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Abstract 

 

Since Yamanaka and Takahashi first described the isolation of induced pluripotent 

stem cells (iPSCs) in 2006, researchers have invested a vast amount of time and 

resources into trying to understand the process of reprogramming. However, the 

exact mechanisms underlying the induction of somatic cells to pluripotency is still 

incompletely understood. With this in mind, a screening approach was undertaken 

to identify shRNA that enhance the reprogramming process. A retrovirus based 

system was used to knock down candidate genes during reprogramming of mouse 

embryonic fibroblasts (MEF) containing doxycycline-inducible reprogramming 

factors and a Nanog-GFP reporter, which is activated when cells become iPSCs. The 

initial round of screening with over 150 shRNA vectors successfully identified 

several shRNAs that enhance reprogramming. One of these shRNA vectors 

exhibited both faster reprogramming kinetics as determined by activation of the 

Nanog-GFP reporter 2 to 3 days earlier and increased reprogramming efficiency 

giving rise to >5 fold more GFP+ colonies when compared with a control. Cell 

surface marker analysis with flow cytometry demonstrated that changes in CD44 

and ICAM1 expression, which occur preceding Nanog-GFP expression, were also 

accelerated. Validation of this shRNA determined that the enhanced 

reprogramming phenotype is the result of an unknown off-target effect. Microarray 

and RNA-sequencing analysis was carried out to identify the off target gene with a 

view to investigate the functional importance of this knock down and its role in 

establishing the pluripotency transcriptional network during reprogramming. 
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CHAPTER 1 - Introduction 

 

1.1 Changing cellular potential 

 

1.1.1 Reversion to pluripotency through somatic cell nuclear transfer 

 

Early cell development studies focusing on fate changes during 

differentiation were key in paving the way for progression of modern day stem cell 

science.  In a study published 80 years ago, Hämmerling (1934) used Acetabularia, a 

green algae, to generate heterokaryons and the resulting organism comprised 

features characteristic of both donor species. This put forward the idea that 

morphogenetic products derived by the nucleus could transport to the cytoplasm 

thereby regulating differentiation. Following on from this, later work by Briggs and 

King (1952) revealed that transplantation of nuclei from Rana pipiens (frog) blastulas 

into enucleated eggs subsequently gave rise to embryos that had normal 

differentiation capacity. This indicated that during differentiation, the nuclei of cells 

are not irreversibly changed. Interestingly, when the nuclei from a different species 

of frog, Rana catesbeiana, were transplanted into enucleated eggs of Rana pipiens, 

blastulas formed but died shortly after arrest, which is consistent with the lethal 

nature of normally produced hybrids of these species. In a subsequent report, the 

same group carried out serial transplantation of nuclei from late gastrula endoderm 

in to enucleated eggs and determined that second and subsequent generation clones 

of nucleated eggs recapitulated development similarly to the first generation i.e. if 

the first transplanted egg developed normally so did clones generated from serial 

transplantations and alternatively, if the first transplanted egg arrested at 

gastrulation subsequent clones behaved similarly and so on (King and Briggs, 1956). 

This work provided some evidence that differentiation potential of nuclei can be 

stably inherited, and nuclear changes or defects may not be reset to a normal status 

with serial transplantation. Similar results were confirmed in Xenopus laevis 

(Gurdon, 1960) and a later report by Gurdon (1962) demonstrated that serial transfer 

of nuclei isolated from fully differentiated Xenopus intestinal epithelium cells into 
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enucleated eggs could give rise to normal feeding tadpoles. This pioneering work 

provided evidence for the first time that genetic information is maintained 

throughout the lifetime of a cell and furthermore, genetic changes incurred during 

normal development can be reverted back to the original state. These experiments 

were among the first reports of somatic cell nuclear transfer (SCNT) and almost 50 

years later this technique would be used to produce the first mammal to be cloned 

from an adult somatic cell, a lamb, nicknamed Dolly the sheep to due the mammary 

gland origin of the somatic nucleus used to clone her (Wilmut et al., 1997). The 

animal was deemed to be healthy with no genetic abnormalities or otherwise, and in 

addition went on to produce viable offspring of her own providing conclusive proof 

that differentiation of cells does not cause permanent or irreversible changes to the 

genome and that nuclei can be ‘reset’ to a totipotent embryonic state. Since this 

achievement, several other animals have been successfully cloned including pigs 

(Polejaeva et al., 2000), dogs (Lee et al., 2005), horses (Galli et al., 2003) and deer 

(Berg et al., 2007), among many others but there has been controversy surrounding 

use of the technique to clone animals due to the low efficiency of the method in 

producing viable animals in addition to abnormal development commonly 

occurring in the clones caused by incomplete epigenetic resetting (Rideout et al., 

2001).  

 

 

1.1.2 Embryonic stem cells 

 

Since embryonic stem cells (ESCs) were first described 1981 (Evans and 

Kaufman, 1981) they have been anticipated to hold great promise for the future of 

regenerative medicine. ESCs have the characteristic hallmarks of unlimited self-

renewal whilst remaining in an undifferentiated state and maintain the pluripotent 

capacity to differentiate to cells of the three germ lineages, endoderm, mesoderm 

and ectoderm (Shufaro and Reubinoff, 2004; Nishikawa et al., 2007). ESCs were first 

derived from in vitro culture of mouse blastocysts and identified as proliferating 
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cells bearing similarities to embryonal carcinoma (EC) cells. These so called EK cells 

were found to be capable of differentiation both in vitro and in vivo as 

teratocarcinomas, and unlike all of the EC cell lines derived by the group they had a 

normal karyotype ruling out contamination of cultures by EC cells (Evans and 

Kaufman, 1981). Importantly, this group discovered that EK cells were found to 

contribute to chimeras capable of germ-line transmission (Bradley et al., 1984). Just a 

few months following the initial report, another group coined the term “embryonic 

stem cell” in a report describing a pluripotent cell line derived from the inner cell 

mass (ICM) of preimplantation mouse embryos (Martin, 1981). Clonal cell lines 

were found to be capable of differentiating in to an array of cell types through 

teratoma formation, supporting the previous report. These ESCs were maintained in 

an undifferentiated state for several passages in a medium condition by EC cells, 

suggesting that the medium contained some factor either promoting self-renewal or 

inhibiting differentiation. Indeed it was subsequently determined that leukemia 

inhibitory factor (LIF) could replicate the effect of “differentiation inhibitory activity 

(DIA)” in conditioned medium used to propagate ESCs (Smith et al., 1988; Williams 

et al., 1988). Addition of LIF to the culture medium prevented spontaneous 

differentiation of ESCs and negated the need for propagation on a fibroblast feeder 

layer. It was later discovered that bone morphogenic protein 4 (BMP4) in 

combination with LIF was sufficient to maintain self-renewal capacity of ESCs in the 

absence of serum in feeder-free conditions (Ying et al., 2003). These early studies 

paved the way for ESCs to be used as an invaluable model system to dissect the 

mechanisms of early development, pluripotency and fate decisions determining 

differentiation of cells. 

 Human embryonic stem cells (hESCs) with the potential to differentiate into 

cells representative of all three germ layers were derived 17 years later (Thomson et 

al., 1998). Despite these cells being established from the ICM of human embryos 

similarly to mouse ESCs (mESCs), however, their potential to self-renew was not 

supported by LIF and BMP (Thomson et al., 1998; Reubinoff et al., 2000). 

Morphologically, hESC colonies appeared flatter than their mouse counterpart and 
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unlike mESCs, hESCs express markers SSEA-4, TRA-1-81 and TRA-1-60 (Reubinoff 

et al., 2000; Ginis et al., 2004) and are capable of trophoblast differentiation 

(Thomson et al., 1998; Odorico et al., 2001; Edwards, 2002). FGF2 (bFGF) and 

activin/Nodal pathways were later found to support pluripotency and self-renewal 

of hESCs (Amit et al., 2000; Vallier et al., 2005; Schnerch et al., 2010) and feeder- and 

serum-free culture conditions were described with transforming growth factor beta 

(TGF-β) as a key requirement (Amit et al., 2004). Despite the differences between 

these two model systems, hESCs have also become a useful tool for stem cell 

research and drug discovery.  

More recently, pluripotent stem cell lines have been established from post-

implantation mouse embryos, termed epiblast stem cells (EpiSCs). Interestingly, 

despite expression of typical mESC markers such as SSEA-1, Oct4 and Nanog, these 

cells are epigenetically distinct and exhibit characteristics similar to hESCs, 

including flattened colony morphology, incompetence for single cell passaging and 

dependence on activin/Nodal signalling (Brons et al., 2007; Tesar et al., 2007). Two 

states of pluripotency have since been designated by Nichols and Smith (2009) to 

describe these distinct cell types with the ESC-like traits of ICM derived cells termed 

the “naïve” state and epiblast derived EpiSC-like cells existing in a “primed” state. 

The naïve state represents cells that possess true pluripotency. That is, they express 

a full panel of pluripotency markers, both X chromosomes remain active and they 

can contribute to all germ lineages in blastocyst chimeras. On the other hand, 

primed cells express core pluripotency factors including Oct4, Sox2 and Nanog but 

lack expression of many other pluripotency markers, may have limited and 

potentially biased capacity for differentiation, contain an inactive X chromosome 

and do not contribute to chimeras in the conventional way without additional 

manipulation (Nichols and Smith, 2009). However, it has been reported that EpiSCs 

can contribute to chimera formation either in a permissive environment, with 

genetic manipulation or by selection of a permissive subpopulation of cells (Huang 

et al., 2012; Han et al., 2010; Ohtsuka et al., 2012).  

 



 5 

1.1.2.1 2i can support pluripotent stem cell derivation and maintenance  

One of the most famous pluripotent culture conditions comes from the lab of 

Austin Smith and is named ‘2i’ after its composition of two inhibitors. Ying et al. 

(2008) coined the term “ground state pluripotency” as the intrinsic ability for ESC to 

self-renew regardless of external influence. This was demonstrated by culturing 

ESCs in a combination of three small molecule inhibitors (3i) CHIR99021 (CHIR), 

SU5402 and PD184352, which blocked glycogen synthase kinase 3 (GSK3), FGF 

receptor and ERK signalling, respectively. This defined culture condition 

maintained ESCs in a self-renewing, pluripotent state in the absence of serum or 

BMP, in a similar fashion to undefined conventional ESC media, and germline-

competent chimeras were obtained even from the non-permissive CBA mouse 

strain, which has been reported to be difficult to isolate ESCs from in conventional 

culture conditions (Buehr and Smith, 2003). A few months later, Smith and 

colleagues reported that manipulation of intracellular signalling by addition of 

PD0325901 (PD03), a potent ERK inhibitor, and CHIR (termed “2i” conditions) in 

addition to LIF could drive both neural stem cell (NSC) and MEF derived pre-iPSCs 

to a fully reprogrammed state as indicated by activation of endogenous Oct4 

expression, conversion of XaXi to XaXa and contribution to chimeras (Silva et al., 

2008a).  

Previously, only a certain number of mouse strains were deemed 

“permissive” for ES cell derivation in conventional mESC culture conditions 

containing LIF and either serum or the growth factor BMP (Buehr et al., 2008), 

including 129, BALB/C and C57BL/6 (Hanna et al., 2010b). Attempts to establish 

ESCs from “non-permissive” species or mouse strains, for example, rats and 

nonobese diabetic (NOD) mice, in mESC conditions has previously been 

unsuccessful and only EpiSCs could be derived from these animals, in the presence 

of activin and FGF (Brons et al., 2007; Buehr et al., 2008). This was resolved by 

Nichols et al. (2009) who derived ESCs from NOD mice using 2i culture conditions 

and more recently a report by Czechanski et al. (2014) outlined a method by which 

ESCs could be derived by any mouse strain, including those from which ESCs failed 
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to be derived. Interestingly, it was subsequently determined that the response to LIF 

signalling underscored the permissibility of a mouse strains to give rise to mESCs 

and in permissible strains the JAK-Stat3 pathway was preferentially activated, 

whereas the MAP kinase pathway was hyperactivated in response to LIF in 

nonpermissive strains (Ohtsuka and Niwa, 2015). 

The increasing availability of pluripotent cell lines, particularly human 

derived lines, presented great promise for gaining mechanistic insight into 

developmental questions as well as advancing medical research and drug 

discovery. However, a major obstacle for both research and clinical use of hESCs is 

their controversial source since hESCs are usually derived from healthy surplus 

embryos resulting from fertility treatments. Consequently there is a distinct lack of 

disease models without the need for further genetic manipulation of the cells. 

However, embryos obtained from preimplantation genetic diagnosis (PGD) 

screening represent an alternative source of hESCs with somewhat fewer ethical 

difficulties that already carry mutations for specific diseases. These hESCs are used 

for modelling human diseases such as Huntington's disease, cystic fibrosis, 

Duchenne and Becker muscular dystrophies and fragile X syndrome, among others 

(Stephenson et al., 2009). In addition to issues surrounding ethics, there is the matter 

of potential recipient rejection of ESC derived tissue. Nonetheless, progress has been 

seen in studies of hESCs to treat animal disease models including Parkinson’s 

disease (Ben-Hur et al., 2004) and retinal disease (Lamba et al., 2006). Some years 

ago the U.S. Food and Drug Administration (FDA) approved the first clinical trial 

using hESCs to treat patients with spinal cord injury (Couzin, 2009). 

 

 

1.1.3 Induced pluripotent stem cells 

 

Researchers have long been interested in developing strategies to generate 

pluripotent cells from differentiated cells which would allow generation of patient 

specific derived stem cells for clinical use or disease modelling. Methods to generate 
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such pluripotent cells have included cell fusion of somatic cells with pluripotent 

cells such as ESCs, SCNT and exposure of somatic cells to ESC extracts (Hakelien et 

al., 2002; Landsverk et al., 2002; Cowan et al., 2005; Do and Schöler, 2004; Rathbone 

et al., 2013). Shinya Yamanaka hypothesized that the factors that play important 

roles in the maintenance of stem cell identity would also play key roles in inducing 

pluripotency in somatic cells. This was the basis on which Yamanaka and colleagues 

performed their pioneering experiments leading to successful reprogramming of 

adult somatic cells to pluripotent cells (Takahashi and Yamanaka, 2006). They used 

retroviral transfection of four reprogramming factors; c-Myc, Klf4, Sox2 and Oct3/4 

(herein Oct4), to reprogram mouse embryonic and adult fibroblasts to a pluripotent 

state. By using the embryonic specific (but dispensable) gene Fbx15 as a marker of 

reprogrammed cells, the first attempt to create pluripotent cells generated cells 

which had ESC-like morphology, Nanog gene expression and were pluripotent by 

teratoma formation but revealed poorly up-regulated pluripotency gene expression, 

incomplete DNA demethylation at the Oct4 and Nanog promoters and failed to 

efficiently silence transgene expression. These cells were termed induced 

pluripotent stem cells, or iPSCs, as they demonstrated pluripotency despite not 

being fully reprogrammed. The following year, the same group reported an 

improvement in the technology, generating germ-line competent iPSCs by selecting 

for Nanog expression, that exhibited ESC-like DNA methylation patterns at 

pluripotency and imprinted loci (Okita et al., 2007).  

iPS cells share hallmark features of mouse ES cells including pluripotency 

gene expression, DNA methylation state, activation of both X chromosomes (XaXa) 

in female lines and contribution to germ-line competent chimeras upon injection 

into blastocysts (Boland et al., 2009; Okita et al., 2007; Wernig et al., 2007). In 

addition, all-iPSC mice have been generated by tetraploid complementation (Zhao 

et al., 2009; Kang et al., 2009), suggesting that iPSCs have the ability to re-capitulate 

normal development compared to ESCs. However, more recently, higher rates of 

tumorigenesis were reported in all-iPSC mice produced using cells generated with 

oncogenes (Tong et al., 2011), highlighting the risks involved with using these cells 
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for clinical medicine. Subsequently, several groups have reported the generation of 

iPSC lines by using various other transcription factors including Nanog, Lin28, 

Esrrb and Nr5a2, in both human and mouse systems (Yu et al., 2007; Feng et al., 

2009; Heng et al., 2010), with other approaches using synthetic modified mRNA 

(Warren et al., 2010) or proteins (Kim et al., 2009; Zhang et al., 2012) to generate 

reprogrammed cells. 

It has been reported that there is a temporal requirement for exogenous 

factor expression during reprogramming. Using a doxycycline (dox)-inducible 

reprogramming system, Stadtfeld et al. (2008b) reported that exogenous factor 

dependency is reduced/abolished around day 8 of the reprogramming process; 

down regulation of transgene expression by removing dox at day 7 or earlier 

prevented the progression of colonies to a fully reprogrammed iPSC-like state. 

However, if dox was removed on day 8 or later, some of the colonies present in the 

culture progressed to fully reprogrammed iPSCs. In addition, it was observed that 

maintaining transgene expression for 10 days increased the number of colonies that 

successfully underwent reprogramming. Consequently, two iPSC populations could 

be identified and defined as ‘stable’ or ‘unstable’, depending on their independence 

or reliance on dox-mediated transgene expression in order to maintain an 

undifferentiated, ES-like phenotype (Hanna et al., 2009a; Hanna et al., 2010a).  

Following the establishment of reprogramming technology by Yamanaka 

and colleagues, Professor Sir Ian Wilmut made the announcement of his decision 

not to pursue his work into nuclear transfer as a method of generating human 

cloned embryos, instead favouring the reprogramming method of generating iPSCs 

as a more efficient and socially acceptable technique to produce human pluripotent 

stem cells. Remarkably, iPSC biology saw rapid translation to the clinic when in 

2013 plans for the first clinical trial using human iPSCs was approved by the 

Japanese government to generate retinal pigmented epithelial (RPE) cells for 

transplantation into patients with macular degeneration. The study, led by Dr. 

Masayo Takahashi from the RIKEN Center for Developmental Biology, carried out 

the first transplantations in September 2014, a mere 7 years after the first report on 
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iPSCs was published. This initial trial is intended to demonstrate safety of iPSC 

transplantation, rather than the expectation that it will improve the condition, but if 

successful subsequent stages of the clinical study will endeavour to restore eyesight 

in patients. Nonetheless this study will pave the way for clinical application of 

iPSCs, revolutionising regenerative medicine. 
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1.2 Methods of iPSC generation 

 

iPSC generation is famously inefficient and somatic cells from different 

tissues and species reprogram differently (Gonzalez et al., 2011). The majority of 

published studies use fibroblasts for reprogramming experiments, however, mouse 

embryonic fibroblasts (MEFs) reprogram significantly faster than human dermal 

fibroblasts (hDFs), taking around 10 or 20 days, respectively. Time is not the only 

variant when it comes to reprogramming capacities but moreover, the requirement 

of factors can vary drastically from one cell type to another. For example, CD133+ 

cells from cord blood and human fibroblasts can be reprogrammed with only Oct4 

and Sox2 (Meng et al., 2012; Huangfu et al., 2008b), and MEFs can be reprogrammed 

with only Oct4 and Klf4 in addition to small molecules, albeit all with lower 

efficiencies than four factor reprogramming. Since reprogramming technology was 

first reported a number of different systems have been described which generate 

iPSCs with varying efficiencies. Some of these reprogramming methods will be 

described here. 

 

 

1.2.1 Retrovirus and lentivirus 

 

The first reports of iPSC generation from both mouse and human cells used 

retroviruses to deliver the reprogramming factors to (Takahashi and Yamanaka, 

2006; Takahashi et al., 2007; Okita et al., 2007; Wernig et al., 2007; Maherali et al., 

2007; Aoi et al., 2008). It is widely know that retroviruses are silenced in ESCs 

(Macfarlan et al., 2011; Wolf and Goff, 2007; Rival-Gervier et al., 2013; Wolf and 

Goff, 2009; Hotta and Ellis, 2008) and the use of retroviral based vectors to deliver 

the reprogramming factors to cells utilises this distinct feature since successful 

reprogramming relies on cells becoming independent of exogenous factors and 

establishing endogenous gene expression networks in order to become fully mature 

iPSCs. A consideration of retroviral-mediated reprogramming is that it requires 
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dividing cells for transduction of the virus, which was abrogated in later studies 

using lentiviruses to deliver the reprogramming factors. Although lentiviruses are a 

subclass of retrovirus, they can infect both dividing and non-dividing cells 

(Vodicka, 2001) and many groups utilised this virus to successfully reprogram both 

fetal and adult human cells and mouse cells (Yu et al., 2007; Zhao et al., 2008; Mali et 

al., 2008; Stadtfeld et al., 2008b). A further improvement was made with the 

introduction of lentiviral polycistronic vectors capable of expressing the 

reprogramming factors from a single vector, with translation of individual proteins 

facilitated by self-cleaving 2A peptide separation of each gene (Shao et al., 2009; 

Carey et al., 2009; Sommer et al., 2009). This single vector system greatly reduced 

the extent of potential insertional mutagenesis upon viral integration and made 

four-factor expression more homogeneous. 

 

 

1.2.2 Adenovirus reprogramming 

 

  Stadtfeld et al. (2008c) reported successful reprogramming of mouse 

fibroblast and liver cells using adenovirus based vectors to transiently express the 

reprogramming factors. Because the adenovirus does not integrate into the genome, 

the iPSCs generated were exogenous factor free, and proved that reprogramming 

does not require insertional mutagenesis. However, almost a quarter of the iPSC 

lines analysed were tetraploid, suggesting that adenoviral-mediated 

reprogramming may induce a cell fusion event rendering cells karyotypically 

abnormal. Zhou and Freed (2009) later achieved reprogramming of human 

embryonic fibroblasts, with repeated infection of adenoviral reprogramming factors, 

after 25-30 days. However, similarly to the former report, despite a high multiplicity 

of infection (MOI) the efficiency of iPSC generation was extremely low. This was 

likely due to rapid clearance of the virus from cells with each generation, making 

this method technically challenging and unlikely that patient-specific iPSCs will be 

generated in this way for clinical application.  
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1.2.3 Sendai virus reprogramming 

 

Sendai virus (SeV) is a negative-sense single stranded RNA virus, which 

replicates in the cytoplasm with no DNA intermediate.  Consequently there is no 

genome integration. This makes SeV a very attractive alternative to other viruses 

typically used for delivery of reprogramming factors to cells, as reported by Fusaki 

et al. (2009). This group successfully and efficiently generated human iPSCs at rates 

of up to 1%, which faithfully up-regulated pluripotency genes and exhibited DNA 

methylation patterns similar to human embryonal carcinoma cells. Importantly, 

complete depletion of SeV was confirmed with increasing time and passage 

number. This method showed such promise that it is now available as the 

commercially available CytoTune™ reprogramming kit sold by Life Technologies. 

 

 

1.2.4 piggyBac transposon-mediated reprogramming 

 

Several groups reported a virus-free, transgene integration-free method of 

reprogramming using the piggyBac (PB) transposon, a mobile genetic element, to 

deliver the reprogramming factors to cells (Woltjen et al., 2009; Kaji et al., 2009; Yusa 

et al., 2009). This is an attractive system for use in genome engineering since the 

transposon requires only two simple conditions to allow for insertion or excision of 

DNA; transgenes must be flanked by inverted terminal repeats (ITRs) and 

expression of PB transposase is required. PB transposase recognises the ITRs 

catalysing excision of the DNA, which is subsequently inserted into TTAA-specific 

target sites (Fraser et al., 1996). Woltjen et al. (2009) demonstrated that both mouse 

and human embryonic fibroblasts could be reprogrammed using doxycycline (dox)-

inducible PB reprogramming factors and following transposase-mediated excision 

of the transgenes, 90% of clones achieved seamless excision of the factors and were 

restored to wild type. Importantly, endogenous expression of the four factors was 

maintained following transgene removal. Kaji et al. (2009) demonstrated that MEF 
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could be reprogrammed by transfection of a single polycistronic vector encoding the 

four reprogramming factors linked by 2A peptides with an efficiency of 2.5% (based 

on stable transfection efficiency and number of Nanog positive colonies). The 

presence of two flanking loxP sites allowed for transgene removal leaving behind 

only a small vector footprint, providing an improvement on viral integration 

methods of reprogramming. This system was then modified, incorporating the PB 

transposon to reprogram human embryonic fibroblasts, providing further evidence 

that integration-free human iPSCs can be generated. This technology was further 

improved by Yusa et al. (2009) who employed negative selection to identify 

transposon-free iPSC clones generated using a PB polycistronic vector carrying four 

or five factors. 

 

 

1.2.5 Protein-mediated reprogramming 

 

  Zhou et al. (2009) reported generation of iPSCs from MEF by repeated 

transduction of recombinant proteins that contained a fused arginine-tag, allowing 

the proteins to pass across the cell membrane. The efficiency of reprogramming in 

this instance was extremely low, with only a few Oct4-GFP+ colonies being obtained 

per 5x104 cells, and addition of VPA was required for activation of Oct4-GFP, 

however the successful colonies were shown to be truly pluripotent exhibiting DNA 

methylation status similar to ESCs at endogenous Oct4 and Nanog promoters, 

pluripotent gene expression and contribution to tissues of the three germ layers 

both in vitro and in vivo. The laborious requirement for several applications of the 

proteins was negated by Cho et al. (2010) who reprogrammed adult mouse 

fibroblasts with just a single dose of ESC-derived extracted proteins. After 4-7 days 

only a few colonies were observed and upon subsequent passaging onto feeders 

numerous secondary colonies were generated. Subsequently, Kim et al. (2009) used 

direct protein transduction to generate human iPSCs in the absence of small 

molecules but this system was also reported to be less efficient, by 10-fold, and 
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taking twice as long to produce colonies as traditional virus-mediated 

reprogramming. The common denominator of all of these studies is the drastic drop 

in reprogramming efficiency achieved using a protein-mediated method, 

nonetheless, these findings demonstrate that iPSCs can be produced without the 

need for DNA introduction and genomic manipulation of cells, which is attractive 

in the clinical context. 

 

 

1.2.6 mRNA-mediated reprogramming  

 

In 2010, Warren et al. and others reported the use of synthetic mRNA as an 

integration free, efficient method of reprogramming (Warren et al., 2010; Yakubov et 

al., 2010). Introduction of RNA into cells can trigger an immune response mediated 

by single stranded RNA (ssRNA) sensors including RIG-I, and PKR, a repressor of 

protein translation (Pichlmair et al., 2006; Hornung et al., 2006; Nallagatla et al., 

2008). For this reason, Warren et al. (2010) used in vitro transcribed mRNAs 

containing substitutions of cytidine and uridine ribonucleoside bases with naturally 

occurring modified nucleosides 5-methylcytidine (5mC) and pseudouridine (psi), in 

addition to B18R, an interferon inhibitor, to avoid invoking the innate immune 

response in cells, as seen with the use of viral delivery of reprogramming factors. In 

the most optimum conditions, requiring five reprogramming factors and low 

oxygen culture, a reprogramming efficiency of over 4% was observed, compared 

with 0.04% using retrovirus in this study and with the best viral methods reporting 

around 1% efficiency (Fusaki et al., 2009). A range of fetal, neonatal and adult cells 

were reprogrammed demonstrating the wide applicability of this method to 

different tissues, and furthermore, this approach lacks the requirement to screen 

clones for viral clearance or vector integration making this an attractive 

reprogramming system in the context of regenerative medicine. However, it 

involved a labour intensive strategy of daily transfection of mRNA over a course of 

more than two weeks, detracting from the likelihood of practical application in a 
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clinical context. The same group later reported an improved process and were able 

to generate hESC-like colonies with only 6 days of transfections (Warren et al., 

2012), and with further refinement this could be a viable and attractive 

reprogramming strategy with the increasing demand for patient-specific iPSC 

generation in both research and clinical contexts.  

 

 

1.2.7 Episomal-mediated reprogramming  

 

 Yu et al. (2009) demonstrated an alternative method to generate transgene 

free iPSCs, taking advantage of the extrachromosomal replication property of 

Epstein-Barr virus derived oriP/EBNA1 episomal vectors. These vectors are 

reported to replicate only once per cell cycle and remain non-integrating in 99% of 

transfected cells. Importantly, upon removal of drug selection, the vector is cleared 

from cells at a rate of approximately 5% per cell division making this a desirable 

tool for generation of transgene-free iPSCs. In this study human foreskin fibroblasts 

required transfection of three episomal vectors encoding seven genes in total, OCT4, 

SOX2, NANOG, KLF4, SV40 large T (SV40LT) and LIN28, to generate iPSCs at an 

extremely low efficiency of up to 0.0006%. Subsequently, the same group achieved 

episomal reprogramming of bone marrow derived mononuclear cells with a greater 

efficiency 0.035% (Hu et al., 2011). Other modifications to the episomal 

reprogramming method include successful reprogramming of cord blood 

mononuclear cells using only a single polycistronic vector to express five factors 

(Chou et al., 2011) and substitution of C-MYC and NANOG with nontransforming 

L-MYC in addition to an shRNA targeting p53 has enhanced reprogramming 

efficiency of human dermal fibroblasts to 0.2% (Okita et al., 2011).  
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1.2.8 Other methods of reprogramming 

 

1.2.8.1 microRNA-mediated reprogramming  

Impressively, reprogramming induced by expression of only micro-RNA 

302-367 (miR-302/367) was reported to be more than 100 fold more efficient than 

traditional four factor reprogramming and Oct4-GFP+ colonies were evident as 

early as 6 or 7 days post lentiviral transduction of miR-302/367 (Anokye-Danso et 

al., 2011). This system was reported to be extremely efficient, with almost 80% of 

colonies expressing Oct4-GFP by day 8, however, certain prerequisites were 

necessary including low Hdac2 levels, which could be induced with valproic acid 

(VPA).  

Shortly after this report, another group found that direct transfection of 

mature double stranded miRNAs could reprogram mouse adipose stromal cells 

(mASCs) (Miyoshi et al., 2011). Candidate miRNAs were determined by comparison 

of miRNA expression in mouse ESCs and iPSCs with mASCs. miRNAs that were 

expressed more than 2-fold higher in the ESCs and iPSCs, including members of the 

mir-200c, mir-302s and mir-369s families, were used in reprogramming 

experiments. Nanog-GFP+ colonies were observed 15 days after transfection, 

however the efficiency was extremely low, with only a few colonies generated per 

5x104 transfected cells, at an efficiency similar to the original retrovirus-mediated 

reprogramming report of approximately 0.01% (Takahashi and Yamanaka, 2006). 

Human ASCs and dermal fibroblasts were also successfully reprogrammed using 

this method, albeit at an even lower efficiency than observed in the mouse cells, 

however, the clones generated appeared to be bona fide iPSCs by the standard 

accepted characterisation of ESC-like morphology, pluripotency marker expression, 

and teratoma formation (Miyoshi et al., 2011). 

Interestingly, these studies have been the only reports of such miRNA-only 

reprogramming to the best of my knowledge. Other studies have failed to 

corroborate these findings including a report by Lu et al. (2012) that found the 

introduction of miR-302/367 was insufficient to generate iPSCs from MEFs, although 
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it was found that in addition to the traditional reprogramming factors, this and 

other miRNAs promoted reprogramming. Notably, these studies used two different 

methods of miRNA expression, with lentiviral and PB vectors used, respectively, 

which could explain the differences in reprogramming success. A second study was 

unable to reprogram human ASCs using only miRNA-302, but the authors 

determined that this could be down to the differences in methodology, starting 

somatic cell type or the absence of miRNA-367 (Hu et al., 2013) which was reported 

to be key in activating Oct4 by Anokye-Danso et al. (2011). These inconsistencies 

highlight the need for reproducibility not only due to the extent of variation 

between both reprogramming systems and individual laboratories but to ensure 

that high standards are maintained in the quality of peer-reviewed journal 

publications in order to prevent misleading or false data from being published as far 

as possible. 

Irrespective of the uncorroborated claims reported by Anokye-Danso et al 

(2008), addition of ESC-specific cell cycle-regulating (ESCC) micro RNAs to 

conventional Yamanaka 4 factor mediated reprogramming has been reported as 

having a substantial positive effect on reprogramming efficiency in both mouse and 

human cells. Subramanyam et al (2011) added the human orthologues of ESCCs 

miR-302 (hsa-miR-302b) and miR-291 (hsa-miR-367) to 3- and 4-factor 

reprogramming and observed a 10 to 15-fold increase in colony number. Soon after, 

Liao et al (2011) reported up to 100-fold enhancement of reprogramming efficiency 

with the addition of ESCC miRNA clusters miR-106a-363 and miR302-367 to 3- or 4-

factor mediated reprogramming of MEFs. These authors proposed that the 

mechanism underlying this enhancement was through regulation of cell cycle, 

mesenchymal-to-epithelial transition and epigenetic regulators.  

 

1.2.8.2 Stimulis-triggered factor free reprogramming  

Recently, a remarkable phenomenon was reported by Obokata et al. (2014b), 

who observed that splenic CD45+ cells could revert to a pluripotent state when 

exposed to low-PH treatment in the absence of any exogenous factors. These lineage 
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committed somatic cells reprogrammed to stimulus-triggered acquisition of 

pluripotency (STAP) cells exhibiting hallmarks of pluripotency including 

pluripotency marker expression, ESC-like DNA methylation signatures at Oct4 and 

Nanog loci, and contribution to germ-line competent chimeras. However, STAP 

cells differed from ESCs as they could not self-renew indefinitely in traditional LIF + 

FBS or 2i containing ESC culture conditions, single-cell dissociation did not give rise 

to robust ESC-like colonies, Esrrb expression remained low and H3K27me3 dense 

foci was observed in 40% of female STAP cells indicative of an inactivated X 

chromosome. These data indicated that STAP cells were a different type of 

pluripotent cell to ES or iPS cells (Obokata et al., 2014b). Interestingly, STAP cells 

could be converted to an ESC-like state when cultured with LIF and the peptide 

hormone adrenocorticotropic hormone (ACTH), a known facilitator of ESC clonal 

expansion (Ogawa et al., 2004). Further investigation revealed that Oct4-GFP+ STAP 

cells could be derived from an array of somatic tissue types including brain, lung, 

muscle, liver and fibroblast cells, at varying efficiencies, and even more remarkably 

were found to contribute to both embryonic and placental tissues in vivo when 

treated with Fgf4 (Obokata et al., 2014a). 

The initial excitement of this novel discovery has since been met with a slew 

of controversy and criticism, largely triggered by the lack of reproducibility by a 

number of labs around the world, in addition to some of the published data 

appearing to be fraudulently reported. Although the authors continued to stand by 

their findings for a time, the articles were subsequently retracted by Nature in June 

2014, with even Obokata being unable to reproduce her own experiment. 

Accordingly, this method of reprogramming is not likely to be pursued until the 

method can be independently verified, if indeed the phenomenon of STAP is true. 

 

1.2.8.3 Reprogramming with Mbd3 knock down  

Recently, Rais et al. (2013) reported successful elimination of the stochastic 

heterogeneity of reprogramming by achieving nearly 100% reprogramming 

efficiency obtained through a “deterministic and synchronous” process. Methyl-
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CpG-binding domain protein 3 (Mbd3) is a core member of the nucleosome 

remodelling and deacetylation (NuRD) complex and mediates repression of genes. 

Mbd3 depletion in Mbd3fl/- epiblast stem cells (EpiSCs) resulted in more than 90% 

reversion to ES cells. Astonishingly, the authors went on to describe achievement of 

100% reprogramming efficiency by day 8 of reprogramming, as characterised by 

activation of Oct4-GFP+, when doxycycline inducible four factor, Mbd3fl/- MEFs 

(Mbd3 depleted) were reprogrammed as single-cell cultures in 2i/LIF conditions. 

Furthermore, similarly high efficiencies were achieved for reprogramming of a 

number of other terminally differentiated or progenitor cell types including 

haematopoietic stem cells, pro-B cells, monocytes and neural precursor cells. This is 

somewhat consistent with another report that knock down of Mbd3 enhances 

reprogramming (Luo et al., 2013) (albeit at far lower efficiency than the study by 

Rais et al. (2013)) and that overexpression of Mbd3 inhibits reprogramming by 

repressing ESC-specific genes including Oct4 and Nanog However, conflicting 

results of the Rais et al. (2013) study were later reported by dos Santos et al. (2014) 

who determined that NuRD function was required for EpiSC reprogramming and 

in fact up-regulation of Mbd3 facilitated conversion to iPSCs. Furthermore, Mbd3 

overexpression was found to increase efficiency in certain reprogramming contexts, 

including MEF-derived pre-iPSC, in conjunction with Nanog expression. Of note, 

the Mbd3fl/- cells used in the first study were derived in the lab of Dr. Brian 

Hendrich, one of the authors of the conflicting paper, yet Rais et al. (2013) reports 

that Mbd3 levels in these cells is hypomorphic expressing around 20% of wild type 

levels, whereas dos Santos et al. (2014) find nearly wild type levels expressed. In 

addition, Onder et al. (2012) found no positive effect on reprogramming with 

shMbd3. These groups could not confirm the results published by the Hanna group 

and the findings remain highly controversial. 
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1.2.9 Secondary reprogramming 

 

Tetracycline responsive promoters have been used for years as a tool for 

regulated gene expression in mammalian cells (Gossen and Bujard, 1992; Gossen et 

al., 1995). This system operates through binding of the reverse tetracycline 

transactivator (rtTA) protein to the tetO operator sequence only in the presence of 

tetracycline or one of its derivatives, for example doxycycline (dox), activating 

downstream gene expression. Reprogramming factors whose expression is 

controlled by the tetO promoter provides a tool by which exogenous factor 

expression can be initiated by introduction of dox to the culture medium. So-called 

dox-inducible reprogramming systems have been successfully reported to generate 

iPSCs in virus- and PB-mediated contexts (Brambrink et al., 2008; Stadtfeld et al., 

2008a; Stadtfeld et al., 2008b; Kaji et al., 2009; Woltjen et al., 2009; Hou et al., 2013).  

Utilising this technique Wernig et al. (2008) used rtTA-expressing MEFs to 

generate iPSCs carrying dox-inducible lentiviral reprogramming vectors. These 

primary iPSCs were used to generate chimeric mice whose MEFs were then isolated 

to provide somatic cells carrying identical reprogramming factor transgene 

integrations, controlled by doxycycline inducible promoters. This enabled a 

genetically homogeneous population of cells to be reprogrammed following 

treatment with dox to initiate re-expression of reprogramming factors and was 

termed “secondary reprogramming”. Secondary iPSCs from MEFs were generated 

at a 50-fold increased efficiency of up to 4% using this system, and in addition, 

many other cell types were successfully reprogrammed including keratinocytes, 

muscles, neural progenitors and mesenchymal stem cells. This system was 

subsequently described for human somatic cells, differentiated via teratoma 

formation, with up to 2-3% reprogramming efficiency being achieved. These studies 

also provided support for the earlier report in mouse that there is a temporal 

requirement for transgene expression and variations in transgene re-expression 

levels correlates with reprogramming efficiency (Hockemeyer et al., 2008; Maherali 

et al., 2008). Many groups have since utilised secondary reprogramming systems as 
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a more homogeneous and efficient means to study reprogramming kinetics (Hanna 

et al., 2010a; Koche et al., 2011; Efe et al., 2011; O'Malley et al., 2013). 
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1.3 Culture conditions for reprogramming 

 

1.3.1 The role of small molecules in reprogramming 

 

Reprogramming is renowned for being inefficient with initial estimates of 

reprogramming efficiency being as low as 0.01%. The reason for such low efficiency 

of conversion of somatic cells to iPS cells is unclear, however, regulation of gene 

expression in ES cells is tightly controlled and even modest changes in gene 

expression can result in altered phenotype. For example, in ES cells, Oct4 levels 

should be maintained within a small range of endogenous levels to maintain an 

undifferentiated state (Niwa et al., 2000). Therefore it is plausible that the exact 

levels of each of the four factors required lies within a tight range and that only in a 

small number of cells does the right combination of expression levels occur enabling 

reprogramming of this subset. Consequently a number of small molecules have 

been implicated in supporting the reprogramming process. Many small molecules 

and other factors known to enhance reprogramming are summarized in Table 1.1, 

some of which are discussed below. 

 

 

Factor/Small 
Molecule 

Target/Pathway Effect on reprogramming 
Reprogramming 

efficiency 
enhancement 

Species Reference 

Valproic acid 
(VPA) 

HDAC inhibitor 

Enhances reprogramming 
efficiency of MEF and 

enables reprogramming of 
human fibroblasts with only 

OCT4 and SOX2 

>100-fold 
Mouse/ 

Human 

Huangfu et al. 
(2008a) 

Huangfu et al. 
(2008b) 

Suberoylanilide 
hydroxamic acid 

(SAHA) 

Enhances reprogramming 
efficiency of MEF 

10-fold Mouse 
Huangfu et al. 

(2008a) 

Trichostatin A 
(TSA) 

Enhances reprogramming 
efficiency of MEF 

10-fold Mouse 
Huangfu et al. 

(2008a) 

Sodium butyrate 
(NaB) 

Enhances reprogramming 
efficiency of human fetal or 
adult fibroblasts. Enhanced 

reprogramming also 
observed in the absence of 
KLF4 and MYC transgenes. 

50 to 100-fold 
Mouse/ 
Human 

Mali et al. 
(2010) 

5-azazcytidine 
(5-aza) 

DNMT inhibitor 

Enhances reprogramming 
efficiency of MEF and 

promotes conversion of pre-
iPSC to fully reprogrammed 

iPSC 

4-fold Mouse 
Mikkelsen et 

al. (2008) 
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PD0325901 
Selective 
MEK/ERK 
inhibitor 

Facilitates rapid and efficient 
generation of fully 

reprogrammed human 
iPSCs 

200-fold (with 
Thiazovivin & 
SB431542) 

Human 
Lin et al. 
(2009) 

Thiazovivin 
Rho-associated 
protein kinase 

inhibitor 

Facilitates rapid and efficient 
generation of fully 

reprogrammed human 
iPSCs 

200-fold (with 
PD0325901 & 

SB431542) 
Human 

Lin et al. 
(2009) 

SB431542 

ALK4/5/7 
inhibitor 

Facilitates rapid and efficient 
generation of fully 

reprogrammed human 
iPSCs 

200-fold (with 
PD0325901 & 
Thiazovivin) 

Human 
Lin et al. 
(2009) 

E-616452 
Replaces Sox2 in 

reprogramming of MEF 
30-fold Mouse 

Ichida et al. 
(2009) 

Maherali and 
Hochedlinger 

(2009) 

Ascorbic acid 

Facilitates 
histone 

demethylation 
via the JmjC-

domain-
containing 

histone 
demethylase 

(JHDM) family 

Enhances reprogramming 
efficiency and facilitates 
efficient conversion of 

mouse pre-iPSC to fully 
reprogrammed iPSCs 

150-fold 
Mouse/ 
Human 

Esteban et al. 
(2010)  

Chen et al. 
(2013) 

CHIR99021 GSK3-β inhibitor 

Enhances reprogramming 
efficiency of MEF, blood 

progenitors and refractory 
cell populations 

5-fold alone or 
up to 50-fold 
with ascorbic 

acid  

Mouse 
Bar-Nur et al. 

(2014) 

p53 siRNA p53 
Enhances efficiency and 

kinetics of reprogramming 

40-fold (mouse), 
120-fold alone or 

>250-fold with 
UTF1 (human) 

Mouse/ 
Human 

(Zhao et al., 
2008) 

Utikal et al. 
(2009) 

UTF1 
ESC-specific 
transcription 

factor 

Enhances reprogramming 
efficiency of MEF 

12-fold alone, or 
>250-fold with 

p53 siRNA 
Human 

Zhao et al. 
(2008) 

miR302/367 

ESC-specific cell 
cycle-regulating 
(ESCC) micro 

RNA cluster with 
abundant targets 
playing a role in 
cell cycle and 

epigenetic 
regulation and 

EMT 

Enhances reprogramming 
efficiency in the absence 

and presence of 
reprogramming factors 

100-fold (without 
exogenous 

factor 
expression), 30-
fold and100-fold 

with 4 and 3 
factor 

expression, 
respectively) 

Mouse 

Anokye-Danso 
et al. (2011) 

Liao et al. 
(2011)  

hsa-miR-302b/ 

hsa-miR-372 

Enhances reprogramming 
efficiency 

15-fold (with 3 or 
4 factor 

expression) 
Human 

Subramanyam 
et al. (2011)  

 

 

 

 

Table 1.1. List of small molecules and factors reported to have a positive effect on 

reprogramming.  
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Two of the most commonly reported small molecules used in 

reprogramming are the DNA methyltransferase inhibitor 5’-azacytidine (5’-azaC) 

and the histone deacetylase (HDAC) inhibitor valproic acid (VPA). Huangfu et al. 

(2008a) showed that both of these drugs have been shown to increase 

reprogramming efficiency by tenfold and a hundred fold, respectively, with VPA 

also capable of replacing c-Myc during reprogramming. Some studies focusing on 

unstable or “non-permissive” cell lines have identified other small molecule drugs 

that aid reprogramming or replace expression of some or all of the ectopic 

reprogramming factors, including Wnt3a, CHIR99021 (CH, a GSK3 inhibitor), 

Kenpaullone (KP, a GSK3β and CDK1/cyclin B inhibitor) and 2i (CH and PD184352, 

an inhibitor of the ERK cascade) (Ying et al., 2008; Buecker et al., 2010; Hanna et al., 

2009a; Shi et al., 2008; Hanna et al., 2010a). 

Reports of unstable or so called “metastable” iPSCs have been reported 

recently in both mouse and human systems and these in addition to ‘partially 

reprogrammed’ lines that have been established based on morphology and/or 

reporter expression during intermediate stages of the reprogramming process 

(Sridharan et al., 2009) have been useful for investigating the obstacles blocking 

complete reprogramming. Mikkelsen et al. (2008) previously reported the 

generation of “partially reprogrammed” cell lines which show up-regulation of only 

a limited number of stem cell associated genes but incomplete down-regulation of 

lineage specific factors in addition to DNA hypermethylation at a number of 

pluripotency associated loci including Nanog, Dppa5 and Rex1. Interestingly, the 

addition of the DNA methyltrasferase inhibitor 5’-azaC rapidly drove these cells to 

a stable fully reprogrammed iPS state. In addition, generation of hiPSCs named 

“hLR5” that can be maintained in conventional mES cell media conditions has been 

reported, although continuous expression of five exogenous reprogramming factors 

(Oct4, Sox2, Klf4, c-Myc and Nanog) is required for their maintenance (Buecker et 

al., 2010). However, these cells failed to re-activate expression of the endogenous 

reprogramming factors and interestingly, the cells are intrinsically “metastable” and 

revert to a conventional hiPSC phenotype once ectopic factor expression is 
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removed. Finally, using doxycycline (dox)-inducible lentiviral vectors, Hanna et al. 

(2009a) were able to establish pluripotent cell lines (ESCs and iPSCs) from NOD 

mice (previously considered to be non-permissive for derivation of ESCs) with 

constitutive expression of Klf4 or c-Myc. Small molecule inhibitors could replace the 

requirement for Klf4 or c-Myc, including Wnt3a, CH, KP (which has been reported 

to replace Klf4 during reprogramming) and 2i. The same group later reported the 

stabilization of Dox-dependant “naïve” human ESCs only in the presence of 

PD/CH/LIF and with the constitutive expression of Klf4 and Oct4 or Klf4 and Klf2 

(Hanna et al., 2010a). These reports suggest that there is an intermediate stage 

during reprogramming whereby cells are able to maintain a reprogrammed state 

under certain stabilizing conditions, however, due to incomplete transcriptional 

remodelling during the reprogramming process this state can only be artificially 

maintained by additional factors and collapses upon ectopic factor/drug removal. 

The first reports of iPSC generation cultured reprogramming cells on a layer 

of inactivated feeders in conventional ESC medium containing LIF and serum 

(Takahashi and Yamanaka, 2006; Okita et al., 2007), although now iPSCs are 

typically grown on gelatin-coated vessels. A number of feeder-free and xeno-free 

media are now available for maintenance of iPSCs including Knock-Out DMEM 

with Knock-Out Serum Replacement (KOSR), N2B27, ESF7 and others (Ying et al., 

2003; Cheng et al., 2004; Furue et al., 2005; Yamasaki et al., 2013) and over the years 

a number of small molecules have been reported to enhance reprogramming when 

added to basal culture media. A few of these will be discussed here. 

 

1.3.1.1 iCD1 chemically defined medium promotes iPSC generation 

Chen et al. (2011a) described a chemically defined, serum-free medium 

comprising over 74 components, which was reported to support highly efficient 

three factor (OKS) reprogramming of MEFs at an efficiency of 10% by day 8, with 

few pre-iPSCs generated. Interestingly, c-Myc was found to only increase 

reprogramming efficiency slightly in the iCD1 culture condition, contrary to other 

reports, and in addition the authors were able to reprogram with Oct4 alone, albeit 
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at drastically reduced kinetics and efficiency. Although this medium is defined, it 

comprises too many components to easily determine those that are responsible for 

the enhanced reprogramming kinetics. In addition, the medium comprises small 

molecules known to enhance reprogramming such as vitamin C and CHIR and the 

later report by Bar-Nur et al. (2014) corroborates these findings, with OSKM + AGi 

resulting in approximately 10% efficiency by day 7 (see below). 

 

1.3.1.2 AGi promotes homogeneous iPSC generation 

More recently, CHIR has been implicated as a component of another 

inhibitor cocktail found to promote reprogramming. OKSM expression for as little 

as 48 hours was sufficient to generate iPSCs from granulocyte-macrophage 

progenitors (GMPs) when treated with a duo of small molecules called AGi, 

comprising Ascorbic acid and GSK3-β inhibitor CHIR. These iPSCs expressed an 

Oct4-GFP reporter within 2 days of OKSM expression and Nanog expression was 

observed 7 days after this (Bar-Nur et al., 2014). Single-cell analysis of GMP 

reprogramming with AGi revealed almost 100% of clones activated Oct4-GFP after 

merely 5 days and control conditions (OKSM alone) also reached nearly 100% 

efficiency, but after 30 days – this is consistent with previous reports that 

reprogramming is a stochastic process where almost all cells are reprogrammable if 

given enough time (Hanna et al., 2009b). Interestingly, the authors described that 

genes from all stages of reprogramming – somatic, transient and pluripotency genes 

as well as miRNAs – were regulated in the expected manner but with vastly 

accelerated kinetics through the reprogramming process, providing a possible 

functional mechanism underlying AGi enhancement and a more synchronous 

reprogramming culture. Both ascorbic acid (vitamin C) and GSK3-β inhibition have 

separately been reported to promote generation of iPSCs so it is somewhat 

unsurprising that treatment of both small molecules exerts an enhancing effect (Li 

and Rana, 2012). 
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1.3.1.3 Tgf-β signaling inhibition and reprogramming 

In an attempt to uncover small molecules that could replace Sox2 in the 

reprogramming factor cocktail, an inhibitor of Tgf-β signalling, E-616452, was 

identified. This chemical, aptly named RepSox, was shown to eliminate the 

requirement for Sox2 by facilitating Nanog induction in incompletely 

reprogrammed cells, termed “RepSox responsive” intermediates (Ichida et al., 2009). 

Microarray data generated by the authors showed a strong up-regulation of Nanog 

in these cell lines upon treatment with RepSox and in addition, the ability of RepSox 

to replace Sox2 was abolished with administration of a Nanog shRNA to the cells. 

Interestingly, RepSox was also shown to replace c-Myc and in fact, inhibition of Tgf-

β signalling by alternative chemical or neutralizing antibody measures replicated 

this result with similar or greater efficiencies of reprogramming than four factors 

together. Another small molecule screening identified nonsteroidal anti-

inflammatory drugs (NSAIDs) and anticancer drugs that can replace c-Myc and/or 

Sox2 during reprogramming, at least in part by inhibition of MEF-associated gene 

COX2 (Yang et al., 2011). 

Around the same time, Maherali and Hochedlinger (2009) reported similar 

results using Alk5 inhibitor (Alk5i) treatment in conjunction with a dox-inducible 

reprogramming system. Here the authors abolished the need for either Sox2 or c-

Myc in the presence of Alk5i, and the strongest effect was observed when Alk5i was 

administered from the earliest stages of reprogramming, suggesting there may be a 

temporal requirement for suppression of Tgf-β signalling to be effective. In both 

studies, the effect of Tgf-β signalling inhibition was found to be stronger than that of 

c-Myc expression on reprogramming efficiency and together these studies highlight 

the role of the Tgf-β signalling as a barrier to reprogramming.  

Taken together, these studies provide evidence that an apparent block to 

pluripotency resulting from exogenous stimuli can be overcome with simple small 

molecule inhibition in a defined manner, allowing cells to reach their complete 

pluripotential, and providing a more defined platform for which to dissect the 

mechanisms of reprogramming. 
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1.4 Key events during reprogramming 

 

1.4.1. Early, intermediate and late stages occur during reprogramming 

 

The first obvious signs of reprogramming occur almost immediately with 

changing somatic cell morphology being the first indicator, concurrent with an 

increase in cell proliferation (Smith et al., 2010). Down-regulation of somatic cell 

markers such as Thy1 follows, with subsequent up-regulation of pluripotency 

related genes such as SSEA-1 (Stadtfeld et al., 2008b). SSEA-1 is a commonly used 

marker of pluripotent cells in studies of reprogramming, however, incompletely 

reprogrammed pre-iPSCs express SSEA-1. Moreover pre-iPSCs sorted for SSEA-1 

revealed inhibitory DNA methylation at pluripotency loci including Oct4, Nanog, 

Stella, Dppa5, Utf1 and Rex1 indicating that this marker is merely descriptive rather 

than indicative of iPSCs (Sridharan et al., 2009; Mikkelsen et al., 2008). Of the four 

reprogramming factors, c-Myc was found to predominantly function in the early 

transition of reprogramming to modulate gene expression and in particular has 

been shown to strongly repress somatic-associated genes such as Thy1. The role for 

c-Myc as an early effector was supported by observations that expression of c-Myc 

for only 5 days, with constitutive expression of OSK, gave rise to alkaline 

phosphatase (AP) positive colonies which only marginally increased with continued 

expression of c-Myc (Sridharan et al., 2009).  

Throughout normal development, cells undergoing differentiation to 

various cell fates transition from an epithelial cell type to a mesenchymal identity. 

On the contrary, during the early to intermediate stages of reprogramming of 

terminally differentiated cells such as fibroblasts, a reversal of this transition is 

required; a so called mesenchymal to epithelial transition (MET) (Li et al., 2010). 

This process is indispensible and marks an early transition stage towards 

pluripotency during reprogramming, marked by distinct morphological changes 

concurrent with down-regulation of epithelial repressors such as Snail and up-



 29 

regulation of epithelial markers such as E-cadherin by Oct4 and Sox2 or Klf4, 

respectively (Batlle et al., 2000; Cano et al., 2000; Li et al., 2010).  

At the cusp of the intermediate to late stages of reprogramming, a subset of 

progressing cells have been reported as being “partially reprogrammed” (Meissner 

et al., 2007; Mikkelsen et al., 2008) and these so-called pre-iPSCs are a unique system 

in which to investigate the transition to the late stage of reprogramming. They are 

cells which have undergone reprogramming but failed to fully transition to iPSCs 

and are characterised by ESC-like morphology, often expressing high levels of 

exogenous factors and somatic genes are usually down-regulated but not all 

pluripotency genes are up-regulated, particularly those usually expressed at the 

latter phase of reprogramming (Plath and Lowry, 2011; Mikkelsen et al., 2008; 

Sridharan et al., 2009). Most commonly Oct4 and Nanog expression is lacking, 

explained by incomplete resetting of the epigenetic landscape resulting in 

hypermethylated DNA, particularly within these gene promoters as well as other 

pluripotency loci including Utf1, Dppa5, Rex1, Gdf3 and Stella (Mikkelsen et al., 

2008). This pre-iPSC state can be converted to one of full pluripotency by a number 

of treatments including administration of vitamin C, overexpression of Nanog, or 

inhibition of certain pathways with small molecules including 5-aza-cytidine (AZA, 

inhibiting DNA methyltransferases), E-616452 (RepSox, inhibiting TGF-β 

signalling), or 2i (inhibiting MAPK and GSK3 signalling) (Mikkelsen et al., 2008; 

Silva et al., 2008a; Ichida et al., 2009; Esteban et al., 2010; Silva et al., 2009).  

Towards the end of reprogramming, ESC-like colonies are clear and the 

pluripotency gene network is laid down including endogenous expression of 

reprogramming factors, rendering the iPSCs transgene independent (Plath and 

Lowry, 2011). During stabilization of the pluripotency transcriptional network, it 

has been identified that Oct4, Sox2 and Klf4 predominantly target regulators of 

pluripotency at the later stages of reprogramming, with Oct4 and Sox2 co-targeting 

genes strongly expressed in ESCs/iPSCs with around half of these targets also 

occupied by Klf4 (Sridharan et al., 2009). Key regulators of pluripotency, including 

Nanog and Oct4 have been shown to be ubiquitinated in pluripotent ES cells but not 
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differentiating ES cells suggesting that protein abundance is tightly and actively 

regulated in these conditions (Buckley et al., 2012). Endogenous Sox2 activation is a 

key late event and up-regulation of telomerase and re-activation of the silent X 

chromosome are characteristic of stable, fully reprogrammed iPSCs (Stadtfeld et al., 

2008b; Maherali et al., 2007; Plath and Lowry, 2011; Takahashi and Yamanaka, 2006). 

Brambrink et al. (2008) described sequential activation of pluripotency markers as 

identifiers of reprogramming progression with AP expression evident early in 

reprogramming followed by SSEA-1 up-regulation during the intermediate phase 

and finally Oct4 and Nanog activation at the late stage. Using a fluorescence 

activated cell sorting (FACS) approach, O'Malley et al. (2013) used two novel cell 

surface markers, ICAM-1 and CD44, in combination with a Nanog-GFP reporter, to 

follow the progression of cells undergoing reprogramming and identified that 

reprogramming cells followed a systematic route from MEFs to iPSCs. A high-

resolution “route map” was established and subpopulation analyses revealed 

subsets of genes with distinct expression patterns, including transient up-regulation 

of several genes involved in epidermis/keratinocyte development. This data was 

supported by several other published data sets, which together provide some 

evidence that the reprogramming process is more complex than simply a reversion 

of normal cell development/differentiation. 

 

 

1.4.2 Exogenous factor expression during reprogramming 

 

Reprogramming is most commonly induced by simultaneous introduction of 

Oct4, Sox2, Klf4 and c-Myc to somatic cells of interest. However, the timing of 

addition of reprogramming factors has been reported to influence the progression of 

the cells towards a pluripotent state. Liu et al. (2013) reported that the number of 

Oct4-GFP+ colonies observed upon sequential addition of the four factors (OK-M-S) 

exceeded those resulting from the more traditional practice of simultaneous 

introduction of factors. Subsequently, the group identified an early epithelial-to-
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mesenchymal transition (EMT) indicated by up-regulation of Slug; an event that 

they suggest boosts reprogramming by giving rise to a more homogeneously 

mesenchymal, and therefore optimal, fibroblast population capable of efficient 

mesenchymal-to-epithelial transition (MET). MET analysis revealed that Snail, a 

core mesenchymal gene, is repressed by Sox2, aiding in the collapse of the 

mesenchymal identity of fibroblasts. Concurrently, the four reprogramming factors 

work in concert to quell the process of EMT by interfering with TGF-β signalling 

pathways. Once these initial barriers to reprogramming have been interrupted, 

expression of E-Cadherin through the action of Klf4 allows cells to gain an epithelial 

identity before acquiring pluripotency. 

Soufi et al. (2012) investigated the initial reprogramming factor binding 

events that take place in the first 48 hours of reprogramming in human fibroblasts 

and made several key conclusions. All four factors were found to co-bind to 

chromatin extensively, across 35% of the genome, upon initial induction of 

reprogramming compared with only 3% in ES cells. Interestingly, even within this 

narrow early window, genes associated with progression of reprogramming 

including GLIS1 and the miR-302/367 were co-targeted by OSKM, in addition to 

pro-apoptosis genes TP53 and p19 being bound by all four factors or c-Myc alone, 

respectively, consistent with previous reports in the mouse (Kawamura et al., 2009). 

A notable finding of this study is that Oct4, Sox2 and Klf4 extensively bind DNaseI 

resistant domains representing closed chromatin and to a much lesser extent c-Myc. 

This is indicative of Oct4, Sox2 and Klf4 acting as pioneer factors during 

reprogramming, allowing subsequent recruitment of other factors to otherwise 

inaccessible chromatin regions and given that most reprogramming promoting 

genes lie within closed chromatin this initial pioneer factor activity is essential for 

progression of cells towards iPSCs. Finally, despite the dynamic activity of pioneer 

factors, many large genomic regions containing late pluripotency genes were found 

to remain unbound by OSKM during the initial stage of reprogramming. The 

authors proposed that this was due to elevated levels of repressive histone mark 

H3K9me3 in these differentially bound regions (DBRs), and this was supported by 
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evidence that siRNA-mediated knock down of histone methyltransferases SUV39H1 

and SUV39H2 increased Oct4 and Sox2 binding within DBRs and enhanced 

reprogramming speed and efficiency. The enhancing effect of SUV39H1 inhibition 

was also reported elsewhere (Onder et al., 2012). 

A temporal requirement for reprogramming factor expression was described 

by Stadtfeld et al. (2008b), using a doxycycline inducible primary reprogramming 

system to reprogram MEFs carrying an Oct4-GFP reporter. Expression of the four 

factors was required for at least 7 days before Oct4-GFP+ colonies could be 

maintained in the absence of doxycycline, with the number of colonies increasing 

with longer doxycycline treatment. Using a secondary reprogramming system, 

Hanna et al. (2009b) used pre-B cells carrying a Nanog-GFP reporter and 

doxycycline inducible reprogramming factors to demonstrate that over time almost 

all (93%) cells underwent reprogramming to activate expression of Nanog-GFP. 

Thus the authors contended that reprogramming is a stochastic process and there is 

merely a temporal requirement for cells to realise their reprogramming potential 

with enough cell divisions. Furthermore, manipulation of pathways that increased 

the rate of cell division/proliferation, for example, knock down of the p53 pathway 

or overexpression of Lin28, resulted in accelerated activation of Nanog-GFP, 

suggesting that the stochastic nature of reprogramming was proliferation 

dependant and susceptible to refinement.  

 

 

1.4.3 Epigenetics of reprogramming 

 

1.4.3.1 Chromatin remodeling and the role of vitamin C during reprogramming 

Chromatin and DNA modifications have been purported to play an 

important role during the reprogramming process. The extent to which epigenetic 

remodelling plays a role during reprogramming is not yet fully determined, 

however, even as early as the pioneering studies it was clear that epigenetic 

reactivation of key pluripotency genes such as Nanog and Oct3/4 was important for 
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generation of fully reprogrammed, high quality germ-line competent iPS cells 

(Takahashi and Yamanaka, 2006; Okita et al., 2007). Whilst the first four factor 

derived iPSCs (iPS-MEF4), using Fbx15 as a reporter, produced cells which were 

morphologically similar to ESCs and contributed to teratomas and mouse 

embryonic development, they did not successfully silence the transgenes or re-

establish the correct DNA methylation marks at the Oct4 and Nanog promoters and 

live chimeric mice could not be generated (Takahashi and Yamanaka, 2006). On the 

other hand, using Nanog as a reporter of reprogramming resulted in iPS cells 

(Nanog iPS 20D17 and 20D18) showing up-regulation of an extensive set of 

pluripotency genes, de-methylation of Oct4 and Nanog promoters (similar to that of 

ESCs) and generation of germ-line competent live chimeras (Okita et al., 2007). In 

addition to DNA modification, chromatin modification has also been perceived to 

play an important role during reprogramming. Chromatin of ESCs is widely 

thought of as being “open” (Orkin and Hochedlinger, 2011); histone acetylation and 

H3K4 trimethylation (H3K4me3) is associated with “open” euchromatin and active 

transcription whereas histone deacetylation and H3K27 trimethylation (H3K27me3) 

is linked to the silent heterochromatin state (Hotta and Ellis, 2008; Maherali et al., 

2007). A significant example of chromatin remodelling during reprogramming is 

reactivation of the inactive X chromosome in female lines, which is thought to 

provide evidence towards a more reprogrammed state.  During iPSC derivation, 

extensive chromatin reformation must be carried out to remove the distinctive 

chromatin modifications that are established on the future inactive X for stable 

silencing (Maherali et al., 2007). The same study carried out genome-wide analysis 

of K4 and K27 trimethylation using chromatin immunoprecipitation (ChIP) 

followed by promoter array analysis and revealed that almost 95% of “signature 

genes” (with differential histone methylation patterns between mouse embryonic 

fibroblasts (MEFs) and ES cells) in iPS cells exhibited nearly identical methylation 

patterns to ES cells (Maherali et al., 2007). This indicates that in vitro reprogramming 

can re-establish the epigenome of a differentiated cell to that of an ES cell. 

Furthermore, microarray gene expression analysis confirmed that iPS cells are 
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transcriptionally highly similar to ES cells. These data highlight the importance of 

epigenetic remodelling for complete reprogramming. 

Small molecules targeting chromatin-modifying enzymes have long been 

known to promote reprogramming (Huangfu et al., 2008a; Mali et al., 2010; Liang et 

al., 2010; Zhang and Wu, 2013). Sodium butyrate, a fatty acid and histone 

deacetylase (HDAC) inhibitor, has been found to be supportive of ESCs from both 

mouse and human cells with butyrate treatment being implicated in down-

regulation of Tcf3, a suppressor of Nanog in mouse ESCs. In addition, butyrate was 

found to directly act on epigenetic modifiers with evidence of induction of H3K9 

acetylation and DNA demethylation of the Dppa5 promoter being reported (Ware 

et al., 2009). Several reports have implicated butyrate as a potent enhancer of 

reprogramming when applied either transiently or at low concentrations with 

observations of histone H3 acetylation, DNA demethylation at gene promoters and 

enhancement of pluripotency gene expression all contributing to improved 

reprogramming (Liang et al., 2010; Mali et al., 2010; Zhang and Wu, 2013). 

Treatment of reprogramming cultures with valproic acid (VPA), another HDAC 

inhibitor, reportedly results in reprogramming efficiencies of almost 2.5% (more 

than 100-fold increase compared with control), and in addition allows for the 

omission of c-Myc in the reprogramming factor cocktail (Huangfu et al., 2008a). 

In human reprogramming, shRNA-mediated knock down of DOT1L, an 

H3K79 histone methyltransferase was found to increase reprogramming, and 

replace KLF4 and MYC. Notably, this resulted in an increase in NANOG and LIN28, 

both of which are known to enhance reprogramming (Onder et al., 2012). The 

authors found that loss of H3K79me2 in somatic cell specific genes occurs early 

during reprogramming and suggested that DOT1L functions to facilitate down-

regulation of this histone mark usually associated with transcriptionally active 

genes.  

Resetting of the epigenetic landscape within reprogramming cells is a crucial 

series of events required for robust and complete acquisition of pluripotency. ES 

cells, which largely contain open, active chromatin, contain bivalent domains that 
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consist of chromatin decorated with both repressive histone3-lysine27 

trimethylation (H3K27me3) and activating histone4-lysine4 trimethylation 

(H3K4me3) marks. Two key protein complexes, Polycomb group (PcG) and 

Trithorax group (trxG) complexes underlie these repressive and activating marks, 

respectively. Early transcriptional events, such as down-regulation of somatic cell 

specific markers and up-regulation of pluripotency genes, are driven by changes in 

the chromatin state at these genes, facilitated by the PcG and trxG complexes. 

Expression of Wdr5, a member of the trxG complex, increases during 

reprogramming and is required during the early stages to initiate changes to the 

epigenetic landscape through interaction with Oct4 (Ang et al., 2011). Utx, an 

H3K27 demethylase also known as Kdm6a, plays a role in regulation of 

pluripotency induction during reprogramming and absence of Utx in somatic cells 

causes failure to reprogram by causing deviant regulation of H3K27me3 

demethylation directly interfering with activation of pluripotency associated genes 

including Sall1, Sall4 and Utf1 (Mansour et al., 2012). 

Histone3-lysine9 methylation (H3K9me) has been implicated as the key 

epigenetic block in pre-iPSCs in culture conditions containing serum. Downstream 

targets of bone morphogenic proteins (BMPs), the H3K9 methyltransferases 

Suv39h1, Suv39h2 and Setdb1 were shown to play a role in maintaining H3K9 

methylation in pre-iPSCs. Induction of H3K9 demethylases belonging to the Kdm 

family, particularly Kdm4b (also known as Jmjd2b), in pre-iPSCs reduced H3K9 

methylation releasing the barrier to reprogramming which was shown to be 

enhanced by vitamin C (Chen et al., 2013). Vitamin C was found to facilitate 

removal of the H3K9me3 mark releasing cells from this intermediate state and 

allowing progression to iPSCs with high levels maintained at key pluripotency 

genes Dppa3, Nanog and Sox2 sustaining a closed chromatin state and preventing 

binding of Oct4 (Chen et al., 2013). BMP driven activation of H3K9 

methytransferases, Suv39h1 and Suv39h2, was found to support this 

heterochromatic state in pre-iPSCs but treatment with vitamin C reduced H3K9me 

through the action of demethylases allowing reprogramming of pre-iPSCs to iPSCs. 
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Setdb1 knock down alleviated the need for vitamin C treatment supporting a role 

for Setdb1 as an inhibitor of reprogramming. Strikingly, the authors also showed 

that knock down of Setdb1 resulted in conversion of almost 100% of pre-iPSCs to 

Oct-GFP+ iPSCs further emphasising the role of epigenetic regulators in 

reprogramming. An earlier report by Esteban et al. (2010) corroborated this showing 

the release of pre-iPSCs to a fully reprogrammed state by addition of vitamin C. 

Vitamin C was first implicated as an enhancer of reprogramming by Esteban 

et al. (2010) where it was identified during investigation of compounds to reduce 

generation of reactive oxygen species (ROS) during reprogramming. Vitamin C was 

found to increase reprogramming efficiency partly through modulation of cell 

proliferation by inhibition of p53 and the downstream target p21. This was thought 

to be a different mechanism by which Silva et al. (2008a) reported conversion of pre-

iPSCs to a fully reprogrammed state by inhibition of Erk signalling in 2i conditions, 

since total and active Erk levels remained unchanged. 

The Jumonji C (JmjC) family of histone demethylases functions in histone 

demethylation at lysine resides in an iron Fe(II) and 2-oxoglutarate (2OG) 

dependent manner and vitamin C functions as an electron donor to reduce iron in 

the absence of substrate, thereby maintaining its catalytic activity (Monfort and 

Wutz, 2013). Vitamin C has also been reported to facilitate reprogramming by 

reducing H3K36me3 and when an siRNA targeting the demethylase Kdm3b was 

used, a reduction was observed in vitamin C–mediated progression of pre-iPSCs to 

a fully reprogrammed state (Chen et al., 2013; Li et al., 2011; Zhu et al., 2010).  

Induction of the H3K36 histone demethylases Jhdm1a and Jhdm1b (also 

known as which Kdm2a and Kdm2b), which are downstream targets of vitamin C, 

have been shown to regulate reprogramming in synergy with Oct4 (Wang et al., 

2011). Overexpression of these histone demethylases during three-factor 

reprogramming with Sox2, Klf4 and Oct4 was shown to enhance reprogramming 

both in the presence and absence of vitamin C in addition to improving 

reprogramming kinetics as characterised by the earlier appearance of Oct-GFP 

colonies (Chen et al., 2013). Strikingly, overexpression of Jhdm1b enabled efficient 
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reprogramming using only Oct4 at rates higher than those previously reported 

(Chen et al., 2011b; Zhu et al., 2010; Li et al., 2011) but Jhdm1b mutants lacking DNA 

binding or histone demethylase function were found to diminish Oct4 

reprogramming, suggesting that the enhancing effect was owing to demethylation 

activity and/or binding to Oct4.  

MEFs stably expressing the H3K36 histone demethylase Jhdm1b restored 

three factor (SKO) reprogramming ability in late passage (P6) fibroblasts, which was 

observed to be completely abolished in control cells due to Ink/Arf induced cellular 

senescence and addition of vitamin C further increased reprogramming efficiency 

(Wang et al., 2011). Ink/Arf silencing in MEFs was previously reported by Tzatsos et 

al. (2009) where Jhdm1b was found to suppress the Ink/Arf locus in MEFs by 

offsetting the senescence-induced down-regulation of polycomb-repressive complex 

(PRC) protein Ezh2, through H3K36 demethylation. This resulted in an increase in 

H3K27me3 at the Ink/Arf locus further driving binding of another PRC component, 

Bmi1, facilitating silencing of p16Arf. Kdm2b promotion of reprogramming was 

similarly reported by Liang et al. (2012) in a proliferation and Ink4a/Arf 

independent manner. Instead it was purported to play a role in activation of early 

genes such as Cdh1, Epcam and Crb3 in collaboration with the reprogramming 

factors, by maintaining low levels of H3K36me2 at the promoters of these genes. 

Strong induction of the ESC specific micro-RNA cluster 302/367 was 

promoted by a combination of Oct4, Jhdm1b and vitamin C. (Wang et al., 2011). The 

authors cloned the miRNA 302/367 promoter to a firefly luciferase reporter and 

found evidence for physical interaction of Oct and Jhdm1b to cooperatively bind the 

miRNA 302/367 promoter leading to activation. Further ChIP-qPCR and co-

immunoprecipitation experiments subsequently verified this interaction, suggesting 

that histone modifications triggered by Jhdm1b are essential to allow Oct4 binding 

and target activation during reprogramming.  
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1.4.3.2 Resetting of DNA methylation and reprogramming 

Resetting of methylation status occurs late in reprogramming whereas 

bivalent domains are laid down steadily following the first wave of transcriptional 

activity in response to the reprogramming factors (Polo et al., 2012). The 

implications of imprinting status of iPSCs have been widely discussed. Stadtfeld et 

al. (2010) reported that a vast majority of iPSCs derived from varying tissues 

exhibited abnormally low expression of Gtl2 and Rian; maternally expressed 

imprinted genes located in the Dlk1-Dio3 cluster. This silencing in iPSCs was found 

to be the result of hypermethylation in an intergenic differentially methylated 

regions (IG-DMR) located within the Dlk1-Dio3 locus, in which almost all CpGs 

were found to be methylated in “Gtl2off” iPSCs compared with  “Gtl2on” iPSCs or 

ESCs. Furthermore, these Gtl2off iPSCs did not contribute highly to chimeras and 

persistently failed to generate “all-iPSC” mice using the tetraploid complementation 

assay, widely regarded as a gold standard of pluripotency. Administration of 

valproic acid (VPA) was determined to “rescue” Gtl expression in two Gtl2off clones, 

one of which subsequently enabled generation of “all-iPSC” mice, however, the 

pups were deemed non-viable. Another group also reported difficulty in generating 

all-iPSC mice from some iPSC lines as a result of decreased expression of genes in 

the Dlk1-Dio3 region (Liu et al., 2010), lending support that proper epigenetic 

resetting is important during reprogramming to produce high quality iPSCs. Carey 

et al. (2011) later reported contrasting results claiming that regardless of the 

imprinting state at this locus, they found no difference in the potential of “Gtl2-ON” 

or “Gtl2-LOW” iPSCs to contribute to chimeras and so claimed that silencing at this 

imprinted locus was not strictly definitive of reduced pluripotency. Further to this, 

these authors determined reprogramming factor stoichiometry to play a critical role 

in reprogramming, and differences in the expression levels of factors lead to 

significant differences in the quality of iPSCs derived. A comparison was made 

between two highly similar reprogramming systems using doxycycline-inducible 

polycistronic vectors to express the four reprogramming factors, differing only in 

the sequence in which the factors were expressed (OSKM versus OKSM) and the 
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linkers used in the vectors. This resulted in OSKM cells with higher levels of Oct4 

and Klf4 and OKSM cells with higher levels of Sox2 and c-Myc upon administration 

of doxycycline to induce reprogramming. Whilst both cell lines were capable of 

generating iPSCs, the resulting OKSM iPSCs were of poorer quality than those 

generated with OSKM, as determined by aberrant expression of the imprinted gene 

Gtl2. However, this could be rectified by overexpression of additional Oct4 and 

Klf4, and subsequently “all-iPSC” mice could be generated from one of these clones 

In a later report, Stadtfeld et al. (2012) determined that addition of vitamin C 

during reprogramming diminishes aberrant hypermethylation at the IG-DMR of 

Dlk1-Dio3 locus, and subsequently, all-iPSC mice were generated from iPSCs 

derived from B cells for the first time. It was determined that vitamin C functions by 

maintaining histone acetylation and activating histone marks, H3K4me2 and 

H3K4me3, which is lost in the absence of vitamin C during reprogramming. This 

report highlighted the effect of variations in culture conditions in the generation of 

high-quality iPSCs. 

 

 

1.4.4 Models of reprogramming 

 

Several reports have identified distinct stages of reprogramming with 

stochastic and deterministic models both being put forward (Yamanaka, 2009; 

Hanna et al., 2009b; Smith et al., 2010; Samavarchi-Tehrani et al., 2010; Buganim et 

al., 2012; Golipour et al., 2012). Early on two models were proposed; the elite, or 

predetermined model, and the stochastic model. The former put forward that only a 

limited number of predetermined cells were capable of becoming iPSCs, and tissue 

stem cells, or undifferentiated precursors, were a good candidate. However, 

evidence that initial reported reprogramming efficiencies could be drastically 

increased (Nakagawa et al., 2008; Huangfu et al., 2008a; Huangfu et al., 2008b) and 

reports of iPSCs derived from tissues such as liver, stomach and pancreas (Aoi et al., 

2008; Stadtfeld et al., 2008a) challenged the idea that only a few ‘elite’ cells were 



 40 

susceptible to reprogramming. The contrasting stochastic model proposes that upon 

reprogramming factor introduction, most or all cells have the potential to become 

iPSCs. The initiation stage of reprogramming is driven by BMP signalling in 

cooperation with reprogramming factor expression, activating the miR-205 and 

miR-200 families of microRNAs which regulate an immediate MET event 

(Samavarchi-Tehrani et al., 2010). Polo et al. (2012) observed that successful 

reprogramming consisted of two “waves” of transcriptional activity with the first 

wave being driven by c-Myc and Klf4 expression followed by the second wave 

driven by Oct4, Sox2 and Klf4 expression. Some cells which only initiated succeeded 

in initiation of the first wave but not the second failed to progress in 

reprogramming. During the later stages of reprogramming, cells are required to 

mature and stabilize in order to become transgene independent and maintain their 

acquired pluripotent state. Golipour et al. (2012) reported that persistent transgene 

expression hindered the later stabilization of cells and that silencing of exogenous 

factor expression was required for complete reprogramming, a feature earlier 

reported by Okita et al. (2007). The maturation and stabilization stages require 

expression of distinct sets of pluripotency genes including Nanog, Sall4, 

endogenous Oct4, Rex1 and Esrrb followed by transgene removal and expression of 

endogenous Sox2, Dppa2 and Pecam1 (Samavarchi-Tehrani et al., 2010; Buganim et 

al., 2012; Golipour et al., 2012). Interestingly, activation of endogenous Sox2 has 

been reported to mark a late phase in reprogramming comprising a predictable, 

step-wise series of gene expression signatures where Sox2 activates successive 

expression of Sall4, Lin28, Fgf4, Fbxo15 and Dnmt3b, representing a hierarchical 

model (Buganim et al., 2012).  

More recently, a review by Buganim et al. (2013) pulled together these 

models, discussing the evidence for a two phase model incorporating an early, long 

lasting, stochastic phase and a later, shorter, hierarchical phase following Sox2 

expression. The stochastic phase is initiated by four factor (OSKM) induction and 

the ensuing dynamics of genome-wide transcriptional regulation, where cells 

expressing OSKM will immediately undergo cellular fate changes either conducive 
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to reprogramming or alternatively down refractory pathways such as apoptosis or 

senescence. The ‘stochastic’ nature of this phase lies in the unpredictable way in 

which OSKM expression induces genome wide transcriptional activation and the 

random probability in which any given cell will experience just the precise genome-

wide changes to impart ‘reprogrammability’. Indeed, the long latency of this initial 

phase supports the notion that there is a stochastic element in play and so it follows 

that time is a key requirement for some cells to lay down the correct gene expression 

networks to become amenable to reprogramming. Reprogrammable cells will then 

undergo several defined changes including morphological changes, increased rates 

of proliferation coupled with transcriptional and metabolic stimulation, 

mesenchymal to epithelial transition (MET), reorganization of histone modifications 

and activation of DNA repair pathways. Progression through reprogramming is 

met by an intermediate stage, which sees activation of early pluripotency markers, 

laying down the foundations of the pluripotency transcriptional network (Buganim 

et al., 2012), temporary expression of developmental regulators (Polo et al., 2012) 

and gradual activation of glycolysis (Hansson et al., 2012). In addition, an unknown 

bottleneck occurs, contributing to the long delay of cells to progress. Perhaps this is 

again due to the requirement for certain early predictive genes of reprogramming 

such as Utf1 and Esrrb to be expressed (Buganim et al., 2012) triggering initiation of 

the final ‘hierarchical’ phase in some cells. This ‘deterministic’ phase progresses in a 

more predictable manner, marked by the activation of endogenous Sox2 (Buganim 

et al., 2012). Finally, stabilization of the core pluripotency network via action of 

Oct4, Sox2 and Nanog allows exogenous factor independence and emergence of 

bona fide iPSCs (Boyer et al., 2005).  

The precise role of each of the reprogramming factors has been widely 

studied, and yet a precise step-wise sequence of events has not been identified that 

fully elucidates the transition from a somatic to a pluripotent cell type. This begs the 

question of whether there is in fact one route to iPS cells, or if the acquisition of 

pluripotency is a result of the events initiated by the introduction of transcription 

factors in concert with some perfectly timed yet stochastic events. The answer is 
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likely to lie somewhere in the middle. It is clear that some very distinct events occur 

during the course of reprogramming; early on down-regulation of genes associated 

with the somatic starting cells occurs, followed by mesenchymal-to-epithelial 

transition (MET) and up-regulation of pluripotency genes, in addition to a whole 

host of well characterized epigenetic changes which ‘reset the genome’. A vast 

amount of knowledge has been generated about the reprogramming process but the 

fact of the matter is that efficiencies of reprogramming are still by and large low. 

Only a few reports of dramatic increases in efficiency have been published, and 

even so many of these claims remain uncorroborated or controversial, highlighting 

the importance of independent reproducibility in published works to eliminate 

potential artefacts of laboratory-to-laboratory variability. 

 

 

1.4.5 Identifying and overcoming barriers to reprogramming 

 

Senescence has been identified as a major barrier to iPSC generation and 

2009 saw a number of reports on the role of p53 and related cell cycle regulating 

tumour suppressor genes during reprogramming. Up-regulation of p53, p16Ink4a and 

p21 is triggered upon exogenous reprogramming factor expression (Banito et al., 

2009; Kawamura et al., 2009). Knock down of these genes during reprogramming 

using shRNAs was shown to significantly increase efficiency of pluripotent colony 

formation demonstrating the importance of cell cycle regulation during 

reprogramming. Another group reported generation of 3 factor iPSCs was achieved 

in p53-null (p53-/-) MEF and this study identified that overexpression of Mdm2, an 

E3 ligase and negative regulator of p53 (Vassilev et al., 2004), replicated the positive 

effect of p53 repression in reprogramming (Hong et al., 2009). When Kawamura et 

al. (2009) reprogrammed MEF from mice derived with a non-degradable mutant of 

a related p53 negative regulator, Mdm4, they observed an almost 7-fold increase in 

Nanog+ colony number providing further evidence for the inhibitory role of p53 in 

reprogramming.  Marion et al. (2009) suggested that this barrier effect caused by p53 
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during reprogramming was a result of genomic integrity being maintained via the 

DNA damage response induced by reprogramming factor expression. The authors 

suggested that whilst depletion of p53 resulted in increased efficiency, that this was 

at the risk of allowing substandard cells to progress towards iPSCs that normally 

would not have been able to for reasons of compromised genomic stability; a sort of 

innate natural selection was being bypassed by abrogation of p53 and related genes. 

Some evidence was presented to support this theory, as p53-deficient iPSCs were 

shown to have increased chromosomal abnormalities compared with wild type 

iPSCs including increased occurrence of chromosomal breaks and end-to-end 

fusions and in addition, depletion of p53 allowed telomerase deficient cells to 

reprogram to iPSCs; cells which were otherwise incapable of acquiring pluripotency 

(Marion et al., 2009). Interestingly, Utikal et al. (2009) showed that p53 -/- cells 

reprogrammed sub-populations of Thy1+ Thy1- and SSEA-1+ cells had similar 

reprogramming potential. 

The Ink4/Arf locus consists of tumour suppressor genes p16Ink4a and p19Arf 

(encoded by Cdkn2a) and p15Ink4b (encoded by Cdkn2b) involved in cell cycle and 

senescence regulation that are known to play a critical role in reprogramming. 

p16Ink4a regulates the Retinoblastoma (Rb) pathway, downstream of p53 (Sage, 2012) 

and p19Arf drives expression of p53 by inhibition of Mdm2 mediated degradation 

(Spike and Wahl, 2011).   These genes are expressed at basal levels in differentiated 

cells and acquire both repressive H3K27me3 and active H3K4me3 marks, known as 

bivalent chromatin, as they undergo silencing during reprogramming to iPSCs 

whilst still retaining the ability for reactivation upon differentiation (Li et al., 2009a).  

p19Arf activation of p53 and p21 in the mouse has been reported as a key roadblock 

of reprogramming (Spike and Wahl, 2011) and aberration of these pathways has 

been proven beneficial to reprogramming, enhancing both the kinetics and 

efficiency of pluripotent colony formation drastically (Li et al., 2009a). Interestingly, 

these authors showed that by contrast in human cells, INK4a seems to be the 

inhibitor of reprogramming with shRNA targeting INK4a exhibiting an enhancing 

effect, whereas ARF shRNA had no effect on iPSC formation. 
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Another clear barrier to reprogramming potential is the capability of cells to 

proliferate. Utikal et al. (2009) reported the observation that MEF progressively lose 

their reprogramming potential following serial passaging; an observation also 

experienced by our group. An increase in passage number of starting MEF 

undergoing reprogramming was accompanied by a decrease in alkaline 

phosphatase (AP) staining associated with pluripotent cells and a concomitant 

increase in senescence related staining with β-galactosidase. This was also 

accompanied by an increase in p16, p19 and p21 in agreement with previous reports 

that these markers obstruct progression towards iPSCs. Furthermore, three 

immortalized cell lines derived from different somatic tissue origins were used to 

demonstrate that senescence and limitations in cell-cycle pathways substantially 

hindered reprogramming capacity of cells, with immortalized cells regularly shown 

to reach upwards of 40% reprogramming efficiency compared to their non-

immortalized counterparts, with near 100% efficiency demonstrated in some cases 

(Utikal et al., 2009). Smith et al. (2010) used a single-cell imaging approach to 

retrospectively trace iPSC colonies to their cell of origin and found that these 

colonies emerged from a subclass of fibroblasts which they termed “fast-dividing”. 

They found that as soon as the first cell division these cells established a higher 

proliferative rate than normal fibroblasts, and within a few days match that seen in 

ES cells. This evidence supports the idea that proliferative potential is a key 

requirement for somatic cells to successfully progress through reprogramming. 

Expression of the four reprogramming factors directly affects a number of 

cluster families of micro-RNAs. p53 regulated miR-34 and miR-145 family members 

play critical roles in the impediment of reprogramming by promotion of cell cycle 

arrest, apoptosis and differentiation. miR-34a/b/c function in part by inhibition of 

key pluripotency genes including Nanog, Lin28, Sox2 and c-Myc and depletion of 

miR-34a has been shown to enhance reprogramming efficiency and kinetics (Yang 

and Rana, 2013). miR-145 has been reported to suppress Oct4, Sox2 and Klf4 during 

differentiation of ESCs although it is repressed by Oct4 in ESCs, suggesting a 

possible mechanism in reprogramming by which miR-145-mediated endogenous 
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repression of OSK is abolished by Oct4 repression. MEF enriched miRNAs miR-21, 

miR-29a and let-7 have been reported as barriers to reprogramming through 

positive regulation of TGF-β and MAPK pathways or negative regulation of 

pluripotency genes. c-Myc, which has been shown to play a critical role early in 

reprogramming, mediates reprogramming initiation in part by repressing these 

MEF associated miRNAs (Yang and Rana, 2013). 

ESC-specific cell cycle (ESCC) miRNAs (Wang et al., 2013c) including miR-

290-295, miR-302a-367 and miR-17-92 are known to influence epigenetic status and 

cell cycle regulation. ESC specific miRNAs, miR-291-3p, miR-294 and miR-295 were 

found to replace c-Myc during reprogramming, although in the presence of c-Myc 

there was no effect observed on four factor reprogramming (Judson et al., 2009). 

This could be explained by the finding that c-Myc binds the promoter of the miR-

290 cluster, suggesting that these miRNAs could be targets and downstream 

effectors of c-Myc, although the exact mechanism remains unclear. A later report 

determined that human orthologues of these miRNAs, hsa-miR-302a and hsa-miR-

372, enhanced reprogramming of both fetal and adult fibroblasts by synergistic 

repression of multiple targets (Subramanyam et al., 2011). These targets were 

identified to play roles in cell cycle and epigenetic regulation, signalling and 

epithelial to mesenchymal transition (EMT), highlighting the fact miRNA-mediated 

regulation of cell processes is extensive and highly complex making it difficult to 

determine the exact mechanism(s) by which promotion of reprogramming is 

conferred. 
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1.5 RNAi and reprogramming 

 

Reprogramming of somatic cells to a pluripotent state via the ectopic 

expression of a limited set of transcription factors is now routinely performed by 

countless research groups, and indeed life science and drug companies, around the 

world. However, the question still remains as to the exact regulatory mechanism(s) 

underlying the transition of cells from a specialised, differentiated state to the 

establishment of pluripotency. Recently, the use of RNA interference (RNAi) has 

been reported to be a highly useful tool to identify regulators of the reprogramming 

process, giving some insight in to the mechanism of this inefficient process. 

RNA interference (RNAi) is a naturally occurring biological mechanism in 

cells where gene regulation is controlled by RNA hybridization to target messenger 

RNAs, resulting most commonly in inhibition of gene expression by way of 

destruction of mRNA, consequently causing down-regulation of target genes. This 

innate mechanism is an important part of host-pathogen defence, particularly in 

response to invasion by viruses, and vast research into the field in the early 1980’s 

saw this mechanism identified in an array of organisms including bacteria (Light 

and Molin, 1982; Light and Molin, 1983), dictyostelium (Crowley et al., 1985), 

Xenopus oocytes (Melton, 1985; Harland and Weintraub, 1985), Drosophila 

(Rosenberg et al., 1985) and plants (Ecker and Davis, 1986) where researchers 

noticed that  transcriptional inhibition was caused by application of anti-sense RNA. 

Around this time, similar observations were also reported in the mouse (Izant and 

Weintraub, 1984; Izant and Weintraub, 1985). Since then, the principles and 

mechanism of RNAi have been extensively studied resulting in the capability of 

artificially engineered RNAi expression constructs as a tool to investigate gene 

regulation in vitro. 

There are two main ways in which RNAi is used to knock down gene 

expression in mammalian cells in vitro. Short interfering RNAs (siRNA) are double 

stranded RNA fragments of approximately 21bp in length, first described by 

Elbashir et al. (2001a) which can be designed to target any gene of interest and, 
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conveniently, can now be artificially synthesized by a number of companies. When 

introduced to cells, these siRNAs directly interact with the RISC complex to mediate 

gene repression of a target mRNA containing a complementary sequence to one of 

the two siRNA strands; the effector strand known as the guide strand (Mittal, 2004; 

Matzke and Birchler, 2005). This approach may seem straightforward, however, the 

knock down effect can be weak and/or transient, particularly in rapidly dividing 

cells and may require serial transfections in order to obtain satisfactory knock down. 

Alternatively, an expression vector can be created to stably express a short hairpin 

RNA (shRNA) targeting a gene of interest (Moffat and Sabatini, 2006; Echeverri and 

Perrimon, 2006). In this case, the sequence is designed to introduce a small loop or 

hairpin between the complementary RNA strands upon expression, which 

facilitates endogenous processing of the shRNA in a similar fashion to endogenous 

microRNAs. Exogenously expressed shRNAs are trimmed by Dicer, an 

endoribonuclease, to produce smaller fragments similar to siRNA that is similarly 

incorporated into the RISC complex and involved in gene repression.  

Regardless of which RNAi method is used, when investigating functional 

mechanisms of gene repression, the most important factor to consider is the level of 

gene repression achieved. This is a very important caveat when considering RNAi 

as a tool for knock down of gene expression particularly when knock down of many 

genes is required, for example, in the context of a screen. Extensive studies into 

optimization of RNAi have led to a considerable list of ‘rules’ to take into account 

when designing RNAi sequences or vectors. For example, initial ‘first-generation’ 

designs were superseded by ‘second-generation’ shRNAs that took advantage of a 

micro-RNA (miRNA)-like backbone design, to aid in more efficient endogenous 

processing within cells (Silva et al., 2005; Boudreau et al., 2008). In addition, siRNAs 

should include 2 nucleotide 3’ overhangs, mimicking endogenous Dicer cleavage 

and an increased efficiency of knock down has been reported with UU 3’ overhangs 

although other combinations also work (Elbashir et al., 2001b). Other rules have 

been suggested regarding optimal region of gene targeting, GC content, 

concentration of siRNA, specificity of bases at certain positions within the sense 
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strand as well as many other structural considerations (Semizarov et al., 2003; 

Mittal, 2004; Reynolds et al., 2004) making it clear that RNAi design is deeply 

complicated. Despite extensive guidelines within the literature, a definitive formula 

for designing RNAi sequences that guarantees to achieve robust knock down of a 

target gene is still undetermined. Furthermore, sequence specificity must be well 

considered when using RNAi, as it has been widely reported that even a single 

nucleotide difference in siRNA sequences can drastically abolish gene targeting 

(Elbashir et al., 2001b; Miller et al., 2003). In addition, off-target effects resulting 

from incomplete specificity are a significant problem, with Jackson et al. (2003) the 

first to demonstrate that off-target gene regulation could occur when siRNAs 

exhibited only partial complementarity. In fact, the authors showed that as few as 11 

adjacent complementary nucleotides were enough to elicit an off-target effect in 

contrast to other reports that siRNA was highly specific in its effect (Jackson et al., 

2003; Semizarov et al., 2003; Miller et al., 2003).  

Recently, the mesenchymal genes Snai1 and Snai2 have been identified from 

an RNAi screen to play key opposing roles in reprogramming (Gingold et al., 2014). 

By inducing partial differentiation in a Nanog-GFP reporter line with 

administration of retinoic acid (RA), the authors sought out to identify regulators of 

Nanog expression. Knock down of Snai1 was found to inhibit GFP expression 

whereas knock down of Snai2 was found to have the opposite effect, with increased 

GFP expression observed. Subsequent overexpression of Snai1 and Nanog during 

reprogramming of pre-iPSCs was found to increase the number of fully 

reprogrammed iPSCs more than 2-fold compared with Nanog alone, with Snai2 

overexpression having a negative effect. Additionally, Snai1 was found to facilitate 

binding of Nanog within the promoter and enhancer regions of the miR-209-295 

locus, as well as binding to Lin28, another pluripotency associated gene.  

The use of RNAi has been valuable for functional genomics studies, and 

loss-of-function phenotypes in mammalian cells induced by RNAi screening 

methods have been successfully generated over the years allowing for the 

investigation of gene function in a variety of cell types including BJ human foreskin 
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fibroblasts (Berns et al., 2004), mammary cells (Silva et al., 2008b) and blood cells 

(Bassik et al., 2013). Previously, whole genome RNAi screens were successfully 

employed to elucidate genes that govern mouse and human embryonic stem cell 

identity (Hu et al., 2009; Chia et al., 2010), and siRNA screens have uncovered genes 

involved in Oct4 modulation and ESC identity, including Paf1C which blocks ESC 

differentiation following ectopic expression (Ding et al., 2009), the role of chromatin 

protein complex Tip60-p400 in ESC gene regulation and identity (Fazzio et al., 

2008), and MAP kinase phosphatases involved in regulation of ERK and GSK3 

signalling pathways as promoters of differentiation in ESCs (Yang et al., 2012). More 

recently, similar approaches using shRNA libraries have been applied in both 

mouse and human contexts to identify novel regulators of reprogramming. Yang et 

al. (2014) uncovered specific genes required at each transitional step during 

reprogramming and in addition the authors found that the expression of many 

genes was shown to remain unchanged during reprogramming. Interestingly these 

were purported to play key roles in controlling transitions of cellular identity 

during reprogramming, with some genes found to be required and others 

representing barriers to reprogramming. Qin et al. (2014) generated a global view of 

reprogramming barriers with genes identified from many major cellular pathways 

including transcription, ubiquitination, phosphorylation and dephosphorylation, 

cell adhesion and chromatin regulation emphasising the point that reprogramming 

of somatic cells to pluripotency is a deeply complex process with cell processes 

being infinitely interconnected and interdependent. Another approach employing a 

protein kinase shRNA screen of 734 kinases identified 59 barriers to 

reprogramming, with remodelling of the cytoskeleton being highlighted as an 

important modulator of reprogramming. TESK1 and LIMK2, whose inhibition 

promotes MET, were identified as barriers to this cellular restructuring process and 

consequently knock down promoted reprogramming in both mouse and human 

cells (Sakurai et al., 2014). 

Taken together these studies demonstrate that RNAi is a powerful tool to 

identify key players involved in ESC/iPSC pluripotency and self-renewal and gain 
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novel insight into the mechanisms underlying the highly complex reprogramming 

process.  

 

 

1.5.1 CRISPR/Cas9 mediated gene editing 

 

Recently, an exciting new genome editing technology dubbed the ‘CRISPR-

Cas9 system’ has been described, which allows highly efficient gene knock out both 

in vivo and in vitro (Swiech et al., 2015; Maddalo et al., 2014). This system was 

identified in bacteria and archaea as a mechanism of immunity whereby fragments 

of foreign genetic material from invading phage or plasmid DNA were integrated 

into the host genome at so-called clustered regularly interspaced short palindrome 

repeats, or CRISPR, loci (Pourcel et al., 2005; Mojica et al., 2005; Bolotin et al., 2005). 

Subsequently, the Cas9 protein incorporates both processed CRISPR RNAs (crRNA) 

and trans-activating crRNA (tracrRNA) to form a cRNA-tracrRNA-Cas9 complex 

which then mediates double strand break at homologous sequences of the invaders 

(Mali et al., 2013b; Gasiunas et al., 2012). This system has been taken advantage of in 

an in vitro context whereby in vitro-transcribed chimeric RNA known as short guide 

RNA (sgRNA, or guide RNA) takes the place of the crRNA-tracrRNA combination 

(Jinek et al., 2012). Targeting of loci in human and mouse cells was first 

demonstrated in recent years, with two groups reporting simple and robust gene 

targeting of several loci simultaneously using CRISPR-Cas9 systems (Cong et al., 

2013; Mali et al., 2013c). Remarkably, simultaneous mutation of up to five genes in 

mouse ESCs has been demonstrated and in the same study mice were generated 

with mutations in multiple genes through coinjection of zygotes with Cas9 mRNA 

and sgRNAs (Wang et al., 2013b). This multiplexed gene editing approach has since 

had major impact on the accessibility of routine gene editing in laboratories with its 

straightforward and reproducible protocol, rendering difficult and lengthy gene 

targeting approaches redundant.  
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The original Cas9 protein causes a double strand break in the target DNA, 

which can be repaired either by non-homologous end joining (NHEJ) which is error 

prone, or homology directed repair (HDR). This potential drawback was quickly 

overcome by the use of mutant Cas9 which converted the nuclease function of wild 

type Cas9 to a nickase function instead (Cong et al., 2013). Subsequently, a “double 

nicking” system was describe whereby a pair of offset guide RNAs targeting 

opposite DNA strands were expressed with the mutant Cas9, mediating targeted 

double strand breaks. Because the mutant Cas9 is unable to cause double strand 

breaks on its own, this system has increased specificity and fidelity by reducing off-

target activity (Mali et al., 2013a; Ran et al., 2013).  

This gene editing technique has quickly become the front-runner as the go-to 

gene knock out tool, and has already revolutionised reverse genetics investigation 

of both single and multiple genomic loci. At least three groups have employed 

lentiviral-based gRNAs in conjunction with Cas9 (either as part of the same 

construct or using Cas9 constitutively expressing cells) for genome wide targeting in 

the mouse and human (Koike-Yusa et al., 2014; Shalem et al., 2014; Wang et al., 

2014) and researchers have also demonstrated use of the CRISPR system as a 

potential method of gene therapy to treat cystic fibrosis and blood disorders (Xie et 

al., 2014; Schwank et al., 2013). These reports demonstrate the robust and 

reproducible nature of this technology. 

 

 

1.5.2 Summary 

 

 In summary, although a vast amount of knowledge has been gained about 

the reprogramming process in a relatively short period of time since Takahashi and 

Yamanaka (2006) first reported generation of iPSCs, the exact mechanism(s) 

underlying the reprogramming process remains largely elusive. One of the key 

issues that remains to be fully understood is why reprogramming is so consistently 

inefficient regardless of the system used. A number of groups have claimed 
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surprisingly high reprogramming efficiencies, with some reports even declaring 

almost 100% reprogramming efficiency. However, these reports are rarely 

corroborated and offer little in the way of mechanistic insight to the findings. For 

the work presented in this thesis, I used an RNAi screening strategy to identify 

novel regulators of reprogramming with the objective of gaining some mechanistic 

insight into the reprogramming process in the context of enhanced or diminished 

reprogramming efficiency. 
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CHAPTER 2 – Materials and Methods 

 

2.1 Mammalian cell culture 

 

2.1.1 Cell culture and reprogramming reagents 

 

ESC and iPSC medium: 

Glasgow Minimal Essential Medium (GMEM, Sigma G5154) supplemented with:  

10% Foetal Calf Serum (FCS, Invitrogen, 10270 Batch 40F0240K) 

Non-essential amino acids (1X NEAA, Gibco 11140-035) 

L-Glutamine (2 mM, Invitrogen, 25030-024) 

Sodium pyruvate (1 mM, Invitrogen, 15140-122) 

2-mercaptoethanol (100 μM, Life Technologies 31350010) 

Leukemia inhibitory factor (LIF, 100 units/ml, homemade human recombinant) 

Penicillin-Streptomycin (P/S, 50 units/ml (P) or 50 μg/ml (S), Sigma, P4333) 

 

MEF medium: 

ESC and iPSC medium 

bFGF/FGF2 (5 ng/ml, Peprotech 100-18-B) 

Heparin (1 ng/mL, Sigma) 

 

Reprogramming medium: 

ESC and iPSC medium 

Ascorbic acid/Vitamin C (10 μg/ml, Sigma A4034) 

Doxycycline hyclate (dox, 300 ng/ml, Sigma, D9891-1G) 
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Cell freezing medium: 

Dimethysulfoxide (DMSO, 10%, VWR International, 23500.260) 

FCS (90%) 

 

Cell culture selection drugs: 

Blasticidin S hydrochloride (10 ug/ml, Sigma, 15205) 

Puromycin dihydochloride (5 ug/ml, Sigma, P8833) 

 

Transfection reagents: 

Calcium chloride hexahydrate (2 M, Sigma, 442909) 

HBS (2X, made in house by adding 8 g NaCl + 0.2 g Na2HPO4-7H2O + 6.5 g HEPES 

with volume brought up to 500 ml with dH2O and pH adjusted to 7.0) 

Polybrene (10 mg/ml, Merck Millipore, TR-1003-G) 

FuGene HD transfection reagent (Promega, E2311) 

Opti-MEM I Reduced Serum Medium (OptiMEM, Life Technologies, 31985-062) 

 

Miscellaneous cell culture reagents: 

Dulbecco’s Phosphate Buffered Saline (PBS, Sigma D8537) 

Gelatin (0.1% in PBS, Sigma G5154) 

Trypsin (0.25%, Gibco 15090-046) 

Ethylenediaminetetraaceticacid (EDTA, 0.1%, Sigma 03620) 

 

 

2.1.2 Cell lines used in this study 

 

E14 ES cell line 

TNG MKOS ESC line containing a doxycycline-inducible MKOS-ires-mOrange 

transgene and a Nanog-GFP reporter 

MEF primary culture from 129 mice 
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TNG MKOS MEFs derived from chimeric embryos generated with TNG MKOS ESC 

line, (referred to as ‘transgenic MEF’ herein) 

Platinum-E (Plat-E) retroviral packaging cell line 

 

 

2.1.3 ESC culture technique 

 

 ESCs were cultured in ESC medium with trypsin/EDTA passaging every 2-3 

days or when the cells reached approximately 80% confluency. For passaging, cells 

were washed with PBS, incubated with trypsin/EDTA for 2-3 minutes at 37°C, 

harvested in complete GMEM medium then centrifuged at 300g for 3 minutes. The 

cell pellet was resuspended in complete GMEM medium and cells seeded to a new 

gelatin-coated tissue culture vessel as appropriate and incubated in a humidified 

incubator set to 37 °C/7.5% CO2. 

 

 

2.1.4 Generation of chimeric embryos 

 

 ESCs were cultured as above and 48 hours prior to use a doubling dilution 

series was generated from 2x106 cells in 2 ml of complete GMEM medium in a 

gelatin-coated 6-well tissue culture plate. From this, single cells or colonies of an 

appropriate size (5-8 cells) were harvested and aggregated with morulae of C57Bl/6 

mice. All embryo manipulation techniques were carried out by Transgenic Unit staff 

at the Scottish Centre for Regenerative Medicine. 
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2.1.5 Mouse embryonic fibroblast isolation, cryopreservation and cell culture 

technique 

 

 Mouse embryonic fibroblasts (MEFs) were taken from embryonic day 12.5 

(E12.5) mouse embryos. Pregnant mice were culled and dissected to isolate embryos 

that were decapitated, eviscerated and then dissociated in 0.25% trypsin/0.1% EDTA 

using a 21 gauge needle. Cells from individual embryos were then resuspended in 

10 ml of MEF medium, large pieces allowed to sediment and ~9.5 ml of MEF cell 

suspension plated in a 10 cm2 tissue culture dish then incubated in a humidified 

incubator set to 37 °C/7.5% CO2.  

When cells reached confluency, they were harvested for cryopreservation as 

follows: cells were washed with PBS, harvested by trypsin/EDTA incubation then 

collected and counted prior to centrifugation at 300g for 3 minutes. The cell pellet 

was resuspended in freezing medium at a concentration of 2-5x106 cells/ml and 1 ml 

aliquots cryopreserved with initial storage at -80 °C for 24 hours followed by 

transfer to liquid nitrogen (LN2) for long term storage. 

To recover cryopreserved MEF, vials were briefly thawed in a water bath set 

to 37 °C, resuspended in MEF medium followed by centrifugation at 300 g for 3 

minutes. Cells were resuspended in MEF medium then counted and seeded in 

tissue culture vessels as required. 

 

2.1.5.1 Quantification of transgenic cell contribution 

In this study we used transgenic MEF carrying dox-inducible four 

reprogramming factors with a mOrange reporter. To quantify this, following MEF 

isolation a small aliquot of the MEF (approximately 1/20 of the isolated MEF) were 

plated in a 12-well tissue culture dish in reprogramming medium for 48 hours and 

the total percentage of transgenic cells was determined based on mOrange reporter 

expression by flow cytometry (BD Fortessa). 
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2.1.6 Reprogramming from MEF 

 

In general reprogramming experiments were carried out in a 6-well format, 

with 1x105 MEFs (wild type or transgenic, depending on the experiment) seeded per 

well. MEFs were recovered from cryopreservation approximately 2 days prior to 

seeding for experiments. Cells were either seeded directly from the initial recovered 

culture for experiments (passage 2, P2) or passaged/expanded to a new vessel up to 

one time prior to seeding, with cells only being used up to P3 to maintain good 

proliferation conditions. 

 

2.1.6.1 Transfection of MEF for primary reprogramming experiments 

Wild type MEFs were seeded in gelatinized 6-well plates at a density of 

1x105 cells per well and incubated for 24 hours before transfection. Spent medium 

was replaced with 2 ml of fresh MEF medium without heparin or P/S and the 

following ratio of vectors prepared per transfection in Eppendorf tubes: 0.5 μg PB-

TAP-IRI-2LMKOSimO (O'Malley et al., 2013), 0.5 μg CAG-rtTA, 0.5 μg hyperactive 

piggyBac transposase (hyPBase, Yusa et al. (2011)). Depending on the experiment, 1 

μg of PB-overexpression vector and/or 1 μg of PB-shRNA vector were also added. 

Fugene HD was used at a ratio of 1:4 for total DNA (μg) : Fugene HD reagent, so if 

DNA vectors totaled 3.5 μg in 3.5 μl then 14 μl of Fugene HD was used. A 100 μl 

transfection volume was used per 6 well, so the total volume of DNA and Fugene 

HD reagent was calculated and subtracted from 100 μl and this volume, e.g. 82.5 μl, 

of OptiMEM Medium was added to the DNA mix. The Fugene HD reagent was 

then added carefully below the fluid surface, avoiding contact with the plastic tube. 

The mixture was incubated at room temperature for 5 minutes and then 100 μl of 

the transfection mixture was added drop-wise to each well of MEFs in 2 ml of MEF 

Medium without P/S. After overnight incubation at 37 °C, the spent medium was 

replaced with fresh reprogramming medium to induce reprogramming factor 

expression, and this was taken as day 0 of reprogramming. Nanog-GFP+ colonies 
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were counted around day 10 to quantify any differences observed compared with 

control wells.  

 

2.1.6.2 Preparation of shRNA retrovirus supernatant for reprogramming 

Platinum-E (Plat-E) retrovirus packaging cells were seeded at a density of 

2.5-3x106 cells per 10 cm plate in 10 ml of MEF medium containing blasticidin (10 

ng/μl) and puromycin (2 ng/μl). After 24 hours, with Plat-E reaching confluency of 

around 60%, individual shRNA vectors were transfected by calcium chloride 

transfection: 63 μl of 2 M CaCl2 was added to 15 μg of vector in 437 μl of distilled 

water (dH2O), mixed and added dropwise to 500 ul of 2X HBS in an Eppendorf 

tube. Approximately 950 μl of this transfection solution was added dropwise to a 10 

cm plate of Plat-E cells in 10 ml of MEF medium while swirling the plate to ensure 

even distribution, then incubated overnight at 37 °C. This process was repeated for 

each shRNA transfection. The following day, the transfection medium was replaced 

with fresh MEF medium and incubated for 24 hours at 32 °C to maintain stability of 

the virus. The following day, the virus supernatant was removed from the cells and 

filtered using a 0.45μm filter and syringe in to a 50 ml tube, and polybrene was 

added at a final concentration of 6-8 μg/ml. 2 ml per 6-well was distributed on to the 

MEF cultures replacing the MEF medium, as required. Viral titre was not calculated 

and a pMXs-DsRed vector was used as a transfection/infection control.  

 

2.1.6.3 Reprogramming transgenic MEF with shRNAs 

For all reprogramming experiments involving “topping up” with shRNA, 

MEFs were seeded at a density of 1x105 MEFs per 6 well in MEF medium, 

constituting 3% transgenic MEFs (based on mOrange expression quantification 

outlined above) diluted with 97% wild type 129 MEFs. The following day after MEF 

plating, cells were infected with virus as detailed above and the cultures were 

incubated at 32 °C for 4 hours and then transferred to 37 °C incubation overnight. 24 

hours later, virus supernatant was replaced by reprogramming medium and this 
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was counted as day 0 for all reprogramming experiments. Medium was replenished 

every 2 days. 

 

2.1.6.4 Primary reprogramming with shRNAs  

For primary reprogramming with shRNAs, 1x105 wild type MEFs were 

seeded in 6 wells and transfected with a polycistronic vector containing the four 

reprogramming factors MKOS with a mOrange reporter (PB-TAP-

attP2LMKOSimO) using Fugene HD transfection reagent as per the manufacturers 

instruction (see below section). The day after transfection, virus supernatant was 

applied to cells as above and 24 hours later this was replaced with reprogramming 

medium (d0). Efficiency of transfection could be estimated by eye after 48 hours by 

observation of mOrange reporter expression. 

Where other factors were introduced that were not shRNAs but were 

contained in virus vectors, the virus supernatant was produced and applied in 

exactly the same way as for the shRNA vectors above. 

 

2.1.6.5 Colony counting experiments 

For end-point analysis, Nanog-GFP+ colonies were counted at various time 

points either manually by eye using a fluorescent microscope, or for later 

experiments using the Celigo cell cytometer instrument. 

 

2.1.6.6 Time course analysis 

For time-course analysis by flow cytometry, whole 6-well reprogramming 

cultures were harvested by trypsin/EDTA at each required time point, cells counted 

and centrifuged at 300 g then re-suspended in PBS at a concentration of 

approximately 1x106 cells/ml. The cell suspension was then aliquoted into round 

bottom 96-wells for antibody staining, as required. 
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2.1.6.4 Transgenic MEF reprogramming for Q-PCR analysis 

To determine changes in gene expression in cells undergoing 

reprogramming, >94% transgenic MEFs were reprogrammed and samples taken at 

various time points, as required. For these experiments, >94% transgenic MEFs were 

seeded in gelatinized 6-well plates at a density of 2.5x104 cells per well in MEF 

medium. The following day, the medium was replaced with reprogramming 

medium, and this was used as day 0 of reprogramming. For each time point, whole 

well samples were harvested with trypsin/EDTA and RNA extraction and cDNA 

synthesis were carried out (see Sections 2.2.2 and 2.2.3), followed by Q-PCR analysis 

using the Roche LightCycler® 480 and Universal Probe Library systems (see Section 

2.2.4). 
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2.2 Molecular Biology Techniques 

 

2.2.1 Plasmid vectors used in this study 

 

pENTR-2B2 Entry vector for cloning of gene(s) of interest (GOI) 

with Gateway recombination sites, enabling easy 

cloning of DNA into compatible vectors. Kanamycin 

resistant. 

 

pMXs-gw Destination vector for pMXs-GOI plasmids. Contains 

Gateway recombination sites flanked by retrovirus 

LTRs. Ampicillin resistant. 

 

pBabe-dual Retroviral vector containing dual converging U6 and 

H1 RNA polymerase III promoters, published by Li et 

al. (2006) and available on Addgene. Ampicillin 

resistant. 

 

pRetroSuper-Hyg Plasmid containing a multiple cloning site (MCS) 

flanked by retrovirus long terminal repeats (LTR) and 

pUC origin of replication. Ampicillin resistant. 

 

CAG-rtTA Plasmid constitutively expressing reverse tetracycline 

transactivator (rtTA), a protein that binds the TetO 

operator sequence when bound by doxycycline. 

Required for activation of doxycycline inducible 

vectors. 

 

pCMV-hyPBase Plasmid encoding a hyperactive piggyBac transposase, 

which catalyzes the integration and excision of 
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piggyBac transposons into DNA, under control of a 

CMV promoter. Ampicillin resistant. 

 

PB-TAP-attP2LMKOSimO Plasmid vector expressing doxycycline inducible 

piggyBac transposon encoding four reprogramming 

factors c-Myc, Klf4, Oct4 and Sox2 with mOrange 

reporter. Ampicillin resistant. 

 

pMXs-Dmrtc2 Retroviral vector containing the open reading frame 

(ORF) of Dmrtc2 (note this vector is lacking the 3’-

UTR). Ampicillin resistant. Used for overexpression 

experiment. 

 

pMXs-hCD2 As above but containing the  human CD2 ORF. 

Ampicillin resistant. Used in overexpression 

experiment. 

 

pRS-Hyg-U6H1-shRNA Modified pRetroSuper-Hyg vector containing dual 

converging RNA Polymerase III promoters U6 and  

H1. All shRNA expression vectors created using this 

plasmid by ligating shRNA oligos in to BbsI site. 

 

 

2.2.2 RNA isolation 

 

 Cells in culture were washed with PBS and 1 ml of TRIzol reagent (Life 

Technologies, 15596-026) applied directly to cells per 6 well and processed 

according to manufacturer instruction. Briefly, cells in TRIzol were homogenized to 

ensure complete lysis then transferred to a 1.5 ml Eppendorf tube and incubated at 

room temperature for 5-10 minutes. 200 μl of chloroform was added and the tube 
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vigorously shaken then samples were centrifuged for 15 minutes at 12,000 g. The 

colourless upper aqueous phase was transferred to a new 1.5 ml Eppendorf tube 

(approximately 400 μl) then 400 μl of 100% isopropanol was added and mixed well. 

After incubation at room temperature for 10 minutes, centrifugation at 12,000 g was 

repeated for 10 minutes and the supernatant was removed leaving the RNA pellet 

behind. The pellet was washed with 1 ml of 75% ethanol, vortexed briefly then 

centrifuged at 12,000 g again for 5 minutes. The supernatant was removed and 

pellet dried at room temperature for 5-10 minutes then resuspended in nuclease free 

water. The RNA was either used immediately or stored at -80 °C. All centrifugation 

steps were carried out at 4 °C. 

 

 

2.2.3 cDNA synthesis 

 

 MML-V reverse transcriptase (Life Technologies, 28025-013) was used for 

cDNA synthesis according to manufacturer instruction but briefly 20 μl reactions 

were prepared in 2 steps. Firstly 1 μg of total RNA was added to a nuclease-free 

microcentrifuge tube with oligo dT (100 μM, T24) and 100 mM of each of four 

deoxyribonucelotides dATP, dTTP, dCTP and dGTP (Life Technologies, 10297-018) 

totaling 10 μl. This was incubated at 65 °C for 5 minutes then placed on ice. Next, a 

mastermix of 5X First-Strand Buffer, 0.1 M DTT, MML-V reverse transcriptase (Life 

Technologies, 28025-013) and RNaseIN (NEB, M03141) was made and 10 μl added 

to the initial reaction mixture. Samples were then incubated for 1 hour at 37 °C, 10 

minutes at 90 °C then cooled and stored at 4 °C until use. If not being immediately 

used, samples were placed at -20 °C for short-term storage or -80 °C for long-term 

storage. 
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2.2.4 Quantitative PCR analysis 

 

 Quantitative real time PCR (Q-PCR) was carried out using the Roche 

Universal Probe Library (UPL) hydrolysis probe-based system with a Roche 

LightCycler® 480 Real-Time PCR instrument. An 8 μl Q-PCR reaction was carried 

out as follows: a master mix was made up containing 4 μl of 2X Probes master mix, 

0.08 μl of UPL probe and 1.92 μl of 20 μM forward and reverse primers for each 

reaction, and this was loaded on to a 384-well LightCycler® 480 Real-Time PCR 

plate. cDNA made from 1 μg of total RNA was diluted 1:10 with nuclease-free 

water and 2 μl of this was loaded in to each reaction. The plate was centrifuged at 

300 g for 1 minute to collect the reactions at the bottom of the wells and the plate 

loaded into the LightCycler® 480 instrument using the UPL program recommended 

by the manufacturer. A standard curve was included in the reactions to allow for 

relative quantification to be calculated by the LightCycler® 480 software. Q-PCR 

reactions were carried out in duplicate and normalized using Tbp housekeeping 

gene. 

 

 

2.2.5 Bacterial transformation and plasmid DNA preparation 

 

 DH5α E. coli bacteria were routinely transformed to generate plasmid DNA 

stocks for standard high copy plasmids. Typically <10 ng of stock plasmid, or 5-10 

μl of ligation reaction was used per transformation as follows: 50-100 μl frozen 

aliquots of bacteria were removed from -80 °C storage and thawed on ice. DNA was 

added to the bacteria, in an appropriate concentration/volume, and the mixture was 

incubated on ice for 5 minutes followed by heat shock at 42 °C for 30 seconds then 

immediate transfer back on to ice for 2 minutes. 500 μl of LB broth was added to the 

tube and incubated at 37 °C for 1 hour. 10-500 μl of the mixture was spread on to LB 

agar plates, with antibiotics as appropriate, and plates were incubated for 16-24 

hours at 37 °C. Individual colonies were picked from plates into 5ml of LB broth, 



 65 

containing antibiotics as appropriate, after being stabbed on to new LB agar plates 

as a master plate. This plate was again incubated for 16-24 hours at 37 °C while the 

inoculated broth was incubated with 250 rpm agitation at 37 °C for 16-18 hours. 

Following incubation, the bacterial broth was centrifuged at 4000 g for 10 minutes 

and the supernatant removed. Plasmid DNA was purified from the bacterial cell 

pellet using the QIAprep Spin Miniprep kit (Qiagen, 27106). This scale of plasmid 

preparation was usually used for initial ligation reaction validation, and once 

confirmed, larger stocks were generated by inoculation of 50-100 ml of LB broth, 

using the QIAprep Spin Midiprep kit (Qiagen, 12243) for plasmid DNA purification. 

 

 

2.2.6 Restriction enzyme digestion and purification of DNA fragments 

 

 Restriction enzyme digestion was primarily used either during the course of 

cloning new plasmid vectors or for confirmation of correct plasmids following 

ligation reactions, for example. For cloning new vectors, the amount of DNA 

digested varied but was typically >1 μg and for confirmation of plasmid vectors 

typically 100-200 ng was digested. All restriction enzymes and buffers were 

supplied by NEB with the specific quantities/concentrations used according to 

manufacturer instruction. Digestion reactions were carried out in 20 μl reactions 

and incubated for 1 hour at 37 °C unless otherwise recommended. After DNA 

digestion an OrangeG loading buffer (NEB, made up with 40% sucrose) was added 

to samples and reactions were loaded onto a 0.8-2% (w/v) agarose gel for 

electrophoresis separation of DNA fragments. A 1Kb Plus DNA ladder (Life 

Technologies, 10787-018) was loaded alongside samples and gels were run at 100-

120 V for ~45 minutes. GelRed nucleic acid stain (Cambridge BioScience) was 

incorporated into gels to visualize DNA bands with UV illumination. DNA 

fragments of the correct size were extracted from gels using a scalpel and DNA was 

purified using the Zymoclean Gel DNA Recovery kit (Zymo Research) according to 

manufacturer instruction, with DNA eluted in 6-8 μl of sterile water. 
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2.2.7 shRNA expression vector construction 

 

21 bp shRNA sequences for candidate genes were determined using the Life 

Technolgies online tool BLOCK-iT™ RNAi Designer. For vector construction, BbsI 

restriction sites were included at either end of the oligo duplex and a loop sequence 

was inserted between the sense and antisense sequences resulting in a 55-nucleotide 

oligo. An example is shown below, where red indicates the sequence for insertion 

into a BbsI restriction enzyme site, and blue indicates the short hairpin loop 

sequence: 

 

Forward oligo: 

5’-aaagTATGTAGGTTTCTGTAAGCAAttcaagagaTTGCTTACAGAAACCTACATA-3’ 

 

Reverse oligo: 

5’-aaaaTATGTAGGTTTCTGTAAGCAAtctcttgaaTTGCTTACAGAAACCTACATA-3’ 

 

The sequences are orientated in the 5’ to 3’ direction with the first black sequence 

representing the ‘sense’ shRNA sequence and the ‘antisense’ shRNA sequence 

following the blue loop sequence – it is the antisense sequence which we expect to 

be employed as the guide strand of each shRNA. Note the red ‘G’ in the forward 

oligo is due to the preference of the U6 promoter to initiate transcription at a ‘G’ 

nucleotide (Ma et al., 2014a). Three shRNAs were designed for each candidate gene 

of interest and the vectors constructed as follows: 9 μl of 100 μM forward and 

reverse oligos were added to 2 μl of 10X T4 DNA ligase buffer. Annealing of the 

oligos was carried out in a PCR machine set to 98°C and programmed to reduce the 

temperature slowly to 20 °C. The annealed oligos were diluted to 100 nM and 4 μl 

added to 50 ng of purified pRS-Hyg-U6H1 digested with BbsI, 10X T4 DNA ligase 

buffer and 1 μl of T4 DNA ligase (NEB, M0202L). The samples were made up to 10 
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μl with dH2O and incubated at room temperature for 1.5-2 hours, then transformed 

into DH5α E. coli bacteria (see Section 2.2.5 above). 
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2.3 Flow cytometry  

 

2.3.1 Flow cytometry materials 

 

All flow cytometry analyses were carried out using the BD LSR Fortessa cell 

analyzer instrument with harvested cells resuspended in flow cytometry buffer (FB, 

2% FBS in PBS) for antibody staining in 96-well U bottom plates, then aliquoted into 

FACS tubes (BD Falcon, 3520) for analysis. 

 

 

2.3.2 Antibodies used in this study for flow cytometry analysis 

 

 

 

 

Antibody Clone 
Host & 
Isotype 

Working 
dilution 

eBioscience 
catalogue 
number 

Anti-Mouse                 
CD54 (ICAM-1)           

Biotin 
YN1/1.7.4 

Rat                  
IgG2b, 
kappa 

1/100 13-0541 

Anti-Human/Mouse                                               
CD44                          
APC 

IM7 
Rat                  

IgG2b, 
kappa 

1/300 17-0441 

Streptavidin                   
PE-Cy7 

- - 1/1500 25-4317 

Anti-Human/Mouse                                
SSEA-1                      

647 
eBioMc 

Mouse                
IgM 

1/50 51-8813 

Anti Mouse/Rat       
CD90.1 (Thy1.1)                   

APC 
HIS51 

Rat                  
IgG2b, 
kappa 

1/100 17-0900 

Anti-CD324                      
(E-cadherin)                       

Biotin 
DECMA-1 

Rat                      
IgG1 

1/100 13-3249 
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2.3.3 Antibody staining technique for flow cytometry analysis 

 

Harvested cells were counted then centrifuged at 300g and 

resuspended in FB at a concentration of 1x106 cells/ml. Primary antibodies 

were added and samples were incubated on ice for 15-30 minutes. Cells were 

centrifuged, primary antibodies aspirated and cells washed in FB. After 

centrifugation, the wash step was repeated and cells were resuspended in 

FB. Secondary antibodies were then added and samples incubated on ice for 

5-10 minutes. The wash steps were repeated as before and cells were finally 

resuspended in FB at a concentration of 2x106 cells/ml and transferred to 

FACS tubes on ice, ready for analysis using the BD LSR Fortessa analyzer. 

 

 

2.3.4 Instrument settings for flow cytometry analysis 

 

 

 

 

 

 

Flow Cytometry with BD 
LSR Fortessa 

Laser excitation line 

488 nm 561 nm 640 nm 

Band pass 
(BP) filter 

530 ± 30 GFP     

582 ± 15   mOrange   

780  ± 60   PE-Cy7   

670 ± 30     APC 

Table 2.1 BD LSR Fortessa instrument settings for flow cytometry analyses. The laser 

excitation line indicates the operational wavelength of each laser and the band pass filter 

indicates the range of wavelength of light detected by the instrument. 



 70 

2.3.5 Flow cytometry gating and data analysis strategies 

 

 Gating strategy used for flow cytometry analyses is detailed in O'Malley et 

al. (2013), specifically Supplementary Figure 4, but briefly described here. Cells 

were initially gated according to forward- and side-scatter (FSC, SSC), broadly 

correlating with cells size and granularity, respectively, to enrich for ‘live’ cells 

while disregarding dead/dying cells and debris. Early in time course experiments 

this gating was broad, in line with the heterogeneous nature of reprogramming 

cultures containing a mixture of both large fibroblast-like cells and progressively 

smaller reprograming cells. Transgenic cells could be identified from mOrange 

expression originating from the four-factor polycistronic vector, thus indicating cells 

specifically undergoing reprograming. In addition to the antibody-specific gene 

expression profile of interest, depending on the experiment, these cells could also be 

gated for Nanog-GFP+ or GFP- expression. Correction of any overlap between 

fluorophores used in these experiments during acquisition (also known as 

compensation) and data analysis was carried out using Diva or FlowJo software, 

respectively (BD, TreeStar).  
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2.3 Genome-wide gene expression analysis 

 

2.3.1 Microarray analysis 

 

 Reprogramming samples retrovirally infected with shLacZ, MUT 1, MUT 5 

and shDmrtc2 for microarray were collected and RNA isolated as per Section 2.2.2. 

The samples were then processed using the Illumina® TotalPrep RNA 

Amplification Kit (Life Technologies, AMIL1791) to produce biotinylated cRNA. 

The quality of the samples was determined using an Agilent Bioanalyzer, and the 

samples were subsequently used for microarray analysis using the Illumina 

MouseWG-6 Gene Expression BeadChip. Microarray analysis was carried out by 

Louise Evenden at the Wellcome Trust Clinical Research Facility located at the 

Western General Hospital in Edinburgh. 

 Data analyses for the microarray was carried out separately by Rafal 

Gumienny and Alexander Kanitz from Mihaela Zavolan’s lab at the University of 

Basel, Florian Halbritter from Simon Tomlinson’s lab at the University of 

Edinburgh. 

 

 

2.3.2 RNA-sequencing analysis 

 

 Samples of MEF infected with shLacZ, MUT 9, MUT 11 and shDmrtc2 were 

harvested with trypsin/EDTA and aliquoted 25% and 75% into separate Eppendorf 

tubes. The tubes were centrifuged at 300 g for 3 minutes, supernatant removed and 

pellets were snap frozen in liquid nitrogen. These samples were shipped to Afzal 

Syed in Mihaela Zavolan’s lab at the University of Basel for RNA-sequencing (RNA-

seq) and Northern Blot analyses. Briefly, the RNA-seq technique involved mRNA 

isolation directly from frozen cell pellets using the Dynabeads® mRNA DIRECT™ 

Kit (Life Technologies, 610.11). 100 ng of mRNA was fragmented with alkaline 

hydrolysis buffer and then cleaned up using the RNeasy MinElute Cleanup Kit 
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(Qiagen, 74204). The mRNA ends were repaired by dephosphorylation then 

phosphorylation and the clean up step was repeated. 3’- sequencing adapter ligation 

was carried out overnight, clean up step repeated followed by 5’- sequencing 

adaptor ligation overnight. A final clean up step was performed and cDNA 

prepared. A pilot PCR was carried out followed by the final PCR, and the PCR 

products from this were cleaned up using the Agencourt AMPure XP kit (Beckman 

Coulter, A63880). The samples then forwarded to the sequencing facility. RNA-seq 

analysis was carried out by R. Gumienny using a biophysical modeling approach, 

MIRZA, to predict putative shDmrtc2 target sites (Khorshid et al., 2013; Gumienny 

and Zavolan, 2015). 
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CHAPTER 3 – An RNAi screening to identify novel regulators 

of reprogramming 

 

3.1 Introduction 

 

The use of reverse genetics to disrupt genes and determine the phenotype 

has been long used in biology. In the context of stem cell biology, several groups 

have reported the use of RNA interference (RNAi) to identify genes involved in 

stem cell self-renewal, pluripotency regulation, chromatin modulation and signaling 

pathways required to maintain ESC identity (Hu et al., 2009; Chia et al., 2010; Ding 

et al., 2009; Fazzio et al., 2008). In addition genome-wide and custom knock down 

screens have been used as a tool to dissect the reprogramming process and 

distinguish genes and associated pathways that are important during each stage of 

the transition of somatic cells to pluripotent iPSCs (Yang et al., 2014; Qin et al., 2014; 

Samavarchi-Tehrani et al., 2010; Sakurai et al., 2014). However, the complex and 

dynamic nature of reprogramming has made it difficult to pinpoint the exact 

determinants and sequence of cellular events for a somatic cell to successfully 

become an iPSC and the low efficiency at which the majority of reprogramming 

systems operate has hindered this further.  

The foundation of the work within this thesis stemmed from the published 

work of another member of our lab, James O’Malley, who identified two cell surface 

markers, ICAM1 and CD44, that could be used to track the movement of cells 

undergoing reprogramming using flow cytometry. Using a secondary 

reprogramming system with transgenic fibroblasts which carried the four 

reprogramming factors containing a mOrange reporter and a Nanog-GFP reporter 

under control of the endogenous Nanog promoter, O'Malley et al. (2013) developed 

a novel high-resolution system allowing for reprogramming cells to be visualized at 

a single cell level during reprogramming by following their expression of ICAM1 

and CD44. They determined that fibroblasts prior to reprogramming expressed 
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broad levels of ICAM1 and high expression of CD44. As reprogramming was 

initiated ICAM1 repression was followed by downregulation of CD44 with iPSCs 

emerging from the low CD44 population with up-regulation of ICAM1. By sorting 6 

different cell populations at day 10 of reprogramming, based on the distinct series of 

population changes that occurs as determined by ICAM1/CD44 and Nanog-GFP 

expression, the authors were able to determine global gene expression profiles 

concurrent with the changing populations during reprogramming, using RNA-

sequencing. From the gene expression analysis, five distinct patterns of gene 

expression were identified (O'Malley et al. (2013), Figure 3A, Groups A to E) and it 

is clear from a number of other published data sets that distinct gene expression 

patterns occur during reprogramming (Samavarchi-Tehrani et al., 2010; Sridharan et 

al., 2009). Group B, that is genes that displayed low expression in fibroblasts and 

iPSCs with transient up-regulation during reprogramming, was the focus at the 

foundation of this thesis. This group of genes was particularly interesting as we 

hypothesized that the transient up-regulation of gene expression that was observed 

was either required for cells to successfully progress through reprogramming to 

iPSCs (and therefore overexpression would enhance reprogramming), or this was 

an aberrant transient up-regulation that hindered efficient reprogramming (and 

therefore using shRNA to knock down/suppress gene expression would enhance 

reprogramming). By designing shRNAs targeting the group B genes, those that had 

a positive or detrimental effect on reprogramming could be easily identified by 

using the flow cytometry technique described by O'Malley et al. (2013) in addition 

to simpler assays such as colony counting based on Nanog-GFP expression. Using 

this strategy I sought to identify novel genes that play a role in the reprogramming 

process in an attempt to further dissect the mechanism(s) and pathways underlying 

the successful progression of a somatic cell to an iPSC. 
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3.1.1. Aims of this chapter 

 

The aims of this chapter are threefold. Firstly, I analysed RNA-seq and 

microarray data generated both within our lab and others to compile a list of 

candidate genes for targeted knock down. Secondly, in parallel, I established an 

efficient and effective RNA interference (RNAi) system to knock down target genes 

during reprogramming. Finally, I tested the effect of knock down of candidate genes 

during reprogramming and identified shRNAs targeting candidate genes that gave 

rise to an enhanced reprogramming phenotype. 
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3.2 Results 

 

3.2.1. Candidate gene selection for RNAi screening 

 

The starting point for this study was established from earlier work in our lab 

performed and published by James O’Malley. Detailed in the O’Malley et al. (2013) 

publication, RNA-sequencing data was generated using samples of cells that were 

at early, intermediate and late phases of reprogramming based on cell sorting using 

novel cell surface markers ICAM1 and CD44 together with a pluripotency marker 

Nanog-GFP.  J. O’Malley identified five groups of genes based on distinct patterns 

of gene expression during reprogramming. One of these groups, “group B”, 

contained genes that exhibited low levels of expression in MEF, transiently up-

regulated then down-regulated expression when cells reached an iPSC stage. This 

group of genes we termed “UP-DOWN” genes (Figure 3.1a and b) and this data was 

the main basis for candidate gene selection for this project. It was unknown as to 

whether this transient up-regulation was required for reprogramming to progress 

or simply aberrant up-regulation triggered by strong induction of the four 

reprogramming factors. We hypothesized that some of these genes may represent 

the former situation and if so knocking down gene expression early in 

reprogramming, thereby preventing transient (aberrant) up-regulation, may 

enhance reprogramming by abolishing this barrier. On the other hand, knock down 

of genes that are required to transiently up-regulate during reprogramming would 

result in loss of reprogramming potential. Thus this approach has the potential to 

identify both barrier and essential genes for reprogramming. A principal 

component analysis generated from the RNA-sequencing data (Figure 3.1c) 

indicated that the cells take a detour to reach a pluripotent state (red arrow), instead 

of taking the shortest route towards iPSCs (blue arrow). I aimed to make a ‘shortcut’ 

by inhibiting transient up-regulation of inhibitory genes.  
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Figure 3.1. Gene expression profile of cells undergoing reprogramming. Five distinct 

mRNA expression profiles were determined for cells at early, intermediate and late stages of 

reprogramming (a). An “UP-DOWN” group of genes was identified as having low expression 

in MEF and iPSCs/ESCs with transient up-regulation occurring during reprogramming (a, b). 

Principal component analysis demonstrates the usual route of reprogramming MEF to iPSCs 

(red arrow) with a hypothesized “short-cut” proposed (blue arrow). Adapted from O'Malley et 

al. (2013). 

b 

a 

c 
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The UP-DOWN group contained 706 genes, many more genes than could be 

screened manually as was intended for this project rather than using a high-

throughput approach. As a means to narrow down the candidate list to a more 

practical number, an additional data set published by Samavarchi-Tehrani et al. 

(2010) was considered in conjunction with the UP-DOWN gene list. Briefly, the 

authors used an RNAi screening approach using short interfering RNA (siRNA) 

targeting over 4000 genes in order to identify regulators of the early initiation phase 

of reprogramming. After 5 days of reprogramming, alkaline phosphatase (AP) 

staining was used as a read out of reprogramming cells and the area of AP staining 

was calculated for each well. By putting these results in order of AP staining area I 

was able to narrow down my candidates based on the genes which had a higher AP 

staining value than p53 on the siRNA list since it is well documented that knocking 

down p53 during reprogramming leads to enhanced reprogramming efficiency 

(Banito et al., 2009; Kawamura et al., 2009; Hong et al., 2009). This approach 

identified 47 “barrier” candidate genes and I reasoned that knock down of these 

genes during reprogramming might enhance reprogramming as well as or better 

than knock down of p53. Similarly, 15 “essential” candidate genes were identified as 

having lower AP staining values than Oct4, which has been reported to decrease 

reprogramming efficiency when knocked down (Heng et al., 2010; Samavarchi-

Tehrani et al., 2010), and I reasoned that if knock down of one of these genes 

impeded reprogramming more than Oct4 then expression of that gene may be 

required during reprogramming. This could subsequently be tested with 

overexpression during reprogramming. In addition to siRNA data, the Samavarchi-

Tehrani study also included a microarray time course analysis of gene expression 

during reprogramming. This data set was analyzed in conjunction with the 

O’Malley RNA-seq data resulting in elimination of 8 and 6 genes from the “barrier” 

and “essential” candidate lists, respectively, as they only exhibited the UP-DOWN 

pattern in one data set. Thus, from this approach 39 potential “barrier” gene 

candidates and 4 potential “essential” gene candidates were determined. 
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In addition to these 43 candidates, I made use of unpublished microarray 

data that I generated during previous work investigating a highly stable iPSC line, 

C7s2.11, which had lost the capacity to differentiate after it was established from 

reprogramming of MEF. I reasoned that genes which were strongly up-regulated or 

down-regulated in this cell line compared with ESCs might represent genes that 

play an important role in the acquisition and/or maintenance of pluripotency and 

consequently it would be interesting to including them in my knock down 

screening. This strategy gave rise to 11 additional candidates. In total, an initial 

candidate gene list of 54 genes was determined for testing in an RNAi knock down 

screening during reprogramming (Table 3.1). 

 
 

 

 

9930023K05Rik (Rik) Mxi1 Taf1b 

Adrb2 Nagk Tcfap2a 

Asprv1 Nfe2l3 Tlx2 

Bhmt2 Ovol Fosb 

Bmp8b Peg3 Foxj2 

Cldn4 Perp Jun 

Dmkn Phox2a Nfatc2 

Dmrtc2 Phox2b Aldh3a1 

Drp2 Plcd3 Dkkl1 

Elf4 Prx Ephx1 

Elf5 Rapgef4 Fetub 

Hand1 Rhox6 Hmgn3 

Hat1 Rhox9 Pnpla3 

Krtdap Scel Rac3 

Lgals7 Sfn Tgm2 

Map3k6 Smyd1 Dclk2 

Map3k8 Spink2 Dok2 

Mid1 Stk19 Emp2 

Table 3.1. List of candidate genes identified from published and unpublished data 

sets. Candidate genes identified from the O'Malley et al. (2013) and Samavarchi-Tehrani et 

al. (2010) data sets are grouped according to identification as UP-DOWN genes >AP+ than 

p53 siRNA genes (orange) or UP-DOWN genes <AP+ than Oct4 siRNA genes (blue). 

Genes identified from unpublished microarray data are grouped according to identification 

as highly expressed in C7s2.11 iPSCs compared with ESCs (green) or highly expressed in 

ESCs compared with C7s2.11 iPSCs (yellow). 
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3.2.2. A retrovirus-based shRNA expression vector for efficient knock down of 

target genes 

 

Reprogramming is a notoriously inefficient and slow process. In addition, 

using transient siRNA transfection for knocking down genes during 

reprogramming can also be ineffective at reducing gene expression to a suitable 

level. With these drawbacks in mind it was important to design a highly efficient 

and practically straightforward system for screening the knock down of candidate 

genes during reprogramming. In order to do this, several points were considered: 

 

(1) Reprogramming is inefficient and typically less than 1% of cells become 

iPSCs. 

 

(2) Reprogramming is highly heterogeneous and many factors influence the 

success of reprogramming including the reprogramming system used, 

specific reagents used, the condition of starting cells etc. and this can make 

interpretation of reprogramming data difficult from one experiment to the 

next. 

 

(3) For this screening, cells must contain all four reprogramming factors in 

addition to the knock down vector; both induction of reprogramming and 

stable transfection of shRNA must be efficient. 

 

(4) RNAi knock down systems are complicated and can be ineffective at 

reducing gene expression to a sufficient level to induce a phenotype and 

additionally different genes require different levels of knock down to have 

an effect. 

 

We use a robust and reproducible reprogramming system taking advantage 

of transgenic MEF carrying a polycistronic cassette encoding the four 
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reprogramming factors, c-Myc, Klf4, Oct4 and Sox2, under control of a tetO 

doxycycline-inducible promoter, and constitutively expressed reverse tetracycline 

transactivator (rtTA) (Figure 3.2). The four factors are separated with self-cleaving 

2A-peptides and followed by ires-mOrange, allowing clear visualisation of 

expression of the transgene cassette. In addition the MEFs harbour a GFP reporter 

under control of the endogenous Nanog promoter, a gene that is expressed towards 

the end of reprogramming when cells acquire pluripotency. We use the expression 

of Nanog-GFP as a read out of reprogrammed cells/colonies (referred to as ‘colony 

counting’ herein). This system limits some of the heterogeneity of reprogramming 

by ensuring all transgenic cells, at least in theory, have equal capacity to express the 

four factors at similar levels (this reprogramming system will be referred to as 

‘transgenic (Tg) reprogramming’ herein).  

 

 

 

 

Figure 3.2. Generation of transgenic MEFs for reprogramming. A doxycycline-inducible 

vector containing MKOS and mOrange reporter was targeted in ESCs containing a Nanog-

GFP reporter. These cells were used to generate chimeric mice from which transgenic 

MEFs were isolated. Expression of MKOS was induced with administration of dox and 

visualized with mOrange expression and Nanog-GFP+ iPSCs were generated. 
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To knock down my candidate genes, I designed a retrovirus based short 

hairpin RNA (shRNA) expression vector, building on the pRetroSuper plasmid 

backbone, containing dual converging RNA polymerase III promoters, U6 and H1. 

This dual promoter system enabled the shRNA to be expressed in both directions 

thereby ensuring high expression of shRNA could be achieved from a single vector 

(Zheng et al., 2004; Chen et al., 2005). In addition, a BbsI restriction enzyme site was 

introduced between the two promoters, enabling highly efficient cloning of any 

shRNA sequence of interest. A virus packaging cell line, PlatE, was transfected with 

each shRNA vector to produce virus supernatant containing retrovirus-carrying 

shRNAs. This supernatant was then used to infect our transgenic MEFs for 24 hours 

and replaced with dox containing medium to initiate reprogramming. The 

reprogramming cultures were monitored every day for appearance of iPSC colonies 

and Nanog-GFP+ colonies were counted from day 10 onwards (Figure 3.3). 

One of the main drawbacks of using an shRNA knock down system is that 

designing oligos targeting your gene of interest is based on computational 

algorithms following a set of ‘guideline rules’. The sequences are not experimentally 

validated and as such are not guaranteed to efficiently target a gene resulting in 

knock down. Although it is possible to scan the literature to find sequences that 

have been reported to efficiently knock down specific genes, this is not feasible for a 

larger scale screen, particularly involving genes that have not been widely studied 

or well characterized. Consequently, it is advised to test more than one shRNA 

sequence for each gene of interest in order to increase the likelihood that knock 

down can be achieved. For this reason, I chose to design three shRNAs per gene of 

interest (denoted P1, P2 or P3), resulting in construction of over 150 vectors 

representing the candidate genes. For an unknown reason, cloning of some of the 

shRNAs was difficult and could not be completed for all shRNAs targeting each of 

the 54 candidate genes as persistent mutations occurred. As a result, shRNA vectors 

were generated for only 44 of the 54 original candidate genes, with some candidates 

represented by less than 3 vectors, in addition to control vectors targeting LacZ. A 

retroviral vector expressing DsRed (pMXs-DsRed) was used as a virus infection 



 83 

control and by FACS analysis I could reproducibly achieve 50-75% infection 

efficiency as determined by DsRed positive cells.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Schematic of shRNA knock down of candidate genes during 

reprogramming. pRetroSuper shRNA vectors were cloned for each candidate gene and 

used to make virus supernatant with which transgenic MEF carrying doxycycline-inducible 

four reprogramming factors were infected. Dox was administered to initiate reprogramming 

and Nanog-GFP+ colonies were counted from day 10 onwards. 
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3.2.3 A custom shRNA screening to identify novel regulators of reprogramming 

 

Five initial rounds of reprogramming with individual shRNAs were carried 

out as a first pass screening. Approximately 24 to 38 shRNAs were tested in each 

experiment with all shRNAs representing any given gene tested together within the 

same experiment to enable side-by-side comparison. However, it is important to 

note that since viral titre was not determined for each shRNA in any of the 

experiments, and only DsRed was used as an infection control, it is highly likely 

that the viral titre produced for each shRNA differed. As such, these preliminary 

experiments were being used to determine several things; 1) To confirm that 

method of shRNA vector transfection could successfully produce viral supernatant, 

2) To confirm that any virus supernatant produced could successfully infect MEF, 3) 

To determine whether the transgenic MEF could still undergo reprogramming upon 

retroviral infection and finally 4) To determine if the addition of any of the 

candidate shRNAs to reprogramming cells enhances or hindered the generation of 

Nanog-GFP+ iPSCs, when compared with the control. From experience of using this 

reprogramming system within our lab, we know that Nanog-GFP+ colonies 

typically establish by around day 10 and therefore Nanog-GFP+ colonies were 

counted on days 10, 13 and 15 for this preliminary screen (Figure 3.4). 

For all experiments 5% transgenic MEFs were plated in 6 wells, with wild 

type MEF used to dilute the cells to the appropriate ratio. This equates to 

approximately 5000 transgenic cells per well that are capable of reactivating the 

reprogramming factors upon dox treatment and undergoing reprogramming. With 

this in mind, it should be noted that our Tg reprogramming system is highly 

efficient, as can be seen from the experiments where uninfected MEF were 

reprogrammed (Figure 3.3). In these experiments, the reprogramming efficiency 

varied between 2-7%. An initial observation found that infection of MEF with 

retroviral shRNAs significantly hindered reprogramming of transgenic cells, as 

evident from a substantial decrease in Nanog-GFP+ colony number in DsRed and 

shLacZ conditions when compared with uninfected reprogramming conditions. It 



 85 

seems that viral infection and/or expression of exogenous shRNA is somewhat toxic 

to the cells. Despite this, even with reduced efficiency the control shLacZ condition 

continued to display reprogramming efficiencies of typically 1-3%, which is higher 

than many reported reprogramming systems. 

When shRNAs targeting candidate genes were tested, several generated an 

increased number of Nanog-GFP+ colonies when compared to shLacZ control on 

day 15, and a few shRNAs even generated more colonies than the uninfected 

condition including shRNAs targeting Aldh3a1, Rac3, Emp3, Nagk and Dmrtc2. 

Interestingly even as early as day 10 many shRNAs were found to give several fold 

increase in Nanog-GFP+ colonies, indicating that knock down of these genes might 

enhance reprogramming kinetics in addition to enhanced efficiency. The most 

significant of these included shRNAs targeting Rhox9, Hand1, Mxi1, Nfe2l3, 

Phox2a, Phox2b, Prx, Rapgef4, Aldh3a1, Dkkl1, Rac3, Emp2, Elf4 and Dmrtc2. 

Notably, an shRNA targeting Dmrtc2 (shDmrtc2 P3) was determined as a 

significant enhancer of reprogramming, and this was confirmed twice in these 

preliminary experiments. 
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Figure 3.4. Effect of candidate shRNAs during reprogramming. Five initial 

reprogramming experiments reveal shRNAs that enhance or inhibit generation of Nanog-

GFP+ colonies during reprogramming of transgenic MEF. Bars represent the average 

number of Nanog-GFP+ colonies counted from 2 independent wells for each shRNA. 
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A number of shRNAs also resulted in a decrease in colony number, 

representing a number of potential “essential” gene candidates for reprogramming. 

These included shRNAs targeting Ovol1, Sfn, Fosb and Tgm2. Interestingly, Ovol1 

has been implicated in driving MET in cancer (Roca et al., 2013), Sfn (also known as 

14-3-3σ) plays a role in proliferation of ESCs through binding of GSK-3β (Chang et 

al., 2012), Fosb has been identified as a reprogramming factor for generating 

induced haematopoietic stem cells from HUVECs (Lucas and Frenette, 2014) and 

Tgm2 is an enzyme that has been implicated with diverse roles in cell adhesion, 

proliferation and apoptosis depending on it’s locality within the cell (Nadalutti et 

al., 2011). Thus, some of these genes might feasibly play a role as positive regulators 

or enhancers of reprogramming, although the specific knock down of these genes 

was not validated. The effect of these shRNAs during reprogramming was not 

followed up with overexpression experiments to see if expression of their cDNA 

together with Yamanaka factors could enhance reprogramming. This was because 

reduction of reprogramming efficiency can be caused many reasons and even 

control shRNA vector infection causes reduced reprogramming efficiency compared 

to a non-infection control. Less iPSC colonies by an shRNA may be due to higher 

off-target toxicity of the shRNA. Moreover, this initial screen already identified 

several potential ‘barrier’ candidates. We imagined an enhanced reprograming 

phenotype was less likely to be caused by off-target effects.   Nonetheless, further 

investigation of the “essential” candidates mentioned above is a potential avenue of 

further study. 

Going forward, 20 shRNAs representing 17 genes were chosen for further 

validation during further rounds of reprogramming. This second round of 

screening enabled exclusion of many candidates as there was no significant 

difference compared with control in the number of Nanog-GFP+ colonies at day 10 

or later. However, several shRNAs gave rise to a 5 to 10-fold increase in the number 

of Nanog-GFP+ colonies at day 10, compared with control. These included shRNAs 

targeting Emp2, Rac3, Rhox9, Dkkl1 and Elf4 (Figure 3.5). Additionally, this 

experiment confirmed the earlier observation that one shDmrtc2 P3 in particular 
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induced a significantly enhanced reprogramming phenotype. Remarkably, at day 10 

around a 45-fold increase in Nanog-GFP+ colony number was observed and by day 

14 a 10-fold increase was maintained when this shRNA was expressed. This is at a 

time point when we know that most colonies have become iPSCs and express 

Nanog-GFP. This finding indicated that not only did shDmrtc2 P3 enhance 

reprogramming efficiency in terms of the total number of colonies obtained at the 

end of reprogramming, but also accelerated reprogramming kinetics as 

demonstrated by the 45-fold increase in colony number at day 10.  
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Figure 3.5. Further validation of candidate shRNAs during reprogramming. Most 

shRNAs could be excluded from these results for further testing as no significant difference 

in Nanog-GFP+ colony number was observed when compared with control. However, 

several shRNAs were identified as enhancers of reprogramming, including those targeting 

Emp2, Rac3, Rhox9, Dkkl1, Elf4 and most significantly Dmrtc2.   
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In addition to assessing the number of Nanog-GFP+ colonies during 

reprogramming I also took advantage of a technique developed in our lab using 

fluorescence activated cell sorting (FACS) analysis to track cells as they undergo 

reprogramming using novel cell surface markers ICAM1 and CD44 (O'Malley et al., 

2013). During reprogramming, cells express ICAM1 heterogeneously and are 

positive for CD44 expression. As reprogramming progresses, ICAM1 is down-

regulated followed by down-regulation of CD44 and finally, as cells become iPSCs 

they once again express high levels of ICAM1. This ICAM1+/CD44- position is 

where iPSCs and ESCs are found (Figure 3.6a). This technique allows for changes in 

the ‘normal’ or ‘typical’ FACS profile to be easily identified, for example if the cells 

move through the ‘reprogramming route’ at a faster rate, and thus is an ideal tool to 

identify if an added factor has a positive effect on reprogramming kinetics. This 

analysis also takes advantage of the Nanog-GFP reporter carried by the cells, 

enabling the percentage of reprogramming (transgenic) cells that express Nanog-

GFP to be determined at any time point throughout the experiment. Again, this can 

be used as further validation if an added factor has a positive effect on 

reprogramming.  

I chose to perform FACS analysis for three top shRNAs based on the 

preliminary Nanog-GFP+ colony count data; shDmrtc2 P3, shDkkl1 P3 and shEmp2 

P2. I predicted that if any of these shRNAs did indeed enhance reprogramming 

efficiency then I would observe an increase in the percentage of Nanog-GFP+ cells 

and if there was a positive effect on the timing or kinetics of reprogramming then I 

would observe the cells moving through the ICAM1/CD44 profile faster and/or 

expressing Nanog-GFP earlier. Indeed this is what I observed; as expected, the 

shLacZ control and uninfected samples exhibited similar FACS profiles throughout 

the time course as reported by O'Malley et al. (2013). Albeit there were more Nanog-

GFP+ cells in the uninfected sample (28%) compared with shLacZ (2%) at day 10 

(Figure 3.6b). This is unsurprising given that infection with retrovirus of the 

shRNAs seems to be somewhat toxic as mentioned previously, however, by day 13 

both conditions give rise to a similar proportion of Nanog-GFP+ cells. In contrast, all 
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three shRNAs had a positive effect on reprogramming. shDkkl1 P3 gave rise to 56% 

Nanog-GFP+ cells at day 13 compared with 36% for shLacZ. In addition, the 

appearance of Nanog-GFP+ cells was already evident around day 7 of 

reprogramming compared with day 10 for shLacZ. Even more strikingly, shEmp2 

P2 gave rise to 69% Nanog-GFP+ cells at day 13 and by day 10 had already matched 

the percentage observed in the uninfected condition. The most pronounced result, 

however, was observed for shDmrtc2 P3. By day 10, 58% of cells were already 

positive for the pluripotency marker Nanog-GFP, increasing to 77% by day 13. Even 

more remarkably, there was a clear acceleration in the rate of reprogramming 

observed with most cells already having down-regulated CD44 and many up-

regulating ICAM1 by day 7. This is consistent with two to three day acceleration in 

the rate of reprogramming compared to control. This striking result led me to focus 

my investigation on shDmrtc2 P3 (referred to as shDmrtc2 herein). 
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Figure 3.6. FACS analysis of ICAM1, CD44 and Nanog-GFP expression in cells 

undergoing reprogramming. (a) Cells undergoing reprogramming follow a specific “route to 

iPSCs” determined by ICAM1 and CD44 expression (adapted from O'Malley et al. (2013)). (b) 

Addition of shDkkl1 P3, shEmp2 P2 and shDmrtc2 P3 give rise to enhanced reprogramming 

efficiency with shDmrtc2 P3 showing significantly faster ICAM1/CD44 kinetics as early as day 

7, and a majority of cells expressing Nanog-GFP by day 13. 

a 

b 
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3.3 Discussion 

 

3.3.1 shRNA is a powerful tool to identify novel regulators of reprogramming 

 

These initial experiments have provided evidence to support published 

studies that shRNA can be a powerful tool to knock down gene expression, and in 

this case to successfully uncover novel roles for genes during reprogramming. 

shRNA expression vectors containing dual RNA Polymerase III promoters, U6 and 

H1, were used in this study over the option to purchase synthetic siRNA for several 

reasons. Firstly, siRNA can be a costly option, particularly when many siRNAs are 

required to knock down many genes, for example in the case of an siRNA library 

with prices usually upwards of several thousands of pounds. In contrast, the 

shRNA vectors used in this study were constructed at a low cost, facilitated by the 

fact that the pRetroSuper backbone was able to be propagated indefinitely, and the 

shRNA cloning technique was highly efficient resulting in quick and easy 

validation. In addition, contrary to the transient nature of siRNA, shRNA 

expression vectors allowed for persistent and high expression of shRNAs within the 

reprogramming cells, alleviating the requirement for serial transfection as is 

required with siRNA which is depleted in cells over time unless replenished by 

further transfections. The fact that reprogramming cells form colonies may even 

hinder or abolish the possibility of efficiency repeated siRNA transfection during 

reprogramming. Furthermore, since I had devised a relatively small candidate list, 

the screen was practically simple and specific shRNAs targeting the genes of 

interest could be tested individually, abrogating the need to carry out pooled 

shRNA experiments which can make interpretation and validation of results more 

complicated and time consuming. In other words, positive or negative hits could be 

easily traced to specific genes without the need for further screening to link a 

phenotype to one of many pooled shRNAs. One potential drawback of both siRNA 

and shRNA-mediated knock down in vitro has been identified in reports that 

overload of ectopic si/shRNAs can compete with endogenous miRNAs for 
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processing machinery and lead to toxicity as a result (Grimm et al., 2006). However, 

designing Ago-2 specific RNAi is one way to alleviate this miRNA perturbation (Ma 

et al., 2014b). It seems that the shRNA expression vectors used in this study were 

somewhat toxic to cells when compared with an uninfected control and it was 

unknown whether this was due to virus infection of cells or shRNA expression 

itself. However, infection of cells with a pMXs-DsRed vector gave rise to similar 

results as shLacZ infection, suggesting that it was virus infection in general rather 

than shRNA expression that is toxic. Since several shRNAs in our screening gave 

rise to enhanced reprogramming even when compared with the uninfected control, 

this phenomenon didn’t seem to be a major factor in this context. In fact comparison 

of candidate shRNAs to the uninfected control ensured that only shRNAs that gave 

rise to a greatly enhanced reprogramming phenotype were taken forward in the 

study as these were predicted to be the most likely to have reproducible and robust 

effect. 

Another point for consideration is our use of a dual promoter vector using 

converging U6 and H1 promoters to express shRNAs from both strands of the same 

DNA template. Having had limited experience or expertise within our lab of using 

RNAi at the start of this study, we theorized that a dual promoter system would be 

more likely to ensure high expression of shRNA than a single promoter system. 

Indeed it has been widely reported that a U6/H1 dual promoter RNAi expression 

vector can mediate efficient gene knock down (Kaykas and Moon, 2004; Zheng et 

al., 2004; Chen et al., 2005). Early experiments comparing single U6 promoter 

vectors with dual U6/H1 converging promoter vectors in our hands gave 

inconclusive results as to whether one system was more efficient than the other (not 

shown), and as such we opted to proceed with the dual promoter vector with the 

reasoning that it had the potential to produce a higher level of shRNA expression. 

As already briefly mentioned, the reprogramming system we use in our lab 

is generally robust and highly efficient. However, as can be seen clearly in the data 

presented within this chapter, the number of iPSC colonies generated during each 

reprogramming experiment is greatly variable, even for the same batch of 
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transgenic cells reprogrammed in the same way. Another difficulty comes with 

additional layers required for reprogramming experiments, for example, the 

necessity for virus infection in these experiments provides a further source of 

variability to the results. Nonetheless, results were easily reproducible in terms of 

the phenotype observed, however, consideration must be made to take into account 

the interpretation and presentation of these data.  

When these considerations are taken together, this shRNA screening proved 

to be a powerful tool to identify several novel regulators of reprogramming, with 

shDmrtc2 being found to have a significant effect on reprogramming efficiency and 

kinetics. 

 

 

3.3.2. FACS analysis of ICAM1 and CD44 is a useful tool for studying 

reprogramming kinetics  

 

 It is commonplace in the reprogramming field to quantify reprogramming 

efficiency as the number iPSC-like colonies generated from an initial number of 

reprogramming cells at a certain arbitrary time point. Furthermore, although many 

studies have identified factors or small molecules as enhancers of reprogramming 

efficiency, few studies have reported drastic or reproducible improvement in the 

kinetics, or timing, or reprogramming. And since reprogramming is widely known 

to be a slow and inefficient process, the identification of shDmrtc2 P3 as both an 

enhancer of reprogramming efficiency and kinetics is an exciting prospect. In 

conjunction, the ICAM1/CD44 FACS analysis technique developed in our lab has 

provided a unique tool with which investigation of reprogramming kinetics is easy 

and clear. We can determine, literally at a glance, whether any 

condition/factor/small molecule has a significant effect on reprogramming using 

this method, and when used in conjunction with additional markers such as Nanog-

GFP, a more complete picture of the route by which any given cells undergo 

reprogramming can be produced. In addition to enhancement, aberrations or 
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barriers can also be easily identified, and when investigating several factors (in this 

case several different shRNAs), a meaningful comparison can be made and robust 

conclusions drawn since single cells are analysed and visualised, as opposed to 

using somewhat arbitrary or subjective methods such as colony counting to 

determine reprogramming efficiency. 

 

 

3.3.3. The importance of experimental controls 

 

Since these reprogramming experiments were carried out in conjunction 

with retroviral transduction (to express the shRNA vectors), it was important to 

determine what impact, if any, viral transduction would have on reprogramming 

efficiency and furthermore to choose an appropriate shRNA control for which to 

compare all candidate gene shRNAs with. Notably, it was clear that viral 

transduction had a detrimental effect on reprogramming, as several fold fewer 

Nanog-GFP+ colonies were observed when cells were transduced either with a 

retroviral shRNA or non-shRNA control vector. When initially designing control 

shRNA vectors, a number of vectors were tested side by side and shLacZ was 

determined at the time to be the most appropriate shRNA control for a number of 

reasons. Firstly, an shRNA targeting LacZ was thought to have few or no off-targets 

since LacZ is not a gene expressed in the mouse, and therefore it was reasoned that 

this vector should produce shRNA without a target (and therefore have little or no 

effect on reprogramming). Secondly, when tested alongside a non-shRNA retroviral 

vector (pMXs-DsRed), a consistently similar number of Nanog-GFP iPSC colonies 

were observed in experiments. This suggested that the decrease in reprogramming 

efficiency when compared with the uninfected control was probably due to viral 

transduction rather than toxicity of shRNA production. Thirdly, another shRNA 

targeting a different sequence of LacZ (shLacZ P2) was also tested, however, this 

gave rise to a similar number of Nanog-GFP+ colonies as the uninfected control. 

One reason for this could be that viral production/infection was inefficient with this 
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vector so it was excluded as a reliable control. Based on these observations it was 

determined that shLacZ would be an appropriate control vector. In hindsight, it 

would have been useful to have a positive shRNA control, for example targeting 

p53. Knock down of p53 is well reported to enhance reprogramming efficiency and 

this could have been a useful control to determine the extent of any positive effects 

observed with transduction of group B candidate gene shRNAs on reprogramming. 

Although I am confident that I have identified several shRNAs that enhance 

reprogramming efficiency and kinetics in this chapter, by including an shRNA that 

is known to enhance reprogramming would only serve to strengthen my results. 

 

 

  



 98 

CHAPTER 4 - Investigation of shDmrtc2 as a novel positive 

regulator of reprogramming 

 

4.1 Introduction 

 

 Dmrtc2, also known as Dmrt7, is a protein-coding gene belonging to the 

doublesex and mab-3-related transcription factor (Dmrt) family. This family of 

genes contains a characteristic cysteine-rich DNA binding motif known as the DM 

domain. This facilitates DNA binding through a highly intertwined structure that 

chelates zinc, allowing binding to the major groove of DNA. Outside of this DM 

domain, the genes have very little sequence similarity. Interestingly, Dmrt7 and 

Dmrt8 are only found in mammals and no other vertebrate species, suggesting they 

are mammalian specific Dmrt genes (Hong et al., 2007). Dmrtc2 is expressed in 

embryonic gonadal tissue, specifically the ovary or testes with higher abundance 

found in the female rather than male gonads. However, Dmrtc2 becomes expressed 

in a male-specific manner postnatally and is required for spermatogenesis. Dmrt7 

knock out mice have been generated by gene targeting and were found to be 

developmentally indistinguishable from littermates and could grow into adulthood 

suggesting Dmrt7 is dispensable for embryonic development. However mutant 

mice were infertile and no sperm could be detected in the epididymis of Dmrt7-/- 

males (Kawamata and Nishimori, 2006). This is reportedly due to an arrest of 

spermatogenesis at the pachytene stage of meiosis (Kim et al., 2007). Interestingly, 

there has been very little reported on this gene in recent years. 

RNAi can be a very useful but imperfect system for knock down of gene 

expression. Since RNAi systems utilize endogenous machinery to process si/shRNA, 

there are a number of factors that must be considered and validated when using 

such systems to ensure not only robust knock down of genes of interest but also to 

ensure confidence that the results obtained are a direct consequence of specific 

knock down of a gene and not some other secondary cause or effect which can be a 



 99 

common problem with RNAi strategies (Singh et al., 2011; Jackson et al., 2003; 

Echeverri et al., 2006). Indeed, published studies usually provide functional 

validation of genes identified through RNAi screens (Yang et al., 2014; Qin et al., 

2014). At the very least, a hit obtained through RNAi studies should be validated by 

further RNAi targeting the proposed gene, and where possible, a rescue experiment 

should be carried out to confirm that overexpression of the gene, in a form that 

cannot be targeted by the RNAi, abolishes the phenotype observed with knock 

down (Kittler et al., 2005). 

 

 

4.1.1. Aims of this chapter 

 

In the previous chapter an shRNA targeting Dmrtc2 was identified to 

significantly enhance Nanog-GFP+ colony number and kinetics when applied 

during reprogramming of transgenic MEF. Following on from this the aims of this 

chapter are to characterize further the effect of shDmrtc2 during reprogramming, to 

validate that shDmrtc2 does target Dmrtc2 causing knock down of this gene at an 

mRNA level as expected and to further validate whether it is the knock down of 

Dmrtc2 that is responsible for the positive phenotype observed during 

reprogramming by performing a rescue experiment. 
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4.2. Results 

 

4.2.1. Validation of shDmrtc2 as an enhancer of reprogramming efficiency and 

kinetics 

 

Following on from identification of shDmrtc2 as a positive regulator of 

reprogramming, several repeat experiments were conducted with shDmrtc2 in 

order to confirm that the strong positive phenotype observed was in fact true and 

reproducible. This was particularly important because of the variability of 

reprogramming which can make consistency in reprogramming data difficult, not 

least between labs but even within the same hands. To overcome this, I carried out 

several additional experiments to be certain that the phenotype observed using 

shDmrtc2 during reprogramming was reproducible. 

Firstly I confirmed that the increased reprogramming efficiency conferred by 

shDmrtc2 during reprogramming could be replicated. Indeed, upon repeating 

several more colony counting experiments, I could faithfully reproduce my 

previous results; addition of shDmrtc2 to reprogramming resulted in over 40-fold 

increase in Nanog-GFP+ colonies compared to shLacZ  (Figure 4.1a). Although the 

total colony number varied between experiments I consistently observed increased 

relative colony numbers in the shDmrtc2 sample compared with both the 

uninfected and shLacZ samples indicating that this is a real phenotype due to the 

shDmrtc2 vector (Figure 4.1b). 

Since addition of shDmrtc2 in reprogramming resulted in many Nanog-

GFP+ colonies appearing by day 10 and FACS analysis indicated the presence of 

Nanog-GFP+ cells as early as day 7 I sought to determine the earliest time point at 

which Nanog-GFP+ colonies emerged during reprogramming with shDmrtc2. To do 

this I monitored the appearance of colonies during reprogramming and tracked 

individual colonies throughout their progression to iPSCs (Figure 4.2). Within only 

a few days of reprogramming induction, a change of cell morphology was clearly 

evident in the shDmrtc2 condition, with cells becoming more compact and rounded 
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in shape, and clear formation of small foci in the cultures. Strikingly, I observed the 

appearance of bright green Nanog-GFP+ colonies as early as day 5 of 

reprogramming with shDmrtc2. By comparison, the first faint green colonies 

appeared on day 7 in the shLacZ control condition (Figure 4.2). This confirmed that 

the addition of shDmrtc2 to reprogramming resulted in at least a 2 to 3 day 

acceleration of the appearance of Nanog-GFP+ colonies compared with control. 

Given that reprogramming is a notoriously slow process, this was a particularly 

encouraging and exciting result. 
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Figure 4.1 Validation of shDmrtc2 

during reprogramming. Addition of 

shDmrtc2 during reprogramming 

reproducibly enhances the number of 

Nanog-GFP+ colonies by day 10 

compared with control, represented as 

fold-change relative to shLacZ (a) or 

absolute colony number from 3 

independent experiments (b). 
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Figure 4.2. Colony tracking reveals accelerated appearance of Nanog-GFP+ colonies 

with shDmrtc2 during reprogramming. Bright green Nanog-GFP+ colonies appeared as 

early as day 5 of reprogramming with shDmrtc2. By comparison, there was a 2 to 3 day 

delay in the appearance of Nanog-GFP+ colonies with shLacZ control. 
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Small molecule inhibition of Tgfβ receptor Alk5 (Alki) has been reported to 

enhance reprogramming and this has been confirmed in our lab (Li et al., 2009b; 

Maherali and Hochedlinger, 2009). The addition of Alki and vitamin C to 

reprogramming cultures is routinely used within our lab as a ‘best condition’ for 

reprogramming. That is, the most efficient reprogramming system in our hands. As 

such, we sought to find a novel factor that enhances reprogramming even further in 

these conditions and tested shDmrtc2 as a potential candidate. When Alki was 

added to the shRNA reprogramming cultures, an increased number of Nanog-GFP+ 

colonies were observed in the control conditions on day 9, as expected (Figure 4.3). 

Strikingly, in this enhanced condition shDmrtc2 resulted in a 5 to 8-fold increase in 

Nanog-GFP+ colonies in the uninfected and shLacZ controls, respectively. When 

reprogramming in the absence of Alki was carried out in parallel, Alki was 

surprisingly found to have a negative effect on reprogramming with shDmrtc2. In 

fact, in the absence of Alki, shDmrtc2 gave rise to approximately 14 to 100-fold more 

colonies than in both control conditions. Therefore, shDmrtc2 was found to greatly 

promote reprogramming in both the presence and absence of Alki. 
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Figure 4.3. The effect of Alki on 

reprogramming with shDmrtc2. 

Addition of Alki enhanced 

reprogramming efficiency in the 

uninfected and shLacZ control 

conditions but hindered 

reprogramming with shDmrtc2. 

Despite this, shDmrtc2 generated 

many fold more Nanog-GFP+ 

colonies than controls in all 

conditions.  
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After successfully confirming the phenotype in our transgenic 

reprogramming system, it was important to replicate this experiment using a 

different system to be confident that this result was not simply an anomaly of the 

reprogramming system used. Accordingly, I used a primary reprogramming system 

(see Chapter 2 – Materials and Methods) to test shDmrtc2. Briefly, to carry out 

primary reprogramming we use piggyBac transposon to deliver a polycistronic 

cassette carrying the four factors by co-transfection with piggyBac transposase into 

MEF constitutively expressing rtTA from the Rosa 26 locus (Rosa rtTA), and 

carrying a Nanog-GFP reporter. Again, four factor induction could be monitored by 

mOrange expression and Nanog-GFP+ colonies are counted from day 10. shDmrtc2 

was delivered by retrovirus infection as before, after transfection of the four factor 

cassette. Using this primary reprogramming approach I was able to successfully 

replicate the enhanced reprogramming phenotype (Figure 4.4), with over 30-fold 

more Nanog-GFP+ colonies counted with shDmrtc2 compared with shLacZ control, 

providing evidence that this phenotype is a robust and true result of addition of 

shDmrtc2 during reprogramming. 
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Figure 4.4. Enhanced 

reprogramming with shDmrtc2 is 

reproducible in a piggyBac-

mediated primary reprogramming 

system. When shDmrtc2 was 

applied to primary reprogramming, a 

30-fold increase in Nanog-GFP+ 

colonies was observed on day 10, 

compared with shLacZ control. 
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Furthermore, consistent with previous data, when individual colonies were 

monitored, I could observe a 4 day acceleration in the appearance of Nanog-GFP+ 

colonies with shDmrtc2 compared with shLacZ in the primary reprogramming 

context (Figure 4.5). Bright green colonies were evident by day 10 during 

reprogramming with shDmrtc2 with the equivalent type of colony appearing in the 

control condition by day 14. Notably these time points are several days later than 

those observed in the secondary reprogramming system but this is likely due to the 

more efficient nature of secondary reprogramming compared with primary 

reprogramming. Importantly the phenotype is conserved. 

 

 

 

 

Figure 4.5. The shDmrtc2 effect on reprogramming is conserved between 

reprogramming systems. Addition of shDmrtc2 during primary reprogramming results in 

accelerated appearance of Nanog-GFP+ colonies by approximately 4 days when compared 

with control, supporting the data obtained in the secondary reprogramming context. 
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Following on from these results, I wanted to take advantage of the presence 

of a puromycin selection cassette contained within the Nanog-GFP reporter, 

allowing for Nanog expressing cells to be maintained in the presence of puromycin. 

I theorized that since shDmrtc2 accelerated the appearance of Nanog-GFP+ colonies 

during reprogramming, cells in this condition could be more amenable to surviving 

puromycin selection through earlier activation of Nanog and if so, I was interested 

to know how soon after administration of dox that puromycin selection could be 

applied while still enabling Nanog-GFP+ colonies to emerge during 

reprogramming. I carried out these experiments using our transgenic 

reprogramming system, plating approximately 2.5x104 transgenic cells (94% 

transgenic) per 6-well with dox remaining in the culture medium throughout. 

Remarkably, when 1 μg/ml of puromycin (puro) was administered as early as 1 day 

after initiation of reprogramming with shDmrtc2 and subsequently cultured for an 

additional 9 days in the presence of puro and dox, more than 450 puro resistant 

colonies survived demonstrating Nanog-GFP+ expression, compared with less than 

30 Nanog-GFP+ colonies with shLacZ,. This was more than a 16-fold increase 

suggesting that shDmrtc2 induces accelerated activation of Nanog (Figure 4.6). 

Furthermore, if puro was added 3 or more days after the start of reprogramming, 

up to 2ug/ml of puro could be applied to give a similar result (not shown). 
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Figure 4.6. Accelerated activation of 

Nanog-GFP by shDmrtc2 confirmed 

by puromycin selection.  shDmrtc2 

enabled puromycin selection as early 

as 1 day after initiation of 

reprogramming demonstrating 

accelerated Nanog activation 

compared with control. Nanog-GFP+ 

colonies were counted on day 10 of 

reprogramming. 
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It should be clarified that these data provide evidence that cells become puromycin 

resistant before obtaining detectable GFP expression (cells were not GFP+ at day 1), 

while both transgenes connected by ires were expressed under the control of the 

endogenous Nanog promoter.  It is probably because different numbers of 

molecules are required for the detection of GFP and puromycin resistance. In other 

words fewer numbers of molecules may be required by cells to confer puromycin 

resistance than the molecules required for detection of GFP, hence the cells appear 

to be puromycin resistant at an earlier time point than when Nanog-GFP+ cells are 

detected. Nonetheless, these data demonstrate a significant difference in the ability 

of reprogramming cells to acquire puromycin resistance with shDmrtc2 compared 

with control, which is consistent with the observation that Nanog-GFP+ colonies are 

detected days earlier with shDmrtc2. Since dox was administered throughout these 

experiments to day 15, we don’t know if shDmrtc2 enables cells to become dox-

independent (and therefore transgene independent) at an earlier time point. This 

would be an interesting experiment, and I predict that shDmrtc2 would accelerate 

transgene independence of reprogramming cells. 

 

 

4.2.2. shDmrtc2 knocks down Dmrtc2 expression at an mRNA level 

 

The most important experimental validation required when using RNAi is to 

determine whether the shRNA does in fact target the gene of interest, in this case 

Dmrtc2. To do this I used quantitative RT-PCR (Q-PCR) to assess the expression 

level of Dmrtc2 in the knock down condition compared with control. As a reminder, 

Dmrtc2 expression is low in MEF, is up-regulated during the first days of 

reprogramming and subsequently down-regulated where it remains low in 

iPSCs/ESCs. Because of this transient up-regulation during reprogramming it was 

important to check expression levels for several time points to ensure that gene 

expression was being knocked down even at the time points when endogenous 

levels usually increased. I chose to analyze Dmrtc2 expression every day for the first 
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10 days of reprogramming for two reasons; 1) to confirm the UP-DOWN pattern of 

expression observed in the initial published data by O'Malley et al. (2013) and 

determine at what time point expression levels peaked and 2) to determine if 

Dmrtc2 expression levels were knocked down throughout reprogramming or for 

only a certain period. 

Since Q-PCR determines mRNA expression from a bulk sample, rather than 

single cells, it was important to use samples in which all or most of the cells were 

undergoing reprogramming. Therefore, I chose to carry out reprogramming using 

high contribution transgenic MEFs where >94% of cells were found to activate 

mOrange expression when dox was administered. Using these cells, I could initiate 

reprogramming with dox and use bulk reprogramming cultures at each time point 

for Q-PCR, negating the need for further manipulation of cells by flow cytometry. 

Samples were taken every day for 10 days of reprogramming for Q-PCR analysis to 

provide a high-resolution picture of Dmrtc2 expression during reprogramming with 

or without shDmrtc2. 

 I confirmed that shDmrtc2 expression was transiently up-regulated during 

reprogramming, as reported, and peaked at around day 4 followed by gradual 

down-regulation to the level found in iPSCs/ESCs by day 10 (Figure 4.7). 

Furthermore, shDmrtc2 was found to knock down expression of Dmrtc2 at an 

mRNA level as expected by approximately 60-80% compared with shLacZ and this 

knock down was maintained throughout the first 10 days of reprogramming (Figure 

4.6b). Interestingly, all time points with the exception of d1 exhibited knock down; 

given that the cells are infected with the shRNA viral supernatant 24 hours before 

reprogramming is induced, this result suggests that it took approximately 48-72 

hours for the shRNA to exert an effect. This is particularly notable since the first 

Nanog-GFP+ colonies in the shDmrtc2 condition could be detected by day 5, 

highlighting that the effect of shDmrtc2 is likely occurring within a very short time 

frame of just a few days. 
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4.2.3. Additional shRNAs targeting Dmrtc2 do not replicate the phenotype 

 

Following confirmation of Dmrtc2 knock down by shDmrtc2, it was 

important to test further shRNAs targeting Dmrtc2. This was to determine if the 

phenotype could be replicated by knock down of Dmrtc2 by additional shRNAs 

targeting different sequences of Dmrtc2 mRNA, validating that the phenotype was 

specific to Dmrtc2 knock down and not resulting from non-specific knock down of 

another gene. I designed and tested 5 additional shRNAs (P1, P2, P4, P5 and P6) 

targeting independent sequences within Dmrtc2. As before, reprogramming was 

carried out with addition of these shRNAs and control shRNA, and Nanog-GFP+ 
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Figure 4.7. Dmrtc2 expression during 

reprogramming. Transient up-regulation of Dmrtc2 

is observed during reprogramming (top panel, left). 

This is knocked down by shDmrtc2 (top panel, right 

and bottom panel). Bars represent the average of 2 

independent samples treated with the same shRNA 

virus supernatant batch, and are representative 

and consistent with Dmrtc2 expression observed in 

other experiments using different virus supernatant 

batches. 
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colony numbers were counted at different time points. Additionally, the extent of 

Dmrtc2 knock down in the presence of each new shDmrtc2 shRNA was determined.  

Interestingly, none of the additional shRNAs enhanced reprogramming 

efficiency or kinetics based on Nanog-GFP+ colonies counted. Addition of P1, P5 

and P6 in reprogramming gave rise to a moderate 2-fold increase of Nanog-GFP+ 

colonies at day 12 compared with control, however, this was not comparable to the 

6 to 7-fold increase demonstrated by P3 (Figure 4.8a). Furthermore, none of the 

additional shRNAs gave rise to a significant number of early appearing Nanog-

GFP+ colonies by day 8, as observed with P3. Surprisingly, when the expression 

level of Dmrtc2 for each condition was checked by Q-PCR, three out of the five 

additional shRNAs knocked down expression comparable to P3 (Figure 4.8b). P1 

and P5 resulted in no knock down even though both of these shRNAs induced a 

moderate increase in Nanog-GFP+ colonies by day 12. P2, P4 and P6 on the other 

hand reduced mRNA levels by approximately 50%, (similar to P3) but despite this, 

none of these shRNAs gave rise to the increased efficiency or kinetics demonstrated 

by P3. This unexpected result gave an indication that knock down of Dmrtc2 may 

not in fact be responsible for the phenotype observed by addition of shDmrtc2 P3 

during reprogramming and that an off-target effect might be in play.  
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4.2.4 Overexpression of Dmrtc2 does not rescue the phenotype 

 

A rescue experiment was carried out following these unexpected results, 

with a view to gain clarification of the suspicion that an off-target effect may be 

underlying the phenotype. If knock down of Dmrtc2 mediated by shDmrtc2 P3 was 

responsible for the enhanced reprogramming then I expect that overexpression of 

Dmrtc2 (which lacks target sequence of shDmrtc2 P3) would compensate for the 

effect of the knock down and ‘rescue’ or reverse the positive phenotype. In other 

words I would anticipate no effect on reprogramming in this context if knock down 

of Dmrtc2 was not responsible for the phenotype. This is a commonly used 
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Figure 4.8. Additional shRNAs do not replicate the reprogramming phenotype 

observed with shDmrtc2 P3. No enhancement of reprogramming is observed with addition 

any alternative shRNA targeting Dmrtc2 (a), however shRNAs P2, P4 and P6 knock down 

Dmrtc2 expression to similar levels as P3 (b). 
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validation experiment within the RNAi field (Kumar et al., 2006). To induce ectopic 

overexpression of Dmrtc2 in reprogramming cells, I created a retrovirus 

overexpression vector encoding the cDNA of Dmrtc2 (pMXs-Dmrtc2) and co-

transfected this with shDmrtc2 P3 during reprogramming. It is important to note 

here that the targeting sequence of shDmrtc2 is complementary to a region within 

the 3’-UTR of the Dmrtc2 mRNA. pMXs-Dmrtc2 was constructed using the Dmrtc2 

cDNA, which does not include the 3’ UTR, and so it is refractory to targeting by 

shDmrtc2. Therefore, only endogenously expressed Dmrtc2 should be knocked 

down, with the overexpression vector compensating for this. A human CD2 

overexpression vector (pMXs-hCD2) was used as a control for the Dmrtc2 

overexpression vector and Nanog-GFP+ colonies were counted on day 9 of 

reprogramming. The control conditions (shLacZ with either pMXs-hCD2 or pMXs-

Dmrtc2) gave rise to similar numbers of colonies and perhaps unsurprisingly, 

shDmrtc2 with either pMXs-hCD2 or pMXs-Dmrtc2 gave approximately 3 to 6-fold 

more Nanog-GFP+ colonies than the controls (Figure 4.9), indicating that 

overexpression of Dmrtc2 did not abolish the enhanced phenotype bestowed during 

reprogramming by shDmrtc2.  
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Figure 4.9. Overexpression of Dmrtc2 does not rescue the enhanced reprogramming 

phenotype induced by shDmrtc2. Despite overexpression of Dmrtc2, an increased colony 

number was still observed in the presence of shDmrtc2 P3 during reprogramming.  
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In parallel, the mRNA level of Dmrtc2 was checked by Q-PCR to ensure that 

overexpression by pMXs-Dmrtc2 was in fact occurring. In the context of 

overexpression by pMXs-Dmrtc2 in conjunction with knock down by shDmrtc2 

during reprogramming, Dmrtc2 expression levels were found to be at least 10 to 

100-fold higher compared with the control shLacZ condition, including at day 4 

when Dmrtc2 expression levels reached their highest (Figure 4.10). 

 

 

 

 

 

 

Taken together, these data further supported the notion that regulation of 

Dmrtc2 by the knock down vector shDmrtc2 was not responsible for the enhanced 

reprogramming phenotype. 
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Figure 4.10. Q-PCR analysis of Dmrtc2 mRNA levels during reprogramming in control 

and overexpression conditions. Overexpression (OE) of Dmrtc2 with pMXs-Dmrtc2 in the 

presence of shDmrtc2 knock down (KD) shRNA confirms elevated expression of Dmrtc2, 

compared with levels observed in control conditions. Note the values are represented on a 

logarithmic scale. 
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4.3 Discussion 

 

4.3.1 The importance of knock down validation when using RNAi 

 

 As demonstrated in this chapter, it is not enough to simply determine that a 

gene is specifically knocked down to have confidence that this is the cause of any 

phenotype observed. In addition to this basic validation, the phenotype should be 

replicated by knocking down the same gene with additional shRNAs targeting 

different sequences of the gene. In this study, 5 additional shRNAs targeting various 

regions of the Dmrtc2 gene were tested. When using RNAi for knock down 

experiments, it is typically advised that 3 to 6 si/shRNAs are tested for each gene of 

interest in order to reasonably expect at least one of them to faithfully reduce gene 

expression. Indeed, this was demonstrated here since I observed knock down of 

Dmrtc2 to similar levels in 4 out of the 6 shRNAs. As a result, I could be reasonably 

confident that the effect of shDmrtc2 was not due to repression of Dmrtc2, since all 

of the additional shRNAs tested failed to reproduce either the enhanced efficiency 

or acceleration of reprogramming observed with shDmrtc2, even moderately. 

Further to this, a rescue experiment showed that even in the presence of excessively 

high levels of exogenous Dmrtc2, the phenotype exerted by shDmrtc2 was able to 

persist, providing support that knock down of Dmrtc2 was not the mechanism by 

which reprogramming efficiency and kinetics was enhanced. Taken together, these 

validation results gave me confidence that an off-target event was the causal link 

between the addition of shDmrtc2 and positive effect on reprogramming. 

 

 

4.3.2 Gene specific knock down can be achieved with shRNA 

 

 The basic validation following discovery of a phenotype during 

reprogramming involved firstly confirming by Q-PCR that shRNAs used in this 

study knocked down genes in a specific manner (Josefsen and Lee, 2011). Q-PCR 



 115 

data representing mRNA expression levels for Dmrtc2 confirmed that when 

compared with the normal levels of Dmrtc2 observed throughout reprogramming 

(in this case in the shLacZ condition), the addition of shDmrtc2 resulted in a knock 

down of Dmrtc2 mRNA by up to nearly 80%. Even at the time points at which 

Dmrtc2 was maximally up-regulated in the control, a 60% knock down was 

achieved.  

Knock down efficiencies vary greatly between RNAi systems used and in 

addition it is not difficult to imagine that different genes potentially require 

different levels of knock down to result in a phenotypic change (Mantei et al., 2008; 

Yang et al., 2014; Qin et al., 2014; Gingold et al., 2014; Berns et al., 2004; Paddison et 

al., 2002; Chen et al., 2005). Furthermore, validation by Q-PCR to assess knock down 

at the transcript level is not exhaustive. Since it is more often proteins and not 

mRNA that are the “end-point” functional effectors within cells, it is good practice 

to determine whether any knock down at mRNA level is reflected in a knock down 

at the protein level by Western Blot analysis. This can provide useful information, 

particularly in a case where knock down is seen at the mRNA level, but no 

phenotype results. In this case, investigation of the protein output for the gene of 

interest may indicate that there is no reduction of protein levels, as may be the case 

for particularly stable or long lasting proteins, and hence no phenotype has resulted 

from mRNA knock down. It has been suggested that for some genes, a knock down 

of more than 95% at the transcript level is required before changes in the protein 

product can be seen (Moffat and Sabatini, 2006) so it is important in some cases to 

verify a reduction in protein levels in addition to Q-PCR validation. With 

substantial ongoing research into the mechanisms of RNAi, more and more is being 

discovered about RNAi processing machinery and the importance of RNAi design 

to facilitate increasing knock down efficiencies (Schwarz et al., 2003). However, with 

new gene editing technologies such as CRISPR and TALEN becoming more 

accessible (Bogdanove and Voytas, 2011; Shalem et al., 2014; Wang et al., 2014; 

Wang et al., 2013a), with which gene knock out can easily be achieved, it is likely 
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that the use of RNAi will become less commonplace as a championed gene 

interference technology. 

In addition to variance in knock down efficiency, it is important to make a 

point here about the variability of reprogramming and the subsequent implications 

on data. A good example of this can be seen in the colony counting experiments for 

shDmrtc2; although I could very faithfully reproduce the phenotype inferred by 

shDmrtc2, and thus I am confident that it is a true result, the variable nature of 

reprogramming very often results in wildly different numbers of colonies being 

produced between experiments, despite the fact that the same materials and 

reagents are used for each experiment. This is exemplified in Figure 4.1b; the results 

for three independent reprogramming experiments are shown and although they all 

confirm that shDmrtc2 gives rise to several fold more colonies than control, the 

absolute numbers of colonies in each experiment are drastically varied. This is also 

evident in the original screening experiments carried out in Chapter 3, Figures 3.3 

and 3.4. This can make representing data difficult; if I wanted to represent the data 

using absolute numbers of colonies then the standard deviation and subsequently 

error bars would be large. In order to circumvent this issue, I have represented the 

data as a fold-change value comparing shDmrtc2 to shLacZ (Figure 4.1a). 

 

 

4.3.3 Off-target effects are a potential consequence of RNAi 

 

 One of the main drawbacks of using RNAi in gene knock down studies is 

the phenomenon of off-target effects. That is, the unspecific action of an si/shRNA 

on an unintended target causing an unwanted effect (Jackson and Linsley, 2010). 

Off-target effects are a well-known side effect of using RNAi, and have been found 

to increase with increasing concentration of siRNA and sequence specificity 

(Jackson et al., 2003; Jackson et al., 2006). Off-target silencing can create problems for 

interpretation of data, particularly if several off-target events occur (see Chapter 6 – 

Discussion for more on this topic). As a general rule, off target silencing is an 
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unwanted phenomenon, but in the case of this study it appears that there is a 

significant and reproducible positive effect on reprogramming as a result of an off-

target. As such, my investigation of this reprogramming phenotype continues with 

a view to determine the off-target gene, to enable further characterization and 

functional importance in the context of reprogramming. 
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CHAPTER 5 – An off-target effect of shDmrtc2 underlies 

enhanced reprogramming efficiency and kinetics 

 

5.1 Introduction 

 

There has been much research on the topic of off-target effects of RNAi and 

with a multitude of sources being reported as potential causes of this unintended 

silencing, pinpointing the exact root is often complex and difficult. Indeed in some 

cases there may be a combination of factors in play. There is always the possibility 

of the guide strand finding imperfect pairing with some region of the 3’-UTR of an 

off-target mRNA, causing either cleavage or inhibition of translation which is 

known as miRNA-like off-targeting, since miRNAs primarily target 3’-UTRs for 

gene regulation. In particular, off-target effects of this type are commonly mediated 

by sequence complementarity of the 3’-UTRs of unintended targets to the si/shRNA 

seed region (Jackson et al., 2006). Interestingly, it was found that base mismatches in 

the seed region abolished silencing of some off-targets, but these were simply 

replaced with silencing of new unintended targets with complementarity to the 

resulting seed sequence (Jackson et al., 2003). Another unintended effect of ectopic 

shRNA expression is the competition with endogenous miRNAs for RNAi 

processing machinery. For example, it has been shown that overexpression of 

shRNA can saturate Exportin-5 (Exp5), a mediator of nuclear export required by 

shRNAs and pre-miRNAs, which comes at the expense of endogenous miRNA 

processing. This could be rescued with overexpression of Exp5 (Yi et al., 2003; Yi et 

al., 2005). It has also been reported that in the case of shRNAs, the positioning of the 

loop structure is crucial for correct Dicer cleavage into subsequent siRNA, and a 

deviant cleavage site can result in increased off-target effects due to promiscuous 

Dicer cleavage and incorrect shRNA processing (Gu et al., 2012). Thus, off-target 

effects are a common occurrence and it is unlikely that a perfect si/shRNA can be 

designed to completely abolish this phenomenon. The most that can be hoped for is 
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that any resulting off-target effects do not interfere with the ultimate goal of the 

RNAi being used, and that any phenotypes observed are true of the specific on-

target.  

During the previous chapter I provided evidence to suggest that the positive 

effect on reprogramming observed by the addition of shDmrtc2 was due to an off-

target effect of the RNAi; that is, shDmrtc2 acting on an unknown and unintended 

target caused the phenotype. Since the effect on reprogramming was substantial, I 

chose to move forward with my investigation of shDmrtc2 with a view to 

identifying the off-target gene responsible for the enhanced reprogramming 

phenotype observed. 

 

 

5.1.1 Aims of this chapter 

 

The aim of this chapter is to use single and double nucleotide mutants of 

shDmrtc2 to identify shRNAs that can or cannot replicate the phenotype observed 

with shDmrtc2 in reprogramming. Subsequently these vectors will be used to carry 

out genome-wide microarray and mRNA-sequencing analysis with the aim of 

identifying candidates that exhibit differential gene expression between shDmrtc2 

and its mutants. Through validation of these candidates, the aim is to identify the 

off-target responsible for the positive phenotype of shDmrtc2 in the context of 

reprogramming. 
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5.2 Results 

 

5.2.1. Strategy to identify off-target candidates of shDmrtc2 

 

It is clear that the efficiency of knock down by RNAi is highly dependent on 

sequence specificity between the target mRNA and antisense siRNA sequences. 

Even as little as a single nucleotide substitution in a si/shRNA sequence has been 

shown to be sufficient to abolish the resulting knock down of a target gene (Jackson 

et al., 2003; Elbashir et al., 2001b; Martinez et al., 2002). With this in mind, I sought 

to generate mutants of shDmrtc2 with double or single nucleotide substitutions, 

with a view to identify vectors which could either abolish the reprogramming 

phenotype observed with shDmrtc2, or enhance reprogramming similarly to 

shDmrtc2 (so called “negative mutant” or “positive mutant”, respectively). I 

reasoned that a negative mutant would be a useful control to investigate off-target 

knock down, particularly if it maintained Dmrtc2 knock down, since the sequence 

would be almost identical to that of shDmrtc2 but have no effect on reprogramming. 

On the other hand, a positive mutant would be advantageous as an additional 

positive control allowing for candidates to be refined based on the differential 

expression of negative controls (shLacZ and negative mutant) and positive samples 

(shDmrtc2 and positive mutant). The strategy is summarized in Figure 5.1. 
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Reprogramming 
phenotype 

Off-target KD 
of causal gene  

Knock down 
of Dmrtc2? 

Other off-
target KD? 

Comment 

Enhanced Yes Yes Yes 
Original shDmrtc2 

vector 

No effect No Yes Yes Negative control 

Enhanced Yes No Yes Positive control 

No effect No No Yes/No 

No siRNA production 
or knock down of 

targets with no role in 
reprogramming? 

Figure 5.1. Strategy to determine causal off-target gene promoting enhanced 

reprogramming phenotype. (a) By comparing differential gene expression during 

reprogramming between samples that enhance (yellow) or have no effect (blue, and shLacZ 

control) on reprogramming I sought to identify the off-target gene (green) underlying the 

enhanced reprogramming phenotype. (b) Expected reprogramming result of negative or 

positive shDmrtc2 mutants based on Nanog-GFP+ colony counting. Arrows represent the 

expected gene expression of off-target gene ‘X’ responsible for the enhanced 

reprogramming phenotype caused by shDmrtc2 in each sample: high expression in shLacZ 

control and negative mutant samples (up arrow) or low expression/knock down in shDmrtc2 

and positive mutant samples (down arrow). 
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5.2.2. Mutants of shDmrtc2 can abolish or maintain the phenotype 

  

Mutant vectors were created in two sets; initially, 6 mutant vectors were 

created containing identical shRNA sequences to shDmrtc2 with the exception of 

two individual nucleotide substitutions (Figure 5.2a, MUT 1-6). Mutants 1 to 4 

contained substitutions of nucleotides within the seed region, whereas mutants 5 

and 6 contained one substitution within the seed region and one substitution out 

with the seed region. Although reports suggested that a single nucleotide 

substitution is enough to affect knock down efficiency of RNAi (Jackson et al., 2003), 

I chose to include two nucleotide substitutions in these initial vectors to optimize 

the chance of finding a vector that would abolish the phenotype.  

Reprogramming was carried out with the addition of mutants 1 to 6 to 

determine the effect, if any, of the double nucleotide mutations on the phenotype 

observed using shDmrtc2. Strikingly, all six mutant vectors abolished the positive 

phenotype observed with shDmrtc2, giving rise to fewer Nanog-GFP+ colonies at a 

number similar to shLacZ (Figure 5.2b). In order to validate these results, it was 

important to determine the levels of Dmrtc2 transcript in the presence of each 

mutant during reprogramming. Interestingly, despite all of these mutants having 

little or no effect on reprogramming compared with shLacZ, mutants 1 and 5 were 

determined to knock down expression of Dmrtc2 at a level similar to that observed 

with shDmrtc2 (Figure 5.2c). This gave further evidence that the positive phenotype 

conferred by shDmrtc2 during reprogramming was not due to the knock down of 

Dmrtc2 and must be the result of some off target effect. From these data I proposed 

that when considering global gene expression I would expect the gene or genes 

responsible for the positive reprogramming phenotype resulting from shDmrtc2 

would exhibit lowered gene expression in shDmrtc2 when compared with shLacZ, 

MUT 1 and MUT 5. 
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Figure 5.2. shDmrtc2 double nucleotide mutants during reprogramming. (a) The 21bp 

sequence of shDmrtc2 is antisense, or complementary, to a sequence within the Dmrtc2 3’-

UTR region (top line). 6 mutants with double nucleotide mutations were generated. Seed 

region is shown in orange and mutations are shown in purple. (b) The effect of shDmrtc2 

double nucleotide mutants on reprogramming was quantified by Nanog-GFP+ colony count 

on day 12. (c) Q-PCR of Dmrtc2 expression was carried out for samples on days 2 to 6 of 

reprogramming. MUT 1 and MUT 5 knocked down Dmrtc2 expression to similar levels as 

shDmrtc2 but did not enhance reprogramming. 
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When flow cytometry analysis for ICAM1/CD44 was carried out on samples 

reprogrammed with MUT 1 and MUT 5, these gave similar profiles to that of 

shLacZ with cells in the shDmrtc2 sample clearly advancing at an earlier time point, 

around day 7, as described previously in Figure 3.6 (Figure 5.3). 
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Figure 5.3. ICAM1/CD44 FACS of shDmrtc2 double nucleotide mutants 1 and 5. MUT 1 and MUT 5, which did not increase Nanog-GFP+ iPSC 

colony numbers, also failed to accelerate reprogramming kinetics observed in shDmrtc2 samples (days 6 and 7, highlighted in red box).  
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Flow cytometry analysis was carried out for three markers commonly used 

to characterize the progression of cells undergoing reprogramming; Thy1, E-

cadherin and SSEA-1 (Figure 5.4). During reprogramming, expression of a MEF 

related marker, Thy1, decreases and expression of E-cadherin, a cell-adhesion 

molecule that is required for the maintenance of pluripotency, increases. These 

changes in gene expression are characteristic of a mesenchymal to epithelial 

transition (MET) during reprogramming. It was interesting to determine whether 

the positive phenotype exhibited by shDmrtc2 was concurrent with advanced 

timing of MET. When these two markers were analysed by flow cytometry 

shDmrtc2 exhibited acceleration of Thy1 down-regulation and E-cadherin up-

regulation on days 3 and 4. However, analysis of a pluripotency marker, stage-

specific embryonic antigen 1 (SSEA-1), demonstrated no marked difference in the 

shDmrtc2 sample compared with controls suggesting that there is no acceleration of 

acquisition of this intermediate pluripotency marker with shDmrtc2. SSEA-1 is 

commonly used as a marker of pluripotency but we see no earlier expression of this 

marker in the shDmrtc2 sample as expected given the enhanced reprogramming 

phenotype. In addition, these flow cytometry data demonstrate that Nanog-GFP+ 

cells can reside within both the SSEA-1 positive and negative populations and so 

care must be taken not to consider this a definitive marker of pluripotency. 
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Figure 5.4. Flow cytometry analysis for markers Thy-1, E-cadherin and SSEA-1. The flow cytometry profiles generated from all conditions 

demonstrated no remarkable differences in the gene expression profiles for these markers between shDmrtc2, control and mutants. 
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5.2.3 Microarray analysis reveals off target candidates of shDmrtc2 

 

A robust and reproducible difference both in the colony number and timing 

of Nanog-GFP+ colonies between shDmrtc2 and shLacZ was abolished by only two 

mutations in the sequence of shDmrtc2 in MUT 1 and MUT 5. Despite this, both 

mutant shRNAs could knock down Dmrtc2 transcript levels indicating efficient 

production of siRNA but altered off-targets. To identify an essential off-target knock 

down by shDmrtc2 that enhances reprogramming I took shDmrtc2, shLacZ, MUT 1 

and MUT 5 samples forward for microarray analysis using the Illumina MouseWG-

6 v2 BeadChip. In total, six samples of cells undergoing reprogramming from days 0 

to 5 were taken for six conditions consisting of one each of shLacZ and MUT 1 and 

two replicates each of shDmrtc2 and MUT 5 (R1, R2), totalling 36 samples for 

analysis. If knockdown of off-target gene X is the cause of the phenotype by 

shDmrtc2, I expected the expression pattern of X to be like Figure 5.5 (top graph). 

The results from this microarray approach were somewhat unclear and 

careful analysis was carried out in order to draw some conclusions. Firstly, when 

expression of Dmrtc2 was checked, all shRNA conditions (shDmrtc2, MUT 1 and 

MUT 5) were expected to indicate a down-regulation of Dmrtc2 compared with 

shLacZ, as determined from experiment previously described in Section 5.2.2. 

However, this was only clearly the case for MUT 1 and shDmrtc2 (R1). Both 

replicates of MUT 5 and shDmrtc2 REP2 showed little or no knock down of Dmrtc2. 

This was a first indication that the microarray approach might not be sensitive 

enough to detect off target candidates, unless they were strongly repressed by 

shDmrtc2. However, despite this potential drawback, at first glance several 

candidate genes could be identified from the microarray as having lower expression 

in the shDmrtc2 replicates compared with controls, with the clearest candidates 

shown in Figure 5.5. These included Herpud1, Bnip3l, Pak3, Dpysl2 and Qdpr.  
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Figure 5.5. Microarray analysis identifies genes with differential expression with 

shDmrtc2 during reprogramming. The expected expression of off-target gene ‘X’ is shown 

(top panel). Top hits of genes with differential gene expression comparing shDmrtc2 

samples with shLacZ or negative mutant samples MUT1 and MUT 5 were Herpud1, Bnip3l, 

Pak3, Dpysl2 and Qdpr. 
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Notably, of the genes that did exhibit differential gene expression between 

shDmrtc2 and controls, a maximal knock down of up to 50% was observed at some 

time points for some candidates, with many genes reaching a knock down of 40% or 

less. Although it cannot be known for any given gene the required extent of knock 

down to elicit a phenotype, it is probably unlikely that a 40-50% decrease in 

transcript level would result in such a striking phenotype as induced by shDmrtc2.  

 In order to approach the data analysis in a more systematic way, we worked 

in collaboration with the lab of Dr. Mihaela Zavolan. R. Gumienny used 

bioinformatics approaches including sequence target prediction and seed region 

count prediction to identify candidates that were predicted to be direct targets of 

shDmrtc2. That is, targets which had some degree of complementary sequence 

specificity to the antisense sequence of shDmrtc2. A biophysical model designed to 

identify miRNA targets and published by the Zavolan lab, called MIRZA, was used 

to determine direct target candidate genes (Khorshid et al., 2013). We hypothesized 

that a miRNA target prediction model can be applied to identify siRNA off-target 

since siRNAs act like miRNAs when a target does not have 100% complimentarity. 

This model takes into account several parameters underlying the miRNA-mRNA 

interaction facilitated by the Argonaute protein including sequence specific 

position-dependent energy parameters that may impose constraints on this 

interaction. In simpler terms, a MIRZA score can be calculated giving an indication 

of the likelihood that a specific sequence (in this case the sequence of shDmrtc2, 

particularly the 7 base pair seed region) can target and interact with any given 

(gene) sequence based on the sequence complementarity and other parameters 

outlined in the MIRZA model. The higher the MIRZA score, the more likely an 

interaction. When this model was applied for shDmrtc2, a list of genes was 

identified with purported potential to be targeted by shDmrtc2 (Figure 5.6, MIRZA 

score).  
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The first thing to note is that Dmrtc2 has a score of 390817. This reaffirms 

that shDmrtc2 should indeed target Dmrtc2. Surprisingly the gene with the closest 

MIRZA score to this was Rrm2b with a score of 1275; two orders of magnitude 

lower than that of Dmrtc2. Indeed, most of the candidate genes had much lower 

scores than this, indicating that no genes were an obvious off target from which to 

start further analyses based on the MIRZA score alone. In addition to the MIRZA 

score, several additional annotations were made in order to narrow down a 

candidate list from which functional validation experiments could be carried out. 

This included a ‘count of seeds’ score (either 1 or 2) illustrating the number of times 

a sequence was found within the 3’-UTR of a given candidate gene that was 

complementary to the seed region of shDmrtc2 (as highlighted in red in Figure 5.6). 

Surprisingly, when I manually searched for sequence matches within candidate 

gene sequences I discovered that for many of the candidates there were several 

sequences that maintained sequence complementarity to at least 5 consecutive bases 

within the seed region of shDmrtc2, and further complementary bases within the 

surrounding 21bp region. In fact, 3 of these candidate genes (Prpf19, Dpysl2 and 

Celf2) had as much as 15/21 nucleotide complementarity in at least one region of the 

Figure 5.6. Computational and MIRZA analysis of microarray data in conjunction with 

analysis of gene expression profiles of reprogramming samples determines shDmrtc2 

candidates. Candidate genes were determined based on MIRZA analysis and the number of 

seed counts identified (green = 1, orange = 2) by our collaborators in the Zavolan lab. 

Annotation of these genes included identification of sequences anywhere within the transcript 

of candidate genes with complementarity to at least 5 consecutive nucleotides in the shDmrtc2 

seed region (red). The total number of nucleotides within the adjacent 21bp region of this 

sequence that matched the shDmrtc2 sequence was determined (number on the right). 

Candidates are listed (from top, left to bottom, right) in order of top hits based on transcript 

knock down from microarray data. Candidates highlighted in blue represent the genes 

containing a sequence with the highest number of complementary nucleotides to shDmrtc2 

(15/21). Dmrtc2 is highlighted in purple. 
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transcript, which I hypothesized could reasonably be the most likely off-target 

candidates as it has been reported that as few as 11 to 14 base pairs can induce gene 

silencing (Dorsett and Tuschl, 2004). Interestingly, a few of the candidate genes that 

demonstrated some level of reduction in gene expression from the microarray were 

not denoted MIRZA scores but this down-regulation could be due to a 

secondary/indirect effect of shDmrtc2. Since the MIRZA score is calculated from 

several parameters, including seed region and whole 21bp sequence 

complementarity as well as nucleotide position dependent energy parameters 

between the shRNA and target gene, not all candidate genes generated a MIRZA 

score. In addition, there were some apparent inconsistencies with genes having a 

MIRZA score but no apparent sequence homology (Acox3 or Cd99l2 for example), 

however, this was put down to differences in specific transcripts used in the various 

analyses carried out on these data. This work was analyzed using early versions of 

prediction tools developed by our collaborators, which have recently published 

following optimization of the system (Gumienny and Zavolan, 2015). 

 With a candidate gene list generated I worked through validating some of 

these candidates by Q-PCR, as described previously, in shLacZ and shDmrtc2 

conditions (Figure 5.7). Firstly, I confirmed the knock down of Dmrtc2 with 

shDmrtc2 by approximately 60-70%, which was consistent with previous data. 

Subsequently, I was able to confirm knock down by at least 50% of the majority of 

candidate genes in the shDmrtc2 reprogramming compared with shLacZ. Several of 

these genes including Qdpr, Herpud1, Rbms1, Nupr1, Bnip3l and Pak3 were 

consistently down-regulated over the time course, whereas others including Dpysl, 

Prpf19 and Ccny gave inconsistent results. 
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Figure 5.7. Q-PCR validation of candidate genes. Data represented as gene 

expression in shDmrtc2 sample relative to shLacZ sample. 
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This led us to wonder whether the microarray technique was sensitive enough to 

determine differential expression of the elusive off-target gene. In addition, there 

was no way to determine whether any observed down-regulation of genes was due 

to knock down by shDmrtc2 or if it was simply a consequence of reprogramming, 

particularly in the cases where down-regulation during reprogramming was the 

usual expression profile observed for a gene as is the case for Herpud1, Pak3 and 

Bnip3l among others (data not shown). 

 

 

5.2.4 mRNA-sequencing reveals direct and indirect target candidates of shDmrtc2 

 

Following investigation of the double nucleotide mutants, I sought to 

determine if single nucleotide mutants had any effect on reprogramming. A further 

9 mutant vectors were created containing single nucleotide substitutions at different 

positions throughout the length of the shRNA sequence (Figure 5.8a, MUT 7-15). I 

was particularly interested to know if any of these mutants were able to recapitulate 

the phenotype observed in shDmrtc2. When added during reprogramming, 

mutants 9, 10, 12 and 15 had little or no effect on Nanog-GFP+ colony numbers. 

Mutants 7, 8, 13 and 14 gave rise to a moderate increase in the number of Nanog-

GFP+ colonies observed compared with control, but strikingly, mutant 11 generated 

over 14-fold more Nanog-GFP+ colonies than shLacZ, almost fully reproducing the 

result observed with shDmrtc2. Therefore, I successfully identified a mutant of 

shDmrtc2 that promoted reprogramming in a similar way. I was surprised to find 

that out of the 15 double or single mutants that I tested in total only a single mutant, 

with only a single nucleotide difference, enhanced reprogramming to a similar 

extent as shDmrtc2. However, this supports the notion that shRNA is highly specific 

with even a single nucleotide mutation being sufficient to abolish target specificity. 
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As a more sensitive approach to determining differential gene expression 

between samples we decided to use mRNA-sequencing (RNA-seq) to further the 

investigation. Additionally, instead of using reprogramming samples with shRNAs, 

we thought that MEFs infected with shRNAs would give us a clearer idea of genes 

that are down-regulated as a direct result of the shRNAs, rather than the 

reprogramming process. Briefly, to prepare samples MEF were plated and exposed 
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Figure 5.8. shDmrtc2 single nucleotide mutants during reprogramming. (a) 9 mutants 

with single nucleotide mutations were generated. Seed region is shown in orange and 

mutations are shown in purple.  (b) Mutant vectors were added during reprogramming 

and Nanog-GFP+ colonies were counted on day 14. Mutant 11 gave rise to a similar 

number of Nanog-GFP+ colonies as shDmrtc2, while all other mutant vectors had little or 

moderate effect on reprogramming. 
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to a double infection of viral supernatant containing shRNAs for 24 hours each. 

Samples were collected 3 days after initial infection for RNA-seq analysis. Afzal 

Syed, from the Zavolan lab, carried out RNA-sequencing sample preparation 

following Northern Blot analysis. Initially, in addition to shLacZ and shDmrtc2, 

several samples were considered based on the results from the single nucleotide 

mutant experiment.  A. Syed carried out Northern Blot analysis for these samples to 

determine whether small RNAs, i.e. shRNAs, could be detected (Figure 5.9). A 

probe against miR-199a was used as a positive control in wild type MEF and the 

shLacZ condition, as this is highly expressed in MEF. Indeed a band could be 

detected in both of these conditions (Figure 5.9, small RNA lanes 8 and 9).  

 

 

 

 

Interestingly, while shDmrtc2 expressed small RNA well, MUT 11 did not. Given 

that MUT 11 replicates the enhanced reprogramming phenotype similarly to 

shDmrtc2 this was very surprising. Moreover, MUT 9, which was found to have 

little or no effect on reprogramming efficiency, expressed the shRNA well, with a 

Figure 5.9. Northern Blot of samples for RNA-sequencing. U3 snoRNA was used as a 

loading control and miR-199a was used as a positive control (highly expressed in MEF). 

Bottom panel represents resulting blot with altered brightness/contrast. Northern Blot was 

performed by A. Syed. 
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faint signal visible for MUT 10 also. However, when the image brightness/contrast 

was enhanced, a faint signal could be detected for all shRNAs. 

In addition to the Northern Blot analysis, reprogramming was carried out 

using the same viral supernatant as used to infect the MEFs for the Northern Blot 

and RNA-seq samples. This was to ensure that the enhanced reprogramming 

phenotype was confirmed using the same virus/shRNAs. Indeed, as expected 

shDmrtc2 and MUT 11 gave rise to significantly more Nanog-GFP+ colonies than all 

other conditions when quantified on day 14 of reprogramming (Figure 5.10). 

 

 

 

 

 

Following these results, the samples for RNA-seq were chosen; MUT 9 was used as 

an additional “negative” control with shLacZ and MUT 11 was chosen as an 

additional “positive” control with shDmrtc2. With these samples we theorized that 

the off-target gene would be more highly expressed in shLacZ and MUT 9 than in 

both shDmrtc2 and MUT 11 samples. However, this is with the caveat that the same 

off-target gene is responsible for the phenotype observed in shDmrtc2 and MUT 11. 

If a different mechanism were operating in these two conditions, the off-target gene 

may not be down-regulated in both samples.  
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Figure 5.10. Confirmation of 

enhanced reprogramming 

phenotype using RNA-seq 

shRNA virus supernatant. 

Nanog-GFP+ colonies were 

counted on day 14 of 

reprogramming. 
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A. Syed performed the RNA-seq and R. Gumienny performed 

computational data analysis from which P-values and target prediction scores were 

generated for genes when the two negative controls (shLacZ, MUT 9) were 

compared with the two positive conditions (shDmrtc2, MUT 11). By sorting the 

genes in order of p-value, candidate genes were determined by assessing the target 

prediction score and expression across all samples. The target prediction score was 

calculated from a combination of parameters based on a match to the 7-nucleotide 

seed region and the probability that this is a functional site, scaled to a threshold. 

For the top hits, the differential expression was considered for the positive samples 

compared with the controls and 10 direct targets were determined. In addition, we 

considered if an indirect target could be identified that may act downstream of the 

direct off-target by analyzing all differentially expressed genes, as opposed to only 

those with a predicted target score. Top hits that were the most differentially 

expressed between controls and positive samples were identified and interestingly, 

when a known and predicted protein interaction tool called STRING was used, 5 of 

these were suggested to interact each other (Figure 5.11). These were taken forward 

for further validation in addition to the 10 direct candidates identified.  

 

 

 

Figure 5.11. Indirect shRNA off-target candidate interaction identified by STRING tool. 

Putative protein-protein interactions were identified between five genes Cnn1, Acta1, Ctgf, 

Mmp13 and Tnfrsf11b using online tool STRING. (Image taken from website string-db.org, 

version 9.1, entering the gene names in the ‘search multiple names’ function. Interactions 

were identified by STRING from experimental or text mining data). 
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A workflow for the bioinformatics and candidate target selection is shown in 

Figure 5.12 and the 15 direct and indirect candidates with associated RNA-seq data 

analysis are summarized in Table 5.1. It was reasoned that the best way to analyze 

the RNA-seq data would be to first list genes based on their target prediction score 

(denoted by our collaborators using bioinformatics tools).  This would give rise to 

the top hits for which putative targeting by shDmrtc2 was predicted. These targets 

were further narrowed by identifying those with a low P-value in combination with 

the most significant differential expression when comparing the positive and 

negative samples. In this way, the top 10 candidate targets that were putative direct 

targets of shDmrtc2 were determined. In addition, it was reasoned that including 

potential indirect targets would also be useful in determining potential pathways 

involved in the enhanced reprogramming phenotype induced with shDmrtc2. To 

this end, in order to determine potential indirect target candidates the entire data set 

was listed in order of genes that exhibited the most significant differential 

expression when negative and positive samples were compared irrespective of any 

other consideration. This gave rise to a vast list of genes, and in order to choose a 

number of genes to put forward for validation it was reasoned that genes which 

were involved in the same pathway or could be identified as having some 

functional link would be the best candidates to take forward. Indeed, 5 genes were 

determined to have putative protein-protein interactions as outlined in Figure 5.11.  
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2 negative samples (shLacZ & MUT 9) 
2 positive samples (shDmrtc2 & MUT 11) 

Colony counting assay/screen to 
determine positive control (Figure 5.8) 

Northern Blot 

RNA-sequencing 
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Validation of 15 candidate genes: 
1. Expression in negative and positive samples validated by Q-PCR 

2. shRNAs targeting each candidate generated 
3. Effect of shRNA tested during reprogramming 
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Identify gene X 

Figure 5.12. Workflow of bioinformatics and candidate target selection from RNA-

seq analysis. 
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Count of 

seeds
 

Adjusted 
P-value

 
RefSeq

 
Name

 
Predicton 

Score
 

nreads_ 
ShLacZ

 
nreads_ 
MUT 9

 
nreads_ 

shDmrtc2
 

nreads_ 
MUT 11

 
shD /        
shL

 
shD /     
MUT 9

 
MUT 11 / 

shL
 

MUT 11 / 
MUT 9

 

DIRECT 
CANDIDATES 

3 0.00095 NM_199476 Rrm2b 0.87981 385 419 267 219 0.69259 0.63566 0.56783 0.52116 

2 0.00043 NM_153098 Cd109 0.83315 8782 9011 6959 6092 0.79236 0.77229 0.69365 0.67608 

1 0.00057 NM_013822 Jag1 0.63948 2291 2469 1819 1666 0.79400 0.73683 0.72719 0.67484 

1 0.01996 NM_024236 Qdpr 0.49665 483 477 325 327 0.67244 0.68059 0.67745 0.68566 

2 0.07047 NM_029766 Dtl 0.45635 556 543 394 397 0.70784 0.72437 0.71392 0.73059 

1 0.00052 NM_181070 Rab18 0.32939 4472 4506 3497 3197 0.78193 0.77602 0.71492 0.70952 

1 0.00588 NM_008301 Hspa2 0.31192 547 618 393 395 0.71774 0.63488 0.72196 0.63861 

1 0.00052 NM_144731 Galnt7 0.30063 762 805 501 533 0.65758 0.62233 0.70002 0.66250 

1 0.00095 NM_021451 Pmaip1 0.25696 3041 3202 2423 2120 0.79690 0.75667 0.69725 0.66205 

1 0.05838 NM_008800 Pde1b 0.18584 249 231 163 134 0.65612 0.70743 0.53815 0.58024 

                            

                            

INDIRECT 

CANDIDATES 
NA NA 

NM_008607 Mmp13 0.29984 225 303 169 169 0.75021 0.55606 0.75128 0.55685 

NM_008764 Tnfrsf11b NaN 4425 5120 3467 3021 0.78358 0.67728 0.68261 0.59001 

NM_009606 Acta1 NaN 6462 6672 5343 4778 0.82680 0.80076 0.73932 0.71603 

NM_010217 Ctgf NaN 49917 54863 41651 38704 0.83441 0.75918 0.77536 0.70546 

NM_009922 Cnn1 NaN 18069 18662 15282 13333 0.84573 0.81887 0.73786 0.71442 

Table 5.1. Direct and indirect candidates from RNA-sequencing analysis. Candidates are listed in order of their prediction score. nreads = total 

number of reads assigned to the gene, count of seeds = number of shDmrtc2 seed sequences detected within the gene sequence. 
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5.2.5 Validation of direct and indirect target candidates of shDmrtc2 

 

 Following on from candidate selection from RNA-seq analysis, I sought to 

functionally test whether shRNAs targeting these genes had any effect on 

reprogramming. Although RNA-seq technology is more sensitive than microarray 

in terms of transcript detection, it was clear that none of the candidate genes were 

strongly knocked down with shDmrtc2 or MUT 11 (Figure 5.13). A maximum of 40-

50% knock down was observed for a few of the candidates compared with the 

controls, including Rrm2b, Qdpr and Galnt7, however, a majority of the candidates 

only demonstrated a knock down of approximately 20-30%. Nonetheless, these 

candidates represented the top hits from the RNA-seq data analysis, and shRNAs 

were once again designed to test targeted knock down of these genes during 

reprogramming. As before, 3 shRNAs were designed and cloned for each of the 15 

candidate genes. However some of the vectors were not cloned successfully during 

the first round of vector construction, and due to time limitations only the shRNAs 

generated during this round of cloning were tested during reprogramming. 
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Figure 5.13. RNA-seq results 

for direct and indirect 

candidates. The number of 

total reads assigned per gene 

is represented (Y-axis) for 

each candidate gene. Direct 

candidates (first and second 

rows) and indirect candidates 

(bottom row) are shown. Dark 

blue bars indicate controls 

(shLacZ, MUT 9) and light blue 

bars indicate enhanced 

reprogramming samples 

(shDmrtc2, MUT 11). 
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 Transgenic MEF were infected with retrovirus supernatant carrying the 

candidate shRNAs, and reprogramming was induced by addition of dox and 

Nanog-GFP+ colonies were imaged and counted on day 14 using the Celigo cell 

cytometer instrument. Appearance of Nanog-GFP+ colonies was observed in the 

shLacZ and MUT 9 control conditions and as expected shDmrtc2 and MUT 11 gave 

rise to an abundance of bright green colonies by this time point (Figure 5.14). 

Unfortunately, no acceleration of reprogramming or increased efficiency was 

observed with the addition of any shRNA targeting any of the candidate genes 

(Figure 5.14). In parallel, samples of shRNA-infected MEF were taken to assess the 

knock down efficiency of the candidate shRNAs. Firstly, shDmrtc2 and MUT 11 

conditions were analysed to determine whether expression of candidate genes was 

reduced compared with controls, as determined by the RNA-seq. Surprisingly, 

knock down of most of the candidates was not observed in shDmrtc2 and MUT 11 

conditions. Galnt7, Pde1b and Ctgf were knocked down comparably to the levels 

observed from RNA-seq data, however, even this knock down was modest. The 

remaining candidates showed no difference in expression between controls and 

“positive” samples despite accelerated reprogramming being maintained in 

shDmrtc2 and MUT 11. This gave a hint that down-regulation of the candidate 

genes was not responsible for the phenotype. In addition, many of the shRNAs did 

not appear to knock down their reciprocal candidate gene, which suggest difficulty 

in designing efficient shRNAs. However, one or more shRNAs induced reasonable 

(>50%) knock down of some genes but resulted in no enhanced reprogramming 

phenotype providing some clue that these candidates may not be the off-target. 

These included Dtl (P2, P3), Galnt7 (P1, P3), Pde1b (P3), Pmaip1 (P3), Rrm2b (P2, 

P3) and Tnfrsf11b (P1). Nonetheless, even for these shRNAs there was not strong 

enough knock down to confidently rule out any of these candidates as the off-target. 

This further highlighted the difficulty of the shRNA system. Note that of the 

original 15 candidates, Qdpr was omitted from this analysis and Mmp13 knock 

down was not analysed. This is due to unsuccessful cloning of Qdpr shRNAs, and 
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failure of Mmp13 primers during for Q-PCR. As such, only reprogramming data 

was generated for Mmp13. 

 

 

 

      

       

shLacZ Uninfecte
d 

shDmrtc2 MUT 11 

Figure 5.14. Whole well Nanog-GFP imaging of reprogramming with shRNA. The 

Celigo system was used to image whole 6 wells on day 14 of cells undergoing 

reprogramming with shRNAs targeting candidate genes. shLacZ and MUT 9 were used as 

controls and shDmrtc2 and MUT 11 demonstrate significantly enhanced Nanog-GFP+ 

colony number by comparison. Knock down of gene expression is shown with fold change 

of Nanog-GFP+ colonies represented relative to shLacZ. 



 150 

              

 

   

 

   

Cd109 P1 Cd109 P2 

Dtl P1 Dtl P2 Dtl P3 

Galnt7 P1 Galnt7 P2 Galnt7 P3 

0.0

0.5

1.0

1.5

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Cd109

0.0

0.5

1.0

1.5

2.0

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Dtl

0.0

0.5

1.0

1.5

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Galnt7



 151 

     

 

                   

 

   

Hspa2 P1 Hspa2 P2 

Jag1 P1 

Pde1b P1 Pde1b P2 Pde1b P3 

0.0

0.5

1.0

1.5

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Pde1b

0.0

0.5

1.0

1.5

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Jag1

0.0

0.5

1.0

1.5

2.0

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Hspa2



 152 

             

 

   

 

   

Pmaip1 P3 

Rab18 P1 Rab18 Rab18 P3 

Rrm2b P1 Rrm2b P2 Rrm2b P3 

0.0

0.5

1.0

1.5

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Pmaip1

0.0

0.5

1.0

1.5

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Rab18

0.0

0.5

1.0

1.5

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Rrm2b



 153 

   

 

          

 

                                               

Acta1 P2 Acta1 Acta1 P1 

Cnn1 P2 

Ctgf P1 Ctgf P3 

0.0

0.5

1.0

1.5

2.0

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Acta1

0.0

0.5

1.0

1.5

2.0

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Cnn1

0.0

0.5

1.0

1.5

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Ctgf



 154 

   

 

    

Tnfrsf11b P1 Tnfrsf11b P2 Tnfrsf11b P3 

Mmp13 P3 

0.0

0.5

1.0

1.5

E
x
p

re
s
s
io

n
 r

e
la

ti
v
e
 t

o
 

s
h

L
a

c
Z

Tnfrsf11b



 155 

 In addition to acquisition of whole well images, the Celigo instrument was 

used to quantify the number of Nanog-GFP+ colonies generated in each 

reprogramming well (Figure 5.15). These data confirmed the above observation that 

no shRNAs enhanced reprogramming to the level of shDmrtc2 or MUT 11. A few 

shRNAs induced a small increase in Nanog-GFP+ colony number compared with 

shLacZ including Cd109 P1, Pmaip1 P3 and Rrm2b P1, however with only an 

approximate 2-fold change, this is well within the realms of normal variation 

observed during reprogramming. These initial experiments suggest that the 

candidate genes analyzed are likely not the off-target underlying the enhanced 

reprogramming phenotype observed with shDmrtc2. There was no significant 

knock down observed for any of the candidate genes in the enhanced conditions 

(shDmrt2, MUT 11) by Q-PCR, and for several of the candidates, moderate knock 

down was achieved with at least one shRNA with no consequential effect on 

reprogramming observed.  Nonetheless, more efficient shRNAs are required, which 

induce a more robust knock down before any confident conclusions can be drawn 

about these candidate genes. 
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Figure 5.15. Quantification of Nanog-GFP+ colony number from Celigo whole well images. Images of reprogramming wells depicted in 

Figure 5.14 were quantified using Celigo software and fold-change of Nanog-GFP+ colony number relative to shLacZ was calculated for 

shRNAs targeting direct (purple) and indirect (grey) candidates. 
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At this time, the off-target effector of shDmrtc2 remains elusive, although 

given the striking phenotype of not only enhanced efficiency but perhaps even more 

importantly acceleration of reprogramming kinetics, it remains a worthy avenue for 

investigation. Determining the underlying cause of this phenomenon could lend 

some insight into the mechanism of reprogramming somatic cells to pluripotency, 

which is of great importance in both research and clinical contexts. 
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5.3 Discussion 

 

The experiments and data discussed in this chapter give some indication that 

the candidate genes investigated are not likely to be the reprogramming enhancing 

off-target of shDmrtc2 that we sought to determine. However, no definite 

conclusion can be drawn due to the unclear results obtained from some of the 

experiments, some of which are discussed here. 

 Northern Blot analysis is an important validation of shRNA generation 

when using RNAi expression vectors as opposed to direct transfection of siRNA to 

cells to ensure that the exogenous expression system is working in concert with 

endogenous machinery to mediate RNAi production and subsequent gene silencing. 

In this study, a significant positive effect on reprogramming was identified with the 

addition of an shDmrtc2, and generation of small RNA was confirmed for this 

vector. However, another shRNA, MUT 11, which also promoted reprogramming 

was found not to produce small RNA well. The little shRNA expression detected 

with MUT 11 could be potentially explained in a few ways. Firstly, DNA probes 

with the sequence of shDmrtc2 were used for RNA hybridization in the Northern 

Blot analysis. Given that this already introduces a U-T mismatch, it may be possible 

that the additional single nucleotide changes in the mutants were enough to inhibit 

hybridization, and thus little or no signal could be obtained. In the case of MUT 11, 

it is interesting to note that there is an A to T mutation change compared with 

shDmrtc2, so it is plausible that this additional U-T mismatch with the probe caused 

robust hybridization inhibition. Another potential explanation is that the enhanced 

reprogramming phenotype observed with shDmrtc2 and MUT 11 is caused by 

different underlying mechanisms. Since a reasonable signal is detected in the 

Northern Blot analysis of shDmrtc2, it is likely that the phenotype is a result of 

expression of the shRNA. However, since little siRNA expression signal was 

detected with MUT 11, it is possible that a siRNA-independent mechanism might be 

promoting reprogramming in this context. For example, expression of the MUT 11 

vector (which may or may not be producing mature siRNA) might be abolishing 
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some barrier to reprogramming by interfering with endogenous miRNA 

machinery/processing before export from the nucleus (since it seems no mature 

siRNA is detected from this vector), resulting in enhanced reprogramming. This 

may also explain the lack of candidates determined from the genome-wide 

expression analyses found to be significantly down-regulated in both shDmrtc2 and 

MUT 11 conditions. Although it is a possibility, I think it is unlikely that shRNAs 

with sequences that differ by only 1 nucleotide and promote reprogramming to a 

very similar degree would be functioning via different mechanisms. Repeating the 

Northern Blot analysis with a MUT 11 specific probe and using an RNA rather than 

a DNA probe will determine more conclusively whether MUT 11 is producing small 

RNA. Another possibility for the enhanced reprogramming phenotype observed 

with MUT 11 is that virus production with this vector may not be as robust as other 

vectors. If this is true, the observed increase in Nanog-GFP+ colonies could simply 

be a result of reduced viral/shRNA toxicity, resulting in a similar number of Nanog-

GFP+ colonies being generated with MUT 11 as is observed in reprogramming with 

no viral infection. This could be clarified by determining viral titer for MUT 11 to 

confirm that virus is being produced with this vector. Taken together these 

experiments could give some insight as to whether the effect of this shRNA is likely 

to be one and the same as that observed with shDmrtc2. 

Another drawback is the lack of knock down observed for many of the 

candidates by their reciprocal shRNAs or in the shDmrtc2 or MUT 11 samples by Q-

PCR. One potential explanation for this is that retrovirus requires proliferating cells 

for high infection efficiency. Since MEFs have limited capacity for proliferation and 

the shRNAs are delivered by retroviral infection, it could be that the MEFs were not 

infected well enough due to slow/low proliferation rates and/or senescence. For the 

Q-PCR experiments, MEFs were plated in 6 wells and subsequently infected with 

shRNA-carrying virus and the cultures collected 3 days after infection. Since the 

infection efficiency was typically found to be approximately 50-75%, measured by 

pMXs-DsRed expression (not shown), and the cells were not sorted for shRNA 

incorporation prior to Q-PCR, it is possible that infection efficiency was not high 
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enough and/or proliferation of non-infected MEFs may have skewed the knock 

down results. However, although knock down of Dmrtc2 was not included as a 

positive control (since Dmrtc2 is not expressed in MEFs), Northern Blot analysis of 

MEF samples provided evidence that shDmrtc2 was robustly producing small RNA 

in this context, and furthermore the enhanced reprogramming phenotype was 

consistently maintained in every experiment suggesting that the shRNA expression 

vector system was working reliably. For these reasons I am confident that there 

should have been high enough expression of the shRNAs for knock down to be 

detected by Q-PCR, although sorting shRNA + MEFs samples prior to Q-PCR 

analysis would clarify this. Furthermore, it is unlikely that low infection efficiency 

was the reason for lack of knock down observed since all shRNA vectors were 

identical with the exception of the 21 bp shRNA sequence which varied from one 

vector to the next and knock down was observed for some shRNAs. Finally, the 

level of knock down for these candidate genes determined by RNA-seq was not 

exceptional with a maximum knock down of 40-50% observed. Since only a single 

sample of each condition was submitted for RNA-seq analysis, it is possible that the 

differences observed between controls and positive samples could be the result of 

normal variance in experimental samples.  This would need to be clarified by 

submitting multiple replicates for each condition to determine a statistically 

significant difference in expression between controls and positive samples. 

However, it is probable that if the enhanced reprogramming phenotype is due to an 

off-target gene directly knocked down by shDmrtc2 then the down-regulation of 

this gene or genes would be fairly obvious between microarray and RNA-seq 

analysis. The fact that few genes have been determined through these two genome-

wide analyses suggests to me that another mechanism may be in play. For example, 

given reports of shRNA expression vectors causing saturation of endogenous 

processing machinery, one possibility is that expression of shDmrtc2 is interfering 

with endogenous miRNAs or other regulatory non-coding RNAs (ncRNA) either 

through disruption of the RNAi processing pathway, or through partial 

complementarity resulting in off-target silencing. However, given the specificity of 
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shDmrtc2 expression correlating with enhanced reprogramming, I am certain that 

there is still some sequence specificity required for the phenotype rather than 

shRNA expression using this system simply being enough to overload and disrupt 

the endogenous process in a positive manner. Interestingly, a BLAST search of the 

shRNA sequence of shDmrtc2 results in several predicted ncRNAs coming up as the 

top hits after Dmrtc2 itself, based on sequence homology. In fact, one of these 

predicted genes, Gm31744, has 16 out of 21 contiguous homologous bases. In 

addition, a similar search for miRNA sequence homology using online tool miRBase 

(www.mirbase.org) identified some homology to mouse mir-221, which has been 

implicated in cell proliferation during angiogenesis (Nicoli et al., 2012; Santhekadur 

et al., 2012). Taken together, it is not unreasonable to suppose that shDmrtc2 may be 

exerting its effect through regulation of some factor or mechanism that is not 

detectable by the conventional microarray and RNA-seq techniques that we 

utilized. 
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CHAPTER 6 - Discussion 

 

3.1 Knockdown of transient up-regulated genes during reprogramming 

 

 In the work presented in this thesis, I used retroviral based shRNA 

expression vectors to target candidate genes that were identified from RNA-

sequencing data generated within our lab as exhibiting transient up-regulation 

during reprogramming. I hypothesized that the transient up-regulation could be 

aberrant or required for reprogramming and thus acting as either a barrier or 

essential function of reprogramming, respectively. In the former case, I theorized 

that knock down of these “UP-DOWN” genes could lead to a “short cut” during 

reprogramming by abolishing aberrant transient up-regulation and consequently 

reprogramming efficiency and/or kinetics would be enhanced. On the other hand, if 

transient up-regulation was essential then knock down would have a negative effect 

on reprogramming, and therefore overexpression could be tested to determine 

whether high expression of a gene resulted in enhanced reprogramming. My results 

concluded that knock down of several of the original candidate genes gave rise to 

enhanced reprogramming efficiency and/or kinetics and one of these, shDmrtc2, 

was further investigated to determine the role in reprogramming as it significantly, 

and reproducibly, enhanced reprogramming. To validate this result, I tested several 

alternative shRNAs targeting Dmrtc2 to try to replicate the phenotype, in addition 

to overexpression experiments to ‘rescue’ the enhancement of reprogramming. 

However, I could not replicate nor rescue the phenotype with these experiments 

and I concluded that although shDmrtc2 knocked down expression of Dmrtc2, this 

was not responsible for the enhanced reprogramming phenotype observed. Instead, 

I surmised that an off-target effect of shDmrtc2 caused the phenotype. I 

subsequently sought to identify the off-target causal gene by employing microarray 

and RNA-sequencing global gene expression analyses to determine candidate genes 

that had differential expression between shDmrtc2 and control samples. I carried 

out functional validation of candidate genes, using the same retroviral shRNA 
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expression vector system to knock down candidate gene expression during 

reprogramming but did not observe enhanced reprogramming with any candidate 

shRNA. Thus the causal gene responsible for the enhanced reprogramming 

phenotype imparted by shDmrtc2 remains elusive. 

 Expression of the Yamanaka factors during reprogramming causes massive 

global genome changes as cells transition from a somatic to a pluripotent state. In 

this work I investigated the role of transiently up-regulated genes in an endeavor to 

gain insight in to the role of such genes. One possibility is that expression could be 

essential for reprogramming, in which case their transient up-regulation may be a 

required step for progression of cells to an iPSC state and subsequently, 

overexpression of these genes could enhance reprogramming (if high levels are 

required). However, since expression is subsequently down-regulated and remains 

low or not detected in iPSCs and ESCs it is possible that only a short burst of 

expression is required and overexpression could hinder reprogramming. For 

example if downstream gene expression is tightly regulated, then overexpression of 

the primary gene could cause fatal disruption. On the other hand, transient up-

regulation could represent a roadblock to reprogramming by aberrant activation of 

barrier genes, in which case knock down could promote reprogramming. Equally, it 

is possible that many of the genes within this UP-DOWN group have no function or 

impact on reprogramming and therefore alternative modulation would have no 

effect. 

 High reprogramming factor expression is the most obvious reason 

underlying massive dynamic changes in global gene expression during the first 

days of reprogramming. Nonetheless, other contributing factors are also notable. 

For example, somatic cell populations used for reprogramming are almost always 

highly heterogeneous. One of the most commonly used cells types for 

reprogramming – MEFs – are derived in a crude way involving basic and unrefined 

dissection of mouse embryos from which cells from various tissue types of a 

developing mouse are isolated. The resulting heterogeneous starting population 

likely gives rise to a predisposition for some cells more than others to be more 
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amenable to the reprogramming process depending on “starting” global gene 

expression status, contributed to by transiently up-regulated gene expression. 

Consequently, this heterogeneity is likely a contributing factor to the low 

reprogramming efficiency observed with most reprogramming systems. Transient 

up-regulation of genes is not limited to our reprogramming system and has been 

reported by others. Transient up-regulation of Foxd1 has been reported as a 

predictor of iPSC potential (Koga et al., 2014) and Bar-Nur et al. (2014) found that 

transiently up-regulated genes maintained high expression in response to defined 

media conditions, which promoted synchronous reprogramming of cells. This 

suggests that at least for some transiently up-regulated genes, high expression 

facilitates reprogramming and therefore subsequent down-regulation may 

contribute to a delayed and/or asynchronous reprogramming population. Takahashi 

et al. (2014) reported transient up-regulation of mesendodermal genes during 

reprogramming of human fibroblasts, suggesting that cells transitioned through a 

primitive streak like phase. This highlights the question of whether cells are 

becoming a different cell type on the route to iPSCs. These studies demonstrate that 

transient expression of genes can often be critical in cell processes and fate 

determination and there is a correlation between this pattern of gene expression and 

transdifferentiation. A prime example of this is reprogramming of somatic cells to 

iPSCs via transient expression of the four reprogramming factors in a variety of cell 

types. Transient up-regulation of genes, in combination with optimal culture 

conditions is also reported for transdifferentiation of fibroblasts or hepatocytes to 

neurons (Vierbuchen et al., 2010; Marro et al., 2011; Ambasudhan et al., 2011; Yoo et 

al., 2011). In the latter case, the authors used transient expression of exogenous 

Ascl1, Brn2 and Myt1l to induce neuronal fate while endogenous expression of 

these genes was up-regulated. A number of different cell types have been used in 

transdifferentiation studies, where transient up-regulation of transcription factors 

and/or miRNAs have been used to convert cells from one fate to another including 

fibroblasts to cardiomyocytes, blood progenitors or hepatocytes (Ieda et al., 2010; 

Szabo et al., 2010; Sekiya and Suzuki, 2011; Huang et al., 2011) and pancreatic 
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exocrine cells to β-cells (Zhou et al., 2008). These studies highlight the functional 

importance of transiently expressed genes in the context of cellular processes and 

fate determination, further compounding our interest in the role of the “UP-DOWN” 

group of transiently up-regulated genes during reprogramming in our system. 

 

 

3.1 Caveats of this work 

 

In this work, I found an shRNA vector designed against Dmrtc2 significantly 

accelerated kinetics and increased efficiency of reprogramming when delivered 

together with the Yamanaka factors. However, it turned out that the positive effect 

on reprogramming was due to off-target effects, rather than knockdown of Dmrtc2. 

Therefore, I aimed to identify the causal gene of the phenotype creating mutant 

shRNA vectors that maintain or abolish the reprograming enhancement activity and 

analyzing gene expression changes caused by the shRNAs. An important caveat of 

my work was that I took this approach based on a hypothesis that the enhanced 

reprogramming phenotype was caused by decreased mRNA levels of the causal 

gene via off-target effects of shDmrtc2. When shRNA is expressed, the RISC 

complex incorporates the processed siRNA to identify target mRNA for subsequent 

degradation. This is usually the case when there is perfect pairing between the 

siRNA and target RNA (as observed with knock down of Dmrtc2 mRNA by this 

shDmrtc2) usually occurring within the open reading frame sequence (Zeng et al., 

2003; Agami, 2002). However, there is another major pathway by which RNAi can 

induce gene repression and that is by translational inhibition. This pathway is 

predominantly triggered when there is imperfect pairing between siRNA and the 

target (Agami, 2002; Saxena et al., 2003; Doench et al., 2003), and therefore is most 

commonly observed in a miRNA-mediated manner since miRNAs mainly act by 

mismatched targeting of 3’-UTRs in target genes (Zeng et al., 2003; Chu and Rana, 

2006; Doench et al., 2003; Valencia-Sanchez et al., 2006). In fact, since we expect that 

an off-target would have imperfect complementarity to shDmrtc2, it is indeed 
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feasible and arguably likely that the off-target could be functioning in this manner. 

A way to determine whether translational inhibition is occurring is to measure the 

protein level of a gene.  If there is a drop in the detected protein level but no 

difference in mRNA expression then this may suggest that translational inhibition is 

the mechanism in play (Gu and Kay, 2010; Chu and Rana, 2006). In other words, as 

opposed to siRNA mediated cleavage occurring, the mRNA persists but translation 

is inhibited and protein production is reduced resulting in a phenotypic change. 

Given that significant repression by shDmrtc2 of any gene could not be detected by 

the genome-wide analyses carried out, this could be an avenue for exploration 

going forward. However, for the RNA-sequencing analysis we used MEFs with 

shRNA expression without reprogramming factor expression, making the 

assumption that the off-target was a gene that was expressed in MEFs. It is possible 

that it may have not been expressed in MEFs but was rapidly up-regulated during 

reprogramming (as with Dmrtc2), in which case I would miss it in the RNA-

sequencing results. Nonetheless, I expected that any significant differential gene 

expression between shDmrtc2 and controls during reprogramming would be picked 

up as hits in the microarray analysis. siRNA pathways have also been implicated in 

chromatin regulation in plants, yeast and multicellular organisms such as C. elegans 

and similar mechanisms of RNAi regulation have been shown in animals including 

D. melanogaster, though to a lesser extent (Moazed, 2009). In addition thousands of 

longer noncoding RNAs are well characterized in eukaryotes including Xist and 

HOTAIR, which modulate chromatin state. The possibility of shDmrtc2 operating 

by way of chromatin regulation was not probed in the scope of this study, however, 

non-coding RNAs should be accounted for with RNA-seq as far as those that 

contain a polyA tail, however, no such hits came up in the analyses. Finally, a 

drawback to the methods of global gene expression analyses undertaken in this 

work is that neither the microarray nor conventional RNA-seq would detect miRNA 

expression, and thus the potential that shDmrtc2 exerts its effect through 

modulation of miRNAs to mediate enhanced reprogramming remains a possibility.  
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3.2 Future directions 

 

An alternative approach to global gene expression analysis for determining 

the off-target of shDmrtc2 is to use Argonaute cross-linking immunoprecipitation 

followed by sequencing (Ago CLIP-seq). Briefly, this technique involves in vivo 

cross-linking of protein-RNA complexes by UV light then subsequent 

immunoprecipitation of the protein of interest (in this case, the RISC component 

Ago2). A 3’ radiolabelled linker is attached to RNAs allowing for visualisation of 

Ago2-RNA complexes following SDS-PAGE separation. After RNA extraction a 5’ 

adaptor is ligated allowing for subsequent sequencing. This technique is widely 

used in studies of miRNAs and their interactions with both processing complexes 

and mRNAs (Clark et al., 2014; Wen et al., 2011; Chi et al., 2009). Computational 

analysis enables identification of putative mi/siRNA targets based on sequence 

match and thus is a useful tool could be a useful tool in determining the off-target of 

shDmrtc2 (Chou et al., 2013). A preliminary Ago CLIP-seq experiment was carried 

out by the Zavolan lab during the final stages of this work but no conclusions could 

be drawn from the data. Partly because the experiment was only performed once, 

and partly because no further validation was carried out due to time limitations, 

however, some observations could be made. It has been reported that during the 

CLIP protocol miRNA-target hybrids can get ligated and when such hybrids were 

determined for shDmrtc2, a list of putative target candidates was collated. Only 

reads that were supported by a significant number of independent CLIP reads (i.e. 

not hybridized) were included in this list and although this is not as quantitative as 

differential expression data, it may give some additional information or clues as to 

the putative off-target. Notably none of the 15 final candidates determined from the 

RNA-seq were among the top hits from the hybrid CLIP data, yet some genes that 

came up during earlier analyses (not shown), including Trp53inp1, Wisp1, Emp2 

and Lpp were observed. Interestingly, the top hit in this analysis was 

B230219D22Rik, an uncharacterised putative protein-coding gene, highlighting the 

possibility that the off-target candidate could be some unknown and 
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uncharacterised gene. These observations are speculative at this point, but closer 

inspection of the results following replication of the CLIP-seq experiment in 

conjunction with the previous global gene expression analyses could give some 

further clues as to the mechanism underlying enhanced reprogramming with 

shDmrtc2. 

 Whilst shRNA can be a very useful tool in which to observe the effects of 

gene knock down in a relatively efficient manner, it may not the best tool now 

available when investigation of several genes is required, as in this study. A 

plausible alternative would be to employ CRISPR/Cas9 mediated gene editing, as 

described in Section 1.5.1. In the context of my shDmrtc2 work this approach could 

be employed as an alternative to shRNA in the validation of candidate genes, 

although with the proviso that a knock out phenotype can differ from a knock down 

phenotype. By using CRISPR-Cas9 technology to completely knock out rather than 

attempt to knock down expression of candidate genes, it could be reliably deduced 

whether there was an effect in the context of reprogramming that recapitulated that 

of shDmrtc2. Ideally, if this technology were available at the time of the original 

screening stage of UP-DOWN genes, it would have been the preferred method of 

screening. Given that there were several other shRNAs in addition to shDmrtc2 that 

enhanced reprogramming efficiency, it could be worth targeting these genes using a 

CRISPR-Cas9 system to validate the data generated using shRNA. If the phenotype 

observed was found to be due to specific targeting of the corresponding gene then 

these would be novel regulators of reprogramming not previously described. 

In the context of this study whereby the targeting of unwanted genes by 

shDmrtc2 resulted in significant enhancement of reprogramming, positive controls 

are acknowledged to be of particular importance upon reflection of the work. 

Several so-called negative mutants were derived, that is shRNAs similar in 

sequence to shDmrtc2 that did not replicate the positive phenotype, and it was 

hypothesized that these would contribute to delineating the correct target that gave 

rise to increased reprogramming efficiency and kinetics upon comparison to 

shDmrtc2. However upon reflection it is clear that with each of these negative 
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mutants came additional off-targets, and thus the global gene expression for each 

mutant shRNA likely widened rather than narrowed the effector candidate gene 

list. Furthermore it is possible, if not probable, that since differential gene 

expression was being analyzed with this strategy that the natural variation of gene 

expression on a global scale in addition to the method of bulk population analysis 

used, obscured the resolution we sought and the answer was obviously not clear-

cut.  

In hindsight, a more effective strategy may have been to pursue screening of 

shDmrtc2 mutants, with single or double nucleotide substitutions, in order to 

determine several more positive control mutant shRNAs (in addition to MUT 11). 

By using a wider panel of positive control mutants for examination and comparison 

of global gene expression with one another and shDmrtc2 to determine genes that 

showed similar rather than differential expression between the panel of positive 

controls and shDmrtc2 it is likely that a smaller list of genes would be derived, and 

that the target gene may be more easily identified by this method. Using samples of 

cells for the gene expression analyses that have been sorted for the expression of 

reprogramming factors (mOrange) and shRNA (if fused to a reporter or tag) would 

further strengthen the resolution of results acquired. Importantly, this is assuming 

that any positive reprogramming phenotype garnered by each of the positive 

mutants is due to targeting of the same effector gene. 

 Given the striking enhanced phenotype imparted by shDmrtc2 on 

reprogramming there is of course a certain level of frustration with being unable to 

identify the cause or causes underlying this effect. The vast and complex dynamic 

changes which cells sustain during reprogramming have made the dissection 

process particularly difficult and the broad known and potentially unknown off-

target effects of sh/siRNAs has only added to the complications. Technologies such 

as CLIP-seq and CRISPR-Cas9 could play meaningful roles in facilitating these 

investigations, though it could equally result in a never-ending chase. It is also 

possible that the phenotype caused by shDmrtc2 was due to knockdown of multiple 

genes, instead of one single gene. An alternative approach to understand how the 
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reprograming enhancement occurs would be focusing on the global gene expression 

changes resulting from shDmrtc2 during reprogramming in order to determine 

differential pathways or factors activated in this condition in comparison to 

conventional reprogramming with slow kinetics. In this way, investigation of 

indirect, rather than direct, targets of shDmrtc2 may lead to some novel insight of 

the reprogramming process not previously reported.  



 171 

References 
 

AGAMI, R. 2002. RNAi and related mechanisms and their potential use for therapy. Current 

Opinion in Chemical Biology, 6, 829-834. 

AMBASUDHAN, R., TALANTOVA, M., COLEMAN, R., YUAN, X., ZHU, S., LIPTON, S. A. 

& DING, S. 2011. Direct reprogramming of adult human fibroblasts to functional 

neurons under defined conditions. Cell Stem Cell, 9, 113-8. 

AMIT, M., CARPENTER, M. K., INOKUMA, M. S., CHIU, C. P., HARRIS, C. P., WAKNITZ, 

M. A., ITSKOVITZ-ELDOR, J. & THOMSON, J. A. 2000. Clonally derived human 

embryonic stem cell lines maintain pluripotency and proliferative potential for 

prolonged periods of culture. Dev Biol, 227, 271-8. 

AMIT, M., SHARIKI, C., MARGULETS, V. & ITSKOVITZ-ELDOR, J. 2004. Feeder layer- and 

serum-free culture of human embryonic stem cells. Biol Reprod, 70, 837-45. 

ANG, Y. S., TSAI, S. Y., LEE, D. F., MONK, J., SU, J., RATNAKUMAR, K., DING, J., GE, Y., 

DARR, H., CHANG, B., WANG, J., RENDL, M., BERNSTEIN, E., SCHANIEL, C. & 

LEMISCHKA, I. R. 2011. Wdr5 mediates self-renewal and reprogramming via the 

embryonic stem cell core transcriptional network. Cell, 145, 183-97. 

ANOKYE-DANSO, F., TRIVEDI, C. M., JUHR, D., GUPTA, M., CUI, Z., TIAN, Y., ZHANG, 

Y., YANG, W., GRUBER, P. J., EPSTEIN, J. A. & MORRISEY, E. E. 2011. Highly 

efficient miRNA-mediated reprogramming of mouse and human somatic cells to 

pluripotency. Cell Stem Cell, 8, 376-88. 

AOI, T., YAE, K., NAKAGAWA, M., ICHISAKA, T., OKITA, K., TAKAHASHI, K., CHIBA, 

T. & YAMANAKA, S. 2008. Generation of Pluripotent Stem Cells from Adult Mouse 

Liver and Stomach Cells. Science, 321, 699-702. 

BANITO, A., RASHID, S. T., ACOSTA, J. C., LI, S., PEREIRA, C. F., GETI, I., PINHO, S., 

SILVA, J. C., AZUARA, V., WALSH, M., VALLIER, L. & GIL, J. 2009. Senescence 

impairs successful reprogramming to pluripotent stem cells. Genes Dev, 23, 2134-9. 

BAR-NUR, O., BRUMBAUGH, J., VERHEUL, C., APOSTOLOU, E., PRUTEANU-

MALINICI, I., WALSH, R. M., RAMASWAMY, S. & HOCHEDLINGER, K. 2014. 

Small molecules facilitate rapid and synchronous iPSC generation. Nat Methods, 11, 

1170-6. 

BASSIK, M. C., KAMPMANN, M., LEBBINK, R. J., WANG, S., HEIN, M. Y., POSER, I., 

WEIBEZAHN, J., HORLBECK, M. A., CHEN, S., MANN, M., HYMAN, A. A., 

LEPROUST, E. M., MCMANUS, M. T. & WEISSMAN, J. S. 2013. A systematic 

mammalian genetic interaction map reveals pathways underlying ricin 

susceptibility. Cell, 152, 909-22. 

BATLLE, E., SANCHO, E., FRANCI, C., DOMINGUEZ, D., MONFAR, M., BAULIDA, J. & 

GARCIA DE HERREROS, A. 2000. The transcription factor Snail is a repressor of E-

cadherin gene expression in epithelial tumour cells. Nat Cell Biol, 2, 84-89. 



 172 

BEN-HUR, T., IDELSON, M., KHANER, H., PERA, M., REINHARTZ, E., ITZIK, A. & 

REUBINOFF, B. E. 2004. Transplantation of human embryonic stem cell-derived 

neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells, 22, 

1246-55. 

BERG, D. K., LI, C., ASHER, G., WELLS, D. N. & OBACK, B. 2007. Red Deer Cloned from 

Antler Stem Cells and Their Differentiated Progeny. Biology of Reproduction, 77, 384-

394. 

BERNS, K., HIJMANS, E. M., MULLENDERS, J., BRUMMELKAMP, T. R., VELDS, A., 

HEIMERIKX, M., KERKHOVEN, R. M., MADIREDJO, M., NIJKAMP, W., 

WEIGELT, B., AGAMI, R., GE, W., CAVET, G., LINSLEY, P. S., BEIJERSBERGEN, R. 

L. & BERNARDS, R. 2004. A large-scale RNAi screen in human cells identifies new 

components of the p53 pathway. Nature, 428, 431-437. 

BOGDANOVE, A. J. & VOYTAS, D. F. 2011. TAL Effectors: Customizable Proteins for DNA 

Targeting. Science, 333, 1843-1846. 

BOLAND, M. J., HAZEN, J. L., NAZOR, K. L., RODRIGUEZ, A. R., GIFFORD, W., MARTIN, 

G., KUPRIYANOV, S. & BALDWIN, K. K. 2009. Adult mice generated from induced 

pluripotent stem cells. Nature, 461, 91-4. 

BOLOTIN, A., QUINQUIS, B., SOROKIN, A. & EHRLICH, S. D. 2005. Clustered regularly 

interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal 

origin. Microbiology, 151, 2551-61. 

BOUDREAU, R. L., MONTEYS, A. M. & DAVIDSON, B. L. 2008. Minimizing variables 

among hairpin-based RNAi vectors reveals the potency of shRNAs. RNA, 14, 1834-

44. 

BOYER, L. A., LEE, T. I., COLE, M. F., JOHNSTONE, S. E., LEVINE, S. S., ZUCKER, J. P., 

GUENTHER, M. G., KUMAR, R. M., MURRAY, H. L., JENNER, R. G., GIFFORD, D. 

K., MELTON, D. A., JAENISCH, R. & YOUNG, R. A. 2005. Core transcriptional 

regulatory circuitry in human embryonic stem cells. Cell, 122, 947-56. 

BRADLEY, A., EVANS, M., KAUFMAN, M. H. & ROBERTSON, E. 1984. Formation of germ-

line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 309, 255-256. 

BRAMBRINK, T., FOREMAN, R., WELSTEAD, G. G., LENGNER, C. J., WERNIG, M., SUH, 

H. & JAENISCH, R. 2008. Sequential expression of pluripotency markers during 

direct reprogramming of mouse somatic cells. Cell Stem Cell, 2, 151-9. 

BRIGGS, R. & KING, T. J. 1952. Transplantation of Living Nuclei From Blastula Cells into 

Enucleated Frogs' Eggs. Proceedings of the National Academy of Sciences of the United 

States of America, 38, 455-463. 

BRONS, I. G., SMITHERS, L. E., TROTTER, M. W., RUGG-GUNN, P., SUN, B., CHUVA DE 

SOUSA LOPES, S. M., HOWLETT, S. K., CLARKSON, A., AHRLUND-RICHTER, L., 

PEDERSEN, R. A. & VALLIER, L. 2007. Derivation of pluripotent epiblast stem cells 

from mammalian embryos. Nature, 448, 191-5. 



 173 

BUCKLEY, S. M., ARANDA-ORGILLES, B., STRIKOUDIS, A., APOSTOLOU, E., LOIZOU, 

E., MORAN-CRUSIO, K., FARNSWORTH, C. L., KOLLER, A. A., DASGUPTA, R., 

SILVA, J. C., STADTFELD, M., HOCHEDLINGER, K., CHEN, E. I. & AIFANTIS, I. 

2012. Regulation of pluripotency and cellular reprogramming by the ubiquitin-

proteasome system. Cell Stem Cell, 11, 783-98. 

BUECKER, C., CHEN, H. H., POLO, J. M., DAHERON, L., BU, L., BARAKAT, T. S., 

OKWIEKA, P., PORTER, A., GRIBNAU, J., HOCHEDLINGER, K. & GEIJSEN, N. 

2010. A murine ESC-like state facilitates transgenesis and homologous 

recombination in human pluripotent stem cells. Cell Stem Cell, 6, 535-46. 

BUEHR, M., MEEK, S., BLAIR, K., YANG, J., URE, J., SILVA, J., MCLAY, R., HALL, J., YING, 

Q. L. & SMITH, A. 2008. Capture of authentic embryonic stem cells from rat 

blastocysts. Cell, 135, 1287-98. 

BUEHR, M. & SMITH, A. 2003. Genesis of embryonic stem cells. Philos Trans R Soc Lond B 

Biol Sci, 358, 1397-402; discussion 1402. 

BUGANIM, Y., FADDAH, D. A., CHENG, A. W., ITSKOVICH, E., MARKOULAKI, S., 

GANZ, K., KLEMM, S. L., VAN OUDENAARDEN, A. & JAENISCH, R. 2012. 

Single-cell expression analyses during cellular reprogramming reveal an early 

stochastic and a late hierarchic phase. Cell, 150, 1209-22. 

BUGANIM, Y., FADDAH, D. A. & JAENISCH, R. 2013. Mechanisms and models of somatic 

cell reprogramming. Nat Rev Genet, 14, 427-39. 

CANO, A., PEREZ-MORENO, M. A., RODRIGO, I., LOCASCIO, A., BLANCO, M. J., DEL 

BARRIO, M. G., PORTILLO, F. & NIETO, M. A. 2000. The transcription factor Snail 

controls epithelial-mesenchymal transitions by repressing E-cadherin expression. 

Nat Cell Biol, 2, 76-83. 

CAREY, B. W., MARKOULAKI, S., HANNA, J., SAHA, K., GAO, Q., MITALIPOVA, M. & 

JAENISCH, R. 2009. Reprogramming of murine and human somatic cells using a 

single polycistronic vector. Proceedings of the National Academy of Sciences, 106, 157-

162. 

CAREY, B. W., MARKOULAKI, S., HANNA, J. H., FADDAH, D. A., BUGANIM, Y., KIM, J., 

GANZ, K., STEINE, E. J., CASSADY, J. P., CREYGHTON, M. P., WELSTEAD, G. G., 

GAO, Q. & JAENISCH, R. 2011. Reprogramming factor stoichiometry influences the 

epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem 

Cell, 9, 588-98. 

CHANG, T. C., LIU, C. C., HSING, E. W., LIANG, S. M., CHI, Y. H., SUNG, L. Y., LIN, S. P., 

SHEN, T. L., KO, B. S., YEN, B. L., YET, S. F., WU, K. K. & LIOU, J. Y. 2012. 14-3-

3sigma regulates beta-catenin-mediated mouse embryonic stem cell proliferation by 

sequestering GSK-3beta. PLoS One, 7, e40193. 

CHEN, J., LIU, H., LIU, J., QI, J., WEI, B., YANG, J., LIANG, H., CHEN, Y., CHEN, J., WU, 

Y., GUO, L., ZHU, J., ZHAO, X., PENG, T., ZHANG, Y., CHEN, S., LI, X., LI, D., 



 174 

WANG, T. & PEI, D. 2013. H3K9 methylation is a barrier during somatic cell 

reprogramming into iPSCs. Nat Genet, 45, 34-42. 

CHEN, J., LIU, J., CHEN, Y., YANG, J., CHEN, J., LIU, H., ZHAO, X., MO, K., SONG, H., 

GUO, L., CHU, S., WANG, D., DING, K. & PEI, D. 2011a. Rational optimization of 

reprogramming culture conditions for the generation of induced pluripotent stem 

cells with ultra-high efficiency and fast kinetics. Cell Res, 21, 884-94. 

CHEN, J., LIU, J., YANG, J., CHEN, Y., CHEN, J., NI, S., SONG, H., ZENG, L., DING, K. & 

PEI, D. 2011b. BMPs functionally replace Klf4 and support efficient reprogramming 

of mouse fibroblasts by Oct4 alone. Cell Res, 21, 205-12. 

CHEN, M., DU, Q., ZHANG, H.-Y., WAHLESTEDT, C. & LIANG, Z. 2005. Vector-based 

siRNA delivery strategies for high-throughput screening of novel target genes. 

Journal of RNAi and Gene Silencing : An International Journal of RNA and Gene Targeting 

Research, 1, 5-11. 

CHENG, J., DUTRA, A., TAKESONO, A., GARRETT-BEAL, L. & SCHWARTZBERG, P. L. 

2004. Improved generation of C57BL/6J mouse embryonic stem cells in a defined 

serum-free media. Genesis, 39, 100-4. 

CHI, S. W., ZANG, J. B., MELE, A. & DARNELL, R. B. 2009. Argonaute HITS-CLIP decodes 

microRNA-mRNA interaction maps. Nature, 460, 479-86. 

CHIA, N. Y., CHAN, Y. S., FENG, B., LU, X., ORLOV, Y. L., MOREAU, D., KUMAR, P., 

YANG, L., JIANG, J., LAU, M. S., HUSS, M., SOH, B. S., KRAUS, P., LI, P., LUFKIN, 

T., LIM, B., CLARKE, N. D., BARD, F. & NG, H. H. 2010. A genome-wide RNAi 

screen reveals determinants of human embryonic stem cell identity. Nature, 468, 316-

20. 

CHO, H.-J., LEE, C.-S., KWON, Y.-W., PAEK, J. S., LEE, S.-H., HUR, J., LEE, E. J., ROH, T.-Y., 

CHU, I.-S., LEEM, S.-H., KIM, Y., KANG, H.-J., PARK, Y.-B. & KIM, H.-S. 2010. 

Induction of pluripotent stem cells from adult somatic cells by protein-based 

reprogramming without genetic manipulation. Blood, 116, 386-395. 

CHOU, B. K., MALI, P., HUANG, X., YE, Z., DOWEY, S. N., RESAR, L. M., ZOU, C., 

ZHANG, Y. A., TONG, J. & CHENG, L. 2011. Efficient human iPS cell derivation by 

a non-integrating plasmid from blood cells with unique epigenetic and gene 

expression signatures. Cell Res, 21, 518-29. 

CHOU, C. H., LIN, F. M., CHOU, M. T., HSU, S. D., CHANG, T. H., WENG, S. L., 

SHRESTHA, S., HSIAO, C. C., HUNG, J. H. & HUANG, H. D. 2013. A 

computational approach for identifying microRNA-target interactions using high-

throughput CLIP and PAR-CLIP sequencing. BMC Genomics, 14 Suppl 1, S2. 

CHU, C. Y. & RANA, T. M. 2006. Translation repression in human cells by microRNA-

induced gene silencing requires RCK/p54. PLoS Biol, 4, e210. 

CLARK, P. M., LOHER, P., QUANN, K., BRODY, J., LONDIN, E. R. & RIGOUTSOS, I. 2014. 

Argonaute CLIP-Seq reveals miRNA targetome diversity across tissue types. Sci Rep, 

4, 5947. 



 175 

CONG, L., RAN, F. A., COX, D., LIN, S., BARRETTO, R., HABIB, N., HSU, P. D., WU, X., 

JIANG, W., MARRAFFINI, L. A. & ZHANG, F. 2013. Multiplex Genome 

Engineering Using CRISPR/Cas Systems. Science, 339, 819-823. 

COUZIN, J. 2009. Celebration and Concern Over U.S. Trial of Embryonic Stem Cells. Science, 

323, 568-568. 

COWAN, C. A., ATIENZA, J., MELTON, D. A. & EGGAN, K. 2005. Nuclear 

Reprogramming of Somatic Cells After Fusion with Human Embryonic Stem Cells. 

Science, 309, 1369-1373. 

CROWLEY, T. E., NELLEN, W., GOMER, R. H. & FIRTEL, R. A. 1985. Phenocopy of 

discoidin I-minus mutants by antisense transformation in Dictyostelium. Cell, 43, 

633-641. 

CZECHANSKI, A., BYERS, C., GREENSTEIN, I., SCHRODE, N., DONAHUE, L. R., 

HADJANTONAKIS, A.-K. & REINHOLDT, L. G. 2014. Derivation and 

characterization of mouse embryonic stem cells from permissive and nonpermissive 

strains. Nat. Protocols, 9, 559-574. 

DING, L., PASZKOWSKI-ROGACZ, M., NITZSCHE, A., SLABICKI, M. M., HENINGER, A. 

K., DE VRIES, I., KITTLER, R., JUNQUEIRA, M., SHEVCHENKO, A., SCHULZ, H., 

HUBNER, N., DOSS, M. X., SACHINIDIS, A., HESCHELER, J., IACONE, R., 

ANASTASSIADIS, K., STEWART, A. F., PISABARRO, M. T., CALDARELLI, A., 

POSER, I., THEIS, M. & BUCHHOLZ, F. 2009. A genome-scale RNAi screen for Oct4 

modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell 

Stem Cell, 4, 403-15. 

DO, J. T. & SCHÖLER, H. R. 2004. Nuclei of Embryonic Stem Cells Reprogram Somatic 

Cells. STEM CELLS, 22, 941-949. 

DOENCH, J. G., PETERSEN, C. P. & SHARP, P. A. 2003. siRNAs can function as miRNAs. 

Genes & Development, 17, 438-442. 

DORSETT, Y. & TUSCHL, T. 2004. siRNAs: applications in functional genomics and 

potential as therapeutics. Nat Rev Drug Discov, 3, 318-29. 

DOS SANTOS, R. L., TOSTI, L., RADZISHEUSKAYA, A., CABALLERO, I. M., KAJI, K., 

HENDRICH, B. & SILVA, J. C. 2014. MBD3/NuRD facilitates induction of 

pluripotency in a context-dependent manner. Cell Stem Cell, 15, 102-10. 

ECHEVERRI, C. J., BEACHY, P. A., BAUM, B., BOUTROS, M., BUCHHOLZ, F., CHANDA, 

S. K., DOWNWARD, J., ELLENBERG, J., FRASER, A. G., HACOHEN, N., HAHN, 

W. C., JACKSON, A. L., KIGER, A., LINSLEY, P. S., LUM, L., MA, Y., MATHEY-

PREVOT, B., ROOT, D. E., SABATINI, D. M., TAIPALE, J., PERRIMON, N. & 

BERNARDS, R. 2006. Minimizing the risk of reporting false positives in large-scale 

RNAi screens. Nat Meth, 3, 777-779. 

ECHEVERRI, C. J. & PERRIMON, N. 2006. High-throughput RNAi screening in cultured 

cells: a user's guide. Nat Rev Genet, 7, 373-84. 



 176 

ECKER, J. R. & DAVIS, R. W. 1986. Inhibition of gene expression in plant cells by expression 

of antisense RNA. Proceedings of the National Academy of Sciences of the United States of 

America, 83, 5372-5376. 

EDWARDS, R. G. 2002. Personal pathways to embryonic stem cells. Reproductive BioMedicine 

Online, 4, 263-278. 

EFE, J. A., HILCOVE, S., KIM, J., ZHOU, H., OUYANG, K., WANG, G., CHEN, J. & DING, S. 

2011. Conversion of mouse fibroblasts into cardiomyocytes using a direct 

reprogramming strategy. Nat Cell Biol, 13, 215-22. 

ELBASHIR, S. M., HARBORTH, J., LENDECKEL, W., YALCIN, A., WEBER, K. & TUSCHL, 

T. 2001a. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured 

mammalian cells. Nature, 411, 494-498. 

ELBASHIR, S. M., MARTINEZ, J., PATKANIOWSKA, A., LENDECKEL, W. & TUSCHL, T. 

2001b. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila 

melanogaster embryo lysate. The EMBO Journal, 20, 6877-6888. 

ESTEBAN, M. A., WANG, T., QIN, B., YANG, J., QIN, D., CAI, J., LI, W., WENG, Z., CHEN, 

J., NI, S., CHEN, K., LI, Y., LIU, X., XU, J., ZHANG, S., LI, F., HE, W., LABUDA, K., 

SONG, Y., PETERBAUER, A., WOLBANK, S., REDL, H., ZHONG, M., CAI, D., 

ZENG, L. & PEI, D. 2010. Vitamin C enhances the generation of mouse and human 

induced pluripotent stem cells. Cell Stem Cell, 6, 71-9. 

EVANS, M. J. & KAUFMAN, M. H. 1981. Establishment in culture of pluripotential cells 

from mouse embryos. Nature, 292, 154-156. 

FAZZIO, T. G., HUFF, J. T. & PANNING, B. 2008. An RNAi Screen of Chromatin Proteins 

Identifies Tip60-p400 as a Regulator of Embryonic Stem Cell Identity. Cell, 134, 162-

174. 

FENG, B., JIANG, J., KRAUS, P., NG, J. H., HENG, J. C., CHAN, Y. S., YAW, L. P., ZHANG, 

W., LOH, Y. H., HAN, J., VEGA, V. B., CACHEUX-RATABOUL, V., LIM, B., 

LUFKIN, T. & NG, H. H. 2009. Reprogramming of fibroblasts into induced 

pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol, 11, 197-203. 

FRASER, M. J., CLSZCZON, T., ELICK, T. & BAUSER, C. 1996. Precise excision of TTAA-

specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the 

baculovirus genome in cell lines from two species of Lepidoptera. Insect Molecular 

Biology, 5, 141-151. 

FURUE, M., OKAMOTO, T., HAYASHI, Y., OKOCHI, H., FUJIMOTO, M., MYOISHI, Y., 

ABE, T., OHNUMA, K., SATO, G., ASASHIMA, M. & SATO, J. D. 2005. Leukemia 

inhibitory factor as an anti-apoptotic mitogen for pluripotent mouse embryonic stem 

cells in a serum-free medium without feeder cells. In Vitro Cellular & Developmental 

Biology - Animal, 41, 19-28. 

FUSAKI, N., BAN, H., NISHIYAMA, A., SAEKI, K. & HASEGAWA, M. 2009. Efficient 

induction of transgene-free human pluripotent stem cells using a vector based on 



 177 

Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings 

of the Japan Academy. Series B, Physical and Biological Sciences, 85, 348-362. 

GALLI, C., LAGUTINA, I., CROTTI, G., COLLEONI, S., TURINI, P., PONDERATO, N., 

DUCHI, R. & LAZZARI, G. 2003. Pregnancy: A cloned horse born to its dam twin. 

Nature, 424, 635-635. 

GASIUNAS, G., BARRANGOU, R., HORVATH, P. & SIKSNYS, V. 2012. Cas9–crRNA 

ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity 

in bacteria. Proceedings of the National Academy of Sciences of the United States of 

America, 109, E2579-E2586. 

GINGOLD, JULIAN A., FIDALGO, M., GUALLAR, D., LAU, Z., SUN, Z., ZHOU, H., 

FAIOLA, F., HUANG, X., LEE, D.-F., WAGHRAY, A., SCHANIEL, C., 

FELSENFELD, DAN P., LEMISCHKA, IHOR R. & WANG, J. 2014. A Genome-wide 

RNAi Screen Identifies Opposing Functions of Snai1 and Snai2 on the Nanog 

Dependency in Reprogramming. Molecular Cell, 56, 140-152. 

GINIS, I., LUO, Y., MIURA, T., THIES, S., BRANDENBERGER, R., GERECHT-NIR, S., 

AMIT, M., HOKE, A., CARPENTER, M. K., ITSKOVITZ-ELDOR, J. & RAO, M. S. 

2004. Differences between human and mouse embryonic stem cells. Developmental 

Biology, 269, 360-380. 

GOLIPOUR, A., DAVID, L., LIU, Y., JAYAKUMARAN, G., HIRSCH, C. L., TRCKA, D. & 

WRANA, J. L. 2012. A late transition in somatic cell reprogramming requires 

regulators distinct from the pluripotency network. Cell Stem Cell, 11, 769-82. 

GONZALEZ, F., BOUE, S. & IZPISUA BELMONTE, J. C. 2011. Methods for making induced 

pluripotent stem cells: reprogramming a la carte. Nat Rev Genet, 12, 231-42. 

GOSSEN, M. & BUJARD, H. 1992. Tight control of gene expression in mammalian cells by 

tetracycline-responsive promoters. Proceedings of the National Academy of Sciences, 89, 

5547-5551. 

GOSSEN, M., FREUNDLIEB, S., BENDER, G., MÜLLER, G., HILLEN, W. & BUJARD, H. 

1995. Transcriptional Activation by Tetracyclines in Mammalian Cells. Science, 268, 

1766-1769. 

GRIMM, D., STREETZ, K. L., JOPLING, C. L., STORM, T. A., PANDEY, K., DAVIS, C. R., 

MARION, P., SALAZAR, F. & KAY, M. A. 2006. Fatality in mice due to 

oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 441, 537-

41. 

GU, S., JIN, L., ZHANG, Y., HUANG, Y., ZHANG, F., VALDMANIS, P. N. & KAY, M. A. 

2012. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of 

dicer processing in vivo. Cell, 151, 900-11. 

GU, S. & KAY, M. A. 2010. How do miRNAs mediate translational repression? Silence, 1, 11. 



 178 

GUMIENNY, R. & ZAVOLAN, M. 2015. Accurate transcriptome-wide prediction of 

microRNA targets and small interfering RNA off-targets with MIRZA-G. Nucleic 

Acids Res, 43, 1380-91. 

GURDON, J. B. 1960. The Developmental Capacity of Nuclei Taken from Differentiating 

Endoderm Cells of Xenopus laevis. Journal of Embryology and Experimental 

Morphology, 8, 505-526. 

GURDON, J. B. 1962. The Developmental Capacity of Nuclei taken from Intestinal 

Epithelium Cells of Feeding Tadpoles. Journal of Embryology and Experimental 

Morphology, 10, 622-640. 

HAKELIEN, A.-M., LANDSVERK, H. B., ROBL, J. M., SKALHEGG, B. S. & COLLAS, P. 

2002. Reprogramming fibroblasts to express T-cell functions using cell  

 extracts. Nat Biotech, 20, 460-466. 

HÄMMERLING, J. 1934. Entwicklungsphysiologische und genetische Grundlagen der 

Formbildung bei der Schirmalge Acetabularia. Naturwissenschaften, 22, 829-836. 

HAN, D. W., TAPIA, N., JOO, J. Y., GREBER, B., ARAUZO-BRAVO, M. J., BERNEMANN, 

C., KO, K., WU, G., STEHLING, M., DO, J. T. & SCHOLER, H. R. 2010. Epiblast stem 

cell subpopulations represent mouse embryos of distinct pregastrulation stages. Cell, 

143, 617-27. 

HANNA, J., CHENG, A. W., SAHA, K., KIM, J., LENGNER, C. J., SOLDNER, F., CASSADY, 

J. P., MUFFAT, J., CAREY, B. W. & JAENISCH, R. 2010a. Human embryonic stem 

cells with biological and epigenetic characteristics similar to those of mouse ESCs. 

Proceedings of the National Academy of Sciences, 107, 9222-9227. 

HANNA, J., MARKOULAKI, S., MITALIPOVA, M., CHENG, A. W., CASSADY, J. P., 

STAERK, J., CAREY, B. W., LENGNER, C. J., FOREMAN, R., LOVE, J., GAO, Q., 

KIM, J. & JAENISCH, R. 2009a. Metastable pluripotent states in NOD-mouse-

derived ESCs. Cell Stem Cell, 4, 513-24. 

HANNA, J., SAHA, K., PANDO, B., VAN ZON, J., LENGNER, C. J., CREYGHTON, M. P., 

VAN OUDENAARDEN, A. & JAENISCH, R. 2009b. Direct cell reprogramming is a 

stochastic process amenable to acceleration. Nature, 462, 595-601. 

HANNA, J. H., SAHA, K. & JAENISCH, R. 2010b. Pluripotency and cellular 

reprogramming: facts, hypotheses, unresolved issues. Cell, 143, 508-25. 

HANSSON, J., RAFIEE, M. R., REILAND, S., POLO, J. M., GEHRING, J., OKAWA, S., 

HUBER, W., HOCHEDLINGER, K. & KRIJGSVELD, J. 2012. Highly coordinated 

proteome dynamics during reprogramming of somatic cells to pluripotency. Cell 

Rep, 2, 1579-92. 

HARLAND, R. & WEINTRAUB, H. 1985. Translation of mRNA injected into Xenopus 

oocytes is specifically inhibited by antisense RNA. The Journal of Cell Biology, 101, 

1094-1099. 



 179 

HENG, J. C., FENG, B., HAN, J., JIANG, J., KRAUS, P., NG, J. H., ORLOV, Y. L., HUSS, M., 

YANG, L., LUFKIN, T., LIM, B. & NG, H. H. 2010. The nuclear receptor Nr5a2 can 

replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell 

Stem Cell, 6, 167-74. 

HOCKEMEYER, D., SOLDNER, F., COOK, E. G., GAO, Q., MITALIPOVA, M. & JAENISCH, 

R. 2008. A Drug-Inducible System for Direct Reprogramming of Human Somatic 

Cells to Pluripotency. Cell Stem Cell, 3, 346-353. 

HONG, C. S., PARK, B. Y. & SAINT-JEANNET, J. P. 2007. The function of Dmrt genes in 

vertebrate development: it is not just about sex. Dev Biol, 310, 1-9. 

HONG, H., TAKAHASHI, K., ICHISAKA, T., AOI, T., KANAGAWA, O., NAKAGAWA, M., 

OKITA, K. & YAMANAKA, S. 2009. Suppression of induced pluripotent stem cell 

generation by the p53-p21 pathway. Nature, 460, 1132-5. 

HORNUNG, V., ELLEGAST, J., KIM, S., BRZÓZKA, K., JUNG, A., KATO, H., POECK, H., 

AKIRA, S., CONZELMANN, K.-K., SCHLEE, M., ENDRES, S. & HARTMANN, G. 

2006. 5'-Triphosphate RNA Is the Ligand for RIG-I. Science, 314, 994-997. 

HOTTA, A. & ELLIS, J. 2008. Retroviral vector silencing during iPS cell induction: An 

epigenetic beacon that signals distinct pluripotent states. Journal of Cellular 

Biochemistry, 105, 940-948. 

HOU, P., LI, Y., ZHANG, X., LIU, C., GUAN, J., LI, H., ZHAO, T., YE, J., YANG, W., LIU, K., 

GE, J., XU, J., ZHANG, Q., ZHAO, Y. & DENG, H. 2013. Pluripotent Stem Cells 

Induced from Mouse Somatic Cells by Small-Molecule Compounds. Science, 341, 

651-654. 

HU, G., KIM, J., XU, Q., LENG, Y., ORKIN, S. H. & ELLEDGE, S. J. 2009. A genome-wide 

RNAi screen identifies a new transcriptional module required for self-renewal. 

Genes Dev, 23, 837-48. 

HU, K., YU, J., SUKNUNTHA, K., TIAN, S., MONTGOMERY, K., CHOI, K. D., STEWART, 

R., THOMSON, J. A. & SLUKVIN, II 2011. Efficient generation of transgene-free 

induced pluripotent stem cells from normal and neoplastic bone marrow and cord 

blood mononuclear cells. Blood, 117, e109-19. 

HU, S., WILSON, K. D., GHOSH, Z., HAN, L., WANG, Y., LAN, F., RANSOHOFF, K. J., 

BURRIDGE, P. & WU, J. C. 2013. MicroRNA-302 Increases Reprogramming 

Efficiency via Repression of NR2F2. STEM CELLS, 31, 259-268. 

HUANG, P., HE, Z., JI, S., SUN, H., XIANG, D., LIU, C., HU, Y., WANG, X. & HUI, L. 2011. 

Induction of functional hepatocyte-like cells from mouse fibroblasts by defined 

factors. Nature, 475, 386-9. 

HUANG, Y., OSORNO, R., TSAKIRIDIS, A. & WILSON, V. 2012. In Vivo differentiation 

potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep, 2, 

1571-8. 



 180 

HUANGFU, D., MAEHR, R., GUO, W., EIJKELENBOOM, A., SNITOW, M., CHEN, A. E. & 

MELTON, D. A. 2008a. Induction of pluripotent stem cells by defined factors is 

greatly improved by small-molecule compounds. Nat Biotechnol, 26, 795-7. 

HUANGFU, D., OSAFUNE, K., MAEHR, R., GUO, W., EIJKELENBOOM, A., CHEN, S., 

MUHLESTEIN, W. & MELTON, D. A. 2008b. Induction of pluripotent stem cells 

from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol, 26, 1269-

75. 

ICHIDA, J. K., BLANCHARD, J., LAM, K., SON, E. Y., CHUNG, J. E., EGLI, D., LOH, K. M., 

CARTER, A. C., DI GIORGIO, F. P., KOSZKA, K., HUANGFU, D., AKUTSU, H., 

LIU, D. R., RUBIN, L. L. & EGGAN, K. 2009. A small-molecule inhibitor of tgf-Beta 

signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5, 491-

503. 

IEDA, M., FU, J. D., DELGADO-OLGUIN, P., VEDANTHAM, V., HAYASHI, Y., 

BRUNEAU, B. G. & SRIVASTAVA, D. 2010. Direct reprogramming of fibroblasts 

into functional cardiomyocytes by defined factors. Cell, 142, 375-86. 

IZANT, J. G. & WEINTRAUB, H. 1984. Inhibition of thymidine kinase gene expression by 

anti-sense RNA: A molecular approach to genetic analysis. Cell, 36, 1007-1015. 

IZANT, J. G. & WEINTRAUB, H. 1985. Constitutive and conditional suppression of 

exogenous and endogenous genes by anti-sense RNA. Science, 229, 345-352. 

JACKSON, A. L., BARTZ, S. R., SCHELTER, J., KOBAYASHI, S. V., BURCHARD, J., MAO, 

M., LI, B., CAVET, G. & LINSLEY, P. S. 2003. Expression profiling reveals off-target 

gene regulation by RNAi. Nat Biotech, 21, 635-637. 

JACKSON, A. L., BURCHARD, J., SCHELTER, J., CHAU, B. N., CLEARY, M., LIM, L. & 

LINSLEY, P. S. 2006. Widespread siRNA "off-target" transcript silencing mediated 

by seed region sequence complementarity. RNA, 12, 1179-87. 

JACKSON, A. L. & LINSLEY, P. S. 2010. Recognizing and avoiding siRNA off-target effects 

for target identification and therapeutic application. Nat Rev Drug Discov, 9, 57-67. 

JINEK, M., CHYLINSKI, K., FONFARA, I., HAUER, M., DOUDNA, J. A. & CHARPENTIER, 

E. 2012. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive 

Bacterial Immunity. Science, 337, 816-821. 

JOSEFSEN, K. & LEE, Y. 2011. Validation of RNAi by Real Time PCR. In: NIELSEN, H. (ed.) 

RNA. Humana Press. 

JUDSON, R. L., BABIARZ, J. E., VENERE, M. & BLELLOCH, R. 2009. Embryonic stem cell-

specific microRNAs promote induced pluripotency. Nat Biotechnol, 27, 459-61. 

KAJI, K., NORRBY, K., PACA, A., MILEIKOVSKY, M., MOHSENI, P. & WOLTJEN, K. 2009. 

Virus-free induction of pluripotency and subsequent excision of reprogramming 

factors. Nature, 458, 771-5. 



 181 

KANG, L., WANG, J., ZHANG, Y., KOU, Z. & GAO, S. 2009. iPS cells can support full-term 

development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 5, 135-

8. 

KAWAMATA, M. & NISHIMORI, K. 2006. Mice deficient in Dmrt7 show infertility with 

spermatogenic arrest at pachytene stage. FEBS Letters, 580, 6442-6446. 

KAWAMURA, T., SUZUKI, J., WANG, Y. V., MENENDEZ, S., MORERA, L. B., RAYA, A., 

WAHL, G. M. & IZPISUA BELMONTE, J. C. 2009. Linking the p53 tumour 

suppressor pathway to somatic cell reprogramming. Nature, 460, 1140-4. 

KAYKAS, A. & MOON, R. 2004. A plasmid-based system for expressing small interfering 

RNA libraries in mammalian cells. BMC Cell Biology, 5, 16. 

KHORSHID, M., HAUSSER, J., ZAVOLAN, M. & VAN NIMWEGEN, E. 2013. A biophysical 

miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat 

Methods, 10, 253-5. 

KIM, D., KIM, C. H., MOON, J. I., CHUNG, Y. G., CHANG, M. Y., HAN, B. S., KO, S., 

YANG, E., CHA, K. Y., LANZA, R. & KIM, K. S. 2009. Generation of human induced 

pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 

4, 472-6. 

KIM, S., NAMEKAWA, S. H., NISWANDER, L. M., WARD, J. O., LEE, J. T., BARDWELL, V. 

J. & ZARKOWER, D. 2007. A mammal-specific Doublesex homolog associates with 

male sex chromatin and is required for male meiosis. PLoS Genet, 3, e62. 

KING, T. J. & BRIGGS, R. 1956. Serial Transplantation of Embryonic Nuclei. Cold Spring 

Harbor Symposia on Quantitative Biology, 21, 271-290. 

KITTLER, R., PELLETIER, L., MA, C., POSER, I., FISCHER, S., HYMAN, A. A. & 

BUCHHOLZ, F. 2005. RNA interference rescue by bacterial artificial chromosome 

transgenesis in mammalian tissue culture cells. Proc Natl Acad Sci U S A, 102, 2396-

401. 

KOCHE, R. P., SMITH, Z. D., ADLI, M., GU, H., KU, M., GNIRKE, A., BERNSTEIN, B. E. & 

MEISSNER, A. 2011. Reprogramming factor expression initiates widespread 

targeted chromatin remodeling. Cell Stem Cell, 8, 96-105. 

KOGA, M., MATSUDA, M., KAWAMURA, T., SOGO, T., SHIGENO, A., NISHIDA, E. & 

EBISUYA, M. 2014. Foxd1 is a mediator and indicator of the cell reprogramming 

process. Nat Commun, 5, 3197. 

KOIKE-YUSA, H., LI, Y., TAN, E. P., VELASCO-HERRERA MDEL, C. & YUSA, K. 2014. 

Genome-wide recessive genetic screening in mammalian cells with a lentiviral 

CRISPR-guide RNA library. Nat Biotechnol, 32, 267-73. 

KUMAR, D., GUSTAFSSON, C. & KLESSIG, D. F. 2006. Validation of RNAi silencing 

specificity using synthetic genes: salicylic acid-binding protein 2 is required for 

innate immunity in plants. The Plant Journal, 45, 863-868. 



 182 

LAMBA, D. A., KARL, M. O., WARE, C. B. & REH, T. A. 2006. Efficient generation of retinal 

progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A, 103, 

12769-74. 

LANDSVERK, H. B., HÅKELIEN, A.-M., KÜNTZIGER, T., ROBL, J. M., SKÅLHEGG, B. S. & 

COLLAS, P. 2002. Reprogrammed gene expression in a somatic cell-free extract. 

EMBO Reports, 3, 384-389. 

LEE, B. C., KIM, M. K., JANG, G., OH, H. J., YUDA, F., KIM, H. J., SHAMIM, M. H., KIM, J. 

J., KANG, S. K., SCHATTEN, G. & HWANG, W. S. 2005. Dogs cloned from adult 

somatic cells. Nature, 436, 641-641. 

LI, H., COLLADO, M., VILLASANTE, A., STRATI, K., ORTEGA, S., CANAMERO, M., 

BLASCO, M. A. & SERRANO, M. 2009a. The Ink4/Arf locus is a barrier for iPS cell 

reprogramming. Nature, 460, 1136-9. 

LI, R., LIANG, J., NI, S., ZHOU, T., QING, X., LI, H., HE, W., CHEN, J., LI, F., ZHUANG, Q., 

QIN, B., XU, J., LI, W., YANG, J., GAN, Y., QIN, D., FENG, S., SONG, H., YANG, D., 

ZHANG, B., ZENG, L., LAI, L., ESTEBAN, M. A. & PEI, D. 2010. A mesenchymal-to-

epithelial transition initiates and is required for the nuclear reprogramming of 

mouse fibroblasts. Cell Stem Cell, 7, 51-63. 

LI, S., WANG, L., BERMAN, M. A., ZHANG, Y. & DORF, M. E. 2006. RNAi screen in mouse 

astrocytes identifies phosphatases that regulate NF-kappaB signaling. Mol Cell, 24, 

497-509. 

LI, W., WEI, W., ZHU, S., ZHU, J., SHI, Y., LIN, T., HAO, E., HAYEK, A., DENG, H. & 

DING, S. 2009b. Generation of rat and human induced pluripotent stem cells by 

combining genetic reprogramming and chemical inhibitors. Cell Stem Cell, 4, 16-9. 

LI, Y., ZHANG, Q., YIN, X., YANG, W., DU, Y., HOU, P., GE, J., LIU, C., ZHANG, W., 

ZHANG, X., WU, Y., LI, H., LIU, K., WU, C., SONG, Z., ZHAO, Y., SHI, Y. & DENG, 

H. 2011. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and 

small molecules. Cell Res, 21, 196-204. 

LI, Z. & RANA, T. M. 2012. A kinase inhibitor screen identifies small-molecule enhancers of 

reprogramming and iPS cell generation. Nat Commun, 3, 1085. 

LIANG, G., HE, J. & ZHANG, Y. 2012. Kdm2b promotes induced pluripotent stem cell 

generation by facilitating gene activation early in reprogramming. Nat Cell Biol, 14, 

457-66. 

LIANG, G., TARANOVA, O., XIA, K. & ZHANG, Y. 2010. Butyrate promotes induced 

pluripotent stem cell generation. J Biol Chem, 285, 25516-21. 

LIAO, B., BAO, X., LIU, L., FENG, S., ZOVOILIS, A., LIU, W., XUE, Y., CAI, J., GUO, X., 

QIN, B., ZHANG, R., WU, J., LAI, L., TENG, M., NIU, L., ZHANG, B., ESTEBAN, M. 

A. & PEI, D. 2011. MicroRNA Cluster 302–367 Enhances Somatic Cell 

Reprogramming by Accelerating a Mesenchymal-to-Epithelial Transition. Journal of 

Biological Chemistry, 286, 17359-17364. 



 183 

LIGHT, J. & MOLIN, S. 1982. The sites of action of the two copy number control functions of 

plasmid R1. Molecular and General Genetics MGG, 187, 486-493. 

LIGHT, J. & MOLIN, S. 1983. Post-transcriptional control of expression of the repA gene of 

plasmid R1 mediated by a small RNA molecule. The EMBO Journal, 2, 93-98. 

LIN, T., AMBASUDHAN, R., YUAN, X., LI, W., HILCOVE, S., ABUJAROUR, R., LIN, X., 

HAHM, H. S., HAO, E., HAYEK, A. & DING, S. 2009. A chemical platform for 

improved induction of human iPSCs. Nat Meth, 6, 805-808. 

LIU, L., LUO, G. Z., YANG, W., ZHAO, X., ZHENG, Q., LV, Z., LI, W., WU, H. J., WANG, 

L., WANG, X. J. & ZHOU, Q. 2010. Activation of the imprinted Dlk1-Dio3 region 

correlates with pluripotency levels of mouse stem cells. J Biol Chem, 285, 19483-90. 

LIU, X., SUN, H., QI, J., WANG, L., HE, S., LIU, J., FENG, C., CHEN, C., LI, W., GUO, Y., 

QIN, D., PAN, G., CHEN, J., PEI, D. & ZHENG, H. 2013. Sequential introduction of 

reprogramming factors reveals a time-sensitive requirement for individual factors 

and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol, 

15, 829-38. 

LU, D., DAVIS, M. P., ABREU-GOODGER, C., WANG, W., CAMPOS, L. S., SIEDE, J., 

VIGORITO, E., SKARNES, W. C., DUNHAM, I., ENRIGHT, A. J. & LIU, P. 2012. 

MiR-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse 

fibroblast cells to iPSCs. PLoS One, 7, e40938. 

LUCAS, D. & FRENETTE, P. S. 2014. Stem cells: Reprogramming finds its niche. Nature, 511, 

301-302. 

LUO, M., LING, T., XIE, W., SUN, H., ZHOU, Y., ZHU, Q., SHEN, M., ZONG, L., LYU, G., 

ZHAO, Y., YE, T., GU, J., TAO, W., LU, Z. & GRUMMT, I. 2013. NuRD blocks 

reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells, 31, 

1278-86. 

MA, H., WU, Y., DANG, Y., CHOI, J. G., ZHANG, J. & WU, H. 2014a. Pol III Promoters to 

Express Small RNAs: Delineation of Transcription Initiation. Mol Ther Nucleic Acids, 

3, e161. 

MA, H., ZHANG, J. & WU, H. 2014b. Designing Ago2-specific siRNA/shRNA to Avoid 

Competition with Endogenous miRNAs. Mol Ther Nucleic Acids, 3, e176. 

MACFARLAN, T. S., GIFFORD, W. D., AGARWAL, S., DRISCOLL, S., LETTIERI, K., 

WANG, J., ANDREWS, S. E., FRANCO, L., ROSENFELD, M. G., REN, B. & PFAFF, 

S. L. 2011. Endogenous retroviruses and neighboring genes are coordinately 

repressed by LSD1/KDM1A. Genes Dev, 25, 594-607. 

MADDALO, D., MANCHADO, E., CONCEPCION, C. P., BONETTI, C., VIDIGAL, J. A., 

HAN, Y. C., OGRODOWSKI, P., CRIPPA, A., REKHTMAN, N., DE STANCHINA, 

E., LOWE, S. W. & VENTURA, A. 2014. In vivo engineering of oncogenic 

chromosomal rearrangements with the CRISPR/Cas9 system. Nature, 516, 423-7. 



 184 

MAHERALI, N., AHFELDT, T., RIGAMONTI, A., UTIKAL, J., COWAN, C. & 

HOCHEDLINGER, K. 2008. A High-Efficiency System for the Generation and Study 

of Human Induced Pluripotent Stem Cells. Cell Stem Cell, 3, 340-345. 

MAHERALI, N. & HOCHEDLINGER, K. 2009. Tgfbeta signal inhibition cooperates in the 

induction of iPSCs and replaces Sox2 and cMyc. Curr Biol, 19, 1718-23. 

MAHERALI, N., SRIDHARAN, R., XIE, W., UTIKAL, J., EMINLI, S., ARNOLD, K., 

STADTFELD, M., YACHECHKO, R., TCHIEU, J., JAENISCH, R., PLATH, K. & 

HOCHEDLINGER, K. 2007. Directly reprogrammed fibroblasts show global 

epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1, 55-70. 

MALI, P., AACH, J., STRANGES, P. B., ESVELT, K. M., MOOSBURNER, M., KOSURI, S., 

YANG, L. & CHURCH, G. M. 2013a. CAS9 transcriptional activators for target 

specificity screening and paired nickases for cooperative genome engineering. Nat 

Biotechnol, 31, 833-8. 

MALI, P., CHOU, B. K., YEN, J., YE, Z., ZOU, J., DOWEY, S., BRODSKY, R. A., OHM, J. E., 

YU, W., BAYLIN, S. B., YUSA, K., BRADLEY, A., MEYERS, D. J., MUKHERJEE, C., 

COLE, P. A. & CHENG, L. 2010. Butyrate greatly enhances derivation of human 

induced pluripotent stem cells by promoting epigenetic remodeling and the 

expression of pluripotency-associated genes. Stem Cells, 28, 713-20. 

MALI, P., ESVELT, K. M. & CHURCH, G. M. 2013b. Cas9 as a versatile tool for engineering 

biology. Nat Methods, 10, 957-63. 

MALI, P., YANG, L., ESVELT, K. M., AACH, J., GUELL, M., DICARLO, J. E., NORVILLE, J. 

E. & CHURCH, G. M. 2013c. RNA-Guided Human Genome Engineering via Cas9. 

Science, 339, 823-826. 

MALI, P., YE, Z., HOMMOND, H. H., YU, X., LIN, J., CHEN, G., ZOU, J. & CHENG, L. 2008. 

Improved Efficiency and Pace of Generating Induced Pluripotent Stem Cells from 

Human Adult and Fetal Fibroblasts. STEM CELLS, 26, 1998-2005. 

MANSOUR, A. A., GAFNI, O., WEINBERGER, L., ZVIRAN, A., AYYASH, M., RAIS, Y., 

KRUPALNIK, V., ZERBIB, M., AMANN-ZALCENSTEIN, D., MAZA, I., GEULA, S., 

VIUKOV, S., HOLTZMAN, L., PRIBLUDA, A., CANAANI, E., HORN-SABAN, S., 

AMIT, I., NOVERSHTERN, N. & HANNA, J. H. 2012. The H3K27 demethylase Utx 

regulates somatic and germ cell epigenetic reprogramming. Nature, 488, 409-13. 

MANTEI, A., RUTZ, S., JANKE, M., KIRCHHOFF, D., JUNG, U., PATZEL, V., VOGEL, U., 

RUDEL, T., ANDREOU, I., WEBER, M. & SCHEFFOLD, A. 2008. siRNA 

stabilization prolongs gene knockdown in primary T lymphocytes. Eur J Immunol, 

38, 2616-25. 

MARION, R. M., STRATI, K., LI, H., MURGA, M., BLANCO, R., ORTEGA, S., 

FERNANDEZ-CAPETILLO, O., SERRANO, M. & BLASCO, M. A. 2009. A p53-

mediated DNA damage response limits reprogramming to ensure iPS cell genomic 

integrity. Nature, 460, 1149-53. 



 185 

MARRO, S., PANG, Z. P., YANG, N., TSAI, M. C., QU, K., CHANG, H. Y., SUDHOF, T. C. & 

WERNIG, M. 2011. Direct lineage conversion of terminally differentiated 

hepatocytes to functional neurons. Cell Stem Cell, 9, 374-82. 

MARTIN, G. R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured 

in medium conditioned by teratocarcinoma stem cells. Proceedings of the National 

Academy of Sciences of the United States of America, 78, 7634-7638. 

MARTINEZ, L. A., NAGUIBNEVA, I., LEHRMANN, H., VERVISCH, A., TCHENIO, T., 

LOZANO, G. & HAREL-BELLAN, A. 2002. Synthetic small inhibiting RNAs: 

efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl 

Acad Sci U S A, 99, 14849-54. 

MATZKE, M. A. & BIRCHLER, J. A. 2005. RNAi-mediated pathways in the nucleus. Nat Rev 

Genet, 6, 24-35. 

MEISSNER, A., WERNIG, M. & JAENISCH, R. 2007. Direct reprogramming of genetically 

unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol, 25, 1177-81. 

MELTON, D. A. 1985. Injected anti-sense RNAs specifically block messenger RNA 

translation in vivo. Proceedings of the National Academy of Sciences of the United States 

of America, 82, 144-148. 

MENG, X., NEISES, A., SU, R. J., PAYNE, K. J., RITTER, L., GRIDLEY, D. S., WANG, J., 

SHENG, M., LAU, K. H., BAYLINK, D. J. & ZHANG, X. B. 2012. Efficient 

reprogramming of human cord blood CD34+ cells into induced pluripotent stem 

cells with OCT4 and SOX2 alone. Mol Ther, 20, 408-16. 

MIKKELSEN, T. S., HANNA, J., ZHANG, X., KU, M., WERNIG, M., SCHORDERET, P., 

BERNSTEIN, B. E., JAENISCH, R., LANDER, E. S. & MEISSNER, A. 2008. Dissecting 

direct reprogramming through integrative genomic analysis. Nature, 454, 49-55. 

MILLER, V. M., XIA, H., MARRS, G. L., GOUVION, C. M., LEE, G., DAVIDSON, B. L. & 

PAULSON, H. L. 2003. Allele-specific silencing of dominant disease genes. Proc Natl 

Acad Sci U S A, 100, 7195-200. 

MITTAL, V. 2004. Improving the efficiency of RNA interference in mammals. Nat Rev Genet, 

5, 355-65. 

MIYOSHI, N., ISHII, H., NAGANO, H., HARAGUCHI, N., DEWI, D. L., KANO, Y., 

NISHIKAWA, S., TANEMURA, M., MIMORI, K., TANAKA, F., SAITO, T., 

NISHIMURA, J., TAKEMASA, I., MIZUSHIMA, T., IKEDA, M., YAMAMOTO, H., 

SEKIMOTO, M., DOKI, Y. & MORI, M. 2011. Reprogramming of mouse and human 

cells to pluripotency using mature microRNAs. Cell Stem Cell, 8, 633-8. 

MOAZED, D. 2009. Small RNAs in transcriptional gene silencing and genome defence. 

Nature, 457, 413-20. 

MOFFAT, J. & SABATINI, D. M. 2006. Building mammalian signalling pathways with RNAi 

screens. Nat Rev Mol Cell Biol, 7, 177-87. 



 186 

MOJICA, F. J., DIEZ-VILLASENOR, C., GARCIA-MARTINEZ, J. & SORIA, E. 2005. 

Intervening sequences of regularly spaced prokaryotic repeats derive from foreign 

genetic elements. J Mol Evol, 60, 174-82. 

MONFORT, A. & WUTZ, A. 2013. Breathing-in epigenetic change with vitamin C. EMBO 

Rep, 14, 337-46. 

NADALUTTI, C., VIIRI, K. M., KAUKINEN, K., MAKI, M. & LINDFORS, K. 2011. 

Extracellular transglutaminase 2 has a role in cell adhesion, whereas intracellular 

transglutaminase 2 is involved in regulation of endothelial cell proliferation and 

apoptosis. Cell Prolif, 44, 49-58. 

NAKAGAWA, M., KOYANAGI, M., TANABE, K., TAKAHASHI, K., ICHISAKA, T., AOI, 

T., OKITA, K., MOCHIDUKI, Y., TAKIZAWA, N. & YAMANAKA, S. 2008. 

Generation of induced pluripotent stem cells without Myc from mouse and human 

fibroblasts. Nat Biotechnol, 26, 101-6. 

NALLAGATLA, S. R., TORONEY, R. & BEVILACQUA, P. C. 2008. A brilliant disguise for 

self RNA: 5’-end and internal modifications of primary transcripts suppress 

elements of innate immunity. RNA Biology, 5, 140-144. 

NICHOLS, J., JONES, K., PHILLIPS, J. M., NEWLAND, S. A., ROODE, M., MANSFIELD, W., 

SMITH, A. & COOKE, A. 2009. Validated germline-competent embryonic stem cell 

lines from nonobese diabetic mice. Nat Med, 15, 814-8. 

NICHOLS, J. & SMITH, A. 2009. Naive and primed pluripotent states. Cell Stem Cell, 4, 487-

92. 

NICOLI, S., KNYPHAUSEN, C. P., ZHU, L. J., LAKSHMANAN, A. & LAWSON, N. D. 2012. 

miR-221 is required for endothelial tip cell behaviors during vascular development. 

Dev Cell, 22, 418-29. 

NISHIKAWA, S.-I., JAKT, L. M. & ERA, T. 2007. Embryonic stem-cell culture as a tool for 

developmental cell biology. Nat Rev Mol Cell Biol, 8, 502-507. 

NIWA, H., MIYAZAKI, J.-I. & SMITH, A. G. 2000. Quantitative expression of Oct-3/4 defines 

differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24, 372-376. 

O'MALLEY, J., SKYLAKI, S., IWABUCHI, K. A., CHANTZOURA, E., RUETZ, T., 

JOHNSSON, A., TOMLINSON, S. R., LINNARSSON, S. & KAJI, K. 2013. High-

resolution analysis with novel cell-surface markers identifies routes to iPS cells. 

Nature, 499, 88-91. 

OBOKATA, H., SASAI, Y., NIWA, H., KADOTA, M., ANDRABI, M., TAKATA, N., 

TOKORO, M., TERASHITA, Y., YONEMURA, S., VACANTI, C. A. & 

WAKAYAMA, T. 2014a. Bidirectional developmental potential in reprogrammed 

cells with acquired pluripotency. Nature, 505, 676-80. 

OBOKATA, H., WAKAYAMA, T., SASAI, Y., KOJIMA, K., VACANTI, M. P., NIWA, H., 

YAMATO, M. & VACANTI, C. A. 2014b. Stimulus-triggered fate conversion of 

somatic cells into pluripotency. Nature, 505, 641-7. 



 187 

ODORICO, J. S., KAUFMAN, D. S. & THOMSON, J. A. 2001. Multilineage Differentiation 

from Human Embryonic Stem Cell Lines. STEM CELLS, 19, 193-204. 

OGAWA, K., MATSUI, H., OHTSUKA, S. & NIWA, H. 2004. A novel mechanism for 

regulating clonal propagation of mouse ES cells. Genes to Cells, 9, 471-477. 

OHTSUKA, S., NISHIKAWA-TORIKAI, S. & NIWA, H. 2012. E-cadherin promotes 

incorporation of mouse epiblast stem cells into normal development. PLoS One, 7, 

e45220. 

OHTSUKA, S. & NIWA, H. 2015. The differential activation of intracellular signaling 

pathways confers the permissiveness of embryonic stem cell derivation from 

different mouse strains. Development, 142, 431-7. 

OKITA, K., ICHISAKA, T. & YAMANAKA, S. 2007. Generation of germline-competent 

induced pluripotent stem cells. Nature, 448, 313-7. 

OKITA, K., MATSUMURA, Y., SATO, Y., OKADA, A., MORIZANE, A., OKAMOTO, S., 

HONG, H., NAKAGAWA, M., TANABE, K., TEZUKA, K.-I., SHIBATA, T., 

KUNISADA, T., TAKAHASHI, M., TAKAHASHI, J., SAJI, H. & YAMANAKA, S. 

2011. A more efficient method to generate integration-free human iPS cells. Nat 

Meth, 8, 409-412. 

ONDER, T. T., KARA, N., CHERRY, A., SINHA, A. U., ZHU, N., BERNT, K. M., CAHAN, 

P., MARCARCI, B. O., UNTERNAEHRER, J., GUPTA, P. B., LANDER, E. S., 

ARMSTRONG, S. A. & DALEY, G. Q. 2012. Chromatin-modifying enzymes as 

modulators of reprogramming. Nature, 483, 598-602. 

ORKIN, S. H. & HOCHEDLINGER, K. 2011. Chromatin connections to pluripotency and 

cellular reprogramming. Cell, 145, 835-50. 

PADDISON, P. J., CAUDY, A. A., BERNSTEIN, E., HANNON, G. J. & CONKLIN, D. S. 2002. 

Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian 

cells. Genes Dev, 16, 948-58. 

PICHLMAIR, A., SCHULZ, O., TAN, C. P., NÄSLUND, T. I., LILJESTRÖM, P., WEBER, F. & 

REIS E SOUSA, C. 2006. RIG-I-Mediated Antiviral Responses to Single-Stranded 

RNA Bearing 5'-Phosphates. Science, 314, 997-1001. 

PLATH, K. & LOWRY, W. E. 2011. Progress in understanding reprogramming to the 

induced pluripotent state. Nat Rev Genet, 12, 253-65. 

POLEJAEVA, I. A., CHEN, S.-H., VAUGHT, T. D., PAGE, R. L., MULLINS, J., BALL, S., DAI, 

Y., BOONE, J., WALKER, S., AYARES, D. L., COLMAN, A. & CAMPBELL, K. H. S. 

2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 407, 

86-90. 

POLO, J. M., ANDERSSEN, E., WALSH, R. M., SCHWARZ, B. A., NEFZGER, C. M., LIM, S. 

M., BORKENT, M., APOSTOLOU, E., ALAEI, S., CLOUTIER, J., BAR-NUR, O., 

CHELOUFI, S., STADTFELD, M., FIGUEROA, M. E., ROBINTON, D., NATESAN, 



 188 

S., MELNICK, A., ZHU, J., RAMASWAMY, S. & HOCHEDLINGER, K. 2012. A 

molecular roadmap of reprogramming somatic cells into iPS cells. Cell, 151, 1617-32. 

POURCEL, C., SALVIGNOL, G. & VERGNAUD, G. 2005. CRISPR elements in Yersinia 

pestis acquire new repeats by preferential uptake of bacteriophage DNA, and 

provide additional tools for evolutionary studies. Microbiology, 151, 653-63. 

QIN, H., DIAZ, A., BLOUIN, L., LEBBINK, R. J., PATENA, W., TANBUN, P., LEPROUST, E. 

M., MCMANUS, M. T., SONG, J. S. & RAMALHO-SANTOS, M. 2014. Systematic 

identification of barriers to human iPSC generation. Cell, 158, 449-61. 

RAIS, Y., ZVIRAN, A., GEULA, S., GAFNI, O., CHOMSKY, E., VIUKOV, S., MANSOUR, A. 

A., CASPI, I., KRUPALNIK, V., ZERBIB, M., MAZA, I., MOR, N., BARAN, D., 

WEINBERGER, L., JAITIN, D. A., LARA-ASTIASO, D., BLECHER-GONEN, R., 

SHIPONY, Z., MUKAMEL, Z., HAGAI, T., GILAD, S., AMANN-ZALCENSTEIN, 

D., TANAY, A., AMIT, I., NOVERSHTERN, N. & HANNA, J. H. 2013. Deterministic 

direct reprogramming of somatic cells to pluripotency. Nature, 502, 65-70. 

RAN, F. A., HSU, P. D., LIN, C. Y., GOOTENBERG, J. S., KONERMANN, S., TREVINO, A. 

E., SCOTT, D. A., INOUE, A., MATOBA, S., ZHANG, Y. & ZHANG, F. 2013. Double 

nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 

154, 1380-9. 

RATHBONE, A. J., LIDDELL, S. & CAMPBELL, K. H. 2013. Proteomic analysis of early 

reprogramming events in murine somatic cells incubated with Xenopus laevis 

oocyte extracts demonstrates network associations with induced pluripotency 

markers. Cell Reprogram, 15, 269-80. 

REUBINOFF, B. E., PERA, M. F., FONG, C.-Y., TROUNSON, A. & BONGSO, A. 2000. 

Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. 

Nat Biotech, 18, 399-404. 

REYNOLDS, A., LEAKE, D., BOESE, Q., SCARINGE, S., MARSHALL, W. S. & 

KHVOROVA, A. 2004. Rational siRNA design for RNA interference. Nat Biotechnol, 

22, 326-30. 

RIDEOUT, W. M., EGGAN, K. & JAENISCH, R. 2001. Nuclear Cloning and Epigenetic 

Reprogramming of the Genome. Science, 293, 1093-1098. 

RIVAL-GERVIER, S., LO, M. Y., KHATTAK, S., PASCERI, P., LORINCZ, M. C. & ELLIS, J. 

2013. Kinetics and epigenetics of retroviral silencing in mouse embryonic stem cells 

defined by deletion of the D4Z4 element. Mol Ther, 21, 1536-50. 

ROCA, H., HERNANDEZ, J., WEIDNER, S., MCEACHIN, R. C., FULLER, D., SUD, S., 

SCHUMANN, T., WILKINSON, J. E., ZASLAVSKY, A., LI, H., MAHER, C. A., 

DAIGNAULT-NEWTON, S., HEALY, P. N. & PIENTA, K. J. 2013. Transcription 

factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in 

human cancer. PLoS One, 8, e76773. 



 189 

ROSENBERG, U. B., PREISS, A., SEIFERT, E., JACKLE, H. & KNIPPLE, D. C. 1985. 

Production of phenocopies by Kruppel antisense RNA injection into Drosophila 

embryos. Nature, 313, 703-706. 

SAGE, J. 2012. The retinoblastoma tumor suppressor and stem cell biology. Genes Dev, 26, 

1409-20. 

SAKURAI, K., TALUKDAR, I., PATIL, V. S., DANG, J., LI, Z., CHANG, K. Y., LU, C. C., 

DELORME-WALKER, V., DERMARDIROSSIAN, C., ANDERSON, K., HANEIN, D., 

YANG, C. S., WU, D., LIU, Y. & RANA, T. M. 2014. Kinome-wide functional 

analysis highlights the role of cytoskeletal remodeling in somatic cell 

reprogramming. Cell Stem Cell, 14, 523-34. 

SAMAVARCHI-TEHRANI, P., GOLIPOUR, A., DAVID, L., SUNG, H. K., BEYER, T. A., 

DATTI, A., WOLTJEN, K., NAGY, A. & WRANA, J. L. 2010. Functional genomics 

reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of 

somatic cell reprogramming. Cell Stem Cell, 7, 64-77. 

SANTHEKADUR, P. K., DAS, S. K., GREDLER, R., CHEN, D., SRIVASTAVA, J., 

ROBERTSON, C., BALDWIN, A. S., FISHER, P. B. & SARKAR, D. 2012. 

Multifunction Protein Staphylococcal Nuclease Domain Containing 1 (SND1) 

Promotes Tumor Angiogenesis in Human Hepatocellular Carcinoma through Novel 

Pathway That Involves Nuclear Factor κB and miR-221. The Journal of Biological 

Chemistry, 287, 13952-13958. 

SAXENA, S., JONSSON, Z. O. & DUTTA, A. 2003. Small RNAs with imperfect match to 

endogenous mRNA repress translation. Implications for off-target activity of small 

inhibitory RNA in mammalian cells. J Biol Chem, 278, 44312-9. 

SCHNERCH, A., CERDAN, C. & BHATIA, M. 2010. Distinguishing between mouse and 

human pluripotent stem cell regulation: the best laid plans of mice and men. Stem 

Cells, 28, 419-30. 

SCHWANK, G., KOO, B. K., SASSELLI, V., DEKKERS, J. F., HEO, I., DEMIRCAN, T., 

SASAKI, N., BOYMANS, S., CUPPEN, E., VAN DER ENT, C. K., NIEUWENHUIS, 

E. E., BEEKMAN, J. M. & CLEVERS, H. 2013. Functional repair of CFTR by 

CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem 

Cell, 13, 653-8. 

SCHWARZ, D. S., HUTVÁGNER, G., DU, T., XU, Z., ARONIN, N. & ZAMORE, P. D. 2003. 

Asymmetry in the Assembly of the RNAi Enzyme Complex. Cell, 115, 199-208. 

SEKIYA, S. & SUZUKI, A. 2011. Direct conversion of mouse fibroblasts to hepatocyte-like 

cells by defined factors. Nature, 475, 390-3. 

SEMIZAROV, D., FROST, L., SARTHY, A., KROEGER, P., HALBERT, D. N. & FESIK, S. W. 

2003. Specificity of short interfering RNA determined through gene expression 

signatures. Proc Natl Acad Sci U S A, 100, 6347-52. 

SHALEM, O., SANJANA, N. E., HARTENIAN, E., SHI, X., SCOTT, D. A., MIKKELSEN, T. 

S., HECKL, D., EBERT, B. L., ROOT, D. E., DOENCH, J. G. & ZHANG, F. 2014. 



 190 

Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science, 343, 84-

87. 

SHAO, L., FENG, W., SUN, Y., BAI, H., LIU, J., CURRIE, C., KIM, J., GAMA, R., WANG, Z., 

QIAN, Z., LIAW, L. & WU, W. S. 2009. Generation of iPS cells using defined factors 

linked via the self-cleaving 2A sequences in a single open reading frame. Cell Res, 19, 

296-306. 

SHI, Y., DESPONTS, C., DO, J. T., HAHM, H. S., SCHOLER, H. R. & DING, S. 2008. 

Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and 

Klf4 with small-molecule compounds. Cell Stem Cell, 3, 568-74. 

SHUFARO, Y. & REUBINOFF, B. E. 2004. Therapeutic applications of embryonic stem cells. 

Best Pract Res Clin Obstet Gynaecol, 18, 909-27. 

SILVA, J., BARRANDON, O., NICHOLS, J., KAWAGUCHI, J., THEUNISSEN, T. W. & 

SMITH, A. 2008a. Promotion of reprogramming to ground state pluripotency by 

signal inhibition. PLoS Biol, 6, e253. 

SILVA, J., NICHOLS, J., THEUNISSEN, T. W., GUO, G., VAN OOSTEN, A. L., 

BARRANDON, O., WRAY, J., YAMANAKA, S., CHAMBERS, I. & SMITH, A. 2009. 

Nanog Is the Gateway to the Pluripotent Ground State. Cell, 138, 722-737. 

SILVA, J. M., LI, M. Z., CHANG, K., GE, W., GOLDING, M. C., RICKLES, R. J., SIOLAS, D., 

HU, G., PADDISON, P. J., SCHLABACH, M. R., SHETH, N., BRADSHAW, J., 

BURCHARD, J., KULKARNI, A., CAVET, G., SACHIDANANDAM, R., 

MCCOMBIE, W. R., CLEARY, M. A., ELLEDGE, S. J. & HANNON, G. J. 2005. 

Second-generation shRNA libraries covering the mouse and human genomes. Nat 

Genet, 37, 1281-8. 

SILVA, J. M., MARRAN, K., PARKER, J. S., SILVA, J., GOLDING, M., SCHLABACH, M. R., 

ELLEDGE, S. J., HANNON, G. J. & CHANG, K. 2008b. Profiling Essential Genes in 

Human Mammary Cells by Multiplex RNAi Screening. Science, 319, 617-620. 

SINGH, S., NARANG, A. S. & MAHATO, R. I. 2011. Subcellular fate and off-target effects of 

siRNA, shRNA, and miRNA. Pharm Res, 28, 2996-3015. 

SMITH, A. G., HEATH, J. K., DONALDSON, D. D., WONG, G. G., MOREAU, J., STAHL, M. 

& ROGERS, D. 1988. Inhibition of pluripotential embryonic stem cell differentiation 

by purified polypeptides. Nature, 336, 688-690. 

SMITH, Z. D., NACHMAN, I., REGEV, A. & MEISSNER, A. 2010. Dynamic single-cell 

imaging of direct reprogramming reveals an early specifying event. Nat Biotechnol, 

28, 521-6. 

SOMMER, C. A., STADTFELD, M., MURPHY, G. J., HOCHEDLINGER, K., KOTTON, D. N. 

& MOSTOSLAVSKY, G. 2009. Induced Pluripotent Stem Cell Generation Using a 

Single Lentiviral Stem Cell Cassette. STEM CELLS, 27, 543-549. 



 191 

SOUFI, A., DONAHUE, G. & ZARET, K. S. 2012. Facilitators and impediments of the 

pluripotency reprogramming factors' initial engagement with the genome. Cell, 151, 

994-1004. 

SPIKE, B. T. & WAHL, G. M. 2011. p53, Stem Cells, and Reprogramming: Tumor 

Suppression beyond Guarding the Genome. Genes Cancer, 2, 404-19. 

SRIDHARAN, R., TCHIEU, J., MASON, M. J., YACHECHKO, R., KUOY, E., HORVATH, S., 

ZHOU, Q. & PLATH, K. 2009. Role of the murine reprogramming factors in the 

induction of pluripotency. Cell, 136, 364-77. 

STADTFELD, M., APOSTOLOU, E., AKUTSU, H., FUKUDA, A., FOLLETT, P., NATESAN, 

S., KONO, T., SHIODA, T. & HOCHEDLINGER, K. 2010. Aberrant silencing of 

imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. 

Nature, 465, 175-81. 

STADTFELD, M., APOSTOLOU, E., FERRARI, F., CHOI, J., WALSH, R. M., CHEN, T., OOI, 

S. S., KIM, S. Y., BESTOR, T. H., SHIODA, T., PARK, P. J. & HOCHEDLINGER, K. 

2012. Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation 

of all-iPS cell mice from terminally differentiated B cells. Nat Genet, 44, 398-405, S1-2. 

STADTFELD, M., BRENNAND, K. & HOCHEDLINGER, K. 2008a. Reprogramming of 

pancreatic beta cells into induced pluripotent stem cells. Curr Biol, 18, 890-4. 

STADTFELD, M., MAHERALI, N., BREAULT, D. T. & HOCHEDLINGER, K. 2008b. 

Defining molecular cornerstones during fibroblast to iPS cell reprogramming in 

mouse. Cell Stem Cell, 2, 230-40. 

STADTFELD, M., NAGAYA, M., UTIKAL, J., WEIR, G. & HOCHEDLINGER, K. 2008c. 

Induced Pluripotent Stem Cells Generated Without Viral Integration. Science, 322, 

945-949. 

STEPHENSON, E. L., MASON, C. & BRAUDE, P. R. 2009. Preimplantation genetic diagnosis 

as a source of human embryonic stem cells for disease research and drug discovery. 

BJOG, 116, 158-65. 

SUBRAMANYAM, D., LAMOUILLE, S., JUDSON, R. L., LIU, J. Y., BUCAY, N., DERYNCK, 

R. & BLELLOCH, R. 2011. Multiple targets of miR-302 and miR-372 promote 

reprogramming of human fibroblasts to induced pluripotent stem cells. Nat 

Biotechnol, 29, 443-8. 

SWIECH, L., HEIDENREICH, M., BANERJEE, A., HABIB, N., LI, Y., TROMBETTA, J., SUR, 

M. & ZHANG, F. 2015. In vivo interrogation of gene function in the mammalian 

brain using CRISPR-Cas9. Nat Biotechnol, 33, 102-6. 

SZABO, E., RAMPALLI, S., RISUENO, R. M., SCHNERCH, A., MITCHELL, R., FIEBIG-

COMYN, A., LEVADOUX-MARTIN, M. & BHATIA, M. 2010. Direct conversion of 

human fibroblasts to multilineage blood progenitors. Nature, 468, 521-6. 



 192 

TAKAHASHI, K., TANABE, K., OHNUKI, M., NARITA, M., ICHISAKA, T., TOMODA, K. 

& YAMANAKA, S. 2007. Induction of pluripotent stem cells from adult human 

fibroblasts by defined factors. Cell, 131, 861-72. 

TAKAHASHI, K., TANABE, K., OHNUKI, M., NARITA, M., SASAKI, A., YAMAMOTO, M., 

NAKAMURA, M., SUTOU, K., OSAFUNE, K. & YAMANAKA, S. 2014. Induction of 

pluripotency in human somatic cells via a transient state resembling primitive 

streak-like mesendoderm. Nat Commun, 5, 3678. 

TAKAHASHI, K. & YAMANAKA, S. 2006. Induction of pluripotent stem cells from mouse 

embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663-76. 

TESAR, P. J., CHENOWETH, J. G., BROOK, F. A., DAVIES, T. J., EVANS, E. P., MACK, D. 

L., GARDNER, R. L. & MCKAY, R. D. 2007. New cell lines from mouse epiblast 

share defining features with human embryonic stem cells. Nature, 448, 196-9. 

THOMSON, J. A., ITSKOVITZ-ELDOR, J., SHAPIRO, S. S., WAKNITZ, M. A., SWIERGIEL, 

J. J., MARSHALL, V. S. & JONES, J. M. 1998. Embryonic Stem Cell Lines Derived 

from Human Blastocysts. Science, 282, 1145-1147. 

TONG, M., LV, Z., LIU, L., ZHU, H., ZHENG, Q. Y., ZHAO, X. Y., LI, W., WU, Y. B., 

ZHANG, H. J., WU, H. J., LI, Z. K., ZENG, F., WANG, L., WANG, X. J., SHA, J. H. & 

ZHOU, Q. 2011. Mice generated from tetraploid complementation competent iPS 

cells show similar developmental features as those from ES cells but are prone to 

tumorigenesis. Cell Res, 21, 1634-7. 

TZATSOS, A., PFAU, R., KAMPRANIS, S. C. & TSICHLIS, P. N. 2009. Ndy1/KDM2B 

immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus. Proc 

Natl Acad Sci U S A, 106, 2641-6. 

UTIKAL, J., POLO, J. M., STADTFELD, M., MAHERALI, N., KULALERT, W., WALSH, R. 

M., KHALIL, A., RHEINWALD, J. G. & HOCHEDLINGER, K. 2009. 

Immortalization eliminates a roadblock during cellular reprogramming into iPS 

cells. Nature, 460, 1145-8. 

VALENCIA-SANCHEZ, M. A., LIU, J., HANNON, G. J. & PARKER, R. 2006. Control of 

translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 20, 515-24. 

VALLIER, L., ALEXANDER, M. & PEDERSEN, R. A. 2005. Activin/Nodal and FGF 

pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell 

Sci, 118, 4495-509. 

VASSILEV, L. T., VU, B. T., GRAVES, B., CARVAJAL, D., PODLASKI, F., FILIPOVIC, Z., 

KONG, N., KAMMLOTT, U., LUKACS, C., KLEIN, C., FOTOUHI, N. & LIU, E. A. 

2004. In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of 

MDM2. Science, 303, 844-848. 

VIERBUCHEN, T., OSTERMEIER, A., PANG, Z. P., KOKUBU, Y., SUDHOF, T. C. & 

WERNIG, M. 2010. Direct conversion of fibroblasts to functional neurons by defined 

factors. Nature, 463, 1035-41. 



 193 

VODICKA, M. 2001. Determinants for Lentiviral Infection of Non-Dividing Cells. Somatic 

Cell and Molecular Genetics, 26, 35-49. 

WANG, H., HU, Y.-C., MARKOULAKI, S., WELSTEAD, G. G., CHENG, A. W., SHIVALILA, 

C. S., PYNTIKOVA, T., DADON, D. B., VOYTAS, D. F., BOGDANOVE, A. J., PAGE, 

D. C. & JAENISCH, R. 2013a. TALEN-mediated editing of the mouse Y 

chromosome. Nat Biotech, 31, 530-532. 

WANG, H., YANG, H., SHIVALILA, C. S., DAWLATY, M. M., CHENG, A. W., ZHANG, F. 

& JAENISCH, R. 2013b. One-step generation of mice carrying mutations in multiple 

genes by CRISPR/Cas-mediated genome engineering. Cell, 153, 910-8. 

WANG, T., CHEN, K., ZENG, X., YANG, J., WU, Y., SHI, X., QIN, B., ZENG, L., ESTEBAN, 

M. A., PAN, G. & PEI, D. 2011. The histone demethylases Jhdm1a/1b enhance 

somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell, 9, 575-

87. 

WANG, T., SHI, S. B. & SHA, H. Y. 2013c. MicroRNAs in regulation of pluripotency and 

somatic cell reprogramming: small molecule with big impact. RNA Biol, 10, 1255-61. 

WANG, T., WEI, J. J., SABATINI, D. M. & LANDER, E. S. 2014. Genetic Screens in Human 

Cells Using the CRISPR-Cas9 System. Science, 343, 80-84. 

WARE, C. B., WANG, L., MECHAM, B. H., SHEN, L., NELSON, A. M., BAR, M., LAMBA, 

D. A., DAUPHIN, D. S., BUCKINGHAM, B., ASKARI, B., LIM, R., TEWARI, M., 

GARTLER, S. M., ISSA, J. P., PAVLIDIS, P., DUAN, Z. & BLAU, C. A. 2009. Histone 

deacetylase inhibition elicits an evolutionarily conserved self-renewal program in 

embryonic stem cells. Cell Stem Cell, 4, 359-69. 

WARREN, L., MANOS, P. D., AHFELDT, T., LOH, Y. H., LI, H., LAU, F., EBINA, W., 

MANDAL, P. K., SMITH, Z. D., MEISSNER, A., DALEY, G. Q., BRACK, A. S., 

COLLINS, J. J., COWAN, C., SCHLAEGER, T. M. & ROSSI, D. J. 2010. Highly 

efficient reprogramming to pluripotency and directed differentiation of human cells 

with synthetic modified mRNA. Cell Stem Cell, 7, 618-30. 

WARREN, L., NI, Y., WANG, J. & GUO, X. 2012. Feeder-free derivation of human induced 

pluripotent stem cells with messenger RNA. Sci Rep, 2, 657. 

WEN, J., PARKER, B. J., JACOBSEN, A. & KROGH, A. 2011. MicroRNA transfection and 

AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action. RNA, 

17, 820-34. 

WERNIG, M., LENGNER, C. J., HANNA, J., LODATO, M. A., STEINE, E., FOREMAN, R., 

STAERK, J., MARKOULAKI, S. & JAENISCH, R. 2008. A drug-inducible transgenic 

system for direct reprogramming of multiple somatic cell types. Nat Biotechnol, 26, 

916-24. 

WERNIG, M., MEISSNER, A., FOREMAN, R., BRAMBRINK, T., KU, M., HOCHEDLINGER, 

K., BERNSTEIN, B. E. & JAENISCH, R. 2007. In vitro reprogramming of fibroblasts 

into a pluripotent ES-cell-like state. Nature, 448, 318-24. 



 194 

WILLIAMS, R. L., HILTON, D. J., PEASE, S., WILLSON, T. A., STEWART, C. L., GEARING, 

D. P., WAGNER, E. F., METCALF, D., NICOLA, N. A. & GOUGH, N. M. 1988. 

Myeloid leukaemia inhibitory factor maintains the developmental potential of 

embryonic stem cells. Nature, 336, 684-687. 

WILMUT, I., SCHNIEKE, A. E., MCWHIR, J., KIND, A. J. & CAMPBELL, K. H. S. 1997. 

Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810-813. 

WOLF, D. & GOFF, S. P. 2007. TRIM28 mediates primer binding site-targeted silencing of 

murine leukemia virus in embryonic cells. Cell, 131, 46-57. 

WOLF, D. & GOFF, S. P. 2009. Embryonic stem cells use ZFP809 to silence retroviral DNAs. 

Nature, 458, 1201-4. 

WOLTJEN, K., MICHAEL, I. P., MOHSENI, P., DESAI, R., MILEIKOVSKY, M., 

HAMALAINEN, R., COWLING, R., WANG, W., LIU, P., GERTSENSTEIN, M., 

KAJI, K., SUNG, H. K. & NAGY, A. 2009. piggyBac transposition reprograms 

fibroblasts to induced pluripotent stem cells. Nature, 458, 766-70. 

XIE, F., YE, L., CHANG, J. C., BEYER, A. I., WANG, J., MUENCH, M. O. & KAN, Y. W. 2014. 

Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs 

using CRISPR/Cas9 and piggyBac. Genome Res, 24, 1526-33. 

YAKUBOV, E., RECHAVI, G., ROZENBLATT, S. & GIVOL, D. 2010. Reprogramming of 

human fibroblasts to pluripotent stem cells using mRNA of four transcription 

factors. Biochem Biophys Res Commun, 394, 189-93. 

YAMANAKA, S. 2009. Elite and stochastic models for induced pluripotent stem cell 

generation. Nature, 460, 49-52. 

YAMASAKI, S., NABESHIMA, K., SOTOMARU, Y., TAGUCHI, Y., MUKASA, H., FURUE, 

M. K., SATO, J. D. & OKAMOTO, T. 2013. Long-term serial cultivation of mouse 

induced pluripotent stem cells in serum-free and feeder-free defined medium. Int J 

Dev Biol, 57, 715-24. 

YANG, C. S., CHANG, K. Y. & RANA, T. M. 2014. Genome-wide functional analysis reveals 

factors needed at the transition steps of induced reprogramming. Cell Rep, 8, 327-37. 

YANG, C. S., LOPEZ, C. G. & RANA, T. M. 2011. Discovery of nonsteroidal anti-

inflammatory drug and anticancer drug enhancing reprogramming and induced 

pluripotent stem cell generation. Stem Cells, 29, 1528-36. 

YANG, C. S. & RANA, T. M. 2013. Learning the molecular mechanisms of the 

reprogramming factors: let's start from microRNAs. Mol Biosyst, 9, 10-7. 

YANG, S. H., KALKAN, T., MORRISROE, C., SMITH, A. & SHARROCKS, A. D. 2012. A 

genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway 

regulators during embryonic stem cell differentiation. PLoS Genet, 8, e1003112. 



 195 

YI, R., DOEHLE, B. P., QIN, Y., MACARA, I. G. & CULLEN, B. R. 2005. Overexpression of 

exportin 5 enhances RNA interference mediated by short hairpin RNAs and 

microRNAs. RNA, 11, 220-6. 

YI, R., QIN, Y., MACARA, I. G. & CULLEN, B. R. 2003. Exportin-5 mediates the nuclear 

export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17, 3011-6. 

YING, Q.-L., NICHOLS, J., CHAMBERS, I. & SMITH, A. 2003. BMP Induction of Id Proteins 

Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in 

Collaboration with STAT3. Cell, 115, 281-292. 

YING, Q. L., WRAY, J., NICHOLS, J., BATLLE-MORERA, L., DOBLE, B., WOODGETT, J., 

COHEN, P. & SMITH, A. 2008. The ground state of embryonic stem cell self-

renewal. Nature, 453, 519-23. 

YOO, A. S., SUN, A. X., LI, L., SHCHEGLOVITOV, A., PORTMANN, T., LI, Y., LEE-

MESSER, C., DOLMETSCH, R. E., TSIEN, R. W. & CRABTREE, G. R. 2011. 

MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 476, 228-

31. 

YU, J., HU, K., SMUGA-OTTO, K., TIAN, S., STEWART, R., SLUKVIN, I. I. & THOMSON, J. 

A. 2009. Human Induced Pluripotent Stem Cells Free of Vector and Transgene 

Sequences. Science, 324, 797-801. 

YU, J., VODYANIK, M. A., SMUGA-OTTO, K., ANTOSIEWICZ-BOURGET, J., FRANE, J. L., 

TIAN, S., NIE, J., JONSDOTTIR, G. A., RUOTTI, V., STEWART, R., SLUKVIN, I. I. & 

THOMSON, J. A. 2007. Induced Pluripotent Stem Cell Lines Derived from Human 

Somatic Cells. Science, 318, 1917-1920. 

YUSA, K., RAD, R., TAKEDA, J. & BRADLEY, A. 2009. Generation of transgene-free induced 

pluripotent mouse stem cells by the piggyBac transposon. Nat Meth, 6, 363-369. 

YUSA, K., ZHOU, L., LI, M. A., BRADLEY, A. & CRAIG, N. L. 2011. A hyperactive piggyBac 

transposase for mammalian applications. Proceedings of the National Academy of 

Sciences, 108, 1531-1536. 

ZENG, Y., YI, R. & CULLEN, B. R. 2003. MicroRNAs and small interfering RNAs can inhibit 

mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A, 100, 9779-84. 

ZHANG, H., MA, Y., GU, J., LIAO, B., LI, J., WONG, J. & JIN, Y. 2012. Reprogramming of 

somatic cells via TAT-mediated protein transduction of recombinant factors. 

Biomaterials, 33, 5047-55. 

ZHANG, Z. & WU, W. S. 2013. Sodium butyrate promotes generation of human induced 

pluripotent stem cells through induction of the miR302/367 cluster. Stem Cells Dev, 

22, 2268-77. 

ZHAO, X. Y., LI, W., LV, Z., LIU, L., TONG, M., HAI, T., HAO, J., GUO, C. L., MA, Q. W., 

WANG, L., ZENG, F. & ZHOU, Q. 2009. iPS cells produce viable mice through 

tetraploid complementation. Nature, 461, 86-90. 



 196 

ZHAO, Y., YIN, X., QIN, H., ZHU, F., LIU, H., YANG, W., ZHANG, Q., XIANG, C., HOU, 

P., SONG, Z., LIU, Y., YONG, J., ZHANG, P., CAI, J., LIU, M., LI, H., LI, Y., QU, X., 

CUI, K., ZHANG, W., XIANG, T., WU, Y., ZHAO, Y., LIU, C., YU, C., YUAN, K., 

LOU, J., DING, M. & DENG, H. 2008. Two supporting factors greatly improve the 

efficiency of human iPSC generation. Cell Stem Cell, 3, 475-9. 

ZHENG, L., LIU, J., BATALOV, S., ZHOU, D., ORTH, A., DING, S. & SCHULTZ, P. G. 2004. 

An approach to genomewide screens of expressed small interfering RNAs in 

mammalian cells. Proc Natl Acad Sci U S A, 101, 135-40. 

ZHOU, H., WU, S., JOO, J. Y., ZHU, S., HAN, D. W., LIN, T., TRAUGER, S., BIEN, G., YAO, 

S., ZHU, Y., SIUZDAK, G., SCHOLER, H. R., DUAN, L. & DING, S. 2009. 

Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem 

Cell, 4, 381-4. 

ZHOU, Q., BROWN, J., KANAREK, A., RAJAGOPAL, J. & MELTON, D. A. 2008. In vivo 

reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455, 627-32. 

ZHOU, W. & FREED, C. R. 2009. Adenoviral Gene Delivery Can Reprogram Human 

Fibroblasts to Induced Pluripotent Stem Cells. STEM CELLS, 27, 2667-2674. 

ZHU, S., LI, W., ZHOU, H., WEI, W., AMBASUDHAN, R., LIN, T., KIM, J., ZHANG, K. & 

DING, S. 2010. Reprogramming of human primary somatic cells by OCT4 and 

chemical compounds. Cell Stem Cell, 7, 651-5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 197 

Appendix: Relevant Publication 

 

piggyBac transposon mediated reprogramming and flow 

cytometry analysis of CD44 and ICAM1 cell-surface marker 

changes 

 



Springer Protocols
 

piggyBac transposon mediated reprogramming and flow cytometry analysis of CD44
and ICAM1 cell-surface marker changes

--Manuscript Draft--
 

Manuscript Number:

Full Title: piggyBac transposon mediated reprogramming and flow cytometry analysis of CD44
and ICAM1 cell-surface marker changes

Article Type: Protocol Chapters

Corresponding Author: keisuke Kaji, Ph.D.
University of Edinburgh
Edinburgh, UNITED KINGDOM

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Edinburgh

Corresponding Author's Secondary
Institution:

First Author: Sara Brightwell

First Author Secondary Information:

Order of Authors: Sara Brightwell

keisuke Kaji, Ph.D.

Order of Authors Secondary Information:

Abstract: Generation of iPSCs is inefficient and the molecular mechanisms underlying
reprogramming are not well understood. While several studies have demonstrated that
reprogramming is not entirely a random process and contains predictable step-wise
changes, varying degrees of cellular heterogeneity that arise in different
reprogramming systems can obscure the process. Among several reprogramming
systems available, delivery of polycistronic reprogramming factor expression cassettes
with piggyBac transposon into mouse embryonic fibroblasts (MEFs) is one of the
simplest and most robust reprogramming approaches that provides a low background
of partially reprogrammed cells. Using two novel cell surface markers, ICAM1 and
CD44, clear cell population changes undergoing reprogramming can be observed over
a time course upon induction of the reprogramming factors.  Consequently, this
technique allows for easy identification of factors that enhance or delay
reprogramming, and can be a useful strategy in elucidating key mechanisms for
efficient generation of iPSCs.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



1 

 

piggyBac transposon mediated reprogramming and 

flow cytometry analysis of CD44 and ICAM1 

cell-surface marker changes  

 

Sara Brightwell and Keisuke Kaji 

 

Summary 

Generation of iPSCs is inefficient and the molecular mechanisms underlying reprogramming are not 

well understood. While several studies have demonstrated that reprogramming is not entirely a 

random process and contains predictable step-wise changes, varying degrees of cellular 

heterogeneity that arise in different reprogramming systems can obscure the process. Among 

several reprogramming systems available, delivery of polycistronic reprogramming factor 

expression cassettes with piggyBac transposon into mouse embryonic fibroblasts (MEFs) is one of 

the simplest and most robust reprogramming approaches that provides a low background of 

partially reprogrammed cells. Using two novel cell surface markers, ICAM1 and CD44, clear cell 

population changes undergoing reprogramming can be observed over a time course upon induction 

of the reprogramming factors.  Consequently, this technique allows for easy identification of factors 

that enhance or delay reprogramming, and can be a useful strategy in elucidating key mechanisms 

for efficient generation of iPSCs. 

Manuscript
Click here to download Manuscript: piggyBac reprogramming and FACS_SB_KK.docx 
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Key words: Induced pluripotent stem cells (iPSCs), reprogramming, mouse embryonic fibroblasts 

(MEF), piggyBac transposon, flow cytometry, ICAM1 (CD54), CD44, Nanog-GFP. 

 

1. Introduction 

piggyBac (PB) transposon is the most active and widely used DNA transposon for efficient gene 

delivery. It can be handled as conventional plasmids without safety cabinets and shows high 

integration efficiency when co-transfected together with PB transferase which catalyses the 

integration of PB transposon[1]. Among several strategies to introduce Yamanaka reprogramming 

factors, piggyBac (PB) transposon is one of the easiest and safest tools to generate iPS cells 

(iPSCs)[2-4]. Particularly, in combination with polycistronic cassettes of reprogramming factors 

taking advantage of self-cleaving 2A-peptides, generation of iPSCs is robust and highly 

reproducible from mouse embryonic fibroblasts, which are most commonly used to study molecular 

mechanisms of reprogramming. Recently we reported a PB reprogramming system using cells 

expressing all 4 reprogramming factors, Oct4, Sox2, Klf4 and c-Myc, as visualized by 

ires-mOrange. We demonstrated that almost all colonies expressing mOrange can activate a 

pluripotency marker, Nanog-GFP[5], indicating minimal background of partially reprogrammed 

cells[6]. Using this system we have also demonstrated stepwise progression of reprogramming 

towards iPSCs with flow cytometry using ICAM1, CD44, and Nanog-GFP reporter as markers [6]. 
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This approach allows detailed analysis of reprogramming kinetics, or the effect of factors of interest, 

which can be added or removed from the standard reprogramming conditions, providing a strong 

tool to investigate molecular mechanisms of reprogramming. In this protocol, we describe how to 

reprogram MEFs with PB transposon and analyse the marker expression changes during 

reprogramming with flow cytometry.     

 

2. Materials 

2.1 Reprogramming materials 

1. Mouse embryonic fibroblasts (MEFs). We use MEFs from E12.5 embryos with 

Nanog-GFP reporter to identify iPSC colonies live[5].  While Oct4-GFP reporter is 

commonly used to identify iPSC colonies, we found up-regulation of endogenous Oct4 

occurs much earlier than many other pluripotency genes in the following protocol as also 

shown in other systems[6-8]. Reporter system and/or markers for iPSC need to be chosen 

with great care. Reprogramming efficiency with the following method is largely affected by 

passage number/proliferation rate of MEFs. We usually use MEFs less than passage 3 for 

reprogramming experiments. We recommend culturing MEFs in the presence of Fgf2 and 

heparin (MEF medium as below) for propagation to delay senescence.  

2. Basic medium consists of 500 ml of GMEM (Sigma, G5154) supplemented with 51 ml foetal 

calf serum (FCS, Invitrogen, 10270, Batch 40F0240K) (see Note 1), 5.5 ml MEM 
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non-essential amino acids (100X, Invitrogen, 11140-036), 1140 μl 50 mM 2-mercaptoethanol 

(Life Technologies, 31350010), 550 μl LIF (100,000 units/ml, homemade), 2.5 ml 

penicillin/streptomycin (10,000 U/ml Penicillin, 10,000 μg/ml Streptomycin, Invitrogen, 

15140-122), 5.5 ml 100 mM sodium pyruvate (Invitrogen 11360-039), and 5.5 ml 200 mM 

l-glutamine (Invitrogen, 25030-024). 

3.  MEF medium is supplemented with 10ng/ml Fgf2 (Peprotec 100-18-B) and 1 g/ml 

heparin (Sigma, H3149) to the basic medium before use. Fgf2 10,000x stock (100 g/ml), 

heparin 1000x stock (1 mg/ml) are stored at -80 C for long term, and at 4C for less than 1 

month. Do not repeat freeze and thaw. 

4. Transfection medium is MEF medium without penicillin/streptomycin and heparin. 

5. Reprogramming medium is supplemented with 500 nM Alk4/5/7 inhibitor (Alki, A83-01, 

TOCRIS Bioscience, 2939), 10 μg/ml vitamin C (VitC, Sigma, 1000731348) and 1 μg/ml 

Doxycycline (Dox, Sigma, D9891-1G) (see Note 2, 3). Alki 10,000x stock (5 mM), VitC 

5,000x stock (50 mg/ml), Dox 1,000x stock (1 mg/ml) are stored at -80C for long term, and 

at -20C for less than 1 month. 

6. Dulbecco’s phosphate buffered saline (PBS, Sigma, D8537) 

7. Trypsin EDTA (Invitrogen, 15090-046) 

8. Fugene HD (Promega, E2311) 

9. Plasmids  
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PB-TAP IRI attP 2LMKOSimO (piggyBac (PB) transposon for Dox-inducible expression of 

2A peptide linked Myc, Klf4, Oct4, Sox2 reprogramming factors followed by ires-mOrange) 

Available upon request to keisuke.kaji@ed.ac.uk. PB-CAG-rtTA (PB transposon for 

constitutive rtTA expression vector), pCMV-hyPBase (constitutive piggyback transposase 

(PBase) expression vector). PB-CAG-rtTA and pCMV-hyPBase are available from 

Wellcome Trust Sanger Institute 

(http://www.sanger.ac.uk/form/-WcLcvb-BStKQEt0xeg5MjA).  

10.  Opti-MEM  (Life Technologies, 31985062) 

 

2.2 FACS analysis materials 

1. Anti-mouse CD54 (ICAM1) biotin, eBioscience, 13-0541-82. 

2. Anti-Human/Mouse CD44 APC, eBioscience, 17-0441-82. 

3. Streptavidin PE-Cy7, eBioscience, 25-431-82. 

4. FACS buffer (2% FCS in PBS). 

5. Polystyrene round bottom FACS tubes with or without strainer lid (BD Falcon, 352235 or 

352054) 

 

3. Methods 
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3.1 Reprogramming of MEF with PB transposon 

1. Day -2; Seed 1.5x10
5
 MEF per well of a 6 well plate in 2.5 ml transfection medium. 

Penicillin/streptomycin and heparin can decrease cell viability when Fugene/DNA mix is 

added, therefore we use transfection medium from this point. 

2. Day -1; Prepare the following DNA mix in an Eppendorf tube per well; PB-TAP IRI attP 

2LMKOSimO 0.5 g, PB-CAG-rtTA 0.5 g, pCMV-hyPBase 0.5 g (total 1.5 g DNA), 

and add 100 l of  Opti-MEM (A). In another tube, prepare 100 l of Opti-MEM and add 6 

ul of Fugene HD (B). Mix A and B, and add to MEFs immediately. It is not necessary to 

incubate the DNA Fugene mix at room temperature, or change medium.    

3. Day 0; Change medium to reprogramming medium. Toxicity of transfection with Fugene 

HD is minimal and the wells should be 70-80% confluent by this time. 

4. mOrange expression should be visible 24 hours after changing medium with a fluorescence 

microscope. Transfection efficiency at day 2 is usually about 10% by flow cytemetry. 

Change medium every 2 days (see Note 4). Clusters of mOrange
+
 ESC-like cells should 

appear by day 5, and we start observing Nanog-GFP reporter
+
 colonies at around day 8. 

Most colonies have Nanog-GFP
+
 cells by day 14. If MEFs with pluripotency gene reporter 

are not available, immunofluorescence against Nanog (eBiosciences, 14-5761-80) or Dppa4 

Cosmo Bio, CAC-TMD-PB-DP4) around day 12-14 is recommended to evaluate number of 

fully reprogrammed iPSC colonies.   
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3.2 Harvesting samples for FACS time course analysis 

The above Fugene transfection protocol gives 30-100 iPSC colonies depending on condition of 

MEFs. mOrange
+
 cell number is low at the early time points of reprogramming, and gradually 

increase since cells undergoing reprogramming proliferate faster. To analyse the cell surface marker 

changes during reprogramming taking a time course, we recommend preparation of at least the 

following well numbers for each time point; day 2 x10, day 4, x8, day 6 x5, day 8 x3, day 10 and 

onwards x1 each (see Note 5).  

1. Remove media and wash cells in PBS then aspirate. 

2. Lift the cells with 500 μl of trypsin EDTA per 6 well. Incubate for 1-3 minutes at 37°C then 

pipette to dissociate cells to single cells (see Note 6). 

3. Quench with 2.5-5 ml of media into a universal tube and count cells (see Note 7). 

4. Centrifuge at 1300 rpm for 3 minutes. 

5. Aspirate supernatant and resuspend cell pellet in 100 μl FACS buffer per staining required, 

then transfer to a V-bottom 96 well plate.  

6. Store plate on ice; cells are now ready for cell surface marker antibody staining. 

 

3.3 Antibody staining of samples for FACS time course analysis 
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Samples are stained in 100 μl aliquots so prepare enough staining solution for 100 μl/sample + 1, e.g. 

if you need to stain 4 samples prepare 500 μl of each staining solution required. All centrifugation 

steps are carried out at 1300 rpm for 3 minutes. 

1. Prepare ICAM1/CD44 antibody staining solution as specified in Table 1 and foil cover/keep 

out of light on ice until use. 

2. Centrifuge 96 well plate and remove FACS buffer with an aspirator. 

3. Resuspend cells in 100 μl of ICAM1/CD44 staining solution and incubate plate on ice in the 

dark for 15 minutes (see Note 8). 

4. Prepare streptavidin PE-Cy7 secondary stain and foil cover/keep out of light on ice until use. 

5. Centrifuge plate and wash cells with 100 μl PBS. Repeat centrifugation and remove PBS. 

6. Resuspend cells in 100 μl of streptavidin PE-Cy7 secondary staining solution and incubate 

plate on ice in the dark for 5 minutes. 

7. Centrifuge and wash cells in PBS twice as above. 

8. Resuspend cells in 100 μl of FACS buffer, transfer to 5 ml FACS tubes and store on ice until 

analysis. 

 

3.4 Control samples required for FACS time course analysis 

Appropriate controls should always be used (see Note 9). 
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1. Unstained E14 ES cells; this control should be negative for all markers. 

2. ICAM1 PE-Cy7 stained ES cells; this is a positive control for ICAM1. All cells should be 

ICAM1 positive. This control also allows for compensation of leakiness into the Red 670/30 

(CD44) and Yellow-Green 582/15 (mOrange) filters. 

3. CD44 stained MEFs; this is a positive control for CD44. All cells should be CD44 positive. 

This control also allows for compensation of leakiness into the Yellow-Green 780/60 

(ICAM1) filter. 

4. Unstained reprogramming (mOrange
+
) sample; this control allows for compensation of 

leakiness of the Yellow-Green 582/15 (mOrange) signal into the Blue 530/30 (Nanog-GFP) 

and Yellow-Green 780/60 (ICAM1) filters. 

 

3.5 FACS time course analysis of reprogramming samples 

This protocol is based on the use of a BD LSRFortessa cell analyser. The voltages suggested are for 

use with this machine and so optimization of parameters will be required for use of other flow 

cytometry analysers. 

1. Set the cytometer up with the parameters in Table 2 (see Note 10). 

2. Run all control samples first to set up appropriate compensation and base line acquisitions for 

your reprogramming samples. 
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3. Run your reprogramming sample(s) through the analyser and gate your cells firstly to isolate 

the intact/live cells (this will be your P1 gate) and then gate mOrange
+
 transfected 

(reprogramming) cells (this will be your P2 gate) (Figure 2, see Note 11).  

4. From the mOrange
+
 population you can observe Nanog-GFP

+
 cells when they arise (Figure 

2).  

5. A typical FACS data set for ICAM1/CD44 in our hands is shown in Figure 3 (see Note 12).  

 

4. Notes 

1. FCS lot affects reprogramming efficiency. We have experienced that all mOrange
+
 cells 

died off before expressing Nanog-GFP even with an FCS lot that supported ES cell 

self-renewal. If the above mentioned protocol does not make any iPSC-like colonies, we 

recommend testing other FCS.   

2. This condition gives the highest reprogramming in most of MEFs in our hands so if you are 

interested in observing the effects of a particular factor on reprogramming then having a lower 

efficiency by omitting Alki and/or vitC might be more appropriate. 

3. We use doxycycline in a range from 300 ng/ml up to 1 μg/ml depending on the condition of 

our starting MEF and experimental requirements. In general, we find that 300 ng/ml is 

sufficient and preferred when starting MEF are in good condition and reprogram well. Higher 
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concentrations of doxycycline are used when reprogramming conditions are less optimal, in 

order to maintain good induction of the four factors.  

4. It is important to keep the reprogramming cultures in a good condition. At later time points, if 

colour of media gets yellow quickly, change the media every day.  

5. CD44 down-regulation usually starts to be observed between day 6 and day 8. ICAM1 

up-regulation can be observed before day 10. 

6. This time of trypsin EDTA treatment does not affect staining with the antibodies described 

here. 

7. Counting cells is not strictly required, although it is useful; until you are familiar with the 

technique, it gives you a good idea of how many cells you can harvest from ‘X’ number of 

wells at ‘X’ time point during the preliminary experiments which will help you to plan and 

optimise future experiments. Also, if you are comparing the effect of additional factors on 

reprogramming, counting the cells at each time point will give some indication if your factor 

of interest is having any effect on proliferation of cells undergoing reprogramming 

(mOrange
+
) or MEFs (mOrange

-
). You can calculate absolute cell numbers of each gate 

based on the total number and % of cells in each gate.  

8. If using the antibodies specified in this protocol, you can prepare the ICAM1 and CD44 

antibodies in the same staining solution – there is no need to stain them separately.  
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9. This is important for 2 reasons: 1) over the duration of a time course experiment the power of 

the lasers in the FACS instrument may be reduced on any given day, even if the voltage is the 

same. This can produce variation in your time course data but can be identified by use of 

appropriate controls. 2) Sometimes some of the fluorophores we use emit light that is detected 

by filters other than the one we intend. This ‘leakiness’ can be detected by appropriate 

controls and compensated for.  

10. These settings are only a guide of the voltages we use in our lab. Take time to adjust the 

voltages accordingly to your own instrument, even if it is also a BD LSRFortessa. 

11. Ensure your settings allow 10,000 events from your P2 (mOrange
+
) gate to be saved. In this 

example we plotted the mOrange channel against the SSC channel to set P2. The mOrange 

population can be plotted against any other channel. It is advisable to use the channel with the 

clearest separation between the positive and negative cells. 

12. Variations between experiments due to MEF conditions, transfection efficiency etc. can cause 

the reprogramming kinetics to change and therefore the FACS data may vary by a day or two. 

In case you use this system to evaluate impact of factors of interest, always control 

experiments need to be carried out at the same time.  
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Figure Captions 

Figure 1. Typical wells at day 14 of reprogramming with PB-TAP IRI attP 2LMKOSimO vector. 

Top: whole well images from a 6 well plate. Bottom: high magnification images of the white square 

of the top images. Images were taken with Celigo S Imaging Cytometer (Nexceclom). In this 

system, mOrnage expression (red) is down-regulated when Nanog-GFP (green) is up-regulated 

without removing dox from the culture medium.  

Figure 2. Typical gating strategy for cells undergoing reprogramming. Gate firstly for intact/live 

cells in the SSC/FSC channels (P1) and then gate the mOrange
+
 transfected/reprogramming cells by 

plotting mOrange against SSC (P2). This plot was from day 10 samples and Nanog-GFP
+
 cells will 

typically emerge around 7-10 days of reprogramming. Note Nanog-GFP
+
 cells have lower mOrnage 

expression. 

Figure 3. ICAM1 and CD44 mark cells undergoing reprogramming. Cells initially exhibit 

heterogeneous expression of ICAM1 and high CD44. Decreasing ICAM1 expression is then followed 

by downregulation of CD44 around day 8. Finally, upregulation of ICAM1 marks cells entering the 

final ‘iPSC’ between day 8 and 14, which is concurrent with expression of Nanog-GFP (green). 

Figures are from reference [6] with modification. See [6] for more detail. 

 

Table Captions 

Table 1. Antibody staining dilutions for ICAM1/CD44 time course analysis. 
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Table 2. Guide cytometer settings for BD LSRFortessa. 

 

Table1 

Antibody Fluorophore Dilution in FACS buffer 

CD44 APC 1/300 

ICAM1 biotinylated 1/100 

Streptavidin PE-Cy7 1/1500 

 

Table2 

BD LSR FortessaTM 
Excitation Line 

 

488 nm 561 nm 640 nm Voltage 

Band pass (BP) filter 

530±30 eGFP     300 

582±15   mOrange   455 

780±60   PECy7   470 

670±30     APC 400 
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