Cuenda and Rousseau, 2007; Zarubin and Han, 2005)). Among the 

four isoforms, p38α is the most extensively characterised and ubiquitously expressed 

in most cell types. The p38 MAP kinase signalling are strongly activated by 

environmental stresses and inflammatory cytokines. Upon stimulation, the TGY 

motif of p38 MAP kinase is dually phosphorylated by MKK3 and MKK6. The 

activated p38 MAP kinase then can phosphorylate a number of target proteins 

through a specific interaction of the substrate binding motif within p38 MAP kinase 

and a docking domain present on the substrate. Numerous substrates of p38 MAP 

kinase have been identified such as transcription factors, other kinases that can 

phosphorylate transcription factors, cytoskeletal proteins and components of 

translational machinery (summarised in (Cuenda and Rousseau, 2007), indicating 

that multiple cellular functions are regulated by p38 MAP kinase signalling. 

In the context of HCMV infection, the virus has been shown to activate p38 MAP 

kinase signalling, which was also shown to be important for viral DNA replication. 

Johnson et al. showed that the virus mediates p38 MAP kinase activation by two 

distinct mechanisms (Johnson et al., 2000). At an early time point of the infection (8 

to 14 hpi) the virus inhibits dephosphorylation of p38 MAP kinase, whereas at the 

late time point of the infection (48 to 72 hpi) the virus induces activity of MKK3 and 

MKK6, the upstream regulators of p38 MAP kinase. The authors also showed that 
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HCMV-activated p38 MAP kinase leads to an increase in phosphorylation of the Rb 

and heat shock protein 27 (HSP27), and proposed that requirement of p38 MAP 

kinase by the virus might be related to the cell cycle function of Rb and a role of 

HSP27 in inhibition of apoptosis (Johnson et al., 2000). Likewise, MCMV was found 

to increase phosphorylation of p38 MAP kinase (~1.7 fold) in aortas of virus-infected 

mice compared to uninfected mice at 2.5 months post infection. Inhibition of p38 

MAP kinase using the p38 inhibitor SB203580 leads to a reduction of viral load (~12 

fold) in aortas of mice treated with the inhibitor compared to untreated mice, 

suggesting a significance of p38 MAP kinase pathway in MCMV replication. Due to 

numerous biological processes that p38 MAP kinase signalling involved in, it seems 

likely that CMV-activated p38 MAP kinase links to multiple cellular processes 

contributing to infection and replication of the virus. Identification of such cellular 

processes will provide insight into the complex interaction between CMV and host 

cells. 

 
Figure 1.7 MAP kinase pathways 
Each of MAP kinases contains three tiers of protein kinases (MAPKKK, MAPKK and MAPK). The 
signal transduction is mediated by sequential phosphorylation and activation of protein components 
within the cascades, leading to biological responses towards stimuli. This figure is adapted from 
(Morrison, 2012). 
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1.3 miR-27 
miR-27 consists of two mature forms: miR-27a and miR-27b. miR-27a is derived 

from an intergenic miR-23a~27a~24-2 gene cluster on chromosome 8 in mouse or 

chromosome 19 in human, whereas miR-27b arises from an intronic miR-

23b~27b~24-1 cluster on chromosome 13 in mouse or chromosome 9 in human (Fig 

1.8A). Alignment of the mature sequences of these miRNAs shows that they are 

highly conserved in vertebrates (Fig 1.8B). The miR-23a~27a~24-2 cluster encodes 

pri-miRNA transcript containing 3 miRNAs: miR-23a, miR-27a and miR-24-2. The 

pri-miRNA of miR-23b~27b~24-1 gives rise to the mature miR-23b, miR-27b and 

miR-24-1. Based on sequence alignments, mature miR-27a and miR-27b differ by 1 

nt at position 3 from the 3’ end. Similarly, miR-23a and miR-23b differ by 1 nt, 

whereas the sequences of miR-24-1 and miR-24-2 are identical (Fig 1.8C) (Zhou et 

al., 2011). miRNAs are classified into a family based on similarity of the seed 

sequences and similar biological functions (Kozomara and Griffiths-Jones, 2011). 

Since the seed sequences of each miRNA in the same families (such as miR-23a/b or 

miR-27a/b) are identical, the miRNA target prediction database (such as TagetScan) 

predicts the same targets for both isoforms. Thus, the differential expression of 

miRNA isoforms in the cell of interest is an important factor that needs to be taken 

into consideration when determining the effect one miRNA has on potential targets. 

In case of miR-27, the analysis of expression patterns using public small RNA 

sequencing databases revealed that miR-27a and miR-27b are equally abundant 

(Liang et al., 2014), with high expression levels in the lungs, the heart and numerous 

cell types such as endothelial cells and various cancers (Zhou et al., 2011). 

A study of miR-23a~27a~24-2 cluster gene revealed that its promoter contains GC 

boxes instead of specific DNA elements such as TATA box, the initiator element, the 

downstream promoter element (DPE), downstream core element (DCE), and the 

MED-1 (multiple start site element downstream) (reviewed in (Chhabra et al., 2010). 

This CG region was thought to be a binding site of transcription factors and could be 

involved in regulation of the cluster. Although a single pri-miRNA cluster gives rise 

to two or more miRNAs, it was shown in many cases that the expression levels of 

mature miRNAs derived from the same cluster are not always related to each other 
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(reviewed in (Bartel, 2004)), suggesting post-transcriptional mechanisms for 

differential expression. Indeed, Chhabra et al. overexpressed the pri-miR-

23a~27a~24-2 cluster and observed increased expression of miR-27a and miR-24-2 

but not miR-23a (Chhabra et al., 2009).  
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Figure 1.8 Hairpin structures of pri-miR-23a~27a~24-2 and pri-miR-23b~27b~24-1, and 
nucleotide alignment of mature miR-23, miR-27 and miR-24 
(A) Schematic representation of pri-miR-23a~27a~24-2 and pri-miR-23b~27b~24-1. (B) The 
alignment of the mature miRNAs among seven species indicates that they are highly conserved. The 
seed sequences are highlighted in orange. (C) The alignment of mature mouse miR-23a/b and miR-
27a/b indicates only one nucleotide difference as shown in red, whereas the sequence of miR-24-1 and 
miR-24-2 are identical.  The figure B and C are taken from (Zhou et al., 2011). 
  

A 

B 

C 

Pri-miR-23a~27a~24-2 cluster 

Pri-miR-23b~27b~24-1 cluster 
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To date, an increasing number of functions of miR-27 has been reported in diverse 

biological processes ranging from fundamental biological processes such as cell 

proliferation, metabolism and differentiation, to the involvement in human diseases 

(Table 1.4). 

Two independent studies have shown that miR-27 is a negative regulator of 

adipogenesis and adipocyte differentiation (Kim et al., 2010; Lin et al., 2009). Both 

studies demonstrated that miR-27 regulates peroxisome proliferator-activated 

receptor gamma (PPARγ) and C/EBPα, crucial regulators of adipogenesis. In vivo 

experiments showed that the expression of miR-27 was significantly increased in the 

epididymal fat tissue of genetically obese mice compared to the genetically matched 

lean mice with the same gender and age, indicating that obesity induces a negative 

regulator of adipose tissue miR-27 (Lin et al., 2009). More recently, Kang et al 

demonstrated that miR-27 also inhibited adipocyte differentiation via prohibitin 

(PHB) in human adipose-derived stem cells (Kang et al., 2013). 

miR-27 is highly expressed in endothelial cells and vascularised tissues (Zhou et al., 

2011). miR-27 has been demonstrated to promote angiogenesis by targeting the 

angiogenesis inhibitor semaphorin 6A (SEMA6A) and Sprouty2 (Urbich et al., 2012; 

Zhou et al., 2011). The inhibition of miR-27 in vivo was performed using antagomirs 

in implanted Matrigel plugs. Matrigel plug assay is an in vivo evaluation of pro- and 

anti-angiogenic molecules that can detect newly formed blood vessels through the 

immunohistochemistry staining of markers (Malinda, 2009). Human umbilical vein 

endothelial cells (HUVECs) plated on Matrigel, which is an extract of the 

Engelbreth-Holm-Swarm tumor composed of basement membrane components, can 

differentiate into capillary-like tube structures in vitro. The Matrigel is then injected 

into mice to form a Matrigel plug and mouse endothelial cells migrate to the plug to 

form vessels. Using this assay, it was shown that inhibition of miR-27 decreased the 

number of vessels invading the implanted Matrigel plug (Urbich et al., 2012). 

Functions of miR-27 have also been studied in the myeloid lineage. Feng et al. 

shown that miR-27 regulates the transcription factor Runx1, an important regulator 

of the growth and differentiation of haematopoietic cells, leading to the 
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differentiation of myeloblasts into granulocytes (Feng et al., 2009). The introduction 

of pre-miR-27 into murine myeloid progenitor 32D.cl3 cells resulted in a 3 to 4 fold 

increase in band-type granulocytes compared to cells transfected with pre-miRNA 

controls. Furthermore, regulation of Runx1 by miR-27 has been associated with the 

differentiation of megakaryocytes, which share a common myeloid progenitor with 

myelocytes (Ben-Ami et al., 2009). 

A study of miR-27 in breast cancer cell lines revealed that miR-27a has oncogenic 

activity by indirectly enhancing the expression of specificity protein (Sp) 

transcription factors (Mertens-Talcott et al., 2007). The Sp is shown to be 

overexpressed in tumours and contributes to the cell proliferation and angiogenesis 

of cancer cells. miR-27 increases the expression of Sp by downregulating zinc finger 

and BTB domain containing 10 (ZBTB10/RINZF), a putative suppressor of Sp (Scott 

et al., 2006). In MCF-7 breast cancer cells, miR-27 is highly expressed and has been 

found to work cooperatively with miR-96 and miR-182 to regulate forkhead box O1 

(FOXO1), a transcription factor that regulates genes involved in the apoptotic 

response, cell cycle checkpoints and cellular metabolism (Guttilla and White, 2009). 

The inhibition of miR-27 using antisense inhibitors results in a significant increase in 

FOXO1. Furthermore, the overexpression of FOXO1 leads to a decrease in cell 

viability due to the inhibition of the cell cycle and the induction of apoptosis (Guttilla 

and White, 2009). This suggests that the regulation of FOXO1 by miR-27 may 

contribute to the maintenance of an oncogenic state in breast cancer cells. In 

addition, the regulation of FOXO1 by miR-27 was also found in endometrial cancer 

(Myatt et al., 2010). Similar to the overexpression of FOXO1 observed in MCF-7 

breast cancer cells (Guttilla and White, 2009), the induction of FOXO1 in 

endometrial cancer cells leads to G1 arrest and cell death (Myatt et al., 2010). 

Beyond the functional data, miR-27 has also been found to be upregulated in other 

kinds of cancers. For example, miRNA profiling in kidney carcinomas showed that 

miR-27 is significantly increased in cancer cells compared to normal kidney cells 

(Gottardo et al., 2007). qRT-PCR data revealed that miR-27 was significantly 

upregulated in gastric cancer tissues compared to matched normal tissues located 5 

cm away from the tumour margin (Zhang et al., 2011). In the context of viral 
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infection, functions of miR-27 in regulation of cell growth and differentiation might 

influence viral infection since viruses depend on host cellular machinery for their 

replication. 

Table 1.4 Disease contexts in which miR-27 functions	
  
Associated condition Target Putative role of the target  Reference 

Adipogenesis and 
adipocyte differentiation 

 

PPARγ and 
C/EBPα 

Negative regulator of 
adipogenesis and adipocyte 
differentiation 

(Lin et al., 2009), 
(Kim et al., 2010) 

PHB Negative regulator of 
adipocyte differentiation 

(Kang et al., 2013) 

Angiogenesis 

 

SEMA6A 
and 
Sprouty2 

Promotes angiogenesis (Urbich et al., 2012), 
(Zhou et al., 2011) 

Differentiation of 
myeloblasts to 
granulocytes 

Runx1 Enhances differentiation of 
myeloblasts into 
granulocytes 

(Feng et al., 2009) 

Megakaryocytic 
differentiation 

Runx1 Induces megakaryocytic 
differentiation 

(Ben-Ami et al., 
2009) 

Breast cancer Sp (indirect 
target of 
miR-27) 

Contributes to cell 
proliferation and angiogenic 
phenotype in cancer cells 

(Mertens-Talcott et 
al., 2007) 

FOXO1 Tumour suppressor (Guttilla and White, 
2009) 

Endometrial cancer FOXO1 Arrests cells in G1 and 
induce cell death 

(Myatt et al., 2010) 

 
1.3.1 miR-27 and herpesvirus infection 
miR-27 has been shown to be degraded by non-coding RNAs of two different 

herpesviruses: herpesvirus saimiri (HVS) (Cazalla et al., 2010) and murine 

cytomegalovirus (MCMV) (Libri et al., 2012; Marcinowski et al., 2012). HVS, a 

prototype of the rhadinovirus family, is an oncogenic γ-herpesvirus that can 

transform primate and human T cells (Ensser and Fleckenstein, 2005). In HVS-

infected marmoset T cells, the virus makes seven small U-rich non-coding RNAs 

(HSURs). It has been shown that one of the HSURs, named HSUR1 mediates the 

degradation of miR-27 through complementarity in the sequences, although the 
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mechanism of this degradation is still unknown (Cazalla et al., 2010; Guo et al., 

2014). Identification of miR-27 targets using high-throughput sequencing of RNA 

after cross-linking immunoprecipitation (HITS-CLIP) demonstrated that target 

mRNAs are enriched in the T cell receptor (TCR) signalling pathway (Guo et al., 

2014) which is known to contribute to cell proliferation, differentiation, clonal 

expansion and effector cytokine secretion during T cell activation (Murphy et al., 

2008).  

Guo et al. have shown that miR-27 directly targets the cell surface signalling protein 

semaphorin (SEMA7A) and the growth factor receptor-bound protein 2 (GRB2), 

which is an adaptor protein participating in the activation of TCR signalling. In 

addition, the authors also demonstrated that miR-27 regulates an effector of T cell 

activation, interferon-γ (IFN-γ) (Guo et al., 2014). Because miR-27 appears to 

regulate TCR signalling, the degradation of miR-27 is thought to contribute to the 

activation of HVS-infected T cells. Thus, it is speculated that the induction of IFN-γ 

resulted from miR-27 decay in HVS-infected cells could be a viral strategy to 

maintain the viral genome in latency since IFN-γ is a potent inhibitor of lytic 

reactivation of γ-herpesviruses (Steed et al., 2006) 

Other closely related γ-herpesviruses do not encode HSUR1 but have been proposed 

to employ a related viral strategy to modulate T cell signalling (Guo et al., 2014). For 

example, AIHV-1 and OvHV-2 do not appear to encode the HSUR1 homolog; 

however, their genomes contain the sequences homologous to the host miR-27 target 

genes: SEMA7A, ATF3 and IL-10 (Guo et al., 2014). ATF3 is a transcription factor 

that enhances IFN-γ expression (Filen et al., 2010). Hence, AIHV-2 and OvHV-2 use 

different strategies from HVS to exploit T cell activation. However, functions of 

miR-27 in TCR signalling is unlikely to be related to miR-27 functions in MCMV 

infection since the virus does not infect T cells. 

The analysis of miRNA expression upon MCMV infection has shown that miR-27 

levels dropped rapidly (~50-80% by 6 hpi depending on cell types and MOI) in 

various mouse cell lines including fibroblasts, endothelial cells, epithelial cells and 

primary bone marrow-derived macrophages (Buck et al., 2010). The degradation of 
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miR-27 is mediated by a highly abundant viral non-coding RNA, m169, containing 

the miR-27 binding site at its 3’UTR (Libri et al., 2012; Marcinowski et al., 2012). 

The mechanism of miR-27 degradation has been proposed to involve 3’tailing and 

trimming whereby the 3’end of the miRNA is extended with non-template 

nucleotides (tailing) followed by the shortening of the sequence of its 3’ end 

(trimming) (Marcinowski et al., 2012).  

In vivo studies revealed that the interaction of miR-27 and m169 is important for 

viral replication. Marcinowski et al. showed that infection of BALB/c mice with the 

m169 mutant containing point mutations at the miR-27 binding sites results in ~10 

fold attenuation of the virus in lungs and salivary glands compared to infection with 

the wild type virus at 14 days post infection (dpi), whereas the revertant virus with 

completely restored sequences of wild type MCMV including miR-27 binding sites, 

does not show the attenuation (Marcinowski et al., 2012). Marcinowski et al. also 

examined this phenotype at earlier stages of infection (4 dpi) and found a moderate 

attenuation of the mutant virus in lungs, whereas ~100 fold decrease in mutant titres 

was observed in the spleen compared to wild type virus. 

In addition, in vitro studies have shown that miR-27 can exert anti-viral functions 

against MCMV when overexpressed. Compared to the negative controls, the 

overexpression of miR-27 led to the attenuation of the virus (~10 fold decrease) 

when cells were infected with the virus at MOI of 0.01 (Buck et al., 2010). However, 

the targets of miR-27 responsible for its anti-viral activity have not yet been 

identified. It is therefore still unclear why MCMV evolves a mechanism to degrade 

miR-27. 

Recently, it was demonstrated that miR-27 directly targets IL-10 in activated 

macrophages (Xie et al., 2014). IL-10 is an immunomodulatory cytokine produced 

by a wide variety of cells including immune cells (monocytes, macrophages, 

dendritic cells (DCs), T cells, B cells, eosinophils and mast cells), and non-immune 

cells (keratinocytes, epithelial cells and tumour cells) (reviewed in (Mosser and 

Zhang, 2008)). The major biological function of IL-10 relates to its capacity to exert 

immunosuppression on DCs and macrophages. IL-10 inhibits the expression of major 
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histocompatibility complex class II (MHC II) and differentiation from monocytes to 

DCs and DC maturation. IL-10 also inhibits the production of pro-inflammatory 

cytokines, IL-1, IL-6, IL-12 and TNF. It has been reported that some viruses 

upregulate expression of IL-10 to suppress the immune function, leading to 

enhancement of infection (reviewed in (Slobedman et al., 2009). Based on the 

function of IL-10, one hypothesis is that MCMV has evolved the degradation of 

miR-27 to induce the expression of host IL-10 in order to modulate immune response 

towards immunosuppression allowing the virus to escape from the host immune 

response and this could enhance its capacity to replicate and persist. 

Unlike upon MCMV infection, HCMV does not downregulate levels of miR-27 

based on miRNA microarray analysis in HCMV-infected fibroblasts (Santhakumar et 

al., 2010). Interestingly, HCMV, but not MCMV, expresses a viral IL-10 (vIL-10) 

homolog to human IL-10 (hIL-10) (reviewed in (Slobedman et al., 2009)). Indeed, 

many herpesviruses including HCMV and EBV encode vIL-10. Of interest, cmvIL-

10 shares only 27% amino acid sequence identity with hIL-10 (Kotenko et al., 2000); 

however, cmvIL-10 can bind to IL-10 receptors and modulates the host immune 

system (Jones et al., 2002). cmvIL-10 was shown to inhibit peripheral blood 

mononuclear cell (PBMC) proliferation and the production of proinflammatory 

cytokines IL-1α, IL-6, granulocyte-macrophage colony-stimulating factor and TNFα 

in LPS-treated PBMC and monocytes (Spencer et al., 2002). Moreover, cmvIL-10 

was shown to decrease the expression of MHC class I and MHC class II by 

monocytes, interfering with antigen presentation processes (Spencer et al., 2002). A 

study in plasmacytoid DCs has demonstrated that cmvIL-10 suppresses the 

production of type I IFNs (Chang et al., 2009). Since type I IFNs prevents 

susceptible cells from HCMV infection, the secretion of cmvIL-10 may aid the viral 

dissemination and attenuation of anti-viral immune responses. Taken together, it is 

possible that the anti-viral properties of miR-27 could relate to its regulation of IL-10 

and HCMV circumvents this by encoding the viral IL-10 instead of targeting miR-27 

for degradation, whereas MCMV induces cellular IL-10 via the degradation of miR-

27. Based on the fact that one miRNA can target hundreds of mRNAs, it is possible 

and likely however that the degradation of miR-27 can result in the upregulation of 
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many other cellular factors in addition to IL-10, leading to alteration of host cell 

environment conducive to the infection. Further understanding of miR-27 functions 

in cellular pathways related to MCMV infection will provide insight into the 

significance of MCMV-mediated degradation of miR-27. 

1.3.2 Hypotheses and aims of the thesis 
This thesis focuses on understanding the functions of miR-27 during MCMV 

infection through an analysis of its targets. Based on the findings that the virus 

specifically inhibits miR-27 and this miRNA shows anti-viral functions, it is 

hypothesised that miR-27 regulates cellular genes or pathways required during the 

viral life cycle. Thus, the virus has evolved the strategy of miR-27 degradation to de-

repress genes that are targeted by miR-27, leading to upregulation of target genes 

essential for the viral infection. 

To test these hypotheses, this thesis aims to: 

1. Identify and evaluate direct cellular targets of miR-27 important for MCMV 

replication 

2. Investigate the role of miR-27 target genes in the context of viral infection  
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Chapter 2: Materials and methods 
2.1 Tissue culture 
2.1.1 Cell lines and culture media 
NIH 3T3 fibroblasts (ATCC CRL1658) are mouse cells generated from a NIH Swiss 

mouse embryo. The cells were obtained from American Type Culture Collection 

(Manassas, VA). The cells were grown in Dulbecco’s Modification of Eagle’s 

Medium, DMEM (Sigma) with 10% heat-inactivated calf serum (HI-CS) (Sigma), 

0.293 mg/ml (1%) of L-glutamine (L-glu) (Gibco, Life technologies) and 50 U (1%) 

of Penicillin/Streptomycin (Pen/Strep) (Gibco, Life technologies) per ml.  

P53-null mouse embryonic fibroblasts (p53-/- MEFs) (ATCC CRL 2645) are derived 

from mouse embryos with a p53 null mutation and cells were maintained in the same 

media as used for NIH 3T3 except HI-CS was substituted with heat-inactivated fetal 

bovine serum (HI-FBS) (Sigma).  

Human embryonic kidney 293T cells, HEK293T (ATCC CRC 3216) were 

maintained in complete Iscove's Modified Eagle Medium, IMEM (Sigma) containing 

10% HI-FBS, 1% L-glu, 1% Pen/Strep and 25 mM (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid), HEPES (Invitrogen). 

All cells were grown at 37°C with 5% CO2 and 95% humidity. 

2.1.2 Isolation of primary mouse embryonic fibroblasts 
(MEFs) 

Pregnant mice at 13-14 days of gestation were sacrificed to obtain embryos. Mice 

were sprayed with 70% ethanol and dissected to take out uterine horns containing 

embryos. The horns were placed in ice-cold PBS and individual embryos separated. 

The head and viscera of each embryo were removed. The remaining embryos were 

transferred into a petri dish and cut into small pieces. About three or four cut 

embryos were transferred to a 15 ml falcon tube containing 6 ml of trypsin-EDTA 

(Gibco, life technologies) and the suspension was pipetted up and down to disperse 

the tissue. The tube was placed on ice for 2 h and incubated at 37°C for 30 min. 6 ml 

of complete media (DMEM containing 10% HI-FCS, 1% L-glu and 1% Pen/Strep) 
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was added into the tube. To allow the remaining tissues to settle, the tube was left at 

room temperature for 5 min. The supernatant containing cells was collected and 

transferred into a T150 culture flask with 50 ml complete media. Cells were 

incubated at 37°C, 5% CO2, overnight. The next day, the media was replaced with 

fresh media and cells were continuously incubated until they were confluent. 

2.1.3 Freezing and thawing cells 
NIH 3T3 cells or p53-/- MEFs were harvested and resuspended in the appropriate 

freezing media (50% HI-FCS or HI-CS, 40% DMEM and 10% DMSO (Sigma)). 

Specifically, the freezing media of primary MEFs consists of 90% HI-FCS and 10% 

DMSO. 1ml of freezing media containing approximately 1x106 cells was added into 

a cryotube (Sarstedt). The tube was placed in a Mr.Frosty 1°C freezing container 

(Nalgene, Thermo Scientific) at -80°C, overnight. The next day, the tube was 

transferred to liquid nitrogen for long-term storage. 

To thaw frozen cells from liquid nitrogen, a cryovial was placed in a 37°C water bath 

until cells were completely thawed. Cells were transferred into a 15 ml falcon tube 

and 5 ml of pre-warmed media was added to the cells. The tube was spun at 1,000 

rpm, room temperature for 5 min. Supernatant was decanted and the cell pellet was 

resuspended with 10 ml complete media prior to transfer into a 75 cm2 flask. 

2.2 Cell viability test 
In order to assess the viability of cells, 20 µl of cell titre blue (Promega) was added to 

each well of a 96-well plate containing 100 µl media. The plate was incubated at 

37°C for 2 h. The assay is based on the ability of live cells to reduce resazurin into 

resorufin, which is highly fluorescent. The fluorescent signal was measured using 

Varioskan reader (Thermo Scientific). 

2.3 miRNA/siRNA transfection 
siRNAs or miRNAs were transfected into cells using DharmaFECT-1 (GE 

healthcare). The transfection mixture of each plate format was shown in Table 2.1. A 

4% lipid mixture was prepared by diluting DharmaFECT-1 with Opti-MEM and 

incubated at room temperature for 5 min. The lipid mixture was then mixed with the 
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siRNA/Opti-MEM mixture. The transfection mixture was incubated at room 

temperature for 20 min and pipetted into a well. The appropriate density of cells in 

antibiotic-free media was added into each well to mix with the transfection mixture. 

Cells were incubated at 37°C with 5% CO2. 

Table 2.1 Volumes per well of transfection in different plate formats 
Plate 

format 
Volume of 500 
nM siRNA or 
miRNA (µl) 

Opti-MEM 
(µl) 

4% 
DharmaFECT1 in 
Opti-MEM (µl) 

Cell density Total 
transfection 
volume (µl) 

96 5 5 10 1.5x104 in 80 µl 100 

24 12.5 12.5 25 1x105 in 450 µl 500 

6 50 50 100 3x105 in 800 µl 1000 

 

2.4  Methods for virology 
2.4.1 Viruses 
The Smith strain of murine cytomegalovirus was used for all studies, which contains 

the complete MCMV genome originally derived from bacterial artificial 

chromosome clone pSM3fr BAC (Wagner et al., 1999).  

MCMV Δm169 lacking m169 and m168 gene was previously generated by Valentina 

Libri (Buck lab). Briefly, primers containing 60 bp homologous to region flanking 

m168 and m169 (overlapped genes, Fig 2.1) were used to amplify a kanamycin 

(Kan) resistance cassette from plasmid pCP015 by PCR. The forward primer is 5’-

AAGTGTATAAAAGCTGAGTGTGGAGCGGTCGCAGTCGACACAGGAACAC

TTAACGGCTGA-3’ and the reverse primer is 5’-

AGACGGGAAACCGTCGTCGTTCGACCGTTACTCACGCCAAGAAAAGTGC

CACCTGCAGAT-3’. Competent EL250 bacteria containing MCMV BAC (with 

chloramphenicol resistance, Cm) were electroporated with the PCR fragment for 

recombination and selected for Kan and Cm resistance. The Kan cassette was excised 

from Kan-Cm resistant clones, resulting in the BAC carrying only Cm with the 

deletion of m168 and m169. 
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The GFP reporter MCMV (GFP-MCMV) contains GFP expression cassette in front 

of IE2 gene (Angulo et al., 2000). The insertion of GFP at this location was proven 

that it does not alter the viral growth (Manning and Mocarski, 1988). 

 

Figure 2.1 Genomic organisation of m168 and m169 (dashed box), this figure is taken from 
(Marcinowski et al., 2012) 
 

2.4.2 Preparation of viral stock 
To produce the viral stock, primary mouse embryonic fibroblasts (MEFs) were 

seeded at a density of 1x106 cells per 150 cm2 flask in DMEM supplemented with 

10% HI-FBS, 1% L-glu and 1% Pen/Strep. The next day, cells were infected with 

viruses at MOI of 0.05 in 15 ml DMEM with 5% HI-FBS, 1% L-glu and 1% 

Pen/Strep. The infected culture was maintained at 37°C for 5-7 days or until a 

cytopathic effect was observed. The cells and supernatant were collected and 

centrifuged at 3000 rpm, 4°C for 20 min. The supernatant from multiple flasks was 

combined and cell debris was discarded. The viral stock was aliquoted and stored at -

80°C. 

2.4.3 Titration of virus by plaque assays 
The plaque assay is a method to quantify virus concentration. To preform the 

method, p53-/- MEFs were seeded in a 48-well plate at a density of 2x104 cells in 300 

µl and incubated overnight at 37°C. On the day of the assay, the viral stock was 

diluted with DMEM containing 3% HI-FCS, 1% L-glu and 1% Pen/Strep at 10 fold 

serial dilutions ranging from 101 to 106. The total volume of 100 µl was prepared in 

triplicate and added to each well of a 48-well plate. The viral dilution was incubated 

with cells at 37°C for 2 h. Cells were washed with DMEM without additives and 

overlaid with 0.25% agarose-media mixture, which was prepared from 0.25% 

agarose in DMEM containing 3% HI-FCS, 1% L-glu and 1% Pen/Strep. Cells were 
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incubated at 37°C for 3-4 days until plaques became visible. To determine the viral 

titre, the numbers of plaques were counted and viral concentration calculated as 

plaque forming units to ml (PFU/ml) by using the equation below:  

PFU/ml = Numbers of plaques in average*individual dilution factor*10 

2.4.4 Viral infection 
The titre of the viral stock was used to calculate multiplicity of infection (MOI) for 

performing infection experiments. MOI refers to the number of virus particles that 

are added per cell during infection. To infect cells, the virus inoculum was prepared 

according to the desired MOI by mixing virus stock with media containing 10% 

serum. The total volume of inoculum varies depending on plate formats as described 

below: 

50 µl of virus inoculum per well of 96-well plates 

100 µl of virus inoculum per well of 48-well plates 

200 µl of virus inoculum per well of 24-well plates 

1 ml of virus inoculum per well of 6-well plates 

Cells were incubated with the virus inoculum at 37°C for 2 h, after which cells were 

washed once and replaced with complete media. The time hour post infection was 

counted at the end of virus incubation period.  

2.4.5 Viral growth curves  
2.4.5.1 Viral growth by plaque assays 
Growth curves were used to determine viral replication. Cells were seeded in a 96-

well plate and incubated overnight at 37°C. On the next day, cells were infected with 

viruses at MOI of 0.01 as described in 2.4.4. The supernatant was collected on day 1 

to 5 post infection for measuring viral titre by plaque assay. 

2.4.5.2 Growth curves based on GFP-MCMV 
MCMV encoding a green fluorescent protein (GFP) under the control of immediate-
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early control was used to monitor the viral growth (Angulo et al., 2000). Cells were 

seeded in a 96-well plate and incubated at 37°C, overnight. Cells were infected with 

GFP-MCMV at MOI of 0.2 at 37°C for 2 h. Cells were then washed and 150 µl of 

phenol-red-free DMEM, 10% HI-CS, 1% L-glu and 1% Pen/Strep was added into 

each well. The GFP signal was measured at excitation wavelength of 493 nm and 

emission wavelength of 520 nm using Varioskan Flash (Thermo Scientific). 

2.5 RNA method 
2.5.1 RNA extraction 
Total RNA was extracted using TRIzol (Invitrogen). Cells in a 24-well plate were 

washed with pre-warmed PBS twice and 200 µl TRIzol was added into each well. 

The plate was incubated at room temperature for 5 min and cells were collected into 

1.5 ml tubes. 40 µl of chloroform was added to samples and tubes were mixed by 

inverting. Samples were centrifuged at 12,000 rpm at 4°C for 20 min. The aqueous 

phase was transferred into fresh tubes. 300 µl of isopropanol and 1 µl of 15 mg/ml 

glycogen blue (Ambion, USA) were added into the aqueous phase. The mixture was 

incubated at room temperature for 5 min following by centrifugation at 12,000 rpm, 

4°C for 10 min. The supernatant was discarded and the pellet was washed twice with 

70% ethanol. After the final wash, the pellet was dried at room temperature. The 

pellet was resuspended in 20 µl of RNase/DNase free water (GIBCO, Invitrogen) and 

incubated at 55°C for 10 min. RNA was immediately placed on ice or kept at -20°C. 

2.5.2 Assessment of RNA quantity, purity and integrity 
RNA was quantified and the purity was assessed using Nanodrop ND-1000 

spectrophotometer (Thermo scientific). The maximal absorbance for nucleic acid and 

protein is 260 and 280 nm, respectively. A 260/280 ratio of 1.8-2.0 is generally 
accepted to indicate RNA with minimal protein contamination. In addition, the ratio 

of 260/230 can indicate phenol contamination and the ideal ratio is above 1.5. In 

addition, RNA integrity was determined by polyacrylamide gel electrophoresis. A 
12% RNA gel was prepared from the UreaGel Concentrate, UreaGel Diluent and 

UreaGel Buffer (National Diagnostic). To make 2 small gels (0.75 mm thickness), 

4.8 ml UreaGel concentrate was mixed with 4.2 ml UreaGel Diluent, 1 ml UreaGel 
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Buffer, 80 µl APS and 4 µl TEMED. RNA samples were prepared by mixing 1 µg 

RNA with RNA loading buffer. The samples were heated at 70°C for 2 min and 

immediately placed on ice. The samples were loaded onto the gel and run at 100-120 

Volt for 1-2 h. To visualise RNA bands, the gel was stained with ethidium bromide 

(Invitrogen) and examined under a UV transilluminator (Syngene). Intact RNA is 

indicated by clearly separated bands of 5S and tRNA. 

2.5.3 Reverse transcription polymerase chain reaction and 
quantitative real-time polymerase chain reaction (qRT-
PCR) 

Reverse transcription (RT) was carried out using miScript II RT kit (QIAGEN). The 

total reaction volume of 5 µl reaction contains 1 µl of 5x miScript HiFlex buffer, 0.5 

µl of 10x miScript Nucleics Mix, 0.5 µl of miScript Reverse Transcriptase and 200 

ng of RNA in H2O. The RT reaction was incubated at 37°C for 1 h followed by 

inactivation of reverse transcriptase at 95°C for 5 min and the complete reaction was 

held at 4°C to prevent cDNA degradation. Prior to the qPCR reaction, cDNA was 

diluted 1:10 with RNase-free water.  

The qPCR of mature miRNAs was carried out using miScript SYBR Green PCR kit 

(QIAGEN). Primers used for quantification of miRNAs are miRScript Primer assay 

(QAIGEN). The reactions were done in 384-well plates. The total reaction volume of 

5 µl contains 2 µl of 2x QuantiTect SYBR Green PCR Master mix, 0.5 µl of 10x 

miScript universal primer, 0.5 µl of 10x miScript specific primer, 0.5 µl of cDNA 

template (1:10 dilution) and 1.5 µl of RNase-free water.  The reactions were 

performed on a LightCycler 480 Real-time PCR instrument (Roche) with an initial 

incubation at 95°C for 15 min following by 45 cycles of denaturation at 94°C for 15 

sec, annealing at 55°C for 30 sec and extension at 72°C for 30 sec. 

For analysis of mRNA levels, qRT-PCR was conducted using the LightCycler 480 

SYBR Green I Master Kit (Roche). Primers were designed using the online Roche 

Universal Probe Library primer design tool and the sequences are shown in Table 2.2 

and 2.3. The reactions were carried out in 384-well plates. The total reaction volume 

of 5 µl contains 2.5 µl of SYBR mix, 0.25 µl of forward primer (10 pmol/µl), 0.25 µl 
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of reverse primer (10 pmol/µl), 0.5 µl of cDNA template (1:10) and 1.5 µl of RNase-

free water. The plate was run on the LightCycler 480 Real-time PCR instrument 

(Roche). The cycling conditions consist of the initial denaturation at 95°C for 5 min, 

amplification for 45 cycles comprising 95°C for 10 sec, 60°C for 10 sec and 72°C for 

10 sec. 
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Table 2.2 Primers for qRT-PCR of mouse and MCMV genes 
Primer Sequence (5’ to 3’) 

Mouse gene 

Bmi1_F 

Bmi1_R 

 

CAAAACCAGACCACTCCTGAA 

TCTTCTTCTCTTCATCTCATTTTTGA 

Calm3_F 

Calm3_R 

TGGCCAGAAAGATGAAGGAT 

GGCAGCGCTAATATAGCCATT 

Cav1_F 

Cav1_R 

AACGACGACGTGGTCAAGA 

CACAGTGAAGGTGGTGAAGC 

Mouse_Ccng1_F 

Mouse_Ccng1_R 

TGGACAGATTCTTGTCTAAAATGAAG 

CAGTGGGACATTCCTTTCCTC 

Itga5_F 

Itga5_R 

CACCATTCAATTTGACAGCAA 

TCCTCTCCCTTGGCACTGTA 

Lyar_F 

Lyar_R 

GGGGACCATTAAGGCTGTTT 

CATCACCGCATGGTACTGAG 

Mapkapk3_F 

Mapkapk3_R 

CTGAATGGTTAGATGTCTCTGAGG 

GCCTCTCTGTGGGATCTGTC 

Pik3r1_F 

Pik3r1_R 

GACGGCACTTTCCTTGTCC 

TGACTTCGCCGTCTACCAC 

Rpl18a_F 

Rpl18a_R	
  

CGCGAAAGACAACACTTCCT 

GTGGTGTGTGGCATTTTGG	
  

Gapdh_F 

Gapdh_R 

CATGGCCTTCCGTGTTCCTA 

GCGGCACGTCAGATCCA 

MCMV gene 

m169_F 

m169_R 

 

AGACGACGATCTGCGGAATA 

TTCTCAGGCAGACATCCGAA 
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Table 2.3 Primers for qRT-PCR of human genes 
Primer Sequence (5’ to 3’) 

Human_Ccng1_F 

Human_Ccng1_R 

CTGGACAGATTCCTGTCTAAAATG 

GTCAGTTGCCAATGGGACAT 

Human_Gapdh_F 

Human_Gapdh_R 

AGCCACATCGCTCAGACAC 

GCCCAATACGACCAAATCC 

 

2.5.4 Northern blot analysis 
2.5.4.1 Buffers and solutions for Northern blot analysis 
2x loading dye: 8M urea (Sigma), 5mM EDTA (Promega), 0.05% bromophenol 

blue (Sigma), 0.05% xylene cyanol (Sigma) 

10x TBE buffer (Tris-borate-EDTA): 109 g Tris base, 55.6 g Boric acid, 50 ml 500 

mM EDTA, adjust the volume to 1L with dH2O 

15% TBE-UREA gel: 6 ml concentrate reagent (SequaGel, National digagnostics), 

3ml dilute reagent (SequaGel, National digagnostics), 0.5 ml 10x TBE, 0.5 ml dH2O, 

100 µl 10% APS (Sigma) and 4 µl TEMED (Sigma) 

Cross-linking solution: 245 µl 12.5 M 1-methylimidazole in 9 ml of dH2O, adjust 

pH to 8, and 0.753 g of EDC, adjust the volume to 25 ml using dH2O 

Wash buffer 1 (2x SSC, 0.1% SDS): 100 ml 20x SSC (Biosciences), 10 ml 10% 

SDS (Sigma), adjust the volume to 1L with dH2O. SSC-sodium chloride-sodium 

citrate buffer; SDS-sodium dodecyl sulphate 

Wash buffer 2 (1x SSC, 0.1% SDS): 50 ml 20x SSC (Biosciences), 10 ml 10% 

SDS (Sigma), adjust the volume to 1L with dH2O 

Wash buffer 3 (0.1x SSC, 0.1% SDS): 5 ml 20x SSC (Biosciences), 10 ml 10% 

SDS (Sigma), adjust the volume to 1L with dH2O 

Stripping buffer (0.1% SDS): 5 ml 10% SDS and 495 ml dH2O 
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2.5.4.2 Labelling of probes and RNA marker with γ-32P, and northern 
blotting 

Complementary oligonucleotides (Invitrogen) to target RNAs are shown in Table 

2.4. The 5’end labelling was carried out at with 1.0 µM of the oligonucleotide, 32P-γ-

ATP (Perkin Elmer), T4 kinase (Invitrogen) and the forward reaction buffer supplied 

with the kit in a final volume of 20 µl. The reaction was incubated at 37°C for 1h, 

diluted to 50 µl in 3mM EDTA and unincorporated ATP was then removed using 

illustra MicroSpin G-25 columns (GE healthcare). The purified probes were stored at 

-20°C. The ladder was prepared according to manufacturer’s instruction for the 

Decade Marker RNA system (Life technology) in a total volume of 10 µl with 100 

ng RNA. 1 µl 10x kinase buffer, 1 µl 32P-γ-ATP and 1 µl T4 kinase. The reaction was 

incubated at 37°C for 1h. 2 µl of the 10x cleavage reagent and 8 µl of water was 

added into the mixture and incubated at room temperature for 5 min. The labelled 

marker was then mixed with 20 µl loading buffer and kept at -20°C. The marker was 

heated at 95°C for 5 min before use. 

5 µg of RNA was separated on 15% or 4% polyacrylamide gels for miRNA and 

mRNA analysis, respectively, and transferred onto a nylon membrane (Hybond N) 

(GE Healthcare) in 0.5% TBE at 80 Volt, 4°C for 1 h. The RNA was crossed-linked 

using EDC at 50°C for 2 h. The membrane was pre-hybridised in the Perfect 

HybPlus Hybridisation buffer (Sigma) at 42°C for 30 min. 10 µl of the labelled probe 

was added to the hybridisation buffer and incubated overnight at 42°C. The 

membrane was sequentially washed with pre-warmed (42°C) wash buffer 1, 2 and 3 

for 10 min. The membrane was sealed and exposed in the phosphoimager (Molecular 

Dynamics, USA) for 24 to 48 h. The screen was then scanned using a Typhoon 

scanner (GE healthcare). To strip a membrane, stripping buffer was boiled and the 

membrane was placed in the buffer for up to 2 h. The membrane was re-exposed in a 

phosphoimager to ensure complete stripping before re-hybridisation with a new 

probe. 
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Table 2.4 Probe sequences used in Northern blot analysis 
RNA of interest Probe sequence (5’ to 3’) 

miR-27 GCGGAACTTAGCCACTGTGAA 

miR-16 CGCCAATATTTACGTGCTGCTA 

m169 TCTCAGGCAGACATCCGAAGGGACTTCTTTTC
ACAGCTTATTATTCCGCAGATCGTCGTCTGGG
GGAGATCACGGACGGG 

 

2.6 Western blot analysis 
2.6.1 Buffers and solutions for Western blot analysis 
4x SDS-PAGE loading buffer: 50 mM Tris-Cl (pH 6.8), 12.5mM EDTA, 2% SDS, 

10% glycerol, 1% β-mercaptoethanol and 0.02% bromophenol blue. 

NP-40 lysis buffer: 50 mM Tris-Cl (pH 7.5), 100 mM NaCl, 1% NP40 (IGEPAL), 

protease inhibitors and phosphatase inhibitors. 

10% Ammonium Persulfate (APS): 1g of APS in 10 ml dH2O 

Laemmli running buffer (10x), pH8.3: 30.3g Tris, 144.2g Glycine, 10g SDS in 1L 

dH2O 

Transfer buffer (10x): 29g Tris, 144g Glycine, 3.7g SDS in 1L dH2O. 1L of 1x 

buffer was prepared with 100 ml of 10x transfer buffer, 200 ml methanol and 700 ml 

dH2O 

1 M Tris-HCl, pH 6.8: 120g of Tris dissolved in total volume of 1L with dH2O 

1.5 M Tris- HCl, pH 8.8: 181g of Tris dissolved in total volume of 1L with dH2O 

ECL-based detection 

Tris-buffered saline-Tween (TBS-T): 10 mM Tris-HCl, 100 mM NaCl, 0.2% 

Tween-20. 

Blocking buffer: 5% skimmed milk powder in TBS-T 
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Fluorescence-based detection 

Blocking buffer: Odyssey Blocking Buffer (LI-COR Biosciences) diluted with PBS 

in 1:1 ratio 

Buffer for primary antibodies: 0.1% Tween-20 in blocking buffer 

Buffer for secondary antibodies: 0.1% Tween-20 and 0.01% SDS in blocking 

buffer 

Washing buffer: 0.1% Tween-20 in PBS 

2.6.2 Sample preparation and gel electrophoresis 
Protein lysate was prepared on ice by washing cells once with cold PBS and cells 

were lysed using NP-40 lysis buffer containing protease and phosphatase inhibitor 

(Roche). Cells with lysis buffer were transferred into fresh tubes and placed on ice 

for 30 min. The supernatant was obtained by centrifugation at 12,000 g, 4°C for 15 

min. The protein was quantified by BCA assay (Thermofisher) following the 

manufacturer’s protocol. A standard curve was generated using bovine serum 

albumin (BSA) at a concentration from 0 to 2,000 ng/µl. The protein concentration of 

samples was calculated using the standard curve as the reference. The protein lysate 

(between 20-30 µg) was mixed with 4x SDS loading buffer and heated at 95°C for 5 

min and loaded onto a sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gel. 

The SDS-PAGE gel consists of 12% resolving gel and 5% stacking gel. To prepare 

30 ml of the resolving gel, 9.9 ml of dH2O was mixed with 12 ml of 30% 

polyacrylamide, 7.5 ml of 1.5M Tris (pH 8.8), 300 µl of 10% SDS, 300 µl of 10% 

APS and 12 µl of TEMED. The gel mixture was poured into the glasses and 

immediately overlaid by isopropanol. Once the gel solidified, isopropanol was 

removed and the gel was washed with dH2O. 10 ml of stacking gel was prepared 

with 6.8 ml of dH2O, 1.7 ml of 30% polyacrylamide, 1.25 ml of 1.0M Tris (pH 6.8), 

100 µl of 10% SDS, 300 µl of 10% APS and 10 µl of TEMED and was poured on top 

of the resolving gel.  
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2.6.3 Western blot analysis for enhanced chemiluminescence 
(ECL)-based detection 

Samples were loaded onto the gel along with Fermentas PageRuler Plus Prestained 

Protein Ladder (Thermo scientific). The gel was run at 100-120 Volt for 2-3 h. The 

separated protein on the gel was transferred onto a nitrocellulose Hybond EC (BIO-

RAD) by wet blot procedure. The transfer was carried out at 35 Volt, 4°C, overnight. 

After protein transfer, the membrane was incubated with 5% skimmed milk in TBS-

T at room temperature for 1 h or 4°C, overnight. The blocking buffer was replaced 

with primary antibody diluted in 5% skimmed milk in TBS-T and was incubated at 

4°C, overnight. The list of antibodies used was provided in Table 2.5. The membrane 

was washed three times with TBS-T for 10 min and it was incubated with the 

secondary antibody diluted in blocking buffer at room temperature for 2 h. The 

unbound antibody was removed by washing the membrane three times with TBS-T 

for 10 min. The protein was detected using ECL Western blotting detection system 

(Thermo scientific), X-ray films (Fuji) and the film developer (Konica Minolta). 

2.6.4 Western blot analysis for fluorescence-based detection 
Samples were loaded onto the gel along with Precision Plus Protein All Blue 

Standards (BIO-RAD) and the gel was run at 100-120 Volt for 2-3 h.  Proteins were 

transferred onto a PVDF membrane, which was soaked with absolute methanol. The 

transfer was performed using the wet blotting procedure at 35 Volt, 4°C, overnight. 

The blotted membrane was incubated with the blocking buffer at room temperature 

for 1 h and incubated with the primary antibody at 4°C, overnight. The membrane 

was washed four times with washing buffer (PBS-T) for 10 min and incubated with 

the secondary antibody diluted in blocking buffer at room temperature for 45 min. 

The secondary antibody solution was prepared by mixing two antibodies: a 

secondary antibody specific to the primary antibody and Alexa Fluor 680 Goat Anti-

mouse IgG binding to the ladder. The membrane was washed four times with 

washing buffer for 10 min and analysed using Odyssey Infrared Imaging System (LI-

COR Biosciences). 
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Table 2.5 A list of antibody used in Western blot analysis 
Antibody Dilution Supplier 

Anti-AGO2	
   1:2000	
   Cell signaling, 2897	
  

Anti-BMI1 1:1000 Cell signaling, 5855 

Anti-CALM3 1:2500 Abcam, ab124742 

Anti-CAV1 1:2000 BD, 610059 

Anti-CCNG1 1:500 Santa cruz, sc-7865 

Anti-ITGA5 1:1000 Cell signaling, 4705 

Anti-MAPKAPK3 1:1000 Cell signaling, 7421 

Anti-PIK3R1 1:1000 Cell signaling, 13666 

Anti-phospho-HSP27 (Ser86) 1:1000 Abcam, ab17938 

Anti-phospho-CREB (Ser133) and ATF-1	
   1:1000	
   Cell signaling, 9198	
  

Anti-phospho-p38 (Thr180/Tyr182) 1:1000 Cell signaling, 9215 

Anti-β-actin 1:3000 Cell signaling, 4967 

Anti-GAPDH 1:3000 Cell signaling, 2118 

Peroxidase anti-peroxidase soluble complex 
antibody (PAP)	
  

1:20000	
   Sigma, P1291	
  

Anti-rabbit IgG, HRP-linked antibody (ECL-based 
detection) 

1:3000 Cell Signaling, 7074 

Anti-mouse IgG, HRP-linked antibody (ECL-based 
detection)	
  

1:3000	
   Cell Signaling, 7076	
  

Goat anti-rabbit IgG secondary antibody, 
DyLight800 (Fluorescence-based detection) 

1:20000 Thermo Scientific, SA5-
35571 

Alexa Fluor 680 Goat Anti-mouse IgG 
(Fluorescence-based detection)	
  

1:20000 Life technologies, A-21058 
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2.7 Sample preparation for microarray analysis 
To examine gene expression using microarray analysis, six treatment groups were 

carried out in three technical replicates: 1) untreated cells, 2) cells transfected with 

RISC-free siRNAs, 3) cells transfected with miR-27a mimics, 4) cells infected with 

wild type MCMV, 5) cells infected with MCMV Δm169 and 6) cells transfected with 

miR-27a mimics followed by wild type MCMV infection. NIH 3T3 cells were 

untreated or transfected in a 6-well plate with RISC-free siRNAs or miR-27a mimics 

for 48 h. For viral infection, NIH 3T3 cells were seeded at a density of 3x105 cells in 

a 6-well plate for 24 h prior to infection with the wild type MCMV or MCMV 

Δm169 at MOI of 5 for 24 h. To carry out the combined treatment of transfection and 

infection, cells were transfected with miR-27a mimics for 24 h prior to infection with 

the wild type MCMV at MOI of 5 for 24 h. Total RNA was extracted and RNA 

integrity was qualitatively assessed by polyacrylamind gel electophoresis. The levels 

of miR-27 and m169 were determined using qRT-PCR. Amplified RNAs for 

microarray analysis were prepared using Illumina TotalPrep RNA Amplification kit 

(Ambion, Life technologies) according to the manufacturer’s instructions.  

The amplified RNAs were subjected to the quality assessement using Bioanalyzer 

(Agilent Technologies) and microarray analysis using Illumina mouseref-6 array, 

which were carried out by Wellcome Trust Clinical Research Facility (WTCRF, 

Western general Hospital, Edinburgh). Analyses of the microarray data including 

quality control and differential gene expression were carried out by Alasdair Ivens 

(Centre for Infection Immunity and Evolution, Ashworth Laboratories, University of 

Edinburgh).  

2.8 Functional screening of genes required for MCMV 
replication  

NIH 3T3 cells were transfected with siGENOME SMARTpool siRNAs or individual 

siGENOME siRNAs that make up the pool (Dharmacon, GE healthcare) in 96-well 

plates for 48 h as described in section 2.3. Cells were infected with 50 µl of viral 

mixture of GFP-MCMV (MOI of 0.2) at 37°C for 2 h. The virus was then removed 

and 150 µl phenol-red-free DMEM containing 10% HI-CS, 1% L-glu and 1% 
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Pen/Strep was added into each well. Cells were incubated at 37°C for 70 h and the 

fluorescent signal was measured using Varioskan Flash Reader (Thermofisher). 

2.9 Validation of direct targets of miR-27 by a dual 
luciferase reporter assay 

Validation of direct interactions between miRNAs and target mRNAs was carried out 

using a dual luciferase reporter system (Promega). The reporter vector is psi-

CHECK2 encoding Renilla and firefly luciferase. The vectors were constructed by 

cloning the full length of 3’UTRs of target genes downstream of Renilla luciferase. 

The levels of firefly luciferase were used to control for transfection efficiency. The 

constructed vector was co-transfected into cells along with miRNAs mimics or 

inhibitors, and expression of Renilla and firefly measured. 

2.9.1 Cloning of the 3’UTR into psi-CHECK2 

The primers used to amplify the 3’UTR of Bmi1 (~1.5 kb), Cav1 (1.1 kb), Ccng1 

(1.5 kb) and Mapkapk3 (~1.2 kb) are shown in Table 2.6. The 50 µl PCR reaction 

contains 5 µl of 10x buffer, 1 µl of 10 mM dNTPs, 1 µl of 10 µM forward primer, 1 

µl of 10 µM reverse primer, 1 µl of Pfu DNA polymerase (Promgea) and 20 ng of 

cDNA in dH2O. The cycling conditions are listed in Table 2.7. 

The PCR products were gel purified using QIAquick Gel Extraction Kit (QIAGEN). 

Empty psi-CHECK2 and the purified products were digested using NotI-HF (NEB) 

and XhoI (NEB) according to the manufacturer’s protocol. To prevent self-ligation, 

the 5’ phosphates of digested psi-CHECK2 were removed using Antarctic 

Phosphatase (NEB) following the manufacturer’s protocol. Subsequently, digested 

PCR products and dephosphorylated psi-CHECK2 were gel purified using QIAquick 

Gel Extraction Kit  (QIAGEN). 

To ligate the purified PCR product into the vector, the 10 µl ligation reaction 

contained 1 µl of 10x buffer, 1 µl of T4 DNA ligase (NEB) and the mixture of the 

PCR insert and the digested vector at a molar ratio of 3:1. The reaction was 

incubated at 16°C, overnight. 5 µl of the ligation reaction was then transferred into 

30 µl of thawed DH5α competent cells (Invitrogen). Cells were placed on ice for 30 
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min, heat shocked at 42°C for 45 sec and put on ice for 2 min. 150 µl of SOC 

(Invitrogen) was added to the transformed cells and the cells were incubated at 37°C 

with shaking for 1 h. The transformed cells were plated onto LB agar plates (Sigma) 

containing 100 µg/ml of penicillin (Sigma). The plates were incubated at 37°C, 

overnight. Vectors were extracted using a standard mini-prep, digested using 

appropriate restriction enzyme to identity positive colonies containing the insert. The 

positive vectors were sent for sequencing to confirm correct insert sequences. 

2.9.2 Mutagenesis of the miR-27 binding site within the 3’UTR 
of Mapkapk3 

The mutagenesis of the miR-27 binding site within the 3’UTR of Mapkapk3 was 

carried out using QuickChange lightning multisite-directed mutagenesis kit (Agilent 

Technologies) according to the manufacturer’s protocol. psi-CHECK2 containing the 

3’UTR of Mapkapk3 was subjected to mutagenesis using primers with three base 

substitutions (Table 2.6). Primers were designed using the QuickChange Primer 

Design Program available online at http://www.genomics.agilent.com. 

2.9.3 Luciferase reporter assays 
To perform the luciferase reporter assay, NIH 3T3 cells were co-transfected with the 

reporter vectors and miRNAs in a 96-well plate using Lipofectamine 2000 (Life 

Technologies) as shown in Table 2.8. At 48 h post transfection, samples were 

prepared according to the manufacturer’s protocol (Promega). Expressions of Renilla 

and firefly luciferase were measured using Varioskan Flash Reader (Thermofisher). 
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Table 2.6 A list of primers for PCR amplification, DNA sequencing and 
mutagenesis of Mapkapk3 3’UTR 
Primer Sequence (5’ to 3’) 

Amplification of Bmi1 3’UTR 

Bmi1_3’UTR_XhoI_F 

 

ATTCTCGAGCATGTGACTGTCGTCCAGTTTGC 

Bmi1_3’UTR_NotI_R ATTGCGGCCGCTGACACACACACAATGGGAC 

Amplification of Cav1 3’UTR 

Cav1_3’UTR_XhoI_F 

 

ATTCTCGAGTTAAACCCATTCCTGCTCTCTC 

Cav1_3’UTR_NotI_R ATTGCGGCCGCAGTAGGTAGCAGGTTGGTAAAG 

Amplification of Ccng1 3’UTR 

Ccng1_3’UTR_XhoI_F 

 

ATTCCTCGAGATAAGCCCATGCAGAACAAC 

Ccng1_3’UTR_NotI_R ATTGCGGCCGCTGGAGGTGTCTCCTTACG 

Amplification of Mapkapk3 3’UTR 

Mapkapk3_3’UTR_XhoI_F 

 

CCAGCTCGAGTGTAATGTCCTGAGGCTCTGG 

Mapkapk3_3’UTR_NotI_R ATTGCGGCCGCGATCTAAGGTTTCCCAGCC 

Mutagenesis of Mapkapk3 3’UTR 

Mapkapk3_mut_F 

 

CCTTTTTCCAGTTTGGAAACCTCACTCACACAAA
AGCCCCCACC  

Mapkapk3_mut_R GGTGGGGGCTTTTGTGTGAGTGAGGTTTCCAAA
CTGGAAAAAGG 

Sequencing Bmi1_3’UTR   

Bmi1_3’UTR_XhoI_F ATTCTCGAGCATGTGACTGTCGTCCAGTTTGC 

Sequencing Cav1_3’UTR   

Cav1_3’UTR_NotI_R ATTGCGGCCGCAGTAGGTAGCAGGTTGGTAAAG 

Sequencing Ccng1_3’UTR   

2380_CCNG1 mRNA_mmu CTCACGGTTAGGGGAAACTCCTG 

Sequencing Mapkapk3_3’UTR and 
Mapkapk3 3’UTR mutant   

Mapkapk3_3’UTR_XhoI_F CCAGCTCGAGTGTAATGTCCTGAGGCTCTGG 

Mapkapk3_3’UTR_NotI_R ATTGCGGCCGCGATCTAAGGTTTCCCAGCC 
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Table 2.7 PCR conditions to amplify the 3’UTR of Bmi1, Cav1, Ccng1 and 
Mapkapk3 
Step Temperature Time Number of  

cycles 

Initial denaturation 95°C 2 min 1 

Denaturation 95°C 30 sec 30 

Annealing 

• Bmi1 3’UTR 
• Cav1 3’UTR 
• Ccng1 3’UTR 
• Mapkapk3 3’UTR 

	
  
	
  
55°C 
55°C 
55°C 
56°C	
  

 
 
30 sec  
30 sec 
30 sec 
30 sec 

 

Extension 

• Bmi1 3’UTR 
• Cav1 3’UTR 
• Ccng1 3’UTR 
• Mapkapk3 3’UTR 

 

72°C 
72°C 
72°C 
72°C 

 
 
2.5 min 
2.5 min 
2.5 min 
2 min 

 

Final extension 72°C 5 min 1 

Hold 4°C Indefinite 1 

 

Table 2.8 Volumes per well of co-transfection for luciferase reporter assays in 
96-well plates 

psi-
CHECK2 
(50 ng/ µl)  

(µl) 

Volume of 500 
nM siRNA or 
miRNA (µl) 

Opti-
MEM 
(µl) 

2.5% Lipofectamine 
2000 

in Opti-MEM (µl) 

Cell density Total 
transfection 
volume (µl) 

1 5 4 10 1.5x104 in 

80 µl 

100 
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2.10 Cell cycle analysis 
NIH 3T3 cells were untreated or transfected with RISC-free siRNAs, miR-27a 

mimics, miR-27a inhibitors or gene-specific siRNAs in a 6-well plate for 24 h prior 

to serum starvation for further 24 h. To synchronise cells in G0/G1, cells were kept 

in media containing 0.5% HI-CS (Sigma), 1% L-glu and 1% Pen/Strep for 24 h due 

to data showing that the majority of cells is in G0/G1 at this time point (Fig. 2.2). To 

re-stimulate cells, the media was replaced with media containing 10% serum. At the 

desired time points, cells were washed once with 1 ml warm PBS and trypsinised 

using 300 µl trypsin (Gibco, Life Technologies). Cells were spun at 1,000 rpm at 4°C 

for 5 min and resuspended in 1 ml cold FACS-PBS buffer (PBS, 5%BSA and 0.05% 

sodium azide). Cells were fixed in 70% cold ethanol by slowly adding 1 ml cell 

suspension dropwise into 9 ml of 70% ethanol. Cells were kept overnight or several 

weeks at -20°C before staining. 

To stain DNA content, the cell suspension in ethanol was centrifuged at 2,000 rpm, 

4°C for 10 min. The supernatant was discarded and the cell pellet was resuspended in 

2 ml FACS-PBS buffer. Cells were spun at 1,700 rpm, 4°C for 3 min and the buffer 

was completely discarded by tapping the tube on a tissue paper to remove excess 

buffer. Cells were stained with 300 µl FACS-PBS containing 50 µg/ml propidium 

iodide (Sigma) and 100 µg/ml RNase A (Sigma). The cell mixture was incubated in 

the dark at 37°C for 20 min. Samples can be stored at 4°C for a few days before 

analysis by flow cytometry (BD FACSCanto, Becton Dickinson). Data obtained 

from flow cytometry was analysed using FlowJo software. 
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Figure 2.2 DNA histograms of G0/G1 synchronisation by serum starvation 
NIH 3T3 cells were seeded in a 6-well plate at a density of 3x105 cells in 1 ml media containing 10% 
serum for 24 h. The media was replaced with media containing 0.5% serum for 6, 8 and 24 h. Cell 
cycle was examined using propidium iodide staining followed by flow cytometry. The data present 
cell cycle profiles consisting of G0/G1 (2N), S and G2/M (4N) phase. 

2.11 Generation of the NIH 3T3-PTH-mAGO2 stable 
cell line expressing PTH-mAGO2 using lentiviral 
transduction 

2.11.1 Generation of the transfer plasmid encoding PTH-
mouse AGO2 (pLVX-CAG-PTH-mAGO2) 

The PTH-mAGO2 fragment (3 kb) was amplified from pCDNA3-PTH-mAGO2 and 

cloned into pLVX-CAG (Fig 2.3). To amplify PTH-mAGO2, a 50 µl PCR reaction 

volume contained 5 µl of 10x buffer, 1 µl of 10 mM dNTPs, 1 µl of 10 µM forward 

primer, 1 µl of 10 µM reverse primer, 1 µl of Pfu DNA polymerase (Promega), 20 ng 

of pCDNA3-PTH-mAGO2 and dH2O. The cycling conditions consist of the initial 

denaturation at 95°C for 2 min, amplification for 30 cycles comprising 95°C for 30 

sec, 65°C for 30 sec and 72°C for 3 min, followed by final extension at 72°C for 5 

min. The PCR product was held at 4°C. Table 2.9 provides a list of primers using for 

PCR and sequencing to check the sequences. The amplified products and pLVX-

CAG vector were digested with XhoI (NEB) and NotI (NEB) and gel purified using 

QIAquick Gel Extraction Kit  (QIAGEN) according to manufacturers’ protocols. The 

purified fragments were ligated into digested pLVX-CAG at a molar ratio of 3:1 

based on the protocol described in section 2.9.1. 

2.11.2 Transfection of plasmids 
NIH 3T3 cells were transfected with pLVX-CAG-PTH-mAGO2 in a 6-well plate 

format using lipofectamine 2000 (Invitrogen). The general procedure of the 

6 h starvation 8 h starvation 24 h starvation Untreated cell 
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transfection is described in section 2.3. 200 µl of transfection mixture was prepared 

from 100 µl Opti-MEM containing 1.5 µg of the plasmid and 100 µl of 3% 

lipofectamine in Opti-MEM. 200 µl of transfection mixture was mixed with 800 ul of 

3x105 cells. Cells were incubated at 37°C for 30 h and the cell lysate was collected 

for Western blot analysis to examine the expression of PTH-mAGO2. 

2.11.3 Lentiviral production 
HEK293T cells were seeded in 4 of 10 cm dish at a density of 4.5x106 cells/dish for 

24 h prior to transfection with 16 µg of pLVX-CAG-PTH-mAGO2, 4.5 µg of 

pMD2.G-VSV-G (envelope plasmid) and 11.5 µg of psPAX2 (packaging plasmid) 

using the calcium chloride method. At 14-16 h post transfection, the media was 

replaced with 12 ml complete media containing 10 µM sodium butyrate. The 

supernatant was collected at 30 h after media changing, then filtered through 0.22 µm 

filters and ultracentrifuged at 19,500 rpm at room temperature for 2 h. Pellets were 

resuspended with 570 µl of complete IMEM and stored at -80°C. 

2.11.4 Lentiviral transduction 
NIH 3T3 cells were seeded in a 6-well plate at a density of 1x105 cells in 2 ml 

complete media and incubated at 37°C for 24 h. Cells were transduced with three 

different volumes (12, 24 and 48 µl) of the concentrated virus in 1 ml complete 

media containing 4 µg/ml polybrene. The transduction was enhanced by 

centrifugation at 500g, room temperature for 1 h. Cells were incubated at 37°C for 18 

h and the media was replaced with 2 ml complete media. At 24 h later, the media was 

once again replaced with 2 ml complete media. Cells were maintained in the 

complete media with 1 µg/ml puromycin for 7 days with daily media changing to 

positively select transduced cells.  
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Figure 2.3 Diagram of PTH-mAGO2, pCDNA3-PTH-mAGO2 and pLVX-CAG 
(A) A schematic diagram of PTH-mAGO2 consisting of protein A (ProtA), tobacco etch virus (TEV) 
protease cleavage site, histidine tag (6x His) and mAGO2. (B, left) pCDNA3-PTH-mAGO2. The 
forward primer with XhoI restriction site and the reverse primer containing NotI restriction site were 
used to amplify PTH-mAGO2. (B, right) The amplified fragment was cloned into pLVX-CAG 
plasmid at XhoI and NotI site. 
 
Table 2.9. A list of primer for amplifying PTH-mAGO2 from pCDNA3-PTH-
mAGO2 and sequencing 
Primer Sequence 

Primers for amplification 

PTH-mAGO2_XhoI_F 

 

CACCTCGAGGAGACCCAAGCTTGGTAC  

PTH-mAGO2_NotI_R AATGCGGCCGCTCAAGCAAAGTACATGG 

Primers for sequencing 

PTH-mAGO2_XhoI_F 

 

CACCTCGAGGAGACCCAAGCTTGGTAC 

PTH-mAGO2_NotI_R 

pLVX CAG_3824 

AATGCGGCCGCTCAAGCAAAGTACATGG 

GGCTCTAGAGCCTCTGCTAACC 

The restriction sites are underlined. 

pCDNA3-PTH-mAGO2 

8662 bp 

PTH-­‐mAGO2	
  

pCDNA3-PTH-mAGO2 

8662 bp 

pLVX-CAG 

9199 bp 

A 

B AmpR 
AmpR 

PTH-mAGO2 

NeoR 

SV40 promoter 

T7 promoter 

PuroR 

CAG promoter 

mAGO2	
  



Chapter 2: Materials and methods 

  62 

2.12 Cross-linking, ligation and sequencing of 
hybrids (CLASH) 

To prepare the samples, NIH 3T3-PTH-mAGO2 cells expressing PTH-mAGO2 were 

seeded in 15 cm plates at a density of 3x106 cells/plate in 20 ml complete media. A 

total of 8 plates were used per condition. Cells were incubated at 37°C for 24 h. Cells 

were mock-infected or infected with wild type MCMV or MCMV Δm169 at MOI of 

5 for 24 h. The control from HEK293-PTH-hAGO2 cells was prepared by Katrina 

Gordon (Buck lab). The cells were seeded in 15 cm plates at a density of 1x107 

cells/plate in 30 ml complete media (DMEM containing 10% HI-FBS, 1% L-glu and 

1% Pen/strep) for eight plates (four plates per sample). After 24 h cells were 

untreated or induced for hAGO2 production with 0.5µg/ml doxycycline (Sigma) for 

36 h. Cells were then washed once with cold-PBS and UV-irradiated at 254 nm, 400 

mJ/cm2 on ice (CL-1000 Ultraviolet crosslinker, UVP). Cells were lysed with 2.5 ml 

cold lysis buffer per plate. The cell lysate was centrifuged at 3,000 rpm, 4°C for 20 

min. The lysate was either immediately used in the next steps or kept at -80°C for 

later use. Due to complication of CLASH protocol, it is highly recommended to 

thoroughly study the published protocol for the whole procedure and materials used 

(Helwak et al., 2013; Helwak and Tollervey, 2014). Here, it is not possible to 

describe all details of the protocol. Thus, brief information is provided to understand 

the principle of the approach and interpretation of results (Fig 2.4). 

2.12.1 Major steps of the protocol 
Immunoprecipitation: The lysate from one sample was incubated at 4°C for 1 h 

with 25 mg of Dynabeads (Invitrogen) coated with rabbit IgG (I5006, Sigma). 

RNase digestion: On dynabeads, the protein-RNA complex was treated with 0.5 unit 

of RNaseA and T1 mixture (Agilent) at 20°C for 5 min to trim RNAs. The sample 

was transferred on ice immediately to slow down the reaction. The RNaseA digestion 

buffer was discarded and beads immediately washed. 

Elution of protein-RNA complexes from Dynabeads: The protein-RNA complexes 

were eluted from Dynabeads with the buffer containing denaturing 6 M guanidine-

HCl. 
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Ni-NTA purification: 80 µl of Ni-NTA suspension was used per sample. The Ni-

NTA was washed with buffer and incubated with the eluate from Dynabeads at 4°C 

for 2 h with rotation. The Ni-NTA was transferred onto a spin column (Thermo 

Scientific) and washed to remove non-specific binding. 

Phosphorylation and inter-molecular ligation: On the column, RNAs were 

phosphorylated using T4 polynucleotide kinase (T4 PNK) (NEB) at 20°C for 2 h 30 

min. The beads were washed several times with buffers as described in the original 

protocol. Subsequently, RNAs were ligated to one another using T4 RNA ligase 

(NEB) at 16°C, overnight. 

Dephosphorylation and 3’linker ligation: RNA was dephosphorylated with 

thermosensitive alkaline phosphatase (TSAP) (Promega) at 20°C for 45 min and 

ligated to the 3’linker (miRCat-33) with T4 RNA ligase 2, truncated (NEB) at 16°C 

for 10-24 h. 

Radioactive labelling and elution from Ni-NTA: RNA was radiolabeled with 32P-

γ-ATP using T4 PNK (NEB). The labeled RNA was eluted from Ni-NTA with buffer 

containing 200 mM imidazole in a total volume of 450 µl. 

Acetone precipitation: This step is a modified version of the original protocol. The 

protein-RNA complexes were precipitated using acetone instead of TCA. 450 µl of 

eluate was precipitated with 1,125 µl acetone and 1.5 µl glycoblue at -20°C, 

overnight. The sample was spun at full speed, 4°C for 20 min. The pellets were dried 

at room temperature and resuspended in 25 µl of water. 10 µl of 2xNuPAGE LDS 

sample buffer was added into samples. The samples were heated at 65°C for 10 min 

prior to loading onto a SDS-PAGE gel. 

SDS-PAGE gel and the transfer of protein-RNA complexes onto a membrane: 

Samples were resolved with a Bis-Tris 4–12% NuPAGE gel. The protein-RNA 

complexes were transferred to a nitrocellulose membrane and the membrane was 

wrapped with cling film and put in the cassette. An autoradiography film (Hybond-C 

Extra, GE healthcare) was placed on top of the membrane and developed using the 

X-ray developer (Konica Minolta). 
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Proteinase K digestion and RNA purification: The developed autoradiography 

film was precisely aligned on the nitrocellulose membrane. The bands with expected 

size around 110-130 kDa were carefully cut out and the protein-RNA complexes in 

the membrane eluted and treated with proteinase K mixture at 55°C for 2 h. The 

membrane was discarded and RNA was extracted from the solution using phenol-

chloroform-isoamyl (PCI). The RNA pellets were air-dried and can be kept at -80C 

before proceeding to the next step. 

Phosphorylation and 5’adapter ligation: The pellets were resuspended with 

phosphorylation mixture and incubated at 37°C for 30 min. The mixture of 5’ 

ligation was added and samples were incubated at 16°C, overnight. 

RNA purification: RNA from the previous reaction was extracted using PCI 

extraction. 

Reverse transcription (RT) and PCR amplification: RNAs were used as the 

templates to synthesise cDNAs. PCR amplification to generate the library was 

conducted using cDNAs as templates. 

Gel running and purification of the cDNA library: The PCR products from the 

previous step were loaded onto a 3% MetaPhor agarose gel (Lonza). The expected 

bands of DNA between 150-200 bp were excised and purified using MinElute Gel 

extraction kit (QAIGEN). 

Deep sequencing of the cDNA library: The purified PCR products with unique 

barcode within 5’ adapters (Table 2.10) were pooled and sequenced using Illumina 

HiSeq (GenePool, the University of Edinburgh) 

Analysis of deep sequencing data: The analysis was carried out by Kashyap 

Chhartbar. 
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Figure 2.4. Overview of CLASH protocol (adapted from (Helwak and Tollervey, 2014)) 
 

Table 2.10 Sequences of barcodes used in CLASH protocol 
Sample Barcode name Barcode sequence (5’ to 3’) 

Mock infection L5Ad CGCUUAGC  

Wild type MCMV L5Aa UAAGC 

MCMV Δm169	
   L5Ab	
   AUUAGC	
  

HEK293-PTH-hAGO2 L5Bd UCUCUAGC 
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Chapter 3: Identification of miR-27 targets 
associated with MCMV infection 
3.1 Introduction 
Mouse cytomegalovirus (MCMV) encodes a non-coding RNA inhibitor, m169, 

which inhibits cellular miR-27 via a binding site within the 3’UTR of the m169 

transcript. Figure 2.1 in materials and methods shows the location of m169 gene in 

the viral genome. Although it is still unknown why the virus mediates the 

degradation of host miR-27, it has been shown that the overexpression of miR-27 

suppresses the replication of MCMV in vitro (Buck et al., 2010). There are two miR-

27 family members, both of which are recognised by m169: miR-27a is encoded 

from an intergenic miR-23a~27a~24-2 cluster on chromosome 8 in mouse or 

chromosome 19 in human, whereas miR-27b is transcribed from intronic miR-

23b~27b~24-1 on chromosome 13 in mouse or chromosome 9 in human. The mature 

forms of miR-27a and miR-27b have identical seed sequences allowing them to 

potentially share the same target mRNAs (Zhou et al., 2011). In this thesis, miR-27a 

and miR-27b are collectively referred to as “miR-27”. It has previously been 

published that in vitro overexpression of miR-27 followed by MCMV infection at 

low MOI (MOI of 0.01) results in more than a log-fold decrease of viral titres, 

indicating strong anti-viral properties of this miRNA (Buck et al., 2010). In addition, 

Marcinowski et al. have shown that, in vivo, the degradation of miR-27 by m169 is 

important for the viral replication during the lytic stage of infection (Marcinowski et 

al., 2012). Mice were infected with wild type MCMV or m169 mutant in which the 

binding site of miR-27 was mutated to prevent the interaction with miR-27. Viral 

titres obtained from lungs, spleens and salivary glands of mice infected with m169 

mutant showed at least 10 fold attenuation compared to wild type infection 

(Marcinowski et al., 2012). The phenotype observed from the in vivo study 

underscores the biological significance of miR-27 inhibition by m169 and suggests a 

viral strategy to interfere with functions of miR-27.  

To date, little is known about m169. An analysis of MCMV transcriptomes using 

both classical cDNA cloning followed by sequencing of viral transcripts and next 
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generation sequencing of transcripts (RNA-Seq) revealed that m169 was the most 

abundant transcript and encoded for a novel protein (~17 kDa) with uncharacterised 

functions (Juranic Lisnic et al., 2013). It was proposed that m169 might employ a 

dual function as a non-coding RNA mediating miR-27 degradation and a protein-

coding gene (Juranic Lisnic et al., 2013). The mechanism by which miR-27 is 

degraded is still not known but is likely to occur in the cytoplasm based on the 

observed co-localisation of miR-27 and m169 (Libri et al., 2012). Marcinowski et al. 

showed that m169-mediated degradation of miR-27 involved the addition of 

nucleotides to the 3’end of miR-27 (tailing) followed by the trimming of the 

sequence from the 3’ end (trimming) (Marcinowski et al., 2012). Indeed, the 

degradation of miRNAs via a tailing and trimming process has been generally found 

for other cellular miRNAs in flies and mammals in which adenosine or uracil is 

added to the miRNA and 3’-to-5’ exonucleases then digest the 3’end of the miRNA 

(reviewed in (Ameres and Zamore, 2013)). 

The degradation of miR-27 by a viral non-coding RNA has also been observed in an 

oncogenic γ-herpesvirus, Herpesvirus saimiri (HVS). The virus encodes a viral U-

rich non-coding RNA 1 (HSUR1), which mediates the degradation of miR-27 by an 

unknown mechanism (Cazalla et al., 2010). Interestingly, functional studies of miR-

27 in human T cells revealed that miR-27 regulated the T cell receptor (TCR) 

signalling pathway via the adapter protein of TCR signalling, the growth factor 

receptor-bound protein 2 (GRB2) and two effectors of T cell activation: semaphorin 

7A (SEMA7A) and interferon-γ (IFN-γ) (Guo et al., 2014). It was therefore proposed 

that HVS induced the degradation of miR-27 to ensure the activation of T cells that 

could sustain the viral genome and enhance viral latency (Guo et al., 2014). 

This chapter focuses on an investigation of the targets of miR-27 in the context of 

MCMV infection in order to better understand why the virus targets this miRNA for 

degradation. In the final part of the chapter, the mechanism by which miR-27 

suppresses MCMV replication and implications of miR-27 degradation upon the 

infection are discussed. 
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3.2 Aims 
There are four aims of the present chapter: 

1. To globally identify genes regulated by miR-27 in uninfected and infected 

NIH 3T3 cells 

2. To identify and validate which of the genes regulated by miR-27 are required 

for MCMV infection 

3. To determine whether these miR-27-regulated genes are direct targets of the 

miRNA 

4. To understand the role of miR-27 target genes in the context of viral infection 

using wild type MCMV and m169 deletion strains (MCMV Δm169) 
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3.3 Results 
3.3.1 Identification of genes regulated by miR-27 using 

microarray analysis 
3.3.1.1 Overview and experimental design for microarray analysis 
Microarray analysis of mRNAs following overexpression or inhibition of miRNAs is 

a widely used method to examine changes in the abundance of mRNAs, which could 

be potentially regulated by miRNAs. It is known that miRNAs can destabilise the 

mRNAs to which they bind. This is thought to occur via miRNA-mediated 

deadenylation of target mRNAs promoting de-capping and subsequent RNA 

degradation (Wu et al., 2006). In addition, a study has shown that the effects of 

miRNAs have on their targets at the mRNA levels are closely related to the effect in 

the protein levels (Guo et al., 2010). The author employed ribosome profiling which 

is a method based on deep sequencing of ribosome-protected mRNA fragments 

(RPFs) to determine the effect of miRNAs on protein production (Guo et al., 2010). 

Based on the studies reporting that miRNAs can repress translation either through 

inhibition of translation initiation (Chendrimada et al., 2007; Humphreys et al., 2005; 

Pillai et al., 2005) or inducing dissociation of ribosomes from mRNAs during 

translation elongation (Petersen et al., 2006), this would result in fewer ribosomes on 

target mRNAs leading to fewer RPFs. Guo et al. simultaneously compared ribosome 

profiling to the effect of miRNAs at mRNA level and demonstrated that the decrease 

of mRNA levels accounted for ~84% of the protein reduction, indicating that the 

decrease of protein is predominantly derived from mRNA repression (Guo et al., 

2010). In the present chapter, microarray analysis was carried out to globally 

examine mRNA changes to identify genes that are regulated by miR-27 and 

functional screening was used to then examine those important for MCMV 

replication. 

The outline of the experiment including the experimental design, sample preparation, 

assessments of sample quality, microarray analysis and analyses of microarray data 

is summarised in Fig 3.1. The mouse fibroblast cell line NIH 3T3 was used in this 

experiment for many reasons. First, the cells are permissive for MCMV infection 

(Smee et al., 1989). Second, miR-27 degradation by the viral transcript m169 has 
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been reproducibly conducted in NIH 3T3 cells (Libri et al., 2012; Marcinowski et al., 

2012). Last, NIH 3T3 cells are available in the Buck lab and protocols related to the 

cell culture, transfection and infection for these cells are well optimised. To prepare 

samples for microarray analysis, six treatment groups were included as follows: 1) 

untreated cells, 2) RISC-free siRNA transfection, 3) miR-27a mimic transfection, 4) 

wild type MCMV infection, 5) m169 deletion MCMV (MCMV Δm169) infection 

and 6) miR-27a mimic transfection followed by wild type MCMV infection. Table 

3.1 shows anticipated levels of miR-27 and its potential targets in each treatment for 

each of the samples. For comparison across the groups, the miR-27 and target levels 

in untreated cells are set as the baseline. The RISC-free siRNA transfection serves as 

a control for general expression changes associated with transfection. RISC-free 

siRNAs are chemically modified on both strands so that they cannot be processed 

and taken up by RISC; it is expected that neither miR-27 or its targets will be altered 

in this condition. In the miR-27a mimic transfection, it is expected that miR-27 will 

be highly overexpressed, leading to a reduction in miR-27 target mRNAs. In the 

context of infection, other viral factors in addition to miR-27 are expected to 

contribute to changes in host gene expression, complicating the interpretation of data 

when comparing uninfected and infected cells. To try to address this, the comparison 

of gene expression changes induced by MCMV and MCMV Δm169 was included. 

The expectation is that this would permit the identification of miR-27 targets 

specifically upregulated by m169 during MCMV infection. Taken together, the 

analysis of gene expression from all six conditions should increase the possibility of 

identifying miR-27 targets that play a role in MCMV infection. 

To conduct the experiments, NIH 3T3 cells were seeded 24 h prior to infection with 

MCMV or MCMV Δm169 at MOI of 5 for 24 h. The time point of 24 hours post 

infection (hpi) was selected since previous studies have shown that MCMV (MOI of 

5) dramatically degraded miR-27 (~90% degradation) at this time point (Buck et al., 

2010; Libri et al., 2012). The combined miR-27a mimic transfection and MCMV 

infection was performed by transfection of the mimics for 24 h followed by infection 

with the virus at MOI of 5 for a further 24 h. As outlined in Fig 3.1, total RNA was 

extracted from samples and RNA integrity was determined by polyacrylamide gel 
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electophoresis (data not shown). The levels of miR-27 and m169 were quantified 

using qRT-PCR to evaluate the efficiency of transfection and infection. It was 

anticipated that miR-27 would be overexpressed in the transfected samples and 

downregulated in wild type virus-infected samples, due to the presence of m169, 

whereas infection with MCMV Δm169 should not alter miR-27 expression. After 

assessing the efficiency of transfections and infections, the corresponding cRNA 

samples were prepared and sent to the Wellcome Trust Clinical Research Facility 

(WTCRF, Western General Hospital, Edinburgh) for microarray analysis. The 

quality of amplified cRNAs was assessed using a Bioanalyzer before hybridisation to 

Illumina mouseref-6 array. Bioinformatic analysis of the data including quality 

control and analysis of differentially expressed genes was carried out by Alasdair 

Ivens (Centre for Infection Immunity and Evolution, Ashworth Laboratories, 

University of Edinburgh). 
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Figure 3.1 Overview of the workflow for microarray analysis 
Six treatment conditions of NIH 3T3 cells (n=3) were included in the microarray analysis as described 
in the text. Total RNA was extracted from cells and RNA integrity was determined using 
polyacrylamide gel electophoresis. Expression of miR-27 and m169 was determined using qRT-PCR. 
Samples for microarray analysis were prepared as cRNAs using Illumina TotalPrep RNA 
Amplification (Ambion). The cRNAs were quantified and qualified using Bioanalyzer prior to 
microarray analysis. Microarray data quality was checked and quality control-passed samples were 
further analysed. 

  

Total RNA extraction 

Experimental design  

(6 conditions of samples) 

Determination of RNA integrity using 

polyacrylamide gel electrophoresis  

Evaluation of miR-27 and m169 level 

using qRT-PCR 

Preparation of cRNAs for microarray analysis 

Assessment of cRNA quality 

using a Bioanalyzer 

RNA profiling by microarray analysis 

Data analysis 

Carried out by Pairoa 

Praihirunkit 

Carried out by the Wellcome 

Trust Clinical Research 

Facility (WTCRF, Western 

General Hospital, Edinburgh) 

Carried out by Alasdair Ivens 

(Centre for Infection 

Immunity and Evolution, 

University of Edinburgh) 
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Table 3.1 Schematic of the expected levels of miR-27 and its targets across the 
sample conditions 
 

Condition miR-27 Target mRNA 

1. Untreated cells Baseline expression Baseline expression 

2. RISC-free siRNA transfection Baseline expression in 

response to transfection 

Baseline expression in 

response to transfection 

3. miR-27a mimic transfection Overexpression Downregulation 

4. Infection of wild type MCMV* Downregulation due to 

the viral transcript m169 

Upregulation as a result 

of miR-27 degradation 

5. Infection of MCMV Δm169* Comparable to baseline 

expression observed in 

untreated cells due to the 

absence of m169 

Comparable to baseline 

expression observed in 

untreated cells due to 

unaltered miR-27 

6. miR-27a mimic transfection followed by 

wild type MCMV infection* 

Overexpression Downregulation 

*It is worth noting that altered expression of targets in infected cells (compared to uninfected cells) 
may also result from other effects of the virus that is difficult to predict. 
 
3.3.1.2 miR-27 and m169 expression levels in the samples prepared for 

microarray analysis 
Using qRT-PCR, the levels of miR-27 and m169 were assessed in cells transfected 

with miR-27 mimics, or infected with wild type MCMV or MCMV Δm169. As 

described in 3.3.1.1, eighteen samples were collected, corresponding to the six 

sample conditions with three technical replicates. As expected, miR-27 was 

upregulated ~50 fold in cells transfected with miR-27 mimics compared to RISC-free 

siRNAs (Fig 3.2A). Wild type MCMV significantly downregulated miR-27 (~10 

fold reduction) in comparison to untreated cells, whereas MCMV Δm169 did not 

alter miR-27 levels. The comparison of miR-27 levels upon MCMV and MCMV 

Δm169 infection revealed that miR-27 was significantly reduced only by wild type 

MCMV. Similar to miR-27 mimic transfection, the combined miR-27 mimic 

transfection and wild type MCMV infection showed a significant increase in miR-27 
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compared to infection alone. However, it is worth noting that the levels of miR-27 

were significanlty decreased in cells transfected with miR-27 mimics followed by 

MCMV infection compared to cells transfected with miR-27 mimics that were 

uninfected (perhaps due to MCMV-induced miR-27 degradation of the synthetic 

RNA). In virus-infected samples, m169 was observed only upon infection with 

MCMV and not in MCMV Δm169, as expected (Fig 3.2B). Collectively, these 

results confirmed that the transfections and infections of the cells were successful 

and levels of miR-27 and m169 were consistent with what was expected (Table 3.1). 

 

Figure 3.2 Levels of miR-27 and m169 in transfected and/or infected cells 
(A) miR-27 and (B) m169 levels based on qRT-PCR across six sample conditions. The X-axis notes 
the samples transfected with RISC-free siRNAs or miR-27a mimics (25 nM, 48 h transfection) and 
infection status (MOI=5, 24 hpi). (A) miR-27 was normalised to U6 and fold changes (±SD) were 
calculated as compared to untreated cells (three technical replicates). (B) m169 was normalised to 
Gapdh. Data are represented as relative expression. Significant noted is based on an unpaired t test 
(*p<0.05, **p<0.01 and ****p<0.0001). 
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3.3.1.3 Comparison of viral growth properties of wild type MCMV and 
MCMV Δm169 

In order to determine miR-27 targets in infected cells that are likely regulated under 

infection conditions, growth curve analysis of viruses was carried out in cells 

infected with MCMV or MCMV Δm169. Again, the difference between these two 

viruses is the lack of m169 gene, which encodes the miR-27 inhibitor and has 

recently also been shown to encode a small protein ~17 kDa (Juranic Lisnic et al., 

2013). Due to the fact that other viral factors in addition to m169-mediated 

degradation of miR-27 also have an effect on cellular gene expression, it is logical to 

compare gene expression between cells infected with wild type MCMV and MCMV 

Δm169 rather than to compare infected cells to uninfected cells. This was expected to 

identify potential targets of miR-27 in the context of MCMV infection.  

For this comparison to be valid, it is important that the viral infectivity of the two 

viruses is comparable. To address this, the viral growth of both wild type MCMV 

and MCMV Δm169 was assessed by standard plaque assays. NIH 3T3 cells were 

seeded in a 96-well plate for 24 h prior to infection with wild type MCMV or 

MCMV Δm169 at MOI of 0.01. As shown in Fig. 3.3, the growth curves of two 

viruses were almost identical throughout the time course of the infection and no 

significant differences in viral titres were observed. These data indicate that the 

deletion of m169 does not affect the viral infectivity. This implies that the 

subsequent comparison of differential host gene expression between these two 

viruses will not be complicated by differences in the amount of replicating virus. 
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Figure 3.3 Viral growth curve of wild type MCMV and MCMV Δm169 
NIH 3T3 cells were infected with wild type MCMV or MCMV Δm169 at MOI of 0.01. Supernatant 
was collected from day 0 to 5 days post infection (dpi) for standard plaque assays using MEFs P53-/- 
cells. Data are presented as means (±SD) of plaque forming units per ml of supernatant (PFU/ml) 
from three technical replicates. The result is a representative of two independent experiments. 
 

3.3.1.4 Analysis of microarray data  
3.3.1.4.1 Data processing and gene expression analysis 

The analysis of raw data obtained from the microarray analysis was performed by 

Alasdair Ivens (Centre for Infection Immunity and Evolution, Ashworth 

Laboratories, University of Edinburgh). In brief, the raw data from Illumina 

mouseref-6 array BeadChip were QC analysed using the arrayQualityMetrics 

package in Bioconductor (Kauffmann and Huber, 2010). All arrays were QC-passed 

(data not shown) and subsequently filtered to include features with p-values of less 

than 0.01. Of 45,281 probes, 17,876 (p<0.01) represent 10,652 out of a possible 

21,712 distinct transcripts. Next, normalisation of the 17,876 features across all 

arrays was performed using the robust spline normalisation (RSN) method. The 

differential expression was analysed using empirical Bayesian approaches in three 

comparisons: 1) miR-27a mimic versus RISC-free siRNA transfection, 2) miR-27a 

mimic transfection followed by MCMV infection versus MCMV infection and 3) 

MCMV Δm169 versus MCMV infection. The differential expression was presented 

as fold change (FC) with a positive FC indicating upregulation and a negative FC 

representing downregulation.  
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The differential gene expressions of the three comparisons are presented in volcano 

plots wherein differential expression was plotted in log2 FC against statistical 

significance (log10 of p value) (Fig 3.4). As mentioned earlier, the present chapter 

focuses on genes downregulated in these comparisons as potential targets of miR-27. 

The FC cut off of 1.20 and p value <0.05 was applied to filter genes for further 

analyses. The rationale for using this cut off was based on a previous study showing 

that miRNAs with 7 mer seed sequences typically resulted in subtle downregulation 

(1.18 fold) of target mRNAs (Nielsen et al., 2007). Thus, the cut off of 1.20 fold was 

thought to be a threshold to specifically identify potential targets of miR-27. 

Based on the cut off of 1.20 (p< 0.05), a total of 97 genes were downregulated in 

cells transfected with miR-27a mimics compared to RISC-free siRNAs (Fig 3.5A, 

Appendix 1). miR-27a mimic transfection followed by MCMV infection resulted in 

84 downregulated genes relative to MCMV infection alone (Fig 3.5B, Appendix 2). 

Infection with MCMV Δm169 compared to MCMV showed downregulation of 242 

genes (Fig 3.5C, Appendix 3). To determine whether the transfection alone alters 

gene expression, the differential gene expression was analysed in cells transfected 

with RISC-free siRNAs compared to untreated cells. Transfection of RISC-free 

siRNAs resulted in downregulation of 22 genes (FC of 1.20 to 1.3, p<0.05) 

(Appendix 4). Only 1 out of 22 genes was found to be common with any of the 

comparisons described above and this gene (Pja2) was not analysed further as its 

expression differences likely related to transfection rather than miR-27. As shown in 

Fig 3.5, one gene (Gaa) was in common among the three comparisons and 23 genes 

were significantly downregulated in two or three of the comparisons. 
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miR-27a mimic vs RISC-free siRNA 

miR-27a mimic+wild type MCMV vs wild type MCMV 

MCMV Δm169 vs wild type MCMV 
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Figure 3.4 Volcano plots of fold differences in gene expression obtained from microarray 
analysis 
Differential gene expression of (A) miR-27a mimic versus RISC-free siRNA transfection, (B) miR-
27a mimic transfection followed by wild type MCMV infection versus wild type MCMV infection 
and (C) MCMV Δm169 versus wild type MCMV infection. The plots represent statistical 
significance, p value (unadjusted p value) from a t test (log10) against fold change (log 2), from three 
technical replicates. The horizontal line indicates the p value cut off of 0.05 and verticle lines indicates 
1.2 fold change.  

 
 

 

Figure 3.5 Venn diagram depicting the overlap of downregulated genes among the three 
comparisons 
Downregulated genes (cut off ≥1.2, p <0.05) from the three datasets were overlapped. Numbers inside 
the circles represent numbers of genes.  

3.3.1.4.2 Pathway and biological function analysis 

The microarray analysis provides a large dataset of differential gene expression that 

requires the analysis approaches to extract the biological meaning hidden under the 

changes of gene expression. One of such approaches is pathway analysis, which 

reduces the complexity of data by grouping genes into small sets of related genes 

based on the cellular pathways or biological functions. In this chapter, Ingenuity 

Pathway Analysis (IPA) (http://www.ingenuity.com/), a web-based software 

application, was used to identify pathways and biological functions that might be 

regulated by miR-27 with or without MCMV infection.  

A) miR-27a mimic vs RISC-free siRNA 
N=97 

  

C) MCMV Δm169 vs MCMV 
N=242 

B) miR-27a mimic + MCMV vs MCMV 
N=84 
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Two sets of genes were submitted to IPA: 1) the 97 genes downregulated by miR-

27a mimics compared to RISC-free siRNA transfection and 2) the 242 genes 

downregulated by MCMV Δm169 compared to wild type MCMV infection. The first 

comparison is a more straightforward way to examine the effects of miR-27 in 

uninfected cells, but holds the caveat that transfection of mimics could induce off-

target effects (reviewed in (Thomson et al., 2011)). Table 3.2 shows the top 

canonical pathways enriched in genes regulated by miR-27 under these conditions. 

As shown in Table 3.3, the cell cycle was the most enriched biological function 

regulated by miR-27, suggesting a potential role of miR-27 related to the cell cycle. 

Based on these results, the functional role of miR-27 in the cell cycle was studied 

further in the next chapter. 

The analysis of MCMV Δm169 compared to wild type MCMV infection should 

identify pathways regulated by miR-27 but holds the caveat that viral factors in 

addition to miR-27 could directly or indirectly affect the levels of miR-27 targets. It 

is worth noting that the effects of miRNAs are often subtle, whereas the change in 

gene expression induced by infection is often quite large, such that any subtle 

differences between MCMV and MCMV Δm169 derived from miR-27 could be 

missed out. Pathway analysis revealed that the top ranked pathways de-regulated in 

MCMV Δm169 versus wild type MCMV infection appeared to be involved in 

cholesterol biosynthesis (Table 3.4). As mentioned above, the pathway analysis of 

cells transfected with miR-27a mimics versus RISC-free siRNAs was expected to 

identify pathways regulated by miR-27 in the absence of infection, whereas MCMV 

Δm169 versus wild type MCMV infection would reveal biological pathways 

regulated by miR-27 in the context of viral infection.  
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Table 3.2 Top canonical pathways enriched for genes downregulated in miR-
27a mimic versus RISC-free siRNA transfection. 
 
Canonical pathway p-value Ratio Gene 

eNOS signalling 7.19E-06 6/151  
(0.039) 

Aqp1, Calm1 (including 
others), Cav1, Hsp90aa1, 
Kng1, Vegfb 

Nitric oxide signalling in the 
cardiovascular system 

6.81E-05 5/99 
(0.051) 

Calm1 (including 
others), Cav1, Hsp90aa1, 
Kng1, Vegfb 

Hepatic fibrosis/hepatic stellate 
cell activation 

9.99E-04 5/146 
(0.034) 

Il1rl1, Vegfb, Acta2, 
Pdgfra, Ednra 

Aldosterone signalling in 
epithelial cells 

1.49E-03 4/168 
(0.023) 

Sgk1, Slc12a2, 
Hsp90aa1, Hspd1 

Glycogen degeneration III 1.58E-03 2/17 
(0.118) 

Gaa, Pgm2 

Pathway analysis was performed using Ingenuity Pathway Analysis (IPA). The p-value is calculated 
using the right-tailed Fisher Exact Test (p<0.05). The ratio represents the number of genes in the 
dataset divided by the total number of genes in a given pathway. Predicted targets of miR-27 obtained 
from TargetScan (www.targetscan.org) are underlined. 
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Table 3.3 Biological functions enriched for genes downregulated in miR-27a 
mimic versus RISC-free siRNA transfection 

Analysis of biological functions was performed using Ingenuity Pathway Analysis (IPA). The p-value 
is calculated using the right-tailed Fisher Exact Test (p<0.05). The ratio represents the number of 
genes in the dataset divided by the total number of genes in a given pathway. Predicted targets of 
miR-27 obtained from TargetScan database are underlined (www.targetscan.org). 
  

Function  p-value Number of 

genes 

Gene 

Cell cycle 

progression 

4.24E-04 23 Adora2b, Akr1b1, Btg1, Calm1 (includes 

others), Cav1, Ccng1, Cenpb, Bmi1, 

Dph1, Dynlt3, Gas7, Ifi204 (includes 

others), Kng1, Map2k4, Marcks, Pdgfra, 

Prkar1a, Rhou, Sgk1, Spp1, Tcp1, Xrcc6, 

Zwint 

Proliferation of 

fibroblasts 

1.18E-04 12  Aqp1, Cav1, Ccng1, Dph1, Ednra, Idh2, 

Kng1, Pdgfra, Phf14, Plau, Sfrp1, Top1mt 

Degeneration of cells 5.47E-05 11 Arnt, Cav1, Cd81, Celf1, Bmi1, Cp, Dtna, 

Plau, Sgcb, Spp1, Vegfb 

Homeostasis of 

blood 

6.34E-06 7 Acadm, C3, Cav1, Gnas, Gpd2, Top1mt, 

Vav3 

Permeability of 

blood vessel 

1.55E-06 7 Acta2, Aqp1, C3, Cav1, Dtna, Kng1, Plau 

Degeneration of 

muscle cells 

9.54E-09 7 Arnt, Cav1, Cd81, Celf1, Dtna, Plau, Sgcb 
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Table 3.4 Top canonical pathways enriched for genes downregulated in MCMV 
Δm169 versus wild type MCMV infection 
Canonical pathway p-value Ratio Gene 
Superpathway of 
cholesterol 
biosynthesis 

8.5E-08 7/87 
(0.08) 

Acat2/Acat3, Dhcr24, Fdps, Hsd17b17, 
Mvd, Nsdhl, Sqle 

Cholesterol 
Biosynthesis I 

1.75E-05 4/40 
(0.1) 

Dhcr24, Hsd17b17, Nsdhl, Sqle 

Cholesterol 
Biosynthesis II (via 
24,25-
dihydrolanosterol) 

1.75E-05 4/40 
(0.1) 

Dhcr24, Hsd17b17, Nsdhl, Sqle 

Cholesterol 
Biosynthesis III (via 
Desmosterol) 

1.75E-05 4/40 
(0.1) 

Dhcr24, Hsd17b17, Nsdhl, Sqle 

Epithelial Adherens 
Junction signalling 

1.98E-05 9/132 
(0.068) 

Actn1, Acvr2b, Ctnnb1, Mras, Tcf7l1, 
Tgfbr1, Tgfbr2, Tuba1a, Tubb2b 

Telomerase Signalling 4.4E-05 8/105 

(0.0755) 

Pik3r3, Ppp2r1a, Hsp90ab1, Pik3r1, Hdac7, 
Mras, Terf1, Hdac5 

Human Embryonic 

Stem Cell Pluripotency 

5.49E-05 9/161 

(0.0559) 

Pik3r3, Tgfbr2, Tgfbr1, Pik3r1, Mras, 
Pdgfra, Fgfr2, Tcf7l1, Ctnnb1 

Regulation of the 

Epithelial-

Mesenchymal 

Transition Pathway 

1.09E-04 10/196 

(0.051) 

Pik3r3, Tgfbr2, Lox, Tgfbr1, Gab1, Pik3r1, 
Mras, Fgfr2, Mmp2, Tcf7l1 

PTEN Signalling 1.25E-04 8/137 

(0.058) 

Pik3r3, Tgfbr2, Tgfbr1, Pik3r1, Mras, 
Pdgfra, Itga5, Fgfr2 

PI3K/AKT Signalling 1.77E04 8/152 

(0.0526) 

Pik3r3, Ppp2r1a, Gab1, Hsp90ab1, Pik3r1, 
Mras, Itga5, Ctnnb1 

NF-κB Signalling 2.81E-04 9/174 

(0.0517) 

Pik3r3, Tgfbr2, Tgfbr1, Pik3r1, Ube2v1, 
Mras, Pdgfra, Fgfr2, Tbk1 

Pathway analysis was performed using Ingenuity Pathway Analysis (IPA). The p-value is calculated 
using the right-tailed Fisher Exact Test (p<0.05). The ratio represents the number of genes in the 
dataset divided by the total number of genes in a given pathway. Predicted targets of miR-27 obtained 
from TargetScan (www.targetscan.org) are underlined. 
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3.3.1.5 Selected genes from microarray analysis for the functional 
screening of genes involved in MCMV replication 

The microarray data were analysed using various approaches including gene 

overlapping (Fig 3.5), pathway analysis (Table 3.2 and 3.4) and biological function 

(Table 3.3). The aim of using several methods of analyses was, ideally, to identify 

overlap in order to select the most promising targets of miR-27 for further functional 

screening. In addition to microarray analysis performed in the present study, the 

Buck lab previously carried out microarray analysis in cells transfected with RISC-

free siRNAs, miR-27a mimics or miR-27a inhibitors (unpublished data). These data 

were previously analysed and Table 3.5 shows 14 genes with the largest 

downregulation in cells transfected with miR-27a mimics relative to miR-27a 

inhibitors that could be potential targets of miR-27. All of these 14 genes were 

included in the functional screening and a total of 3 out of the 14 (Serpina3n, Mmd 

and Ccng1) overlaps with genes identified in the present microarray analysis. 

In summary, from the microarray data a total of 53 genes were selected for the 

functional screening (Table 3.6): 23 genes overlapping between comparisons of 

microarray data, 19 genes from pathway analysis and biological function that are 

computationally predicted targets based on TargetScan (www.targetscan.org) and 14 

genes from the previous microarray analysis (3 out of the 14 overlap with genes 

obtained from the microarray analysis in the present study). 
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Table 3.5 Data from a previous microarray analysis showing most 
downregulated genes in cells transfected with miR-27a mimics versus miR-27a 
inhibitors 
 

Gene 

FC 

(miR-27a 
mimic vs 
miR-27a 
inhibitor) 

FC 

(miR-27a 
mimic vs 
RISC-free 
siRNA) 

FC  

(miR-27 
inhibitor vs 
RISC-free 
siRNA) 

No. of 
conserved 
binding 
site 

No. of 
poorly 
conserved 
binding 
site 

1. Il1rl1 -4.0622 -1.8686 2.1739 0 0 

2. Serpina3n -3.7837 -2.1515 1.7586 0 0 

3. Serpine1  -3.2466 -1.2394 2.6194 0 0 

4. Mmd -2.5660 -1.7323 1.4812 1 0 

5.Ccl2  -2.3675 -1.3911 1.7018 0 2 

6. Ccng1  -2.2226 -1.3521 1.6437 1 0 

7. Mapkapk3  -2.1494 -1.4635 1.4686 1  0 

8. Gpr176 -2.0051 -1.3887 1.4438 0 1 

9. Hmga1  -1.8497 -1.3998 1.3213 0 0 

10. Plekhj1 -1.7713 -1.3838 1.2799 0 1 

11. Csf1 -1.7630 -1.2623 1.3966 2 0 

12. Nsg1 -1.7335 -1.3183 1.3149 0 2 

13. Dusp5 -1.6304 -1.2509 1.3034 0 0 

14. Lyar -1.6153 -1.2239 1.3198 0 0 

FC: fold change 
Predicted binding sites were obtained from TargetScan database (www.targetscan.org). 
Serpina3n, Mmd and Ccng1 overlap with genes obtained from the microarray analysis presented in 
Table 3.6. 
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Table 3.6 The 53 genes selected for the functional screening 
Analysis of microarray data Numbers of 

genes 
Gene 

1. Overlap of miR-27a mimic vs 
RISC-free siRNA, miR-27a 
mimic&WT vs WT and MT vs WT 

1 Gaa 

 

2. Overlap of miR-27a mimic vs 
RISC-free siRNA and miR-27a 
mimic&WT vs WT 

5 C3, Kng1, Spp1, Ugt1a10, Serpina3n 

3. Overlap of miR-27a mimic vs 
RISC-free siRNA and MT vs WT 

12 0610007P14Rik, B4galt3, Calm3, Cd99l2, 
Celf1, Mmd, Pdgfra, Pdia5, Pgm2, Sfrp1, 
Tmsb10, Ubtd2 

4. Overlap of miR-27a mimic 
&WT vs WT and MT vs WT 

5 Papola, Setd5, Usp1, Nudt18, Rpl18a 

5. Pathway analysis and biological 
functions of miR-27a mimic vs 
RISC-free siRNA* 

11 Hsp90AA1, Vegfb, Phf14, Plau, Top1mt, 
Ednra, Gas7, Ccng1, Map2k4, Marcks, 
Zwint 

6. Pathway analysis of MT vs WT* 8 Dhcr24, Gab1, Itga5, Lox, Pik3r1, Pik3r3, 
Tgfbr1, Ube2v1 

7. Genes with the largest 
downregulation in miR-27a mimic 
vs miR-27a inhibitor 

(Data from the previous 
microarray analysis carried out in 
the Buck lab) 

11 Il1rl1, Serpine1, Ccl2, Mapkapk3, Gpr176, 
Hmga1, Plekhj1, Csf1, Nsg1, Dusp5, Lyar 

 

 

miR-27a mimic&WT: Cells transfected with miR-27a mimics followed by infection with wild type 
MCMV 
WT: Wild type MCMV infection 
MT: MCMV Δm169 infection 
*Genes from pathway analysis and biological function that are predicted as targets of miR-27 based 
on TargetScan (www.targetscan.org) 
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3.3.2 Functional screening of genes required for MCMV 
infection 

The primary aim of this chapter is to identify cellular targets of miR-27 that might 

play a role in MCMV infection. In the previous section, 53 genes were chosen from 

the analysis of microarray data based on their differential expression in at least one 

of the datasets, as described above. Functional screening was then carried out to 

determine whether any of the 53 genes impacts MCMV replication in vitro. The 

replication of MCMV was assessed using a virus that contains a green fluorescent 

protein (GFP-MCMV) upstream of the immediate early gene 2 (ie2), where the 

insertion does not alter the viral growth (Manning and Mocarski, 1988). Genes 

required for MCMV growth in vitro are expected to cause a reduction in the GFP 

signal following siRNA knockdown. Hence, this approach should identify genes that 

play an important role in supporting MCMV replication, which are also potentially 

regulated by miR-27. 

To perform the screen, NIH 3T3 cells were untreated or transfected in a 96-well plate 

with controls or siRNA pools targeting each of the 53 genes. The negative controls 

include RISC-free siRNAs and negative pools: pool 2 and pool 3 containing four 

siRNAs with a minimum of 4 mismatches to all human, mouse and rat genes and are 

confirmed to have minimal gene targeting examined by microarray analysis. The 

positive control is eGFP siRNAs targeting the expressed GFP. Each siRNA pool 

consists of a mixture of four siRNAs targeting one gene at multiple locations. There 

are a few advantages of using pooled siRNAs compared to individual siRNAs. First, 

the use of pooled siRNAs is expected to reduce off-target effects due to lower 

concentrations of each siRNAs diluting their off-target effects (Hannus et al., 2014).  

Second, pooled siRNAs targeting multiple locations of the same gene reduce false 

negatives caused by mutations and splice variants (claimed by Dharmacon (Smith, 

2006)). Last, for an initial large-scale screen, the approach using pooled siRNAs 

saves reagents and time compared to that using multiple individual siRNAs. 

At 48 h post transfection, cells were infected with GFP-MCMV at MOI of 0.2. To 

quantify viral growth (and by inference, replication capacity), GFP expression was 

measured at approximately 70 hpi, after multiple rounds of replication have occurred 
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(Santhakumar et al., 2010). As shown in Fig 3.6A, GFP signals are reported in fold 

change relative to the RISC-free siRNA transfection samples. Cells transfected with 

eGFP siRNAs showed a significant reduction (~50%) of GFP expression, whereas 

negative pool2 and 3 did not affect GFP signals. Knockdown of five genes (Rpl18a, 

Lyar, Itga5, Mapkapk3 and Pik3r1) led to a significant reduction in GFP expression, 

whereas knockdown of each of 10 other genes (Gaa, Nsg1, B4galt3, Gab1, Nudt18, 

Ugt1a10, Tgfbr1, Serpine1, Phf14 and Plau) significantly induced GFP expression. 

Cell viability assays were performed in parallel at 48 h post-transfection to determine 

toxicity of the transfection. The cell viability was evaluated through the measurement 

of a fluorescent product converted from a redox dye in living cells. As shown in Fig. 

3.6B, transfection of Hsp90aa1 siRNAs caused toxicity (~60% cell viability 

compared to untreated cells). Based on the high level of toxicity of Hsp90aa1 

siRNAs, it was not included in further studies. Knockdown of the five genes that 

showed anti-viral activity (Rpl18a, Lyar, Itga5, Mapkapk3 and Pik3r1) did not 

appear to substantially induce cell toxicity as cell viability was in a range of 80-

100%. 

As mentioned above, knockdown of each of the 10 genes (Gaa, Nsg1, B4galt3, 

Gab1, Nudt18, Ugt1a10, Tgfbr1, Serpine1, Phf14 and Plau) led to a significant 

increase of GFP expression. This could be due to a pro-viral effect of the knockdown 

or off-target effects of siRNAs causing unreliable results. Here, the focus is the 

effects of genes that caused GFP repression to infer whether they could be directly 

regulated by miR-27. 

Although pool siRNAs have been thought to reduce off-target effects compared to 

individual siRNAs (as described above), there is still a risk that some of individual 

siRNAs could still cause off-target effect and could lead to false positive “hits” for 

the pool. To confirm the positive results obtained from pooled siRNAs, the 

functional screening was repeated using individual siRNAs that make up the pool. 

NIH 3T3 cells were untreated or transfected in a 96-well plate with RISC-free 

siRNAs, eGFP siRNAs, pooled siRNAs or individual siRNAs of the five genes 

(Rpl18a, Lyar, Itga5, Mapkapk3 and Pik3r1) for 48 h. The cells were infected with 

GFP-MCMV at MOI of 0.2 and GFP expression was measured at approximately 70 
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hpi. In agreement with the results observed in cells transfected with pooled siRNAs, 

knockdown of the five genes using individual siRNAs significantly reduced GFP 

expression (Fig 3.7A). Knockdown of Rpl18a and Mapkapk3 using three individual 

siRNAs significantly decreased GFP signals, whereas knockdown of Lyar, Itga5 and 

Pik3r1 by two individual siRNAs led to a significant repression of GFP. It is 

important to note, however, that due to limited amount of purchased siRNAs, the 

experiment to quantify the mRNA levels following the knockdown was not carried 

out.  

In parallel, the cell viability assay was conducted to examine the toxicity of the 

transfection and results showed that viability of transfected samples was 

approximately 80-100% (Fig 3.7B). In conclusion, the significant decrease of GFP 

expression in knockdown of the five genes (Rpl18a, Lyar, Itga5, Mapkapk3 and 

Pik3r1) using pooled or individual siRNAs suggests that these genes play a role in 

MCMV infection. 
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Figure 3.6 Functional screening to identify genes involved in MCMV infection  
(A) GFP expression from knockdown cells using pooled siRNAs followed by infection of GFP-
MCMV. The GFP signal is presented as means of fold change (±SD) from five technical replicates 
compared to cells treated with RISC-free siRNAs. Data presented here are representative of 
independent experiments. The statistics are based on one-way ANOVA, Kruskal-Wallis test (*p<0.05, 
**p<0.01, ***p<0.001 and ****p<0.0001). (B) Cell viability assays. Cells as described above were 
incubated with cell titer blue at 37°C for 2h. Results are shown as means of fold change (± SD) from 
three technical replicates compared to untreated cells. 
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Figure 3.7 Comparison of pooled versus individual siRNAs for the effect of knockdown of 
Rpl18a, Lyar, Itga5, Mapkapk3 and Pik3r1 on MCMV infection 
(A) GFP expression from knockdown cells using individual or pooled siRNAs followed by infection 
of GFP-MCMV. The GFP signal is presented as means of fold change (±SD) from five technical 
replicates compared to cells treated with RISC-free siRNAs. Data presented here are representative of 
independent experiments. The statistics are based on one-way ANOVA, Kruskal-Wallis test (*p<0.05, 
**p<0.01, ***p<0.001 and ****p<0.0001). (B) Cell viability assays. Cells as described above were 
incubated with cell titer blue at 37°C for 2h. Results are shown as means of fold change (± SD) from 
three technical replicates compared to untreated cells. 
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3.3.3 miR-27 target validation of Rpl18a, Lyar, Itga5, 
Mapkapk3 and Pik3r1 

According to the functional screening, knockdown of 5 (Rpl18a, Lyar, Itga5, 

Mapkapk3 and Pik3r1) out of 53 genes showed a significant reduction in MCMV 

growth based on the reporter assay. This observation suggests a supportive role of 

these genes upon MCMV infection. One hypothesis is therefore that miR-27 

normally would suppress MCMV through one of these genes. To examine whether 

these genes are directly regulated by miR-27, their mRNA and protein levels were 

examined in cells in which miR-27 was overexpressed or inhibited. Subsequently, 

luciferase reporter assays were performed to confirm whether effects were based on 

direct target interactions. 

3.3.3.1 Examination of Rpl18a, Lyar, Itga5, Mapkapk3 and Pik3r1 at 
mRNA and protein levels in response to miR-27 

miRNAs regulate gene expression via mRNA destabilization/degradation or 

translation repression (Huntzinger and Izaurralde, 2011b). This allows the evaluation 

of miRNA targets to be conducted through determination of mRNA and protein 

levels upon miRNA overexpression or inhibition. NIH 3T3 cells were untreated or 

transfected with RISC-free siRNAs, miR-27a mimics or miR-27a inhibitors for 48 h. 

Total RNA and protein were collected to measure gene expression by qRT-PCR and 

Western blot analysis, respectively. At the mRNA levels, only Mapkapk3 was 

significantly downregulated in cells transfected with miR-27a mimics, and the 

inhibition of endogenous miR-27 using miR-27a inhibitors caused a significant 

increase of Mapkapk3 mRNAs (Fig 3.8A). The inhibition of miR-27 using the 

inhibitors also caused a significant increase of Lyar; however, miR-27 

overexpression did not alter the levels of Lyar.  

Further, Western blot analysis was carried out to determine the effect of miR-27 on 

the protein expression since miRNAs can repress protein translation without causing 

changes at mRNA levels (reviewed in (Wilczynska and Bushell, 2015)). To prioritise 

genes for Western blot analysis, data obtained from computational target prediction 

(TargetScan, www.targetscan.org) providing binding sites of miR-27 within the 

3’UTR were taken into consideration. Three (Itga5, Mapkapk3 and Pik3r1) out of the 
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five genes are predicted to have the target sites conserved in human and mouse, thus 

these genes were selected for Western blot analysis (Fig 3.8B). To examine the 

effects of miR-27 on protein expression of ITGA5, MAPKAPK3 and PIK3R1, NIH 

3T3 cells were untreated or transfected with RISC-free siRNAs, negative inhibitors 

(C. elegans inhibitors), negative mimics (C. elegans mimics), miR-27a mimics or 

miR-27a inhibitors for 48 h. The negative inhibitors and negative mimics designed 

from sequences of C.elegans miR-67 with minimal sequence identity with miRNAs 

in human, mouse and rat were used as the control to distinguish the background 

effects. As shown in Fig 3.8B, no significant alteration of ITGA5 was observed in all 

transfected conditions compared to RISC-free siRNAs. Consistent with qRT-PCR 

results, MAPKAPK3 was decreased (~3 fold) upon miR-27 overexpression as 

compared to RISC-free siRNAs, whereas miR-27a inhibitors caused an increase in 

the protein expression (approximately 1.9 fold). Unexpectedly, the inhibition of miR-

27 led to downregulation of PIK3R1, 0.39 fold compared to cells transfected with 

RISC-free siRNAs. This is likely to be due to non-specific effect as the negative 

mimics also decreased PIK3R1 levels, 0.6 fold compared to RISC-free siRNAs. This 

indicates a broad non-specific effect of transfection on PIK3R1 protein. Collectively, 

the determination of gene expression at mRNA and protein levels upon miR-27 

overexpression and inhibition suggested that Mapkapk3 is likely to be a direct target 

of miR-27. 
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Figure 3.8 Expression of genes at mRNA and protein levels in response to miR-27 
NIH 3T3 cells were untreated or transfected with synthetic miRNAs (25 nM) for 48 h. (A) Total RNA 
was extracted from the cells. qRT-PCR was performed to quantify the expression of Rpl18a, Lyar, 
Itga5, Mapkapk3 and Pik3r1. The expression of each gene was normalised to Gapdh. Data are 
presented as means of fold-change (±SD) of three technical replicates compared to cells transfected 
with RISC-free siRNAs. One-way ANOVA was used to assess significance (*p<0.05, **p<0.01 and 
****p<0.0001). (B) Western blot analysis (ECL-based detection) of ITGA5, MAPKAPK3 and 
PIK3R1 in untreated cells, and cells transfected with RISC-free siRNAs, negative inhibitors (C. 
elegans inhibitors), negative mimics (C. elegans mimics), miR-27a mimics or miR-27a inhibitors. The 
protein levels were quantified using ImageStudioLite software and normalised to GAPDH. Results are 
shown as fold changes relative to cells transfected with RISC-free siRNAs.  
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3.3.3.2 Validation of Mapkapk3 as a direct target of miR-27 using a 
luciferase reporter assay 

The expression analysis studies showed that Mapkapk3 is downregulated at both 

mRNA and protein level by miR-27 mimics, whereas the opposite occurs with miR-

27 inhibitors. The alteration of Mapkapk3 expression could result from a direct 

interaction between miR-27 and Mapkapk3 or could be an indirect effect of miR-27 

targeting upstream regulators of Mapkapk3. To specifically test whether Mapkapk3 is 

directly targeted by miR-27, a luciferase reporter assay was carried out. This assay 

evaluates the interaction between the miRNA and its binding sites using a luciferase 

reporter vector. The predicted miRNA target sequences are cloned downstream of 

the luciferase gene in the vector. When the vector is co-transfected with miRNA 

mimics, the miRNAs directly interact with the target sequences, leading to a 

reduction in luciferase expression. Inhibition of miRNAs using miRNA inhibitors 

should result in an increase of luciferase levels (Jin et al., 2013).  

The present study used the dual-luciferase reporter psi-CHECK2 (Promega) 

containing two different reporter luciferase genes: Renilla and firefly simultaneously 

expressed under individual promoters. The gene encoding Renilla luciferase is fused 

to target sites of miR-27 and firefly luciferase gene is an internal control to normalise 

the activity of Renilla in order to minimise the experimental variability such as 

differences in cell viability or transfection efficiency. The activity of the two 

luciferase enzymes are sequentially measured in the same sample, with the results as 

the ratio of Renilla to firefly luciferase activity. The reporter vector (psi-CHECK2-

Mapkapk3 3’UTR) was constructed by cloning the entire 3’UTR of Mapkapk3 (~1.2 

kb) downstream of the Renilla luciferase gene. For comparison, a mutant version was 

constructed (psi-CHECK2-mut-Mapkapk3 3’UTR) that contained 3 nucleotide 

mutations in the miR-27 binding site within Mapkapk3 3’UTR (Fig 3.9A). NIH 3T3 

cells were transfected with either psi-CHECK2-Mapkapk3 3’UTR or psi-CHECK2-

mut-Mapkapk3 3’UTR in the absence or presence of miR-27 mimics or inhibitors. 

Both miR-27a and miR-27b mimics were tested which are expected to have the same 

effects due to their identical seed sites. At 48 h post transfection, luciferase activities 

were measured.  
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As controls, NIH 3T3 cells were transfected with empty psi-CHECK2 or a miR-27 

sensor generated by Libri et al. (Libri et al., 2012), which contains three binding sites 

of miR-27 behind 3’UTR of Renilla luciferase. The three binding sites within the 

sensor are complementary to miR-27 with an internal loop at nucleotide 9-12 to 

prevent endonucleolytic cleavage. NIH 3T3 cells were co-transfected with empty psi-

CHECK2 or a miR-27 sensor along with RISC-free siRNAs, miR-27a mimics or 

miR-27a inhibitors for 48 h. As expected, miR-27a mimics significantly 

downregulated Renilla luciferase greater than two fold compared to RISC-free 

siRNAs, whereas miR-27a inhibitors caused ~1.5 fold increase of Renilla luciferase 

compared to RISC-free siRNAs (Fig 3.9B).  

As shown in Fig. 3.9C, co-transfection of miR-27a or miR-27b mimics significantly 

reduced Renilla luciferase of psi-CHECK2-Mapkapk3 3’UTR by ~2 fold as 

compared to co-transfection with RISC-free siRNAs. The inhibition of miR-27 using 

the specific inhibitors was expected to upregulate Renilla luciferase; however, miR-

27a inhibitors did not seem to affect the luciferase expression. This observation is 

consistent with the study demonstrated that many miRNA inhibitors showed more 

subtle effects than miRNA mimics (Santhakumar et al., 2010). Several factors could 

contribute to this observation such as the efficiency of inhibitors and endogenous 

levels of target miRNAs. The mutant vector containing the mutated nucleotides at 

positions 2-4 in the seed site showed no alteration of Renilla luciferase in all 

transfection conditions including miR-27a mimics, miR-27b mimics and miR-27a 

inhibitors. Altogether, the results indicate that Mapkapk3 is directly regulated by 

miR-27a and miR-27b.  

In parallel, cell viability assays were conducted to ensure that the transfection was 

not toxic to the cells and the results obtained from luciferase assays were specifically 

derived from effects of miRNAs. As shown in Fig 3.9D, none of the transfection 

conditions reduces cell viability compared to untreated cells. 
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Figure 3.9 Mapkapk3 is a direct target of miR-27a and miR-27b.  
(A) Schematic representation of the miR-27 binding site within Mapkapk3 3’UTR. Asterisks indicate 
mutated nucleotides. (B) Luciferase assays with the positive control miR-27 sensors containing three 
binding sites for miR-27. NIH 3T3 cells were transfected with psi-CHECK2 or miR-27 sensors, or co-
transfected with RISC-free siRNAs, miR-27a mimics or miR-27a inhibitors (25 nM) for 48 h. Renilla 
luciferase was normalised to firefly luciferase expression. Data are presented as fold changes (±SD) of 
five technical replicates compared to RISC-free siRNAs. Significance was assessed by two-way 
ANOVA, dunnett’s multiple comparisons test (****p<0.0001). (C) Luciferase assays to determine the 
regulation of Mapkapk3 by miR-27. NIH 3T3 cells were transfected with psi-CHECK2 containing 
wild type Mapkapk3 3’UTR (psi-CHECK2 Mapkapk3 3’UTR) or mutant Mapkapk3 3’UTR (psi-
CHECK2 mut-Mapkapk3 3’UTR), or co-transfected with RISC free siRNAs, miR-27a mimics, miR-
27b mimics or miR-27a inhibitors (25 nM, 48 h). Data are presented as fold changes (±SD) of five 
technical replicates compared to RISC-free siRNAs. Significance was assessed by two-way ANOVA, 
dunnett’s multiple comparisons test (***p<0.001 and ****p<0.0001). (D) Cell viability assay 
performed in the transfected cells. At 48 h post transfection, cells were incubated with cell titer blue at 
37°C for 2 h. Fluorescent signals were measured and calculated in fold changes (±SD) compared to 
untreated cells (three technical replicates). 
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3.3.4 Analysis of the effect of Mapkapk3 knockdown on viral 
growth by plaque assays 

In the previous sections, the functional screening showed that knockdown of 

Mapkapk3 significantly reduced MCMV growth/replication based on the GFP assay. 

Although viral replication can be assessed through the determination of GFP levels 

expressed from GFP reporter virus, plaque assays remain the gold standard for 

quantifying infectious viral particles that retain the ability to infect and replicate in 

cells (Cooper, 1961). To examine the effect of Mapkapk3 on infectious virus, NIH 

3T3 cells were untreated or transfected with RISC-free siRNAs, Mapkapk3 siRNAs 

or miR-542 mimics for 48 h. As a positive control, the miR-542 mimic was included 

based on work by others in the lab showing that this is anti-viral against MCMV 

(Buck lab, unpublished data). Two independent experiments were conducted by 

infecting cells with GFP-MCMV or wild type MCMV at MOI of 0.01. The reason of 

including wild type MCMV is to confirm the results obtained from GFP-MCMV. At 

3 days post infection (~72 hpi), which is close to the time point post infection used in 

the functional screening (70 hpi), supernatant was collected to measure infectious 

virus. As expected, cells transfected with miR-542 mimics dramatically reduced 

titres of GFP-MCMV (~103 fold) compared to RISC-free siRNAs (Fig 3.10A). 

Consistent with the functional screening, knockdown of Mapkapk3 significantly 

attenuated the GFP-MCMV (~10 fold) compared to cells transfected with RISC-free 

siRNAs. In line with this, cells transfected with miR-542 mimics or Mapkapk3 

siRNAs showed a significant decrease of wild type MCMV titres (~104 fold) 

compared to RISC-free siRNAs (Fig 3.10B). The difference in fold reduction of viral 

titres between GFP-MCMV and wild type MCMV could be due to variables of viral 

stocks or other factors happening when experiments are independently conducted 

such as cell viability, knockdown efficiency and technical variability of pipetting 

volumes. However, the data obtained from the two experiments were consistent and 

demonstrated that knockdown of Mapkapk3 resulted in a significant suppression of 

MCMV replication, indicating that Mapkapk3 is important for the viral growth.  
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Figure 3.10 Knockdown of Mapkapk3 reduces viral titres determined by plaque assays 
NIH 3T3 cells were untreated or transfected with 25 nM of RISC-free siRNAs, Mapkapk3 pooled 
siRNAs or miR-542 mimics for 48 h. (A) Cells were infected with a GFP reporter virus (GFP-
MCMV) or (B) wild type MCMV at MOI of 0.01 for 3 days. Viral titres were determined by standard 
plaque assays. Data are presented as plaque forming units per ml of supernatant (PFU/ml), showing 
data for each replicate. Significance was assessed by one-way ANOVA (*p<0.05 and **p<0.01). 
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3.3.5 Phosphorylation of HSP27 and ATF1 by MAPKAPK3 
The above data suggest that miR-27 directly regulates Mapkapk3, which is a 

downstream kinase of the p38 in the p38 mitogen-activated protein (MAP) kinase 

pathway. MAPKAPK3 is directly activated by p38 (Ronkina et al., 2008) and it has 

been found to phosphorylate a number of proteins necessary for diverse cellular 

processes such as cytokine production, cell migration, actin remodelling, cell cycle 

and gene expression (reviewed in (Cargnello and Roux, 2011)). In particular, 

MAPKAPK3 has been shown to activate many substrates including small heat shock 

protein 27 (HSP27), cAMP response element-binding protein (CREB), transcription 

factor ATF and lymphocyte-specific protein 1 (LSP1) (reviewed in (Zarubin and 

Han, 2005)). HSP27 is a multifunctional protein involved in numerous cellular 

responses including protein folding, inhibition of apoptosis and actin remodelling 

(reviewed in (Vidyasagar et al., 2012)). In the context of CMV infection, HSP27 and 

CREB/ATF have been reported to be involved in HCMV infection. HCMV induces 

phosphorylation of HSP27 (Johnson et al., 2000), whereas CREB activates viral gene 

expression responsible for reactivation from latency in HCMV (Kew et al., 2014). It 

was therefore examined here whether the effect of Mapkapk3 on MCMV infection 

might occur through these two substrates: HSP27 and CREB/ATF.  

Initially, an experiment was conducted to determine whether MAPKAPK3 

phosphorylates HSP27 and CREB/ATF in this cell type (NIH 3T3 cell line) before 

further investigations in the context of MCMV infection in which functions of 

MAPKAPK3 might be complicated by viral factors. A time course of p38 activation 

and phosphorylation of HSP27 (pHSP27) and CREB/ATF1 (pCREB/pATF1) was set 

up using anisomycin, a specific activator of p38. NIH 3T3 cells were untreated or 

treated with 10 µg/ml of anisomycin at four time points: 30 min, 2 h, 4 h and 24 h 

(Fig 3.11A). Protein samples were collected at the indicated time points and 

phosphorylated proteins were analysed by Western blot analysis. As shown in Fig 

3.11B, anisomycin induced phosphorylation of all proteins of interest: p38, HSP27 

and CREB/ATF1 compared to untreated cells. The phosphorylation of p38 and 

CREB/ATF1 peaked at 30 min and gradually decreased to the basal level by 24 h. 

pHSP27 peaked at 30 min to 2 h and it started to decrease at 4 h, returning to the 
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unstimulated level at 24 h. These data suggest 30 min of anisomycin treatment as the 

optimal time point to observe the activation of p38 MAP kinase pathway. 

To confirm that HSP27, CREB and ATF1 are substrates of MAPKAPK3 in NIH 3T3 

cells, the major cell line used in this thesis, a knockdown experiment was performed. 

NIH 3T3 cells were untreated or transfected with RISC-free siRNAs or Mapkapk3 

siRNAs for 48 h followed by anisomycin treatment for 30 min (Fig 3.12A). Protein 

samples were collected to determine the expression of MAPKAPK3, p-p38, p-

HSP27 and p-CREB/pATF1 using Western blot analysis. As shown in Fig 3.12B, 

under anisomycin treatment, MAPKAPK3 protein was barely detected in cells 

transfected with Mapkapk3 siRNAs as compared to RISC-free siRNAs. Consistent 

with the previous experiment, the strong expression of p-p38 post anisomycin 

activation was observed in cells with and without RISC-free siRNAs. As expected, 

knockdown of Mapkapk3 resulted in a reduction (~50%) of p-HSP27 and p-ATF1 

indicating that the two proteins are substrates of MAPKAPK3. However, in NIH 3T3 

cells, MAPKAPK3 did not appear to be required for phosphorylation of CREB, 

although this has been reported in SK-N-MC neuroblastoma cells (Tan et al., 1996). 

It is possible that phosphorylation of CREB is a cell-type dependent function of 

MAPKAPK3. Altogether, the data presented here demonstrate that MAPKAPK3 

phosphorylates HSP27 and ATF1 in NIH 3T3 cells.  
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Figure 3.11 Activation of p38 MAP kinase and downstream molecules: p-HSP27, p-CREB and 
p-ATF1 using anisomycin 
(A) Experimental setup to assess the activation of p38 MAP kinase signalling using anisomycin. NIH 
3T3 cells were seeded in a 6-well plate for 24 h prior to stimulation with 10 µg/ml anisomycin as 
indicated. Cell lysate was collected at 30 min, 2 h, 4 h and 24 h post-stimulation for detection of 
phosphorylated proteins. (B) Western blot analysis (fluorescence-based detection) of p-p38, p-HSP27, 
p-CREB and p-ATF1. Proteins were quantified using ImageStudioLite software and normalised to 
GAPDH. Results are shown as fold changes relative to unstimulated cells (Unt). Data presented here 
are representative of repeated experiments.  
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Figure 3.12 MAPKAPK3 phosphorylates HSP27 and ATF1 in a p38-dependent manner 
(A) Experimental design to test whether HSP27, CREB and ATF1 are substrates of MAPKAPK3. 
NIH 3T3 cells were untreated or transfected with RISC-free siRNAs or Mapkapk3 pooled siRNA (25 
nM) for 48 h. Cells were treated with 10 µg/ml anisomycin for 30 min and protein samples were 
collected for Western blot analysis. (B) Western blot analysis (fluorescence-based detection) of 
MAPKAPK3, p-p38, p-HSP27, p-CREB and p-ATF1 using antibodies specific to phosphorylated 
proteins. The levels of proteins were quantified using ImageStudioLite software, normalised to 
GAPDH and fold changes were calculated compared to untransfected cells with anisomycin 
activation. The results are representative of repeated experiments. 
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3.3.6 Expression of MAPKAPK3, p-HSP27 and p-ATF1 in wild 
type MCMV and MCMV Δm169 infection 

Here, evidence has been provided that miR-27 directly regulates Mapkapk3 gene and 

MAPKAPK3 protein phosphorylates HSP27 and ATF1 in a p38-dependent manner. 

Given the anti-viral properties of miR-27, it is logical to speculate that miR-27 could 

act through the regulation of Mapkapk3 in p38 MAP kinase signalling pathway, a 

crucial pathway hijacked by HCMV and MCMV to facilitate viral replication 

(Johnson et al., 1999; Tang-Feldman et al., 2013). To gain further insight into miR-

27 regulation of Mapkapk3 and its two substrates: HSP27 and ATF1, in the context 

of MCMV infection, expression of MAPKAPK3, p-HSP27 and p-ATF1 was 

examined in cells infected with wild type MCMV or MCMV Δm169.  

NIH 3T3 cells were mock infected or infected with wild type MCMV or MCMV 

Δm169 in the time series experiment (Fig 3.13A). RNA and protein samples were 

harvested at the indicated time points to examine levels of miR-27, and 

MAPKAPK3, p-HSP27 and p-ATF1 protein. As shown in Fig 3.13B, miR-27 was 

significantly downregulated in the wild type MCMV infection at 8 hpi compared to 

mock infection and the downregulation continued progressively over the time of 

infection to 48 hpi. In contrast, MCMV Δm169 did not alter miR-27 levels as 

expected. Therefore, if miR-27 regulates MAPKAPK3 during infection, it would be 

expected that phosphorylation of HSP27 and ATF-1 might occur at higher levels in 

cells infected with wild type MCMV compared to MCMV Δm169. Western blot 

analyses were used to examine the expression levels of these proteins in three 

independent experiments. The proteins were quantified and the means of fold 

changes (±SD) were calculated as compared to mock infection. MAPKAPK3 and p-

HSP27 protein levels were relatively higher in the wild type MCMV compared to 

MCMV Δm169 at 24 to 48 hpi (Fig 3.13C and 3.13D). In contrast, p-ATF1 was 

comparable in wild type MCMV and MCMV Δm169 infection throughout the time 

course infection (Fig 3.13E).  

Fig 3.13F shows representative data from three independent experiments showing 

MAPKAPK3 and p-HSP27 protein levels during infection. These data clearly 

demonstrate difference in these proteins at 36 and 48 hpi. In wild type MCMV 
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infection, MAPKAPK3 displayed 1.83 fold increase at 36 hpi and 1.46 fold increase 

at 48 hpi compared to mock infection, whereas MCMV Δm169 showed 0.74 fold at 

36 hpi and 0.72 fold at 48 hpi relative to mock infection. At 36 and 48 hpi, the 

increase of MAPKAPK3 was observed in wild type MCMV but not MCMV Δm169 

infection and it correlated to the reduction of miR-27 levels in the wild type MCMV 

infection. These data demonstrate an inverse correlation between miR-27 and 

MAPKAPK3 regulation upon MCMV infection. Since it has been shown that HSP27 

and ATF1 are substrates of MAPKAPK3, expression levels of phosphorylated forms 

of HSP27 and ATF1 could be expected to correspond to MAPKAPK3 expression. In 

contrast to MAPKAPK3 levels at 36 and 48 hpi in wild type MCMV infection, 

pHSP27 did not appear to increase and showed 0.85 and 0.99 fold compared to mock 

infection. However, at these time points p-HSP27 was lower in MCMV Δm169 

infection as 0.65 fold at 36 hpi and 0.53 fold at 48 hpi compared to mock infection. 

Hence, the comparison of wild type MCMV and MCMV Δm169 infection at 36 and 

48 hpi demonstrates higher levels of p-HSP27 in the wild type MCMV infection. In 

conclusion, these data imply that in the context of MCMV infection, the regulation of 

MAPKAPK3 by miR-27 alters the phosphorylation level of HSP27 but not ATF1. 

Further investigations of the functional properties of HSP27 in MCMV infection 

would shed light on the importance of MAPKAPK3 and its regulation by miR-27 in 

infection. 
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Figure 3.13 miR-27 regulates MAPKAPK3 and phosphorylation of HSP27 upon MCMV 
infection 
(A) Time course infection using wild type MCMV and MCMV Δm169 (MOI of 5) to examine the 
expression of miR-27 and proteins: MAPKAPK3, p-HSP27 and p-ATF1. At the indicated time points 
post infection, cells were collected for RNA extraction and protein preparation. (B) Expression of 
miR-27 upon wild type MCMV and MCMV Δm169 infection. miR-27 was quantified using qRT-
PCR, normalised to miR-16 and fold changes (FC) were calculated relative to the mock infection. 
Data represent means of fold change (±SD) of five technical replicates from one experiment. 
Statistical significance of miR-27 expression compared to mock infection was tested using two-way 
ANOVA, Dunnett’s multiple comparisons test (**p<0.01, ***p<0.001 and ****p<0.0001). (C, D, E) 
Quantification of Western blot analyses (fluorescence-based detection) of MAPKAPK3, p-HSP27 
from three experiments and p-ATF1 from two independent experiments. The levels of MAPKAPK3, 
p-HSP27 and p-ATF1 were quantified using ImageStudioLite software and normalised to GAPDH. 
Data were plotted as means of fold change (±SD) relative to mock infection. Statistical significance of 
the protein expression compared to mock infection was tested using two-way ANOVA (*p<0.05). (F) 
Representative of Western blot analysis of MAPKAPK3 and p-HSP27. The protein levels were 
quantified and normalised to GAPDH. Values represent fold changes relative to mock infection.	
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3.4 Discussion 
The primary aim of this thesis is to identify the cellular targets of miR-27 in order to 

understand why MCMV has evolved a viral non-coding RNA, m169, to inhibit this 

miRNA (Buck et al., 2010; Libri et al., 2012; Marcinowski et al., 2012). The 

significance of miR-27 inhibition has been demonstrated by Marcinowski et al. who 

showed that the degradation of miR-27 by m169 is important for the viral growth in 

vivo (Marcinowski et al., 2012). Importantly, in vitro experiments have also 

demonstrated an anti-viral activity of miR-27 when it is overexpressed in NIH 3T3 

cells (Buck et al., 2010). Based on the significance of miR-27 degradation on viral 

replication in vivo and functional implications of miR-27, it was hypothesised that 

the degradation of miR-27 is a viral strategy to interfere with functions of miR-27 in 

order to de-repress miR-27 target genes whose expression is advantageous to the 

virus. 

Beyond MCMV, virus-mediated downregulation of miR-27 was found in marmoset 

T cells infected with Herpesvirus saimiri (HVS), a γ-herpesvirus that induces the 

transformation of T cells (Cazalla et al., 2010). Similar to what was observed in 

MCMV infection, the degradation of miR-27 in HVS also involves a non-coding 

RNA, H. saimiri U-rich RNA1 (HSUR1), an unrelated RNA to m169 (Cazalla et al., 

2010). In attempt to understand the significance of miR-27 degradation in HVS 

infection, Guo et al. demonstrated that miR-27 regulates T cell activation through a 

direct interaction with an adaptor protein of T cell receptor (TCR) signalling, the 

growth factor-bound protein 2 (GRB2). miR-27 was also found to directly target 

semaphorin 7A (SEMA7) and interferon- γ (IFN- γ) which are modulators and 

effectors of T cell function. The biological significance of miR-27 downregulation in 

HVS-infected T cells is therefore postulated to relate to constitutive activation of T 

cells leading to an increase of IFN- γ production (Guo et al., 2014). This could be 

important for viral latency since IFN- γ strongly inhibits lytic reactivation of γ-

herpesviruses (Steed et al., 2006). However, it is not clear how these functions of 

miR-27 would relate to MCMV infection since the virus does not infect T cells, and 

the regulation of miR-27 occurs during the lytic phase of infection. 
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In this chapter, microarray analysis was carried out to identify targets of miR-27 that 

could play a role in MCMV infection. Genes that were differentially expressed upon 

miR-27 overexpression (in comparison to cells transfected with RISC-free siRNAs) 

or during MCMV infection (in comparison to infection with MCMV Δm169 or in 

comparison to infected cells treated with miR-27 mimics) were overlapped. A total 

of 23 genes were differentially expressed in at least two of the comparisons and they 

were included in a functional screening that involves siRNA knockdown of 

individual genes followed by infection with a MCMV GFP reporter virus to assess 

the effects on viral growth. In addition to the investigation of overlapped genes, 

differentially expressed genes in cells infected with MCMV Δm169 compared to 

wild type MCMV were of interest, even if these did not overlap with other 

comparisons (a total of 242 genes falls in this category). This comparison is thought 

to provide the most relevant physiological conditions to identify targets of miR-27 

upon viral infection since the only difference between the two viruses is the 

expression of m169.  

In the absence of the miR-27 inhibitor m169 (infection with MCMV Δm169), miR-

27 levels were confirmed to be unaltered as compared to untreated cells, whereas 

wild type MCMV downregulated miR-27 by approximately 10 fold at 24 hpi. Thus, 

it was expected that genes regulated by miR-27 are downregulated in MCMV Δm169 

compared to wild type MCMV infection. The pathway analysis of these 242 

downregulated genes (fold change >1.20, p<0.05) in cells infected with MCMV 

Δm169 versus wild type MCMV revealed that the top enriched pathways were 

involved in cholesterol biosynthesis. This may be relevant to CMV infection as a 

study showed that disruption of lipid rafts of the cell membrane by depletion of 

cellular cholesterol inhibited HCMV entry, suggesting the essential of cholesterol for 

viral entry (Juckem et al., 2008), which might also occur in MCMV. Blanc et al. 

showed that inhibition of cholesterol biosynthesis pathway using pharmacologic 

compound simvastatin led to the attenuation of virus in vitro and in vivo, likely due 

to the reduction of mevalonate, a precursor of cholesterol. The authors conducted the 

metabolite rescue and found that the addition of mevalonate into cell culture 

reversely increased the level of infection, whereas the feeding cells with cholesterol 
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did not affect inhibitory activity of simvastatin, indicating that the anti-viral effect is 

independent of cholesterol (Blanc et al., 2011). It is therefore expected that the actual 

cholesterol levels may not be important but aspects of the biosynthesis pathway can 

influence the ability of MCMV to replicate. One of the genes differentially expressed 

from the microarray analysis was Dhcr24, which encodes the 3β-Hydroxysterol Δ24-

reductase that converts desmosterol to cholesterol. Knockdown of this gene in the 

functional screening did not significantly decrease GFP from the reporter virus. Due 

to the multiple steps of cholesterol biosynthesis pathway, it seems likely that the 

intermediate of the pathway could have an effect on the infection rather than the 

actual level of cholesterol. Several other differentially expressed genes were 

identified in this pathway (Acat2/Acat3, Fdps, Hsd17b17, Mvd, Nsdhl and Sqle 

shown in Table 3.4) that were not examined because they did not have any miR-27 

target site. Thus, while these may play a role upon the infection, it is unlikely that 

they are directly targeted by miR-27. 

In addition to carry out pathway analysis on genes in each individual comparison, 

pathway analysis was also analysed in cells transfected with miR-27 mimics versus 

RISC-free siRNAs. This comparison is straightforward to identify genes/pathways 

regulated by miR-27 but a caveat is that transfection with the mimic can lead to 

supra-physiological increases of the miRNA levels. Measurement of miR-27 

following transfection suggested a 50 fold increase in its level. The overexpressed 

miRNA could potentially generate false positive results since it might saturate the 

RISC complex and bind to low affinity-binding sites under these conditions that are 

not targeted under physiological conditions (Khan et al., 2009). 

Despite the drawbacks mentioned above, the overexpression of miRNA has been 

widely used to examine gene regulation in global analyses, providing comprehensive 

insights into the gene networks regulated by miRNAs (reviewed in (Thomson et al., 

2011)). In this chapter, pathway analysis of 97 downregulated genes upon miR-27 

overexpression versus RISC-free siRNA showed five top ranked pathways including 

1) endothelia nitric oxide synthase (eNOS) signalling, 2) nitric oxide signalling in the 

cardiovascular system, 3) hepatic fibrosis, 4) aldosterone signalling in epithelial cells 

and 5) glycogen degeneration III.  
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eNOS is expressed in endothelial cells, cardiac myocytes and blood platelets 

(Dudzinski et al., 2006). It is an enzyme that produces nitric oxide (NO), a 

vasodilator regulating vascular tone by inhibiting the adhesion of leukocytes as well 

as the adhesion and aggregation of platelets (reviewed in (Dudzinski and Michel, 

2007)). Reduction of the NO levels can result in endothelial dysfunction, 

atherosclerosis and cardiovascular complications. Although there is no evidence 

directly demonstrating a role of miR-27 in eNOS signalling related to vascular 

diseases, a number of studies have showed that miR-27 is involved in processes of 

atherosclerosis such as angiogenesis, adipogenesis, oxidative stress and lipid 

metabolism (reviewed in (Chen et al., 2012)). Thus, it is possible that miR-27 also 

regulates eNOS signalling contributing to atherosclerosis but whether and how this 

relates to its anti-viral properties is not clear.  

The pathway analysis also implicated miR-27 in regulation of hepatic fibrosis. 

Correspondingly, Ji et al. demonstrated that downregulation of miR-27 decreased 

cell proliferation and restored cytoplasmic lipid droplets through the regulation of 

retinoid X receptor α, leading to the inactivation of hepatic stellate cells (HSCs), 

suggesting a role of miR-27 in liver fibrosis (Ji et al., 2009). In the context of 

MCMV infection, retinoic acid (RA) activated the viral major immediate-early 

enhancer via the binding to multiple RA-responsive elements containing retinoid X 

receptor (Angulo et al., 1998). Treatment of RA dramatically increased viral growth 

in vitro and oral administration of RA increased the susceptibility of mice to viral 

infection, suggesting that RA can modulate infection of MCMV (Angulo et al., 

1998). Thus, it does not mean there is a link between hepatic fibrosis and MCMV but 

some of the targets could be associated with both. 

Although the pathway analysis of microarray data provided putative pathways 

regulated by miR-27, the focus of this thesis is to identify the genes regulated by 

miR-27 that are important for viral infection. With this in mind, the overlapped genes 

among microarray data and predicted targets of miR-27 in the top ranked pathways 

(Table 3.6) were selected for the functional screening as described above. The 

screening revealed that knockdown of five genes (Rpl18a, Lyar, Itga5, Mapkapk3 
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and Pik3r1) significantly reduced the GFP expression (approximately 50%), 

suggesting an important role of these genes for MCMV replication.  

Ribosomal protein L18 (Rpl18a) encodes a protein component of 60S ribosomal 

subunit. In addition to roles in translation, ribosomal proteins are implicated as 

protein chaperones (Kovacs et al., 2009) and regulators of transcription (Lindstrom, 

2009). Little is known about the involvement of Rpl18a in viral infection. A 

proteomic study found the presence of RPL18 in ebola virions (Spurgers et al., 

2010). The authors demonstrated that the reduction of RPL18 expression using 

siRNAs effectively inhibited ebola infection in 293T cells assessed by determination 

of viral genomic RNA using qRT-PCR (Spurgers et al., 2010). RPL18 has been 

shown to have a function in viral biology of cauliflower mosaic virus. Specifically, 

RPL18 in Arabidopsis thaliana interacts with the viral protein P6 involved in several 

aspects of the infectious cycle (Leh et al., 2000). In the translation of HCV, it has 

also been shown that RPL18 interacts with an internal ribosome entry site (IRES) of 

the viral RNA, leading to the moderate increase of HCV IRES activity by an 

unknown mechanism (Dhar et al., 2006). In the case of CMV infection, however, no 

previous literature has implicated a role of Rpl18a in the infection. Further studies 

are required to examine whether the virus uses RPL18 during its life cycle. 

Ly-1 antibody reactive clone (Lyar) encoding a zinc finger nucleolar protein, has 

been shown to play a role in cell proliferation and differentiation of embryonic stem 

cells (ESCs) (Li et al., 2009). This was found to occur via a mechanism whereby 

LYAR forms a complex with nucleolin, a major nucleolar protein controlling cell 

growth and apoptosis (Li et al., 2009). Importantly, MEFs isolated from Lyar-/- and 

Lyar+/- mice showed cell growth defect with a concomitant increase of p53 and a key 

effector of growth arrest, p21, as compared to wild type cells (Wang et al., 2012). 

The present study has shown that the knockdown of Lyar significantly reduced GFP 

expression of GFP-MCMV. It is presumed that this could relate to disruption of Lyar 

functions in cell proliferation required for MCMV replication. 

Based on the functional screening, integrin α5 (Itga5) was a positive hit, suggesting 

its importance for some aspect of the MCMV life cycle. The integrin family is the 
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cell surface glycoprotein comprising an α-subunit and a β-subunit. To date, at least 

18 α and 8 β subunits have been identified, giving rise to 24 distinct integrin 

receptors. The α and β subunits contain large extracellular domains, transmembrane-

regions and short cytoplasmic domains (reviewed in (Hynes, 2002)). Integrins play 

many roles in normal and disease biology. They are receptors of extracellular matrix 

(ECM) proteins required for cell adhesion and are keys in activating a diverse range 

of intracellular signalling pathways in response to external stimulation. Integrins are 

also receptors for many viruses including HCMV and therefore play important roles 

in entry. Specifically, the glycoprotein gB of HCMV recognises integrins, 

particularly β1 subtypes to facilitate viral entry (reviewed in (Stewart and Nemerow, 

2007)). The β1 subunit forms heterodimer with the α5 subunit to be α5β1 integrins, 

which are generally known as receptors of fibronectin, the extracellular matrix 

playing an important role in cell adhesion and migration (Akiyama et al., 1995). 

Given that HCMV uses the gB glycoprotein binding to β1 subunit of α5β1 to assist 

the viral entry, although no evidence has been reported in MCMV, the virus may 

employ the similar mechanism using MCMV gB glycoprotein for the cell entry. 

Hence, knockdown of the α5 subunit, a component of α5β1 might reduce cell 

susceptibility to MCMV infection. 

The functional screening suggested that mitogen activated protein kinase (MAPK) -

activated protein kinase3 (Mapkapk3) is required for MCMV growth. Mapkapk3 is a 

downstream kinase of p38 MAPK signalling, a critical pathway of signal 

transduction mediating numerous biological processes in response to extracellular 

stimuli. p38 MAP kinase is one of four distinct subgroups within MAP kinase 

family: ERK1/2, ERK5, JNKs and p38. Activation of the p38 MAP kinase is 

involved in various biological events such as inflammation, apoptosis, cell cycle and 

cell differentiation (reviewed in (Zarubin and Han, 2005)). Interestingly, it was 

demonstrated that HCMV activates p38 MAP kinase, which plays an important role 

in viral DNA replication. Johnson et al. showed that at an early time point in the 

infection (8 to 14 hpi) the virus mediates p38 activation by inhibiting 

dephosphorylation of p38, whereas at the late time point of the infection (48 to 72 

hpi) the virus induces MAPK kinase 3 and 6 (MKK3/6), the upstream regulators of 
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p38 (Johnson et al., 2000). This evidence suggests the importance of p38 MAP 

kinase during CMV infection and here it is postulated that this could also involve the 

downstream Mapkapk3.  

Phosphoinositide-3-kinase regulatory subunit 1 (Pik3r1) encodes p85α, a regulatory 

subunit of phosphatidylinositol 3-kinase (PI3K). PI3K consists of a regulatory 

subunit p85 and a catalytic subunit p110 (reviewed in (Katso et al., 2001)). Under 

resting conditions, p85 stabilises and inactivates the catalytic subunit p110. In 

activated cells, p85 binds to receptor tyrosine kinases or other tyrosine 

phosphorylated adaptors such as epidermal growth factor receptor (EGRF) and 

platelet-derived growth factor receptor (PDGFR), allowing p110 to generate 

phosphatidylinositol 3,4,5-trisphosphate (PIP3), a secondary messenger stimulating 

diverse target proteins. This allows PI3K to control numerous biological processes 

such as proliferation, differentiation, chemotaxis and survival (reviewed in (Katso et 

al., 2001)). It has become evident that HCMV requires the upregulation of PI3K 

signalling, possibly to activate a transcription factor NF-κB to increase cellular gene 

expression and protein synthesis involved in inhibition of apoptosis (Johnson et al., 

2001). The virus activates PI3K via phosphorylation of p85 leading to the activation 

of Akt, an effector of PI3K/Akt signalling (Johnson et al., 2001). Moreover, the 

inhibition of PI3K dramatically reduces HCMV titres and decreases protein levels of 

IE and E genes essential for viral DNA synthesis (Johnson et al., 2001). In addition, 

it was shown that HCMV induces PI3K activity in monocytes required for 

monocyte-transendothelial migration that possibly enables virus dissemination 

(Smith et al., 2004). Similarly, it was also demonstrated that MCMV activates PI3K 

pathway in fibroblasts leading to phosphorylation of AKT at Ser 473 (Tokuyama et 

al., 2011). Taken together, these data underscore the significant role of PI3K in 

support of CMV infection.  

Among the five genes identified from the functional screening as positive hits 

(Rpl18a, Lyar, Itga5, Mapkapk3 and Pik3r1), three out of the five (Itga5, Mapkapk3 

and Pik3r1) are predicted as direct targets of miR-27 based on TargetScan 

(www.targetscan.org). The analyses of gene expression at mRNA and protein level 
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in response to miR-27 overexpression or inhibition suggested Mapkapk3 as a 

potential target, which was further confirmed using luciferase reporter assays. 

Mapkapk3 was included in the functional screening because it was previously shown 

by the Buck lab to be differentially regulated in cells transfected with RISC-free 

siRNAs, miR-27 mimics or inhibitors (Table3.5). This gene was downregulated 

~2.14 fold in cells transfected with miR-27 mimics compared to the inhibitors. 

Further comparison of the mimic or inhibitor to the transfection control (RISC-free 

siRNA) demonstrated that Mapkapk3 is downregulated 1.4635 fold by miR-27 

mimics and upregulated 1.4686 fold by inhibitors. In line with this, the microarray 

analysis performed in the present study showed that Mapkapk3 expression was 

decreased by 1.12 fold (p=0.0035), but this was below the cut off used (1.2).  

Based on the known links between MCMV infection and MAP kinase signalling, it 

was hypothesised that miR-27 might exert its anti-viral activity via the regulation of 

Mapkapk3, a component of p38 MAP kinase signalling pathway. Accumulating 

evidence indicates that the activation of p38 MAP kinase is necessary for CMV 

replication. Recently, in a study of MCMV induced-atherosclerosis showed that 

MCMV increased phosphorylated-p38 (p-p38) by ~1.7 fold in aortas of infected 

mice compared to uninfected mice (Tang-Feldman et al., 2013). The inhibition of 

p38 using SB203580, a specific inhibitor of p38, reduced MCMV viral load (Tang-

Feldman et al., 2013). In vitro studies of HCMV infection showed that p38 MAP 

kinase is strongly activated by ~8 hpi and p38 stimulation is essential for viral DNA 

replication (Johnson et al., 1999, 2000). Inhibition of p38 MAP kinase by 4-(4-

fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole; (FHPI) resulted in a 

significant reduction in HCMV DNA replication and viral titres (Johnson et al., 

1999). 

The biological significances of p38 activation upon CMV infection could relate to 

the phosphorylation of heat shock protein 27 (HSP27), which has been shown to 

occur in a p38-dependent manner upon HCMV infection (Johnson et al., 2000). In 

this chapter, it is demonstrated that HSP27 is a substrate of MAPKAPK3, consistent 

with the literature (reviewed in (Zarubin and Han, 2005)). The comparison of 
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MAPKAPK3 and pHSP27 levels between wild type MCMV and MCMV Δm169 in 

time-course experiments showed that the levels of both proteins are higher in the 

wild type MCMV compared to MCMV Δm169. These results suggested that 

MAPKAPK3 and phosphorylation of HSP27 are potentially regulated by miR-27 

during MCMV infection. 

HSP27 is a multifunctional protein involved in numerous cellular processes such as 

protein folding, inhibition of apoptosis and actin remodelling. Under stress 

responses, the protein is phosphorylated by MAPKAPK3 in the p38 MAP kinase 

pathway (reviewed in (Vidyasagar et al., 2012)). Interesting, a study of HSP27 in 

HCMV infection demonstrated that the virus induces the phosphorylation of HSP27 

in a p38-dependent manner (Johnson et al., 2000). The authors proposed that HSP27 

might have two functions required for the virus: anti-apoptotic roles and as a 

chaperone to correct misfolded proteins necessary for viral permissiveness (Johnson 

et al., 2000). Moreover, a study in monocytes also showed that HCMV upregulates 

HSP27 and myeloid cell leukemia 1 (Mcl-1), an anti-apoptotic member of the B-cell 

lymphoma 2 (Bcl-2) family (Chan et al., 2012). The cooperative functions of HSP27 

and Mcl-1 induce the activation of caspase3 allowing monocyte-to-macrophage 

differentiation to promote viral dissemination and persistence (Chan et al., 2012). 

Here, it was shown that upon MCMV infection, phosphorylation of HSP27 was 

mediated by MAPKAPK3, which is a direct target of miR-27. It seems reasonable to 

speculate that anti-viral effects of miR-27 against MCMV may be in part due to miR-

27 regulating Mapkapk3 and phosphorylation of HSP27. Further studies of HSP27 

related to MCMV infection would elucidate anti-viral effects resulting from miR-27-

regulated Mapkapk3. On this note, functional analysis of HSP27 on MCMV 

replication can be conducted using siRNA knockdown following by infection of 

GFP-MCMV to determine whether HSP27 is required for viral growth. It is 

interesting however that HCMV does not downregulate miR-27. This could be due to 

redundancy of miR-27 degradation and other factors derived from HCMV can 

compensate for this effect. 

Notably, it was found by others that miR-27 regulates p38 upon the activation of T 

cells (Guo et al., 2014). Cells transfected with miR-27 followed by the activation of 
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T cell receptor (TCR) signalling showed the reduction of phosphorylated-p38 (p-

p38) levels, indicating that miR-27 regulates TCR-induced activation of p38 (Guo et 

al., 2014). It is known that TCR stimulation induces p38 phosphorylation (Rincon et 

al., 2000; Rincon and Pedraza-Alva, 2003). Thus, the authors proposed that the 

attenuation of p38 activity upon miR-27 overexpression is possibly derived from the 

regulation of GRB2, SEMA7A or IFN- γ (Guo et al., 2014). In fibroblasts, the 

present study demonstrated that miR-27 regulates p38 MAP kinase signalling 

through a direct target Mapkapk3, a downstream kinase of p38. Although studies in T 

cells and fibroblasts showed that miR-27 regulates different genes, it is interesting 

that genes from both studies are involved in the same pathway (p38 MAP kinase 

signalling). Due to the function of miR-27 in p38 MAP kinase pathway and the 

evidence showing that this pathway is essential for HCMV and MCMV, it is 

reasonable to speculate that the degradation of miR-27 upon MCMV infection is a 

viral strategy to sustain the activation of p38 MAP kinase signalling. 

Interestingly, it appears that the strategy of miR-27 inhibition by MCMV and HVS is 

not present in other closely related virus. Other herpesviruses including HCMV and 

Ovine herpesvirus 2 (OvHV-2) do not inhibit miR-27 to upregulate expression of 

cellular genes. Guo et al. proposed that these viruses do not inhibit miR-27 because 

they instead encode homologs of key targets; HCMV encodes viral IL-10 

(Slobedman et al., 2009) and OvHV-2 genome contains SEMA7A, ATF-3 and IL-10 

gene (Guo et al., 2014). Recently, it was confirmed that IL-10 is a direct target of 

miR-27 in T cells and macrophages (Guo et al., 2014; Xie et al., 2014). IL-10 

expressed from HCMV (cmvIL-10) shares ~27% amino acid identity with human IL-

10 (hIL-10) and it can bind to the receptor of hIL-10 exerting immunomodulatory 

properties similar to hIL-10 (Jones et al., 2002; Kotenko et al., 2000).  

IL-10 is an anti-inflammatory cytokine that acts through multiple 

immunosuppressive modes, mainly affecting the production of pro-inflammatory 

cytokines, regulating the function of antigen-presenting cells and suppressing 

effector T cell responses (Couper et al., 2008). Based on studies of herpesvirus 

infection, and particularly CMV, it was demonstrated that the virus upregulates the 

expression of IL-10 to enhance the infection and persistence (reviewed in 
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(Slobedman et al., 2009). Unlike HCMV, MCMV does not encode viral IL-10 but 

infection is known to modulate cellular IL-10. An analysis of cytokine expression in 

salivary gland extracts showed a strong expression of IL-10 in MCMV-infected but 

not naïve mice (Humphreys et al., 2007). Using an antibody (anti-IL-10R) to block 

IL-10 receptor, at 30 dpi viral titres in salivary glands determined by plaque assays 

was dramatically inhibited in mice treated with anti-IL-10R compared to mice treated 

with IgG (Humphreys et al., 2007). In agreement with this, Mandaric et al. have 

shown that IL-10 suppresses the crosstalk of NK/DC cells leading to a reduction in 

MCMV-specific CD4 T cell responses (Mandaric et al., 2012). In the absence of IL-

10, Il10-/- mice infected with MCMV showed a decrease of viral loads in lungs and 

salivary glands during lytic infection due to activation of CD4 T cells (Mandaric et 

al., 2012). Thus, it is possible that MCMV-mediated downregulation of miR-27 is to 

induce cellular IL-10 (a target of miR-27), particular in monocytes and macrophages 

that are major sources of IL-10 and cells permissive to MCMV, in order to modulate 

cellular immune responses supporting viral persistence. 

HSP27 has been demonstrated to induce IL-10 expression in human monocytes (De 

et al., 2000). ELISA assays revealed that cells treated with recombinant HSP27 

shows a significant increase in the amount of IL-10 compared to untreated cells. The 

authors also showed that the regulation of IL-10 by HSP27 involves activation of p38 

and MAPKAPK2 activity (De et al., 2000). MAPKAPK2 is an isoenzyme of 

MAPKAPK3, sharing 70% amino acid identity, activators and substrates including 

HSP27 (McLaughlin et al., 1996). As MAPKAPK3 is an activator of HSP27, further 

investigations to test whether it contributes to IL-10 regulation would be merited, as 

would analysis of whether IL-10 levels are directly regulated by miR-27 in infected 

cells. Studies in LPS-treated Mapkapk3-/- mice did not show alteration of IL-10 

mRNA stability compared to wild type mice (Ronkina et al., 2007). However, it is 

important to note that expression levels of MAPKAPK3 are less than MAPKAPK2 

in most cells and tissue including MEFs, macrophages, heart, livers, kidneys, lungs 

and spleens (Ronkina et al., 2007). To conduct the functional analysis of 

MAPKAPK3, it is worth noting that MAPKAPK2 might compensate for 

MAPKAPK3 deficiency due to its higher expression and activity compared to 
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MAPKAPK3 (Ronkina et al., 2007). Comparative studies of Mapkapk2/3 double 

knockout and single knockout of either Mapkapk2 or Mapkapk3 would elucidate 

biological roles of Mapkapk3. Nonetheless, in the present study, a significant 

reduction in viral replication was observed upon Mapkapk3 knockdown in NIH 3T3 

cells as detailed above, suggesting that in these cells Mapkapk3 is sufficiently 

expressed and plays a role in MCMV growth. 

In addition to miR-27 inhibition, it is worth noting that m169 might directly mediate 

other cellular factors to facilitate the infection. An analysis of the MCMV 

transcriptome during lytic infection revealed that m169 was the most abundant 

transcript and it also encoded for a small protein (Juranic Lisnic et al., 2013). A 

specific antibody was successfully generated and interacted with a ~17 kDa protein, 

which was believed to be encoded from m169 transcript; however, functions of this 

novel protein are still unknown (Juranic Lisnic et al., 2013). Marcinowski et al. have 

shown that m169 transcript was in turn regulated by miR-27. Using wild type 

MCMV and the virus containing mutations of miR-27 binding sites, it was found that 

m169 transcript significantly increased (~2 fold) in the mutant infection compared to 

wild type MCMV at 24 hpi, raising the possibility that the virus might use highly 

abundant miR-27 to control the expression of viral genes (Marcinowski et al., 2012). 

In contrast, Juranic et al. did not observe the alteration of m169 at protein levels 

between wild type MCMV and the mutant infection, suggesting that the non-coding 

function of m169 transcripts does not affect the protein expression (Juranic Lisnic et 

al., 2013). Further studies of m169 protein would provide insights into the function 

of this protein involved in MCMV infection and may clarify the dual function of 

m169 gene as the miR-27 inhibitor and the protein-coding gene. 

In conclusion, the data in this chapter are the first to demonstrate that Mapkapk3 is a 

direct target of miR-27 and knockdown of this gene suppresses MCMV replication. 

Upon MCMV infection, miR-27 appears to directly regulate Mapkapk3, a 

downstream molecule of p38 MAP kinase. MAPKAPK3 protein levels are increased, 

whereas miR-27 levels are downregulated in the time course infection of wild type 

MCMV compared to cells infected with MCMV Δm169. In the same time course 

experiments, the phosphorylation of HSP27, which occurs through MAPKAPK3, 
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increases in line with the levels of MAPKAPK3, suggesting that both MAPKAPK3 

and subsequent phosphorylation of HSP27 are regulated by miR-27 during MCMV 

infection. This may, at least in part, explain why the virus has evolved the strategy to 

inhibit miR-27. However, the functional properties of HSP27 in MCMV infection 

require further investigations and analyses in other cell types including macrophages. 
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Chapter 4: Analysis of miR-27 functions in cell 
cycle regulation 
4.1 Introduction 
The major objective of this thesis is to understand why MCMV specifically encodes 

a non-coding RNA to degrade the cellular miRNA, miR-27. A central hypothesis is 

that this is a viral strategy to interfere with functions of miR-27 in regulating cellular 

pathways involved in the infection process. As described in chapter 3, miR-27 target 

identification was carried out using microarray analysis where the global changes in 

gene expression were examined upon miR-27 overexpression. The differentially 

expressed genes were analysed using pathway analysis software to identify pathways 

and biological functions regulated by miR-27. Pathway analysis revealed that the cell 

cycle was one of the six top enriched biological functions regulated by miR-27 

(Table 3.3, chapter 3). Thus, this chapter focuses on miR-27 functions in the cell 

cycle and identification of target genes responsible for these effects. 

Previous reports have demonstrated that miR-27 is involved in regulating the cell 

cycle. Lerner et al. demonstrated that miR-27 regulates F-box and WD repeat 

domain-containing 7 (FBW7), a component of an ubiquitin ligase complex called 

KSP1, CUL1 and F-box protein (SCF) that mediates degradation of cyclin E, a 

positive regulatory protein of G1/S transition (Lerner et al., 2011). The 

overexpression of miR-27 using pre-miR-27 increases the population of cells in S 

phase compared to cells transfected with pre-miR-control and this was thought to be 

a result of miR-27-regulated FBW7, leading to an elevation of cyclin E (Lerner et al., 

2011). Further, it has been shown that inhibition of miR-27 using antisense 

oligonucleotides decreases the percentage of cells in S phase by approximately 10% 

compared to untreated cells (Mertens-Talcott et al., 2007). 

In the context of CMV infection, a number of studies have shown that the virus 

interferes with the host cell cycle to support viral DNA replication (reviewed in 

(Castillo and Kowalik, 2004)). In particular, several independent lines of evidence 

have demonstrated that CMV blocks the G1/S phase transition (reviewed in 

(Flemington, 2001)). For example, HCMV encodes the UL69 protein, which arrests 
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cells in G1 and viruses lacking UL69 gene showed a growth defect compared to wild 

type virus (Hayashi et al., 2000; Lu and Shenk, 1999). Besides UL69, the IE86 

protein (IE2) and to lesser extent the IE72 protein (IE1) of HCMV have been shown 

to cause G1 arrest (Noris et al., 2002; Wiebusch and Hagemeier, 1999). Likewise, 

studies in MCMV revealed that the virus arrests cells in both G1 and G2 and that is 

dependent on MCMV IE3, the homologue of HCMV IE2 (Wiebusch et al., 2008). 

Cell cycle arrest is advantageous the CMV since this prevents cells from entering S 

phase, thereby blocking cellular DNA synthesis that would compete with the virus 

for the available resources for DNA replication.  

Based on the known function of miR-27 in regulating the cell cycle and the fact that 

CMV is known to induce the cell cycle arrest, it seems logical to speculate that 

MCMV degrades miR-27 in order to interfere with this function of the miRNA. 

Through the degradation of miR-27, the virus could manipulate the cell cycle 

towards the condition that are advantageous to viral replication. In this chapter, the 

function of miR-27 in the cell cycle regulation was investigated and direct targets of 

miR-27 that could be involved in this function were examined whether they play a 

role in MCMV replication.   

4.2 Aims 
The aims of the present chapter are as follow: 

1. Investigate the function of miR-27 in the cell cycle by analysis of cell cycle 

using propidium iodide followed by flow cytometry 

2. Identify and validate miR-27 targets using a target prediction database and 

experimental approaches 

3. Evaluate the role of miR-27 targets in the cell cycle 

4. Examine whether miR-27 targets associated with the cell cycle impact 

MCMV growth in vitro 
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4.3 Results 
4.3.1 miR-27-regulated genes are involved in regulation of the 

cell cycle 
As described in chapter 3 (3.3.1.1), the global transcriptomic changes were examined 

in response to miR-27 overexpression using microarray analysis. NIH 3T3 cells were 

transfected with miR-27a mimics or RISC-free siRNAs for 48 h. RISC-free siRNAs 

are synthetic siRNAs that can be transfected into cells but are not loaded into RISC 

complexes. The RISC-free siRNA transfection therefore serves as a negative control 

(to account for gene changes associated with transfection rather than miR-27). Thus, 

it was expected that potential targets of miR-27 are downregulated upon miR-27 

overexpression compared to RISC-free siRNAs. At 48 h post transfection, total RNA 

was extracted and its quality was examined using polyacrylamide gel electophoresis. 

The levels of miR-27 were quantified using qRT-PCR to confirm the overexpression 

of miR-27 in cells transfected with the mimics. RNA samples were prepared and sent 

for microarray analysis. 

To select potential targets of miR-27 for further analysis, a fold change cut off of 1.2 

(p<0.05) was applied. This criterion was used based on the study by Nielsen et al. 

who showed that the magnitude of miRNA-mediated gene repression depending on 

the number of seed matches. For example, RNAs containing 7-mer seed match show 

1.18 fold downregulation (Nielsen et al., 2007). Using the cut off of 1.2 (p<0.05), 97 

genes showed to be downregulated in cells transfected with miR-27 mimics 

compared to RISC-free siRNAs (Appendix 1). 

To identify cellular pathways and biological functions regulated by miR-27, the 97 

genes were analysed using Ingenuity Pathway Analysis (IPA) 

(http://www.ingenuity.com/) in chapter 3. The analysis revealed that the cell cycle 

was one of the six top enriched biological functions regulated by miR-27. Thus, the 

present chapter focuses on examining whether miR-27 regulates the cell cycle in 

NIH 3T3 cells and determining whether this impacts MCMV infection. 
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4.3.2 Effect of miR-27 on the cell cycle regulation 
To functionally investigate effects of miR-27 on the cell cycle, the cell population of 

G1, S and G2/M in the cell cycle was analysed in cells in which miR-27 was either 

overexpressed or inhibited. NIH 3T3 cells were untreated or transfected with RISC-

free siRNAs, miR-27a mimics or miR-27a inhibitors for 24 h prior to serum 

starvation (reducing calf serum concentration from 10% to 0.5%) (Fig 4.1A). 

Synchronised cells were then stimulated with media containing 10% serum and cells 

collected after 12, 14, 16, 18, 20, 22 and 24 h. The experiment was performed with 

three technical replicates by which cells were seeded in individual wells and treated 

with miRNAs and collected for cell cycle analysis. The result from the three 

replicates are presented in the bar graphs beside the histograms in Fig 4.1B. The 

effects of miR-27 are most pronounced at 12 and 14 h. At 12 h, cells transfected with 

miR-27a mimics displayed 78.95% of cells in S phase compared to 74.91% of 

untreated cells and 74.2% of RISC-free siRNA transfection, whereas miR-27a 

inhibitors showed 58.77% of S phase cells. In line with the cell progression to S 

phase, cells transfected with miR-27a mimics reduced the percentage of cells in G1 

as 18.21% compared to untreated cells (21.02%) and cells transfected with RISC-free 

siRNAs (19.77%), while miR-27a inhibitor showed an accumulation of cells in G1 

(40.61%). Consistent with the effects observed at 12 h, at 14 h post serum 

reactivation, miR-27a mimics induced cells in S phase (77.24%) compared to 

untreated cells (65.85%) and cells transfected with RISC-free siRNAs (70.27%), 

while miR-27 inhibitors delayed G1/S progression showing 24.98% of G1 and 

63.26% of S phase. Time points from 16 to 24 h showed progression of the cell cycle 

according to changes at 12 and 14 h. Based on the stimulation of the G1/S transition, 

at 16, 18 and 20 h, cells transfected with the mimics increased the number of cells in 

G2/M phase by 30.61%, 39.81% and 32.62% compared to RISC-free siRNA 

showing 29.98%, 29.29% and 21.74%. At 22 and 24 h, the cell cycle profile of cells 

transfected with the mimics appeared to be similar to RISC-free siRNAs with the 

majority of cells in G1 phase. In cells transfected with the inhibitors, the delay of the 

G1/S transition at 12 and 14 h subsequently caused the delay of cell progression from 

S to G2/M phase at 16 to 24 h. Taken together, these results indicate that miR-27 
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induces the G1/S transition and cells in which the miRNA is inhibited show a delay 

in this progression. 

D- and E-type cyclins are key mediators of G1/S progression that activate cyclin 

dependent kinases (CDKs) to phosphorylate retinoblastoma (Rb) (Masamha and 

Benbrook, 2009). In quiescent cells, Rb represses transcription of many genes 

important for cell cycle progression via interaction with transcription factor E2F, 

blocking ability of E2F to activate transcription. When cells are stimulated to enter 

the cell cycle by proliferative signals such as growth factors and serum, Rb is 

phosphorylated by CDKs, which forms a complex with cyclins. The phosphorylated 

Rb becomes inactive and can no longer repress E2F, thereby inducing the expression 

of numerous genes required for S phase entry (reviewed in (Henley and Dick, 2012)). 

While CDKs are generally expressed throughout the cell cycle, cyclins are 

dynamically expressed in relation to the specific cell cycle phases and can thus serve 

as markers of the cell cycle (reviewed in (Moore, 2013)). To confirm the observation 

of miR-27 accelerating the G1/S transition, expression of cyclin D3 (CCND3) 

proteins was examined. As described for the flow cytometry experiments, NIH 3T3 

cells were untreated or transfected with RISC-free siRNAs, negative inhibitors (C. 

elegans inhibitors), negative mimics (C. elegans mimics), miR-27a mimics or miR-

27a inhibitors for 48 h. In addition to RISC-free siRNA control, additional controls 

were included: negative inhibitors and negative mimics designed based on C. elegans 

miR-67, which has minimal sequence identity with miRNAs in human, mouse and 

rat. At 48 h post transfection, CCND3 protein was determined by Western blot 

analysis. As shown in Fig 4.1C, transfection of cells with miR-27a mimics resulted 

in a slight increase in the expression of CCND3 (1.20 fold) compared to RISC-free 

siRNAs, and transfection of the inhibitors caused a small decrease, whereas the other 

transfection conditions did not significantly alter CCND3 levels. The elevation of 

CCND3 is consistent with the effect of miR-27 on activating cells from G1 to S 

phase, supporting the conclusion that miR-27 promotes the G1/S transition and 

inhibition of miR-27 delays this. 
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Figure 4.1 miR-27a increases the number of cells in S phase and elevates expression of cyclin 
D3.  
(A) Experimental setup for synchronisation of cells and cell cycle analysis. NIH 3T3 cells were 
untreated or transfected as described above and collected at the indicated times. DNA was stained 
with propidium iodide and analysed by flow cytometry. (B) Histogram showing cell cycle profiles of 
one out of three technical replicates. The bar graphs represent percentages of cells as means± SD from 
three technical replicates. Data were analysed using Flowjo software to determine the percentage of 
cells in each phase. The statistics is based on turkey’s multiple comparisons test, two-way ANOVA 
(*p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001). (C) Western blot analysis (ECL-based 
detection) of CCND3 in untreated or transfected cells (as described in main text). Protein was 
quantified using ImageStudioLite software and normalised to beta-actin. Results are shown as fold 
changes of protein relative to RISC-free siRNA. (Left) Images of the immunoblots. (Right) Protein 
quantification of CCND3 from two independent experiments. Data are shown as means ± SD of fold 
change compared to RISC-free siRNAs 
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4.3.3 Analysis of mRNA and protein level of Bmi1, Calm3, 
Cav1 and Ccng1 in response to changes in miR-27 
expression 

As shown in the previous section, the analysis of the cell cycle suggested a role of 

miR-27 in promoting G1/S transition. To further investigate how miR-27 influences 

the cell cycle, analysis of potential targets of miR-27 (identified in chapter 3) was 

carried out. Based on the computational target prediction database TargetScan 

(www.targetscan.org) and literatures reporting functions of genes in the cell cycle, 

Bmi1, Calm3, Cav1 and Ccng1 were selected to determine their expression when 

miR-27 was overexpressed or inhibited. These genes are predicted targets of miR-27 

but have not been previously validated in the literature. They have been well 

documented to be involved in cell cycle regulation, as detailed below. 

Polycomb ring finger oncogene 1 (BMI1) belongs to the polycomb group proteins 

and is identified as a positive regulator of G1/S transition by suppressing the 

transcription of negative regulators: p16Ink4a and p19Arf (Jacobs et al., 1999). Bmi1-/- 

mice and knockdown of Bmi1 using shRNAs led to G1 arrest in several cell types 

(Chen et al., 2011; Jacobs et al., 1999; Wu et al., 2011). 

Calmodulin genes (Calm1, Calm2 and Calm3) encode an identical Ca2+-binding 

protein that regulates a variety of intracellular enzymes including adenylyl cyclases, 

phosphodiesterases, protein kinases and the protein phosphatase calcineurin (Chin 

and Means, 2000). Calmodulins (CaMs) have been implicated in the regulation of the 

cell cycle due to the observation of the changes of CaM concentration during cell 

cycle progressions, especially the G1/S transition (Rasmussen and Means, 1989). 

Interestingly, a CaM binding site was identified near the N terminus of cyclin E, a 

key regulator of the G1/S transition (Choi and Husain, 2006). The interaction of CaM 

and cyclin E led to an increase in the activity of cyclin dependent kinase 2 (CDK2), 

the cyclin E partner responsible for cell progression from G1 to S phase (Choi and 

Husain, 2006). Moreover, studies in mammalian cells suggested that CaM is also 

involved in cell cycle regulation via functions of Ca2+/CaM-dependent kinases 

(CaMKs) (Kahl and Means, 2003; Skelding et al., 2011).  
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Overexpression of Cav1 in NIH 3T3 cells and stable expression of Cav1 in 

transgenic mice displayed G0/G1 arrest occurring through a p53/p21-dependent 

pathway (Galbiati et al., 2001). Cav1-induced G0/G1 arrest was also reported in 

human endothelial cells in which Cav1 prevented downregulation of p27kip1 and Rb 

phosphorylation, causing the accumulation of cells in G0/G1 (Fang et al., 2007). 

Cyclin G1 (Ccng1) was identified as a transcriptional target of p53 tumor suppressor 

by which the p53 binds to two binding sites within Ccng1 gene, leading to an 

activation of Ccng1 transcription (Okamoto and Beach, 1994; Zauberman et al., 

1995). The precise role of Ccng1 in regulation of the cell cycle and proliferation is 

still controversial. After UV irradiation to induce DNA damage, MEFs derived from 

Ccng1-/- mice showed ~50% reduction of cells in G2/M phase compared to Ccng1+/+ 

MEFs, suggesting that Ccng1 plays a role in G2/M arrest in response to cellular 

stress (Kimura et al., 2001). In contrast, evaluations of cell growth and proliferation 

indicated a positive effect of Ccng1 in tumour cells (Skotzko et al., 1995; Smith et 

al., 1997) that is in line with the observations of Ccng1 overexpression in human 

cancers (Reimer et al., 1999). 

Compelling studies of Bmi1, Calm3, Cav1 and Ccng1 in the cell cycle regulation 

raise the possibility that miR-27-induced G1/S transition might result from miR-27 

regulating one of these genes. To examine this, mRNA and protein levels of these 

genes were examined in NIH 3T3 cells that were either untreated or transfected with 

RISC-free siRNAs, negative inhibitors (C. elegans inhibitors), negative mimics (C. 

elegans mimics), miR-27 mimics or miR-27 inhibitors for 48 h. As shown in Fig 

4.2A, miR-27 mimics caused ~2 fold reduction in Bmi1 mRNAs compared to RISC-

free siRNA, although it was not significant suggesting that Bmi1 might be a target of 

miR-27. The transfection of negative mimics showed a slight reduction in Bmi1 

mRNA (less than 2 fold) compared to RISC-free siRNA that is potentially due to 

non-specific effect of the control miRNAs. Calm3 mRNA was significantly 

decreased in miR-27 mimic transfection compared to RISC-free siRNAs, whereas 

inhibition of miR-27 led to an upregulation of Calm3, suggesting that Calm3 is likely 

to be regulated by miR-27. Although Cav1 did not significantly alter in cells 

transfected with miR-27 mimics or the inhibitors, the mimics slightly reduced the 
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expression of the mRNA compared to RISC-free siRNAs and the inhibitors showed a 

subtle increase of the mRNA. These small changes suggested that Cav1 might be 

regulated by miR-27. Overexpression of miR-27 did not affect levels of Ccng1 

mRNAs; however, inhibition of miR-27 significantly increased Ccng1 levels. It is 

worth noting that an increase of Ccng1 was also seen with the negative mimics and 

inhibitors, suggesting that the elevation Ccng1 observed in cells transfected with 

miR-27 inhibitors could be derived from non-specific effects. 

The effect of miR-27 on the expression of the four genes (Bmi1, Calm3, Cav1 and 

Ccng1) was further examined at the protein level. Evaluation of protein expression 

by Western blot analysis revealed that CALM3 expression was inconsistent with 

mRNA levels (Fig 4.2B). No significant change in the protein level was observed 

upon transfection with miR-27 mimics or miR-27 inhibitors compared to RISC-free 

siRNA. This could be due to the stability and turnover rate of the protein. A 

mathematical model measuring rates of protein decay showed that fast-decaying 

proteins were more likely to be detected as miRNA targets than stable proteins 

(Hausser et al., 2013). This suggests that rates of protein turnover impact the 

investigation of the effect of miRNAs on protein level. However, the turnover rate of 

CALM3 has not been reported. Although Bmi1 and Cav1 mRNAs were slightly 

decreased in cells transfected with miR-27 mimics relative to RISC-free siRNAs, at 

the protein level miR-27 mimics significantly reduced BMI1 and CAV1 protein (~2 

fold) compared to RISC-free siRNAs, indicating that miR-27 is likely to regulate 

these genes. In contrast to overexpression of miR-27, inhibition of this miRNA using 

the inhibitor did not seem to alter BMI1 and CAV1 protein, in line with an 

observation that many miRNA inhibitors showed more subtle effects than miRNA 

mimics (Santhakumar et al., 2010).  

In the case of CCNG1, the protein was not detected in NIH 3T3 cells. To overcome 

this problem, HeLa cells were used since they endogenously express CCNG1 (Min et 

al., 2009). It is important to note that all of the miR-27 binding sites for these targets 

shown in Fig 4.2A are conserved in mouse and human. HeLa cells were untreated or 

transfected with RISC-free siRNAs, miR-27 mimics or miR-27 inhibitors for 48 h. 

Total RNA was extracted to determine expression of miR-27 and Ccng1 mRNAs, 
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and protein samples were collected for Western blot analysis. As shown in Fig 4.3A, 

miR-27 increased ~100 fold in cells transfected with miR-27 mimics compared to 

RISC-free siRNAs, whereas miR-27 inhibitors caused a ~10 fold reduction of miR-

27. Similar to what was observed in NIH 3T3 cells, a significant decrease of Ccng1 

mRNAs in cells transfected with miR-27 mimics was observed along with an 

upregulation of Ccng1 upon miR-27 inhibition (Fig 4.3B). In contrast to the mRNA 

level, CCNG1 protein was not significantly altered by mimic or inhibitor transfection 

compared to RISC-free siRNA, indicating that miR-27 does not regulate Ccng1 (Fig 

4.3C) or the regulation is too subtle to readily detect by Western blot analysis. In 

conclusion, it is likely that Bmi1 and Cav1, but not Ccng1, are regulated by miR-27. 
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Figure 4.2 Expression of Bmi1, Calm3, Cav1 and Ccng1 in transfected cells analysed by qRT-
PCR and Western blot analysis  
NIH 3T3 cells were untreated or transfected with 25 nM RISC-free siRNAs or miRNAs as indicated 
for 48 h. (A) Expression of Bmi1, Calm3, Cav1 and Ccng1 in untreated cells and transfected cells 
determined by qRT-PCR. Data are presented as means of fold-change ±SD from three technical 
replicates relative to RISC-free siRNA. Significance was assessed by one-way ANOVA (*P<0.05, 
***P<0.001 and ****P<0.0001). (B) Western blot analysis (ECL-based detection) of BMI1, CALM3 
and CAV1. The proteins were quantified using ImageStudioLite software and normalised to β-actin or 
GAPDH as indicated. Results are shown as fold change of protein compared to RISC-free siRNA 
transfection. 
 
 
 

Figure 4.3 Expression of Ccng1 in transfected cells 
HeLa cells were untreated or transfected with 25 nM of RISC-free siRNAs or the indicated mimics or 
inhibitors for 48 h. Levels of (A) miR-27 and (B) Ccng1 mRNA analysed by qRT-PCR. Data are 
shown as means of fold change ±SD from three technical replicates relative to RISC-free siRNA 
transfection. Significance was assessed by unpaired t-test (**P<0.01 and ***P<0.001). (C) Western 
blot analysis (ECL-based detection) of CCNG1 protein. CCNG1 and β-actin were quantified using 
ImageStudioLite software. Values of CCNG1 were normalised to β-actin and fold changes of protein 
were calculated compared to RISC-free siRNA transfection. 
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4.3.4 Validation of Bmi1 and Cav1 as direct targets of miR-27 
using luciferase reporter assays 

The studies described above demonstrated that BMI1 and CAV1 protein are 

downregulated upon miR-27 overexpression, although inhibition of miR-27 does not 

alter these protein levels. To examine whether this effect is mediated by direct 

interactions between miR-27 and the 3’UTR of these mRNAs, luciferase reporter 

assays were carried out. The full length 3’UTR of genes of interest was cloned 

downstream of Renilla luciferase of a reporter vector psi-CHECK2. When this vector 

is co-transfected with miRNA mimics, luciferase expression should be lower 

compared to cells transfected with miRNA controls, whereas the co-transfection with 

miRNA inhibitors results in an increase of luciferase levels. NIH 3T3 cells were 

transfected with the empty psi-CHECK2 vector or the vector in which the 3’UTR 

sequences were introduced. To examine the effect of miR-27, cells were co-

transfected with miR-27a mimics, miR-27a inhibitors or RISC-free siRNAs for 48 h. 

Expression of Renilla luciferase were measured and normalised to the internal 

control firefly luciferase in order to minimise variability of experiments due to 

differences in cell viability or transfection efficiency. 

The control experiment was carried out using a miR-27 sensor, which contains three 

adjacent binding sites for miR-27. Each of the binding sites is complementary to 

miR-27 with an internal loop to prevent endonucleolytic cleavage and has been 

previously described in (Libri et al., 2012). As expected, the miR-27 sensor was 

suppressed by the miR-27 mimics compared to RISC-free siRNAs, while miR-27 

inhibitors significantly upregulated expression of Renilla luciferase (Fig 4.4A). 

Consistent with the results obtained from Western blot analysis, miR-27 mimics 

significantly reduced expression of Renilla luciferase (greater than 2 fold) of psi-

CHECK2-Bmi1 3’UTR containing two binding sites of miR-27 compared to RISC-

free siRNA, whereas miR-27 inhibitors increased Renilla luciferase expression (Fig 

4.4B). Similarly, overexpression of miR-27 significantly decreased Renilla luciferase 

(~2 fold) of psi-CHECK2-Cav1 3’UTR compared to RISC-free siRNAs; however, 

the miR-27 inhibitors did not upregulate the expression of Renilla luciferase (Fig 

4.4C). Unlike the 3’UTR of Bmi1 or a miR-27 sensor that contain multiple sites for 
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miR-27, the 3’UTR of Cav1 has only one binding site. In the absence of miR-27 

inhibitors, endogenous miR-27 binds and represses luciferase expression of psi-

CHECK2-Bmi1 3’UTR and a miR-27 sensor, giving rise to lower baseline 

expression of luciferase compare to psi-CHECK2-Cav1 3’UTR. Thus, when miR-27 

is inhibited, psi-CHECK2-Bmi1 3’UTR and a miR-27 sensor should show more 

pronounced effect on the recovery of luciferase compared to psi-CHECK2-Cav1 

3’UTR.  

Along with luciferase assays, the cell viability test was conducted at 48 h post-

transfection to assess toxicity of the transfection. The results revealed that all 

transfected cells showed more than 95% of cell viability compared to untreated cells, 

indicating that the transfection was not toxic (Fig 4.4D). In conclusion, the luciferase 

assays suggest that Bmi1 and Cav1 are direct targets of miR-27. 
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Figure 4.4 Bmi1 and Cav1 are direct targets of miR-27.  
Luciferase reporter assays using (A) a miR-27 sensor containing three binding sites for miR-27 (B) 
psi-CHECK2-Bmi1 3’UTR or (C) psi-CHECK2 Cav1 3’UTR. Schematic illustrations of predicted 
miR-27 binding sites obtained from TargetScan are shown next to the results (Right). Experiments 
were carried out in parallel with the empty psi-CHECK2 vector for comparison. NIH 3T3 cells were 
transfected with indicated vectors with or without miRNA mimics or inhibitors (25nM) for 48 h. 
Renilla luciferase was measured and normalised to firefly luciferase. Data are presented as means of 
fold change (±SD) of five technical replicates relative to RISC-free siRNA. Significance was assessed 
by two-way ANOVA, Dunnett’s multiple comparisons test (*P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001). The experiments were repeated and representative experiments are shown. (D) Cell 
viability test of transfection experiments shown above. Data show means of fold change (±SD) of 
three technical replicates compared to untreated cells. 
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4.3.5 Functional analysis of Bmi1 and Cav1 on MCMV 
replication 

The work described above shows that miR-27 stimulates the G1/S transition and 

directly targets two genes, Bmi1 and Cav1, which have been reported to play a role in 

the cell cycle. The central hypothesis in this chapter is that miR-27 inhibits MCMV 

replication through the regulation of the cell cycle. To evaluate whether this could be 

mediated by Bmi1 or Cav1, the effects of these genes on MCMV replication were 

investigated using siRNAs to knock them down followed by infection with the GFP 

reporter MCMV (GFP-MCMV). NIH 3T3 cells were untreated or transfected with 

RISC-free siRNAs, Bmi1 siRNAs, Cav1 siRNAs or positive controls eGFP siRNAs 

and miR-542 mimics for 48 h prior to infection with GFP-MCMV at MOI of 0.2. 

The positive controls include eGFP siRNAs targeting the expressed green fluorescent 

protein (eGFP) and miR-542 mimics, which was shown by others in the lab to 

suppress replication of MCMV (Santhakumar D., unpublished data) 

As shown in Fig 4.5A, Bmi1 and Cav1 mRNAs were reduced by >95% following 

knockdown compared to cells transfected with RISC-free siRNAs. The BMI1 protein 

was undetectable in Bmi1 knockdown cells, whereas the CAV1 showed ~50% 

reduction (Fig 4.5B). This could be due to a long half-life of CAV1 (longer than 36 

h) reported in monkey kidney cell line and HeLa cells (Hayer et al., 2010). In 

parallel, cell viability assays were performed at 48 h post-transfection showing no 

toxicity of transfected cells as compared to untreated cells (Fig 4.5C). 

To assess the effect of knockdown (BMI1) or partial knockdown (CAV1) on MCMV 

replication, the reporter assay was used. At 48 h post-transfection, cells were mock 

infected or infected with GFP-MCMV at MOI of 0.2. GFP expression was monitored 

up to 93 hpi. As shown in Fig 4.5D, at 93 hpi, eGFP siRNAs and miR-542 mimics 

reduced GFP intensity by ~3 and ~5 fold compared to RISC-free siRNAs, 

respectively. Viral growth in cells in which Bmi1 or Cav1 were knocked down had 

no significant attenuation compared to untreated cells or RISC-free siRNA 

transfection. Considering the absence of BMI1 protein under these transfection 

conditions, it was concluded that BMI1 does not impact MCMV replication in vitro. 

However, it is difficult to draw out a definite conclusion regarding the role that Cav1 
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might play in MCMV infection because the protein could not be completely knocked 

down by siRNAs. 

In this regard, Cav1 knockout mice (Cav1-/-) were kindly provided by Professor Rose 

Zamoyska (IIIR, University of Edinburgh). Primary mouse embryonic fibroblasts 

(MEFs) were isolated from Cav1-/- mice for determination of MCMV growth in the 

absence of Cav1. Initially, Western blot analysis was carried out to confirm the 

elimination of Cav1 gene. As shown in Fig 4.6A, CAV1 was completely diminished 

in cells isolated from Cav1-/- mice. To carry out the viral growth assay, cells were 

seeded for 24 h prior to infection with GFP-MCMV at MOI of 0.2. GFP expression 

was measured at 70 hpi, which is a time point within the exponential expression of 

GFP observed from previous growth curves (Fig 4.5D). Similar to the results from 

the Cav1 knockdown experiments, MCMV growth was not different in MEFs 

obtained from Cav1-/- versus wild type mice (Fig 4.6B). These data suggest that Cav1 

does not influence MCMV replication in vitro. 
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Figure 4.5 Knockdown of Bmi1 or Cav1 does not suppress MCMV replication in vitro. 
 (A) The levels of Bmi1 and Cav1 mRNAs determined by qRT-PCR and (B) the protein expression 
examined by Western blot analysis. NIH 3T3 cells were untreated or transfected with 25 nM RISC-
free siRNAs, Bmi1 siRNAs or Cav1 siRNAs for 48 h. (A) Bmi1 and Cav1 levels were normalised to 
Gapdh. Data are presented as means of fold-change (±SD) from three technical replicates relative to 
RISC-free siRNA transfection. Significance was assessed by two-way ANOVA (****P<0.0001). (B) 
Western blot analysis (ECL-based detection) of BMI1 and CAV1. Proteins were quantified using 
ImageStudioLite software and normalised to GAPDH or β-actin as indicated. Results are shown as 
fold change in protein relative to RISC-free siRNA transfection. (C) Cell viability analysis of NIH 
3T3 cells transfected with RISC-free siRNAs, eGFP siRNAs, miR-542 mimics, Bmi1 siRNAs or Cav1 
siRNAs for 48 h. Results are presented as means of fold change (±SD) of three technical replicates 
relative to untreated cells. (D) MCMV viral growth curves. NIH 3T3 cells were untreated or 
transfected with indicated siRNAs or miRNAs for 48 h prior to infection with GFP-MCMV at MOI of 
0.2. The fluorescent signal is presented as means (±SD) of five technical replicates. 
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Figure 4.6 MCMV growth in Cav1-/- mouse embryonic fibroblasts (MEFs).  
(A) Western blot analysis (ECL-based detection) showing the absence of CAV1 protein in Cav1-/- 

MEFs. (B) The fluorescent signal of GFP-MCMV in wild type MEFs or Cav1-/- MEFs. Cells were 
seeded at a density of 1.5x104/well in a 96-well plate for 24 h prior to infection with the GFP reporter 
virus at MOI of 0.2. At 70 hpi, the fluorescent signal was measured. Each dot represents individual 
replicate from four independent experiments. The fluorescent data in Cav1-/- MEFs are presented as 
fold changes relative to wild type MEFs. Significance was assessed by unpaired t test (*P<0.05). 
 

4.3.6 Analysis of the cell cycle in Bmi1 or Cav1 knockdown 
The present study has shown that miR-27 overexpression accelerates the G1/S 

transition, suggesting the role of miR-27 in regulation of the cell cycle. Although, the 

functional analysis of direct targets of miR-27, Bmi1 and Cav1, on MCMV growth 

revealed that they do not impact viral replication, it is interesting to determine 

whether these targets could explain the function of miR-27 in promoting the G1/S 

transition. From the literature, Bmi1 has been shown to be involved in progression of 

G1 to S phase, while Cav1 is proposed as a negative regulator that arrests cells in 

G0/G1 when it is overexpressed. Bmi1 has been identified as an oncogene 

suppressing the transcription of p16Ink4a and p19Arf, negative regulators of the cell 

cycle. A study of Bmi1-deficient mouse embryonic fibroblasts demonstrated that 

cells failed to progress into S phase of the cell cycle (Jacobs et al., 1999). Moreover, 

knockdown of Bmi1 using short hairpin RNAs (shRNAs) in HeLa cells led to G1 

arrest and cells in S phase decreased from 27.17% to 19.21% (Chen et al., 2011).  

In contrast, Cav1 arrests the cell cycle at G0/G1 through a p53/p21-dependent 

pathway (Galbiati et al., 2001). A study revealed that in endothelial cells, 

overexpression of Cav1 arrested cells in G0/G1 by preventing downregulation of 
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cyclin-dependent kinase inhibitor p27 (p27kip1) and Rb phosphorylation (Fang et al., 

2007). Given that miR-27 is a positive regulator of the cell cycle, particularly at G1/S 

transition, it was hypothesised that miR-27 stimulates the cell cycle through 

regulation of Cav1, leading to the release of cells from G1 to S phase. To address 

whether Bmi1 or Cav1 affect the cell cycle in NIH 3T3 cells, cell cycle analysis was 

carried out in cells transfected with Bmi1 or Cav1 siRNAs. NIH 3T3 cells were 

untreated or transfected with RISC-free siRNAs, miR-27 mimics, miR-27 inhibitors, 

Bmi1 siRNAs or Cav1 siRNAs for 24 h. Due to the partial knockdown of CAV1 

protein shown above, cells isolated from Cav1-/- should be more suitable cells to 

examine function of CAV1 rather than cells transfected with siRNAs; however such 

an experiment has not been conducted due to time constrain of the PhD project. 

Following transfection, cells were serum-starved using media containing 0.5% serum 

for 24 h prior to reactivation with media containing 10% serum. Cells were collected 

at indicated time points post serum-reactivation as described above (Fig 4.7A). 

Consistent with the previous results shown in Fig 4.1B, miR-27 mimics induced the 

S phase population to 84.22% at 14 h and 58.73% at 16 h, whereas RISC-free 

siRNAs showed 78.85% of S phase cells at 14 h and 39.98% at 16 h (Fig 4.7B). As 

expected, miR-27 inhibitors reduced cells in S phase as 70.67% at 14 h. 

Similar to miR-27 inhibitor treatment, Bmi1 knockdown cells showed G1 arrest and 

the reduction of cell numbers in S phase at 12 and 14 h (Fig 4.7B). Likewise, 

knockdown of Cav1 displayed G1 arrest and delayed S phase entry at 12 and 14 h. 

The knockdown of Cav1 there did not promote the G1/S transition but rather caused 

arrest. Altogether, these data indicate that the knockdown of Bmi1 or Cav1 did not 

lead to the stimulation of the G1/S transition and rather resulted in G1 arrest. Thus, 

Bmi1 or Cav1 are unlikely to be involved in miR-27-induced G1/S transition but they 

do appear to influence the cell cycle in regulating the progression of cells from G1 to 

S phase. 
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Figure 4.7 Bmi1 and Cav1 are not involved in miR-27-induced G1/S transition. 
(A) Experimental design for cell cycle analysis of cells transfected with siRNAs as described in Fig 
4.1. (B) Histograms display the DNA content plotted against cell numbers. The green peak represents 
G0/G1 cells and the pink peak indicates G2/M cells. Results are representatives of two independent 
experiments. Data were analysed using FlowJo software. 

4.4 Discussion 
The present chapter shows that overexpression of miR-27 promotes the G1/S 

transition of the cell cycle, whereas inhibition of this miRNA leads to a delay of this 

transition. In agreement with this, overexpression of miR-27 in cells transfected with 

pre-miR-27 increased the number of cells in S phase to ~55% compared to cells 

transfected with pre-miR-control (~40%), with a concomitant reduction in G1 

population to ~20% compared to the control (~25%) (Lerner et al., 2011). The 

increase of S phase population upon miR-27 overexpression was a result of elevation 

of cyclin E, which is a regulatory protein of G1/S transition. miR-27 rescued cyclin E 

by regulating Fbw7, the substrate recognition component of an ubiquitin ligase 

complex SCF that mediates turnover of cyclin E (Lerner et al., 2011). In line with 

this, the present chapter showed that the overexpression of miR-27 resulted in an 

increase of cyclin D3, a key regulator of G1/S progression in addition to cyclin E 

(Masamha and Benbrook, 2009). 

The inhibition of miR-27 using miR-27 inhibitors significantly arrested cells in 

G0/G1 and led to reduction in the number of cells in S phase. In support of this, 

others have shown that the inhibition of miR-27 using antisense miR-27 led to a 

decrease in percentage of cells in S phase, in two different cell types: breast cancer 

cells and hepatic stellate cells (Ji et al., 2009; Mertens-Talcott et al., 2007). In breast 

cancer cells, the transfection of antisense miR-27 significantly reduced the 

percentage of cells in S phase from 30% to 20% as compared to the control 

(Mertens-Talcott et al., 2007). Ji et al. have used BrdU incorporation assays to show 

relative quantification of cells in S phase. They showed that the inhibition of miR-27 

in hepatic stellate cells resulted in a significant reduction of cells in S phase 

compared to control cells (Ji et al., 2009). Taken together, data presented in this 

chapter and several independent lines of evidence underscore the role of miR-27 in 

promoting cell cycle progression from G1 to S phase. Given that miR-27 is involved 
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in regulation of the cell cycle particularly at the G1/S transition, it is interesting to 

examine the expression of miR-27 whether it is cell-cycle dependent. Indeed, Lerner 

et al. have determined expression of miR-27 during the cell cycle and mentioned 

without showing data that changes in miR-27 levels were not significant; however, 

the authors were able to detect changes of the miR-27 target, Fbw7 during the cell 

cycle progression (Lerner et al., 2011), suggesting that the fluctuation of miR-27 

expression might be minimal. In addition, miR-27 functions might depend on 

additional factors, such as RNA-binding proteins, in regulation of Fbw7 (Lerner et 

al., 2011). 

In addition to its documented functions in regulating the cell cycle, miR-27 has also 

been identified as an oncogenic miRNA that promotes cell proliferation. 

Overexpression of miR-27 occurs in various kinds of cancer cells (Guttilla and 

White, 2009; Liu et al., 2009; Ma et al., 2010; Mertens-Talcott et al., 2007; Prueitt et 

al., 2008). Since cell proliferation is regulated by the cell cycle (Golias et al., 2004), 

this may link the positive regulatory function of miR-27 in the cell cycle shown in 

the present study to its oncogenic property in cell proliferation. 

Based on the positive regulatory effect of miR-27 on the G1/S transition, it was 

further examined whether miR-27 exerts this function through direct regulation of 

Bmi1, Calm3, Cav1 or Ccng1. These genes have been shown to have a role in the cell 

cycle (see section 4.3.3) and were identified in chapter 3 as genes regulated by miR-

27. Initially, the determination of mRNA and protein expression was carried out in 

cells transfected with miR-27 mimics or miR-27 inhibitors. Although there was no 

significant alteration of Bmi1 and Cav1 mRNAs under these conditions, BMI1 and 

CAV1 proteins were downregulated (~2 fold) in cells transfected with miR-27 

mimics compared to RISC-free siRNAs. This demonstrates that monitoring mRNA 

abundance might miss out some of the effects of miR-27 on its target genes. Further, 

the luciferase reporter assays confirmed that Bmi1 and Cav1 are direct targets of 

miR-27. 

Polycomb ring finger oncogene 1 (BMI1) belongs to the polycomb group proteins 

comprising a set of proteins that form into chromatin-associated complexes that 
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suppress gene transcription (reviewed in (Sauvageau and Sauvageau, 2010). Bmi1 

has been identified as an oncogene regulating the G1/S transition by suppressing the 

transcription of negative regulators: p16Ink4a and p19Arf (Jacobs et al., 1999). The 

deficiency of Bmi1 in knockout mice and the knockdown of Bmi1 using shRNAs 

caused G1 arrest in several cell types (Chen et al., 2011; Jacobs et al., 1999; Wu et 

al., 2011). In line with previous findings, the present study shows that knockdown of 

Bmi1 using siRNAs resulted in G1 arrest and the reduction of cells in S phase at 12 

and 14 h post serum reactivation. Based on the observation that the knockdown of 

Bmi1 resulted in G1 arrest, it is unlikely that the miR-27-promoted G1/S transition is 

mediated through regulation of Bmi1 by miR-27. 

Caveolin-1 (CAV1) is a component of the caveolae plasma membrane protein. In 

mammals, three caveolins (CAV1-3) have been identified (Okamoto et al., 1998). 

CAV1 and CAV2 express as hetero-oligomers in many cell types (Scherer et al., 

1997), while CAV3 is muscle-specific (Song et al., 1996). Interestingly, CAV1 has 

previously been shown to be involved in the G0/G1 arrest. Specifically, the 

overexpression of Cav1 in NIH 3T3 cells caused cell cycle arrest in the G0/G1 phase 

via a p53/p21-dependent pathway (Galbiati et al., 2001). The authors used MEFs 

derived from Cav1 transgenic mice overexpressing Cav1 to confirm the effect. As 

expected, they found that MEFs derived from the transgenic mice showed an 

increase in the G0/G1 population and a significant reduction in the number of cells in 

S phase compared to wild type MEFs (Galbiati et al., 2001). In line with this, the 

other study in human endothelial cells showed that overexpression of Cav1 induces 

G0/G1 arrest whereby it prevents the downregulation of the cyclin-dependent kinase 

inhibitor p27kip1 and Rb phosphorylation, resulting in the accumulation of cells in 

G0/G1 (Fang et al., 2007). The previous data therefore would suggest that Cav1 

negatively modulates the cell cycle by arresting cells in G0/G1; thus, knockdown of 

Cav1 in this study was expected to attenuate the arrest and induce cells from G0/G1 

to S phase. However the work presented here demonstrates that knockdown of Cav1 

using siRNAs results in G0/G1 arrest. It is important to note, however, that the 

knockdown of Cav1 using siRNAs resulted in only ~50% reduction of the protein. It 

is expected that the incomplete knockdown of the protein could relate to a long half-



Chapter 4: Results 

 149 

life of the protein (Hayer et al., 2010). In addition, it was reported that CAV1 protein 

was upregulated after 24 h serum starvation and remained at a high level at 8 h post 

serum reactivation, resulting in G1 arrest (Galbiati et al., 2001). In the present study, 

cells in which Cav1 was knocked down were serum-starved for 24 h. It is therefore 

possible that CAV1 protein is induced under these conditions and the elevation of 

CAV1 may interfere with the knockdown attempts using siRNAs. Thus, it is difficult 

to draw a conclusion of Cav1 functions in the cell cycle due to partial knockdown of 

the protein. Future studies using cells isolated from Cav1-/- mice would provide a 

better model to investigate the function of Cav1 in the cell cycle. 

In the context of MCMV infection, the present study showed that Bmi1 and Cav1 do 

not affect viral replication based on the reporter assay. Indeed, no evidence has been 

reported whether Bmi1 or Cav1 are involved in CMV-modulated cell cycle, although 

it has been shown that the virus modulates a number of genes in this pathway (Hertel 

and Mocarski, 2004). To date, studies have shown controversial effects of HCMV on 

the cell cycle, with some studies suggesting the virus causes arrest and others 

suggesting the virus causes progression of G1 to S phase. In case of the cell cycle 

arrest, several studies have shown that HCMV blocked the G1/S phase transition 

(reviewed in (Flemington, 2001)). The tegument protein UL69 of HCMV was found 

to be responsible for G1 arrest and the virus lacking UL69 gene displayed a growth 

defect relative to wild type virus, suggesting the significance of HCMV-induced cell 

cycle arrest to the viral infection (Hayashi et al., 2000; Lu and Shenk, 1999). In 

addition, independent studies have shown that IE86 protein of HCMV induced the 

cell cycle arrest in G1 coincided with a decrease in cell proliferation (Noris et al., 

2002; Wiebusch and Hagemeier, 1999). CMV is a large DNA virus that encodes the 

viral DNA polymerase and other essential viral factors allowing the virus to 

synthesise viral DNA independently from S phase of host cells (reviewed in 

(Flemington, 2001)). Therefore, it was proposed that the virus arrests cells to avoid 

competing with cellular DNA synthesis during S phase in order to use cellular 

products for its replication. 

On the other hand, it has also been reported that HCMV elicits the cell cycle 

progression in certain systems. Using adenovirus expressing IE86 protein, Murphy et 
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al. found a significant increase in the number of cells in S phase which is 

contradictory to the previous evidence showing the cell cycle arrest activity of IE86 

(Murphy et al., 2000). The authors conducted cell cycle analysis at 48 h after serum 

stimulation, whereas the previous study by (Wiebusch and Hagemeier, 1999) was 

carried out at 24 h. Murphy et al. then speculated that the different time point after 

serum stimulation is an issue that gives rise to the opposite data as 48 h serum 

stimulation allows cells more time to recover from starvation and progress through 

the cell cycle including the progression from G1 to S phase (Murphy et al., 2000). 

The inconsistent data could be due to differences of cellular genetic background that 

should be taken into consideration. For example, in terminally differentiated cells 

(where cells are irreversibly withdrawn from the cell cycle and are arrested in G0), 

HCMV appeared to induce cell cycle progression through G1 to early S phase, 

possibly via the interaction between IE86 and the cyclin-dependent kinase inhibitor 

p21Cip1 (Sinclair et al., 2000).  

The effects of HCMV on the cell cycle are still a matter of debate. In the case of 

MCMV, it was demonstrated that the virus blocks cell cycle progression from G1 to 

S phase based on the cell cycle arrest ability of IE3, the homologue of HCMV IE2 

(Wiebusch et al., 2008). The authors showed that the transient expression of IE3 

resulted in 67% of cells in G1 phase compared to 48% of cells in G1 of the negative 

control (Wiebusch et al., 2008). This indicates that the virus may actively seek to 

keep cells in the G1 phase. Thus, it is logical to speculate that miR-27 might be 

targeted by the virus to inhibit the G1/S transition, consistent with the data shown 

here using miR-27-inhibitors. 

Although the present study could not identify cellular targets of miR-27 responsible 

for its regulating of the G1/S transition, these results provide a starting point for 

further investigations of miR-27 functions in the cell cycle, specifically in the context 

of MCMV infection. Based on the effect of miR-27 that was particularly observed at 

the G1/S transition, identification of miR-27 targets at this certain point would 

provide a list of regulated genes contributing to this effect. To specifically explore 

those genes important for the G1/S transition, future work may involve 
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transcriptomic or proteomic analysis of miR-27 overexpression following by 

inducing the progression of cells from G1 to S phase.   

In conclusion, the results from this chapter support a role of miR-27 in promoting the 

G1/S transition, in line with the literature. However, this effect did not appear to 

involve Bmi1 or Cav1, which were validated as direct targets of miR-27 using 

luciferase reporter assays. Further work to identify miR-27 targets underpinning its 

impact on the cell cycle would provide a better understanding of miR-27-induced 

G1/S transition. In the context of MCMV infection, it appeared that Bmi1 and Cav1 

do not play a role in the replication of MCMV in vitro. 
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Chapter 5: Identification of miR-27 targets 
using cross-linking, ligation and sequencing of 
hybrids (CLASH)   
5.1 Introduction 
The primary aim of this thesis is to identify cellular targets of miR-27 that play a role 

in MCMV replication. In chapter 3, microarray analysis was conducted to determine 

mRNA expression changes upon miR-27 overexpression or MCMV infection. 

However, this technique is unable to distinguish between direct and indirect effects 

of miR-27. To address this point, the objective of this chapter is to utilise a 

biochemical technique called “cross-linking, ligation and sequencing of hybrids 

(CLASH)” to experimentally identify a comprehensive profile of direct targets of 

miR-27. 

miRNAs have been found to function as key regulators of gene expression in a 

diverse range of species from nematodes, flies, plants and vertebrates to humans 

(reviewed in (Bartel, 2004; He and Hannon, 2004)). In humans, ~60% of protein-

coding genes are predicted to contain at least one conserved miRNA-binding site in 

vertebrates (Friedman et al., 2009). The miRNA binding sites are generally found in 

the 3’UTRs of mRNAs and the recognition is largely thought to be mediated by 

perfect complementarity to the seed sequence of miRNAs, which is the position 2 to 

8 from the 5’end (reviewed in (Hausser and Zavolan, 2014)). Binding sites in 

mRNAs that are based on complementarity to the seed sequences are called 

“canonical sites”. Beyond canonical seed matches, bioinformatic analysis of high-

throughput data revealed that there are non-canonical binding sites containing G-U 

pairs, bulged or mismatched nucleotides. The regulation of transcripts via non-

canonical sites was demonstrated to cause average or more modest effects compared 

to canonical sites; however, it is still unclear whether non-canonical sites have 

functions other than mRNA repression. (reviewed in (Hausser and Zavolan, 2014)). 

Identifying miRNA targets and their biological functions is an area of intense 

investigation involving both computational predictions and experimental methods 
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(reviewed in (Hausser and Zavolan, 2014; Thomson et al., 2011)). Although many 

computational approaches for target prediction are available, the false positive rate 

remains very high (24-70%) (reviewed in (Thomson et al., 2011). Other factors that 

contribute to false positives relate to parameters such as RNA structures and RNA-

binding proteins that might affect accessibility of binding sites (Ameres et al., 2007; 

Kedde and Agami, 2008). Since target prediction algorithms are generally based on 

rules for canonical sites within mRNAs, these often also miss non-canonical sites 

(Min and Yoon, 2010). This highlights the requirement of experimental approaches 

to identify and validate direct target sites, including novel non-canonical binding 

sites. Ideally, this experimental data would then be used to improve prediction 

programs. 

Different experimental approach can be used to identify targets of miRNAs, 

including analysis of the effect of miRNAs levels on global mRNA or protein 

expression following overexpression or inhibition of the miRNAs (reviewed in 

(Hausser and Zavolan, 2014)). Changes in mRNA levels can be measured using 

microarray analysis or RNA sequencing. The effect of miRNAs on protein levels can 

be determined using mass spectrometry-based experimental techniques such as 

SILAC (stable isotope labelling by amino acids in cell culture). In this technique, 

cells are grown in a media containing labelled amino acids that will be incorporated 

into newly synthesised proteins and the proteins containing labelled amino acids are 

then quantified through the isotope signal. Combined methods of ribosomal profiling 

and measurements of mRNA expression have also provided deeper insights into the 

effects of miRNAs on rates of translation (Guo et al., 2010). Ribosomal profiling 

involves deep sequencing of ribosome protected mRNA fragments, allowing 

determination of which mRNAs are being actively translated into proteins. Thus, 

comparison of ribosomal profiling to mRNA levels can be used to correlate the effect 

of miRNAs on transcription versus translation. However, these methods do not 

globally distinguish direct from indirect effects of the miRNA since they do not 

provide information on the miRNA-target interaction site. 

A common method to identify direct targets of miRNAs is immunoprecipitation of 

the AGO protein followed by microarray analysis or deep sequencing to identify 
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AGO-bound RNAs (reviewed in (Hausser and Zavolan, 2014)). Further, a 

crosslinking step has been introduced to crosslink RNAs to the AGO protein prior to 

immunoprecipitation, termed “AGO-cross linking and immunoprecipitation (CLIP)” 

(Ule et al., 2003). Data obtained from sequencing are mapped back to the genome or 

transciptome to identify the specific miRNA binding sites on mRNAs. Several 

modifications of the CLIP method have been developed such as high-throughput 

sequencing of RNA isolated by CLIP (HITS-CLIP), photoactivatable-

ribonucleoside-enhanced CLIP (PAR-CLIP) in which cells are fed with a photo-

activatable 4-thiouridine (4-TU) before cross-linking, and individual-nucleotide 

resolution CLIP (iCLIP) (reviewed in (Hausser and Zavolan, 2014)). Although CLIP 

techniques identify the small RNAs associated with AGOs and the location of 

binding sites in mRNAs, computational analyses have still been required to predict 

the exact interactions that occur. To overcome this issue, a modification of this type 

of immunoprecipitation protocol was developed. The CLASH technique uses an 

additional step of RNA-RNA ligation to join miRNAs and target mRNAs prior to 

sequencing thereby defining the both binding partners and the location of interaction 

(Helwak et al., 2013; Helwak and Tollervey, 2014). This technique also varies from 

CLIP in that it is carried out with a double affinity tagged version of AGO (Fig 5.1), 

allowing stringent purification of protein-RNA complexes under denaturing 

condition in order to reduce background (Helwak and Tollervey, 2014). The 

development of CLASH opens up an exciting avenue to explore direct targets of 

miRNAs in a high-throughput manner.  

In the original CLASH paper, it was done with AGO1. This thesis however focuses 

on AGO2 based on its slicer activity and biological significance in mouse 

development as described below. AGO1-4 are found in human and mouse. These 

four AGOs are thought to share redundant function in the miRNA pathway (Su et al., 

2009); however, only AGO2 has been shown to have slicer activity responsible for 

cleavage of target mRNAs that have near perfect complementarity to miRNAs, 

although it occurs much less frequently in mammals than in plants (Bracken et al., 

2011; Karginov et al., 2010; Shin et al., 2010). In addition, a study in Ago2-/- mice 

demonstrated that the ablation of Ago2 leads to embryonic lethality, while other 
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AGO proteins are dispensable, suggesting a role of AGO2 in mammalian 

development (Liu et al., 2004).  

In the present chapter, a NIH 3T3-PTH-mAGO2 stable cell line expressing tagged-

mAGO2 was generated. The expression levels of miR-27 and the growth of MCMV 

were both examined in NIH 3T3-PTH-mAGO2 cells compared to NIH 3T3 cells to 

ensure that overexpression of this protein did not impact viral growth or virus-

mediated miR-27 degradation. Finally, the CLASH protocol was carried out to 

generate initial datasets for the direct interactions of miR-27 targets. 

5.2 Aims 
The aims of the present chapter are to: 

1. Establish the NIH 3T3-PTH-mAGO2 stable cell line to allow CLASH in cells 

permissive to MCMV 

2. Evaluate whether the stable cell line is suitable for identification of miR-27 

targets during infection 

3. Generate datasets of direct targets of miR-27 in the context of MCMV 

infection using CLASH technique 
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Figure 5.1 Overview of CLASH protocol (adapted from (Helwak and Tollervey, 2014)). 
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5.3 Results 
5.3.1 Generation of the NIH 3T3-PTH-mAGO2 stable cell line 

expressing PTH-mAGO2 by lentiviral transduction 
To generate lentiviruses expressing PTH-mAGO2, the transfer vector pLVX-CAG-

PTH-mAGO2 containing PTH-mAGO2 was generated. The vector containing CAG 

promoter was chosen based on the ability of the promoter to highly drive expression 

of genes (Alexopoulou et al., 2008). The PTH-mAGO2 insert was amplified from 

pCDNA3-PTH-mAGO2 using primers containing XhoI and NotI restriction sites. 

The PCR product was then digested using XhoI and NotI restriction enzyme, gel 

purified and cloned into pLVX-CAG. The expression of the tagged-protein was 

examined. NIH 3T3 cells were untreated or transfected with pLVX-CAG-PTH-

mAGO2 for 48 h. Protein samples were collected and analysed by Western blot 

using the antibody specific to the protein A. As shown in Fig 5.2A, cells transfected 

with pLVX-CAG-PTH-mAGO2 highly expressed PTH-mAGO2, whereas the 

tagged-protein was absent in untreated cells. The positive control is the protein lysate 

obtained from Flp-In T-REx 293 cells (HEK293-PTH-hAGO2 cells) expressing 

PTH-human AGO2. 

Next, the verified pLVX-CAG-PTH-mAGO2 was used to produce lentiviruses. This 

vector expressing the tagged-mAGO2 was co-transfected into HEK293T cells with 

pMD2.G-VSV-G (envelope plasmid) and psPAX2 (packaging plasmid) to generate 

lentiviral particles. The viral supernatant was concentrated approximately 100 fold 

by ultracentrifugation (see section 2.11.3 of materials and methods). To generate the 

stable cell line, NIH 3T3 cells were untreated or transduced with various volumes of 

the concentrated viral supernatant (12 µl, 24 µl or 48 µl) to determine the optimum 

amount of virus for the transduction. Cells were maintained in the media containing 

puromycin for 7 days to positively select transduced cells. Protein samples were 

collected to evaluate the expression of PTH-mAGO2 by Western blot analysis using 

the antibody specific to the protein A tag. As shown in Fig 5.2B, cells treated with all 

three volumes of lentiviral supernatant expressed PTH-mAGO2 at comparable 

levels, whereas no tagged-AGO was observed in untreated cells. HEK293-PTH-

hAGO2 cells expressing PTH-humanAGO2 were used as the positive control. These 
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results indicate that the NIH 3T3-PTH-mAGO2 cell line expressing tagged-mAGO2 

was successfully generated. 

To compare the protein expression levels of the tagged-mAGO2 relative to the 

endogenous AGO2, cell lysates were prepared from NIH 3T3-PTH-mAGO2 and the 

parental NIH 3T3 cells. Western blot analysis using an antibody specific to mAGO2 

was carried out. As expected, total mAGO2 (tagged-mAGO2 and endogenous 

mAGO2) from NIH 3T3-PTH-mAGO2 cells was dramatically higher than 

endogenous protein expressed in wild type NIH 3T3 cells (Fig 5.2C). 
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Figure 5.2 Expression of PTH-mAGO2 in cells transfected with pLVX-CAG-PTH-mAGO2 and 
the NIH 3T3-PTH-mAGO2 stable cell line, and comparison of total mAGO2 between NIH 3T3-
PTH-mAGO2 and NIH 3T3 cells 
(A) NIH 3T3 cells were untreated or transfected with 1.5 µg pLVX-CAG-PTH-mAGO2 for 48 h. 50 
µg of total protein was loaded onto 12% SDS-PAGE gels from untreated cells (-), transfected cells (+) 
and the positive control, which is extract from HEK293-PTH-hAGO2 cells expressing PTH-human 
AGO2 protein. Western blot analysis (ECL-based detection) was carried out using peroxidase anti-
peroxidase soluble complex antibody (PAP) (Sigma, P1291) specific to protein A within PTH tag with 
β-actin as the loading control. (B) Expression of PTH-mAGO2 protein obtained from cells treated 
with lentiviruses after 18 h. NIH 3T3 cells were untreated or transduced with various volumes of 
lentiviruses (12, 24 or 48 µl). Cells were collected and the expression of PTH-mAGO2 was 
determined by Western blot analysis (ECL-based detection) using the PAP antibody specific to 
protein A. The positive control is protein lysate from HEK293-PTH-hAGO2 cells. (C) Comparison of 
total mAGO2 (tagged-mAGO2 and endogenous mAGO2) from NIH 3T3-PTH-mAGO2 cells and 
endogenous mAGO2 from wild type NIH 3T3 cells. Western blot analysis (ECL-based detection) was 
performed using the antibody specific to both mAGO2 and hAGO2 (Cell signalling, 2897). The 
positive control is protein lysate from HEK293-PTH-hAGO2 cells. 

5.3.2 Expression levels of miR-27 and m169 in NIH 3T3-PTH-
mAGO2 cells and wild type NIH 3T3 cells 

The purpose of generating the NIH 3T3-PTH-mAGO2 cells overexpressing PTH-

mAGO2 was to generate a CLASH dataset utilising the double affinity purification 

procedure to ultimately directly identify targets of miR-27. One consideration in this 

experimental design is whether overexpression of AGO2 will have other effects on 

the cell or infection that would complicate results. For example, in addition to its 

fundamental role in gene silencing within RISC, AGO2 can also play a role in RISC 

maturation since it cleaves the passenger strand of perfect or nearly perfect miRNA 

duplexes (reviewed in (Czech and Hannon, 2011)). The cleaved strand then 

dissociates from the RISC, yielding the mature AGO2-RISC. Moreover, AGO2 was 

shown to impact the stability of miRNAs as Ago2 knockout MEFs showed >80% 

reduction in levels of multiple endogenous guide strands compared to wild type cells 

(Winter and Diederichs, 2011). Since AGO2 is involved in miRNA biogenesis and 

stability, the impact of overexpression of PTH-mAGO2 on miR-27 levels in the NIH 

3T3-PTH-mAGO2 cell line was examined. As introduced previously, MCMV 

encodes a non-coding RNA, m169, that mediates miR-27 degradation (Libri et al., 

2012; Marcinowski et al., 2012). It was also therefore examined if overexpression of 

AGO2 affects miR-27 levels in the context of infection, to determine whether 

regulation of miR-27 by m169 might be altered in NIH 3T3-PTH-mAGO2 cells 

compared to NIH 3T3 cells.  
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Expression of miR-27 in NIH 3T3-PTH-mAGO2 cells was compared to NIH 3T3 

cells in the presence or absence of infection. Cells were mock infected or infected 

with MCMV for 8 and 24 h. Total RNA was collected to determine levels of miR-27 

and m169 using Northern blot analysis. In the absence of infection, miR-27 levels in 

NIH 3T3-PTH-mAGO2 cells were comparable to that of NIH 3T3 cells (Fig 5.3). At 

8 and 24 hpi, the levels of m169 were equivalent in NIH 3T3- PTH-mAGO2 cells 

and NIH 3T3 cells. In addition, miR-27 was reduced upon infection to comparable 

levels in both cell lines. The comparable expression of miR-27 and m169 observed in 

the two cell lines suggested that overexpression of the tagged-AGO2 does not affect 

levels of miR-27 in uninfected cells or m169-mediated degradation of miR-27 during 

infection. 

 

Figure 5.3 Expression levels of miR-27 and m 169 in NIH 3T3-PTH-mAGO2 cells compared to 
NIH 3T3 cells 
Northern blot analysis of miR-27 and m169. Cells were mock infected or infected with MCMV at 
MOI of 5 for 8 or 24 h. 5 µg of total RNA was loaded per well and probed using oligos perfectly 
complementary to miR-27, m169 or miR-16 (which served as a loading control). 
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5.3.3 Comparison of MCMV growth in NIH-3T3-PTH-mAGO2 
cells and NIH 3T3 cells  

Having determined that overexpression of mAGO2 did not affect the regulation of 

miR-27 or the degradation of miR-27 by m169, it was further evaluated whether viral 

growth was the same in both cell types. NIH 3T3-PTH-mAGO2 cells or NIH 3T3 

cells were infected with MCMV at MOI of 0.01 and the supernatant containing virus 

was collected on a daily basis for 5 days post infection. As shown in Fig 5.4, viral 

growth curves in NIH 3T3-PTH-mAGO2 cells and NIH 3T3 cells were similar in 

most of time course of infection, based on standard plaque assays. The only 

exception was on Day 2 where the viral growth was slightly lower (~10 fold 

decrease) in NIH 3T3-PTH-mAGO2 cells compared to NIH 3T3 cells. The above 

validation showed that overexpression of mAGO2 in NIH 3T3-PTH-mAGO2 cells 

does not affect viral growth, apart from a difference at 2 days post infection. It was 

therefore decided that the cell line was appropriate for further studies. 

 

	
  

Figure 5.4 MCMV growth curves in NIH 3T3-PTH-mAGO2 cells or NIH 3T3 cells 
Cells were infected with MCMV at MOI of 0.01. Supernatant was collected at indicated time points 
(days post infection, dpi) and viral titres determined by standard plaque assays. Results are shown as 
means with SD of plaque forming units (PFU)/ml from three technical replicates.  
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5.3.4 Identification of miRNA targets using cross-linking, 
ligation and sequencing of hybrids (CLASH) 

In order to generate CLASH datasets, NIH 3T3-PTH-mAGO2 cells were mock 

infected or infected with wild type MCMV or MCMV Δm169 lacking m169 (MOI of 

5) in 15 cm plates (eight plates per sample) for 24 h. A control sample from 

HEK293-PTH-hAGO2 cells was prepared by Katrina Gordon (Buck lab). HEK293-

PTH-hAGO2 cells were used as the control based on preliminary work in the lab 

showing a good recovery (~30%) of protein purification using IgG-conjugated 

Dynabeads and ~1,500 chimeras of miRNA-mRNA sites (termed “chimeras”) were 

obtained from libraries using this cell line (Gordon K., unpublished data).  

As shown in the schematic in Fig 5.1, cells were UV-irradiated at 254 nm to stabilise 

protein-RNA interactions and protein lysate was collected. Unlike other CLIP-based 

techniques that immunoprecipitate endogenous protein, CLASH is carried out in 

cells expressing tagged-protein, allowing two protein purification steps under high 

stringency conditions. The first involves purification of PTH-mAGO2 using IgG-

coated Dynabeads, which bind with high affinity to the protein A of PTH-mAGO2 

followed by purification with Ni-NTA, which binds to the His tag. On the 

Dynabeads, the RNAs and RNA-RNA duplexes protected by AGO2 are trimmed 

using RNases. The protein-RNA complexes are then eluted from the Dynabeads and 

further purified using Ni-NTA. It should be noted that in the original design, a TEV 

cleavage site was introduced to allow for protease cleavage at this step; however, this 

was not efficient and the protocol was modified as shown in Fig 5.1 (Helwak and 

Tollervey, 2014). 

The first checkpoint for this technique is the evaluation of the protein recovery from 

Dynabeads and Ni-NTA. To assess this a Western blot analysis was carried out with 

the input material, flow-through from the Dynabeads, material remaining on 

Dynabeads after protein elution (boiled Dynabeads), the elution from the Dynabeads 

and flow-through from Ni-NTA. As shown in Fig 5.5A, the control from HEK293-

PTH-hAGO2 cells showed ~20-30% reduction in the tagged-AGO2 in the flow-

through compared to the input. Following protein elution from Dynabeads, no 

protein was detected in the boiled Dynabeads, whereas the tagged-AGO2 protein was 
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present in two dilutions of the material eluted from Dynabeads: undiluted protein 

(Elution 1) and a 2 fold dilution of the protein (Elution 2). This suggests a 

moderately efficient purification with the control sample. However, tagged-AGO2 

levels of the input from mock, wild type MCMV and MCMV Δm169 infection were 

comparable to the flow-through from Dynabeads, indicating that this initial 

immunoprecipitation was less efficient compared to the control. Consistent with 

unchanged levels of the protein between the input and the flow-through, all samples 

showed very low amounts of protein purified from Dynabeads (“Elution Dynabeads” 

in Fig 5.5A). Despite the low amount of purified protein obtained from Dynabeads in 

NIH 3T3-PTH-mAGO2 cells, it was decided to carry on the experiment as it is 

unclear the minimum amount of protein required for the success of the protocol. The 

protein was further captured using Ni-NTA followed by the inter-molecular ligation 

step, 3’adapter ligation and radioactive labelling (Fig 5.1).  

The protein-RNA complexes containing radiolabelled RNAs were eluted from Ni-

NTA, resolved using SDS-PAGE and transferred onto a nitrocellulose membrane. 

The second checkpoint of the CLASH protocol is the visualization of radiolabelled 

RNAs. Fig 5.5B shows an autoradiography of radiolabelled protein-RNA complexes 

from the control HEK 293-PTH-hAGO2 cells and the three samples from the NIH 

3T3-PTH-mAGO2 cells (mock infection, cells infected with wild type MCMV or 

MCMV Δm169). In line with the yields of purified protein from Dynabeads, the 

strong signal was observed in the control showing expected size between ~110-130 

kDa corresponding to AGO-miRNA or AGO-miRNA-mRNA complexes, whereas 

mock infection and cells infected with wild type MCMV or MCMV Δm169 showed 

considerably weak signal, particularly in cells infected with MCMV Δm169. The 

weaker radioactive signal in NIH 3T3-PTH-mAGO2 samples could be due to a 

number of factors, for example, less protein-RNA complexes purified or inefficient 

labelling of the RNA. The nitrocellulose membranes containing the protein-RNA 

complexes were excised, proteinase K digested and RNA extraction was carried out. 

After band cutting, the membrane was re-exposed using an autoradiography film to 

ensure that the correct bands were cut out (Fig 5.5C). 
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RNA extracted from each sample was then ligated with unique 5’ barcoded 

sequencing adapters that allow for pooling of multiple samples for sequencing (Fig 

5.5D). RNAs containing 5’ and 3’ adapters were reverse transcribed into cDNAs for 

generating DNA libraries by PCR amplification. Fig 5.5E illustrates the anticipated 

size of fragments observed in an agarose gel. The fragment of ~120 bp represents 

PCR primer dimers. Based on the length of miRNAs (~21-22 nt), the fragment of 

~150 bp is expected to enrich for miRNAs and the PCR product in the range of 

~150-200 bp is the expected size for recovery of miRNA-mRNA chimeras and 

mRNAs. As shown in Fig 5.5F, the predominant bands across all samples were the 

bands corresponding to PCR primer dimers (~120bp), whereas larger smeared bands 

(~150-200) were considerably weak. Based on the intensities of signals observed 

from the autoradiography, it was expected to obtain larger products from the control 

sample (HEK293-PTH-humanAGO2 cells) compared to the three samples of NIH 

3T3-PTH-mAGO2 cells (mock, wild type MCMV and MCMV Δm169 infection). 

However, the amplified PCR products (smeared bands) of the control appeared to be 

very low (Fig 5.5F). In contrast, the sample obtained from cells infected with 

MCMV Δm169, which showed remarkably weak radioactive signals compared to the 

others gave the stronger smear of the PCR products.  

It is clear that PCR products obtained from the present study are low in intensity 

compared to those described in the original protocol (Helwak and Tollervey, 2014). 

Despite of low yield of PCR products, the smeared bands enriched for chimeras and 

targets were observed across all samples. The PCR products between 150-200 bp 

were gel purified and submitted to HiSeq Illumina sequencing. 
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Figure 5.5 Evaluation of the CLASH protocol including purified fractions, radiolabelling of 
RNAs and amplified cDNA libraries 
(A) Western blot analysis (ECL-based detection) of tagged-AGO2. The same volume of the input and 
flow-through from Dynabeads (FT-Dynabeads) was used to evaluate the recovery of protein on IgG-
conjugated Dynabeads. To determine the protein recovery on Ni-NTA, an equal volume of protein (50 
µl from a total of 1 ml) from the first purification (Elution Dynabeads) and the flow-through from Ni-
NTA (FT-Ni-NTA) was loaded onto the gel. Western blot analysis was carried out using PAP 
complex antibody specific to protein A of PTH tag. (B) Autoradiography of purified protein-RNA 
complexes resolved by SDS-PAGE. The membranes were exposed to autoradiography films at -80°C, 
overnight. The expected size is ~110-130 kDa. (C) The autoradiography of the same membrane after 
cutting out the bands for extracting AGO-RNA complexes. (D) Sequences of 5’adapters containing 
sequences identical to PCR primers, three random ribonucleotides to identify PCR duplicates and 
ribonucleotide barcodes to allow multiple samples to be sequenced in one reaction. (E) Schematic 
diagram of anticipated size of PCR fragments in an agarose gel. (F) High resolution agarose 
(MetaPhor) gel electrophoresis of cDNA libraries. Smears between 150-200 bp were anticipated to 
enrich for chimeras (miRNAs+targets) and mRNA fragments. The gel between 150-200 bp (dashed 
lines) was excised and purified for Illumina sequencing. 
  

D F 

E 
5’ adaptor 



Chapter 5: Results 

   167 

5.3.5 Analysis of sequencing results 
Following the preparation of cDNA libraries, the PCR products were subjected to 

Illumina sequencing to identify RNAs and potential chimeras associated with AGO2. 

Four samples (the control HEK 293-PTH-hAGO2 cells and NIH 3T3-PTH-mAGO2 

cells (mock, wild type MCMV and MCMV Δm169 infection) were sequenced which 

contain 5’adapters with unique barcodes for sample identification. This allows for 

pooling all samples for a single sequencing lane. The total number of raw reads was 

obtained and bioinformatic analysis was carried out by Kashyap Chhartbar (IIIR, 

University of Edinburgh). As outlined in Fig 5.6, the 5’ and 3’ adapters of all reads 

were identified and trimmed. An insert length of >16 nt is recommended for reliable 

alignment (Travis et al., 2014). Thus, reads containing >16 nt between the two 

adapter sequences were included for further analyses. The reads were mapped to 

genome databases to identify single and chimeric reads. 

As shown in Fig 5.7A, after trimming of the adapters, the total number of reads 

obtained from MCMV Δm169 infection was distinctly high (67M) compared to the 

control HEK293-PTH-hAGO2 (22M), mock (7.7M) and wild type MCMV infection 

(13M), in line with the intensity of PCR products observed from the agarose gel 

shown in Fig 5.5F. Disappointingly, the majority of reads from all samples contained 

inserts shorter than 16 nt: 42.78% of reads from the control, 54.09% of reads from 

mock infection, 64.31% of reads obtained from wild type MCMV and 97.09% of 

reads from MCMV Δm169 infection and these short reads had to be excluded from 

further analysis (Fig 5.7B). The number of short reads could be due to overdigestion 

of RNA with RNase following protein purification, particularly in MCMV Δm169 

infection that might require optimization to obtain optimal size of RNA fragments 

(Moore et al., 2014). It could also just represent background signal since the overall 

amount of material pulled down may have been too low. 

After excluding the short reads, the human genome database (Human Ensembl 

release 78) was used to map reads of the control. For the samples from NIH 3T3-

PTH-mAGO2 cells, the reads were mapped to the mouse genome (Ensembl, 

GRCm37). In the case of virus-infected samples, the reads were mapped to the 
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MCMV genome (NC_004065) in addition to the mouse genome. The control showed 

17.53% (3.9M reads) of reads mapped to the human genome. The sequence 

alignment showed that 16.93% of reads (1.3M reads) from mock infection mapped to 

the mouse genome. 27.34% of reads (3.6M reads) from wild type MCMV infection 

mapped to the mouse or MCMV genome and only 0.13% of reads (90.4K reads) 

from MCMV Δm169 infection mapped to these databases. The mapped reads were 

analysed to identify RNA biotypes, single reads and chimeric reads.  

As shown in Fig 5.8A to C, identification of RNA biotypes revealed that the control, 

mock and wild type MCMV infection showed the read length distribution with the 

peak at 22 nt corresponding to mature miRNAs, whereas MCMV Δm169 (Fig 5.8D) 

showed the highest peak at 16 nt mapped with protein-coding genes followed by the 

peak of 22 nt. However, due to the different scales of Y-axis, a number of reads 

mapped to protein-coding genes from MCMV Δm169 (11.6K reads) were less than 

mock (16.1K) and wild type MCMV infection (19K). The identification of chimeric 

reads of miRNAs and protein coding genes showed 7 unique reads from the control, 

52 reads from mock, 95 reads from wild type MCMV and 7 reads from MCMV 

Δm169 infection (Appendix 5). Among 52 unique reads in mock infection, 10 reads 

represented chimeras of miR-27 and Zfp560 and 1 chimeric read of miR-27 and 

Ppm1f, whereas wild type MCMV and MCMV Δm169 infection did not show miR-

27 chimeras. A reduction in the number of chimeras containing miR-27 in wild type 

MCMV infection might be expected since this miRNA is degraded by the virus. 

However, it is difficult to speculate on any differences between the samples since the 

overall coverage was so low. In conclusion, the present study provided a small 

coverage of single and chimeric reads, suggesting that optimisations are required in 

future experiments to increase the number of reads.  
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Figure 5.6 Flow diagram of bioinformatic analysis of CLASH 
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Figure 5.7 Analysis of reads obtained from sequencing  
(A) The total numbers of raw reads containing 5’ and 3’ adapters. (B) Graphs representing the number 
of reads that contain short inserts <16 nt, and inserts that mapped or did not map to the genome 
databases. 
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Figure 5.8 Biotypes of the mapped reads 
Total reads containing inserts >16 nt with 5’ and 3’adapters were analysed to classify the reads into 
biotypes and lengths. (A) The colour coding of the control (HEK293-PTH-hAGO2) is different from 
(B-D) samples of NIH 3T3-PTH-mAGO2. Data are presented as read length versus read numbers. 

5.4 Discussion 
A common genome-wide approach to map the binding sites of miRNAs on their 

targets is crosslinking of RNA-protein complexes followed by immunoprecipitation 

of the AGO protein and sequencing of associated RNAs, widely known as CLIP 

(reviewed in (Hausser and Zavolan, 2014)). Several modifications of this method 
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have been proposed and the most recent method, CLASH, has been shown to 

successfully identify direct targets of miRNAs in a high-throughput manner (Helwak 

et al., 2013; Helwak and Tollervey, 2014). This technique involves RNA-RNA 

ligation to join miRNAs with their mRNA targets in order to directly map the 

miRNA-target interaction. In addition, the technique utilises a double affinity tagged-

protein that allows the purification to be carried out under stringent conditions, 

reducing background that could arise from RNA-RNA interactions formed after cell 

lysis. In this chapter, CLASH was carried out to explore whether this technique could 

be used to identify direct targets of miR-27 in the context of MCMV infection. It was 

envisaged that this would identify direct target genes of miR-27, complementing the 

other studies in this chapter to understand why the virus has evolved to inhibit this 

miRNA. 

The NIH 3T3-PTH-mAGO2 cell line stably expressing tagged-mAGO2 (PTH-

mAGO2) was generated and overexpression of the tagged-mAGO2 was confirmed. It 

has previously been reported that overexpression of AGO2 in HEK293T cells and 

human lung adenocarcinoma cells (H1299) causes changes in the levels of certain 

miRNAs (Zhang et al., 2013). Therefore to determine if this was an issue in terms of 

regulation of miR-27 in the presence and absence of MCMV, levels of miR-27 and 

m169 were compared in NIH 3T3-PTH-mAGO2 and NIH 3T3 cells. No significant 

differences in the levels of RNA expression were observed between the two cell 

lines, as determined by Northern blot analysis.  

The CLASH technique is a challenging molecular protocol with many steps spread 

over several days and few points at which the efficiency can be monitored. Helwak et 

al. have previously described a number of factors influencing the success of the 

technique. One of these is the efficiency of tagged-AGO purification using IgG-

conjugated Dynabeads. Comparing the amount of tagged-AGO in the input and the 

remaining protein in the flow-through, the authors usually observed a ~30% 

reduction in AGO in the flow-through (Helwak and Tollervey, 2014). Similarly, the 

control (HEK293-PTH-hAGO2 cells) used in the present study showed ~20-30% 

reduction in the protein from the flow-through compared to the input. However, the 

same level of reduction of AGO2 was not observed in the flow-through compared to 
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the input of the three samples from NIH 3T3-PTH-mAGO2 cells: mock, wild type 

MCMV and MCMV Δm169 infection. It is difficult to find a definite explanation for 

why the purification efficiency was different between PTH-hAGO2 and PTH-

mAGO2 since both tagged-proteins contain the same protein tag (PTH) and AGO2 is 

highly conserved with amino acid identity ~99.1% between human and mouse (Li et 

al., 2014). It is still unclear from the protocol what is the minimum amount of 

material required for the technique to work. Nonetheless improvement of this 

purification step is likely to be a crucial optimisation of CLASH. Recently, Strauch 

et al. have demonstrated that the binding of IgG and protein A is pH dependent. 

Using biolayer interferometry, the biosensor system that determines protein-protein 

interaction in real-time, the authors showed a high efficiency of IgG-protein A 

binding at pH 8.2 but a dramatic decrease (~500 fold reduction) at pH 5.5 (Strauch et 

al., 2014). In the CLASH protocol, the purification was performed in protein lysate at 

pH~7.2 and it is therefore possible this is suboptimal. Alternatively, Helwak et al. 

have suggested the possibility of replacing protein A with FLAG tag that can be 

purified using an efficient antibody (Helwak and Tollervey, 2014). Furthermore, 

Domanski et al. have demonstrated that 3xFLAG-tagged proteins provide a higher 

yield in purifications compared to traditional 1xFLAG tagged proteins (Domanski et 

al., 2012). Thus, the use of a 3xFLAG-tagged protein could increase the yield of 

protein isolation in the CLASH protocol. Indeed, the Buck lab has recently generated 

knock-in mice that express a N-terminal 3xFLAG-6xHis tag-mAGO2. These mice 

are fertile and viable and preliminary data of protein purification using anti-FLAG-

coated Dynabeads showed a high yield of purified proteins compared to PTH-

mAGO2 (unpublished data), with very little protein in the flow-through. 

After radiolabelling the RNAs within the AGO2-RNA complexes, the success of this 

step of the experiment was evaluated by determining the radioactive signal to 

estimate the recovery of RNAs. The radioactive signal obtained from NIH 3T3-PTH-

mAGO2 cells was considerably weak for all three conditions compared to the signal 

obtained from the control HEK293-PTH-hAGO2 cells. This is likely due to the low 

amount of materials obtained following purification with the IgG-coated Dynabeads, 

emphasizing that the first purification of tagged-AGO is a critical determinant to 
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obtain the sufficient materials for downstream reactions. One thing that could affect 

the visualization of radioactively labelled RNAs is the inefficient labelling of 

miRNAs due to their 5’ends, which may be buried in AGO, leading to less 

accessibility for the kinase (Parker, 2010). In HITS-CLIP, radiolabelling of 

3’adapters before ligation to RNAs was proposed as an alternative strategy that 

would also allow evaluation of the 3’adapter ligation efficiency (Moore et al., 2014). 

In CLASH, it is worth noting that the radioactive signal does not truly reflect the 

amount of purified protein-RNA complexes since a weak signal could be due to 

inefficient labelling reaction.  

According to the PCR products visualized on the agarose gel, the control showed 

only a very weak smear in the size range thought to be enriched for chimeras 

(miRNA:mRNA) and mRNAs (~150-200 bp), even though a high radioactive signal 

was observed from the autoradiography compared to the others from NIH 3T3-PTH-

mAGO2 cells. This could be due to low efficiency of 5’ and 3’ adapter ligations. It 

was observed in HITS-CLIP that the ligation efficiency is ~50% that is presumably 

evaluated through using radioactively labelled adapters (Moore et al., 2014) and it is 

difficult to monitor this. To address the issue of ligation efficiency, Moore M et al. 

suggest the possibility of using ligation-independent cloning to avoid the requirement 

of adapter ligation (Moore et al., 2014). This technique uses the 3’è5’ exonuclease 

activity of T4 DNA Polymerase to generate overhangs complementarity between 

inserts and linear vectors which are then ligated in E.coli during transformation 

(Stevenson et al., 2013). However, further optimisation would be required to adapt 

this technique for the current CLASH protocol. 

The analysis of cDNA libraries using sequencing revealed that the recovery of RNA 

was very low in all samples. The control from HEK293-PTH-hAGO2 cells showed 

3.9M reads mapped to the human genome. The mock infection of NIH 3T3-PTH-

mAGO2 cells showed 1.3M reads mapped to the mouse genome. NIH 3T3-PTH-

mAGO2 cells infected with wild type MCMV showed 3.6M reads and the cells 

infected with MCMV Δm169 showed 90.4K reads mapped to the mouse or MCMV 

databases. As mentioned above, the problem of samples from NIH-3T3-PTH-

mAGO2 cells is likely due to insufficient amount of purified protein from the first 
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purification using IgG-coated Dynabeads. Although the control (HEK293-PTH-

hAGO2 cells) showed more yield of purified protein and strong radioactive signal 

compared to the three samples from NIH-3T3-mAGO2 cells, the number of mapped 

reads was not significantly larger compared to the others, indicating that 

troubleshooting has to be carried out also at steps following the protein purification. 

As mentioned, adapter ligation might be an issue. In addition, a range of technical 

issues could reduce efficiency as addressed in (Helwak and Tollervey, 2014). 

Based on the initial attempt at carrying out the CLASH technique outlined in this 

chapter, it is clear that further optimisation and modification of the technique are 

required prior to repeating with the NIH3T3-PTH-mAGO2 cell line. It is important 

to note to date this technique has only been carried out with overexpressed tagged-

protein. It will be interesting to determine the percentage of chimeras obtained with 

physiological levels of tagged-AGO protein using CLASH. In this regard, the studies 

with the tagged-AGO2 mouse will be useful. 

At this stage, it is not possible to draw conclusions from the sequencing results 

obtained in the present chapter due to the lack of coverage. Based on the sequencing 

data, the numbers of reads that mapped to mouse or human genome obtained from 

the four samples were in the range of 90K to 3.9M reads, considerably less than 23M 

reads reported in (Helwak et al., 2013). In addition, the number of unique chimeric 

reads containing miRNAs and mRNAs was 7 in the control, 52 in mock, 95 in wild 

type MCMV and 7 in MCMV Δm169 infection. This again is substantially lower 

than the 15,000 unique miRNA-mRNA interactions expected from a good library 

(Helwak et al., 2013; Helwak and Tollervey, 2014). 

In summary, the present work shows that the NIH 3T3-PTH-mAGO2 cell line was 

successfully generated, evaluated and utilised for the CLASH protocol. Based on the 

sequencing data, the low number of chimeras was consistent with the low amount of 

protein purified at the first purification that relied on conjugation between the protein 

A tag and IgG-coated Dynabeads. Thus, as a starting point optimisation of this step 

should be carried out to increase the recovery of RNAs associated with PTH-

mAGO2 and ideally identify the miRNA-mRNA chimeras. 
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Chapter 6: Conclusion and future directions  
6.1  Rationale and objectives of the thesis 
This thesis focuses on understanding the cellular pathways required for MCMV 

infection, focusing on understanding the targets of miR-27, a miRNA inhibited by 

the virus. The central hypothesis is that miR-27 degradation by the virus boosts the 

levels of miR-27 targets during infection and this is advantageous to the virus. While 

HCMV has not been shown to degrade miR-27, a hypothesis is that similar cellular 

pathways will also be required by HCMV and this work will therefore also shed light 

on cellular pathways exploited by this human pathogen. 

HCMV affects approximately 40-100% of the world’s population (Mocarski, 2007). 

The virus usually causes little or no symptom in immunocompetent hosts; however, 

it associates with the significant morbidity and mortality in immunocompromised 

patients such as patients with HIV and organ transplant recipients who are on 

immunosuppressive therapies (Hodinka, 2007). In HIV-1-infected individuals with 

advanced immunosuppression, the most common manifestation is retinitis, followed 

by gastrointestinal disease and encephalitis (Boeckh and Geballe, 2011). In the case 

of hematopoietic stem cell recipients, pneumonia and gastrointestinal disease are 

common manifestations of CMV disease, whereas retinitis, hepatitis and encephalitis 

are less frequently found (Ljungman et al., 2010). 

HCMV is also the most common congenital infection in developed countries with 

estimated 40,000 cases in the United States each year. The compelling studies 

conducted in developing countries in Africa, Asia and Latin America revealed that 

maternal CMV seroprevalence ranged from 84% to 100% and CMV birth prevalence 

varied from 0.6% to 6.1% (from the number of newborns tested ranged from 317 to 

12,195) (Lanzieri et al., 2014). Although ~90% of infants born in the United States 

with congenital CMV infection do not show clinical manifestations, they are at high 

risk for hearing loss (reviewed in (Nassetta et al., 2009)). The CMV-infected 

neonates with symptomatic diseases show sensorineural hearing loss, microcephaly, 

motor defects, mental retardation, chorioretinitis and dental defects (reviewed in 

(Nassetta et al., 2009)). 
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Based on the vast impact of HCMV on the global health, the Institute of Medicine 

(IOM) has considered HCMV vaccine development as the highest priority with the 

major focus on reducing congenital CMV infection (Arvin et al., 2004). A number of 

HCMV vaccines have been evaluated in clinical trials and a Phase 2 clinical trial of 

HCMV gB vaccine plus F59 adjuvant that was administered to seronegative women 

of childbearing age showed 50% of vaccine efficacy (reviewed in (Sung and 

Schleiss, 2010). However, it is still under the debate whether the vaccine is sufficient 

to prevent HCMV infection and transmission within a community. Although 

enormous progress has been gained from vaccine clinical trials, no licensed HCMV 

vaccine is currently available. This triggers research to seek alternatives of HCMV 

therapeutics or prevention strategies that could alleviate this disease burden. As part 

of this, it is necessary to better understand how the virus interacts with host cells, and 

what factors it has evolved to exploit or inhibit. 

Cellular miRNAs have been reported to be involved in viral infection, either by 

interacting with viral genes or regulation of cellular pathways affecting viral 

replication (Skalsky and Cullen, 2010). Depending on the target genes or cellular 

pathways regulated by miRNAs, the effects of miRNAs can be a suppression or 

promotion of viral infection (Grassmann and Jeang, 2008; Skalsky and Cullen, 

2010). The effects of miRNAs on viral infection observed in pre-clinical settings 

opened up the possibility to use synthetic miRNAs (miRNA mimics or inhibitors) for 

the treatment of viral infection. The substantial progress of development of miRNA 

therapeutics has been demonstrated by the anti-viral potential of miR-122 inhibitors 

against HCV. The inhibitor of miR-122 is the first miRNA-targeted drug that has 

been in Phase 2a clinical trials and showed anti-viral activity (Janssen et al., 2013). 

This demonstrates the therapeutic potential of miRNAs for the treatment of viral 

infection. 

Previously, research in the Buck lab demonstrated that MCMV encodes a non-coding 

RNA, m169, to degrade cellular miR-27 (Libri et al., 2012). It was shown that the 

inhibition of miR-27 by m169 is important for viral replication in vivo (Marcinowski 

et al., 2012) and overexpression of miR-27 suppresses the replication of virus in vitro 

(Buck et al., 2010). Thus, the central hypothesis of this thesis is that the degradation 



Chapter 6: Conclusion and future directions 

   179 

of miR-27 is a viral strategy to interfere with functions of miR-27 on cellular 

processes contributing to viral replication. This thesis focuses on identification of 

cellular targets of miR-27 and functional studies of target genes. Here, it was 

hypothesised that understanding the cellular pathways regulated by MCMV will be 

of relevance to HCMV, even though miR-27 itself does not appear to be targeted by 

HCMV. Such significant genes could be used as targets for drug development in 

treatment of CMV. 

The aims of the study in this thesis are to: 

1. Identify and validate cellular targets of miR-27 that are required for MCMV 

replication 

2. Examine cellular pathways regulated by miR-27 in the context of MCMV 

infection  

3. Generate datasets of direct targets of miR-27 using cross-linking, ligation and 

sequencing of hybrids (CLASH) technique 

6.2 Conclusions 
The primary aim of this thesis is to identify cellular targets of miR-27 involved in 

MCMV replication. Microarray analysis was used to globally examine changes in 

mRNA levels upon miR-27 overexpression or inhibition during MCMV infection in 

order to identify targets of miR-27 that could play a role in MCMV infection. A 

number of potential targets of miR-27 were analysed using the functional screening 

to determine their effects on MCMV replication in vitro. The screening involved 

siRNA knockdown followed by infection of GFP-MCMV and the effect on viral 

growth was assessed through GFP intensities. The functional screening revealed that 

Mapkapk3 is required for viral replication and this gene was validated as a direct 

target of miR-27 based on luciferase assays. Consistent with the functional screening, 

knockdown of Mapkapk3 showed ~10 fold reduction in viral titres compared to cells 

transfected with RISC-free siRNAs at 3 days post infection. MAPKAPK3 protein is 

a downstream kinase of p38 in the p38 MAP kinase pathway, which has previously 

been shown to be an essential pathway for CMV replication. MAPKAPK3 has been 

found to phosphorylate a number of proteins including heat shock protein 27 
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(HSP27), a multifunctional protein involved in cellular responses to stresses such as 

protein folding, inhibition of apoptosis and actin remodelling (reviewed in 

(Vidyasagar et al., 2012)). Johnson et al. showed that HCMV induces 

phosphorylation of HSP27 in a p38-dependent manner. The authors proposed that the 

two functions of HSP27 might be required for the virus: an anti-apoptotic role and as 

a chaperone to correct misfolded proteins necessary for viral permissiveness 

(Johnson et al., 2000). Importantly, analysis of levels of MAPKAPK3 and pHSP27 

protein during MCMV infection revealed that the levels of MAPKAPK3 correlate to 

the levels of pHSP27 and are higher in cells infected with wild type MCMV versus 

MCMV Δm169, suggesting that miR-27 regulates MAPKAPK3 and phosphorylation 

of HSP27 during infection. This could in part explain anti-viral mechanism of miR-

27 by which miR-27 acts through MAPKAPK3 and HSP27, inducing apoptosis and 

accumulation of misfolded protein that cannot be used by the virus. It will be of 

interest to understand how these proteins are regulated in HCMV, since miR-27 is 

not known to be targeted by that virus. 

It is important to note that MAPKAPK3 and its isoenzyme, MAPKAPK2, share 

~70% amino acid identity, activators and substrates (McLaughlin et al., 1996). The 

expression levels of MAPKAPK3 are lower than MAPKAPK2 in most cells and 

tissues including MEFs, macrophages, heart, liver, kidneys, lungs and spleens 

(Ronkina et al., 2007). Thus, to avoid data misinterpretation, it should be taken into 

account that MAPKAPK2 could compensate for MAPKAPK3 (Ronkina et al., 2007). 

Comparative studies of Mapkapk2/3 double knockout and single knockout of either 

Mapkapk2 or Mapkapk3 would be ideal to distinguish biological roles of Mapkapk3. 

Since HSP27 was shown to be phosphorylated by MAPKAPK3 upon infection, it is 

interesting to examine whether HSP27 is involved in MCMV replication. This could 

be carried out by determining viral growth in knockdown of HSP27.  

miRNAs can regulate a large number of genes involved in diverse cellular pathways 

and it is possible that miR-27 regulates genes other than Mapkapk3 that could 

explain why this miRNA is targeted by the virus. The second aim of this thesis is to 

identify such genes or cellular pathways regulated by miR-27. The data presented in 

this thesis demonstrated that miR-27 stimulates the G1/S transition in the cell cycle. 
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miR-27 has been identified as an oncogenic miRNA in promoting cell proliferation. 

Overexpression of miR-27 has been observed in various kinds of cancer cells 

including breast cancer (Guttilla and White, 2009; Mertens-Talcott et al., 2007), 

gastric adenocarcinoma (Liu et al., 2009), pancreatic cancer (Ma et al., 2010) and 

prostate cancer (Prueitt et al., 2008). Since the cell cycle regulates cell proliferation 

(Golias et al., 2004), it is possible that miR-27 exerts the oncogenic activity via the 

regulation of the cell cycle. Two genes, Bmi1 and Cav1 whose functions have been 

reported in the cell cycle were validated as direct targets of miR-27 using luciferase 

reporter assays. However, knockdown of Bmi1 or Cav1 led to the delay of cell cycle 

transition from G1 to S phase, opposite to the effect of miR-27 overexpression. This 

suggests that the two genes are unlikely to be involved in the induction of the G1/S 

transition by miR-27. It is possible that miR-27 regulates cellular genes other than 

Bmi1 and Cav1, giving rise to the progression of cells from G1 to S phase. 

Identification of such genes would shed light on the mechanism by which miR-27 

regulates this cell cycle transition. Analysis of transcriptome or proteome in cells 

transfected with miR-27 mimics or miR-27 inhibitors followed by inducing the 

transition of cells from G1 to S phase may specifically identify target genes 

responsible for stimulating the G1/S transition. In the context of MCMV infection, 

knockdown of Bmi1 and Cav1 does not affect viral replication in vitro, suggesting 

that these genes are unlikely to play a role in viral replication or contribute to anti-

viral activity of miR-27. Studies have shown that MCMV and HCMV arrest cells in 

the G1 phase and inhibit host DNA synthesis, allowing expression of viral genes 

(reviewed in (Spector, 2015)). Several viral proteins have been demonstrated to 

induce the G1 arrest including tegument UL69 and IE86 of HCMV, and IE3 of 

MCMV. Since viral gene expression and replication are dependent on the host cell 

cycle, it is logical to speculate that the MCMV may evolve multiple strategies to 

modulate the cell cycle in addition to viral factors. Based on the effect of miR-27 on 

stimulation of the G1/S transition, it is possible that the virus inhibits this miRNA in 

attempt to maintain the cell in the G1 phase. Identification of miR-27 targets 

involved in the G1/S transition could elucidate the significance of miR-27 

degradation upon MCMV infection associated with the cell cycle. 
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The p38 MAP kinase signalling has shown to modulate the cell cycle, particularly at 

the G1/S transition. A study has shown that p38 kinase can either induce progression 

or inhibition of the cell cycle depending on types of stimuli (Faust et al., 2012). 

Activation of p38 using serum led to an increase in phosphorylation of Rb and cyclin 

D1, proteins required for S phase entry, compared to serum-starved cells, whereas 

cells treated with cellular stress, anisomycin, showed a complete loss of cyclin D1 

expression compared to untreated cells (Faust et al., 2012). The authors further 

demonstrated that only anisomycin-activated p38 but not serum stimulation leads to 

phosphorylation of MAPKAPK2 (an isoenzyme of MAPKAPK3) and its substrate, 

transcription factor CREB (Faust et al., 2012). It was found that activation of CREB 

by bacterial toxins leads to the G1 arrest in mouse macrophages due to induction of 

p27 (an inhibitor of the G1/S transition) and downregulation of cyclin D1 (Gray and 

Hewlett, 2011). However, the present study showed that MAPKAPK3 does not 

phosphorylate CREB under anisomycin treatment. Thus, it is unlikely that 

MAPKAPK3 is involved in cell cycle arrest through the regulation of CREB. 

One caveat of miRNA target identification using microarray analysis is that this 

method cannot distinguish direct targets from secondary effects (reviewed in 

(Hausser and Zavolan, 2014)). Thus, the last aim of this thesis is to generate datasets 

of direct targets of miR-27 using cross-linking, ligation and sequencing of hybrids 

(CLASH). To carry out the CLASH protocol, the NIH 3T3-PTH mAGO2 stable cell 

line expressing AGO2 with a double affinity tag (ProteinA-TEV-6xHis, PTH) at the 

N terminus was generated. It was shown that overexpression of tagged-AGO2 in 

NIH 3T3-PTH mAGO2 cells does not significantly alter levels of miR-27 or lead to 

changes in permissiveness to MCMV compared to NIH 3T3 cells, suggesting that 

this cell line is suitable for identification of miR-27 targets upon infection. Following 

protein purification using IgG-conjugated Dynabeads, Western blot analysis was 

carried out to evaluate the efficiency of the purification. The data of three samples 

(mock-infected cells and cells infected with wild type MCMV or MCMV Δm169) 

showed no reduction in the levels of tagged-protein in the flow-through compared to 

the input material, suggesting that the purification is inefficient and requires 

optimisation. Indeed, the Buck lab has recently generated knock-in mice that express 
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a N-terminal 3xFLAG-6xHis tag-mAGO2 where the protein A tag is replaced with 

3xFLAG tag. The preliminary data of protein purification using anti-FLAG-coated 

Dynabeads showed a high yield of purified proteins compared to PTH-mAGO2 

(unpublished data), with very little protein in the flow-through. In line with the low 

amount of tagged-protein purified using Dynabeads, sequencing data of the three 

samples showed the low number of reads (in the range of ~90K to 3.6M) that 

mapped to the genome databases, remarkably lower than 23M reads reported in 

(Helwak et al., 2013). Thus, the purification of tagged-AGO seems to be a crucial 

step and is required optimisation to obtain the sufficient material for the subsequent 

steps of the CLASH protocol. 

6.3 Future directions 
The data presented in this thesis provide an interesting base for studying functions of 

miR-27 and involvement of Mapkapk3 in MCMV infection. Analysis of miR-27 in 

regulation of the cell cycle revealed that miR-27 accelerates cells from G1 to S 

phase. This could in part explain the significance of miR-27 degradation by MCMV 

as one viral strategy to induce the G1 arrest. Using the NIH 3T3-PTH-mAGO2 cell 

line in the CLASH protocol, the data suggest that the protein purification step needs 

optimisation to improve the recovery of RNA associated with the tagged-protein. A 

number of questions based on the data obtained from this thesis merit further 

investigation. 

Chapter 3: 

1. What is the function of Mapkapk3 involved in MCMV replication? 

2. Does HSP27, a substrate of MAPKAPK3, contribute to functions of 

MAPKAPK3 in the context of MCMV infection? What is the cellular process 

in which HSP27 affects the MCMV life cycle? 

3. Given that MCMV requires the function of Mapkapk3, does Mapkapk2 

compensate for, or cooperate with Mapkapk3 to support MCMV replication? 

Perhaps, Mapkapk2 also plays a role in MCMV infection and this point has 

not been addressed in this thesis. If Mapkapk2 is significant to the viral 
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infection, knockdown of Mapkapk2/3 should show stronger effects compared 

to knockdown of Mapkapk3 alone. 

4. Beyond MCMV infection, does Mapkapk3 influence HCMV replication? 

Chapter 4: 

1. What are the cellular targets of miR-27 contributing to miR-27-induced G1/S 

transition? 

2. Does miR27-stimulated G1/S transition affect MCMV replication? 

Chapter 5: 

1. Does protein purification using Dynabeads yield sufficient material for 

subsequence steps of CLASH protocol? How can the purification be 

improved? 

2. Is the ligation of adapters to RNA efficient? 
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Chapter 7: Appendices 
Appendix 1 
Appendix 1 A total of 97 genes downregulated in cells transfected with miR-27a 
mimics versus RISC-free siRNAs (the fold change cut off ≥1.2, p<0.05). 
 

 
Symbol EntrezID 

Downregulated 
fold change P Value 

1 Prl2c4 26421 1.741101127 4.00E-07 
2 Prl2c2 18811 1.693490625 1.10E-05 

 Prl2c2 18811 1.515716567 0.00012 
3 Il1rl1 17082 1.591072968 0.00027 
4 Ppif 105675 1.526259209 1.40E-07 
5 Prl2c3 18812 1.484523571 9.00E-05 
6 Spp1 20750 1.394743666 0.0016 
7 Calm3 12315 1.385109468 0.00054 
8 Tmbim6 110213 1.385109468 5.00E-06 
9 Serpina3g 20715 1.375541818 1.70E-06 

10 Cp 12870 1.356604327 0.00032 
11 Gbp2 14469 1.337927555 9.50E-05 
12 Pdia5 72599 1.337927555 5.70E-05 

 Pdia5 72599 1.257013375 0.00089 
13 Aox3 71724 1.328685814 0.00047 
14 LOC100044968 100044968 1.328685814 4.20E-05 
15 Nid1 18073 1.328685814 0.0029 
16 Arl6ip1 54208 1.310393404 7.60E-06 
17 Ccl7 20306 1.310393404 0.0015 

 Ccl7 20306 1.214194884 0.023 
18 Marcks 17118 1.310393404 0.0047 
19 9930013L23Rik 80982 1.301341855 0.00012 
20 Akirin1 68050 1.301341855 5.00E-04 
21 Bcap29 12033 1.301341855 0.0079 

 Bcap29 12033 1.205807828 0.0041 
22 Gaa 14387 1.301341855 0.0012 
23 Tmem55b 219024 1.301341855 0.0011 
24 2700094K13Rik 72657 1.292352831 2.50E-05 
25 2310039H08Rik 67101 1.283425898 5.00E-04 
26 Cav1 12389 1.283425898 0.015 
27 Serpina3n 20716 1.283425898 0.0073 
28 Hsp90aa1 15519 1.274560627 0.0073 
29 Acadvl 11370 1.265756594 0.0013 
30 AI607873 226691 1.265756594 0.0083 
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31 B4galt3 57370 1.265756594 3.20E-06 
32 Sepp1 20363 1.265756594 2.00E-04 
33 Ubtd2 327900 1.265756594 0.0052 
34 Zwint 52696 1.265756594 0.001 
35 Glipr2 384009 1.257013375 1.30E-05 
36 Pgm2 72157 1.257013375 0.0011 

 Pgm2 72157 1.205807828 0.032 
37 0610007P14Rik 58520 1.257013375 0.00013 

 0610007P14Rik 58520 1.283425898 0.0011 
 0610007P14Rik 58520 1.265756594 5.00E-05 

38 Ak2 11637 1.248330549 0.0028 
 Ak2 11637 1.2397077 0.0052 

39 Dram2 67171 1.248330549 0.0048 
40 Lamp2 16784 1.248330549 0.0068 
41 Lbh 77889 1.248330549 1.00E-04 
42 Mmd 67468 1.248330549 0.0011 
43 Adora2b 11541 1.2397077 0.00057 
44 Ccng1 12450 1.2397077 0.0018 
45 Gas7 14457 1.2397077 0.0051 
46 Ktelc1 224143 1.2397077 0.0052 
47 Nagk 56174 1.2397077 0.00029 
48 Slc25a17 20524 1.2397077 0.0047 
49 Tpm4 326618 1.2397077 0.0024 
50 Bmi1 12151 1.231144413 0.00032 
51 Celf1 13046 1.231144413 0.00066 
52 Ech1 51798 1.231144413 0.0021 
53 Gm16385 677448 1.231144413 0.00026 
54 Gosr2 56494 1.231144413 0.0012 

 Gosr2 56494 1.231144413 0.00041 
55 Hat1 107435 1.231144413 0.0094 
56 Pdgfra 18595 1.231144413 0.047 
57 Slc12a2 20496 1.231144413 0.0043 
58 Zfp281 226442 1.231144413 0.0077 
59 6330578E17Rik 76178 1.222640278 0.002 
60 9430016H08Rik 68115 1.222640278 0.0033 
61 Aqp1 11826 1.222640278 0.024 
62 Cct6a 12466 1.222640278 0.0045 
63 Cnot7 18983 1.222640278 0.00075 
64 Cytip 227929 1.222640278 0.00014 
65 Ednra 13617 1.222640278 0.0028 
66 Gpd2 14571 1.222640278 0.00082 
67 Hsd17b11 114664 1.222640278 0.0034 
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68 Hspd1 15510 1.222640278 0.021 
69 Kng1 16644 1.222640278 0.00035 
70 LOC100046883 100046883 1.222640278 0.0018 
71 Pigp 56176 1.222640278 0.0084 
72 Scd2 20250 1.222640278 0.0036 
73 Ssr3 67437 1.222640278 0.0031 
74 Tcp1 21454 1.222640278 0.00067 
75 Vegfb 22340 1.222640278 0.03 
76 Acta2 11475 1.214194884 0.044 
77 Akap2 11641 1.214194884 0.0081 
78 C3 12266 1.214194884 0.026 
79 Cd99l2 171486 1.214194884 0.0055 
80 Cenpb 12616 1.214194884 0.015 
81 Cuedc2 67116 1.214194884 0.025 
82 Gnas 14683 1.214194884 0.0044 
83 Nudt4 71207 1.214194884 0.023 
84 Tmed4 103694 1.214194884 0.00092 
85 Top1mt 72960 1.214194884 0.00018 
86 Ugt1a10 394430 1.214194884 0.001 
87 Acadm 11364 1.205807828 0.0083 
88 Efemp2 58859 1.205807828 0.0041 
89 Elp2 58523 1.205807828 0.014 
90 LOC100044692 100044692 1.205807828 0.048 
91 Mrps12 24030 1.205807828 0.011 
92 Plau 18792 1.205807828 2.60E-05 
93 Psat1 107272 1.205807828 0.0018 
94 Sfrp1 20377 1.205807828 0.00012 
95 Slc39a11 69806 1.205807828 0.014 
96 Tmsb10 19240 1.205807828 0.029 

 Tmsb10 19240 1.205807828 0.025 
97 Wls 68151 1.205807828 0.037 
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Appendix 2 
Appendix 2 A total of 85 genes downregulated in cells transfected with miR-27a 
mimics followed by wild type MCMV infection versus cells infected with wild 
type MCMV (the fold change cut off ≥1.2, p<0.05).  
Pja2 was excluded from further analysis since it was downregulated in cells 
transfected with RISC-free siRNAs versus untreated cells (as shown in Appendix 4). 
 

 
Symbol EntrezID 

Downregulated 
fold change P Value 

1 C3 12266 1.366040257 0.001 
2 Rpl18a 76808 1.356604327 0.00048 
3 H60a 15101 1.356604327 0.0071 
4 Ndrg1 17988 1.337927555 0.0016 
5 Csnk2a1 12995 1.310393404 0.0037 
6 4933427G23Rik 330053 1.310393404 0.00069 
7 Srsf15 224432 1.301341855 0.0078 
8 Ccnd2 12444 1.301341855 0.00087 

 Ccnd2 12444 1.257013375 0.0038 
9 Spp1 20750 1.292352831 0.01 

10 Dstn 56431 1.292352831 0.0033 
11 Usp1 230484 1.283425898 0.00061 
12 Gm4671 100043821 1.283425898 0.0016 
13 Eif4ebp1 13685 1.283425898 0.029 
14 D15Ertd621e 210998 1.283425898 0.02 
15 Ankrd11 77087 1.283425898 0.012 
16 Serpina3n 20716 1.274560627 0.0083 
17 Nipbl 71175 1.274560627 0.012 

 Nipbl 71175 1.214194884 0.02 
18 Mettl9 59052 1.274560627 0.0064 
19 Btaf1 107182 1.274560627 0.0045 
20 2610101N10Rik 67958 1.274560627 0.0026 
21 Tspo 12257 1.265756594 0.0081 
22 Lars 107045 1.265756594 0.00066 
23 2410006H16Rik 69221 1.265756594 0.0038 
24 Ptx3 19288 1.257013375 0.02 
25 Ndor1 78797 1.257013375 1.70E-06 
26 Coq2 71883 1.257013375 0.00081 
27 Rrp1b 72462 1.248330549 0.00022 
28 Krit1 79264 1.248330549 0.0024 
29 Cxcl9 17329 1.248330549 0.01 
30 Tollip 54473 1.2397077 0.00011 
31 Papola 18789 1.2397077 5.10E-06 
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32 Nudt18 213484 1.2397077 3.50E-05 
33 Kng1 16644 1.2397077 0.00017 
34 Iars 105148 1.2397077 0.0054 
35 Hif1a 15251 1.2397077 0.0069 
36 Casp4 12363 1.2397077 0.0054 
37 1110002B05Rik 104725 1.2397077 0.0019 
38 Ugt1a6b 394435 1.231144413 0.011 
39 Ugt1a10 394430 1.231144413 0.00063 
40 Sypl 19027 1.231144413 0.003 
41 Stard5 170460 1.231144413 0.0058 
42 Slc25a3 18674 1.231144413 0.037 
43 Rras 20130 1.231144413 0.0012 
44 Ogt 108155 1.231144413 0.009 
45 LOC638301 638301 1.231144413 0.0067 
46 Leprotl1 68192 1.231144413 0.015 
47 Igf2bp3 140488 1.231144413 0.0083 
48 Gon4l 76022 1.231144413 0.0013 
49 Gaa 14387 1.231144413 0.0074 
50 Fas 14102 1.231144413 0.0016 
51 Dazap2 23994 1.231144413 0.036 
52 Ccl5 20304 1.231144413 0.0013 
53 Atg5 11793 1.231144413 0.0038 
54 Zfp330 30932 1.222640278 0.00022 
55 Zfp326 54367 1.222640278 0.016 
56 Wdr45 54636 1.222640278 0.0086 
57 Setd5 72895 1.222640278 0.0042 
58 Saa3 20210 1.222640278 0.026 
59 Parl 381038 1.222640278 0.002 
60 Gm7603 665369 1.222640278 0.049 
61 Cept1 99712 1.222640278 0.0047 
62 Bat5 193742 1.222640278 0.0046 
63 Asns 27053 1.222640278 0.021 
64 Arrdc4 66412 1.222640278 0.0015 
65 1500012F01Rik 68949 1.222640278 0.033 
66 Tbl1x 21372 1.214194884 0.021 
67 Smcr7l 239555 1.214194884 0.002 
68 Rars2 109093 1.214194884 2.00E-04 
69 Metapl1 66559 1.214194884 9.60E-05 
70 Jak2 16452 1.214194884 0.034 
71 H3f3b 15081 1.214194884 0.0058 
72 Eif3k 73830 1.214194884 0.0062 
73 Zfp639 67778 1.205807828 0.0038 
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74 Vldlr 22359 1.205807828 0.017 
75 Usp7 252870 1.205807828 0.0087 
76 Srprb 20818 1.205807828 0.0038 
77 Pja2 224938 1.205807828 0.0047 
78 Irf2 16363 1.205807828 0.0012 
79 Golim4 73124 1.205807828 0.008 
80 Fam45a 67894 1.205807828 0.0097 
81 Emg1 14791 1.205807828 0.0077 
82 Dennd4a 102442 1.205807828 0.027 
83 Chd1 12648 1.205807828 0.0087 
84 Btg1 12226 1.205807828 0.015 
85 Btbd1 83962 1.205807828 0.018 
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Appendix 3  
Appendix 3 A total of 242 genes downregulated in cells infected with Δm169 
mutant versus wild type MCMV (the fold change cut off ≥1.2, p<0.05). 
 

 
Symbol EntrezID 

Downregulated 
fold change P Value 

1 Dnmt3b 13436 1.693490625 5.50E-08 
2 Ifi30 65972 1.658639092 2.20E-08 

 Ifi30 65972 1.602139755 9.30E-07 
3 Rgs4 19736 1.602139755 8.80E-07 
4 LOC100040592 100040592 1.580082624 3.90E-06 
5 D0H4S114 27528 1.558329159 2.60E-07 
6 Cxcl12 20315 1.558329159 2.40E-05 
7 Snn 20621 1.515716567 3.80E-06 
8 Calm3 12315 1.494849249 6.70E-05 
9 Dhcr24 74754 1.484523571 1.40E-05 

 Dhcr24 74754 1.375541818 1.90E-05 
 Dhcr24 74754 1.222640278 3.90E-05 

10 Mvd 192156 1.464085696 2.40E-08 
11 Tubb2b 73710 1.453972517 9.20E-05 

 Tubb2b 73710 1.257013375 0.023 
12 0610007P14Rik 58520 1.453972517 2.30E-07 

 0610007P14Rik 58520 1.414213562 4.90E-05 
 0610007P14Rik 58520 1.385109468 3.20E-06 

13 Adam23 23792 1.433955248 5.30E-05 
14 Sparc 20692 1.424050196 2.90E-06 

 Sparc 20692 1.385109468 1.40E-07 
15 Ptn 19242 1.424050196 7.90E-08 
16 Mknk2 17347 1.424050196 1.40E-05 
17 Tnrc6a 233833 1.404444876 1.40E-07 

 Tnrc6a 233833 1.385109468 4.20E-06 
18 Nasp 50927 1.404444876 8.40E-07 
19 Dbp 13170 1.404444876 7.30E-07 
20 Stx3 20908 1.394743666 5.40E-05 
21 Igf2bp1 140486 1.394743666 1.00E-05 

 Igf2bp1 140486 1.2397077 0.0027 
22 Gstm1 14862 1.394743666 2.10E-05 
23 Vps13a 271564 1.375541818 2.00E-05 
24 Sfrp1 20377 1.375541818 2.30E-07 

 Sfrp1 20377 1.310393404 0.00022 
25 Tuba1a 22142 1.366040257 0.00094 
26 Slc40a1 53945 1.366040257 0.0061 
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27 Rsad2 58185 1.366040257 0.02 
28 Nsdhl 18194 1.366040257 0.0037 

 Nsdhl 18194 1.265756594 0.0041 
 Nsdhl 18194 1.248330549 0.0073 

29 Arhgap12 75415 1.366040257 1.10E-06 
30 Wfdc3 71856 1.356604327 0.00017 
31 Lmnb1 16906 1.356604327 0.001 
32 Celf1 13046 1.356604327 1.70E-05 

 Celf1 13046 1.214194884 0.0013 
 Celf1 13046 1.205807828 0.0052 

33 Ang4 219033 1.356604327 0.00055 
34 Snx30 209131 1.347233577 7.50E-05 
35 Hsd17b7 15490 1.347233577 7.40E-05 
36 Gm13212 433801 1.347233577 0.0031 
37 Aacs 78894 1.347233577 1.90E-05 
38 Ubtd2 327900 1.328685814 0.0014 
39 Gm22 195209 1.328685814 9.80E-05 
40 Col5a1 12831 1.328685814 6.00E-07 
41 Bcl7a 77045 1.328685814 0.00045 
42 5430435G22Rik 226421 1.328685814 0.0035 
43 Setd1b 208043 1.319507911 0.0021 
44 Itgbl1 223272 1.319507911 0.0053 
45 Hsp90ab1 15516 1.319507911 0.0079 
46 Hbp1 73389 1.319507911 0.0011 

 Hbp1 73389 1.257013375 0.00043 
 Hbp1 73389 1.248330549 0.0032 

47 Zdhhc7 102193 1.310393404 4.10E-05 
48 Usp1 230484 1.310393404 3.00E-04 
49 Tgfbr2 21813 1.310393404 0.00052 
50 Tcf7l1 21415 1.310393404 7.60E-06 
51 Sh3bp5l 79566 1.310393404 3.30E-06 
52 Sel1l 20338 1.310393404 0.00037 
53 Mmp2 17390 1.310393404 2.50E-05 
54 LOC100044124 100044124 1.310393404 0.00022 
55 Gadd45g 23882 1.310393404 9.40E-05 
56 Col4a1 12826 1.310393404 0.00031 
57 Pik3r1 18708 1.301341855 3.00E-04 
58 Nav1 215690 1.301341855 6.60E-06 

 Nav1 215690 1.248330549 0.0032 
59 Frrs1 20321 1.301341855 0.00071 
60 Epb4.1l3 13823 1.301341855 0.00011 
61 Ak3 56248 1.301341855 0.00041 



Chapter 7: Appendices 

   193 

62 Add3 27360 1.301341855 0.00022 
63 Tgfbr1 21812 1.292352831 0.00036 
64 Rictor 78757 1.292352831 0.0015 
65 Pygb 110078 1.292352831 0.00059 
66 Nipbl 71175 1.292352831 0.0035 
67 Hsph1 15505 1.292352831 0.0077 
68 Gab1 14388 1.292352831 0.00028 
69 Sumo2 170930 1.283425898 0.028 
70 Sqle 20775 1.283425898 0.0014 

 Sqle 20775 1.231144413 0.044 
71 Sort1 20661 1.283425898 0.00025 
72 Slc24a6 170756 1.283425898 0.00031 
73 Rpl18a 76808 1.283425898 0.0027 
74 Lrp8 16975 1.283425898 0.00056 
75 Lpl 16956 1.283425898 0.00041 
76 Loxl1 16949 1.283425898 0.00014 
77 LOC100046883 100046883 1.283425898 0.00022 
78 Kif1b 16561 1.283425898 0.00055 
79 Insig1 231070 1.283425898 0.0032 
80 Hsd3b2 15493 1.283425898 0.0036 
81 Arl2bp 107566 1.283425898 0.00012 
82 2810046L04Rik 212127 1.283425898 2.20E-05 
83 Tshz3 243931 1.274560627 3.80E-05 
84 Timp2 21858 1.274560627 0.0038 
85 Sgcb 24051 1.274560627 0.0042 
86 Setd5 72895 1.274560627 0.00081 
87 Osr2 107587 1.274560627 0.001 
88 L3mbtl3 237339 1.274560627 1.00E-05 
89 Gga2 74105 1.274560627 3.80E-05 

 Gga2 74105 1.214194884 0.00058 
90 Cdk8 264064 1.274560627 0.0036 
91 Agfg2 231801 1.274560627 0.00016 
92 Zmym2 76007 1.265756594 0.0018 
93 Vcp 269523 1.265756594 0.0015 
94 Tmsb10 19240 1.265756594 0.0063 

 Tmsb10 19240 1.214194884 0.021 
95 Stard7 99138 1.265756594 0.00075 
96 Scd1 20249 1.265756594 0.0042 
97 Plxnd1 67784 1.265756594 2.50E-05 

 Plxnd1 67784 1.248330549 1.00E-04 
98 Nid2 18074 1.265756594 0.00036 
99 Lox 16948 1.265756594 0.00044 
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100 LOC637711 637711 1.265756594 0.0078 
101 LOC100048076 100048076 1.265756594 0.00015 
102 Lasp1 16796 1.265756594 0.00064 
103 Itga5 16402 1.265756594 1.00E-04 
104 Gm10125 791318 1.265756594 0.0018 
105 Celf2 14007 1.265756594 0.0068 
106 Tmem41a 66664 1.257013375 0.0013 
107 Terf1 21749 1.257013375 2.50E-05 
108 Tbk1 56480 1.257013375 0.0033 
109 Rin2 74030 1.257013375 0.00044 
110 Nuak1 77976 1.257013375 5.50E-05 
111 Nfat5 54446 1.257013375 6.00E-05 
112 Mtf2 17765 1.257013375 0.002 
113 Dcaf7 71833 1.257013375 7.80E-06 
114 Col1a1 12842 1.257013375 0.022 
115 Acot1 26897 1.257013375 0.0037 
116 Zfp238 30928 1.248330549 0.0011 
117 Tubb2c 227613 1.248330549 0.0098 
118 Tmem201 230917 1.248330549 0.00065 
119 Suv420h2 232811 1.248330549 0.0011 
120 Sesn1 140742 1.248330549 0.0015 
121 Sertad4 214791 1.248330549 0.00035 
122 Rnase4 58809 1.248330549 0.002 
123 Pik3r3 18710 1.248330549 0.0016 
124 Pdgfra 18595 1.248330549 0.035 
125 Nudt18 213484 1.248330549 3.10E-05 
126 Nipal1 70701 1.248330549 1.80E-05 
127 Mll3 231051 1.248330549 0.0017 
128 Maged1 94275 1.248330549 0.0066 
129 Gli3 14634 1.248330549 0.0016 
130 E330009J07Rik 243780 1.248330549 7.50E-07 
131 Acvr2b 11481 1.248330549 8.30E-05 
132 Acat2 110460 1.248330549 0.0062 
133 Pdia5 72599 1.2397077 0.0012 
134 Lmna 16905 1.2397077 0.0044 

 Lmna 16905 1.205807828 0.035 
135 Ipo5 70572 1.2397077 0.0016 
136 Fdps 110196 1.2397077 1.70E-05 
137 Edem2 108687 1.2397077 0.0011 
138 Dolk 227697 1.2397077 0.0065 
139 Csrp2 13008 1.2397077 0.00023 
140 Cramp1l 57354 1.2397077 4.80E-05 
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141 6330406I15Rik 70717 1.2397077 0.0096 
 6330406I15Rik 70717 1.205807828 0.012 

142 Zfhx3 11906 1.231144413 0.0036 
143 Ube2v1 66589 1.231144413 0.0046 
144 Tspo 12257 1.231144413 0.017 
145 Tmem65 74868 1.231144413 0.024 
146 Tmem2 83921 1.231144413 0.00033 
147 Stt3b 68292 1.231144413 0.0083 
148 Stard4 170459 1.231144413 0.0073 
149 Snx24 69226 1.231144413 0.00076 
150 Rpap3 71919 1.231144413 0.00012 
151 Rnf145 74315 1.231144413 0.011 
152 Rbm12 75710 1.231144413 0.013 
153 Psme4 103554 1.231144413 0.0088 
154 Ppargc1b 170826 1.231144413 2.30E-06 
155 Pmp22 18858 1.231144413 0.0054 

 Pmp22 18858 1.222640278 0.031 
156 Pgm2 72157 1.231144413 0.019 
157 Nfix 18032 1.231144413 9.70E-05 
158 Mras 17532 1.231144413 0.00066 
159 Mpv17 17527 1.231144413 0.001 
160 LOC100048645 100048645 1.231144413 0.0019 
161 Hist1h1c 50708 1.231144413 0.00035 
162 H3f3a 15078 1.231144413 7.40E-05 
163 Gm3308 100041388 1.231144413 0.0073 
164 Fgfr2 14183 1.231144413 0.00074 
165 Erp29 67397 1.231144413 0.0019 
166 Ear4 53877 1.231144413 0.0017 
167 Ear3 53876 1.231144413 0.018 
168 D19Wsu162e 226178 1.231144413 0.00084 
169 Ctnnb1 12387 1.231144413 0.035 
170 Ccpg1 72278 1.231144413 0.0042 
171 Cav1 12389 1.231144413 0.041 
172 Blmh 104184 1.231144413 0.00043 
173 Bach1 12013 1.231144413 0.012 
174 Acss2 60525 1.231144413 0.00061 
175 Acsl3 74205 1.231144413 0.009 
176 Znf512b 269401 1.222640278 0.00036 
177 St3gal5 20454 1.222640278 0.00088 
178 Smg1 233789 1.222640278 0.00034 
179 Slc12a6 107723 1.222640278 0.00019 
180 Mta3 116871 1.222640278 0.00063 
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181 Mgst1 56615 1.222640278 0.0029 
182 Lrpprc 72416 1.222640278 0.0018 
183 Fbxo21 231670 1.222640278 0.0025 
184 Endod1 71946 1.222640278 0.011 
185 Cd99l2 171486 1.222640278 0.0044 
186 Ccdc61 232933 1.222640278 1.80E-05 
187 Cars 27267 1.222640278 0.00029 
188 Caprin1 53872 1.222640278 0.0078 
189 Atp6v0d1 11972 1.222640278 7.00E-04 

 Atp6v0d1 11972 1.222640278 0.0029 
190 Actn1 109711 1.222640278 0.0013 
191 Abca3 27410 1.222640278 0.0018 
192 Txndc15 69672 1.214194884 0.0078 
193 Tubb5 22154 1.214194884 0.0023 
194 Tspan14 52588 1.214194884 0.0046 
195 Qdpr 110391 1.214194884 0.017 
196 Ptpla 30963 1.214194884 0.01 
197 Mpp1 17524 1.214194884 0.029 
198 Mfap3 216760 1.214194884 0.00027 
199 Mat2b 108645 1.214194884 0.001 
200 Kdm6a 22289 1.214194884 0.0043 

 Kdm6a 22289 1.214194884 0.0044 
201 Glg1 20340 1.214194884 0.0087 
202 Fam117b 72750 1.214194884 0.0017 
203 Ctdsp2 52468 1.214194884 0.0065 
204 Bahcc1 268515 1.214194884 0.00011 
205 Adnp 11538 1.214194884 0.0086 
206 Zkscan17 268417 1.205807828 0.0079 
207 Wipi1 52639 1.205807828 0.01 
208 Vdr 22337 1.205807828 0.023 
209 Tead2 21677 1.205807828 0.0048 
210 Slc1a3 20512 1.205807828 0.0024 
211 Sgol2 68549 1.205807828 0.0029 
212 Ryk 20187 1.205807828 0.00061 
213 Rreb1 68750 1.205807828 0.0053 
214 R3hdm1 226412 1.205807828 0.005 
215 Prickle3 54630 1.205807828 0.036 
216 Prelp 116847 1.205807828 0.0025 
217 Plat 18791 1.205807828 0.00086 
218 Pex19 19298 1.205807828 0.028 
219 Pcdh7 54216 1.205807828 0.00034 
220 Papola 18789 1.205807828 2.30E-05 
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221 Pank2 74450 1.205807828 8.70E-05 
222 Ncoa6 56406 1.205807828 0.00012 
223 Mysm1 320713 1.205807828 0.0071 
224 Mmd 67468 1.205807828 0.0035 
225 Mapk11 19094 1.205807828 0.00096 
226 LOC100046953 100046953 1.205807828 0.00068 
227 LOC100046401 100046401 1.205807828 0.029 
228 Kif21a 16564 1.205807828 0.005 
229 Ikbkap 230233 1.205807828 0.0034 
230 Gsta4 14860 1.205807828 0.0045 
231 Grb10 14783 1.205807828 0.0081 
232 Gaa 14387 1.205807828 0.013 
233 Fam57a 116972 1.205807828 0.00015 
234 Fam195b 192173 1.205807828 0.015 
235 Eif4enif1 74203 1.205807828 0.0073 
236 Dpp3 75221 1.205807828 0.0016 
237 Ctdspl 69274 1.205807828 0.00064 
238 Bicc1 83675 1.205807828 9.00E-04 
239 B4galt3 57370 1.205807828 0.018 
240 Arnt 11863 1.205807828 0.0021 
241 Ak4 11639 1.205807828 0.00039 
242 6430527G18Rik 238330 1.205807828 0.0072 
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Appendix 4  
Appendix 4 A total of 22 genes downregulated in cells transfected with RISC-
free siRNAs versus untreated cells. Pja2 is common in the dataset of appendix 2. 
 

 
Symbol EntrezID 

Downregulated 
fold change P Value 

1 Hyi 68180 1.328685814 0.00088 
2 Igfbp5 16011 1.274560627 0.032 
3 Ptrh1 329384 1.248330549 0.00017 
6 Hist1h2bk 319184 1.2397077 0.00012 
4 Myg1 60315 1.2397077 0.013 
5 Col3a1 12825 1.2397077 0.00059 
7 Zfp36l1 12192 1.222640278 0.033 
8 Gm2174 100039346 1.214194884 0.04 

10 Hist1h2bf 319180 1.214194884 0.021 
14 Iglon5 210094 1.214194884 0.00092 
13 Ndufaf4 68493 1.214194884 0.00099 

9 N6amt2 68043 1.214194884 0.024 
12 Rsrc1 66880 1.214194884 0.0056 
15 Fth1 14319 1.214194884 0.00092 
11 Eef1a1 13627 1.214194884 0.0059 
20 LOC100048046 100048046 1.205807828 0.0024 
19 Gpr176 381413 1.205807828 0.004 
16 Pja2 224938 1.205807828 0.033 
17 Kdm6b 216850 1.205807828 0.02 
21 Nme7 171567 1.205807828 0.0017 
18 Mllt4 17356 1.205807828 0.0067 
22 Dyrk1b 13549 1.205807828 0.00054 
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Appendix 5 
Appendix 5 Chimeric reads presenting cellular miRNA-RNA interaction 
identified by CLASH 
 
Chimeric reads identified in the control (HEK293-PTH-hAGO2 cells) 

miRNA Gene 
Unique 
read 

hsa-mir-320a ENST00000490090.5|BTBD11 2 
hsa-mir-766 ENST00000401089.3|SZRD1 1 
hsa-mir-766 ENST00000566228.4|SNX29 1 
hsa-mir-320a ENST00000490090.5|BTBD11 3 

 

Chimeric reads identified in mock infection (NIH 3T3-PTH-mAGO2 cells) 

miRNA	
   Gene	
  
Unique	
  
reads	
  

MIMAT0000127|miR-­‐29b-­‐3p|microRNA	
   ENSMUST00000107886|Rgp1-­‐001|protein_coding	
   1	
  

MIMAT0000127|miR-­‐29b-­‐3p|microRNA	
   ENSMUST00000121646|Plagl1-­‐001|protein_coding	
   1	
  

MIMAT0000139|miR-­‐127-­‐3p|microRNA	
   ENSMUST00000075637|Ptpn3-­‐001|protein_coding	
   1	
  

MIMAT0000148|miR-­‐136-­‐5p|microRNA	
   ENSMUST00000027373|Ppm1f-­‐001|protein_coding	
   1	
  

MIMAT0000157|miR-­‐145a-­‐5p|microRNA	
   ENSMUST00000177458|Pid1-­‐002|protein_coding	
   1	
  

MIMAT0000157|miR-­‐145a-­‐5p|microRNA	
   ENSMUST00000182613|Ano4-­‐009|protein_coding	
   1	
  

MIMAT0000162|miR-­‐152-­‐3p|microRNA	
   ENSMUST00000020706|Adcy1-­‐001|protein_coding	
   1	
  

MIMAT0000533|miR-­‐26a-­‐5p|microRNA	
   ENSMUST00000047037|Thoc2-­‐001|protein_coding	
   1	
  

MIMAT0000535|miR-­‐29a-­‐3p|microRNA	
   ENSMUST00000052332|Abi2-­‐201|protein_coding	
   1	
  

MIMAT0000537|miR-­‐27a-­‐3p|microRNA	
   ENSMUST00000068079|Zfp560-­‐001|protein_coding	
   10	
  

MIMAT0000537|miR-­‐27a-­‐3p|microRNA	
   ENSMUST00000027373|Ppm1f-­‐001|protein_coding	
   1	
  

MIMAT0000538|miR-­‐31-­‐5p|microRNA	
   ENSMUST00000027373|Ppm1f-­‐001|protein_coding	
   2	
  

MIMAT0000538|miR-­‐31-­‐5p|microRNA	
   ENSMUST00000077689|Ssh1-­‐003|protein_coding	
   1	
  

MIMAT0000538|miR-­‐31-­‐5p|microRNA	
   ENSMUST00000025402|Gnal-­‐201|protein_coding	
   1	
  

MIMAT0000538|miR-­‐31-­‐5p|microRNA	
   ENSMUST00000034811|Cyp19a1-­‐201|protein_coding	
   1	
  

MIMAT0000538|miR-­‐31-­‐5p|microRNA	
   ENSMUST00000027373|Ppm1f-­‐001|protein_coding	
   1	
  

MIMAT0000545|miR-­‐98-­‐5p|microRNA	
   ENSMUST00000096433|Deptor-­‐001|protein_coding	
   1	
  

MIMAT0000546|miR-­‐103-­‐3p|microRNA	
   ENSMUST00000102759|Stam2-­‐001|protein_coding	
   4	
  

MIMAT0000647|miR-­‐107-­‐3p|microRNA	
   ENSMUST00000102759|Stam2-­‐001|protein_coding	
   1	
  

MIMAT0000651|miR-­‐19a-­‐3p|microRNA	
   ENSMUST00000035444|Chrm1-­‐001|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000105290|Nr2c1-­‐001|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000056014|Ifne-­‐001|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000035931|Pcdh18-­‐201|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000177451|Foxn3-­‐005|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000092213|Nr2c1-­‐002|protein_coding	
   3	
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MIMAT0000666|miR-­‐320-­‐3p|microRNA	
   ENSMUST00000111702|Sspn-­‐002|protein_coding	
   1	
  

MIMAT0000670|miR-­‐222-­‐3p|microRNA	
   ENSMUST00000098473|Cnot1-­‐202|protein_coding	
   1	
  

MIMAT0000740|miR-­‐376a-­‐3p|microRNA	
   ENSMUST00000072061|Entpd5-­‐202|protein_coding	
   1	
  

MIMAT0000740|miR-­‐376a-­‐3p|microRNA	
   ENSMUST00000182613|Ano4-­‐009|protein_coding	
   1	
  

MIMAT0003732|miR-­‐668-­‐3p|microRNA	
   ENSMUST00000037099|Clic4-­‐001|protein_coding	
   1	
  

MIMAT0004522|miR-­‐27b-­‐5p|microRNA	
   ENSMUST00000182625|Sox12-­‐002|protein_coding	
   1	
  

MIMAT0004582|miR-­‐106b-­‐3p|microRNA	
   ENSMUST00000181320|NLRP12-­‐201|protein_coding	
   1	
  

MIMAT0004667|miR-­‐199b-­‐3p|microRNA	
   ENSMUST00000064444|Maneal-­‐001|protein_coding	
   1	
  

MIMAT0017243|miR-­‐669a-­‐3p|microRNA	
   ENSMUST00000103145|E2f1-­‐001|protein_coding	
   1	
  

MIMAT0017347|miR-­‐669o-­‐3p|microRNA	
   ENSMUST00000091458|Nr2f1-­‐001|protein_coding	
   1	
  

MIMAT0031418|miR-­‐8112|microRNA	
   ENSMUST00000035037|Pik3cb-­‐001|protein_coding	
   1	
  

 

Chimeric reads identified in cells infected with wild type MCMV (NIH 3T3-PTH-

mAGO2 cells) 

miRNA	
   Gene	
   Unique	
  
reads	
  

MIMAT0000125|miR-­‐23b-­‐3p|microRNA	
   ENSMUST00000031227|Zfp326-­‐001|protein_coding	
   1	
  

MIMAT0000125|miR-­‐23b-­‐3p|microRNA	
   ENSMUST00000119824|1700016H13Rik-­‐002|protein_coding	
   2	
  

MIMAT0000126|miR-­‐27b-­‐3p|microRNA	
   ENSMUST00000085108|Foxn3-­‐201|protein_coding	
   1	
  

MIMAT0000127|miR-­‐29b-­‐3p|microRNA	
   ENSMUST00000121646|Plagl1-­‐001|protein_coding	
   1	
  

MIMAT0000132|miR-­‐99b-­‐5p|microRNA	
   ENSMUST00000025595|Fam111a-­‐201|protein_coding	
   1	
  

MIMAT0000132|miR-­‐99b-­‐5p|microRNA	
   ENSMUST00000096363|Tmem28-­‐001|protein_coding	
   1	
  

MIMAT0000133|miR-­‐101a-­‐3p|microRNA	
   ENSMUST00000182613|Ano4-­‐009|protein_coding	
   1	
  

MIMAT0000135|miR-­‐125a-­‐5p|microRNA	
   ENSMUST00000038863|Lars2-­‐201|protein_coding	
   2	
  

MIMAT0000135|miR-­‐125a-­‐5p|microRNA	
   ENSMUST00000042852|Fam210a-­‐001|protein_coding	
   1	
  

MIMAT0000136|miR-­‐125b-­‐5p|microRNA	
   ENSMUST00000020706|Adcy1-­‐001|protein_coding	
   1	
  

MIMAT0000136|miR-­‐125b-­‐5p|microRNA	
   ENSMUST00000163300|Arf1-­‐201|protein_coding	
   1	
  

MIMAT0000136|miR-­‐125b-­‐5p|microRNA	
   ENSMUST00000075637|Ptpn3-­‐001|protein_coding	
   1	
  

MIMAT0000136|miR-­‐125b-­‐5p|microRNA	
   ENSMUST00000141468|Atp11b-­‐005|protein_coding	
   1	
  

MIMAT0000152|miR-­‐140-­‐3p|microRNA	
   ENSMUST00000020699|Gatsl3-­‐001|protein_coding	
   2	
  

MIMAT0000152|miR-­‐140-­‐3p|microRNA	
   ENSMUST00000015234|Ptgds-­‐004|protein_coding	
   1	
  

MIMAT0000157|miR-­‐145a-­‐5p|microRNA	
   ENSMUST00000033088|Rnf40-­‐201|protein_coding	
   1	
  

MIMAT0000159|miR-­‐149-­‐5p|microRNA	
   ENSMUST00000033088|Rnf40-­‐201|protein_coding	
   1	
  

MIMAT0000165|miR-­‐155-­‐5p|microRNA	
   ENSMUST00000093271|Gpr56-­‐201|protein_coding	
   1	
  

MIMAT0000211|miR-­‐182-­‐5p|microRNA	
   ENSMUST00000033088|Rnf40-­‐201|protein_coding	
   1	
  

MIMAT0000219|miR-­‐24-­‐3p|microRNA	
   ENSMUST00000027373|Ppm1f-­‐001|protein_coding	
   1	
  

MIMAT0000229|miR-­‐199a-­‐5p|microRNA	
   ENSMUST00000022148|Mccc2-­‐201|protein_coding	
   1	
  

MIMAT0000376|miR-­‐298-­‐5p|microRNA	
   ENSMUST00000098110|AA474408-­‐201|protein_coding	
   3	
  

MIMAT0000381|miR-­‐34c-­‐5p|microRNA	
   ENSMUST00000098473|Cnot1-­‐202|protein_coding	
   1	
  

MIMAT0000514|miR-­‐30c-­‐5p|microRNA	
   ENSMUST00000038381|Lats2-­‐005|protein_coding	
   1	
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MIMAT0000515|miR-­‐30d-­‐5p|microRNA	
   ENSMUST00000095141|Prdm13-­‐201|protein_coding	
   1	
  

MIMAT0000532|miR-­‐23a-­‐3p|microRNA	
   ENSMUST00000033088|Rnf40-­‐201|protein_coding	
   1	
  

MIMAT0000532|miR-­‐23a-­‐3p|microRNA	
   ENSMUST00000022304|Thrb-­‐001|protein_coding	
   1	
  

MIMAT0000533|miR-­‐26a-­‐5p|microRNA	
   ENSMUST00000119665|Ccdc33-­‐007|protein_coding	
   1	
  

MIMAT0000535|miR-­‐29a-­‐3p|microRNA	
   ENSMUST00000182341|Ano4-­‐001|protein_coding	
   1	
  

MIMAT0000538|miR-­‐31-­‐5p|microRNA	
   ENSMUST00000111920|Plekha3-­‐001|protein_coding	
   2	
  

MIMAT0000545|miR-­‐98-­‐5p|microRNA	
   ENSMUST00000182047|Rnf4-­‐006|protein_coding	
   3	
  

MIMAT0000545|miR-­‐98-­‐5p|microRNA	
   ENSMUST00000113614|Gpr111-­‐001|protein_coding	
   1	
  

MIMAT0000556|miR-­‐324-­‐3p|microRNA	
   ENSMUST00000106223|1810043H04Rik-­‐001|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000036541|Arl5a-­‐001|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000182790|Ano4-­‐010|protein_coding	
   2	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000110090|Rab3a-­‐003|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000038863|Lars2-­‐201|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000036541|Arl5a-­‐001|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000176572|Vmn1r25-­‐001|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000060896|Col6a6-­‐201|protein_coding	
   2	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000023123|Col2a1-­‐001|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000098110|AA474408-­‐201|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000060896|Col6a6-­‐201|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000118317|Hipk1-­‐001|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000039271|2610008E11Rik-­‐001|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000036541|Arl5a-­‐001|protein_coding	
   1	
  

MIMAT0000661|miR-­‐214-­‐3p|microRNA	
   ENSMUST00000098441|Col6a6-­‐202|protein_coding	
   1	
  

MIMAT0000663|miR-­‐218-­‐5p|microRNA	
   ENSMUST00000033088|Rnf40-­‐201|protein_coding	
   1	
  

MIMAT0000663|miR-­‐218-­‐5p|microRNA	
   ENSMUST00000050544|Has2-­‐001|protein_coding	
   1	
  

MIMAT0000670|miR-­‐222-­‐3p|microRNA	
   ENSMUST00000172281|Gpaa1-­‐002|protein_coding	
   2	
  

MIMAT0000670|miR-­‐222-­‐3p|microRNA	
   ENSMUST00000057977|A730049H05Rik-­‐001|protein_coding	
   1	
  

MIMAT0000670|miR-­‐222-­‐3p|microRNA	
   ENSMUST00000113824|Clpx-­‐201|protein_coding	
   1	
  

MIMAT0000672|miR-­‐199b-­‐5p|microRNA	
   ENSMUST00000027373|Ppm1f-­‐001|protein_coding	
   1	
  

MIMAT0000740|miR-­‐376a-­‐3p|microRNA	
   ENSMUST00000027373|Ppm1f-­‐001|protein_coding	
   2	
  

MIMAT0003182|miR-­‐494-­‐3p|microRNA	
   ENSMUST00000044165|Itga9-­‐001|protein_coding	
   1	
  

MIMAT0003454|miR-­‐423-­‐3p|microRNA	
   ENSMUST00000006181|Napa-­‐001|protein_coding	
   5	
  

MIMAT0003485|miR-­‐455-­‐5p|microRNA	
   ENSMUST00000107815|Aldh16a1-­‐002|protein_coding	
   1	
  

MIMAT0003508|miR-­‐501-­‐5p|microRNA	
   ENSMUST00000043204|Fbxo33-­‐001|protein_coding	
   5	
  

MIMAT0004667|miR-­‐199b-­‐3p|microRNA	
   ENSMUST00000045652|Btbd7-­‐201|protein_coding	
   1	
  

MIMAT0004825|miR-­‐423-­‐5p|microRNA	
   ENSMUST00000098586|Sdhaf1-­‐001|protein_coding	
   6	
  

MIMAT0004894|miR-­‐574-­‐3p|microRNA	
   ENSMUST00000107479|Rapgefl1-­‐001|protein_coding	
   1	
  

MIMAT0004894|miR-­‐574-­‐3p|microRNA	
   ENSMUST00000014263|Ugt1a6a-­‐001|protein_coding	
   1	
  

MIMAT0017243|miR-­‐669a-­‐3p|microRNA	
   ENSMUST00000105687|Tmem201-­‐001|protein_coding	
   1	
  

MIMAT0017347|miR-­‐669o-­‐3p|microRNA	
   ENSMUST00000115816|Celf4-­‐202|protein_coding	
   1	
  

MIMAT0017347|miR-­‐669o-­‐3p|microRNA	
   ENSMUST00000107479|Rapgefl1-­‐001|protein_coding	
   1	
  

MIMAT0017347|miR-­‐669o-­‐3p|microRNA	
   ENSMUST00000045557|Slc7a5-­‐001|protein_coding	
   1	
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MIMAT0017347|miR-­‐669o-­‐3p|microRNA	
   ENSMUST00000107479|Rapgefl1-­‐001|protein_coding	
   1	
  

MIMAT0019340|miR-­‐3962|microRNA	
   ENSMUST00000038863|Lars2-­‐201|protein_coding	
   1	
  

MIMAT0020607|miR-­‐5100|microRNA	
   ENSMUST00000021689|Evl-­‐201|protein_coding	
   2	
  

 

Chimeric reads identified in cells infected with MCMV Δm169 (NIH 3T3-PTH-

mAGO2 cells) 

miRNA Gene 
Unique 
read 

MIMAT0000527|miR-16-5p|microRNA ENSMUST00000034325|Lpar2-201|protein_coding 1 
MIMAT0000531|miR-22-3p|microRNA ENSMUST00000058286|Rps6kb1-002|protein_coding 1 
MIMAT0000538|miR-31-5p|microRNA ENSMUST00000003438|Mob3a-201|protein_coding 1 
MIMAT0000670|miR-222-3p|microRNA ENSMUST00000058039|Vmn1r54-001|protein_coding 1 
MIMAT0004187|miR-744-5p|microRNA ENSMUST00000093196|Hmgb1-002|protein_coding 1 
MIMAT0004536|miR-151-5p|microRNA ENSMUST00000069718|Fto-001|protein_coding 1 
MIMAT0020607|miR-5100|microRNA ENSMUST00000077735|Evl-202|protein_coding 1 
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