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ABSTRACT 

The identification of the physical parameters (mass, stiffness, and damping) of 

structural, mechanical, and biomechanical systems is a major challenge in many 

applications, especially when dealing with old systems and biological systems with heavy 

damping and where environmental noises are presented. This work presents a novel 

methodology called eigenvector phase correction (EVPHC) to solve for the physical 

parameters of structural and biomechanical systems even with the existence of a 

significant amount of noise. The method was first tested on structural/mechanical systems 

and showed superior results when compared with an iterative method from the literature. 

EVPHC was then developed and used to identify the physical parameters of supine 

humans under vertical whole-body vibration. Modal parameters of fifteen human 

subjects, in the supine position, were first identified in this work using experimentation 

under vertical whole-body vibration. EVPHC was then used to solve an inverse modal 

problem for the identification of the stiffness and damping parameters at the cervical and 

lumbar areas of supine humans. The results showed that the resulting physical parameters 

were realistically close to those presented in the literature. The proposed human model 

was able to predict the time histories of the acceleration at the head, chest, pelvis, and 

legs very closely to those of the experimental measured values. A scaling methodology is 

also presented in this work, where an average human model was scaled to an individual 

subject using the body mass properties. 
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PUBLIC ABSTRACT 

The purpose of the work presented is to introduce a novel methodology to identify 

the unknown physical properties of structural, mechanical, and biomedical systems. Data 

is collected from vibration experiments on human beings. Then the collected data is 

utilized to characterize the vibration of the supine human and further identify the physical 

properties of the supine human. 
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CHAPTER 1.  INTRODUCTION 

The process of identifying the physical parameters (mass, stiffness, and damping) of a structural, 

mechanical, and biomechanical system is a major challenge in many applications such as those 

involving old structures and biological systems. The identification of the physical parameters can 

be essential in developing new systems and in the evaluation and health monitoring of existing 

systems. While the mass and stiffness parameters can be characterized, to a certain degree, under 

static and quasi-static environments, damping parameters can only be identified by dynamic 

testing. Much work has been done toward estimating the physical parameters of structural and 

mechanical systems, however, limited work has been done in the area of biomechanical systems. 

While some existing parameter identification methods have shown some success, most existing 

methods can produce a significant amount of error when noises are introduced in the systems. 

This thesis introduces novel methodologies that can predict the physical parameters of structural, 

mechanical, and biomechanical systems under whole-body vibration (WBV), even with the 

existence of a considerable amount of system and environmental noise.  

This thesis proposal comprises six chapters. Chapters 2-5 present the related background, 

discussion, and conclusion sections. A novel approach for the solution of the inverse modal 

problem is introduced in Chapter 2 using viscous damped spring-mass systems. The proposed 

method, called eigenvector phase correction (EVPHC), solves for the unknown physical 

parameters of systems. EVPHC uses the phase of the complex eigenvector components as design 

variables inside an optimization problem that minimizes the differences between the experimental 

and predicted transfer functions. An analytical four-degree-of-freedom (four-DOF) system with 

known physical parameters is used in Chapter 2 to demonstrate the efficacy of EVPHC. Three 

cases with 1, 5, and 10% added white noise were considered. The results showed the superiority 

of EVPHC to retrieve the analytical physical parameters when compared with an iterative method 

from the literature.  
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In Chapter 3, experimental modal analysis was conducted on fifteen supine humans using sine-

sweep and random vertical WBV rides. The chapter includes a detailed analysis of the process of 

extracting the modal parameters of the supine human using frequency and time domain analyses. 

Methodologies to fill the missing components and average of the modal parameters from the 

fifteen subjects are also introduced. The chapter ends with tables demonstrating the resulting 

supine human modal parameters. 

In Chapter 4, EVPHC is developed and used to identify the stiffness and damping parameters at 

the cervical and lumbar areas of the spine using the modal parameters of the fifteen human 

subjects extracted in Chapter 3. EVPHC was used to solve the inverse modal analysis of supine 

humans under vertical sine-sweep WBV. A four-DOF human model was suggested based on the 

resulting modal parameters. The resulting physical parameters showed close values when 

compared with those in the literature. Also, the predicted acceleration by the model at the head, 

chest, pelvis, and legs showed trends very close to those of the experiments. A scaling method, 

where the physical parameters of an average human model were scaled to an individual human 

subject, is also introduced toward the end of this chapter.  

Chapter 5 investigates the effect of separating the feet from the legs and considering the feet as an 

additional lumped-mass component of the human body, by the use of the experimental modal 

analysis, transmissibility, and wavelet transform. The analysis demonstrated that these two human 

body segments, the legs and feet, can be viewed as rigidly connected and then can be considered 

as one supine human body segment for further analysis under vertical WBV. 

The thesis ends with Chapter 6, where future work is presented. 
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CHAPTER 2. EIGENVECTORS PHASE CORRECTION IN INVERSE MODAL 

PROBLEM 

 Introduction 

A major challenge in modeling and assessing the health condition of damped systems, such as old 

structures and biomechanical systems, is in predicting the related unknown spatial mass, stiffness, 

and damping parameters. Traditionally, these physical parameters are approximately identified by 

solving an inverse modal problem. The modal parameters of the modal problem (frequency, 

damping ratio, and mode shape) are first obtained by conducting experimental modal analyses on 

the system [1] using transfer functions constructed from measured input force/motion and output 

motion at selected points on the system. Due to measurement noises, nonlinearity, and boundary 

conditions, the resulting modal parameters will normally inherit some level of noise [2]. This 

noise will introduce significant uncertainty in the resulting physical parameters when solving the 

inverse modal problem for the spatial parameters [3, 4]. 

The solution of the inverse modal problem, with complex modes, for the spatial parameters is an 

area of extensive study [5-11]. In an article by Lancaster in 1961 [5], the author proposed a 

methodology to solve the inverse modal problem of viscous-type systems. His method required 

the normalization of the complex eigenvectors, a process that requires a prior knowledge of the 

mass and damping matrices, which the algorithm is solving for. Pilkey and Inman [6] presented a 

method to characterize damping parameters from a lightly damped system. The method starts 

with an initial damping matrix and a known mass matrix and then offers an iterative method to 

normalize the eigenvectors, instead of requiring the normalization of the eigenvector as a prior, 

and simultaneously solves for the stiffness and damping matrices. The authors claimed that the 

method performed well even with a moderate level of noise. In a review article by Pilkey and 

Inman [12], the authors presented different methods that solve the inverse modal problem for the 

damping matrix. They classified the methods into those that work in the frequency, Laplace, and 
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time domains. They did not promote any method presented in this review, but in general, all 

methods were sensitive to a certain degree to the amount of noise presented in the data. Adhikari 

[13] revisited Lancaster’s method of damping identification and presented a methodology that 

mitigates the strict requirement of Lancaster’s method of a prior knowledge of the damping 

matrix. The method is based on the poles and residues that are derived from the measured transfer 

function. The method worked very effectively in reconstructing accurate mass, stiffness, and 

damping matrices. However, the methodology showed some drawbacks when noise was 

presented in the data. 

This work presents a new methodology to mitigate the effect of noise in the resulting modal 

shapes on the solution of the inverse modal problem. The modal parameters are assumed to be 

complex [14-16]. The method will be called eigenvector phase correction (EVPHC) throughout 

this article. EVPHC uses the eigenvectors’ phase components as design variables inside an 

optimization problem, but preserves the norm of the eigenvectors. The optimization problem 

minimizes a cost function that tracks the difference between the analytical and calculated transfer 

functions. The equivalent point frequency response function (EPFRF), which is a ratio between 

an equivalent input force to the system and the output motion of the system, will be used as a 

transfer function in this work. While preserving the inter-connectivity, the numeric sign of the 

elements, and the positive and semi-positive definiteness of the spatial matrices (mass, stiffness, 

and damping) [17, 18] that are essential in dynamics problems, additional constraints are imposed 

on the spatial matrices during the optimization process in order to achieve these specific 

requirements. 

 Theoretical Background 

2.2.1. Inverse modal problem of viscous damped system 

The equation of motion for an underdamped viscous vibrating system with N degrees of freedom 

(DOF) can be given as: 
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 ( ) ( ) ( )t t tMu + Cu + Ku = 0    (2.1) 

where M, C, and K are N×N mass, damping, and stiffness matrices, respectively. All three 

matrices can be assumed to be symmetric real matrices. For a general case, the damping matrix 

doesn’t need to satisfy the proportionality of the mass and stiffness condition. ( )tu  is the N×1 

column vector for displacement. 

For a vibrating system, M and K are positive definite, and C may be positive definite or positive 

semi-definite. 

The equation of motion is a differential equation that can be transformed to the algebraic form, 

 2( )i i iλ λM + C + K ψ = 0   (2.2) 

where iλ is the eigenvalue and iψ  is the corresponding eigenvector. 

In this work, it is assumed that all eigenvalues are complex and simple, i.e., there are no repeated 

eigenvalues in the analysis, iλ ∈ℑ and 1N
i

×∈ℑψ , where ℑ  represents the complex domain. 

The following second-order equation can be derived from Eq.(2.2): 

 2( ) ( )λ λ λ=Q M + C + K   (2.3) 

Eq. (2.3) can be defined as “quadratic λ matrix” [11]. The physical parameters M, C, and K in 

Eq. (2.3) are unknown and should be solved for simultaneously.  

All eigenvalues with a positive imaginary part of ( )λQ  can constitute a N×N diagonal matrix. 

 1 2( , , , )Ndiag λ λ λ=Λ    (2.4) 

The eigenvalue jλ  and its conjugate jλ can be written as: 

 ;      j j j j j ji iλ α β λ α β= + = −   (2.5) 
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where  and , 0j j jα β β∈ℜ > , and ℜ  represents the real domain. The corresponding 

eigenvectors jψ and their conjugate jψ can be written as 

 ;    j jR jI j jR jIi i= + = −ψ ψ ψ ψ ψ ψ   (2.6) 

where jRψ represents the real part of eigenvector ( jψ ) for mode j , and jIψ is the imaginary 

part. 

Here 1 1,  and N N
j jR jI

× ×∈ℑ ∈ℜψ ψ ψ . The eigenvalue iλ  and the corresponding eigenvector iψ  

form an eigenpair. All eigenpairs can form the following 2N×2N eigenvalue matrix iψ  (Eq. 

(2.7)) and the N×2N eigenvector matrix tψ  (Eq. (2.8)). The subscript t in tΛ and tψ means total. 

 t
 

=  
 

Λ 0
Λ

0 Λ
  (2.7) 

 [  ]t =ψ ψ ψ   (2.8) 

The matrices in Eq. (2.7) and Eq. (2.8) can be rearranged as shown in Eqs. (2.9) and (2.10). 

 1 2 2 1 2 2( , , , , , )t k k Ndiag λ λ λ λ λ−=Λ     (2.9) 

 [ ]1 2 2 1 2 2 1 2, , , , , , ,t k k N N− −=ψ ψ ψ ψ ψ ψ ψ    (2.10) 

For this case, 2kλ and 2kψ are the complex conjugates of 2 1kλ − and 2 1k−ψ , respectively. A 

mapping is presented in Eq. (2.11) that can transform the complex-value eigenpairs into real-

value eigenpairs [11].  

 
1 1 1 11 1( , , )

2 2
diag

i i i i
   

=    − −   
R    (2.11) 

2 2N N×∈ℑR  and 1i = − . 
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The relationship between the new real-value eigenpairs 2 2N N
t

×∈ℜΛ and 2N N
t

×∈ℜψ  and the 

previous complex-value ones ( tΛ and tψ ) are given in Eqs. (2.12) and (2.13). 

 H
t t=Λ R Λ R   (2.12) 

 t t=ψ ψ R   (2.13) 

The superscript H  represents the Hermitian transpose. 

Eq. (2.2) can be written in terms of the real-value eigenpairs, 

 2
t t t t =Mψ Λ +CψΛ +Kψ 0 

     (2.14) 

In order to solve the inverse modal problem of Eq. (2.14) for M, C, and K, such that the matrices 

satisfy the positive definite and semi-definite requirements and other required constraints, the 

following semi-definite programming approach (SDP) will be used in this work. 

2.2.2. Semi-definite programming 

The SDP is an extension of linear programming (LP), which deals with symmetric matrices 

instead of scalars or vectors as unknowns. With SDP, it is possible to impose the requirements on 

the symmetric spatial matrices to be positive definite or positive semi-definite, which presents an 

obvious advantage over many other optimization methods. Linear inequality or linear equality 

constraints and different types of constraints can be easily implemented in this approach. 

The SDP problem in primal standard form [19] is: 

 
minimize 
subject to ,  1, ,
                        0

i i

B
A b i m
•
• = =

≥

X
X
X

   (2.15) 

nxn
S∈ℜX  are the design variables. nxn

i SA ∈ℜ  , mb∈ℜ  , and nxn
SB∈ℜ  are given. nxn

Sℜ  denotes 

the space of real symmetric matrices with order n. B •X  denotes the inner product between these 
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two matrices and is used here as an objective function in SDP. The constraints can be given in a 

similar form of i iA b• =X . 0≥X  means X  is a positive semi-definite matrix. 

The implementation of the constraint functions and the specification of their parameters inside 

SDP is an involved process because the programming language inside SDP is not user friendly. 

YALMIP [20], which is a plug-in software with SDP, is used in this work because it can provide 

a more user-friendly programming language for entering the equations and their parameters, such 

as rewriting the motion equation, Eq. (2.14) into the form of Eq. (2.15) conveniently. With 

YALMIP, the description of an SDP optimization problem and constraints can be achieved by 

applying several lines of code in MATLAB style. The solver named SDPT3 [21], which is 

designed to solve primal and dual semi-definite quadratic linear conic programming problems, 

will be used to solve the inverse eigenvalue problem. 

2.2.3. Solution of inverse modal problem using SDP 

In this process, SDP will use Eq. (2.14) as a constraint and then solve for M, C, and K. However, 

the inherent errors in the modal parameters due to noise and other effects could affect the equality 

conditions of Eq. (2.14). Furthermore, an over-determinate problem [22] will arise when the 

number of prescribed eigenvalues is more than the requirement for solving Eq. (2.14), which will 

lead to trivial solutions. Therefore, a new constraint is presented in this work that is based on the 

following inequality condition: 

 2
t t t t ≤Mψ Λ +CψΛ +Kψ T 

     (2.16) 

where T is the tolerance matrix, and 

 t=T I   (2.17) 

where 2N N×I  is the unit matrix and t is a real scalar. 
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SDP is a feasible optimization problem instead of a minimum-maximum problem. If the modal 

information is accurate, theoretically, the objective function or cost function are not necessarily 

needed, and SDP will provide accurate values of the M, C, and K matrices with the value of t 

equal to zero. However, under noisy conditions, it is expected that the modal parameters will not 

be accurate and therefore the value of t will not be equal to zero. If t is set to zero, then SDP will 

produce a solution where the M, C, and K matrices will have elements with very small and 

unrealistic values. In order to circumvent this problem, the value of t will be selected based on the 

minimization of an objective function ( 2
11( 1)M − ) inside SDP that forces the first element in the 

mass matrix ( 11M ) to go to one. With this normalization process, the solution of the SDP is 

forced to produce more realistic values of M, C, and K. 

The inverse modal problem is expected to generate unrealistic solutions if no constraints are 

applied on the inner structure of the spatial model [17]. Besides the positive and semi-positive 

definiteness requirements of the M, C, and K matrices, other inner-structure requirements such as 

the inter-connectivity between the different DOF and the numeric signs of the elements in the M, 

C, and K matrices should be also included. Meanwhile, these structured requirements [18] 

present major challenges when solving the inverse modal problem. However, with YALMIP, 

these structured requirements can be considered as constraints and can be easily dealt with [23]. 

The mass matrix of the system is assumed to be unknown in this work. Meanwhile, based on 

prior knowledge regarding the relationship between the different masses of the system and a 

reasonable estimation of the first mass of the system, it is suggested that constraints be imposed 

on the ratio between the individual masses of the system relative to the first mass. The full spatial 

parameters can be retrieved by multiplying the magnitude of the first element in the mass matrix 

by the spatial parameters. Accordingly, the following constraint (Eq. (2.18)) will be used inside 

SDP. The numbers a and b in Eq. (2.18) are relevant to the system and should be selected 

realistically for different systems. 
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1

o
n
o

ma b
m

≤ ≤   (2.18) 

where 1
om  is the first element ( 11M  ) in the unknown mass matrix of the system, and o

nm  are the 

other masses of the system. 

2.2.4. Equivalent point frequency response function 

Vibration enters most mechanical systems through their supports. The EPFRF is introduced in 

this work as a measure of the dynamic response of the system due to the equivalent input force on 

the supports (base). The EPFRF can be calculated as the ratio, in the frequency domain, between 

the output acceleration of the masses of the system and the input acceleration at the base. The 

EPFRF is similar to the frequency response function (FRF) but is multiplied by the mass matrix 

and a vector of ones as described in the following paragraphs. The expression for the FRF 

( ( )ωH ) can be introduced in terms of the mass (M), damping (C), and stiffness (K) matrices as 

shown below: 

 2 1( ) ( )iω ω ω −= + −H K C M   (2.19) 

Under base motion, the output acceleration of the masses of the system in the frequency domain 

can be expressed in terms of the transfer function as: 

 2 2( ) ( )r gω ω ω ω= − −U H F = H MU   (2.20) 

where F  is the input force to the system, rU  is the output acceleration of the masses of the 

system, and gU  is the acceleration of the base. 

The base motion vector can be expressed as follows: 

g gU=U e , where e is a column vector with all components equal to one and gU  is a scalar. In 

this case rU can be written as: 
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 2 ( )r gUω ω= −U H Me   (2.21) 

Let 2( ) ( )ω ω ω= −EPFRF H Me , then EPFRF for each mass can be expressed as: 

 
( )

( )EPFRF    
n

r
n

g

U
U

=   (2.22) 

2.2.5. Correcting the phase of the eigenvectors 

The work by Adhikari [13] showed that the error presented in the residues, which contains the 

eigenvector information, of the transfer function due to noise can induce considerable inaccuracy 

when solving the inverse modal problem for mass, stiffness, and damping matrices. The present 

work proposes a methodology (EVPHC) that mitigates the effect of the error in the complex 

eigenvectors when solving the inverse modal problem for the spatial parameters. EVPHC is based 

on modifying the phase information in each component of the eigenvectors, such that the 

calculated EPFRF approaches the analytical or experimental EPFRF.  

For a system with order N, the mode shape of mode j is given as: 

 1 2

T

j j j Njψ ψ ψ =  ψ    (2.23) 

Each component in this mode is a complex value, which can be represented by its real and 

imaginary parts (Eq.(2.16)). Another way to represent these components is to use the polar form, 

where the eigenvectors can be written in terms of their magnitudes and arguments. 

 1 2
1 2

j j nj Nj
Ti i i i

j j j nj NjM e M e M e M eϕ ϕ ϕ ϕ =  ψ     (2.24) 

where njM is the magnitude of component n for mode j, and njϕ is the corresponding argument. 

The upper and lower boundaries on these arguments are given as 

 180 180njϕ− ≤ ≤    (2.25) 
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Changing the magnitude and phase of the components of the eigenvectors may lead to a variety of 

eigenvectors that may be not well related to the system. Therefore, this work preserves the norm 

of the eigenvectors and uses the phase of its components as design variables inside an 

optimization problem. The cost function cos tf  (Eq. (2.26)) minimizes the errors between the 

analytical A
nEPFRF  at degree n and the calculated C

nEPFRF  (within EVPHC) at degree n. 

 
4

cos
1

A C
t n n

n
f EPFRF EPFRF

=

= −∑   (2.26) 

In the general form, the cost function can be written in terms of a weighted-sum multi-objective 

function with four cost functions representing the four masses. However, in this work, we chose 

similar weights (weight = 1) for each cost function and then summed the four cost functions in 

one cost function as shown in Eq. (2.26). 

For demonstration purposes, Figure (2.1a) shows the polar representation of an eigenvector of a 

four-DOF system. Each arrow inside the circles represents the magnitude and phase of each 

component of an eigenvector. As mentioned above, the magnitude of each arrow will be kept 

constant, and the directions of the arrow will be used as design variables that minimize the cost 

function in Eq. (2.26). 

In this work, the mode shape shown in Figure (2.1a) was normalized. The mode shape 

normalization process was done in two steps. In the first step, the norm of each mode shape was 

scaled to one as shown in Figure (2.1b). In the next step, the last component of the mode shape 

was set to align with the real positive axis, and the rest of the eigenvector components were 

rotated without affecting their magnitude and the angles between them as shown in Figure (2.1c) 

[24]. The latter arrangement was done in this work to reduce the number of design variables from 

4 to 3. 
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Figure (2.1) Schematic representation of the components of an eigenvector of a four-DOF system 
in polar plane (‘—’ – comp1, ‘– –’ – comp2, ‘- - ’ – comp3, ‘– -’ – comp4), (a) components of an 

eigenvector before normalization, (b) normalized components, and (c) last component aligned 
with the positive real axis 

2.2.6. Solution algorithm using EVPHC 

In EVPHC, two nested optimization problems are solved with the goal of minimizing the error 

between the analytical A
nEPFRF  and the experimental C

nEPFRF . In the inner problem, SDP 

solves an optimization problem to predict M, C, and K, and it is defined as follows: 

Minimize 2
11( 1)M −  

Subject to 2
t t t t ≤Mψ Λ +CψΛ +Kψ T 

   , t=T I  

1

o
n
o

ma b
m

≤ ≤  

The difference between C
nEPFRF and A

nEPFRF  is then calculated and used as an objective 

function in the outer optimization problem to update the phase of the eigenvectors. 

The outer optimization problem is defined as: 

Minimize 
4

cos
1

A C
t n n

n
f EPFRF EPFRF

=

= −∑  
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Subject to 180 180njϕ− ≤ ≤   

For each iteration, the interior point algorithm [25] utilizes the combination of two gradient step 

types to update the design variables (φ); the two types are direct step (Hessian matrix) and 

conjugate gradient step. All computation was done in MATLAB. Figure (2.2) shows a flow chart 

of how EVPHC works. The final solution for the spatial parameters will be achieved when the 

number of optimization iterations exceeds 50 or the difference (ɛ) between C
nEPFRF  and 

A
nEPFRF  (

4

1

A C
n n

n
EPFRF EPFRF

=

−∑ ) becomes 0.05ε ≤ . 

As can be seen in Section 2.2.4, EPFRF is very similar to FRF, and both can be specified in terms 

of the spatial or modal parameters or the response. So, we anticipate that minimizing the 

objective function in Eq. (2.26), using the mode shape as design variables, can ensure the 

causality of the response. 
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Figure (2.2) Flow chart showing the inverse modal problem solution algorithm using EVPHC 

 Results 

A four-DOF linear lumped mass system with dashpots and springs will be used in this section to 

demonstrate the efficacy of the proposed EVPHC method. The analytical solution of the modal 

parameters and the associated A
nEPFRF  will be first presented in Section 2.3.1. This solution 

will be considered as a “baseline” for subsequent comparison with EVPHC and another method 

from the literature (Pilkey and Inman’s iterative algorithm [6]). For convenience, the method 
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from the literature will be called PIA. PIA was selected for the comparison with the proposed 

method because it is considered a good method in the literature that can deal with noisy modal 

parameters, and it is easy to implement. Noise will be added to the eigenvectors in Section 2.3.2 

to investigate the performance of EVPHC under different levels of noise. The solution of the 

inverse modal problem using EVPHC will be compared with the analytical (baseline) and PIA 

methods in Section 2.3.2. An example of a system with lower damping ratios, as compared to 

those presented in Section 2.3.2, will be presented in Section 2.3.3. 

2.3.1. Analytical solution 

Figure (2.3) shows a four-DOF mass-spring system with dashpots. The system is subjected to a 

ground input motion in the horizontal direction. All DOF of the system can only move in the 

horizontal direction. 

 

Figure (2.3) Four-DOF mass-spring system with dashpots with base motion (ug) 

The mass matrix M, damping matrix C, and stiffness matrix K are as shown. 

6 0 0 0
0 14 0 0
0 0 22 0
0 0 0 9

 
 
 =
 
 
 

M

500 80 0 0
80 753 163 0
0 163 1183 165
0 0 165 211

− 
 − − =
 − −
 − 

C  
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88000 14000 0 0
14000 59000 17000 0

0 17000 148800 11000
0 0 11000 13400

− 
 − − =
 − −
 − 

K  

The undamped natural frequencies and damping ratios of this four-DOF system are presented in 

Table (2.1). Figure (2.4) shows the magnitude of the components of each eigenvector in this 

system, while Figure (2.5) shows their respective magnitude and phase in the polar plane. Figure 

(2.6) shows A
nEPFRF  (baseline) of each DOF based on the input base motion. 

 

Figure (2.4) Magnitude information of the eigenvectors of the four-DOF system: (a) Mode-1, (b) 
Mode-2, (c) Mode-3, and (d) Mode-4 
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Table (2.1) Analytical frequencies and damping ratios of 
the four-DOF system 

Mode order 1 2 3 4 
Undamped natural 
frequency(Hz)  

5.92 9.77 13.33 19.40 

Damping ratio 0.28 0.39 0.36 0.35 

 

 

Figure (2.5) Phase and magnitude of the components of the eigenvectors of the four-DOF system 
in the polar plane: (a) Mode-1, (b) Mode-2, (c) Mode-3, and (d) Mode-4 

 

Please note that each mode has four components represented by four arrows inside each circle in 

Figure (2.5). Some of these components are very small relative to the other components and may 

be hard to see. 
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Figure (2.6) Analytical A
nEPFRF  (baseline) of the four-DOF spring-mass system with dashpots: 

(a) mass-1, (b) mass-2, (c) mass-3, and (d) mass-4 

With lightly damped systems, the EPFRF plots generally show obvious peaks at the resonance 

frequencies, and the function reduces significantly when the frequency is much higher than the 

highest resonance. Due to the amount of damping used in this work, the peaks in the EPFRF 

(Figure (2.6)) became less prominent, and the EPFRF slowly dropped after the last natural 

frequency. 

2.3.2. Eigenvectors with added noise  

Three cases of added white noise of 1%, 5%, and 10% to the eigenvectors and their effects on the 

resulting spatial matrices (M, C, and K) will be presented in the following subsections. The 

following constraint will be imposed on the element of the mass matrix during the solution 

process of EVPHC. 
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om  are the unknown masses. 

2.3.2.1. Case 1: 1% white noise added to the eigenvectors 

Figure (2.7) shows the resulting C
nEPFRF  using the EVPHC method and the analytical 

A
nEPFRF  for each mass of the four-DOF system when 1% noise was added to the eigenvectors.  

 

Figure (2.7) The resulting C
nEPFRF using the EVPHC method and the analytical A

nEPFRF  for 
each mass, when 1% noise level was added to the analytical eigenvectors: (a) mass-1, (b) mass-2, 

(c) mass-3, and (d) mass-4 



21 

 

The resulting modal information using EVPHC and PIA and the percentage deviation from the 

analytical values (Table (2.1)) are given in Table (2.2). Figure (2.8) shows the comparison 

between the resulting eigenvectors using EVPHV, PIA, and the analytical baseline. 

Table (2.2) Modal frequencies and damping ratios as predicted by EVPHC and PIA 
under 1% noise; the values in parentheses represent the percentage deviation from the 

baseline analytical values 

  Mode order 1 2 3 4 
EVPHC Frequency (Hz) 6.24 

(5.52%) 
9.80 

(0.39%) 
13.40 

(0.54%) 
19.19 

(-1.05%) 
Damping ratio 0.28 

(1.07%) 
0.39 

(1.83%) 
0.37 

(1.72%) 
0.36 

(1.81%) 
PIA Frequency (Hz) 6.03 

(1.87%) 
9.84 

(0.73%) 
13.69 

(2.73%) 
19.31 

(-0.46%) 
Damping ratio 0.28 

(-0.71%) 
0.34 

(-12.14%) 
0.42 

(17.38%) 
0.31 

(-11.02%) 

 

 

Figure (2.8) Modal shapes magnitude of the four-DOF system (○ - analytical, + - EVPHC, * - 
PIA), (a) Mode-1, (b) Mode-2, (c) Mode-3, and (d) Mode-4 
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2.3.2.2. Case 2: 5% white noise added to the eigenvectors 

Figure (2.9) shows the resulting C
nEPFRF  using the EVPHC method and the analytical 

A
nEPFRF  for each mass of the four-DOF system when 5% noise was added to the eigenvectors. 

 

Figure (2.9) The resulting C
nEPFRF  using EVPHC and analytical A

nEPFRF  for each mass 
under 5% noise level: (a) mass-1, (b) mass-2, (c) mass-3, and (d) mass-4 

The resulting modal frequency and damping ratio from EVPHC and PIA in comparison with the 

analytical solution are given in Table (2.3). Figure (2.10) shows a comparison between the 

resulting eigenvectors based on PIA, EVPHC, and the analytical baseline. 
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Table (2.3) Modal frequencies and damping ratios as predicted by EVPHC and PIA 
with 5% noise; the values in parentheses represent the percentage deviation from the 

baseline analytical values 

 Mode order 1 2 3 4 
EVPHC Frequency (Hz) 7.26 

(22.74%) 
9.79 

(0.22%) 
12.61 

(-5.38%) 
19.21 

(-0.96%) 
Damping ratio 0.34 

(21.36%) 
0.40 

(1.19%) 
0.32 

(-12.14%) 
0.35 

(0.72%) 
PIA Frequency (Hz) 6.62 

(11.92%) 
9.96 

(2.02%) 
18.55 

(39.20%) 
21.22 

(9.37%) 
Damping ratio 0.45 

(61.66%) 
0.34 

(-12.03%) 
0.33 

(-8.86%) 
0.19 

(-45.41%) 

 

 

Figure (2.10) Modal shapes magnitude of the four-DOF system (○ - analytical, + - EVPHC, * - 
PIA): (a) Mode-1, (b) Mode-2, (c) Mode-3, and (d) Mode-4 
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2.3.2.3. Case 3: 10% white noise added to the eigenvectors  

Figure (2.11) shows the resulting C
nEPFRF  using the EVPHC method and the analytical 

A
nEPFRF  for each mass of the four-DOF system when 10% noise was added to the eigenvectors. 

It can be seen that C
nEPFRF  was very close to the analytical A

nEPFRF  for masses 2 and 3, but 

showed some difficulties matching those for masses 1 and 4. However, all graphs showed trends 

similar to those of the analytical. 

 

 

Figure (2.11) The resulting C
nEPFRF  using EVPHC and analytical A

nEPFRF  for each mass 
under 10% noise level: (a) mass-1, (b) mass-2, (c) mass-3, and (d) mass-4 
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The modal information predicted by EVPHC and PIA, compared with the baseline analytical 

solution, are given in Table (2.4). It can be seen that the error in the predicted values using 

EVPHC was much smaller than in those predicted by PIA. 

Table (2.4) Modal frequencies and damping ratios as predicted by EVPHC and PIA 
under 10% noise; the values in parentheses represent the percentage deviation from the 

baseline analytical values 

 Mode order 1 2 3 4 
EVPHC Frequency (Hz)  7.28 

(22.99%) 
10.25 

(4.92%) 
13.98 

(4.85%) 
18.68 

(-3.68%) 
Damping ratio 0.30 

(6.32%) 
0.37 

(-5.00%) 
0.29 

(-19.13%) 
0.28 

(-20.15%) 
PIA Frequency (Hz) 8.24 

(39.33%) 
8.68 

(-11.12%) 
11.95 

(-10.34%) 
35.12 

(81.04%) 
Damping ratio 0.95 

(241.15%) 
0.21 

(-46.44%) 
0.26 

(-27.69%) 
0.12 

(-65.42%) 

 

 

Figure (2.12) Eigenvector magnitudes of the four-DOF system (○ - analytical, + - EVPHC, * - 
PIA): (a) Mode-1, (b) Mode-2, (c) Mode-3, and (d) Mode-4 
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Figure (2.12) shows a comparison between the resulting eigenvectors based on PIA, EVPHC, and 

the analytical baseline.  The physical parameters of the spatial matrices (stiffness and damping) of 

the baseline system and those produced by the EVPHC and PIA methods are shown 

schematically in Figure (2.13). It is clear from Figure (2.13) that the magnitudes of the elements 

in the C and K matrices predicted by EVPHC were closer to those of the analytical as compared 

with PIA. The detailed values of the resulting damping and stiffness matrices with 10% noise, as 

predicted by the PIA method, are shown in the following C and K matrices.  

317 457 (87) (5)
457 1408 474 ( 98)

(87) 474 911 1000
(5) ( 98) 100 169

− 
 − − − =
 − −
 − − 

C

263950 59780 ( 168690) ( 2885)
59780 69456 33934 (15368)

( 168690) 33934 260210 27381
( 2885) (15368) 27381 25329

− − − 
 − =
 − −
 − − 

K  

The values in parentheses inside C and K denote the elements that should have zero values (as 

shown in the baseline analysis values in Section 2.3.1). It can be seen that some of the values in 

the parentheses are relatively large when compared with the diagonal elements; see for example (-

98) in the C matrix and (-168690) in the K matrix. Also, the predicted values in the K matrix can 

exceed three times those in the baseline analytical values. The predicted values in the C matrix 

can exceed four times those in the baseline analytical values. 
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Figure (2.13) Baseline analytical stiffness and damping matrices and those predicted by EVPHC 
and PIA with 10% added noise: (a-b) Analytical, (c-d) EVPHC, and (e-f) PIA 
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2.3.3. System with lower damping  

In the previous examples, the four-DOF mass-spring system with dashpots of Figure (2.3) was 

solved under damping ratios that can reach 0.4. The reason behind choosing such relatively high 

damping ratios was to show the validity of the proposed EVPHC in dealing with engineering 

applications in biomechanical systems such as the human body as well applications on old 

structural systems with heavy damping [26, 27]. In order to show the applicability of the 

proposed EVPHC method on more general mechanical systems, the same four-DOF mass-spring 

system with dashpots of Figure (2.3) is solved in this example using relatively lower damping. 

Table (2.5) demonstrates the undamped natural frequencies and damping ratios of this four-DOF 

system. 

Table (2.5) Analytical frequencies and damping ratios of the four-
DOF system 

Mode order 1 2 3 4 
Undamped natural 
frequency(Hz)  

5.89 9.71 13.46 19.42 

Damping ratio 0.0256 0.0224 0.0240 0.0192 

 

Figure (2.14) shows the resulting C
nEPFRF  using the EVPHC method and the analytical 

A
nEPFRF  for each mass of the four-DOF system when 1% noise was added to the eigenvectors. 

It can be seen that C
nEPFRF  was very close to the analytical A

nEPFRF  for all masses but 

showed some difficulty matching the first peak associated with mass-4. 
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Figure (2.14) The resulting C
nEPFRF  using EVPHC and analytical A

nEPFRF  for each mass 
under 1% noise level: (a) mass-1, (b) mass-2, (c) mass-3, and (d) mass-4 

The modal information predicted by EVPHC and PIA, compared with the baseline analytical 

solution, is presented in Table (2.6). The table shows that the errors in the predicted damping 

values using EVPHC were smaller than those predicted by PIA. 

Table (2.6) Modal frequencies and damping ratios as predicted by EVPHC and PIA 
under 1% noise; the values in parentheses represent the percentage deviation from the 

baseline analytical values 

 Mode order 1 2 3 4 
EVPHC Frequency (Hz)  6.34 

(7.76%) 
9.70 

(-0.04%) 
13.25 

(-1.63%) 
19.42 

(0.03%) 
Damping ratio 0.0260 

(1.32%) 
0.0215 

(-3.85%) 
0.0270 

(12.56%) 
0.0164 

(-14.77%) 
PIA Frequency (Hz) 5.95 

(1.01%) 
9.68 

(-0.30%) 
13.64 

(1.32%) 
20.01 

(3.03%) 
Damping ratio 0.0239 

(-6.81%) 
0.0324 

(44.50%) 
0.0206 

(-14.33%) 
0.0153 

(-20.32%) 
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Figure (2.15) shows a comparison between the resulting eigenvectors based on PIA, EVPHC, and 

the analytical baseline. As shown in the figure, EVPHC was closer to the analytical solution than 

PIA in all modes. 

 

Figure (2.15) Eigenvector magnitudes of the four-DOF system (○ - analytical, + - EVPHC, * - 
PIA): (a) Mode-1, (b) Mode-2, (c) Mode-3, and (d) Mode-4 

 Discussion 

A new methodology (EVPHC) is presented in this work to solve the inverse modal problem for 

the spatial parameters (mass, stiffness, and damping) using noisy eigenvector data. The 

methodology showed very encouraging results for identifying the spatial parameters of the 

system. The numerical examples showed realistic values of the resulting system spatial matrices, 

even when 10% Gaussian white noise was added to the complex eigenvectors. While adding 

noise to the complex eigenvectors can affect their magnitude and phase, the process of correcting 

the phase and reserving the norms of the eigenvector still showed very encouraging results when 
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compared with the PIA method. It should be noted here that the PIA method requires a prior 

knowledge of the mass matrix, while this is less of a strict requirement in EVPHC. 

When 1% Gaussian noise level was added to the eigenvectors, the resulting stiffness and damping 

matrices of EVPHC were comparable to those of PIA. EVPHC kept the original inter-

connectivity and the numeric signs associated with the elements of the spatial matrices, while PIA 

produced full stiffness and damping matrices with out-of-diagonal elements that do not have any 

physical meaning. The number of iterations and the time consumed for each method varied in 

different cases. Numerical testing showed that PIA is much faster than EVPHC. For the 1% noise 

level case, as an example, PIA under tolerance of 0.0001 took 25 iterations and 0.69 second to 

converge to its final solution; EVPHC took 37 minutes and 50 iterations to reach a solution. At 

5% added noise, the PIA method generated 39.20% and 61.66% error in the predicted undamped 

natural frequency and damping ratio, respectively, while the error in EVPHC reached 22.74% and 

21.36%, respectively. At 10% noise, EVPHC generated 22.99% error in the undamped natural 

frequency and 20.15% error in the damping ratio, while the PIA method generated 81.04% and 

241.15% relative error in the undamped natural frequency and damping ratio, respectively. 

Because there are no inherent requirements regarding the inner structures of the damping and 

stiffness matrices for PIA, the non-zero terms in the stiffness and damping matrices spread 

around all the elements. For 10% added Gaussian noise, the PIA method generated a large 

negative value (-168690 instead of zero) in the third element of the first column of the stiffness 

matrix 31K . This number is 143% larger than the second diagonal element 22K  and 566% larger 

than the fourth diagonal element 44K . Also, element 42C in the damping matrix has a value of -98 

instead of zero, which represents 49% of the diagonal element 44C . Such errors in the resulting K 

and C matrices in the PIA method will produce a new system with different modal parameters 

than those of the original system, as can be seen in Figures (2.10) and (2.12). On the other hand, 
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the resulting spatial matrices of EVPHC generated realistic K and C matrices and preserved the 

numeric signs and the inner connectivity of the elements in the K and C matrices as can be seen 

in Figure (2.13). Also, the resulting eigenvectors have similar trends to those of the original 

system. 

With the 10% added noise, the predicted C
nEPFRF  by EVPHC showed some difficulties 

matching those of the analytical A
nEPFRF  for masses 1 and 4 (Figure (2.11)). That could be 

related to the effect of the added noise on the magnitude of the eigenvectors, which was not 

considered in the correction process. Interestingly, the magnitudes of the resulting eigenvectors 

were closer to the analytical ones for modes 1 and 4 than to those of modes 2 and 3. PIA showed 

clear deviation from the analytical solutions for all modes. 

It should be noted that under the close spacing natural frequencies condition, the EVPHC method 

still works and can offer a reasonable solution. However, numerical testing showed that close 

spacing of natural frequencies affected the performance of the method and produced spatial 

parameters with less accurate results. In addition, numerical testing showed that tighter 

constraints on the mass ratios didn’t have considerable effects on the resulting EPFRF plots. 

 Conclusion 

A new methodology called EVPHC is presented in this work. It solves the inverse eigenvalue 

problem for the spatial parameters when noise is added to the eigenvectors. The method showed 

very promising results when tested on mass-spring systems with viscous damping, even when 

10% noise was added to the eigenvectors. The finding of this work will provide key damping and 

stiffness information for conducting analysis and modeling on existing mechanical and biological 

systems. 
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CHAPTER 3. ENHANCED EXPERIMENTAL MODAL ANALYSIS OF SUPINE 

HUMANS UNDER VERTICAL WHOLE-BODY VIBRATION 

 Introduction 

During supine transport, such as that involved in train sleeping berths or emergency transport, 

humans become sensitive to certain frequencies, especially those that can excite the resonance 

frequencies of the body, where large unintentional motions can be generated. The resulting 

motions can cause discomfort and can exacerbate injuries during emergency transport. The 

quantification of the magnitude and nature of these frequencies and the associated mode shapes 

and damping ratios are critical to the safety and comfort of the humans during transport. There 

have been many attempts over the past decades to conduct experimental modal analysis on seated 

and standing humans to determine the modal parameters of humans [28-33]. The findings from 

these efforts have shown promising results in identifying the natural frequencies of the human 

body under these postures. Due to the complexity of the human response in whole-body vibration 

(WBV) and the unknown damping parameters, however, the undamped natural frequencies, 

damping ratios, and associated mode shapes are still not very well defined for seated and standing 

humans. 

On the other hand, limited work has been done to investigate the modal parameters of supine 

humans under WBV. The focus of these investigations was on finding the resonance frequencies 

of the supine human. Kraus and Lang [34] measured the changes in body strain at the trunk, neck, 

and limbs of a supine human under vertical WBV. They showed that the strain magnitudes at 

different parts of the body peaked at 7 Hz. The authors also investigated the changes in the 

mechanical impedance of the human body with frequency and showed a main natural frequency 

around 7 Hz, which is consistent with their strain findings. The same authors found another peak 

at 11 Hz. They used a single mass-spring system and estimated a damping ratio of 0.3-0.4 at 7 

Hz. While the 7 Hz natural frequency of the human body is an important finding, the authors 
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emphasized the need to characterize the natural frequencies of the individual body parts of the 

supine human in any future work. Vogt et al. [35] investigated the nonlinearity of the supine 

human under vertical WBV using the mechanical impedance function. Ten human subjects were 

tested under sustained sinusoidal vibration of 0.5 g in the range between 2-20 Hz. The authors 

found a fundamental frequency around 6 Hz and detected smaller peaks in their impedance curve 

at 8 and 10 Hz. 

The characterization of the modal parameters of the human body has normally been done in the 

frequency domain. Different types of transfer functions correlated with the input forcing motion, 

and the output motion in the frequency domain was determined and used to predict the modal 

parameters during seated and standing postures. These transfer functions included the apparent 

mass, impedance, and transmissibility [36-40]. Human natural frequencies, usually the damped 

natural frequencies, have traditionally been determined from the peaks in the experimental 

transfer functions. However, this approach may present many challenges, as there is a tendency 

for the transfer function to have many artificial peaks that do not associate with resonance but can 

be by-product anomalies related to a lack of input energy at certain frequencies. This can also 

happen as a result of transforming the signal from the time domain to the frequency domain using 

the fast Fourier transform (FFT), where different types of filters and windows can be applied. 

After estimating the resonance frequencies from the peaks of the transfer function using different 

types of curve fitting [1], the next step is calculating the associated modal shapes and modal 

damping ratios. The modal shapes and modal damping ratios of the human body are normally 

solved using a multi-degree-of-freedom human model that represents the human at a certain 

posture. While the human body can have many degrees of freedom (DOF), the number of DOF in 

these models are normally subjectively selected based on the number of segments that show large 

motions. This process is normally followed by solving an inverse problem and using optimization 

or curve-fitting techniques, where the human model’s physical parameters (mass, stiffness, and 
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damping) are updated such that the human model’s response mostly matches the experimental 

data at the natural frequencies. Several human models have been presented in the literature [41-

43].  

The current state of the art in the area of modal analysis of supine humans demonstrates the 

limited information available at this time regarding the modal parameters of supine humans. 

According to Matsumoto and Griffin [31], there is no information available about the stiffness 

and damping matrix parameters of a living human body in the literature. Therefore, researchers 

have used different types of approximations, such as those based on proportional damping, that 

can only give reasonable results for lightly damped systems. Also, there is no current information 

available on the modal characteristics of the individual body segments [34]. 

This work presents modal analyses of supine humans under vertical WBV, with the goal of 

determining the magnitudes and locations of the resonance frequency, the associated mode shape, 

and the modal damping ratio of the supine human body and at different body segments, including 

the head, chest, pelvis, and legs. The autoregressive moving average model with exogenous 

excitation (ARMAX) [44-46] will be used in this work as an attractive time domain approach for 

characterizing the modal parameters of a supine human body. ARMAX can deal with systems 

with different levels of damping. Besides finding the damped natural frequencies of the system, 

the time domain analysis can also give good estimations of the mode shapes and modal damping 

parameters associated with the natural frequencies. Due to damping and the low energy at some 

input frequencies, the modal shapes are sometimes incomplete in terms of their components. A 

methodology is proposed in this work to enhance the missing components of the eigenvectors 

using the transmissibility function. Because most supine human testing is conducted using a 

shaker table with a rigid platform, this work presents a transfer function that uses base 

acceleration as an equivalent input force instead of measuring the actual input forces. 
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 Methods 

3.2.1. Participants 

The subject group for this study consisted of fifteen males. Table (3.1) presents the age, mass, and 

height of the subjects, as well as their mean value and standard deviation (SD). All subjects were 

generally healthy and reported no musculoskeletal conditions. The protocol was approved by the 

University of Iowa Institutional Review Board prior to testing. 

Table (3.1) Basic anthropometric information of the subjects 

Subject Age (years) Mass (kg) Height (m) 
1 22 97.52 1.83 
2 20 72.58 1.83 
3 21 74.84 1.88 
4 19 74.84 1.78 
5 30 63.50 1.78 
6 21 79.38 1.83 
7 21 79.38 1.80 
8 20 80.74 1.70 
9 27 72.00 1.78 

10 21 77.11 1.78 
11 27 70.76 1.73 
12 26 70.00 1.65 
13 22 89.81 1.85 
14 21 83.92 1.80 
15 32 68.04 1.70 

Mean Value 23.33 76.96 1.78 
SD 4.01 8.71 0.06 

3.2.2. Experiments 

The subjects were exposed to two types of vertical excitation, a sine-sweep vibration with 

increasing power (from 0.5 to 20 Hz) and random vibration with frequency content (from 0.5 to 

28 Hz), using a motion simulator (Moog ECU-624-1800, Moog-FCS, Ann Arbor, MI, USA). 

Subjects lay freely on a rigid platform on top of a thin rubber mat to avoid slippage on the metal 

surface of the platform as shown in Figure (3.1). Vertical translational vibration motions 

transmitted to the subject’s head, chest, pelvis, and lower leg regions were measured using 

inertial sensors [47]. Figure (3.2a) shows the time history profile of the input sine-sweep vibration 
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during a 120 second ride, while Figure (3.2b) shows the power spectral density (PSD) of the 

signal for the frequency range from 0-30 Hz. Figure (3.3a) shows the time history profile of the 

input random vibration during a 120 second ride, while Figure (3.3b) shows the power spectral 

density (PSD) of the signal for the frequency range from 0-30 Hz. 

 

Figure (3.1) Profiles of the supine human testing: the human subject lay on the rigid platform of 
the motion simulator, and vibrations were generated in the vertical Z direction 
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Figure (3.2) The input sine-sweep vibration during the 120 second ride: (a) the time history 
profile, (b) the power spectral density (PSD) of the signal for the frequency range from 0-30 Hz 

 

Figure (3.3) The input random vibration during the 120 second ride: (a) the time history profile, 
(b) the power spectral density (PSD) of the signal for the frequency range from 0-30 Hz 
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3.2.3. Data collection and processing 

Four wireless inertial sensors (MTw, Xsens Technologies, Enschede, Netherlands) were used to 

measure the motion at the different segments of the supine human, including the head, chest, 

pelvis, and legs. The sensor on the head was placed on the forehead, just between the eyebrows. 

The sensor on the chest was attached at the flattest location of the sternum. The sensor on the 

pelvis was attached to a belt tightened over the right anterior superior iliac spine. The fourth 

sensor was attached to the leg above the patella of the right knee. A fifth sensor was attached to 

the rigid surface of the motion platform and used as a reference for the input motion. The sensors 

were adhered to the human body using double-sided tape and were further secured by banded 

strips of athletic and duct tapes. The MTw sensor recorded motion data at 60 Hz to a desktop 

computer, then trimmed and post-processed it using a low-pass filter at 28 Hz. Correction 

methods were used to adjust for the errors that can result when attaching sensors on curved 

regions of the human body [47]. 

 Theory 

A brief description of the theoretical background behind the modal analysis in the frequency and 

time domains will be presented in this section. Analysis in the frequency domain is normally 

presented in terms of transfer functions that correlate the input force/motion with the output 

motion. The modal analysis in the time domain is conceptually similar to that in the frequency 

domain, as both domains are based on the concept of a transfer function. In this section, the 

modal analysis in the frequency domain will be presented first; this will be followed by the modal 

analysis in the time domain. 

3.3.1. Frequency domain analysis 

The equations of motion of a viscous underdamped N-DOF system with external force are given 

in form of matrix, as shown in Eq. (3.1) 
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 ( ) ( ) ( ) ( )t t t tMu + Cu + Ku = f     (3.1) 

where M, C, and K are the N×N mass, damping, and stiffness matrices, respectively. All three 

matrices can be assumed to be symmetric real matrices. For the general case, the damping matrix 

doesn’t need to satisfy the proportional assumption to the mass and stiffness matrices. ( )tu  is the 

N×1 vector for displacement, and ( )tf  is the excitation vector at each DOF.  

Eq. (3.1) can be rewritten in the Laplace space based on the eigenvalues and eigenvectors as: 

 
*

* *
1

( ) ( ) ( )
( ) ( )

T HN
n n n n

n n n n n

s s
a s a sλ λ=

= +
− −∑ ψ ψ ψ ψU F   (3.2) 

where ( )sU  and ( )sF  are the Laplace transforms of ( )tu  and ( )tf , respectively; s  is the 

Laplace variable; nλ is the eigenvalue of order n; and nψ  is the corresponding eigenvector. 

Superscript T  represents the transpose operation, * the conjugate operator, H the Hermitian 

transpose operation, and na  the diagonal elements of a diagonal matrix. 

 

* * *
1 2 1 2

* *

* * * *

( , , , , , , )

  

N N
T

diag a a a a a a=

    
=     

    

a

C Mψ ψ ψ ψ
M 0ψΛ ψ Λ ψΛ ψ Λ

 

  (3.3) 

where 1 2[ ]N=ψ ψ ψ ψ  is the eigenvector matrix, 1 2( , , , )Ndiag λ λ λ=Λ   is the 

eigenvalue matrix, and 0  is N×N null matrix.  

Using Eq. (3.2), the transfer function ( ( )sH ) in the matrix form [48] can be written as:  

 
*

* *
1

( ) ( )
( ) ( )

T HN
n n n n

n n n n n

s
a s a sλ λ=

= +
− −∑ ψ ψ ψ ψH   (3.4) 

The corresponding frequency response function (FRF) can be obtained by substituting s iω=  in 

Eq. (3.4). The eigenvalue nλ  can be determined using the following equation. 
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 21n n n n niλ ξ ω ω ξ= − + −   (3.5) 

where nω  is the undamped natural frequency for order n, and nξ  is the corresponding damping 

ratio. For convenience, Eq. (3.4) can be written by using the residue matrix as:  
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( ) ( )

N
n n

n n n

s
s sλ λ=

= +
− −∑ R RH   (3.6) 

where 
T

n n
n

na
=
ψ ψR  is the residue matrix. 

The corresponding impulse responses function (IRF) is the inverse Laplace transform of Eq. (3.4) 

as shown below [48]. 
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R
a
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Eq. (3.7) can be transformed to the Z-domain as shown in Eq.(3.8) 
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where n t
n eλµ ∆= , and t∆ is the time interval. 

3.3.2. Time domain analysis 

The ARMAX was used in this work to solve for the modal parameters of the supine human. The 

discrete time system of Eq. (3.1) can be rewritten by the ARMAX [44-46] with orders 

( , , )na nb nc as 

 ( ) [ ] ( ) [ ] ( ) [ ]q t q t q t= +A u B f C e   (3.9) 
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where 1, 2,t =   represents the sample interval, [ ]tu is the N×1 output vector, [ ]tf is the M×1 

input column vector and [ ]te  is the N×1 stochastic column vector. ( )qA is the N×N output 

parameter matrix for the autoregressive part (AR), ( )qC is the N×N parameter matrix for the 

moving average part (MA). ( )qB is the N×M input parameter matrix for the exogenous excitation 

(X). q  is the forward shift operation as [ ] [ 1]qu t u t= + , and the backward shift operation is 1q−  . 

All matrices ( )qA , ( )qB , and ( )qC  can be formed in polynomial matrix as 
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= + + + +
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  (3.10) 

When the feedback from output responses to input can be ignored, the output can be assumed to 

be diagonal as 

 1 2
1 2( ) 1 a

a

nn n n
n nA q A q A q A q−− −= + + +   (3.11) 

According to Eq.(3.10), the output function form can be written as: 

 
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

n n
n n n n n

n n

q tu t t e t q t H q e t
A q A q

= + = +
B Cf G f   (3.12) 

where ( )n qG  represents a transfer function. 

 1 2( ) [ ( ) ( ) ( )]n n n nMq G q G q G q=G    (3.13) 

and 
( )( )
( )

nm
nm

n

B qG q
A q

= . 

Similar to Eq.(3.8), the transfer function ( )nmG q in Eq. (3.12) can be also rewritten in the partial 

fraction form [45]. 
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nm nmk nmk

nm
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B q R RG q
A q q qµ µ− −

=

= = +
− −∑   (3.14) 

By solving for the zeros of ( )nA q  at location n, nµ can be determined. The undamped natural 

frequency ( nf ) of order n and the corresponding damping ratio ( nξ ) can be calculated using the 

following equations [49]: 
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 (3.16) 

The modal shape for order k  can be determined by the residues in Eq. (3.14). 

 [ ]1 2
T

k mk mk NmkR R R=ψ    (3.17) 

It should be noted that the derivation so far was based on the displacement response. When it 

comes to velocity and acceleration responses, the proper representation of ARMAX can be found 

in the literature [49]. The modal parameter extraction process for velocity and acceleration is 

similar to that of displacement. Due to external influences such as environmental noise and 

calibration errors, a higher order of AR is necessary [50]. At the same time, too high a value of 

an  will increase the computational cost in the calculation and analysis [51] and may lead to 

artificial modes. So, the value of an  should be carefully selected so that only the frequency range 

of interest is taken into consideration. The prediction-error method [46] is adopted here to 

estimate the parameters of ARMAX. The calculations were conducted in MATLAB. 
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3.3.3. Transfer function under base motion 

During supine transport, vibration is normally transferred to the supine human body from the 

supporting surfaces (the rigid base of the motion platform). With such a setup, it becomes more 

complicated and expensive to construct transfer functions that are based on the input forces at the 

different locations of the supine human body. While the input motion entering the human body 

through the rigid base can be considered to be similar to all body segments, this work uses an 

equivalent force represented by the product of the acceleration and mass of the supine human 

segment. The resulting transfer function using this equivalent force is called the equivalent point 

frequency response function (EPFRF). The EPFRF is calculated as the ratio between the motion 

of the body’s segment at the input port and the input acceleration at the input port in frequency 

domain. 

The equation of motion in the global reference frame can be expressed as: 

 =Mu + Cu + Ku 0    (3.18) 

u can be written as: 

 g r= +u u u   (3.19) 

where gu is the motion of the rigid base of the motion platform, and ru  is the motion of the 

human body relative to the rigid base of the platform. Eq. (3.18) can be written as 

 r r r g eq= − =Mu + Cu + Ku Mu f     (3.20) 

where eqf  represents the equivalent force on base motion. The mass matrix is diagonal as 
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where the acceleration of the base motion is considered as the input. The output motion can be 

expressed in terms of the transfer function as: 
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Let 
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Then Eq. (3.23) can be written as 
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The output can also be measured in terms of velocity and acceleration. Eq. (3.26) has a structure 

and function similar to the FRF given in Eq. (3.6). Therefore, the model shape extraction method 

based on Eq. (3.6) can be used in the base excitation case. Furthermore, the base excitation case 

can be considered as a single-input ARMAX model when the diagonal property of ( )qA  can be 
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achieved by Eq. (3.11). In this case, the modal identification process of a multi-DOF system can 

be simplified as a series of single-input single-output (SISO) systems. 

3.3.4. Modal shape supplement from transmissibility 

In human testing, due to damping, noise, and low energy at some input frequencies, it is common 

to see incomplete eigenvectors, i.e., eigenvectors with missing components. In this work, a 

method based on the transmissibility function that supplements the missing components of the 

eigenvectors is presented. The equation of motion in Eq. (3.1) can be transferred in the Laplace 

domain with zero initial condition. 

 2( ) (s) ( )s s sM + C + K U = F   (3.27) 

where s is the Laplace variable, and (s)U  and ( )sF are the Laplace transformations of (t)u and 

(t)f , respectively. The dynamical stiffness can be defined as 

 1(s) ( ) ( ) ( ) ( )s s s s− =U = D F H F   (3.28) 

Transmissibility can be defined in the Laplace domain as the ratio between two responses at 

locations k  and l  due to a single input force, such as 
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k
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U s

=   (3.29) 
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= = =   (3.30) 

So the transmissibility is also a ratio between two transfer functions under a single input force. 

With the base motion input and using the concept of the equivalent input force, Eq. (3.29) can be 

written as: 
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Taking the limit as s approaches rλ , 
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Eq. (3.32) shows that the modal shape components ratio can be obtained from the transmissibility 

function. While the response is given here by the displacement, the velocity and acceleration can 

be used as well [52]. When the noise effect is considered, Eq. (3.32) can still be viewed as a 

reasonable way to approximate the model shape ratio. Eq. (3.32) can be written in the frequency 

domain using a similar approach. 

 lim ( )
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T
ω ω

ψω
ψ→

≈   (3.33) 

where rω represents the damped natural frequency for mode r, 21r r rω ω ξ= − , and rω  and rξ  

are the corresponding undamped natural frequency and damping ratio, respectively [52].  

When the partial modal shape is obtained, the unknown part for this mode can be enhanced using 

the following expression: 

 r r
pr pl ql lrT sφ φ=   (3.34) 
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Here /qrr r
ql ql

lr

s T
φ
φ

=  is a scalar function to reduce influence from neighboring modes. prφ  is the 

unknown mode shape component at location p for mode r, and qrφ  and lrφ  are the neighboring 

known mode shape components at q and l, respectively. 

 Results 

Figure (3.4) shows the time history of the vertical acceleration at the head, chest, pelvis, and legs 

of Subject 3 as a result of the vertical input sinusoidal motion at the rigid-platform level. The time 

history of the other fourteen subjects is given in Appendix A. While the horizontal axis in the 

graphs represents time, the time can be correlated with the frequencies. All graphs showed large 

motion with peaks at certain times/frequencies, and that can be related to the resonance of the 

segments.  

 

Figure (3.4) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as a result of the vertical input sinusoidal motion of Subject 3 
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Figure (3.5) Transmissibility magnitude and phase between the vertical output motion at the head, 
chest, pelvis, and legs of Subject 3, and the vertical input sinusoidal motion at the rigid-base level 

The transmissibility magnitude and phase graphs of the individual segments are shown in Figure 

(3.5). The transmissibility presents the ratio between the input motion at the rigid platform level 

and the output motion at the individual segments such as the head, chest, pelvis, and legs. The 

transmissibility graphs would give a better picture of how the input motion is magnified at 
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different frequencies. For example, the transmissibility magnitude at the legs of this subject 

clearly showed three peaks where the motion of the body was amplified under the input motion. 

Figure (3.6) shows the relationships between the ARMAX model prediction and those of the 

experiments in the frequency domain for the different body segments for Subject 3. The vertical 

axis represents the magnitude of an EPFRF. It can be seen that, at low frequency, the EPFRF 

gives zero values at the head, while the transmissibility, on the other hand, gives a value of one at 

this range of frequencies, as shown in Figure (3.5). The information of the other fourteen subjects 

is given in Appendix B.  

 

Figure (3.6) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 3 
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Table (3.2) Damped and undamped natural frequencies and damping ratios at the head, chest, pelvis, and legs levels of the fifteen participants 

Subject 
Mode 
 
Loc. 

Undamped Natural Frequency (Hz) Damping Ratio Damped Natural Frequency (Hz) 

1 2 3 4 1 2 3 4 1 2 3 4 
Sub1 Head 5.9552 8.2812 X 14.3309 0.1173 0.1630 X 0.3457 5.9141 8.1705 X 13.4472 

 Chest 6.1187 7.3690 9.9324 14.9849 0.2425 0.0532 0.3728 0.1760 5.9361 7.3585 9.2165 14.7510 
 Pelvis 5.8843 X 9.9442 12.7517 0.2871 X 0.4356 0.0606 5.6365 X 8.9514 12.7283 
 Legs 5.4875 X 9.2420 14.2958 0.1763 X 0.1692 0.1532 5.4016 X 9.1088 14.1271 

Sub2 Head 3.8807 8.4614 X 16.6460 0.0466 0.3167 X 0.2101 3.8765 8.0258 X 16.2743 
 Chest 4.2199 7.4608 9.0787 15.6718 0.0701 0.2674 0.1672 0.2281 4.2095 7.1892 8.9509 15.2585 
 Pelvis 5.2701 X 10.1912 17.6698 0.0714 X 0.1780 0.1751 5.2567 X 10.0284 17.3967 
 Legs 4.2696 8.0512 X 18.5928 0.1107 0.1442 X 0.1003 4.2434 7.9671 X 18.4991 

Sub3 Head 5.7193 7.1315 X 14.4896 0.2251 0.2238 X 0.1915 5.5725 6.9506 X 14.2213 
 Chest X 8.5563 X 14.7368 X 0.1953 X 0.0669 X 8.3915 X 14.7038 
 Pelvis 5.1368 7.6972 11.3466 X 0.1166 0.0917 0.2032 X 5.1018 7.6647 11.1099 X 
 Legs 4.9718 7.4259 11.2842 X 0.0865 0.1869 0.0999 X 4.9532 7.2951 11.2278 X 

Sub4 Head 6.0138 8.1589 X 17.8112 0.1747 0.1688 X 0.3433 5.9214 8.0419 X 16.7290 
 Chest 6.6035 7.7228 X 13.7582 0.0970 0.2208 X 0.1340 6.5724 7.5322 X 13.6342 
 Pelvis 4.9769 X 9.6653 12.2624 0.0724 X 0.4471 0.1194 4.9638 X 8.6454 12.1747 
 Legs 5.0941 8.5298 11.1798 17.6906 0.1220 0.1465 0.1356 0.1743 5.0560 8.4378 11.0766 17.4197 

Sub5 Head 5.3058 6.9873 8.7531 13.4326 0.1169 0.1414 0.1376 0.1651 5.2694 6.9171 8.6698 13.2483 
 Chest 5.1875 6.9621 X 13.9282 0.1926 0.3393 X 0.1160 5.0903 6.5490 X 13.8342 
 Pelvis X 7.0537 11.4702 X X 0.2612 0.2602 X X 6.8088 11.0750 X 
 Legs 5.4230 7.3598 12.0276 X 0.1357 0.3203 0.0484 X 5.3729 6.9721 12.0134 X 

Sub6 Head 4.0740 6.5001 X 14.2719 0.3204 0.2846 X 0.7135 3.8593 6.2313 X 9.9992 
 Chest 4.5481 7.7686 11.3460 14.4497 0.3549 0.2735 0.1185 0.1182 4.2520 7.4724 11.2660 14.1914 
 Pelvis 5.6095 8.2626 12.7421 X 0.1124 0.1444 0.3405 X 5.5739 8.1760 11.9806 X 
 Legs 5.4096 6.8169 9.7782 15.2144 0.1182 0.3825 0.1440 0.1969 5.3717 6.2985 9.6763 14.9166 

Sub7 Head 3.4491 7.6007 X 17.5394 0.1620 0.2227 X 0.2546 3.4035 7.4098 X 16.9616 
 Chest X 6.5165 9.2214 15.1961 X 0.2870 0.7603 0.0233 X 6.2424 5.9896 15.1923 
 Pelvis 5.3943 7.1685 11.7013 X 0.1163 0.2719 0.3370 X 5.3578 6.8985 11.0169 X 
 Legs 5.0437 7.0361 11.2084 13.3257 0.1065 0.0221 0.3238 0.1181 5.0150 7.0344 10.6047 13.2324 

Sub8 Head 3.6877 7.4190 9.1490 14.0546 0.1021 0.2456 0.0842 0.2022 3.6684 7.1918 9.1165 13.7643 
 Chest 3.9310 8.6696 10.7360 X 0.1842 0.1823 0.0709 X 3.8637 8.5243 10.7090 X 
 Pelvis 4.6570 6.6233 11.7139 X 0.1531 0.2924 0.2438 X 4.6021 6.3339 11.3606 X 
 Legs 3.9657 9.5960 X 16.7086 0.1377 0.2319 X 0.0173 3.9279 9.3345 X 16.7061 
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Table (3.2.continued) Damped and undamped natural frequencies and damping ratios at the head, chest, pelvis, and legs levels of the fifteen 
participants 

Sub9 Head 3.9430 8.5976 X 16.4058 0.1160 0.1736 X 0.4230 3.9164 8.4670 X 14.8656 
 Chest 4.4394 7.2559 12.7486 X 0.1477 0.3629 0.2697 X 4.3906 6.7613 12.2761 X 
 Pelvis 4.7069 7.2801 11.1423 X 0.0767 0.0611 0.2776 X 4.6930 7.2665 10.7043 X 
 Legs 4.7679 9.5520 13.2596 16.2376 0.1350 0.1216 0.2599 0.0923 4.7243 9.4811 12.8040 16.1682 

Sub10 Head X 8.2254 X 15.1439 X 0.3706 X 0.2934 X 7.6397 X 14.4772 
 Chest 3.8627 6.9284 12.8276 16.2877 0.1012 0.2301 0.2904 0.1238 3.8428 6.7426 12.2748 16.1625 
 Pelvis 5.0805 8.4072 13.8884 X 0.0763 0.1397 0.1885 X 5.0657 8.3248 13.6395 X 
 Legs 4.8817 7.4278 10.4331 14.5080 0.1504 0.3080 0.1620 0.1978 4.8262 7.0666 10.2952 14.2214 

Sub11 Head 4.2593 6.7424 8.8304 15.8906 0.1063 0.1446 0.1679 0.4305 4.2352 6.6715 8.7051 14.3424 
 Chest 3.4758 7.5509 X 14.7284 0.1536 0.2759 X 0.0426 3.4346 7.2578 X 14.7150 
 Pelvis 4.6095 X 10.3772 13.7045 0.0356 X 0.4545 0.0939 4.6066 X 9.2434 13.6440 
 Legs 4.9279 8.0581 10.2457 16.8876 0.1135 0.1323 0.0994 0.3601 4.8961 7.9873 10.1949 15.7544 

Sub12 Head 6.5357 X 10.3767 15.6271 0.1890 X 0.0344 0.0953 6.4179 X 10.3709 15.5559 
 Chest 6.6180 8.5520 X X 0.1651 0.4908 X X 6.5272 7.4513 X X 
 Pelvis 4.9642 7.9292 10.6042 X 0.1753 0.1458 0.0616 X 4.8874 7.8444 10.5840 X 
 Legs 5.1270 10.6549 11.6448 17.0070 0.1420 0.4273 0.0431 0.0196 5.0750 9.6331 11.6340 17.0037 

Sub13 Head 4.5824 6.4917 9.3900 17.7374 0.1309 0.2433 0.5688 0.1868 4.5430 6.2966 7.7233 17.4250 
 Chest X 6.5662 10.8843 15.9415 X 0.4371 0.0899 0.2051 X 5.9058 10.8403 15.6026 
 Pelvis 4.7469 7.3736 10.4138 16.4177 0.1035 0.1210 0.2755 0.0902 4.7214 7.3195 10.0108 16.3508 
 Legs 4.8448 X 11.1430 16.9164 0.1334 X 0.1396 0.1930 4.8016 X 11.0340 16.5984 

Sub14 Head 5.8617 8.5102 X X 0.0752 0.2894 X X 5.8451 8.1461 X X 
 Chest X 6.6033 11.1640 14.2646 X 0.2950 0.1825 0.3243 X 6.3094 10.9766 13.4935 
 Pelvis 5.8876 8.7782 11.7061 X 0.0805 0.2771 0.2336 X 5.8684 8.4343 11.3821 X 
 Legs 6.0264 X 9.8997 14.7042 0.1046 X 0.1523 0.2375 5.9933 X 9.7842 14.2833 

Sub15 Head 5.5471 7.2561 X 12.7373 0.1107 0.2014 X 0.4176 5.5130 7.1075 X 11.5736 
 Chest 4.9168 8.8410 X X 0.3426 0.4015 X X 4.6192 8.0973 X X 
 Pelvis 5.2214 6.8074 12.2428 X 0.1126 0.1352 0.3088 X 5.1882 6.7449 11.6446 X 
 Legs 5.3237 7.4295 10.5491 13.6407 0.1762 0.1493 0.1541 0.2056 5.2404 7.3463 10.4231 13.3494 
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Table (3.3) Average of the undamped natural frequencies, damping ratios, and damped natural frequencies of the head, chest, pelvis, and 
legs of the fifteen supine human subjects with their standard deviation (SD) 

Mode 
 

Subject 

Undamped Natural Frequency (Hz) Damping Ratio Damped Natural Frequency (Hz) 

1 2 3 4 1 2 3 4 1 2 3 4 
Sub1 5.7480 8.1363 9.8456 14.2988 0.2053 0.1455 0.3770 0.2438 5.6256 8.0496 9.1190 13.8675 
Sub2 4.2896 7.8828 9.8628 16.9895 0.1084 0.2507 0.1748 0.1839 4.2643 7.6311 9.7109 16.6997 
Sub3 5.1909 7.6597 11.3091 14.6065 0.1271 0.1950 0.1410 0.1326 5.1488 7.5126 11.1960 14.4776 
Sub4 5.4348 8.0596 10.1002 17.0228 0.1294 0.1854 0.3576 0.2381 5.3891 7.9199 9.4322 16.5331 
Sub5 5.3890 7.1576 10.7109 13.5626 0.1417 0.3151 0.1436 0.1522 5.3346 6.7930 10.5999 13.4046 
Sub6 5.0496 7.1635 11.7524 14.4954 0.2042 0.3146 0.2588 0.4513 4.9432 6.7996 11.3520 12.9356 
Sub7 5.0305 6.9894 10.3053 16.5492 0.1101 0.1886 0.5362 0.2170 4.9999 6.8640 8.6989 16.1549 
Sub8 3.9958 8.8048 11.4552 14.9223 0.1419 0.2194 0.2142 0.1417 3.9553 8.5904 11.1894 14.7717 
Sub9 4.7380 8.0569 12.8226 16.3769 0.1333 0.2673 0.2658 0.3661 4.6957 7.7636 12.3613 15.2397 

Sub10 4.8669 7.7138 12.6320 15.1035 0.1448 0.2903 0.2318 0.2393 4.8156 7.3817 12.2879 14.6647 
Sub11 4.8400 7.4722 10.1365 16.5344 0.1140 0.2302 0.3906 0.3684 4.8085 7.2716 9.3311 15.3715 
Sub12 5.5889 9.5558 11.1890 16.1642 0.1564 0.4144 0.0490 0.0658 5.5201 8.6965 11.1756 16.1291 
Sub13 4.8288 6.5801 10.2300 16.8020 0.1323 0.3609 0.3395 0.1886 4.7863 6.1367 9.6224 16.5006 
Sub14 6.0096 7.6085 10.9834 14.5427 0.1017 0.2910 0.1931 0.2694 5.9785 7.2793 10.7766 14.0049 
Sub15 5.2609 8.2426 11.7630 13.2547 0.1977 0.3172 0.2650 0.2962 5.1571 7.8168 11.3426 12.6600 

Average 5.0841 7.8056 11.0065 15.4150 0.1432 0.2657 0.2625 0.2370 5.0282 7.5004 10.5464 14.8943 
SD 0.5293 0.7404 0.9566 1.2806 0.0341 0.0734 0.1224 0.1023 0.5184 0.6894 1.1532 1.3395 

 

 



 

54 

 

Table (3.2) shows the resulting damped and undamped natural frequencies and damping ratios at 

the head, chest, pelvis, and leg levels of the fifteen subjects. It can be seen that the table is 

missing several components marked by (X). The time domain analysis was unable to identify the 

information at the missing components, and that can be contributed to the experimental noises. 

While averaging the transfer functions of the different subjects may assist in finding these 

missing components, the averaging process may still lead to diminishing the peaks or shifting 

them to new locations. A better way is to take the average of the peak locations and magnitudes 

from different segments and subjects and use that as a representative of the tested group [53]. 

Based on this approach, Table (3.3) shows the average resonance frequencies and the SD of the 

four segments from the fifteen subjects. 

The averaging process for each mode in Table (3.2) was achieved in two steps. In the first step, 

the weighted average resonance frequencies and damping ratios of the different body segments 

(head, chest, pelvis, and legs) for each subject were calculated using Eq. (3.35) and Eq. (3.36). 

The weighting factors in these two equations were chosen based on the residue term ijM  in Eq. 

(3.25), which reflected to some extent the energy level associated with a resonance frequency 

[51]. The missing components marked by (X) in Table (3.2) were not included in the calculations 

of the weighted average resonance frequencies and damping ratios for each subject. Then the 

second step involved calculating the average and the SD among the different subjects. 
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Here 4N =  means all four DOF. j
if  and j

iξ  are the natural frequency and damping ratio, 

respectively, from location j for mode i. The values of missing terms in Table (3.2) are set as 

zero. In Table (3.3), for each subject, the weighted natural frequencies and weighted damping 

ratios are given. The corresponding mean value and the SD over these fifteen subjects are also 

offered at the end of Table (3.3). It’s easy to find that, compared with damping ratios, the natural 

frequencies have smaller relative SD. 

Figure (3.7) shows the resulting mode shapes of the fifteen tested subjects at the different 

locations (segments) on the human body. The horizontal axis represents the head (1), torso (2), 

pelvis (3), and legs (4) segments. The vertical axis represents the magnitude of the component of 

each modal shape. In this figure, the geometrical mean modal shape of each mode is also plotted 

by black solid lines. 

 

Figure (3.7) Mode shape components at the head (1), chest (2), pelvis (3), and legs (4) at the four 
resonance frequencies; dashed lines represent the individual subjects, and black solid lines 

represent the geometrical mean of the subjects 
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 Discussion 

The laboratory visual observations showed that the rocking motion of the legs and pelvis seemed 

to play a major role in generating the peak motions at different segments of the supine human 

during vertical input vibrations. The legs/pelvis started showing a large rocking motion at a 

frequency of around 4-5 Hz. This extreme motion was then transferred across the body, 

generating large motions at the chest and head of the subject. Around 5 Hz, the body moved in a 

global mode-like motion. Another peak was then seen at the chest level around 8 Hz. The chest 

moved with extreme motions, forcing the head and the rest of the body to move in a global mode. 

Extreme motions were seen at higher frequencies, but it was hard to accurately identify the 

resonance frequencies at which the extreme motions took place from the visual inspection. 

The transmissibility magnitude and phase graphs in Figure (3.5) of the different body segments of 

one subject may provide a better estimate of the locations of the damped natural frequencies. The 

head showed a small peak around 5 Hz, a peak around 8-9 Hz, and another peak around 14-16 

Hz. The chest showed a large peak around 8 Hz, followed by another peak around 14-16 Hz. The 

magnification in the chest motion at 8 Hz was much bigger than in the other segments, implying 

that the chest is a primary generator of this motion. Also, the transmissibility phase of the chest at 

8 Hz showed a phase change from 0° to -90°, another indication of a local mode. The pelvis and 

legs showed clear peaks around 5 Hz, 7-8 Hz, 12 Hz, and 17 Hz. The corresponding graphs for 

the transmissibility phase of the legs demonstrated clear jumps at these frequencies. The previous 

information led to the perception of local modes at the different segments. However, some of 

these did not necessarily represent local modes but rather can be considered a by-product of the 

resonance motion of the other segments. In general, the peak motions of the different body 

segments didn’t occur at exactly the same frequency, and that could be related to the effects of 

damping, nonlinearity, and the weak connections between the different segments. Still, all 

segments moved in a global-like motion around resonance frequencies that approximately 
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represent the average resonance frequencies of the body segments. A recent study [54] showed 

that the inter-subject variability outweighed the effect of the nonlinearity that can take place due 

to the changes in the vibration magnitude entering the human body during the standing posture. 

The time domain analysis produced resonance frequencies in Table (3.2) and Table (3.3) 

comparable to those of the frequency domain. These time domain results demonstrated that 

different subjects can produce different resonance frequencies at various segments. This can be 

attributed to the differences in the subjects’ anthropometry and body-mass index, subtle 

differences in postures and how they lay on the rigid platform, as well as other forms of 

experimental noises and uncertainties. But a closer look at Table (3.3) with the different modes 

considering the average frequencies from different subjects showed 5 Hz for Mode 1, 8 Hz for 

Mode 2, 11 Hz for Mode 3, and 15 Hz for Mode 4, with their SD. With these four average natural 

frequencies, the resulting average damping ratios and mode shapes can be calculated as seen in 

Table (3.3) and Figure (3.7).  

While a complete set of resonance frequencies and damping ratios can be calculated, the 

components of the corresponding mode shapes at these resonance frequencies may not be 

complete. This can be explained by the differences between the subjects and the experimental 

noises. The missing components of the mode shapes can also be attributed to the lack of local 

resonance motion of some segments for some subjects and the weak connectivity between the 

different segments. However, for the sake of analysis and in order to provide the complete 

information to solve for the physical parameters (mass, stiffness, and damping) of the supine 

human body, the complete set of modal parameters was needed. The proposed transmissibility-

based enhancement method of this work was used to fill the missing components of the individual 

mode shapes, by utilizing the motion information of the neighboring segments.  

The input signal of the sine-sweep vibration with constant energy at the different frequencies was 

not able to generate adequate energy to significantly move the body segments at higher 
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frequencies. The low energy at the higher frequencies can generate numerical anomalies when 

calculating the transfer functions. The increase in the input energy with higher frequencies, on the 

other hand, can produce some nonlinearity in the human response and may affect the linearity 

assumption that was used to conduct the modal analysis. It was assumed, however, that the 

differences between the responses of the subjects may come from the subtle changes in their 

postures that can outweigh the generated nonlinearity if it were presented. The input signal of the 

random vibration can generate higher frequencies from the view of its power spectrum shown in 

Figure (3.3b). However, it seemed doubtful that the body segments had significant movement at 

higher frequencies. So the measured data under the random base excitation was used as a 

supplement of the sine-sweep base excitation when the abnormal data appeared. 

Figure (3.7) showed the four modal shapes at the four resonance frequencies. The behavior shown 

in the figure seemed consistent among the fifteen subjects. Several subjects, though, behaved in a 

different manner at some modes. This could be related to the subject’s anthropometry or the way 

the subject lay on the rigid platform, or it could be error resulting from the experimental 

measurements and noises. The average damping ratios at the end of Table (3.3) were in the range 

of 0.14 – 0.27, which were close to those identified by Krause and Lang [34], around 7 Hz. 

 Conclusion 

The supine human body under WBV behaved as a weakly coupled non-linear system, where each 

body segment generated a large magnification at different frequencies. It was possible to identify 

global frequencies where the whole body moved as a linear system at the different modes. Other 

segmental peak frequencies took place at different locations and did not have a defined global 

mode shape. The supine human body showed four natural frequencies in the range between 0-20 

Hz, and that may provide useful information on the number of segments required when modeling 

a human in such a configuration. Laboratory observations showed considerable pelvis and leg 

rocking motions, which were very clear at a frequency of 4-6 Hz.   
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CHAPTER 4. IDENTIFICATION OF DAMPING AND STIFFNESS 

PARAMETERS OF SUPINE HUMANS UNDER VERTICAL WHOLE-BODY 

VIBRATION 

 Introduction 

The motion of the cervical and lumbar spines of humans is to some extent determined by the 

collective physical properties of the intervertebral disc, facet joints, ligaments, surrounding 

tissues, and muscles. With no existing direct way of measuring these physical properties of 

humans in vivo, the current traditional research is based on in-vitro testing of cadaver or animal 

models, mostly under static or quasi-static loading [55]. The characterization of the damping and 

stiffness parameters of human joints at the cervical and lumbar areas is a significant component in 

many applications, such as the development of biomaterials, the design of prosthetic devices, and 

the development of medical transport systems. Due to the complex interactions between the 

different components of the human body, the measurements of the physical properties, especially 

damping, must be done under dynamic loading conditions. The information about damping in the 

area of biomechanics is not as well established in the literature as it is in the area of structural 

dynamics, where damping can be approximated by different models, including proportional 

damping, in which the damping is expressed in terms of mass and stiffness. Still, finding 

appropriate damping parameters for aerospace and advanced materials in structural dynamics 

remains a challenging area of research [5, 6, 12]. 

Experimental modal analysis, a well-established area in structural and mechanical systems and a 

relatively new one in biological systems, is another way to predict the dynamic properties of 

systems under vibrational loading in terms of their natural frequencies (large response at certain 

frequencies), damping ratios, and eigenvectors (global distorted shapes at natural frequencies). 

Van Englen et al. [56] used experimental modal analysis on human lumbar motion segments and 



 

60 

 

showed a good correlation between the stiffness obtained from static testing and that obtained 

from modal analysis. Van Englen et al. [57] also showed the validity of using vibration testing to 

estimate the modal parameters of goat lumbar vertebral segments and the feasibility of using 

vibration to study the mechanical properties of spinal segment motion in vivo. While the modal 

parameters represent the dynamic characteristics of the system, they do not represent the real 

physical damping and stiffness parameters. Therefore, work has been done to use the modal 

parameters to solve for the physical parameters through a process called the inverse modal 

problem. 

The solution of the inverse modal problem for the physical parameters is an area of intense 

research. Different methods have been proposed [6, 13] with success. However, most existing 

methods suffer from short outcomes when experimental error and noise are presented in the 

modal parameters. Qiao and Rahmatalla [58] proposed a new methodology, which was presented 

in Chapter 2, to determine more accurate and sound damping and stiffness parameters for 

structural and mechanical systems by correcting the phase of the eigenvectors (mode shapes) 

when solving the inverse modal problem. The method will be developed in this work to solve for 

the unknown damping and stiffness parameters at the cervical and lumbar areas of supine humans 

under vertical WBV. In this work, the modal parameters described in this chapter, including 

natural frequencies, damping ratios, and mode shapes, will be used inside an inverse modal 

problem to determine the stiffness and damping parameters. 

 Methodology 

4.2.1. Participants 

The subject group for this study consisted of fifteen male participants. The averages and standard 

deviations (SD) of the age, height, and mass of these subjects are 23.33 ± 4.01 years, 1.78 ± 0.06 

m, and 76.96 ± 8.71 kg, respectively. The biomechanical details about these participants are 

offered in Table (3.1). 
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4.2.2. Experiments 

The subjects were exposed to two types of vertical excitation, a sine-sweep vibration with 

increasing power (from 0.5 to 20 Hz) and a random vibration with frequency content (from 0.5 to 

28 Hz), using a motion simulator (Moog ECU-624-1800, Moog-FCS, Ann Arbor, MI, USA). 

Subjects lay freely on a rigid platform on top of a thin rubber mat to avoid slippage on the metal 

surface of the platform as shown in Figure (4.1). Vertical translational vibration motions (Z-

direction) transmitted to the subject’s head, chest, pelvis, and lower leg regions were measured 

using inertial sensors [47]. Information on these two types of vertical excitation is given in Figure 

(3.2) and Figure (3.3). 

 

 

 

Figure (4.1) Profiles of the supine human testing: the human subject lay on the rigid platform of 
the motion simulator, and vibrations were generated in the vertical Z direction 
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4.2.3. Data collection 

Experimental modal analysis was then conducted on the data collected from the fifteen human 

subjects, which is presented in Chapter 3. Table (4.1) shows the resulting average undamped 

natural frequencies, the damping ratios, and the damped natural frequencies of the fifteen 

subjects. Meanwhile, the details of each subject can be found in Table (3.7). Figure (4.2) shows 

the resulting mode shapes of the fifteen tested subjects at the different locations (segments) on the 

human body. The vertical axis represents the magnitude of the component of each modal shape. 

The horizontal axis represents the magnitude at the head (1), torso (2), pelvis (3), and legs (4) 

segments. In this figure, the geometrical mean modal shape of each mode is also given by black 

solid lines. 

 

Table (4.1) Average of the undamped natural frequencies, 
damping ratios, and damped natural frequencies of the head, 
chest, pelvis, and legs of the fifteen supine human subjects 

Mode Order 1 2 3 4 
Undamped Natural 
Frequency (Hz)  

5.0841 7.8056 11.0065 15.4150 

Damping Ratio 
 

0.1432 0.2657 0.2625 0.2370 

Damped Natural 
Frequency (Hz) 

5.0282 7.5004 10.5464 14.8943 
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Figure (4.2) Mode shape components at the head (1), chest (2), pelvis (3), and legs (4) at the four 
resonance frequencies; dashed lines represent the individual subjects, and black solid lines 

represent the geometrical mean of the subjects 

 Inverse Modal Problem 

4.3.1. Theoretical background 

The equation of motion for a vibrating underdamped system with N degrees of freedom (DOF) 

can be written as  

 ( ) ( ) ( )t t tMu + Cu + Ku = 0    (4.1) 

The mass matrix M and stiffness matrix K are real, symmetric, and positive definite, and the 

damping matrix C is real, symmetric, but can be positive definite or positive semi-definite. 

The equation of motion is a differential equation that can be transformed to the algebraic form. 

 2( )i i iλ λM + C + K ψ = 0   (4.2) 

where iλ  is the eigenvalue and iψ  is the corresponding eigenvector.  
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It is assumed that all eigenvalues are complex and simple (non-repeated). Eq. (4.3) presents a 

transformation that changes the complex-value eigenpairs into real-value eigenpairs [11].  

 
1 1 1 11 1( , , )

2 2
diag

i i i i
   

=    − −   
R    (4.3) 

Eq. (4.2) can be written in terms of the real-value eigenpairs,  

 2
t t t t =Mψ Λ +CψΛ +Kψ 0 

     (4.4) 

The semi-definite programming approach (SDP) was used in this work to solve the inverse modal 

problem of Eq. (4.4) for M, K, and C, such that the physical matrices satisfy certain requirements 

[58]. The SDP is an extension of linear programming (LP), which deals with symmetric matrices 

instead of scalars or vectors as unknowns [19]. 

4.3.2. Supine human model 

A multi-DOF human model is used in this work as a basis for the computational analysis and 

validation. The results of the experimental modal analysis (shown in Table (4.1) and Figure (4.2)) 

indicated that the supine humans demonstrated four recognizable resonance frequencies in the 

vertical direction, in the frequency range of 0-20 Hz, where all body segments moved together. 

This information provided a guideline on the number of DOF that the supine human can have 

under this condition. Based on these results, a human model with four-DOF is presented in Figure 

(4.3). 
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Figure (4.3) A four-DOF multi-body model of a supine human under vertical whole-body 
vibration 

In this model, m1, m2, m3, and m4 represent the mass of the head, chest, pelvis, and legs, 

respectively. k1, k2, k3, and k4 represent the stiffness of the interface between the human body and 

the rigid support surface. c1, c2, c3, and c4 represent the damping coefficient of the interface 

surfaces. ks1, ks2, and ks3 represent the stiffness, in the vertical shear direction of the joints 

between the head and chest, chest and pelvis, and pelvis and legs, respectively. cs1, cs2, and cs3 

represent the damping of the latter joints. The individual masses of the model are allowed to 

move in the vertical direction only in response to the input vertical vibration. 

The unknown mass matrix M, damping matrix C, and stiffness matrix K of the proposed human 

model are shown in the following: 
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4.3.3. Solution of the inverse modal problem for the physical parameters 

Two nested optimization problems are solved [58] with the goal of minimizing the error between 

the calculated transfer functions ( CTR ) and the experimental transfer function ( ETR ). In the 

inner problem, SDP solves an optimization problem to predict M, C, and K, and it is defined as 

follows: 

Minimize 2
11( 1)M −  

subject to: 2
t t t t ≤Mψ Λ +CψΛ +Kψ T 

   , t=T I  , and the following constraints on the mass 

magnitude: 

torso mass pelvis mass legs mass2.35 4.03,  2.81 4.81,  2.78 4.77
head mass head mass head mass

≤ ≤ ≤ ≤ ≤ ≤  

where 11M  represents the first element in the mass matrix, 2N N×I  is the unit matrix, and t is a real 

scalar. 

The upper and lower constraints on the different masses of the human body were selected based 

on the relationship between the different masses of the human body and the mass distribution [59] 

given in Table (4.2). The selection of the upper and lower limits is arbitrary, however, it 

encompasses the calculated magnitude of the mass ratio. For example, the ratio between the mass 

of the torso and head, based on the information in Table (4.2), is 3.358. Accordingly, the lower 

and upper limits were chosen to be 2.35 and 4.03 respectively. 

Table (4.2) Mass distribution of human body 

Segment Description Segment Mass/ Total Mass 
Head Head & Neck 0.081 
Chest Thorax, Shoulder & Upper Arms 0.272 
Pelvis Abdomen, Pelvis, Forearm Arms & Hands  0.325 
Legs Total Legs and Feet 0.322 
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The outer optimization problem is defined as: 

Minimize cos
1

( ) ( )
N

C E
t n n

n
f Mag TR Mag TR

=

= −∑  

Subject to 180 180mjϕ− ≤ ≤   

where N is the segment’s number, and mjϕ  is the component j of the eigenvector phase angles for 

mode m. 

All computations were done in MATLAB. Figure (4.4) shows a flow chart of the solution steps. 

The final solution for the physical parameters will be achieved when the number of optimization 

iterations exceeds 50 or the magnitude of cos tf  and the difference between CTR  and ETR  

becomes 0.05ε ≤ . 
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Figure (4.4) Flow chart showing the solution algorithm 

 Results 

Figure (4.5) shows the geometrical mean of the magnitude of ETR  of the fifteen subjects and 

ETR  of the individual subjects [60]. The average mass (76.96 kg), the average natural 

frequencies, the average damping ratios, and the geometrical mean of the four mode shapes of the 

fifteen subjects were used as bases for the comparison with the predictive (calculated) model. 
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Figure (4.5) The magnitude ETR  of the individual subjects and the geometrical means (solid 

black line) of ETR of the fifteen subjects across the frequency range of 0-20 Hz 

The results of the proposed solution method show the following values for the damping and 

stiffness matrices. 

6.2338 0 0 0
0 21.3693 0 0
0 0 30.0144 0
0 0 0 19.9488
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M
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− 
 − =
 − −
 − 

C  

61699 20992 0 0
20992 76065 36921 0
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− 
 − − =
 − −
 − 

K  

Figure (4.6) shows the comparison between the experimental ETR  and the calculated CTR  

transfer functions at the head, chest, pelvis, and legs based on the average physical parameters of 

the fifteen subjects. 
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Figure (4.6) The experimental ETR  and the calculated CTR  transfer functions based on the 
average physical parameters of the fifteen subjects across the frequency range of 0-20 Hz 

Table (4.3) shows the resulting resonance frequencies and damping ratios that are predicted by 

the model using the average physical parameters of the fifteen human subjects. 

Table (4.3) The resulting modal frequency and damping ratio; 
the values in parentheses represent the resulting error with 

respect to the experimental solution 

Mode Order 1 2 3 4 
Undamped Natural 
Frequency (Hz)  

5.8317 
(14.7%) 

8.3052 
(6.4%) 

13.5045 
(22.7%) 

16.2457 
(5.4%) 

Damping ratio 0.2568 
(79.3%) 

0.3518 
(32.4%) 

0.3015 
(14.9%) 

0.2711 
(14.4%) 

Damped Natural 
Frequency (Hz) 

5.6361 
(12.1%) 

7.7742 
(3.7%) 

12.8761 
(22.1%) 

15.6373 
(5.0%) 

 

The magnitudes of the experimental and calculated eigenvectors predicted by the model are 

shown in Figure (4.7). 
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Figure (4.7) Magnitude of the experimental and calculated eigenvectors (○ - Calculated, + - 
experiment) 

 Validation 

4.5.1. Physical parameters 

In this section, the resulting predicted stiffness and damping coefficients of the supine human, 

shown in Table (4.4), will be compared to those available in the literature. To the author’s 

knowledge, there is no information available in the literature regarding the damping parameters in 

the shear direction of the spine joints under dynamics loading. Therefore, the comparison will be 

based on the shear stiffness coefficients. 

Table (4.4) The resulting predicted stiffness and damping components of the 
supine human body 

Stiffness k1 k2 k3 k4 ks1 ks2 ks3 
N/m 40707 18152 116596 1059 20992 36921 37109 
Damping c1 c2 c3 c4 cs1 cs2 cs3 
N·s/m 300.8 727.6 1122.5 161.3 40.3 45.3 267.0 
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Table (4.5) shows the average shear stiffness coefficients in different regions of the human spine 

based on the study by [61-64]. It should be noted that these values were based on experiments 

conducted on a bony spine, where the effects of muscles, viscera, and soft tissue were neglected. 

Table (4.5) The average shear stiffness coefficients in the different 
regions of the spine 

Regions of the Spine Anterior Shear (N/m) Posterior Shear (N/m) 
Cervical 50000 53000 
Thoracic 110000 110000 
Lumbar 121000 170000 
Lumbosacral 108000 189000 

Table (4.6) shows the corresponding values of the shear stiffness coefficients of the intervertebral 

disc based on the studies by Markolf [65] and Moroney et al. [63]. 

Table (4.6) The shear stiffness coefficient of the intervertebral disc 

Authors Spine Region Shear Stiffness (N/m) 
Moroney et al., 1988 Cervical 60000 
Markolf, 1970 Thoracic and lumbar 260000 

4.5.2. Motion 

The resulting stiffness and damping coefficients given in Table (4.4) are based on the average 

model. A methodology is presented in this section to scale the physical parameters of the average 

model to a specific subject as follows. 

A biomechanical system can be described by its physical model by the mass matrix M, damping 

matrix C, and stiffness matrix K. The equation of motion of this system without external force 

can be given in a matrix form, as shown in Eq. (4.5). 

 ( ) ( ) ( )t t tMu + Cu + Ku = 0    (4.5) 

If Eq. (4.5) is multiplied by a scalar α, then, 

 ( ) ( ) ( )t t tα α αMu + Cu + Ku = 0    (4.6) 

This new system keeps the same modal and frequency characters. So, if the mass of a specific 

subject is known, then the scaling parameter α can be calculated as shown in Eq. (4.7). 
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 s am mα =   (4.7) 

where sm  and am  are the mass of the specific subject and average model, respectively. 

The response of the human’s head, chest, pelvis, and legs under vertical random input 

acceleration will be used to validate the predicted values in the time domain using one subject. 

Figure (4.8) shows a comparison between the predicted acceleration and experimental 

acceleration at the head, chest, pelvis, and legs, for a specific subject during a period of 120 

seconds.  

 

Figure (4.8) Time history of predicted acceleration and experimental acceleration at the head, 
chest, pelvis, and legs due to the input random vibration during the 120 second ride (blue solid 

line for experimental data, red dashed line for predicted data) 

 

Figure (4.9) shows the resulting predicted acceleration time history for the time period of 10-13 

seconds and the experimental acceleration at the head, chest, pelvis, and legs, respectively. 
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Figure (4.9) The resulting time history of predicted acceleration and experimental acceleration at 
the head, chest, pelvis, and legs, for the time period of 10-13 seconds (blue solid line for 

experimental data, red dashed line for predicted data) 
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 Discussion and Conclusion 

A methodology is presented in this work to predict the physical damping and stiffness parameters 

of supine humans under vertical whole-body vibration (WBV). The tested humans appeared to be 

relaxed during the experimentation, so it is likely that fewer muscle contributions were involved 

in the process and that the resulting physical parameters were closer to the passive values of the 

physical parameters. In addition, most human subjects followed the posture instructions during 

the experiments, so it is expected that the postures have less effect on the resulting modal 

parameters. 

The modal analysis presents an excellent guide [53] to figure out how many DOF are required to 

model a supine human body. The experiments were very clear in pointing out four resonance 

frequencies in the frequency range of 0-20 Hz. Therefore, a four-DOF model, to a certain degree, 

is a realistic representation of how the supine human body responds to vertical vibration. 

The resulting mass, stiffness, and damping matrices from the inverse modal problem preserve the 

positive or positive semi-definiteness, which presents a crucial requirement for any dynamics 

system. Also, the proposed method correctly preserved the out-of-diagonal zero elements in these 

physical matrices. This is an important contribution of the proposed method as the out-of-

diagonal zero elements, which do not have any physical meaning, are presented in most of the 

predicted physical parameters in the literature. 

The assumption of proportional damping, as normally used in the literature, can lead to normal 

modes and an easy way to normalize the eigenvectors. However, this assumption can be good for 

lightly damped systems but can lead to a loss of phase information and, ultimately, inaccurate 

physical information when used on biological systems. The usage of the complex modal shapes in 

this work is very important and is an obvious addition to the human response to vertical WBV, as 

the human body has considerable damping that can’t be modeled using a proportional model. 
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The comparisons between the resulting modal parameters, which are based on the predicted 

damping and stiffness parameters of this work, have shown reasonable agreement with the 

experimental ones. The predicted transfer functions were close to those of the experiments at the 

different masses. The comparisons between the predicted acceleration of the model at the 

different masses have shown a very close trend to those of the experimental data. Considering the 

approximation that can take place during the modal analysis of the supine human and the error 

that was generated during this process, the proposed methodology of this work was able to find 

reasonable solutions.  

The results demonstrated that the resulting shear stiffness coefficients at the cervical, thoracic, 

and lumbar spine were lower than those found in the literature. This comparison gives some idea 

about the physical parameters; however, it is by no means a direct comparison, as most 

parameters presented in the literature were based on the properties of the vertebras without the 

inclusion of the muscles, tissues, damping, and other living human materials that contribute to the 

shear stiffness of the human joints. Also, the literature provided a wide range of values due to the 

inconsistency between the different specimens and setups used in different works. Additionally, 

the current work goes beyond what is available in the literature in terms of predicting the 

damping properties of the human joints at the cervical, thoracic, and lumbar regions. 

The proposed scaling process of this work successfully scaled the average model to different 

subjects and therefore can be considered a useful tool for subject-specific testing and comparison 

studies in future work. It should be noted that the scaling process is based on the assumption that 

the modal frequencies and mode shapes will remain the same for all subjects. This can be a weak 

assumption if the subject population has a large variance in the mass and shape of the subjects.  

More work will be done in the future to test the validity of this assumption. 
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CHAPTER 5. TIME AND FREQUENCY DOMAIN ANALYSIS OF SUPINE 

HUMANS UNDER VERTICAL WHOLE-BODY VIBRATION CONSIDERING 

THE FEET 

 Introduction 

In Chapter 3 and Chapter 4, experimental modal analysis was conducted on the data measured at 

the head, chest, pelvis, and legs from fifteen human subjects. A four-degree-of-freedom (four-

DOF) mass-damping-spring system was used to model the supine human in the analysis. With the 

latter format, the foot was considered as a part of the leg. This chapter investigates the effect of 

separating the foot from the leg and considering it as an additional lumped-mass component of 

the human body, i.e., considering the supine human as a five-DOF mass-damping-spring system. 

Natural frequencies, damping ratios, and mode shapes of the human body, including the feet, are 

determined using the time domain analysis. Analysis is conducted to investigate the differences 

between the motions of the feet and the legs and to determine whether there is value in 

considering the feet as a separate mass. 

 Methods 

Referring to Chapter 3, the subjects were exposed to two types of vertical excitation, a sine-sweep 

vibration with increasing power (from 0.5 to 20 Hz, shown in Figure (3.2)) and a random 

vibration with frequency content (from 0.5 to 28 Hz, shown in Figure (3.3)), using a motion 

simulator (Moog ECU-624-1800, Moog-FCS, Ann Arbor, MI, USA). Subjects lay freely on a 

rigid platform on top of a thin rubber mat to avoid slippage on the metal surface of the platform 

as shown in Figure (5.1). In this chapter, the subjects will be tested under same conditions but 

with an additional inertial sensor attached at the medial malleolus of the right foot to measure its 

motion. The latter arrangement was done on ten out of the fifteen subjects used in this thesis. 
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Figure (5.1) Profiles of the supine human testing: the human subject lay on the rigid platform of 
the motion simulator, and vibrations were generated in the vertical Z direction 

A description of the theoretical background behind the experimental modal analysis can be found 

in Chapter 3. The transmissibility between different body segments is used here to evaluate their 

response to vibration, including the head, chest, pelvis, legs, and feet. The relative motion 

between the legs and the feet will be used here as a measure of the similarity and difference 

between their motions. The hypothesis here is that if the feet are moving in a similar way to that 

of the legs, then they can be lumped together and considered as one mass during modeling. 

5.2.1. Analysis in the frequency domain 

Transmissibility is a widely used transfer function for the biomechanical response under vibration 

[36, 39, 66-69]. In the case of base motion, the transmissibility between two output locations k 

and l can be defined in the frequency domain as the ratio between two responses at locations k 

and l relative to the base motion, such as 

 
( )( )
( )

kr
kl

lr

AT
A

ωω
ω

=   (5.1) 
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where ( )krA ω  is the Fourier transform of the acceleration kr kg ga a a= − . kra  is the acceleration 

at location k relative to the base motion, kga  is its global acceleration, and ga  is the acceleration 

of base motion. In the same sense, ( )lrA ω  is the Fourier transform of the acceleration 

lr lg ga a a= −  at location l.  

5.2.2. Analysis by Wavelet Transform 

The Fourier transform is a great tool to transform a signal from the time domain into the 

frequency domain. However, it can only offer the overall frequency content of the signal. When 

the content of frequency in time domain needs to be considered, the wavelet transform presents a 

powerful way to locally decompose a signal into a time and frequency domain. The study of the 

wavelet is an extensive ongoing research area [70] and has been widely applied in different 

academic fields [71, 72]. 

The continuous wavelet transform (CWT) of a time series f can be defined as [73] 

 ( , ) ( ) ( )u tf s t f u g du
s

∞

−∞

−
= ∫   (5.2) 

where ( )u tg
s
−

 is the complex conjugate of basic wavelet ( )g u  localization at the time (t) and 

the scale (frequency, s). 

The Morlet wavelet, as one type of CWT [70], is used here. 

 
2

01/4 /2( ) i u ug u e eωπ − −=   (5.3) 

where 0ω  is taken as 5 in practice. 

The wavelet coherence can inspect the relationship in the time and frequency domain between 

two signals. The wavelet coherence R of two signals x and y can be defined as [74-76] 
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where S is the smoothing operation in both the time and frequency domains [76]. 

Its wavelet coherence phase lag xyφ  is  
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where Real and Imag represent the real and imaginary parts, respectively. 

 Results 

Figure (5.2a) shows the time history of the vertical acceleration at the feet of one subject, Subject 

8, as a result of the vertical input sinusoidal motion at the rigid-platform level. Figure (5.2b) 

shows the relationship between the ARMAX model prediction and those of the experiments in the 

frequency domain for the feet for Subject 8. The information of the other nine subjects is given in 

Appendix C. For the experimental modal analysis including the feet, the measured data under the 

random excitation was used as supplement of the sine-sweep excitation when abnormal data 

appeared in the sine-sweep files. 

 

Figure (5.2) (a) Time history of the resulting vertical acceleration signals measured at the feet as a 
result of the vertical input sinusoidal motion of Subject 8, (b) EPFRF magnitude predicted by 

ARMAX and measured by the experiment 
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Table (5.1) Damped and undamped natural frequencies and damping ratios at the head, chest, pelvis, legs and feet levels of the ten participants 

Subject 
Mode 
 
Loc. 

Undamped Natural Frequency (Hz) Damping Ratio Damped Natural Frequency (Hz) 

1 2 3 4 1 2 3 4 1 2 3 4 
Sub6 Head 4.0740 6.5001 X 14.2719 0.3204 0.2846 X 0.7135 3.8593 6.2313 X 9.9992 

 Chest 4.5481 7.7686 11.3460 14.4497 0.3549 0.2735 0.1185 0.1182 4.2520 7.4724 11.2660 14.1914 
 Pelvis 5.6095 8.2626 12.7421 X 0.1124 0.1444 0.3405 X 5.5739 8.1760 11.9806 X 
 Legs 5.4096 6.8169 9.7782 15.2144 0.1182 0.3825 0.1440 0.1969 5.3717 6.2985 9.6763 14.9166 
 Feet 5.1453 8.8488 X 17.3590 0.1931 0.2638 X 0.2259 5.0485 8.5355 X 16.9103 

Sub7 Head 3.4491 7.6007 X 17.5394 0.1620 0.2227 X 0.2546 3.4035 7.4098 X 16.9616 
 Chest X 6.5165 9.2214 15.1961 X 0.2870 0.7603 0.0233 X 6.2424 5.9896 15.1923 
 Pelvis 5.3943 7.1685 11.7013 X 0.1163 0.2719 0.3370 X 5.3578 6.8985 11.0169 X 
 Legs 5.0437 7.0361 11.2084 13.3257 0.1065 0.0221 0.3238 0.1181 5.0150 7.0344 10.6047 13.2324 
 Feet 4.7920 6.2543 10.9905 14.6654 0.1933 0.1305 0.1944 0.2710 4.7016 6.2008 10.7808 14.1166 

Sub8 Head 3.6877 7.4190 9.1490 14.0546 0.1021 0.2456 0.0842 0.2022 3.6684 7.1918 9.1165 13.7643 
 Chest 3.9310 8.6696 10.7360 X 0.1842 0.1823 0.0709 X 3.8637 8.5243 10.7090 X 
 Pelvis 4.6570 6.6233 11.7139 X 0.1531 0.2924 0.2438 X 4.6021 6.3339 11.3606 X 
 Legs 3.9657 9.5960 X 16.7086 0.1377 0.2319 X 0.0173 3.9279 9.3345 X 16.7061 
 Feet 4.0547 X 10.8517 16.5943 0.1813 X 0.2526 0.0069 3.9875 X 10.4997 16.5939 

Sub9 Head 3.9430 8.5976 X 16.4058 0.1160 0.1736 X 0.4230 3.9164 8.4670 X 14.8656 
 Chest 4.4394 7.2559 12.7486 X 0.1477 0.3629 0.2697 X 4.3906 6.7613 12.2761 X 
 Pelvis 4.7069 7.2801 11.1423 X 0.0767 0.0611 0.2776 X 4.6930 7.2665 10.7043 X 
 Legs 4.7679 9.5520 13.2596 16.2376 0.1350 0.1216 0.2599 0.0923 4.7243 9.4811 12.8040 16.1682 
 Feet 4.6697 9.1507 13.1557 X 0.1465 0.1301 0.1058 X 4.6193 9.0729 13.0818 X 

Sub10 Head X 8.2254 X 15.1439 X 0.3706 X 0.2934 X 7.6397 X 14.4772 
 Chest 3.8627 6.9284 12.8276 16.2877 0.1012 0.2301 0.2904 0.1238 3.8428 6.7426 12.2748 16.1625 
 Pelvis 5.0805 8.4072 13.8884 X 0.0763 0.1397 0.1885 X 5.0657 8.3248 13.6395 X 
 Legs 4.8817 7.4278 10.4331 14.5080 0.1504 0.3080 0.1620 0.1978 4.8262 7.0666 10.2952 14.2214 
 Feet 5.2149 X 10.8226 13.4523 0.1066 X 0.1459 0.0746 5.1852 X 10.7068 13.4149 

Sub11 Head 4.2593 6.7424 8.8304 15.8906 0.1063 0.1446 0.1679 0.4305 4.2352 6.6715 8.7051 14.3424 
 Chest 3.4758 7.5509 X 14.7284 0.1536 0.2759 X 0.0426 3.4346 7.2578 X 14.7150 
 Pelvis 4.6095 X 10.3772 13.7045 0.0356 X 0.4545 0.0939 4.6066 X 9.2434 13.6440 
 Legs 4.9279 8.0581 10.2457 16.8876 0.1135 0.1323 0.0994 0.3601 4.8961 7.9873 10.1949 15.7544 
 Feet 4.8414 7.3563 9.4189 13.0506 0.1195 0.1401 0.0795 0.1932 4.8067 7.2837 9.3891 12.8048 
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Table (5.1.continued) Damped and undamped natural frequencies and damping ratio at the head, chest, pelvis, legs and feet levels of the ten 
participants 

Sub12 Head 6.5357 X 10.3767 15.6271 0.1890 X 0.0344 0.0953 6.4179 X 10.3709 15.5559 
 Chest 6.6180 8.5520 X X 0.1651 0.4908 X X 6.5272 7.4513 X X 
 Pelvis 4.9642 7.9292 10.6042 X 0.1753 0.1458 0.0616 X 4.8874 7.8444 10.5840 X 
 Legs 5.1270 10.6549 11.6448 17.0070 0.1420 0.4273 0.0431 0.0196 5.0750 9.6331 11.6340 17.0037 
 Feet 4.9798 X 10.0240 13.1562 0.1360 X 0.1730 0.2146 4.9335 X 9.8729 12.8496 

Sub13 Head 4.5824 6.4917 9.3900 17.7374 0.1309 0.2433 0.5688 0.1868 4.5430 6.2966 7.7233 17.4250 
 Chest X 6.5662 10.8843 15.9415 X 0.4371 0.0899 0.2051 X 5.9058 10.8403 15.6026 
 Pelvis 4.7469 7.3736 10.4138 16.4177 0.1035 0.1210 0.2755 0.0902 4.7214 7.3195 10.0108 16.3508 
 Legs 4.8448 X 11.1430 16.9164 0.1334 X 0.1396 0.1930 4.8016 X 11.0340 16.5984 
 Feet 4.9327 X 9.0569 14.2113 0.1366 X 0.1554 0.1926 4.8865 X 8.9469 13.9452 

Sub14 Head 5.8617 8.5102 X X 0.0752 0.2894 X X 5.8451 8.1461 X X 
 Chest X 6.6033 11.1640 14.2646 X 0.2950 0.1825 0.3243 X 6.3094 10.9766 13.4935 
 Pelvis 5.8876 8.7782 11.7061 X 0.0805 0.2771 0.2336 X 5.8684 8.4343 11.3821 X 
 Legs 6.0264 X 9.8997 14.7042 0.1046 X 0.1523 0.2375 5.9933 X 9.7842 14.2833 
 Feet 6.0367 7.5090 11.0628 16.1228 0.1032 0.2891 0.0866 0.1983 6.0045 7.1884 11.0213 15.8027 

Sub15 Head 5.5471 7.2561 X 12.7373 0.1107 0.2014 X 0.4176 5.5130 7.1075 X 11.5736 
 Chest 4.9168 8.8410 X X 0.3426 0.4015 X X 4.6192 8.0973 X X 
 Pelvis 5.2214 6.8074 12.2428 X 0.1126 0.1352 0.3088 X 5.1882 6.7449 11.6446 X 
 Legs 5.3237 7.4295 10.5491 13.6407 0.1762 0.1493 0.1541 0.2056 5.2404 7.3463 10.4231 13.3494 
 Feet 5.5098 6.2200 11.1196 17.6482 0.1314 0.1418 0.1027 0.0890 5.4620 6.1571 11.0608 17.5782 
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Table (5.1) shows the resulting damped and undamped natural frequencies and damping ratios at 

the head, chest, pelvis, legs, and feet of the ten subjects under consideration. The missing 

components in Table (5.1) are marked by (X). 

Figure (5.3) shows the resulting mode shapes of the ten tested subjects at the different segments 

on the human body. The horizontal axis represents the head (1), torso (2), pelvis (3), legs (4), and 

feet (5) segments. The vertical axis represents the magnitude of the component of each modal 

shape. In this figure, the geometrical mean modal shape of each mode is also given by black solid 

lines. 

 

Figure (5.3) Mode shape components at the head (1), chest (2), pelvis (3), legs (4), and feet (5) at 
the four resonance frequencies. Dashed lines represent the individual subjects, and black solid 

lines represent the geometrical mean of the subjects 
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There are ten cases of transmissibility between different body segments, shown in Table (5.2). 

For example, Head-Chest represents the transmissibility of head to chest. Referring to Eq. (5.1), k 

is chest, l is head. At the same time, Chest-Head is not given because of the similar characteristics 

to that of the Head-Chest in Table (5.2). (X) in Table (5.2) means that the information will not be 

included in the study. 

Table (5.2) Ten cases of transmissibility between different body segments including head, chest, 
pelvis, legs and feet of the supine human under vertical whole-body vibration 

Location Head Chest Pelvis Legs Feet 
Head X Head-Chest Head-Pelvis Head-Legs Head-Feet 
Chest X X Chest-Pelvis Chest-Legs Chest-Feet 
Pelvis X X X Pelvis-Legs Pelvis-Feet 
Legs X X X X Legs-Feet 
Feet X X X X X 

 

The magnitude and phase of transmissibility for six subjects (Subjects 7-12) under vertical sine-

sweep base motion of the different body segments (shown in Table (5.2)), are given in Figure 

(5.4) and Figure (5.5). 
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Figure (5.4) Transmissibility of, head to chest (a, b), head to pelvis (c, d), head to legs (e, f), head 
to feet (g, h), and chest to pelvis (i, j) of the six subjects 
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Figure (5.5) Transmissibility of, chest to legs (a, b), chest to feet (c, d), pelvis to legs (e, f), pelvis 
to feet (g, h) and legs to feet (i, j) of the six subjects 
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Figure (5.6) shows the time history profile and its PSD of the input sine-sweep base motion. 

 

Figure (5.6) The input sine-sweep vibration during the 120 second ride: (a) the time history 
profile, (b) the power spectral density (PSD) of the signal for the frequency range from 0-30 Hz 

Figure (5.7) shows the magnitude scalograms with the Morlet wavelet of the base motion 

acceleration and the head, chest, pelvis, legs, and feet accelerations relative to the base motion for 

Subject 8. The white dashed curve in each figure shows the cone of influence (COI), which 

indicates the edge effects [77]. The magnitude scalograms of other subjects are given in 

Appendix D. 

Figure (5.7) also shows the locations of frequency intensity with time. For example, the base 

graph shows a continuous band of frequencies (the yellow band) that starts from 0.5 Hz and ends 

at 20 Hz. The head shows frequencies at the end side, indicating that it is more sensitive to that 

range of frequencies. The chest and pelvis show activities above 6 Hz, and the legs and feet show 

very similar activities. 
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Figure (5.7) Magnitude scalogram with Morlet wavelet of the base motion acceleration and the 
head, chest, pelvis, legs, and feet acceleration relative to the base motion for Subject 8; the white 

dashed curve indicates the COI 

Under the sine-sweep input base motion shown in Figure (5.7), the squared wavelet coherence 

between the acceleration of the legs and feet relative to the base motion for Subject 8 is plotted in 

Figure (5.8). The arrows at the area where the squared wavelet coherence is larger than 0.7, as 

shown by the colored bar on the right of Figure (5.8), are given to indicate the phase lag between 
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legs and feet. The horizontal arrows indicate no lag between the motions of the segments, and the 

arrows with angles indicate a lag. The high magnitude of the wavelet transform band shown in 

Figure (5.7) is indicted by the red curves in Figure (5.8). The wavelet coherences between the 

acceleration of legs and feet relative to the base for the other subjects are shown in Appendix D. 

 

Figure (5.8) Squared wavelet coherence between the acceleration of the legs and feet relative to 
base motion for Subject 8; the white dashed curve indicates the COI, the red dashed curves 

indicate the high-value band of the base motion, and the direction of the arrows indicates the 
phase lag between legs and feet 

 Discussion 

As shown in Table (5.1), only four modes can be identified in the frequency range of 0-20 Hz. 

Other modes can exist in that range of frequency, however, they may be indistinguishable using 

the current techniques. It can also be seen that the damping ratios from feet were comparable with 

the damping ratios from other body segments. From Figure (5.3), it’s obvious that the magnitude 
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of the mode shape component at the feet was smaller than that at the legs under the four modes of 

the geometrical mean, and that the feet were moving in a similar direction to that of the legs. 

Figure (5.4) and Figure (5.5) show distinct variations in the magnitude of the transmissibility 

between the different body segments at frequencies below 10 Hz; high peaks are obvious in the 

graphs. The transmissibility of the legs to feet for six subjects (Figure (5.5i), on the other hand, 

didn’t show obvious peaks below 15 Hz. In addition, the transmissibility magnitude for all 

subjects was lower than 1 at that range of frequency. Figure (5.5j) also showed no obvious 

differences between the phase of the feet relative to the legs as compared with the other segments 

in Figure (5.4) and Figure (5.5). 

Besides the overall frequency analysis using the transmissibility of the legs to feet, the 

relationship between these two body segments can be analyzed locally in the time and frequency 

domain by the wavelet transform. There were six subjects in the transmissibility analysis and 

wavelet transform analysis. Inside the band where the sine-sweep of the base motion contained 

the particular dominant frequency with time, shown in Figure (5.7) and indicted by red curves in 

Figure (5.8), the wavelet coherence between legs and feet stayed close to 1. This means that these 

two body segments have a strong coherence in the frequency range of 0-20 Hz. In addition, it’s 

clear that, in the first 60 seconds (when the sine-sweep base motion shifted from 0 to 10 Hz in 

frequency domain), the orientation of the arrows was toward the right, indicating no phase lag 

between the legs and feet. This phase relationship can be verified by the phase of the 

transmissibility of the legs to feet shown in Figure (5.5j) in the frequency range of 0-10 Hz. 

Similarly, after the first 60 seconds (when the sine-sweep base motion shifted from 10 to 20 Hz in 

the frequency domain), the orientation of the arrows showed that there was a phase shift and then 

the phase lag stayed around 55° for the legs with respect to the feet. 

Generally, there was a phase shift after 60 seconds and 10 Hz among the six subjects. This 

indicates that during the vertical input base motion vibration, with a low frequency content (0-10 
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Hz), the legs and feet moved together without obvious phase lag between them. In the relatively 

higher-frequency motion (10-20 Hz), the legs had a phase lag behind the feet. 

 Conclusion 

When the feet were considered as an additional segment by separating them from the legs, five 

inertial sensors were attached to five locations at well-spaced distances along the supine human 

body. Still, the experimental modal analysis showed only four modes in the frequency range of 0-

20 Hz. 

The transmissibility with the legs and feet showed similar behavior in magnitude and phase 

among the six subjects. The wavelet coherence between the legs and feet kept a large value with a 

stable phase except with a phase shift just after 60 seconds and 10 Hz. This phase shift can also 

be tracked by the phase of the transmissibility of the legs to feet.  

Given all of that, it is suggested that the two human body segments, the legs and feet, be modeled 

as one rigid segment for the consideration of supine human models under vertical whole-body 

vibration (WBV). Because the mass ratio of feet to legs is 9.9% [59], it’s reasonable to lump the 

legs and feet together for further analysis, in the frequency range of 0-10 Hz, under vertical 

WBV.  
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CHAPTER 6. FUTURE WORK 

The following issues will be studied in future work. 

 Analysis Including Angular Motion 

In this work, the experimental modal analysis of supine humans was conducted under vertical 

whole-body vibration (WBV). The subjects were exposed to two types of vertical vibration: a 

sine-sweep vibration and a random vibration. Only vertical motions were considered in this work; 

rotational motions were not included in the analysis. Future work will consider investigating 

human response under rotational input motions. 

 Analysis Including Nonlinear Behaviors 

For the supine human, all the analysis and modeling were conducted based on the linearity 

assumption. However, nonlinear factors, such as the contributions from internal viscera, soft 

tissues, and muscles, cannot be ignored. Furthermore, the effect of vibration magnitude was also 

not taken into consideration. Taking these nonlinear factors into consideration is a challenge that 

can be considered in future work. 

 Complex Model Considering Angular Motion 

In Chapter 4, a four-DOF model of a supine human was presented. In this model, for each human 

body segment, only the vertical translational motion was considered; angular motion was not 

considered. Because of the geometry and connectivity between different human segments, 

rotational motions are expected to take place even under vertical input motions. Therefore, a more 

complex model than that of a four-DOF model seems necessary to consider the angular motion of 

the supine human. Future work will consider the effect of including the angular motion of the 

segments in the analysis. 
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APPENDIX A: TIME HISTORY AND TRANSMISSIBILITY OF THE 

RESULTING VERTICAL ACCELERATION OF THE INDIVIDUAL 

SEGMENTS 

The time history of the resulting vertical accelerations of individual segments and their 

transmissibility magnitude and phase are shown below for the other fourteen subjects. 

 

 

Figure (A.1) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input sinusoidal motion of Subject 1 
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Figure (A.2) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 1, and the vertical input sinusoidal motion at the rigid-base 

level 
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Figure (A.3) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input sinusoidal motion of Subject 2 
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Figure (A.4) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 2, and the vertical input sinusoidal motion at the rigid-base 

level 
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Figure (A.5) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input sinusoidal motion of Subject 4 
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Figure (A.6) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 4, and the vertical input sinusoidal motion at the rigid-base 

level 
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Figure (A.7) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input sinusoidal motion of Subject 5 
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Figure (A.8) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 5, and the vertical input sinusoidal motion at the rigid-base 

level 
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Figure (A.9) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input random motion of Subject 6 
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Figure (A.10) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 6, and the vertical input random motion at the rigid-base 

level 
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Figure (A.11) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input sinusoidal motion of Subject 7 
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Figure (A.12) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 7, and the vertical input sinusoidal motion at the rigid-base 

level 
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Figure (A.13) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input sinusoidal motion of Subject 8 
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Figure (A.14) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 8, and the vertical input sinusoidal motion at the rigid-base 

level 
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Figure (A.15) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input sinusoidal motion of Subject 9 
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Figure (A.16) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 9, and the vertical input sinusoidal motion at the rigid-base 

level 
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Figure (A.17) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input sinusoidal motion of Subject 10 
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Figure (A.18) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 10, and the vertical input sinusoidal motion at the rigid-

base level 
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Figure (A.19) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input sinusoidal motion of Subject 11 
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Figure (A.20) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 11, and the vertical input sinusoidal motion at the rigid-

base level 
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Figure (A.21) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input sinusoidal motion of Subject 12 
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Figure (A.22) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 12, and the vertical input sinusoidal motion at the rigid-

base level 
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Figure (A.23) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input random motion of Subject 13 
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Figure (A.24) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 13, and the vertical input random motion at the rigid-base 

level 
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Figure (A.25) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input random motion of Subject 14 
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Figure (A.26) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 14, and the vertical input random motion at the rigid-base 

level 
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Figure (A.27) Time history of the resulting vertical acceleration signals measured at the head, 
chest, pelvis, and legs as result of the vertical input random motion of Subject 15 
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Figure (A.28) Transmissibility magnitude and phase between the vertical output motion at the 
head, chest, pelvis, and legs of Subject 15, and the vertical input random motion at the rigid-base 

level 
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APPENDIX B: THE RELATIONSHIPS BETWEEN THE ARMAX MODEL 

PREDICTION AND THOSE OF THE EXPERIMENTS IN THE FREQUENCY 

DOMAIN 

The relationships between the ARMAX model prediction and those of the experiments in the 

frequency domain for the different body segments are shown below for the other fourteen 

subjects. 

 

Figure (B.1) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 1 
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Figure (B.2) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 2 

 

Figure (B.3) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 4 
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Figure (B.4) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 5 

 

Figure (B.5) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 6 
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Figure (B.6) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 7 

 

Figure (B.7) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 8 
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Figure (B.8) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 9 

 

Figure (B.9) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 10 
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Figure (B.10) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 11 

 

Figure (B.11) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 12 
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Figure (B.12) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 13 

 

Figure (B.13) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 14 
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Figure (B.14) EPFRF magnitude predicted by ARMAX at the head, chest, pelvis, and legs, and 
those measured by the experiments of Subject 15 
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APPENDIX C: TIME HISTORY OF THE VERTICAL ACCELERATION AT 

FEET AND ITS ARMAX MODEL 

The time history of the vertical acceleration at the feet, the magnitude, and the relationship 

between the ARMAX model prediction and those of the experiments in the frequency domain for 

the feet are shown below for the other nine subjects (Subjects 6-7,9-15). 

 

Figure (C.1) (a) Time history of the resulting vertical acceleration signals measured at the feet as 
a result of the vertical input random motion of Subject 6, (b) EPFRF magnitude predicted by 

ARMAX and measured by the experiment 

 

 

Figure (C.2) (a) Time history of the resulting vertical acceleration signals measured at the feet as 
a result of the vertical input sinusoidal motion of Subject 7, (b) EPFRF magnitude predicted by 

ARMAX and measured by the experiment 
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Figure (C.3) (a) Time history of the resulting vertical acceleration signals measured at the feet as 
a result of the vertical input sinusoidal motion of Subject 9, (b) EPFRF magnitude predicted by 

ARMAX and measured by the experiment 

 

Figure (C.4) (a) Time history of the resulting vertical acceleration signals measured at the feet as 
a result of the vertical input sinusoidal motion of Subject 10, (b) EPFRF magnitude predicted by 

ARMAX and measured by the experiment 

 

Figure (C.5) (a) Time history of the resulting vertical acceleration signals measured at the feet as 
a result of the vertical input sinusoidal motion of Subject 11, (b) EPFRF magnitude predicted by 

ARMAX and measured by the experiment 
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Figure (C.6) (a) Time history of the resulting vertical acceleration signals measured at the feet as 
a result of the vertical input sinusoidal motion of Subject 12, (b) EPFRF magnitude predicted by 

ARMAX and measured by the experiment 

 

Figure (C.7) (a) Time history of the resulting vertical acceleration signals measured at the feet as 
a result of the vertical input random motion of Subject 13, (b) EPFRF magnitude predicted by 

ARMAX and measured by the experiment 

 

Figure (C.8) (a) Time history of the resulting vertical acceleration signals measured at the feet as 
a result of the vertical input random motion of Subject 14, (b) EPFRF magnitude predicted by 

ARMAX and measured by the experiment 
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Figure (C.9) (a) Time history of the resulting vertical acceleration signals measured at the feet as 
a result of the vertical input random motion of Subject 15, (b) EPFRF magnitude predicted by 

ARMAX and measured by the experiment 
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APPENDIX D: MAGNITUDE SCALOGRAMS OF BASE MOTION AND THE 

INDIVIDUAL SEGMENTS, AND WAVELET COHERENCES BETWEEN 

LEGS AND FEET 

The magnitude scalograms with the Morlet wavelet of the base motion acceleration and the head, 

chest, pelvis, legs, and feet accelerations relative to the base motion are shown below for the 

other five subjects (Subjects 7, 9-12). The wavelet coherences between the acceleration of the 

legs and feet relative to the base are also shown below for the same five subjects. 

 

Figure (D.1) Squared wavelet coherence between the acceleration of the legs and feet relative to 
base motion for Subject 7; the white dashed curve indicates the COI, the red dashed curves 

indicate the high-value band of the base motion, and the direction of the arrows indicates the 
phase lag between legs and feet 
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Figure (D.2) Squared wavelet coherence between the acceleration of the legs and feet relative to 
base motion for Subject 9; the white dashed curve indicates the COI, the red dashed curves 

indicate the high-value band of the base motion, and the direction of the arrows indicates the 
phase lag between legs and feet 
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Figure (D.3) Squared wavelet coherence between the acceleration of the legs and feet relative to 
base motion for Subject 10; the white dashed curve indicates the COI, the red dashed curves 
indicate the high-value band of the base motion, and the direction of the arrows indicates the 

phase lag between legs and feet 
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Figure (D.4) Squared wavelet coherence between the acceleration of the legs and feet relative to 
base motion for Subject 11; the white dashed curve indicates the COI, the red dashed curves 
indicate the high-value band of the base motion, and the direction of the arrows indicates the 

phase lag between legs and feet 
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Figure (D.5) Squared wavelet coherence between the acceleration of the legs and feet relative to 
base motion for Subject 12; the white dashed curve indicates the COI, the red dashed curves 
indicate the high-value band of the base motion, and the direction of the arrows indicates the 

phase lag between legs and feet 
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Figure (D.6) Magnitude scalogram with Morlet wavelet of the base motion acceleration and the 
head, chest, pelvis, legs, and feet acceleration relative to the base motion for Subject 7; the white 

dashed curve indicates the COI 



 

139 

 

 

Figure (D.7) Magnitude scalogram with Morlet wavelet of the base motion acceleration and the 
head, chest, pelvis, legs, and feet acceleration relative to the base motion for Subject 9; the white 

dashed curve indicates the COI 
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Figure (D.8) Magnitude scalogram with Morlet wavelet of the base motion acceleration and the 
head, chest, pelvis, legs, and feet acceleration relative to the base motion for Subject 10; the white 

dashed curve indicates the COI 
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Figure (D.9) Magnitude scalogram with Morlet wavelet of the base motion acceleration and the 
head, chest, pelvis, legs, and feet acceleration relative to the base motion for Subject 11; the white 

dashed curve indicates the COI 
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Figure (D.10) Magnitude scalogram with Morlet wavelet of the base motion acceleration and the 
head, chest, pelvis, legs, and feet acceleration relative to the base motion for Subject 12; the white 

dashed curve indicates the COI 

 

 

 

  



 

143 

 

APPENDIX E: INFORMED CONSENT DOCUMENT 

The following pages reflect an unsigned informed consent document: 
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