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ABSTRACT 
 

Atmospheric rivers (ARs) are long and narrow river-like features in the lower 

troposphere that carry most of the atmospheric water vapor fluxes from the tropics to the 

midlatitudes. Because of the large amount of moisture transported by these storms, they 

can cause heavy rainfall and major flooding events, such as the Midwest floods of 1993 

and 2008. The overarching theme of this thesis is to understand the impacts of ARs on 

extreme precipitation and floods over the central United States. 

First, to improve the understanding of the mechanisms leading to the development of 

these storms, three ARs that happened during the summer of 2013 are studied in detail. The 

work provided insight into the synoptic conditions associated with these storms. Moreover, 

I found that the source of moisture for ARs over the central United States can be located 

both in the tropics and subtropics, and evaporation over land can also add water vapor along 

the AR trajectory. 

To understand the characteristics of precipitation during these storms, I focused on a 

12-year period and used different high spatial and temporal resolution remote sensing-

based precipitation products. These analyses showed that most of the AR-related 

precipitation is located in a narrow region (approximately 150km) within the area where 

the strongest moisture transport occurs. 

The analysis of multiple long-term atmospheric reanalysis products has led to the 

development of the climatology of ARs over the central United States. This climatology is 

used to understand the AR characteristics, their long-term impacts on annual precipitation, 

precipitation extremes, and flooding over the central United States. AR characteristics (e.g., 

frequency, duration) are generally robust across the different reanalysis products. These 
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storms exhibit a marked seasonality, with the largest activity in winter (more than ten ARs 

per season on average), and the lowest in summer (less than two ARs per season on 

average). Overall, ARs generally last less than three days, but exceptionally persistent ARs 

(more than six days) are also observed. In terms of their impacts on precipitation, AR-

related precipitation is able to explain a large portion of the year-to-year variations in the 

total annual precipitation over the central United States. Moreover, 40% of the top 1% daily 

precipitation extremes are associated with ARs, and more than 70% of the annual 

instantaneous peak discharges and peaks-over-threshold floods are associated with these 

storms, in particular during winter and spring. 

The relationship between the frequency of ARs and three prominent large-scale 

atmospheric modes [Pacific-North American (PNA) teleconnection, Artic Oscillation 

(AO), and North Atlantic Oscillation (NAO)] is investigated, and the results are used to 

statistically model the frequency of ARs at the seasonal scale. PNA and AO indices play a 

significant role in the winter season, when the AR frequency is the highest. Building on 

these insights, different spatio-temporal Bayesian hierarchical models are developed to 

describe the frequency of winter heavy precipitation events based on ARs and the large-

scale atmospheric modes. The results suggest that over much of the central United States, 

PNA and AO can be helpful in describing the frequency of ARs in winter, which in turn 

can be useful to characterize the frequency of heavy rainfall events over the central United 

States. 

Because of the large impacts that these storms have, their short-term predictability is 

examined by using outputs from five numerical weather prediction (NWP) models with a 

lead-time up to 15 days. While there are differences among the five NWP models, the 
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results show that the skill in forecasting the occurrence and location of ARs over the central 

United States decreases with increasing lead time, and the models have positive skills up 

to the seven-day lead time. 
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PUBLIC ABSTRACT 
 

Atmospheric rivers (ARs) are long and narrow river-like features in the lower 

atmosphere that carry most of the water vapor from the tropical regions to the midlatitudes. 

Because of the large amount of moisture transported by these storms, they can cause heavy 

rainfall and major flooding events, such as the Midwest floods of 1993 and 2008. The 

overarching theme of this thesis is to understand the impacts of ARs on extreme 

precipitation and floods over the central United States. 

ARs exhibit a marked seasonality, with the largest activity in winter and the lowest in 

summer. Overall, the duration of most ARs is less than three days, but exceptionally 

persistent ARs (more than six days) have been observed. Over the central United States, 

ARs contribute up to 30% of the average annual rainfall, and play an even larger role in 

terms of heavy rainfall and flooding: more than 40% of the heavy rainfall events and more 

than 70% of the flood events over the region are associated with ARs, in particular during 

winter and spring. 

Furthermore, the results of this dissertation show that the frequency of ARs over the 

central United States, and the associated precipitation, are related to large-scale climate 

conditions, with the Pacific North American teleconnection pattern and the Artic 

Oscillation playing a significant role. By leveraging this physical insight, statistical models 

are developed to capture the connection between climate and ARs, paving the way to 

improved modeling and prediction of these storms and the associated impacts. 
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CHAPTER 1 

INTRODUCTION 

1.1 Atmospheric rivers 

The balance of energy, moisture and momentum is an important feature that assists the 

earth in maintaining its natural climatic variability. This balance is retained through the 

transport of moisture, energy, and momentum from the equator to the poles, which occurs 

as a result of the equator-to-pole temperature gradient due to the differential heating of the 

earth by the sun. Newell et al. (1992) provided evidence that most of this transport takes 

place in narrow (width ~ 500km) and long (length > 1000km, depending on the region) 

river-like features in the lower troposphere. They also observed that four to five of these 

features are present in the atmosphere of both hemispheres on any given day. Newell and 

Zhu (1994) found that these features are prevalent in almost all the ocean basins, and can 

occur both in winter and summer. These features are estimated to be responsible for more 

than 90% of the meridional fluxes while occupying only 10% of the earth’s circumference 

at a given latitude (Zhu and Newell 1998). Because of their long and narrow structure, and 

the fact that large water vapor fluxes occur with them, Zhu and Newell (1994) termed these 

features as atmospheric rivers (ARs). 

Although the term atmospheric river was coined by Zhu and Newell (1994), previous 

key studies provide significant understanding of the structure and dynamics of features that 

could well be documented as ARs. For example, in describing the widespread precipitation 

systems in the midlatitudes, Browning (1986, 1990), Carlson (1980) and Harrold (1973) 

used the term warm conveyor belt—an elongated band of cloud transporting large 

quantities of heat, moisture and momentum. Other terms such as cloud bursts (McGuirk et 

al. 1987), tropical-extratropical cloud bands (Kuhnel 1989) and Tropical Moisture Exports 

(TME, Knippertz and Wernli 2010), which have strictly tropical origins, have also been 

used. In the development of the climatology of TMEs, Knippertz et al. (2013) found that 

90% of ARs (i.e., features that do not require tropical moisture sources) affecting the west 

coast of the United States during winters were connected to TMEs. The definitions used 

for these terms resemble the AR criteria set forth by several authors (e.g, Ralph et al. 2004; 
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Ralph et al. 2006; Neiman et al. 2008; Lavers et al. 2012). Before the advent of weather 

satellites, studies documenting features akin to ARs can be found in the references of 

Harrold (1973), McGuirk et al. (1987) and Kuhnel (1989). Although the exact genesis and 

dynamics of ARs is still the topic of research, some earlier studies (e.g., Harrold 1973; 

Browning 1986, 1990) and more recent ones (Bao et al. 2006; Ralph et al. 2006; Neiman 

et al. 2008) have provided significant contributions in laying out the general structure of 

these storms. 

Generally, ARs are located parallel to and ahead of the surface cold front as part of 

low-level jet (LLJ) within the warm conveyor belt of extratropical cyclone systems 

(Browning and Pardoe 1973; Browning 1986; Ralph et al. 2004). Most of the high moisture 

content present in ARs is located within the first few kilometers from the surface, and is 

transported quickly by LLJ before being lifted up slantwise in the presence of denser cold 

front, or by other convection mechanisms (e.g., by orographic lifting). ARs have moisture 

sources in the tropics and subtropics, although extratropical sources, including the local 

convergence of moisture on landmasses, are not rare (Bao et al. 2006; Dacre et al. 2015). 

Over the central United States, ARs are observed frequently owing to the presence of 

extratropical cyclones and the southerly Great Plains low-level jet (GPLLJ). GPLLJs, 

originating from the Gulf of Mexico and the Caribbean, occur primarily in April–

September (Bonner 1968; Mitchell et al. 1995; Higgins et al. 2000), with the highest 

frequency in August and September. Extratropical cyclones over the Atlantic, on the other 

hand, occur frequently in November–April due to increased meridional thermal gradient 

that leads to stronger baroclinic instability (or baroclinicity). The Gulf of Mexico and the 

Caribbean Sea are the primary sources of moisture for the central United States 

precipitation (Dirmeyer and Kinter 2010; Dirmeyer et al. 2014) and ARs (Dirmeyer and 

Kinter 2009), but in certain cases, moisture along ARs can also be advected from the 

eastern Pacific Ocean (Moore et al. 2012). 

1.2 Impacts of ARs on water resources 

Because of the presence of warm, moist air and strong winds, under suitable lifting 

mechanisms (e.g., orographic, frontal, convective, dynamic) ARs can lead to heavy rainfall 

and flood events. The extreme rainfall associated with ARs can result in fatalities, 
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widespread flooding and mudslides, and hundreds of millions of dollars in damages 

(http://www.esrl.noaa.gov/psd/atmrivers/events/). For this reason, in recent years there has 

been a growing body of literature linking ARs to heavy rainfall and flooding in the mid-

latitudes. In this section, I review some studies that demonstrate the role ARs play in 

regulating available water and in shaping extreme hydrologic events in different regions of 

the globe, including the central United States. 

The impact of ARs is felt widely around the world, including the western United States 

(Ralph et al. 2006), Europe (e.g., Lavers and Villarini 2013a), central United States (e.g., 

Lavers and Villarini 2013b) and South America (e.g., Viale and Nuñez 2011). A number 

of studies have focused on the impacts of ARs on the U.S. West Coast. Over this region 

during 1998–2005 period, Neiman et al. (2008) found that precipitation magnitudes in 

winter were twice as large in events that were associated with ARs compared to the storms 

that did not exhibit AR characteristics. In relating Snow Water Equivalent (SWE) to ARs, 

they also found that ARs generally increase SWE during winter and decrease it during 

spring. Over the 2004–2010 period, Guan et al. (2010) estimated that 20–30% of annual 

SWE was contributed by only a few ARs over the Sierra Nevada. Dettinger et al. (2011) 

showed that relatively few storms (mostly ARs) brought on average 20–50% of the 

California’s precipitation during 1951–2008, highlighting the major role ARs have in 

California’s water resources. They also showed that ARs contribute more than 50% to the 

annual streamflow in the coastal areas, and 34–54% as one moves further inland. Over the 

coastal areas of Northern California, Ralph et al. (2013) studied the effect of duration of 

ARs on precipitation totals and soil moisture, and found that the average-duration ARs (20-

hour long) increase the soil moisture from 29% to 35% volumetric water content. The 

authors also estimated that the water vapor transport over the coastal mountains explained 

74% and 61% of the variability in precipitation totals and streamflow in the region, 

respectively, between November 2004 and August 2010. 

Recently, Lavers and Villarini (2015a) used data from 1979 to 2012 to estimate the 

fraction of precipitation associated with ARs over the United States and Europe. Their 

results showed a significant contribution from ARs to precipitation. In particular, the 

authors found that the fractional contribution to the average monthly precipitation reached 

more than 30% over certain parts the continental United States and Europe. They also 

http://www.esrl.noaa.gov/psd/atmrivers/events/
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observed a marked seasonality in AR contribution, with the highest contribution in winter 

(DJF) and the lowest in summer (JJA); in December, the monthly fractional contributions 

at some locations were more than 50%. Steinschneider and Lall (2016) estimated the 

contribution of TMEs to annual and seasonal precipitation. TME-based precipitation was 

defined on the basis of changes in specific humidity along the tracks of TMEs. The authors 

showed that, depending on the location, TME-based precipitation accounts for 10% to 30% 

of the annual precipitation for the period 1979–2006, although higher contributions ranging 

from 30%–50% were observed in spring, for instance over the Ohio River basin. The 

seasonality of TME-based precipitation matched with what was observed in Lavers and 

Villarini (2015a). These results were corroborated by Steinschneider and Lall (2015b) who 

introduced Archetypical Analysis (AA) to compare the modes of variability of total 

precipitation and TME-based precipitation, both of which were obtained from a reanalysis 

product for the period 1979–2013. AA is similar to Empirical Orthogonal Functions 

(EOFs) but with additional advantages of better capturing the modes of variability of 

extreme events, such as heavy rainfall events often prevalent in TMEs. With AA, the spatial 

characteristics of the architypes of TME-based precipitation resembled well with those of 

the total precipitation, and the authors concluded that TMEs can be helpful in 

understanding the modes of precipitation variability over the central United States. These 

studies highlight the major role ARs play in the water availability in the form of 

precipitation over different regions. 

In addition to total precipitation, many studies have linked ARs to extreme hydrologic 

events such as heavy precipitation events, floods, and droughts. Over the western United 

States, ARs have caused a number of damaging floods (Ralph et al. 2006; Neiman et al. 

2008; Leung and Qian 2009; Dettinger et al. 2011; Neiman et al. 2011; Ralph and Dettinger 

2012). Ralph et al. (2006) studied the impact of ARs on seven two- to three-day duration 

flood events that exceeded the monitor-stage at the Guerneville station on the Russian river 

in California from 1997 to 2005 and found that all the seven floods were caused by ARs. 

The authors concluded that these floods occurred because of heavy precipitation that 

resulted when the moisture-laden winds in ARs were lifted upslope in the mountainous 

region. Recent studies have demonstrated that ARs penetrate well beyond coastal areas and 

deep into continental regions. For example, Neiman et al. (2013) and Hughes et al. (2014) 
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show that ARs from the Pacific affect large areas from the U.S. West Coast to central 

Arizona, and the impacts in terms of precipitation are large, comparable to the ARs 

landfalling along the U.S. West Coast (Neiman et al. 2013). Rutz et al. (2015) provide a 

detailed description of ARs penetrating inland over the Western North America. 

Many parts of Europe have also been widely affected by heavy precipitation and floods 

resulting from ARs (Stohl et al. 2008; Lavers et al. 2011; Lavers et al. 2012). Lavers et al. 

(2011) found that the ten largest winter floods in four British river basins over the 1970–

2010 period occurred during the presence of ARs; they also pointed out that the smaller 

floods over the region had no major connection with ARs, indicating that ARs produce the 

most severe flooding events over the region. The authors also noted that ARs are critical 

in producing winter floods across the United Kingdom and Western Europe. Furthermore, 

(Lavers and Villarini 2013a) found that the impact of ARs over Europe can be felt as far 

inland as Germany and Poland. 

Few studies have shown that ARs have significant impacts over the central United 

States as well (Moore et al. 2012; Nakamura et al. 2012; Lavers and Villarini 2013b). For 

instance, Lavers and Villarini (2013b) found that the upper tail of the annual flood peak 

distribution over a large portion of the central United States is mostly shaped by the floods 

occurring during the presence of ARs. They further noted that in their period of the study 

(1979–2011), the two most destructive flood events over the central United States—the 

great flood of 1993 (Kunkel et al. 1994) and the June 2008 flood in the Midwest (Dirmeyer 

and Kinter 2009; Budikova et al. 2010; Smith et al. 2013), both causing loss of billions of 

US dollars and claiming 48 and 24 lives (http://www.ncdc.noaa.gov/billions/), 

respectively—were preceded and accompanied by ARs. Lavers and Villarini (2013b) 

observed that more than 40% of the basins they studied had more than half of their annual 

maximum (AM) floods associated with ARs. About 60% of the 1105 river basins inspected 

had more than five out of the highest ten floods occurring during the presence of ARs. 

Recently, detailed analyses were performed by Moore et al. (2012) for the flood of May 

2010 in Nashville and by Smith and Baeck (2015) for the flood of spring 1927 over the 

central United States. In these cases, heavy floods resulted following the high water vapor 

transport that occurred in ARs from the Gulf of Mexico into the central United States, and, 

given the definition of ARs, the expected extratropical cyclonic nature of precipitation 

http://www.ncdc.noaa.gov/billions/
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system was evident. The impact of mid-latitudinal cyclones over the central United States 

has also been noted by Villarini and Smith (2010). From the literature reviewed above, it 

is evident that ARs are critical agents in generating floods across many areas in the mid-

latitudes, including the central United States. 

Other than being responsible for producing deadly floods, ARs have been found to be 

a substantial source of water to the water resources. For example, Guan et al. (2010) 

estimated that ARs contributed 30–40% of the yearly seasonal SWE in Sierra Nevada, 

California over the 2004–2010 period. Dettinger et al. (2011) estimated that 20–50% of the 

total precipitation and streamflow in the state of California comes from ARs, making them 

an important source of soil moisture (Ralph et al. 2013). Lavers and Villarini (2015a) found 

that ARs contribute 20–30% of all the precipitation in Europe, western United States and 

over many parts of the central United States during the study period of 1979–2012. The 

importance of ARs is furthermore corroborated by their significant role in terminating 

droughts. Dettinger (2013) found that 60–74% of the droughts in the Pacific Northwest 

(Washington and Oregon) and 33–40% of the persistent droughts in California from 1950 

to 2010 ended because of the precipitation from AR events. 

1.3 Objectives and structure of thesis  

Because of the major societal and economic impacts associated with these storms as 

described in this chapter, the overall objective of my thesis is to understand how ARs affect 

the precipitation and flooding over the central United States. Here is the structure of my 

thesis: 

- In Chapter 2, I provide detailed analyses of three AR events that developed over 

and affected the central United States during the spring of 2013. I use these three 

storms as case study to understand the general physical mechanisms and synoptic 

settings responsible for the rainfall during ARs over the central United States. 

- Chapter 3 focuses on the characterization of the rainfall associated with ARs over 

the central United States. Results are based on rainfall estimates from different 

remote sensing products, and allow the identification of regions within ARs in 

which most of the precipitation takes place. 
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- The results in Chapter 4 are based on a suite of reanalysis products and provide a 

long term perspective on the impacts of ARs on precipitation and flooding. 

Moreover, I also provide insights on the major climate processes driving the 

occurrence of ARs over the central United States. 

- Chapter 5 builds on the physical insights on the climate processes from the previous 

chapter to develop a Bayesian hierarchical model to predict the frequency of 

extreme rainfall events across the central United States during the cold season. 

- Chapter 7 examines the skill in short-term (from six hours to 2 weeks) forecasting 

the occurrence of AR events based on five state-of-the art Numerical Weather 

Prediction (NWP) models. 

- Chapter 8 summarizes the main findings of my work and concludes it. 
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CHAPTER 2 

ATMOSPHERIC RIVERS OVER THE CENTRAL UNITED STATES: 
ANALYSES DURING THE IFLOODS CAMPAIGN (SPRING 2013)1 

The National Aeronautics and Space Administration (NASA) launched a field 

measurement campaign called Iowa Flood Studies (IFloodS) during April-June 2013 in 

eastern Iowa in collaboration with the Iowa Flood Center (IFC) at the University of Iowa. 

The goal of this field campaign was to evaluate satellite estimates of rainfall and other 

hydrometeorological quantities, particularly from the Ku/Ka radar similar to the one 

carried on board of the Global Precipitation Measurement (GPM; Hou et al. 2013) core 

satellite. The IFloodS campaign was set up to provide high quality satellite rainfall 

estimates that could help understand the physical characteristics including microphysics 

and vertical structure of rainfall during the period. This has the potential to help understand 

flooding mechanisms and to improve hydrologic modelling that ultimately could be used 

to improve the spatio-temporal predictions of floods. 

This chapter aims at providing a synoptic and mesoscale analysis of the ARs that were 

present during some of the rainfall events during the IFloodS period, and thereby 

complements the IFloodS campaign objectives. Overall six intense rainfall events (24-h 

return period larger than 50 years) occurred during the IFloodS period in eastern Iowa, 

some of them causing flash floods in many parts of the region (e.g., 17 April flash flood in 

Iowa City, and May 30 flood in Des Moines). Because of these high rainfall amounts and 

potential strong link between ARs and heavy rainfall over the central United States, it is 

reasonable to assume that some of the heavy rainfall events during IFloodS may have been 

associated with ARs. In this regard, this chapter aims to answer the following questions: 

1. What is the AR contribution to the total rainfall during the IFloodS period? 

2. What are the physical mechanisms responsible for heavy rainfall during this period? 

                                                           
1 Chapter adopted from Nayak, M. A., G. Villarini, and A. A. Bradley, 2016: Atmospheric rivers and 
rainfall during NASA’s Iowa Flood Studies (IFloodS) Campaign. Journal of Hydrometeorology, 17, 257-
271, doi: http://dx.doi.org/10.1175/JHM-D-14-0185.1 

http://dx.doi.org/10.1175/JHM-D-14-0185.1
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3. What are the characteristics (e.g., relationship between the strength of the AR and 

rainfall, distribution around AR’s major axis, latitudinal and diurnal dependence) 

of rainfall during AR events in IFloodS? 

2.1 Data and Methods 

The first step is the identification of ARs during the IFloodS period (10 April–15 June 

2013). Many previous studies employed column integrated water vapor (IWV) to identify 

ARs (see e.g., Ralph et al. 2006; Dettinger et al. 2011); here I use integrated vapor transport 

(IVT) to identify these events because it was found to better capture major AR features (for 

example, strong water vapor transport, narrow and elongated structure) than IWV (Lavers 

and Villarini 2015a). Moreover, IVT was also found to be more strongly related to rainfall 

during AR events (Rutz et al. 2014; Lavers and Villarini 2015a, 2015b). IVT magnitude 

(kgm-1s-1) is calculated from specific humidity and wind speed in the atmosphere as 

follows: 

2 2
300 300

1000 1000

1 1IVT qu dp qv dp
g g

   
= +   

   
∫ ∫  2.1 

Here, q, u, and v are specific humidity (kgkg-1), zonal and meridional wind components 

(ms-1), respectively; g is the acceleration due to gravity (equal to 9.81ms-2), and p is 

pressure. I estimated IVT using a numerical approximation of the integrals with layer-

averaged q, u, and v from the NASA’s Modern-Era Retrospective Analysis for Research 

and Applications (MERRA, Rienecker et al. 2011) dataset for the period from 10 April to 

15 June 2013 for pressure levels from 1000hPa to 300hPa. MERRA provides data with six-

hour temporal resolution, 0.5º × 0.667º horizontal grid resolution and at 72 vertical levels 

from the surface to 0.01hPa. I used 28 vertical levels from surface to 300hPa. 

To identify ARs using IVT, I used the methodology developed by Lavers and Villarini 

(2013b) with minor adjustments. In the first step, starting at 40ºN latitude, I determine the 

maximum IVT value between 85ºW to 100ºW. If the maximum is above a pre-specified 

threshold, the longitude of the maximum value is recorded, and the next latitude to south, 

i.e., 39.5ºN, is evaluated. The threshold used here is 550kgm-1s-1 which is approximately 

the 85th percentile threshold by Lavers and Villarini (2013b) for the month of May over 

the central United States. At 39.5ºN, the maximum IVT value is identified. If its location 
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is within one grid point either to the east or to the west of the longitude of the location at 

40ºN, I continue searching southward. This displacement condition is to enforce spatial 

continuity in the AR. If all the points from 40ºN to 30.5ºN have maximum IVT values 

exceeding the threshold and if they satisfy the displacement condition, then I consider this 

an AR step. The same procedure is repeated from south to north to confirm the correct 

latitude-longitude of the maximum IVTs. I refer to AR major axis as the collection of points 

with the maximum IVT values exceeding the threshold from 40ºN to 30.5ºN. Most of the 

AR time steps had the same major axis whether one starts from 40ºN or 30.5ºN to north, 

but four out of 17 AR time steps had differences due to the existence of secondary maxima. 

In each of these cases, I selected the AR major axis by visual examination of the IVT maps. 

The visual examination to select AR major axes and additional search from south to north 

were the two modifications that are made to the methodology by Lavers and Villarini 

(2013b). The 40ºN latitude is chosen to make sure that ARs travel deep into the central 

United States, and a length from 40ºN to 30.5ºN (approximately 950km) is chosen as 

minimum length requirement. A total of 17 six-hourly AR time steps are identified as ARs. 

The 17 AR steps make up three persistent (duration of more than 18 hours) ARs, two with 

six time steps (one from 0600UTC April 10 to 1200UTC April 11, and another from 

0000UTC April 18 to 0600UTC April 19), and one with five (from 1200UTC May 29 to 

1200UTC May 30). 

The contribution of ARs to the total rainfall during IFloodS is estimated based on 

precipitation product Stage IV prepared at National Centers for Environmental Prediction  

(NCEP, Lin and Mitchell 2005). The data have a fine spatial resolution of approximately 

4km × 4km and is available at 1 hour temporal resolution. The total rainfall and the 

contribution from ARs from Stage IV is compared and evaluated with respect to the NOAA 

CPC’s Unified gage-based daily dataset (Higgins et al. 2000) which I use as the reference 

dataset. It is based on rain gage measurements from a number of networks and has a spatial 

resolution of 0.25º. Once the AR major axis is identified, I define rainfall associated with 

ARs as the rainfall within a 2 decimal-degree buffer (~200km) during the time periods 

1200UTC April 10–1200UTC April 11, 1200UTC April 17–1200UTC April 19, and 

1200UTC May 29–1200UTC May 31. 
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2.2 Physical mechanisms responsible for rainfall during ARs 

Figure 2.1a shows the accumulated rainfall during the study period based on the CPC 

dataset, while Figures 2.1b and c show the AR contributions. This was a very wet period, 

with some of the largest rainfall accumulations over the 1948–2013 period. Figure 2.1d 

shows the rank of rainfall amount during this period as compared to the 66-year record 

from 1948–2013. Most of the regions in the central United States received anomalously 

high rainfall amounts (i.e., ranked in the top-5 wettest seasons) leading to flooding over 

the study area. ARs account more than 50% of the total rainfall in isolated areas as far north 

as Iowa and Illinois, to as far south as Oklahoma and Arkansas (Figure 2.1c). These results, 

and the ones in the next sections, provide empirical evidence that ARs are agents for heavy 

rainfall and flooding over the central United States. 

The three ARs detected during IFloodS were associated with high rainfall amounts over 

much of the central United States. Figure 2.2 shows the rainfall maps during the ARs (3 

hours before the first time step of AR to 3 hours after the last time step). The rainfall fields 

in these maps can be compared with Figure 2.1a, suggesting that a substantial amount of 

rainfall during IFloodS was due to the three ARs. At some locations, about 30% of the 

IFloodS rainfall was during the presence of one AR. The first two ARs (Figure 2.2, panels 

a and b) have a rainfall pattern which can be related to the pattern of mesoscale rain bands 

observed in extratropical cyclones (McMurdie and Houze 2006; Houze 2014). MCSs 

resulted in high rainfall amounts over Kansas and northern Oklahoma during the third AR. 

Of the three ARs that developed over the central United States during the IFloodS 

campaign, the weather systems of two (0600UTC April 10 to 1200UTC April 11 and 

0000UTC April 18 to 0600UTC April 19) were similar to each other both featuring an 

extratropical cyclone weather system. I first briefly describe the weather systems 

corresponding to these ARs. The weather system corresponding to the third AR is 

described later in this section. Figures 2.3 and 2.4 show snapshots of the weather systems 

at 1800UTC on 10th April and 1800UTC on 18th April, respectively. The two weather 

systems in Figures 2.3 and 2.4 are fairly similar, although the weather corresponding to 

Figure 2.4 seems more organized with a stronger and better defined cyclone than what is 

shown in Figure 2.3. For the purpose of conciseness, I only describe the weather system 

corresponding to the AR in Figure 2.4 (I refer to this as the18th April AR event). 
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Geopotential heights at 850hPa (contours in Figure 2.4a) and surface pressure (contours in 

Figure 2.4d) show the presence of a low pressure center near eastern Iowa. At 850hPa level, 

the slow-moving lee trough over much of the Great Plains and a subtropical ridge over the 

Atlantic near the East Coast of the United States maintained poleward advection of warm 

moist air from the Gulf of Mexico and south-eastern United States. At higher levels, an 

advancing shortwave trough and cutoff low can be seen at 500hPa (geopotential height 

contours in Figure 2.4c), affecting the surface low and steering it northeastward. However, 

as the cyclonic flow progresses, the location of the 500hPa cutoff low coincides with the 

location of the surface low pressure center (not shown here) indicating the mature phase of 

the system. This low pressure system is associated with a cyclonic circulation which is 

evident in the wind barbs in Figure 2.4b. 

The steep gradient of equivalent potential temperature (contours in Figure 2.4b) over 

Iowa, Missouri and extending to Texas defines the position of the surface cold front that 

was present during this AR. In Figure 2.4b, winds to the east of the front have a strong 

southerly component, whereas the winds just to the west of the front have a prominent 

westerly component. The position of the AR (large IVT values in Figure 2.4c and large 

IWV values in Figure 2.4a) is marginally to the east of the cold front in the warm sector 

(color shaded regions in Figure 2.4a and Figure 2.4c). To the east of this front, the air is 

uniformly warm and moist, and a narrow band of ascent takes place (Figure 2.4b) 

associated with convective rainfall coincident with the surface cold front. Widespread 

heavy rainfall can be seen in the earlier period of AR (0000-0600UTC 18 April) along the 

warm front across most of the upper Midwest (not shown here). Similar to a typical AR 

and extratropical cyclone system, sinking of cold and dry air takes place behind the cold 

front (Carlson 1980; Browning 1997; Schultz 2001; Catto et al. 2009). This cold air is 

advected by winds that are directed equatorward and to the west of cold front. 

As in a typical extratropical cyclone, with the progression of the baroclinic wave and 

its associated surface low pressure center and cold front intensified and propagated 

eastwards, the AR results in continuous heavy precipitation along its path. In Figure 2.4d, 

the narrow band of heavy rainfall along the cold front due to convection is persistent during 

all the AR’s time steps. The circular structure of rainfall around the low pressure center 

over Iowa is related to the spiral ascent of warm moist air and descent of cold dry air that 
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results due to cyclonic flow in and around the low pressure system. In Figure 2.4e, the 

skew-T–log-P diagram near Little Rock, Arkansas at 1500UTC 18 April is provided. Near-

saturated and unstable conditions prevailed in the above-freezing layer from surface to 

620hPa with a convective available potential energy (CAPE) of 1055.9Jkg-1. Precipitation 

occurred in the form of rainfall from surface to the higher levels as indicated by the high 

freezing level (~ 3.6km). Near-surface southerlies are advecting warm-moist air from the 

Gulf of Mexico northwards, suggesting a geostrophic flow. At lower levels, veering of 

these geostrophic winds (vertical shear of the geostrophic winds) from southerly to south-

westerly is consistent with the thermal wind relationship. Aloft (~ 550–500hPa) the dry 

layer of absolute static stability shows the presence of a frontal zone in the upper levels. At 

higher levels (< 400hPa), strong westerly winds dominate and the atmosphere remains 

stable and unsaturated. The skew-T–log-P diagram of the AR on 1800UTC 10 April is 

shown in Figure 2.3e. The lower levels (~920–780hPa) are moist and unstable, with a high 

corresponding CAPE value of 2476.4Jkg-1. The atmospheric conditions in this case are 

similar to the AR on 18th April; however, in this case, dry cap inversion occurs at a lower 

level (~ 700hPa as opposed to 500hPa). 

The weather system corresponding to the third AR is shown in Figure 2.5. This AR 

was associated with a major tornado outbreak that began on 27th May in the U.S. Midwest, 

and intensified on 29th and 30th May. The AR was driven by the anticyclonic flow around 

the Bermuda High, bringing warm moist air from the Gulf of Mexico into the central United 

States. During the initial time steps of the AR on 29th May, scattered rainfall was observed 

over most of the U.S. Midwest. As a weak upper level disturbance approaches, a low 

pressure center formed near Nebraska. Large values of IVT and IWV magnitude (Figure 

2.5a, c) are present over most of the central United States indicating the moist atmospheric 

conditions from the Gulf of Mexico all the way to the northern parts of the central United 

States. At lower levels, southerly winds advected warm and moist air from the Gulf of 

Mexico (presented in the next section). A 500hPa trough was located over the Great Plains 

(Figure 2.5c) and with time, it intensified and propagated eastwards (temporal progression 

not shown here). The presence of the AR for an extended period of time provided 

continuous supply of warm-moist air supporting the development of rainfall events and 

thunderstorms. These conditions favored the formation and sustainability of MCSs (Houze 
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2014) over Kansas. Figure 2.5e shows the skew-T–log-P diagram for 1200UTC 30th May 

at Lamont, Oklahoma. The atmosphere in the lower levels is warm and at near-saturation, 

with winds exceeding 25ms-1. The winds from the surface to 750hPa veer from the south 

to the southwest, as warm air advection further destabilizes the atmosphere. Strong vertical 

wind shear was associated with the severe weather which severely impacted many 

locations in the U.S. Midwest. In particular on 30th May, seven people were killed in 

Oklahoma due to tornadoes. Although a capping inversion exists at 1200UTC, the CAPE 

and convective inhibition (CIN) values are 1850Jkg-1 and -100Jkg-1, which suggest a highly 

convective atmosphere. With daytime heating and sufficient lifting to trigger 

thunderstorms, deep convection resulted in intense rainfall at this and many other locations 

across the U. S. Midwest. 

A Lagrangian trajectory analysis was performed for the three ARs to find out the 

sources of air parcels and their properties along the trajectories. For the ARs on 10th April 

and 18th April, parcels 1º × 1º apart in the box encompassing (86ºW, 37ºN and 90ºW, 

40ºN) ending at 0600UTC 11 April and 1800UTC 18 April, respectively, were traced 

backwards. For the AR on 29th April, parcels in the box encompassing (93ºW, 37ºN and 

97ºW, 40ºN) and ending at 1200UTC 30 May were traced. In all the three cases, the parcels 

were traced 72-h backwards at 1000 (~880), 4000 (~ 620) and 6000m AGL (~ 500hPa) 

levels. At these selected locations and times, IVT was relatively high with widespread 

concurrent rainfalls over the central United States. This analysis is similar to what was 

performed by Moore et al. (2012) and Neiman et al. (2014). In Figures 2.6a, b and c, 1000m 

AGL parcels mostly originated from central or eastern Gulf of Mexico; although, 84-h 

backward trajectory analysis (not shown here) shows that some parcels originated in the 

Caribbean Sea. Figures 2.6d, e and f, show the average pressure and mixing ratio of the 

parcels along the trajectories. In all the three cases, the parcels gradually descended while 

entering the southern United States. These parcels remained moist throughout their 

trajectories (with relative humidity 60–80% and mixing ratio 8–12gkg-1). In the AR on 

10th April low level trajectory, there is a substantial increase in mixing ratio; however, 

along the trajectory the parcels exhibited a decrease in mixing ratio and a weak subsidence 

before entering the box from which the parcels were traced. As the parcels enter into the 

box, after an initial increase in the mixing ratio, a strong decrease in the mixing ratio and a 
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moderate ascent and relative humidity about 80% suggest significant rainout. In the lower 

level parcels of ARs on 18th April and 30th April, significant amount of moisture is gained 

throughout the trajectory before entering the boxes. Similar to the AR on 10th April, 

decrease in mixing ratio, and ascent (with high relative humidity 80%) indicates substantial 

condensation and rainout. The majority of the parcels ending at 4000m AGL originated 

over the eastern Gulf of Mexico; however, in the ARs on 18th April and 30th May, some 

parcels advected from western Mexico and western United States. Most of the parcels 

ending at 6000m AGL originated from western Pacific and south-western United States. 

For the ARs on 10th April and 18 April, parcels ending at 4000 and 6000m AGL are dry 

(mixing ratio 2–4gkg-1 and relative humidity 25–35%) with mild descent before entering 

the southern and the central United States (1200UTC April 10–06UTC April 11 in Figure 

2.6d and 0000UTC April 18 to 1800UTC April 18 in Figure 2.6e). Here, mixing ratio and 

relative humidity increase rather abruptly and parcels ascend over a small period of time 

suggestive of the lifting of moist air along the frontal boundary present during this AR. 

Similar conditions are observed in the AR on 30th May except that parcels are initially 

lifted around the middle point of their trajectory. This is perhaps due to the presence of 

high elevation mountains over the western United States. After this, the parcels descend 

gradually, only to be lifted again towards the end of the trajectories (0000UTC to 1200UTC 

May 30 in Figure 2.6f), where relative humidity increases to 60–80%. At this stage, there 

is also a large decrease in the mixing ratio, indicating rainout with lifting in the presence 

of the cold fronts associated with the ARs. In all the three cases, noting that the upper level 

trajectories were rather dry, most of the water vapor in the ARs originates from the northern 

tropics and subtropics over the Gulf of Mexico and the Caribbean, perhaps with some 

moisture generated over the terrestrial southern United States as depicted in Figure 2.6d, e. 

Moore et al. (2012) also identified the Caribbean Sea and Gulf of Mexico as the 

predominant sources of moisture in the May 2010 heavy rainfall that resulted in flooding 

over Kentucky and Tennessee. 

The IFloodS rainfall mechanism for the first two ARs were similar to a major flooding 

event that happened on 1-2 May 2010 in Nashville, Tennessee, and surrounding areas. In 

this event, a low pressure system developed over the Northern Great Plains including 

eastern Canada (at the low pressure center, 850hPa geopotential height was 1230m; see 
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Figure 2.4b of Moore et al. (2012)). In essence, this event was caused by the persistent 

presence of AR conditions, high IVT and high IWV values, over the U.S. Midwest 

providing a constant source of precipitable water to the MCSs that developed over a couple 

of days (Moore et al. 2012). Although the low pressure systems during IFloodS ARs (e.g., 

850hPa geopotential height of 1340m at the low pressure center on 18th April AR) were 

not as strong as the 2010 Tennessee event (corresponding height of about 1200m), the 

synoptic features, low pressure system over northern Great Plains and persistent AR 

conditions characterizing the first two ARs were similar to the 2010 Tennessee event. In 

their first MCS environment, Moore et al. (2012) observed two moist and unstable 

atmospheric layers with dry conditions aloft. In their second MCS, the lower layers were 

extremely moist with a convectively unstable layer just above 200hPa from the surface. In 

the ARs during IFloodS, moist unstable atmospheric conditions were observed only in the 

lower atmosphere, and in all the cases, the unstable layers were capped by a dry stable 

layer, followed by a dry conditionally stable layer. In essence, the mesoscale conditions 

that presented themselves during the ARs in IFloodS were similar to the one that resulted 

in heavy flooding in Tennessee in May 2010 described in Moore et al. (2012). 

2.3 Rainfall Characteristics in ARs 

The assessment of the distribution of rainfall around the AR major axis is an important 

objective of this chapter. For each of the 17 AR time steps, I divide the area around the AR 

major axis into three regions. The closest region is within one longitude-point from the 

major axis; (i.e., ±74km from the major axis). The second region covers a distance from 

74 to 150km to the east and to the west of the major axis. The third and farthest region is 

from 150 to 370km to the east and west of the major axis. The average rainfall within these 

regions is calculated one hour before and one hour after each AR occurrence time. I also 

calculate the Pearson and Spearman correlation coefficients between IVT and rainfall in 

these three regions. This is done as I suspect more IVT may lead to more rainfall. 

The relationship between rainfall amount and distance from the AR major axis is shown 

in Figure 2.7. In these panels, Spearman and Pearson correlation coefficients between IVT 

and rainfall are also plotted. The highest rainfall is observed in the region closest to the AR 

major axis, and then it decreases as one moves further away. Hence, most of the rainfall 



17 
 

occurs within about 100km of the AR major axis. This is likely due to higher IVT (water 

vapor transport) in this region, which in the presence of unstable conditions leads to 

condensation of water vapor and increased precipitation. The rainfall amounts tend to be 

the largest between 34.5°N and 37.5°N, with a less marked latitudinal dependence as one 

moves further away from the AR major axis. 

The region closest to the AR major axis is also the one characterized by the strongest 

relationship between IVT and rainfall. For this region, the correlation coefficients are quite 

large, in excess of 0.60 and up to 0.70. These results suggest that there is a strong 

relationship between these two quantities, though its nature is not linear but monotonic (the 

values of the Spearman correlation coefficients are generally larger than the Pearson 

correlation coefficients). The strength of the relationship decreases in the regions farther 

away from the AR major axis (Figure 2.7b, c). 

Another research question I shed light on in this chapter involves the examination of 

the effects of AR duration on rainfall. There are three persistent ARs, two of which last six 

time steps and one five time steps. For each time step of the three ARs, the areal average 

rainfall ±150km around the major axis is calculated. With this, I can plot the rainfall 

amounts corresponding to each AR time step, allowing the examination of the effects of 

AR duration on rainfall amounts (Figure 2.8). This figure suggests that the rainfall amounts 

are small at the early stage of the AR development. As the duration of the AR increases, 

so does the rainfall. The correlation coefficient between the AR time step and rainfall is 

0.65. The rainfall associated with the AR on 18th April consistently increased with time, 

while with the other two ARs it increased in the middle timesteps followed by a decrease 

as the ARs subside. Although the dataset here is small, there is some indication of a positive 

relationship between rainfall and AR duration in the area close to AR major axis. A 

reasonable assumption is that this may be due the continuous supply of enhanced water 

vapor and unstable conditions sustaining mesoscale convective events (Houze 2014) 

leading to long periods of precipitation. 

The final question I answer is related to the diurnal variation of AR occurrences and 

associated rainfall (Figure 2.9). This is accomplished by considering the closest region 

around the AR major axis. I calculate the total rainfall from all the ARs at the 6-hourly 

reanalysis times (i.e., 0000UTC, 0600UTC, 1200UTC, and 1800UTC). For example, at 
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0600UTC, five ARs are detected, and I calculate the total rainfall from all the five steps. I 

repeat this for the other three reanalysis time steps as well. Out of the 17 AR time steps, 

four occurred at 0000UTC, five occurred at 0600UTC, five occurred at 1200UTC, and 

three occurred at 1800UTC. Note that 0000UTC and 0600UTC correspond to evening 

(06p.m. local time) and mid-night hours (00a.m. local time), respectively, over the central 

United States. The relationship between IVT intensity and rainfall at each of the reanalysis 

times is also determined using Pearson and Spearman correlation coefficients. Figure 2.9 

is similar to Figure 2.7, except that I focus on the four time steps and only on the region 

closest to the AR major axis. More rainfall is generally observed during the evening and 

mid-night hours (Figure 2.9a, b) compared to the rest of the day. This suggests that the 

diurnal cycle of the boundary layer, with its deep mixed layer in the afternoon initiating 

convection, followed by a stable nocturnal layer after sunset enhancing vapor transport, 

may be important factors for heavy rainfall associated with ARs (Arritt et al. 1997). 

Moreover, the rainfall amounts are higher at the mid-latitudinal regions than at other 

latitudes during evening and mid-night hours. The correlation between rainfall amounts 

and IVT intensity is not very strong at different times of the day. However, there is a strong 

relationship in the middle latitudes between 34ºN–37ºN during all times of the day, with 

the exception of the midnight hours (0600UTC) for which latitudes 37ºN–38ºN show a 

strong relationship. A strong monotonic relationship exists in the morning hours 

(1200UTC) in the lower to middle latitudes from 32ºN–36ºN. 

2.4 Summary and Conclusions 

The analyses in this chapter provide some basic characteristics of ARs and the 

associated rainfall during IFloodS. Over the central United States, the IFloodS period (65 

days from 10 April to 15 June 2013) was characterized by several heavy rainfall events 

making it among the top five wettest 10 April–15 June periods over a record of 66 years. 

About 50% of the accumulated rainfall during the IFloodS campaign was caused by only 

three ARs, highlighting the significant impact the ARs can have on the rainfall over the 

central United States.  

Even though the occurrence of ARs is associated with heavy rainfall, this is not 

necessarily the case everywhere within the central United States. For instance, there is a 
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region at the border between Iowa and Minnesota that received large rainfall amounts not 

related to ARs. More detailed analysis indicates that there were several days with daily 

rainfall accumulations smaller than 25mm (~1inch). The largest daily rainfall 

accumulations (in excess of 100mm) occurred on 20 May 2013. The examination of the 

IVT maps for that day indicates that there were regions with IVT values exceeding our 

threshold. However, the length requirement (IVT exceeding the threshold from 40ºN to 

30.5ºN) was not satisfied. I visually inspected all the six-hourly IVT maps and confirmed 

that the AR-identification algorithm I presented was able to capture the elongated nature 

of these events. Lagrangian trajectory analysis depicted the tropical and subtropical sources 

of the water vapor present in ARs.  

Intense rainfall was associated with the three ARs that occurred during IFloodS. Long 

and narrow regions of intense rainfall along the major axes were present in the first two 

ARs and were caused by the ascent of warm and moist air along the cold fronts present 

during these ARs. During these three ARs, intense rainfall was mostly convective in nature 

with warm and moist conditions sustained by the southerly advection in the ARs. During 

the third AR, unstable atmosphere with significant vertical wind shear (see in skew-T–log-

P diagram in Figure 2.5e where lower level winds significantly change direction and 

magnitude from 950hPa–850hPa level) contributed to strong tornadoes over the U.S. 

Midwest during this AR. 

Our analysis of the rainfall distribution for these events showed that much of the rainfall 

is located within about 100km from the AR major axis, with rainfall amounts decreasing 

for increasing distance. The rainfall showed some latitudinal dependency with more 

rainfall occurring at latitudes in the range 34.5ºN–37.5ºN. There is also strong positive 

monotonic relationship between IVT magnitude and rainfall amounts, especially in the 

region close to the AR major axis. In analyzing the effects of AR duration on rainfall, I 

find that there are small rainfall amounts in the early period of the AR lifetime, with 

substantial increases as these events develop and decreases as they come near to their end. 

Therefore, from an impact stand point, it would be useful to include a criterion of 

persistence in the AR detection algorithm as done, for instance, in Lavers and Villarini 

(2013b). Finally, I did not see any major diurnal dependence in the number of ARs; analysis 
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related to the diurnal variation of AR rainfall suggested that rainfall was larger in nocturnal 

ARs. 

This chapter and the results from the high quality IFloodS data are useful for future 

studies on ARs and rainfall. As an example, given the presence of AR conditions during 

IFloodS and data from IFloodS, it is possible to model, or at least better understand, the 

horizontal and vertical structure of rainfall during ARs. One limitation of this analysis is 

related to the small number of events I analyzed. Here I focused on a period of 65 days 

which is not long enough to make any climatological claims regarding ARs and the 

associated rainfall. However, with this caveat in mind, this dataset does suggest possible 

relationships between AR and rainfall characteristics. In its essence, this chapter paves the 

way for a number of research questions that will be answered in the next chapters using 

longer records. 
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2.5 Figures Chapter 2 

 

 

FIG. 2.1: Contribution of ARs to the total rainfall during the IFloodS campaign based on 

CPC rainfall data. a) Total rainfall (mm) over the period 10 April–15 June 2013. b) Rainfall 

(mm) associated with ARs. c) Percentage (%) of total rainfall associated with ARs d) Rank 

of the amount of rainfall during IFloodS period in a 66-year record (“1” means the wettest 

period, “0” the driest). 
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FIG. 2.2: Accumulated rainfall during the three ARs during the IFloodS period based on 

Stage IV precipitation estimates for: a) 10th April AR b) 18th April AR c) 30th May AR. 

For these events, the accumulations are based on rainfall from three hours before the first 

AR time step to three hours after the last AR time step. 
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FIG. 2.3: Weather system prevalent at 1800UTC, 10 April, 2013. a) 850hPa geopotential 

height (contours at 3 dam interval), and IWV (mm) shaded contours. b) 850hPa vertical 

wind velocity (negative means ascent; based on ERA-Interim (Dee et al. 2011)) shaded, 

wind barbs (half barbs=2.5ms-1, full barbs=5ms-1, and pennant 25ms-1), and contours of 

equivalent potential temperature θe (ºC) at 4ºC interval. c) 500hPa geopotential height 

(contours at 3dam interval), and IVT shaded in kgm-1s-1. d) Mean sea level pressure (slp-

1000) contours at interval 40m, and two hour (1700 to 1800UTC and 1800 to 1900UTC, 

10th April, 2013) Stage IV cumulative rainfall. e) Skew-T–log-p plot for 1800UTC 10th 

April 2013. Vertical temperature is plotted as solid line, dewpoint as dashed line and wind 

barbs are according to the convention used in Figure 2.3b. These results are for Little Rock, 

Arkansas (Station ID 72340) and were obtained from the University of Wyoming’s 

sounding archive. The black filled circle in (a) shows the location of the station. 
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FIG. 2.4: Same as Fig. 2.3 but for 1800UTC, 18 April, 2013. Skew-T–log-p plot is for 

1500UTC 18th April 2013. 
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FIG. 2.5 Same as Fig. 2.5 but for 1200UTC, 30 May, 2013. Skew T–log-p plot is for 

1200UTC 30th May 2013 with soundings taken at Lamont Oklahoma (Station ID 74646). 
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FIG. 2.6: Trajectory analysis of air parcels ending at 0600UTC 11 April (panels a, d), 

1800UTC 18 April (panels b, e), and 1200UTC 30 May (panels c, f) for the three ARs. 

Panels a, b and c represent 72-h backward trajectories for the three ARs with parcels ending 

at 1000m AGL (blue), 4000m AGL (red) and 6000m AGL (black). Panels d, e, and f show 

air pressure (solid) and mixing ratio (dashed) along the trajectories. The data in these plots 

are obtained from NARR analyses using the Hybrid Single Particle Lagrangian Integrated 

Trajectory (HYSPLIT) model (Draxler and Rolph 2015). Please see text for detailed 

description. 
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FIG. 2.7: Examination of the relationship between rainfall and AR characteristics for 

regions at different distances from the AR major axis. Panel a is for the region closest to 

AR (0km to 74km on both sides from major axis), panel b is for the 2nd closest region 

(74km to 150km on both sides from major axis), while panel c is for the region farthest 

away from AR (150km to 370km on both sides from major axis). The plot shows the 

average rainfall at different latitudes, and Spearman and Pearson correlation coefficients 

between rainfall (from Stage IV) and IVT (from MERRA). 
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FIG. 2.8: Average rainfall around the AR major axis at different time steps of ARs. The 

rainfall values are computed from 40°N to 30.5°N within 150km buffer from the AR major 

axis. The values on the x axis refer to the duration of individual AR events: 1 means the 

first time step when the AR was identified, 2 means the consecutive 2nd time step of AR 

condition, and so on. 
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FIG. 2. 9: Similar to Fig. 2.7, but for the four times of a day (panel a is for 0000UTC; panel 

b is for 0600UTC; panel c is for 1200UTC; panel d is for 1800UTC). Analyses are 

performed only for the region closest to the AR major axis.  
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CHAPTER 3 

REMOTE SENSING-BASED CHARACTERIZATION OF RAINFALL DURING 
ATMOSPHERIC RIVERS OVER THE CENTRAL UNITED STATES2 

Despite the important role ARs play over the central United States, little is known about 

the distribution of rainfall associated with them. Chapter 2 provided preliminary insights 

on this subject; however, the results were limited to a very small sample size—a study 

period of 65 days in which only three ARs occurred. The lack of knowledge regarding the 

rainfall distribution in ARs is a major gap in the understanding of the science of ARs. 

Filling this gap serves as the motivation of this chapter. In essence, this chapter builds on 

and expands Chapter 2 by using a large dataset (13 years), and hence makes it possible to 

statistically verify the AR-rainfall characterization results previously presented. 

Specifically, the research questions I address are: 

1. Where is the heaviest rainfall located in the ARs? How quickly does it decrease as 

we move away from the areas of the most intense transport within these storms? 

2. What is the relationship between rainfall intensity and the magnitude of the 

moisture transport? How does this relationship vary within the ARs and across the 

central United States? 

3. How does AR rainfall change with the duration of these events? Over the U.S. West 

Coast, for example, Ralph et al. (2013) found that long-duration ARs produce 

significantly larger amounts of rainfall and stream flow than short-duration events, 

likely due to the continuous supply of water vapor available for rainout. Over the 

U.S. West Coast, orographic lifting of moisture-laden air masses results in intense 

rainfalls (Ralph et al. 2004, and references therein); whereas over the central United 

States, Mesoscale Convective Systems (MCSs) and frontal systems associated with 

extratropical cyclones are the main drivers of extreme precipitation events (Kunkel 

et al. 2012; Stevenson and Schumacher 2014). Although the rain producing 

mechanisms over the central United States are different than those over the U.S. 

                                                           
2 Chapter adopted from Nayak, M. A. and G. Villarini,2016: Remote sensing-based characterization of 
rainfall during atmospheric rivers over the central United States, doi: 10.1016/j.jhydrol.2016.09.039, 
Journal of Hydrology (in press). 
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West Coast, it is reasonable to assume that as the duration of the ARs increase, the 

rainfall may increase here as well. This was observed in the three ARs during the 

IFloodS period (see Chapter 2). The impact of the duration of ARs on rainfall 

intensity over the central United States is addressed in this study. 

4. How does the AR rainfall magnitude differ during the course of the day? An 

important characteristics observed in rainfall extremes across the Great Plains is 

their diurnal cycle. This cycle is the most pronounced in the summer season when 

most of the extreme rainfall events occur from mid-night to the early morning (e.g., 

Wallace 1975; Dai et al. 1999). In winter, on the other hand, the diurnal cycle is 

weak. In Chapter 2, AR-related rainfall for the three ARs in IFloodS showed diurnal 

character with larger rainfall amounts in nighttime hours than in daytime hours. In 

this chapter, I will confirm this pattern in AR-related rainfall for a large sample of 

ARs. 

In Chapter 2, I used Stage IV to understand rainfall distribution during three AR events 

in IFloodS. However, the use of Stage IV does not warrant the best choice as many 

competitive high spatial and temporal resolution precipitation products are available. To 

carry out the analyses in this chapter and address the research questions listed above, I will 

use quantitative precipitation estimates (QPE) from different remote sensing products. 

Over the past decade, we have seen the development of several datasets providing QPE, 

each with different strengths and weaknesses. As part of this study, I will focus on one 

radar-based and four satellite-based rainfall products and perform a comprehensive 

evaluation with respect to a rain-gage based reference product. While the evaluation of 

remote-sensing product is topic addressed in several previous studies (e.g., Villarini and 

Krajewski 2007; Vila et al. 2009; Villarini et al. 2009; AghaKouchak et al. 2011; Chen et 

al. 2013; Derin and Yilmaz 2014; Puca et al. 2014; Cai et al. 2015; Prat and Nelson 2015; 

Zhang et al. 2015), how well different products can represent AR rainfall is a topic that 

requires further investigation. AghaKouchak et al. (2011) compared four satellite products 

and concluded that none of the products can be treated as best suited to characterize 

extreme rainfalls. Further, the performance of the products decreases as the events become 

more extreme. A more recent study by Prat and Nelson (2015) also highlights the poor 

performance of satellite and remote sensing products in capturing extreme rainfall. Further 
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challenges arise due to the peculiar structure of narrow and long rain bands that have been 

observed in some ARs studied over the central United States (e.g., Moore et al. 2012; see 

also Chapter 2). Hence, from an AR perspective, it is important to evaluate different remote 

sensing products to select the best product before performing rainfall characterization in 

ARs. 

3.1 Data and Methods 

3.1.1 Data 

I evaluated one ground-based and four satellite-based products for characterizing 

rainfall during ARs: 1) Stage IV; 2–3) the Tropical Rainfall Measuring Mission (TRMM) 

Multisatellite Precipitation Analysis (TMPA) (Huffman et al. 2007) Version 7 for research 

(TRMM 3B42-V7) and near-real-time (TRMM 3B42RT-V7); 4) Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural Networks (PERSIANN, 

Sorooshian et al. 2000); 5) Climate Prediction Center (CPC) morphing method (CMORPH, 

Joyce et al. 2004). For simplicity, throughout the paper, I will address TRMM 3B42-V7 as 

TRMM and TRMM 3B42RT-V7 as TRMMRT. 

As mentioned in Chapter 2, Stage IV is a fine resolution precipitation product and the 

data can be obtained at hourly, 6-hourly and daily temporal resolutions. The data are 

available from 2002 to the present over most of the conterminous United States at 

approximately 4km × 4km horizontal resolution. The data are a mosaicked analysis, 

performed at NCEP, from precipitation estimates produced by 12 Regional Forecasting 

Centers (RFCs) across the United States. All the RFCs that encompass the central United 

States use multi-sensor precipitation estimates from Weather Surveillance Radar-1988 

Doppler (WSR-88D) radars merged with hourly rain gauge measurements. The hourly rain 

gauge data for these RFCs come from either all or some of the real-time gauges of the 

Hydrometeorological Automated Data System (HADS) gauges, the Automated Surface 

Observing System (ASOS), and the Automated Airport Weather Stations (AWOS) reports. 

See Hou et al. (2014) for further details on Stage IV analysis. A manual quality control is 

performed at each RFC. 

The two TMPA datasets (TRMM and TRMMRT) are available from 1998 and 2000, 

respectively. Both datasets are at 3-hourly temporal resolution and 0.25º × 0.25º horizontal 
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resolution. TRMMRT estimates are obtained by calibrating and merging passive 

microwave data and ~10µm band infra-red (IR) data from sensors on different satellites. 

The passive microwave data are obtained from TRMM Microwave Imager (TMI) on 

TRMM satellite, the Special Sensor Microwave Imager (SSM/I) on Defense 

Meteorological Satellite Program (DMSP) satellites, the Advanced Microwave Sounding 

Unit-B (AMSU-B) on the National Oceanic and Atmospheric Administration (NOAA) 

satellites, and the Advanced Microwave Scanning Radiometer-Earth Observing System 

(AMSR-E) on Aqua. The IR data are obtained from the international constellation of 

Geosynchronous Earth Orbit (GEO) satellites. For the research version TRMM, monthly 

gauge-based precipitation data from Global Precipitation Climatological Center (GPCC, 

Rudolf 1993) and the Climate Assessment and Monitoring System (CAMS, Xie et al. 1996) 

are used to adjust this product on a monthly basis. For detailed information regarding 

TMPA estimates refer to Huffman et al. (2007). 

CMORPH and PERSIANN data are available at 0.25º × 0.25º horizontal resolution. 

The finest temporal resolution for CMORPH is 3-hourly and data are available from 

December 2002 to the present. PERSIANN data are available at 3-hourly, 6-hourly and 

daily temporal resolutions from March 2002 to the present. 

The reference data used to evaluate the remote sensing products is CPC’s gauge-based 

precipitation, which are at daily temporal resolution, 0.25º × 0.25º horizontal resolution, 

and available from 1948 to the present. Presently, CPC extracts daily rainfall data from 

daily rainfall reports provided by about 13000–15000 stations (Higgins et al. 2000). RFCs 

provide daily reports at about 8000 stations, and around 4000 are independently provided 

by National Climatic Data Center (Hou et al. 2014). Hou et al. (2014) estimate that out of 

the 8000 stations provided by RFCs, 90% have data available at hourly temporal resolution, 

which could have been used to obtain the Stage IV hourly estimates as well. This implies 

that CPC and Stage IV data are not completely independent, even though there are 

differences because of the use of different quality controls at each RFC and the availability 

of 4000 additional independent stations in CPC. With that said, I expect Stage IV and 

TRMM to show closer agreements to the reference CPC data. 
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3.1.2 AR identification 

For identifying ARs, I followed the same methodology that I presented in Chapter 2; 

similarly, MERRA data are used to detect ARs over the 2002–2014 period, consistent with 

the data availability of the precipitation products. A modification to the identification 

algorithm in the calculation of threshold that is used the selection of the IVT threshold that 

is used to screen potential AR and non-AR time steps Instead of a constant 550kgm-1s-1 

threshold, a daily-varying threshold is obtained as follows. At the latitude 40ºN, daily 

average IVT fields, calculated from the four 6-hour time steps of the day, are calculated at 

each grid point of the longitude band of 100ºW to 85ºW for all the years from 2002 to 2014. 

Then, for each day the maximum IVT value is selected in the longitude band for all the 

days in the dataset, and a 15-day moving-average smoothing is performed for each day. In 

this way, for each day of the year, we have a time series (one value for each year) of 

smoothed maximum IVT values, and the threshold is taken as the 85th percentile of the 

time series of the day. I treat this as the daily-varying threshold for AR identification. An 

important feature of the daily-varying threshold is that it takes into account the seasonality 

that is prevalent in the water vapor transport over the central United States. 

3.1.3 Evaluation methods 

I evaluate and compare all the precipitation products for a common period of 12 years 

from 2003 to 2014. Data from CMORPH are available only after December 2002, so I start 

evaluation from 2003. First, all the products are brought to a common spatial and temporal 

resolutions of 0.25º × 0.25º and (1200UTC to 1200UTC), respectively. For visual 

comparison, I calculate total rainfall and rainfall associated with AR for the 12-year period 

from CPC and the five remote sensing products. I refer to the rainfall within a 250km buffer 

around the AR major axis as the rainfall associated with the AR (or AR-related rainfall). I 

perform different quantitative evaluations to get a better idea of any under- or over-

estimation by the remote sensing products. Daily rainfall estimates from remote sensing 

products are compared with CPC rainfall amounts at each grid point over the central United 

States (30ºN to 50ºN and 85ºW to 100ºW) with the help of boxplots and scatter plots. 

Further, objective evaluation measures are also considered, including Pearson’s product 

moment correlation coefficient (correlation coefficient from here onwards), Mean 
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Absolute Error (MAE) and Mean Squared Error (MSE). For each of the five products, I 

calculate these measures at each grid point from daily rainfall data of 12 years. These 

analyses are performed for rainfall associated with ARs as well. 

3.1.4 Rainfall distribution in ARs 

To understand how rainfall is distributed within ARs, I consider three separate regions 

around the AR major axis, similar to Chapter 2 but with minor changes. The first region, 

the one closest to the AR major axis, covers the area within 75km on both sides of the 

major axis (i.e., on east side and west side of the major axis). The second region is the area 

from 75km to 150km, while the third region is from 150km to 300km. In all the three 

regions, I calculate 4-hr accumulated rainfall, 2 hours before the AR time step and 2 hours 

after the AR time step for all the ARs from 2002 to 2014. This is possible because I use 

Stage IV which is the product that shows the closest agreement with CPC, as discussed in 

the next section. These accumulations are obtained for each latitude point (from 30ºN to 

40ºN, which is the latitudinal range used to define ARs). 

Another important question is related to the relationship between IVT magnitude in 

ARs and the corresponding rainfall magnitude. I expect higher rainfall amounts 

corresponding to large IVT magnitudes, even though this depends on precipitation 

efficiency and the location of cold fronts for the lift. To examine this, at each latitude I 

calculate the Spearman correlation coefficient between IVT and rainfall magnitudes during 

ARs to quantify monotonic relationship between the two variables. 

To understand the impact of AR duration on rainfall, for each AR time step, 4-hr 

rainfall accumulations are calculated (2 hours before the AR time step and 2 hours after it) 

within a 250km buffer around the major axis. The first time step of an AR defines the start 

of the event; as the AR duration increases, the time steps increase. The accumulated rainfall 

for each AR time step is divided by the number of grid cells encompassed by the 250km 

buffer to give 4-hr rainfall intensities. The rainfall corresponding to each AR time step is 

averaged across all ARs from 2002 to 2014. Hence, we get an average 4-hr rainfall per 

pixel for each AR time step. We can compare the rainfall intensity of different AR time 

steps, providing us with an insight on the effect of AR duration on rainfall. 

Finally, I verify the diurnal variation observed in Chapter 2 in the rainfall associated 

with ARs. As in Chapter 2, I consider four times for which MERRA provides data (i.e., 



37 
 

0000UTC, 0600UTC, 1200UTC and 1800UTC). At each of these time steps, I compare 

rainfall amounts in the region closest to the major axis (i.e., the area within the 75km-buffer 

around the major axis) at each latitude point from 30ºN to 40ºN. Moreover, at each of the 

four times of the day, I calculate the Spearman correlation coefficient between rainfall and 

IVT magnitudes to detect any time-dependent relationship between the two variables. 

3.2 Results and Discussion 

3.2.1 Evaluation of remote sensing products 

The average annual rainfall and the contribution from ARs using CPC for the 2003-

2014 period are shown in Figure 3.1. Distinct spatial variations can be observed in the 

average annual rainfall, with areas receiving less than 500mm on the west part of the central 

United States (east of the Rockies) and areas receiving more than 1700mm around the Gulf 

of Mexico (Figure 3.1, top-left panel). A large stretch of the central United States receives 

significant contribution to the annual rainfall from ARs (Figure 3.1, top-right and bottom-

left panels). Generally, regions characterized by large rainfall have relatively large 

fractions (about 25%–35%) contributed by ARs. These areas also resemble reasonably well 

the regions of high AR density (Figure 3.1, bottom-right panel) defined here as the average 

frequency of AR-days per year over the period 2003–2014. As can be expected from the 

AR characteristics, the shape of the areas with the largest AR contributions resembles 

extratropical storm track on the west side of the Appalachian Mountains. 

The magnitude and the spatial structure of average annual rainfall and AR contribution 

from the remote sensing products are shown in Figure 3.2 and can be compared with CPC 

(Figure 3.1). Stage IV is the product that most closely resembles the CPC results, followed 

by TRMM (Figure 3.2, top panels). The other three products (TRMMRT, CMORPH and 

PERSIANN) show overestimation over much of the Great Plains including the states of 

Iowa, Missouri, Kansas, and Arkansas. Similar to what was found for the average annual 

rainfall, these three products underestimate the fractional contribution from ARs to annual 

rainfall over much of the central United States, which is instead much better captured by 

Stage IV and TRMM (Figure 3.2, middle and bottom panels). Overall, the visual 

examination of these figures indicates that Stage IV most closely resembles the reference 



38 
 

data, followed by TRMM. These findings also underline the importance of the bias 

correction of the remote sensing-based precipitation estimates. 

Figure 3.3 shows 2-d histograms of the daily rainfall (left panels) and AR-related 

rainfall. Most of the points in the Stage IV panels (Figure 3.3, top row) are scattered 

symmetrically around and close to the 1:1 line. There is a lack of symmetry for the other 

products both for the overall and AR-related rainfall. This suggests that Stage IV has the 

lowest bias. Another feature that distinguishes Stage IV from the rest of the products is the 

smallest spread in its scatter, pointing to its higher precision. Figure 3.4 shows the boxplots 

of the errors in daily rainfall per pixel (top panel) and AR-related rainfall (bottom panel). 

The errors are calculated as the difference between the remote sensing product and CPC 

rainfalls (reference). All products, except Stage IV, show positive biases. Stage IV and 

TRMM have lower variances (i.e. higher precision) than the other products. When focusing 

on the AR-rainfall, Stage IV and TRMM show the best performance. Although TRMMRT 

has the lowest bias, its variance is quite high. CMORPH and PERSIANN both show 

negative biases (i.e., underestimation) and large variances. It is interesting to note that 

CMORPH and PERSIANN show an underestimation in daily rainfall and overestimation 

in AR-related rainfall. 

Quantitative comparisons between the remote sensing-based products and CPC rainfall 

are plotted for daily rainfall and AR-related rainfall in Figures 3.5 and 3.6, respectively. 

When considering Stage IV, the correlation coefficients (top panels) are larger than 0.9 

over much of the central United States. Similarly, MAE and MSE (middle and bottom 

panels, respectively) are small (~1mm/day and 3mm2/day2, respectively) over this area. 

These results indicate that there is a strong agreement between CPC and Stage IV daily 

rainfall estimates, likely the results of the bias correction with respect to the rain gages. 

Among the other products, TRMM shows a better performance over most of the region, 

even though the results are worse than what observed for Stage IV. As seen earlier in the 

graphical comparisons, the other three products show limited performance over much of 

the Great Plains. The results for the daily rainfall (Figure 3.5) hold for the AR-rainfall 

(Figure 3.6). Note that since ARs generally result in high magnitude rainfall (10.7mm per 

day per grid cell as compared to 2.6mm daily average in a year), the error scales are higher 

(Figures 3.4–3.6). 
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From the results of this section, it is clear (and not surprising) that Stage IV is the 

product that most closely reproduces the observed rainfall. This is true with respect to both 

daily and AR-related rainfall. The superior performance and the fact that Stage IV has high 

temporal and spatial resolutions makes this product well-suited for characterizing the 

rainfall distribution during ARs. 

3.2.2 Rainfall characteristics during ARs 

Figure 3.7 shows the rainfall distribution in the three regions around the AR major axis 

(see Section 3.1.4) as a function of latitude. In general, most of the rainfall occurs in the 

mid-latitudes from 33ºN to 38ºN, with peak rainfall amounts at around 35.5ºN in the closest 

region to the AR major axis (~10mm/4-hour at each grid cell). In all the three regions, the 

rainfall gradually decreases as we move away from 35.5ºN. An evident feature in Figure 

3.7 is the decrease in rainfall as we move from the closest region to the AR major axis (left 

panel) to the region farthest away from it (right panel). These results are similar to what I 

obtained in Chapter 2 for the three ARs during IFloodS. I performed multiple comparisons 

using two sample Student’s t-tests to statistically test whether the decrease in rainfall in the 

three regions is statistically significant. Bonferroni adjustments are performed to take into 

account multiple comparisons instead of a single comparison. At each latitude, three 

comparisons are performed: 1) rainfall in the first region is greater than rainfall in the 

second region; 2) rainfall in the second region is greater than rainfall in the farthest region; 

and 3) rainfall in the first region is greater than the rainfall in the farthest region. Figure 3.8 

shows the Bonferroni-adjusted p-values corresponding to each comparison at each latitude. 

Based on these results, there is strong statistical evidence (p-value smaller than 0.01) that 

on average the AR rainfall decreases as we move away from the major axis, in particular 

between 29ºN and 42ºN. The difference extends beyond this latitude band, albeit with 

lesser evidence to support it. The results in Figures 3.7 and 3.8 show that the largest 

differences are between the third region and regions one and two, further indicating the 

narrow nature of ARs in terms of rainfall, with most of the rainfall concentrated within 

150km around the AR major axis. 

In Figure 3.7 I also plot Spearman rank correlation between IVT and rainfall 

magnitudes as a function of latitude. IVT and rainfall show the largest values of Spearman 

correlation coefficient in the first region (within 75km of the AR major axis) and between 
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30ºN and 40ºN. This relationship weakens as we move further away from the major axis 

and this latitudinal band. Pearson’s correlation coefficient, which measures the strength of 

linear relationships, also shows similar trends in all the three regions (not shown). These 

results suggest that in the region closest to AR major axis, higher rainfall may be expected 

with higher amounts of water vapor transported. 

AR duration has a major effect on the rainfall associated with these events (Figure 3.9). 

I used a maximum duration of 90 hours in our plot because only three ARs lasted longer. 

There is a strong dependence of AR rainfall on its duration, with on average twice as much 

rainfall in storms lasting three days compared to one-day ARs. From an impact perspective, 

these results suggest that when ARs persist for longer durations, heavy, flood-producing 

rainfall events can be expected. Moreover, the rainfall intensity does not decrease even 

when the duration has reached 90 hours. This is different from what is observed in the 

western United States where rainfall intensity decreases quickly after much shorter 

durations than observed here (Figure 7 in Ralph et al. (2013)). 

Finally, I examine whether there are differences in ARs during the course of the day 

focusing on the areas closest to the AR major axis (Figure 3.10). There is a marginal 

difference between the rainfall magnitudes at 0000UTC and 1800UTC; however, by 

performing one-way Analysis of Variance (ANOVA) tests, I do not see a major difference 

in rainfall magnitudes among the four times of the day. This suggests that a weak or zero 

diurnal variation exists in rainfall associated with ARs. This is not consistent with the 

results in Chapter 2, where a distinct diurnal variation was observed. Earlier studies have 

shown that diurnal variations in extreme rainfall over the central United States are 

predominant in summer and have a weaker signature in winter (Dai et al. 1999). Wallace 

(1975) also observed that the diurnal variations in heavy rainfall events during winter over 

the U.S. Midwest had smaller amplitude in the winter than in the summer. Because AR 

frequency is the largest in winter and spring, and the smallest in summer (Lavers and 

Villarini 2013b), our findings of weak or no diurnal variations in AR-related rainfall are 

consistent with past observations and physical understanding of ARs. Figure 3.10 also 

shows that the relationship between AR-related rainfall and IVT magnitudes is similar 

across all the times of the day, with larger rainfall magnitudes in the mid-latitudes. 
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3.3 Summary and Conclusions 

In this chapter, I have focused on the characterization of rainfall associated with ARs 

that affected the central United States over the 2002–2014 period. Over this regions, the 

fractional contribution of ARs to annual rainfall can be as high as 35%. For characterizing 

the AR rainfall, a suite of remote sensing-based precipitation products are evaluated. Stage 

IV showed the closest agreement with the reference rainfall data in terms of both total 

rainfall and rainfall associated with ARs. TRMM turned out to be the next best product. 

In understanding the rainfall distribution in ARs, I found that most of the rainfall during 

ARs is located within about 150km around the AR major axis, and the magnitude of the 

rainfall has a significant monotonic relationship with IVT magnitude. Rainfall as well as 

its relationship with IVT vary as a function of latitude with peak rainfall magnitudes in the 

latitude band 32ºN–36ºN. The AR duration is an important factor in determining the 

intensity of rainfall. As the AR duration increases, rainfall intensity increases. Weak 

diurnal variations are observed in the rainfall around the AR major axis, with marginally 

larger rainfall during evening and night hours as compared to daytime hours. 

The results from this chapter provide significant contribution to the scientific 

knowledge about rainfall in ARs. Improved understanding of the distribution of rainfall 

during ARs and how it relates to water vapor transport can help to better model or constrain 

the precipitation process in regional and numerical weather prediction models. Over the 

central United States, numerical weather prediction models forecast ARs with good skill 

up to a lead-time of 7 days (see Chapter 6) Therefore, The results here can have a direct 

impact on developing flood protection strategies during ARs as once we know the AR 

location and duration, it is possible to anticipate the location and intensity of maximum 

rainfall. 
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3.4 Figures Chapter 3 
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FIG. 3.1: Annual rainfall and AR-related rainfall based on CPC data for the 2003–2014 

period. Annual average rainfall (top-left panel), annual averaged rainfall associated with 

ARs (top-right panel), AR fractional contribution to the total rainfall (bottom-left panel), 

and AR density (defined as the average frequency of AR-days per year over the period 

2003–2014; bottom-right panel). 
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FIG. 3.2: Annual rainfall and AR-related rainfall based on remote sensing-based 

precipitation products. Annual average rainfall (top rows), rainfall associated with ARs 

(middle rows), and fractional contribution to the total rainfall from ARs (bottom rows). 
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FIG. 3.3: Two-dimensional histograms between CPC and remote sensing-based 

precipitation products: daily rainfall (left panels) and AR-related daily rainfall (right 

panels). The colorbars show the number of scatter points falling within each bin in the 

plots. The black line shows the 1:1 line, representing a perfect match between CPC and the 

remote sensing product. 
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FIG. 3.4: Boxplots showing the errors (difference between the remote sensing products and 

CPC rainfall; mm per day per grid cell) in daily rainfall (top panel) and AR-related rainfall 

(bottom panel). The boxes cover the lower and upper quartile of the data. Lower and upper 

whiskers represent 10th and 90th percentiles, respectively. The solid black line in each box 

represents the mean of the data. 
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FIG. 3.5: Metrics-based comparison of daily rainfalls between CPC and remote sensing-

based products. Pearson’s correlation coefficient (top panels), Mean Absolute Error (in 

mm/day; middle panels), and Mean Squared Error (in mm2/day2; bottom panels). 
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FIG. 3.6: Same as Figure 3.5, but for AR-related rainfall. 
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FIG. 3.7: Rainfall distribution within ARs. Rainfall intensity (mm/4-hr per grid cell) within 

the first region (i.e., the region within 75km from the AR major axis; left panel), the second 

region (i.e., the region within 75km and 150km from the AR major axis; middle panel), 

and the third region (i.e., the region within 150 km and 300 km from the AR major axis; 

right panel). Blue lines are the Spearman’s rank-based correlation coefficient between 

rainfall and IVT magnitudes. See text for more information. 
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FIG. 3.8: P-values from multiple comparisons regarding the rainfall differences in the three 

regions around the AR major axis. Rainfall in first region is denoted as R1, while R2 and 

R3 are the rainfall amounts in second and third regions, respectively. The null hypothesis 

is that the rainfall difference in two regions is zero (e.g., Ho: µ(R1) – µ(R2) = 0). The 

alternatives are shown in the x-axis. Bonferroni adjustments are performed on the p-values 

to take into account multiple comparisons. Color notation: p-value <0.01 = black; p-value 

between 0.01 and 0.05 = dark gray; p-value between 0.05 and 0.10 = light gray; p-value 

>0.10 = white. 
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FIG. 3.9: Average AR-related rainfall intensity (mm/4-hr per grid cell) as a function of 

duration (persistence) of ARs. 
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FIG. 3.10: Diurnal variation in AR-related rainfall. Same as Fig. 3.7, but for AR-related 

rainfall and different times of the day. The analysis corresponds to the region within 75 km 

around the AR major axis. 
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CHAPTER 4 

A LONG-TERM PERSPECTIVE OF THE HYDROCLIMATOLOGICAL 
IMPACTS OF ATMOSPHERIC RIVERS OVER THE CENTRAL UNITED 

STATES3 

The thesis has thus far focused on detailed assessments regarding the synoptic 

conditions associated with ARs (Chapter 2) and the rainfall distribution associated with 

them (Chapter 3) for relatively small study periods. This chapter comprehensively expands 

on the previous ones and is dedicated to the development of the climatology of ARs over 

the central United States based on multiple, long-term, state-of-the-art atmospheric 

reanalysis products. With the AR climatologies are available, this chapter examines the 

role played by ARs in the hydroclimatology of the central United States. I start this chapter 

by reviewing relevant recent studies on the impacts of ARs over this region, with the aim 

to elucidate the unanswered research questions that I intend to address here. 

In Chapter 3, the distribution of rainfall during ARs was evaluated and, in doing so, I 

also found that the AR contribution to annual precipitation over a period of 12 years (from 

2002–2014) ranged from 15–35% (Figure 3.1). In this chapter, I intend to expand the 

analyses to extreme precipitation events and floods over this regions. Steinschneider and 

Lall (2015b) evaluated the association between Tropical Moisture Exports (TMEs) and 

extreme precipitation events over this region. As mentioned in Chapter 1, TMEs consist of 

high-moisture parcels in the atmosphere that strictly originate from the tropics and maintain 

tropical characteristic while entering the central United States; furthermore, their structure 

can cover broader regions as compared to the river-like structure of moisture transport in 

ARs. ARs can originate in the tropics and subtropics, and the air parcels can gain significant 

amount of moisture from the oceanic and/or land surfaces along their tracks (Bao et al. 

2006; Dacre et al. 2015). Steinschneider and Lall (2015b) used Archetypical Analysis to 

examine the spatial structure of extreme rainfall events and their association with TMEs. 

In the analysis, the architypes of extreme precipitation and TME-based precipitation 

matched closely, particularly over the northern and north-eastern parts of the central United 

                                                           
3 Chapter adopted from Nayak, M. A. and G. Villarini, 2016: A long-term perspective of the 
hydroclimatological impacts of atmospheric rivers over the central United States, Water Resources 
Research (Under revision) 
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States; this suggests that TMEs are associated with most of the extreme precipitation events 

over this region. The study by Steinschneider and Lall (2015b), however, did not attempt 

to quantify the contribution of TMEs to extreme precipitation events. Recently, Mahoney 

et al. (2016) studied ARs over the southeastern United States (90º–75ºW and 31º–39ºN, 

which includes a part of the central United States as defined here) and their impacts on 

heavy precipitation events over the region. Among the 25 large-scale heavy precipitation 

events during the period 2002–2011 with amounts more than 100mm/day and covering an 

area of more than 7000km2, 13 (52%) matched with timing and location of their identified 

ARs. 

Of practical importance are the impacts of ARs on hydrology and water resources over 

this region. The studies reviewed above and those by Lavers and Villarini (2013b, 2015a) 

and Steinschneider and Lall (2016) have taken some solid initiatives in this direction; 

however, these works are limited in the range of analyses performed and/or the study 

period. For example, Lavers and Villarini (2013b) considered the impact of ARs on floods 

only in terms of annual maximum floods, whereas the contribution to total precipitation 

was carried out in Lavers and Villarini (2015a). In these studies no attempt was made to 

evaluate the contribution of ARs to either peak-over-threshold (POT) floods or to extreme 

precipitation. With the help of Empirical Orthogonal Functions (EOFs), Steinschneider and 

Lall (2016) found similar spatial modes of variability in TMEs and POT flood counts. 

However, the magnitudes of TME contribution to POTs and extreme precipitation are still 

unclear, and their spatial and seasonal distributions have not been addressed thus far. 

Steinschneider and Lall (2015b) looked at the modes of precipitation variability, but maps 

showing the spatial and seasonal contribution of TMEs to extremes were not included. I 

also note that Steinschneider and Lall (2015b, 2016) have focused on TMEs, while the 

impacts of ARs are still not clear. 

In all the studies cited above, another important limitation is the use of only one 

reanalysis product with relatively short study periods of 30–34 years. As will be discussed 

later in the context of results in Lavers and Villarini (2013b), the lack of long-term records, 

especially for seasonal analyses, casts a doubt on the statistical significance of the results. 

Furthermore, to my knowledge, none of the studies in the literature provided a detailed 

description of the climatology of ARs over the central United States. 
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Another important aspect related to ARs that I explore in this chapter is the relation of 

these storms to large-scale atmospheric modes. Several studies (e.g., Mo et al. 1997; 

Coleman and Budikova 2010; Harding and Snyder 2015; Mallakpour and Villarini 2016b) 

have linked heavy precipitation and flooding events over the central United States to the 

variability in large-scale atmospheric circulation modes, which are low-dimensional 

variables that characterize the state of atmospheric conditions. These studies suggest that 

changes in atmospheric modes alter the Great Plains low-level-jet (GPLLJ) and ARs, 

leading to changes in the frequency of heavy precipitation events over this region. For 

example, the negative phase of Pacific-North American teleconnection (PNA; Wallace and 

Gutzler 1981), characterized by contrasting pressure regions of above-normal heights over 

much of the eastern United States and below-normal heights over the western United 

States, enhances GPLLJ; this in turn leads to increasing heavy precipitation events during 

the warm-season (April–October) over the central United States (Harding and Snyder 

2015), even though the variability of PNA is smaller in the warm than in the cold season. 

Although the relationship between atmospheric modes and heavy precipitation is relatively 

clear, the relationship between ARs and the atmospheric modes is not well known. 

Preliminary insights on this aspect are provided by Lavers and Villarini (2013b) who 

concluded that the mean sea level pressure pattern during ARs is similar to the pattern 

prevalent in the positive phase of the North Atlantic Oscillation (NAO), and by 

Steinschneider and Lall (2015b), who suggested a direct relationship between TME-based 

precipitation and PNA. This chapter extends the analyses to fill the gaps of linking 

atmospheric modes to ARs using visual inspection and statistical tools. This has important 

implications regarding the predictability of ARs and extreme hydrologic events such as 

floods. I provide more discussion on this aspect in the discussion section. 

With these research gaps in mind, the objectives of this chapter are: 

1. To present a long-term climatology of ARs over the central United States based on 

multiple reanalysis products. In so doing, I discuss the primary features of these 

storms, including their duration and seasonality. This has important implications 

for the hydrologic cycle, regional water budget and water resource management 

because vast amounts of moisture transport occur via ARs. 
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2. To evaluate the spatial impacts of ARs on total precipitation, extreme precipitation, 

and annual maximum and POT floods at the annual and seasonal scales. 

3. To use multiple reanalysis products so that uncertainties resulting from different 

modelling and assimilation techniques can be highlighted and recognized. In all the 

analyses, a comparison is provided between higher and lower resolution reanalysis 

products. 

4. To examine the relationship between ARs and three prominent atmospheric modes 

with the help of visual examination and statistical tools. 

4.1 Data and Methods 

4.1.1 Data 

The atmospheric reanalysis data that are used to identify ARs are: 1) the Twentieth 

Century Reanalysis (V2) project (20CRV2; Compo et al. 2011), 2) the (NCEP)/National 

Center for Atmospheric Research (NCAR) reanalysis project (NCEP-NCAR; Kalnay et al. 

1996), 3) The Japan Meteorological Agency (JMA)’s Japanese 55-year Reanalysis (JRA-

55; Kobayashi et al. 2015), 4) MERRA, 5) the European Centre for Medium-Range 

Weather Forecasts (ECMWF) reanalysis project (ERA-Interim; Dee et al. 2011), and 6) 

NCEP-Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-

II) reanalysis project (NCEP-DOE; Kanamitsu et al. 2002). The data from 20CRV2 are 

available from 1871 to 2012 at a horizontal grid resolution of 2º × 2º. I used all the 56 

members of the 20CRV2, in addition to the ensemble mean of the 56 members. NCEP-

NCAR data are retrieved from 1948 to 2013 at 2.5º × 2.5º horizontal grid resolution. JRA-

55 data are obtained from 1958 to 2013 at 2.5º × 2.5º resolution. MERRA, ERA-Interim, 

and NCEP-DOE data are obtained from 1979 to 2013, and at horizontal grid resolutions of 

0.5º × 0.667º, 0.75º × 0.75º, and 2.5º × 2.5º, respectively. To identify ARs, I retrieved q, 

and u and v wind components at vertical levels from surface (~1000hPa) to approximately 

300hPa. All the variables are at 6-hour intervals. 

To analyze the impact of ARs on precipitation, I used CPC’s daily precipitation product 

used in Chapters 2 and 3. The daily data are available from 1948 to the present at 0.25º × 

0.25º horizontal grid resolution. To examine the connection between ARs and flooding, I 

downloaded daily average and annual instantaneous peak discharge data from U.S. 
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Geological Survey (USGS) stream gaging stations. I selected stations that have at least 50 

complete years of the most recent data (ending no earlier than 2010), and a continuous 

record having a total gap length of no more than five years. For daily averaged discharge, 

a year is treated to have complete data if the data are available for more than 330 days. The 

location of stream gaging stations is shown in the bottom panels of Figure 4.1. A total of 

1567 stations were used for peak discharge (Figure 4.1, bottom-left panel) and 942 stations 

were used for daily averaged discharge (Figure 4.1, bottom-right panel). Overall, the 

stations are well distributed across the study area with a density that allows to capture the 

spatial variability of the AR-flooding link. Only few stations have data in the early 1900s 

(Figure 4.1, top panels), with a consistent coverage starting from the early 1960s. Even 

though I selected 50 years as the minimum record, most of the stations have a record length 

of 60–80 years (Figure 4.1, middle panels). 

4.1.2 Methods 

ARs are identified from 6-hourly IVT fields from each of the six reanalysis datasets 

using the algorithm in previous chapters. An important algorithmic step that is different 

here compared to Chapter 3 is the extended search region. In previous chapters, the search 

was conducted at only one latitude (40ºN) over the longitude band of 100ºW to 85ºW; here, 

the search is made at different latitudes (42ºN, 40ºN, 38ºN, 36ºN, and 34ºN) and extended 

to the east (80ºW), with the goal of identifying most of the ARs that affected the central 

United States. Indeed, sensitivity results (not discussed in detail here) show that about 30% 

additional ARs are captured by extending the search region. The threshold for each 

reanalysis product is different, and varies with the day of the year and the above selected 

latitudes. After calculating the threshold for each model, the AR identification proceeds as 

in the previous chapters. All the ARs identified with each latitude are then concatenated to 

obtain an AR time step repository. 

As in Chapters 2 and 3, ARs that last for at least three time steps (i.e., are at least 18-

hour long) are selected as persistent ARs (referred simply as ARs hereafter). The 18-hour 

persistence criterion is used to consider only the ARs that have some hydrologic impact in 

terms of precipitation over the central United States (see section 3.2.2). From the identified 

ARs, I build the AR climatology based on each of the six reanalysis products. The 

climatology includes important AR features, such as the time series of the frequency of 
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ARs, their duration, and the location of the AR major axes (collection of the latitude-

longitude of maximum IVT grid points). From this climatology, we can examine the 

seasonal and inter-annual variability in the frequency and duration of ARs. 

The next part of this study is to explore the role ARs play in the hydrology and 

hydroclimatology of the central United States. In particular, the focus is on the annual and 

seasonal impacts of ARs on precipitation and flooding. I accomplish this by computing the 

ratio of precipitation associated with ARs to the total precipitation from CPC. As in Chapter 

3, the amount of precipitation that occurs within a 250-km area around the AR major axis 

is taken as the precipitation associated with an AR (or AR-related precipitation). Time 

series of annual AR-related precipitation is compared with total annual precipitation from 

CPC, taken as an average yearly precipitation in the region from 30ºN to 40ºN and from 

100ºW to 80ºW. Moreover, I examine the spatial distribution of AR contributions to the 

total precipitation at the annual and seasonal scales. 

The impact of ARs on extreme precipitation is considered in terms of the number of 

heavy precipitation days that are associated with ARs. At each grid point in CPC, days for 

which the precipitation amount exceeded the 99th empirical percentile of the daily 

precipitation distribution are taken as heavy precipitation days. Over the period 1948–2012, 

the 99th percentile corresponds to the 237 heaviest precipitation days. In terms of floods, I 

consider the impact of ARs on annual instantaneous peak discharge and POT floods. For 

POT floods, at each stream gaging station, a threshold is selected such that there are, on an 

average, two events per year that exceed the threshold. If there are more than two floods 

less than a week apart, the largest discharge value is selected. Because I have selected only 

those stations that have at least 50 years of data, the count of floods is at least 100 at each 

station. A flood event at a stream gage is considered to be associated with an AR if: 1) the 

station is within 4º (~ 400km) latitude and longitude of the AR major axis, and 2) the flood 

occurred within two days before the beginning of the AR and a week after its end. The 

distance and time criteria are introduced to allow for the precipitation associated with ARs 

to be routed through the river network. The analyses are performed at annual and seasonal 

scales. Here, the seasons considered are winter (December-January-February), spring 

(March-April-May), summer (June-July-August), and fall (September-October-

November). 
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I examine the atmospheric controls of the frequency of ARs using three prominent 

large-scale atmospheric modes that have been shown to affect the precipitation across the 

central United States: 1) NAO, 2) Arctic Oscillation (AO), and 3) PNA. Standardized AO 

and PNA are obtained from CPC 

(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/). The monthly data are available 

from 1950 to the present. Because studies have shown that some of the main characteristics 

of NAO change with seasons (e.g., the subtropical node of the North Atlantic dipole is 

located more to the west in the summer than during the winter), I use the mobile NAO 

index based on Portis et al. (2001). To gain insights on which modes could be physically 

more relevant to precipitation and ARs, I plot correlation maps between precipitation and 

index values of these modes for the four seasons. Further, I compare the 500hPa 

geopotential height anomalies during ARs with the anomalies during the positive or 

negative phases of these modes. Anomalies are computed from 20CRV2 data with the daily 

climatological mean taken from the year 1950 to 2012. Based on the results from the above 

analyses, I move towards the modeling of AR activity over the central United States in 

terms of climate modes. For this, I use Poisson regression, where the number of ARs in a 

season is modelled as a Poisson process conditional on covariates such as PNA, AO and/or 

NAO indices. Poisson regression is implemented for each season separately. More 

specifically, the frequency of ARs is modelled in the season for a given year using PNA, 

AO and/or NAO indices as predictors (via a logarithmic link function). The significance 

and the magnitude of the coefficients relating the covariates to the average number of AR 

events quantifies their effects on the frequency of ARs. 

4.2 Results 

4.2.1 AR climatology 

Figure 4.2 shows the time series of the number of ARs from different reanalysis 

products. Long-term AR frequency from 20CRV2, with the range from its 56 members, is 

presented in the top panel along with two other long-term products (NCEP-NCAR and 

JRA-55). From this plot, the average annual frequency of ARs is about 26 with large year-

to-year variations, and the frequency can range from as low as 6 to as high as 35. The 

uncertainty (range) of the frequency of ARs in the 56 members is in general higher before 

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/
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1940 than after it, with mean differences between the maximum and minimum frequency 

equal to 9.9 from 1871 to 1940, and 7.7 from 1941 to 2011. The potential effects of the 

inhomogeneity in 20CRV2 can be responsible for these results (e.g., Ferguson and Villarini 

2012) and for the impacts in the trends over the 1871–2012 period: the trend from 1871 to 

1940 is positive and significant at the 1% significance level, while this is not the case from 

1941 to 2012. Lombard’s test (Lombard 1987; Nayak and Villarini 2016), a rank-based 

non-parametric change-point test, identified a shift in the mean of the annual frequency of 

ARs in the year 1905 at the 1% significance level (19 ARs per year in 1871–1905 period 

and 23.6 in 1906–2012 period). Ferguson and Villarini (2012) also detected changes in the 

period 1905–1920 during the winter season for different atmospheric variables over the 

central United States. The results of their study suggest that the inhomogeneities could be 

due to the sparse observational network in the late 19th to mid-20th century years. The 

frequency from different products is shown in the bottom panel of Figure 4.2 for the most 

recent period of 1979–2013, highlighting large annual variations in the frequency of ARs, 

which I will examine further later in this chapter in the context of atmospheric modes. All 

the reanalysis products tend to agree with each other, and none of them shows consistent 

over- or under-estimation of the frequency of ARs. This is true for 20CRV2 as well, which 

assimilates only observations of surface pressure and temperature, and sea-ice distribution, 

and not vertical atmospheric observations from satellite, aircraft, radiosondes, etc., as is 

done in the other reanalysis products. A more concise comparison among the different 

products is provided in Figure 4.3, which shows the percentage of persistent AR timesteps 

present in the “reference” model (in rows) that are also observed in the “validation” model 

(in columns) for the period 1979–2012. Clearly, the higher spatial resolution models 

perform better: the higher resolution models (MERRA and ERA-Interim) are able to 

capture most of the ARs identified in the lower resolution models (JRA, 20CRV2, NCEP-

NCAR, NCEP-DOE), while the lower resolution models struggle to capture ARs identified 

in the higher resolution models. For example, in the first row only 67% of MERRA AR 

timesteps are identified in NCEP-NCAR, while in the corresponding last row, 83% of 

NCEP-NCAR ARs are observed in MERRA. The performance of 20CRV2 is generally 

acceptable, although somewhat smaller fractions of its AR timesteps are observed in the 

other models. 
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Figure 4.4 shows the time series of the annual mean and annual maximum duration of 

ARs in 20CRV2. The yearly mean and maximum durations are about 36 and 82 hours, 

respectively (Figure 4.4, top panel). As can be expected, the annual mean duration shows 

less variability (Coefficient of Variation: CV = 0.11); but the maximum yearly duration 

has larger year-to-year variability (CV = 0.24) with ARs lasting as long as 174 hours (~7 

days). The frequency histogram of all ARs (bottom-left panel) shows that the majority of 

ARs are shorter than 60 hours (~2.5 days), with the 95th percentile equal to 72 hours. The 

minimum duration of the longest ARs in a given year is about 48 hours, which means that 

each year an AR remains over the central United States for a minimum of 2 days. The 

results based on 20CRV2 are fairly consistent with the results from the other reanalysis 

products (not shown here). In most of the products, the longest duration ARs in the most 

recent decades occurred in the years 1990 and 2012 lasting for 174 hours (~7 days) and 

138 hours (~6 days ), respectively. These two ARs occurred on 8–15 March 1990 and 17–

21 March 2012, respectively. During these days, large amounts of rainfall with magnitudes 

in excess of 25mm/day were observed over a large areas in Alabama and northern Georgia 

in 1990, and Louisiana, Arkansas, Oklahoma and southern Missouri in 2012 AR. 

The seasonality of ARs is shown in Figure 4.5. Winter (summer) is the most (least) 

active season, with a total of 1445 (158) ARs from 1871 to 2012. Spring and fall have 

experienced 930 and 657 ARs, respectively. The seasonal distributions show that the 

maximum frequency of ARs during a given winter can be as high as 19 (Figure 4.5, top-

left panel), while for the summer it is only 6 (Figure 4.5, bottom-left panel). Table 4.1 

shows the details of the seasonality in 20CRV2 and compares the results across other 

reanalysis products. The seasonality of AR frequency is consistent across all the reanalysis 

products, with the highest frequency in winter and the lowest in summer. Based on the two 

highest resolution products (MERRA and ERA-Interim), on average there are 26 ARs each 

year over the central United States. Table 4.1 also shows the maximum number of ARs 

observed based on all the reanalysis products in their respective period of records, with the 

higher resolution products (MERRA and ERA-Interim) showing higher annual AR 

frequencies than the other four lower resolution products. It can be noted that as the spatial 

resolution decreases (from the top row to the bottom row), the frequency of ARs decreases, 

suggesting that higher resolution products are more apt in identifying ARs. One possible 
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reason for this could be the better spatial continuity in IVT fields offered by higher 

resolution models; however, further research is required to comprehensively answer this 

question. 

4.2.2 Impact on precipitation 

The contribution of ARs to annual precipitation is shown in Figure 4.6. Annual 

precipitation over the study area varies approximately from 800mm to 1500mm, with an 

average value of 1109mm over the period 1948–2013. Generally, years with high 

frequency of ARs tend to have larger precipitation magnitudes. AR-related precipitation 

(Figure 4.6, 3rd panel from the top) shows better correspondence with the annual 

precipitation. In a linear regression model with AR-related precipitation as the only 

explanatory variable for annual precipitation, the coefficient of determination is high (0.52; 

Pearson correlation coefficient of 0.72), suggesting that more than 52% of the variance in 

the annual precipitation over the central United States is explained by AR-related 

precipitation. Generally, the large precipitation years (e.g., 1973) have larger contributions 

from ARs. The bottom panel in Figure 4.6 shows that ARs provide significant contributions 

to total precipitation on a yearly basis, and the fractional contribution can be as high as 

45%. It is worth noting that this contribution is an average over the central United States 

taken here as the region 30°N–40°N and 100°W–80°W; therefore the contribution to 

specific locations can be higher. In 1993, for example, regions outside the study domain 

such as Iowa and northern Illinois, received large amounts of rainfall on the order of 

10mm/day (figure not shown); only a part the study domain observed high rainfall, 

resulting in a contribution of about 30% for the summer of 1993. All the products and the 

members of 20CRV2 suggest a similar pattern of year-to-year contributions. Similar results 

across all the products provide additional evidence regarding the AR contributions over the 

central United States. 

Although Figure 4.6 provides important insights into the AR contributions to total 

precipitation over this area, it is necessary to understand how these contributions vary 

spatially and across different seasons. Figure 4.7 shows the fractional contribution of ARs 

across the central United States at annual and seasonal time scales. At the annual scale, the 

fractional contribution can be as high as 30%, and a large area in the middle of the study 

region receives contributions in excess of 25%. Winter has the highest fractional 
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contributions, with a large part of the central United States receiving more than 60% of 

winter precipitation from ARs. These percentages tend to be lower in fall and spring, with 

less than 10% in summer. The summer contribution over the study region matches 

reasonably well with the results in Steinschneider and Lall (2016), who also show a 0%–

10% TME-based contribution. In their study, however, particularly high TME 

contributions (exceeding 70%) were observed over the northern regions beyond 40°N; 

however, the authors note that this could an overestimation due to the wet bias more 

prominent in summer specific humidity of ERA-Interim, which was used to compute the 

TME-based precipitation. The fractional contributions from high spatial resolution models 

(i.e., MERRA and ERA-Interim) are in general higher (see Figures 4.8–4.12). The annual 

fractional contribution is 30–40% over a large area and more than 60% for winter. In 

addition, the areal extent of the higher contributions is larger in these products. In the 

results of the AR climatology (Table 4.1), lower resolution products showed marginally 

lower AR frequencies, which potentially led to the underestimation of the AR contribution 

to the total precipitation. This could be important for AR impact analysis. Many studies 

have used low-resolution reanalysis products for understanding the role ARs play in 

precipitation and water resources; given these results, I recommend the use of high-

resolution products for AR impact assessment whenever possible. These results are similar 

to those by Lavers and Villarini (2015a), which are based only on ERA-Interim reanalysis 

data from the year 1979 to 2012. Here I focus on a longer period of record (1948–2012) 

and use six reanalysis products. Because the reanalysis products are not observations, the 

use of multiple datasets allows us to compare and contrast them, providing robustness to 

our conclusions. 

I also consider the contribution of ARs to precipitation extremes. Figure 4.13 shows 

the seasonality of the highest 1% daily precipitation events. A contrasting pattern is 

observed between summer and the remaining seasons. Summer has the highest frequency 

of extreme events over most of the areas in the northern part of our study domain, including 

all of the upper Mississippi River Basin and much of the Missouri River Basin. In the 

southern and southeastern United States, the frequency is unevenly distributed among the 

remaining three seasons depending on the location. The fractional contribution of ARs to 

the precipitation extremes at the annual and seasonal scales is shown in Figure 4.14. 
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Annually, over a large area, more than 40% of extreme precipitation events are associated 

with ARs. The percentage is smaller in the northern parts where most of the extreme 

precipitation events occur during the summer. More than 70% of winter extreme events 

over much of the central United States are associated with ARs. Spring and fall also show 

large fractions of extreme precipitation events linked to ARs. 

4.2.3 Impact on floods 

The fraction of annual maximum and POT flood events associated with ARs are shown 

in Figure 4.15. ARs can be responsible for more than 70% of the annual maximum peaks 

over large areas of the central United States, including Ohio, Tennessee, Alabama and the 

areas in the lower Mississippi River Basin. There is a strong contrast in the AR fractional 

contributions across the two sides of the Appalachian Mountains, with higher contributions 

(more than 80%) on the west side and significantly lower contributions (less than 40%) on 

the east side. This suggests that the Appalachian Mountains act as a flood generating agent 

in western regions, due to the potential for upslope transport of moisture, and as a barrier 

to the moisture transport to the eastern regions. Similar to what was found for the annual 

maxima, ARs provide major contributions to POT floods, with more than 70% of the events 

associated with these storms over a large area of the central United States. As can be 

expected, the structure of the region showing high percentages of POT floods resembles 

the storm track of extratropical cyclones over this area. In essence, the two plots suggest 

that ARs have a major effect on the long-term flooding across the central United States. 

As shown for precipitation, the effects of ARs on extremes is not constant during the 

year but exhibits a marked seasonality. This holds true for flooding. The seasonality of 

flooding (Figure 4.16) shows that spring is the most active season over almost the entire 

central United States, with more than half of the POTs occurring in this season. The 

northern part of our domain receives nearly all POTs during the spring season due to snow 

melt and rain-on-snow events in early spring (Villarini et al. 2011). Winter is also an active 

season for floods over our region, with higher fractions of annual peaks and POT floods 

associated with AR (Figure 4.15). For detailed information regarding the seasonality of 

flooding, consult Villarini (2016) and references therein. 

The seasonal contribution from ARs to POT floods is presented in Figure 4.17. I focus 

only on those stations that have more than 20 POT floods occurring in a given season. The 
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seasonal contribution from ARs to POTs is high for all the seasons except for summer, 

which, as we have seen earlier, is the least active flood season over much of the study 

region. Almost all the POT floods in winter and fall over the area from Michigan to 

northern Georgia are associated with ARs. In spring, the fractional contribution over most 

of the central United States is more than 50%. These results suggest that most of the floods 

over the central United States are governed by ARs. Long-term streamflow and AR records 

are particularly useful in delineating the areas that are vulnerable to ARs. The results on 

seasonal impacts here are in reasonable agreement with the results in Lavers and Villarini 

(2013b), except for some spatial discrepancies which may be attributed to differences in 

AR identification algorithm, the reanalysis products, and study period. The seasonal 

contributions in Lavers and Villarini (2013b), however, are based on small sample size of 

floods—for most of the stations, the number of events evaluated for AR contribution in 

winter and spring were less than 15, in summer less than 10, and in fall less than 5 (see 

Figure 3 of Lavers and Villarini (2013b)). With these small sample sizes, the statistical 

significance of the results is likely not large. In this study, in any seasons, only stations that 

have at least 20 flood events are evaluated for AR contribution, providing robustness to the 

present results. 

4.2.4 Relation of ARs with large scale atmospheric modes 

An important aim of this paper is to provide a link between large-scale atmospheric 

features and the frequency of ARs over the central United States. For this, I first consider 

the relationship between precipitation and the three atmospheric modes at the seasonal 

scale. Figure 4.18 shows the Pearson’s product-moment correlation between seasonal 

precipitation and each of the three atmospheric modes PNA, NAO, and AO. The PNA 

index has a strong negative correlation in winter and fall over much of the central United 

States, west of the Appalachian Mountains. Moving from west to east along the 

Appalachian Mountains, there is an abrupt change in correlation from strong negative to 

zero or mild positive correlations. AO shows strong positive correlation in winter and 

negative correlation in the summer. NAO has moderately positive correlation values during 

winter over the western parts of the central United States. In summer, strong positive 

correlation is present between AO, NAO and precipitation over the south-eastern parts of 

the central United States. The contrasting relations among the different seasons suggest 
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that these modes may not provide a strong signal at the annual scale, but the potential 

describe precipitation is high at the seasonal level. 

To further examine the physical connection between these atmospheric modes and AR 

activity, 500hPa geopotential height anomalies are plotted during ARs and compared with 

anomalies during the negative phase of PNA, and the positive phase of AO, and NAO 

(Figure 4.19). A dipole is present in the height anomalies during ARs (left column) over 

the United States. Such dipole is generally a part of a larger planetary wave of atmospheric 

circulation that oscillates over most of the longitudes in mid-latitude regions. Studies 

suggest that these quasi-stationary wave patterns are particularly apparent during extreme 

weather events over the Northern Hemisphere (Petoukhov et al. 2013). For instance, by 

examining the 300hPa meridional (v-) wind component of the two most persistent ARs of 

1990 and 2012 mentioned earlier, I find that both the ARs may have been accompanied by 

planetary waves of wavenumbers 5 and 6, respectively (Figure 4.20). However, further in-

depth analyses are needed to validate the finding. A high pressure region (ridge) is located 

over much of the eastern United States and a prominent low pressure region (a trough) is 

located over the central and western United States. A similar height pattern is observed in 

the work by Moore et al. (2012) who studied a major flooding event associated with an AR 

over the central United States, in Chapter 2, and more generally by Mallakpour and 

Villarini (2016b). The primary feature of this pattern is that the ridge over the eastern 

United States near the Atlantic Ocean coupled with a trough over the Great Plains and the 

western United States maintain poleward advection of warm and moist air from the Gulf 

of Mexico and sometimes from the Caribbean, into the central United States—this results 

in ARs over the central United States. A similar pressure pattern over the western North 

Atlantic, the North Atlantic Subtropical high (NASH), has also been shown to significantly 

modulate the meridional moisture transport over the central and eastern United States (Li 

et al. 2010; Li et al. 2012). This anomaly pattern is noticeable for all the seasons, though it 

is weaker in the summer. When I compare the AR anomaly pattern with atmospheric 

modes, I see that the anomaly pattern of the negative phase of PNA closely resembles the 

AR pattern. The positive phases of NAO and AO show height patterns similar to each 

other. In the positive NAO and AO phases, positive height anomalies can be observed over 

the eastern United States, but unlike ARs and PNA, height anomalies over much of the 
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United States are positive (3rd and 4th columns). The positive anomalies over the United 

States reduce the horizontal pressure gradient between the eastern and western United 

States, inhibiting the GPLLJ and southerlies (assuming simple geostrophic wind balance). 

Note that the positive anomaly over the western United States is generally smaller during 

AO than during NAO. Overall, for all the three indices, the patterns are the most (least) 

prominent in winter (summer). 

I used Poisson regression to approximately quantify the effect of the atmospheric 

modes on the frequency of ARs. Based on the findings in Figure 4.19, all the three modes 

(PNA, NAO, and AO) are used as covariates to model the seasonal frequency of ARs. With 

these three covariates, all the seven possible combinations, in addition to the intercept-only 

model term, were investigated for each season. First, I selected models for which all the 

covariates are significant, and then among this subset I selected the best model based on 

the lowest Akaike Information Criteria (AIC; Akaike 1974). The results are summarized 

in Table 4.2. 

For winter, PNA and AO have significant negative and positive coefficients, 

respectively, consistent with the results in Figure 4.19. This suggests that the two modes 

can have large influence in regulating the year-to-year frequency of ARs. For example, in 

the winter, a unit decrease in the standard PNA index can increase the frequency of ARs 

by about 25% (e0.22); similarly, a unit increase in the AO index can increase the frequency 

of ARs by about 15%. In Table 4.2, PNA also shows major effects on ARs in spring. The 

p-values for PNA and NAO during fall are close 0.10 suggesting a possible link between 

these two indices and the frequency of ARs in fall season as well. To examine how robust 

these modeling results are, I compare the observed and modeled frequencies of ARs using 

both in-sample and out-of-sample predictions (Figure 4.21). The out-of-sample estimates 

are based on the leave-one-out criterion in which the model is fitted based on all the data 

except one data point. In winter, the model based on PNA and AO captures the year-to-

year variability in the frequency of ARs well. The same is true for spring, even though 

there is much less year-to-year variability. The in-sample and out-of-sample estimates are 

very similar, which suggests that our results are robust and that the coefficients are not 

affected by potential outliers. 
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4.3 Discussion 

The development of long-term multi-product-based AR climatologies accomplished in 

this chapter is a major step towards understanding the hydrology and hydroclimatology of 

the central United States. In studying the impacts of ARs on annual precipitation, I found 

that the seasonal AR contributions are 10–60% depending on the season and location. A 

recent study by Steinschneider and Lall (2016) compared seasonal TME-based 

precipitation with total precipitation from CPC. The TME-based precipitation is generally 

smaller than the AR-related precipitation presented here over most of the central United 

States. For winter, for example, the TME contribution is less than 25%, whereas the AR 

contribution to the winter precipitation in this study is more than 45%. The reason for this 

discrepancy lies in the difference in the definitions of ARs and TME discussed earlier. 

Therefore, in terms of the hydrologic impacts over the central United States, ARs play a 

larger role than TMEs. 

Important differences are observed in the impacts of ARs on extreme precipitation and 

flooding. The fractional contributions of ARs to extreme precipitation events are much 

smaller than what I found for annual instantaneous flood peaks or POT floods (compare 

Figures 4.14 and 4.15). For example, if we consider the states of Indiana, Kentucky, 

Tennessee and Mississippi, 20%–60% of the annual extreme precipitation events are 

related to ARs; in contrast, 60%–70% of the flood events (peaks and POT floods) are 

associated with ARs. Over the central and eastern United States, more than two-thirds of 

extreme precipitation events are a result of mesoscale convective systems (~100km in 

length, MCS), and mostly occur in the summer months (Maddox et al. 1979; Stevenson 

and Schumacher 2014). On the other hand, ARs cause widespread rainfall, and generally 

persist longer than one day (often more than two days; Figure 4.4), which leads to high 

discharge and flooding. 

The seasonal and sub-seasonal prediction of precipitation extremes based on large-

scale atmospheric features is an emerging concept, particularly in the context of non-

stationary climate. Some strides have been made in this direction in recent studies (e.g, 

Gregersen et al. 2013; Renard and Lall 2014; Steinschneider and Lall 2015a). In this 

chapter, I explored this topic in the context of seasonal characterization of AR frequency, 

and found that PNA, NAO and AO can be useful predictors. The seasonal modeling of ARs 
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can be improved by incorporating additional relevant modes, or by considering pertinent 

atmospheric and oceanic fields (rather than single modes) as suggested by Renard and Lall 

(2014). 

Steinschneider and Lall (2015a) developed hierarchical models for winter precipitation 

extremes over northern California. The frequency of extreme events was modelled in a 

Bayesian hierarchical framework conditioned on the quantity of TME moisture entering 

the study area. The results showed that the model that included TME performed better in 

out-of-sample predictions as compared to the models that did not incorporate TME 

information. As we have seen in this study, large fractions of extreme precipitation and 

flood events are associated with ARs; ARs themselves are predictable from large-scale 

atmospheric modes with reasonable skill, particularly in the two most active flood seasons 

(winter and spring). This naturally suggests hierarchical/multi-level models for flood 

frequency conditional on the frequency of ARs, which itself is conditional on the climate 

modes. In essence, an additional level would be added to the model in Steinschneider and 

Lall (2015a). These models inherently assume that the large-scale climate modes manifest 

themselves by modulating the frequency of ARs, and ARs are directly responsible for the 

annual variations in the frequency of floods over the region. The assumptions are realistic, 

as can be inferred from our results. In Figure 4.18, I saw that the effect of the atmospheric 

modes is very much location-dependent. Therefore, additional improvements can be made 

in the models by incorporating spatial and temporal signatures of large-scale climate 

features. Based on these results, in the next chapter I will develop a Bayesian hierarchical 

non-stationary spatio-temporal model for the frequency of precipitation extremes over the 

central United States. 

In the 21st century climate model simulations, IVT is expected to increase by more 

than 20% over the United States and the surroundings oceanic regions (Lavers et al. 2015); 

moreover, the already apparent westward shift and increased intensity of summer NASH, 

and higher North-South movement in its western ridge (Li et al. 2010; Li et al. 2012) are 

expected to be exacerbated. In this context, the results presented here can have large 

implications. We have seen that ARs have a direct and strong link with extreme 

precipitation and flooding events; given the projected changes in IVT and NASH, it is 
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reasonable to expect an increase in the frequency of extreme precipitation and flooding 

events, controlling for other potential drivers of extremes precipitation and flooding. 

4.4 Summary and Conclusions 

This study presented a comprehensive analysis of ARs over the central United States. 

A long-term AR climatology is developed from six state-of-the-art atmospheric reanalysis 

products. On average, about 26 ARs affect the central United States each year, although 

the year-to-year variability in the frequency is large. Winter is the most active season in 

terms of AR activity (the frequency is more than 10 per season), followed by spring (~ 8 

per season) and fall (~6 per season). In summer, ARs are rare (the frequency is less than 2 

per season). Most ARs last for less than 3 days, but long-duration ARs (lasting for a week) 

occurred in the past. The AR climatology is similar across all the six reanalysis products 

considered here, although a slightly larger frequency of ARs is observed in products with 

higher spatial resolution. 

ARs have significant effects on the hydrology of the central United States. On average, 

ARs account for about 30% of the total annual precipitation, and the year-to-year 

variability in total precipitation can be largely explained by the variations in AR-related 

precipitation. In terms of seasonal contributions, winter receives nearly half of its total 

precipitation during ARs. Summer, on the other hand, has only less than 10% of its 

precipitation associated with ARs. The impact of these storms is more pronounced when 

focusing on extreme precipitation and flooding. About 20–70% of the highest 1% daily 

precipitation events are associated with ARs, although the fraction is season- and location-

dependent. The fractional contribution of ARs is even higher for floods. Over a large 

portion of the central United States, more than 70% of the flood events are associated with 

ARs. The results for instantaneous peak discharge and POT floods are similar. Large 

fractions of flood events in the two most active flood seasons (winter and spring) are related 

to ARs, supporting the notion that the seasonality of floods over the central United States 

is largely governed by ARs. 

Given the large impacts ARs have on hydrology, seasonal forecasts of the frequency of 

ARs can be extremely valuable. Depending on the season, I found that large-scale 

atmospheric modes (PNA, NAO, and AO) can have significant effects on the frequency of 
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ARs. In particular, PNA is useful in explaining the yearly variations in AR frequency for 

winter, spring and fall seasons. I quantified the effects of the atmospheric modes on the 

frequency of ARs using Poisson regression. The results showed that a unit decrease of 

standardized PNA index can increase the frequency of ARs by about 25% in winter. 

Additionally, PNA and NAO could potentially be important predictors in fall. None of the 

three modes showed significant effect on the AR frequency in summer, which is also the 

season with the lowest AR activity. Therefore, improved forecasting of these climate 

modes can lead to improved forecasting of ARs and associated impacts during the cold 

season. 
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4.5 Figures Chapter 4 

 

 

FIG. 4.1: The distribution of the USGS stream gaging stations selected for the study. 

Stations for annual instantaneous discharge peaks (daily averaged discharge) are shown in 

the left (right) panels. The top panels show the number of stations with data available 
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during a given year. The middle panels show the histograms of record lengths for all the 

stations. The bottom panels show the location and the spatial distribution of the stations. 

Note that while several of the stations are regulated to varying degrees, regulated and 

unregulated stations are treated in the same way in the analyses. 
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FIG. 4.2: Time series of the annual frequency of ARs. Top panel: yearly frequency (count) 

of ARs based on 20CRV2, NCEP-NCAR, and JRA-55. Also shown in this panel are the 

climatological mean from 20CRV2 (black horizontal line) and the range from 56 members 

of 20CRV2 (gray shaded area; occasionally, at some grid points the data in some members 

are missing). Bottom panel: yearly frequency of ARs based on six different reanalysis 

products (indexed by color; for 20CRV2 the ensemble mean is used) for the most recent 

period 1979–2013. 
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FIG. 4.3: Comparison of different products in reproducing AR frequency. Rows represent 

the “reference” product and columns represent the “validation” product. The numbers and 

the color scale represent the percentage of AR timesteps that are present in the reference 

model and are also observed in the validation model. The comparison is performed for the 

common period 1979–2012. 
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FIG. 4.4: Duration of ARs based on 20CRV2. Top panel: Time series of annual mean and 

maximum duration of ARs. Bottom panels: frequency histogram of the duration of all ARs 

(left), their annual mean (middle) and annual maximum (right) duration. 
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FIG. 4.5: Seasonality of ARs based on 20CRV2 over the 1871–2012 period. There are 1445 

ARs in winter, 930 in spring, 158 in summer, and 657 in fall.  
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FIG. 4.6: The top panel shows the frequency of ARs from different reanalysis products 

(indexed by color). The shaded region shows the range of frequency from the 56 members 

of 20CRV2. Second panel from the top: total annual precipitation over the central United 

States (defined as the region 30°N–40°N and 80°W–100°W) using CPC data. Third panel 

from the top: AR-related rainfall from all the products (indexed by colors). The light grey 

shaded region is the range of AR-related rainfall from the 56 members of 20CRV2. Bottom 

panel: similar to the 3rd panel from the top, but it refers to the fractional contribution to 

annual precipitation from ARs. 
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FIG. 4.7: Spatial distribution of the fractional contribution of ARs to total precipitation at 

the annual and seasonal scales based on 20CRV2 for the period 1948–2012. For clearer 

presentation, the percentages are plotted on 20CRV2 spatial grid rather than finer CPC 

grid. Although this has smoothing effects, the fractional contributions are not substantially 

different.  
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FIG. 4.8: Same as FIG. 4.7 but for MERRA. 
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FIG. 4.9: Same as FIG. 4.7 but for ERA-Interim. 
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FIG. 4.10: Same as FIG. 4.7 but for NCEP-DOE. 
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FIG. 4.11: Same as FIG. 4.7 but for JRA-55. 
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FIG. 4.12: Same as FIG. 4.7 but for NCEP-NCAR. 
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FIG. 4.13: Seasonality of top 1% daily precipitation events based on CPC data from 1948–

2013. 
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FIG. 4.14: Spatial distribution of the fraction of the top 1% daily extreme precipitation 

events associated with ARs. Results are based on 20CRV2 over the period 1948–2012. 
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FIG. 4.15: Fraction of flood events related to ARs based on annual instantaneous peak data 

(left panel) and POT floods (right panel). Results are based on 20CRV2 over the period of 

record for each stream gage station.  
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FIG. 4.16: Seasonality of POT floods based on average daily discharge data from long-term 

(more than 50 years of data) U.S. Geological Survey (USGS) gaging stations.  
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FIG. 4.17: Fraction of POT floods in different seasons associated with ARs. The grey dots 

are the stations that had less than 10 POT floods during the season. 
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FIG. 4.18: Relation between precipitation and large-scale atmospheric modes for different 

seasons. The figure shows Pearson’s product-moment correlation coefficient of seasonal 

precipitation with PNA (left column), AO (middle column), and NAO (right column). 
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FIG 4.19: Relation between the frequency of ARs and large-scale atmospheric modes for 

different seasons based on 20CRV2 data from 1950–2012. The panels show the 500hPa 

geopotential height anomalies during ARs (left column), days with negative PNA (2nd 

column from the left), days with positive AO (3rd column from the left), and positive NAO 

(right column). Anomalies are computed from the baseline climatological mean of 1950-

2012 data. 
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FIG. 4.20: Meridional (v-) wind velocity at 300hPa for the two longest ARs during 8–15 

March 1990 AR (top panel), and 17-21 March 2012 AR (bottom panel). 
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FIG. 4.21: Seasonal modeling of the frequency of ARs based on large-scale atmospheric 

modes using in-sample (left panels) and out-of-sample (right panels) estimates for different 

seasons. The top panels are for winter and the bottom panels are for spring. In each panel, 

the black dots are the observed number of ARs, the black line is the median from best 

Poisson model for the season (see Table 2), the dark-grey shaded region covers the 25th 

and 75th percentiles of the fitted Poisson distribution, and the light grey region covers the 

5th and 95th percentiles. Monthly standardized PNA and AO indices from CPC are 

available from 1950 onwards, so the models are based on data from 1950 to 2012. 
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4.6 Tables Chapter 4 

TABLE 4.1: Seasonality of ARs. Mean (Max) is the average (maximum) number of ARs per 

year (season). 

MODEL ANNUAL WINTER SPRING SUMMER FALL 

 Mean Max Mean Max Mean Max Mean Max Mean Max 

MERRA 26.8 37 11.1 16 7.9 15 1.5 4 6.2 11 

ERA-
INTERIM 

26.6 35 10.7 15 8.3 14 1.4 3 6.1 11 

JRA55 25.4 35 10.1 17 8.3 14 1.3 5 5.7 11 

20CRV2 22.5 35 10.1 19 6.5 15 1.1 5 4.6 11 

NCEP-
NCAR 

22 31 8.7 17 7.2 14 1.3 4 4.8 9 

NCEP-DOE 22.9 31 8.7 12 7.1 13 1.5 5 5.5 8 
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TABLE 4.2: Poisson regression models relating the frequency of ARs to large-scale 

atmospheric modes (“α” is the intercept; the “β” values are the coefficients for each of the 

predictors; “AIC” is the value of the Akaike Information Criterion). Only covariates that 

are significant at the 0.01 significance level are used. None of the atmospheric indices are 

significant for the summer season. Note that p-values for PNA and NAO for fall are close 

to 0.10. 

Season Model α β1 β2 AIC 

W
in

te
r Intercept 

Only 
2.29 --- --- 317.3 

PNA+AO 2.33 -0.22 (PNA) 0.13 (AO) 287.2 

Sp
ri

ng
 Intercept 

Only 
1.91 --- --- 294.2 

PNA 1.90 -0.18 --- 289.2 
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CHAPTER 5 

MODELLING THE FREQUENCY OF WINTER HEAVY PRECIPITATION 
EVENTS OVER THE CENTRAL UNITED STATES USING BAYESIAN 

HIERARCHICAL MODELS 

Precipitation extremes represent a major natural hazard with a high toll in terms of 

fatalities and economic impacts. This is particularly true for the central United States, 

which is a region that experiences these events on a yearly basis. Improved understanding 

and modeling of the drivers responsible for the occurrence of extreme precipitation over 

this area would provide the basic information to improve preparation and mitigation efforts. 

Recent studies suggest that specific climatic features can be useful to describe the 

frequency of heavy precipitation events over the central United States, potentially 

increasing our skill to forecast such events. For example, Harding and Snyder (2015) 

showed that a negative PNA pattern can result in persistent and long-wavelength planetary 

waves (see Figure 4.20) that can prolong the duration of GPLLJ. The increased duration of 

GPLLJ can be expected to increase the rainfall over the central United States. Mallakpour 

and Villarini (2016a) evaluated five climate indices to learn their effects on the frequency 

of extreme events using at-site Poisson regressions with 65 years of data over the 

contiguous United States. The results revealed that the climate indices can have contrasting 

effects at different locations within the same season; over much of the central United States, 

PNA showed a significant negative effect on heavy precipitation frequency (i.e., the more 

positive the value of the PNA index, the lower the number of heavy precipitation events, 

on average), particularly during winter. These results are in agreement with Mallakpour 

and Villarini (2016b) who analyzed the frequency of floods at 774 long-term USGS stream 

gages across the central United States. 

Over the past few years, we have seen several studies employing climate information 

for nonstationary extreme precipitation and flood frequency analyses, and below I highlight 

a few of these works to introduce the goals of this chapter. Three climate indices were used 

by Gregersen et al. (2013) to model the annual frequency of daily and 10-min extreme 

rainfall events at 70 stations in a Danish rain gage network with record lengths ranging 

from 10 to 30 years. The results showed that the East Atlantic (EA) climate pattern is able 
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to explain a significant portion of the variability in the annual frequency of extreme rainfall 

over the region. Sun et al. (2014) used a measure of El Niño-Southern Oscillation (ENSO) 

called the Southern Oscillation Index (SOI; it is measured as the mean sea level pressure 

difference between Tahiti and Darwin) to model the total precipitation and extreme 

precipitation in summer (December-January-February) at 16 stations in southeast 

Queensland, Australia, using the lognormal and Generalized Extreme Value (GEV) 

distributions, respectively. The parameters of the two distributions were treated as a 

function of the time-varying magnitude of the SOI index averaged during the austral 

summer. The results showed that a negative value of the SOI index (i.e., El Niño phase) 

has a significant effect on precipitation over the region; more specifically, the 100-year 

precipitation event is about 25–50% higher in magnitude than what is expected using a 

stationary model, which does not condition the parameters of the GEV distribution on the 

climate index. Renard and Lall (2014) modelled POT-based frequency of autumn 

(October-November-December) heavy precipitation events at 16 stations in the 

Mediterranean France using the Poisson distribution whose parameter was conditioned on 

autumn-averaged 500hPa geopotential height in a region in the North Atlantic. The authors 

used a spatial Bayesian hierarchical framework for the modeling, and assumed a climate 

effect that varied with time but remained similar among the stations with the goal of 

introducing spatial consistency among the different stations. The authors showed that the 

model with the higher prediction skill was the one in which the climate field was 

incorporated rather than the baseline model that did not include any climate covariate. The 

authors further noted that, at many stations, this model performed better than the model 

that included just the climate indices (e.g., NAO) as opposed to entire climate field. Some 

other useful references on climate-informed frequency analysis of heavy precipitation 

events include the works by Cooley et al. (2007), Aryal et al. (2009), Lima et al. (2015), 

and Sun et al. (2015). 

Chapter 4 helped us understand that heavy precipitation events over the central United 

States are in most cases directly linked to ARs (especially in winter season), and provided 

a better insight into the associated climate controls. This physical understanding can be 

further expanded to develop statistical models for the analysis of the frequency of heavy 

precipitation events, where the seasonal frequency is conditioned on ARs. Previously, 
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Steinschneider and Lall (2015a) used a similar idea to develop a Bayesian hierarchical 

model for the frequency and magnitude of winter extreme rainfall over Northern California. 

In their Bayesian framework, a Poisson distribution was fitted to the frequency of extreme 

events, with its only parameter conditioned on the average quantity of moisture delivered 

to the region by TMEs during winter. As in Renard and Lall (2014), the covariate (i.e., 

quantity of moisture delivered to the region) used by Steinschneider and Lall (2015a) 

varied only in time and was same for all the stations for a particular year. At all the 39 

stations considered in their work, the inclusion of TME-driven moisture considerably 

improved the predictions of extreme precipitation events compared to the other models that 

did not include this moisture quantity as a covariate. 

With the understanding of the relationship between climate modes, ARs, and extreme 

precipitation events obtained from the previous chapters, in this chapter I intend to develop 

different spatio-temporal statistical models for the frequency of heavy precipitation events 

during the winter season (December-January-February) over the central United States. 

Here, I focus on the frequency rather than the magnitude of these events because recent 

studies have shown an increasing trend in the frequency of floods and extreme precipitation 

events over much of the central United States (Mallakpour and Villarini 2015). In this 

context, it would be helpful to quantify the effect of prominent climate modes and ARs on 

the frequency of heavy precipitation events. 

Therefore, the specific objectives of this chapter are listed below: 

1. to statistically model the frequency of heavy precipitation events conditional on the 

frequency of ARs, with the aim of quantifying the effect of ARs on heavy 

precipitation and how this effect varies spatially over the study region. 

2. to statistically quantify the spatial effect of PNA and AO on the frequency of heavy 

precipitation. 

3. to develop a hierarchical model in which the frequency of heavy rainfall events is 

conditional on the frequency of ARs which, in turn, is conditional on magnitudes 

of PNA and AO. As we have seen in Chapter 4, heavy precipitation is directly 

linked to ARs, and ARs, in turn, are linked to PNA and AO, especially during 

winter. 
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4. to compare and contrast all these different models in terms of model fit and 

predictive skill. 

5.1 Data and Methods 

5.1.1 Data 

To obtain the frequency of heavy precipitation events, I retrieved daily precipitation 

data from the Global Historical Climatology Network (GHCN)-Daily dataset (Menne et al. 

2012). The GHCN-Daily dataset contains observational weather data at more than 80,000 

weather stations worldwide. All the data, regardless of their origin, are subject to the same 

quality control procedure, which includes checking for data duplication, values beyond 

limits (i.e., outliers), large differences between adjacent values in the data distribution, and 

other inconsistencies. For this chapter, I extracted precipitation stations for the central 

United States covering the region 30°N–45°N and 100°W–80°W and having data available 

from 1950 through 2014. For meaningful and robust analyses, only those stations that have 

at least 60 complete years during the period 1950–2014 are selected (I define a “complete 

year” as a year that has no more than 5 missing daily observations). Based on these criteria, 

I selected a total of 426 stations. 

The frequency of heavy precipitation events at each station is obtained using the POT 

method, where I used the 90th percentile of the precipitation distribution as the threshold. 

I then count the number of days exceeding this threshold every winter as my response 

variable. 

A potential issue with this definition of frequency is the temporal dependence in the 

heavy precipitation days that occur close to each other. This issue is investigated by Cooley 

et al. (2007) for the daily extremes over the Front Range of Colorado, where they compare 

the modelling results based on the frequency obtained from de-clustering POTs against the 

results without de-clustering; the authors reported essentially the same results from both 

methods. Temporal autocorrelation is expected to be more significant for short-duration 

events (i.e., sub-daily time scales). A more thorough examination of the potential impact 

of autocorrelation on my results could be examined in future work. 

The variables used to identify ARs, 6-hourly q, u-wind and v-wind are obtained from 

the most recent version of the 20th century reanalysis dataset 20CRV2C available from 
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1851 to 2014. This reanalysis product has the same horizontal and vertical resolutions as 

20CRV2. The same algorithm used in Chapter 4 is applied to 20CRV2C to identify ARs. I 

refer to AR-related rainfall as the daily precipitation for a rain gage that is located within 

250km of the AR major axis during at least one AR-time step. Based on these criteria, the 

frequency of winter ARs at a given station is the number of days ARs affected that station 

during winter. 

The two climate indices that I consider are PNA and AO. Even though these indices 

are available online from CPC 

(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/teleconnections.

shtml), I decided to calculate them directly from 20CRV2C so that all the results are 

consistent with a given reanalysis product. Therefore, I used monthly MSLP and 500hPa 

geopotential height fields over the Northern Hemisphere from 20ºN to the North Pole from 

1950 to 2014 from 20CRV2C.  

To calculate the AO index, I adopted the method developed by Thompson and Wallace 

(1998, 2000), also followed by CPC for operational purposes. In this method, monthly 

MSLP gridded fields are multiplied by �cos (𝑙𝑙𝑙𝑙𝑙𝑙) to ensure equal weights for equal-area 

grid cells. At all the grid cells in the dataset, MSLP anomalies are calculated with respect 

to the period 1976–2005, resulting in a matrix of anomalies (a two dimensional matrix with 

the first dimension corresponding to the months and the second dimension corresponds to 

the grid points). From this matrix, I obtain a variance-covariance matrix, giving the 

covariance of MSLP among the grid cells. I performed EOF analysis on the variance-

covariance matrix, and the resulting leading eigenvector (also called the first loading 

pattern when the eigenvector is multiplied by the square root of the eigenvalue) that 

corresponds to the highest eigenvalue is taken as the leading EOF of the Northern 

Hemisphere MSLP. The leading EOF when multiplied by the MSLP anomaly matrix 

produces the AO index for all the months from 1950–2014. 

The PNA index is obtained in a similar way but from rotated-EOF (REOF) analysis 

using the method by Barnston and Livezey (1987). First I performed the varimax rotation 

(Kaiser 1958, 1959) on the first 15 un-rotated loading patterns of the EOF analysis that 

explained more than 87% of the variance in the 500hPa geopotential height data. As shown 

by Barnston and Livezey (1987), REOF analysis helps to visualize the atmospheric patterns 
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present in the data better than the (un-rotated) EOF analysis. After the rotation, the resulting 

rotated loading patterns for December, January and February that resembled (upon visual 

examination) the PNA pattern for winter by CPC and Barnston and Livezey (1987) were 

taken as the PNA loadings; then the PNA index was calculated similar to the AO index. 

The AO and PNA indices obtained using this methodology matched well the CPC 

indices; during the period 1950–2014, the correlation coefficients between the indices 

provided by CPC and the ones I calculated were more than 0.90 for all the three winter 

months. 

5.1.2 Models 

Bayesian hierarchical models are becoming a popular approach for frequency analysis 

in hydrology. The reasons for such popularity lies in their ease of implementation for large 

and complex models, simple and natural ways of quantifying uncertainties, and simple 

ways of incorporating any prior knowledge about the parameters into the model. Because 

my precipitation and AR datasets are relatively large, a Bayesian hierarchical framework 

appears a perfect candidate for modelling purposes. The models that I develop and evaluate 

are detailed below. 

A Bayesian hierarchical model is generally described in three layers: 1) a data layer 

which provides the likelihood of the data; 2) a latent process layer, which models the 

underlying latent (physical) process that drives the model in the data layer; and 3) the prior 

layer, in which priors are specified for all the unknown parameters. 

Data Layer 

In the data layer, I assume the response variable Y follows a Poisson distribution with 

its mean parameter varying with location (station) and time (year). 

( ), ,s t s tY Pois µ∼  5.1 

where ,s tY is the number of heavy precipitation days at station s (s = 1, 2… S) and year t (t 

= 1, 2, …, T); ,s tµ is the mean of the Poisson process at station s and at time t. Both Y and 

µ  are of S×T dimension. 
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Latent process layer 

I consider different models to represent different underlying physical processes that 

drive the frequency of heavy precipitation events in the data layer. 

The simplest model is the base model (M1), which has fixed independent intercept 

terms for all the stations: 

M1: ( ),log s t sµ β=  

Here sβ  is the intercept for station s. With this model, the occurrences of heavy events 

at each station are assumed to be independent and identically distributed (iid) Poisson 

random variates with a mean parameter that is most likely concentrated near the 

climatological mean frequency of the station. 

In the second model (M2), the number of winter ARs is added as a covariate to describe 

the mean of the Poisson process in the data layer, and as such assumes that the frequency 

of heavy precipitation is directly related to the frequency of ARs at each station: 

M2: ( ), 0 1 , ,0 ,1 ,log * *ar ar ar ar
s t s t s s s tAR ARµ β β β β= + + +  

Here, 0
arβ is the fixed overall intercept (i.e., over the entire region), 1

arβ is the fixed 

overall slope coefficient related to the covariate AR, vector ,0
arβ−  (S × 1) is the station-wise 

offset to the intercept, with 0 ,0
ar ar

sβ β+  as the intercept for station s; similarly ,1
arβ− is the 

station-wise offset to the slope coefficient corresponding to ARs, with 1 ,1
ar ar

sβ β+  as the 

slope for station s. In this model, the spatial similarity in the frequency of extremes in 

assumed to be related to the spatial similarity in ARs, and this is introduced by providing 

random spatial structures on the intercept and slope coefficients: the parameter set 

,0 ,1[ , ]ar ar ar
s s sβ β=β  is treated as random spatial effects on site s. This is discussed in more 

detail in the prior layer later in this section. 

The third model (M3) takes PNA and AO indices as covariates, and hence assumes that 

the frequency of heavy precipitation events are directly related to the two indices: 

M3: ( ), 0 1 2 ,0 ,1 ,2log * * * *s t t t s s t s tPNA AO PNA AOµ β β β β β β= + + + + +  
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Similar to M2, 0β is the overall intercept, 1β is the overall slope coefficient related to 

the covariate PNA, and 2β  is the overall slope coefficient related to AO. Vector ,0β−  (S × 

1) is the station-wise offset to the intercept, with 0 ,0sβ β+  being the intercept for station 

s; ,1β− is the station-wise offset to the slope coefficient corresponding to PNA, with 

1 ,1sβ β+  being the slope for station s; similarly, ,2β− is the station-wise slope offset to the 

coefficient corresponding to AO, with 2 ,2sβ β+  being the slope for station s. As in M2, 

the coefficients. ,0 ,1 ,2[ , , ]s s s sβ β β=β  are treated as random effects on site s. As will be 

shown in the prior layer later, a spatial structure is assumed on the parameter set 

,0 ,1 ,2[ , , ]β β β− − − −=β . 

The most complex model (M4) that I evaluate is the one where the frequency of heavy 

precipitation events is directly related to the frequency of ARs, which in turn is directly 

related to the PNA and AO indices. Hence, an additional level is introduced to describe the 

frequency of ARs as shown below. As such, the relationship between the frequency of 

heavy precipitation and the two climate indices is thought to be indirect, with ARs acting 

as a bridge between the two layers: 

M4: 

( )
( )( )

( )

, 0 0 , ,0 ,1 ,

, ,

, 0 1 2 ,0 ,1 ,2

log * *

~ log

log * * * *

ar ar ar ar
s t s t s s s t

s t s t

s t t t s s t s t

LAR LAR

AR Pois LAR

LAR PNA AO PNA AO

µ β β β β

β β β β β β

= + + +

= + + + + +

 

In this model, ,s tAR is the observed frequency of ARs at station s and at time t; ,s tAR

is assumed to follow a Poisson distribution with mean ,s tLAR at station s and time t. LAR

is estimated based on the covariates PNA and AO; 0β is the overall intercept for the 

observed AR frequency, 1β  and 2β are the overall slope coefficients related to the 

covariates PNA and AO. As earlier, the vectors ,0β− , ,1β− and ,2β−  are the station-wise 

offsets to the intercepts, and the two slope coefficients for AR frequency; 0
arβ is the overall 
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intercept for the frequency of heavy precipitation, 1
arβ is the overall slope parameter related 

to the covariate AR, and 0 ,0
ar ar

sβ β+ and 1 ,1
ar ar

sβ β+ provide the spatial effects to the 

intercept and the slope parameters. The spatial structure on the parameter matrices 

,0 ,1 ,2[ , , ]ar ar ar arβ β β− − − −=β and ,0 ,1[ , ]β β− − −=β  is provided in the prior layer below. 

Prior layer 

To complete the hierarchical formulation, for all the unknown parameters in the models 

I need to assume prior distributions, which may include any prior experience one has about 

the parameters. For most of the parameters in these models, I will use non-informative and 

weakly-informative priors, which means that all the information for the posterior 

distributions of the parameters are provided only by the data. For M1, the intercept 

parameters sβ are provided with independent weakly-informative Gaussian priors with 0 

mean and a large variance (0.001-1); here, independence in the priors that no information 

is shared among the stations to estimate the parameters. Independent flat priors are adopted 

for all the fixed parameters that define the overall intercept and slope terms ( 0β , 1β , 2β ,

0
arβ and 1

arβ ) for the other three models. 

For the other parameters of M2, M3 and M4 (i.e., ar
−β −β ), joint models called 

multivariate conditionally autoregressive models (MCAR) are assumed as priors. These 

models provide ways to share information across the neighboring stations, and hence 

provide spatial structure to the parameter sets. In addition, MCAR is also useful in 

estimating correlations between different parameters, such as the correlation between 0β

and 1β . MCAR is a multivariate version of the CAR model (Besag 1974; Mardia 1988), 

and assumes a zero-mean multivariate normal distribution for the parameter sets; 

specifically: 

( )1,MCAR τ −
− ∼ Σ =β 0  5.2 

Where, −β is an S ×p matrix, with p being the number of parameters (for M2 is 2, intercept 

and slope), Σ  is the variance-covariance matrix and τ is the precision matrix with size S*p 
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× S*p. This results in a conditional multivariate normal distribution for the parameter set 

for station s as: 

1
: ( ) ,

: ( )

,
,

| ,s j j NB s s j j s s
j j NB s

s j
s j p p

s

MVN W

w
W I

w

τ −
∈

∈

×

 
Σ = 

 

=
+

∑β β β

 5.3 

where NB(s) is a set of neighbors of station s, ,s jw is the weight expressing the spatial 

dependence between stations s and j, and p pI × is an identity matrix. Here, without any prior 

knowledge, I set unit weight for each neighboring station and zero weight for the rest: 
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For the MCAR prior, stations within a distance of 150km were considered as neighbors 

of each other; based on this spatial criterion, only one station ended up with a lone neighbor, 

while there are 12 neighbors for each station on average. 

The precision matrix is denoted with sτ , and its inverse ( sΣ ) gives the variance-

covariance matrix of the site-specific intercept and slope parameters, assumed to be the 

same for all the stations. The diagonal entries of sΣ  are 2
0σ , 2

1σ , and 2
pσ , where 2

0σ gives the 

variance of the intercept parameter, while 2
1σ , 2

pσ are the variances corresponding to first 

and pth slope parameters. With this formulation, the correlation between different 

parameters can be obtained from the off diagonal elements of sΣ : for example, 

[ ]
0,1 2 2

0 1

1,1sρ
σ σ

Σ
= is the correlation between the intercept parameter and the first slope 

parameter, while 1,2ρ is the correlation between first and the second slope parameters. The 

hyperparameter matrix sτ is the only term without a prior distribution, and its specification 

needs extra care; this is because we need to ensure that sτ is positive definite, so that the 
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precision parameters 2
0σ and 2

1σ are non-negative, and the correlation between the 

parameters is strictly between -1 and 1. A convenient prior in such cases is a multivariate 

analog of the gamma distribution called the Wishart distribution ( ),Wish νΩ , where Ω  is 

the scale matrix and ν is the number of degrees of freedom. With this, the prior mean of sτ  

is the matrix 1*ν −Ω ; when we setν  equal to the number of parameters p, the result is the 

least informative prior from the Wishart family on sτ . The prior distribution,

( ), 1Wish pνΩ = + , while ensuring positive semidefinitiveness of sτ  has an added 

advantage that it produces a non-informative uniform prior ranging from -1 to 1 on the 

correlation parameters. The only drawback with the Wishart prior is that it constrains the 

variance parameters 2
0σ and 2

1σ . A tricky solution is the use of the scaled-Wishart 

distribution as shown in Gelman and Hill (2007); however, I experienced difficulties in 

achieving the convergence of the scaling parameters of this distribution with these datasets. 

For this reason, I use ( ), 1p pWish I pν× = +  as the prior for sτ . 

A few points one may note from the above models and the MCAR prior formulation: 

1. The prior mean of the parameters at a station is taken as the weighted average of 

the neighboring stations. 

2. The MCAR model assumes the same correlations among parameters, and the same 

variances of intercept and slope parameters for all sites. These assumption can be 

relaxed, albeit at a higher computational cost. 

3. Constraints, such as ,0
1

0
S

s
s
β

=

=∑  for the intercept parameters, are necessary on the 

random spatial effects for their identification along with the respective fixed 

parameters. 

Here, we have used MCAR model instead of geostatistical models, such as the ones 

where the covariance matrix for stations is powered exponential, because it involves taking 

the inverse of a large matrix at each iteration in Gibbs sampling, which makes the 

convergence very slow. 
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Note that in the above models, I have denoted all the parameters that include ARs as 

covariate with a superscript (e.g., 0
arβ in M2 and M4). Similarly, the correlation terms 

related to the AR covariate are written as 0,1
arρ  for these models. 

To obtain the posterior simulations from these models, I used an open source and 

widely used program OpenBUGS (Bayesian inference using Gibbs sampling; Spiegelhalter 

et al. 2007) along with the R (Team 2013) package R2OpenBUGS (Sturtz et al. 2005). The 

programs are run on a 64-bit windows machine with 3.4GHz CPU speed and 16GB RAM. 

5.1.3 Convergence 

The accuracy of Markov Chains Monte Carlo (MCMC) simulations critically depends 

on their convergence to a stationary distribution; for this reason, a lot of research has been 

devoted to this topic in the last few decades, leading to many convergence diagnostics. 

Each of the diagnostics seems to have some advantages and some disadvantages, and the 

use of multiple diagnostics for checking the convergence of the MCMC simulations has 

been recommended (Cowles and Carlin 1996; Brooks and Gelman 1998). A review of 

some of the most common diagnostics can be found in Cowles and Carlin (1996) and 

Brooks and Roberts (1998). In addition to the visual examination of trace plots, I use 

multiple diagnostic methods in this chapter, and all the diagnostics can be readily obtained 

using the R package CODA (Plummer et al. 2006). The diagnostics that I use in this chapter 

are briefly described here. 

Potential scale reduction factor: Gelman and Rubin (1992) pointed out that 

diagnostics obtained by running a single MCMC chain are not good enough to claim 

convergence, and more than one chain with different/overdispersed initial values should 

be evaluated. On this ground, the authors propose the multi-chain based potential scale 

reduction factor ( R̂ ) to diagnose convergence. This diagnostic was later modified by 

Brooks and Gelman (1998) and is now perhaps the most commonly used convergence 

diagnostic in the Bayesian literature. The value of R̂  is calculated based on the ratio of 

within-chain variances and between-chain variances of the parameters of interest, with a 

value of 1 suggesting unbiasedness of the two variance estimates. To calculate R̂ , and for 

all the inferences in this chapter, I ran five MCMC chains with dispersed initial values and 

saved the sample values from the last 2500 iterations (after burn-in iterations). The value 
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of R̂ is obtained for each parameter individually and as a multivariate version for all the 

parameters jointly (Brooks and Gelman 1998). An approximate convergence is diagnosed 

when the upper confidence limits of R̂ for all unknown parameters are less than 1.005. 

Furthermore, for parameters that are known to have difficulty in converging, such as the 

precision parameters (e.g., 2
0σ ), I monitor how R̂  changes with the increase in the number 

of iterations. For this, R̂  is calculated at different segments in the MCMC iterations, with 

the first value of R̂ calculated with the first 50 iterations after burn-in, the second one 

calculated with first 100 iterations, the third one calculated with first 150 iterations and so 

on. By computing R̂  in this way and by plotting its values as a function of iterations, I 

ensure that the single estimate of R̂ using all iterations is not accidently close to 1. 

Geweke’s score: Geweke (1992) devised a standard score statistic to compare the 

sample means of the two segments of an MCMC chain. Under the stationarity assumption, 

the sample means should be normally distributed with equal means and variances. In 

CODA, Geweke’s Z-score is calculated as the difference between two means divided by 

the standard error of the difference in mean. A score of more than 2 (hence, p value <0.05) 

does not provide enough evidence that the two means come from the same distribution, 

hence convergence is not diagnosed. In CODA, it is easy to obtain the Geweke’s Z-score 

based on different segments of the first and second half of a chain (see Plummer et al. 

(2006) for further details). I tracked the Z-scores of all parameters using ten segments of 

each of the five chains. 

Raftery and Lewis diagnostics: MCMC iterations inherently have autocorrelations 

that can cause errors in estimating the extreme quantiles and inefficient convergence. 

Raftery and Lewis (1992) proposed a diagnostic that estimates the minimum number of 

MCMC iterations required to estimate the posterior distribution of a quantile with a given 

precision with a given probability. For this diagnostic, CODA provides a measure 

dependence factor (I) calculated based on the ratio of the required sample size from the 

data and the minimum required sample size assuming there are zero autocorrelations. For 

a parameter, values of I larger than 5 suggest that there are large autocorrelations in the 

samples, possibly affecting the accuracy of the estimated quantiles. 
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5.1.4 Validation and comparison 

In the following, I describe the multiple criteria that I employ to validate and compare 

the models. 

Posterior correlations: Posterior correlations between model predictions and 

observations are simple and efficient measures of model performance, allowing 

comparisons among models. At each station, I take the median of the posterior Spearman’s 

correlation coefficient between posterior predictions and the observations over all the 

calibration years (i.e., 1950–2010). The comparison of the correlations from the models 

M2 M3 and M4 with the baseline model M1 shows how closely they reproduce the 

observations at different locations. 

Posterior error ratio: For each station, the absolute median posterior error ratio (ER) 

is calculated as: 
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where 1
,

M
s ty and 2

,
M
s ty are the posterior median predictions from for station s and year t from 

model M1 and M2, respectively. 2
s
MER  compares the absolute error of model M2 with the 

baseline model M1, and it is calculated for M3 and M4 in a similar way as well. Values of 

2
s
MER less than 1 suggest that M2 performs better than M1 at site s. ER is calculated for 

both the calibration period (T = 61) and for prediction period (T = 4; from 2011 to 2014). 

Probabilistic rank skill score: For models that provide probabilistic forecasts on 

categorical/count outcomes such as the ones in this chapter, point error measurements, such 

as ER, may not do justice in comparing the models, as the predictions are not a single value, 

but a range of outcomes that are assigned different likelihoods of occurrence. For such 

cases, an alternative metric called the ranked probability score (RPS) has been suggested; 

for a particular observation, it measures the difference between the forecasted cumulative 

distribution (CDF) and the observed distribution for a certain number of discrete categories 

(see Weigel et al. (2007) and Gneiting and Raftery (2007) for further information). 

Specifically, for an observed frequency ,s ty : 
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where, ,( )f s tP Y k≤ and ,( )o s tP Y k≤ are the forecasted and observed CDFs of Y. For the 

Poisson counts, ( ) 0oP Y k≤ =  for ,s tk y< , and 1 for ,s tk y≥ . Here, I have used k = 0 

through 15 categories/counts for the comparison of the CDFs. , 0s tRPS = suggests a perfect 

forecast, while a forecast with , 0s tRPS > is not a perfect one. For comparing different 

models, one can develop what is known as ranked probability skill score (RPSS; Wilks 

2011) as below. 
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A positive (negative) value of RPSSs suggests that M2 provides a superior (inferior) 

forecast than M1 for site s. I calculate RPSS for models M2, M3 and M4, and for both 

calibration and validation periods. 

5.2 Results 

Across much of the central United States, winter is an active season both in terms of 

heavy precipitation and ARs, as shown in Figure 5.1. There is large spatial variability in 

these frequencies, with heavy precipitation events having a higher frequency over the 

southeast part of the region and decreasing as we move to the northwestern part of the 

domain. ARs are the most frequent along the central and northeastern part of the region, 

resembling the storm track of extratropical cyclones passing over the central United States, 

with their frequency decreasing as move away from this region. There is a marked 

resemblance in the spatial pattern of ARs and the heavy precipitation events, in that the 

frequency of heavy precipitation events is generally higher in the areas where the frequency 

of ARs is high. Moreover, the two frequencies averaged over the entire region have a high 

correlation of 0.51 over the 1950-2014 period, suggesting that the frequency of ARs can 

be a valuable covariate for modelling the frequency of heavy precipitation events. The 

correlations of PNA and AO with the average frequency of heavy precipitation events over 
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the region are -0.39 and 0.23, respectively. PNA and AO have a higher correlation with the 

frequency of ARs, with values of -0.70 and -0.44, respectively. The models discussed 

above will further enlighten us regarding the relationships among the variables, and how it 

varies in space across the study region. 

5.2.1 Convergence 

As discussed earlier, the convergence of all the parameters in a Bayesian model is key 

to its inferences and predictions; all the parameters of all the four models showed 

acceptable convergence within reasonable computational times. First, I check R̂  for all 

the parameters and summarize the results in Table 5.1. After observing satisfactory upper 

credible limits of less than 1.005 for all the parameters, I concentrate on the parameters 

that had difficulties in converging. I monitor R̂  for these parameters of the model M2 in 

Figure 5.2: these results indicate convergence as the R̂ curve approaches a value near 1.0, 

where it straightens and becomes parallel to x-axis as the number of iterations increase; 

moreover, the difference between the median of R̂  and its upper credible limit is not large, 

and both remain close to a value of 1.0 along the curve, providing further evidence of 

satisfactory convergence. 

In addition to the satisfactory values of R̂ , the Geweke’s Z-score had p-values larger 

than 0.05, and the values of the dependence factor I rarely exceeded the limit of 5, again 

supporting a satisfactory convergence for almost all the parameters of all models in the five 

chains. I obtain similar results for the parameters of models M3 and M4. 

The number of simulations and time taken for the convergence of the four models are 

provided in Table 5.1. As can be expected, M1 converges relatively quickly as it does not 

include any covariate, whereas the model M2 with a spatio-temporal covariate (i.e., number 

of ARs) requires twice as many iterations as M1. Understandably, M4 is the slowest model, 

requiring the largest number of iterations and about 24 hours to converge. As far as model 

M3 is concerned, I do not believe the time it takes is much smaller than M2; the two models 

are comparable, at least for practical implementations. 

In addition to a summary of the convergence characteristics, Table 5.1 provides a 

general assessment of the models in terms the deviance information criterion (DIC; 

Spiegelhalter et al. 2002; a Bayesian analog of AIC), and effective number of parameters 
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(pd; Spiegelhalter et al. 2002). DIC is a measure of the out-of-sample predictive ability of 

the model of interest, and it penalizes the models accordingly to their complexity. Like 

AIC, DIC is not very useful alone but on a relative scale, it allows comparisons among 

different models, with the model with the lowest DIC being favored as the best. Models 

with lower DIC values are expected to provide improved short terms predictions. As can 

be seen in Table 5.1, models M2, M3, and M4 show improvements with respect to the 

baseline model M1, with M2 (which has ARs as covariate) showing the best performance. 

How significant are the differences in DIC values is not very clear, but a general rule of 

thumb is that a DIC difference of more than 10 can be considered large enough to support 

a lower DIC model over the other ones (Lunn et al. 2012). I note that the values of DIC are 

questionable is models such as here where the number of parameters increase as the sample 

size increases. 

OpenBUGS provides an additional output (pd), which is taken as the ‘effective number 

of parameters’ in the model. Here, pd is calculated from the DIC for which the deviance is 

based on the parameters in the lowest level of the hierarchy. That is, if a hierarchical model 

has a parameter ( )fθ η= , then ( )|Deviance L y η∝  is used to calculate pd instead of 

( )|Deviance L y θ∝ , where ( )|L y θ is the likelihood of the data given θ . Hence, I 

assumed that the lowest-level parameters determine the complexity of the model, which 

can be argued about. More useful in random-effects models, where information is shared 

among the effects, and in Bayesian hierarchical models, where parameters are constrained 

by priors, pd provides an estimate of the actual number of parameters in a model. As per 

Table 5.1, M1 has the highest number of effective parameters which is equal to the number 

of stations S, because all the parameters are fixed; hence it is the most complex model. The 

complexity of the other three models is much lower than M1 and comparable to each other. 

5.2.2 Posterior summaries 

The posterior summary of the fixed effects parameters of M2, M3 and M4 are provided 

in Table 5.2. First note that none of the fixed effects parameters’ credible intervals includes 

zero; hence we have strong evidence that heavy precipitation over the entire region is 

related to the selected covariates (i.e., ARs, PNA and AO). As per M1, the expected 

frequency of heavy precipitation events over the region without any AR is about 
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1.539 4.72e = ; ARs have a positive effect on precipitation extremes, with one additional AR 

resulting in about ( )0.042100 1e −  ~ 4% increase in the frequency of heavy precipitation 

events over the region. Based on Figure 5.1, the annual average frequency of ARs across 

the region ranges from 0 to 10: if five ARs occur in a year, the frequency of heavy 

precipitation events can be expected to increase by about ( )0.042*5100 1e − =23%. From the 

model M3, the expected frequency of precipitation events is about 1.79 6e = when both 

PNA and AO are zero, and the two indices have decreasing and increasing effects, 

respectively, on the expected frequency of precipitation extremes. A unit decrease in PNA, 

keeping AO fixed, increases the frequency of heavy precipitation by about 

( ).116100 1 11%e − = . Similarly, a unit increase in AO, keeping PNA fixed, can be expected 

to result in a 2% increase in heavy precipitation events. In model M4, the effect of the 

estimated AR frequency is similar to the observed AR frequency using M2 (i.e., compare 

0
arβ and 1

arβ of M2 and M4, respectively). This is encouraging as it suggests that if we can 

estimate the frequency of ARs precisely from large-scale atmospheric features, we can then 

estimate heavy precipitation frequency reasonably well, without the need to identify ARs. 

In addition to the frequency of precipitation, M4 allows us to measure the effect of 

PNA and AO on AR frequency. The effects of PNA and AO on ARs are much larger than 

on precipitation extremes—here, a unit decrease in PNA, keeping AO fixed, can be 

expected to result in a ~44% increase in ARs, and similarly, a unit increase in AO, keeping 

PNA fixed, results in a ~10% increase in ARs. 

The overall fixed effects parameters have provided valuable information about the 

effects of the covariates at the regional scale. However, these effects can vary spatially 

across the region. To better understand this spatial variability, I show the posterior median 

of the AR slope coefficient at each station (i.e., median of 1 ,1
ar ar

sβ β+ at station s) from 

model M2 (Figure 5.3). The frequency of ARs has a positive effect at almost all the stations 

in the central United States, and the effect is stronger along the storm track of extratropical 

cyclones. Here, an additional AR can result in more than ( )0.10100 1 10%e − =  increase in 

heavy precipitation events, and the increase could be more than ( )0.10*5100 1 65%e − =  if 
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five additional ARs occur over these stations. The spatial variations in PNA and AO slope 

coefficients (i.e., medians of 1 ,1 2 ,2 and s sβ β β β+ + at station s) of models M3 and M4 are 

shown in Figure 5.4. As described above, these models have spatial structures on the slope 

coefficients, with the goal of improving upon independent at-station Bayesian models due 

to the pooling of information across the neighboring stations. I do not intend to extensively 

compare the M3 slope coefficients with at-station models’ coefficients, but a visual 

comparison in the top two panels of Figure 5.4 shows a smoothing effect on the coefficients 

in M3 as opposed to at-station models. In these panels, PNA and AO show differing effects 

across the region; however, the contrasting regions are more clearly delineated in M3, an 

advantage of providing spatial structure to the slope coefficients. 

Focusing on the middle panels, PNA has a negative effect over the central and 

northeastern parts of the central United States and a positive effect over the south western 

part of the region. Keeping AO fixed, a unit decrease in PNA magnitude can result in a 

22% increase in heavy precipitation events over the northeastern areas, when a similar 

increase in the frequency can be expected at the southwestern stations. Considering the 

effects of AO, an increase in its magnitude generally tends to increase the frequency of 

heavy precipitation events; the increases, however, are larger over the western part of the 

region, where a unit increase in AO magnitude can result in more than a 10% increase in 

the frequency of heavy precipitation events. 

PNA and AO slope coefficients do not seem to have large spatial variations for AR 

frequency (Figure 5.4, bottom panels) compared to what is observed for precipitation 

extremes. The two indices have, respectively, decreasing and increasing effects on the AR 

frequency over most of the stations, except for the stations south of the Appalachian 

Mountains, where the two indices have little to no effect on their frequency. The effect of 

the two indices is stronger on ARs than on precipitation extremes. For a fixed AO, a unit 

decrease in PNA can increase the frequency of ARs by more than 50% at some stations, 

while a unit increase in AO (fixing PNA) can result in more than 15% increase in AR 

frequency. 

After understanding the effects of the covariates on heavy precipitation and ARs, I 

focus on the relationships among different estimated random effects. Table 5.3 presents the 

posterior correlations of the random parameters in the three models. In model M2, the 
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correlation between the intercept and the slope parameter corresponding to ARs is negative 

(median 0,1
arρ =-0.349), suggesting that stations that have lower values of the intercept (i.e., 

lower expected frequency of heavy precipitation events without any AR) tend to have 

larger AR slopes (i.e., more affected by AR occurrences). On the other hand, stations with 

higher values of the intercept have lower slope values for ARs (i.e., they are less affected 

by ARs). 

For M3, the correlation of the intercept with the PNA slope coefficient 0,1ρ  is small (-

0.02), while it is larger and positive with AO (0.141) with a high probability. Hence, the 

stations that have larger intercepts tend to have larger AO slopes. The correlation between 

AO and PNA (median 1,2ρ =0.186) suggests that stations generally provide similar 

response towards PNA and AO. Viewed differently, an increase in the frequency of 

extremes due to the negative PNA can be, for example, offset by a decrease in AO. 

As expected, for M4 the relationship between the intercepts and slopes of the estimated 

ARs ( 0,1
arρ ) is similar to the one in M2. However, unlike precipitation extremes, the 

relationship between the intercepts and slopes of PNA is negative (median 0,1ρ = -0.2) with 

a high probability for the AR frequency, which suggests that sites that have higher intercept 

tend to be less affected by PNA, and vice versa. The other two correlations ( 0,2ρ  and 1,2ρ

) are negligible. 

5.2.3 Validation and comparisons 

Earlier, I presented the DIC criterion as an important measure that provides information 

about the overall fit of the models, leading to M2 as the best model. In this section, I expand 

such analysis using the measures discussed earlier in section 5.1.4. Figure 5.5 provides the 

posterior correlation between observed and posterior predicted frequency of heavy 

precipitation at each station. From this figure, model M1 performs poorly, and almost all 

the stations have near-zero correlations; the reason is that the intercept parameter for each 

station is concentrated near its climatological value, resulting in poor posterior predictions 

that do not vary according to the prevailing weather patterns. 
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The other three models have high correlations over the central and northeast regions of 

the central United States, which are the areas with the highest frequency of ARs (Figure 

5.1). The correlations over the other regions are relatively weak. In comparing the three 

models, M2 performs better over several stations, especially the stations located along the 

AR track. 

The second measure I discuss for the comparison of the models is ER, shown in Figure 

5.6 for both the calibration and prediction periods. In the calibration period, all three 

models perform better than the baseline model over a region which experiences a high AR 

frequency; over the other locations, the models perform at least as good as the baseline 

model. Among the three models, M2 shows the best performance over the region covering 

Illinois, Indiana, Ohio, Kentucky, Tennessee and the surrounding locations, where the 

posterior absolute error at some stations is about 30% smaller than the baseline model. In 

the prediction period, however, the performance is not always better than the baseline 

model. M2 performs better than the baseline model over many stations, but the 

performance lacks the regional coherence that was observed in the calibration period. 

Nevertheless, this model performs better than models M3 and M4. 

As discussed earlier, measures based on point estimates may not be the best choice for 

probabilistic models; therefore I show RPSS for the three models in Figure 5.7. Similar to 

the above comparisons, all the models show improvement upon the baseline model in the 

calibration period, and for most of the stations in the prediction period. While M3 performs 

reasonably well over the northern and northeastern areas of the study domain in the 

prediction period, its performance is worse than the baseline over regions such as 

Tennessee and Kentucky, where the performance of these models was good in the 

calibration period. Among the three models, M2 has the best performance at almost all the 

stations both in the calibration and prediction periods. For these models, a larger number 

of stations show better performance in the prediction period, for example over eastern Iowa 

and Ohio (Figures 5.6-5.7).  

5.3 Discussion and conclusions 

In this chapter, I modelled the frequency of winter heavy precipitation events at 426 

long-term stations over the central United States. In the Bayesian hierarchical modeling 
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framework employed here, the frequency of heavy precipitation events is conditioned on 

large-scale atmospheric modes (PNA and AO) and ARs; all the three covariates have high 

correlations with regional heavy precipitation over the past 65 years of record. Three 

models were developed and compared with a baseline model with no explanatory variable: 

all three models showed improved performance over the baseline model. Furthermore, the 

results of the model comparison showed that the model with ARs as covariate 

outperformed the other ones, including the one that had PNA and AO as covariates. This 

indicates that precipitation extremes over the central United States have a more direct 

relationship with ARs, than with PNA and AO. 

PNA and AO have a more direct relationship with ARs as suggested by their 

correlations, and more thoroughly by model M4 in which I conditioned the AR frequency 

on PNA and AO magnitudes. These results support my assumption that ARs play a leading 

role in producing heavy precipitation events over the central United States, whereas PNA 

and AO patterns play a major role in the development of ARs over the region. 

Taking a closer look at the results from M4, the relationship between ARs and heavy 

precipitation events is well captured, even though the covariate of this model is the 

estimated mean frequency of ARs from PNA and AO; moreover, the relationship between 

the frequency of ARs and the two climate indices is consistent with physical 

interpretations—these two points are very encouraging. The only issue with this model is 

the computational time it takes to converge, but this can be greatly improved with a simple 

and a reasonable assumption. Instead of having station-wise AR frequency, one can use 

regional AR frequency as the covariate, which significantly reduces the dimensionality of 

the model, and as such should lead to significantly faster convergence. This model, I 

believe, will compare favorably with the model with the observed ARs as covariate, 

especially over the region where AR frequency is high. For the prediction of the frequency 

of winter ARs and heavy precipitation events, this has important implications. There is no 

need to predict the seasonal AR frequency using global climate models (a challenging task) 

and there is no need to identify ARs (which is again computationally intensive). The major 

challenge, however, is to make skillful seasonal predictions of PNA and AO. 

For future studies, it is possible to improve the statistical models for heavy precipitation 

events such as the ones here. Additional parameters that capture the variability in heavy 
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precipitation events, not explained by any systematic variations, need to be examined, such 

as unstructured random error terms 2( , ) ~ (0, )H s t N σ . However, from my experience 

with the data, for the variance parameter of this term 2σ , Gibbs sampling convergence is 

very inefficient and the parameter does not converge easily. A potential solution to this 

problem is the introduction of an annually varying variance term (i.e., 2( , ) ~ (0, )tH s t N σ

) as used by Waller et al. (1997) in disease mapping. Further improvements are possible 

from improved understanding of the physical mechanisms that cause heavy precipitation 

over the region. For example, in addition to ARs and large-scale atmospheric patterns, 

some measures of other heavy precipitation mechanisms, such as convective available 

potential energy (CAPE) for convective precipitation, can be added as covariates. 
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5.4 Figures Chapter 5 

 
FIG. 5.1: Average frequency of heavy precipitation events (left panel) and ARs (right panel) 

across the central United States during winter for the period 1950–2014. 
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FIG. 5.2: Gelman and Rubin shrink reduction Factor R̂  for model M3. The blue line shows 

the median of R̂  and the black line shows the upper credible limit (97.5%). 
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FIG. 5.3: Posterior median slopes of the covariate AR for modelling the frequency of heavy 

precipitation events in model M2. 
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FIG. 5.4: Posterior slopes of PNA (left panels) and AO (right panels). The top panels 

show the slopes based on the independent at-station Bayesian models for the frequency of 

heavy precipitation, the middle panels are the slopes based on model M3, while the 

bottom panels are the slopes for the frequency of ARs using model M4.  
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FIG. 5.5: Posterior correlations between the observed and posterior predicted frequency of 

heavy precipitation using models M1 (top-left panel), M2 (top-right panel), M3 (bottom-

left panel), and M4 (bottom-right panel) 
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FIG. 5.6: Posterior error ratio (ER) for the calibration period (left panels) and the prediction 

period (right panels). Top panels correspond to model M2, the middle panels to model M3, 

and the bottom panels to model M4. For M2 and M4, only stations for which the posterior 
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95% credible intervals of the AR slope parameters do not include zeros are plotted; for M3, 

only the stations for which the credible interval of either PNA or AO slopes do not include 

zeros are plotted. 
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FIG. 5.7: Similar to Figure 5.6, but for the Ranked probability skill score (RPSS). Positive 

(red) values indicate better performance than the baseline model. 
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5.5 Tables Chapter 5 

TABLE 5.1: Characteristics of the model calibration. The terms “DIC” and “pd” are the 

deviance information criterion and the effective number of parameters in the model, 

respectively. For this table, the total number of valid observations in the response matrix 

is Y426×61 = 25053 and in the prediction period Y426×4 = 1560. For all the models, five 

chains with different initial values of all the parameters are run. See text for details. 

Model MCMC Iterations Time taken 

(minutes) 

Max.

R̂  

pd DIC 

Total Burn-in 

M1 5000 2500 18.39 1.003 425.7 121500 

M2 10000 7500 116.07 1.02 32.31 118100 

M3 5000 2500 94.85 1.005 22.09 118600 

M4 30000 27500 1416.67 1.02 26.10 119200 
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TABLE 5.2: Posterior credible intervals of the fixed overall parameters of models M2, M3 

and M4. 

Parameter 2.5% 25% 50% 75% 97.5% 

M2 

0
arβ  1.539 1.547 1.552 1.556 1.564 

1
arβ  0.039 0.041 0.042 0.043 0.044 

M3 

0β  1.79 1.793 1.795 1.797 1.8 

1β  -0.116 -0.110 -0.107 -0.104 -0.010 

2β  0.014 0.018 0.019 0.021 0.024 

M4 

0β  1.563 1.567 1.569 1.571 1.575 

0
arβ  1.531 1.544 1.551 1.558 1.572 

1β  -0.371 -0.378 -0.362 -0.358 -0.352 

1
arβ  0.033 0.036 0.038 0.040 0.042 

2β  0.085 0.090 0.090 0.093 0.096 
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TABLE 5.3: Posterior credible intervals of the posterior correlations among the random 

intercepts and slopes of the three models M2, M3 and M4. 

Parameter 2.5% 25% 50% 75% 97.5% 

M2 

0,1
arρ  -0.452 -0.386 -0.349 -0.311 -0.239 

M3 

0,1ρ  -0.169 -0.072 -0.020 0.033 0.130 

0,2ρ  0.002 0.094 0.141 0.187 0.275 

1,2ρ  0.026 0.132 0.186 0.238 0.332 

M4 

0,1
arρ  -0.541 -0.476 -0.440 -0.402 -0.325 

0,1ρ  -0.354 -0.255 -0.200 -0.140 -0.018 

0,2ρ  -0.183 -0.080 -0.022 0.033 0.143 

1,2ρ  -0.106 -0.003 0.051 0.103 0.203 
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CHAPTER 6 

ON THE SKILL OF NUMERICAL WEATHER PREDICTION MODELS TO 
FORECAST ATMOSPHERIC RIVERS OVER THE CENTRAL UNITED 

STATES4 

Given the significant role ARs play in the regional and global water cycle, it is clear 

from the previous chapters that accurate forecasts of these events can be beneficial to 

forecast precipitation, improve preparedness against potential floods and to plan optimal 

policies in case of prevailing droughts. In Chapters 5 and 6, I focused on the statistical 

modelling of ARs and extreme precipitation over the central United States at the seasonal 

and sub-seasonal scales. However, advances in scientific computing and atmospheric 

science have made it possible to increase the temporal resolution and to provide short-term 

forecasts based on numerical weather prediction (NWP) models. NWP models provide 

sub-seasonal forecasts of many important atmospheric variables at uniform spatial and 

temporal resolutions over the entire globe. These variables include q, u- and v-wind, which 

are used to calculate IVT (hence forecasts of ARs), and IWV as direct outputs. This chapter 

focuses on evaluating the skill of NWP models in forecasting ARs over the central United 

States using IVT and IWV. IWV observations are obtained from satellite measurements 

and are also a product of global atmospheric reanalysis datasets. IWV’s ready availability 

and direct applicability have made it an attractive option for studying these events. The 

primary reason to evaluate AR forecasts based on IWV, in addition to IVT, is to compare 

the two variables in terms of AR identification skills. 

By examining the skill of the state-of-the-art NWP models in forecasting AR 

occurrences, I will provide basic information on model outputs at different lead times. 

Specifically, I am concerned with the accuracy of the forecasting of AR occurrences, the 

location of the forecasted ARs, and how far into the future the NWP models can skillfully 

forecast these events. In addition to the examination of how predictable these events 

currently are, the results from this chapter could lead to a new paradigm in the evaluation 

                                                           
4 Chapter adopted from Nayak, M. A., G. Villarini, and D. A. Lavers, 2014: On the skill of numerical 
weather prediction models to forecast atmospheric rivers over the central United States, Geophysical 
Research Letters, 41, 4354–4362, doi:10.1002/2014GL060299. 

http://dx.doi.org/10.1002/2014GL060299
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of rainfall forecasts over the central United States by examining the skill of NWP models 

in forecasting precipitation depending on whether an AR is forecasted or not. To my 

knowledge, only Wick et al. (2013) evaluated the skill of five NWP models in forecasting 

AR activity over the northeastern Pacific Ocean and west coast of North America up to a 

10-day lead time. They focused on three cold seasons and found a decrease in model skill 

in forecasting AR activity and location with increasing lead time. The accuracy of AR 

forecasts is unknown over other areas including the central United States, where ARs 

represent an important flood agent. 

6.6 Data and Methods 

6.6.1 Data 

I use IVT and IWV fields from MERRA to create the AR reference datasets. For 

forecast verification, I focus on the period from 2007 to 2013 and consider the control 

forecasts of NWP models from five modeling agencies. The modeling agencies are (in 

brackets is the period for which these data were available at the time these analyses were 

performed): 1. ECMWF (2007–2013); 2. United Kingdom Met Office (UKMO) (2008–

2013); 3. NCEP (2008–2013); 4. China Meteorological Administration (CMA) (2008–

2013); and 5. Canadian Meteorological Center (CMC) (2008–2013). The datasets are 

obtained from the Observing System Research and Predictability Experiment (THORPEX) 

Interactive Grand Global Ensemble (TIGGE, Bougeault et al. 2010) archive 

(http://apps.ecmwf.int/datasets/data/tigge/). Most of the models provide forecasts at 

0000UTC and 1200UTC; only forecasts made at these times are used for verification. 

ECMWF and UKMO provide forecasts up to a lead-time of 360 hours, CMC and NCEP 

up to 384 hours, and CMA up to 240 hours. All models provide forecasts in six-hourly 

steps and I retrieved the data interpolated onto a horizontal grid resolution of 0.5º × 0.5º. 

As an example, Figure 6.1 compares IVT and IWV for 0000UTC June 06, 2008 from 

MERRA with ECMWF forecasts (analysis time, 5-day and 10-day lead times). MERRA 

shows a large plume of moisture over the central United States, with IWV values exceeding 

4cm, and IVT values larger than 1000kgm-1s-1. We can observe that an AR is better defined 

using IVT than IWV, with the cyclonic flow around the low pressure system over South 

Dakota/Nebraska clearly visible. The analysis time step captures well the features in 

http://apps.ecmwf.int/datasets/data/tigge/
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MERRA, even though the IVT and IWV values tend to be larger than in MERRA. As the 

lead time increases to five and ten days, the AR structure is not captured in the IWV or 

IVT. 

6.6.2 AR identification 

The AR detection follows the algorithm described in Chapter 3, with a minor 

simplifications that the search is made only southwards from 40°N. For MERRA, a daily 

IWV/IVT threshold is calculated by taking the average daily IWV/IVT at all grid points 

between 85° and 100°W at 40°N, and then finding the 85th percentile of the distribution of 

daily maximum values in the longitude band. Because of the limited sample size, the 85th 

percentile for a given day of the year is computed using a 31-day window of the maximum 

IVT/IWV (along 100°W–85°W at 40°N) centered on the day of interest (e.g., for March 

1st, I compute the 85th percentile of all the IVT/IWV values between February 14th and 

March 16th). For seven years of data, this means computing the 85th percentile out of 217 

values. I computed the threshold for the models using two different approaches: one in 

which I find the lead-dependent threshold for all the models, and one in which I use the 

threshold values from MERRA. The results related to the forecast verification using these 

two different methods will allow an assessment of how critical the threshold selection is. 

The IWV and IVT thresholds for MERRA are 3.2cm and 431.5kgm-1s-1, respectively. After 

removing the tropical cyclones (a tropical-cyclone day is considered a day in which the 

center of circulation of an identified tropical cyclone is within the domain 25°–50°N and 

70°–110°W), 762 and 625 ARs are identified in MERRA from 2007–2013 using IWV and 

IVT, respectively. Figure 6.2 shows the IWV and IVT threshold variations with lead time 

for all the models. An evident feature of IWV and IVT thresholds is the decrease in 

threshold value with forecast lead time, pointing to a drying out of the models at longer 

forecast lead times. With the exception of CMA, all the models tend to exhibit a similar 

pattern up to about the ten-day forecast lead time, and then start diverging. The threshold 

values of CMA are much lower than in the other models after about one-day lead time. 

Having a threshold varying with forecast lead time is in essence a simple way of accounting 

for biases inherent in models. 

Given the thresholds, the AR identification algorithm is run on MERRA and on all the 

forecast lead times of all the models. Unlike in the earlier chapters, when defining ARs I 
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do not include a temporal persistence criterion, but rather focus just on AR time steps. I 

consider ARs of length 17 grid points down from 40°N, approximately equal to 950km, or 

more. After the identification step, a catalog of the time of AR occurrences in both MERRA 

and each of the models is obtained and saved along with the location of AR major axis, 

defined here as the latitude and longitude of maximum IWV/IVT value along the AR. 

6.6.3 Verification measures 

I am interested in estimating the skill of the models in terms of the occurrences and 

non-occurrences of AR events in the models’ forecasts and reference data, and the location 

difference of ARs forecasted in the models and in MERRA. The occurrences and non-

occurrences of AR events can be considered as a deterministic binary process, the 

verification of which is usually performed with the help of a contingency table (see for 

example, Jolliffe and Stephenson (2012)). In a contingency table, the hit rate a is the 

number of events that were forecasted as well as observed (because of the use of a 

reanalysis dataset like MERRA, here “observation” is intended as “reference”) during the 

period of analysis (e.g., 2007 to 2013 for ECMWF); false alarms b is the number of events 

that were forecasted but not observed; misses c is the number of events that were not 

forecasted but actually did happen, and correct rejections d is the number of events that 

were not forecasted and did not happen. Some of the simplest measures of skill verification 

are Hit rate (H) and False alarm rate (F): 

aH
a c

=
+

 6.1 

bF
b d

=
+

 6.2 

where H is ratio of the number of ARs forecasted to the total number of ARs observed; F 

is the ratio of incorrect forecasts to the total number of non-AR instances. H and range F 

range from 0 to 1. 

In practice, verification measures need to have certain desirable properties. These 

properties include equitability (Gandin and Murphy 1992) , propriety, and non-degeneracy, 

among others. An equitable score is one that gives all random forecasting systems and 

constant forecasting systems the same expected score, thereby making it possible to 

distinguish them from good forecasting systems. This also prevents other undesirable 
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properties such as bias due to constant forecasting of certain events. Propriety is a property 

of a verification measure that attempts to avoid the possible hedging by the forecaster i.e. 

providing a forecast different from the actual forecast in order to increase the expected 

score (Jolliffe 2008). Non-degeneracy of verification measures for rare events is desirable 

as otherwise the score goes to zero as the rarity of the event increases giving a wrong 

impression of model performance (Stephenson et al. 2008). Hit rate and false alarm rate 

lack most of the desirable properties; hence I consider a more apt verification measure 

called symmetric extremal dependence index or SEDI (Ferro and Stephenson 2011). SEDI 

is calculated as: 

( ) ( )
( ) ( )

ln ln ln 1 ln 1
ln ln ln 1 ln 1

F H H F
SEDI

F H H F
− + − − −

=
+ + − + −

 6.3 

It possesses most of the desirable properties (see Table 3.4 in Jolliffe and Stephenson 

(2012)). SEDI ranges from -1 to 1, with 0 being the expected score for a random forecasting 

system and negative being the score of forecasts worse than random. For the case of 

ECMWF at the analysis time step using IWV to identify ARs, a = 180, b = 206, c = 196, 

and d = 1975. We calculate H = 0.479, F = 0.094, and the corresponding SEDI = 0.566. 

For more discussion about verification measures, and their meta-verification, consult 

Gandin and Murphy (1992), Jolliffe (2008), Stephenson et al. (2008), and  Jolliffe and 

Stephenson (2012), among others. 

The skill of models in terms of location error is here defined as the average root mean 

squared error (RMSE) between the location of the AR major axis forecasted by the models 

and MERRA’s AR major axis over all the forecasted as well as MERRA-based ARs. 

MERRA and the models have the same latitudinal resolution, so the difference in location 

of the AR major axes comes only from the differences in longitudes. I compute the location 

error LE as follows: 

( )
1

17 22

0
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a i
LO LM

LE
a

=

 − 
 =

∑ ∑
  6.4 

where LE is the location error, a is the number of ARs from MERRA as well as 

forecasted, LOi and LMi are respectively the longitude of the AR in MERRA and in the 
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models for the ith latitude point below 40°N. Because of the requirements in terms of AR 

lengths, comparison is performed only for the 18 grid points. 

6.7 Results 

The evaluation of the NWP models provides some useful results and interesting 

insights. To concisely present the results, I take advantage of the relative operating 

characteristic (ROC), a plot of hit rate against false alarm rate. On this plot, I overlie 

contours of SEDI which essentially represent the skill score. Figure 6.3 presents the 

verification results for all the models, both in terms of AR occurrence (left panels) and 

location errors (right panels) when using a lead-dependent threshold. Top and bottom 

panels of the figure are based on IWV and IVT, respectively. All the models tend to 

perform equally at initial forecast lead times. The skill score of the models using IVT (SEDI 

about 0.80) is much higher than using IWV (SEDI about 0.60). This is a result of high hit 

rate and small false alarm rates in IVT. The inclusion of the transport component in the 

identification of ARs helps to precisely confine the structure of ARs to narrow bands, 

which does not happen as clearly in IWV (compare also Figure 6.1, panels a and e). The 

implication is a higher skill of models when detecting ARs based on IVT, with a 

recommendation to use IVT to identify ARs from NWP models. 

The skill of the models decreases with the increase in forecast lead time, with an 

increase in false alarm rate and a decrease in hit rate (overall decrease in SEDI). The 

forecast skill is better retained for increasing lead time when using IVT, and it becomes 

worse than random systems for lead times more than ten days. On the other hand, when 

using the IWV all the models tend to behave like random forecasting systems after 

seven/eight days. The points are much more tightly distributed on the ROC when using 

IVT and it is difficult to identify a model that stands out consistently from the others. 

Conversely, when the identification is based on IWV there is a much larger scatter and 

some ranking is possible. Overall, the ECMWF has the highest hit rate and the smallest 

false alarm rate, while CMC has a lower performance. 

After examining the skill of these models in forecasting AR occurrences, I focus on 

whether the models place ARs in the correct location once they are identified (Figure 6.3, 

right panels). At short lead times, the models tend to forecast the major axis of the ARs 
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with an average error of about 1.2 decimal degrees (about 90km). The longitudinal 

resolution of MERRA and the models differ by about 0.167 degrees; this amount of 

location error may be regarded as zero error. Considering that here I focus on the AR major 

axis, and that the width of these events is of the order of a few hundred kilometers, these 

location errors do not hinder significantly the capability of these models in forecasting AR 

impacts. The ECMWF model tends to perform better than other models at shorter lead 

times, both in IWV and IVT. The location errors based on IVT at shorter lead times are 

slightly smaller than for IWV; the location errors increase significantly after a few days 

forecast lead time and go beyond 3 decimal degrees for a forecast lead time of about a 

week. 

In addition to examining the results obtained using a lead-varying threshold, I consider 

the case in which the MERRA threshold values are used to identify ARs in the models. I 

summarize these results in Figure 6.4. As expected based on Figure 6.2 (see how the 

thresholds for the models cross the ones from MERRA around one week), at short lead 

times I observe a higher hit rate and higher false alarm rate, and vice versa is the case for 

longer lead times. There is no major change in the SEDI skill score, with a small increase 

for IVT at short lead times. I notice a tendency towards an increasing scatter in the results. 

As far as the location error, there is not much difference, primarily because it is based only 

on those events that are identified in MERRA as well as forecasted, which mostly remain 

the same. 

Wick et al. (2013) examined the skill of NWP models in forecasting AR activity over 

the U.S. West Coast. Using IWV for the identification, they found that the hit rate of the 

models at forecast lead times of one day and ten days are 0.8 and 0.6, respectively; the 

respective false alarm rates are 0.27 and 0.45. These values correspond to SEDI 0.69 and 

0.21 for one-day and 10-day forecast lead times, respectively. These SEDI values are 

higher than those in this study (about 0.55 and 0 for one-day and ten-day lead times, 

respectively). While here I cannot confirm why our results differ, I suggest that a possible 

reason is the more complicated atmosphere—land surface processes over the U.S. 

Midwest. Moreover, I am focusing on AR identification over the entire year, rather than 

only the cold season. The performance of all the models in Wick et al. (2013) is similar, 
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which is not the case in this study as far as IWV is concerned (models perform similar to 

each other when using IVT). 

6.8 Discussion and Conclusions 

This study examines the skill of five state-of-the -art NWP models in forecasting ARs 

over the central United States over the period 2007–2013. I found that NWP models are 

skillful at forecasting AR occurrences at short lead times (on the order of a few days). They 

also perform better and retain skill for longer lead times when AR identification is based 

on IVT rather than on IWV. Therefore, I recommend using IVT rather than IWV for 

identifying ARs, as also suggested by Rutz et al. (2014). 

The location errors of the ARs’ major axes are about 100km at short forecast lead times, 

increasing up to 400–500km for forecast lead times longer than ten days. Given the width 

of these events (on the order of few hundred kilometers), a location error of about 100km 

would still make these forecasts of potential use for flood forecasting. All the models 

performed similarly when using IVT which makes it difficult to rank them. Overall, these 

models can be used with some degree of reliability for a forecast lead time up to about a 

week or less. Their performance becomes worse than a random forecasting system after a 

forecast lead time of about ten days. Based on these results, the use of a model-specific 

lead-dependent threshold is not critical for the identification of ARs based on IVT. This 

holds true for this region and over the study period. It is important, however, to select a 

threshold that is a reflection of the climatology of the moisture transport in the region. 

Moreover, because of seasonal variability in atmospheric moisture and transport, resorting 

to a seasonally-varying threshold could be beneficial but would require a larger sample size 

to obtain more robust results. 
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6.9 Figures Chapter 6 

 

FIG. 6.1: Comparison of MERRA and ECMWF forecasts of IWV (left panels) and IVT 

(right panels) at 0000UTC 6 June 2008. The results for MERRA are in the top-panels. The 

ECMWF results are for the same time as MERRA but forecasted at different lead times. 
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Panels b and f refer to the analysis time step for the ECMWF model run; the 5-day forecasts 

are shown in panels c and g, while the 10-day forecasts are in panels d and h. The arrows 

in right panels represent the IVT vectors, the size of arrows depicts the magnitude of IVT 

as represented in the colormaps. 
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FIG. 6.2: IVT (top panel) and IWV (bottom panel) threshold variation with lead time for all 

the models and MERRA. 
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FIG. 6.3: Verification results based on IWV (top panels) and IVT (bottom panels). The left 

panels are the ROCs, while the right panels show the location errors. The identification is 

based on the lead-dependent thresholds in Figure 6.2. 
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FIG. 6.4: Same as Figure 6.3 but using the MERRA threshold to identify the ARs for all the 

models and lead times. 
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CHAPTER 7 

CONCLUSIONS 

Atmospheric rivers (ARs) are long and narrow river-like features in the lower 

troposphere that carry most of the atmospheric water vapor fluxes from the tropics to the 

midlatitudes. While much of the research related to these storms has focused on the U.S. 

West Coast, little is known about their hydrometeorological effects over the central United 

States. This thesis fills this gap by providing detailed understanding of the AR climatology 

and their impacts on the hydrology of the central United States. Below, I highlight the main 

findings from the thesis. 

The study of three ARs during the Iowa Flood Studies campaign (IFloodS; April-June 

2013) provided many insights regarding the atmospheric mechanisms associated with these 

storms. The atmospheric pressure patterns during the three ARs depicted a subtropical 

ridge over the western North Atlantic Ocean accompanied by a lee trough over the Great 

Plains. This pressure pattern is conducive to the advection of water vapor from the Gulf of 

Mexico and the surrounding oceanic regions into the central United States. Lagrangian 

trajectory analysis of the AR air parcels advancing over the central United States showed 

that the sources of water vapor within these storms were located in the tropical and 

subtropical oceanic regions, and some additional water vapor was added by the inland 

evaporation along the AR trajectories. In terms of hydrologic impacts, unstable 

atmospheric conditions resulted in intense precipitation along the AR major axis, defined 

by the locations where the vapor transport is the highest. Moreover, the most intense 

precipitation occurs within the first 150km around the major axis, and it decreases as we 

move away from the major axis. 

The follow-up work using ARs identified over a longer period of 12 years and based 

on precipitation estimates from remote-sensing based products corroborated these results. 

I found that the vapor transport and the associated rainfall within the first 150km region is 

higher than in the surrounding regions, with the largest values in the mid-latitude band 

32ºN–36ºN; in this band, rainfall intensity has a pronounced positive relationship with the 

magnitude of the water vapor transport. Further, I observed that duration (or persistence) 
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of ARs is an important factor that governs the total rainfall during these storms. Rainfall 

intensity is smaller during the first 18 hours of AR conditions, followed by a consistent 

increase in precipitation intensity with duration—the intensity does not decrease until the 

AR conditions are over. This suggests that it may be reasonable to consider only storms 

that satisfy the 18-hour persistence criteria when focusing on hydrologic impacts over the 

central United States. Furthermore, it is imperative to understand the atmospheric 

mechanisms related to the long-lived ARs, as these are the ones that are more likely to 

cause persistent heavy rainfall and flooding. 

Previous studies found significant diurnal variations in extreme precipitation events 

during the warm season over the central United States. I did not observe such characteristic 

in AR-related rainfall, likely because most of these storms occur in cold seasons (i.e., 

winter and spring), and AR-related rainfall is mechanistically different from summer 

extreme rainfall. 

By focusing on several different reanalysis products to build a long-term AR 

climatology, I found that there are large seasonal differences in the occurrence of these 

events, with higher frequencies in winter and spring and relatively rare occurrences in the 

summer. On average, 26 ARs occur every year over the central United States. Comparing 

different reanalysis products, those with the higher spatial resolution were also the ones 

with the highest AR frequency and duration. In all the products, most of the storms were 

shorter than three days but longer lasting ones were also observed. The investigation of the 

two longest lasting ARs showed that they are associated with planetary longwave patterns 

in the northern hemisphere that are known to cause severe weather phenomena over many 

regions. 

The AR effects on precipitation varies with location and season and, on average, about 

30% of the annual precipitation over the central United States is associated with these 

storms. During the winter, areas along the extratropical cyclone storm track receive the 

largest contributions, while the smallest effects are in the summer. When we consider the 

impact of ARs on precipitation extremes, their contribution is even higher, exceeding 60% 

on an annual scale at some locations. The AR contribution to winter extreme precipitation 

is larger than 70% over a large part of the central United States. Higher spatial resolution 

reanalysis products show larger contributions than the lower resolution ones. 
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Considering annual maximum and POT floods, I found that ARs have a large impact 

at many long-term stream gaging stations; this is especially true in winter and spring, when 

more than 90% of these flood events are tied to the occurrence of ARs at several locations. 

By visually examining the atmospheric pressure patterns during these storms, I find 

there is a resemblance with the patterns of large-scale atmospheric modes (PNA, NAO, 

and AO). Further investigation revealed that the resemblance is the most prominent in 

winter, hence the frequency of ARs can be related to the magnitudes of PNA and AO. 

These results are used to develop Bayesian hierarchical models in which PNA and AO 

magnitudes are used to describe winter AR frequency; in addition, the AR frequency itself 

is used to describe the frequency of heavy precipitation events in winter at a large number 

of rain gauges across the central United States. All the models in which PNA and AO or 

ARs are included as predictors performed better than the baseline model that did not have 

an explanatory variable. The best performance in both calibration and prediction periods 

was achieved by the model that involved a direct relationship between heavy precipitation 

and the frequency of ARs. The results corroborated my viewpoint that the magnitudes of 

PNA and AO has a direct impact on the frequency of ARs, and ARs in turn have a direct 

impact on extreme precipitation events. 

Over a large area of the central United States, smaller PNA values have an increasing 

effect on the frequency of ARs, more so at stations located along the AR storm track: here 

a unit decrease in PNA can be expected to increase the frequency of ARs by more than 

50%. Decreasing AO, on the other hand, is associated with a decrease in the frequency of 

these storms, albeit the effect is smaller than what is observed for PNA. The effect of ARs 

on heavy precipitation is almost always positive, and the occurrence of an additional AR 

can be expected to increase the frequency of heavy precipitation by about 10% at many 

stations. These modeling results suggest a promising future for the application of the low-

dimensional atmospheric modes and ARs in predicting the frequency of extreme events at 

a seasonal scale. 

The final chapter of my thesis focused on the verification of the occurrence and location 

of ARs from numerical weather prediction (NWP) models that provide forecasts up to a 

lead-time of 15 days. While an obvious ranking of these models is difficult based on their 

skill in forecasting ARs, all the models performed reasonably well at short lead-times of 
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up to seven days. The skill, however, decreased as the lead-time increased further, and after 

a lead-time of 10 days, a random forecasting system could possibly show better 

performance than the NWP models. 
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