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Abstract 

 

Salicylic acid (SA) is essential to the establishment of both local and systemic acquired resistance 

(SAR) against a wide range of phytopathogens. Isochorismate synthase 1 (ICS1) is the key 

enzyme involved in the synthesis of SA and it is transcriptionally activated by the regulatory 

proteins SAR deficient 1 (SARD1) and Calmodulin binding protein 60g (CBP60g). It has been 

demonstrated previously that the loss-of-function mutant, S-nitrosogluthione reductase 1-3 

(gsnor1-3), increased cellular levels of S-nitrosylation. Significantly, accumulation of both free SA 

and its storage form SA-glucoside (SAG), were substantially reduced, disabling multiple 

SA-dependent immune responses. However, the molecular mechanism underlying this observation 

remains to be established. Our data suggests that the transcription of ICS1 and it regulators, SARD 

and CBP60g, are reduced in the gsnor1-3 mutant, implying that increased cellular S-nitrosylation 

blunts the expression of ICS1 by reducing the transcription of its activators. We demonstrated that 

SARD1 is S-nitrosylated in vitro resulting in inhibition of its DNA binding activity. Further, 

Cys438 of SARD1 was found to be the site of S-nitrosylation, demonstrated by the observation 

that the SARD1 C438S mutant was insensitive to NO regulation in regard to DNA binding 

activity. 
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Abbreviations 

CBP60g Calmodulin-binding protein 60-like g 
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NO Nitric Oxide 

NOS NO synthase 

NPR1 Nonexpressor of Pathogenesis-Related Gene 1 

NR Nitrate reducatase 

RNS Reactive nitrogen species 

ROS Reactive oxygen species 
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SAR Systemic acquired resistance 

SARD1 SAR-deficient 1 

SDS Sodium dodecyl sulphate 

SNO S-nitrosythiol 
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Chapter 1 Introduction 

 

Plants face numerous biotic stresses in the natural environment and have therefore developed 

sophisticated defence mechanisms in order to adapt and counter such challenges. In the plant 

immune system, salicylic acid (SA) plays a vital role in establishing plant defence against 

biotrophic pathogens and triggering systemic acquired resistance (SAR) (Fu & Dong, 2013; Loake 

& Grant, 2007; Vlot et al, 2009). On another hand, nitric oxide (NO), a gaseous, redox-active 

small molecule, has been recognized to play an equally important role in regulating plant defence 

(Feechan et al, 2005; Yu et al, 2014; Yu et al, 2012). Despite the increased numbers of discoveries 

on SA signalling (Yan & Dong, 2014) and how NO might be involved in local SA dependent 

immune responses and SAR (Malik et al, 2011; Yu et al, 2012), surprisingly, there has been less 

focus on how NO might impact SA synthesis.  

 

Currently, the widely accepted plant-pathogen interaction model is called a ‘zig-zag’, in which 

plant and pathogen interactions include multiple stages of defence and counter-defence 

mechanisms, respectively (Jones & Dangl, 2006) (Fig 1.1). After pathogens penetrate leaf/root 

surface and cell wall, they will encounter a range of extracellular receptors deployed to recognize 

pathogen-associated-molecular-patterns (PAMPs) like chitin. Upon recognition PAMP- triggered 

immunity is initiated (PTI) (Nicaise et al, 2009; Zipfel, 2014), preventing pathogens from further 

colonization. However, pathogens have developed a series of proteins called effectors to supress 

PTI. In response, plants have evolved resistance (R) proteins to directly or indirectly recognize 

effectors, which when recognised are termed as avirulence (avr) factors, to induce effector 

triggered immunity (ETI) (Okmen & Doehlemann, 2014; Yan & Dong, 2014). An inability of the 

challenged plant to recognise any one of the pathogens effector repertoire allows pathogens to 

supress basal plant defence and establish an infection. Following initiation of PTI or ETI, a variety 

of events occur at the site of infection, including production of ROS, accumulation of SA and 

expression of Pathogenesis-related (PR) genes (Vlot et al, 2009). Additionally, ETI is often 

associated with hypersensitive response (HR) cell death, which results in necrotic lesions at the 



3 
 

site of infection. Further global accumulation of SA and expression of PR genes, leads to a 

systemic, long lasting, broad ranged resistance against following pathogen infection, which is 

termed systemic acquired resistance (SAR) (Durner et al, 1997; Durrant & Dong, 2004; Vlot et al, 

2009).  

 

 

 

Figure 1.1. Schematic representation of the plant immune response during pathogen infection. 

Recognition of PAMPs by plant pattern recognition receptors (PRRs) leads to activation of PTI. 

Successful pathogens have developed effectors to supress PTI. Some effectors can be directly or 

indirectly recognized or sensed by plant derived R-proteins result in triggering ETI, and further 

establish an effective resistance in plant. (Jones & Dangl, 2006). 

 

In this chapter, the current knowledge of NO and SA will be introduced with more focus on NO 

related regulation of plant immunity and SA synthesis. Also, the main purpose of the project will 

be discussed. 
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1. Nitric Oxide 

 

1.1 NO synthesis in plants 

In mammalian cells, it is known that NO is synthesized via an oxidative mechanism using NO 

synthase (NOS), which is homologous to P450 cytochrome c reductase. NOS have three isoforms: 

endothelial (eNOS), neuronal (nNOS) and inducible (iNOS) NOS (Alderton et al, 2001). The 

major route of NO synthesis in animal involves deamination of arginine by NOS to form citrulline 

and NO. Besides NOS, it has been reported that in mammal mitochondria, NO can be formed by 

reducing NO2
-
 at complex III or cytochrome c oxidase (Shiva, 2010) or other enzymes with nitrate 

reductase activity (Jansson et al, 2008). However, unravelling NO synthesis mechanisms in higher 

plants is far from completion.  Following numerous completed genome sequencing projects, 

genes that encode a structurally related NOS enzyme have not been identified. 

 

At least seven sources have been identified as possible routes for NO production so far (Gupta et 

al, 2011; Mur et al, 2013; Yu et al, 2014), those sources have been divided into two groups based 

on chemical natures (Fig 1.2). A reductive route uses nitrite as primary substrate, and includes 

nitrate reductase (NR), a plasma membrane-bound nitrite-NO reductase (NiNOR) or 

mitochondrial nitrite reduction. On another hand, an oxidative route includes production of NO 

from L-arginine (L-Arg), polyamines or hydroxylamines. 

 

1.1.1 Oxidative route of NO production 

Although people were not able to find a structurally related NOS enzyme in higher plants, 

evidence suggested that producing NO from L-arginine via NOS activity may be presented. It has 

been reported that L-arginine analogs, like NG-Nitro-L-arginine methyl ester (L-NAME) and 

S,S’-1,3-Phynylene-bis(1,2-ethanediyl)-bis-isothiourea (PBITU), which were used as NOS 

inhibitors in animal research, are capable to decrease NO accumulation in soybean seedlings and 

Arabidopsis (Corpas et al, 2006; Delledonne et al, 1998). Further, a loss of function mutant, no 

overproducer 1 (nox1), has been reported to have an excessive amount of L-Arg and thus 

accumulates a high level of NO and citrulline (He et al, 2004). Also, it has been reported that NOS 

activity is associated to plant immune response in both tobacco (Nicotiana tabacum) and 
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Arabidopsis (Delledonne et al, 1998; Durner et al, 1998). Further, a NOS enzyme has been 

identified in a green algae species, Ostreococcus tauri (Foresi et al, 2010). Upon characterization, 

it has been shown the amino acid sequence of O. tauri’s NOS shares 45% similarity of human 

NOS in amino acid sequence, and purified recombinant O. tauri NOS has a Km of 12 μM for 

L-Arg, which possesses similar property to animal NOS in vitro.  

 

Spermine and spermidine are polyamines produced in plant cells which use arginine and other 

amines as precursors. Previous research has shown addition of spermine induces release of NO 

from Arabidopsis seedlings. Furthermore, the authors demonstrated that polyamine induced NO 

synthesis is root specific in Arabidopsis (Tun et al, 2006). Nevertheless, the molecular detail of 

how spermine and spermidine are used to produce NO is not clear. Hydroxylamines have also 

been proposed as substrates that can be oxidized into NO, previous research has shown that 

hydroxylamines added externally can be oxidized to NO by an NR deficient plant cell (Rumer et 

al, 2009). Since this research used cell culture, the organ(s) that oxidises hydroxylamine to NO is 

still unknown.  

 

1.1.2 Reductive route of NO production 

The NR pathway is the best characterized NO production pathway in plants (Fig 1.2). NR is a 

cytosol localized enzyme which is primarily used to convert nitrate (NO3
-
) to nitrite (NO2

-
). Two 

NR genes have been identified in Arabidopsis, NIA1 and NIA2. Among two proteins, NIA2 is 

responsible for the majority of NR enzyme activity (Wilkinson & Crawford, 1993). Later, 

Yamasaki and Sakihama demonstrated that corn NR is able to convert nitrite to NO with the 

presence of NADH at neutral pH under aerobic condition (Yamasaki & Sakihama, 2000). Further, 

this property has been shown in vivo (Rockel et al, 2002). Although NR has been shown to have 

the ability to produce NO from nitrite, it only produces NO at about 1% of its nitrate reducing 

capacity at optimal condition in vitro, and its activation requires accumulation of nitrate, low 

concentration of nitrite (Rockel et al, 2002) and decreased cellular pH (Gupta et al, 2011; Kaiser 

& Brendle-Behnisch, 1995). Despite all the limitations, several independent groups have shown 

NR mediated NO production can be induced by fungal and oomycete infection (Srivastava et al, 

2009; Yamamoto-Katou et al, 2006), osmotic and water stress (Kolbert et al, 2010; Sang et al, 
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2008), flower and root development (Kolbert et al, 2008; Seligman et al, 2008) and in low oxygen 

environment (Benamar et al, 2008; Blokhina & Fagerstedt, 2010), suggesting the biological 

importance of this NO synthesis mechanism. 

 

More than a decade ago, a membrane bound nitrite reducing enzyme was isolated from tobacco 

(Nicotiana tabacum L. cv. Samsun) root, exclusively (Stohr et al, 2001), this enzyme has been 

termed as nitrite-NO reductase (NiNOR). It was assumed a chain of enzymatic reactions are 

presented to convert nitrate into NO with the aid of NiNR. Unlike NR, NAD(P)H is not the 

electron donor in such a reaction, instead, cytochrome c has been shown to induce NO production. 

However, the molecular details of this enzyme still remain elusive. Nevertheless, NiNOR has been 

suggested to have a role in sensing nitrate availability (Meyer & Stöhr, 2004) and mediating NO 

production in mycorrhizal fungal infection (Moche et al, 2010).  

 

The peroxisomal enzyme xanthine oxidoreductase (XOR) has been proposed to be an enzyme that 

catalyses the reduction of nitrite to NO (Fig 1.2). Godber et al were able to show that animal XOR 

can reduce nitrite to NO using NADH or xanthine as substrate under anaerobic conditions (Godber 

et al, 2000). Previous research has shown that XOR is also be able to produce the superoxide 

radical O2
-
 (Harrison, 2002). Since the enzyme is peroxisome localized, which is known to 

produce reactive oxygen species (ROS), it is proposed the NO producing property of XOR may 

allow its involvement in interaction of ROS and reactive nitrogen species (RNS) (del Rio et al, 

2004). Furthermore, it has been reported that XOR was involved in NO production induced by 

phosphorus deficiency in white lupin (Lupinus albus), providing a biological significance for this 

NO synthesis mechanism (Wang et al, 2010). 

 

Plant mitochondria have been reported to produce NO under anoxia conditions (Planchet et al, 

2005) (Fig 1.2). Mitochondria from tobacco root has been reported to reduce nitrite to NO at the 

expense of NADH (Gupta et al, 2005). Additionally, this NO producing process in mitochondria 

has been demonstrated to generate a small amount of ATP (Stoimenova et al, 2007).  
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Figure 1.2. Overview of NO production routes. Various NO production pathways have been 

suggested. Production of NO and citrulline from L-arginine catalysed by NOS activity has been 

described in plant leaf tissue and its activity is inhibited by animal NOS inhibitors (Corpas et al, 

2009). NR, found in cytosol, has been reported to convert nitrite to NO with low efficiency 

(Rockel et al, 2002; Yamasaki & Sakihama, 2000). Also, a plasma bound nitrite-NO reductase has 

been identified in tobacco root to convert nitrite into NO in a possible enzymatic chain reaction 

(Stohr et al, 2001). Also, mitochondria and perioxisome have been reported to produce NO from 

nitrite (Godber et al, 2000; Planchet et al, 2005). (Gupta et al, 2011).  
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1.2 NO signalling 

It is important to understand how elevated NO levels lead to NO signalling and further regulation. 

Unlike macromolecules, NO is a gaseous small molecule that chemically reacts with a specific 

amino acid of its target protein, which results in a covalent modification (Nathan, 2003). 

Nitrosylation is a chemical process that covalently incorporates the NO moiety into another 

molecule. In biology, NO has been reported to oxidize a reactive cysteine thiol, forming an 

S-nitrosothiol (SNO) (Stamler et al, 1992). In contrast to many cysteine residues (Cys) which are 

embedded by their protein tertiary structures, a rare sets of cysteines with low pKa sulfhydryl 

group are termed as reactive cysteines (Spadaro et al, 2010). These reactive cysteines are targets 

of a variety of redox modifications (Fig 1.3). Besides S-nitrosylation, oxidation of a Cys can form 

a sulphenic acid via S-sulphenation (SOH). However, a protein sulphenic acid is relatively 

unstable and a disulphide bond (S-S) can be formed between two sulphenic acid residues by 

further oxidation. Additionally, intra and intermolecular disulphide bonds formation is important 

in controlling protein folding and multimerization (D'Autreaux & Toledano, 2007). 

S-glutathionylation (SSG) is the disulphide bond formation between glutathione (GSH) and a 

protein Cys residue. S-sulphination (SO2H) and irreversible S-sulphonation (SO3H) are more 

extreme oxidation of Cys residues (Spadaro et al, 2010). These modifications can be reversed in 

response to changes in cellular redox environment or enzymatically (Benhar et al, 2009; Tada et al, 

2008), further providing strategies for plants to adapt environmental changes and stresses. Among 

all these redox modifications, S-nitrosylation has a central role in translating NO bioactivity. 

S-nitrosylation has been found to be involved in many biological processes in animals (Hess et al, 

2005). Further, emerging evidence suggests this modification also regulates enzyme activity 

(Lindermayr et al, 2005; Romero-Puertas et al, 2007; Wang et al, 2015a; Wang et al, 2009b; Yun 

et al, 2011), protein localization (Tada et al, 2008) and protein-protein interactions (Hara et al, 

2006) in plants.  

 

Apart from cysteine, specific protein tyrosine residues were suggested to be oxidized by NO2 to 

form 3-nitrotyrosine and result in protein conformational change (Astier & Lindermayr, 2012). 

NO can interact with iron, zinc or copper centres of metalloproteins resulting metal-nitrosyl 
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complexes. In mammal, binding between NO and the heme centre of soluble guanylate cyclase 

activate the enzyme via conformational change and further lead to the production of cyclic GMP 

(Russwurm & Koesling, 2004). 

 

 

 

Figure 1.3. Schematic sketch of cysteine modifications according to an increasing of oxidation. 

S-nitrosothiol (SNO), sulfenic acid (SOH), disulfide bond (SS), sulfinic acid (SO2H) and sulfonic 

acid (SO3H), which is irreversible.  

 

Glutahinone (GSH) is a highly abundant tripeptide which has been recognized as an antioxidant 

barrier to protect cells from excessive oxidant damage (Noctor et al, 2012). Two reduced GSH are 

oxidized to disulphide to form glutathione disulfide (GSSG) by enzyme activity or in response to 

reactive oxygen species (ROS). Later, GSSG can be reduced to GSH by glutathione reductase (GR) 

(May et al, 1998). The antioxidant and widely distributed properties of GSH enable its role in 

effectively scavenging radicals. S-nitrosyglutathione (GSNO) is formed by addition of an NO 

moiety to GSH by an O2 dependent reaction. As the half-life of NO in biological system is only a 

few seconds, GSNO has been suggested as a stable reservoir of NO (Liu et al, 2001; Sakamoto et 

al, 2002). The mechanism of GSNO formation in biological systems remains elusive. By using 

submitochondrial particles and cell lysate, Basu et al were able to show cytochrome C may 

catalyse the formation of GSNO from GSH and NO (Basu et al, 2010).  

 

In plants, maintaining the optimal GSH level is crucial for plant immunity. A mutation study 
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performed by Parisy et al (Parisy et al, 2007) has revealed that phytoalexin deficient 2-1 (pad 2-1) 

plant, which is a knock-out of γ-glutamylcysteine synthetase thus has reduced GSH level, is 

susceptible to pathogens. In contrast to NO, GSNO is more stable and also mobile in biological 

systems, this makes GSNO a good intermediate in transporting redox signals over long distance. It 

has been reported that NO can be release by homolytic cleavage of S-N bond in GSNO (Singh et 

al, 1996). In addition, research on Saccharomyces cerevisiae suggested the presence of an 

SNO-lyase activity, which could catalyse release of NO from GSNO (Foster et al, 2009). Apart 

from releasing of NO, GSNO has been reported to transfer an NO group on to a Cys residue, 

which has been termed as trans-nitrosylation (Pawloski et al, 2001). Taken together, GSNO serves 

not only as a reservoir of NO, but also function as a messenger in transmission of NO bioactivity. 

 

1.3 GSNO reductase (GSNOR) 

In vivo, the GSNO level controls the degree of peptide and protein nitrosylation, thus affecting 

functions and activities of varies enzymes and transcription factors, thus having an impact on plant 

stresses adaptation and development (Yu et al, 2014). Cellular levels of GSNO are controlled by 

GSNO reductase (GSNOR) (Liu et al, 2001). GSNOR is glutathione-dependent formaldehyde 

dehydrogenase and catalyses the oxidation of S-(hydroxymethyl)glutathione to 

S-formylglutathinone using NAD
+
 as a coenzyme (Jensen et al, 1998). But the main role of 

GSNOR is to catalyse the reduction GSNO into N-hydroxysulphenamide intermediate. The 

unstable intermediate spontaneously rearrange to form glutathione sulphonamide which 

hydrolysed into glutathione sulphinic acid and ammonia in acidic condition; or in excessive GSH 

environment, the intermediate can form GSSG with GSH and releasing hydroxylamine (Hedberg 

et al, 2003; Kubienova et al, 2013; Liu et al, 2001; Singh et al, 1996). The function of GSNOR is 

conserved in animals, plants and bacteria (Feechan et al, 2005; Liu et al, 2001). GSNOR structures 

from human and tomato (Solanum lycoperscum) have been resolved previously (Kubienova et al, 

2013; Sanghani et al, 2002). SlGSNOR is a homodimer of 81,085 Da, the entrances of both active 

sites are present on one side of dimer, and both co-enzyme binding sites are on the opposite sides 

of the dimer, similar to hGSNOR (Kubienova et al, 2013). 

 

Arabidopsis thaliana S-nitrosoglutathione Reductase (AtGSNOR1) was cloned from cDNA library 



11 
 

and further functional complementary study revealed its GSNO reduction activity in yeast 

(Sakamoto et al, 2002). Later, study on a GSNOR1 T-DNA insertion plant gsnor1-3 demonstrated 

Arabidopsis with no GSNOR activity exhibit reduced GSNO turn-over activity and increased total 

SNO. In contrast, enhanced GSNO activity promoted the turnover of GSNO (Feechan et al, 2005). 

Furthermore, the loss of function gsnor mutant showed compromised plant immunity (Feechan et 

al, 2005) as well as defects in plant growth and development (Kwon et al, 2012). 

 

Apart from biotic stresses, GSNOR has been found to be critical in thermotolerance. By selecting 

a plant line that failed to develop after exposed in high temperature, a mutant, hot5, has been 

uncovered (Lee et al, 2008). As well as gsnor1-3, hot5 also exhibit an increased nitrate and SNO 

concentration phenotype. Later genetic study has revealed that hot5 is in fact a mutation in 

GSNOR. Further analysis has shown that exogenous administration of NO scavenger, CPTIO, 

partially rescued the heat sensitive phenotype in hot5 mutant; in contrast, applying NO donor to 

wild type plant increased the heat sensitivity of wild type plant seedlings and leaves (Lee et al, 

2008). There is no evidence suggest that GSNOR may regulate thermotolerance directly, which is 

similar to the regulatory role of GSNOR in immunity. The ubiquitous presences in plants of 

GSNOR regulate the redox statues of the most abundant antioxidant GSH, and unbalancing its 

redox situation may directly and/or indirectly regulate many signalling pathways within plant. 

 

Paraquat (1,1’-dimethyl-4,4’-bipyridinium dichloride) is a non-selective, effective herbicide. It 

causes photooxidative stresses by accepting electrons from photosystem I and transferring them to 

molecular oxygens, and results in production of ROS, and paraquat is oxidized and recycled 

during this process (Babbs et al, 1989). Interestingly, GSNOR mutant, par2-1, has been found to 

be resistant to paraquat (Chen et al, 2009b). It has been suggested that GSNOR may act 

downstream of superoxide to regulate cell death signalling pathways. A later report has suggested 

that paraquat induced cell death is reduced by rbohd mutant (Straus et al, 2010). It has been 

demonstrated that RbohD activity is blunted by S-nitrosylation (Yun et al, 2011). In animal cell, 

knocking down NADPH oxidase activity has been reported to reduce paraquat induced cell death 

(Cristovao et al, 2009). Taken together, reduced RbohD activity in gsnor1-3 may contribute 

largely in paraquat resistance phenotype of this mutant. Despite be reported in different 
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independent research, hot5, par2-1 and gsnor1-3 are the same loss of GSNOR function mutant 

due to mutation in AtGSNOR1.  

 

1.4 NO function in plant immunity 

Plant transcriptional co-activator Non-Expresser of Pathogenesis Related Gene 1 (NPR1) is a key 

regulator of the SA-dependent immune response (Loake & Grant, 2007). Loss of NPR1 function 

in Arabidopsis results in compromised SA signalling upon pathogen challenge or SA treatment, 

and further prevents induction of Pathogenesis-Related (PR) gene expression and SAR (Cao et al, 

1994). Without pathogen challenge, NPR1 monomers form intermolecular disulphide bonds 

between conserved cysteine residues, promoting the formation of NPR1 oligomers in the cytosol 

(Mou et al, 2003). Furthermore, cytosolic localization of oligomer NPR1 suppresses its movement 

into the nucleus, thereby inhibiting its ability to promote binding between transcription factors PR 

genes and subsequent establishment of SAR.  

 

After pathogen or elicitor induction, SA-induced redox changes promote reduction of 

intermolecular disulphide bonds and result in NPR1 monomer formation, this facilitates 

translocation of NPR1 from the cytoplasm into the nucleus, enabling target gene activation and 

NPR1-dependent immune responses (Fu & Dong, 2013). Further studies have revealed how NPR1 

translocation is regulated by redox changes and NO (Mou et al, 2003; Tada et al, 2008). Two 

conserved Cys residues, Cys82 and Cys216, are responsible for intermolecular disulphide bond 

formation. Experiments have shown mutating both Cys residues results in constitutive nuclear 

localization of NPR1 monomers and PR-1 expression (Mou et al, 2003). Later study revealed that 

reduction of Cys82 and Cys216 is catalysed by thioredoxins (TRXs), TRX-h3 and TRX-h5, which 

are induced by SA (Tada et al, 2008).  

 

A later study suggested that another conserved Cys, Cys156, is also important in facilitating NPR1 

oligomerization (Tada et al, 2008). Cys156 has been reported to be S-nitrosylated by GSNO, such 

modification facilitates its oligomerization by promoting disulphide bond formation (Fig 1.4). 

Interestingly, mutation of Cys156 leads to constitutively nuclear localization of NPR1 monomer 

and enhanced resistance against Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326). 
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However, after SA treatment, unlike wild type plants, Cys156 mutant plants fail to show enhanced 

immunity as Cys156 NPR1 is depleted 48 hours after SA treatment (Tada et al, 2008). As NPR1 

oligomerization is mediated by S-nitrosylation of Cys156, these findings suggest that 

S-nitrosylation of Cys156 is important in maintaining NPR1 homeostasis, and further, promoting a 

sustained immune response. In the gsnor mutant, an increased total SNO level was found and SA 

signalling was blunted; it was proposed that a high SNO environment would promote 

S-nitrosylation of NPR1 thus driving its oligomerization, resulting in compromised SA-dependent 

immunity (Feechan et al, 2005). GSNOR does not directly reduce S-nitrosylated proteins. Rather, 

recent data has suggested that Thioredoxin-h5 (TRX-h5) is involved in converting SNO in NPR1 

into thiols, thus reversing the effect of S-nitrosylation (Kneeshaw et al, 2014). Conversely, it has 

been reported that exogenous 100 μM GSNO treatment can promote nuclear localization of NPR1 

(Lindermayr et al, 2010). Further, NO has also been reported to induce defence gene expression 

(Durner et al, 1998). These contradictory findings may suggest the physiological deference 

between whole plant and protoplast studies. Also, the impact of exogenous NO addition has been 

scored at relatively late time points, thus the impact of NO in these cases might be indirect.  

 

 

 

Figure 1.4. Role of NO and S-nitrosylation in plant immunity. Reduction of NPR1 oligomer to 
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monomer is important for NPR1 activity, and NPR1 oligomer-monomer homeostasis is important 

for plant immunity (Mou et al, 2003). In addition, NPR1 monomer is reported to bind TGA 

transcription factors to establish plant immunity in nucleus (Zhou et al, 2000). S-nitrosylation on 

NPR1 Cys156 has been reported to facilitate oligomerization of NPR1, which is vital to maintain 

NPR1 homeostasis and further establish proper NPR1 dependent plant defence (Tada et al, 2008). 

Adddtionally, S-nitrosylation of TGA1 has been reported to protect TGA1 from oxidative burst 

damage (Lindermayr et al, 2010). AtSABP3 is a positive regulator in plant immunity and is 

reported to have carbonic anhydrase activity and ability to bind SA. S-nitrosylation of Arabidopsis 

SABP3 abolishes its SA binding and the carbonic anhydrase activity which negatively regulate 

plant immunity (Wang et al, 2009b). 

 

Nuclear localized NPR1 has been reported to interact with a subclass of basic leucine zipper 

transcription factors (TFs) / TGACG motif binding factors (TGAs), promoting them to bind the 

promoter region of PR genes (Zhang et al, 1999). In vitro assays have shown that TGA1 is 

S-nitrosylated and S-glutathionylated at Cys260 and Cys266 by GSNO respectively. It has been 

suggested these NO mediated modifications protect TGA1 from oxygen mediated modification, as 

well as enhancing DNA binding affinity to as-1 elements (Lindermayr et al, 2010). Further, two 

other Cys residues, Cys172 and Cys287, have been suggested to be important in TGA1 activity. In 

non-reducing electrophoresis, a low mobility band has been observed in TGA1 protein with C260 

and C266 mutations, suggesting intramolecular disulphide bond formation between C172 and 

C287. Interestingly, no disulphide bond formation was observed in the C172 and C287 double 

mutant. Further, tga1 tga4 knock-out plants transformed with TGA-C172S/C287S mutants 

showed hyper-expression of the defence genes PR-2 and PR-5, suggesting reduction of these Cys 

residues are important for TGA1 activity, as the mutants mimic their reduced states (Lindermayr 

et al, 2010). However, these findings are inconsistent with previous research that suggests TGA1 

binding activity is not affected by redox regulation (Despres et al, 2003).  

 

Salicylic acid binding protein 3 (SABP3), found in tobacco, has been reported to be a chloroplast 

localized carbonic anhydrase (CA), which exhibit both SA binding and CA activity (Slaymaker et 

al, 2002). In many plant species, CA activity is known to be required in lipid biosynthesis (Hoang 
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& Chapman, 2002). Additionally lipid-based molecules have been reported to be involved in 

NPR1 independent, jasmonic acid (JA) and SA related defence pathways (Kachroo et al, 2001). 

Recently, SABP3 in Arabidopsis has been shown can be S-nitrosylated both in vitro and in vivo at 

Cys280 (Wang et al, 2009b) (Fig 1.4). In gsnor plant, SABP3 is highly S-nitrosylated due to high 

SNO cellular environment. Further, both SA affinity and CA activity of SABP3 were blunted by 

S-nitrosylation. By investigating the pathogen resistance of SABP3 knock-out plants, the growth of 

Pst DC3000 (avrB), which is known to trigger a strong SA response, was increased compare to 

wild type plants, suggesting a positive role of SABP3 in the SA dependent immune response 

(Wang et al, 2009b). Taken together, these data suggested S-nitrosylation of SABP3 would 

negatively regulate plant immunity. 

 

1.5 NO function in the hypersensitive response (HR) 

Upon detection of pathogen virulence factors, plants initiate programmed cell death called HR cell 

death to mount defence (Greenberg & Yao, 2004). It has been reported that during pathogen 

challenge, HR cell death is driven by reactive oxygen species (ROS) synthesized by NADPH 

oxidase and NO generated from nitrosative burst (Delledonne et al, 1998; Yun et al, 2011).  

 

Analysis on the phenotypes of Arabidopsis GSNOR mutant during pathogen challenge suggested 

that GSNOR can govern the cellular SNO level and development of HR cell death (Yun et al, 

2011). In gsnor1-3, where SNO concentration is elevated compared to wild type plants, although 

both total and free SA level are reduced, HR cell death is accelerated. Further, this phenotype is 

consistent in both gsnor1-3 and gsnor1-3 SA induction deficient 2 (sid2) double mutant plants, 

where SA synthesis is compromised. In contrast, HR cell death is delayed and reduced in gsnor1-1, 

where SNO concentration is lower compared to wild type. Thus, increasing SNO levels promote 

cell death independent of SA (Yun et al, 2011). 

 

SA has been shown to be involved in plant defence against biotrophic pathogens like Erysiphe and 

Pseudomonas syringae (Wildermuth et al, 2001). However, although the SA level is strikingly 

reduced in gsnor1-3 and gsnor1-3 sid2 double mutant plants, both plants showed increased 

resistance against an avirulent oomycete Hyaloperonospora arabidopsidis Emwa1 due to the 
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accelerated development of cell death (Yun et al, 2011). These results suggested high cellular 

SNO may drive biotrophic pathogen resistance even in the presence of low SA levels and a weak 

SA-dependent immunity environment.  

 

Production of ROS in plants following pathogen recognition is catalysed by NADPH oxidases 

(AtRBOH), and a regulatory role of NO on these enzymes was investigated. Analysis has shown 

translation of RbohD is not affected by cellular SNO levels upon pathogen challenge, but in vivo 

and in vitro assays suggested enzyme activity is inhibited by NO modification. Further 

investigation suggested a conserved cysteine, Cys890, is S-nitrosylated. By computer modelling, 

C890 is believed to be important in binding a co-factor, Flavin adenine dinucleotide (FAD). 

S-nitrosylation of C890 results in disruption of FAD binding, reducing ROS synthesis (Yun et al, 

2011). Thus, NO regulation on C890 has been suggested to function as a negative feed-back loop 

in the later stage of the HR (Fig 1.5). 

 

 

 

Figure 1.5. S-nitrosylation regulates activity of NADPH oxidase RBOHD that regulate oxidative 

burst during plant-pathogen interaction. S-nitrosylation on RBOHD C890 blocks its binding of the 

essential co-factor FAD, and blunt its activity in synthesizing reactive oxygen species (ROS)(Yun 

et al, 2011).  

 

Peroxiredoxin II E (PrxII E) has been shown to be S-nitrosylated a few hours after pathogen 

infection (Romero-Puertas et al, 2007). PrxII E functions in detoxifying peroxynitrite, and 

S-nitrosylation of PrxII E abolishes its activity. Further, this event has been shown to synchronize 
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with accumulation of peroxynitrite in plants after avirulent pathogen challenge (Gaupels et al, 

2011). Peroxynitrite has been suggested to be the substrate in tyrosine nitration (Vandelle & 

Delledonne, 2011) and nitrated proteins are known to be elevated in plant defence (Cecconi et al, 

2009). Although the majority of the evidence is circumstantial NO may S-nitrosylate PrxII E to 

enhance the impact of its own derivative, peroxynitrite, during HR cell death development and 

further influence tyrosine signalling. 

 

1.6 NO regulating transcription factors (TFs) activity 

Apart from TGA1, NO has been reported to regulate activities of other TFs in plant (Serpa et al, 

2007). AtMYB2, a typical R2R3 MYB transcription factor, has been reported to be S-nitrosylated 

at a conserved Cys53, resulting in blunted binding activity. Another R2R3 MYB, maize P1 protein, 

has an additional Cys49. It has been reported that an intramolecular disulphide bond formation 

between Cys49 and Cys53 under non-reducing condition, which inhibits P1 activity (Heine et al, 

2004). Thus, S-nitrosylation on AtMYB2 Cys53 may mimic this inhibitory function in P1 protein. 

 

2. Salicylic acid  

 

2.1 Salicylic acid, a brief introduction 

 

2.1.1 A historical view of SA 

Salicylic acid (SA, 2-hydroxy benzoic acid) is one of a variety of phenolic compounds, consisting 

of an aromatic ring bearing a hydroxyl group or its functional derivative, produced in plants. 

Traditionally, plant phenolic acids were considered as non-essential or waste products. Until 

recently, SA was regarded as a secondary metabolite (Hadacek et al, 2011).  

 

Before the physiological functions of SA have been recognized, the medical uses of SA have been 

studied for centuries. Since 5
th
 century B.C., it has been known that chewing the salicylate-rich 

willow leaf and bark provides pain relief and Native Americans use compresses containing willow 

bark extract for the same purpose (Vlot et al, 2009). Later, the chemical essence of the folk 

remedy has been identified. A yellowish substrate salicin was isolated from willow bark and then 
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converted into a sugar and an acid named salicylic acid. Due to its pain relief effect, SA was in 

high demand. In the late 19
th
 century, SA and its derivative acetyl salicylic acid (ASA) was 

successfully chemically synthesized and later brought to market with the trade name “Aspirin”. To 

date, Aspirin is considered as one of the most successful drugs worldwide.  

 

2.1.2 SA function in plants 

Nowadays, SA has been recognized as an important signalling molecule in plant growth, 

development and immunity (Rivas-San Vicente & Plasencia, 2011; Vlot et al, 2009). In salicylic 

acid deficient plants, flowering time is delayed, and UV-C irradiation has been reported to induce 

Arabidopsis flowering in an SA dependent manner (Martínez et al, 2004). Additionally, study of a 

loss of function mutant, siz1, a SUMO E3 ligase, has revealed that siz1 plants exhibit an early 

flowering phenotype due to elevated SA levels (Jin et al, 2008). This evidence has suggested SA 

may have function in the plant flowering process. SA also has been reported to regulate heat 

production in plants. SA was isolated from the male flower of Sauromatum guttatum Schott 

(Voodoo lily), which is a thermogenic plant. Exdogenously applying SA to a plant’s appendix 

induced a rise in temperature (Raskin et al, 1987). 

 

The major function of SA has been recognized as a key signalling molecule in establishment of 

disease resistance. First, studies on transgenic or mutant plants, which were transformed with a 

bacterial SA-degrading salicylate hydroxylase (nahG) gene (Delaney et al, 1994; Gaffney et al, 

1993) or with mutations in SA synthesis genes (Nawrath & Metraux, 1999), have shown their 

enhanced susceptibility to both virulent and avirulent pathogens. Significantly, the resistance of 

these plants was restored by treatment of SA or its analogs. Second, SA treatment prior to 

pathogen inoculation has been proven to enhance plant resistance and further analysis revealed SA 

treatment can induce PR gene expression (Cao et al, 1994).  

 

In addition to localized defence, SA has been known to function in SAR (Fu & Dong, 2013; Vlot 

et al, 2009). Studies on SA deficient mutants also showed they failed to establish SAR (Delaney et 

al, 1994; Gaffney et al, 1993; Nawrath & Metraux, 1999). Although SA itself is not be considered 

as a mobile signalling molecule for SAR, methyl salicylate (MeSA) has been put forward as a 
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possible signal (Park et al, 2007), although another reports have questioned this (Attaran et al, 

2009).  

 

2.2 SA receptors in plants 

As mentioned above, SABP3 is a protein with high affinity for SA and CA activity. In addition, 

four SA receptors have been identified in tobacco (Vlot et al, 2009). SABP1 has been identified as 

a catalase, and its H2O2 degrading activity was inhibited by SA after binding. (Chen et al, 1993). 

Ascorbate peroxidase (APX), a key enzyme scavenging H2O2, activity has been shown to be 

inhibited by SA (Durner & Klessig, 1995). These data implies that SA may promote H2O2 

accumulation by inhibiting multiple H2O2 degrading enzymes during oxidative burst. SABP2 is a 

methyl salicylate esterase with higher affinity to SA (Du & Klessig, 1997; Forouhar et al, 2005). 

Previous report has suggested SABP2 is responsible in converting MeSA to SA. Further, binding 

between SA and SABP2 inhibits SABP2 activity (Forouhar et al, 2005), and it has been suggested 

that SABP2 is required to establish SAR in tobacco (Park et al, 2007).  

 

NPR1, a master gene in regulating plant defence, has been suggested to serve as a SA binding 

protein (Wu et al, 2012). Along with copper, Cys521 and Cys529 of NPR1 have been found to be 

required for the in vitro binding of SA. Additionally, mutation in Cys521 and Cys529 abolished its 

copper binding ability (Rochon et al, 2006). It has been suggested that SA binding of NPR1 is 

required for NPR1 oligomer dissociation (Wu et al, 2012). However, lack of crystal structure data 

makes this hypothesis debatable. Recently, NPR3 and NPR4 have been reported to be SA 

receptors in Arabidopsis (Fu et al, 2012). NPR3 and NPR4 were isolated as negative regulators in 

plant immunity (Zhang et al, 2006) and function in a NPR1 dependent manner. Both NPR3 and 

NPR4 interact with NPR1 and drive its degradation, a process mediated by SA. It has been 

reported that binding of SA to NPR3 facilitate its interaction with NPR1, in contrast, the 

constitutive interaction between NPR4 and NPR1 is disrupted by binding of SA to NPR4 (Fu et al, 

2012). 

 

2.3 SA synthesis in plants 

Two distinct biosynthesis pathways have been uncovered for SA (An & Mou, 2011; Dempsey et 
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al, 2011)(Fig 1.6), one is the isochorismate synthase (ICS) mediated isochorismate pathway and 

the other is the phenylalanine ammonia-lyase (PAL) mediated phenylalanine pathway. Both 

pathways use chorismate as substrate. However, both pathways are not fully characterized. 

 

Isotope feeding research in the 1960s has suggested two possible routes to synthesize SA from 

phenylalanine depending on the plant species. PAL is the first enzyme identified in this pathway. 

PAL is known to catalyse the reaction that converts phenylalanine (Phe) to trans-cinnamic acid 

(t-CA). Subsequently, t-CA is hydroxylated to form O-coumarate (Chadha & Brown, 1974; 

El-Basyouni et al, 1964) and its side chain is oxidized to form SA. Alternatively, the side chain of 

t-CA can be oxidized to form benzoic acid (Klämbt, 1962) and SA is yielded by following 

hydroxylation. The difference between the two pathways is the order of aromatic ring 

hydroxylation and side chain-shortening reactions.  

 

 

 

Figure 1.6. Current knowledge of SA synthesis pathways in Arabidopsis. Both chorismate and 

phenylalanine pathways are presented in Arabidopsis and use chorismate as initial substrate. The 

ICS mediated pathway plays a major role in Arabidopsis (Wildermuth et al, 2001), although the 

PAL pathway plays a minor role, its impact in Arabidopsis has been noticed (Huang et al, 2010). 

Unlike isochorismate pathway, several intermediates and synthesis routes have been found in PAL 

pathway. However, neither pathway has been fully resolved.  
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PAL is a key regulator of the phenylalanine pathway and also plays an important role in SA 

biosynthesis during the immune response. Four PAL genes are found in Arabidopsis, with 

different kinetic and functional properties (Cochrane et al, 2004). Mutations in all four PAL genes 

result in stunted and sterile plants and the quadruple mutants accumulate reduced levels of SA 

both at basal level and upon pathogen infection. Further, this line showed increased susceptibility 

to avirulent Pseudomonas syringae (Huang et al, 2010). However, the quadruple mutant still 

exhibited 10% of wild-type PAL activity, suggesting a leaky pal mutation or the presence of an 

unknown PAL gene. The importance of PAL in plant defence was also suggested in previous 

research, in the study of interaction of Arabidopsis and Hyaloperonospora arabidopsidis, when 

expression of PAL is reduced plants become vulnerable to oomycete infections. Also, exogenous 

application of PAL inhibitor results in increased susceptibility and reduced accumulation of SA. 

Further, treatment of SA can recover plant defence. These findings suggest the importance of PAL 

in localized defence against oomycete infection (Mauch-Mani & Slusarenko, 1996). 

 

Some bacteria are known to synthesize SA from chorismate via a two-step enzymatic reaction. 

First, chorismate is isomerized to isochorismate (IC) by ICS, and IC is converted to SA and 

pyruvate by pyruvate lyase (IPL) (Mercado-Blanco et al, 2001; Serino et al, 1995). In bacteria like 

Pseudomonas aeruginosa and Pseudomonas fluorescens, this reaction is catalysed by two 

unifunctional enzymes, in contrast, a bifunctional enzyme that exhibit both ICS and IPL activity 

was found in Yersinia enterocolitica and Mycobacterium tuberculosis, this enzyme has been 

termed as SA synthase (SAS) (Harrison et al, 2006; Pelludat et al, 2003). In addition, transgenic 

plants that overexpress both bacterial ICS and IPL exhibit elevated levels of SA and increased 

pathogen resistance, indicating plants are capable to synthesize SA from chorismate by using these 

enzymes (Verberne et al, 2000). 

 

A genetic study has confirmed the presence of a similar SA biosynthesis pathway in plants 

(Wildermuth et al, 2001). A mutant, sid 2, has been identified in ICS1. This mutant’s phenotype 

includes accumulation of only 5-10% of SA compared to wild type. sid2 plants are also 

susceptible to pathogen infection and are compromised in SAR. Further, exogenous SA treatment 
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may restore their resistance. Taken together, these findings suggested the ICS mediated pathway is 

the major pathway in pathogen induced SA synthesis (Wildermuth et al, 2001). Further, the 

importance of the ICS-mediated SA synthesis pathway has been highlighted in tobacco (Catinot et 

al, 2008) and tomato (Uppalapati et al, 2007). 

 

Two isochorismate synthase genes, ICS1 and ICS2, have been identified in Arabidopsis. Like 

ICS1, ICS2 also encodes a functional isochorismate synthase. Mutant analysis on ics1, ics2 and 

ics1 ics2 revealed that ICS2 also participates in Arabidopsis SA synthesis, but its contribution can 

only be detected in ICS1 knock out. Upon UV irradiation, compared to wild type plants, the ics1 

mutant accumulated 10% of the expected SA level, and ics1 ics2 double mutant accumulated 

about 4%. These findings not only indicate a minor role of ICS2 in ICS-mediated SA synthesis, 

but also the presence of a ICS independent SA synthesis pathway (Garcion et al, 2008). Further 

biochemical analysis has confirmed that ICS1 is a chloroplast localized enzyme; synchronized 

with the fact that the chloroplast is the major organelle of SA synthesis. Recombinant AtICS1 has 

been shown to convert chorismate into isochorismate in vitro, which suggested ICS1 is a 

unifunctional enzyme (Strawn et al, 2007). Although accumulated data suggested SA is 

synthesized in multiple plant species through the ICS-mediated pathway, the mechanism of 

converting IC into SA is still unclear. No IPL-like gene has been identified in Arabidopsis, thus 

half of the biochemical pathway is still unexplained.   

 

2.4 Regulation of SA synthesis 

Mutant screening has revealed many factors that regulate SA accumulation. Both positive and 

negative regulators have been identified that function in SA synthesis and those regulators include 

transcription factors, transporters and signalling modulators. 

 

Enhanced Disease Susceptibility 1 (EDS1) and Nonspecific Disease Resistance 1 (NDR1) are 

proteins that required for induction of ETI. EDS1 has been shown to be required preferably by R 

proteins with a toll-interleukin-1 receptor (TIR) domain, and NDR1 is mainly required by R 

proteins with coiled-coil (CC) domain (Aarts et al, 1998). The putative lipase like protein, EDS1, 

has been reported to physically interact with its partners, Phytoalexin Deficient 4 (PAD4) and 
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Senescence Associated Gene 101 (SAG101) (Feys et al, 2001; Feys et al, 2005). A previous report 

placed EDS1 upstream of SA synthesis as eds1 is not able to induce an SA dependent response 

upon pathogen infection (Falk et al, 1999). Further study on both eds1, pad4 mutants plants 

showed there are unable to induce SA synthesis in both P. syringae pv. tomato DC3000 and 

DC3000/avrRps4 infection (Feys et al, 2001). In addition, SA treatment can induce defence gene 

expression in eds1 and pad4 mutants and enhance EDS1/PAD4 expression in wild type, 

suggesting SA positively regulate EDS1 and PAD4 via a feedback loop (Feys et al, 2001; Zhou et 

al, 1998). NDR1 is another positive regulator which is independent from EDS1 mediated ETI. 

Previous research has shown the ndr1 mutant has reduced SA accumulation in response to UV 

treatment and impaired PR1 expression and SAR induction upon P. syringae avrRpt2 infection 

(Shapiro & Zhang, 2001). 

 

Transcription factors have been identified that regulate ICS1 expression and thus impact on SA 

synthesis. Ethylene Insensitive 3 (EIN3) and EIN3-Like 1 (EIL1) are known as positive regulators 

of ethylene responses. A recent study suggested these transcription factors also function as 

negative regulators in SA synthesis (Chen et al, 2009a). The double mutant ein3 eil1 shows 

elevated levels of SA without pathogen infection, enhanced pathogen resistance and constitutive 

expression of PR1, PR2 and ICS1. In addition, a triple mutant ein3 eil1 sid2 restored its 

susceptibility to pathogens. Further, EIN3 has been shown to specifically bind the P5 fragment of 

the ICS1 promoter sequence in vitro. In vivo, removing this fragment from ICS1 promoter resulted 

in increased ICS1 promoter activity in wild type plants, but not in the ein3 eil1 double mutant, 

suggesting EIN3 and EIL1 may play a role in cross-talk between ethylene and SA (Chen et al, 

2009a). 

 

NAC (petunia NAM and Arabidopsis ATAF1, ATAF2 and CUC2) transcription factors have been 

shown to be involved in negative regulation of ICS1 expression during P. syringae infection 

(Zheng et al, 2012). During P. syringae infection, three NAC transcription factor genes, ANAC019, 

ANAC055 and ANAC072, have been shown to be up-regulated. In the nac triple mutant, the basal 

expression of ICS1 increased compared to wild type plants. Additionally, a ChIP assay has 

revealed that ANAC019 binds the ICS1 promoter directly in vivo (Zheng et al, 2012). It has been 
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reported that ANAC019, ANAC055 and ANAC072 share the same cis-element in a protoplast 

assay (Tran et al, 2004). Thus, it is reasonable to believe these three NAC transcription factors 

may all act as negative regulators in ICS expression. 

 

Two positive regulators, Calmodulin-Binding Protein 60-like g (CBP60g) and SAR-Deficient 1 

(SARD1), have been identified recently (Zhang et al, 2010). CBP60g and SARD1 appear to act 

redundantly as only the sard1 cbp60g double mutant, not the single mutants, exhibit a reduced SA 

level upon both virulent and avirulent pathogen infection. Further, the double mutant is also 

compromised in PTI, ETI and SAR (Wang et al, 2011; Zhang et al, 2010).  

 

On the other hand, overexpression of SARD1 results in elevated SA levels, SA-dependent gene 

expression and enhanced disease resistance (Zhang et al, 2010). Further analysis revealed SARD1 

and CBP60g share the same binding motif on the ICS1 promoter -1110 to -1290, with the highest 

binding affinity to the sequence GAAATTTTGG. A number of W-box motifs, which is the 

binding motif for WRKY transcription factors, are present on the ICS1 promoter. Recently, in a 

protoplast assay, overexpression of WRKY28 has been shown to enhance the expression of the 

ICS::GUS reporter (van Verk et al, 2011). A gel-shift assay indicated that WRKY28 binds the 

ICS1 promoter at position -445 and -460. Additionally, mutations in these motifs result in reduced 

ICS1 expression (van Verk et al, 2011). 

 

The newest transcription factors identified to regulate ICS1 are TCP8 and TCP9 (Wang et al, 

2015b). It has been reported that expression of ICS1 is significantly reduced in tcp8 tcp9 double 

mutants during the immune response. The binding between TCP8 and ICS1 promoter was 

confirmed both in vitro and in vivo. Interestingly, TCP8 was found to interact with the majority of 

the currently known transcription factors which regulate ICS1 expression, suggesting a potential 

complex coordinated regulatory mechanism orchestrating ICS1 expression (Wang et al, 2015b). 

 

SA induction deficient 1 (sid1), also known as Enhanced disease susceptibility 5 (eds5) has been 

shown to have reduced SA accumulation upon UV and pathogen induction, as well as increased 

susceptibility to pathogens (Nawrath et al, 2002). Studies revealed that EDS5 belongs to the 
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multidrug and toxin extrusion (MATE) transporter family which is presented in both prokaryotic 

and eukaryotic cells. A recent study has suggested that EDS5 is the transporter to export SA from 

chloroplasts into the cytosol, where SA functions to control immune responses. In the eds5 mutant 

SA is thought to be trapped inside the chloroplast which inhibits its synthesis via a feedback loop 

and results in reduced SA levels in plants (Serrano et al, 2013). 

 

3. Project aims 

NO is known to regulate the plant immune response on multiple levels (Frederickson Matika & 

Loake, 2014; Skelly & Loake, 2013; Yu et al, 2014). Previous reports suggested in gsnor1-3 

plants, elevated cellular SNO not only compromised SA signalling, but also impaired SA 

synthesis, resulting in a low SA level (Feechan et al, 2005). The ICS1 mediated pathway is 

responsible for pathogen induced SA synthesis (Dempsey et al, 2011; Vlot et al, 2009). Thus, it is 

reasonable to assume a high SNO content may influence either expression of the ICS1 gene or 

activity of ICS1 protein. The aim of this project is to investigate the possible link between the high 

cellular SNO environment and SA synthesis and provide more depth of understanding of how NO 

regulates plant immunity. 
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Chapter 2 Material and Methods 

1. Plant material and E. coli strains 

Arabidopsis accession Col-0 and gsnor1-3 were grown under 16 h of light at 22 °C and 8 h of 

darkness at 18 °C. E. coli strain DH5α was used for normal plasmid propagation, E. coli strain 

Rosetta
TM

 2 (DE3) was used for recombinant protein expression. Agrobacterium strain 

GV3101was used to transform Arabidopsis. Bacteria strains were normally cultivated in LB (10 

g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) medium with antibiotics. For protein expression, 

terrific broth (TB) medium (12 g/L tryptone, 24g/L yeast extract, 4 mL/L glycerol, 10% potassium 

phosphate) with antibiotics (Rosetta
TM

 2 (DE3), 25 ug/mL Chloramphenicol) was used.  

 

2. Preparing pathogen and plant leaf samples 

The bacterial strain Pseudomonas syringae ES4326 was used to induce plant immune response. 

Bacteria was grown at 30 °C overnight and diluted with MgCl2 until OD at A600=0.002. 1 mL of 

this bacteria preparation was used to inject into the whole mature leave of 4 week old Arabidopsis 

using a needless syringe. Infected leaves were collected 9 hour after infection, weighed, snap 

frozen in liquid nitrogen and stored at -80 °C for future use.  

 

3. Plant RNA extraction and cDNA synthesis 

Leave samples were ground to fine powder in liquid nitrogen, afterwards the powder was 

suspended in Trizol
TM

 (100 mg tissue/ mL Trizol
TM

). The suspension was spun down at 12000 g 

for 5 min at 4 °C, the supernatant was collected and transferred into new Eppendorf tube. 

Chloroform (200 μL/ mL Trizol) was added into supernatant, and the mixture was shaken and 

incubated at room temperature for 3 minutes. After incubation, the mixture was centrifuged at 

12000 g for 15 minutes at 4 °C. After centrifugation, the aqueous phase was transferred to a new 

Eppendorf tube. 0.5 mL of isopropyl alcohol was added into Eppendorf and was mixed, the 

mixture was then incubated at room temperature for 10 minutes. Then the mixture was centrifuged 

at 12000 g for 10 minutes at 4 °C. After incubation, the supernatant was removed, 1 mL 75% 

ethanol was added to wash the pellet, followed by 5 min centrifuge at 12000 g. After 



27 
 

centrifugation, the supernatant was removed again and the pellet was left air dry. The dry pellet 

was dissolved in 20 μL of RNase-free water. The quantity of RNA was determined by NanoDrop. 

RNA preparation was stored at -20 °C until further use. Plant cDNA was synthesized using 

RevertAid First Strand cDNA synthesis Kit (Thermo Scientific) and 100 ng RNA sample as 

template via PCR. 

 

4. Primer design 

Sequence of primers used in this study 

 

AtICS1 primer in pET28a 

Forward: ATCGTCGACCCATATGAATGGTTGTGATGGA  

Reverse: ATCGTCGACTCAATTAATCGCCTGTAGAGA 

 

CBP60g Gateway cloning primers: 

attB1: 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAGATTCGGAACAGCCCTAGTTTT  

attB2: 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATTACAAGCCTTCCCTCGGATTTCTG 

 

SARD1 Gateway cloning primers: 

attB1 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCAGGGAAGAGGTTATTTCAAGA 

attB2 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATTAGAAAGGGTTTATATGATTTTGAG

ACGAAGAT  

 

ICS1 Gateway cloning primers: 

attB1 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCTTCACTTCAATTTTCTTCTCAG   

attB2 
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GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATTATTGTGAGAACCCCTTATCCCCCA

TACA 

 

 

M13 sequence primer sets (for pDONR221) 

Forward: GTAAAACGACGGCCAG 

Reverse: CAGGAAACAGCTATGAC 

 

ICS1 sequence primer sets: 

 

Forward 1: ACAGGTTCCAATTGACCAGC 

Forward 2: TGCATTTTACTTTTCAGTCCCTC 

Forward 3: TGGCTAGCACAGTTACAGCG 

Forward 4: CAGGGAGACTTACGAAGGAAGA 

 

Sard1 sequence primer set: 

Forward 1: ACAGGGAGTAAAATCAGTGACG 

Forward 2: TTGTGGTTTGTGAAGCGATG 

Forward 3: TGAAAGCACTTATCGATGGTCA 

 

CBP60g sequence primer set: 

Forward 1: CTTGTGATCGAGCTCGTGG 

Forward 2: CCCAGTGATGAGGTTTGGAG 

Forward 3: CAGCGGTTAACGATAGGACC 

Forward 4: CTCAAGCTGGTCACCTGGTA 

 

ICS1 promoter Gateway cloning primers: 

 

AttB1: 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCTTGTTGAATTATGGTTTCATTCTATTGGA
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TTATCT 

 

AttB2: 

GGGGACCACTTTGTACAAGAAAGCTGGGTTGCAGAAATTCGTAAAGTGTTTCTTGAAG

A 

 

ICS1 EMSA fragment 

 

Forward: TATGTACTTGGTGAGCCGTC 

Reverse: AGGAATATTTGCTTTAATTTCATG 

 

5. Quantitative RT-PCR analysis 

Quantitative RT-PCR experiments were performed using Roche LightCycler○R  480 system and 

LightCycler○R  480 SYBR Green I Master, according to the protocols of the manufacturer (10 μL 

qRT-PCR reaction contains 5 μL of master, 1 μL forward primer, 1 μL reverse primer, 1 μL 

cDNA template and water). The thermal cycler program was 95 °C for 10 mins (denaturing), 

followed by 45 cycles of 95 °C for 10 sec, 58 °C for 15 sec and 72 °C for 15 sec, and the melting 

curve was set to be 95 °C for 5 sec and 65 °C for 1 min. ACTIN2 was used as the internal 

reference.  

 

6. Vector construction 

Plant ICS1, SARD1 and CBP60g were amplified from cDNA using designed primers via PCR 

using Pfu polymerase (Promega) (25 μL PCR reaction contains 1 μL DNA template, 4 μL 2.5 mM 

dNTP, 2.5 10X buffer, 1 μL polymerase, 1 μL forward primer, 1 μL reverse primer and water) at 

TA=55 °C and elongation time for 4 mins, 40 cycles. The PCR products were examined using 1% 

agarose gel, the bands with right size were cut out under UV. And amplified PCR fragment was 

obtained using gel extraction method. To begin with, the cut-out gel was dissolved in approx. 500 

μL of buffer QG (Qiagen) and was incubated at 65 °C until the gel was fully dissolved. The rest of 

purification steps were performed using PCR purification kit from Thermo Scientific. Briefly, the 

solution was passed through a spin column at maximum speed for 2 mins, the flow-through was 
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removed, the column was washed twice using wash buffer as the protocol suggested, and the 

purified PCR product was eluted with 30 μL of Milli-Q water. Purified PCR products were stored 

at -20 °C.  

 

For recombinant ICS1 construct, the purified PCR product and pET-28α were digested with NdeI 

and SalI (Total amount of 40 μL of digesting reaction contains 10 μL of DNA, 1 μL of each digest 

enzyme, 4 μL of 10X buffer and water) at 37 °C for 1 hour. Digested products were examined on 

1% agarose gel and fragments were cut out and purified. Purified products were ligated using T4 

DNA ligase (Sigma) (A 15 μL ligation reaction contains of 7 μL insert, 3 μL digested vector, 1.5 

μL ligation buffer, 1 μL of T4 ligase and water) at room temperature for a minimum of 1 hour. 

Ligation products were transformed to E. coli DH5α competent cells. For transforming DH5α, 10 

μL of ligation product was added into 100 μL of thawed competent cells, after 10 minutes 

incubation on ice, the cells were heat shocked at 42 °C for 90 sec followed by incubating on ice 

for 5 mins, afterwards 1 mL LB medium was added into cell and incubate at 37 °C for 1 hour. 

After incubation, Transformed DH5α was selected by LB Agar plate containing 50 μg/ mL 

kanamycin. After overnight incubation, successful transformants were picked up and tested by 

colony PCR (Crimson taq polymerase, NEB) using gene specific primers. Transformed colonies 

confirmed via PCR were incubated in 5 mL LB medium with 50 μg/ mL kanamycin at 37 °C 

overnight. After incubation, the plasmid was extracted using Miniprep kit from ThermoScientific, 

the insert was confirmed by PCR. After PCR confirmation, the plasmid was sequenced to confirm 

its integrity. The sequenced plasmid was subsequently transformed into Rosetta
TM

 2 (DE3) 

competent cells (GE Healthcare) for protein expression work. 

 

For recombinant SARD1 and CBP60g, the purified PCR product was inserted into an entry vector 

(pDONR221 (Invitrogen)) via BP reaction (5 μL reaction contains 2 μL insert, 2 μL pDONR221, 

1 μL BP clonase) and incubated at room temperature 2 hours. The reaction product was 

transformed into DH5α and selected on LB Agar plate with 50 μg/ mL kanamycin at 37 °C 

overnight. Colonies were evaluated using colony PCR with gene specific primers. Plasmids were 

obtained afterwards by miniprep and the sequence was confirmed by sequencing. After 

completing entry vector, the LR reaction was performed (5 μL reaction contains 2 μL entry clone, 
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2 μL destination vector, 1 μL LR clonase) to transfer insert into destination vector pDEST17 and 

pDEST-HisMBP (Addgene plasmid #11085)(Nallamsetty et al, 2005) vector and subsequently 

transformed into DH5α. Transformed cells were selected on LB agar plates with 100 μg/ mL 

ampicillin. And the complete plasmid was subsequently taken out from DH5α and transformed 

into Rosetta
TM

 2 (DE3) and BL21 pLysS cells for protein expression. 

 

For overexpression ICS1, SARD1 and CBP60g in Arabidopsis, the similar Gataway cloning 

procedure was performed using pEarlyGate 202 (Earley et al, 2006) as destination vector. The 

completed plasmids in DH5α were selected on LB agar plates with 50 μg/ mL kanamycin. 

Afterwards plasmids were transformed into agrobacterium GV3101 and selected on LB agar 

plates with 100 μg/ mL rifampcin, 25 μg/ mL gentamycin, 50 μg/ mL kanamycin and 1 μg/ mL 

tetracycline. For transformation agrobacterium, the competent cells were thawed on ice for 30 

minutes, 10 μL of plasmid was added into thawed cells, and the cells were snap-frozen in liquid 

nitrogen, and then put in 37 °C waterbath for 5 minutes, afterwards cells were incubated with 1 

mL LB at 28 °C for 3 hours, and then selected on LB agar plates with antibiotics in 30 °C 

incubator. 

 

7. Recombinant protein expression, extraction and purification 

A single E. coli strain Rosetta
TM

 2 (DE3) colony with recombinant ICS1, SARD1 or CBP60g gene 

was picked up and grown in 5 mL LB with 25 μg/ mL chloramphenicol and 50 μg/ mL kanamycin 

or 100 μg/ mL ampicillin at 37 °C overnight. 1 mL overnight culture was then transferred into a 

250 mL flask containing 50 mL TB media with the same antibiotic, the culture was then grown in 

a 37 °C shaker until its OD600 was at approx. 0.6. 1 mM IPTG was added into culture to induce 

protein expression. Then the induced culture was incubated at room temperature (approx. 20 °C) 

for 16 hours. Afterwards, cells were harvested by centrifugation at 4000 rpm for 5 minutes, the 

supernatant was discarded and pellet was washed by PBS. After further centrifugation at 4000 rpm 

for 1 min, the washed pellet was resuspended in 1 mL lysis buffer (20 mM sodium phosphate, 500 

mM sodium chloride, 1% Triton, 10 mM imidazole, pH 7.4) containing 1 mM DTT and protease 

inhibitor. Cells were subsequently lysed using sonication and the cell debris was spun down at 

12000 g for 20 minutes at 4 °C. The supernatant which is the total soluble protein expressed in E. 
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coli was transferred into a fresh Eppendorf tube. Protein samples were stored on ice for 

purification.  

 

To purify recombinant proteins with His-tag, the HisPur
TM

 Ni-NTA resin (Thermo Scientific) was 

used. 250 μL of resin was added into an Eppendorf tube and spun at 700 g for 2 minutes. The 

supernatant was removed and resin was equilibrated with 500 μL equilibrium buffer (20 mM 

sodium phosphate, 300 mM sodium chloride, 10 mM imidazole, pH 7.4), then the equilibrated 

resin was spun down at 700 g for 2 minutes and buffer was removed. The equilibration procedure 

may be repeated 2 or 3 times. Afterwards 500 μL cell lysate was added into pre-equilibrate resin 

and mixed properly. The mixture can be incubated at 4 °C for several hours to achieve better 

binding. After incubation the resin was spun down at 700 g for 2 minutes and the supernatant was 

collected as flow-through for analysis. The resin was washed using wash buffer (20 mM sodium 

phosphate, 300 mM sodium chloride, 25 mM imidazole, pH 7.4) for 5 times and the supernatant 

during washing steps can be collected for analysis. After washing, bound protein can be eluted 

using elution buffer (20 mM sodium phosphate, 300 mM sodium chloride, 250 mM imidazole, pH 

7.4). Protein expression and purification can be evaluated using SDS-PAGE. 

 

To purify MBP-SARD1 and MBP-CBP60g, Pierce
TM

 5 mL centrifuge column (Pierce #89897) 

and amylose resin (NEB E8021S) were used. 1 mL of amylose resin was added into 5 mL column, 

and resuspended by 3 volumes (3 mL) of column buffer (200 mM NaCl, 20 mM TrisHCl pH 7.4, 

1 mM EDTA). After resuspension buffer has been removed, soluble fraction of cell lysate has 

been loaded onto resin bed, and the resin was washed by a total 6 volumes of column buffer. After 

washing, bounded protein was eluted by elution buffer (column buffer and 10 mM maltose). 

Eluted protein was collected, and its concentration was determined by Bradford assay (Bio-Rad 

#5000006). 

 

8. S-nitrosylation assays 

Biotin-switch was performed as a method to detect possible NO modification on protein in vitro 

(Forrester et al, 2009). First of all, Zeba
TM

 Column was equilibrated with HEN buffer (250 mM 

Hepes-NaOH pH 7.7, 1 mM EDTA, 0.1 mM Neocuproine), and purified protein was desalted by 
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passing through the column. After desalting the protein, NO donor was added to the protein 

sample (0.1 mM CysNO) including a negative (No CysNO) and positive (CysNO + SDS) control. 

The reaction was incubated in the dark at room temperature for 20 minutes. After incubation, the 

NO donor was removed by passing the sample through new pre-equilibrated Zeba
TM

 column. And 

3 volumes of blocking buffer (Mixture of HEN buffer and 25% SDS at 9:1 ratio, 20 mM MMTS) 

was added into protein sample which has passed through column to block the free thiols that were 

not linked to NO. The reaction was incubated in the dark at 50 °C with 5 minutes interval vortex 

for 20 minutes. After incubation, 1 total volume of pre-chilled acetone was added to each sample. 

The sample was then incubated in the dark at -20 °C for 20 minutes. Then the sample was 

centrifuged at 1000 g for 10 minutes at 4 °C, the supernatant was removed and pellet was air dried 

in the dark. The pellet was resuspended with HENS (HEN buffer and 1%SDS) buffer and the 

sample was labeled by adding labeling solution (4 mM biotin-HPDP, 1 mM ascorbate), and 

subsequently incubated for 1 hour at room temperature. The biotinylated protein can be detected 

using SDS-PAGE and immunoblotting using anti-biotin antibody.  

 

9. Western blot 

Proteins separated by SDS-PAGE were transferred by electrophoresis to a nitrocellulose 

membrane (Whatman, UK) for further analysis. A sandwich structure was assembled in following 

manner: Scouring pad – 2× filter papers – gel – nitrocellulose membrane – 2× filter papers – 

Scouring pad. All components were equilibrated in transfer buffer before assembling. This 

sandwich was secured by a clasp and placed in a blotting tank; the nitrocellulose membrane was 

towards the anode side with gel behind it and the “sandwich” was immersed in transfer buffer. An 

box with ice was also put in the tank. The electrophoresis was run at constant 100V for 60 – 90 

minutes or 10V overnight at 4 °C. 

 

After western blotting, the nitrocellulose membrane was blocked with 5% (w/v) skimmed milk 

(Marvel, UK) in PBST at room temperature for 30 mins. After blocking, solution was discarded 

and washed with PBST several times. The primary antibody was diluted in blocking reagent to an 

optimum dilution and the diluted primary antibody solution was incubated with the nitrocellulose 

membrane for 1 hour at room temperature or overnight at 4 °C. After incubation, the diluted 



34 
 

primary antibody solution was removed and PBST was used to wash membrane for multiple times, 

each wash lasted about 5 minutes. After washing, a secondary antibody immunoglobulin G (IgG) 

– Horseradish Peroxidase) was diluted in blocking reagent at an optimum dilution and the diluted 

secondary antibody solution was incubated with the nitrocellulose membrane for 1 hour at room 

temperature. After incubation, the membrane was washed another 4 times in PBST.  

 

Proteins were detected by the Pierce
TM

 ECL Western Blotting Substrate (ThermoScientific), 

according to the manufacturer’s guidelines, the result being darker bands on photographic film 

(ThermoScientific) when exposed in dark room. The exposure time was varied based on the 

initially observed result. 

 

10. Plant transformation 

Floral dipping is used as a method for inserting a foreign gene into Arabidopsis genome using 

agrobacterium (Clough & Bent, 1998). A single colony of agrobacterium that carries pEarlyGate 

202 with the desired insert have been picked and grown in 5 mL LB medium with 100 μg/ mL 

rifampcin, 25 μg/ mL gentamycin, 50 μg/ mL kanamycin and 1 μg/ mL tetracycline overnight at 

28 °C. The next day 1 mL of overnight culture was added into 200 mL LB with same antibiotics 

and grown at 28 °C until its OD600 reached 0.8 to 1.5. The cell culture was centrifuged at 4000 

rpm for 10 minutes the supernatant discarded and the pellet resuspended in 500 mL of 5% sucrose 

with 250 μL of Silwet L-77. Plants with clipped primary bolts and secondary bolts that were about 

2-10 cm were ready to be transformed. Each Arabidopsis blot was dipped into agrobacterium 

resuspension for 30 sec, after dipping, plants were covered with bag for 1 day to maintain 

humidity. Seeds of transgenic plants were collected and grown up for selection.  

 

Transgenic plants were confirmed to be transgenic by growing seeds on selection antibiotics. For 

pEarlyGate 202 with the insert, Murashige and Skoog (MS) plate with 50 μg/ mL kanamycin was 

used. Transgenic plants will maintain green on plate while non-transgenic plant will die. To 

determine the copy number of transgene in transgenic Arabidopsis, the segregation ratio of T1 

transgenic plant was calculated. And a 3:1 ratio would suggest the single copy of transgene. 
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11. Electrophoretic mobility shift assay (EMSA) 

To detect interactions between SARD1, CBP60g and ICS1 promoter sequence, EMSA was used 

based on a previous method with slight modifications (Zhang et al, 2010). The 181-bp ICS1 

promoter fragment was amplified by PCR. First, the probe was end-labeled by incubating 10 pmol 

of double-stranded DNA in a 40 μL reaction with 100 units of T4 polynucleotide kinase (NEB 

M0201S) and 40 μCi of [γ-
32

P]ATP (PerkinElmer) at 37 °C for at least 30 minutes. After 

incubation, 3 M sodium acetate was added to reach a final concentration of 0.3 M. After vortexing, 

2 to 2.5 volumes of cold 100% ethanol were added to the sample. After mixing, DNA was 

precipitated at -20 °C overnight. Following precipitation, the reaction was centrifuged at 

maximum speed for 20 minutes, and the supernatant removed. The pellet was washed by 1 mL 

cold 70% ethanol, and spun at maximum speed for 2 minutes. After removing ethanol, the pellet 

was left to dry at 37 °C. The dried pellet was resuspended with water to make the final 

concentration of labelled probe 0.1 pmol/μL. The labelled probe was kept at -20 °C. 

Approximately 100 ng of purified MBP-SARD1 or MBP-CBP60g was mixed with 100 ng of 

poly[dI-dC] (Pierce) and 4 μL of 5X binding buffer (50 mM Hepes (pH 7.5), 375 mM KCl, 6.25 

mM MgCl2, 25% glycerol) in a 19 μL reaction. The reaction was incubated at 4 °C for 20 minutes. 

After incubation 1μL of labelled probe (0.1 pmol per reaction) was added, the mixture was further 

incubated at 4 °C for another 20 minutes and then run on 5% native polyacrylamide gel in 0.5X 

TGE buffer (12.5 mM Tris, 95 mM glycine, 0.5 mM EDTA). After electrophoresis, gel was dried 

and a piece of X-ray film was placed over the gel in a light-proof box. The X-ray film was 

developed afterwards. 

 

12. GUS stain using X-Gluc 

 

Plant tissue was immersed in staining solution (0.1 M NaPO4 pH7.0, 10 mM EDTA, 0.1% Triton 

X-100, 1.0 mM K3Fe(CN)6, 2.0 mM X-Gluc) and vacuum infiltrated until the plant tissue was 

fully immersed in staining solution. The plant tissues were incubated at 37 ℃ overnight. Staining 

solution was removed after incubation and was washed subsequently with 50% ethanol and later 

with 70% ethanol until tissue become colorless. 
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Chapter 3 SA synthesis related gene expression 

 

Introduction 

Salicylic acid (SA) is a phytohormone that has a critical role in plant disease resistance. Plants 

with mutations that impact SA synthesis exhibited enhanced susceptibility to virulent and avirulent 

pathogens (Vlot et al, 2009). In Arabiodopsis, two genes were identified as essential for SA 

biosynthesis in response to pathogen challenge. SID2 (SA-induction-deficient 2)/ICS1 

(Isochorismate Synthase 1) encodes an enzyme that convert chorismate to isochorismate, a 

precursor of SA (Wildermuth et al, 2001). Further, EDS5 (Enhanced-disease-susceptibility 5) 

encodes a multi-drug and toxin extrusion (MATE) transporter (Nawrath et al, 2002). Recent 

results suggest the chloroplast membrane localized EDS5 functions as an SA transporter in 

Arabidopsis (Serrano et al, 2013). In addition, NPR1 is required downstream of SA to activate 

plant defence responses (Dong, 2004) and it is vital in establishing both local and systematic 

acquired resistance (SAR)(Fu & Dong, 2013).  

 

Calmodulin (CaM) binding protein 60 G (CBP60g) was recognized to be involved in Arabidopsis 

disease resistance to Pseudomonas syringe (Wang et al, 2009a). CBP60g was reported to be 

induced between three and six hours after Psm ES4326 infection. cbp60g plants accumulated less 

SA and showed enhanced susceptibility compared to wild type. In addition, a CaM binding 

domain was identified at the N-terminus of CBP60g, which is essential for protein function in 

plant immunity (Wang et al, 2009a). A subsequent study identified CBP60g and its closely related 

protein SARD1 are transcription factors that directly bind to the ICS1 promoter with high affinity 

to a GAAATTTGG motif (Zhang et al, 2010). SARD1 shares 39% similarity in amino acid 

sequence to CBP60g, both transcription factors have a DNA binding domain located in the centre 

of the protein. However, SARD1 does not contain a CaM binding domain (Zhang et al, 2010). 

Both SARD1 and CBP60g were expressed in response to Psm ES4326 infection. In sard1 cbp60g 

plants, ICS1 expression was significantly decreased, and the SA level was reduced compared to 

wild type plants (Zhang et al, 2010). Further, the expression of SARD1 is later than CBP60g, with 
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Psm ES4326 infection, SARD1 expression was not significantly induced until 24 hours (Wang et al, 

2011).  

 

S-nitrosoglutathione (GSNO), formed by S-nitroyslation of glutathione (GSH), functions as a 

stable reservoir for NO bioactivity. The importance of maintaining GSNO homeostasis was 

demonstrated via reverse genetic studies. Arabidopsis GSNO reductase (AtGSNOR1) is the 

enzyme that turnovers GSNO. Further, atgsnor1-3 plants showed an elevated total cellular SNO 

concentration and resulted in compromised plant non-host, basal and Resistance (R) 

gene-mediated protection (Feechan et al, 2005; Kwon et al, 2012). Upon pathogen infection, 

gsnor1-3 plants showed reduced SA accumulation, delayed and reduced PR1 expression compared 

to wild-type Arabidopsis (Feechan et al, 2005).  

 

We speculated that high cellular SNO levels may negatively regulate SARD1 and CBP60g 

activities and thus reduce ICS1 expression, leading to a reduction in SA synthesis. However, 

increased cellular NO and SNO levels may not only regulate SARD1 and CBP60g activity, but 

also control their transcription. To evaluate this hypothesis, quantitative reverse transcription PCR 

(qRT-PCR) was used to monitor expression of these genes (Fig 3.1).  

 

Results 

Arabidopsis leaves were infiltrated with Psm ES4326 (OD600= 0.02), and samples were collected 

at different time points after inoculation. Expression of ICS1, SARD1 and CBP60g were evaluated 

by qRT-PCR (Figure 3.1). Each bar represents normalized mean expression of ICS1, SARD1 and 

CBP60g respectively after inoculation. Gene expression of ICS1, SARD1 and CBP60g were 

normalized by ACTIN2, which has already been used as internal reference in previous research 

studying same genes using qRT-PCR (Truman & Glazebrook, 2012; Wang et al, 2009a). 

 

Results are consistent with previous findings: ICS1 (Fig 3.1C), SARD1 (Fig 3.1A) and CBP60g 

(Fig 3.1C) transcripts accumulated after pathogen inoculation in Arabidopsis Col-0 and gsnor1-3 

plants. However, the expression levels of these genes in gsnor1-3 plants were lower than their 

expression in Col-0 and their expression was also delayed. In Col-0 plants, expression of CBP60g 
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was increased 1 hour after inoculation (Fig 3.1B), and SARD1 expression from 3 to 6 hours post 

inoculation (Fig 3.1A) (Wang et al, 2011). Increased expression of SARD1 and CBP60g triggered 

the expression of ICS1, resulting in increased ICS1 transcript levels at 6 hours after inoculation 

(Fig 3.1C). In gsnor1-3 plants, SARD1 expression was slightly increased 12 hours after 

inoculation (Fig 3.1A). Increased CBP60g and ICS1 expression were detected at similar time 

points in both gsnor1-3 and Col-0 plants, but the expression of these genes was significantly 

reduced in atgsnor1-3 plants relative to Col-0.  

 

 

Figure 3.1. Induction of ICS1, SARD1 and CBP60g in Arabidopsis Col-0 and gsnor1-3 plants after 

pathogen challenge. Each bar represents the mean value of expression of SARD1 (A), CBP60g (B) 
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and ICS1 (C) in Col-0 (Blue) and gsnor1-3 plants (Orange) at respective times after inoculation. 

Gene expression levels were normalized related to ACTIN 2 level. Data was obtained from three 

biological replicates, error bar represent standard deviation. 

 

Discussion 

In Arabidopsis sard1 cbp60g double knockout plants, ICS1 expression is significantly reduced 

(Zhang et al, 2010), which indicates the importance of the function of SARD1 and CBP60g in 

maintaining the integrity of the SA synthesis pathway. Our data shows that despite the presence of 

no mutations in SARD1 and CBP60g, reduced SARD1 and CBP60g transcript levels were 

observed in the presence of high cellular SNO levels. Thus, increased SNO content is a factor that 

contributes to reduced ICS1 transcript accumulation in gsnor1-3 plants during the immune 

response and consequently leads to reduction of SA levels in gsnor1-3 plants. Currently, SA 

synthesis is thought to be triggered by two independent signalling cascades, PAD4/EDS1 and 

NDR1 (Dempsey et al, 2011). Previous research suggested that the SARD1/CBP60g node is 

located between the PAD4/EDS1 node and SA synthesis node (Wang et al, 2011). EDS1/PAD4 are 

key regulators of TIR-NBS-LRR triggered R-protein mediated resistance (Aarts et al, 1998), 

which is compromised in gsnor1-3 plants (Feechan et al, 2005). Thus, low SARD1 and CBP60g 

transcripts in gsnor1-3 plant may be due to compromised R-protein mediated resistance including 

EDS1/PAD4 function.  

 

Moreover, SARD1 or CBP60g may also be directly modified by NO via S-nitrosylation, which 

may control their activity. Recent researches have provided some evidences that plant 

transcription factor activity might be modulated by S-nitrosylation. Arabidopsis MYB 

transcription factors, MYB2 and MYB30, have been shown to be modified by NO result in 

inhibition of their DNA binding activities in vitro (Serpa et al, 2007; Tavares et al, 2014). 

Arabidopsis gsnor1-3 plants show compromised SA synthesis due to high cellular GSNO content 

(Feechan et al, 2005). In addition to low ICS1 transcript level we observed in qRT-PCR, we 

hypothesized that excessive NO level may inhibit transcription factors activities such as SARD1 

and CBP60g via post-translational modification and result in suppression of ICS1 expression. 
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Chapter 4 SARD1 and CBP60g protein expression 

 

Introduction 

Previous research demonstrated that SARD1 and CBP60g are transcription factors that bind to 

ICS1 promoter region at -1110 and -1290 upstream of untranslated region. In sard1 cbp60g plants, 

ICS1 expression and salicylic acid (SA) levels were significantly reduced upon pathogen infection 

compared to wild type plants (Zhang et al, 2010). Our previous results showed in gsnor1-3 plants, 

SARD1 and CBP60g expression was delayed and reduced after pathogen infection compared to 

Arabidopsis Col-0, which suggested reduced expression of these regulators in high SNO levels 

reduces ICS1 expression and further leads to low SA levels. In addition, multiple proteins are 

found to be S-nitrosylated in Arabidopsis, many of these modifications are promoted in gsnor1-3 

plants (Wang et al, 2015a; Yun et al, 2011). Thus, we speculate that SARD1 and CBP60g are 

potential targets undergoing S-nitrosylation and this modification might impact their activity. To 

evaluate this hypothesis the production of recombinant SARD1 and CBP60g is required.  

 

SARD1 and CBP60g were expressed previously (Truman et al, 2013; Wang et al, 2009a; Wang et 

al, 2011; Zhang et al, 2010). Full length and truncated CBP60g (1-76 aa) was expressed with a 

N-terminal glutathione S-transferase (GST) tag using a pET15 vector (Wang et al, 2009a). Full 

length and truncated (1-83 aa) SARD1 were expressed using the same vector (Zhang et al, 2010). 

The GST tag is a widely used affinity tag for its high expression efficiency and solubility (Harper 

& Speicher, 2011). In addition, the incorporation of a protease cleavage site within the GST-fusion 

protein for further tag cleavage after protein purification is a widely used strategy to support 

subsequent analysis by NMR and structural determinations by crystallography. However, GST 

was reported to be S-nitrosylated and thus may not be the optimal choice for our study (Ji et al, 

2002).  

 

Polyhistidine-tag (His-tag) is a string of nucleotides encoding at least six histidine residues fused 

at either end of the translated protein. The His-tag has high affinity to Cu
2+

, Ni
2+

, Co
2+

 or Zn
2+

, 
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that provides a purification strategy for its fusion proteins. Further, it has a small size which will 

minimize its impact on protein folding (Hengen, 1995). However, endogenous histidine-rich 

proteins from expression hosts like E. coli make purifying his-tagged proteins more difficult than 

GST-tagged proteins. In addition, the His-tag does not improve protein expression or solubility, 

thus lower protein yield is expected in expression and purification. Maltose-binding protein (MBP) 

is another affinity tag that is commonly used in fusion protein expression. Like GST tag, MBP tag 

is known for its high yields and solubility (Papaneophytou & Kontopidis, 2014). In addition, no 

cysteine residues are present in the tag, making it more attractive for assessing potential 

S-nitrosylation. However, MBP itself has a high molecular weight (40 kDa), thus further tag 

cleavage may be required after expression and purification. 

 

In this chapter, recombinant HisMBP-SARD1 and HisMBP-CBP60g were successfully expressed 

and purified. 

 

Results 

SARD1 was initially fused with hexahistidine (His6) for protein expression. SARD1 cDNA was 

amplified from Col-0 cDNA library with the correct size of 1353 bp (Fig 4A) and cloned into 

pDEST
TM

17 vector. After DNA sequencing validation, the finished construct was transferred into 

E. coli Rosetta
TM

 2 (DE3). His-SARD1 was expressed and purified. Total soluble and purified 

protein were obtained and analyzed by SDS-PAGE. The resulting gel was subsequently analyzed 

using Coomassie staining (Fig 4.1A). However, no up-regulated band was visible in total soluble 

protein (Fig 4.1A, Lane 1 and 2) with/without addition of Isopropyl β-D-1-thiogalactopyranoside 

(IPTG). In addition, no protein was detected after purification, suggesting no SARD1 was 

expressed. Although several adjustments were made, the results were consistent. To circumvent 

this issue, another vector, pET28a, was used for SARD1 expression. His-SARD1 expressed from 

E. coli Rosetta
TM

 2 (DE3) using pET28a was purified and analyzed by SDS-PAGE and 

western-blot (Fig 4.1B). After Coomassie staining, proteins were mainly detected in elution 

sample 3, 4 and 5, with a dominant band at 60 kDa size. The predicted molecular weight of 

SARD1 is 50 kDa and a 60 kDa band doesn’t represent His-SARD1. In elution sample 4 and 5, 

coomassie stain also revealed non-dominant bands other than 50 kDa and 60 kDa, we suggest 
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those bands are non-specific E. coli proteins that co-purified during purification. In a western blot, 

a dominant band slightly below 50 kDa sign was detected by anti-His antibody (Fig 4.1B, lower 

half). This indicated the presence of His-SARD1, since this band was not visible in Coomassie 

staining, suggesting that His-SARD1 expression level was not optimal. Collectively, our data 

suggested that the His-tag may not be the best tag for SARD1 expression. 

 

 

 

Figure 4.1. Expression and purification of SARD1 and CBP60g using different tags and 

expression hosts. (A) Coomassie stain of purified His-SARD1 protein from E. coli Rosetta
TM

 2 

(DE3), + and – indicate presence/absence of IPTG during protein expression. Lane 1 and 2, total 

soluble protein. Lane 3 and 4, eluted protein. (B) Coomassie stain and western blot of purified 

His-SARD1 protein from E. coli BL21. Arrow indicates His-SARD1. 7 vials (500 μL each) of 
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eluted protein were collected during purification. Lanes 1-7 correspond to each vial of eluted 

protein. (C) Schematic drawing of fusion protein with pDEST-HisMBP construct including TEV 

protease cleavage site. (D) Coomassie stain of purified HisMBP-SARD1 protein from E. coli, + 

and – indicate presence/absence of IPTG during protein expression, red arrow indicates band 

correspond to MBP (40 kDa), molecular weight of protein markers indicated on the left (kDa). 

Lane 1 and 2 are purified CBP60g elution from E. coli BL21 cells. Lane 3 and 4 are purified 

CBP60g elution from E. coli Rosetta cells. Lane 5 and 6 are purified SARD1 elution from E. coli 

BL21 cells. Lane 7 and 8 are purified SARD1 elution from E. coli Rosetta cells. 

 

To overcome the difficulties encountered during the expression of His-SARD1, a construct was 

designed to fuse a His6MBP tag at the N-terminus of a TEV protease cleavage site followed by 

SARD1/CBP60g, based on the pDEST-HisMBP vector (Fig 4.1C). A TEV protease cleavage site 

was included for potential further tag cleavage (Sun et al, 2011). The completed construct was 

transferred into E. coli, recombinant SARD1 and CBP60g were expressed and purified using 

amylose resin as described in method section 7. Eluted proteins were analyzed via SDS-PAGE, the 

resulting gel was stained by Coomassie blue (Fig 4.1D). However, no HisMBP-SARD1 or 

HisMBP-CBP60g was detected after purification, only HisMBP tags were found at 40 kDa (Red 

arrow, Fig 4.1D). Both E. coli BL21 DE3 and E.coli Rosetta
TM

 2 (DE3) were used for expression 

and the results were similar. This suggested recombinant SARD1/CBP60g may be degraded or 

insoluble thus only the tag remained in the soluble fraction and was purified, or the protein tag 

was cleaved from recombinant protein and no SARD1/CBP60g was purified. The different band 

intensity at 40 kDa with/without IPTG induction indicated a successful induction as it correspond 

to the size of the MBP protein (Fig 4.1D). The amount of MBP in the purified sample was 

significantly increased in both BL21 and Rosetta with IPTG induction, suggesting the MBP-tag is 

a better choice to the His-tag. 

 

 

 

Figure 4.2. Schematic drawing of the pDEST-HisMBP fusion protein construct. 6X His 
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(Hexahistidine) tags are located at the N-terminus of MBP (Maltose binding protein) tag. The 

MBP tag is designed to improve the fusion protein’s solubility and yield. AttB1/B2 sequences are 

used for cloning by recombination. 

 

Based on previous results, the TEV protease cleavage site was removed from the previous 

construct (Fig 4.2). The resulting construct was transferred into E. coli Rosetta
TM

 2 (DE3), 

recombinant SARD1 and CBP60g were expressed and purified using amylose resin as per 

protocol. Purified proteins were analyzed by SDS-PAGE and western-blot. Following Coomassie 

staining, several up-regulated bands were observed in the SARD1 purified fraction with IPTG 

induction (Fig 4.3A). Among them, an up-regulated 90 kDa band indicated His-MBP SARD1 

expression (Fig 4.3A, red arrow). However, there was no significant difference in CBP60g 

purified protein between presence/absence of IPTG induction. In the subsequent western-blot, 

both CBP60g and SARD1 were detected by anti-MBP antibody (Fig 4.3B, red arrow). In addition, 

free MBP-tag was also detected and there was a significant difference with addition of IPTG. 

However, the purity of the proteins was not optimal. 

 

 

Figure 4.3. Purified HisMBP-SARD1 protein from E. coli Rosetta
TM

 2 (DE3). (A) Coomassie 

stain of purified recombinant CBP60g and SARD1 from E. coli Rosetta
TM

 2 (DE3) protein extract, 

+ and – indicate presence/absence of IPTG during protein expression, red arrow indicates 
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predicted HisMBP-SARD1 size. (B) Western-blot of purified recombinant CBP60g and SARD1 

from E. coli Rosetta
TM

 2 (DE3) protein extract, + and – indicate presence/absence of IPTG during 

protein expression. Recombinant SARD1, CBP60g and the MBP-tag are indicated by red arrow 

with labels.  

 

SARD1 and CBP60g cDNA was amplified from pathogen challenged Col-0 cDNA, with a size of 

1353 bp and 1689 bp respectively (Fig 4.4A). SARD1 and CBP60g cDNA were cloned into 

pDEST-HisMBP destination vector. Constructs were subsequently transferred into E. coli BL21 

pLysS cells for expression. Recombinant proteins were expressed as per protocol. Total soluble 

proteins from E. coli were obtained and analysed by SDS-PAGE. The resulting gels were stained 

by Coomassie blue (Fig 4.4B). For CBP60g, there was no significantly up-regulated expression 

found with the presence of the inducer IPTG (Fig 4.4B, lane 1). However, total protein expression 

in the SARD1 expression line was significantly up-regulated by adding IPTG (Fig 4.4B, lane 3), 

especially at 90 kDa (red arrow), 60 kDa and 40 kDa. The MBP-SARD1 protein has a predicted 

molecular weight of 90 kDa, the molecular weight of MBP-tag is 40 kDa and we suggest 60 kDa 

band may correspond to degraded MBP-SARD1 protein. Recombinant SARD1 and CBP60g was 

purified using an amylose resin (NEB E8021S) based purification technique. Purified protein was 

analysed using SDS-PAGE and Coomassie staining (Fig 4.4C and D), the concentration of 

purified protein was measured using the Bradford assay. Despite little up-regulation of expression 

(Fig 4.4B), CBP60g has been successfully purified (Fig 4.4C. Lane 1 and 2, red square). Further, 

SARD1 also has been purified using the same technique (Fig 4.4C. Lane 3 and 4, red square). By 

analysing the presence of recombinant proteins in different elution fractions (Fig 4.4D), elution 

fraction 2 for both recombinant proteins was chosen to be used in further experiments due to its 

greater purity, despite the fact it was less concentrated (Fig 4.4D). 
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Figure 4.4. Expression and purification of recombinant SARD1 and CBP60g. (A) Amplification of 

SARD1 and CBP60g from Col-0 cDNA, bands indicate successful amplification of target genes, as 

labelled. (B) Induction of recombinant CBP60g and SARD1 in E. coli BL21 pLysS (DE3), total 

soluble protein with (+) or without (-) IPTG, molecular weight of protein markers indicated on the 

left (kDa), land 1 and 2 are CBP60g total protein fractions, lane 3 and 4 are SARD1 total protein 

fractions, red arrow indicates up-regulated band corresponding to HisMBP-SARD1. (C) 
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Coomassie stain of purified recombinant CBP60g and SARD1 from E. coli BL21 pLysS (DE3) 

protein extract, + and – indicate presence/absence of IPTG during protein expression. Lane 1 and 

2 are CBP60g, lane 3 and 4 are SARD1. (D) Coomassie stain of recombinant CBP60g and 

SARD1 in different elution fractions of purified protein. Lane 1-3 contain CBP60g, lane 4-6 

contain SARD1. 

 

Discussion 

After several attempts, SARD1 and CBP60g were expressed and purified with HisMBP-tag in E. 

coli BL21 pLysS (DE3) (Fig 4.4D). Recombinant SARD1 and CBP60g were initially designed to 

tag with His6. However, no protein was expressed when using Gateway® system pDEST17 (Fig 

4.1A). A previous research indicated that expression vector pDEST17 containing the sequence 

AAA-AAA in its attB1 site which result in its susceptibility to -1 ribosomal frameshifting at the 

sequence C-AAA-AAA (Belfield et al, 2007). SARD1 was later expressed with His6 tag using 

pET28a vector with low protein purity and concentration, which can only be detected using 

western-blot (Fig 4.1B). In fact, recombinant SARD1 was not the dominant band following 

Coomassie blue staining (Fig 4.1B). His-tag is one of smallest and most commonly used tags in 

protein expression and purification. SARD1 has a predicted molecular weight of 50 kDa, thus the 

dominant 60 kDa band is a contaminant during purification (Fig 4.1B, Lane 4 and 5). The E .coli 

chaperone GroEL, a 60 kDa heat shock protein, is a possible contaminant that co-eluted with 

His-SARD1. In addition, any endogenous histidine rich protein from E. coli may also interact with 

Ni-NTA resin and be purified later, which could explain the non-specific bands showed in Fig 

4.1B. SARD1 was predicted to be insoluble when expressing in E. coli, such property may also 

contribute on SARD1 low expression level with His-tag. Taken together, the unsuccessful 

expression of His-SARD1 in E. coli suggested it was better to use protein tags which can improve 

protein solubility and expression level. GST-tag was used in previous research (Zhang et al, 2010) 

and was proven to be a suitable tag for SARD1 expression and subsequent experiments. However, 

GST contains multiple cysteines which were shown susceptible to S-nitrosylation (Ji et al, 2002). 

In addition, glutathione (GSH) is used in GST fusion protein purification, which can interfere in 

subsequent redox regulation study of SARD1. Thus, MBP-tag is chosen to fuse with SARD1 for 

recombinant protein expression.  
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SARD1 and CBP60g were expressed using an N-terminal His-MBP tag, which included a TEV 

protease site. However, this was not successful, as no protein was detected in SDS-PAGE (Fig 

4.1D). The E. coli BL21 pLysS strain appears to be superior relative to the Rosetta
TM

 2 strain in 

the expression of these recombinant proteins. More non-specific bands and stronger basal 

expression were observed in proteins expressed from Rosetta
TM

 2 than E. coli BL21 pLysS (Fig 

4.3). E. coli carrying the pLysS plasmid produce bacteriophage T7 lysozyme, which is a natural 

inhibitor of T7 RNA polymerase, this can reduce basal expression from the T7 promoter (Studier, 

1991). In summary, after several attempts and adjustments, recombinant SARD1 and CBP60g 

were successfully expressed using an N-terminal HisMBP tag and E. coli BL21 pLysS as host 

with IPTG induction. Recombinant proteins were purified by a batch method using amylose resin 

and eluted with maltose for further study. 
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Chapter 5 SARD1 DNA binding assay 

 

Introduction 

Various transcription factors were found to bind on ICS1 promoter to regulate its expression, 

including SARD1 and another closely related protein, CBP60g (Zhang et al, 2010). SARD1 (SAR 

deficient 1) was named due to it is required for systemic acquired resistance (SAR). In previous 

research, Arabidopsis sard1 plants showed reduced SAR to subsequent pathogen infection after 

pre-treatment with Psm ES4326 or Psm ES4326 avrB (Zhang et al, 2010). SARD1 and its closely 

related protein CBP60g were later identified as transcription factors which are required for ICS1 

induction and nuclear localization. Subsequent experiments showed SARD1 and CBP60g bind 

ICS1 promoter at -1110 to -1290 bp upstream of the translational start site with high affinity to 

GAAATTTTGG motif (Zhang et al, 2010). A later study suggested that despite sharing the same 

binding motif, SARD1 and CBP60g are expressed at different time point. CBP60g plays more 

important role in SA induction in calcium dependant manner at early stages of plant defence, 

while SARD1 has more important role later (Wang et al, 2011). 

 

Developed in 1981 (Fried & Crothers, 1981), Electrophoretic mobility shift assay (EMSA) is used 

to detect interaction between protein and nucleic acid. This technique is based on the theory that 

electrophoretic mobility of free nucleic acids is faster than a protein-nucleic acid complex 

(Hellman & Fried, 2007; Lane et al, 1992). Nucleic acids are labelled by radioisotopes and ran 

through acrylamide or agarose gel. Signals from radioisotopes can be viewed using 

autoradiography. By adding specific proteins, e.g. respective transcription factors, resulting 

radiolabelled nucleic acid-protein complex will run slower than free nucleic acid, resulting 

position “shift” on photographic film (Fig 5.1A). EMSA using radioisotopes can achieve its 

maximum sensitivity. Even though, fluorescence, chemiluminesence and immunohistochemical 

approaches are used in detecting mobility shift with less sensitivity but better safety. 

 

Nitric oxide (NO) is reported to inhibit or increase plant transcription factors activities via 
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S-nitrosylation (Lindermayr et al, 2010; Serpa et al, 2007). In Arabidopsis, AtMYB2 is expressed 

in response to abiotic stresses including water stress, low oxygen and high salinity. AtMYB2 is 

reported to bind the ALCOHOL DEHYDROGENASE 1 gene (ADH1) to the GT-motif (TGGTTT) 

(Hoeren et al, 1998). Recent results suggested that the minimal DNA binding domain of AtMYB2, 

M2D, is able to bind the TGGTTT motif in EMSA. The binding is inhibited after adding 5 mM 

sodium nitroprusside (SNP) or S-nitrosyglutathione (GSNO), suggesting an inhibitory role of NO 

donors. Furthermore, this inhibition was reversed by adding the reducing reagent, dithiothreitol 

(DTT) (Serpa et al, 2007). Another plant transcription factor, TGA1, was reported to bind 

activation sequence-1 (as-1) elements (TGACG(N7)TCACG) (Despres et al, 2003). In EMSA, the 

His-TGA1-as-1 complex migrates with different mobility under different redox states. A high 

mobility band indicates presence of reduced or modified cysteine, while a low mobility bands 

indicates presence of intramolecular disulphide bonds (Despres et al, 2003). In addition, reduction 

of disulphide bridge within TGA1 and GSNO dependent modification were shown to increase its 

DNA binding activity in EMSA (Lindermayr et al, 2010). 

 

Truncated SARD1 has been demonstrated to bind the ICS1 promoter (Zhang et al, 2010). In this 

chapter, full length recombinant SARD1 was used in EMSA to test its DNA binding activity, and 

NO donors were used to examine the impact of NO on its DNA binding ability.  

 

Results 

To evaluate the DNA binding ability of recombinant SARD1, HisMBP-SARD1 was assayed using 

EMSA. A 181 bp ICS1 promoter fragment described previously (Zhang et al, 2010) was amplified 

from Col-0 genomic DNA and used as the binding target for recombinant protein. Utilising an 

agarose gel, an increased amount of SARD1 protein in the assay resulted in increased formation of 

a low mobility DNA-protein complex between SARD1 and the ICS1 promoter fragment (Fig 1A, 

upper arrow, labelled as shift). While the intensity of the DNA probe, which moved much faster 

than the DNA-protein complex, decreased in intensity correspondent to an increasing amount of 

SARD1 (Fig 5.1A, lower arrow, labelled as free probe). This demonstrated that recombinant 

SARD1 has similar DNA binding ability as previously reported for its truncated form (Zhang et al. 

2010). 
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Figure 5.1. DNA binding assay of SARD1. (A) Binding between increasing amount of SARD1 

and a constant amount of DNA probe subsequently fractionated on an agarose gel. Lane 1, no 

protein. Lane 2, 1 μg protein. Lane 3, 2 μg protein. Lane 4, 5 μg protein. Lane 5, 10 μg protein. 

Lane 6, 20 μg protein. Lane 7, 50 μg protein. Lane 8, 100 μg protein. (B) Binding between 

SARD1 and DNA probe subsequently analysed by native PAGE. Lane 1, 1 pmol labelled probe. 

Lane 2, 1 pmol labelled probe, 5 μg protein. Lane 3, 1 pmol labelled probe, 10 μg protein. (C) 

Binding of SARD1 with DNA probe in presence of NO donor. –ve: no protein; +ve: 10 μg protein 

loaded; 10X: 10X unlabelled DNA probe. Arrows indicate position of DNA probe signal. CysNO: 

nitrosocysteine. GSNO: S-nitroysoglutathione. 

 

To increase the sensitivity of this assay, the same assay was performed on a native polyacrylamide 

gel (Fig 5.1B). In this assessment, consistent with our previous results, SARD1 exhibited DNA 

binding ability. However, two shifts were observed with an increasing amount of SARD1 (Fig 

5.1B, lane 3). Initially, this observation was speculated to be due to protein aggregation, but after 

several adjustments (changing amount of protein, polyacrylamide gel concentration, addition of 

nonionic detergent), this phenomenon was not resolved. This protein-DNA complex (Fig 5.1B, 
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upper arrow) may be formed by binding between the DNA probe and a SARD1 polymer, which 

results in a large complex with low mobility. In addition, a SARD1 monomer may also bind with 

the DNA probe forming a complex with higher mobility (Fig 5.2B lane 3, middle arrow). Further, 

by adding 10X non-radiolabelled DNA probe, the intensity of the DNA-protein complex was 

reduced (Fig 5.1C, lane 3, upper and middle arrows) compared to reactions without non-labelled 

probe (Fig 5.1C, lane 2, upper and middle arrows).  

 

To test if NO is capable of modifying SARD1 activity, different NO donors have been included in 

DNA binding assay. The assay has been performed using SARD1 which was pre-treated with 

different concentrations of GSNO or CysNO (0.1 mM, 0.5 mM and 5 mM, Fig 1C, lane 4-9). In 

both scenarios, the binding complex between SARD1 and DNA was reduced with the presence of 

NO. This finding suggests that SARD1 is a potential target for NO-based modifcation in vitro and 

the outcome of such modification may lead to inhibition of its DNA binding ability. 

 

Discussion 

Recombinant full length HisMBP-SARD1 was shown to bind the 181 bp ICS1 promoter sequence 

which was previously described by Zhang et al (Zhang et al, 2010). The DNA binding activity of 

HisMBP-SARD1 was demonstrated by increased amount of SARD1-DNA complex observed in 

the presence of increased SARD1 input (Fig 1AB). It is noteworthy that in previous research 

(Zhang et al, 2010), only truncated SARD1 was tested for its binding ability. In addition, truncated 

SARD1 was tagged with GST-tag (26 kDa), which is smaller than MBP-tag (40 kDa). Above all, 

despite its large molecular weight, MBP-tag showed its ability on preserving protein activity upon 

expression of a eukaryotic less-soluble protein in prokaryotic system. 

 

The binding between SARD1 and DNA probe was competed by presence of un-labelled probe 

(Fig 5.1C, lane 3), indicates the specificity of SARD1 binding. Moreover, the DNA binding ability 

of SARD1 was inhibited by adding GSNO or CysNO (Fig 5.1C). Unlike CysNO which directly 

transfer nitrosonium (NO
+
) moiety from one thiol to another, GSNO was shown to produce 

disulphide bond with protein sulfhydryls (Giustarini et al, 2005). Nevertheless, the inhibitory role 

of CysNO on SARD1 DNA binding activity suggested that presence of S-nitrosylation on SARD1 
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cysteine residue. S-nitrosylation was reported to inhibit DNA binding activity of multiple 

transcription factors across kingdoms, like AtMYB2 (Serpa et al, 2007), AtMYB30 (Tavares et al, 

2014), c-MYB (Brendeford et al, 1998) and myocyte enhancer factor 2 (MEF2) (Okamoto et al, 

2014). As the first transcription factors showed to be S-nitrosylated in its protein family, there is 

little insight on how S-nitrosothiol (SNO) formation blocks its DNA binding ability. A well 

characterized plant R2R3 MYB transcription factor, AtMYB30, was shown to be S-nitrosylated at 

C49 and C53 in vitro and SNO formation on either site result in inhibition of its DNA binding 

ability (Tavares et al, 2014). Both cysteines were studied extensively on maize R2R3 MYB 

transcription factor P1 (Heine et al, 2004). C49 is the redox sensor in R2R3 MYB DNA binding 

domain and its reduction state is critical for DNA binding. On the secondary structure level, both 

cysteines are positioned in the hydrophobic core and are susceptible to S-nitrosylation. It was 

suggested S-nitrosylation on either cysteine is sufficient to inhibit DNA binding via induction of 

subtle structural modification (Tavares et al, 2014). As for SARD1, S-nitrosylation may introduce 

a similar structural change on its DNA binding domain that block DNA access. It is important to 

identify the modified cysteine residue in SARD1 and study the DNA activity of its cysteine 

mutant. SARD1 forms polymers without reducing reagents like DTT. In addition, DNA binding 

was observed in EMSA without reducing reagent, suggesting that reducing conditions may not be 

required for SARD1 DNA binding activity (Fig 5.1C, lane 2).  

 

The inhibitory role of NO on SARD1 DNA binding also has biological significance. SARD1 is 

known to bind ICS1 promoter region to activate ICS1 expression and further promotes salicylic 

acid (SA) accumulation (Zhang et al, 2010). We previously reported in gsnor1-3 plants, SA 

accumulation is reduced upon pathogen infection, suggesting that the SA synthesis pathway was 

compromised (Feechan et al, 2005). Previous result suggested in gsnor1-3 plants, SARD1 

expression is reduced possibly due to compromised R-gene mediated resistance upstream of SA 

synthesis. Here, we demonstrated that possible S-nitrosylation of SARD1 inhibits its DNA binding 

activity, which provide a direct in vitro explanation of how a high SNO environment may supress 

ICS1 expression and SA accumulation. On the other hand, the inhibitory role of NO on ICS1 

expression may provide a feed-back loop to control plant defence response once the pathogen is 

contained. Previously we have described the inhibitory role of NO on Arabidopsis NADPH 
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oxidase AtRBOHD (Yun et al, 2011), which itself is required for reactive oxygen species (ROS) 

synthesis during plant defence, but later its activity is inhibited by elevated NO concentration 

during pathogen-triggered nitrosative burst. In addition, higher SA level was observed in 

Arabidopsis enhanced GSNO reductase 1 (GSNOR1) activity mutant, gsnor1-1 plants, after 

pathogen infection (Feechan et al, 2005). This phenomenon indicates that potential less inhibition 

of SARD1 activity in gsnor1-1 plants due to lower cellular SNO level in compare to wild type 

plants may result in higher ICS1 expression thus more SA synthesis.  
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Chapter 6 S-nitrosylation of SARD1 

 

Introduction 

 

S-nitrosylation is a post-translational modification that involves covalent attachment of a NO 

moiety to a cysteine thiol. It is suggested that S-nitrosylation plays an important role in plant 

defence and development (Feechan et al, 2005; Kwon et al, 2012; Yun et al, 2011). In animals, a 

number of transcription factors were shown to be S-nitrosylated, including NF-kB, HIF-1 and 

Activator protein-1 (AP-1), resulting in either inhibition or activation of their activity (Sha & 

Marshall, 2012). AP-1 is a bZIP transcription factor, which is a heterodimer formed by a Fos and 

Jun subunit (Shaulian & Karin, 2002). AP-1 is important in controlling gene expression during cell 

proliferation, transformation and apoptosis. AP-1 is shown to be regulated by S-nitrosylation for 

decades (Abate et al, 1990). C154 and C272 in c-Fos and c-Jun subunits respectively are 

S-nitrosylated resulting in inhibition of their DNA binding ability. Recently, another transcription 

factor, myocyte enhancer factor 2C (MEF2C), was also found to be S-nitrosylated resulting in 

inhibition of its transcriptional activity (Okamoto et al, 2014). MEF2 isoforms were shown to 

regulate neurogenesis and neuronal survival in the brain (Dietrich, 2013). S-nitrosylation of MEF2 

C39 results in inhibition of its binding to the Bcl-xL promoter and thereby decreases Bcl-xL 

promoter activity in vivo (Okamoto et al, 2014). In plants, a MYB transcription factor, AtMYB2, 

was shown to be S-nitrosylated at C53 (Serpa et al, 2007), which reduces its DNA binding activity 

after S-nitrosylation. Another bZIP transcription factor in plants, TGA1, is also S-nitrosylated in 

vitro (Lindermayr et al, 2010). Unlike AtMYB2, S-nitrosylation of TGA1 C260 and C266 was 

reported to enhance its DNA binding activity and protect it from oxidative modification 

(Lindermayr et al, 2010). 

 

To detect S-nitrosylation in vitro, a technique called biotin-switch was used (Forrester et al, 2009; 

Jaffrey & Snyder, 2001) (Fig 6.1A). The flow-chart in Fig 6.1A shows the process of biotin-switch. 

Protein with reactive cysteines serves as a potential S-nitrosylating target to NO donors, like 

GSNO and CysNO. First, the target protein is incubated with NO donor to allow S-nitrosylation to 
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occur, other unoccupied thiols are then blocked by the blocking reagents MMTS (methyl 

methanethiosulfonate) or NEM (N-Ethylmaleimide). After blocking, the S-nitrosylated thiol is 

reduced by ascorbate, which can subsequently react with biotin HPDP 

(N-[6-(Biotinamido)hexyl]-3 -́(2 -́pyridyldithio)propionamide). The biotinylated protein is then 

detected by western blot using anti-biotin antibody. 

 

In EMSA, the DNA binding activity of SARD1 was inhibited by addition of NO donors, which 

may be due to potential S-nitrosylation. Here, recombinant SARD1 was shown to be 

S-nitrosylated in vitro. Further, subsequent site-direct mutagenesis revealed that SARD1 C438 was 

the site of S-nitrosylation.  

 

Results 

 

To detect if SARD1 is S-nitrosylated, the biotin-switch assay was performed using recombinant 

HisMBP-SARD1 as substrate. It is noteworthy that the MBP tag and His tag do not contain any 

cysteine residues, thus any signal detected upon biotin-switch would indicate the presence of 

S-nitrosylated SARD1. Fig 6.1B suggests that SARD1 is S-nitrosylated in the biotin-switch assay. 

Ponceau S is a dye that reversibly stains protein on nitrocellulose or PVDF membranes, which 

indicates the amount of protein in the assay. Bands appeared in western blot indicating SARD1 

was labelled by biotin-HPDP, which is due to S-nitrosylation of SARD1. The sample in Lane 1 

serves as negative control, as no CysNO was added, thus all free thiols were blocked and cannot 

be linked with biotin-HPDP later. The sample in Lane 4 is positive control, as SARD1 was treated 

by SDS prior NO treatment. Addition of SDS linearized the protein and exposed all free thiols to 

NO donor regardless of structure. In lane 5, ascorbate is not added during the process, without its 

reduction, the S-nitrosylated cysteine cannot react with biotin, resulting in no signal in the western 

blot. An increased amount of CysNO was added into samples in lane 2 and 3, which resulted in 

increased signal in the western blot corresponding to CysNO input. In sum,, the biotin-switch 

experiment demonstrated recombinant SARD1 is S-nitrosylated in vitro.  
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Figure 6.1. Biotin-switch of recombinant SARD1. (A) Schematic drawing of biotin-switch process. 

As the flow-chart shows, biotin-switch involves three steps: 1. S-nitrosylation of reactive cysteiene 

(indicate by red S) with NO donor. 2. blocking other non-occupied cysteine using blocking 

reagents. 3. Reduction of S-nitrosylated cysteine with ascorbate and labelling newly generated 

cysteine with biotin-HPDP, labelled protein can be detected using western-blot. (B) Detection of 

S-nitrosylated protein SARD1 using different concentrations of CysNO. WB: western blot. SDS: 

sodium dodecyl sulphate. Lane 1: negative control with no CysNO added. Lane 2 and 3, 

S-nitrosylation of SARD1 with 0.1 mM and 0.5 mM CysNO, respectively. Lane 4, positive control, 

SARD1 was linearized prior to biotin-switch by SDS to expose all free cysteines. Lane 5, negative 

control, no ascorbate was added during biotin-switch assay. 

 

After confirming SARD1 is S-nitrosylated in vitro, it is important to determine which cysteine in 

SARD1 is the site of this modification (Fig 6.2). From studying DNA binding activity of truncated 

SARD1, Zhang and his colleagues have identified that the amino acid sequence in the middle of 

SARD1 corresponds to its DNA binding domain (Fig 6.2A, highlighted in orange) (Zhang et al, 

2010). SARD1 contains four cysteines (Fig 6.2A, highlighted in red) and none of these residues 

were located within the DNA binding domain. A software, GPS-SNO 1.0, was used to predict the 

potential SARD1 S-nitrosylation site (Xue et al, 2010)(Table 1). Four cysteines were scored by the 

software based on their position, a higher score suggests a higher chance to be S-nitrosylated. 
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According to GPS-SNO, C311 and C333 have a higher score than other cysteines.  

 

 

 

Table 6.1. Identifying possible S-nitrosylated cysteine using GPS-SNO. SARD1 S-nitrosylation 

site was predicted using GPS-SNO 1.0 (Xue et al, 2010) without any threshold. Cysteines were 

labelled with red with corresponding to their position in SARD1. Scores indicate the likelihood of 

S-nitrosylation site based on known database and calculation. 

 

To identify which cysteine is S-nitrosylated in vitro, four individual SARD1 mutants were made, 

each containing a single cysteine to serine mutation (C221S, C311S, C333S, C438S). Four 

HisMBP-SARD1 proteins were successfully expressed and purified with the same conditions as 

HisMBP-SARD1 (Fig 6.2B). Subsequently, the biotin-switch was performed to determine which 

cysteine(s) might be S-nitrosylated in vitro.  
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Figure 6.2. (A) SARD1 amino acid sequence. Amino acids highlighted in orange indicate the 

SARD1 DNA binding region. Amino acids in red indicate cysteine residues in SARD1. (B) 

Protein expression of SARD1 and its cysteine mutants. Purified SARD1 and its mutants were 

stained by Coomassie blue. Red arrow indicates SARD1 and its mutants. Molecular weight (kDa) 

of corresponding band was labelled at left. 

 

Biotin-switch experiments with SARD1 and its cysteine mutants suggested that C438, is 

S-nitrosylated (Fig 6.3). In the biotin-switch assay, with 1 mM CysNO, a signal from the 

anti-biotin antibody was observed from SARD1 and its mutants C221S, C311S and C333S.No 

signal was also observed in mutant C438S (Fig 6.3A, upper half), which suggested that cysteine 

438 of  SARD1 is the target site for S-nitrosylation. To confirm this observation, the experiment 

was repeated with a focus on the SARD1 C438S mutant (Fig 6.3B, upper half). In a biotin-switch 

assay, after electrophoresis, purified recombinant SARD1 and its mutants on nitrocellulose 

membrane were detected by anti-MBP antibody (Fig 6.3, lower half), indicating the presence of 

HisMBP-SARD1 in all samples. In the western blot using anti-MBP antibody, several bands were 

observed on the film, the dominant bands with molecular weight of 90 kDa indicate presence of 

MBP-SARD1. Bands with lower molecular weight suggest existence of degraded MBP-SARD1 

proteins present in the sample. Bands with higher molecular weight suggest presence of dimerized 

or oligomerized MBP-SARD1 protein. 
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Figure 6.3. Determination of the S-nitrosylated cysteine in SARD1. (A) Biotin-switch assay 

results of SARD1 and its associated cysteine mutants. Upper half: western blot using anti-biotin 

antibody. Lower half: western blot using anti-MBP antibody. (B) Biotin-switch results of SARD1 

and its C438S mutant. Upper half: western blot using anti-biotin antibody. Lower half: western 

blot using anti-MBP antibody. 

 

Discussion 

 

The results from EMSA analysis suggested that SARD1 is S-nitrosylated in vitro, which may 

result in inhibition of its DNA binding activity. Subsequent biotin-switch assays showed SARD1 

is indeed S-nitrosylated in vitro. Examination of the SARD1 amino acid sequence suggested none 

of its cysteines were located within the DNA binding domain (Fig 6.2A). GPS-SNO 1.0 was used 

to predict the S-nitrosylation site in SARD1. However, even using the default setting, no threshold 

for prediction, the software was not able to identify a cysteine target with high probability. This 

may be due to the fact that the algorithm of GPS-SNO is based on identified S-nitrosylated 

proteins from both animals and plants. However, SARD1 belongs to a plant specific calmodulin 

binding protein family which is newly identified as a transcription factors, perhaps making it 

difficult for GPS-SNO to predict an S-nitrosylation site with high accuracy. Nevertheless, 

GPS-SNO predicted C311 and C333 have a higher chance to be S-nitrosylated than other 

cysteines. 
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Figure 6.4. Sequence alignment of Arabidopsis CBP60 family proteins and SARD1. Arabidospsis 

CBP60 family proteins and SARD1 were aligned using MultAlin (Corpet, 1988) with default 

settings  (http://bioinfo.genopole-toulouse.prd.fr/multalin/multalin.html). Amino acids with high 

consensus value (>90%) were coloured in red, amino acids with low consensus value (>50%) 

were coloured in blue. Red underline marked “a” indicates calmodulin-binding domain in CBP60g. 

Red underline marked “b” indicates calmodulin-binding domain in other CBP60 proteins. Blue 

underline indicates calmodulin-binding domain in CBP60a. Purple underline indicates SARD1 

DNA binding domain. Stars indicate cysteine residues in SARD1. 

 

In subsequent site-directed mutagenesis, followed by the biotin-switch assay, we found C438, was 

the site of S-nitrosylation, as opposed to the prediction. There is currently little known about 

SARD1, besides the position of its DNA binding domain. Apart from acting as potential switches 

http://bioinfo.genopole-toulouse.prd.fr/multalin/multalin.html
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for redox regulation, cysteine residues are able to covalently interact with other cysteine thiols to 

create inter- and intramolecular bonds. This process is important in maintaining protein folding 

and structure. In addition, cysteine residues can coordinate a variety of metals and metalloids. 

Thus, cysteine residues are commonly incorporated into metal binding sites (Marino & Gladyshev, 

2012). A well-studied example is zinc-finger proteins. A classic “zinc-finger” domain comprises of 

two cysteines and two histidines forming a tetrahedral coordination motif with Zn
2+

 in the centre 

(Kroncke & Klotz, 2009).  

 

In general, there is no preference for substitution with any other amino acids (Betts & Russell, 

2003). It is common to mutate cysteine into serine or alanine or histidine if there is a “zinc finger” 

domain involved. Alanine is non-bulky, chemically inert amino acid. However, alanine 

substitution was shown before to change transcription factor binding activity (Heine et al, 2004). 

In some cases, valine can also be used since it is as bulky as cysteine. Here, cysteine residues in 

SARD1 were mutated into serine residues as it is the closest amino acid to cysteine in terms of 

structure, also it is cannot be S-nitrosylated. 

 

Interestingly, in the biotin-switch assay, SARD1 C221S and C311S showed increased signal 

compared to wild-type SARD1. This may indicate the presence of a disulphide bond within 

SARD1. Thus, mutation of cysteines involved in disulphide bond formation may have resulted in 

one or more cysteine residues becoming more solvent exposed and therefore exhibiting increased 

susceptibilty to S-nitrosylation. 

 

SARD1 is a plant specific transcription factor that shares the same DNA binding site with CBP60g 

(Zhang et al, 2010). Both transcription factors play a partially redundant role in plant defence 

(Wang et al, 2011). The amino acid sequence alignment revealed SARD1 and CBP60g share 39% 

similarity and alignment of the CBP60 family proteins and SARD1 indicate that SARD1 and 

CBP60 family proteins have high similarity in their DNA binding domain (Fig 6.4). The 

C-terminal domain of SARD1 does not contain either a predictive CBP60 calmodulin binding site 

(Fig 6.4, region b) or an actual calmodulin binding site, as present in CBP60a (Fig 6.4) (Truman et 

al, 2013). Previous results also suggested that unlike CBP60g, the N-terminal domain of SARD1 
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was not capable of calcium binding (Zhang et al, 2010). Cysteine 438 of SARD1, the site of 

S-nitrosylation, is surprisingly not conserved between SARD1 and CBP60 proteins. This may 

suggest that this redox-based post-translational modification might be unique to SARD1. Although 

C438 is distant from the DNA binding domain, based on the primary sequence, this cysteine may 

be located close to DNA binding region based on secondary structure. However, the structure of 

SARD1 and CBP60G proteins remains to be determined. S-nitrosylation of SARD1 at C438 may 

change the secondary structure of this protein, for instance within the DNA binding motif which 

may block DNA binding domain, consistent with an inhibitory role for S-nitrosylation in this case.  
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Chapter 7 SARD1 C438S analysis 

 

Introduction 

Previous results have shown that S-nitrosylation of SARD1 results in inhibition of its DNA 

binding ability in vitro. To identify the S-nitrosylated residue, four single mutants were made. 

Amino acid mutation is a common strategy used in studying amino acid function. Cysteine plays 

an important and flexible role in protein function despite it being one of least abundant residues 

among the 20 common amino acids (Marino & Gladyshev, 2011).  

 

Cysteine mutation was used in studying plant R2R3 MYB transcription factor activities under 

redox regulation (Heine et al, 2004; Serpa et al, 2007; Tavares et al, 2014). Two conserved 

cysteines, C49 and C53, are positioned within the DNA binding domain of Arabidopsis R2R3 

MYB transcription factor AtMYB30. The minimum DNA binding domain (DBD) of AtMYB30 is 

sufficient for binding a 48-nucleotide MYB binding motif in vitro. Both cysteine residues were 

found to be S-nitrosylated in vitro and S-nitrosylation of either cysteine was shown to inhibit the 

DNA binding acivity of AtMYB30 DBD (Tavares et al, 2014). Cysteine residues were substituted 

by alanine residues during subsequent mutagenesis. The single mutants, AtMYB30 C49A and 

C53A, showed the same DNA binding activity compared to wild-type. The double mutant, 

however, lost its DNA binding ability despite the absence of S-nitrosylation (Tavares et al, 2014). 

This result is contradictory to a previous study in the maize transcription factor P1 (Heine et al, 

2004), which is another R2R3 MYB transcription factor sharing high similarity to AtMYB30 

within the DBD. The P1 C49A/C53A double mutant showed the same binding affinity to its target 

DNA as wild type protein. However, another P1 double mutant, C49I/C53S, which was believed 

to mimic the DNA binding domain mutation c-MYB C130S, showed the same compromised DNA 

binding activity (Myrset et al, 1993). Interestingly, substituting  cysteine with alanine seemed to 

enhance P1 DNA binding activity and resulting in this protein becoming resistant to redox 

regulation (Heine et al, 2004). However, serine substitution at C53 was shown to preserve P1 

activity to a large extent. The P1 C49S mutant showed similar DNA binding activity to the wild 

type protein and resistance to oxidation (Heine et al, 2004). 
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Four single cysteine mutants were made to identify the S-nitrosylated cysteine of SARD1. Serine 

residues were used to substitute for cysteine, due to this residue being isosteric to cysteine. In a 

subsequent biotin-switch assay, C438 was found to be susceptible to S-nitrosylation. The amino 

acid sequence of SARD1 showed no cysteine is located within its DNA binding domain. In fact, 

C438 is likely to be the cysteine most distant from the SARD1 DNA binding domain. Amino acid 

sequence alignment showed C438 is not conserved among the SARD1 and CBP60 protein family, 

therefore this regulatory mechanism may be exclusive to SARD1. We show that SARD1 C438S is 

not S-nitrosylated in vitro since the cysteine susceptible to NO modification was mutated to serine 

residue. To further investigate the function of this cysteine, we tested the SARD1 DNA binding 

activity in an electrophoresis mobility shift assay (EMSA) described earlier. In addition, we show 

that SARD1 has an ability to form oligomers in non-reducing conditions. 

 

Results 

To test the DNA binding activity of SARD1 mutants, purified recombinant protein was used in 

EMSA compared to wild-type SARD1 protein (Fig 7.1A). No shift was observed in the negative 

control. Protein-DNA complexes were observed in reactions with SARD1 and sard1 protein, 

indicating C438S has DNA binding activity. Increasing the amount of unlabelled probe (5X-20X) 

was used as competitor to determine if this binding is specific. With increased competitor, the shift 

decreased, as expected (Fig 7.1A). In addition, an increased amount of SARD1 and C438S were 

used in EMSA (Fig 7.1B), with 2 μg of protein and 0.1 pmol radio-labelled probe. DNA binding 

was observed at top of the gel. By increasing the amount of protein to 4 μg, the observed shift was 

seen in the middle of the gel (Fig 7.1B, upper arrow) and a stronger signal was detected at the top 

of the gel. In addition, the signal from the free-probe (Fig 7.1B, lower arrow) was significantly 

reduced in proportion to an increased protein level. These EMSAs suggested that SARD1 C438S 

is capable of binding the ICS1 promoter sequence described previously (Zhang et al, 2010) with 

similar activity to wild-type SARD1. 

 

To investigate if C438S is resistant to NO regulation, C438S was used in EMSA with an NO 

donor, CysNO (Fig 7.2). In EMSA, a C438S-DNA complex was observed as showed in our 
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previous experiment. The signal from this protein-DNA complex was reduced by addition of 10X 

unlabelled probe. With 1 mM CysNO, there was no reduction of the observed DNA-protein 

complex, suggesting the DNA binding activity of C438S was not influenced by NO. 

 

 

 

Figure 7.1. DNA binding assay of wild-type SARD1 and SARD1 C438S. (A) Binding between 

constant amount (10 μg) of SARD1/SARD1 C438S and an increasing amount of unlabelled probe 

subsequently analysed by native PAGE. Lane 1, labelled DNA probe. Lane 2, 10 μg wild type 

SARD1 recombinant protein without competitor. Lane 3, 10 μg wild type SARD1 recombinant 

protein with 1X competitor. Lane 4, 10 μg wild type SARD1 recombinant protein with 5X 

competitor. Lane 5, 10 μg wild type SARD1 recombinant protein with 10X competitor. Lane 6, 10 
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μg sard1 C438S recombinant protein without competitor. Lane 7, 10 μg sard1 C438S recombinant 

protein with 1X competitor. Lane 8, 10 μg sard1 C438S recombinant protein with 5X competitor. 

Lane 9, 10 μg sard1 C438S recombinant protein with 10X competitor. Competitor: unlabelled 

probe. (B) Binding between an increasing amount of SARD1/SARD1 C438S and a constant 

amount of DNA probe subsequently analysed by native PAGE. Upper arrow: SARD1-DNA 

complex. Lower arrow: labelled DNA that not bound to protein. Lane 1, labelled DNA probe. 

Lane 2, 5 μg wild type SARD1 recombinant protein. Lane 3, 10 μg wild type SARD1 recombinant 

protein. Lane 4, 5 μg sard1 C438S recombinant protein. Lane 5, 10 μg sard1 C438S recombinant 

protein. Competitor: 10X unlabelled probe. 

 

 

 

Figure 7.2. Binding of SARD1 C438S with DNA probe in presence of NO donor. +/-: 

presence/absence of indicated reagents within reaction. Reagents are labelled as left panel. Upper 

arrow: sard1-DNA complex. Lower arrow: free probe. CysNO: nitrosocysteine. Competitor: 10X 

unlabelled probe. 
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Cysteine is not only functional as a redox-switch in proteins. Another critical function is forming 

intra/inter-molecular disulphide bonds to maintain protein folding and conformation. We therefore 

tested the oligomerization of SARD1 (Fig 7.3). Purified SARD1 and its cysteine mutants were 

analysed by SDS-PAGE with/without reducing reagent DTT. In the presence of DTT, proteins 

were observed with molecular weight of 90 kDa (Fig 7.3, lower arrow), corresponding to 

recombinant HisMBP-SARD1 molecular weight. In non-reducing condition, two protein bands 

with higher molecular weight were observed in a Coomassie stain, which are below 230 kDa and 

above 230 kDa. SARD1 oligomers were observed in all samples. However, SARD1 C438S 

seemed to form less oligomers compare to SARD1 and its other mutants. An addition 55 kDa band 

was observed in wild-type SARD1 but not in mutant sard1 proteins, which may correspond to 

degradation of purified protein as its molecular weight is lower than the molecular weight 

MBP-SARD1 monomer. 

 

 

 

Figure 7.3. Oligomerization of SARD1 proteins. SARD1 and its mutants were analysed using 

SDS-PAGE, presence/absence of dithiothritol were labelled as above. Molecular weight of protein 

markers were indicated on the left (kDa). Upper arrow: oligomers with molecular weight more 

than 230 kDa. Middle arrow: oligomers with molecular weight about 230 kDa. Lower arrow: 
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HisMBP-SARD1 monomer with molecular weight of 90 kDa. 

 

Discussion 

Here, we showed HisSARD1 and the corresponding C438S mutant has the same DNA binding 

activity as wild type SARD1 protein. C438 was shown to be S-nitrosylated in the previous 

biotin-switch assay. Additionally, S-nitrosylated SARD1 lost its DNA binding ability in vitro. 

Unlike some transcription factors which were shown to be redox regulated, C438 is most distant 

from the SARD1 DNA binding domain among four cysteine residues found in SARD1. Thus, we 

speculated that C438S will maintain its DNA binding ability. Indeed, in EMSA, we demonstrated 

that SARD1 C438S is capable of binding the 181 bp probe isolated from the ICS1 promoter region 

(Fig 7.1). The DNA binding ability of SARD1 C438S was not impaired by an NO donor, as the 

mutant is resistant to NO regulation. Our results also show that SARD1 forms a dimer and 

oligomers in the absence of the reducing reagent, DTT. Therefore, suggesting that SARD1 may 

exist as oligomer in an oxidized environment and require reducing conditions to function. 

Interestingly, fewer oligomers were observed in the SARD1 C438S mutant (Fig 7.3), suggesting 

C438 may not only be regulated via S-nitrosylation, but may also be susceptible to intermolecular 

disulphide bond formation. Based on SDS-PAGE, it is pre-mature to be certain about 

polymerization of SARD1 under non-reducing condition. To evaluate this observation further, it is 

possible to mutate other cysteines in SARD1 to identify the cysteines responsible to disulphide 

bond formation. 

 

Previously, SARD1 was reported to bind the ICS1 promoter region and induce ICS1 expression 

(Zhang et al, 2010). In addition, the Arabidopsis GSNO reductase knock-out mutant, atgsnor1-3, 

was shown to have a reduced salicylic level and Pathogenesis Related (PR) gene expression upon 

pathogen infection (Feechan et al, 2005). Currently, there is few understanding about how high 

cellular SNO levels directly supress SA accumulation. The inhibitory role of NO on SARD1 DNA 

binding activity provides a significant insight into this issue. Although SARD1 and CBP60g were 

shown to bind the ICS1 promoter at the same binding motif, expression of CBP60g was observed 

after pathogen infection with a peak expression level 9 hours post-infection (Wang et al, 2009a). A 

subsequent report suggested that SARD1 is expressed at 24 hours after pathogen infection to 



70 
 

provide prolonged ICS1 expression and SA synthesis (Wang et al, 2011). Previously we have 

reported that cellular SNO content increased after Pseudomanas syringae DC3000 avrB (Pst 

DC3000 avrB) and Pst DC3000 avrRrps4 challenge while NADPH oxidase activity in 

Arabidopsis was increased and later reduced as plant resistance is developed. In addition, the 

NADPH oxidase, AtRBOHD, is S-nitrosylated both in vivo and in vitro resulting in supressed 

activity (Yun et al, 2011). In this case, SARD1 binding activity may be supressed by increasing 

cellular SNO levels, resulting in decreased ICS1 expression and a reduced SA level after pathogen 

challenge. Oligomerization of SARD1 in non-reducing conditions suggests SARD1 

monomerization may require a reducing cellular environment, which may be synchronized with 

decreased reactive oxygen species (ROS) levels after the initial ROS burst (Yun et al, 2011). 

Further, monomerization of SARD1 may facilitate its nuclear localization, as found in Arabidopsis 

(Zhang et al, 2010).  
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Chapter 8 Constructing ICS1 promoter::GUS reporter 

Arabidopsis plants 

 

Introduction 

Currently, it is suggested that the majority of salicylic acid (SA) synthesis in Arabidopsis induced 

by pathogen infection is mediated by Isochorismate Synthase (ICS) activity (Vlot et al, 2009). The 

ICS activity in Arabidopsis is largely due to expression of one gene, AtICS1 (Wildermuth et al, 

2001). Thus, numerous studies have focused on regulatory factors that influence  SA 

accumulation (Dempsey et al, 2011). Among them, several transcription factors were identified 

that directly regulate ICS1 expression (Chen et al, 2009a; van Verk et al, 2011; Wang et al, 2015b; 

Zhang et al, 2010; Zheng et al, 2012).  

 

Ethylene Insensitive 3 (EIN3) and EIN3-like 1 (EIL1) are transcription factors that are known to 

positively regulate ethylene-dependant gene expression (Solano et al, 1998). A recent report also 

suggested that EIN3 and EIL1 are negative regulators of ICS1 expression (Chen et al, 2009a). 

Accumulation of SA and constant expression of Pathogenesis-Related (PR) genes were found in 

ein3 eil1 double mutant plants without pathogen infection. Further, EIN3 and EIL1 were found to 

bind the P5 fragment of the ICS1 promoter, which is -117 to -324 bp upstream of the translational 

start site, both in vitro and in vivo (Chen et al, 2009a). WRKY28, a gene induced by avirulent 

Pseudomonas syringae pv tomato (Pst) infection (Navarro et al, 2004), was found to actively 

regulate ICS1 expression in Arabidopsis protoplasts (van Verk et al, 2011). Enhanced ICS1 

promoter activity was detected in Arabidopsis protoplasts that overexpress WRKY28. In vitro, 

WRKY28 was shown to bind two W-box motifs on the ICS1 promoter at position -445 and -460 

(van Verk et al, 2011). In a recent study, a member of the Teosinte Branched 1/Cycloidea/PCF 

(TCP) family, TCP8, was identified to positively regulate ICS1 expression (Wang et al, 2015b). 

TCP8 was shown to bind a GGGCCCAC motif on the ICS1 promoter at approximately -150 bp 

upstream of the translational start site. The double knockout plants, tcp8 tcp9, were shown to have 

reduced ICS1 expression (Wang et al, 2015b). Interestingly, this TCP binding site overlaps the 
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previously reported EIN3 and EIL1 binding site, suggesting a potential antagonistic interaction 

between these transcription factors. As mentioned in previous chapters, SARD1 and CBP60g were 

found to positively regulate ICS1 expression (Zhang et al, 2010). SARD1 and CBP60g were 

reported to bind on a previously unidentified motif -1110 to -1280 upstream of the translational 

start site with high affinity to a GAAATTTTGG motif. A later study suggested that although 

SARD1 and CBP60g share the same binding motif, they act addictively and are partially 

redundant in Arabidopsis (Wang et al, 2011).  

 

Fusing a promoter with β-glucuronidase (GUS) is a widely used strategy to study promoter 

activity (Hull & Devic, 1995). β-glucuronidase catalyses the hydrolysis of a variety of 

β-glucuronides which are commercially available. Further, the absence of endogenous GUS 

activity in higher plants allows detection of GUS activity even at low levels in transformed tissue. 

In addition, tissue specific GUS activity can be visualized using the substrate X-Gluc (Jefferson, 

1989). The production and analysis of an IS1::GUS fusion would allow discrimination between 

either the transcriptional or post-transcriptional regulation of ICS expression by increased SNO 

levels.  

 

Here, the ICS1 promoter fragment was fused with GUS and transferred into the pGWB3 vector 

(Nakagawa et al, 2007). Subsequently, the construct was transformed into Arabidopsis Col-0. 

GUS activity in successful transformants was then assessed.   

 

Results 

A 1500 bp ICS1 promoter fragment including the 5’ untranslated region was amplified from 

Arabidopsis Col-0 gDNA and analysed using an agarose gel (Fig 8.1A, arrow). The fragment was 

excised from the gel and purified as per protocol. The resulting DNA fragment was transferred 

into pGWB3 vector (Nakagawa et al, 2007) to fuse with GUS. The construct was transferred into 

Agrobacterium tumefaciens GV3101 and subsequently transformed into Arabidopsis Col-0 using 

floral dipping (Clough & Bent, 1998). Successful transgenic plants with kanamycin resistance 

were selected and later infiltrated by Psm ES4326 (OD600 = 0.02, Fig 8.1B, “+”) or mock treated 

(10 mM MgCl2, Fig 8.1B, “-”) along with a negative control of Col-0 plants. Infected leaves were 
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collected 24 hours after inoculation and stained using X-Gluc. The GUS activity was visualized 

after destaining (Fig 8.1B, blue stain). Among 22 individual T1 transgenic plants, GUS activity 

was detected in 13 plants (Fig 8.1B, plant lines 1, 2, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20 and 21). 

However, GUS activity was detected in plant lines 7, 10, 11 and 17 with mock treatment. 

Relatively weak GUS activity was observed in plant lines 1, 12, 13, 16 and 19. Induction of GUS 

expression was observed in plant lines 2, 18, 20 and 21. In Col-0, no GUS activity was observed 

after pathogen challenge or mock treatment. The copy number of transgene was not determined in 

the transgenic plants, as it will be determined in T1 generation by calculating Mendelian ratio.  

 

 

 

Figure 8.1. Construction of AtICS1::GUS Arabidopsis plants. (A) Amplification of ICS1 promoter 
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sequence from Arabidopsis genomic DNA (gDNA). A 1500 bp ICS1 promoter fragment was 

amplified from Arabidopsis Col-0 gDNA and analysed using agarose gel. Arrow indicates the 

DNA band corresponding to 1500 bp. (B) GUS expression in T1 transgenic plants 24 hours after 

pathogen infection. Plant leaves were collected from transgenic Arabidopsis Col-0 T1 plants 24 

hours after Pseudomonas syringae (Pst) ES4326 and subsequently stained with X-Gluc 

(5-bromo-4-chlro-3-inolyl glucuronide). Each transformant is labelled with numbers above. Col-0 

plants were used as a negative control. +: Pathogen infected. -: mock treatment. Blue staining 

indicates GUS activity. 

 

Discussion 

The full length ICS1 promoter region is 3173 bp. We amplified a 1500 bp fragment since it 

contains all currently confirmed transcription binding site including SARD1/CBP60g (-1110 to 

-1280). Over 20 successful transformants were isolated following selection on Murashige & 

Skoog (MS) medium kanamycin plates and subsequently grown on soil. Psm ES4326 was used to 

inoculate transformed Arabidopsis leaves along with Col-0. In our hypothesis, the ICS1 promoter 

will be triggered due to pathogen infection to induce GUS expression and the GUS activity could 

then be observed using its substrate, X-Gluc. GUS activity should not be detected in Col-0 or 

transgenic plants infiltrated by MgCl2. 4 out of 22 transgenic plants fit our hypothesis (Fig 8.1B). 

It is expected that no GUS activity was detected in Arabidopsis Col-0 due to the absence of GUS 

in its genome. Integrating ICS1 promoter::GUS into the Arabidopsis genome mediated by A. 

tumefaciens is completely random, thus, the GUS activity in transgenic plants is largely dependent 

on the genomic location of the transgene insert (Gelvin, 2003). Several transgenic plants showed 

no or low GUS expression after pathogen infection, indicating that the T-DNA may be inserted 

into a low expression region on the genome. Also, 4 transgenic plants showed GUS activity 

without pathogen induction suggested the transgene was inserted into a genome region where 

there is a high level of transcription.  

 

Arabidopsis ICS1 promoter::GUS plants will be useful tools to study ICS1 promoter activity. To 

directly assess ICS1 expression under high cellular SNO conditions, the ICS1 promoter::GUS 

transgene needs to be crossed into a gsnor1-3 genetic background and GUS activity to compare to 
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that produced from the same transgene in a wild-type background. Since SA accumulation in 

gsnor1-3 plants was reduced (Feechan et al, 2005), it is anticipated that ICS1 transcription might 

be reduced in these plants. In addition, ICS1 promoter::GUS plants can be used to test ICS1 

promoter activity and SA biosynthesis with variables, for example pathogens and temperatures. 
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Chapter 9 Discussion and conclusion 

 

Salicylic acid (SA) plays a critical role in inducing both local and systemic disease resistance 

against pathogen infection in Arabidopsis (Vlot et al, 2009). Numerous efforts were made to study 

SA biosynthesis and metabolism (Dempsey et al, 2011). Isochorismate synthase 1 (ICS1) was 

identified previously that is a key enzyme in SA synthesis in response to pathogen infection 

(Wildermuth et al, 2001). Recently, several transcription factors were identified to control ICS1 

expression including CBP60g, SARD1, WRKY28, TCP8 and NAC019 (Chen et al, 2009a; Wang 

et al, 2011; Wang et al, 2015b; Zhang et al, 2010; Zheng et al, 2012). Nitric oxide (NO) has been 

recognized as a signal molecule that contributes to plant immunity for decades (Delledonne et al, 

1998; Durner et al, 1998). However, S-nitrosoglutathione (SNO) is believed to be a more stable 

carrier for NO bioactivity (Malik et al, 2011). Previously we identified that GSNO reductase 

(GSNOR) is critical in maintaining cellular SNO homeostasis. Loss of GSNOR function in 

Arabidopsis results in reduced SA accumulation and compromised plant disease resistance on 

multiple levels (Feechan et al, 2005). To identify the link between cellular SNO levels and SA 

biosynthesis, we investigated a potential regulatory role of NO on SARD1, a transcriptional 

activator of ICS1.  

 

It has been suggested previously that SARD1/CBP60g node is located between EDS1/PAD4 and 

ICS1 (Wang et al, 2011). In addition, we have reported that R-gene mediated defence response 

was compromised in atgsnor1-3 plants (Feechan et al, 2005). It is reasonable to assume that in 

atgsnor1-3 plants, SARD1, CBP60g and ICS1 expression were delayed and reduced after pathogen 

infection, which may be due to compromised R-gene mediated response in high cellular SNO 

levels. Recombinant SARD1 was expressed and purified from E. coli. In subsequent experiments, 

NO was shown to regulate SARD1 DNA binding activity through S-nitrosylation on C438 in vitro. 

To determine if SNO levels modulate ICS transcription, the ICS1 promoter was fused to a GUS 

reporter gene and transferred into Arabidopsis. Successful transgenic plants were obtained and 

GUS activity was confirmed, providing a future tool to address this fundamental question. 

ICS1::GUS plants can be crossed with gsnor1-3 plants, and test the ICS1 promoter activity using 
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GUS stain after pathogen challenging in high cellular SNO level. Based on our in vitro result, we 

hypothesize the ICS1 promoter activity will be reduced in gsnor1-3 plants.  

 

NO was demonstrated to modulate plant disease resistance via S-nitrosylation of proteins involved 

in plant immune signalling. S-nitrosylation of SA-binding protein 3 (SABP3) at Cys280 resulted 

in inhibition of its SA binding and carbonic anhydrase (CA) activity and negatively regulated plant 

immunity, suggesting a potential feed-back loop modulated by NO (Wang et al, 2009b). SNO also 

has been shown to promote pathogen induced hypersensitive cell death in plants including those 

with reduced SA accumulation (Yun et al, 2011). Furthermore, S-nitrosylation of NADPH oxidase 

AtRBOHD at Cys890 inhibits its activity resulting in decreased reactive oxygen intermediate 

(ROI) accumulation (Yun et al, 2011). Taken together, these findings suggest a vital role of NO 

governing plant cell death both positively and negatively. NO has also been shown to facilitate 

oligomerization of non-expresser of pathogenesis-related genes 1 (NPR1) and contribute to the 

maintenance of NPR1 oligomer-monomer homeostasis, which is key in NPR1-dependent 

immunity (Feechan et al, 2005; Tada et al, 2008). In addition, S-nitrosylation and 

S-glutathionylation of TGA1 was demonstrated to increase its DNA binding activity in vitro 

(Lindermayr et al, 2010).  

 

Thus, despite significant progress in understanding how NO modulates plant SA signaling, there is 

little knowledge on how NO regulates SA accumulation. Our results provide the first 

demonstration that S-nitrosylation of a known transcription activator, SARD1, resulting in 

inhibition of its DNA binding activity, may supress ICS1 expression and thereby reduce SA 

biosynthesis during plant immune function. This finding in part might explain the reduction in SA 

accumulation found in plants with high SNO content (Feechan et al, 2005). In addition, SA was 

reported to trigger NO synthesis (Zottini et al, 2007), and constant SNO accumulation was 

observed in plants infected by pathogens along with accumulation of SA (Yun et al, 2011). 

However, over-accumulation of SA results gratuitous cell death and inhibition of plant growth 

(Rivas-San Vicente & Plasencia, 2011). In this context, S-nitrosylation of SARD1 may provide a 

feed-back loop to precisely control the magnitude of SA accumulation. It is noteworthy that as a 

transcription factor, SARD1 may not only regulate expression of ICS1. A bioinformatics study 
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suggested that clusters of genes enriched with a GAAATT motif within their promoter sequence 

were down-regulated in sard1 cbp60g double mutant plants (Truman & Glazebrook, 2012), 

suggesting additional genes that may be regulated by SARD1. A recent ChIP-seq revealed that 

SARD1 not only binds to ICS1 promoter during plant defense response, but also bind to a number 

of genes involve in SAR, PTI and ETI (Sun et al, 2015), including positive and negative regulators. 

Thus, S-nitrosylation of SARD1 might regulate the expression of numerous other genes in 

addition to ICS1. With information of known targets for SARD1, ChIP-seq can be used to evaluate 

SARD1 binding activity to its targets under high SNO environment. 

 

Redox regulation has been shown to regulate transcription in both plants and animals 

(Brigelius-Flohe & Flohe, 2011; Dietz, 2014). However, S-nitrosylation has only been suggested 

to regulate the activity of R2R3 MYB transcription factors, as these proteins have been shown to 

undergo this modification in vitro (Serpa et al, 2007; Tavares et al, 2014). Our results suggest an 

additional class of transcription factors is also regulated by NO. SARD1 belongs to a plant 

specific calmodulin-binding protein family CBP60 (Zhang et al, 2010), which have only recently 

been identified as transcription factors. These features may suggest a novel structure of this class 

of transcription factors, and possibly a novel regulatory mechanism mediated by NO. 
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Figure 9.1 Model for control of ICS1 expression by CBP60g, SARD1 and NO during plant 

defence response. SARD1 and CBP60g act largely redundantly to active ICS1 expression during 

plant defence response. At early stage, CBP60g is activated by calmodulin (CaM) binding and 

bind to ICS1 promoter and induce SA synthesis, while SARD1 has less effect due to its low 

expression. At later stage, CBP60g and SARD1 bind to ICS promoter but SARD1 has greater 
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effect. As cellular calcium level decreased, CBP60g activity may be supressed while SARD1 bind 

to ICS1 promoter to prolong SA synthesis. Binding between SARD1 and ICS1 promoter may be 

inhibited by S-nitrosylation of SARD1 result in suppression of SA synthesis and fading of plant 

defence response once pathogen infection is contained. Circles indicate gene expression level of 

SARD1 and CBP60g. 

 

Here, we propose a model (Fig 9.1) the how NO may modulate SARD1 activity during plant 

immune response. It is showed previously that Ca
2+

 flux after PAMP recognition facilitates 

binding between CaM and CBP60g result in SA synthesis, while SARD1 expression is low (Wang 

et al, 2009a). As plant immune response progress, CBP60g activity is supressed due to decreased 

Ca
2+

 level and expression of SARD1 is increased (Wang et al, 2011). Previously we have reported 

that cellular NO level is increased during plant immune response (Yun et al, 2011). It is possible 

the increased cellular NO level may S-nitrosylate SARD1 to inhibit its DNA binding activity result 

in turning off plant defence response. In this occasion, NO may act as a negative control 

preventing uncontrolled immune response in plant. 

 

To further investigate this area, Arabidopsis plants expressing tagged-SARD1 in both wild-type 

and gsnor1-3 plants first need to be obtained. Subsequently, the in vivo biotin-switch assay needs 

to be performed to demonstrate SARD1 is S-nitrosylated in vivo. Transgenic plants expressing 

SARD1 C438S also need to be included in the S-nitrosylation assay, to establish if C438 is the site 

of S-nitrosylation in vivo. Furthermore, to investigate if SARD1 DNA binding activity is impaired 

by S-nitrosylation in vivo, chromatin immunoprecipitation (ChIP) assays need to be performed to 

determine a possible difference in SARD1 DNA binding ability between wild-type and gsnor1-3 

plants. In addition, since we speculate that SARD1 C438S is insensitive to NO regulation, 

overexpression of SARD1 C438S may result in improved pathogen resistance than overexpression 

of wild-type SARD1. To test this, pathogen assays will need to be performed in Arabidopsis plants 

overexpressing the different SARD1 proteins. 

 

Taken together, our results might partly explain the observation that reduced SA levels are found 

in gsnor1-3 plants. Further, they reveal a new redox-switch target that is regulated by NO. In 
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addition, we suggested a potential feed-back mechanism for the regulation of SA synthesis which 

may also contribute to maintaining the delicate balance between plant immunity and cell 

death/growth/development.  
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