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Electrochemical Behavior of Aluminized Steel Type 2 in Scale-Forming Waters 

Leonardo Caseres 

ABSTRACT 

Aluminized steel Type 2 (AST2), often used for culvert pipes, is subject to 

corrosion which is the most important durability limitation factor. It was desired to 

determine if the outer aluminized layer will retain passivity and if protective 

galvanic action will develop. Thus, corrosion of unblemished and blemished 

AST2 surfaces was investigated in simulated natural waters. 

Experiments with unblemished specimens showed passive corrosion rates 

(~0.06 µm/yr) in scale-forming, 0.01 M Cl- solutions but sustained corrosion in 

other less protective media (with rates 3~10 µm/yr). Corrosion was manifested 

macroscopically by discoloration and few macro pits, but it likely proceeded also 

microscopically at the Fe-rich inclusion space scale. For blemished specimens, 

the aluminized coating galvanically protected to some extent the steel in all 

solutions. However, in 0.01 M Cl- solutions, protection was delayed until after 

some steel corrosion had occurred. In some solutions, complete consumption of 

the outer aluminized coating around exposed steel was noted. Elsewhere, 

coating appearance was similar to that of the unblemished condition. Nominal 

durability projections made for 16-gage AST2 ranged from >100 yr for 

unblemished AST2 to ~10 yr for the blemished condition. The present findings 



 xix 

were used as a first step in proposing refinements of presently used durability 

guidelines of AST2 culvert pipe. 

Cyclic cathodic polarization tests to examine O2 and H2 reduction at the 

Fe-rich inclusions showed significant hysteresis, more pronounced with 

decreasing scan rate. The effect was tentatively associated to the amount of Fe+2 

being deposited during the downward scan, a hypothesis supported by results 

from a physical model. 

A static polarization model was formulated for the blemished configuration. 

Results matched experimental trends and permitted evaluating the effect of 

solution conductivity σ beyond the experimental range. Exposed steel corrosion 

rates at the steel were increasingly large for decreasing σ. For the lowest σ, 

corrosion rates at the exposed steel center were distinctly larger than at the 

edge, consistent with experiments. An impedance behavior model was also 

formulated. Results showed frequency dependent current distribution and 

predicted relatively small artifacts that were and not evident experimentally, but 

should be considered when exploring other system conditions. 
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Chapter 1 

Introduction 

 

1.1 Background on Metal Culvert Pipe Durability 

The durability of metallic drainage pipes plays a crucial role in the 

economics of highway structures. An optimum service life design for drainage 

pipes and other metallic components can prevent unexpected costly repairs or 

structure replacement. For instance, the Florida Department of Transportation 

(FDOT) has an extensive inventory of metallic components in direct contact with 

soils and waters. The metallic components include metallic culvert pipes made of 

clad aluminum alloy, galvanized steel, and the increasingly popular aluminized 

steel, in the form of aluminized steel Type 2. In addition, structural steel piling 

(both steel shapes and pipes), galvanized tie strips in mechanically stabilized 

earth walls, and buried metals are also been utilized in a variety of engineering 

applications. However, corrosion is the most important durability limitation factor 

in these components, which must operate for long design service lives (e.g. 75 yr 

and beyond) (Cerlanek and Powers, 1993). Therefore, it is of necessity to have in 

place reliable means of predicting corrosion rates so that materials selections 

commensurate with the desired design service lives can be made. 

In actual metal forming and subsequent field application practice, 

galvanized steel and aluminized steel Type 2 components are liable to surface 
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distress that may range from minor to severe, exposing a certain amount of base 

steel. At present, all service life forecasting methods do not have provision for 

consideration of the effect of substantial localized galvanized/aluminized coating 

damage on the service life of these components. Such consideration would need 

to involve assessing the aluminized steel corrosion performance, in particular the 

extent of galvanic protection to the base steel, critically needed for improved 

forecast analysis. 

This Chapter presents a description of the relevant service life predictive 

methods (e.g. California, AISI, FDOT, and AK Steel methods) currently in 

practice and areas of needed improvement are noted with emphasis on drainage 

aluminized steel Type 2 pipe durability exposed to environments similar to those 

found in Florida. Where possible, examples of the methods are given on the 

basis of field testing locations in this study. In addition, a literature review on the 

corrosion of aluminum (main component of the outer aluminized coating), the 

fabrication process of aluminized steel Type 2, and past studies on the corrosion 

of aluminized steel Type 2 are presented. 

 

1.1.1 The California Method 

The California method was developed by the California Department of 

Transportation (CALTRANS) in the 1950’s to assess pipe durability based on the 

examination of ~7,000 galvanized culvert pipes (Beaton and Stratfull, 1962). A 

graphical analysis of the environmental parameters gathered versus pipe 

condition allowed to obtain the most significant parameters affecting the pipe 
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service life. The service life prediction method has been further refined over the 

years as a standardized procedure (California Test 643, 1999), which contains 

detailed information regarding the parameter measuring procedures as well as 

the use of those parameters to forecast service life of galvanized culvert pipes. 

The refined California method uses pH together with the minimum resistivity of 

both soilside and waterside (interior of a pipe) and metal gauge thickness, as key 

input parameters to forecast durability of galvanized steel pipe as shown in 

Figure 1.1. 

In this refined California method, pipe durability is defined based on the 

number of years to first penetration of a maintenance-free corrugated metallic 

component. Per the latest documentation examined for this dissertation 

(California Test 643, 1999), the refined California method was initially intended 

for service life predictions of galvanized steel pipes not including provisions for 

aluminized steel Type 2 service life forecast. The refined method establishes that 

low pH and minimum resistivity values result in short service life forecasts. 

However, surface water may have a relatively low pH and still not be very 

aggressive because other dissolved species (e.g. Ca+2, Mg+2, CO3
-2), not 

considered in the refined method, may precipitate a protective scale (hard 

waters) on the metal surface which tends to greatly decrease its corrosion rate. 

Conversely, high pH by itself may not guarantee extended service life if the water 

does not promote the formation of the protective scale (soft waters). 

Substantial experimental evidence (Cerlanek and Powers, 1993 and 

Bednar, 1989) suggests that the refined California method yields highly 
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conservative predictions in hard waters and liberal results in soft non-scaling 

waters. Similar limitations exist for the unqualified application of resistivity, which 

as a parameter cannot differentiate between the presence of beneficial or of 

detrimental ions in the medium. 

 

1.1.2 The American Iron and Steel Institute (AISI) Method 

The American Iron and Steel Institute (AISI) developed a method, derived 

from the refined California method, for predicting the service life of corrugated 

galvanized steel culvert pipes (Handbook of Steel Drainage & Highway 

Construction Products, American Iron and Steel Institute, 1994). The AISI 

method uses pH and minimum resistivity values as in the refined California 

method for service life forecast as shown in Figure 1.2. Contrarily to the refined 

California method, the AISI method does not consider that small perforations 

significantly degrade pipe performance, since the consequences of those 

perforations are deemed to be minimal in a gravity flow pipe such as most storm 

sewers and culverts installed in nonerodible granular bedding. In reality, the AISI 

method establishes a 25% total metal loss as the practical limit for estimation of 

galvanized steel pipe durability, yielding service lives that are approximately 

twice as much as to those obtained by the refined California method. The AISI 

method initially applied to galvanized steel and later to aluminized steel Type 2 

showed reasonably conservative predictions as reported by the Georgia 

Department of Transportation (Southeastern Corrugated Steel Pipe Association, 

1977). 
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1.1.3 The Florida Department of Transportation (FDOT) Method 

In the need of improving service life guidelines for highway drainage 

culverts, the FDOT Materials Laboratory undertook a five-year investigation to 

assess drainage metallic culvert performance in various environmental conditions 

in Florida. The field study completed in 1993 revealed that aluminized steel Type 

2 outperformed galvanized steel by a factor of 2.9 when using the refined 

California method for predicting service life of galvanized steel culverts (Cerlanek 

and Powers, 1993). As a result, the FDOT introduced a durability prediction 

method—currently in use in Florida—derived from the refined California method 

for aluminized steel Type 2-coated corrugated steel that takes into account the 

factor of 2.9 over the refined California method in environments with pH between 

5.0 and 9.0 and minimum resistivities larger than 1,000 Ω-cm as indicated by the 

shift in service life estimation (solid lines in Figure 1.3). For instance, in a neutral 

pH medium with a minimum resistivity of 4,000 Ω-cm, the FDOT method predicts 

service lives of ~90 yr and ~30 yr for 16-gauge aluminized and galvanized steel, 

respectively. As in the refined California method, durability predictions by the 

FDOT method do not take into account the system complexity and the variety of 

responses due to the existence of scale-forming waters. 

 

1.1.4 The AK Steel Method 

An alternative service life forecasting method based on field observations 

was proposed by AK Steel (Morris and Bednar, 1998 and Bednar, 1989) to 

incorporate the tendency for water scaling, mainly produced by the formation of 
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adherent CaCO3 film on the surface of a pipe, into the service life prediction of 

corrugated galvanized and aluminized steel Type 2 culvert pipes. Instead of pH 

and minimum resistivity, the AK Steel method (shown in Figure 1.4) uses the 

scaling tendency parameter equal to the total hardness plus total alkalinity minus 

free CO2, versus the solution conductivity (or its inverse, the resistivity). 

Contrarily to the other predictive methods, the AK Steel method considers 

that water scaling protects the metal from subsequent corrosion. If the scaling 

tendency parameter versus solution conductivity falls on the straight line, a 

protective scale is expected to be formed on the metal surface and corrosivity of 

the medium would be minimal. The idealized curves labeled 50 yr, 35 yr, and 20 

yr in Figure 1.4 exemplify the effect on durability of increasingly large amounts of 

aggressive anions such as Cl- and SO4
-2 ions and/or larger amount of free CO2 

which causes scale dissolution with a consequent increase of the metal corrosion 

rates. 

Preliminary application of this method has shown encouraging results in 

predicting the performance of galvanized steel and aluminized steel Type 2 

culverts in tropical and subtropical environments comparable to those 

encountered in Florida. Experimental evidence gathered to support the 

applicability of this method is nevertheless limited and several important issues 

remain unsolved that necessitate additional laboratory experimentation. Those 

issues include the possibility that the aluminized coating could be susceptible to 

depassivation if carbonate scales promotes alkaline conditions as indicated by 

Porter and Hadden (1953). 
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1.2 Corrosion Resistance of Aluminized Steel Type 2 

1.2.1 Manufacture and Surface Morphology 

Several aluminizing methods suitable for steel coating have been widely 

used for the past decades (Suzuki, 1989). The methods differ only on the type of 

protection process of the steel substrate against oxidation before the hot-dipping 

stage. The Armco Sendzimir method, however, is commonly adopted for the bulk 

of production of aluminized steel Type 2 briefly explained next. 

The steel to be hot-dipped is degreased by alkali cleaning or by heating at 

450-600 ˚C followed by water rinsing, pickling, and water rinsing again 

(pretreatment process). Afterwards, the pretreated steel is cleaned by exposure 

to a H2 gas atmosphere at high temperature (activating process). Cleaning the 

metal strip in a non-oxidizing/reducing atmosphere assures a pristine surface for 

coating adherence. At the end of the activating process, aluminum coating is 

continuously applied to the pretreated steel by hot-dipping in a closed 

environment at ~700 ˚C. The steel is annealed in the line and the coating 

thickness is controlled by the line speed, hot-dipping temperature, and air 

finishing knives as schematically depicted in Figure 1.5. The reaction rate 

between molten aluminum and steel is relatively fast, forming a duplex coating on 

top of the steel substrate. According to the ASTM A929 and ASSHTO M274 

standard procedures, the final product must comply with a minimum coating 

weight of 1 oz/ft2 which corresponds to a minimum coating thickness of ~40 µm, 

and a minimum tensile and yield strengths of about 310 MPa and 228 MPa, 

respectively. 
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 Microscopic examination of aluminized steel Type 2 in cross section 

shows a nearly pearlite-free ferrite low carbon steel substrate with regular grains, 

a partly columnar inner alloy layer ~15 µm thick, and an outer aluminum-rich 

layer ~30 µm thick. The inner alloy layer is of composition Fe2Al5 (An et al, 2001, 

Li et al., 2003) although others have shown the formation of FeAl3 in some cases 

(Serra et al., 1998, Bouche et al, 1998). The inner alloy layer is an essential 

ingredient of the coating protection system, supplementing the outer aluminum-

rich layer and possibly providing a second line of defense against corrosion. The 

composition of the outer layer is predominantly a matrix of aluminum and Fe-rich 

intermetallic precipitates (6-11 wt% Fe) (Caseres and Sagüés, 2005). During 

manufacturing, small discontinuities in the aluminized coating, possibly caused 

by cold working can extend to the substrate steel, creating coating breaks that 

may result in the formation of galvanic macrocells. 

 

1.2.2 Overview of Aluminum Corrosion 

Aluminum derives its corrosion resistance from the presence of a thin 

protective passive oxide layer, which when in contact with air, greatly decreases 

the rate of metal oxidation. When in contact with water, other forms of protective 

layers may form being the most common the hydrated aluminum oxide with 

composition Al2O3.3H2O (Godard et al., 1967). However, the aluminum oxide film 

may be subject to localized breakdown resulting in accelerated dissolution of the 

underlying metal. In particular, aluminum oxides tend to dissolve uniformly in 

extreme acid or alkaline medium. In non complexing solutions of ~4<pH<~8.5, 
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aluminum tends to become covered with the protective oxide film as first 

proposed by Pourbaix (Pourbaix, 1974). Under this condition, the oxide film has 

very low solubility and its electronic conductivity is also very small. However, a 

small but finite current can be measured during metal polarization as a result of 

the presence of intrinsic defects in the oxide film. Others (Hunter and Fowle, 

1956, Lee and Pyun, 1999) proposed that the oxide film consists of two 

distinctive layers. The inner oxide layer next to the metal is a compact 

amorphous barrier layer of thickness determined mainly by the temperature of 

the environment. Covering the barrier layer is a thicker, more permeable outer 

layer of hydrated oxide. 

As mentioned earlier, in alkaline solutions (pH>~8.5) the initially protective 

oxide film is expected to uniformly dissolve with the formation of AlO2
- ions. In 

acidic solutions (pH<~4), the oxide film decomposes to form Al+3 ions resulting 

also in considerable larger corrosion rates than otherwise. However, the 

predictions proposed by Pourbaix in these environmental conditions should be 

taken cautiously as being only general guidelines for estimation corrosion 

resistance in the absence of contaminants (Pourbaix, 1974). 

It has been widely demonstrated that the aluminum oxide film, if present, 

is covered with a layer of hydroxyl groups (McCafferty, 2003), which has Lewis 

acid–Lewis base properties, that dictates the surface charge of the oxide film 

when immersed in aqueous solutions. The surface charge has close connection 

to the solution pH when compared with the oxide isoelectric point (typically at 

pH~9.5). If the solution pH<9.5, the oxide film will acquire positive charges so 
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that, e.g. chloride ions, can be attracted to the oxide surface. If the solution 

pH>~9.5, the surface will accept negative charges. The attractive forces are 

mainly coulombic of ion–ion interaction type. The presence of chloride ions on 

the aluminum surface can induce localized corrosion of aluminum even in the 

range of aluminum passivity. Notably, chloride ions can cause pitting of 

aluminum at the region of local breakdown of the passive film as discussed next. 

 

1.2.2.1 Pitting Corrosion of Aluminum 

In general, pits initiate at some chemical or physical heterogeneities at the 

metal surface such as inclusions, second phases, grain boundaries, flaws, 

mechanical damage, or surface dislocations. Pitting of aluminum is considered to 

be autocatalytic in nature; that is once a pit starts to grow the conditions inside 

the pit are such that further growth is promoted. The local pit environment 

becomes depleted in oxygen (assumed to be the main cathodic reactant in well 

aerated solutions) and enriched in hydrolyzed aluminum cationic and anionic 

species, maintaining charge neutrality inside the pit. As a result, the pH inside the 

pit is low (McCafferty, 2003). It is well documented that within aluminum pits, 

chloride salts exist: aluminum chloride (AlCl3) and aluminum oxychlorides such 

as Al(OH)2Cl and Al(OH)Cl2. Depending upon the kind of chloride salts, different 

pH values within the pit can be expected. For instance, in the presence of AlCl3 

the pH may be as low as 1 (Vermilyea, 1971, Hoch, 1974), and a saturated 

solution of Al(OH)2Cl may exhibit a pH~3 (Vijh, 1973 and Kaesche, 1974) 
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determined by the freezing method, whereas the pH of the bulk solution was ~11 

(Wong and Alkire, 1990). 

Considerable understanding of the pitting phenomenon has been 

achieved but an in-depth description of the steps associated with pitting corrosion 

is still lacking. The stages of pitting will be discussed below, from passive film 

breakdown, to metastable pitting, and lastly to pit growth. 

The first stage of pitting is the passive aluminum film breakdown followed 

by pit initiation. Typically, aluminum passive films are characterized by extremely 

high electric fields on the order of 106-107 V/cm and by being very small in 

thickness (nm scale). Passive film breakdown and pit initiation can be interpreted 

by three mechanisms: film penetration, anionic species adsorption, or film 

breaking. Hoar (1965) established that the film penetration mechanism is 

associated with the transport by migration of aggressive anions through the 

passive film to the metal/oxide interface where active aluminum dissolution 

occurs. The penetration mechanism is supported by the existence of an induction 

time for pitting after chloride ions are in contact with the oxide film. Nevertheless, 

a critical chloride concentration in the oxide film at the metal surface has to be 

attained in order to display film breakdown and pit initiation. In contrast, Berzins 

et al. (1977), Wood et al. (1978), and Augustynski et al. (1978) found that the 

there is no chloride concentration threshold below which pitting will not occur and 

that pitting initiation and propagation depends upon the particular properties of 

the chloride adsorption sites at the aluminum surface. 
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Another approach to describe pit initiation is by the point defect model 

developed by Chao and coworkers (Chao et al., 1981). This approach assumes 

that chloride ions penetrate the outer portion of the oxide film resulting in the 

formation of cationic vacancies. These vacancies migrate towards the 

metal/oxide interface where they are consumed by the formation of cations from 

the metal. However, if there are more vacancies than cations formed, the 

vacancies remaining may condense at the metal/oxide interface creating a void. 

The void is presumed to be the first step in the pitting process according to this 

model. Optical and scanning electron microscopy conducted on ion-implanted 

aluminum surfaces after polarization above the aluminum pitting potential in 0.1 

M NaCl has shown that the propagation of corrosion pits is associated with the 

formation and rupture of blisters beneath the oxide film due to electrochemical 

reactions occurring at the oxide/metal interface (Natishan and McCafferty, 1989) 

validating the postulations of the point defect model. 

Foley (1986) proposed in one his early works that pit initiation involves 

adsorption of chloride ions at the oxide film surface followed by an oxide film 

penetration by the adsorbed chlorides, and a later chloride-assisted dissolution 

which occurs at the metal/oxide interface (Natishan and McCafferty, 1989 and 

later confirmed by Yu et al., 2000). After initiation, pits propagate following a 

series of events which lead to changes in internal pit chemistry and to the growth 

of pits as mentioned above. 

Yet another approach, the film breaking mechanism, considers that the 

passive film is in a continual state of breakdown and repair caused by localized 
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mechanical stresses at weak sites or flaws in the passive film. This mechanism 

implies that local breakdown events are followed by a rapid healing process of 

the passive layer in non aggressive environments. In chloride containing 

solutions, the healing process is less likely. According to this mechanism, local 

passive film breakdown will lead to pitting under conditions that promote pit 

growth (Sato, 1971, Richardson and Wood, 1970). 

 

1.2.3 Field Studies on the Durability of Aluminized Steel Type 2 

One of the most common problems encountered while researching field 

corrosion findings is that there is very little standardization in the methodology 

used to test and to evaluate corrosion of culvert pipes. Unfortunately, it is 

extremely difficult to adequately define the nature of the test environments (e.g. 

episodic wetting, abrasion, flow) and to compare corrosion of culvert pipes. 

Comparison tests typically involve visual inspection to assess pipe deterioration 

based upon criteria set up by the investigator. In general, visual inspections lack 

consistency when inspections are carried out by multiple inspectors with differing 

biases. Despite this ambiguity, several field studies have been conducted on 

aluminized steel Type 2 exposed to numerous environmental conditions. The 

investigations more relevant to this dissertation are presented in the next 

paragraphs. 

Ault and Ellor (1996) inspected around twenty one corrugated aluminized 

steel Type 2 culvert pipes located in Alabama, Oregon, and Maine. Their field 

studies suggested that in the absence of significant abrasion, an aluminized steel 
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Type 2 pipe could reach a service life of up to eight times that of a galvanized 

steel pipe predicted by the refined California method (if only waterside corrosion 

is considered, then the multiplier factor becomes 3.5). Similar results were 

reported by Potter et al. (1991), who suggested that the service life of aluminized 

steel Type 2 is ~6.2 larger than that predicted for galvanized steel. The actual 

service life multiplier factor varies depending on the specific environment. Under 

extreme conditions, however, the author stated that these materials would 

perform in a relatively similar manner (i.e., last a long time or fail rapidly). 

The California Highway Design Manual (Section 850-13, California 

Department of Transportation) indicates that a 18-gage aluminized steel Type 2 

pipe would have a service life equal to that of a 16-gage galvanized steel for a 

pH range between 5.5 and 8.5 and a minimum resistivity of 3,000 Ω-cm. 

However, in acid or alkaline environments the Design Manual asserts that 

galvanized and aluminized steels would likely show nearly equal performance as 

indicated by Potter et al. (1991). 

A comprehensive evaluation of aluminized and galvanized steel culvert 

pipes conducted by Bednar (1998) showed that corrugated aluminized steel Type 

2 would be considerably superior to galvanized steel in environments with 

resistivities higher than 950 Ω-cm and relatively high free CO2 content. This 

scenario would yield a minimum 50 yr service life for aluminized coating, 

whereas galvanized coating would be limited to up to 20 yr in service. In overly 

severe environments (resistivities <600 Ω-cm), the study showed that aluminized 

steel typically displayed accelerated pitting corrosion and the advantage of 
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aluminized over galvanized coating became minimal. A later field study by 

Bednar and AK Steel (Bednar, 1998) on the projected service life of aluminized 

steel Type 2 culvert pipes exposed to nearly neutral pH solutions with low 

chloride concentrations showed deepest pit penetrations of ~8 mils and ~12 mils 

after 30 yr and 42 yr in service, respectively, indicative of low/moderate corrosion 

rates with pit growth of ~6.7 to ~7.2 µm/yr, for a minimum projected service life in 

excess of 75 yr for a 16-gage metal pipe. 

The above observations of superior performance by aluminized steel Type 

2 over galvanized steel have been challenged by some recent field inspections in 

Florida. An ongoing FDOT investigation conducted on ~3 yr old spiral rib 

aluminized steel Type 2 culvert pipes in the City of Saint Cloud, revealed 

extensive corrosion damage of aluminized steel even in mild environments with 

nearly neutral pH and resistivities >2,000 Ω-cm. Projected nominal service life, 

determined per the FDOT method (Cerlanek and Powers, 1993) for 16-gage 

aluminized steel Type 2, yielded service lives between 60 and 115 yr. Likewise, 

the AK Steel method yielded a service life in excess of 50 yr. Clearly, the 

extensive damage observed early on was not anticipated by either forecasting 

procedure. The corrosion damage indicates that the fastest corrosion rates may 

have locally exceeded 510 µm/yr, value significantly higher than those observed 

for plain steel in similar environments (~25.4 µm/yr). Firm conclusions of this 

ongoing investigation have not been achieved yet but it is clear that an 

unexpected mode of deterioration is at play, for instance through 

microbiologically induced corrosion. 
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Gartland (1987) studied the corrosion behavior of flame-sprayed 

aluminum coated steel immersed in natural seawater at 9 ˚C for up to 210 days. 

The only difference between the flame-sprayed and the hot-dipped aluminized 

steels is in the coating thickness (~100 µm for the flame-sprayed procedure, 

compared to only about half as much for hot-dipping). Open circuit potentials, 

potentiodynamic polarization, and linear polarization tests in the cathodic 

direction were conducted at different exposure times. Corrosion rates, 

determined at the open circuit potentials by extrapolation of the anodic and 

cathodic polarization curves and by linear polarization, were found to be ~4.9 to 

~8.2 µm/yr at the end of exposure. It is cautioned however that this moderate 

corrosion rate, if sustained, would mean penetration of the aluminized layer after 

a decade. 

The majority of the field studies reviewed revealed a superior performance 

of aluminized steel Type 2 over galvanized steel for 4<pH<9 and resistivities 

>~2,000 Ω-cm. However, the unexpected extensive corrosion damage of 

aluminized steel detected in some regions of central Florida generated serious 

concerns as what environmental factors may have been involved in the corrosion 

mechanism. As a result, laboratory experimentation is needed to elucidate all 

possible modes of metal deterioration, and to study the synergistic influence of 

the major environmental variables on the aluminized steel Type 2 durability. 
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1.2.4 Galvanic Corrosion of Aluminized Steel Type 2 

Extensive research has been carried out to study the galvanic corrosion 

performance of aluminized steel Type 2 in various atmospheric environments as 

well as in high chloride concentration solutions. For instance, Legault and 

Pearson (1978) evaluated the atmospheric corrosion behavior of aluminized steel 

Type 2 test panels with uncoated cut edges (exposing the base steel) in 

industrial and marine environments. In their five-year investigation the corrosion 

rates, determined by metal weight loss (∆W = k tn where k and n are constants 

and t is time), were small (~0.2 µm/yr) and moderate (~0.45 µm/yr) in industrial 

and marine environments, respectively. Visual inspection of the test panels 

showed that the aluminized coating were in excellent condition except for the 

panels exposed to marine environments which showed small perforations of the 

aluminized coating with formation of uniform white corrosion product. 

Interestingly, the cut edges were free of corrosion in marine environments and 

depicted rust formation only in industrial environments indicative of insufficient 

galvanic protection to the exposed steel. 

Similar approach was employed by Townsend and Zoccola (1979) and 

later by Townsend and Borzillo (1987) who tested aluminized steel Type 2 panels 

with cut edges exposed to severe marine, moderate marine, rural, and industrial 

environments. After 13 yr of exposure, aluminized steel performed well in all tests 

environments except for the rural atmosphere in which rust staining along the cut 

edges was observed. For the marine environments corrosion rates, determined 

by weight loss measurements, decreased with time approaching a terminal 
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corrosion rate of ~0.18 µm/yr. In contrast, an increasing corrosion rate trend was 

noted in rural and industrial atmospheres with also small terminal corrosion rates 

in the order of ~0.25 and ~0.16 µm/yr, respectively. The main finding of their 

work was that aluminized coating had in general good physical barrier properties. 

However, if the aluminized layer is partially disrupted, its sacrificial protection to 

the exposed underlying steel was not sufficient (as visually noted by the growth 

of rust projections at the pores and cut edges of the specimens) in all 

environments tested except for the marine environment. The authors stated that 

in aggressive environments, the aluminized coating is anodic to the exposed 

steel where chloride ions impair the passivity of aluminum. However, in industrial 

and rural atmospheres the aluminized coating passivated so that little to none 

galvanic protection to the underlying steel was noted. 

Creus et al. (2000) investigated the corrosion behavior of aluminum 

coating (~10 µm thick) deposited on a 3 cm2 4135 steel base by physical vapor 

deposition. The coated steels were immersed in a 3% NaCl solution, aerated, 

and stirred with a rotating working electrode at 500 rpm. Open circuit potentials 

(EOC) vs saturated calomel electrode (SCE) and electrochemical impedance 

spectroscopy (EIS) over a frequency range from 4 mHz to 64 kHz with a 10 mV 

amplitude around the corrosion potential were monitored. EOC stabilized around 

~-705 mVSCE shortly after immersion reaching ~-440 mVSCE at 75 hr of exposure. 

Impedance diagrams after 1 hr of immersion showed two distinctive capacitive 

loops at high and intermediate frequency ranges, and an inductive loop at low 

frequencies. The authors attributed the high frequency loop to the charge transfer 
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resistance associated with the corrosion rate of the outer aluminized layer. The 

charge transfer resistance was estimated to be ~2 kΩ-cm2, which is significantly 

lower than that for pure aluminum. According to the authors, this difference in 

resistance values results of an enhanced galvanic interaction between the steel 

substrate and aluminum through coating defects. Based on the charge transfer 

resistance value reported and assuming Tafel slopes of 160 mV/dec, a nominal 

aluminum corrosion rate was significantly higher (~185 µm/yr) compared to the 

results reported by Gartland (1987). Additional tests conducted by the authors to 

determine the galvanic behavior of the aluminum/4135 steel system of 3 cm2 

surface area, for an anode-to-cathode area ratio of unity, exposed to 3% NaCl 

solution showed a galvanic current of ~300 µA/cm2 (aluminum being anodic to 

steel) at the EOC of ~-712 mVSCE. The authors stated that the aluminum corrosion 

rate was basically controlled by galvanic coupling to steel. 

Shaw and Moran (1985) studied the corrosion behavior of thermally-

sprayed aluminum coating specimens (7-14 cm2 surface area with ~100 µm thick 

coating), with and without linear scribe marks exposed to seawater and marine 

atmosphere at 25 °C for ~6 months. Visual inspection of the specimens without 

scribe marks immersed in seawater showed small pits with no base metal 

corrosion. On the other hand, specimens exposed to marine atmosphere 

exhibited a slight buildup of corrosion products at the scribe marks but no base 

metal corrosion was found elsewhere on the specimen surface. Additional 

laboratory tests were conducted on specimens without scribe marks immersed in 

synthetic seawater. Corrosion potential tests monitored for 30 days stabilized at 
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~-800 mVSCE after 10 days. During the entire exposure period, no pits were 

noted. Anodic polarization tests taken after 10 days of exposure showed that the 

aluminum coating was in passive state in the region from -800 mVSCE to -550 

mVSCE with appearance of few well-defined pits at potentials nobler than -550 

mVSCE. The authors concluded that aluminum coatings on steel exhibit weak 

cathodic protection in marine environments, contradicting findings from 

Townsend and Zoccola (1979) and Creus et al. (2000). 

Johnsson and Nordhag (1984) carried out an investigation to compare the 

sacrificial corrosion performance of several metallic coating on steel exposed to 

atmospheric environments and seawater for four years. Corrosion rates of 

uncoated cut edges aluminized steel specimens with and without scribe marks, 

exposing underlying steel, were determined by weight loss measurement. The 

atmospheric tests showed that aluminized steel was attacked mainly by pitting 

even after one year of exposure, especially in the marine atmosphere. The 

number of pits, however, does not seem to increase with time. Comparing the 

corrosion performance of the different metallic coatings, aluminized steel without 

scribe marks had the best performance except in marine environments in which 

galvanized steel outperformed aluminized steel. The corrosion rates varied from 

a low 0.2 µm/yr (urban atmosphere considered by the authors a mild 

environment) to a modest 1.5 µm/yr (marine atmosphere). Comparable tests 

conducted on the scribed specimens demonstrated the poor galvanic protection 

of the aluminized coating to the exposed steel in all environments and seawater, 
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displaying heavy red rust formation along the cut edges and at the scribe mark. 

This finding is in agreement with observations by Shaw and Moran (1985). 

Most of the experimental investigations on the corrosion behavior of 

aluminized steel are related to visual corrosion assessment and gravimetric 

techniques. Only limited data were gathered for the evaluation of corrosion of 

aluminized steel using electrochemical techniques, especially EIS, which can 

provide a powerful means to elucidate the corrosion mechanisms and corrosion 

rates of aluminized steel with and without coating breaks. Thereby, laboratory 

experiments using this evaluation approach are needed. 

Furthermore, the majority of the studies on galvanic corrosion involving 

aluminized steel with exposed underlying steel were conducted by atmospheric 

exposure or by immersion in highly aggressive solutions. Limited information 

exists on the galvanic behavior of aluminized steel with coating breaks exposed 

to fresh waters of varying scaling tendencies with moderate chloride contents, 

where galvanic protection may not take place at all. Studies have demonstrated 

discrepancies in the galvanic behavior of aluminized steel when exposed to 

seawater. Work is needed to clarify this issue. Implementation of a computer 

model of current and potential distribution in the exposed-steel/surrounding 

coated surface will serve to examine the effectiveness of galvanic protection of 

the exposed steel under various environmental and geometric regimes. 
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1.3 Objectives of this Investigation 

In view of the unresolved issues presented above, this dissertation was 

focused on the study of the corrosion behavior of aluminized steel Type 2 with 

and without coating breaks exposed to solutions of varying scaling tendencies. 

The objectives of this dissertation included the following: 

1. Examine the corrosion behavior of aluminized steel Type 2 of as-received 

surface condition in waters of varying scaling tendencies commonly found in 

Florida environments. Of interest is to determine if the aluminized coating is 

capable of retaining passivity for extended periods to support long service 

lives of this material. 

2. Clarify important issues on the cathodic efficiency of aluminized steel Type 

2 of as-received and stripped/aged surface conditions in waters of positive 

scaling tendency. The stripped surface condition intends to mimic long-term 

corrosion exposure where a fraction of the external aluminum-rich layer is 

consumed. Of primary interest is to evaluate the locus and strength of the 

cathodic reaction during metal passive state for these two surface 

conditions. 

3. Examine the corrosion behavior of aluminized steel Type 2 with partially 

disrupted aluminized coating, exposing the underlying steel substrate. Of 

interest is to determine whether the surrounding aluminized coating will 

provide sufficient galvanic protection to the base steel for various coating 

break sizes and solution aggressivity. 
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4. Develop a quantitative dc computational model to calculate static current 

and potential distributions along the blemished aluminized surface for 

different solution aggressivity. The local anodic and cathodic kinetics at the 

metal surface obtained by the dc model are used as inputs of an ac 

computational model that accounts for complex polarization conditions and 

corrosion macrocells as a function of key environmental factors. The output 

of the ac model attempts to provide useful information in regards to the 

interpretation of the impedance response possibly complicated by uneven 

ac current distribution in the blemished system. 

 

The results from this dissertation will support the main FDOT project goal, 

which is to develop a durability forecasting method based on laboratory-

determined corrosion rates versus key environmental variables. It is anticipated 

that the durability forecasting method evaluated will take into account the effect 

of substantial localized aluminized coating damage. Such consideration thus 

needs assessing the extent of galvanic protection available under various 

environmental conditions. Determination of performance under those 

circumstances is critically needed for improved forecast analysis. 

 

1.4 Approach 

The dissertation primarily focused on the objectives specified in Section 

1.3. Much of the dissertation work was focused on the first and third objectives. 

The first objective was addressed by conducting long term open circuit potential 
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and impedance measurements on the as-received aluminized steel Type 2 

specimens exposed to solutions with low alkalinity and hardness (solution C), 

high alkalinity and low hardness (solution NP), high alkalinity and hardness 

(solution P), and substitute ocean water (solution SW). The solutions P and SW 

were expected to have positive Langelier index values so that a precipitate of 

CaCO3 on the specimen surface was anticipated. All solutions but solution SW 

(~20,000 ppm) had moderate chloride concentration (~370 ppm). 

To examine the effect of aluminized coating breaks (exposing the 

underlying steel) on the corrosion performance of aluminized steel Type 2, two 

coating break sizes ~3 cm2 and ~0.03 cm2 nominal area machined in the center 

of each specimen were used. On these specimens, open circuit potential and 

impedance measurements were conducted at selected exposure time. An 

experimental setup used to monitor galvanic currents as well as individual 

corrosion performance of the aluminized coating/steel components exposed to 

solutions P and NP was employed. The macroscopic distribution of corrosion due 

to the formation of corrosion macrocells between the aluminized surface and the 

underlying steel was expected to play an important role in determining the 

degree of corrosion severity. To examine the effectiveness of galvanic protection 

to the exposed steel under various environmental, a dc computational model to 

determine the current and potential distributions needed to be implemented. The 

dc model computation results also served as inputs of an ac computational 

model used to interpret the impedance response in systems with non uniform ac 

current distribution. 
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The issues concerning the cathodic behavior of the aluminized steel for 

two surface finish conditions (as-received and stripped) were studied by 

performing cyclical polarization tests with multiple polarization scan rates ranging 

from 0.05 mV/sec to 1 mV/sec. A simplified model was used to interpret the 

mechanism associated with the cathodic performance of aluminized steel Type 2 

under those circumstances. 

 

1.5 Significance of Research 

Because premature replacement of buried metallic components damaged 

by corrosion is costly not only because of the price of the new unit, but also 

because of the associated road demolition and service outage, it is much to the 

benefit to have in place reliable means of predicting the corrosion rates of metals 

in soil and waters so that materials selections commensurate with the desired 

design service life can be made. 

As discussed above, several service life forecasting methods have been 

proposed. Most of the predictive methods use pH and resistivity of the medium to 

predict service life of a metallic structure. A common agreement is that low 

values of pH (within a certain range) and resistivity forecast a short service life. 

However, surface water may have a relatively low pH and still not be very 

aggressive, because other dissolved species may precipitate a protective scale 

on the metal surface.  Conversely, high pH by itself within the specified range 

may not guarantee extended service life if the water does not promote the 

formation of a protective scale. Furthermore, all available methods to date do not 
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take into consideration the effect of substantial localized metal coating damage 

that could complicate even more the service life forecast. This investigation gives 

a first insight to this problem to better forecast aluminized steel Type 2 metal pipe 

durability by performing laboratory experiments. 

 

1.6 Overview 

This dissertation is organized as follows: 

Chapter 1 presents a general literature review and analyzes the unresolved 

issues on the corrosion/durability of aluminized steel Type 2. Also, this Chapter 

shows the research objectives, investigation approach, and the significant of this 

research. In Chapter 2, the electrochemical behavior of as-received aluminized 

steel Type 2 exposed to solutions of varying scaling tendencies is addressed. 

Effects of water alkalinity, hardness, and chloride content on the metal corrosion 

rates are also correlated. Chapter 3 presents some important issues regarding 

the cathodic behavior of the aluminized steel with two surface conditions: as-

received and surface-stripped. Chapter 4 describes the effects of aluminized 

coating breaks on the corrosion performance of aluminized steel Type 2 by 

conducting open circuit potential and impedance measurements. Comparison 

with the as-received aluminized surface condition is also presented. Chapter 5 

presents the theory, implementation, and results of the dc and ac computational 

models for the study of the effectiveness of the galvanic action of the exposed 

steel/aluminized coating system. Chapter 6 summarizes conclusions drawn from 
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the preceding chapters. A set of Appendices is included at the end of the 

dissertation. 
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Figure 1.1: Refined California method chart for estimating years to perforation of 
18-gage galvanized culvert pipe (California Test 643, 1999) 1. 
 

                                                           
1 To compute the service life, the smallest pH and minimum resistivity values of either 
the soilside or the waterside are entered. Multipliers are given to adjust service life 
prediction for metal gages different than 18. 
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Figure 1.2: The AISI method chart for estimating years to perforation of 
galvanized steel pipes of 18-gage culvert pipe. Computing service life is the 
same as in the refined California method (Handbook of Steel Drainage & 
Highway Construction Products, American Iron and Steel Institute, 1994). 
 

 

Figure 1.3: The FDOT chart for estimation years to perforation of 16-gage 
aluminized steel Type 2 culvert pipes (solid lines) (Cerlanek and Powers, 1993). 
Dashed lines correspond to service life estimation using the refined California 
method for galvanized steel. 
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Figure 1.4: The AK Steel method chart for estimating service life of 14-gage 
galvanized and aluminized steel Type 2 culvert pipes (Bednar, 1989). 
 
 
 

 

 
Figure 1.5: Schematic of the typical manufacturing process of aluminized steel 
Type 2 (source: www.aksteel.com). 



 31 

 

 

 

Chapter 2 

Corrosion of As-Rolled Aluminized Steel Type 2 in Scale-Forming Waters 2 

 

2.1 Introduction 

As discussed in Chapter 1, aluminized steel Type 2 is produced as a steel 

sheet hot dip coated on both sides with commercially pure aluminum, which 

provides corrosion protection through low corrosion rate of the aluminum when 

the aluminum is in passive condition, and also may confer galvanic protection to 

the exposed underlying steel under certain circumstances (Kimoto, 1999). For 

that reason, aluminized steel Type 2 is increasingly used for metallic drainage 

components in contact with natural waters. However, corrosion is an important 

durability limitation factor in these components which are often designed for very 

long service life (e.g. 75 yr) (Cerlanek and Powers, 1993). As a result, 

mechanistic knowledge of the corrosion processes is needed to better 

forecasting durability in critical highway applications. In particular, it has been 

proposed (Morris and Bednar, 1998, and Bednar, 1989) that calcium carbonate 

scales formed from natural waters are protective to aluminized steel. 

A common indicator of scaling tendency is the Langelier Saturation Index, 

LSI = pH-pHs, where pHs is the pH that would result in CaCO3 precipitation 

                                                           
2 This Chapter is a version of the manuscript submitted for publication in the Corrosion 
Journal (2006) under revision. 
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(Snoeyink and Jenkins, 1980). Positive values of LSI imply a tendency for CaCO3 

precipitation. However, the LSI parameter does not consider the reserve of 

species in the solution responsible for a given pH. Based on extensive field data 

collection, Bednar (1989) proposed that the corrosion performance of aluminized 

steel Type 2 in aerated media may be better predicted by the combination of an 

index indicating carbonate scaling tendency (scaling index (SI)=total Alkalinity 

(TA) plus total Hardness (TH) minus free CO2 (FC)) and the conductivity σ of the 

solution in contact with the metal. However, there is concern that the aluminum-

rich layer of the aluminized steel could be susceptible to depassivation if the 

carbonate scale promotes alkaline conditions. For example, Porter and Hadden 

(1953) stated that corrosion of pure aluminum was most severe in high scaling 

tendency natural waters. 

This concern is addressed in the present Chapter, where experiments to 

examine the corrosion behavior of aluminized steel Type 2 in synthetic waters of 

varying scaling tendencies at the room temperature are reported. To focus on the 

stability of the aluminum-rich coating layer, this investigation uses aluminized 

steel Type 2 in the as-produced condition without any further forming or 

mechanical distress. 

 

2.2 Experimental Procedure 

As-received aluminized steel Type 2 tested came from a flat sheet stock 

manufactured per ASTM A929, from low carbon steel (Table 2.1) coils rolled to 

16-gage (~1.59 mm thick) and hot-dipped in a bath of commercially pure 
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aluminum. The microstructure (Figure 2.1) had a nearly pearlite-free ferrite 

substrate with regular grains. The aluminized coating layer resulting from the hot-

dip process included a partly columnar inner layer ~15 µm thick (Figure 2.2), of 

approximate intermetallic composition Fe2Al5 (Li et al., 2003) as determined by 

scanning electron microscopy (SEM) with energy dispersive x-ray analysis 

(EDS), and an outer layer ~25-30 µm thick. The compositions of the gray outer 

layer matrix and the small lighter features were predominantly aluminum with 

~2.4 wt% Fe and 6-11 wt% Fe, respectively. The small light features resemble 

Fe-rich precipitates identified elsewhere (ASM Metals Handbook, 1972). 

Circular test specimens of 95 cm2 nominal surface area were cut out from 

the as-received stock, cleaned with ethanol and acetone, and stored in a 

desiccator prior to immersion. Specimen exposure test began typically within 24 

hr after storage. Three-electrode test cell configuration (Figures 2.3 and 2.4) was 

used, exposing horizontally one of the specimen faces. A metal-metal oxide 

activated titanium mesh placed parallel ~6 cm from the specimen surface was 

used as a counter electrode, while a low impedance activated titanium pseudo 

reference electrode 0.3 cm diameter and 5 cm long (Castro et al., 1996) was 

placed ~1 cm from the specimen surface and periodically calibrated against a 

saturated calomel reference electrode (SCE). All potentials reported here are in 

the SCE scale unless otherwise stated. Electric contact to the specimen was 

made through a copper wire soldered to a copper sheet in contact with the 

bottom surface of the specimen not exposed to test solution. Each test cell was 

filled with 500 mL of solution and the cells were never replenished during the 
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entire length of the experiment. The relatively small electrolyte volume/specimen 

area ratio was intended to be representative of worst-case culvert pipe conditions 

with stagnant water on a pipe invert, or of occluded conditions for pore water on 

the soil side of a pipe. 

Four test solutions were used, simulating conditions typically encountered 

in Florida environments. The test solutions corresponded to a carbonate 

precipitating condition (solution P), a mildly alkaline but non-precipitating 

condition (solution NP), a neutral pH of non carbonate precipitating condition and 

negligible alkalinity (solution C), and a substitute ocean water (solution SW) 

prepared according to ASTM D1141-90 standard procedure. Table 2.2 shows the 

compositions of the test solutions, all made from reagent chemicals and de-

carbonated de-ionized water of resistivity>106 Ω-cm. Combinations of NaOH and 

NaCl (C), NaHCO3, NaCl, and HCl (NP), NaHCO3, NaCl, HCl, and Ca(OH)2 (P), 

and chemical compounds commonly found in ocean water (SW) were used. The 

ionic constituent composition of the simulated ocean solution, reported by the 

manufacturer, is shown in Table 2.3. To make up for depletion of O2, the test 

solutions were aerated for 30 sec at a rate of ~0.03 cm3/sec twice a day using 

CO2-free air (for solution C) and ambient air (for solutions NP, P, and SW) and 

isolated from the external air the rest of the time. Values of FC were calculated 

based on the total alkalinity and pH of the solution (Snoeyink and Jenkins, 1980): 
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 35 

Test solutions C and NP had LSI = -5.9 and -0.6, respectively. Test 

solutions P and SW had LSI = +1.5 and +0.4, respectively. Indeed, solution P 

precipitated CaCO3 to yield a ~0.5 mm thick powdery layer over the entire 

specimen surface shortly after initiation of the test exposure. To examine 

possible effects of thick precipitate formation in solution P tests, an additional 10 

grams CaCO3 reagent grade powder was poured into two of the three test cells 

after 312 hr and again after 480 hr to form ~5 mm and ~9 mm thick layers, 

respectively. In test solution SW, a very thin layer of precipitate deposited 

uniformly on the metal surface. The composition of that layer was expected to be 

mainly CaCO3 since CaCO3 has a lower solubility product than Mg(OH)2 and is 

supersaturated in seawater (Mantel et al., 1992). Typically, Mg(OH)2 is 

undersaturated at nearly neutral pH precipitating in considerable amounts at 

pH>9.3 (Barchiche et al., 2003). The deposits in both P and SW solutions were 

washed off readily during cleaning. 

The immersion tests were conducted for up to ~3,100 hr at 22 ± 2°C in 

duplicate for solutions C, NP, and SW and in triplicate for solution P. Solution pH 

and electrical conductivity, and open circuit potential (EOC) for each specimen 

were monitored at selected times. Electrochemical Impedance Spectroscopy 

(EIS) measurements were obtained at the EOC with a Gamry® PCI4-300 

potentiostat in the frequency range from 100 kHz to 1 mHz using a sinusoidal 

signal of 10 mVRMS amplitude. At the end of the immersion test, the specimens 

were removed, cleaned by washing with water and ethanol, and visually 

examined. Additional sets of duplicate specimens placed in solutions P and NP 
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were used for Mott-Schottky (M-S) tests (De Gryse et al., 1975) determining 

nominal capacitance-potential behavior with a Solartron 1260/1287 

potentiostat/electrochemical interface in the potential range from 0 to -300 mV vs. 

EOC at a scan rate of 10 mV/sec, a fixed test frequency of 10 Hz, and a 10 mVRMS 

amplitude. Nominal capacitance evaluation was refined by correction for the 

effect of the presence of a charge transfer resistance as shown later. 

 

2.3 Results 

No under-gasket crevice corrosion developed in any of the specimens for 

which results are reported. The results reported in this Chapter are those of the 

specimens #1 in each test solution unless otherwise indicated. The results of the 

replicate specimens (documented in Appendix A if not presented in this Chapter) 

was similar to that of the example unless indicated otherwise. In addition to the 

information provided next, the reader is referred to Table 4.2 in Chapter 4 which 

summarizes the visual assessment and EOC evolution trends. 

 

2.3.1 EOC Trends and Direct Observations of Corrosion 

Figures 2.5 to 2.8 exemplify the EOC evolution of replicate specimens. 

Immediately after immersion, values of EOC were ~-630 mV, ~-650 mV, ~-800 

mV, and ~-750 mV for the solutions C, NP, P, SW, respectively. 

After ~180 hr of exposure, the EOC in solution C (Figure 2.5) started to 

drop abruptly to reach ~-920 ~-950 mV. After ~310 hr (and after ~115 hr for 

specimen #2), stable isolated pits (a few per specimen) became visible to the 
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naked eye with typical diameters of ~<0.1 mm as well as an uniform dark grayish 

layer that covered the entire surface. SEM-EDS analysis of a dried portion of that 

layer in the specimen #1 showed results consistent with the presence of 

aluminum hydroxide. The appearance of the strong surface discoloration was 

associated with a momentary increase in solution pH as explained later. 

Afterwards, the EOC for both specimens slowly evolved toward a terminal value of 

~-830 mV. 

In solution NP (Figure 2.6), the EOC decayed to ~-910 mV after ~500 hr of 

exposure and remained nearly constant afterwards. The appearance of moderate 

surface discoloration in solution NP did not start concurrent with the beginning of 

the EOC drop but instead was noted after ~2,250 hr for #1 and ~1,200 hr for #2 in 

agreement with a moderate solution pH increase as shown later. Post exposure 

optical 25X examination revealed few small pits. 

In solution P (Figure 2.7), the first addition of excess CaCO3 to specimens 

#1 and #2 caused short term negative and then positive EOC excursions by ~80 

mV followed by a slow recovery to a terminal EOC ~-770 mV, little affected by the 

next CaCO3 addition. The specimen #3 (with no extra CaCO3 addition) showed 

EOC values ~50 mV more negative than those of the replicate specimens for 

exposure times ranging from 190 hr to 1,400 hr reaching ~-800 mV after 2,250 hr 

of exposure. In all specimens, the aluminized surface remained bright throughout 

the test. Post exposure optical 25X examination revealed no pit formation. 

In solution SW (Figure 2.8), EOC of the specimen #1 started to drop 

steeply immediately after exposure reaching ~-900 mV after ~165 hr. The 
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duplicate specimen showed noble EOC values for ~265 hr followed by a slow drop 

to ~-840 mV after ~865 hr. Afterwards, the EOC remained nearly constant for both 

specimens increasing to ~-805 mV for #1 and ~-835 mV for #2 after ~1,500 hr of 

exposure. The aluminized surface stayed bright for up to ~525 hr for #1 and ~585 

hr for #2 with small isolated pits ~<0.1 mm diameter (a few per specimen) visible 

to the naked eye. Then, light uniform surface discoloration was noted on both 

specimens not concurrent with the start of EOC drop. 

When present, the pit depths appeared to be limited only to the outer 

aluminized coating layer since no reddish deposits were noted at the pit mouths. 

In addition, metallographic examination (detailed in Chapter 4) showed that in all 

cases, the damage associated with uniform aluminized surface discoloration, 

during the time frame investigated, appeared to be limited only to the outer 

coating layer. 

 

2.3.2 Solution Composition 

Figure 2.9 shows that immediately after immersion, the bulk pH of all test 

solutions closely approached the lowest values reported in Table 2.2. However, 

after equilibrium with the surrounding air was reached, the bulk pH of the 

solutions NP, P, and SW was expected to naturally evolve toward alkaline values 

despite the given buffering capacity of those solutions. In solutions P and SW, 

the bulk pH remained quite stable for the entire exposure increasing to only ~7.8 

and ~7.9, respectively. In solution NP, however, the bulk pH increased to ~8.5 

after 24 hr and reached ~8.7 near the end of the test. In solution C, the bulk pH 
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was ~7.7 after 3,000 hr attaining a maximum of ~9.0 at ~310 hr. The brief pH 

increase and later decrease was not anticipated and the cause of this trend 

remains unclear at present. 

Total hardness and total alkalinity, determined by titration following 

procedures indicated in the Standard Methods for the Examination of Water and 

Wastewater (1992), as well as the solution conductivity are reported in Table 2.2. 

The Fe+2 content in all four solutions, measured by Atomic Absorption 

Spectroscopy after ~2,000 hr of immersion, was <0.01 ppm. 

 

2.3.3 Impedance Behavior 

After solution resistance subtraction, the impedance responses for 

solutions P, NP, and SW at the high frequency end of the impedance diagram 

revealed capacitive behavior with frequency dispersion that could be reasonably 

approximated by means of a Constant Phase Angle Element (CPE) 3 at 

frequencies above a compromise cutoff of ~100 Hz. Data for higher test 

frequencies showed more pronounced dispersion (possibly reflecting surface 

roughness, uneven macroscopic current distribution (De Levie, 1967) or spurious 

wiring effects) and were not used for quantitative impedance evaluation for these 

solutions (Figure 2.10). 

The impedance results for solution NP (Figure 2.11) show an impedance 

diagram where the 1 mHz impedance modulus initially increased with time, 

                                                           
3 A CPE has an impedance ZCPE=1/Y(jω)

n where ω=2πf, Y is the admittance parameter 
of dimensions Ω-1cm-2 secn (if area normalized), and n (dimensionless) is the dispersion 
coefficient (Hsu and Mansfeld, 2001, Lasia et al, 1999). 
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consistent with generally passive behavior and absence of visual evidence of 

active aluminized corrosion. The 1 mHz impedance modulus decreased later to 

values smaller than at the beginning, but even then its magnitude was large 

(~380 kΩ-cm2) after ~3,000 hr of exposure. The decrease in the impedance 

modulus coincided with the appearance of moderate surface discoloration. 

In solution P (Figure 2.12), the 1 mHz impedance magnitude of the 

specimen #1 (and #2 as well) was large (>6,000 kΩ-cm2) and showed an 

increasing trend with time. However, upon each CaCO3 addition the 1 mHz 

impedance modulus showed a pronounced momentary decrease to ~1,450 kΩ-

cm2 and a slow recovery later on to attain ~10,000 kΩ-cm2 after ~3,000 hr. For 

the specimen #3 in solution P (Figure 2.13), the 1 mHz impedance magnitude 

was increasingly large as well reaching ~10,000 kΩ-cm2 after ~3,000 hr, 

consistent with generally passive behavior and absence of visual evidence of 

active aluminized corrosion throughout the exposure in all specimens. For the 

frequency range analyzed, the impedance diagrams were usually describable by 

two overlapping loops, both approaching ideal capacitive behavior. The M-S 

behavior is presented in Section 2.4.2.1 keyed to the analysis of the impedance 

response. 

The impedance results for solution SW (Figure 2.14) show an impedance 

diagram where the 1 mHz impedance modulus initially increased with time 

attaining ~365 kΩ-cm2 at ~504 hr of exposure followed by a decreasing trend to 

~270 kΩ-cm2, consistent with the start of light surface discoloration. Afterwards, 

the 1 mHz impedance moduli started to increase again to attain values 
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comparable to those recorded at the beginning. The impedance diagrams can be 

describable by two distinctive loops, both approaching ideal capacitive behavior. 

As will be shown below, the C system had a large Faradaic admittance 

component that was strongly manifested already at the highest test frequencies. 

Thus, for solution C the complete impedance spectra were used for the analysis 

with the understanding that using a CPE for simulation purposes would involve a 

coarser approximation than in the NP, P, and SW systems. The impedance 

response at the low frequency end (Figure 2.15) was initially much smaller than 

in the NP, P, and SW solutions, and for a short initial period there was also a low 

frequency inductive loop. After some exposure time the 1 mHz impedance 

modulus decreased even further (to ~68 kΩ-cm2), coinciding with the appearance 

of strong surface discoloration, but there was a long term recovery trend toward 

larger 1 mHz impedance moduli. The diagrams were usually describable by two 

overlapping loops. Partly as a result of using the entire frequency spectrum, the 

high frequency loop deviated from ideal capacitive behavior more than in the 

cases of NP, P, and SW solutions. 

 

2.4  Discussion 

2.4.1  Direct Evidence of Corrosion Performance 

The detailed direct evidence of corrosion in the various systems presented 

in the previous section may be summarized as follows. Visual examination of the 

specimen surfaces indicated no corrosion distress in solution P (which included 

high carbonate precipitating tendency and moderate chloride content) throughout 
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the entire test exposure, suggesting good corrosion performance in these 

environments. The addition of extra powdered CaCO3 to solution P did not 

appear to have had harmful consequences despite momentary electrochemical 

disturbances as explained below. There was moderate surface discoloration with 

formation of few small isolated pits in solution NP (which included high total 

alkalinity without carbonate precipitating tendency and moderate chloride 

content). 

A few small isolated pits followed by strong aluminized surface 

discoloration were noted early on in solution C, which had low alkalinity, 

negligible CaCO3 precipitating tendency, and moderate chloride content. A few 

small isolated pits but only light discoloration appeared also early on in the 

exposure to solution SW, that had moderate alkalinity, high precipitating 

tendency, and high chloride content/very low resistivity. 

The corrosion distress and pit penetration in all solutions was not found to 

extend beyond the outer aluminized layer for the time frame examined. A 

comprehensive summary of direct evidence of corrosion performance concerning 

these and subsequent experiments is provided later in Table 4.2, Chapter 4. 

 

2.4.2 Corrosion Mechanisms and Analysis of the Impedance Response 

In Chapter 1, a general introduction to corrosion phenomena in aluminum 

was presented. In the rest of this dissertation, the terminology used to refer to the 

various corrosion features and events will be used more specifically as in the 

following. 



 43 

The term inclusions will indicate the Fe-rich intermetallic precipitate 

particles present in the outer aluminized surface layer. The inclusions have been 

identified as preferential sites for both cathodic reactions and effective pit 

initiation (Nisancioglu, 1990, Johnson, 1971). 

Acidic oxidation of aluminum will be referred to as a process where 

aluminum dissolves into an acidic electrolyte according to the reaction 

Al→Al+3+3e- where Al+3 ions are soluble. Alkaline oxidation of aluminum refers to 

a process of corrosion of aluminum in an alkaline environment, postulating that a 

film is always present on the aluminum surface (Pyun et al, 1999). As indicated in 

Chapter 1, such event may take place when the solution pH near the metal 

surface normally exceeds ~8.5 (Pourbaix, 1974). In such a case, the initially 

protective aluminum passive film covering most of the aluminized surface is (in 

the form of amorphous Al(OH)3 or a comparable intermediate compound as part 

of the film) becomes unstable and is expected to be readily chemically attacked 

at the film-solution interface by OH- ions with formation of soluble aluminate ions 

Al(OH)4
- (Doche et al, 1999). The resulting enhanced dissolution of aluminum 

ensues through enhanced transport of the relevant species through a much 

thinned or more defective passive film (Kolics et al, 2001, Sullivan et al, 2000). 

Under those conditions in the highly alkaline limit, a likely sequence of aluminum 

dissolution proposed by MacDonald et al (1988) and later by Chu et al (1991) is 

as follows: 

 

 



 44 

-

adsSS eAl(OH)OHAl +→+ −  (2.2-A) 
-

ads2ads eAl(OH)OHAl(OH) +→+ −  (2.2-B) 
-

ads3ads2 eAl(OH)OHAl(OH) +→+ −  (2.2-C) 
−− →+ 4ads3 Al(OH)OHAl(OH)  (2.2-D) 

 
where AlSS represents aluminum sites at the metal-film interface, the subsequent 

steps indicate metastable film formation, and the last step is the chemical 

dissolution at the film-electrolyte interface. It is noted that since alkaline 

conditions tend to develop around cathodic sites, alkaline oxidation of aluminum 

can be enhanced around inclusions, especially if the solution is not buffered. 

Such enhanced dissolution has been extensively documented in the literature 

(Szklarska-Smialowska, 1999, Suter and Alkire, 2001). 

A pit will be referred to as an occluded acidic zone where acidic oxidation 

of aluminum takes place (Sasaki and Isaacs, 2004, Wiersma and Herbert, 1991, 

Nguyen and Foley, 1979). As mentioned in Chapter 1, several mechanisms have 

been proposed to describe pitting corrosion of aluminum in chloride solutions 

(McCafferty, 2003, Foley, 1986, McCafferty, 1995). There is common agreement 

that chloride ions migrate to the interior of the pit cavity once a pit initiation event 

took place. To maintain charge neutrality inside the cavity, H+ ions also 

accumulate in the cavity, which in turn, decrease the pH there to values below 

the passivity range of aluminum, resulting in a self-sustaining pit (Seri and 

Furumata, 2002, Frankel, 1998, Verhoff and Alkire, 2000). The pit geometry 

needs to be such to maintain active regime inside by efficiently separating the 

environment inside from that outside, and/or to providing enough ohmic potential 
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drop between the outside and inside regions (Pickering, 2003). Inside the pit 

cavity acidic oxidation of aluminum takes place. 

The corrosion mechanisms proposed below will be evaluated by and used 

in the interpretation of the results from the EIS experiments. Over the past 

decades, the EIS technique has been increasingly used to elucidate corrosion 

mechanistic issues of aluminum exposed to various environments (Mansfeld et 

al, 1990 and Shao et al, 2003). From the numerous investigations reviewed for 

this dissertation, it can be concluded that there is little consensus on the 

explanation of the dominant corrosion mechanisms and the models used to 

simulate the impedance data of aluminum alloys (De Witt and Lenderink, 1996, 

Aballe et al, 2001, Emregul and Abbas Aksut, 2000, Sherif and Park, 2005, 

Sasaki and Isaacs, 1990). It is thus noted that the mechanisms and the 

associated analog equivalent circuit chosen to represent the impedance 

response for the present case may not be unique, and that alternative 

mechanisms and analog equivalent circuits may explain equally well the 

observed impedance behavior. Indeed, other corrosion mechanisms and their 

corresponding analog equivalent circuits were explored as well, but the ones 

presented here were chosen mainly for overall simplicity and having provided a 

reasonable account of the observed impedance spectra. The approach used 

here is summarized by the analog equivalent circuit shown in Figure 2.16, which 

serves all the cases considered but with the meaning of some of the individual 

components depending on the case as detailed in the next sections. 
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It is noted that all the corrosion mechanisms considered in this dissertation 

involve abiotic systems, but the absence of microbiologically induced corrosion 

(MIC) has not been ruled out, other than by the lack of indications of any 

conspicuous biofilm in the surfaces of the test specimens. Future investigations 

should seek to ascertain the role, if any, that MIC phenomena can play in the 

deterioration of aluminized steel in the environments of interest. 

 

2.4.2.1 Solution P and Solution NP before Surface Discoloration 

The following analysis applies to solution P over the entire exposure time 

and solution NP for the regime before the appearance of moderate aluminized 

surface discoloration. In those cases, the initial system EOC was quite negative 

reflecting the coupled potential of the inclusions with the slow passive dissolution 

of the larger area aluminum solid solution phase surrounding the inclusions. As 

time progresses, a more mature passive film is expected to experience slower 

dissolution with potentials drifting to moderately nobler values as observed. 

The impedance response for the present passive systems is interpreted 

with the aid of the analog equivalent circuit shown in Figure 2.16. The resistor RS 

represents the ohmic solution resistance 4. The working assumption is made that 

the impedance response of the passive film (which occupies most of the 

specimen surface), when combined with the Helmholtz layer capacitance CH, is 

predominantly capacitive and may be represented by the constant phase angle 

element CPEF in the upper branch of the circuit. The film surface is taken to be 

                                                           
4 All components in Figure 2.16 are expressed as surface-normalized elements by 
dividing/multiplying as appropriate by the nominal specimen area (95 cm2). 
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the locus of a slow, nearly uniform anodic dissolution reaction as stated above, 

which is also only mildly potential dependent so its admittance is neglected. As 

mentioned earlier, the matching cathodic reaction at EOC is expected to occur 

primarily at the inclusions (Nisancioglu, 1990, Johnson, 1971) represented by the 

lower branch of the circuit. The buffering capacity of these solutions is expected 

to neutralize the OH- ions formed by the cathodic reaction so that increase in the 

local pH is minimized at least at the beginning of the exposure. To account for 

the observation of a low frequency loop in the impedance diagrams, the cathodic 

reaction is proposed to proceed in coupled steps of the type where surface 

coverage by an intermediate adsorbate alters the rate of the next step (Bessone 

et al., 1992, de Wit and Lenderink, 1996, Armstrong and Edmondson, 1973, 

Epelboin and Keddam, 1970). The resulting response is pseudocapacitive, 

(approximated by the element CPEAL2) with a high-frequency limit resistance 

RAL1, and a low frequency limit resistance RAL1+RAL2 (Armstrong and 

Edmondson, 1973). Consequently, the pseudocapacitive element CPEAL2 is 

placed across the resistance RAL2 as shown. A detailed explanation for the 

proposed modeling of the impedance behavior for this mechanism is shown in 

Appendix C. 

The analog equivalent circuit in Figure 2.16 with EIS parameters reported 

in Tables 2.4 and 2.5 yielded good best-fit simulations of the impedance 

responses of both solutions, shown by the solid lines in Figures 2.11 through 

2.15. Although CPEs were used in the circuit, the best fit values of nF and nAL2 for 

both solutions were close to unity, indicating little deviation from ideal capacitive 
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behavior. Sometimes best fit values of nF and nAL2 slightly >1 were obtained for 

one of the CPEs. In those cases, there was little sensitivity of the fit to the choice 

of which element approached ideal behavior more closely. For those cases a 

value nAL2=1 was imposed and nF was allowed to vary resulting in nF values 

>0.93 (subscripts are keyed to the element designations in Figure 2.16). 

Figures 2.17 and 2.18 show examples of the time dependence of the 

admittance parameters and resistive components thus calculated (the Figures 

contain also the results for the NP system after aluminized surface discoloration 

and for the other solutions as well, to be discussed later). 

Throughout the test, the values for RAL2 and RAL1 for solution P were large 

(~2.5 106 Ω-cm2 and ~1.5 107 Ω-cm2, respectively), and tracked roughly together 

as exposure time progressed, in keeping with the above assumption of coupled 

steps of the associated cathodic reaction. Similar trends were noted for solution 

NP with large values of RAL2 and RAL1, both reaching ~3 10
6 Ω-cm2 before the 

start of aluminized surface discoloration. 

The YAL2 values in both solutions were much larger and variable with time 

than YF, consistent with the assumed origin for CPEAL2 other than film 

capacitance. In solution P, YAL2 values were initially ~4 10
-5 secnAL2/Ωcm2 followed 

by a strong momentary increase to ~1.3 10-4 secnAL2/Ωcm2 only noticeable upon 

the first addition of extra powdered CaCO3 to specimens #1 and #2 and a later 

decrease to a terminal value of ~2.2 10-5 secnAL2/Ωcm2. YAL2 was nearly constant 

(~3.3 10-5 secnAL2/Ωcm2) for specimen #3 in P, which had no addition of powdered 

CaCO3. The YAL2 values for the duplicate specimens in solution NP were initially 
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~4.6 10-5 secnAL2/Ωcm2 decreasing to ~1.4 10-5 secnAL2/Ωcm2 recorded before the 

start of the appearance of aluminized surface discoloration. 

The association of CPEF with the passive film capacitance is further 

supported by the following considerations. The YF values were similar in both 

solutions (~3.4 10-6 to ~1 10-5 secnF/Ωcm2) and changed relatively little with 

exposure time. In the following, the charge storage function associated with 

CPEF will be quantified by a nominal capacitance CF that has the same imaginary 

impedance component as CPEF at a suitable frequency fN. For ease of 

comparison with the M-S results, fN was chosen to be 10 Hz. In fact, the 

sensitivity of CF to the choice of fN was expected to be small since nF approached 

unity. Thus, 
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which yielded CF values from ~2.6 to ~7.9 µF/cm2 , numerically close to YF since 

nF~1. These values are comparable to those reported in the literature for passive 

aluminum (Pyun, 1999, Bockris and Kang, 1997). If the passive film behaved as 

an ideal capacitor of thickness L and dielectric constant ε, its area-normalized 

capacitance Ci would be given by: 

L

εε
C 0

i

⋅
=  (2.4) 

 
where ε0 is the permittivity of vacuum. Assuming L~5 nm and ε~9 (typical of 

thickness of naturally grown passive films on aluminum (Bessone et al., 1983, 

and Diggle, 1972) and of solid or hydrated aluminum oxides, respectively) yields 
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Ci~1.60 µF/cm
2. That value is much less than typical values of CH (Bockris and 

Kang, 1997) so the combined series interfacial capacitance is still ~Ci, which 

approximates well the low end of the CF value range obtained above. The 

approximation could be even better if it included natural surface roughness which 

would increase the effective value of Ci above that of the ideally flat surface 

assumed for Eq. 2.4. Similar general behavior on passive aluminum has been 

observed often (Lee and Pyun, 1999) and supports the interpretation that the 

high frequency loop in the spectra corresponds to the passive film. 

Capacitive behavior in a semiconducting passive film often reflects the 

presence of a space charge zone that may extend through the entire film 

thickness L (the entire film thickness then acting effectively as a dielectric), or 

have a depth dSC<L. The M-S experiments sought to elucidate that issue for the 

present systems since in the first case the film capacitance is not potential 

dependent upon brief cathodic excursions from the EOC. In the latter case, 

however, the differential capacitance of the film is still approximately given by Eq. 

2.4 but replacing L with dSC which varies with potential E. For example, if the film 

is an n-type semiconductor as generally observed in aluminum (Bockris and 

Kang, 1997 and Fernandes et al, 2004) and the polarization conditions are 

adequate, then dSC~(2 ε ε0 q
-1 (E-Efb) Nd

-1)0.5, where q is the electron charge, Nd 

is the net density of electron-donor defects (assumed to be constant for 

simplicity), and Efb is the flatband potential (Morrison, 1980). 
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Assuming CF(E)<<CH, CF(E) was estimated from the 10 Hz M-S 

impedance measurements at 100 mV intervals by: 

( ) ( )
( )10HzZ"f2π

Ek
~EC

N

C
F ⋅⋅

−
 (2.5) 

 
where Z"(10Hz) is the imaginary component of the impedance and kC(E) is a 

correction factor close to unity. The factor kC(E) corrected for the obscuring effect 

of RAL1, which at the lowest potentials (with RAL1 small) could cause the value of 

Z"(10Hz) to be significantly smaller than what would have resulted from the 

capacitive element alone 5. 

Figure 2.19 shows the M-S results in duplicate in solutions NP and P for 

~330 hr of exposure obtained per the above procedure. At the time of the tests, 

no apparent corrosion was observed in any of the specimens. The results show 

nearly constant capacitance with potential (from ~3.4 to ~5.9 µF/cm2), which is 

therefore consistent of a space charge zone spanning the entire film thickness. 

 

2.4.2.2 Solutions C, SW, and Solution NP after Surface Discoloration 

The information collected in this investigation does not permit to clearly 

identify the corrosion mechanisms associated with the activation of the 

aluminized surface manifested by uniform discoloration and the appearance of 

                                                           
5 To obtain kC(E), impedance measurements spanning the range 100 Hz-1 Hz were 
conducted at a few selected potentials over the same potential range as the M-S tests. 
Those measurements yielded at each selected potential values of YF and nF which were 
used to calculate accurate values of CF(E) using Eq. 2.3. Therefore at the selected 
potentials kC(E) = -CF(E) 2π fN Z"(10Hz). Values of kC(E) at intermediate potentials were 
then assigned by polynomial interpolation. 
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few small macroscopic pits. Thus, additional experiments will be needed in the 

future to elucidate such mechanisms. 

However, it can be speculated that the cases of development of 

aluminized surface discoloration (moderate in NP later on in the test and strong 

in C early on) may be attributed to macroscopically uniform alkaline oxidation on 

the aluminized surface. High pH conditions developed spontaneously in the bulk 

of solutions C (early in the exposure) and in solution NP (later on). The pH 

increase in C was not expected and it remains unsolved at present. The pH 

increase in NP was as predicted by the solution chemistry evolution toward 

equilibrium with the surrounding air in the pseudo-closed test cells. Those 

conditions coincided with aluminized surface discoloration, and with marked 

changes in the specimen corrosion rates (as shown later), indicative of activation 

of the aluminized surface. Thus, dissolution (with formation of soluble Al(OH)4
- 

ions per Eq. 2.2-D) of the aluminum oxide film due to alkaline conditions appears 

to be the main corrosion process in these cases. It is likely that, especially in the 

case of solution C which is unbuffered, alkaline oxidation was more intense 

around the rim of the inclusions due to the increase in pH there from local O2 

reduction. Thus, while macroscopically uniform, the corrosion may have been 

more localized at the microscopic, inclusion-scale level.  As time progressed, the 

Al(OH)4
- concentration near the metal surface may have reached a critical value 

so precipitation of aluminum corrosion products in the form of hydrated Al(OH)3, 

by the reaction Al(OH)4
-→Al(OH)3+OH

-, is expected to occur (Nisancioglu and 

Holtan, 1979). That event would explain the observed corrosion deposits and 
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consequent discoloration of the entire aluminized surface in the solutions C and 

NP. In those solutions the observed few macro pits are deemed to be relatively 

inconsequential because of their small number and dimensions. The resulting 

large combined associated ohmic resistance of the macro pits would result on a 

total macro pit anodic current that would be only a small fraction of the total (Oltra 

and Keddam, 1988). It is emphasized that the above scenario is speculative and 

that, in the absence of additional experimental data, other corrosion modalities 

cannot be completely ruled out. In particular, there could be significant micro pit 

activity with internal acidic corrosion, at the inclusion-scale level. Such condition 

is explored further in Chapter 4, where instances of discoloration of the 

aluminized surface in the absence of an increase in pH of the bulk solution are 

addressed for some of the test solutions. 

The situation noted for NP and C was reversed in the case of solution SW 

where surface discoloration was light but the presence of a few macro pits, likely 

nucleated around inclusions, was notable. This condition can be explained by the 

strong aluminum pitting tendency in highly concentrated chloride solutions as in 

the solution SW (~20,000 ppm chloride concentration as opposed to only ~370 

ppm in the other media used in this work). A common indicator of the pitting 

tendency of a particular metal in a given solution is the pitting potential Epit at 

which pits can be initiated and sustained. As a general rule, the lower the value 

of Epit, the easier is the development of pits as less oxidizing power is required 

from the electrolyte. For pure aluminum, Epit is a function of chloride 
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concentration as originally determined by Kaesche (1962) and reproduced by 

Bohni and Uhlig (1969) of the form: 

( ) 0.745Cllog0.124SCE) vs(V  Epit −⋅−= −  (2.6) 

 
For solution SW, the initial relatively positive EOC was dictated by the active 

corrosion of the inclusions in the high chloride environment and had a value in 

the order of Epit  for pure aluminum (~-750 mV for 20,000 ppm) so pit initiation 

was promoted. Indeed, for aluminum alloys as in the case of the outer aluminized 

layer, the presence of inclusions may lower the value of Epit relative to pure 

aluminum (Furuya and Soga, 1990) further facilitating initiation of pits under the 

initial exposure conditions. In unbuffered solutions inclusions may additionally 

facilitate pitting by local alkalinization and subsequent corrosion of the aluminum 

creating a groove around the perimeter of the inclusion (Nisancioglu et al, 1981, 

Rynders et al, 1994, Van de Ven and Koelmans, 1976). This mechanism may not 

have been dominant in the strongly buffered SW solution. Upon pit formation, 

EOC drops due to enhanced electron release by aluminum corrosion within the 

active pits and to some extent by aluminum alkaline oxidation (again, limited in 

this buffered solution). The potential drop proceeded until the current for oxygen 

reduction at inclusions plus hydrogen evolution inside pits matched the overall 

rate of aluminum oxidation (oxidation of the inclusions considered to be negligible 

at the more negative potential). Upon the potential drop some pits may have 

become inactive, eventually leading to a terminal density of pits per unit area that 

was sustained over long periods. 
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Thus, in the SW medium anodic action on the aluminized surface was 

likely limited to the active pits and the observed light discoloration indicated only 

secondary global distress in the form of vestigial alkaline oxidation. In the other 

solutions, having only ~370 ppm chloride concentration, the value of Epit for pure 

aluminum is ~-650 mV. While that value was reached in some cases early on 

(possibly accounting for the observation of some pits in those cases), the long 

term EOC values for NP and C were much lower (-900 mV and -830 mV) so pit 

growth was less likely to be sustained. In solution P, the long term EOC value was 

~-760 mV, but early potentials were significantly more negative so initiation was 

likely inhibited throughout consistent with the lack of observation of macroscopic 

pits in that solution. 

The impedance responses for solutions C, SW, and NP (after the start of 

active aluminized corrosion) were also simulated using the analog equivalent 

circuit in Figure 2.16 with RS and CPEF having essentially the same meaning as 

before. However, the proposed meaning of the components of the circuit of the 

lower branch is quite different to that presented for passive aluminized steel as 

explained next. Per the above discussion, it is tentatively proposed that the 

macroscopically uniform corrosion manifested by discoloration is localized to 

micro sites at the inclusion scale level. Corrosion is proposed to proceed 

simultaneously also at macro active sites in the scale of the observed macro pits. 

While it is recognized that alternative scenarios are also plausible, these 

assumptions resulted in reasonable approximations of the overall impedance 

behavior, and will be considered as a first step in understanding a complex 
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system, pending future development of experimental evidence.   Per the 

assumptions, the local electrolytic current distribution around each micro and 

macro active site can be associated with a local ohmic resistance component, 

RSL=σ
-1/4rPS, where rPS is the radius of the active zone (Oltra and Keddam, 

1988). At high enough frequencies RSL will, at each active site, be significantly 

larger than the modulus of the capacitive impedance of the site. At those high 

frequencies, the resistive effects from all the sites can be approximated by a 

simple parallel combination given by: 

RAL1*=σ
-1 (4 AAL)

-1 [rPS NPS+rPL NPL]
-1 (2.7) 

 
where AAL is the nominal aluminized area, NPS is the number of microsites 

(assumed for simplicity to be all of radius rPS) per cm
2, and NPL is the number of 

pits (assumed all to have radius rPL) per cm
2. The relative contribution of macro 

and micro sites cannot be uniquely ascertained from the impedance response 

alone.  However, the fit values of the impedance response for RAL1, reported in 

Tables 2.5 through 2.7 for solutions C, NP, and SW, are in reasonable 

agreement with the values of RAL1* calculated for the σ values shown in Table 

2.2, rPS~2 µm typical of the Fe-rich particle size, rPL~100 µm for typical macropit 

radius, NPL<5/cm
2, and assuming NPS~10

3/cm2. Within the context of the model 

assumptions, such value of NPS suggests that only a fraction of all possible sites 

were active, a situation not unusual in cases of localized corrosion (Seri and 

Masuko, 1985). 

At high enough frequencies, the impedance is dominated by the parallel 

combination of RAL1 and the film capacitance represented by CPEF as discussed 
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earlier. Each active site is assumed to have a Faradaic polarization resistance 

and an interfacial capacitance with some degree of non ideality. Assuming that 

this combination has a relatively large time constant relative to that of the 

resistive-film capacitance considered before, the combined behavior can be 

represented by the discrete parallel combination of all the polarization 

resistances RAL2 and the corresponding interfacial capacitances CPEAL2. 

The equivalent circuit fit calculations for solution C yielded small values 

(~0.89 to ~3.2 kΩ-cm2) for RAL1. Accordingly, RAL2 was in the order of the lf 

impedance modulus (~68 kΩ-cm2 early on, ~495 kΩ-cm2 near the end of the 

test). Both capacitive elements YF and YAL2 had significant frequency dispersion: 

nF~0.57 to 0.63 (consistent with the highly distorted appearance of the high 

frequency loops in Figure 2.15) and nAL2~0.69 to 0.80. The values of YF were on 

the order of ~4.6 10-6 to ~2.9 10-7 secnF/Ωcm2 at the end of the test and, 

considering the uncertainty inherent to the high frequency dispersion, the CF 

values were consistent with the values obtained in the other solutions. Even 

though there is considerable deviation from ideally capacitive behavior, the 

values obtained for YAL2 (~6.9 10
-5 early on to ~1.7 10-5 secnAL2/Ωcm2) were 

comparable to those obtained for solutions P and NP. 

The equivalent circuit fit calculations for solution SW yielded values for 

RAL2  ranging from ~173 kΩ-cm2 early on to ~143 kΩ-cm2 near the end of the 

test), and RAL1 values from ~160 kΩ-cm2 at the beginning to ~255 kΩ-cm2 at the 

end of exposure. The capacitive elements YF and YAL2 had little frequency 

dispersion (nF~0.91 and nAL2~0.98) as shown in Figure 2.14. The values for YF 
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ranged from ~1.4 10-5 to ~1.7 10-5 secnF/Ωcm2 by the end of the test. The nominal 

capacitance CF calculated per Eq. 2.2 for a frequency fN = 10 Hz was ~10.5 

µF/cm2 fairly invariant with time comparable to those obtained for the P system. 

For the period of aluminized surface discoloration, the values of RAL2 and 

RAL1 for solution NP decreased to ~2 10
5 Ω-cm2 near the end of exposure. Both 

capacitive elements YF and YAL2 increased after aluminized discoloration to ~10-5 

secnF/Ωcm2 ~10-4 secnAL2/Ωcm2, respectively, with little frequency dispersion 

(nF~0.94 and nAL2~1.00). 

 

2.4.3 Computation of the Nominal Corrosion Current Density 

The following nominal corrosion current density icorrAL estimates are 

consistent with the proposed corrosion mechanisms and the associated analog 

equivalent circuit presented earlier. Figure 2.21 illustrates the icorrAL evolution as a 

function of exposure time. Comparable results were recorded for the duplicate 

specimens shown in Appendix A. 

For specimens in solution P over the entire test exposure and for the 

specimens in solution NP for the period before the appearance of uniform 

discoloration, a working assumption is made that the high frequency limit 

resistance (RAL1) is approximately the same as that of a cathodic reaction under 

purely activation control, having a Tafel slope value βC2~200 mV. The value of 

βC2 is representative to those reported for likely coupled cathodic reactions on 

aluminum (Armstrong and Braham, 1996) and also comparable to those obtained 

from cyclical polarization tests shown in Chapter 3 for unblemished aluminized 
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steel exposed to solution P. Since the rate of the anodic reaction was considered 

to be nearly potential-independent, and hence its admittance negligible, the 

nominal corrosion current density icorrAL can then be obtained from the Stern-

Geary relationship applied to the cathodic reaction only (Stern and Geary, 1957): 

icorrAL~βC2 (2.3 RAL1)
-1 (2.8) 

 
To estimate icorrAL for solutions C and SW, and for solution NP after the 

start of aluminized active corrosion, the same working assumptions were made 

as before but using only the value of RAL2 and considering for simplicity that both 

anodic and cathodic reaction polarizability have the same anodic and cathodic 

Tafel slopes βC2=βa2 and equal to 200 mV as stated previously. Thus, the icorrAL 

under those conditions is (Lorenz and Mansfeld, 1981): 

icorrAL~0.5 βC2 (2.3 RAL2)
-1 (2.9) 

 
The values of icorrAL were extremely small for solution P (~0.03 µA/cm2 early on to 

~0.008 µA/cm2 by the end of exposure). However, the first addition of excess 

CaCO3 to specimens #1 and #2 caused a momentary icorrAL increase to ~0.1 

µA/cm2 not observable after the next CaCO3 addition. Similarly, icorrAL values for 

the specimen #3 in P (no extra CaCO3 added) were extremely small ~0.06 early 

on to ~0.001 µA/cm2 by the end of the test. The values of icorrAL of the duplicate 

specimens in solution NP before the start of aluminized discoloration were ~0.15 

µA/cm2 for both at the beginning, decreasing to ~0.03 µA/cm2 after ~1,400 hr. 

The icorrAL values for solution P and for solution NP for the period before the onset 

of aluminized discoloration were consistent with visual observation of corrosion-

free aluminized steel surface. 
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For solution NP for the period after the onset of active aluminized 

corrosion, the icorrAL of the duplicate specimens showed an increasing trend to 

reach by the end of the test a modest icorrAL of ~0.2 µA/cm
2, in agreement with 

moderate uniform aluminized discoloration. For solution C, the duplicate 

specimens had icorrAL values ranging from ~1.05 µA/cm2 early on to ~0.13 µA/cm2 

after ~3,000 hr. As expected, the highest corrosion current density coincided with 

the appearance of uniform strong surface discoloration. The smaller icorrAL values 

in C recorded later on are in agreement with the decrease of the solution pH 

back to the range of aluminum passivity. The icorrAL values for the duplicate 

specimens in solution SW were nearly constant with time reaching ~0.3 µA/cm2 

at the end of exposure, in reasonable agreement with the results reported by 

Johnsson and Nordhag (1984) for aluminized steel Type 2 exposed to natural 

seawater at room temperature. 

It is important to note that the above estimates reflect the application of a 

tentative interpretation of the impedance response, and that alternative scenarios 

should be examined in future research. Efforts should be aimed in particular at 

ascertaining to which extent the macroscopically uniform corrosion may be 

localized at the inclusion scale level. 

 

2.5 Implication of the Results 

The following tentative durability projections for a generic field application 

consider a total aluminized coating thickness of 45 µm (30 µm outer and 15 µm 

inner layers) covering uniformly a base steel 1,500 µm thick approximating a 
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gage 16 sheet stock, and focus on the corrosion performance of the aluminized 

coating layers coated on both sides of the base steel as well as the base steel 

itself. It is strongly emphasized that these projections are nominal in nature since 

test times in the present experiments were only a small fraction of the typical 

actual service lives involved in field applications. 

Recent field inspections in Florida have shown that the inner aluminized 

coating layer, of nearly invariant thickness but with several small breaks 

especially at the rib bends in a spiral rib aluminized steel Type 2 culvert 

component, appears to provide little corrosion protection to the underlying steel. 

Even in aluminized steel without bends like those used here, breaks not related 

to corrosion in the inner layer were clearly noted. Based on this observation, no 

durability credit was assigned to the inner coating layer in this investigation. 

Hence, the projected service life SL is defined as the number of years to 

penetration through the base steel and the outer aluminized layer on both sides 

of the base steel, considering that penetration occurs from both sides of the 

metal as it is usually observed in field exposures. For the present calculations, it 

is also assumed that similar environments exist on each side of a pipe so the 

corrosion rates at both sides are equal. Thus, the projected SL is for simplicity 

taken to be equal to the sum of the SL of the outer layer on either pipe side plus 

the amount of time needed to penetrate half of the thickness of the base steel. 

The values of icorrAL as a function of exposure time obtained in the 

laboratory experiments are summarized in Tables 2.4 through 2.7. Those 

discrete icorrAL values were used to estimate SL of the outer aluminized layer in all 
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solutions for the exposure period from t=0 to tf where tf is the time for the end of 

the test and icorrAL(ti) is the time evolution corrosion current density obtained from 

the EIS measurements where i=1 to n represents each EIS measurement. Thus, 

SL for the outer coating layer is computed as: 

( ) ( ) 1
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⋅= ∑  (2.10) 

 
where AW is the aluminum atomic weight, n=3 for the Al/Al+3 reaction, ρAL is the 

aluminum density, and the term in brackets corresponds to the aluminum 

corrosion rate CRAL. 

For solution P, which may be taken as representative of media with high 

carbonate scaling tendency, nearly neutral pH, and moderate chloride content, 

the extremely small CRAL (<0.24 µm/yr) recorded in this investigation if sustained 

at these levels would indicate a full consumption of the outer layer in >100 yr of 

service, consistent with the projected SL computed from corrosion rate estimates 

of field culvert pipes exposed to tropical environments of composition similar to 

solution P (Bednar, 1989). Additions of extra CaCO3 emulating solutions with 

higher carbonate precipitating tendencies caused short-term increase to ~1 

µm/yr, but even this transient larger rate did not cause visual corrosion damage 

to the outer aluminized steel. 

Durability projections become distinctly more pessimistic for some of the 

other conditions investigated. For instance, for solution NP which may be 

representative of media with high alkalinity but low hardness, high pH, and 

moderate chloride content, CRAL was modest (~1.04 µm/yr). If this rate is 
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maintained, it would mean a full outer coating loss in ~30 yr of service. The high 

rate observed for this solution mainly ascribed to the high pH of the solution bulk 

above the aluminum passivity range is in agreement with the results obtained 

from field studies conducted on aluminized steel Type 2 exposed to 

environments with solution pH>9 (Pyskadlo and Ewing, 1987). For solution C, 

which may be taken to be representative of media  with both low alkalinity and 

hardness, high pH, and moderate chloride content, CRAL was ~3.16 µm/yr, which 

would indicate a full outer coating layer consumption in only ~10 yr, consistent 

with the strong aluminized surface discoloration observed early on in the 

exposure. 

For solution SW emulating seawater composition, the CRAL was modest 

(~3.25 µm/yr) indicating a full outer layer consumption in ~9 yr of service. While 

subject to considerable uncertainty, the corrosion rate becomes important 

considering that the corrosion is strongly localized, with consequent risk of 

aluminized layer penetration early in the life of a component exposed to similar 

media. This finding is in agreement with the observations reported by Perkins et 

al (1982) and Stavros (1984), who asserted that severe pitting corrosion of 

aluminized steel exposed to very aggressive environments is determinant when 

forecasting durability in this type of medium. 

After full consumption of the outer aluminized layer, corrosion of the base 

steel starts and is expected to proceed at the rates of ~12 µA/cm2 in SW and ~10 

µA/cm2 in the other media as reported in Chapter 4. Those values are in 

agreement with corrosion rates reported by McCafferty (1974), Oh et al (1999), 
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and Sander et al (1996). The corresponding projected SL values for the base 

steel would be ~6 yr for SW and ~8 yr for the other media. 

Table 2.8 summarizes the overall SL estimates (SL of the outer layer plus 

that of the base steel) obtained in this investigation. 

As mentioned in Chapter 1, a variety of predictive methods have been 

proposed for forecasting the service life of metallic components. Nevertheless, 

special consideration is given to the most relevant forecasting methods, e.g. the 

AK Steel, the California, the AISI, and the FDOT methods. The computed SL 

estimates using those methods, reported in Table 2.8, were determined based on 

the solution compositions shown in Table 2.2 for a 16-gage aluminized steel 

Type 2. Comparison between the SL projections from the present experiments 

and those obtained from the forecasting methods are presented in the next 

paragraphs. 

For solutions with high scaling tendencies, moderate chloride content, and 

nearly neutral pH (solution P), the SL estimates computed by the FDOT and AISI 

forecasting methods were somewhat conservative (and overly conservative in 

the case of the AK Steel and California methods) compared to the SL projections 

obtained here. For the solution with high alkalinity/low hardness, moderate 

chloride content, and high pH (solution NP), SL estimates obtained from the 

FDOT method were in good agreement with the results reported in this 

investigation. On the other hand, the AISI, California, and AK Steel methods 

yielded either liberal or conservative estimates compared with the present 

findings. For solutions with moderate chloride content, low both alkalinity and 
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hardness, and high pH (solution C), SL projections were in close agreement with 

those determined by the AK Steel, California, and FDOT methods and overly 

conservative compared to durability projections obtained by the AISI method. In 

extremely aggressive solutions of low resistivity, high chloride content, and nearly 

neutral pH (solution SW), the AISI method yielded comparable estimates of 

durability relative to the present findings, whereas the California method 

projected shorter service lives. In highly aggressive environments, no durability 

credit is given by the FDOT method and no SL projections are given by the AK 

Steel method for solutions with scaling indexes beyond ~800 ppm. 

Based on the above, for unblemished aluminized steel the present 

findings would support retaining the present FDOT guidelines regardless of 

scaling tendency for environments with moderately low resistivity such as those 

used in the tests (e.g. ~500 Ω-cm to ~1,000 Ω-cm) and neutral to mildly alkaline 

conditions (e.g. ~7.5<pH<~9.0). The results also support exploring the use of 

alternative guidelines such as the AISI method for environments with extremely 

high chloride contents (e.g. resistivity <50 Ω-cm) and nearly neutral pH. Eventual 

changes in existing guidelines should consider not only the specific results of this 

investigation but also the entirety of the performance record of aluminized steel 

pipe. It is also strongly cautioned that other corrosion processes, such as MIC, 

may be active in the field but have received little attention in prior performance 

studies and were not addressed in this investigation. Factors like MIC may be 

important in the performance of aluminized steel, and need additional 

determination for possible inclusion in future durability forecasting methods. 



 66 

It is also noted that the above findings apply to aluminized steel with an 

initially unblemished metallic coating. In actual metal forming and subsequently 

field application practice, the aluminized steel component (e.g. culvert pipes) is 

liable to surface distress that may range from minor to severe, exposing a certain 

amount of base steel. Determination of corrosion performance in those 

circumstances is addressed later in Chapter 4. 

 

2.6 Conclusions 

1. In >3,000 hr tests, unblemished aluminized steel Type 2 showed extremely 

low nominal corrosion rates (<~0.008 µA/cm2) by the end of the test period 

in an environment with moderate chloride content but of high carbonate 

precipitating tendencies (the solution P), supporting prior evidence in favor 

of a carbonate scale tendency criterion to predict corrosivity. 

2. In a high total alkalinity, but non-scale forming medium with moderate 

chloride content (the solution NP), unblemished aluminized steel Type 2 

showed low/moderate nominal corrosion rates (<~0.10 µA/cm2) for most of 

the test exposure. However, electrochemical impedance measurements 

revealed higher nominal corrosion rates (~0.22 µA/cm2) by the end of 

exposure concurrent with the appearance of uniform discoloration, indicative 

that corrosion may be of importance over longer periods upon evolution of 

solution pH to higher values. 

3. Exposure to moderate chloride content but in the absence of total alkalinity 

and carbonate scaling tendency (solution C) led to strong uniform 
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aluminized surface discoloration and the appearance of few macro pits early 

on, consistent with early development of high solution pH likely responsible 

for the severe initial corrosion. Early on, nominal corrosion rate was large 

(~1 µA/cm2) but it decrease to ~0.15 µA/cm2, consistent with a decrease in 

solution pH to nearly neutral values. 

4. Exposure to high chloride content and high carbonate scaling tendency 

(solution SW) led to early formation of few small macro pits as well as light 

uniform discoloration of the aluminized surface with nearly constant nominal 

corrosion rates of ~0.3 µA/cm2 throughout the test exposure. 

5. Macro pits and surface discoloration appeared to be limited to the outer 

aluminized coating layer at least for the time frame examined in all 

solutions. The macro pits were usually small and infrequent on the corroding 

aluminized surface so they appeared to play a secondary role for the 

solutions C and NP and a primary form of corrosion for solution SW. The 

macroscopically uniform nature of the corrosion may be a manifestation of 

micro pits at the scale of the finely distributed Fe-rich inclusions present in 

the outer aluminized coating layer. 

6. It is tentatively proposed that the mechanism of activation of the aluminized 

surface in solutions NP and C may involve alkaline dissolution of aluminum 

as a result of a high pH of the solution bulk (early on for C and later in the 

test for NP), which would cause aluminum dissolution possibly more 

localized at the microscopic, inclusion-scale level, and later precipitation of 
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aluminum corrosion products, covering the entire specimen surface, 

consistent with visual evidence of uniform surface discoloration. 

7. For solution P over the entire test time and solution NP before the 

appearance of aluminized surface discoloration, impedance response was 

described assuming coupled cathodic reactions acting on the inclusions 

where surface coverage by an intermediate adsorbate alters the rate of the 

next step resulting in a pseudocapacitive behavior. 

8. For solutions C and SW, and solution NP after the appearance of 

aluminized surface discoloration, the impedance response was assumed to 

be dominated at high frequencies by the parallel combination of the local 

ohmic resistance of all micro and macro active sites and the aluminum oxide 

film capacitance, and at low frequencies by the discrete parallel combination 

of the Faradaic polarization resistance and an interfacial capacitance at all 

active sites. 

9. Tentative durability projections made for unblemished 16-gage aluminized 

Type 2 flat sheet durability were >100 yr for the least aggressive 

environment (P), and between 15 and 36 yr for the other media based on 

the assumptions in this investigation. It is emphasized that the projections 

are nominal in nature considering the short test times of the present 

experiments. The results obtained in this investigation were used as a first 

step in proposing refinements of presently used durability guidelines of 

aluminized steel Type 2 culvert pipe based on environmental composition. 
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10. The present findings would support retaining the present FDOT guidelines 

for durability predictions of unblemished aluminized steel Type 2 regardless 

of scaling tendency for environments with moderately low resistivity such as 

those used in the tests (e.g. ~500 Ω-cm to ~1,000 Ω-cm) and neutral to 

mildly alkaline conditions (e.g. ~7.5<pH<~9.0). The results also support 

exploring the use of alternative guidelines such as the AISI method for 

environments with extremely high chloride contents (e.g. resistivity <50 Ω-

cm) and nearly neutral pH. Eventual changes in existing guidelines should 

consider not only the specific findings of this investigation but also the 

entirety of the performance record of aluminized steel pipe. 
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Table 2.1: Chemical composition of steel substrate (% weight). 
C Mn P S Si Cu Al Cb Ni Cr Ti N Mo Fe 

0.05 0.20 0.006 0.012 0.01 0.03 0.04 0.002 0.017 0.03 0.002 0.004 0.003 Bal. 

Mill test report provided by Contech Construction Products Inc. 
 

Table 2.2: Synthetic solution compositions and properties. 

Solution TA TH FC BI 
pHL 
(pHH) 

Ca+2 

mg/L 
Cl- 
mg/L 

σ 
µmho/cm 

C (control) 6 2 0 8 
~7.4 
(~9.0) 

0 1,140 

NP (non 
precipitating) 

480 2 11 471 
~7.8 
(~8.7) 

0 1,850 

P (precipitating) 184 52 13 223 
~7.4 
(~7.8) 

200 

372 

1,390 

SW (precipitating 
- high chloride) 

210 8,280 12 8,480 
~7.3 
(~7.9) 

† † 40,000 

Legend: TA: total alkalinity expressed as mg/L CaCO3, TH: total hardness 
expressed as mg/L CaCO3, σ: solution conductivity, pHL, pHH: lowest and highest 
pH values, respectively. 
† See Table 2.3 for detailed simulated ocean water composition. 

 

Table 2.3: Chemical composition of the simulated ocean water reported by the 
manufacturer. 

Ionic species Cl
-
 Na

+
 SO4

-2
 Mg

+2
 Ca

+2
 K

+
 HCO3

-
 Br

-
 Sr

+2
 B

+3
 

Concentration/ppm 19,846 11,024 2,768 1,326 419 400 145 67.1 13.8 4.72 

 

Table 2.4: Values of the equivalent circuit components in Figure 2.16 estimated 
from EIS data fit for the specimen #1 exposed to solution P. 
Time 
hr 

RS 
Ω 

RAL1 
kΩ 

YF 
snF/Ω 

nF 
RAL2 
kΩ 

YAL2 
snAL2/Ω 

nAL2 
icorrAL 

µA cm-2 

48 17.8 27.0 3.19E-04 0.94 27.0 3.83E-03 1.00 0.034 

216 17.7 55.5 3.49E-04 0.94 37.6 3.83E-03 1.00 0.016 

312 18.3 79.6 3.51E-04 0.94 47.8 3.24E-03 1.00 0.011 

336 17.1 10.1 4.00E-04 0.94 7.6 1.25E-02 1.00 0.091 

480 19.5 18.4 4.11E-04 0.94 16.5 7.75E-03 1.00 0.050 

504 20.2 10.7 4.28E-04 0.94 9.9 9.78E-03 1.00 0.085 

624 20.7 17.2 4.36E-04 0.94 15.9 6.31E-03 1.00 0.053 

1248 22.1 22.5 5.09E-04 0.94 20.7 2.75E-03 0.98 0.041 

2376 20.9 74.8 5.41E-04 0.93 32.5 1.84E-03 1.00 0.012 

3072 21.6 110.4 5.39E-04 0.93 25.4 2.08E-03 1.00 0.008 

Nominal specimen area AAL = 95 cm
2. 
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Table 2.5: Values of the equivalent circuit components in Figure 2.16 estimated 
from EIS data fit for the specimen #1 exposed to solution NP. 
Time 
hr 

RS 
Ω 

RAL1 
kΩ 

YF 
snF/Ω 

nF 
RAL2 
kΩ 

YAL2 
snAL2/Ω 

nAL2 
icorrAL 

µA/cm2 

24 14.8 6.6 3.69E-04 0.95 9.6 4.42E-03 1.00 0.14 

144 15.3 13.9 4.20E-04 0.95 17.5 2.44E-03 1.00 0.07 

360 14.9 8.7 4.85E-04 0.94 13.6 2.86E-03 0.99 0.10 

624 15.0 20.4 4.98E-04 0.94 30.5 1.14E-03 0.95 0.04 

864 14.9 24.4 5.06E-04 0.94 27.9 1.31E-03 0.99 0.04 

1368 15.3 28.1 5.59E-04 0.94 31.2 1.29E-03 0.99 0.03 

2376 14.7 7.9 7.03E-04 0.94 6.6 2.74E-03 1.00 0.07 

3048 14.5 2.1 9.62E-04 0.94 2.0 9.92E-03 1.00 0.22 

Nominal specimen area AAL = 95 cm
2. 

Table 2.6: Values of the equivalent circuit components in Figure 2.16 estimated 
from EIS data fit for the specimen #1 exposed to solution SW. 
Time 
hr 

RS 
Ω 

RAL1 
kΩ 

YF 
snF/Ω 

nF 
RAL2 
kΩ 

YAL2 
snAL2/Ω 

nAL2 
icorrAL 

µA cm-2 

384 0.48 1.7 1.30E-03 0.92 1.8 2.46E-02 0.97 0.25 

504 0.51 2.2 1.35E-03 0.92 2.1 2.47E-02 0.98 0.21 

648 0.48 2.0 1.37E-03 0.92 2.0 2.54E-02 0.98 0.23 

864 0.48 1.7 1.53E-03 0.92 1.4 3.10E-02 0.98 0.34 

1200 0.49 1.7 1.64E-03 0.91 1.3 3.07E-02 0.97 0.35 

1464 0.51 2.3 1.63E-03 0.91 1.6 3.06E-02 0.99 0.28 

1680 0.50 1.9 1.67E-03 0.91 1.3 3.01E-02 0.98 0.35 

1896 0.51 2.4 1.65E-03 0.91 1.5 2.98E-02 0.99 0.30 

2424 0.49 2.4 1.64E-03 0.91 1.5 2.73E-02 0.97 0.30 

2760 0.51 2.6 1.62E-03 0.91 1.5 2.96E-02 0.99 0.30 

3096 0.51 2.7 1.63E-03 0.91 1.5 3.03E-02 0.99 0.30 

Nominal specimen area AAL= 95 cm
2. 

Table 2.7: Values of the equivalent circuit components in Figure 2.16 estimated 
from EIS data fit for the specimen #1 exposed to solution C. 
Time 
hr 

RS 
Ω 

RAL1 
kΩ 

YF 
snF/Ω 

nF 
RAL2 
kΩ 

YAL2 
snAL2/Ω 

nAL2 
icorrAL 

µA/cm2 

24 19.5 150 4.36E-04 0.93 4.9 1.94E-03 0.93 0.09 

360 17.6 9.4 9.59E-05 0.57 0.7 6.59E-03 0.69 0.63 

504 18.6 12.1 6.57E-05 0.60 1.3 4.29E-03 0.72 0.34 

648 18.4 13.5 5.24E-05 0.62 1.8 3.43E-03 0.74 0.26 

864 19.0 15.9 4.24E-05 0.63 2.4 2.70E-03 0.76 0.19 

960 18.1 15.6 4.00E-05 0.64 2.2 2.65E-03 0.76 0.21 

1392 16.9 19.1 3.78E-05 0.62 2.9 2.21E-03 0.77 0.16 

2400 17.5 28.9 2.89E-05 0.63 4.1 1.81E-03 0.79 0.11 

3048 17.6 35.2 2.74E-05 0.63 5.2 1.65E-03 0.80 0.09 

Nominal specimen area AAL = 95 cm
2. 
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Table 2.8: Comparison of durability estimates, in yr, obtained by the application 
of selected forecasting methods and those obtained in this Chapter. 
Test solution AK Steel California AISI FDOT This Chapter 

P <20 29 57 56 >100 (>100) 

NP <20 25 50 33 36 (38) 

SW NA 7 15 NA 15 (19) 

C <20 30 62 27 19 (23) 

Numbers in parenthesis correspond to the results from duplicate specimens. 

 

 

Figure 2.1: Cross section perpendicular to rolling direction of a 16-gage (~1.59 
mm) thickness flat aluminized steel Type 2 after etching with 2% Nital solution 
showing the outer and inner coating layers on base steel. Light features in the 
outer coating are Fe-rich inclusions per SEM-EDS analysis. 
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Figure 2.2: SEM line scan conducted on the cross section of aluminized steel 
Type 2 (perpendicular to rolling direction) showing the main constituents in the 
dual coating layer and the base steel. 
 
 

 

Figure 2.3: Schematic of the test cell arrangement. 
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Figure 2.4: Photograph of the test cell. 
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Figure 2.5: EOC evolution of replicate specimens in solution C. End of exposure 
corresponds to the last datum. 
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Figure 2.6: EOC evolution of replicate specimens in solution NP. End of exposure 
corresponds to the last datum. 
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Figure 2.7: EOC evolution of replicate specimens in solution P. Arrows indicate 
two CaCO3 additions to #1 and #2. End of exposure corresponds to the last 
datum. 
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Figure 2.8: EOC evolution of replicate specimens exposed to solution SW. End of 
exposure corresponds to the last datum. 
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Figure 2.9: Evolution of the solution bulk pH with exposure time. 
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Figure 2.10: Typical EIS plot of the high-frequency limit for NP, P, and SW. 
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Figure 2.11: EIS behavior of the specimen #1 in solution NP (100 KHz - 1 mHz - 
5 points/decade unless indicated otherwise). 

10 points/dec 
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Figure 2.12: EIS behavior of the specimen #1 in solution P (100 KHz - 1 mHz - 5 
points/decade). 
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Figure 2.13: EIS behavior of the specimen #3 in solution P (100 KHz - 1 mHz - 5 
points/decade). 
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Figure 2.14: EIS behavior of the specimen #1 in solution SW (100 KHz - 1 mHz - 
5 points/decade). 
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Figure 2.15: EIS behavior of the specimen #1 in solution C (100 KHz - 1 mHz - 5 
points/decade unless indicated otherwise). 
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Figure 2.16: Analog equivalent circuit used to simulate the EIS responses. 
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Figure 2.17: Evolution of the admittance parameter as a function of time for the 
specimens #1 in solutions NP (circles), P (squares), C (triangles), and SW 
(diamonds) (--- YF, 

__ YAL2). Arrows indicate CaCO3 additions to solution P (#1). 
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Figure 2.18: Evolution of the resistive components as a function of exposure time 
for the specimens #1 in solutions NP (circles), P (squares), C (triangles), and SW 
(diamonds) (--- RAL1, —

 RAL2). Arrows indicate CaCO3 additions to solution P (#1). 
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Figure 2.19: Mott-Schottky plot of the oxide film capacitance recorded for NP and 
P systems (specimens #3 and #4) at ~330 hr of exposure. CF

-2 values obtained 
by EIS at EOC of the duplicate specimens #1 and #2 at comparable exposure age 
are plotted as well (specimen # is denoted in parenthesis). 
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Figure 2.20: Nominal corrosion current density evolution for the specimens #1 in 
all media. No extra powdered CaCO3 was added to the triplicate specimen in 
solution P (#3). 
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Chapter 3 

Special Issues in the Cathodic Behavior of Aluminized Steel Type 2 in Scale-
Forming Waters 

 

3.1 Introduction 

As mentioned in Chapter 1, aluminized steel Type 2 is commonly used as 

a component for applications in drainage culvert pipe that are designed to 

operate for long service lives, so that extremely low corrosion rates are desirable 

(Cerlanek and Powers, 1993). As even low corrosion rates may be important, 

their detection requires sophisticated techniques with associated inherent 

uncertainty. Therefore, understanding of mechanistic issues is critical to increase 

the level of confidence in the corrosion rate estimation. A key mechanistic 

question is the nature and extent of the cathodic reaction taking place on the 

micrometer-scale Fe-rich constituent inclusions, e.g. FeAl3 and Fe2Al5 embedded 

in the solid-solution aluminum matrix (Park et al., 1999, Nisancioglu, 1990, and 

Nisancioglu et al., 1981) as the cathodic reaction will control the overall rate of 

metal dissolution.  Consequently, experiments intending to obtain additional 

information on the cathodic behavior on aluminized steel in scaling-forming water 

were performed and are addressed in this chapter.  

To isolate the cathodic reaction, experiments were performed by cyclically 

polarizing to potentials more negative than those encountered under normal EOC 
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conditions (e.g. <-900 mV). The experiments produced some kinetic parameter 

information useful for calibrating predictive models, but also revealed enhanced 

cathodic activity at the more negative polarization regimes that merits detailed 

discussion. The following describes the results and sets the stage for future 

investigation of the causes of that behavior. 

As discussed earlier, the inclusions not only act as microsites for cathodic 

reaction but also can promote localized corrosion of aluminum surrounding the 

inclusions. For instance, Gundersen and Nisancioglu (1990) proposed that 

aluminum containing ~3% Fe exposed to nearly neutral pH solutions with 

negligible buffering capacity is preferentially dissolved in the vicinity of the 

inclusions as a consequence of a local pH increase due to the cathodic reaction 

occurring at the inclusions. Effectively, this leads to increased exposure of the 

inclusions at the metal surface, and therefore, an enhancement of the cathodic 

reaction with consequent further increase in the aluminum dissolution rate. In 

buffered solutions, however, localized alkalinization in the vicinity of the 

inclusions may be prevented by neutralization of OH- ions. Thereby preferential 

aluminum dissolution around inclusions is minimized, as confirmed by 

Nisancioglu and Holtan (1979) and later by Bjoergum et al (1995) on AA1100 in 

buffered neutral pH, NaCl solutions. 

At present, there is some controversy in regards to the type of dominant 

cathodic reaction at the potentials of interest in aluminum containing Fe-rich 

inclusions. Previous investigations (Seri and Furumata, 2002) conducted to 

determine the cathodic behavior of commercially pure aluminum exposed to 
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aerated unbuffered 0.05 M NaCl solution at neutral pH identified H2 evolution 

under activation control as the main cathodic reaction for potentials ranging from 

~-750 mV to ~-1400 mV. Seri’s results were in agreement with those reported by 

Gartland (1987) for aluminum-coated steel exposed to aerated seawater. 

However, Rynders et al (1994) and Park et al (1999) reported O2 reduction as 

the dominant cathodic reaction for AA6061 in aerated 0.6 M NaCl solution for up 

to ~-1,000 mVSCE. 

Other types of inclusions, e.g. Cu compounds, have also been reported to 

act as sites for cathodic reaction sharing possibly similarities to Fe inclusions in 

the interpretation of the cathodic reaction mechanisms. For example, Vukmirovic 

et al (2002) and later Jakab et al (2005) documented that cathodic polarization of 

AA2024-T3 containing Cu-rich particles in unbuffered NaCl solution caused 

detachment of Cu inclusions (by undercutting due to corrosion of the surrounding 

aluminum) from the aluminum matrix. The mechanically/electrically detached 

metallic Cu adopted its own corrosion potential leading to formation of Cu+2 ions 

that later replated on the metal surface, resulting in an increase in the cathodic 

reaction rate. 

 

3.2 Experimental Procedure 

 The aluminized steel Type 2 used in this part of the investigation came 

from the same batch as those used in previous Chapters. Circular unblemished 

specimens of 95 cm2 nominal surface area were cut out from the as-received 

aluminized steel sheet. The surface had no blemishes detectable by unaided 
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visual inspection. Two specimen surface conditions were tested: as-received 

(AR) and finely ground (FG). The FG surface, indented to simulate an aged 

condition after rolling finish may have wasted away and better exposed 

inclusions, was prepared by hand-rubbing 1 µm diamond metallographic 

polishing compound with a soft paper which removed ~5 µm of the outer 

aluminized layer. Both AR and FG surfaces were ultrasonically cleaned with 

ethanol and stored in a desiccator before immersion. A 500 mL three-electrode 

test cell was used exposing horizontally one of the specimen faces (Figures 2.3 

and 2.4). All potentials are reported in the SCE scale. 

 For comparison, limited tests were conducted with as-melted bulk alloy 

specimens6 of composition Fe2Al5, similar to that found as intermetallics in 

aluminized steel, and with commercially pure aluminum (AA1100-H14) sheet 

stock with nominal Al composition of ~99% and ~1% Fe maximum7. The 

specimens were mounted in an epoxy resin exposing 1.4 cm2 and 4 cm2 for the 

intermetallic and the AA1100 respectively, wet-ground to a 600-grit surface finish, 

placed in a three electrode configuration corrosion cell (Princeton Applied 

Research®) with a ~0.5 cm Luggin capillary to specimen surface distance. 

 Solution P was used in this part of the investigation with composition and 

properties the same as that shown in Table 2.2 in Chapter 2. The calculated LSI 

value was +1.4, a condition that was manifested by the formation of a precipitate 

of CaCO3 to yield a ~0.5 mm thick powdery layer on the specimen surface shortly 

after exposure. 

                                                           
6 Supplied courtesy of Dr. N. Birbilis, Ohio State University. 
7 Supplied by Metal Samples Inc. 
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 The immersion tests were conducted in duplicate for nearly 1,700 hr at 22 

±2 °C. The solution was in contact with laboratory air through a small opening for 

the first ~410 hr of exposure followed by deaeration with pure N2 gas. EOC and 

solution conductivity were monitored periodically. Also, cathodic cyclic 

polarization (CYP) tests were conducted sequentially at three different scan rates 

(1, 0.5, and 0.05 mV/sec) at selected exposure times with potentials shifted first 

from EOC to ~-1.15 V (forward scan) and then back to EOC (reverse scan). The 

potentials were corrected afterwards for ohmic drop taking into account the 

solution resistance RS determined from the high frequency limit of EIS 

measurements. Given the buffering capacity of the solution, pH fluctuations at 

the metal surface were expected to be minimized during cathodic polarization. At 

the end of the immersion test, all specimens were examined by 40X optical 

microscopy and with a Scanning Electron Microscope (SEM). The Fe+2 

concentration of the solution bulk was measured at the end of exposure by 

Atomic Absorption Spectroscopy. 

 

3.3 Results 

 Experimental trends exemplified in this Chapter are for single specimens 

unless otherwise noted. Trends obtained for duplicate specimens were 

comparable to those shown here. CYP tests of both surface conditions were 

conducted when the metals were still in passive state. No under-gasket crevice 

corrosion developed in any of the specimens for which results are reported. 
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3.3.1 Microstructure Analysis 

A SEM view of the typical microstructure of the near-surface cross section 

of the as-received aluminized specimens is shown in Figure 2.1 (Chapter 2). The 

unexposed surface morphology of the AR and FG conditions is shown in Figure 

3.1. The light features are ~1.6 to 3.3 µm Fe-rich inclusions of approximate 

composition ~85% Al and ~15% Fe. The FG surface appearance was 

comparable to that of the AR material except that the inclusions covered 

respectively ~7.6% and ~5.5% of the total specimen surface. The matrix 

surrounding the inclusions was, as expected, richer in aluminum with average 

composition of ~98% Al and ~2% Fe. After long term exposure, ~2-10 µm 

diameter isolated pits were observed in the FG specimens but none in the AR 

specimens. In addition, light discoloration of the aluminized coating was noted on 

the FG specimens after ~800 hr of exposure whereas no discoloration was 

observed for the AR specimens even after ~1,700 hr exposure. 

 

3.3.2 Solution Composition 

 The initial solution pH closely approached the lowest values reported in 

Table 2.2, increasing to 8.20 after 1,500 hr. Solution resistivity was also constant 

and close to the value reported in Table 2.2. The Fe+2 concentration in solution 

for both surface conditions at the end of exposure was below the minimum 

detection level of the instrument (0.01 ppm). 
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3.3.3 EOC and CYP Trends 

Figure 3.2 exemplifies the EOC evolution for up to ~1,700 hr for the 

duplicate specimens. Trends were similar for both FG and AR surface conditions. 

Shortly after immersion, EOC values were ~-750 mV, and remained nearly 

constant for 24 hr after which the potential gradually decreased toward a terminal 

value of ~-900 mV, consistent with the EOC trends obtained in Chapter 2. There 

unblemished as-received aluminized steel was documented was found the have 

extremely low nominal corrosion rates and correspondingly clean surface 

appearance for up to 3,000 hr of exposure in a solution similar to that used in this 

part of the investigation. 

 Typical CYP (E vs. iC where iC is the cathodic current density normalized 

to total specimen area) behavior of the FG and AR conditions in the naturally 

aerated solution is exemplified in Figure 3.3. Additional CYP tests conducted at 

different exposure times and in well-agitated solution showed comparable trends. 

At the two fastest scan rates both AR and FG conditions had similar CYP trends, 

with negligible hysteresis at 1 mV/sec and moderate hysteresis at 0.5 mV/sec. 

The curves for both surface conditions seemingly exhibited a typical activation 

polarization regime with apparent cathodic Tafel slopes of ~170-250 mV/dec, 

comparable to those reported by Armstrong and Braham (1996) for commercially 

pure aluminum in NaCl solution, and values of iC at the starting EOC of ~10
-8 - 7 

10-8 A/cm2. At the apex potential, iC for the AR condition was ~2 10
-6 A/cm2 at 1 

mV/sec, approximately two times smaller than that for the FG conditions. At the 

lowest scan rate, 0.05 mV/sec, the polarization curves showed much more 
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pronounced hysteresis and greater current densities at the apex potential for 

both surface conditions than in the faster tests. In all cases, the iC values at each 

potential for the reverse scan was larger than those recorded for the forward 

scan, suggesting a large signal pseudoinductive response of the system for 

negative potential excursions from EOC. 

Figure 3.4 shows comparable tests for the FeAl and Al1100 specimens. 

Those were normally kept polarized at -850 mV (potential representative of the 

typical EOC of aluminized steel), which was not their natural EOC so the starting 

point of their CYP curves is not at zero current density but rather at the steady 

state polarizing current density (>~0.2 µA/cm2 for both materials). Additional CYP 

tests conducted at different exposure times showed comparable trends. For all 

scan rates, hysteresis was relatively large for FeAl, but not for Al1100. The 

curves showed steep cathodic slopes in agreement with the results reported by 

Seri and Furumata (2002), with iC values for the reverse scan larger than those 

for the forward scan. Values of iC at the apex potential were comparable to those 

obtained for the FG specimens. Additional experiments conducted on specimens 

exposed to a well-agitated solution did not cause a significant change in iC. 

Figures 3.5 and 3.6 show results of tests as in Figures 3.3 and 3.4, 

respectively, but conducted while deaeration had been in progress for at least 72 

hr. Additional CYP tests conducted at different exposure times showed 

comparable trends to those in Figures 3.5 and 3.6. The CYP curves at the faster 

scan rates for the two surface conditions and the alloys showed comparable 

trends to those under aeration. However, at 0.05 mV/sec there was less 
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hysteresis than in the aerated case notably for the AR and FG conditions but also 

for the alloys. The starting EOC values were in general more negative (~40 mV) 

than for the aerated solution for both AR and FG conditions, although the iC 

values at the apex potential were not much changed. After solution reaeration for 

>48 hr, the starting EOC and CYP behavior reverted in all cases to that obtained 

before deaeration. 

 

3.4 Discussion 

In both the aerated and deaerated tests the iC values at a given potential 

for the AR and FG conditions were in a ratio ~2:1, respectively, while the SEM 

examination indicated a ratio of the same order (~1.4:1) for the area fraction 

covered by Fe-rich inclusions. The shape of the polarization curves during the 

forward scan at the fast scan rates and the lack of sensitivity to solution agitation 

suggest activation-limited control over much of the test cycle. Those observations 

are consistent with the Fe-rich inclusions acting as microelectrodes for the 

cathodic reaction, to an extent that depends strongly on the amount of those 

inclusions as noted elsewhere (Nisancioglu, 1990) for comparable systems. 

The nature of the main cathodic reaction(s) active in the potential regime 

examined is not entirely clear, a situation not uncommon in studying aluminum 

alloys (Moon and Pyun, 1998). O2 reduction (OR) can be expected under 

aeration to be the dominant cathodic reaction at ~-900 mV EOC. Since that is in 

the order of the reversible potential for the water/hydrogen system at the near 

neutral pH of the system, H2 evolution (HE) may not yet be important. This 
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expectation is supported by the observed decrease in EOC to more negative 

values upon deaeration. However, the decrease was modest (~40 mV) 

considering that deaeration was effectively ~99% based on dissolved oxygen 

measurements. It is possible then that HE was proceeding at an incipient rate at 

the former EOC, and that the 40 mV decrease was enough added overpotential 

for the rate of HE to be sufficient for establishing a new mixed potential when 

combined with the anodic reaction. 

Another reason to expect HE to be important at the more negative 

potentials is that the cathodic reaction maintained its activation-limited behavior 

after deaeration, at the rates that were comparable to or even higher than before 

in some cases. The size and typical separation of the inclusions, which is only a 

few µm (Figure 3.1), is significantly less than the depth δ of the Nernst layer (e.g. 

several hundred µm (Kaesche, 1985) typically encountered under the nearly 

stagnant/lightly stirring conditions used. Thus, the diffusion-controlled current 

density would be given approximately by iL=nFCBD/δ where n, CB and D are the 

valence, bulk concentration and diffusivity of the species undergoing reduction. 

For OR, n=4, D~2 10-5 cm2/sec and CB~3 10
-7 M under aeration, so for the 

expected δ values iL would be >~10
-5 A/cm2 which is larger than most of the 

forward scan iC values observed. However, under deaeration iL for OR would 

become about two orders of magnitude smaller, with values in the order of 10-7 to 

10-6 A/cm2, but such limitation was not observed in the cathodic curves under 

deaeration even at the low scan rates. Yet, if the diffusional transport were not an 

issue, the sustained high cathodic reaction rates under deaeration would also be 
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inconsistent with the usual first order kinetics for OR, were iC is proportional to 

the concentration of O2 in the electrolyte. Those discrepancies do not apply to 

HE, which at the solution pH is most likely to proceed by direct water reduction, 

which is neither subject to concentration polarization nor greatly dependent on O2 

concentration. 

It would appear then that while OR is significant (at least for the forward 

scans) near the aerated EOC, HE becomes dominant at the more negative 

potentials perhaps aided by having a smaller Tafel slope than that of OR. It is 

cautioned that invoking HE does not explain all the polarization effects observed 

upon deaeration. For example, upon averaging results of multiple specimens, 

cathodic currents were somewhat higher after deaeration. In the context of a 

simple mixed potential scenario, it would be necessary to propose an increase in 

the rate of both the anodic and the cathodic reactions, in the appropriate 

proportions, to explain both a decrease in EOC as well as an increase in the 

cathodic reaction rates. The present evidence is insufficient to identify if and how 

an anodic rate increase takes place upon deaeration and this issue shall remain 

for later investigation. 

Setting aside the issue of the identification of the cathodic reaction, the 

most striking feature demanding explanation is the strong hysteresis present in 

the return cathodic curve, notably for the FG condition, as well as the much 

lesser extent of hysteresis upon deaeration. Clearly, the extent, direction, and 

scan rate dependence of the observed hysteresis indicate that the aluminized 

surface became an increasingly better cathode as the cathodic reactions 
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progressed, but the mechanism for such increase and its dependence on 

aeration is not evident. 

Detailed elucidation of the above issues would require additional 

experimental evidence such as surface analytical data and controlled transport 

experiments (e.g. using a rotating disk electrode (Newman, 1966)) that are 

beyond the scope of the present investigation. Instead, a tentative scenario will 

be presented below that accounts for the observed behavior in the aerated 

condition, and for some of the features seen after deaeration. The scenario may 

serve as a first step in formulating a future specialized study of the problem. The 

approach is inspired by well-documented models of cathodic enhancement in 

aluminum-copper alloys by deposition of copper dissolved in aqueous media 

(Vukmirovic, 2002). 

Analogous to those models, it is speculated that upon cathodic 

polarization below the starting EOC a species that serves as an efficient host for 

the operating cathodic reaction (in the following assumed to be only HE for 

simplicity) deposits somewhere on the aluminized surface. That new surface is in 

addition to the initially present inclusions, and may have a higher exchange 

current density for the cathodic reaction than the inclusions. Thus, a small 

amount of deposition may have a strong effect so that even a small initial 

concentration of the depositing species in the solution could suffice and even not 

become exhausted from the solution throughout the entire polarization cycle. The 

rate of deposition is finite, so consistent with observation the effect would be 

stronger at the lower scan rates. On first approximation, the cathodic current due 
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to the deposition reaction may be considered to be small compared to that of the 

main cathodic reaction. Also as an approximation, only a single anodic reaction 

will be assumed for the cathodic potential regime explored, modeled as potential-

independent passive Al dissolution at a constant rate iP2. 

The tentatively proposed deposition reaction is Fe reduction (Fe+2+2e-

→Fe), where the Fe+2 ions are available from prior preferential dissolution of the 

inclusions. The inclusions may have been in electronic contact with the rest of 

the metal, or as free particles separated from the matrix due to undercutting 

cathodic corrosion of the surrounding aluminum (Vukmirovik et al, 2002, Park et 

al, 1999). Assuming equilibrium with some metallic Fe on the surface at the 

beginning of the potential scan, the initial Fe+2 ion concentration in the pH range 

of interest is given by [Fe+2]i = 10
(E
OC

-E
0
)/0.03 where E0 = -681 mV is the standard 

Fe+2/Fe redox potential (Bockris and Reddy, 1970). The typical EOC values of -

900 mV and -940 mV for the aerated and deaerated conditions, respectively, 

correspond then to [Fe+2]i values of ~3.6 10
-8 M to ~3.6 10-9 M (0.002 ppm and 

0.0002 ppm), which are consistent with the upper bound concentration observed 

by Atomic Absorption Spectroscopy. The Fe+2 ions present in the solution at the 

beginning of the polarization cycle increasingly reduce to deposited Fe as 

cathodic polarization progresses. For simplicity, a high cathodic reaction 

exchange current density on the newly formed surface will be assumed, so the 

required amount and rate of deposition is small and [Fe+2] can be treated as 

being approximately constant over the polarization cycle. Given a slow enough 

scan rate, the Fe deposition will become significant and the main cathodic 
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reaction rate will be noticeably greater in the return scan, thus resulting in 

pseudoinductive hysteresis as observed experimentally. 

The observation of lesser hysteresis for the deaerated than for the aerated 

solution in AR and FG surface conditions may be explained by the effect of 

aeration on the starting EOC (~40 mV higher than in the deaerated solution). The 

order-of-magnitude leaner initial Fe+2 concentration noted above for the 

deaerated solution would result in a correspondingly lower extent of new Fe 

deposition, and hence, less pronounced hysteresis. At the more negative starting 

EOC under deaeration, there would have been some Fe deposition on the 

surface, which might account for the similar or greater cathodic reaction rates 

observed after deaeration compared with before. As indicated above, it would be 

however necessary to invoke a stronger anodic reaction rate upon deaeration (an 

increase of iP2 in the above simplified assumptions) to explain a more negative 

EOC in the face of similar or increased cathodic action. That hypothesis and its 

operating mechanism would necessitate additional experimental evidence for 

evaluation, so the following will focus on the response observed under aerated 

conditions. 

The predictions of the above scenario for aerated conditions were 

evaluated by a simplified quantitative model that was formulated by assigning 

Tafel kinetics to both HE and Fe deposition, with nominal exchange current 

densities i0Ci, equilibrium potentials Eeqci, and cathodic Tafel slopes βCi where 

the subscript i is replaced by 1 for Fe and by 2 for HE accordingly. HE is 

assumed to take place at the Fe-rich inclusions initially present, and at the newly 
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deposited metallic Fe surface. The region where Fe deposition takes place is not 

known, so a cathodic current density for Fe deposition will be nominally assigned 

to act on the specimen surface not initially occupied by the inclusions or any 

previously deposited Fe, leaving it up to the choice of i0C1 and related parameters 

to obtain appropriate scaling factors. The aluminum on the rest of the surface is 

assumed to be experiencing slow passive dissolution at a current density iP2. The 

solution has high conductivity so the ohmic potential drop is neglected. 

Per the assumptions above, the time-dependent total cathodic current 

under activation control comprises that of HE and Fe deposition such that: 

( ) )t(I)t(I)t(I)t(I)t(ItI
1C2C1CN2CI2CTC

+=++=  (3.1) 

 
where IC2I and   IC2N are the HE currents on the inclusions and on the newly 

deposited Fe, respectively,  and IC1 is the Fe deposition current on the rest of the 

surface. It is also assumed that HE on both inclusions and newly deposited Fe 

has the same kinetic parameters except for the exchange current density, which 

is i0C2 on the inclusions and greater by a multiplier factor k2 on the deposited Fe. 

Thus, IC2(t) can be written as: 
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where F is the Faraday constant, E(t) is the applied potential, AC0 is the initial Fe-

rich inclusion area, and ∫ ττ
t

0
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k
 gives the area of the deposited Fe. The 

parameter k1 = AS NA is the Fe coverage constant in cm
2 per moles of Fe+2, NA is 

the Avogadro's number, and AS represents the area described by a simple cubic 
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structure of Fe atoms with a typical lattice parameter of 0.28 nm (Kepaptsoglou 

et al, 2007). 

Per the assumed locus of Fe deposition: 
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where A the total specimen area. Then, the net cathodic current is: 
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Figure 3.7 show solutions to Eq. (3.4) numerically calculated by finite 

differences for the aerated condition, respectively. Typical values of βC1 and i0C2 

(Kaesche, 1985) were chosen along with values of βC2 and iP2 numerically 

calculated from the CYP tests conducted at 1 mV/sec (see Table 3.1). Consistent 

with specimen dimensions and surface analysis, A was set to 95 cm2 and AC0 to 

5 cm2 (AR condition). A nominal initial Fe+2 concentration equal to 0.002 ppm 

was chosen, calculated as above. Plausible input values of i0C1 and k2 were 

chosen such that the model calculations simulated a typical CYP trend of the AR 

condition at 0.05 mV/sec. Those input values were used for the other scan rates 

as well. 

The model results were in reasonable agreement with the experimental 

trends. However, a slight discrepancy of the model results respect to the 

experimental data is noted for the return scan at 0.05 mV/sec for the aerated 

solution. A momentary increase of the experimental cathodic current density 

followed by a steeper slope was observed for the slowest return scan, not quite 
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well reproduced by the simplified model. This observation is not clear at this 

moment but it can be speculated that if the Fe deposition mechanism is assumed 

to be a very slow process compared to the slowest scan rate examined, then its 

response to the potential change is not instantaneous so that Fe+2 ions continue 

to deposit even during the return scan. The resulting effect yields a 

pseudoinductive behavior in accordance with the experimental results. 

 

3.5 Conclusions 

1. Cyclic polarization tests conducted on the as received and finely ground 

surface unblemished aluminized steel Type 2 exposed to a solution with high 

scaling tendency, high alkalinity and moderate chloride content yielded 

cathodic current densities for the finely ground surface condition that were 

about twice as much as those recorded for the as-received surface condition, 

consistent with larger amounts of Fe-rich inclusions noted on the finely 

ground surface. 

2. Experimental evidence presented here suggests that there is no clear 

indication about the type of the cathodic reaction(s) taking place at the Fe-rich 

inclusions. However, experimental results (e.g. change in EOC due to solution 

deaeration) permitted to speculate that O2 reduction was the main reaction at 

potential of ~-900 mV and H2 evolution reaction took over at more negative 

potentials. 

3. Cyclic polarization tests also showed that for the smallest scan rate examined 

(0.05 mV/sec) a significant hysteresis existed between the cathodic current 
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densities for the forward and reverse scans. The amount of hysteresis 

decreased for increasing scan rates (0.5 and 1 mV/sec) associated to the 

amount of Fe+2 ions being deposited during polarization. It is proposed that 

larger hysteresis was observed for the aerated solution compared to the 

deaerated solution, especially at the smallest scan rate, because the amount 

of Fe+2 ions is larger in the aerated solution. 

4. The results obtained from a simplified quantitative model were in reasonable 

agreement with the experimental results. 
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Table 3.1: Parameters chosen for cyclical polarization modeling. 
βC2 

mV dec-1 
βC1 

mV dec-1 
i0C2 

A cm-2 
i0C1 

A cm-2 
iP2 

A cm-2 
k2 k1 

cm2 mol-1 

200 120 10-8 10-10 5 10-8 100 4.7 108 

 

  

 

Figure 3.1: SEM images of the unexposed FG (left) and AR (right) surface 
conditions. Light features correspond to Fe-rich inclusions. 
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Figure 3.2: EOC evolution of the AR and FG surface conditions. Specimen 
number is denoted in parenthesis. 
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Figure 3.3: Cyclical cathodic polarization of the AR and FG surface conditions in 
unstirred naturally aerated solution at 408 hr of exposure. Return scan current 
was always greater than for the forward scan as exemplified by arrows. 
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Figure 3.4: Cyclical cathodic polarization of the FeAl and Al1100 alloys in 
unstirred naturally aerated solution at 408 hr of exposure. Return scan current 
was always greater than for the forward scan as exemplified by arrows. 
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Figure 3.5: Cyclical cathodic polarization of the AR and FG surface conditions in 
unstirred deaerated solution after 650 hr of exposure. 
 



 105 

 

-1.2

-1.1

-1.0

-0.9

-0.8

1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04

i / A cm
-2

E
 /
 V
 v
s
 S
C
E

FeAl - SR=1 mV/sec

FeAl - SR=0.5 mV/sec

Al1100 - SR=1 mV/sec

Al1100 - SR=0.5 mV/sec

 

 
Figure 3.6: Cyclical cathodic polarization of the FeAl and Al1100 alloys in 
unstirred deaerated solution after 650 hr of exposure. 
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Figure 3.7: Model results for the AR surface condition in the aerated solution. 
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Chapter 4 

Galvanic Behavior on the Corrosion Resistance of Aluminized Steel Type 2 

 

4.1 Introduction 

As mentioned in previous Chapters, aluminized metallic coatings have 

excellent intrinsic corrosion resistance compared to other metallic coatings. As 

shown in Chapter 2, outer aluminized coating can maintain passivity for extended 

exposure times in scale-forming environments so that long service lives of 

unblemished aluminized steel components could be expected. However, the 

aluminized coating may be mechanically partially disrupted in common use 

exposing the underlying base steel. In such case, it is important to know if the 

aluminized coating will galvanically protect the exposed steel, and to which 

extent the size of the exposed steel portion will be important when exposed to 

environments commonly encountered in Florida. 

This Chapter aims at determining the corrosion behavior of mechanically 

distressed aluminized steel Type 2 with exposed underlying steel substrate, 

immersed in waters of varying scaling tendencies with moderate and high 

chloride contents bracketing compositions typically found in Florida waters. 

These conditions are of interest as environmental aggressivity may be sufficient 

to cause significant corrosion of the exposed steel, but not enough to promote 
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adequate galvanic current delivered by the outer aluminized coating. Of 

importance is to determine the amount of current delivered by the outer 

aluminized coating when coupled to steel of different areas, and the mechanisms 

associated with the galvanic corrosion processes relevant to better forecasting 

durability in critical highway applications. Advanced forecasting will be addressed 

in a future investigation. 

 

4.2 Experimental Procedure 

The aluminized steel Type 2 used in this part of the investigation came 

from the same batch as those used in previous Chapters. Circular unblemished 

specimens of 95 cm2 nominal surface area were cut out from the as-received 

aluminized steel sheet, and coating breaks 2 cm and 0.2 cm diameters and 300 

µm deep were machined in the center of one of the specimen faces exposing the 

underlying steel. The blemished specimens are identified hereon as LCB and 

SCB for the large and small coating breaks, respectively. The exposed 

steel/aluminized coating area ratio AR was ~0.03 for the LCB specimens and ~3 

10-4 for the SCB specimens. Traces of metal shavings were removed from the 

machined breaks with a razor blade. A magnetic coating thickness gauge was 

used to verify that the exposed steel was free of aluminized coating. Afterwards, 

the blemished specimens were ultrasonically degreased with acetone and 

ethanol, and stored in a desiccator. A 500 mL three-electrode test cell 

configuration similar to that schematically shown in Figure 2.3 in Chapter 2 was 

used, exposing horizontally the blemished face. A metal-metal oxide activated 
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titanium mesh was used as a counter electrode placed at ~6 cm from the metal 

surface and a 0.8 cm long and 0.2 cm diameter titanium wire used as a pseudo 

reference electrode (Castro et al., 1996) periodically calibrated against a SCE 

momentarily placed in the liquid. Unless specified, all the potentials reported here 

will be given on the SCE scale. To determine the electrochemical behavior of the 

underlying steel, additional experiments were conducted in duplicate on 

uncoupled steel specimens of ~3 cm2 nominal surface area, made by 

mechanically stripping the aluminized coating from the same aluminized steel 

stock and wet ground to a 320-grit surface finish, placed in a companion cell. For 

those experiments, a SCE electrode was placed momentarily in each test 

solution for the duration of the electrochemical measurements. 

To monitor galvanic currents between the exposed steel and the 

surrounding aluminized coating as well as the electrochemical impedances of the 

individual macrocell components, a test cell shown in Figures 4.1 and 4.2 was 

used. The test cell consisted of an as-received unblemished aluminized steel 

specimen of 95 cm2 nominal surface area placed at the bottom of the cell and a 

separate but normally interconnected (except during EIS and galvanic 

measurements) 3 cm2 nominal surface area steel specimen positioned ~2 cm 

parallel to the aluminized surface. The macrocell assemblies had an AR~0.03. 

The steel component was made by mechanically stripping the aluminized coating 

from the same aluminized steel stock, and wet ground to a 320-grit surface finish. 

Electrical connection was made using a stainless steel wire spotted welded to the 

back side of the steel. Afterwards, the back side and the edges of the steel were 
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coated with epoxy. Both the aluminized and the steel components were cleaned 

with acetone and ethanol and stored in a desiccator prior to immersion. 

All test cells were never replenished with new solution for the entire 

exposure. The relatively small electrolyte volume/total specimen area ratio was 

intended to be representative of worst-case culvert pipe conditions with stagnant 

water on the pipe invert, or of occluded conditions for pore water on the soil side 

of a pipe. 

The test solutions evaluated were C, NP, P, and SW per the nomenclature 

in Chapter 2 and compositions shown in Tables 2.2 and 2.3. The test solutions 

were quiescent and naturally aerated through a small opening in the test cells. In 

such case, the test solutions were expected to be in equilibrium with the partial 

pressure of CO2 of the surrounding air. The equilibrium solution compositions, 

calculated by the Mineql+® software, for the open system were comparable to 

those for the pseudo-closed system used in Chapter 2. Solution pH was 

measured by a research grade combination pH electrode (model 476086 from 

Corning Inc.) with an internal Ag/AgCl reference system connected to a Corning 

Model 140 pH meter (Scientific Instruments, Science products, Corning Glass 

Works) with an input impedance of ~1012 Ω set as a voltmeter. An auxiliary 

multimeter was connected to the voltmeter output to achieve a resolution of 0.1 

mV. The pH electrode was calibrated before and after use using pH=4, pH=7 and 

pH=10 buffer solutions corrected by the appropriate solution temperature factor. 

A conductance bridge (model 31A from YSI Co. Inc., Yellow Springs, OH) with 

platinum-iridium electrodes was used for conductivity measurements. 
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The immersion tests were conducted in duplicate and in some cases in 

triplicate for up to ~3,500 hr at 22 ± 2 ˚C. Solution pH and electrical conductivity 

were monitored at selected times. Open circuit potentials (EOC) were periodically 

measured as a function of exposure time with a multimeter of 200 MΩ input 

resistance. To map the potential profile with radius a Luggin capillary placed at 

~1 mm from the metal surface was manually scanned over the surface in 

duplicate LCB specimens exposed to solutions P and NP. In addition, EIS 

measurements were regularly conducted at the EOC with a Gamry® PCI4-300 

potentiostat in the frequency range from 100 kHz to 1 mHz taken 5 data points 

per decade using sinusoidal signals of 10 mVRMS amplitude. Galvanic currents 

between the aluminized and steel components were periodically measured with a 

0.1 Ω input resistance ammeter (Model HP 34401A). By convention, net anodic 

currents were assigned positive signs. Measurements of EOC of the 

interconnected components were recorded right before measurements of 

galvanic currents. To evaluate the individual impedance response of the two 

macrocell components in the galvanic couple, the components were 

disconnected and a battery-operated dc current source of impedance at least 

one order of magnitude above the impedance of each component of the couple 

was connected across the components, to preserve the individual static 

polarization conditions (see Figure 4.2). The component to be tested was then 

connected to the EIS system as usual. The other component of the couple 

remained dc-polarized but nearly free of ac excitation current during the test. At 
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the end of long term exposure, all specimens were removed, cleaned, and 

examined by 40X optical microscopy. 

Direct assessment of the corrosion rate of the aluminized portion 

conducted in selected specimens shown in Table 4.1 was accomplished by 

performing coating thickness measurements after the end of exposure using a 

magnetic coating thickness gauge (model Mikrotest® III by ElektroPhysik), 

reported by the manufacturer to have an accuracy of ±5% of the reading. The 

measuring protocol included the selection of six locations on the aluminized 

surface distributed as follows: three locations at the unexposed rim of the 

specimen that approximated conditions before exposure, and three locations on 

the exposed aluminized surface where it had retained deposits in the form of 

corrosion products or other precipitates. Afterwards, the deposits at those three 

locations were stripped from the aluminized surface by lightly hand rubbing with 

600-grit abrasive paper until revealing the bare aluminized surface underneath. 

Similar rubbing on the unexposed locations was found to result in no detectable 

metal loss per magnetic gauge indications. A total of three measurements were 

taken at each location by three independent operators, each selecting different 

spots in each specimen following the measuring protocol above. Then, the 

results were combined for each location, and the resulting average and standard 

deviation were calculated. Nominal average coating loss was roughly estimated 

by subtracting the remaining coating thickness (after removing deposits) from 

that measured at the unexposed metal, and then converted to nominal average 

corrosion rate by dividing by the corresponding test duration. The nominal 
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average coating loss was then compared to the integrated material loss 

computed from EIS measurements as shown in Section 4.4.4. 

 

4.3 Results 

Table 4.2 summarizes visual assessment and EOC evolution trends of the 

blemished specimens as well as the unblemished specimens reported in Chapter 

2. The corresponding detailed comments including electrochemical impedance 

results in the form of Nyquist diagrams of the blemished specimens are given in 

the following sections. Treatment of the EIS data presented in this Chapter was 

the same as that employed in Chapter 2. Impedance trends are in some 

instances exemplified for single specimens (labeled as #1 hereon). Comparable 

impedance results were obtained for the duplicates (labeled as #2 hereon) and 

for the triplicates (labeled as #3 hereon) unless otherwise noted. Triplicate 

specimens, available in some cases, were tested for trend confirmation when 

needed. Results for replicates not given in this Chapter are documented in 

Appendix B. Results for the LCB specimens exposed to solution C and for the 

macrocell assemblies in solutions C and SW are not available because 

significant crevice corrosion developed underneath the sealing gasket in all 

replicate specimens so the results were discarded. 

 

4.3.1 Solution Compositions 

Figures 4.3 and 4.4 show the pH evolution for up to 3,000 hr for the LCB 

and SCB specimens, respectively. Immediately after immersion, bulk pH values 
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were ~7.8 for NP, ~7.5 for P, ~7.3 for C, and ~7.6 for SW, close to the values 

reported in Table 2.2 in Chapter 2. As time progressed, the bulk pH for solution P 

steadily increased to ~7.7 and ~8.2 for the LCB and SCB configurations, 

respectively, up to ~1,200 hr and remained nearly constant afterwards. The bulk 

pH for solution NP showed an increase to terminal pH values of ~9.0 (SCB) after 

~200 hr and ~8.8 (LCB) near the end of the exposure. The bulk pH for the 

solution SW for both SCB and LCB configurations increased to ~8.0 by the end 

of the test. In solution C, the bulk pH showed pH fluctuations (around a pH unit) 

around the terminal pH of ~7.5. Comparable pH trends were also observed for 

the macrocell assemblies exposed to solutions NP and P. 

Total hardness and total alkalinity, determined by titration following 

procedures indicated in the Standard Methods for the Examination of Water and 

Wastewater (1992), as well as the solution conductivity are reported in Table 2.2. 

The Fe+2 concentration in all solutions, measured by Atomic Absorption 

Spectroscopy after ~2,000 hr, was below the minimum detection limit of the 

instrument (0.01 ppm). 

 

4.3.2 Blemished Specimens 

4.3.2.1 EOC Trends 

Figures 4.5 through 4.11 show the EOC evolution for up to ~3,000 hr for the 

LCB and SCB specimens, respectively. 

The LCB specimens exposed to solution P (Figure 4.5) showed EOC 

values of ~-780 mV immediately after immersion, increasing to nearly constant 
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values of ~-745 mV for a period ranging from ~1,200 hr to ~1,700 hr of exposure. 

At the end of that stage, EOC started a gradual decrease to attain terminal values 

of ~-910 mV after ~2,000 hr. The SCB specimens exposed to solution P (Figure 

4.8) showed EOC values of ~-760 mV immediately after immersion, then 

decreased to ~-900 mV after ~180 hr and slowly recovered to ~-820 mV near the 

end of the test. Values of EOC obtained with a Luggin probe placed at ~1 mm 

above the surface at various radial locations of replicate LCB specimens in 

solution P at ~72 hr and ~200 hr of exposure, were nearly constant only ~1-2 mV 

more positive over the exposed steel than over the aluminized surface. The EOC 

distribution next to the metal surface for the LCB configuration, calculated using a 

dc computational model presented in Chapter 5, was in agreement with the EOC 

profiles observed here. 

The LCB specimens exposed to solution NP (Figure 4.6) showed EOC 

values of ~-770 mV immediately after immersion, increasing to ~-730 mV for 

periods ranging from ~500 hr to ~1,600 hr. At the end of that period, EOC 

decayed to ~-930 mV for periods ranging from ~900 hr to ~2,000 hr. For up to 

~1,200 hr, the LCB specimen #2 did not display a decrease in EOC possibly 

associated with a premature test termination. The SCB specimens (Figure 4.9) 

showed EOC values of ~-750 mV immediately after exposure to solution NP, 

decreasing to ~-900 mV for periods ranging from ~50 hr to ~200 hr. The SCB 

specimen #1 showed long term (days-weeks) EOC fluctuations for up to ~1,500 hr 

followed by a stabilization period around the terminal EOC. Long-term EOC 

fluctuations were unnoticeable in the duplicate specimen. 
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The LCB and SCB specimens exposed to solution SW (Figure 4.7 and 

Figure 4.10, respectively) showed comparable EOC trends. For a very few hrs 

after immersion, EOC values were ~-750 mV followed by a sharp decrease to a 

terminal EOC around ~-880 mV. 

The SCB specimens exposed to solution C (Figure 4.11) showed EOC 

values of ~-620 mV a few hrs after immersion followed by a gradual drop to ~-

810 mV after ~1,000 hr, and then recovered slowly reaching ~-710 mV by the 

end of exposure. 

Figure 4.12 illustrates the EOC evolution for up to ~500 hr for the 

uncoupled steel specimens exposed to solutions C, NP, and P. Immediately after 

exposure, the EOC was ~-380 mV for solution NP and ~-430 mV for C and P. A 

few hrs after immersion, the EOC decayed steeply to nearly constant terminal 

values around ~-720 mV for solutions NP and P and ~-630 mV for solution C. 

These terminal EOC values were comparable to those recorded for the LCB and 

SCB specimens in the same solutions before the start of the EOC decay. 

 

4.3.2.2 Direct Observations of Corrosion 

4.3.2.2.1 The Aluminized Coating 

In the LCB specimens exposed to solutions NP and P, the beginning of 

the EOC drop was concurrent with the appearance of grayish discoloration of the 

aluminized surface around the perimeter of the exposed steel spot. The 

discoloration, moderate in P and darker in the NP system, later covered uniformly 

the entire aluminized surface forming an adherent layer ~10-15 µm (NP) and <1 
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µm (P) thick as measured by a magnetic thickness gauge after the end of the 

exposure. Specimen autopsy showed that corrosion damage associated with 

uniform discoloration appeared to be mainly associated with changes in the outer 

coating layer as confirmed by metallographic analysis. Metallographic 

examination conducted on a cross section near the aluminized/steel edge of the 

LCB specimen #1 (and the specimen #2 as well) exposed to solution NP (Figure 

4.13) showed an annulus ~70 µm wide surrounding the exposed steel spot of 

severe corrosion, not noted in any of the specimens in solution P. As a result, the 

outer aluminized coating layer in NP was completely consumed exposing the 

inner layer which appeared to remain intact for the time frame examined. A SEM 

image (Figure 4.14) of the discolored surface of the LCB specimen #1 in solution 

NP taken at the end of exposure showed a tight, compact layer covering 

uniformly the aluminized surface. Further SEM-EDS analysis (Figure 4.15) of a 

dried portion of that layer was consistent with the presence of aluminum 

hydroxide Al(OH)3 in agreement with the results reported in Chapter 2 and the 

results shown elsewhere (Davis, 1999). Few isolated small pits were observable 

only under magnification (indicative of pit diameter <0.1 mm) in both solutions NP 

and P. 

On the other hand, the LCB specimens exposed to solution SW showed 

isolated small visible pits (indicative of pit diameter ~0.1 mm) on the aluminized 

surface early on followed by the appearance of uniform light discoloration, 

forming an adherent layer <1 µm thick, but the appearance of that layer (at ~360 

hr of exposure) was not coincident with the start of the EOC decay. The light 
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surface discoloration in SW did not start near the exposed steel perimeter but 

instead at several locations on the aluminized surface. Interestingly, 

metallographic examination conducted on the specimen #1 in SW (Figure 4.16) 

showed that the aluminized coating surrounding the exposed steel did not display 

signs of severe corrosion with both outer and inner coating layers in place. 

During exposure, a similar grayish discoloration was noted starting at the 

aluminized surface in the vicinity of the exposed steel of all SCB specimens in 

solutions NP and C, and at various spots on the aluminized surface in SW. The 

discoloration, dark for solutions C and NP and lighter for SW, progressed until 

covering uniformly the entire aluminized surface, forming an adherent layer ~5-10 

µm (NP), <2 µm (C), and <1 µm (SW) thick. The appearance of initial 

discoloration was concurrent with the EOC drop for solution C (~545 hr after 

immersion). For solutions NP and SW, the appearance of initial discoloration was 

not concurrent with the beginning of the EOC drops (which took place after short 

exposure times) but instead were noted (for the specimens #1) at ~1,030 hr and 

~275 hr for NP and SW, respectively. In contrast, the aluminized surface of the 

SCB specimens exposed to solution P did not show discoloration or pits 

throughout the entire test period. 

Autopsy of the SCB specimens showed that corrosion damage associated 

with uniform discoloration appeared to be mainly associated with changes in the 

outer coating layer as confirmed by metallographic examination. In addition, few 

pits visible to the naked eye (~0.1 mm diameter) in solutions C and SW were 

noted on the aluminized surface shortly after exposure. Some of those pits in 
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solution C appeared to have reached the underlying steel since reddish deposits 

were detected at some pit mouths as shown in Figure 4.17. Few isolated small 

pits were observable only under magnification (indicative of pit diameter <0.1 

mm) in solution NP. As in the LCB specimens in the NP system, the SCB 

specimens in solutions NP and C as well showed a ~50 µm wide annulus of 

severe corrosion surrounding the exposed steel as shown in Figure 4.18. It can 

be noted that the outer aluminized layer was completely consumed exposing the 

inner coating layer, which appeared to have remained intact throughout the 

exposure. Contrarily, the SCB specimens in SW and P did not show severe 

corrosion around the exposed steel as exemplified in Figure 4.19 for the SW 

solution. 

 

4.3.2.2.2 The Exposed Steel 

A few hrs after immersion, visual examination conducted on the exposed 

steel of the LCB and SCB specimens exposed to solutions P and NP (and the 

individual steel specimens in P and NP solutions as well) showed a uniform 

reddish/black scale (likely rich in Fe+2/Fe+3) formed over the entire steel surface. 

Later on, the scale in those specimens developed until forming a layer ~300 µm 

thick. At ~450 hr of exposure, the central ~0.3 cm2 of the exposed steel area of 

all LCB and individual steel specimens in solutions P and NP developed a 1-3 

mm thick porous reddish growth. There was noticeable additional steel metal loss 

underneath the central growth in the LCB and individual bare steel specimens in 

NP, but less so in P. A metallographic examination (Figure 4.20) carried out in 
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the LCB specimen #1 exposed to solution NP showed that the metal loss at the 

exposed steel was estimated to be ~0.1 grams. No such central growth was 

observed in the SCB specimens exposed to those solutions. At ~500 hr, 

formation of small crystals appeared on top of the Fe-rich scale in both LCB, 

SCB, and individual steel specimens immersed in solution P. SEM-EDS analysis 

of few crystals obtained from the LCB specimens in P was consistent with the 

presence of CaCO3. During post-exposure cleaning, the scales on the exposed 

steel of the LCB, SCB, and uncoupled steel specimens in solution NP were 

easily removed, but were more adherent in solution P. 

The exposed steel of the SCB specimens in solution C showed corrosion 

in only one (#1) of the triplicate specimens, an early formation of a thin reddish 

scale (likely rich in Fe+2) that later developed to form a layer ~<300 µm thick on 

top of the steel. No signs of corrosion were observed in either replicate #2 or #3, 

where the steel spot remained bright over the entire test period. The replicate 

individual steel specimens in solution C showed early formation of corrosion 

deposits distributed over the entire surface of similar appearance to that noted in 

the SCB specimen #1. 

The exposed steel of the SCB specimens in solution SW was bright and 

free of corrosion scale throughout the entire exposure, and there was only very 

light steel discoloration with no corrosion deposits of the LCB specimens in 

solution SW. 

Selected photographs of the LCB and SCB specimens taken after 

exposure and after cleaning are shown in Figure 4.21. 
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4.3.2.3 Impedance Behavior 

4.3.2.3.1 LCB Specimens 

Figures 4.22 through 4.24 show the non area normalized impedance 

evolution for up to ~2,400 hr for the LCB specimens exposed to solutions P, NP, 

and SW. 

Figures 4.22 and 4.23 show the EIS results for solutions NP and P, 

respectively, before and after the onset of the EOC drop. For the period before the 

onset of the EOC drop, the 1 mHz impedance moduli in both solutions were small 

(~<1.5 kΩ for NP and P) for up to ~1,300 hr of exposure. Per visual assessment 

of the specimen surface, the impedance behavior during that period was 

expected to be dominated mainly by the impedance of the steel portion by itself 

since corrosion scales there were notable, indicative of significant corrosion rates 

and correspondingly large integrated admittance. In contrast, the aluminized 

surface remained bright, suggesting passive behavior with consequent very small 

integrated admittance despite the large aluminized surface. After the onset of the 

EOC drop, the 1 mHz impedance moduli decreased even further to ~150 Ω (NP) 

and ~250 Ω (P), consistent with active corrosion of the aluminized surface in both 

solutions. At that stage, the impedance behavior was expected to be dominated 

mainly by the impedance of the uniformly corroding aluminized portion, whereas 

the exposed steel was cathodically protected by the surrounding aluminized 

surface. That expectation was supported by the evidence presented in the 

subsequent sections. 
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Figure 4.24 shows the EIS results for solution SW for the period after the 

onset of EOC drop. The 1 mHz impedance moduli ranged from ~2.5 kΩ to ~4.5 kΩ 

throughout the test, expected to be dominated by localized corrosion of the large 

aluminized portion. As before, the exposed steel was cathodically protected by 

the surrounding aluminized surface as discussed in the subsequent sections. 

 

4.3.2.3.2 SCB Specimens 

Figures 4.25 through 4.29 shows the non area normalized impedance 8 

evolution for up to ~2,700 hr for the SCB specimens exposed to solutions NP, P, 

SW, and C. 

Figure 4.25 shows the EIS results for solution NP where the 1 mHz 

impedance moduli initially increased with time to reach ~30 kΩ for up to ~1,000 

hr, despite the early corrosion scales deposited on the exposed steel. After 

~1,000 hr, the 1 mHz impedance moduli started to decrease, consistent with the 

start of aluminized discoloration, to values smaller than at the beginning (~600 

Ω). Figure 4.26 shows the EIS results for solution P where the 1 mHz impedance 

moduli increased with time from ~30 kΩ to ~80 kΩ after ~2,500 hr, consistent 

with generally passive behavior and the absence of visual evidence of active 

corrosion of the aluminized surface over the entire test exposure. 

Figure 4.27 shows the EIS results for solution SW where the 1 mHz 

impedance moduli ranged from ~3 kΩ to ~5 kΩ throughout the exposure. 

                                                           
8 The EIS measurements conducted on the SCB specimens in all solutions were 
obtained after the onset of the EOC drop took place. 
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Figures 4.28 and 4.29 show the EIS results for the specimens #1 and #2 

in solution C. The EIS results for the triplicate specimen were comparable to 

those of the duplicate. The 1 mHz impedance moduli in those cases were initially 

large approaching ~12 kΩ for #1 and ~50 kΩ for #2 at ~120 hr of exposure. 

Afterwards, the 1 mHz impedance moduli started to decrease to reach ~2 kΩ for 

#1 and ~4.5 kΩ for #2 after ~650 hr, coinciding with the appearance of the dark 

grayish layer on the aluminized surface in both specimens. After ~1,000 hr, there 

was a long-term recovery toward larger 1 mHz impedance moduli for both 

specimens. 

In all cases, the EIS behavior was expected to be dominated mainly by the 

impedance of the active (NP, SW, and C systems) and passive (P system) 

aluminized surface. The exposed steel in all cases remained cathodically 

protected so its impedance was expected to be comparably large to that of the 

aluminized coating and that expectation was supported by the evidence 

presented in the subsequent sections. 

In the LCB specimens in NP and the SCB specimens in C and NP, the 

amount of electric charge consumed by the corrosion of the annulus region 

calculated by the Faraday’s law was <2.7 Coulombs which represents a local 

impedance of >170 kΩ. This value was considerably larger than the 1 mHz 

impedance moduli determined after aluminized discoloration (~150 Ω for NP and 

~2-4.5 kΩ), thus, its contribution to the overall anodic dissolution of the 

aluminized surface can be neglected. 
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4.3.3 Macrocell Assemblies 

4.3.3.1 EOC and Macrocell Current Trends 

Visual appearance and EOC trends for the macrocell assemblies are 

summarized in Table 4.2. The EOC trends, rust evolution at the steel component, 

and changes in the appearance of the aluminized coating generally paralleled 

those of the LCB specimens exposed to the same environments. In addition to 

that information, measurements in these macrocell assemblies provided the 

galvanic current (Igalv) between the steel and aluminized components. The 

evolution of Igalv, as well as the mixed EOC is shown in Figure 4.30 for up to 

~2,700 of exposure (data available only for P and NP). In both solutions, the 

unblemished aluminized steel component of the couple was always a net anode 

while the steel component was a net cathode. The initial Igalv values were ~14 µA 

and ~1.5 µA for solutions NP and P, respectively. Upon the later start of EOC 

drop, the Igalv values in both solutions started to increase reaching terminal 

values of ~60 µA and at ~35 µA for solutions NP and P, respectively. 

 

4.3.3.2 Impedance Behavior 

The impedance responses of the coupled macrocell assemblies and the 

individual components exposed to solutions P and NP before (~900 hr) and after 

(~1,780 hr) the onset of the low EOC regimes are illustrated in Figures 4.31 

through 4.34. 

Before the EOC drop (Figures 4.31 and 4.33), the 1 mHz impedance 

moduli of the aluminized component were large (~55 kΩ for P and ~13 kΩ for 



 124 

NP), consistent with generally passive behavior and the absence of visual 

evidence of active corrosion. The 1 mHz impedance modulus for the steel 

component was ~1 kΩ for both solutions, in agreement with the observation of 

early corrosion deposits on the steel surface in both environments. Notably, the 

overall impedance responses of the coupled macrocell assemblies in both 

solutions nearly equaled that of the steel component by itself, indicating that the 

steel ruled the impedance behavior of the coupled system. 

After the onset of the low EOC regime (Figures 4.32 and 4.34), the 1 mHz 

impedance moduli of the aluminized component greatly decreased to ~1 kΩ in 

solution P and to ~2 kΩ in solution NP, consistent with the appearance of uniform 

discoloration (strong for NP and moderate for P) and light pitting indicative of 

ongoing corrosion in both solutions. In addition, the impedance diagrams of the 

steel component in both solutions resembled a nearly straight line rather than the 

earlier depressed semicircular appearance. The 1 mHz impedance magnitudes 

of the coupled assemblies nearly matched those of the aluminized component by 

itself, indicating that the aluminized coating dominated the impedance behavior 

of the coupled system for the low EOC regime. 

 

4.3.4 Uncoupled Steel Specimens 

Figure 4.35 shows the non area normalized impedance of the uncoupled 

steel specimens recorded after ~216 hr of exposure to solution NP and ~72 hr to 

P. The 1 mHz impedance modulus for the steel component was ~500-800 Ω for 

both solutions, in agreement with the observation of early corrosion deposits on 
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the steel surface in both environments. The overall impedance trends in both 

solutions were in good agreement with those recorded for the LCB specimens 

and the coupled macrocell assemblies exposed to the same solutions for the 

period before the EOC drop despite the larger solution resistances RS observed 

for the uncoupled steel specimens attributed to the larger separation between the 

metal surface and the reference electrode sensing point. Again, this observation 

confirms that the impedance response for the aluminized/steel system for the 

period before the EOC drop is largely dominated by that of the steel. 

 

4.3.5 Coating Thickness Measurements 

Figure 4.36 exemplifies schematically a typical aluminized coating cross 

section of an aluminized steel Type 2 that has been exposed for extended 

periods of time. Table 4.1 summarizes the average coating thickness 

measurements (comprising both inner and outer layers) obtained from three 

independent operators for the conditions before and after exposure obtained for 

selected specimens. Thickness measurements were measured with a standard 

deviation of ~±7.6 µm. Table 4.1 also includes estimates of the nominal corrosion 

rates for the aluminized portion obtained per methodology shown in Section 4.2. 

For instance, nominal corrosion rates of the aluminized components for the 

macrocell assemblies in solutions NP and P were large (~16-20 µm/yr in NP and 

~13-25 µm/yr in P) in agreement with the visual observation of uniform surface 

discoloration noted on those specimens. Nominal corrosion rates were also large 

for the LCB specimens in NP (~21-33 µm/yr) and smaller but modest for the LCB 
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specimens in P (~7 µm/yr) also consistent with visual observation of surface 

discoloration in those cases. The LCB specimens in SW showed the smallest 

nominal corrosion rates (~2 µm/yr) of all specimens examined, in agreement with 

light uniform corrosion. 

 

4.4 Discussion 

4.4.1 EOC Trends and Corrosion Mechanisms 

Figure 4.37 is a schematic of the typical EOC evolution trends shown in 

Figures 4.5 through 4.11 for the LCB and SCB specimens. Macrocell assemblies, 

where available for the corresponding environments, had EOC trends essentially 

identical to those of the LCB specimens and will not be discussed separately 

here. 

Shortly after exposure, the EOC values of the specimens with large AR 

(LCB and macrocell assemblies) in solutions P and NP (~-700 mV ~-730 mV) 

were nobler (~100-150 mV) than those with smaller AR (SCB) exposed to the 

same solutions and comparable to those measured for the uncoupled steel 

specimens (~-720 mV) exposed to solutions P and NP. Inasmuch as the active 

steel showed a small degree of polarizability compared with the more polarizable 

passive aluminized coating early on in the test, the resulting EOC trends were 

then dominated largely by the EOC of the large exposed steel corroding at a 

moderate rate. For the specimens with small AR in solutions NP, P, and SW and 

with large AR in SW, nobler EOC values were maintained for a few hrs after 

immersion before the EOC decay took place. 
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In the following the corrosion mechanism of blemished aluminized steel 

will be discussed, keeping in mind the mechanisms proposed in Chapter 2 for the 

baseline unblemished material condition. The discussion is keyed to each of the 

solutions evaluated. 

 

4.4.1.1 Solution P 

The behavior of the small coating break (SCB) specimens was similar to 

that of the unblemished specimens, except that at the very beginning (first day or 

so) the EOC was relatively positive, likely dominated by that of the small exposed 

base steel, which initially developed rust as mentioned above. After that period, 

the EOC dropped to that of the unblemished system, suggesting that the rust layer 

on the steel acted as an obstacle to O2 reduction there. From there on, the EOC 

was such that the exposed steel was cathodically protected by the rest of the 

system (likely only a very small current is needed for that). The aluminized 

surface remained passive thereon. 

In the specimens with a larger amount of exposed steel (LCB and 

macrocell assemblies), the EOC was initially quite positive, dictated by the 

corrosion potential of the large exposed steel spot corroding at a moderate rate 

in the low Cl-, scale forming solution as mentioned above. The most striking 

feature of these systems was that after an interval of typically ~1,500 hr the 

aluminized surface experienced macroscopically uniform activation and the 

potential dropped dramatically, with the aluminized surface acting as a strong 

protecting anode to the exposed steel. The bulk solution pH remained neutral, 



 128 

and about 2 µm of the outer aluminized layer were macroscopically uniformly 

consumed in the next 2,000 hr or so. 

The activation of the aluminized surface was manifested by light gray 

discoloration and the appearance of a few small macroscopically apparent pits.  

As observed in Chapter 2 for similar conditions, the few active macro pits are 

deemed to be inconsequential because of their small number and dimensions, 

and their consequently large combined associated ohmic resistance, which 

would yield only a small fraction of the observed macrocell current. Thus, the 

macro pits will not be further discussed. 

It is tentatively proposed that this macroscopically uniform corrosion 

reflects the combined presence of many micro pits distributed on a spatial scale 

comparable to that of the inclusions. Some alkaline dissolution is expected to 

have taken place as well, but likely to be of secondary importance (except during 

the initial activation stages as speculated further below) because of the relatively 

large buffering capacity of solution P. The discoloration is viewed as the result of 

precipitation of hydrated alumina outside the mouths of those pits. The large 

cathodic current at the exposed steel plus additional cathodic action at inclusions 

(minus the current needed to balance any alkaline dissolution) sustains the 

combined anodic processes at the micro pits. 

The above proposal is speculative in that the conditions needed to support 

that modality of pitting in a 0.01 M Cl- solution such as solution P would need to 

be ascertained in future work. In that connection, the following questions could 

be formulated: (1) Why are the proposed micro pits so uniformly distributed and 
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stable?, and (2) Why was there a long incubation period (effectively unlimited in 

the case of small coating breaks) before activation of the aluminized surface?  

A possible answer to (1) is that since the exposed steel zone was a strong 

cathode, competitive action between adjacent pits was less important than 

otherwise, and larger pits will have less of the cathodic protection action in 

immediate neighbors that would have tended to lower active pit density. The 

cathodic action in the small break case is deemed not to be large enough to 

provide the required cathodic sustaining action. With regards to (2), it is 

speculated that some degree of alkaline dissolution is needed to start the micro 

pits (likely nucleated around the inclusions as discussed in Chapter 2). That 

process is initially slow due to the high potentials prevalent early in the test. The 

necessary degree of dissolution takes place first at the rim of the exposed steel 

where pH is mildly elevated through a mechanism (Evans, 1926) where the rim is 

a net cathode, hence more alkaline, and the center is a net anode, as confirmed 

by the presence of a central depression on the steel. The alkalinization is mild 

and etching around the inclusions in the ring around the exposed steel is slow. 

After a long time (e.g. 1,500 hr) micro pit activation of the aluminized surface 

immediately around the steel finally takes place. As those micro pits develop and 

local potential drops further, the active zone slowly expands away from the 

exposed steel, with consequent expansion of the mildly alkaline zone (but with 

likely enhanced local action around inclusions at the lower prevalent potentials), 

until micro pits affect the entire aluminized surface. Experiments to test the 

validity of this speculative scenario in future research may include (and not be 



 130 

limited to) the following: (a) detailed local pH measurements to ascertain that 

mild alkalinization is a pre-micro pitting step; (b) verification that micro pits have 

etching around inclusions as precursors; (c) exploring solution chemistry 

spontaneous changes (for example due to exhaustion of buffering capacity 

because of interaction with air or with products of steel corrosion) as an 

alternative trigger to the aluminum excitation and (d) exploration of the potential 

for microbiology induced corrosion in the system. 

 

4.4.1.2 Solution NP 

In these solutions, there was also delayed onset of macroscopically 

uniform active corrosion in blemished specimens, although it is recalled that 

enhanced corrosion also developed in the unblemished specimens late in the 

test (Chapter 2). Some of the processes proposed above for specimens with 

large coating breaks in solution P are likely to be present here too, with the 

important difference that this solution evolves spontaneously with time to 

increasingly higher bulk pH values (~9.0) as result of interaction with open air. 

The onset of the high corrosion regime then appears to be associated with the 

pH increase, and alkaline oxidation is probably the dominant form of deterioration 

as it was in the case of the unblemished specimens but aggravated by the 

coupling with the strongly cathodic steel surface. Consistent with this 

interpretation, in both small and large coating break systems there was severe 

aluminized surface  corrosion (with complete consumption of the outer coating 

layer) immediately around the perimeter of the exposed steel region as expected 
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from the local increase in pH from O2 reduction at the rim of the exposed steel. 

As shown by modeling in Chapter 5, corrosion of the aluminized surface next to 

the rim is also expected to be aggravated by macrocell coupling since the 

resistive path is lowest there. As noted in Chapter 2, while macroscopically 

uniform, the corrosion of the aluminized surface may have been more localized 

at the microscopic level, likely involving aluminum surrounding inclusions, where 

increasingly higher pH takes place because of O2 reduction, or because of some 

extent of micro pit formation around those inclusions following the initial alkaline 

oxidation undercutting. Solution NP has significant buffering strength, but the 

effects of local alkalinization around inclusions may be still important because 

they would be additional to that of the already enhanced high bulk pH of the 

solution. Macro pits were few in these systems and appear to be secondary per 

the arguments exposed earlier. 

Finally, it is noted that in the small coating break specimens, the EOC 

dropped a long time before the onset of surface discoloration and associated fast 

corrosion. It is thought that the early EOC drop reflected less efficient O2 reduction 

at the small central steel spot, because of the early buildup of a compact steel 

corrosion product scale there. Since the steel area was small compared with the 

rest of the system, local steel polarization and consequent overall EOC drop were 

expected to be substantial. In the large coating break specimens, the steel 

surface was larger, and occluding effects would have been proportionally less 

important. 
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4.4.1.3 Solution C 

In this solution, only small coating break specimens could be evaluated, 

but delayed onset of active aluminum corrosion took place as well. Unlike the 

other solutions, solution C has negligible buffering power and the effects of local 

alkalinization at inclusions are likely to be important. In the case of the blemished 

specimens the bulk solution pH remained nearly neutral, so widespread alkaline 

oxidation as proposed for solution NP does not appear to be the main cause of 

the observed discoloration. Instead, localized alkalinization may have been 

responsible for generation of finely dispersed micro pits at the inclusion size 

scale, which would then represent the main form of aluminum attack. Such 

mechanism is subject to the same caveats noted above for the case of solution 

P. In solution C, however, the initiation of micro pits is facilitated by the lower 

buffering capacity, which may explain why activation took place even though the 

coating break was small. 

It is noted that in the case of unblemished specimens the mechanism 

responsible for the activation of the aluminized surface in solution C was 

probably a result of a temporary early surge in solution pH in the pseudo closed-

cell conditions used there. Those experiments should be repeated under open 

cell conditions for relevant comparison with the blemished specimen test results.  

For completeness, the process of alkalinization and undercutting of 

inclusions is described here in more detail, keyed to the pictorial description in 

Figure 4-38 adapted from sources that include Nisancioglu (1990) and Park et al 

(1999). The increase in the local pH from the cathodic reactions tends to elevate 
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the OH- ion concentration in the vicinity of the cathodic reaction locus (Figure 

4.38-A).  Furthermore, the aluminum activation surrounding the inclusions may 

cause an increase in the effective area of the inclusions which further catalyses 

the cathodic reaction, enhancing aluminum dissolution there (Figure 4.38-B). 

If conditions are propitious, some of the inclusions can eventually become 

non-faradically separated as free particles from the aluminum matrix, due to 

undercutting enhanced-pH corrosion of the surrounding aluminum as proposed 

by Vukmirovic et al. (2002) (Figure 4.38-C). The free particles would corrode 

more readily as they are not cathodically protected by the surrounding corroding 

matrix (Figure 4.38-D), forming Fe+2 ions. Those ions can be electrochemically 

redeposited (by Fe+2+2e-→Fe) on the surface either uniformly or, more likely, 

around the perimeter of the inclusions. The Fe deposition phenomenon was 

described in detail in Chapter 3. The plated Fe, which is a strong cathode, may 

promote further aluminum corrosion if high local pH develops around the plated 

Fe (Figure 4.38-E). As time progresses, more undercutting corrosion of 

aluminum and the subsequent plating of Fe is expected at many finely dispersed 

locations with macroscopically uniform appearance. 

 

4.4.1.4 Solution SW 

The main aspects described in Chapter 2 for the unblemished condition 

apply also to the blemished specimens. In the blemished condition, the EOC, 

initially dictated by corroding inclusions and the central exposed steel zone, is 

thought to meet or exceeds Epit. The rest of process should be qualitatively as in 
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the unblemished condition, except that because of coupling with the exposed 

steel one would have expected an even  faster initiation of the pitting regime and 

a more positive terminal EOC here. However, that was not the case in either 

count. That observation suggests that even for large coating breaks the cathodic 

current from the exposed steel spot (3% of total area) at the operating potentials 

was not large compared with the total cathodic current at inclusions (initially) and 

inclusions plus pits (later on) on the aluminized surface. Protection of the 

exposed steel was excellent because activation of the aluminized surface was 

prompt, so the steel surface remained virtually free of corrosion products. 

 

4.4.2 Galvanic Macrocells 

The EOC trends and the appearance of aluminized surface discoloration of 

the LCB specimens in solutions NP and P were consistent with the macrocell 

galvanic current trends recorded for the coupled macrocell assemblies exposed 

to the same solutions. Measurements of galvanic currents for which data are 

available (P and NP, Figure 4.30) demonstrated that the outer aluminized coating 

layer behaved always as net anode upon contact with steel. However, the 

amount of macrocell current delivered by the outer coating layer in those 

solutions was insufficient to prevent rust formation on the steel surface early on 

in the exposure. This observation was also noted in the specimens with small AR 

exposed to the same solutions. This weak early galvanic action could be 

attributed to a predominantly passive condition of the outer aluminized coating 

layer, as manifested by its large impedance moduli in both solutions early on. 
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Larger galvanic currents were expected in both solutions for the AR examined 

upon signs of corrosion of the outer aluminized coating later on in the test. 

There were no macrocell current measurements available for solution SW, 

but the steel in the specimens with small AR in that solution did not show signs of 

corrosion over the entire exposure time, and the steel in the specimens with large 

AR in solution SW showed only very light discoloration. Those results indicate 

strong galvanic protection by the surrounding aluminized coating in the SW 

solution as well, consistent with observation of pitting of the aluminized surface 

and some secondary macroscopically uniform corrosion. In solution SW, the 

protective regime was established soon, as manifested by the drop of EOC into 

protective potentials after only about two days of exposure for specimens with 

both small and large AR. 

The galvanic behavior of the specimens with small AR in solution C 

showed variability, in that one of three specimens showed signs of steel 

corrosion but in all cases an annulus of aluminized outer layer corrosion wastage 

around the steel was noted. It is intriguing, however, that the relatively positive 

EOC (~-620 mV) in all replicate specimens existed for at least ~1 hr up to ~100 hr 

and clearly protective potentials did not develop until about ~600 hr, yet the steel 

showed no signs of corrosion in two cases. For those cases, however, it should 

be recalled that aluminized corrosion was limited to the aforementioned annulus 

of severe coating loss around the steel. With such tight macrocell configuration, 

the local steel potential could have been significantly more negative than that 
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measured by the reference electrode several diameters away, so the recorded 

EOC values may have be misleading. 

 

4.4.3 Correlation between AR and Time to Initial Discoloration 

Figure 4.39 shows the time for the initial appearance of discoloration of 

the aluminized surface as a function of AR for the unblemished, blemished 

specimens, and the macrocell assemblies. The time to initial discoloration, 

obtained by averaging the results of replicate specimens for each AR, was largest 

for the specimens with AR=0 (unblemished specimens) in solutions NP, P, and 

SW and did not show significant difference when varying AR from 3 10-4 (SCB 

specimens) to 0.03 (LCB and macrocell specimens) in solutions NP and SW. For 

solution P arrows in Figure 4.39 indicate minimum values since no discoloration 

was observed for the specimens with smaller AR. The trends obtained for solution 

P, NP, and SW are not unexpected since for large AR (large cathode/anode area 

ratio), enhanced macrocell action between the large exposed steel and the small 

aluminized coating could be established, and hence, large corrosion rates of the 

aluminized coating would be expected with consequent earlier appearance of 

aluminized surface discoloration. However, the trend for solution C is opposite to 

those obtained for the other solutions in that smaller time to discoloration was 

attained when going from unblemished condition to a finite AR. This discrepancy 

for the C system can be explained by recalling that while there was a high bulk 

pH excursions (to ~9.0, Chapter 2, Figure 2.9) shortly after immersion for the 

unblemished specimens, the specimens with AR=3 10
-4 maintained a nearly 
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neutral solution pH throughout the exposure (Figure 4.4). The early pH elevation 

in the unblemished specimens triggered early global depassivation with 

consequent strong uniform surface discoloration of the unblemished specimens 

but not for the blemished specimens. 

 

4.4.4 Interpretation of the Impedance Response 

4.4.4.1 Macrocell Assemblies 

The analog equivalent circuit chosen to simulate the impedance response 

of the macrocell assemblies is shown in Figure 4.40. It is assumed that the 

overall interfacial admittance can be divided into two branches as explained 

below. 

The upper branch in Figure 4.40 is for the exposed steel (and the 

individual steel specimens as well) and describes scenarios for both before and 

after the EOC drop. For the period before the EOC drop, the circuit consists of a 

polarization admittance (Ra1
-1) for the activation polarization of the anodic 

reaction (Fe→Fe+2+2e-) in parallel with a Constant Phase Angle Element CPE1 

representing the interfacial charge storage at the steel surface, and an 

admittance (series combination of the polarization admittance RC1
-1=2.3 iC1/βC1 

and the diffusional component W1) governed by activation/concentration 

polarization of the cathodic reaction. The latter is likely to be O2+2H2O+4e
-

→4OH- and it is assumed to be so and, for simplicity, to occur under simple one-

dimensional conditions. The resulting impedance for the exposed steel has the 

form Z1(ω)=[1/Ra1+1/ZC1(ω)]
-1 where Ra1

-1=2.3 ia1/βa1 and ZC1
-1(ω)= 2.3 
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iC1/βC1+2.3 (iL-iC1) βC1
-1 (jωδ2 D-1)0.5 (tanh (jωδ2 D-1)0.5)-1 (Bard and Faulkner, 

2000) where ia1 and iC1 are the anodic and cathodic current densities, 

respectively. After the EOC drop, the exposed steel (which may or may not have 

corrosion products on the surface depending on the case) is polarized down to 

potential levels where the Fe/Fe+2 reaction is near equilibrium (Pourbaix, 1974). 

The corresponding equilibrium current density is expected to be small with 

correspondingly small admittance. The remaining reaction of importance is 

expected to be O2 reduction, occurring at a diffusion-limited, potential-

independent value. 

The lower branch of the equivalent circuit in Figure 4.40 is for the 

aluminized component and describes scenarios for both before and after active 

corrosion of the outer aluminized coating layer as described in Sections 2.4.2.1 

and 2.4.2.2 in Chapter 2. 

 

4.4.4.2 Blemished Specimens 

The analog equivalent circuit in Figure 4.40 is deemed to be simplified to 

be applicable to the LCB and SCB configurations. The simplified equivalent 

circuits shown in Figure 4.41 were consistent with the assumptions presented in 

Section 4.4.1 and the observations made earlier. 

For the period before the EOC drop, the impedance response (dominated 

largely by the anodic and cathodic reactions at the exposed steel as stated 

earlier) of the LCB specimens in solutions P and NP was modeled using solely 

the upper branch of the equivalent circuit in Figure 4.40 but replacing CPE1 by 



 139 

the parallel combination of CPE1 and CPEF (keyed as CPE*) as shown in the 

simplified equivalent circuit in Figure 4.41-A. This simplification is valid only if the 

passive aluminized portion has cathodic and anodic admittances significantly 

smaller than those of the active exposed steel as it is observed for the period 

before the EOC drop. After the EOC drop, however, the impedance response for all 

the cases was modeled using the simplified equivalent circuit in Figure 4.41-B. 

The anodic polarization resistance RAL2 in Figure 4.41-B represents the active 

aluminized corrosion (either by pitting in solution SW or by uniform corrosion in 

the other solutions) in parallel with the diffusional cathodic impedance of the 

exposed steel, under the assumption that the majority of the cathodic reaction 

took place there as mentioned earlier and considering that the value of the 

resistance RAL1 (representing the parallel combination of the local electrolytic 

current distribution around each pit associated with an ohmic resistance 

component as stated in Chapter 2) is expected to be considerably smaller than 

RAL2 so that RAL1 can be neglected. The element CPE** in Figure 4.41-B 

encompasses the parallel combination of CPE1, CPEF, and CPEAL2. After the EOC 

drop took place, the anodic admittance of the exposed steel in all solutions were 

nearly zero as a result of the proximity of the system potential to that of the 

Fe/Fe+2 equilibrium reaction as mentioned earlier, thus Ra1 is infinity. 

However, the EIS interpretation used for the macrocell assemblies and the 

blemished specimens do not account for the presence of non-uniform ac current 

distribution commonly encountered in arrangements involving interconnected 

dissimilar metals (Kranc and Sagüés, 1993). This experimental artifact may lead, 
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if not properly quantified, to an incorrect EIS interpretation and therefore to 

inaccurate corrosion rate estimates. To account for uneven ac current distribution 

for the LCB specimen geometry, an ac computational model is introduced in 

Chapter 5. The results from the ac computational model indicate that negligible 

non uniform ac current distribution can be expected in these systems even 

though there is a substantial difference in the polarization resistance of the steel 

and the aluminized components, especially early on in the exposure. Thus, the 

use of the analog equivalent circuits proposed in this Chapter to fit the EIS data 

is valid. 

 

4.4.5  Computation of the Nominal Corrosion Current Density 

Per the assumptions above and the observations made earlier, for the 

period before the onset of the EOC drop a rough estimation of the nominal 

corrosion current density for the exposed steel icorrFE was made by computing the 

charge transfer resistance RCT = [Ra1
-1+RC1

-1]-1, where the resistors Ra1 and RC1 

were obtained by fitting the EIS data using the analog equivalent circuits in 

Figures 4.40 (upper branch for the macrocell assemblies and the individual steel 

specimens) and 4.41-A (for the LCB specimens in NP and P systems) 9. 

 

                                                           
9 For before the EOC drop regime, values of icorrFE for the LCB specimens in SW and the 
SCB specimens in all test solutions are not available, since all EIS measurements in 
those cases were taken after EOC had reached an arbitrary potential <-800 mV. In that 
case, the values of icorrFE were expected to be nearly zero as a result of the proximity of 
the system potential to that of the Fe/Fe+2 equilibrium reaction as mentioned earlier. 
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From the Stern-Geary relationship (Stern and Geary, 1957), the values of 

icorrFE are computed as follows: 

icorrFE~B (AFE RCT)
-1 (4.1) 

 
where AFE is the nominal steel area and the parameter B is called the Stern-

Geary constant equal to βa1βC1[2.3(βa1+βC1)]
-1 for the assumed values of the 

Tafel slopes βa1=60 mV/dec and βC1=120 mV/dec (Kaesche, 1985). 

For the macrocell assemblies in solutions NP and P for the period before 

the EOC drop, the nominal corrosion current density for the aluminized component 

icorrAL was computed using Eq. 2.8 following the assumptions presented for 

passive unblemished aluminized steel in Section 2.4.2.1 in Chapter 2. Values of 

RAL1 computed here were obtained by fitting the EIS data using solely the lower 

branch of the analog equivalent circuit in Figure 4.40 (the same as that in Figure 

2.16 in Chapter 2) 10. For the period after active aluminized surface corrosion, the 

values of icorrAL in all cases were computed using Eq. 2.9 in Chapter 2 with values 

of RAL2 obtained by fitting the EIS data using the corresponding simplified analog 

equivalent circuits shown in Figures 4.40 and 4.41-B. 

The time evolutions of icorrFE and icorrAL for the blemished specimens and 

the macrocell assemblies is shown in Figures 4.42 through 4.44 with the EIS 

parameters shown in Tables 4.3 through 4.5. 

                                                           
10 Values of icorrAL for the LCB and the SCB specimens in all test solutions before EOC 
drop are not available, since all EIS measurements in those cases were taken either 
after EOC had reached an arbitrary potential <-800 mV or the overall impedance 
response was largely dominated by the small impedance of the active steel compared to 
the much larger impedance of the passive aluminized portion. 
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For the steel portion in the LCB specimens (Figure 4.42), the values of 

icorrFE ranged from ~10 µA/cm2 early on to ~30 µA/cm2 by the end of the positive 

EOC trend for NP, and from ~10 µA/cm2 early on to ~5 µA/cm2 for solution P. 

Those values were roughly in agreement with the results of the steel component 

in the macrocell assemblies and the individual steel specimens exposed to the 

same solutions and also consistent with the observed corrosion deposits over the 

steel surface in both solutions early on in the exposure. 

For the regime after the EOC drop, the icorrAL values of the LCB specimens 

(Figure 4.43) were modest for solutions P and NP (~3 µA/cm2) and smaller for 

solution SW (~0.1 µA/cm2), consistent with the appearance of moderate/strong 

aluminized surface discoloration for P and NP, and light in SW. The icorrAL values 

for the aluminized component in the macrocell assemblies (Figure 4.43) were 

~0.5 µA/cm2 and ~5.1 µA/cm2 for solutions P and NP, respectively, also 

consistent with moderate in P and strong aluminized surface discoloration in NP. 

For the SCB specimens (Figure 4.44), the icorrAL value obtained by the end of 

exposure was extremely small for P (~0.003 µA/cm2), consistent with absence of 

aluminized corrosion throughout the entire test exposure. Values of icorrAL by the 

end of exposure were ~1.5 µA/cm2, ~0.1 µA/cm2, and ~0.03 µA/cm2, for NP, SW, 

and C, respectively.  

The integrated aluminized coating loss, during the exposure period from 

t=0 to tf where tf is the time for the end of the test, was evaluated by using the 

time evolution of icorr(ti) obtained from the EIS measurements where i=1 to n 
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represents each EIS measurement. The integrated material loss was then 

calculated from the charge density such that: 

( ) ( )nfncorr11corr

1n

1
i1iicorr ttitittiQ −⋅+⋅+−⋅=∑

−

+  (4.3) 

 
The integrated coating loss during exposure is LINT = Q AW (nFρ)

-1, AW is the 

aluminum atomic weight, and ρ is the aluminum density. Figure 4.45 compares 

the integrated coating loss obtained by EIS and the nominal coating thickness 

loss determined by magnetic coating thickness measurements in a log-log 

representation. The comparison shows reasonable agreement between both 

estimates, in support of the assumptions made for interpretation of the EIS data. 

Figure 4.46 shows a metallographic analysis conducted on the LCB specimen #1 

exposed to solution NP. Corrosion deposits noted on top of the outer aluminized 

layer were ~10-15 µm thick which yields a nominal corrosion rate of ~40 µm/yr, 

using the appropriate exposure time. This result is in good agreement with that 

determined by magnetic coating measurements and EIS measurements. 

However, magnetic coating thickness does not have the capability to detect 

pitting loss in the case of e.g. the solution SW, where pitting was the main form of 

corrosion. As a result, measurements of magnetic coating thickness may 

underestimate the actual corrosion rates in those cases. 

 

4.5 Implication of the Results 

In the following, the same analysis and assumptions presented in Section 

2.5 in Chapter 2 are used here to tentatively project durability of aluminized steel 
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Type 2 with coating breaks exposing the underlying steel, and will not be 

discussed in this section unless clarification is needed. It is strongly emphasized 

that the durability projections obtained in this investigation are nominal in nature 

since the present experiments were conducted for relatively short times, 

compared to the actual service lives involved in field applications. 

The extent and morphology of coating breaks is assumed to resemble the 

conditions examined experimentally. Those would apply for example to a pattern 

of breaks of small aspect ratio spaced a small fraction of 1 meter (a few inches) 

apart, at the bottom of a shallow pool of stagnant water as it may occur between 

corrugations in the culvert invert. It is assumed for simplicity that the medium is 

replenished only infrequently, during episodic flow events. Once the post-

potential drop regime is established, corrosion rates are considered to proceed at 

a space- and time-uniform rate until the outer coating layer is exhausted. 

The values of icorrAL and icorrFE, reported in Tables 4.3 through 4.5, were 

used to compute the SL for the aluminized coating and the base steel using Eq. 

2.10 in Chapter 2, replacing accordingly the aluminum parameters by those of 

the steel. 

In solution P which represented conditions of carbonate scale forming 

solutions, that is high total alkalinity and total hardness, full outer layer 

consumption would be projected to occur in ~2 yr for AR~0.03 (consistent with 

moderate aluminized surface discoloration as the main mode of deterioration), 

but in excess of 100 yr for AR~3 10
-4. It is also noted that for AR=0 as in the 

unblemished aluminized steel as reported in Chapter 2 a negligible nominal 
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corrosion rate and bright appearance was noted for solution P, so the outer layer 

durability projection would also be in excess of 100 yr. 

Projections become distinctly more pessimistic for solutions of high 

alkalinity, negligible carbonate scaling tendency and moderate chloride content 

(solution NP). Severe corrosion was noted around the exposed steel perimeter 

for both AR~0.03 and ~3 10
-4 with complete consumption of the outer aluminized 

coating layer after only a few weeks. It is not clear at this moment if corrosion 

would tend to progress even further specifically at the aluminized ring around the 

steel. It can be noted however that since the inner coating layer had remained in 

place at least for the duration of the experiment, it is suspected that uniform 

corrosion would take place in this case. If that would be the case, full outer layer 

consumption would be projected to occur in only ~2 yr for AR~0.03, and after ~7 

yr for AR~3 10
-4, both values in agreement with strong discoloration of the 

aluminized surface. Longer SL of the outer aluminized layer was obtained for 

AR=0 (~30 yr). 

In solution SW simulating seawater composition, full outer layer 

consumption would be projected to occur in ~30 yr of service for both AR~3 10
-4 

and ~0.03, and ~9 yr for AR=0. However, the strong localized corrosion as 

opposed to a light uniform corrosion distress was the main form of corrosion in 

this solution for all AR. Those values become important considering that the 

corrosion is strongly localized, with consequent risk of aluminized layer 

penetration of a component exposed to similar media. 
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In solution C which represented solutions with low alkalinity, low carbonate 

scaling tendency, and moderate chloride content, severe corrosion was noted 

around the exposed steel (for AR~3 10
-4) with complete consumption of the outer 

aluminized coating layer at that spot after a few weeks of exposure. However, 

metallographic evidence permitted to infer that since the inner coating layer had 

remained in place at least for the duration of the experiment, corrosion would 

mainly take place uniformly over the entire aluminized surface. If that would be 

the case, full outer layer consumption would be projected to occur in ~20 yr of 

service for AR~3 10
-4. For AR=0 (Chapter 2), outer layer consumption would be 

consumed in ~10 yr of service. The shorter durability projections for AR=0 can be 

related to a momentary increase in solution pH (>8.8) observed early in the test, 

not noted for the cases of AR~3 10
-4. 

After consumption of the outer aluminized layer (assuming that the inner 

coating layer provides little to none corrosion protection to the base steel as 

described in Chapter 2), corrosion of the base steel starts and is expected to 

proceed at rates of ~12 µA/cm2 in SW and ~10 µA/cm2 in the other media. Per 

the assumptions presented in Chapter 2, the projected SL for the base steel 

would be ~6 yr in SW and ~8 yr in the other media. 

The overall SL estimates summarized in Table 4.6 were computed 

following the considerations presented in Chapter 2. Table 4.6 also includes the 

projected durability computed by the predictive methods (the AK Steel, the 

California, the AISI, and the FDOT) repeated from Table 2.8 for convenience.  
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For the specimens with AR~3 10
-4 (and for AR=0 as well) in solution P 

(high scaling tendency, ~7.5<pH<~8.5 and moderate chloride content), the 

forecasting methods examined projected shorter durability estimates than the 

findings obtained in this investigation. For AR~0.03, however, the AK Steel 

method was in close agreement with the results obtained here whereas the other 

methods overestimated durability by >20 yr. 

For AR~3 10
-4 and ~0.03 in solution NP (high alkalinity, ~7.5<pH<~9, and 

moderate chloride content), the durability estimates obtained from the AK Steel 

method were in reasonable agreement with the results reported here. In contrast, 

the other methods overestimated SL by >10 yr compared with the present 

findings. 

In solution SW (extremely aggressive solutions of low resistivity, nearly 

neutral pH, and high chloride content), the AISI method was in close agreement 

relative to the present findings for all AR, whereas the California method 

projected shorter service lives. In highly aggressive environments, no durability 

credit is given by the FDOT method and no SL projections are given by the AK 

Steel method for solutions with scaling indexes beyond ~800 ppm. 

In solution C (low scaling tendency, nearly neutral pH, and moderate 

chloride content), SL projections were in close agreement with those determined 

by the AK Steel, California, and FDOT methods and overly conservative 

compared to durability projections obtained by the AISI method. 

The results presented in Chapter 2 for unblemished steel supported 

considering retaining present FDOT durability guidelines regardless of scaling 
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tendency for environments with moderately low resistivity such as those used in 

the tests (e.g. ~500 Ω-cm to ~1,000 Ω-cm) and neutral to mildly alkaline 

conditions (e.g. ~7.5<pH<~9.0). However, for blemished surface conditions with 

exposed base steel, the findings in this section suggest that the AK Steel method 

may be a more appropriate alternative in those environmental conditions. The 

results in this section would still support exploring the use of alternative 

guidelines such as the AISI method for environments with extremely high 

chloride contents (e.g. resistivity <50 Ω-cm) and nearly neutral pH, as it was also 

the case in Chapter 2 for unblemished surface conditions. As before, it is strongly 

cautioned that other environmental parameters such as microbiology-induced 

corrosion may influence the corrosion performance of the Al/Fe system, and that 

eventual changes in existing guidelines should consider not only the specific 

results of this investigation but also the entirety of the performance record of 

aluminized steel pipe. 

In closing, it is noted too that the above results indicate that corrosion 

products from the steel portion may play a role in creating or accelerating 

corrosion of the aluminized coating, in part resulting from the limited electrolyte 

volume involved in the tests. The small electrolyte volume was intended to be 

representative of worst-case culvert pipe conditions with stagnant water, or of 

occluded conditions for pore water on the soil side of a pipe. It is noted that long 

term conditions may be more benign if there is frequent electrolyte renewal. 

Furthermore, the findings from the present investigation apply to aluminized steel 

with a surface condition resembling scratched or otherwise distressed material, 
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with an exposed steel area representing ~3% and 0.03% of the total area. In 

actual metal forming and subsequently field application practice, the aluminized 

steel component (e.g. culvert pipe) is liable to surface distress, especially at the 

sharp bent regions which may expose base steel. The exposed steel area in 

those cases may be considerably less than 0.03%. To obtain additional 

information on performance under those circumstances, sharply bent as well as 

unprotected cut end specimens are being examined in a continuing investigation. 

 

4.6 Conclusions 

1. Galvanic protection was provided by the surrounding aluminized surface to 

base steel exposed at coating breaks in all the environments tested. 

However, in the less aggressive media (e.g. the solution P) protection 

developed only after a period of thousands of hours at which the open circuit 

potential was ~-720 ~-750 mV (comparable to those of the steel), when some 

corrosion of the base steel had already taken place. 

2. At the end of that positive potential trend period, the aluminized surface of 

specimens with exposed steel (except for the specimens with small AR in 

solution P) showed signs of developing a macroscopically uniform active 

condition. The open circuit potentials at that stage were ruled by the 

aluminized coating. 

3. The positive potential period was shorter for the more aggressive media (NP, 

C, and SW), where the base steel remained bright throughout the test period 
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in SW. Positive potential period was also shorter when the area ratio of 

exposed steel to aluminized surface was greater. 

4.  Impedance spectroscopy estimates of the long-term corrosion rates of the 

outer aluminized layer in the active conditions for the LCB configuration 

(largest steel/aluminized area ratio) were ~30 µm/yr for solutions P and NP, 

and ~1.5 µm/yr for SW. For the SCB configuration (small steel/aluminized 

area ratio), long-term corrosion rates of the outer aluminized layer in the 

active conditions were ~15 µm/yr for NP, ~0.03 µm/yr for P, ~1 µm/yr for SW, 

and 0.4 µm/yr for C. Those estimates were approximately consistent with 

direct measurements of thickness loss. Notably, the most nominally 

aggressive solutions did not result in the highest outer aluminized layer 

corrosion rates. 

5. The results for blemished/macrocell specimens have trends that extrapolate 

reasonably to the limit case of unblemished aluminized surfaces addressed in 

Chapter 2 (zero steel/aluminized area ratio). In that limit, the active 

aluminized surface condition was never reached in the least aggressive 

medium (P) during the 3,000 hr test. However, active conditions developed on 

the unblemished aluminized surfaces in the more aggressive media after 

incubation times comparable to those encountered for blemished specimens 

with the smallest area ratio (~3 10-4). Long-term corrosion rates in that 

condition were ~3-5 µm/yr. 

6. As in Chapter 2, corrosion macro pits were usually small and infrequent on 

the corroding aluminized surface so they appeared to play a secondary role 
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for the solutions C, NP, and P, and a primary form of corrosion for solution 

SW. The macroscopically uniform appearance of the corrosion indicates that 

aluminum corrosion products may have deposited uniformly on the 

aluminized surface. 

7. The mechanism of activation of the aluminized layer may involve local 

alkalinization from enhanced cathodic reaction at the inclusions (especially in 

the low buffering capacity solution C), which would activate aluminum in the 

form of micro pits at the scale of the finely distributed inclusions present in the 

outer aluminized coating layer. Alkalinization may have been greater next to 

the steel region due to faster O2 reduction rates there, consistent with the 

observation of a discoloration front radiating from the central exposed steel 

area. 

8. Plating of Fe (from inclusion particles separated from the matrix by 

undercutting corrosion and/or from initial corrosion of the exposed steel) on 

the aluminized surface may have further enhanced cathodic action in an 

autocatalytic manner that could account for the observation of the positive 

open circuit potential period, especially in solutions with low buffering capacity 

(solution C). 

9. Tentative durability projections were made for 16-gage aluminized sheet 

assuming penetration from both sides of the metal and considering 

consumption of the outer aluminized layer and of the base metal, using the 

corrosion rates estimated from the EIS measurements and focusing on 

stagnant water conditions. For blemished surfaces, the projected service life 
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was >100 yr for the least aggressive environment (P) and the smallest coating 

break, whereas for the largest coating break service life was shortened to ~10 

yr. For the other media, durability projections were between 16 and 33 yr. 

Caveats on the meaning of these long term extrapolations, noted in Chapter 

2, apply here as well.  

10.  For blemished surface conditions with exposed base steel, the findings in this 

section suggest that the AK Steel method may be a more appropriate 

alternative to that suggested in Chapter 2 for environments with moderately 

low resistivity such as those used in the tests (e.g. ~500 Ω-cm to ~1,000 Ω-

cm) and neutral to mildly alkaline conditions (e.g. ~7.5<pH<~9.0). The results 

would still support exploring the use of alternative guidelines such as the AISI 

method for environments with extremely high chloride contents (e.g. resistivity 

<50 Ω-cm) and nearly neutral pH. As before, it is strongly cautioned that other 

environmental parameters such as microbiology-induced corrosion may 

influence the corrosion performance of the Al/Fe system, and that eventual 

changes in existing guidelines should consider not only the specific results of 

this investigation but also the entirety of the performance record of aluminized 

steel pipe. 



 153 

Table 4.1: Average thickness measurements, per magnetic coating thickness 
test, and the corresponding nominal corrosion rate estimates for selected 
specimens. 

Thickness / µm 
Specimen Before 

exposure 
After 

exposure 

Exposure 
time 
hr 

Nominal 
corrosion rate 

µm/yr 

LCB Solution SW (2) 45.7 45.5 2,800 2 

SCB Solution NP(2) 45.0 40.9 3,400 10 

LCB Solution NP(1) 47.8 38.1 2,600 33 

LCB Solution NP(3) 47.0 40.9 2,600 21 

LCB Solution P(1) 51.8 49.8 2,650 7 

LCB Solution P(2) 49.0 47.5 2,650 6 

Macrocell assembly P(1) 52.3 48.3 2,700 13 

Macrocell assembly P(2) 50.8 45.0 1,900 25 

Macrocell assembly NP(1) 48.5 43.4 2,700 16 

Macrocell assembly NP(2) 48.8 43.2 2,500 20 

Thickness measurements are the average values obtained by three independent 
operators. Thickness measurements were determined with a standard deviation of ±7.6 
µm. 
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Table 4.2: Summary of visual assessment and EOC trends. 
Unblemished (AR=0) SCB (AR~3 10

-4
) LCB (AR~0.03) Macrocell assemblies (AR~0.03) Test 

solution EOC (mV) 
Aluminized 
Surface 

EOC (mV) Steel Surface 
Aluminized 
Surface 

EOC (mV) Steel Surface 
Aluminized 
Surface 

EOC (mV) Steel Surface 
Aluminized 
Surface 

P 

1: 0-3 hr: ~-805 
2: 0-3 hr: ~-800 
3: 0-5 hr: ~-800 

1: Terminal: ~-760 
2: Terminal: ~-770 
3: Terminal: ~800 

Bright over the 
entire 

exposure time. 
No visible pits. 

1: 0-20 hr: ~-760 
2: 0-20 hr: ~-760 
1: Terminal: ~-820 
2: Terminal: ~-820 

Uniform 
black/reddish 

scale from start. 

Bright over the 
entire 

exposure time. 
No visible pits. 

1: 0-1200 hr: ~-745 
2: 0-1200 hr: ~-745 
3: 0-1500 hr: ~-740 
1: Terminal: ~-920 
2: Terminal: ~-920 
3: Terminal: ~-905 

Uniform 
black/reddish 

scale from start. 
At ~450 hr 

central reddish 
deposit spot. 
No preferential 
corrosion at 

spot. 

Moderate 
discoloration 
Few small 
isolated pits. 

1: 0-1600 hr: ~-710 
2: 0-1700 hr: ~-740 
3: 0-1100 hr: ~-730 
1: Terminal: ~-885 
2: Terminal: ~-885 
3: Terminal: ~-885 

Uniform 
black/reddish 

scale from start. 
At ~440 hr, 

central reddish 
deposit spot. 
No preferential 
corrosion at 

spot. 

Moderate 
discoloration. 
Few small 
isolated pits. 

 
 
 
 

NP 
1: 0-5 hr: ~-650 
2: 0-5 hr: ~-600 

1: Terminal: ~-895 
2: Terminal: ~-930 

Moderate 
discoloration 
after ~2,250 hr 
(1,200 hr). 
Few small 
isolated pits. 

1: 0-160 hr: ~-720 
2: 0-2 hr: ~-750 

1; Terminal: ~-900 
2: Terminal: ~-900 

Uniform reddish 
scale from start. 

Strong 
discoloration 
after ~1,030 hr 
(~890 hr). ~50 

µm outer 
aluminized 
coating layer 
around steel 
fully lost. 
Few small 
isolated pits. 

1: 0-1600 hr: ~-725 
2: 0-1200 hr: ~-725 
3: 0-500 hr: ~-735 
1: Terminal: ~-930 
2: Terminal: ~-725 
3: Terminal: ~-930 

Uniform reddish 
scale from start. 

At ~460 hr 
central porous 
reddish deposit 

spot. 
Preferential 
corrosion at 

spot. 

Strong 
discoloration in 
#1 and #3 and 
~70 µm outer 
aluminized 
coating layer 
around steel 
fully lost. No 

discoloration in 
#2. 

Few small 
isolated pits in 
#1 and #3. No 
visible pits in 

#2. 

1: 0-800 hr: ~-710 
2: 0-1400 hr: ~-710 
3: 0-850 hr: ~-710 
1: Terminal: ~-810 
2: Terminal: ~-830 
3: Terminal: ~-925 

Uniform reddish 
scale from start. 

At ~400 hr 
central porous 
reddish deposit 

spot. 
Preferential 
corrosion at 

spot. 

Strong 
discoloration. 
Few small 
isolated pits. 

C 

1: 0-175 hr: ~-630 
2: 0-8 hr: ~-645 

1: Terminal: ~-840 
2: Terminal: ~-830 

Strong 
discoloration 
after ~310 hr 
(~115 hr). 

Few isolated 
pits. 

1: 0-1 hr: ~-615 
2: 0-90 hr: ~-630 
3: 0-20 hr: ~-610 
1: Terminal: ~-695 
2: Terminal: ~-730 
3: Terminal: ~-720 

Uniform reddish 
scale from start 

in #1. 
No corrosion 
scale or 

discoloration in 
#2 and #3. 

Strong 
discoloration 
after ~545 hr 
(~648 hr) 
((~624 hr)). 
~50 µm outer 
aluminized 
coating layer 
around steel 
fully lost. 

Few isolated 
visible pits. 

Undergasket corrosion. Data discarded Undergasket corrosion. Data discarded 

SW 

1: 0-3 hr: ~-780 
2: 0-10 hr: ~-730 
1: Terminal: ~-805 
2: Terminal: ~-835 

Light 
discoloration 
after ~525 hr 
(~585 hr). 

Few isolated 
visible pits. 

1: 0-1 hr: ~-750 
2: 0-1 hr: ~-750 

1: Terminal: ~-840 
2: Terminal: ~-850 

No corrosion 
scale or 

discoloration. 

Light 
discoloration 
after ~275 hr 
(415 hr). 

Few isolated 
visible pits. 

1: 0-48 hr: ~-750 
2: 0-30 hr: ~-750 
1: Terminal: ~-850 
2: Terminal: ~-850 

No scale. Very 
slight 

discoloration as 
test progressed. 

Light 
discoloration 
after ~380 hr 
(~360 hr). 

Few isolated 
visible pits. 

Undergasket corrosion. Data discarded 

AR = exposed steel/aluminized surface area ratio. Aluminized surface discoloration appeared concurrent with the initiation of EOC drop for the LCB specimens and 
macrocell assemblies in solutions NP and P, and the SCB specimens in solution C. Initially, the aluminized surface was bright in all specimens. Later on, 
discoloration, when taking place, was uniformly spread over the entire aluminized surface.

1
5
4
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Table 4.3: Evolution of the nominal corrosion current density for the LCB 
specimens #1 exposed to solutions NP, P, and SW. The parameters of the 
simplified analog equivalent circuits shown in Figure 4.41 are also included. 
Immune condition for the exposed steel was assumed when the system EOC 
reached <-800 mV. Passive condition for the outer aluminized coating was 
assumed when the aluminized surface was bright with no visible pits. 

Solution NP (#1) – Before the EOC drop 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

Ra1 
Ω 

Y* 
secn* Ω-1 n* 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

72 8.30 44.4 682.5 1378 1.65E-03 0.68 12.13 

264 8.48 79.2 401.2 1631 1.67E-03 0.70 17.20 

408 8.42 55.6 294.5 1636 1.71E-03 0.70 22.19 

456 6.11 11.1 358.6 1689 2.04E-03 0.64 18.72 

720 7.01 10.9 345.3 1556 1.83E-03 0.68 19.60 

1008 8.75 14.4 203.2 1430 1.50E-03 0.75 31.13 

Passive 

Solution NP (#1) – After the EOC drop 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

1752 9.05 9.0 499 1123 2.36E-03 0.81 0.42 

2088 9.03 8.8 470 902 2.34E-03 0.83 0.52 

2424 9.05 8.7 456 172.4 2.13E-03 0.86 

Immune 

2.75 

 

LCB Solution P (#1) – Before the EOC drop
 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

Ra1 
Ω 

Y* 
secn* Ω-1 

n* 
icorrFE 

µA cm-2 
icorrAL 

µA cm-2 

48 6.8 74.5 3508 808 1.05E-03 0.78 8.44 

192 7.5 55.6 2832 873 9.77E-04 0.80 8.30 

552 7.3 5.0 1634 980 1.13E-03 0.77 9.04 

960 7.4 4.8 2418 1496 1.01E-03 0.78 5.99 

1224 7.7 3.3 3177 1805 8.99E-04 0.80 4.81 

Passive 

LCB Solution P (#1) – After the EOC drop
 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 

Ω 
RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

1920 8.1 3.3 546 843 3.23E-03 0.85 0.56 

2400 8.1 3.3 436 163 7.22E-03 0.86 
Immune 

2.91 
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Table 4.3: (Continued) 

LCB Solution SW (#1) 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

168 0.23 19.5 2602 4452 1.39E-03 0.90 0.11 

192 0.23 33.6 2796 4108 2.02E-03 0.87 0.12 

360 0.23 18.6 2824 4080 1.41E-03 0.92 0.12 

528 0.22 13.6 2509 2718 1.54E-03 0.92 0.17 

720 0.23 14.0 2828 2669 1.61E-03 0.92 0.18 

840 0.24 14.1 3448 2988 1.66E-03 0.92 0.16 

1008 0.24 14.6 4199 3499 1.68E-03 0.92 0.14 

1248 0.24 11.9 3933 3012 1.70E-03 0.92 0.16 

1536 0.25 12.5 5224 3819 1.68E-03 0.92 0.12 

1752 0.24 12.6 4450 3267 1.70E-03 0.92 0.14 

2256 0.24 13.8 5534 3761 1.67E-03 0.92 0.13 

2784 0.24 14.2 7125 4704 1.64E-03 0.91 

Immune 

0.10 

 

Table 4.4: Evolution of the nominal corrosion current density for the SCB 
specimens #1 exposed to solutions NP, P, SW, and C. The parameters of the 
simplified analog equivalent circuits shown in Figure 4.41 are also included. 
Immune condition for the exposed steel was assumed when the system EOC 
reached <-800 mV. Passive condition for the outer aluminized coating was 
assumed when the aluminized surface was bright with no visible pits. 

SCB Solution NP (#1) 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

96 6.8 274 4080 5694 5.97E-04 0.91 0.08 

168 6.7 211 3236 7159 6.39E-04 0.91 0.06 

288 6.8 456 7244 15250 6.78E-04 0.91 0.03 

432 7.0 333 3898 8293 7.72E-04 0.91 0.06 

648 6.9 974 11570 16650 7.81E-04 0.91 0.03 

840 7.2 1196 16520 21460 8.16E-04 0.91 0.02 

1032 7.3 1819 37620 38930 8.15E-04 0.91 0.01 

1272 7.0 1046 12820 10820 8.91E-04 0.91 0.04 

1440 7.2 780 10510 8455 9.32E-04 0.92 0.05 

1944 7.2 846 1231 343 1.30E-03 0.93 

Immune 

1.33 
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Table 4.4: (Continued) 

SCB Solution P (#1) 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
kΩ 

RAL2 
kΩ 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

96 7.1 74.5 44.5 55.4 3.59E-04 0.92 0.017 

168 7.5 62.2 16.1 15.8 4.25E-04 0.92 0.058 

288 7.9 121.1 38.7 35.1 4.67E-04 0.93 0.026 

432 7.9 64.7 27.2 20.3 5.03E-04 0.92 0.045 

648 8.2 100.6 79.7 43.6 5.15E-04 0.91 0.021 

840 8.1 170.4 288.9 71.9 5.18E-04 0.92 0.013 

1008 8.1 157.4 533.4 86.9 5.09E-04 0.92 0.011 

1272 8.3 291.3 2921 112.5 5.06E-04 0.92 0.008 

1440 8.5 539.1 1.5E5 189.1 4.94E-04 0.92 0.005 

1704 7.9 292.6 1.7E5 156.4 4.98E-04 0.92 0.006 

2160 8.2 335.2 1.9E5 372.2 4.83E-04 0.93 

Immune 

0.002 

 

SCB Solution SW (#1) 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

96 0.32 18.1 2216 3144 8.29E-04 0.92 0.15 

168 0.35 11.6 3718 6144 9.27E-04 0.92 0.07 

288 0.35 5.9 4251 3895 1.20E-03 0.91 0.12 

432 0.35 6.2 5031 3419 1.39E-03 0.90 0.13 

624 0.35 6.8 5256 3208 1.49E-03 0.90 0.14 

840 0.37 7.8 7455 4202 1.51E-03 0.90 0.11 

1272 0.37 9.0 9400 4698 1.48E-03 0.90 0.10 

1440 0.39 9.4 10420 4907 1.45E-03 0.90 0.09 

1536 0.35 9.1 8856 4148 1.47E-03 0.90 0.11 

1680 0.35 8.9 8838 4539 1.45E-03 0.90 0.10 

1944 0.37 9.6 10590 4871 1.40E-03 0.90 0.09 

2112 0.37 9.7 10560 4816 1.40E-03 0.90 0.10 

2496 0.37 9.7 14450 5881 1.37E-03 0.90 0.08 

2688 0.37 4.7 11350 5062 1.38E-03 0.90 

Immune 

0.09 
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Table 4.4: (Continued) 

SCB Solution C (#1) 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrAL 
µA cm-2 

120 11.3 827.1 28220 11910 3.67E-04 0.91 0.04 

168 10.6 553.1 11440 8569 4.14E-04 0.91 0.05 

288 10.4 278.7 3489 5792 6.05E-04 0.91 0.08 

432 10.2 182.5 2137 3519 8.64E-04 0.92 0.13 

648 10.1 120.2 1290 1715 1.29E-03 0.93 0.27 

840 10.3 54.9 660 858 1.80E-03 0.94 0.53 

1296 10.4 71.0 1853 1892 2.61E-03 0.90 0.24 

1440 10.4 113.7 4506 4228 2.35E-03 0.91 0.11 

1608 10.7 108.6 8494 7126 2.21E-03 0.91 0.06 

1704 10.3 70.5 7674 5444 2.25E-03 0.91 0.08 

1968 10.9 170.4 13860 9269 2.18E-03 0.91 0.05 

2160 10.6 181.8 13180 11060 2.16E-03 0.91 0.04 

2496 10.9 226.3 16780 15450 2.09E-03 0.91 0.03 

2664 10.5 219.9 16640 14470 2.09E-03 0.91 0.03 

 
Table 4.5: EIS parameters from analog equivalent circuit in Figure 4.40 and 
nominal corrosion current density for the aluminized and steel components in the 
macrocell assemblies. 

Specimen 
Time 
hr 

Sol. 
RS 
Ω 

Ra1 
kΩ 

RC1 
kΩ 

W1 
Ω sec

-0.5
 

Y1 
sec

n
/Ω 

n1 
icorrFE 
µA/cm

2
 

900 P 175.1 0.9 0.6 17.9 3.2E-03 0.75 16.1 Before 
EOC 
drop 900 NP 59.8 1.2 0.3 51.1 5.0E-03 0.55 24.2 

1780 P 210.6 3.8 0.1 5.1 6.4E-03 0.75 

Steel 
component 

After 
EOC 
drop 1780 NP 50.1 3.3 0.2 54.4 1.1E-03 0.55 

Immune 

 

Specimen 
Time 
hr 

Sol. 
RS 
Ω 

RAL1 
kΩ 

YAL2 
sec

n2
/Ω 

nAL2 
RAL2 
kΩ 

YF 
sec

nF
/Ω 

nF 
icorrAL 

µA/cm
2
 

900 P 57.4 9.9 9.8E-04 0.98 71.2 5.2E-04 0.94 0.09 Before 
EOC 
drop 900 NP 16.5 6.9 3.4E-03 0.99 24.6 7.9E-04 0.94 0.13 

1780 P 55.7 0.2 3.2E-02 0.84 1.0 1.3E-03 1.00 0.46 

Aluminized 
component 

After 
EOC 
drop 1780 NP 16.7 0.05 1.3E-01 0.80 0.09 1.2E-02 0.85 5.08 
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Table 4.6: Comparison of durability estimates, in yr, obtained by application of 
commonly used forecasting methods and those obtained in this investigation. 

This investigation Test 
solution 

AK Steel California AISI FDOT 
AR=0 AR~3 10

-4 AR~0.03 

P <20 29 57 56 
>100 
(>100) 

>100 
(>100) 

10 
(11, 11) 

NP <20 25 50 33 
36 
(38) 

16 
(15) 

10 
(10) 

SW NA 7 15 NA 
15 
(19) 

33 
(28) 

27 
(30) 

C <20 30 62 27 
19 
(23) 

27 
(28, 24) 

- 

Numbers in parenthesis correspond to the results from replicate specimens. 

 
 

 

Figure 4.1: Photograph of the test cell used to monitor galvanic currents and 
impedance behavior of the unblemished aluminized steel and steel components. 
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Figure 4.2: Schematic of the test cell arrangement. 
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Figure 4.3: Evolution of the solution bulk pH for the LCB configuration.  
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Figure 4.4: Evolution of the solution bulk pH for the SCB configuration. 
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Figure 4.5: EOC evolution of the LCB specimens in solution P. End of exposure 
corresponds to the time of the last datum taken. 
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Figure 4.6: EOC evolution of the LCB specimens in solution NP. End of exposure 
corresponds to the time of the last datum taken. 
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Figure 4.7: EOC evolution of the LCB specimens in solution SW. End of exposure 
corresponds to the time of the last datum taken. 
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Figure 4.8: EOC evolution of the SCB specimens in solution P. The test exposures 
were terminated ~450 hr after the last datum. 
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Figure 4.9: EOC evolution as a function of time of the SCB specimens exposed to 
solution NP. End of exposure corresponds to the time of the last datum. 
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Figure 4.10: EOC evolution as a function of time of the SCB specimens exposed 
to solution SW. End of exposure corresponds to the time of the last datum. 
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Figure 4.11: EOC evolution as a function of time of the SCB specimens exposed 
to solution C. End of exposure corresponds to the time of the last datum. 
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Figure 4.12: EOC evolution as a function of time of the replicate uncoupled steel 
specimens. End of exposure corresponds to the time of the last datum. 
 
 

 

Figure 4.13: Cross section of the LCB specimen #1 exposed to solution NP 
showing complete outer coating loss surrounding the exposed steel. 

50 µm 
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Figure 4.14: SEM image: (1) 1000x magnification and (2) 5000x magnification   
of the surface morphology of the LCB specimen #1 in solution NP taken after the 
end of exposure. 
 

 
 
 
 

(1) 

(2) 
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Figure 4.15: SEM-EDS analysis of corrosion deposits on the aluminized surface 
of the LCB specimen #1 in solution NP. 
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Figure 4.16: Cross section of the LCB specimen #1 exposed to solution SW near 
the edge of the exposed steel.  
 

 

Figure 4.17: Cross section of the SCB specimen #1 exposed to solution C 
showing that a pit ~0.5 mm diameter that reached the underlying steel. 

100 µm 

100 µm 
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Figure 4.18: Cross section of the SCB specimen #1 exposed to solution NP 
showing complete outer coating loss surrounding the exposed steel. 
 

 

Figure 4.19: Cross section of the SCB specimen #1 exposed to solution SW near 
the exposed steel region. 

50 µm 

50 µm 
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Figure 4.20: Cross section of the LCB specimen #1 exposed to solution NP 
showing additional metal loss at the central region of the exposed steel. 
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Figure 4.21: Post-exposure photographs of selected blemished specimens. 
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Figure 4.22: Nyquist plot of the impedance response of the LCB specimen #1 in 
solution NP (100 KHz - 1 mHz - 5 points/decade). 
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Figure 4.23: Nyquist plot of the impedance response of the LCB specimen #1 in 
solution P (100 KHz - 1 mHz - 5 points/decade). 
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Figure 4.24: Nyquist plot of the impedance response of the LCB specimen #1 in 
solution SW (100 KHz - 1 mHz - 5 points/decade). 
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Figure 4.25: Nyquist plot of the impedance response of the SCB specimen #1 in 
solution NP (100 KHz - 1 mHz - 5 points/decade). 



 174 

-240000

-200000

-160000

-120000

-80000

-40000

0

0 40000 80000 120000 160000 200000

Re(Z) / Ω

Im
(Z
) 
/ 
Ω

96 hr

288 hr

648 hr

1008 hr

1440 hr

1704 hr

2160 hr

2496 hr

 

Figure 4.26: Nyquist plot of the impedance response of the SCB specimen #1 in 
solution P (100 KHz - 1 mHz - 5 points/decade). 
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Figure 4.27: Nyquist plot of the impedance response of the SCB specimen #1 in 
solution SW (100 KHz - 1 mHz - 5 points/decade). 
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Figure 4.28: Nyquist plot of the impedance response of the SCB specimen #1 in 
solution C (100 KHz - 1 mHz - 5 points/decade). 
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Figure 4.29: Nyquist plot of the impedance response of the SCB specimen #2 in 
solution C (100 KHz-1 mHz - 5 points/decade). 
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Figure 4.30: EOC and galvanic current Igalv measurements for the macrocell 
assemblies exposed to solutions P (circles) and NP (squares). The steel 
components were always net cathodes. 
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Figure 4.31: Nyquist plot of the impedance response of the macrocell assembly 
and the individual components exposed to solution P (100 kHz–1 mHz, 5 
points/decade) before (~900 hr) the EOC drop. 
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Figure 4.32: Nyquist plot of the impedance response of the macrocell assembly 
and the individual components exposed to solution P (100 kHz–1 mHz, 5 
points/decade) after (~1,780 hr) the EOC drop. 
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Figure 4.33: Nyquist plot of the impedance response of the macrocell assembly 
and the individual components exposed to solution NP (100 kHz–1 mHz, 5 
points/decade) before (~900 hr) the EOC drop. 
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Figure 4.34: Nyquist plot of the impedance response of the macrocell assembly 
and the individual components exposed to solution NP (100 kHz–1 mHz, 5 
points/decade) after (~1,780 hr) the EOC drop. 
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Figure 4.35: Nyquist plot of the impedance response of the replicate uncoupled 
steel specimens exposed to solutions NP and P (100 kHz–1 mHz, 5 
points/decade). 
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Figure 4.36: Schematic of a typical aluminized coating cross section of a LCB 
specimen #1 exposed to solution NP. 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.37: Schematic of the EOC trends shown in Figures 4.5 through 4.11. 
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Figure 4.38: Schematic description of the corrosion mechanism of aluminized 
steel around the Fe-rich inclusion present in the outer aluminized layer: (A) 
development of high pH region around the inclusion due to the cathodic reaction, 
(B) corrosion initiation of the surrounding aluminum exposing larger inclusion 
area with consequent enhancement of the cathodic reaction, (C) detachment of 
the inclusion as a free particle from the aluminum matrix, (D) dissolution of the 
free particle and plating of Fe on aluminized surface, (E) development of a high 
pH region around the plated Fe (after Vukmirovic et al. (2002)). 
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Figure 4.39: Average of the time to initial discoloration of replicate specimens as 
a function of AR. Results for AR=0 and AR=3 10

-4 in solution P are minimum 
values as indicated by the arrows. 
 
 

 

 

 

 

 

 

 

 
Figure 4.40: Analog equivalent circuit used to simulate the impedance response 
of the macrocell assemblies in solutions NP and P for the regimes before and 
after the EOC drop. 
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Figure 4.41: Simplified equivalent circuit used to simulate the impedance 
response of the LCB and SCB specimens. The circuit (A) was employed solely 
for the LCB specimens exposed to solutions NP and P before the EOC drop. The 
circuit (B) was used for all solutions after the EOC drop. 
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Figure 4.42: Evolution of icorrFE of the exposed steel portion for the LCB 
specimens (#1) in solutions NP and P obtained per analog equivalent circuit 
shown in Figure 4.41 (A) and the steel component in the macrocell assemblies 
obtained per the upper branch of the analog equivalent circuit in Figure 4.40. 
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Figure 4.43: Evolution of icorrAL of the aluminized portion for the LCB specimens 
(#1) obtained using the analog equivalent circuit shown in Figure 4.41 (B) and 
the aluminized component in the macrocell assemblies using the lower branch of 
the analog equivalent circuit shown in Figure 4.40. 
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Figure 4.44: Evolution of icorrAL of the aluminized portion for the SCB specimens 
(#1) obtained using the analog equivalent circuit shown in Figure 4.41 (B). 
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Figure 4.45: Correlation between the integrated coating loss obtained by EIS and 
the nominal coating thickness loss determined by magnetic coating thickness 
measurements for selected specimens shown in Table 4.1. 
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Figure 4.46: Cross section of the LCB specimen #1 exposed to solution NP. The 
dark outer layer covering the entire outer aluminized coating layer corresponds to 
corrosion deposits of ~10-15 µm thick. 

50 µm 

Corrosion deposit thickness 
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Chapter 5 

Computation of ac and dc Current and Potential Distributions of Aluminized Steel 
Type 2 with Coating Breaks 

 

5.1 Introduction 

As discussed in Chapter 2, unblemished aluminized steel showed high 

corrosion resistance, comparable to that of pure aluminum, in near neutral pH 

waters with high scaling tendencies. However, the results in Chapter 4 showed 

that in such environments the underlying steel exposed at aluminized coating 

breaks, imitating surface damage as it may be encountered in field exposure, 

corroded actively from the beginning of the test. Throughout the entire exposure 

time, the outer aluminized coating always acted as a net anode to the exposed 

steel, but there was initially insufficient protective macrocell galvanic action 

between the exposed steel and the surrounding aluminized coating, which was in 

passive condition early on in the exposure. Later on, larger macrocell currents 

were recorded suggesting a much improved protection to the exposed steel by 

the aluminized coating, which by that time was actively corroding. 

This Chapter introduces modeling of the steady-state (dc) extent of 

galvanic action between the surrounding aluminized coating and the exposed 

steel as function of polarization parameters of the two metals, active/passive 

condition of the aluminized surface, and electrolyte conductivity. The resulting 

model serves as a basis for initial evaluation of the impact of some of those 
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variables on the effectiveness of the galvanic action beyond the conditions 

examined experimentally, for future expansion to address other geometric 

configurations that may be encountered in the field, and eventual incorporation to 

durability prediction models. The model system was based on the physical 

configuration of the LCB specimens (Chapter 4), using a two dimensional dc 

computational model solved numerically by the finite difference method. The dc 

model output was the static current and potential values at every point in the 

metal surface. 

This Chapter also addresses modeling of behavior of the same system 

under ac conditions. As shown in previous Chapters, the EIS technique is a 

sophisticated experimental tool to accurately determine corrosion rates of metals 

by applying a small ac signal. However, the EIS response can be sometimes 

complicated to evaluate due to the presence of non uniform ac current and 

potential distributions which may lead, if not properly identified, to an 

inappropriate interpretation of the EIS response. Thus, it is of importance to 

quantify the effect of non uniform ac currents so that accurate estimates of 

corrosion rates can be achieved. The analog equivalent circuits shown in Figure 

4.41 in Chapter 4, used to interpret the impedance responses of the blemished 

specimens, do not take into consideration the effect of uneven ac current 

distributed along the metal surface. To account for possible non uniform ac 

current distribution artifacts present under these conditions, a two dimensional 

(ac) computational model was developed. Comparison between the impedance 
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response calculated by the ac model and the experimental EIS results obtained 

for the LCB specimens (Chapter 4) is also presented. 

 

5.2 The Model System 

The model system, corresponding to the test cell in Figure 2.3 (Chapter 2), 

was cylindrically symmetric along the central axis with a disk-shaped aluminized 

steel Type 2 bottom of external radius re=5 cm for a total surface area of 95 cm
2, 

with total aluminized coating ~45 µm thick (of composition reported in Chapter 2). 

The central portion of the cell space bottom had a circular coating break of radius 

r0=1 cm (matching the coating break size of the LCB configuration), exposing the 

underlying base steel. The electrolyte was treated as a naturally aerated 

homogeneous medium filling a cylindrical zone of height H=6.5 cm over the 

specimen surface. Constant conductivity σ and charge neutrality were assumed 

throughout the electrolyte. The reference electrode sensing tip was assumed to 

be positioned centered on the coating break. For simplicity, the counter electrode 

was treated as non polarizable, disk-shaped with radius re=5 cm, and placed at 

the top of the electrolyte region parallel to the specimen surface. The entire metal 

surface was treated as if were flat throughout so that any milling step effects of 

the edge and wall of the coating break were neglected. 

 

5.2.1 The dc Model 

Two scenarios were explored here based on the experimental 

observations of the LCB specimens reported in Chapter 4. The first scenario 
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described conditions for EOC around -700 mV observed at early exposure times, 

when the exposed steel experienced active uniform dissolution and the 

surrounding aluminized surface was essentially passive (e.g. solutions NP and 

P). The second scenario described conditions after the onset of the EOC drop 

(~<-850 mV) observed later on in the exposure, when the aluminized surface 

showed uniform discoloration with formation of small isolated pits and the 

exposed steel was galvanically protected by the surrounding aluminized surface. 

For the first scenario, it was proposed that the prevalent cathodic reaction 

at the potentials of interest was O2 reduction of the form O2+2H2O+4e
-→4OH-. 

This reaction was assumed to obey simple Butler-Volmer kinetics, acting over the 

entire steel surface and to a lesser extent on the small amounts of Fe-rich 

inclusions present at the aluminized surface. The cathodic reaction was assumed 

to be under mixed activation-concentration control at the exposed steel and, 

because of the much lower average current density on the aluminized surface, 

under purely activation-limited control there. The reverse of the cathodic reaction 

at both places could be easily ignored since the system EOC was always far 

below the O2/H2O redox potential. The transport of O2 in the electrolyte 

immediately next to the exposed steel surface was assumed to proceed only by 

diffusion (with constant O2 diffusivity D), limited to a thin stationary diffusional 

layer of thickness δ over the steel surface. The O2 concentration elsewhere was 

assumed to be uniform (reflecting natural convection) and in equilibrium with the 

O2 partial pressure PO2=0.21 atm of the surrounding air in the test cell (Kranc and 

Sagüés, 1993). It is speculated that both O2 reduction and H2 evolution would be 
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part of the overall cathodic reaction at potentials ~<-850 mV, as demonstrated in 

Chapter 3. For the sake of simplicity, the main cathodic reaction after the EOC 

drop is assumed to be O2 reduction taking place mostly at the exposed steel 

approaching a limited-concentration control regime. 

Thus, the rate of the O2 reduction reaction at the metal surface for both 

scenarios is: 
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C
i i
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0CxCx

Cxβ

SeqcxE Φ−

⋅⋅=  (5.1) 

 
where the subscript x=1 is for the exposed steel and x=2 is for the aluminized 

surface, i0Cx is the exchange current density for the cathodic reaction, CS and CB 

are the O2 concentrations next to the steel surface and in the solution bulk, 

respectively, βCx is the cathodic Tafel slope, Eeqcx is the equilibrium potential for 

the O2 reaction, and ФS is the local potential in the electrolyte adjacent to the 

equipotential metal surface. Per the above assumptions, the CS/CB ratio is equal 

to unity at the aluminized surface for the before and after EOC drop. 

 Per Chapter 4, the prevalent anodic reactions for the first scenario were 

assumed to be uniform Fe dissolution Fe→Fe+2+2e- at the exposed steel, and 

passive dissolution at the aluminized surface assumed to proceed at a potential-

independent rate iP2. The Fe dissolution reaction was assumed to be under 

activation-limited control, following simple Butler-Volmer kinetics. 
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Thus, the anodic current density at the exposed steel before the EOC drop is 

given by: 

ax

eqaxS
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0axax 10 ii
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=  (5.2) 

 
where the subscript x=1 is for the exposed steel, βax is the anodic Tafel slope, i0ax 

is the exchange current density for the anodic reaction, and Eeqax is the 

equilibrium potential for the Fe/Fe+2 redox pair. 

For the second scenario (after the EOC drop), the rate of aluminum 

dissolution of the form Al→Al+3+3e- was expected to increase relative to before 

the EOC drop, consistent with uniform discoloration of the aluminized surface 

noted at longer exposure times. To reflect the increase of the aluminum 

dissolution, it was assumed that the anodic aluminum reaction, no longer 

potential-independent, was under activation-limited control following simple 

Butler-Volmer kinetics. Then, for the second scenario the anodic current density 

at the aluminized surface is calculated per Eq. 5.2 substituting the subscript x=2. 

At the steady-state regime, the constant σ and charge neutrality conditions 

imply that the potential in the electrolyte Φ for both scenarios can be stated in 

term of the Laplace’s equation, expressed below in two dimensional cylindrical 

coordinates (West and Newman, 1992): 
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where z is the distance normal to the metal surface and r is the distance in the 

radial direction from the specimen center. 
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For both scenarios, next to the metal surface the net current density 

across the electrolyte must match the net rate of the electrochemical reactions. 

Thus, by the steel surface: 
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and by the aluminized surface: 
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where the first term on the right hand side of the Eq. 5.4-B is equal to iP2 for the 

first scenario (before EOC drop). 

The remaining boundary conditions for both scenarios were provided by 

the lack of current density flow through all free surfaces such that: 
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and for the second scenario (after EOC drop) the supply of O2 at the exposed 

steel surface equaled to the amount of O2 consumed by the cathodic reaction 

such that: 

surface steel

C1
dz

dC
DFni ⋅⋅⋅=  (5.5-B) 

 
for n=4 (by the reaction O2+2H2O+4e

-→4OH-) and F=96,500 C/mol (Faraday 

constant). 
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5.2.1.1 Implementation of the dc Model 

The solution to the dc problem consisted of finding the values of Ф at 

every point in the electrolyte by satisfying Eqs. (5.3-5.6) using a finite difference 

method. Figure 5.1 shows schematically the implementation of the dc model for 

the model system described in Section 5.2. To minimize the number of 

calculations while retaining good accuracy, a two dimensional cylindrical graded 

network with constant grid spacing in the radial ∆r and normal ∆z directions was 

generated following approach by Ozisik (1994). Other model features follow 

previous work by Kranc and Sagüés (1993) and Cui (2003). Per axial symmetry, 

only the region r>0 was modeled. For geometries matching the configuration of 

the LCB blemished specimens, ∆r = 0.1 cm for a total of 50 nodes and ∆z = 0.1 

cm for a total of 65 nodes were adopted. 

The implementation of the finite difference method was as follows. The 

normal derivative of the potential was represented using a two-node 

representation such that for the first scenario (before EOC drop) by the steel 

surface is: 
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and by the aluminized surface: 
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where Φi,0 and Ci,0 correspond to the potential and O2 concentration by the metal 

surface, respectively, and Φi,1 and Ci,0 are the potential and O2 concentration in 
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the electrolyte next to the metal surface. The subscript i here corresponds to the 

nodal points in the radial direction. 

For the second scenario (after EOC drop) by the steel surface, the normal 

derivative of the potential is: 
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and by the aluminized surface: 
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As stated above in the model assumptions, the O2 transport at the 

exposed steel surface was assumed to follow simple linear diffusion with 

δ=∆z=0.1 cm typically found in stagnant solutions (Kaesche, 1985). Thus, in 

finite difference formulation, the O2 concentration next to the steel surface is: 
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The representation of the boundary conditions at the external surfaces 

was carried out by creating a fictitious array of points of nodal point coordinates 

corresponding to the normal direction to each external surface. A symmetrical 

condition was applied to the grid network points located on the centerline so that 

Φ0,j = Φ1,j where Φ0,j are the potential of the grid network points located on the 

centerline in the direction normal to the metal surface and Φ1,j are the potential of 

the points next to Φ0,j. The subscript j here is associated to the nodal points in the 
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z-direction to the metal surface. The symmetrical condition at the centerline 

obviates the need for otherwise addressing the singularity that may arise at r=0 

from Eq. 5.3. 

In the solution bulk, the potential values were estimated using a central 

difference scheme of the form: 
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The solution strategy adopted to numerically solve for Eqs. (5.6) to (5.9) 

made use of the Jacobi method (Burden and Faires, 1985). Such method 

consisted of assigning guess potential and O2 concentration values everywhere 

in the solution to begin the iteration process. The guess values were placed in 

two arrays, one for potentials and the other for concentrations. New 

concentration values satisfying Eq. 5.8 were then computed from the guess 

arrays for each nodal point at the steel surface and stored in a companion 

concentration array. New potential values satisfying Eq. 5.6 (for the regime 

before EOC drop) or Eq. 5.7 (for the regime after EOC drop) were then computed, 

at each nodal point in the solution volume and at the boundaries, from the guess 

arrays except using the new values of concentration previously computed. Those 

new potential values were stored in a companion potential array. The companion 

potential and concentration array values were then used to overwrite the initial 

guess arrays. The process was then repeated using the overwritten guess array 

as the starting value. A relaxation factor α (typically with α=0.6) was used to 
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blend the potential value of each new generation with the previous one (Ketter 

and Prawel, 1969). This computation sequence was repeated for each new 

generation until a convergence criterion was met as shown in the next 

paragraph. Appropriate selection of the polarization kinetics parameters for the 

steel and for the aluminized components permitted obtaining the local dc current 

density for every node by the metal surface as shown below. 

Figure 5.2 shows for a representative example that the computed total 

anodic and cathodic currents by the metal surface approached to a common 

terminal value as the number of iteration increased. The relative difference 

between the computed currents decreased to <1% after 105 iterations. This 

observation suggests that a reasonably small convergence error can be obtained 

after 105 iterations. As a result, for all model computations, a relative difference of 

1% was used as a criterion to determine number of iterations needed to meet 

that value. All reported calculations involved at least 105 iterations. 

 

5.2.1.2. Cases Studied 

To examine the sensitivity to the dc current density and potential 

distributions, values of σbc = 2,000 µS/cm (base case), σ1 = 200 µS/cm (case 1), 

and σ2 = 10 µS/cm (case 2) were chosen for an exposed steel/aluminized 

surface area ratio AR~0.03. The selected σ values correspond to natural waters 

of different aggressivity typically encountered in the invert of field metallic culvert 

pipes in Florida waters. The base case was chosen to represent conditions 

comparable to those used for experimental evaluation. 
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Experimental results obtained from the electrochemical measurements, 

where available, were used as inputs for the dc model. In the case of unknown 

polarization parameters, the following assumptions were made. Consistent with 

values reported in the literature, a nominal anodic Tafel slope for the steel βa1=60 

mV/dec (Kaesche, 1985) was assumed and i0a1 was chosen by adjusting its 

value to obtain ia1 that matched that obtained from the EIS measurements of the 

steel portion in the blemished specimens before and after the EOC drop (see 

Chapter 4). The values of i0C1 and i0C2 were estimated consistent with the choice 

of the other polarization parameters. Values of D = 2 10-5 cm2/sec, CB = 3 10
-7 

mol/cm3, and δ = 0.1 cm, representative of typical conditions in stagnant aerated 

systems (Kaesche, 1985), were selected. Those choices yielded a limiting 

current density iL = nFDCBδ
-1 ~ 2.3 10-5 A/cm2 for O2 reduction on plain steel, 

which is also commonly observed in naturally aerated systems (Kaesche, 1985). 

The parameters used for the dc computations are summarized in Table 5.1. 

 

5.2.2. The ac Model 

 The assumptions and configuration presented for the dc model are also 

applicable to the ac model. The metal surface was divided into small equal-sized 

elements and a local area-normalized impedance was assigned to each element. 

The value of the local impedance for each element was obtained from the local 

dc anodic and cathodic current densities, the area-normalized interfacial 

capacitance, and the geometry of the system. For simplicity, the interfacial 



 199 

capacitance was taken as constant, but subject to frequency dispersion, for each 

metal component. Thus, the overall impedance for each element is given by: 
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where the subscript x=1 is for the bare steel and x=2 is for the aluminized 

surface, and Y and n are the CPE parameters representing the interfacial 

capacitance per unit area as defined in Chapter 2. The real components of the 

anodic and cathodic Faradaic impedances, envisioned here as simple resistors, 

are given by: 
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and the diffusional impedance component of the cathodic reaction at the exposed 

steel is (Sagüés (2006)): 
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To address the ac problem, a circuit consisting of a two-dimensional 

resistive network (Figure 5.3) representing the test solution for the system 

described in Section 5.2 was used. The values of the resistors in the network 

were obtained according to the system dimensions, the size of the solution 

element chosen, and σ. The complex impedance for the steel/aluminized coating 

system at each test frequency was then calculated as the ratio of the complex 
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potential, obtained at the location of the reference electrode sensing point, to the 

complex current density at the metal surface. Complex potentials and currents 

everywhere in the solution were computed following approach described in the 

next section. 

 

5.2.2.1 Implementation of the ac Model 

The approach presented in this Section is comparable to that used by 

Kranc and Sagüés (1993). 

The model system was the same as that described in Section 5.2. Per 

axial symmetry, only the region for r>0 was modeled. The resistive network 

consisted of 10 resistors in the radial direction by 10 in the normal direction to the 

metal surface. At the solution bulk, the values of the vertical resistors were 

estimated as RV = dz (2π σ r dr)
-1 and for the horizontal resistors RH = dr (2π σ r 

dz)-1 for dr = 0.50 cm and dz = 0.65 cm. At the centerline, RV = dz (π σ dr
2)-1 and 

RH = (π σ dz)
-1 were established. Node equations were formulated for each point 

in the network by establishing a zero current balance for each node, considering 

the surrounding nodal points. This involved a total of 121 equations 

simultaneously solved using a Matlab® routine. The counter electrode was joined 

to the network at the upper surface by small resistors (1 Ω) to facilitate current 

computation. An ac voltage signal was then applied between the counter 

electrode and the metal. 

Values of the admittance components for each surface element, obtained 

from the output of the dc model for the base case only, were calculated using Eq. 
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(5.11) following the assumptions presented in Section 5.2.1. Typical values of 

interfacial capacitance parameters n and Y for the aluminized and steel 

components were selected from previous Chapters and used here for the ac 

computations. Table 5.2 summarizes the set of parameters used for the ac model 

computations. 

To examine possible non uniform ac current distribution on the impedance 

trends due to the reference electrode position, model computations were 

performed for reference electrode sensing tip position at three different distances 

from the center of the steel surface. The test frequency varied from 105 to 10-3 Hz 

in all cases. 

 

5.3 Results and Discussion 

5.3.1 The dc Model 

Computed distributions of the dc current density and potential by the metal 

surface as a function of radius are shown for both scenarios (before and after 

EOC drop) in Figures 5.4 to 5.6 for the base case and the variants shown in Table 

5.1. The range of values of σ used as model input represented conditions 

bracketing solution conductivities commonly found in Florida inland waters, 

characterized by e.g. solutions P and NP. High σ as those found in natural 

seawater were not examined for the present set of computations. 

For the first scenario (before EOC drop), computation results showed little 

sensitivity of the anodic current density to the choice of solution conductivity 

(Figure 5.4). The largest and nearly constant anodic current density (~8.5 
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µA/cm2) was at the exposed steel, decaying steeply to the assumed constant low 

anodic current density value (7 10-3 µA/cm2) at the aluminized surface. The 

computation results were consistent with the observed icorr obtained for the LCB 

specimens in e.g. solution P and also in agreement with the observation of 

uniform rust formation on the steel surface early on in the exposure, with no 

visual corrosion damage at the aluminized surface. 

The cathodic current density for the first scenario (Figure 5.5) was 

greatest and nearly constant at the exposed steel (~9 µA/cm2), and steeply 

decayed away from it, attaining a nearly constant value of ~9.2 10-4 µA/cm2 at the 

aluminized surface. These results were consistent with the model assumptions 

and in agreement with the results obtained by cyclic polarization tests conducted 

on individual steel and unblemished aluminized steel specimens exposed to 

solutions P and NP. As before, computation results showed little sensitivity of the 

cathodic current density to the choice of solution conductivity. 

Figure 5.6 shows the potential trends next to the metal surface as a 

function of radius for the first scenario. The computed potentials were nearly 

constant (~-715 mV) with radius with values slightly nobler at the exposed steel 

(~1-8 mV) for the selected σ values. The potentials for the base case were in 

agreement with the potential measurements recorded at several radial locations 

of the LCB specimens in solution P. Computations showed little sensitivity of the 

potential to the choice of solution conductivity. 

Figure 5.7 shows the computed macrocell current as a function of σ for the 

first scenario (regime before the onset of the EOC drop). For σbc = 2,000 µS/cm 
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(base case), the macrocell current was ~2 µA, in agreement with the 

experimental results obtained at early exposure times for the macrocell 

assemblies shown in Chapter 4. As expected, the macrocell currents decreased 

for decreasing values of σ. These results are consistent with attributing the weak 

galvanic action of the aluminized coating/exposed steel system early on in the 

exposure to the passive condition of the aluminized coating. That condition was 

also as manifested by large impedance moduli (>100 kΩ-cm2) of the coating, 

which were exceedingly larger than those of the exposed steel (~2 kΩ-cm2). 

Figure 5.4 shows the computed anodic current density as a function of 

radius for all σ for the second scenario (after EOC drop). For σbc = 2,000 µS/cm 

(base case), the nearly constant anodic current density at the exposed steel 

(~0.045 µA/cm2) was approximately two orders of magnitude smaller than that 

obtained from the first scenario (before EOC drop), in agreement with the 

proximity of the system potential to the equilibrium potential of the Fe/Fe+2 

reaction, consistent with effective cathodic protection. However, increasingly 

larger anodic current densities at the exposed steel were noted for decreasing 

values of σ, suggesting limited cathodic protection in those cases. Interestingly, 

for σbc = 2,000 µS/cm (base case) and more noticeable for σ1 = 200 µS/cm (case 

1) and σ2 = 10 µS/cm (case 2) the computed anodic current density at the central 

portion of the steel was largest (~0.45 and ~7.3 µA/cm2 for cases 1 and 2, 

respectively) and smallest at the edge (~0.19 and ~2 µA/cm2 for cases 1 and 2, 

respectively). The calculations are in agreement with the experimental 

observations of additional metal loss at the center spot of the exposed steel in 
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the LCB specimens exposed to solutions P and NP due to a local acidification at 

that spot as mentioned in detail in Chapter 4. 

On the other hand, the anodic current density at the aluminized surface 

was largest near the steel perimeter and decreased away from the steel more 

noticeable for σ1 = 200 µS/cm (case 1) and σ2 = 10 µS/cm (case 2) and not so for 

σbc = 2,000 µS/cm (base case). This can be viewed as being consistent with a pH 

increase near the steel perimeter as a result of an enhancement of the cathodic 

reaction in that region. If the increase in pH is large enough, the aluminum 

adjacent to the steel can experience accelerated dissolution. This interpretation 

was confirmed by the observation of aluminized surface discoloration starting 

around the steel perimeter. The anodic current density computed for the 

aluminized portion away from the steel edge was ~1.2 µA/cm2 for the base case 

and decreased slightly to ~1.0 µA/cm2 for case 1 and to ~0.5 µA/cm2 for σ2 = 10 

µS/cm (case 2). Those values were significantly larger than those obtained for 

the period before EOC drop, in agreement with the observation of uniform 

aluminized discoloration of the LCB specimens in NP and P after the onset of the 

EOC decay (see Chapter 4). 

The cathodic current density at the exposed steel for the second scenario 

(after EOC drop) (Figure 5.5) approached a limiting current density (~23 µA/cm2) 

for all σ, in agreement with the assumption of full concentration polarization of the 

cathodic reaction and also consistent with the nearly straight line with slope ~0.5 

(typical of a Warburg-like behavior) of the EIS spectrum obtained for the steel 

component in the coupled macrocell assemblies exposed to solutions NP and P 
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as shown in Figures 4.32 and 4.34 in Chapter 4. The cathodic current density at 

the aluminized surface for the second scenario (after EOC drop) was considerably 

larger (~0.7 µA/cm2 for all σ) than that obtained for the first scenario. The model 

results indicate that the aluminized surface, more specifically the Fe-rich 

inclusions present in the outer aluminized coating layer, becomes better 

cathodes than in the first scenario (before EOC drop) as the system potential 

decreases to a constant value of ~-850 mV. 

Figure 5.6 shows the potential next to the metal surface as a function of 

radius for the second scenario (after EOC drop). The potential for the base case 

were nearly constant (~-850 mV) with radius and showed increasingly nobler 

potentials, as expected, at the exposed steel for decreasing values of σ (~-790 

mV for case 1 and ~-720 mV for σ2 = 10 µS/cm (case 2)), suggesting weak 

cathodic protection by the aluminized surface in extremely low conductivity 

environments as in case 2, especially near the central region of the steel. 

Figure 5.7 shows the computed macrocell currents as a function of σ for 

the second scenario (after EOC drop). The computed macrocell current was ~70 

µA for the σbc = 2,000 µS/cm (base case), in agreement with the experimental 

results obtained from the macrocell assemblies as reported in Chapter 4. As 

expected, the macrocell currents decreased for decreasing values of σ. For the 

base case, the enhanced galvanic action noted for the second scenario 

compared to the first scenario may be related to the active corrosion of the 

aluminized surface, which provided nearly full galvanic protection to the exposed 

steel at those negative potentials. 
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5.3.2 The ac Model 

The results for the ac model presented here represent only a preliminary 

evaluation step towards numerically obtaining the effect of non uniform ac current 

distribution on the EIS response in coupled aluminum/steel systems. 

The results, obtained only for the base case before the EOC drop, are 

presented as non normalized area impedance diagrams ZX(ω) in the Nyquist 

form are shown in Figure 5.8 for the reference electrode placed at 0.5, 2.5, and 

6.5 cm from the center of the steel surface. The EIS responses depended to 

some extent on the placement of the reference electrode sensing point, as the 

low frequency impedance limits tended to become smaller as the reference 

electrode was placed closer to the metal surface. But more importantly, a striking 

feature of the calculated impedance behavior was the presence of a conspicuous 

small diameter loop observable at the high frequency end as the reference 

electrode was placed further away from the metal surface and less noticeable 

otherwise. 

For comparison, Figure 5.8 also shows a curve (A) representing the EIS 

response calculated using the same ac input parameters as for the other curves 

but assuming that the electrolyte resistance does not have any effects on the ac 

current and potential distributions, that is, all surface elements are subject to a 

uniform ac potential. The impedance response for curve (A) can then be 

computed by Eq. 5.10 for the integrated impedance of the steel/aluminized 

system in series with an effective solution resistance. Notably, the impedance 

response for curve (A) did not show the high frequency arc. In light of this, the 
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high frequency feature can indeed be attributed to a non uniform ac current 

distribution artifact that likely resulted in ac current constriction near the steel 

region at the low frequencies as detailed in Kranc and Sagüés (1993). 

The overall EIS response computed by the ac model (for the reference 

electrode sensing tip located at distance from the metal surface comparable to 

that used in practice) was in close agreement with those obtained from the LCB 

specimens exposed to solutions NP and P for the period before the EOC drop 

(Chapter 4). However, the small high frequency end loop, obtained by the model, 

was not observed experimentally, indicative of negligible uneven ac current 

distribution effect for the test conditions used. A possible explanation for this 

discrepancy is that due to the size of the reference electrode used for the 

experimental tests, the measured potentials, and consequently currents too, 

were sensed on a much broader region than that assumed by the model, 

resulting in average potential values over a much larger space. To corroborate if 

this is indeed the cause, additional experiments should be conducted using small 

size reference electrodes placed at various locations from the metal surface. 

 

5.4. Conclusions 

1. At EOC~-700 mV (potential regime before the onset of the EOC drop), the dc 

model calculations were in close agreement with the experimental results. 

The computations indicated slight dependence of the potential along the 

metal surface with solution conductivity. The dc model yielded small 

macrocell currents with larger anodic current density at the active steel 
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compared to that at the passive aluminized surface, consistent also with 

experimental observation. 

2. At EOC~-850 mV (potential regime after the onset of the EOC drop), the dc 

model calculations were also in good agreement with the experimental 

observations. The model results showed a strong dependence of the 

potential and current distributions along the metal surface with solution 

conductivity. As expected, the active aluminized coating polarized the 

exposed steel to a potential close to the Fe/Fe+2 equilibrium potential, 

providing a nearly full galvanic protection to the steel for σbc = 2,000 µS/cm 

(base case). However, increasingly larger anodic current densities at the 

exposed steel were noted for decreasing values of σ, suggesting limited 

cathodic protection. In those cases, the anodic current density at the central 

portion of the steel was largest and smallest at the edge, in agreement with 

the experimental observations. 

3. The ac model results indicated  that the impedance response can be 

sometimes complicated to evaluate due to the presence of uneven ac current 

distribution which may lead, if not properly identified, to a misinterpretation of 

the impedance response. In the present system, the effect of non uniform ac 

currents was relatively small and usually not evident in the experimental 

results. However, caution is needed when proposing analog equivalent 

circuits to avoid misinterpretation. 
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Table 5.1: Computation parameters used for the dc model for all σ evaluated. 

Parameter 
First scenario 

(before EOC drop) 
Second scenario 
(after EOC drop) 

Eeqa1 / V -0.90 

Eeqa2 / V - -1.50 

Eeqc1 / V 0.50 

Eeqc2 / V 0.50 

i0a1 / A cm
-2 7 10-9 

i0a2 / A cm
-2 - 5 10-13 

i0C1 / A cm
-2 10-15 

i0C2 / A cm
-2 7 10-16 5 10-14 

iP2 / A cm
-2 7 10-9 - 

βa1 / mV dec-1 60 

βa2 / mV dec-1 - 100 

βC1 / mV dec-1  120 

βC2 / mV dec-1 200 
 

Table 5.2: Computation parameters used for the ac model for the base case. 
Y1 

secn Ω-1 
Y2 

secn Ω-1 
n1 n2 

Ra1 
Ω-cm2 

RC1 
Ω-cm2 

Ra2 
Ω-cm2 

RC2 
Ω-cm2 

3 10-3 5 10-4 0.75 0.95 3.24E+03 6.06E+03 6.20E+08 1.02E+08 
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Figure 5.1: Schematic of half portion of the LCB specimen (of dimensions r0 = 1 
cm, re = 5 cm, and H = 6.5 cm) and the two-dimensional cylindrical graded 
network used for the model implementation (∆r = ∆z = 0.1 cm). 
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Figure 5.2: Change of the total anodic and cathodic currents Ia and IC 
respectively, with the number of iterations showing convergence of the dc model. 
The calculations are for the case 1 (200 µS/cm), starting potential values = -717 
mV, relaxation factor α = 0.6, and starting O2 concentration = 3 10

-7 mol/cm3. 
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Figure 5.3: Representation of the ac model implementation to the LCB specimen 
configuration. 
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Figure 5.4: Anodic current density distribution as a function of radius (— base 
case (2,000 µS/cm), ---- case 1 (200 µS/cm), .... case 2 (10 µS/cm)). Bold and 
light lines correspond to the period before and after the EOC drop, respectively.  
 

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

0 1 2 3 4 5

Radius / cm

i C
 /
 A
 c
m

-2

2,000 µS/cm

200 µS/cm
10 µS/cm

Bare steel Aluminized coating

2,000 µS/cm

200 µS/cm

10 µS/cm

 

Figure 5.5: Cathodic current density distribution as a function of radius (— base 
case (2,000 µS/cm), ---- case 1 (200 µS/cm), .... case 2 (10 µS/cm)). Bold and 
light lines correspond to the period before and after the EOC drop, respectively. 
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Figure 5.6: Potential distribution next to the metal surface as a function of radius. 
(— base case (2,000 µS/cm), ---- case 1 (200 µS/cm), .... case 2 (10 µS/cm)). 
Bold and light lines correspond to the period before and after the EOC drop, 
respectively.  
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Figure 5.7: Computed macrocell currents Igalv as a function of σ for the first 
scenario (squares), before EOC drop, and the second scenario (circles), after EOC 
drop. 
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Figure 5.8: Calculated impedance shown as Nyquist diagrams for the base case 
for the three reference electrode positions measured from the center of the 
exposed steel surface (test frequency range: 105 to 10-3 Hz and 5 points per 
decade). Curve (A) was obtained by assuming that all surface elements in the 
network are subject to a uniform ac potential. 
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Chapter 6 

Conclusions 

 

The following conclusions can be drawn from this investigation: 

1. For aluminized steel Type 2 without mechanical coating damage, long-term 

exposures in an environment with ~370 ppm chloride concentration but of 

high carbonate precipitating tendencies (solution P) resulted in  extremely 

low nominal corrosion rates throughout the exposure, reaching <~0.08 µm/yr 

near the end. In an environment with high total alkalinity, but non-scale 

forming medium (solution NP), low/moderate nominal corrosion rates <~1 

µm/yr were recorded for most of the test exposure increasing to ~2.2 µm/yr 

near the end, concurrent with the appearance of moderate uniform 

discoloration and  increase in solution pH. In solutions of low total alkalinity 

and carbonate scaling tendency (solution C), early pitting followed by strong 

discoloration, associated with a high solution pH, were noted attaining 

nominal corrosion rates of ~1.3 µm/yr near the end of exposure. Tests using 

simulated ocean water (solution SW) of ~20,000 ppm chloride concentration 

revealed early formation of small pits as well as light uniform discoloration 

with nearly constant nominal corrosion rates of ~3 µm/yr throughout the test 
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exposure. Pits and surface discoloration in all cases appeared to be limited 

to the outer aluminized coating layer. 

2. Tests conducted on aluminized steel Type 2 with coating breaks to expose 

the base steel (steel/aluminized area ratios AR of ~0.03 and ~3 10
-4) 

confirmed that aluminized coating acted as an anode (and the exposed steel 

a cathode), providing galvanic protection to the base steel in all solutions. 

However, initial corrosion of the exposed steel was noted in solutions of high 

alkalinity and moderate chloride content with or without positive precipitating 

tendency, indicative of weak galvanic action early on in the exposure. 

Galvanic protection to the exposed steel in ocean water and in some tests in 

solution of moderate chloride content with low alkalinity and precipitating 

tendency developed early on in the exposure since little to none corrosion 

distress was observed at the exposed steel. 

3. Integrated corrosion loss on selected blemished and unblemished 

specimens, computed using the corresponding analog equivalent circuits 

were in reasonably agreement with direct thickness measurements, 

supporting the validity of the impedance models chosen. 

4. The results for blemished/macrocell specimens have trends that extrapolated 

reasonably to the limit case of unblemished aluminized surfaces (AR=0). In 

that limit, the active aluminized surface condition was never reached in 

solution P during the 3,000 hr test. However, active conditions developed on 

the unblemished aluminized surfaces in the more aggressive media after 
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incubation times comparable to those encountered for the specimens with 

AR~3 10
-4. 

5. For the blemished and unblemished specimens experiencing aluminized 

surface corrosion in all test solutions except for the simulated seawater, 

uniform strong/moderate surface discoloration appeared to be the primary 

form of corrosion, while the small isolated macro pits played a secondary 

role. In simulated seawater, macro pitting corrosion appeared to be the 

primary form of corrosion. The macroscopically uniform nature of the 

corrosion may be a manifestation of micro pits at the scale of the finely 

distributed Fe-rich inclusions present in the outer aluminized coating layer. 

The mechanism of activation of the aluminized layer may involve local 

alkalinization from enhanced cathodic reaction at the inclusions (especially in 

the low buffering capacity solution C), which would activate aluminum in the 

form of micro pits at the scale of the finely distributed inclusions present in 

the outer aluminized coating layer. Alkalinization may have been greater next 

to the exposed steel region for the blemished specimens due to enhanced 

O2 reduction rates there, consistent with experimental observations. 

6. The impedance response for passive aluminized surface can be described 

by coupled cathodic reactions taking place at the Fe-rich inclusions (for the 

unblemished condition) and mainly at the exposed steel for the blemished 

case, where surface coverage by an intermediate adsorbate alters the rate of 

the next step. For active aluminized surface, the high frequency impedance 

response was dominated by the thinning or more defective aluminum oxide 
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film capacitance in parallel with the local ohmic resistance of all micro and 

macro active pits. The low frequency impedance response was mainly 

dominated by the discrete Faradaic polarization resistance in parallel with 

the interfacial capacitance at all active pits. 

7. Nominal durability projections made for 16-gage unblemished aluminized 

steel Type 2 were >100 yr for solution P, and between 15 and 36 yr for the 

other media. However, for aluminized steel Type 2 with largest preexisting 

coating break projected durability was as low as 10 yr for solution P. For the 

other media, durability projections for specimens with preexisting coating 

breaks were between 16 and 33 yr. The results obtained in this investigation 

may be used as a first step in proposing refinements of presently used 

durability guidelines of aluminized steel Type 2 culvert pipe based on 

environmental composition.  

8. The present findings would support retaining for the unblemished condition 

the present FDOT guidelines regardless of scaling tendency for 

environments with moderately low resistivity such as those used in the tests 

(e.g. ~500 Ω-cm to ~1,000 Ω-cm) and neutral to mildly alkaline conditions 

(e.g. ~7.5<pH<~9.0). However, for blemished aluminized steel in those same 

environments the results suggest that the AK Steel method may be a more 

appropriate alternative. The results also support exploring the use of 

alternative guidelines such as the AISI method for both unblemished and 

blemished conditions in environments with extremely high chloride contents 

(e.g. resistivity <50 Ω-cm) and nearly neutral pH. Eventual changes in 
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existing guidelines should consider not only the specific results of this 

investigation but also the entirety of the performance record of aluminized 

pipe. In addition, other corrosion processes, such as MIC, should be 

considered for possible inclusion in future forecasting methods. 

9. The corrosion distribution in blemished coatings was investigated using 2-D 

dc and ac models. The dc model results matched well experimental trends. 

The dc model permitted to obtain corrosion rate information of the individual 

steel and aluminized components for solution conductivities σ beyond those 

examined experimentally. The dc results for the period before the EOC drop 

indicated slight dependence of the potential along the metal surface with the 

σ values evaluated and the largest corrosion rates at the exposed steel. At 

more negative EOC values and for the largest σ, corrosion rates at the steel 

were smallest, consistent with effective cathodic protection. However, 

increasingly larger corrosion rates at the steel were noted for decreasing 

values of σ, suggesting limited cathodic protection. In those cases, the 

corrosion rates at the central steel portion were distinctly larger than at the 

steel perimeter, in agreement with experiments. Before EOC drop, the 

computed macrocell currents were smaller than those computed after EOC 

drop, consistent with activation of the aluminized surface and nearly full 

cathodic protection of the exposed steel. 

10. The ac model results indicated that the exposed steel received relatively 

lower ac current at the high frequencies, which led to the appearance of an 

additional loop in the impedance diagram. However, the effect was relatively 
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small and normally not evident in the present experimental results. 

Nevertheless, this possible effect should be considered when exploring other 

system conditions. 

11. Tests conducted to study the cathodic behavior of unblemished aluminized 

steel Type 2 showed no conclusive evidence on the dominant cathodic 

reaction taking place at the Fe-rich inclusions. However, experimental results 

(e.g. change in open circuit potentials upon solution deaeration) permitted to 

speculate that O2 reduction was the main reaction at potential of ~-900 mV 

and H2 evolution reaction took over at more negative potentials. Tests also 

showed that for the smallest scan rate examined (0.05 mV/sec) a significant 

hysteresis existed between the cathodic current densities for the forward and 

reverse scans. The amount of hysteresis decreased for increasing scan 

rates (0.5 and 1 mV/sec) associated to the amount of Fe+2 ions being 

deposited during polarization. The results obtained from a simplified 

quantitative model were in reasonable agreement with the experimental 

results. 
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Appendix A: Results from Replicate Unblemished Specimens 
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Figure A.1: EIS behavior of the unblemished specimen #2 in solution NP (100 
KHz - 1 mHz - 5 points/decade unless indicated otherwise). 
 

-1.E+07

-8.E+06

-6.E+06

-4.E+06

-2.E+06

0.E+00

0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+06 1.0E+07 1.2E+07

Re(Z) / Ω-cm2

Im
(Z
) 
/ 
Ω
-c
m

2

48 hr

216 hr

312 hr

360 hr

480 hr

504 hr

624 hr

1224 hr

2400 hr

3144 hr

 

 
Figure A.2: EIS behavior of the unblemished specimen #2 in solution P (100 KHz 
- 1 mHz - 5 points/decade). 
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Appendix A: (Continued) 
 

-2.0E+05

-1.5E+05

-1.0E+05

-5.0E+04

0.0E+00

0.0E+00 5.0E+04 1.0E+05 1.5E+05 2.0E+05 2.5E+05 3.0E+05 3.5E+05 4.0E+05

Re(Z) / Ω-cm2

Im
(Z
) 
/ 
Ω
-c
m

2

384 hr
504 hr
648 hr
864 hr
1200 hr
1464 hr
1680 hr
1896 hr
2424 hr
2760 hr

 

 

Figure A.3: EIS behavior of the unblemished specimen #2 in solution SW (100 
KHz - 1 mHz - 5 points/decade). 
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Figure A.4: EIS behavior of the unblemished specimen #2 in solution C (100 KHz 
- 1 mHz - 5 points/decade unless indicated otherwise). 



 235 

Appendix A: (Continued) 
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Figure A.5: Evolution of the admittance parameter as a function of time for the 
unblemished specimens #2 in solutions NP (circles), P (squares), C (triangles), 
and SW (diamonds) (--- YF, 

__ YAL2). Arrows indicate CaCO3 additions to solution 
P (#2). 
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Figure A.6: Evolution of the resistive components as a function of exposure time 
for the unblemished specimens #2 in solutions NP (circles), P (squares), C 
(triangles), and SW (diamonds) (--- RAL1, —

 RAL2). Arrows indicate CaCO3 

additions to solution P (#2). 
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Appendix A: (Continued) 
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Figure A.7: Nominal corrosion current density evolution for the unblemished 
specimens #2. 
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Appendix A: (Continued) 
 

Table A.1: Values of the equivalent circuit components in Figure 2.16 estimated 
from EIS data fit for the unblemished specimen #2 exposed to solution P. 

Time 
hr 

RS 
Ω 

RAL1 
kΩ 

YF 
snF/Ω 

nF 
RAL2 
kΩ 

YAL2 
snAL2/Ω 

nAL2 
icorrAL 

µA cm-2 

48 18.9 21.3 3.17E-04 0.94 24.1 6.37E-03 0.97 0.043 

216 18.8 25.4 3.48E-04 0.94 18.3 6.39E-03 1.00 0.036 

312 19.3 71.6 3.55E-04 0.94 65.9 2.27E-03 0.86 0.013 

360 20.4 12.2 4.20E-04 0.94 11.8 1.13E-02 1.00 0.075 

480 20.0 17.6 4.29E-04 0.94 21.9 5.42E-03 0.97 0.052 

504 20.6 10.8 4.41E-04 0.94 9.0 8.46E-03 1.00 0.085 

624 21.7 15.9 4.58E-04 0.94 15.9 6.37E-03 0.99 0.057 

1224 21.6 23.3 5.24E-04 0.93 24.1 2.50E-03 0.97 0.039 

2400 24.8 115.4 5.45E-04 0.93 47.4 1.44E-03 1.00 0.008 

3144 25.0 156.8 5.45E-04 0.93 27.5 2.05E-03 1.00 0.006 

Nominal specimen area AAL = 95 cm
2 

Table A.2: Values of the equivalent circuit components in Figure 2.16 estimated 
from EIS data fit for the unblemished specimen #2 exposed to solution SW. 

Time 
hr 

RS 
Ω 

RAL1 
kΩ 

YF 
snF/Ω 

nF 
RAL2 
kΩ 

YAL2 
snAL2/Ω 

nAL2 
icorrAL 

µA cm-2 

48 0.49 2.6 5.07E-04 0.90 2.8 1.09E-02 1.00 0.16 

264 0.43 3.1 6.53E-04 0.91 2.4 7.01E-03 1.00 0.19 

648 0.44 2.6 8.96E-04 0.92 2.8 5.86E-03 1.00 0.16 

1344 0.52 2.5 1.05E-03 0.91 2.7 7.39E-03 1.00 0.17 

1680 0.54 2.7 1.02E-03 0.92 2.1 6.29E-03 1.00 0.22 

2448 0.51 2.6 1.32E-03 0.93 1.8 1.69E-02 1.00 0.26 

2808 0.50 2.6 1.72E-03 0.92 1.5 2.65E-02 1.00 0.30 

Nominal specimen area AAL= 95 cm
2 

Table A.3: Values of the equivalent circuit components in Figure 2.16 estimated 
from EIS data fit for the unblemished specimen #2 exposed to solution NP. 

Time 
hr 

RS 
Ω 

RAL1 
kΩ 

YF 
snF/Ω 

nF 
RAL2 
kΩ 

YAL2 
snAL2/Ω 

nAL2 
icorrAL 

µA/cm2 

48 14.1 5.7 4.48E-04 0.94 9.9 4.33E-03 0.92 0.16 

192 13.4 7.6 4.77E-04 0.93 17.7 1.92E-03 0.93 0.12 

360 13.1 17.5 5.38E-04 0.93 37.9 7.78E-04 0.85 0.05 

624 12.9 22.6 5.42E-04 0.93 62.8 5.04E-04 0.85 0.040 

960 13.1 23.9 5.49E-04 0.93 63.8 7.05E-04 0.94 0.038 

1224 13.5 13.6 6.15E-04 0.93 16.9 1.75E-03 1.00 0.067 

2376 13.1 14.2 7.43E-04 0.94 11.3 1.69E-03 1.00 0.064 

3072 12.6 2.7 1.15E-03 0.94 2.4 8.48E-03 1.00 0.19 

Nominal specimen area AAL = 95 cm
2 
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Appendix A: (Continued) 
 

Table A.4: Values of the equivalent circuit components in Figure 2.16 estimated 
from EIS data fit for the unblemished specimen #2 exposed to solution C. 

Time 
hr 

RS 
Ω 

RAL1 
kΩ 

YF 
snF/Ω 

nF 
RAL2 
kΩ 

YAL2 
snAL2/Ω 

nAL2 
icorrAL 

µA/cm2 

24 17.6 1.7 4.53E-04 0.91 5.9 1.57E-03 0.91 0.08 

360 15.3 0.020 1.24E-04 0.61 0.43 6.01E-03 0.71 1.05 

504 16.4 0.026 1.35E-04 0.62 1.0 5.15E-03 0.73 0.44 

648 17.5 0.030 1.34E-04 0.62 1.3 4.68E-03 0.73 0.37 

864 18.4 0.036 1.26E-04 0.65 1.5 4.00E-03 0.75 0.31 

960 18.2 0.036 1.22E-04 0.66 1.6 3.54E-03 0.76 0.29 

1392 17.9 0.042 1.09E-04 0.64 2.0 3.12E-03 0.77 0.22 

2400 17.4 0.043 9.38E-05 0.65 3.4 2.67E-03 0.80 0.14 

3048 17.8 0.042 6.75E-05 0.66 3.6 2.29E-03 0.81 0.13 

Nominal specimen area AAL = 95 cm
2 
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Appendix B: Replicate Results of the Blemished Specimens 
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Figure B.1: Nyquist plot of the EIS response of the LCB specimen #2 in solution 
NP (100 KHz - 1 mHz - 5 points/decade). 
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Figure B.2: Nyquist plot of the EIS response of the LCB specimen #3 in solution 
NP (100 KHz - 1 mHz - 5 points/decade). 
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Figure B.3: Nyquist plot of the EIS response of the LCB specimen #2 in solution 
P (100 KHz - 1 mHz - 5 points/decade). 
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Figure B.4: Nyquist plot of the EIS response of the LCB specimen #3 in solution 
P (100 KHz - 1 mHz - 5 points/decade). 
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Figure B.5: Nyquist plot of the EIS response of the LCB specimen #2 in solution 
SW (100 KHz - 1 mHz - 5 points/decade). 
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Appendix B: (Continued) 
 

Table B.1: Evolution of the nominal corrosion current density of the steel and 
aluminized portions for the replicate LCB specimens exposed to solution P. The 
parameters of the simplified equivalent circuits shown in Figure 4.41 are also 
included. Immune condition for the exposed steel was assumed when the system 
EOC reached <-800 mV. Passive condition for the outer aluminized coating was 
assumed when the aluminized surface was bright with no visible pits. 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

Ra1 
Ω 

Y* 
secn* Ω-1 

n* 
icorrFE 

µA cm-2 
icorrAL 

µA cm-2 

72 8.8 49.8 3,540 856 9.01E-04 0.78 8.0 

216 9.0 205.6 3,188 987 8.52E-04 0.80 7.4 

960 9.3 26.7 2,642 1,731 7.78E-04 0.80 5.3 

1296 9.7 141.9 6,664 2,984 6.68E-04 0.83 2.7 

passive 

Values obtained for solution P(#2) before the EOC drop. 
 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

1920 9.9 3.2 361.9 801.4 3.61E-03 0.85 0.6 

2400 10.1 3.2 147.2 150.1 6.71E-03 0.87 
immune 

3.2 

Values obtained for solution P(#2) before the EOC drop. 
 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

Ra1 
Ω 

Y* 
secn* Ω-1 

n* 
icorrFE 

µA cm-2 
icorrAL 

µA cm-2 

24 10.2 3.6 2,448 692 9.57E-04 0.75 10.3 

96 10.8 7.5 3,370 846 1.02E-03 0.76 8.2 

144 10.7 55.0 2,439 841 1.07E-03 0.76 8.9 

576 11.9 354.1 531 1,191 8.15E-04 0.83 15.1 

1344 11.8 292.3 557 1,452 1.02E-03 0.83 13.8 

passive 

Values obtained for solution P(#3) before the EOC drop. 
 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

2064 12.9 3.2 361.9 1,007 1.52E-03 0.89 0.5 

2544 13.1 1.6 147.2 288 4.55E-03 0.88 
immune 

1.7 

Values obtained for solution P(#3) after the EOC drop. 
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Appendix B: (Continued) 
 

Table B.2: Evolution of the nominal corrosion current density of the steel and 
aluminized portions for the replicate LCB specimens exposed to solution NP. The 
parameters of the simplified equivalent circuits shown in Figure 4.41 are also 
included. Immune condition for the exposed steel was assumed when the system 
EOC reached <-800 mV. Passive condition for the outer aluminized coating was 
assumed when the aluminized surface was bright with no visible pits. 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

Ra1 
Ω 

Y* 
secn* Ω-1 

n* 
icorrFE 

µA cm-2 
icorrAL 

µA cm-2 

120 11.1 9.0 1,203 1,343 1.54E-03 0.71 8.7 

216 10.5 8.9 1,142 1,229 1.73E-03 0.70 9.4 

960 10.9 3.2 308.4 1,022 1.60E-03 0.72 23.4 

1296 9.5 2.2 333.3 1,640 2.20E-03 0.67 20.0 

passive 

Values obtained for solution NP(#2) before the EOC drop. 
 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

Ra1 
Ω 

Y* 
secn* Ω-1 

n* 
icorrFE 

µA cm-2 
icorrAL 

µA cm-2 

24 6.8 15.4 732.3 263 1.01E-03 0.82 28.7 

96 7.1 30.7 913.9 429.7 1.44E-03 0.81 18.9 

144 6.8 268.9 388.7 555.5 1.41E-03 0.82 24.2 

552 6.5 48.1 533.6 2,243 3.18E-03 0.69 12.8 

passive 

Values obtained for solution NP(#3) before the EOC drop. 
 

 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

816 7.0 5.2 226 2,940 2.72E-03 0.78 0.2 

1032 7.2 8.2 232 1,817 2.95E-03 0.80 0.3 

1560 7.6 5.7 166 400.8 5.17E-03 0.83 1.2 

2040 7.9 9.4 102 125 1.31E-02 0.78 

immune 

3.8 

Values obtained for solution NP(#3) after the EOC drop. 
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Appendix B: (Continued) 
 

Table B.3: Evolution of the nominal corrosion current density of the aluminized 
portion for the replicate LCB specimens exposed to solution SW. The parameters 
of the simplified equivalent circuits shown in Figure 4.41 are also included. 
Immune condition for the exposed steel was assumed when the system EOC 
reached <-800 mV. 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

192 0.38 6.9 4,910 4,667 3.38E-03 0.81 0.10 

240 0.38 5.5 3,028 4,222 2.37E-03 0.84 0.11 

360 0.38 5.3 3,112 4,061 1.59E-03 0.90 0.12 

528 0.36 5.4 2,980 2,981 1.66E-03 0.91 0.16 

720 0.38 5.8 3,646 3,282 1.65E-03 0.91 0.14 

840 0.38 18.8 3,963 3,289 1.66E-03 0.91 0.14 

1008 0.40 15.0 5,042 4,277 1.63E-03 0.91 0.11 

1248 0.38 9.5 4,850 4,246 1.65E-03 0.91 0.11 

1536 0.39 10.0 5,410 4,148 1.66E-03 0.91 0.11 

1752 0.38 10.3 5,534 4,168 1.67E-03 0.91 0.11 

2256 0.38 11.3 6,861 4,782 1.62E-03 0.91 

immune 

0.10 

Values obtained for solution SW(#2) after the EOC drop. 
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Figure B.6: Nyquist plot of the EIS response of the SCB specimen #2 in solution 
NP (100 KHz - 1 mHz - 5 points/decade). 
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Figure B.7: Nyquist plot of the EIS response of the SCB specimen #2 in solution 
P (100 KHz - 1 mHz - 5 points/decade). 
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Figure B.8: Nyquist plot of the EIS response of the SCB specimen #2 in solution 
SW (100 KHz - 1 mHz - 5 points/decade). 
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Figure B.9: Nyquist plot of the EIS response of the SCB specimen #3 in solution 
C (100 KHz-1 mHz - 5 points/decade). 
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Appendix B: (Continued) 
 

Table B.4: Evolution of the nominal corrosion current density of the aluminized 
portion for the replicate SCB specimens exposed to solution NP. The parameters 
of the simplified equivalent circuits shown in Figure 4.41 are also included. 
Immune condition for the exposed steel was assumed when the system EOC 
reached <-800 mV. 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

72 6.6 170 5,363 6,542 5.32E-04 0.92 0.07 

168 6.4 242 3,410 4,974 7.03E-04 0.92 0.09 

360 6.5 92 3,299 3,613 7.91E-04 0.92 0.13 

624 6.5 174 9,270 8,835 8.20E-04 0.92 0.05 

888 6.6 254 11,140 8,408 8.93E-04 0.92 0.05 

1080 6.5 229 6,878 5,508 9.76E-04 0.92 0.08 

1464 6.2 66 627 822 1.57E-03 0.92 0.56 

2088 6.9 38 435 522 3.04E-03 0.89 

immune 

0.88 

Values obtained for solution NP(#2) after the EOC drop. 

 
Table B.5: Evolution of the nominal corrosion current density of the aluminized 
portion for the replicate SCB specimens exposed to solution P. The parameters 
of the simplified equivalent circuits shown in Figure 4.41 are also included. 
Immune condition for the exposed steel was assumed when the system EOC 
reached <-800 mV. 
Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
kΩ 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

96 7.1 74.5 44.5 55,350 3.59E-04 0.92 0.017 

168 7.5 62.2 16.1 15,800 4.25E-04 0.92 0.058 

288 7.9 121.1 38.7 35,080 4.67E-04 0.93 0.026 

432 7.9 64.7 27.2 20,280 5.03E-04 0.92 0.045 

648 8.2 100.6 79.7 43,640 5.15E-04 0.91 0.021 

840 8.1 170.4 288.9 71,990 5.18E-04 0.92 0.013 

1008 8.1 157.4 533.4 86,920 5.09E-04 0.92 0.011 

1272 8.3 291.3 2E3 112,500 5.06E-04 0.92 0.008 

1440 8.5 539.1 2E3 189,100 4.94E-04 0.92 0.005 

1704 7.9 292.6 3E3 156,400 4.98E-04 0.92 0.006 

2160 8.2 335.2 5E3 372,200 4.83E-04 0.93 

immune 

0.002 

Values obtained for solution P(#2) after the EOC drop. 
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Appendix B: (Continued) 
 
Table B.6: Evolution of the nominal corrosion current density of the aluminized 
portion for the replicate SCB specimens exposed to solution SW. The 
parameters of the simplified equivalent circuits shown in Figure 4.41 are also 
included. Immune condition for the exposed steel was assumed when the system 
EOC reached <-800 mV. 

Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

96 0.29 3.3 3,295 3,746 6.55E-04 0.91 0.12 

168 0.31 3.3 3,952 6,128 7.64E-04 0.91 0.07 

288 0.29 2.8 3,776 6,344 9.95E-04 0.91 0.07 

432 0.29 1.7 4,474 3,344 1.33E-03 0.90 0.14 

624 0.29 1.2 4,428 2,903 1.53E-03 0.90 0.16 

840 0.30 1.7 5,870 3,429 1.63E-03 0.89 0.13 

1008 0.30 2.9 5,665 3,210 1.65E-03 0.89 0.14 

1272 0.30 2.5 7,012 3,683 1.65E-03 0.90 0.12 

1440 0.30 3.0 7,503 3,772 1.64E-03 0.89 0.12 

1536 0.30 1.6 6,572 3,213 1.65E-03 0.90 0.14 

1680 0.30 1.8 6,538 3,412 1.63E-03 0.90 0.13 

2112 0.30 2.1 7,654 3,617 1.58E-03 0.90 0.13 

2496 0.31 3.3 10,280 4,496 1.53E-03 0.90 0.10 

2688 0.30 1.9 8,598 3,962 1.54E-03 0.90 

immune 

0.12 

Values obtained for solution SW(#2) after the EOC drop. 
 

Table B.7: Evolution of the nominal corrosion current density of the aluminized 
portion for the replicate SCB specimens exposed to solution C. The parameters 
of the simplified equivalent circuits shown in Figure 4.41 are also included. 
Immune condition for the exposed steel was assumed when the system EOC 
reached <-800 mV. 
Time 
hr 

RS 
Ω 

W1 
Ω 

RC1 
Ω 

RAL2 
Ω 

Y** 
secn** Ω-1

 
n** 

icorrFE 
µA cm-2 

icorrAL 
µA cm-2 

192 9.2 343.1 90,530 76,610 3.88E-04 0.89 0.01 

360 8.1 143.8 33,170 41,050 4.20E-04 0.90 0.01 

624 8.7 66.4 7,444 10,290 5.69E-04 0.91 0.04 

888 8.8 42.2 4,119 5,574 8.30E-04 0.92 0.08 

1080 8.4 15.0 3,090 3,570 1.01E-03 0.93 0.13 

1464 8.5 18.0 1,276 1,343 1.55E-03 0.94 0.34 

2088 9.8 16.4 1,798 1,121 2.40E-03 0.91 

immune 

0.41 
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Figure B.10: Evolution of icorrAL of the aluminized portion for the replicate LCB and 
macrocell assemblies. 
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Figure B.11: Evolution of icorrAL of the aluminized portion for the replicate SCB 
specimens. 
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Figure B.12: Evolution of icorrFE of the exposed steel portion for the replicate LCB 
specimens in solutions NP and P obtained per equivalent circuit shown in Figure 
4.41-A. 
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 Appendix C: Interpretation of the Two-Step Reaction Mechanism 

 

 This Appendix deals with systems where the surface composition or 

arrangement of phases changes as a result of the ac excitation polarization. This 

treatment is adapted from Sagüés (2006) which follows along general lines 

established by Epelboin (1970). The generalized conceptual interpretation of the 

system to be modeled is as follows. Species A reacts at the metal surface 

yielding an intermediate species B that resides on a fraction θ of the surface area 

as an adsorbate formerly suitable for reaction of species A which can react only 

on an area fraction (1-θ). Species B undergoes further reduction to become 

species C, which then detaches from the metal surface. As the potential is varied 

from the EOC, the rates of formation and decomposition of species B change, 

leading in general to change in coverage from the steady state condition. 

 Assuming that the system is at a steady state potential E0 and that the 

decomposition of species B to yield species A is neglected near E0, thus: 

A + nA e � Badsorbed (C.1) 
Badsorbed + nB e � C (C.2) 
 
where nA and nB are electrons involved in each reaction step. 

 The reaction rates per unit area are assumed to be potential dependent 

such as: 

rA = a1 k1 (1-θ) (C.3) 
rB = a2 k2 θ (C.4) 
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Appendix C: (Continued) 
 

where k1 and k2 are the rate constants for the reactions (C.1) and (C.2) of the 

form k = k0 exp (-2.3 (E-E0)/β), respectively expressed in moles per unit time, a1 

is the activity of species A assumed to be constant with applied potential, and a2 

represents the number of moles per unit area of the area covered by species B. 

The parameters k0 and β are the rate constants at the steady state (rA0=rB0) and 

the cathodic Tafel slope, respectively. The difference between rA and rB is equal 

to (r1-r2) = dm/dt = a2 dθ/dt = a1 k1 (1-θ) – a2 k2 θ where m is number of moles of 

species B per unit area. 

 The corresponding cathodic current per unit area (negative by convention) 

is a function of the potential and θ such as: 

IC = -F (nA a1 k1 (1-θ) + nB a2 k2 θ) (C.5) 
 
 Taking the total derivative of the cathodic current to Eq. (C.5), one gets: 

d(IC) = (∂IC/∂θ)E dθ + (∂IC/∂E)θ dE (C.6) 
  
 Differencing respect to the potential E, one finds the overall admittance Y 

of the coupled reactions: 

Y = -(∂IC/∂θ)E dθ/dE - (∂IC/∂E)θ (C.7) 
 
Now, taking the derivative of Eq. (C.5) of IC with respect to θ around E0, one gets 

the first term of Eq. (C.7): 

(∂IC/∂θ)E0 = F (nA k10 a1 – nB k20 a2) (C.8) 
 
where k10 and k20 are the reaction rate constants at the steady state potential for 

each coupled reaction. 
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Appendix C: (Continued) 
 

The term (∂IC/∂E)θ is obtained by differentiating Eq. (C.5) with respect to E: 

(∂IC/∂E)θ = F (nA a1 (1-θ) ∂k10/∂E– nB a2 θ ∂k20/∂E) (C.9) 
 
 Recalling that k = k0 exp (-2.3 (E-E0)/β), then its derivative with respect to 

E for each reaction is: 

(∂k/∂E)θ = -k0 exp (-2.3 (E-E0)/β) (2.3/β) = -2.3 k/β (C.10) 
 
Replacing Eq. (C.10) into Eq. (C.9), one obtains: 

(∂IC/∂E)θ = -F (2.3 nA a1 (1-θ) β1
-1 + 2.3 nB a2 θ β2

-1) (C.11) 
 
 Around the steady state condition θ0 = a1 k10 / (a1 k10 + a2 k20) so that Eq. 

(C.11) can then be written as: 

 (∂IC/∂E)θ0 = -2.3 a1 a2 F k10 k20 (nA β1
-1+nB β2

-1)/(a1 k10+a2 k20) (C.12) 
 
 For EIS measurements, the small amplitude ac potential varies 

harmonically with the excitation frequency ω, and as a result the area coverage 

fraction θ deviates from θ0 following a time-dependent sinusoidal excitation. 

Thus, 

θ – θ0 = A0 exp (jωt) (C.13) 

where A0 is a complex number that accounts for the phase difference between 

(θ-θ0) and the excitation potential. Hence, 

d(θ – θ0)/dt = dθ/dt =  jω (θ – θ0) (C.14) 
 
 Recalling that dθ/dt = a1/a2 k1 (1-θ) – k2 θ and replacing into Eq. (C.14), 

one obtains: 

jω (θ – θ0) = (a1/a2) k1 (1-θ) – k2 θ (C.15) 
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Appendix C: (Continued) 
 

Taking the derivative of both sides with respect to E: 

jω dθ/dE = -(dθ/dE) (a1/a2 k1+k2)-θ (a1/a2 dk1/dE+dk2/dE)+a1/a2 dk1/dE (C.16) 
 
which at around θ0 yields: 

(dθ/dE)θ0=(2.3 a1 a2 k10 k20/(a1 k10+a2 k20)) (β1
-1
-β2

-1
)/(j a2 ω+(a1 k10+a2 k20)) (C.17) 

 
 Replacing Eqs. (C.8), (C.12), and (C.17) into Eq. (C.7), the overall 

admittance for excitation potentials around E0 is: 

Y=2.3 IC (nA+nB)
-1
 (nA β1

-1
+nB β2

-1
+(nB I2-nA I1)( β1

-1
-β2

-1
)/(jFa2 ω (nA+nB)+I1+I2) (C.18) 

 
where I1 = F a1 k10 (nA+nB) and I2 = F a2 k20 (nA+nB). 

 In the simplest case of β1=β2=β or nA a1 k10 = nB a2 k20, the admittance 

reduces to the so-called frozen polarization resistance or charge transfer 

resistance (RCT = β (2.3 IC)
-1) in the time domain. Under this condition, the area 

coverage fraction θ remains constant and no phase difference between (θ-θ0) 

and the excitation potential exists since at the high frequency limit the surface 

coverage does not have time to respond to the excitation signal. 

 For the usual case of β1≠β2 and depending on the sign of (β1-β2) and (nBI2-

nAI1), the system may have a capacitive or inductive behavior reaching at the low 

frequency limit a so-called relaxed polarization resistance or simply polarization 

resistance RP of the form: 

RP=(2.3 IC (nA+nB)
-1 (nA β1

-1+nB β2
-1+(nB I2-nA I1)( β1

-1-β2
-1)/(I1+I2))

-1 (C.19) 
 
 When the product (β1-β2)(nBI2-nAI1) is positive, then RCT<RP and the 

behavior is capacitive, resembling the usual behavior of a Randles circuit if the 

effects of interfacial capacitance are ignored. Otherwise, the system is inductive. 
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Appendix C: (Continued) 
 

Inputting typical values of β1, β2, nB, I2, nA, I1, and a2, values of RCT and RP were 

~106 Ω-cm2 comparable to those obtained experimentally for passive 

unblemished aluminized steel in NP and P solutions. 
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