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A B S T R A C T

Tissue-engineered vascular grafts (TEVGs) have the potential to pro-
vide life-saving arterial replacements to patients requiring vascular
bypass, hemodialysis access, and pediatric coronary surgery. Recent
years have seen impressive strides towards widespread clinical use,
but significant work still remains in optimizing cell source and graft
growth, including the suppression of unwanted calcification during
culture.

In this study, I examine oxygen concentration and two small-molecule
bone morphogenic protein (BMP) inhibitors, DMH-1 and LDN193189,
as potential avenues of increased control over mesenchymal stem cell
(MSC) differentiation of into vascular smooth muscle cells (SMCs).
Applying BMP-inhibitor concentrations from 0.01 to 10 µM at oxygen
tensions of 2 & 20% over two weeks of growth, I use reverse transcrip-
tase quantitative polymerase chain reaction (RT-qPCR) to evaluate re-
sultant expression levels of smooth muscle (SM22-α), bone (OCN),
and cartilage (Col2a) marker genes. Via multiple linear regression, I
demonstrate that low oxygen growth causes a statistically significant
SM22-α downregulation (∆∆Cq = 1.77 ± 0.22, mean ± standard er-
ror, p <0.0%) coupled with increased Col2a (∆∆Cq = -2.85 ± 0.73,
p =0.1%) and type-I collagen expression (∆∆Cq = -1.75 ± 0.65, p
= 1.2%), suggesting that physiological oxygen tensions increase the
incidence of chondrogenic differentiation. In contrast, LDN193189 in-
creases SM22-α expression (∆∆Cq = -0.78 ± 0.27 per µM, p =0.8%)
and reduces Col2a expression (∆∆Cq = -2.17 ± 0.89, p =2.2%), seem-
ing to usefully suppress chondrogenesis.

Additionally, I evaluate the effects of pulsatile vessel growth con-
ditions on an attractive new cell source: MSCs derived from induced
pluripotent stem cells (iPSCs). Using PicoGreen and modified Brad-
ford assays, I demonstrate that pulsatile growth conditions signifi-
cantly increase dry weights of double-stranded DNA (dsDNA) from
0.0780 ± 0.002% to 0.1414 ± 0.008% (mean ± standard error, p =
0.015%) and collagen from 25 ± 2% to 46 ± 2% (p = 2.3%), approach-
ing a sample of native aorta at 55% collagen.

Overall, results suggest normoxic growth conditions remain supe-
rior for SMC differentiation, but that the BMP-inhibitor LDN193189

may have a future role in suppressing cartilage production during
TEVG growth. Furthermore, iPSC-derived MSCs demonstrate similar
responses to traditional bone marrow MSCs, and may well represent
an attractive cell source in future TEVG production.
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A new branch of medicine will develop that attempts
to change the course of chronic disease and in many instances

will regenerate tired and failing organ systems...

— Leland R. Kaiser, Ph.D. [1]
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Part I

M O T I VAT I O N A N D H Y P O T H E S E S



1
I N T R O D U C T I O N

Below, I briefly introduce the origins of tissue engineering as a field
(Section 1.1) and provide a succinct summary of the history of vas-
cular surgery, providing an overview of the clinical need for tissue-
engineered vascular grafts (TEVGs) as a vascular surgical option (Sec-
tion 1.2). I trace major milestones in the TEVG field, and examine in
particular research efforts in hemodialysis, pediatric coronary surgery,
and bypass operations.

I then move on to examine the design requirements and specifica-
tions of a successful TEVG, alongside a description of the approaches
undertaken by contemporary vascular tissue engineers in terms of
both structure and cell source (Section 1.3). I focus in particular on
mesenchymal stem cells and the novel potential of induced pluripo-
tent stem cells, which this thesis briefly investigates.

Finally, I focus on the particular challenge to TEVG integrity posed
by unwanted osteogenic and chondrogenic differentiation during cell
culture, and the specific roles that oxygen concentration and hor-
monal signaling might play in driving these processes (Section 1.4).
In (Chapter 2), I will go on to present my direct hypotheses as to ef-
fect of oxygen tension and BMP-inhibitors, which may play a role in
the future TEVG development.

1.1 tissue engineering

The term “tissue engineering” first appears in the 1982 press release
of the company funding Dr. Eugene Bell’s laboratory at the Mas-
sachusetts Institute of Technology, who would go on to develop the
world’s first entirely lab-grown vessel [2]. A formal definition of the
field emerged six years later, at an NSF-sponsored workshop in Granli-
bakken motivated by a growing shortage of donor organs [3]. As re-
iterated by Langer and Vacanti in their foundational early review of
the field [4]:

“Tissue Engineering” is the application of principles and
methods of engineering and life sciences toward...the de-
velopment of biological substitutes to restore, maintain, or
improve tissue function.

The basic point of the above definition is that tissue en-
gineering involves the use of living cells plus their extra-
cellular products in development of biological substitutes
for replacements as opposed to the use of inert implants.
The definition is intended to encompass procedures in

2



1.2 the need for vascular grafts 3

which the replacements may consist of cells in suspension,
cells implanted on a scaffold such as collagen and cases in
which the replacement consists entirely of cells and their
extracellular products. [5]

This definition remains accurate today, and highlights the impor-
tant distinction between tissue-engineered products and the synthetic,
polymer implants routinely used in today’s surgeries: tissue engineer-
ing has its origins in cellular processes, and aims to produce biologi-
cal tissue substitutes.

In the years after its conception, tissue engineering research quickly
commenced in nearly all human organ systems [4]. The earliest suc-
cesses, however, have occurred in skin, bone, and cartilage—for which
FDA-approved products currently exist—as well as the cornea and
bladder, for which research is also advancing towards clinical use [6].
Given the (superficially) simple structure of blood vessels, and the
immense volume of vascular surgery worldwide (Section 1.2), it is
unsurprising that vascular grafts also stand in this list an early pillar
of tissue engineering success.

1.2 the need for vascular grafts

The field of vascular surgery—and of organ transplantation, more
generally—began in earnest with the work of French surgeon Alexis
Carrel (1873-1944), recipient of the 1912 Nobel Prize for his work on
for his vessel attachment [7]. His contributions included the use of
cold storage for vessel grafts and the foundational three-point su-
turing technique that first allowed end-to-end anastomoses, joining
two vessels for bypass or transplant [8, 9]. In 1948, building on Car-
rell’s success, French surgeon Jean Kunlin performed the first by-
pass procedure of the modern era, using a patient’s own (autologous)
saphenous vein to bridge an obstruction in a patient’s femoral artery
[10, 11]. The now-ubiquitous coronary artery bypass graft (CABG)
surgery emerged shortly thereafter, first with autologous arteries in
1960 [12], then with the now-familiar autologous saphenous vein in
1967 [13, 14].

Autologous saphenous vein quickly emerged as a widespread graft
substrate, with relatively easy surgical access and acceptable levels
of patency. Though it remains the gold standard in numerous vas-
cular procedures to this day, it soon became evident veins were not
ideal arterial grafts: they adapt to high-pressure arterial circulation
imperfectly, and are prone to both intimal hyperplasia and acceler-
ated atherosclerosis [15, 16]. Furthermore, a history of multiple op-
erations and other patient factors often renders autologous vein un-
available, forcing surgeons to search for alternatives [17].

The world of vascular surgery first intersected with materials engi-
neering in 1954, when American surgeon Michael DeBakey collabo-
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polymer trade name abbr .

Poly (ethylene terephthalate) Dacron® PET
Poly-tetraflouro-ethylene Teflon® PTFE

Expanded Polytetraflouroethylene Gore-Tex® ePTFE

Table 1: Common non-degradable polymers used for bypass grafts.
Polyethelene (PE), polyurethane (PU), polydimethylsiloxane
(PDMS), and polysulfone are also commonly used in stents;
there also exists numerous biodegradable polymers, both single-
component (e.g., polylactic acid [PLA], polyglycolide/polyglycolic
acid [PGA], polyhydroxyalkanoate [PHS], and polydioxanone
[PDS]) and multi-component (e.g., polyglactin/Vicryl [PG910],
which is a mixture of a PGA & PLA copolymer). These prosthetics
have the advantage of widespread use in high-flow regions like
the aorta, but generally suffer from prohibitively high levels of
thrombogenicity and occlusion in lower-flow vessels, leaving
autologous veins or TEVGs as the preferable solution [15].

rated with textile engineer Thomas Edman to develop a new machine
capable of knitting seamless tubes out of synthetic thread. Biological
venous grafts could not produce the complex shapes required in aor-
tic surgery, requiring something bespoke yet amenable to long-term
residence in the patient. Settling on poly(ethylene terephthalate)—
alternatively known as “Dacron,” or PET—as the most biocompatible
fibre, they successfully implanted synthetic aortic and iliac grafts in a
variety of configurations [11, 18].

An additional category of vascular surgery was established after
the 1960 development of the ‘Scribner shunt,’ external Teflon (ePTFE)
tubing that permanently connected a cannula in the radial artery to
another in the cephalic vein, providing continuous blood flow for the
external hæmodialysis of renal patients [19–21]. The continuous flow
reduced clotting within the cannula, which had plagued earlier in-
termittent attempts, and established overnight the field of vascular
access. Though functional, the persistence of clotting and infection
in the shunts soon led to the development of the completely inter-
nal Bresica-Cimino arteriovenous (AV) fistula in 1966, in which ra-
dial artery and cephalic vein were anastomosed together directly [22].
Three years later, surgeons found that connecting the two with an ex-
tra loop of saphenous vein newly enabled the surgery in a significant
subset of patients with poor existing venous vasculature, including
diabetics, the elderly, and those with prior fistula failures [21]. For
those without suitable saphenous vein for harvest, surgeons quickly
transferred DeBakey’s pioneering work in aortic polymer grafts to
this new site, using both PET and ePTFE (Table 1) [23].

Despite the half-century of intensive research into graft substitutes
that followed, the materials used in today’s vascular surgeries bear
striking similarity to those of these early surgical pioneers. Unfortu-
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nately, this has resulted in considerable unmet need, felt most keenly
in small-diameter (< 6mm) applications where non-degradable poly-
mers are unacceptably thrombogenic, and no widely-accepted syn-
thetic option yet exists [24].

The potential for a biological solution to this need emerged in 1986,
when Weinberg and Bell developed the first tissue-engineered blood
vessel [25]. Casting collagen, smooth muscle cells (SMCs), and culture
medium in an annular mold, they produced a jellied tube they then
placed around a central mandrel. In time, the collagen-embedded
smooth muscle cells automatically contracted around the central sup-
port, generating a tubular lattice that could function as a vessel’s mid-
dle layer (i.e., media). A Dacron mesh slipped overtop provided addi-
tional support, and they cast second layer of collagen on top—this
time containing fibroblasts, rather than SMCs—to form the vessel’s
exterior layer (i.e., adventitia). Allowing this to contract down as well,
they removed the mandrel and injected a suspension of endothelial
cells into the newly-formed lumen, slowly rotating the vessel to grow
a uniform endothelial coating (i.e., intima), thus successfully recreat-
ing the three layers of a normal artery.

The result was a functional vessel graft for in vitro study, but with
a crucial failing. Lacking any substantial quantity of elastin, and pro-
ducing collagen fibres oriented longitudinally instead of along phys-
iological spirals, they were only able to generate vessels capable of
withstanding pressures of ≈ 300mmHg prior to bursting: less than a
fifth of that of a saphenous vein. This was despite the added support
provided by the Dacron mesh, which problematically represented a
non-degradable element and inherently compromised the growth po-
tential and biocompatibility of the resultant product.

Regardless, Bell & Weinberg’s work offered an important proof-of-
concept and sparked the cascade of milestones that followed. L’Heureux
et al. manufactured the first TEVG free from all permanent synthetic
components in 1993 [26]. Niklason et al. introduced pulsatile, radial
strain into vessel growth in 1999, resulting in dramatically increased
collagen production, which also mimicked native vessels in orienta-
tion [27]. Shin’oka et al. implanted the first TEVG in a human pa-
tient in 2001 [28], demonstrating unequivocally the clinical viability
of the TEVG concept. In 2003, Dahl et al. decellularized their TEVGs
to produce a cell-free, “off-the-shelf” graft product that pointed to
future improvements in cost and convenience [29]. L’Heureux began
the first adult, commercial clinical trials in 2007 [30], followed shortly
by Humacyte’s large-scale studies in 2011. Subsequent significant de-
velopments have included refinements in rapid post-implantation re-
modeling by Wu et al. [31] and the emergence of 3D-printed and
electrospun graft foundations which may increase the range of TEVG
shapes available [17].
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Today, as TEVGs near the point of realistic clinical utility, there re-
main three key segments of clinical need, which I examine in turn
below: vascular access in dialysis patients (Section 1.2.1), peripheral
& coronary bypass operations (Section 1.2.3), and pediatric cardiac
surgeries (Section 1.2.2). All three are common yet crucial procedures
which traditionally rely on autologous vein or non-degradable poly-
mer grafts, and all stand to be significantly improved by a reliable
and cost-effective graft alternative.

1.2.1 Dialysis access patients

Over the past decade, over 1, 000, 000 North American patients ini-
tiated dialysis, primarily for end-stage renal disease (ESRD), with
383, 992 undergoing hæmodialysis (HD) in 2010 alone [32]. Arteri-
ovenous grafts (AVGs) remain the best access option for chronic hæ-
modialysis patients who are not candidates for direct AV fistulas,
either due to poor existing vasculature—the case in many diabetic
or elderly patients—or after the failure of an existing fistula. Claims
data indicates that 28% of all American hæmodialysis patients are cur-
rently graft-reliant (2007, [33]), and, despite recent efforts to increase
the proportion of American patients using fistulas, 5.9% of new hæ-
modialysis patients still end up relying on grafts by the fourth month
of treatment (2013, [32]).

In patients without suitable saphenous vein, most AV grafts still
rely on ePTFE (Table 1), which carries significant drawbacks. Imper-
meable to white blood cells, ePTFE grafts are prone to infection (4-
20% annually [34]). Incapable of self-repair, repeated needle sticks
lead to substantial mechanical damage (“coring”), which can result in
pseudoaneurysm (2-10% over graft lifetime). The synthetic material
also prompts a poorly-understood intimal hyperplasia reaction ( 50%
at 3 years [35]), in which smooth muscle cells, macrophages, and mi-
crovessels proliferate to cause a narrowing of the lumen and poten-
tially an occlusive thrombosis [36]. The surface of the ePTFE graft
does not permit stable endothelialization, which likely contributes
further to thrombus formation; the resulting need for angioplasty or
stenting contributes to substantial graft lifetime costs and places a
considerable burden on patients.

Biological alternatives to ePTFE have been studied, including bovine
carotid arteries (Artegraft®; Artegraft Inc., North Brunswick, NJ [37,
38]), depopulated bovine ureters [39–41], bovine mesenteric vein (Pro-
Col®; Hancock Jaffe Laboratories, Irvine, CA [42–44]), and human
cryo-preserved cadaver saphenous vein (CryoVein®; CryoLife Inc.,
Kennesaw, GA [45]). None of these options, however, have gained
any widespread acceptance, and there remains a substantial unmet
clinical need for a superior alternative.
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Hemodialysis grafts represent a particularly attractive target for
TEVG research: operating sites are close to the body surface, occlu-
sive complications are usually not life-threatening, and the highly-
standardized operations take place in predictable and reproducible
clinical settings. Perhaps unsurprisingly, many tissue engineering ef-
forts have focused first on dialysis, with the intent of later transpos-
ing the technology to other vascular sites. This trend began with
the L’Heureux group’s small-scale clinical studies, reporting success-
ful autologous (2009 [30]) and allogenic (2014 [46]) implantations of
their endothelialized, sheet-based TEVGs (Lifeline™; Cytograft, No-
vata, CA). In 2016, acellular, off-the-shelf TEVGs from the Niklason
group passed phase II trials in 60 ESRD patients with 89% secondary
(i.e., still functional, but requiring a procedure to restore function) pa-
tency at 12 months (Humacyte, Durham, NC) [47]. Considerable op-
timism surrounds both engineering successes, and TEVGs look well-
poised to reshape the landscape of dialysis access.

1.2.2 Pediatric cardiovascular surgery

Moderate to severe congenital cardiovascular malformations occur in
approximately 6/1,000 live births [48]. Though recent decades have
seen an encouraging improvement in outcomes, the burden of critical
congenital heart defects (CHDs) remains high both in terms of associ-
ated healthcare costs and devastating patient morbidity and mortality
[49, 50]. CHDs result in the deaths of twice as many children as all
pediatric malignancies combined, and approximately half of CHD pa-
tients require surgical intervention [51].

Though numerous congenital heart defects exist, many—including
hypoplastic left heart syndrome, tricuspid atresia, pulmonary atresia,
double-inlet left ventricle, and unbalanced atrioventricular canal de-
fects [52]—leave the child with only a single functional ventricle, ren-
dering them potential candidates for modified versions of the famed
Fontan procedure [53]. This staged surgery allows the single func-
tional ventricle to supply the child’s high-resistance systemic circula-
tion, connecting the single ventricle directly to the aorta. Pulmonary
circulation is then driven by central venous pressure alone, with the
superior vena cava grafted directly into the pulmonary artery via an
artificial conduit. Originally preferring PET for this graft, surgeons
adopted ePFTE in a partially-successful attempt to reduce luminal
narrowing. Unfortunately, as in Section 1.2.1, ePFTE conduit stenosis
remains a grave source of long-term complications. Other pediatric
cardiac surgeries (e.g., the Rastelli procedure connecting right ventri-
cle to pulmonary artery) suffer from similar graft concerns [54, 55].

Pediatric grafts present the additional challenge of accommodat-
ing substantial patient growth, which currently necessitates replace-
ment surgeries as patients age—neither synthetic grafts nor homo-



1.2 the need for vascular grafts 8

grafts accommodate expansion. These replacement operations them-
selves possess 5% peri-operative mortality [56], and strategies to de-
lay surgeries or utilize oversized grafts result in substantial cardiac
dysfunction [51]. The lack of an ideal graft material has spurred con-
siderable interest in TEVGs as a single-surgery, growth-capable solu-
tion. This, coupled with the relatively modest mechanical demands
of low-pressure pediatric pulmonary circulation, enabled what was
to be the first successful implant of a tissue-engineered vascular graft
in a human patient. In their landmark 1999 study on a four-year-old
Fontan patient, Shin’oka et al. implanted a 2 cm biodegradable polyg-
lycolic acid (PGA) tube, seeded with autologous cells expanded from
a segment of the patient’s vein. The patient suffered no major compli-
cations and the graft remained patent [28]. This encouraged a larger
study of 25 patients; six-year follow-up demonstrated no major graft-
related complications, and a considerable portion of patients even
avoided the lifetime anticoagulation associated with synthetic grafts
[57–60].

The first large-scale, FDA-approved clinical trial of CHD TEVGs be-
gan at Yale University in 2011

1, studying synthetic scaffolds seeded
with bone-marrow-derived mesenchymal stem cells. Initial data is en-
couraging [61, 62], and is likely only the beginning of tissue engineer-
ing success in pediatrics.

1.2.3 Peripheral and coronary bypass grafts

Cardiovascular disease remains the leading cause of mortality glob-
ally [63]. In the United States alone, cardiovascular disease (CVD)
and stroke cause an estimated $ 316.6 billion in annual direct and
indirect costs; by 2030, 43.9% of the nation is projected to have some
form of CVD. Between 2000 and 2010, the number of American in-
patient cardiovascular procedures increased 28% from 5,939,000 to
7,588,000; given the aging demographic, this trend is likely to con-
tinue unabated [64]. Harmful arterial lesions arise in the blood supply
of both the heart and the periphery, with cardiac circulation favour-
ing foam-cell and lipid-core subtypes and fibrous plaques dominating
elsewhere [65]. If lesion formation is not halted via medical manage-
ment, both sites of atherosclerotic disease will see increasing stenosis
and eventual interruption of blood flow, necessitating intervention.

Surgical treatment varies depending on lesion severity, with early-
stage plaques often amenable to percutaneous coronary intervention
(PCI), i.e., restoring the vessel lumen via angioplasty and potential
stenting. More severe disease demands surgical graft implantation
[66]—patients underwent 397,000 coronary artery bypass graft (CABG)

1 “A Pilot Study Investigating the Clinical Use of Tissue Engineered Vascular Grafts
in Congenital Heart Surgery," sponsored by Dr. Christopher Breuer (NCT01034007);
<https://clinicaltrials.gov/ct2/show/NCT01034007>.

<https://clinicaltrials.gov/ct2/show/NCT01034007>
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procedures in 2010 alone, alongside similarly substantial rates of pe-
ripheral bypass grafts [64].

As in hæmodyalysis access, autologous saphenous vein remains
the gold-standard of graft material, despite a vulnerability to acceler-
ated atherosclerosis leading to only 50% 10-year patency [67]. Internal
mammary and radial arteries provide superior patency, but are asso-
ciated with increased risk of mediastinitis, angiospasm, and graft-site
ischemia [68]. This, coupled with increased surgical difficulty during
vessel harvest, significantly limits their use. Furthermore, as grafting
does not address the underlying causes of atherosclerosis, patients of-
ten require subsequent grafts and their supply of usable autologous
vessel quickly dwindles [66]. Unfortunately, when autologous vessel
is unavailable, the small diameters of cardiac grafts often render syn-
thetic polymers unacceptably thrombogenic, leading to extremely low
long-term patency [15].

The staggering burden of CVD, coupled with the shortcomings
of existing graft options, has attracted substantial interest in TEVGs
for coronary and peripheral bypass procedures. Though peripheral,
carotid, and coronary TEVGs have been successfully implanted in
large animal models [6], the invasive nature of bypass procedures and
the stringent design requirements of small-diameter vessels makes it
likely that bypass trials will lag behind those in hæmodialysis pa-
tients.

1.3 current approaches to tevg production

In his pioneering 1958 work, DeBakey carefully explains the consider-
ations behind his choice of the first synthetic graft material. He settled
upon Dacron as he found it to be:

• Flexible, durable, and elastic enough to withstand long-term
implantation.

• Capable of being knit into a shape appropriate for any major
arterial system.

• Easily handled by the surgeon: sterilized via autoclave without
structural damage, cut by scissor or scalpel without fraying, and
clamped during the procedure without damage.

• Porous—unexpectedly superior to waterproofed fabrics, as un-
treated Dacron allowed better attachment of fibrous tissue dur-
ing intimal growth [18].

Despite the vast array of potential sites for a surgical graft de-
scribed in prior sections, all share these initial, universal requirements.
Engineers strive to create a robust, long-lasting, and readily-handled
material which interacts harmoniously with the surrounding tissue,
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be it destined for the arm of renal patients or the surface of an is-
chæmic heart. With tissue engineered approaches, cell products are
often exquisitely biocompatible, but can be extremely fragile. The
defining challenge of TEVG development has thus often been the con-
siderable mechanical integrity that the arterial system demands.

Today, many groups formalize the essential properties of a success-
ful graft as follows [69–71]:

a. Burst strength comparable to internal thoracic artery (> 3100

mmHg) or saphenous vein (>1700-2200 mmHg) for arterial ap-
plications, though some variation exists based on location within
the circulatory system and the subsequent remodeling that will
ensue upon implantation [70].

b. Fatigue strength—as described by L’Heureux et al.—sufficient
to maintain a stable diameter after 30 days of pulsatile loading,
in vivo or in vitro, without susceptibility to aneurysm formation
[69].

c. Compliance sufficient to prevent high stresses around the anas-
tomosis site. By definition, compliance (C) measures the vessel’s
ability to deform under pressure, i.e.,

C =
∆V

∆P

where ∆V is the incremental change in the vessel’s volume upon
the application of additional pressure, ∆P. Groups often report
compliance in units of %-change per 100mmHg; values for saphe-
nous vein and internal thoracic artery are approximately 12%/100

mmHg and 26%/100mmHg, respectively [71].

d. Durability and kink resistance sufficient to allow easy han-
dling by the surgeon, as well as the toughness necessary to re-
tain sutures.

e. Biocompatibility, i.e., producing a stable, non-cytotoxic, non-
thrombogenic, non-immunogenic, and infection-resistant endo-
thelial layer. This also encompasses the vessel’s potential for
growth, remodeling, and self-repair in vivo.

f. Economic viability, albeit a secondary consideration to the
preceding; an ideal graft will also be easily shipped, possess
a readily-scalable manufacturing processes, and be capable of
off-the-shelf storage to minimize costs.

To date, no single graft design has emerged as the optimal method
of providing all of the above properties. Considerable progress has
been made, however, since Bell’s first vessel: an impressively diverse
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variety of solutions have emerged that rely on vastly different combi-
nations of cell sources, techniques, and materials.

Broadly, research efforts can be categorized based on (1) the method
used to impart structure to the TEVG being constructed and (2) the
sources and types of cells cultured in its creation. Both can have im-
portant ramifications for the vessel’s ultimate performance.

1.3.1 TEVG structure

In standard culture, cells form two-dimensional sheets on their growth
surfaces. To generate the three-dimensional shape of a blood vessel,
groups have explored three primary approaches:

a. Constructing engineered scaffolds using some combination
of synthetic and/or natural materials, then seeding them with
cells. Scaffold materials are generally selected to degrade after
implantation and facilitate biological remodeling.

Synthetic polymers are a widely- and immediately-available choice,
inexpensive, and easily tailored to specific applications. Shin’oka
et al.’s pediatric grafts, for instance, employed a porous, degrad-
able mesh of poly-L-lactide (PLLA) & poly-ε-captolactone (PCL)
reinforced with polyglycolide (PGA), in which they then cul-
tured bone-marrow-derived mononuclear cells (BM-MNCs). Ex-
plant analysis from clinical trials indicated that, as expected,
the mesh disappeared months after implantation [72]. Niklason
and Langer have also used PGA and poly(lactide-co-clycolide)
(PLGA); other commonly-employed materials include PEUU,
P4HB, and PCL [71]. Though most groups seed these scaffolds
in vitro, others have also explored the implantation of com-
pletely acellular polymer scaffolds to allow rapid host cell inva-
sion and remodeling, effectively “growing” the vessel in the pa-
tient [73]. Niklason et al. combined both approaches: scaffolds
were seeded and grown in culture, but decellularized prior to
implantation to allow host cell invasion.

As established in Bell’s 1986 work, another approach is to be-
gin with natural polymers—often exquisitely biocompatible, but
generally possessing poorer mechanical strength than synthetic
alternatives. Work continues on collagen-only scaffolds, with
improved structural integrity provided by cyclic strain during
culture [74]. Multiple groups have examined fibrin as a poten-
tial base material, condemning traditional synthetics (i.e., PGA
and PLGA) for creating an acidic in vivo environment as they
hydrolyze, and producing byproducts that purportedly cause
the de-differentiation of smooth muscle cells (SMCs) [75–77].
Thus far, fibrin vessels do not match the mechanical strength
of autologous saphenous vein, but work continues in large an-
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imal models. Other investigated materials include electrospun
fibroin—the chief constituent of silk and spider webs [78]—and
chitosan, a derivative of the chitin comprising the shells of crus-
taceans, which closely mimics the glycosaminoglycans common
in the human extracellular matrix (ECM) [79]. Both have shown
acceptable biocompatibility, but have not yet demonstrated me-
chanically robust performance in large animals. Groups have
also explored combinations of natural and synthetic materials,
aiming to create a tunable, hybrid biomaterial possessing both
the biocompatibility of the former and the mechanical integrity
of the latter; it remains unclear if this approach can outstrip the
performance of natural matrix laid down by cells cultured in
synthetic-only scaffolds [71].

b. Decellularizing natural matrices: An alternative to build-
ing tubular structure is to use that already present in nature, i.e.
by decellularizing allogeneic or xenogeneic tissues both vascu-
lar and extra-vascular (e.g., mucousal or ureteric). As discussed
in Section 1.2.1, this has already gained some traction in hæ-
modialysis applications, with commercial grafts based on de-
cellularized human saphenous vein as well as bovine carotids,
ureters, and mesenteric vein. Farther from clinical application,
groups have also explored human amniotic membranes [80, 81],
porcine bladder [82], and small intestinal submucosa from a va-
riety of animal sources [83, 84].

Decellularization aims to remove all antigenic and cellular mate-
rial from the original substance while maintaining the structure
and strength of the extracellular matrix, generally by combining
surfactants/detergents with physical agitation. Though the nat-
ural matrix architecture can produce mechanically robust and
biocompatible grafts, starting with a biological source also in-
troduces considerable expense and complications surrounding
reproducibility and quality control. Substantial variation exists
in decellularization techniques, and incomplete antigen removal
has been linked to graft failure; risk is compounded when xeno-
geneic sources are employed [85, 86].

c. Self-assembly: Finally, tissue-engineering by self-assembly (TESA)
builds structures “bottom-up,” entirely from cultured cells and
their products. As pioneered by L’Heureux et al., this initially
took the form of thick cell sheets, supplemented with ascor-
bate to encourage ECM formation, rolled in layers around man-
drels to form the desired tubular shape [87]. To avoid mechan-
ical trauma while detaching the sheets, many groups culture
cells on a thermoresponsive polymer, such as poly-N-isopropyl-
acrylamide (PIPAAm), which becomes effectively hydrophobic
above a certain temperature [88]. Combining multiple sheet lay-
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ers can yield impressive burst pressures, and forms the basis of
the Lifeline™ graft, but requires a lengthy maturation period to
fuse cell layers together. A more recent method uses cultured
threads, rather than cultured sheets—grown via similar tech-
niques, these can then be woven into three-dimensional struc-
tures to the fusion time requirement while retaining compara-
ble mechanical strength [89]. Even smaller units of tissue have
also been explored, including the use of three-dimensional bio-
printing techniques to precisely deposit spherical, multicellular
aggregates, which fuse together in bioreactor culture [90, 91].
These have the exciting potential of generating custom-shaped
grafts to suit complex and branching vascular systems, but have
as yet failed to match the mechanical strength of more standard
approaches.

The approach chosen to produce a vessel has enormous influence
on its integrity. In their 2015 review, Pashneh-Tala et al. graphically
summarize the burst pressures, compliance, and suture retention strengths
reported in all recent literature grafts [71]; no TEVG reported parity
with native vessel across all three metrics, yet each of the approaches
outlined above have produced extremely promising candidates.

The approach taken in this thesis—decellularizing the ECM pro-
duced by cells cultured on synthetic biodegradable scaffolds—combines
the advantages cell-deposited matrix architecture the ready and inex-
pensive availability of biodegradable synthetics, and the off-the-shelf
potential of ultimately cell-free products. This also avoids the com-
plexities of decellularizing harvested biological materials: growing
the initial vessel from well-characterized cell lines enables complete
and repeatable control over the vessel’s properties and antigenicity.

1.3.2 TEVG cell sources

Native blood vessels consist of three layers [92]:

• The intima, on the luminal surface of the vessel, is responsible
for the prevention of thrombosis and the regulation of contrac-
tility. It is comprised of endothelial cells (ECs), which also play
a role in regulating the phenotype of cells in the media.

• The media forms the bulk of the vessel wall, and contains mul-
tiple layers of contractile smooth muscle cells (SMCs), which in
turn produce and maintain the thick extracellular matrix (ECM)
that surrounds them. This ECM is largely comprised of collagen
and elastic fibres, which in turn consist of an elastin core and an
outer layer of fibrillin-rich microfibrils [93]. These elastic fibres
are particularly important at low pressures, where they exhibit
a linear, spring-like stress-strain response; as pressures increase,
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collagen fibres increasingly contribute to generate high ultimate
tensile strength [94]. In the physiological media, these collagen
fibres are predominately circumferential and parallel to SMCs,
with helically-oriented fibres providing additional strength in
both axial and circumferential directions [95]. The luminal ex-
tent of the media contains the internal elastic lamina, which is
especially rich in elastin, and the basal lamina, to which the
intima adheres.

• The adventitia, the outermost connective tissue layer of the
vessel, is comprised primarily of collagen and fibroblasts (FBs)
and provides substantial structural support to the vessel. Here,
collagen fibres are largely axial. Increasingly, adventitial fibrob-
lasts are thought to play an important role in remodeling and
wound repair [95].

In tissue-engineered grafts, the thin intimal layer of the vessel can
be produced readily via endothelial seeding and seems to form quick-
ly in vivo even on acellular grafts. As such, most of the focus in TEVG
development has been on the adventitial and medial layers and their
thick ECM, produced by vascular SMCs and FBs. Of these two cell
types, SMCs are of particular utility as they are more capable of mak-
ing mature elastin for the all-important medial layer [96, 97]. Most
TEVGs rely on SMCs at some point in their construction, and the
source and culture of these SMCs has become a second key design
element.

Unfortunately, the direct harvest of adult vascular cells as sources
for graft production can be invasive, and yields somatic cells of lim-
ited replicative potential; these differentiated cells quickly cease di-
vision and become senescent. Attempts to artificially increase their
active lifespan with human telomerase reverse transcriptase (hTERT)
raises concerns for malignant transformation [98]. Furthermore, cells
taken from older, atherosclerotic patients demonstrate still more rapid
senescence—particularly concerning given the patient demographics
of arterial bypass and HD graft recipients [99]. Together, these factors
encourage the use of younger (i.e., capable of more division) cells in
vascular graft design.

Mesenchymal stem cells (MSCs, often semi-synonymously termed
mesenchymal stromal cells [101]) are one such entity. These multipo-
tent cells have the long, thin, spindled, plastic-adherent appearance
of fibroblasts and, as shown in Figure 1, are capable of producing not
only the smooth muscle cells of vasculature but also adipocytes (fat),
chondroblasts (cartilage), osteoblasts (bone), cardiomyocytes, and pos-
sibly even neuronal cell lines [102]. Though the International Society
for Cellular Therapy developed specific MSC antigen and differen-
tiation criteria in 2006, these have not been uniformly adopted and
“MSCs” may well represent a heterogenous collection of cells with
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Figure 1: An extremely abbreviated map of the differentiation of the
stem/progenitor cells relevant to vascular graft engineering.
Pluripotent stem cells (either embryonic or induced) give rise to
numerous progenitor lines, including CD34+ hæmatopoietic stem
cells—which generate the myeloid and lymphoid lineages of the
blood—and mesenchymal stem cells (MSCs). Both of these are con-
stituents of bone marrow mononuclear cells (BM-MNCs). MSCs
are rare (1 in 10,000 BM-MNCs), and though not immortal, are ca-
pable of manyfold expansion in culture, and have been shown to
be broadly differentiable into numerous tissue types, including all
three of the primary components of vascular tissue [100].

varying degrees of potency [103, 104]. Regardless, functional popula-
tions are widely studied in literature and can be extracted not only
from bone marrow (BM-MSCs), but also adipose tissue [105], liver
[106], and even human hair follicles [107]. They have been shown to
be both antithrombogenic [108] and assistive of EC colonization in
vivo [109]—both extremely enticing properties in vascular engineer-
ing. Readily available and possessing a high proliferative capacity,
MSCs are a widely-used cell source for TEVGs, and an important
foundation for future research and graft manufacture [110–114].

Since their 2006 discovery, induced pluripotent stem cells (iPSCs)
have also attracted immense interest from the vascular engineering
community, potentially allowing the growth of entirely autologous
grafts from transformed adult cells [88, 115]. This is of obvious util-
ity for cell-containing grafts, expanding the replicative potential of
non-immunogenic autologous cells precisely personalized for each
patient. Even in the construction of decellularized grafts, however, iP-
SCs could represent a superior source of cells capable of indefinite ex-
pansion, permitting the creation of human cell banks for predictably
uniform graft production. Multiple groups have demonstrated the
generation of MSCs (and subsequently SMCs) from iPSCs [116], and
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patent iPSC-derived TEVGs were demonstrated in mouse models in
2012 [117]. Human iPSC TEVGs followed in 2014 both on nanofibrous
poly(l-lactic acid) [118] and PGA [110] scaffolds, to which the research
in this thesis contributes in small part.

1.4 calcification as a barrier to integrity

As described, this diverse set of approaches has produced several can-
didates that satisfy the basic mechanical requirements of a functional
graft, and, as discussed above, numerous clinical trials are in progress.
To truly realize the promise of tissue engineering approaches, how-
ever, attention is turning to the large-scale reproducibility and bio-
compatibility of the final TEVG product. One significant obstacle
faced by most cell-culture approaches—and a crucial factor in me-
chanical performance in the longer term—is the prevention of calci-
fication in the graft wall both during vessel construction and after
implantation, when in vivo remodeling exerts considerable influence
on vessels’ mechanical properties.

Evidence suggests that in vivo vascular calcification is an active,
cell-driven process mediated by osteocytes and chondrocytes [119,
120]. These arise from both progenitors and SMCs themselves, which
retain some phenotypic plasticity [121, 122]. Myocardial tissue engi-
neering efforts have also been hindered by such calcification, with
both BM-MNCs and BM-MSCs demonstrating substantial and unwel-
come chondrogenesis when injected into damaged heart tissue [123,
124]. Similarly, studies of vascular graft cell sheets produced from
MSC-derived SMCs demonstrated a significant increase in calcifica-
tion over SMCs taken directly from human aorta [125]. Preventing
calcification during graft construction thus requires careful control
over differentiation.

Thus far, encouraging the growth of smooth muscle phenotypes
in vitro has involved mimicking conditions seen in native vessels, in-
cluding

• Soluble growth factors: transforming growth factor β 1 (TGF-
β1) and platelet-derived growth factor (PDGF) are both released
in vivo by platelets in response to vascular injury [125, 126], and
both are widely used to induce SMC differentiation in vitro.
Other groups have also driven SMC phenotypes with ascorbic
acid (i.e., vitamin C) [127] and retinoids (i.e., vitamin A), both
implicated in embryonic vasculogenesis.

TBG-β1 is part of a broader TGF-β superfamily, a collection of
related extracellular growth factors that control large portions
of tissue development. Forming homo- or hetero-dimers, the
ligands bind to Type I and Type II subfamilies of transmem-
brane serine/threonine kinase receptors. Binding co-localizes
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the two corresponding receptor types, principally activating a
set of highly-conserved SMAD proteins with numerous and var-
ied transcriptional effects in the nucleus 2. Other notable super-
family members include Müllerian inhibiting substance(MIS),
an essential signal in male embryogenesis, and bone morphogenic
proteins (BMP) 2 through 7, which are crucial signals in car-
tilage and bone development. TBG-β1 is ubiquitous and mul-
tifunctional in vivo [130]; its differentiation effects can also be
strongly dose-dependent. In vasculature, TBG-β1 is particularly
responsible for vasculogenesis in embryos and vascular repair
after platelet recruitment [131, 132]. At low concentrations, it
can also promote differentiation by inducing PDGF-A [128].

PDGF has four mammalian forms (PDGF-A, PDGF-B, PDGF-
C and PDGF-D), all of which also produce biologically-active,
disulfide-linked homo- and hetero-dimers (e.g., PDGFAB, PDGFBB,
etc.). These react with two distinct PDGF receptors, PDGFRα
and PDGFRβ, both transmembrane receptor tyrosine kinases
with differing affinities for the PDGF subtypes and different,
overlapping downstream signaling effects. The PDGFBB sub-
type binds to both receptors and is commonly used for SMC
differentiation, though its potency seems to depend on the ratio
of PDGFRα and PDGFRβ on the MSC surface. This ratio is in
turn influenced by multiple local micro-environmental factors—
notably including mechanical stress, which drives the system
towards PDGFRα predominance and an SMC endpoint [133].

• Mechanical stimulation: in vivo vessels see pulsatile forces
throughout growth due to the flow of blood, which can be repli-
cated during cell culture to improve the mechanical strength
of grafts [134]. Mechanisms of this effect include the upreg-
ulation of both collagen and elastin production by SMCs [74,
135], and the increased production of matrix metalloproteinase
2 (MMP-2), which hastens the remodeling and realignment of
already-deposited collagen to improve integrity [136]. Cyclic
strain also directly promotes the SMC phenotype, however, as
demonstrated by increased expression of the SMC markers smooth
muscle α-actin, calponin-1, and smooth muscle myosin heavy
chain (SMMHC) [94]. TGFβ-1 signaling increases, further pro-
moting differentiation and ECM synthesis. Notably, equiaxial
strain (i.e., the cell sheet stretched in all directions, as if on the
surface of a balloon) was less effective than uniaxial strain in en-
couraging SMC differentiation, which pleasingly corresponds
with the circumferential strain one would expect to see in a
pulsing vessel [137].

2 TGF-β1 also sends signals via SMAD independent pathways; MAPK and Wnt path-
ways can be activated and push MSCs to a chondogenic endpoint [128, 129].
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• Direct cellular and matrix contact: Though normally sep-
arated from SMCs by a thick elastic lamina in vivo, endothelial
cells are brought into contact with deeper vascular layers dur-
ing both injury and development, and have been shown to di-
rect SMC behaviour. Similarly, data suggests that direct cellular
contact with ECs can induce MSC differentiation into SMC phe-
notypes, specifically increasing SM α-actin expression [138]—
effects are mediated at least in part via activation of latent TGF-
β [139]. Contact with glycosaminoglycans in the extracellular
matrix produced by ECs causes similar differentiation into vas-
cular phenotypes—an effect not seen with soluble factors pro-
duced by the EC, nor with fibronectin, collagen IV, or laminin
alone [140].

Most TEGV efforts use various combinations of these factors to
produce an imperfect yet serviceable population of SMCs from MSC
progenitors. The partial overlap of these signals with osteogenic and
chondrogenic pathways, however, coupled with multipotent progeni-
tors’ immense flexibility, means that the complete suppression of off-
target differentiation remains an important technical challenge, and
the focus of this thesis.

Further increases in differentiation control and consequent reduc-
tion in chondrogenesis and osteogenesis may require the considera-
tion of as-yet less-studied factors. This includes both the effect of the
oxygen tension (i.e., oxygen partial pressure) surrounding cells dur-
ing culture—often very different than that seen by SMCs in vivo—and
the effects of a number of small-molecule inhibitors shown to arrest
the signaling pathways associated with chondro/osteogenesis.

1.4.1 The effect of oxygen tension

For convenience, much of in vitro cell/tissue culture is conducted
at near-atmospheric oxygen tensions, typically at a partial pressure
of pO2 = 21% (dissolved oxygen concentration near 193nmolmL−1).
This is starkly different from physiological conditions; arterial smooth
muscle cells in the aortic wall, for instance, see O2 concentrations
of 11.2% at the lumen, falling rapidly to 2.2% at a depth of 150µm
[141]. It is perhaps not surprising, then, that oxygen tension may be
impacting MSC and SMC behaviour.

Huang et al., intrigued by endocardial ossification after BM-MSC
injection in damaged hearts, studied the role that hypoxia plays in
guiding MSC differentiation [142]. Comparing rat BM-MSCs incu-
bated at 2% and 20% O2, they noted significant inhibition of calci-
fication at lower oxygen tensions, as measured by the gene expres-
sion of osteogenic markers (i.e., Collagen-I, osteocalcin, and alkaline
phosphatase [ALP]). At the same time, however, chondrocytic differ-
entiation seemed to increase. Similarly, Gawlitta et al. studied MSC
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differentiation with a view to improving cartilage tissue engineering
efforts. Comparing 5% and 20% O2 concentrations on human BM-
MSCs, they noted that normoxic (i.e., 20% O2) conditions significantly
enhanced the hypertrophic maturation of chondrocytes, the transfor-
mation that in bone development allows the cells to begin mineral-
ization [143]. Based on both of these studies, it may be that hypoxic
conditions can prove useful in the suppression of mineralization in
TEVG applications, where chondrogenesis and subsequent hypertro-
phy have negative effects on mechanical performance.

Hypoxic growth may also have vascular graft benefits independent
of chondrogenesis suppression. Bjork et al., studying neonatal dermal
fibroblasts seeded onto fibrin-based tubular scaffolds, studied the ef-
fect of low oxygen tensions (2%) and insulin supplementation in an
attempt to more closely mimic physiological conditions [144]. Hy-
poxia resulted in a threefold increase in tensile strength and elasticity,
with a twofold increase in collagen weight per cell. Collagen fibril
formation was enhanced by increased production of collagen prolyl-
4-hydroxylase, an essential enzyme in the post-translational biosyn-
thesis of collagen.

Together, these results suggest oxygen tension as an important lever
in the future optimization of MSC-based TEVGs, and motivates fur-
ther investigation into its effects.

1.4.2 Bone morphogenic protein signaling

TGF-β1 is an extremely common tool in differentiating MSCs to SMCs
in vascular tissue engineering [114, 125, 145–148], often in combina-
tion with ascorbic acid or PDGF, as described above. It may have ad-
ditional benefits beyond differentiation: TGF-β1 enhances SMC con-
tractility [149] and, when combined with insulin, enhances elastin
deposition [71] and thus membrane integrity.

TGF-β1’s differentiation is not specific to SMC outcomes, however,
when applied to MSCs—cells that possess an innate tendency toward
bone [150] and cartilage [151] differentiation. While unable to initiate
osteogenesis on its own, the factor amplifies osteoprogenitor prolifer-
ation in the early stages of BMP-induced osteogenesis [130]. TGF-β1

can also directly induce MSC chondrogenesis in vitro, and is actually
specified in combination with other members of the TGF-β super-
family (TGF-β3 and BMP-2, -4, -6, and -7) in chondrogenesis proto-
cols [151, 152]. Adenoviral-mediated transfer of TGF-β1 into MSCs
resulted in robust chondrogenic differentiation [153].

SMC and chondrogenic differentiation seem to rely on SMAD and
non-SMAD pathways, both of which TGF-β1 can induce in MSCs.
Whether not TGF-β1 ultimately pushes them towards SMC or chon-
drogenic endpoints in vitro ultimately seems to depend on the spe-
cific microenvironment of the cell, including the presence of other
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LDN193189

Formula C25H22N6

Mol. weight 406.693u
PubChem ID 25195294

IC50 < 50nM

Figure 2: Structure and physical properties of LDN193189. Structure gen-
erated at <molview.org> based on PubChem database; IC50data
from [154]. LDN193189 selectively blocks ALK2 and ALK3 recep-
tors, thus inhibiting BMP4-mediated SMAD activation. Data sug-
gests 200-fold selectivity for BMP signaling versus TGF-β, and a
greater potency than dorsomorphin analogues [154].

growth factors [129]. This suggests that preventing osteo- and chon-
drogenesis requires strict control of all growth factors present in TEVG
culture.

One potential suppressor of unwanted calcification could be BMP-
specific inhibitors, specifically targeting and eliminating a major con-
tributor to osteo- and chondrogenic signaling. Small molecules like
LDN193189 (Figure 2) and DMH-1 (Figure 3) have been successfully
used to suppress unwanted ossification [154] and chondrogenesis
[155] in multipotent progenitors, albeit not yet for the purposes of
TEVG development. Ideally, however, substances such as these could
be additive with existing methods of encouraging SMC outcomes,
helping to further tip the balance in favour of calcification-free grafts
in future large-scale TEVG implementations.

<molview.org>
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DMH-1

Formula C24H20N4O

Mol. weight 380.451 g/mol
PubChem ID 50997747

IC50 ≈ 500nM

Figure 3: Structure and physical properties of dorsomorphin homologue 1

(DMH-1). Structure generated at <molview.org> based on Pub-
Chem database. Similar to LDN, dorsomorphin selectively blocks
ALK2, ALK3, and ALK 6 activity, thus also preventing BMP signal-
ing with a high degree of selectivity over TBG-β pathways [154].

<molview.org>


2
A I M S

The rapid progression of TEVGs towards clinical impact in hæmodial-
ysis, pediatric surgery, and bypass operations intensifies the need for
highly-reproducible, off-the-shelf grafts with predictable properties,
amenable to mass production. This in turn calls for flexible cell lines
capable of generating multiple generations of vessels with minimal
calcification or other defects.

To this end, this thesis attempts to answer two questions: do iPSC-
derived SMCs still respond to the same signals and controls as BM-
SCMs? And, can varying oxygen tensions and small-molecule growth
factor inhibitors be used to suppress SMC tendencies towards osteo-
and chondrogenesis?

2.1 ipsc differentiation

Our early studies in the derivation of MSCs from iPSCs were fraught
with unexpected behavior and unusual osteogenic phenotypes, even
when biomarker analysis indicated that the bulk of cells were dif-
ferentiating correctly (Sumati Sundaram, personal communication).
Conclusively demonstrating that existing BM-MSC TEVG techniques
and research can be transferred to these new cell populations thus re-
quires further study. With the ultimate goal of contributing to future
iPSC-based TEVG construction, I examine the influence of pulsatile
mechanical strain on iPSC-derived SMCs to determine whether they
mirror their BM-derived counterparts in their increased proliferation
and collagen production.

Hypothesis 1: iPSC-derived MSCs will still demonstrate
useful increases in proliferation and collagen production
when exposed to pulsatile pressures, as has been shown
in BM-MSCs (“Mechanical Stimulation” in Section 1.4).

Specifically, vessels grown in pulsatile conditions will
show a statistically-significant increase in both collagen
and DNA weight versus non-pulsatile vessel controls.

2.2 oxygen and small-molecule differentiation control

As discussed in Section 1.4.1 and Section 1.4.2, both oxygen tension
and BMP-signal inhibition are potentially promising avenues of in-
creased differentiation control. To determine whether either have use-
ful potential in the reproducible production of TEVGs, I test the im-
pact on MSC osteo- and chondrogenesis of various concentrations of

22
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BMP inhibitors, LDN193189 and DMH-1 (Figures 2 & 3, under both
high- and low-oxygen conditions.

If successful, results would guide future culture conditions and im-
prove TEVG mechanical performance.

Hypothesis 2a: BMP-inhibitors LDN193189 and DMH-1
will both suppress unwanted osteo- and chondrogenesis
in both marrow-derived and iPSC-derived MSC popula-
tions during SMC differentiation.

Specifically, treatment with both substances at optimal
concentrations should result in a statistically-significant
decrease in the expression of bone and cartilage markers
(collagen II [Col2a] and osteocalcin [OCN]) without affect-
ing the expression of SMC markers (collagen Ia [col1a1]
and SM22-α [156, 157]).

Hypothesis 2b: Hypoxic conditions (2% oxygen tension)
that more closely mimic those seen physiologically by SMCs
will improve the specificity of MSC differentiation into
SMCs in vitro.

Specifically, marrow-derived and iPSC-derived MSCs will
see a statistically significant increase in the expression of
SMC markers (col1a1 and SM22-α) in 2% O2 vs. 20% O2,
with a concomitant decrease in bone and cartilage mark-
ers (Col2a and OCN).



Part II

M E T H O D S A N D R E S U LT S

The below summarizes research work conducted from May
to August, 2013 towards the satisfaction of the require-
ments of the MD degree.

Comparisons between iPSC-derived and BM-derived MSCs
are a piece of a larger study with Sundaram et al., as
referenced in “Publications” above, and directed by Dr.
Sumati Sundaram; studies on hypoxia and inhibitors in-
volved greater independence. Division of labour was as
follows, where SS indicates Sumati Sundaram and JS indi-
cates Joshua Siewert:

iPSC Collagen Study

Experimental design SS

TEVG culture & growth SS

Collagen & DNA assays JS

Analysis & interpretation JS

Differentiation Study

Experimental design SS & JS

Cell culture & growth JS

qPCR & other assays JS

Analysis & interpretation JS



3
M E T H O D S

3.1 laboratory techniques

Individual procedures are outlined here; experimental design and ra-
tionale is outlined below in Sections 3.2 and 3.3.

3.1.1 Media changes and sterile technique

I performed all cell culture in an isolated, dedicated culture room
using aseptic technique in laminar flow hoods, sterilized with con-
tinuous UV light in-between sessions. I kept all cell cultures in in-
cubators maintained at 37

◦C when not in use. I changed aspirator
tips between interactions with each well, and took care to minimize
time between medium aspiration and replenishment of a given well.
I heated all media to 37

◦C in a water bath prior to addition. I cul-
tured all MSC cells in MesenCult™ 1 medium unless otherwise indi-
cated. For all SMC differentiation, I used “4-20 medium,” a mixture of
high glucose Dulbecco’s modified Eagle medium (DMEM) with 20%
FBS (fetal bovine serum), penicillin G (10000 U/mL), copper sulfate
(3 ng/mL), L-proline (50 ng/mL), L-alanine (40 ng/mL), glycine (50

ng/mL), and 50 µg/mL ascorbic acid as used in prior TEVG studies
[110, 158]. In all cases, I changed media every 2-3 days.

To support iPSC cell line growth, I applied Matrigel coatings2 to
all plates during culture, proceeding per published manufacturer in-
structions.

3.1.2 Cell passaging

During cell culture, when cells reached 90− 100% confluence as con-
firmed by optical microscopy, I aspirated existing media under sterile
conditions, and adding enough trypsin (warmed from frozen to 37 ◦C

in a water bath) to cover cells; this would generally require 2ml of
trypsin for a T-75 flask. I returned the flasks to the 37 ◦C incubator for
5 minutes to facilitate detachment, confirmed detachment via optical
microscopy, and diluted the cells 5:1 with low-glucose DMEM.

To determine the density of cells in solution, I mixed 10µl of sus-
pended cells with 10µl of Trypan blue dye, then transferred 10µl of
the resultant mixture to a hæmocytometer consisting of five (1× 1×

1 STEMCELL Technologies Inc., Vancouver, BC, Canada, <http://www.stemcell.
com>.

2 BD Biosciences, San Diego, CA, <http://www.bdbiosciences.com>.
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gene forward reverse

OCN GGACTGTGACGAGTTGGCTG CCGTAGAAGCGCCGATAGG

Col2a CTGCAAAATAAAATCTCGGTGTTCT GGGCATTTGACTCACACCAGT

gene manufacturer cat. no.

GAPDH/G3PD Qiagen PPH00150F

SM22α/TAGLN Qiagen PPH19531F

Col1a1 Qiagen PPH01299F

Table 2: Details of primers used for real-time quantitative reverse-
transcriptase polymerase chain reaction throughout. In addition, I
used the commercial primers from Qiagen, Inc. as indicated.

0.1)mm sections crisscrossed with (0.1× 0.1)mm demarcations. Un-
der an optical microscope, I counted viable (i.e., non-staining) cells
in the 5× (1× 1× 0.1)mm = 0.5µl region. With a manual count of N
viable cells, and given the 1:1 dilution in dye, the original density was
thus calculable as 2N/(0.5µl) = 4N/µl to provide a total cell count.

Centrifuging the suspended cells at 1000 RPM for 5 minutes and
discarding the supernatant, I diluted the resultant pellet in enough
growth medium to seed the new plate at 4000 cells/cm2, then sup-
plemented wells with growth medium to recommended working vol-
umes3.

I calculated all seeding densities based on existing hSMC work by
Williams et al. [125].

3.1.3 RNA isolation, quantification, and RT-qPCR

I purified RNA from lysed cells using the RNeasy® Mini Kit (Qia-
gen cat. nos. 74104 and 74106), following the manufacturer protocol4.
After RNA extraction, I quantified it via 260nm absorbance mea-
surements using a Thermo Scientific NanoDrop™ Spectrophotome-
ter, blanking and cleaning the stage with RNAase-free water between
each sample.

To analyze gene expression, I relied on real-time quantitative reverse-
transcriptase polymerase chain reaction (qRT-PCR) using the iScript™
cDNA Synthesis Kit (Bio-Rad, cat. no. 170-8891) to synthesize first-
strand cDNA, then thermally cycled the reaction per kit protocol5 us-
ing either an Eppendorf Mastercycler® or a Bio-Rad CFX96 Touch™
Real-Time PCR Detection System coupled with a C1000 Thermal Cy-

3 See “Surface areas and recommended medium volumes for Corning cell culture
vessels,” available at <http://csmedia2.corning.com/LifeSciences/media/pdf/an_
surface_areas_reco_med_vol_for_cc_vessels.pdf>, accessed 2013-07-15.

4 See published RNeasy® Quick-Start Protocol (Quiagen, January 2011), avail-
able for download at <https://www.qiagen.com/us/resources/resourcedetail?
id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24>.

5 See Bio-Rad iScript™ cDNA Synthesis Kit product insert, available at <http://www.
bio-rad.com/webroot/web/pdf/lsr/literature/4106228.pdf>.

<http://csmedia2.corning.com/LifeSciences/media/pdf/an_surface_areas_reco_med_vol_for_cc_vessels.pdf>
<http://csmedia2.corning.com/LifeSciences/media/pdf/an_surface_areas_reco_med_vol_for_cc_vessels.pdf>
<https://www.qiagen.com/us/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24>
<https://www.qiagen.com/us/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24>
<http://www.bio-rad.com/webroot/web/pdf/lsr/literature/4106228.pdf>
<http://www.bio-rad.com/webroot/web/pdf/lsr/literature/4106228.pdf>
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cler, both loaded with custom cycling patterns. For samples with suffi-
cient available RNA, I targeted 500ng of RNA in each reaction based
on NanoDrop quantification. Each sample and condition was plate in
duplicate, with 20µl volumes in all RT-PCR wells. I used iQ™ SYBR®

Green Supermix (Bio-Rad cat. no. 170-8882) as the fluorescent probe,
and the forward/reverse primer sequences given in Table 2. Accom-
panying BioRad CFX Manager™ software (version 3.0.1224.1015) cal-
culated a quantitation cycle (Cq)6 based on a multivariable, non-linear
regression model.

I used the glyceraldehyde 3-phosphate dehydrogenase (GAPDH,
also called G3PD) housekeeping gene as a reference to normalize av-
erage target quantification cycles, producing ∆Cq and allowing cal-
culation of ∆∆Cq between two conditions. Thus, fold-change of tar-
get transcript levels between Condition α and Condition β would be
given as 2∆∆Cq , where

∆Cqα = Cqα −CqGAPDH

and

∆∆Cq = ∆Cqβ −∆Cqα

as previously described by Livak et al. [160].

3.1.4 Protein isolation and quantification

I initially attempted to quantify protein mass in lysates using an
A280 assay on the Thermo Scientific NanoDrop ™ Spectrophotometer,
measuring absorbance at 280nm without requiring standard curves
or additional reagents7. A280 measurements on a commercial seven-
concentration bovine serum albumin (BSA) standard set (Bio-Rad, #
500-0207) demonstrated expected accuracy, but measurements of ac-
tual cell lysates did not produce repeatable results when compared to
Bradford assays of the same, possibly due to undesirable absorption
by non-protein components.

For all subsequent protein quantification, I thus relied on a commer-
cial Bradford/Coomassie Protein Assay (Bio-Rad, # 500-0002), mea-
suring absorbance using a Beckman Coulter DU730 Spectrophotome-
ter and the supplied “950 Bradford” program.

6 Cq and Ct (i.e., “threshold” cycle) are used interchangeably herein, “quantification”
being the preferred term based on MIQE guidelines[159].

7 Per Thermo Scientific T010 Technical Bulletin for the NanoDrop 1000 & 8000 “Protein
measurements”, available at <http://www.nanodrop.com/Library/T010-NanoDrop%
201000-&-NanoDrop%208000-Protein-Measurements.pdf>.

<http://www.nanodrop.com/Library/T010-NanoDrop% 201000-& -NanoDrop% 208000-Protein-Measurements.pdf>
<http://www.nanodrop.com/Library/T010-NanoDrop% 201000-& -NanoDrop% 208000-Protein-Measurements.pdf>
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Figure 4: Series of collagen standards (left) ranging from 0µgmL−1 to
10µgmL−1 of hydroxyproline, with wells growing increasingly
red as λ = 550nm absorbance increases. Absorbance varies lin-
early with concentration.

3.1.5 Vessel collagen quantification

I quantified collagen in vessel samples with a standard colorimet-
ric assay detecting hydroxyproline based on a modification of Stege-
mann’s protocol [161]: digesting samples overnight in papain (140µg)
at 60 ◦C, incubating the result in 6N HCl at 115 ◦C for 18h, neutral-
izing, oxidizing with chloramine-T, then reacting with p-dimethyl-
aminobenzaldehyde and converting hydroxyproline to collagen us-
ing a 1:10 w/w ratio as previously described [162]. I compared ab-
sorbance at 550nm to a standard set of known concentrations to de-
termine concentration, as shown in Figure 4.

3.1.6 Vessel DNA quantification

To quantify DNA in grown vessels, I used a Quant-iT™ PicoGreen®

dsDNA Assay Kit (ThermoFisher Scientific, cat. no. P7589)8 on sam-
ples digested with papain as above. A BioTek Synergy spectrofluo-
rometer excited samples at 485nm and measured fluorescence mea-
sured at 535nm, which I then compared against a set standard DNA
dilutions.

8 Published kit protocol is available at <https://tools.thermofisher.com/content/
sfs/manuals/mp07581.pdf>.

<https://tools.thermofisher.com/content/sfs/manuals/mp07581.pdf>
<https://tools.thermofisher.com/content/sfs/manuals/mp07581.pdf>


3.2 static vs . flow culture conditions 29

3.2 static vs . flow culture conditions

To address the effects of pulsatile flow on iPSC vessels (Hypothesis
2.1), vessels were grown as described by Sundaram et al. [6], summa-
rized here:

Prior to my arrival, iPSCs derived from human lung (IMR90-1)
and human foreskin were provided by Dr. James Thomson (Univer-
sity of Wisconsin) [154] and cultured on Matrigel-coated plates 9 in
commercially-available mTeSR™ culture medium 10. Cells were pas-
saged as described in Section 3.1.2 above; with these iPSC lines, con-
fluence occurred every 5–6 days, and cells were dissociated using
dispase. Methods were based on the feeder-free technique described
by Xu et al. [163]. Cells were shown to express pluripotency markers
Oct4, SSEA4, and Tra-1-60 via immunostaining and were confirmed
to be karyotypically normal.

To differentiate iPSC cell lines into MSCs, cells first underwent
neural crest induction for 10-12 days in a medium containing the
TGF-β1 inhibitor SB 431542 (10µM, TOCRIS Cat. No. 1614), FGF2

(10ngml−1, R& D Systems), and recombinant Wnt3a (25-50 ngml−1,
R& D Systems) as described by Menendez et al. [164]. The resul-
tant neural crest cells were trypsinised and cultured in MesenCult™
growth medium (STEMCELL) for 4-7 days. MSC phenotype was con-
firmed via flow cytometry (positive for CD73, CD90, & CD105; neg-
ative for CD45) and successful differentiation into adipogenic, os-
teogenic, and chondrogenic lineages using the commercially available
Human MSC Functional Identification Kit (Cat. No. # SC006, R& D
Systems).

Vascular grafts were grown as described by Sundaram et al.:

...iPS-MSCs were seeded by directly pipetting cells onto
sutured tubular polyglycolic acid (PGA) scaffolds (4 cm
length, 3 cm diameter) over silicone tubing and then tied
to the reactor arms using Dacron sleeves. The reactor was
rotated every 10-15 minutes to ensure even distribution of
cells into the PGA scaffold. The medium for growth of the
TEVGs during the first half of the culture period was sup-
plemented with PDGFBB (10ngmL−1). For the remainder
culture period, medium composition was switched to a
low glucose DMEM with 10% FBS.

In addition, L-ascorbic acid (50µgmL−1) was added to
the medium three times a week to the cultures throughout
the entire culture period. Additionally, vessels were cul-
tured in a static mode for the initial 4 weeks to promote
cell growth and differentiation.

9 BD Biosciences, San Diego, CA, <http://www.bdbiosciences.com>.
10 STEMCELL Technologies Inc., Vancouver, BC, Canada, <http://www.stemcell.

com>.

<http://www.bdbiosciences.com>
<http://www.stemcell.com>
<http://www.stemcell.com>
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After the completion of this static flow period, one bioreactor was
left static as the non-pulsatile control, and another was provided with
cyclic mechanical strain identical to previous studies on BM-MSCs:
2.5% strain at 2.75Hz for a second 4 week period.

Taking 1 cm portions of both the pulsed vessel and the static con-
trol, I measured the dry weight of the vessel segments before per-
forming papain digests and the collagen & DNA quantification as-
says described above in Sections 3.1.5 & 3.1.6, facilitating comparison
of pulsatile and non-pulsatile conditions.

3.3 small-molecule and hypoxia inhibition

To investigate the influence of small-molecule BMP signal inhibitors
and hypoxia, I began with iPS-MSCs originally derived from the hu-
man lung (IMR90-1; clone 1, E8) iPSC line described in Section 3.2,
alongside a separate population of BM-MSCs all seeded at approxi-
mately 4000 cells/cm2.

Using standard 12-well plates (Falcon™ Polystyrene Microplates,
Thermo Fisher Scientific), I plated 9 wells for each line in biological
triplicate, aiming to produce a set each for both normoxic and hy-
poxic conditions, treated with either of two BMP inhibitors, LDN193189

hydrochloride (Sigma-Aldrich, Cat. No. SML0559) or DMH-1 (Tocris,
Cat. No. 4125). This demanded a total of 2×2×3×9 = 108 individual
wells for each of the two MSC lines. A limited supply of BM-MSCs
prevented me from plating LDN193189 BM-MSCs in triplicate, how-
ever; the final experimental plate layout is thus as diagrammed in
Figure 6.

At t=0, I replaced MesenCult™ medium with control and growth
factor mixtures as indicated in Figure 5. Controls included:

a. The MesenCult™ medium used to culture the MSCs.

b. The “4-20 medium” (Section 3.1.1) used to culture SMCs. As
in previous TEVG studies, I added fresh ascorbic acid weekly
to counteract its breakdown when exposed to light [158]; after
dissolution, I pushed the medium through a 0.2 µm filter to
ensure no particulate matter remained.

c. A combination of the 4-20 medium and the growth factors used
to encourage SMC differentiation: 1 ng/mL TGF-β1, 10 ng/mL
PDGFBB, and 50 µg/mL ascorbic acid, added from powder.

d. A combination of the 4-20 medium, the growth factors used to
encourage SMC differentiation, and DMSO—the carrier used to
dissolve the BMP inhibitor DMH-1—to control for the carrier’s
effect on the cells. I added DMSO volumes calculated to match
the concentration present in the strongest DMH-1 wells.
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Figure 5: Layout of each experimental plate; shaded wells remained unfilled.
Wells included media controls consisting of both (A) MesenCult™
and (B) 4-20 medium. SMC differentiation controls included (C) 4-
20 medium + 1 ng/mL TGF-β1 + 10 ng/mL PDGFBB (i.e., “T+P”)
and (D) 4-20 medium + TGF-β1 + PDGFBB + 50 µg/mL ascor-
bic acid + DMSO (at the highest concentration used in the BMP-
inhibitor treatments).
Remaining plates (E-I) included reactor media + TGF-β1

+ PDGFBB + the studied inhibitor (i.e., “BMP-I”)—either
LDNLDN193189 or DMH1—at the concentrations indicated in red.

In the remaining wells (E through I), I added either LDN193189

or DMH1 at various concentrations to test the impact of BMP sig-
naling inhibition. The wide range of concentrations (10 µM, 1 µM,
0.5 µM, 0.1 µM, and 0.01 µM) reflected the lack of direct IC50 data
on the particular cell lines studied, hopefully including near-optimal
concentrations somewhere in the series.

I placed one set (i.e., LDN193189- and DMH1-treated plates grown
from iPSC-derived and BM-MSCs) in a 37

◦C incubator at room levels
of oxygen, and another—the “hypoxic” set—in a separate incubator
outfitted with N2 canisters (Praxair) attached to a flow meter, oxygen
sensor, and low-flow alarm; I set the flow meter to retain oxygenation
rates of 2% through the duration of the experiment, and replaced N2
canisters when required.

As described in Section 3.1.1, I changed media every 2-3 days with
the media and growth factor specific to each well. I allowed cells
to grow for 14 days prior to aspirating media, adding lysis buffer
(Qiagen), and freezing at -80

◦C in Eppendorf tubes prior to RT-qPCR
analysis of SMC, bone, and cartilage markers per the protocols in
Section 3.1.3.
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Figure 6: Layout of all the experiment plates; each plate contained nine filled
wells as described in Figure 5. I prepared triplicate plates for each
combination of inhibitor, MSC type, and oxygen tension to study
effects and their interactions.
Note that insufficient BM-MSCs were available to produce the
LDN plates in triplicate; for these conditions, I only made a sin-
gle hypoxic and normoxic plate (as shown).
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R E S U LT S

4.1 ipsc pulsatile growth

Four vessels were successfully grown, two samples each under static
and pulsatile conditions.

I measured DNA content using the PicoGreen© dsDNA assay as
described in Section 3.1.6, comparing two non-pulsatile vessel sam-
ples with two pulsatile vessel samples (4 weeks of growth under
2.5% uniaxial strain at 2.75Hz). I plated samples in technical triplicate
for absorbance measurement, and results for each sample lay within
the assay’s linear region, as demonstrated in Figure A.15 (Appendix)
against a series of standard concentrations. Coefficients of variation
between replicate wells averaged 3.5%, indicating reasonable intra-
assay consistency. Results are shown in Figure 7 (orange), with ds-
DNA expressed as a percentage of the dry weight of the resultant
vessel. The non-pulsatile vessel averaged 0.0780 ± 0.002% dsDNA by
dry weight, where 0.008% represents the standard error, i.e.,

sx̄ =
s√
n

where s is the standard deviation of either the pulsatile vessels
or the non-pulsatile vessels, and n is the number of independent bi-
ological duplicates under each treatment condition (in this case, 2).
Similarly, pulsatile conditions produced vessels comprised of 0.1414

± 0.008% dsDNA.
Assuming roughly equal variance in both conditions (“homoscedas-

tic”)1, the two-sample t-test is given as [165]

t =
(x̄α − x̄β)√

s2α/nα + s2β/nβ
=

(x̄α − x̄β)√
s2x̄α + s

2
x̄β

for equal sample sizes (i.e., nα = nβ), where x̄α and x̄β are the
means of the two treatment conditions. In this case, the difference
in dsDNA fractions has a t = 80.0 with an accompanying two-tailed
p = 0.00015 � 0.05, i.e., we would only expect differences of this
magnitude 0.015% of the time if the null hypothesis were true, and
the iPSCs were not actually responding to pulsatile stimulation. The

1 Per Krzywinski et al., the equal-variance t-test is surprisingly robust to slight in-
equalities in variance, especially when n is equal in both populations (as in our case)
[165].
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Figure 7: Effect of pulsatile stimulation on collagen and dsDNA pro-
duction, both expressed as percentages of dry weight of the re-
sultant vessels. Both cases represent the average of two separate
vessel samples. dsDNA is measured via a PicoGreen© assay (Sec-
tion 3.1.6), and increased from 0.0780 ± 0.002% of dry weight to
0.1414 ± 0.008% (p=0.015%). Collagen values reflect the results of a
modified Bradford hydroxyproline assay (Section 3.1.5), showing
an increase from 25 ± 2% to 46 ± 2% (p = 2.3%) with pulsatile
stimulation.

difference thus easily achieves statistical significance even at this low
n=2.

I also measured collagen weights, again as a percentage of dry
weight, under both growth conditions; results are also shown in Fig-
ure 7 (blue) and summarized in Table 8. Pulsatile growth conditions
resulted in a statistically-significant doubling of collagen fractions
from 25 ± 2% to 46 ± 2% (p = 0.023 < 0.05, using again the ho-
moscedastic two-tailed t-test).

Results are based on the colorimetric assay described in Section
3.1.5, which measures absorbance based on hydroxyproline concen-
trations. Again, samples lay in the linear region of the assay, per Fig-
ure A.16 (Appendix). I also compared TEVG samples against a sam-
ple of human aorta (Yale Pathology), as indicated, which exceeded
both vessel samples in collagen fraction at 55% (one measurement).

4.2 differentiation control via o2 and bmp-inhibition

I successfully cultured BM-MSCs (passage 7) over the two-week ex-
perimental period with the chosen concentrations of BMP inhibitors,
both in hypoxic and normoxic conditions, and analyzed the resulting
lysates with RT-qPCR. BM-MSCs formed robust, confluent sheets of
spindled, plastic-adherent cells visible under an optical microscope.
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Figure 8: Collagen produced in pulsatile and non-pulsatile iPSC-derived
vessels, as measured by a colorimetric hydroxyproline assay and
expressed as a fraction of vessel dry weight samples. Error terms
represent standard error based on the two vessel samples mea-
sured at each condition.
Values for both TEVGs are compared with a sample of human
aorta analyzed with the same hydroxyproline assay; pulsatile
growth conditions moved collagen production significantly closer
to physiological conditions.

Unfortunately, none of the iPSC-derived MSCs survived to the ex-
periment’s completion; cells grew thin and web-like, ultimately losing
adherence and perishing. I thus discarded all iPSC-derived wells be-
fore they could produce lysates useful for analysis. There were no
obvious signs of fungal or bacterial contamination under the optical
microscope. With this setback, the new layout of the surviving plates
is shown in Figure 9.

Some subsets of the BM-MSC population were also lost to analysis.
Two plates of MesenCult controls (well “A”) did not produce enough
RNA to conduct PCR, as did one entire plate in what was likely a
technical error in RNA extraction. Notably, no wells exposed to 10

µM LDN193189 produced measurable amounts of nucleic acid.
Fortunately, nearly all DMH-1 plates and conditions produced two

or more usable results, and LDN193189 wells remained intact. The
complete set of recorded ∆Cq values and their standard errors are
supplied in the Appendix as Figures 17 and Figure 18. Where enough
raw material persisted, I repeated PCR on samples with > 1 cycle
discrepancy between technical PCR duplicates. I discarded technical
duplicates with > 2 cycle discrepancies that I was unable to re-plate.
In each remaining case, values represent the mean of two duplicates.

4.2.1 Differentiation into smooth muscle phenotypes

For all surviving wells, I quantified smooth muscle 22-α gene expres-
sion (SM22-α; see Table 2 in Section 3.1.3) as a marker of smooth mus-
cle differentiation, alongside pro-α1 (I) collagen (Col1a1), the chon-
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Figure 9: Final layout of the experimental plates; compare with orig-
inal experimental design in Figure 6. Shaded plates indicate cell
death; all iPSC-derived MSC lines died during the course of the
experiment, restricting inhibition studies to the BM-MSC cell lines.

drogenic marker pro-α (II) collagen (Col2a), and the osteogenic marker
osteocalcin (OCN).

Figure 10 compares fold change values relative to the housekeep-
ing gene GAPDH in both culture media and wells containing the
added differentiation factors PDFGBB and TGF-β. SM22-α is signifi-
cantly unregulated 2.3-fold by the factors (∆∆Cq = -1.19, paired two-
tailed t-test p = 0.37%), suggesting successful movement towards a
smooth muscle phenotype, while OCN and Col2a are both signifi-
cantly downregulated (∆∆Cq = 1.38, p = 0.31% and ∆∆Cq = 2.37, p
= 0.18, respectively). Col1a1 is not significantly affected.

The BMP inhibitor DMH-1 is dissolved in DMSO; to test the im-
pact of the solvent itself, I similarly compared differentiation factor
wells with (well “C”) and without (well “D”) a DMSO concentration
equal to the highest concentration of DMSO present in the treatment
groups—in this case, preparing a 10 µM solution from 50mM stock
DMSO, 0.02% v/v DMSO in the 4-20 medium (DMH-1) and 0.1%
v/v DMSO (LDN193189). The impact of the solvent was not statis-
tically significant for any of the markers tested, as shown in Figure
11. Furthermore, overall GAPDH Cq values with and without the sol-
vent did not change significantly, as seen in Figures A.17 and A.18

(Appendix).

4.2.2 Effects of hypoxia and BMP-inhibitors

Figure 12 shows fold-change impact on each gene marker of each
combination of DMH-1 concentration and oxygen tension, with Fig-
ure 13 showing similar data for LDN193189.

Multiple linear regression on all surviving well ∆Cq values, con-
trolling for plate-to-plate variation and presence or absence of hy-
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poxic growth conditions, produces the factors summarized in Table
14 (STATA/IC Version 14.2; see Appendix Figure 19 for raw inputs
and outputs).

The resultant regression takes the standard form

yi = β0 +β1xi1 + · · ·+βpxip + εi

for each individual well (i = 1, 2, . . . n), where yi represents the
∆Cq value of the measured gene (i.e., either SM22-α, OCN, Col2a, or
Col1a1), β0 is a constant associated with each gene’s regression, and
β1 through βp are the regression constants calculated for each inde-
pendent variable (x1 through xp) included in the regression. This in-
cludes variables indicating BMP-inhibitor concentrations in each well
(DMH-1 and LDN193189) as well as binary (“dummy”) variables for
the presence of hypoxia and the identity of the physical plate from
which each measurement derives, accounting for inter-plate variabil-
ity.

More specifically, each gene’s expression (∆Cq ) is predicted as:

∆Cqi = β0+hiβhypoxia +CLDNβLDN193189 +CDMHβDMH-1 +p1iβplate 1
+ · · ·+p5iβplate 5

+εi

where:

• hi represents the presence or absence of hypoxia, “1” for 2%
growth conditions and “0” for normoxic 20% growth.

• CLDN and CDMH represent the concentrations of BMP-inhibitors
LDN193189 and DMH-1, respectively, in µM—as these molecules
were not tested in combination, only one is non-zero for a given
data point.

• p1 through p5 are dummy variables for each plate, i.e., for the
first plate (“plate 1”), p1 is coded as “1,” and p2 through p5 are
“0.” Note that since plates are either “hypoxic” or “normoxic”
in their entirety, and because one plate can be described by a
complete string of “pxi = 0” values, only n− 1 binary variables
are required to uniquely code for the full set of plates.

The resultant β coefficients thus represent the strength of the influ-
ence of their associated factor on each gene’s expression.

I ran multiple separate regressions that also included interaction
terms between oxygen levels and inhibitor concentration; these did
not reveal any coefficients approaching statistical significance, and I
therefore assumed independence for the remainder of the analysis.

Hypoxia had a significant negative effect on SM22-α expression
(∆∆Cq = 1.77 ± 0.22 S. E. M., p <0.0%), corresponding to an average
3.4-fold decrease in SM22-α mRNA concentration. On the contrary,
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the reduced oxygen percentage tended to strongly increase the expres-
sion of chondrocyte marker Col2a (∆∆Cq = -2.85 ± 0.73, p =0.1%),
equivalent to a 7.2-fold upregulation. Though the osteocyte marker
OCN showed no significant response to oxygen concentration, type-
I collagen expression increased 3.4-fold (∆∆Cq = -1.75 ± 0.65, p =
1.2%) in the low-oxygen environment. In net, this suggests that physi-
ological oxygen tensions increased the incidence of chondrogenic dif-
ferentiation.

DMH-1 had no significant effects on any of the studied markers.
In contrast, LDN193189 produced a slight but significant 1.7-fold in-
crease in SM22-α expression per µM of inhibitor across the studied
0.01-1 µM range of concentrations (∆∆Cq = -0.78 ± 0.27, p =0.8%)
and a substantial 4.5-fold reduction (∆∆Cq = -2.17 ± 0.89, p =2.2%)
in the expression of the cartilage-associated Col2a gene, in agreement
with the stated hypothesis.

All four regressions produced F-statistics that indicated significance
at the p<0.05 level. Several plates additionally exhibited statistically
significant “plate effects,” i.e., all the wells on a given physical plate
saw correlated up- or down-regulation of the respective gene.
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Figure 10: Growth factor effects. Comparison of marker expression lev-
els between 4-20 growth media (well “B”) and cells with added
growth media (PDGFBB and TGF-β, well “C”); each dot repre-
sents a well in normoxic (20% O2, red) or hypoxic (2% O2, blue)
growth conditions, with gray lines connecting wells grown on the
same 12-well plate. All values are measured in fold-change (i.e.,
2Cq/2Cq from the GAPDH reference gene; asterisks indicate rela-
tionships significant at the p=0.01 level. Growth factors induced a
significant increase in SMC-marker SM22 (∆∆Cq = -1.19, paired
two-tailed t-test p = 0.37%) and significant decreases in osteo-
chondrogenic markers OCN (∆∆Cq = 1.38, p = 0.31%) and Col2a
(∆∆Cq = 2.37, p = 0.18%). Col1a1 was not significantly changed.
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Figure 11: DMSO effects. Comparison of wells containing growth media
and differentiation factors (PDGFBB and TGF-β) with (“C”) and
without (“D”) the addition of 0.02% v/v DMSO, the highest con-
centration used in the DMH-1 experiment (solid dots), and 0.1%,
the control in the LDN193189 experiment (hollow dots). All val-
ues are measured in fold-change (i.e., 2Cq/2Cq from the GAPDH
reference gene. Neither group exhibited statistically significant
trends in a paired, two-tailed t-test (p > 0.05).
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Figure 12: DMH-1 and oxygen tension effects. Plot of fold-change vari-
ation between a DMSO control at both 20% & 2% O2 and wells
containing various concentrations of the BMP-1 inhibitor DMH-
1. In all cases, fold-change is calculated as 2−∆∆Cq , as defined
in Section 3.1.3. Interaction significance is not measured between
each condition; instead, ∆Cq data across all concentrations is in-
tegrated into the multiple linear regression model summarized
in Figure 14. The number of contributing measurements in each
sample is summarized in Figure A.17 (Appendix).
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Figure 13: DMH-1 and oxygen tension effects. Plot of fold-change varia-
tion between a DMSO control at both 20% & 2% O2 and wells con-
taining various concentrations of the BMP-1 inhibitor LDN193189.
In all cases, fold-change is calculated as 2−∆∆Cq , as defined in
Section 3.1.3. Interaction significance is not measured between
each condition; instead, ∆Cq data across all concentrations is in-
tegrated into the multiple linear regression model summarized
in Figure 14. The number of contributing measurements in each
sample is summarized in Figure A.17 (Appendix).
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Figure 14: Results of multiple linear regression on the ∆Cq values of
four markers (relative to GAPDH) in BM-MSC-derived SMCs, in-
dicating the impact of O2 and BMP-1 inhibitor concentration on
expression. Raw ∆Cq values from surviving wells at each condi-
tion diagrammed in Figure 9 are given in Figures A.17 and A.18

(Appendix). STATA (Version 14.2) uses a least-squares approach
to generate the various coefficients defined in Section 4.2.2. All
errors represent standard error of the mean. Significant effects
are in bold. P-values indicate the likelihood that recorded data
would be produced if corresponding β values were in fact 0 (i.e.,
the null hypothesis were true, and the associated variable had no
effect).
βhypoxia represents the impact of a binary variable representing
low oxygen tension, i.e., if grown in 2% O2, ∆Cq values for the
relevant gene would be expected to be βhypoxia higher than if
grown in 20% O2. Coefficients are thus given in units of ∆Cq
i.e., ng/mg (marker/GAPDH). Similarly, “Plate-specific factors”
are the coefficients controlling for each physical plate; βplate 1

, for
instance, indicates that the ∆Cq of that gene’s expression on all
wells in Plate 1 were are predicted to be βplate 1

higher than Plate
6. These presumably represent effects of plate position in the in-
cubator, pipetting, etc.
βLDN193189 and βDMH-1 represent the coefficients on the concen-
trations in µM of both studied BMP inhibitors. They represent the
expected change in ∆Cq of the specified gene with each µ-molar
increase in inhibitor concentration; units are given ng/mg (mark-
er/GAPDH) per µM. Coefficient values of “0” indicate no effect
of that inhibitor on the gene’s ∆Cq values.
Finally, “Regression statistics” describe the quality of the resul-
tant model in describing each gene’s expression data in the form
of the F statistic: the mean sum of squares captured by the lin-
ear model (MSM) divided by the residual sum of squares (MSR)2.
The bracketed numbers indicate the degrees of freedom of the
model and the residual, respectively. The F test can be viewed as
a measure of the joint significance of the group of β variables, i.e.,
the associated p-value represents the chance that the recorded
data would be produced by the null hypothesis that the included
variables have no effect on gene expression.
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D I S C U S S I O N

5.1 ipsc pulsatile growth

Pulsatile growth conditions produced vessels with significant increases
in both dsDNA and total collagen as a fraction of dry weight. The en-
couraging, statistically significant increase in dsDNA suggests that
the iPSC-derived SMCs are indeed proliferating in the vessel scaffold,
adding additional support to the viability of iPSC-derived cell lines
as a future TEVG source.

The pulsatile conditions caused significantly increased collagen pro-
duction similar to that of physiological vessel wall, also suggesting
that these iPSC-derived cells are behaving as expected from SMCs.
Solan et al. performed nearly identical studies on SMCs isolated from
directly from porcine arteries, measuring collagen fractions in both a
control group and a group pulsed at the same 2.75 Hz frequency
used herein: dry weight fractions increased from 24.90 ± 8.28% to
35.37 ± 8.28%, in close agreement with the 25% to 46% upregula-
tion presented here [166]. Combined with the histological, mechani-
cal, and biomarker testing performed in concert by Sundaram et al.
[110], this argues strongly for the viability of iPSC-derived cell lines
as an ultimate TEVG source. The potential advantages of such an op-
tion are numerous: banks of iPSCs could be used both to provide a
well-characterized, readily reproduced cell source for future grafts,
or even used to produce a personalized, patient-specific graft derived
from the patient’s own cells that permanently eliminates any risk of
future immunorejection.

5.2 differentiation control via o2 and bmp-inhibition

Smooth muscle 22 (SM-22, also called transgelin [TAGLN] in fibrob-
lasts [167]) is a specific, actin-binding 22-kDa cytoskeletal protein
abundantly found in smooth muscle lineages [168] with three isoelec-
tric isoforms, α, β, and γ. Sharing considerable sequence homology
with calponin—which tonically inhibits the ATPase activity of myosin
to cause smooth-muscle relaxation—SM22 is currently thought to reg-
ulate smooth muscle tone in vivo [169, 170]. Long before its functional
role was hypothesized, however, it emerged as a common marker of
SMC phenotypes, alongside α-smooth muscle actin (SMA), muscle-
myosin heavy chain (MYH11), SM-calponin (CNN1), and smoothelin
(SMTH) [171].
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The Col1a1 gene codes for pro-α1 (I) collagen protein; two chains
of pro-α1 (I) combine with one pro-α2 (I) chain to form the triple-
helix of type I collagen. Type I collagen is not specific to a single cell
linage, and is found abundantly in bone, ligaments, dermis, and ves-
sel walls. Its importance to vascular integrity is highlighted in some
subtypes of the diseases osteogenesis imperfecta and Ehlers-Danlos
syndrome, in which Col1a1 and Col1a2 defects can lead to arterial
rupture in early adulthood [172] and a plethora of additional connec-
tive tissue deficiencies. Alongside type III, type I collagen forms the
primary load-bearing component of the vessel’s load-bearing extracel-
lular matrix, and its production is thus commonly tracked in TEVG
enhancement studies [144, 173–175].

In contrast to type I and III collagen, type II collagen is found pre-
dominately in cartilage [176], and is the expression of the associated
Col2a gene is used as a marker of chondroprogenitor cells [177]. Os-
teocalcin (also called bone gamma-carboxyglutamic acid-containing
protein) is the primary noncollagenous protein constituent in bone
and binds with high affinity to the hydroxyapatite that gives bone
and teeth their hardness [178]. In multiple studies of MSC differen-
tiation, the osteocalcin-associated gene OCN (also called BGLAP) is
used alongside alkaline phosphatase (ALP), sclerostin (SOST), osterix
(SP7), and others [179–181].

5.2.1 Differentiation into smooth muscle phenotypes

Based on the above, acceptable SMC differentiation should thus result
in a substantial increase in SM22 mRNA expression with concomitant
down-regulation in the osteochondrogenic markers OCN and Col2a.
All of these trends are observed with statistical significance, most
crucially the ≈ 2.3-fold increase in SM22 expression. Notably, when
analyzing normoxic data alone only paired t-tests exhibit statistical
significance, suggesting the influence of inter-plate differences. These
may be the consequences of inconsistent pipetting technique or even
plate positioning within the incubators.

Though SM22 is commonly employed as a mid-differentiation marker
of smooth muscle development, some groups have reported its pres-
ence in multipotent stem cell lineages, suggesting its specificity as
an SMC marker might be more limited in differentiation experiments
than in measurement of adult tissue [182, 183]. Though the presence
of statistically significant up-regulation in response to known pro-
moters of the SMC lineage still argues for successful differentiation,
a more convincing case would see the simultaneous measurement of
other known biomarkers, e.g., α-smooth muscle actin (α-SMA) and
calponin (CNN1). Studies in murine BM-MSCs have shown much
more impressive increases in SM22-α 21 days after PDGFBB treat-
ment (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH) at 0 d), though
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there is some indication that related intracellular signaling differs be-
tween the species [184].

Some controversy also exists around the use of PDGFBB as a pro-
moter of SMC differentiation. While studies of PDGFBB on embry-
onic stem cells produced smooth muscle morphologies with induced
α-SMA, calponin, and myosin on immunofluorescent staining, other
groups have reported PDGFBB as a highly efficacious negative regu-
lator of SMC differentiation and the suppression of SM22 in adult
SMCs [157, 185]. Studies in our lab have indicated no increase in
another SMC marker (CNN1) with PDGFBB alone, but statistically-
significant increases in expression after treatment with PDGFBB and
TGF-β in combination [110].

Some groups have reported ascorbic acid as inducing SMC pheno-
types in MSCs, reporting α-actin positivity on immunofluorescence
after two weeks of growth in 0.3 mM L-ascorbic acid [127]. This could
compromise the choice of 4-20 media as a negative control for differ-
entiation in this experiment. The concentration of ascorbic acid added
to our well—50 µg/mL, or 0.3 µM—is negligible in comparison, and
other studies have shown ascorbic acid concentrations up to 500 µM
as promoting MSC proliferation without hindering differentiation po-
tential [186].

5.2.2 DMSO as a confounding factor

Dimethyl sulfoxide (DMSO) is a widely-utilized, organic, amphipathic
solvent, employed here as the carrier solution for the DMH-1 BMP-
inhibitor. DMSO is well known to cause a host of phenotypic and
morphogenic changes in cultured cells [187]. In embryonic stem cells,
DMSO has been shown to induce differentiation at concentrations as
low as 0.125% v/v, well below the DMSO’s metabolic cytotoxicity IC-
50 of 1-3% [188]. The solvent seems to enhance mesodermal differen-
tiation, most powerfully affecting endodermal and hepatic lineages;
while 0.1% v/v has been suggested as a safe ceiling concentration,
even this may not be without impact [189].

Some groups have specifically reported the effect of DMSO on
SMCs—one noting no change in SMC cell count after three days of
treatment with 0.01% DMSO [190], and another seeing no significant
change in SM22 expression after 2 weeks of DMSO treatment with
unreported concentration [191].

Given the uncertainty surrounding the impact of DMSO even at
low concentration, I included DMSO control wells on each plate at
the highest concentration—0.02% v/v—used in the DMH-1 experi-
ment. The data in Figure 11 suggests that at these concentrations the
DMSO factor has no major impact. This is particularly reassuring
given that, as this concentration is low enough to be considered negli-
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gible, DMSO concentration was not specifically controlled for across
DMH-1 treatment wells.

Though LDN193189 is water-soluble, a miscommunication during
the course of the experiment led to the addition of 0.1% v/v DMSO to
all treatment wells and the DMSO control during two media changes
at the experiment’s outset. Though again no statistically significant
effects emerged, the N=2 dataset is inherently insufficiently-powered
to detect minor differences. As concentrations were equal across all
treatment wells, however, they should not directly impact existing
trends.

5.2.3 Notes on qPCR analysis

The statistical analysis of the qPCR data in this experiment is com-
plicated by the presence of missing values, generally due to factors
unrelated to the experimental conditions themselves: pipetting er-
rors, incorrect buffer preparation, insufficient initial cellular material,
etc. They can thus reasonably be considered Missing Completely at
Random (MCAR) in the statistical sense, somewhat simplifying their
treatment.

Given the presence of multiple treatment concentrations, the data is
not amenable to treatment with simple analysis of variance (ANOVA),
and I instead relied on a least-squares multivariate linear regression.
Even if the underlying relationship is non-linear—which could rea-
sonably be argued, given a potentially sigmoidal dose-response curve
from the inhibitor-receptor interaction, whose results are then exam-
ined in logarithmic Cq space—this may provide a first-order Taylor
approximation of the real effects. Thus, I rely on a variant of the ∆∆Cq

approach of Livak et al., comparing ∆Cq values for each gene marker;
the β coefficients produced by the model correspond with ∆∆Cqs
cross the considered treatment effects.

Multivariate regression does require the assumption of homoscedas-
ticity, or roughly symmetric variances across the dataset; it is not clear
that this is fully satisfied in this approach, as equal variances in con-
centration result in asymmetric variance after exponential conversion.
Furthermore, I have assumed equivalent PCR efficiencies between
genes of interest and housekeeping genes, which may not be valid
across all markers.

5.2.4 Effects of hypoxia and BMP-inhibitors

The most striking observed experimental effect surrounded the com-
parison of normoxia (20% O2) and hypoxia (2% O2), with the latter
unexpectedly decreasing smooth muscle markers while enhancing ex-
pression of both Type I and Type II collagen. This was in contrast to
the expectation that hypoxia might hinder chondrocytic differentia-
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tion. The motivating examples from bone engineering literature hint
at a subtler interplay: while still permitting early chondrocyte dif-
ferentiation, low oxygen levels hinder subsequent hypertrophic dif-
ferentiation of these chondrocytes [142, 143, 192]. Hypertrophic dif-
ferentiation refers to phenotypic changes in adult chondrocytes af-
ter completing their proliferative phase, growing into large, round,
terminally-differentiated cells that aid endochondral ossification in
vivo [193]. These demonstrate decreased Type II collagen production
relative to younger, proliferative chondrocytes. If this is indeed the
case, hypoxia may yet be valuable to tissue engineers: not to prevent
chondrogenesis, but to prevent subsequent hypertrophic differentia-
tion and ossification. Future experiments might directly measure cal-
cium production rather than the OCN marker, which may not capture
the incidence of these hypertrophic cells.

Disappointingly, the DMH-1 inhibitor did not significantly alter
any of the studied genes, suggesting limited utility in future differ-
entiation control. In contrast, despite its relative paucity of replica-
tions, LDN193189 seemed to produce a significant, dose-dependent
effect to both up-regulate smooth muscle markers and down-regulate
the chondrocyte gene Col2a. Though this result may be impacted by
DMSO erroneously added during the course of the experiment, this
would not seem to explain the dose-dependence of the result. This
suggests LDN193189 as a target for future study into calcification
suppression.

It is possible that the genes selected as osteo- and chondrogene-
sis markers are expressed too late in their differentiation to be fully
captured by this study. Osteocalcin is sometimes described as a late
marker of osteoblast progression [194], and in one study of osteoblas-
tic MSC differentiation it reached maximum expression only on day
21 (albeit demonstrating substantial up-regulation by day four in
culture by Kulterer et al. [195]). A study of rat MSC osteogenesis
compared the expression of multiple osteogenic markers, seeing a
twofold increase in OCN at 13 days and four-fold at 16 days, at
the experiment’s conclusion; osteocalcin was among the last markers
to demonstrate substantial change [181]. For osteogenesis, alkaline
phosphatase and the PTH/PTHrP may be more reliable markers in
future studies, appearing both more universally amongst osteoblast
subtypes and at an earlier stage or bone production [196].

The use of a single housekeeping gene (GAPDH) may also have
confounded qPCR results; many have suggested that unexpected and
unmeasured variation from sample to sample can lead to large errors,
and that truly accurate normalization of requires geometric averaging
of multiple housekeeping genes in each sample [197]. While this may
be less of a problem in clonal cultures than with human tissue biop-
sies, direct study of the stability of GAPDH as compared to other
common housekeeping genes in the cell lines may be warranted, as
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would be specific validation of GAPDH as a reference gene [198] to
achieve compliance with MIQE guidelines [159].

The study did indicate several statistical inter-plate differences, which
may be due to inconsistent media changes or pipetting techniques, or
even more minor factors: the relative location of the plates in the incu-
bator, time spent at room temperature awaiting manipulation, etc. It
must also be noted that this experiment simultaneously estimates the
magnitude of multiple presumably independent effects; with qPCR
data alone producing 36 separate factor estimates, it is more than
likely that the null hypothesis will produce Type 1 errors, i.e., incor-
rect rejection of the null hypothesis based on p-values less than the
5% threshold. Some have proposed p-value adjustments to account
for multiple comparisons, but these have not achieved consensus and
tend to simply trade reduction in Type I error for increases in Type
II error, i.e., failing to find real effects [199]. In our case, statistically
significant conclusions—some of which vastly exceed the relatively
weak threshold of p=0.05—argue at the least for further study and
corroboration of the presented results.



6
C O N C L U S I O N

The work herein studied both the potential of iPSC-derived MSCs
as a viable source for future TEVG construction and the potential
use of oxygen tension control or small-molecule BMP-inhibitors to
improving differentiation specificity, with a view to reducing vessel
calcification.

Regarding iPSC-derived vessels, pulsatile vessel-growth conditions
resulted in significant and substantial increases both in dsDNA—
indicative of successfully proliferating SMCs—and collagen fraction
as a percentage of dry weight, closely mimicking similar work in
more typically-derived MSCs. This agrees with Hypothesis 1 in Chap-
ter 2, and adds to the growing body of evidence pointing to iPSCs as
an attractive future option for TEVG design.

In the case of oxygen tension, stated hypotheses were incorrect:
hypoxia (2% O2) actually decreased SMC marker expression and in-
creased chondrogenic expression. This may reflect the true engineer-
ing utility of hypoxia lying not in preventing all chondrogenic differ-
entiation, but rather in preventing hypertrophic differentiation and
subsequent ossification of chondrocytes. This suggests more direct
measurement of calcification as a target for future work, rather than
simply tracking osteoblast-associated gene markers.

Unfortunately, the small molecule DMH-1 produced no statistically-
significant results. This may be due to insufficient experimental power,
especially given the low baseline presence of osteochondrogenesis in
the studied cell populations.

LDN193189, in contrast, was capable of inducing an impressive
4.5-fold reduction in Col2a expression while modestly up-regulating
SMC markers. Though this initial study served as a broad survey
across a variety of conditions and concentrations, these positive re-
sults warrant further study of this BMP-inhibitor as a potential addi-
tion to the arsenal of the vascular tissue engineer.
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Figure 15: Standard curve data for PicoGreen© dsDNA assay demonstrat-
ing assay linearity up to approximately 600 ng/mL based on
serial-dilution controls. Inset magnifies region below 100 ng/mL
of DNA concentration, demonstrating comparable linearity.
I diluted each sample (i.e., 468 1 [pulsatile] is one vessel) at three
different strengths (i.e., α, β, and γ) as the full extent of the region
of linearity was not know in advance. As discussed in Section 4.1,
I used 50 measurements to generate an average well absorbance
number, and pipetted each sample in technical triplicate; I then
scanned the 96-well plate three times. Every different data point
is thus the average of nine values: three separate scans for each
well, and three replicate wells per sample or standard.
I use the regression from the controls to generate a slope allow-
ing me to convert the fluorescence of each vessel’s dilutions into
estimates of DNA content; I then combine the three dilutions for
each vessel to give a net estimate of DNA content for each sam-
ple, demonstrating a near doubling in dsDNA concentration from
non-pulsatile to pulsatile growth conditions.
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Figure 16: Standard curve data demonstrating hydroxyproline assay linear-
ity up to 10 µg; sample values fell well within the linear range.
Conversion from hydroxyproline to collagen mass assumed a 1:10

w/w ratio, as described in [162].
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Figure 17: Raw ∆Cq values and their standard error for all conditions and
measured genes in the DMH-1 BMP-inhibitor experiment. ∆Cq
is calculated by subtracting the Cq of the GAPDH reference gene
from the Cq of the gene of interest; as concentration varies as
2
−Cq , more strongly positive ∆Cq values indicate lower gene ex-

pression levels, and vice versa. The color of the cell indicates the
number of separate samples averaged to generate the Cq value
in question. Where sufficient results exist, I also supply standard
error.
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Figure 18: Raw ∆Cq values and their standard error for all conditions and
measured genes in the LDN193189 BMP-inhibitor experiment. As
in Figure 17, ∆Cq is calculated by subtracting the Cq of the
GAPDH reference gene from the Cq of the gene of interest; as
concentration varies as 2

−Cq , more strongly positive ∆Cq values
indicate lower gene expression levels, and vice versa. As only one
cell is measured at each location, standard error calculations are
not possible.
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Figure 19: Sample STATA inputs and outputs for linear regression on two
markers, Col2a (top) and Col1a1 (bottom). Variables involved in
the regression include a binary or “dummy” variable for each
plate (“plated_”), a binary variable indicating whether the well
was grown under hypoxic or normoxic conditions, and variables
giving µM concentration of the BMP inhibitors. Variables are as-
sumed to be independent in the above; I also tested interaction
effects by including multiplicative terms (i.e., ldn∗hypoxia) in the
regression equation. STATA provides statistical treatment of each
variable as shown.



B I B L I O G R A P H Y

[1] L R Kaiser. “The future of multihospital systems.” In: Topics in
health care financing 18.4 (1992), pp. 32–45. issn: 0095-3814. url:
http://www.ncbi.nlm.nih.gov/pubmed/1631884.

[2] Tissue Engineering Part A. Origins. July 2009. doi: 10.1089/
ten.tea.2007.0412. url: http://www.liebertonline.com/
doi/abs/10.1089/ten.tea.2007.0412.

[3] Jessica Viola, Bhavya Lal, and Oren Grad. “The Emergence
of Tissue Engineering as a Research Field.” In: The National
Science Foundation A-07 (2003).

[4] R Langer and JP Vacanti. “Tissue engineering.” In: Science 260.5110

(1993).

[5] Richard. Skalak and C. Fred. Fox. Tissue engineering : proceed-
ings of a workshop held at Granlibakken, Lake Tahoe, California,
February 26-29, 1988. Liss, 1988, p. 343. isbn: 0845147064.

[6] Sumati Sundaram, Joshua Siewert, Jenna Balestrini, Ashley
Gard, Kevin Boehm, Elise Wilcox, and Laura Niklason. “Tis-
sue engineering and regenerative medicine.” In: Rossi’s Princi-
ples of Transfusion Medicine. Chichester, WestSussex: John Wiley
& Sons, Ltd., Apr. 2016, pp. 488–504. isbn: 9781119013020. doi:
10.1002/9781119013020.ch42. url: http://doi.wiley.com/
10.1002/9781119013020.ch42.

[7] Alexis Carrel. “Suture of Blood-Vessels and Transplantation of
Organs: Nobel Prize Lecture.” In: (1912).

[8] Alexis Carrel. “La technique des anastomoses vasculaires et
la transplantation des viscères.” In: Lyon Médical 98 (1902),
pp. 859–864.

[9] Alexis Carrel and Robert R. Hyman. “The Operative Tech-
nique of Vascular Anastomoses and the Transplantation of Vis-
cera.” In: Clinical Orthopaedics & Related Research 29.1 (1963),
pp. 3–6. url: http://journals.lww.com/corr/citation/
1963/00290/1%7B%5C_%7Dthe%7B%5C_%7Doperative%7B%5C_

%7Dtechnique%7B%5C_%7Dof%7B%5C_%7Dvascular%7B%5C_

%7Danastomoses.1.aspx.

[10] J Kunlin. “Le traitement de l’ischemie arteritique par la greffe
veineuse longue.” In: Revue de Chirurgie 70 (1951), pp. 206–235.

[11] Jesse E. Thompson. “History of vascular surgery.” In: Surgery:
Basic Science and Clinical Evidence: Second Edition (2008), pp. 1299–
1315. issn: 0098-7484. doi: 10.1007/978-0-387-68113-9_61.

58

http://www.ncbi.nlm.nih.gov/pubmed/1631884
https://doi.org/10.1089/ten.tea.2007.0412
https://doi.org/10.1089/ten.tea.2007.0412
http://www.liebertonline.com/doi/abs/10.1089/ten.tea.2007.0412
http://www.liebertonline.com/doi/abs/10.1089/ten.tea.2007.0412
https://doi.org/10.1002/9781119013020.ch42
http://doi.wiley.com/10.1002/9781119013020.ch42
http://doi.wiley.com/10.1002/9781119013020.ch42
http://journals.lww.com/corr/citation/1963/00290/1%7B%5C_%7Dthe%7B%5C_%7Doperative%7B%5C_%7Dtechnique%7B%5C_%7Dof%7B%5C_%7Dvascular%7B%5C_%7Danastomoses.1.aspx
http://journals.lww.com/corr/citation/1963/00290/1%7B%5C_%7Dthe%7B%5C_%7Doperative%7B%5C_%7Dtechnique%7B%5C_%7Dof%7B%5C_%7Dvascular%7B%5C_%7Danastomoses.1.aspx
http://journals.lww.com/corr/citation/1963/00290/1%7B%5C_%7Dthe%7B%5C_%7Doperative%7B%5C_%7Dtechnique%7B%5C_%7Dof%7B%5C_%7Dvascular%7B%5C_%7Danastomoses.1.aspx
http://journals.lww.com/corr/citation/1963/00290/1%7B%5C_%7Dthe%7B%5C_%7Doperative%7B%5C_%7Dtechnique%7B%5C_%7Dof%7B%5C_%7Dvascular%7B%5C_%7Danastomoses.1.aspx
https://doi.org/10.1007/978-0-387-68113-9_61


Bibliography 59

[12] Jordan D Haller and Andrew S Olearchyk. “Cardiology’s 10

greatest discoveries.” In: Texas Heart Institute journal 29.4 (2002),
pp. 342–4. issn: 0730-2347. url: http://www.ncbi.nlm.nih.
gov/pubmed/12484626.

[13] R G Favaloro, D B Effler, C Cheanvechai, R A Quint, and F
M Sones. “Acute coronary insufficiency (impending myocar-
dial infarction and myocardial infarction): surgical treatment
by the saphenous vein graft technique.” In: The American jour-
nal of cardiology 28.5 (Nov. 1971), pp. 598–607. issn: 0002-9149.
url: http://www.ncbi.nlm.nih.gov/pubmed/5116978.

[14] Nirav J Mehta and Ijaz A Khan. “Cardiology’s 10 greatest dis-
coveries of the 20th century.” In: Texas Heart Institute journal
29.3 (2002), pp. 164–71. issn: 0730-2347. url: http://www.ncbi.
nlm.nih.gov/pubmed/12224718.

[15] Ruben Y. Kannan, Henryk J. Salacinski, Peter E. Butler, George
Hamilton, and Alexander M. Seifalian. “Current status of pros-
thetic bypass grafts: A review.” In: Journal of Biomedical Ma-
terials Research Part B: Applied Biomaterials 74B.1 (July 2005),
pp. 570–581. issn: 1552-4973. doi: 10.1002/jbm.b.30247. url:
http://doi.wiley.com/10.1002/jbm.b.30247.
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