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Our greatest weakness lies in giving up.  The most certain way to succeed is always to try 

just one more time. 
 

Thomas A. Edison 
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ABSTRACT 

A new optimization algorithm and general purpose software package, which can 

efficiently solve large-scale constrained non-linear optimization problems and leverage 

parallel computing, is designed and studied.  The new algorithm, referred to herein as 

LASO or LArge Scale Optimizer, combines the best features of various algorithms to 

create a computationally efficient algorithm with strong convergence properties.  

Numerous algorithms were implemented and tested in its creation.  Bound-constrained, 

step-size, and constrained algorithms have been designed that push the state-of-the-art.  

Along the way, five novel discoveries have been made: (1) a more efficient and robust 

method for obtaining second order Lagrange multiplier updates in Augmented 

Lagrangian algorithms, (2) a method for directly identifying the active constraint set at 

each iteration, (3) a simplified formulation of the penalty parameter sub-problem, (4) an 

efficient backtracking line-search procedure, (5) a novel hybrid line-search trust-region 

step-size calculation method.  The broader impact of these contributions is that, for the 

first time, an Augmented Lagrangian algorithm is made to be competitive with state-of-

the-art Sequential Quadratic Programming and Interior Point algorithms.      

The present work concludes by showing the applicability of the LASO algorithm 

to simulate one step of digital human walking and to accelerate the optimization process 

using parallel computing. 
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PUBLIC ABSTRACT 

Numerical optimization is a fundamental and necessary step in the simulation of 

many real-world processes in the sciences, physics, engineering, and economics. 

Unfortunately, however, the sequential nature of the optimization process often acts as 

one of the greatest bottlenecks to achieving real-time simulation in these fields.  One such 

example, which is considered here, is the problem of digital human simulation. 

Therefore, a new optimization algorithm and associated software package, which can 

efficiently solve large-scale problems and leverage parallel computing, is needed.  The 

result of this research is a new optimization algorithm and general purpose software 

package that push the state-of-the-art in the field of optimization.    
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CHAPTER I  

INTRODUCTION 

1.1 Introductory Remarks 

Researchers at The University of Iowa’s Virtual Soldier Research (VSR) Program 

formulate the problem of simulating human motion as an optimization problem.  As 

human motion simulation tasks increase in duration and complexity, this optimization 

problem grows quickly in size and computational expense.  A new optimization 

procedure and general purpose software package, which can efficiently solve this high-

dimensional tightly-constrained problem and take advantage of parallelization wherever 

possible, is needed.   

In the above-mentioned approach to simulating human motion, dynamic effort of 

a spatial digital human model is typically taken as the objective to be minimized and the 

various physical and kinematical requirements of the model are imposed as constraints.  

The spatial digital human model developed at The University of Iowa consists of 55 

Degrees of Freedom (DOF) of which 6 are virtual DOFs that represent global translation 

and rotation and 49 are physical joint angle DOFs that represent local joint rotations.  

Time histories of these 55 DOFs make up the design variables.  Thus, there are an infinite 

number of design variables.  These design functions are represented by cubic B-splines to 

transform the problem to a finite dimensional one.  The control points of each B-spline 

are the final design variables that are finite in number.  If the contact forces between the 

body and the external environment are also treated as unknown variables, the number of 

design variables is increased.  Furthermore, as the duration and complexity of tasks 

increases, greater numbers of constraints to represent the increased physical and 

kinematical requirements will be needed as well.  

Even seemingly simple tasks such as walking and lifting a box are large problems 

that take minutes to solve.  For instance, Xiang (2009) found that simulating one step of 
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human walking requires 330 design variables (55 DOFs with 6 control points each) and 

1036 nonlinear constraints (158 of which are active at the optimal solution) and takes 512 

CPU seconds on a Pentium(R) 4, 3.46 GHz computer.  Likewise, Xiang (2008) found that 

lifting a 10-lb box from a lower shelf to a higher shelf requires 220 design variables (55 

DOFs with 4 control points each) and 420 nonlinear constraints and takes 200 CPU 

seconds on a Pentium(R) 4, 3.46 GHz computer.  As longer duration and more complex 

tasks, such as climbing a wall or running an obstacle course, are developed, achieving 

real time digital human simulation will become increasingly difficult and specialized 

tools will be needed. 

While existing optimization software packages for solving such large-scale 

nonlinear constrained optimization problems are quite efficient and robust, they offer few 

options for parallelization and will most likely be less efficient for longer duration and 

more complex tasks that require greater numbers of design variables and constraints.   

A thorough review of existing large-scale nonlinear constrained optimization 

software packages is now presented to show the current state-of-the-art in the field, 

conceptualize the best algorithmic structure for the problem at hand, and identify 

important assumptions relevant to the present work.  It is important to note, however, that 

the literature review for this work is not limited to the next section.  Rather, the literature 

has been reviewed, as needed, throughout this document on specific topic areas.  

1.2 Review of Literature 

Currently, some of the most efficient and robust software packages for solving 

large-scale nonlinear constrained optimization problems are LOQO, KNITRO, SNOPT, 

LANCELOT, and MINOS.   

Vanderbei’s (1999) LOQO package implements an interior point method and, as 

such, formulates and solves a primal-dual linear system to generate each design / 

Lagrange multiplier iterate towards the solution.  Requiring the solution of only one 
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linear system at each iteration, ranks LOQO among the most computationally efficient of 

the algorithms.  LOQO adds slack variables to inequalities to convert them to equalities.  

This facilitates the formulation of the primal-dual linear system solved by the algorithm, 

but does increase problem dimensionality substantially when many inequality constraints 

are present.  Instead of explicitly enforcing positivity of the slack variables, LOQO 

implicitly enforces positivity by incorporating a logarithmic barrier function, which is in 

terms of the slack variables, into the objective.  This removes the need to add slack 

variable constraints to the problem, however, it does add complicating logarithmic terms 

to the objective.  Rather than combine the objective function and constraint violations 

into a single penalty objective function to be minimized, LOQO performs updates to the 

primal and dual (i.e. design and Lagrange multiplier) variables and accepts the new point 

if either the barrier objective function or infeasibility decreases, similar to filter methods.  

Thus, LOQO can make progress towards optimality and/or feasibility at every iteration.  

LOQO uses an Armijo rule line search to ensure global convergence.   

Like LOQO, Byrd, Hribar, and Nocedal’s (1999) KNITRO package implements 

an interior point method with a barrier objective function and treats all constraints as 

equalities.  Unlike LOQO, however, KNITRO uses a Sequential Quadratic Programming 

(SQP) method to solve the subproblem that generates each design / Lagrange multiplier 

iterate towards the solution, instead of formulating and solving a primal-dual linear 

system.  Specifically, the SQP method is applied to the subproblem to obtain updated 

design variables and an explicit second-order Lagrange multiplier update formula, which 

is in terms of the design variables, is applied to obtain updated Lagrange multiplier 

variables, in a so called two-phase approach.  This approach is more computationally 

expensive than directly solving one linear system, but has the benefit of being able to 

handle nonlinearities in the problem better.  KNITRO uses a trust region approach to 

ensure global convergence instead of a line search.                 
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Gill, Murray, and Saunders’ (2002) SNOPT package implements an active-set 

SQP method and, as such, solves a linearly constrained Quadratic Programming (QP) 

subproblem at each iteration.  If the linearized versions of the original problem 

constraints are inconsistent then the SQP subproblem is infeasible and SNOPT switches 

into elastic mode.  Elastic mode ensures consistency of the linearized constraints by 

adding two slack variables to each linearized equality constraint and one slack variable to 

each linearized inequality constraint.  Unlike both LOQO and KNITRO, which use 

second order information about the problem directly, SNOPT uses a limited-memory 

quasi-Newton approach to maintain an approximation of the Hessian.  This facilitates the 

solution of problems where second order information is not readily available.  Like 

LOQO, SNOPT uses a line search to ensure global convergence.  

Conn, Gould, and Toint’s (1992) LANCELOT package implements an augmented 

Lagrangian technique and, therefore, combines the objective function and constraint 

violations into a single augmented Lagrangian objective function.  This augmented 

Lagrangian objective function is then minimized to get an approximate solution of the 

design variables.  After an approximate solution has been obtained, the Lagrange 

multiplier variable for each constraint is updated, along with the penalty parameter, and 

the process is repeated.  LANCELOT efficiently handles constraints on the design 

variable bounds by enforcing them directly, using a bound-constrained algorithm, instead 

of treating them as additional constraints. LANCELOT converts all inequality constraints 

to equalities by introducing slack variables and uses a trust region approach to ensure 

global convergence.      

Murtagh and Saunders’ (2003) MINOS package implements a Linearly 

Constrained Lagrangian (LCL) approach that minimizes an augmented Lagrangian 

function subject to linearizations of the constraints.  MINOS uses the same smooth exact 

augmented Lagrangian as LANCELOT, which is essentially a combination of a 

Lagrangian and a quadratic penalty function.  However, MINOS replaces the augmented 
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Lagrangian’s constraint terms with the difference between each constraint’s actual value 

and the value of its linearization at the current design.  Unlike LANCELOT, which 

avoids a factorization of the constraint Jacobian matrix by performing updates to the 

Lagrange multiplier variables at the end of each bound-constrained minimization, 

MINOS obtains new estimates of the Lagrange multiplier variables at every step towards 

the solution.  This results in superior progress towards feasibility, especially in problems 

with large numbers of constraints, but becomes very computationally expensive on large 

degree of freedom problems.  Both LANCELOT and MINOS solve their bound-

constrained and linearly-constrained subproblems, respectively, using quasi-Newton 

approximations of the Hessian.  However, MINOS is based on an approach that uses a 

reduced approximation of the Hessian whereas LANCELOT’s approach maintains a full 

approximation of the Hessian, making MINOS, once again, better suited for relatively 

few degree of freedom problems and LANCELOT better suited for larger degree of 

freedom problems.        

Benson, Shanno, and Vanderbei (2002) studied the performance of LOQO, 

KNITRO, and SNOPT on a large set of large-scale test problems of various types.  For 

generally constrained (i.e. both equality and inequality constrained) nonlinear problems 

they found that, in general, KNITRO was the most robust (i.e. it solved the greatest 

number of problems using the solver’s default settings before a maximum time was 

exceeded) and that LOQO was the fastest in terms of CPU time.  Both KNITRO and 

LOQO were substantially faster than SNOPT in terms of CPU time, which is to be 

expected since SNOPT requires the solution of a linearly constrained subproblem at each 

step and KNITRO and LOQO essentially only require solution of a linear system of 

equations.  LOQO and KNITRO also use the actual Hessian matrix in computations, thus 

requiring second order information about the problem, whereas SNOPT uses an 

approximation of the Hessian only.  It is unclear from Benson, Shanno, and Vanderbei’s 

work, however, which software package performed best in terms of function and gradient 
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evaluations, a critical aspect in solving problems with expensive function and gradient 

evaluations.  Also, many of the SNOPT runs were stopped prematurely because the 

maximum time limit was exceeded.  So, it is unclear which software package truly leads 

in robustness. 

Dolan and More (2001) studied the performance of MINOS, SNOPT, 

LANCELOT, and LOQO on a set of large-scale constrained optimal control and 

parameter estimation problems.  They note that software packages like LANCELOT and 

LOQO that require second-order problem information typically converge in fewer 

iterations, but each iteration is more expensive because of the cost of calculating second-

order information.  They also note how obtaining second-order information may not even 

be possible in some cases.  In general, in terms of performance profiles, they found 

LOQO, SNOPT, and MINOS to be competitive with each other and LANCELOT to be 

less competitive.  This is to be expected since LOQO, SNOPT, and MINOS make steps 

towards optimality and feasibility at every step whereas LANCELOT repeatedly 

approximates the optimal solution before taking a step towards feasibility.  Specifically, 

LOQO was the fastest solver, in terms of CPU time, and SNOPT was the most robust, 

solving over 90% of the test problems. 

Bongartz, Conn, Gould, Saunders, and Toint (1997) studied the performance of 

the LANCELOT and MINOS software packages on a set of over 900 constrained and 

unconstrained large-scale nonlinear optimization problems.  In general, they found that 

LANCELOT was more efficient in terms of function and gradient evaluations, but that 

MINOS was more computationally efficient, except when there are many degrees of 

freedom.  These results make sense since MINOS’s reduced Hessian approximation 

strategy requires less computation, but may hinder convergence on large degree of 

freedom problems.  Also, in Bongartz, Conn, Gould, Saunders, and Toint’s work, 

LANCELOT’s default configuration has been used, which uses second-order problem 

information directly instead of maintaining an approximation of the Hessian.  Lastly, 
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MINOS is found to be more reliable on linear programming problems and LANCELOT 

is found to be somewhat more reliable on problems with nonlinear constraints.  This 

results from MINOS’s linearly constrained Lagrangian approach.               

Nocedal and Wright (2006) note that, at present, interior point methods (e.g. 

LOQO and KNITRO) and active-set methods (e.g. SNOPT) appear to be the most 

promising and augmented Lagrangian methods (e.g. MINOS and LANCELOT) appear to 

be less efficient.  However, rather than pick a single algorithmic framework to move 

forward with, the present work attempts to combine favorable aspects of multiple of the 

abovementioned algorithms to further the state-of-the-art in the field.  Specifically, based 

on the findings of previous researchers, it is hypothesized that the following guiding 

principles will yield the most efficient and robust algorithm: (i) similar to MINOS and 

LANCELOT constraints will be incorporated into the objective via a smooth exact 

augmented Lagrangian, which preserves the convergence properties of the underlying 

unconstrained algorithm, to avoid the addition of dimensionality increasing slack 

variables and complicating logarithmic terms to the objective; (ii) similar to LANCELOT 

and SNOPT a bound-constrained formulation will be used to keep the number of 

constraints as small as possible; (iii) similar to LOQO, KNITRO, MINOS, and SNOPT, 

updates to both the design and Lagrange multiplier variables will occur at every iteration 

to support rapid progress towards optimality and feasibility; (iv) similar to LOQO and 

KNITRO, second-order updates to the Lagrange multiplier variables, which require the 

solution of a linear system of equations only, will be preferred over first-order updates, 

like LANCELOT, or obtaining estimates of the multipliers directly by solving a 

computationally expensive linearly constrained subproblem, like SNOPT;  (v) similar to 

SNOPT, inequality constraints will be handled directly via an active set strategy, instead 

of converting them to equality constraints by introducing dimensionality increasing slack 

variables;  (vi) unlike SNOPT and MINOS, constraints will not be linearized, but instead 

used in their original form to avoid infeasible subproblems, which require the addition of 
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more dimensionality increasing slack variables, and efficiency hindering numerical 

issues, such as the Maratos effect; (vii) similar to LOQO, KNITRO, SNOPT, and 

LANCELOT a full Hessian will be maintained to handle large degree of freedom 

problems efficiently; (viii) similar to SNOPT, MINOS, and LANCELOT (using non-

default options), a limited-memory BFGS approximation of the Hessian will be used to 

facilitate the solution of problems where second-order information is not readily available 

and to limit memory usage on high-dimensional problems;  (ix) similar to LOQO, 

SNOPT, and MINOS, line search based methods will be preferred over computationally 

expensive trust region approaches and proper scaling of the Hessian will be used to 

encourage unit step size acceptance, thus keeping the number of function evaluations to a 

minimum;  (x) unlike all of the abovementioned software packages, parallelization will 

be used to the maximum extent possible to improve efficiency. 

1.3 Objective of Research 

The primary objectives of this research are two-fold: 1) study various algorithms 

and develop a general purpose algorithm for constrained optimization, which efficiently 

solves the digital human simulation problem formulated by researchers at The University 

of Iowa’s Virtual Soldier Research Program, and integrate this software into the Santos 

digital human simulation software, and 2) develop and implement a parallelization 

strategy that further improves the efficiency of the optimization solution process and 

software package just described. 

1.4 Scope of Thesis 

This thesis studies the various aspects necessary to develop algorithms and a 

general purpose large-scale nonlinear constrained optimization software package.  

Furthermore, it offers five novel contributions that extend the current state-of-the-art in 

the field and studies the numerical performance of these contributions.  Specifically, a 

novel hybrid line search / trust region approach, a new efficient backtracking line search 
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procedure, a more efficient and robust method for obtaining second order Lagrange 

multiplier updates in augmented Lagrangian algorithms, a method for directly identifying 

the active constraint set at each iteration, and a simplified formulation of the penalty 

parameter sub-problem are offered and their numerical performance is studied on a set of 

test problems from the literature.  

Chapter II takes a closer look at bound-constrained algorithm design and studies 

the numerical performance of the underlying unconstrained search direction techniques, 

which determine the efficiency and convergence properties of a bound-constrained 

algorithm.  Chapter III examines the step size calculation sub-problem that, in addition to 

ensuring global convergence, has a significant impact on an algorithm’s convergence and 

computational efficiency.  Here, a new efficient backtracking algorithm and a novel 

hybrid line search / trust region approach are proposed and their numerical performance 

is studied.  Chapter IV studies the design of constrained algorithms and proposes 

modifications to the standard augmented Lagrangian formulation that incorporate 

favorable aspects of SQP and interior point methods.  Specifically, a bound-constrained 

augmented Lagrangian method with continuous multiplier updates, which requires the 

solution of only two linear systems per iterate towards the solution, is proposed and its 

numerical performance studied.  In chapter V, a parallel L-BFGS two-loop recursion is 

proposed and implemented on the Central Processing Unit (CPU) and Graphics 

Processing Unit (GPU) to better understand which offers the greater promise for real time 

optimization.  In chapter VI, the algorithm developed in chapters II through V is applied 

to the tightly-constrained high-dimensional highly-nonlinear predictive dynamics digital 

human walking problem and its performance on this problem is compared to that of 

SNOPT.  Finally, in chapter VII some conclusions obtained from the results of chapters II 

through VI are made and areas for further research are identified.          
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CHAPTER II 

DESIGN OF ALGORITHM FOR BOUND-CONSTRAINED 

OPTIMIZATION PROBLEMS 

2.1 The Bound-Constrained Minimization 

Bound-constrained algorithms are preferred over constrained algorithms for high-

dimensional problems with only simple bounds on the design variables.  They’re 

preferred not only for their efficient handling of bound constraints, but also for their 

ability to quickly identify and essentially remove active variables from the problem early 

on.  Specifically, by enforcing the KKT optimality conditions for the bound constraints 

explicitly, instead of defining a Lagrangian function that enforces them implicitly, bound-

constrained methods are able to solve for bound constraint Lagrange multiplier variables 

exactly at each iteration and avoid the addition of complicating penalty terms to the 

objective.  Additionally, by identifying the set of active variables early on and handling 

them separately, these methods allow the search direction calculation and step size 

identification steps to occur in a lower-dimensional space, which has various numerical 

benefits.     

  The bound-constrained algorithm presented here is based on Schwartz and 

Polak’s (1997) approach.  Schwartz and Polak’s (1997) approach has been proven to 

identify the active set in a finite number of iterations and to preserve the rate of 

convergence of the underlying unconstrained search direction.  It has also been designed 

such that it can be used with any unconstrained search direction calculation technique.  

Section 2.1.1 presents the basic algorithm developed by Schwartz and Polak (1997) and 

clarified by Arora (2012).  Similar to these works, the basic algorithm presented includes 

the following general steps: initialization of algorithmic parameters, identification of the 

inactive/active sets and Lagrange multiplier variable values, check for convergence, 

setting of the active set search direction to that of steepest descent, calculation of an 
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inactive set search direction satisfying a set of conditions, identification of a step size 

satisfying an Armijo-like rule, updating the design using a projection operator.  Unlike 

these works, a slightly different set of conditions, i.e. eqns. 2.5 and 2.6, have been used to 

test the acceptability of the inactive set search direction.  This change was made after 

numerical testing showed that for some poorly scaled problems, the original conditions 

proposed by Schwartz and Polak (1997) were rejecting some search directions that 

actually satisfied the original intent of the conditions.  Therefore, conditions that are less 

compact, but more robust to poorly scaled problems have been used. 

2.1.1 Basic Algorithm 

The following bound-constrained algorithm applies to optimization problems with 

lower and upper bounds on the design variables defined as: 

minimize  ݂(ܠ)  

subject to ݈௜ ≤ ௜ݔ ≤ ݅     ௜ݑ = 1, ݊   

Step 1: Set k = 0, ߝ௔ = 10e-8, ߝ௖ = 10e-6, ߩ ∈ ଵߪ ,[0,1) ∈ (0,1), and ߪଶ ∈ (1, ∞), 

where k is the minor iteration counter, ߝ௔ is the constraint activity parameter, ߝ௖ is the 

convergence parameter, ߩ is a factor between 0 and 1, and ߪଵ and ߪଶ are algorithmic 

parameters.     

Step 2: Ensure all design variables are on or within their bounds by applying the 

following projection operator on each element of ܠ(௞) such that ݔ௜
(௞) =  ௜ܲቀݔ௜

(௞)ቁ: 

௜ܲ(ݖ) = ቐ
݈௜ ݖ ݂݅ ≤ ݈௜

ݖ ݂݅ ݈௜ < ݖ < ௜ݑ
௜ݑ ݖ ݂݅ ≥ ௜ݑ

  ;     ݅ = 1, ݊  (2.1) 

Step 3: Calculate the gradient vector at the current design ܠ(௞): 

સࢌ(௞) = સࢌ൫ܠ(௞)൯  (2.2) 

Step 4: Identify the active- and inactive-sets ܣ௞ and ܫ௞ of the design variables, 

respectively; Calculate the Lagrange multipliers for the lower- and upper-bound 
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constraints and the active elements of the search direction vector ܌(௞) using the 

active/inactive variables procedure shown in section 2.1.1.1. 

Step 5: Check if either of the following convergence criteria are satisfied.  If 

satisfied, stop.  Otherwise, continue. 

ቛસࢌூೖ

(௞)ቛ ≤ ,൫1ݔ௖൛݉ܽߝ ฮܠ(௞)ฮ൯ൟ  (2.3) 

ቛસࢌூೖ

(௞)ቛ ≤ ,൫1ݔ௖൛݉ܽߝ ห݂൫ܠ(௞)൯ห൯ൟ  (2.4) 

Step 6: Calculate the components of the search direction vector corresponding to 

the inactive set (i.e., ܌ூೖ

(௞)) using any unconstrained method.  Ensure that the search 

direction obtained is a direction of descent by checking the following conditions.  If 

either of the following conditions is not satisfied, restart the algorithm from the current 

design by taking the search direction as that of steepest descent and by throwing out any 

historical information used in calculating ܌ூೖ

(௞): 

ூೖࢌଵቛસߪ

(௞)ቛ ≤ ቛ܌ூೖ

(௞)ቛ ≤ ூೖࢌଶቛસߪ

(௞)ቛ  (2.5) 

−
ቀ܌಺ೖ

(ೖ) ∙  સࢌ಺ೖ
(ೖ)ቁ

ቛ܌಺ೖ

(ೖ)ቛቛસࢌ಺ೖ

(ೖ)ቛ
≥

ఙభ

ఙమ
  (2.6) 

Step 7: Find a step size ߙ∗ > 0 that satisfies the following Armijo-like rule: 

(ߙ)݂ ≤ ݂(0) + ߩ ቂߙ ቀસࢌூೖ

(௞) ∙ ூೖ܌

(௞)ቁ + સࢌ஺ೖ

(௞) ∙ ൛ܠ(௞ାଵ) − ൟ(௞)ܠ
஺ೖ

ቃ (2.7) 

Note: at trial steps the design should be updated using the projection operator defined in 

step 2 such that ܠ(௞ାଵ) = (௞)ܠ)ࡼ + (௞ାଵ)ܠ Update the design by setting  .((௞)܌ߙ =

(௞)ܠ)ࡼ +  .(௞ାଵ)ࢌCalculate સ  .((௞)܌∗ߙ

Step 8: Set ݇ = ݇ + (௞)ܠ ,1 = (௞)ࢌસ ,(௞ାଵ)ܠ = સࢌ(௞ାଵ), and go to Step 4. 

2.1.1.1 Active/Inactive Variables Procedure  

The following procedure may be used to identify the active- and inactive-sets ܣ௞ 

and ܫ௞ of the design variables, respectively; Calculate the Lagrange multipliers for the 
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lower- and upper-bound constraints and the active elements of the search direction vector 

 :such that the KKT optimality conditions are satisfied (௞)܌

if  ݈௜ ≤ ௜ݔ
(௞) ≤ ݈௜ + ∇ ൯ and(௞)ܠ൫ߝ ௜݂

(௞) > 0 (i.e., lower-bound is active) 

     then  ݅ ∈ ௅௜ݑ  ,௞ܣ = ∇ ௜݂
(௞) ≥ ௎௜ݑ  ,0 = 0,  ݀௜

(௞) = −∇ ௜݂
(௞) 

else if  ݑ௜ − ൯(௞)ܠ൫ߝ ≤ ௜ݔ
(௞) ≤ ∇ ௜ andݑ ௜݂

(௞) < 0 (i.e., upper-bound is active) 

     then  ݅ ∈ ௅௜ݑ  ,௞ܣ = ௎௜ݑ  ,0 = −∇ ௜݂
(௞) ≥ 0,  ݀௜

(௞) = −∇ ௜݂
(௞) 

else  ݈௜ + ൯(௞)ܠ൫ߝ < ௜ݔ
(௞) < ௜ݑ −  ൯ (i.e., neither bound is active)(௞)ܠ൫ߝ

     then  ݅ ∈ ௅௜ݑ  ,௞ܫ = 0,  and  ݑ௎௜ = 0 

where ߝ൫ܠ(௞)൯ = ݉݅݊൛ߝ௔ , ฮ࢝൫ܠ(௞)൯ฮൟ  

and ݓ௜ቀݔ௜
(௞)ቁ =

ە
ۖ
۔

ۖ
ݔܽ݉ۓ ቄ−∇ ௜݂

(௞), ቀ݈௜ − ௜ݔ
(௞)ቁቅ ݂݅ ∇ ௜݂

(௞) > 0

ݔܽ݉ ቄ  ∇ ௜݂
(௞) , ቀݔ௜

(௞) − ௜ቁቅݑ ݂݅ ∇ ௜݂
(௞) < 0

0 ݂݅ ∇ ௜݂
(௞) = 0

 

2.2 Steepest Descent 

The steepest descent or simple gradient descent method, which has origins dating 

back to the work of Cauchy in 1847, calculates the search direction as the direction in 

which the objective function decreases most rapidly, at least in the immediate area around 

current point.  The steepest descent approach integrated into a bound-constrained 

algorithm is shown in section 2.2.1.     

2.2.1 Bound-Constrained Steepest Descent Algorithm 

The following bound-constrained algorithm applies to optimization problems with 

lower and upper bounds on the design variables defined as: 

minimize  ݂(ܠ)  

subject to ݈௜ ≤ ௜ݔ ≤ ݅     ௜ݑ = 1, ݊   
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Step 1: Set k = 0, ߝ௔ = 10e-8, ߝ௖ = 10e-6, ߪ ,0.2 = ߩଵ = 0.2, and ߪଶ = 10, where k 

is the minor iteration counter, ߝ௔ is the constraint activity parameter, ߝ௖ is the 

convergence parameter, ߩ is a factor between 0 and 1, and ߪଵ and ߪଶ are algorithmic 

parameters.     

Step 2: Ensure all design variables are on or within their bounds by applying the 

projection operator, i.e. eqn. 2.1, on each element of ܠ(௞) such that ݔ௜
(௞) =  ௜ܲቀݔ௜

(௞)ቁ. 

Step 3: Calculate the gradient vector at the current design ܠ(௞) as in eqn. 2.2. 

Step 4: Identify the active- and inactive-sets ܣ௞ and ܫ௞ of the design variables, 

respectively; Calculate the Lagrange multipliers for the lower- and upper-bound 

constraints and the active elements of the search direction vector ܌(௞) using the 

active/inactive variables procedure shown in section 2.1.1.1. 

Step 5: Check if either of the convergence criteria, i.e. eqn. 2.3 or eqn. 2.4, are 

satisfied.  If satisfied, stop.  Otherwise, continue. 

Step 6: Calculate the components of the search direction vector corresponding to 

the inactive set (i.e., ܌ூೖ

(௞)) by setting ܌ூೖ

(௞) = −સࢌூೖ

(௞) (i.e., the steepest descent direction).   

Ensure that the search direction obtained is a direction of descent by checking the 

conditions of eqns. 2.5 and 2.6.   

Step 7: Find a step size ߙ∗ > 0 that satisfies the Armijo-like rule of eqn. 2.7.  

Note: at trial steps the design should be updated using the projection operator defined in 

step 2 such that ܠ(௞ାଵ) = (௞)ܠ)ࡼ + (௞ାଵ)ܠ Update the design by setting  .((௞)܌ߙ =

(௞)ܠ)ࡼ +  .(௞ାଵ)ࢌCalculate સ  .((௞)܌∗ߙ

Step 8: Set ݇ = ݇ + (௞)ܠ ,1 = (௞)ࢌસ ,(௞ାଵ)ܠ = સࢌ(௞ାଵ), and go to Step 4. 

2.2.2 Steepest Descent Numerical Results 

Table 2.1 shows the performance of the Steepest Descent (SD) bound-constrained 

algorithm using a Standard Armijo’s Rule (SAR) linesearch, which involves finding a 

stepsize to satisfy the Armijo-like rule of equation 2.7 and checking a curvature condition 
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to ensure that the stepsize has not become too small, on a set of five bound-constrained 

test problems from the Hock-Schittkowski (2009) collection.  Details of the Standard 

Armijo’s Rule linesearch may be found in the next chapter.  As expected, the Steepest 

Descent bound-constrained algorithm converged rapidly during early iterations, resulting 

in large decreases in the objective early on, and slowly during later iterations.  While the 

algorithm performed reasonably well on three of the five test problems, it performed 

unacceptably slow on two of the test problems, requiring thousands of iterations and 

function evaluations.             

Table 2.1 Steepest Descent Numerical Results. 

   SAR 
SD 

No. Problem n Iter (F) 

1 Hock-Schittkowski Problem 1 2 18,291 (257,000) 

2 Hock-Schittkowski Problem 2 2 4,132 (62,543) 

3 Hock-Schittkowski Problem 4 2 1 (20) 

4 Hock-Schittkowski Problem 5 2 25 (93) 

5 Hock-Schittkowski Problem 110 10 26 (120) 

2.3 L-BFGS 

Dennis and Schnabel (1996), Fletcher (2000), Nocedal and Wright (2006), and 

many others agree that BFGS quasi-Newton methods are among the most efficient and 

robust methods available for solving unconstrained optimization problems.  In the case of 

high-dimensional problems, where it becomes unrealistic to store full BFGS matrices in a 

computer’s high speed memory, limited memory BFGS algorithms have proven to be 

effective tools.  Perry (1977) and Shanno (1978) were the first to study limited memory 

methods and they have since been studied by many others.  Findings from some of these 

works are discussed here. 
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Limited memory BFGS approaches typically differ in their choice of BFGS 

updating strategy and initial BFGS matrix.  Morales (2002) studied the numerical 

performance of two of the most efficient and robust limited memory approaches on a 

large set of both low- and high-dimensional unconstrained test problems.  The two 

approaches chosen by Morales were Nocedal’s (1980) L-BFGS method and Gill, Murray, 

and Saunders’ (2002) limited memory approach as implemented in the SNOPT software 

package.  The two approaches differ in that the L-BFGS method uses a continuous 

updating strategy for all problems and SNOPT maintains full BFGS matrices for small 

problems and uses a restart strategy for large problems.  The L-BFGS method 

outperformed SNOPT, in terms of function and gradient evaluations, by a small margin 

on the low-dimensional test problems and by a significant margin on the high-

dimensional test problems.  Additionally, Liu and Nocedal (1989) compared the 

performance of Nocedal’s L-BFGS method to Griewank and Toint’s (1982) partitioned 

quasi-Newton method and found the L-BFGS method to be superior for large problems 

with non-sparse Hessian matrices and for problems where information on the seperability 

of the objective function is unknown a priori.  Therefore, since the present work is 

concerned with designing a general purpose and efficient algorithm and optimization 

software package, the L-BFGS approach proposed by Nocedal (1980) is studied further 

here. 

Nocedal’s (1980) L-BFGS approach works by generating BFGS quasi-Newton 

matrices using vectors ܛ(௞) = (௞ାଵ)ܠ − (௞)ܡ and (௞)ܠ = સࢌ(௞ାଵ) − સࢌ(௞) from the 

previous ݉ iterations.  Nocedal’s procedure for generating these matrices and efficiently 

performing the necessary matrix vector product is presented in section 2.3.1.1.  One 

requirement of the L-BFGS approach is that ܛ(௞) ∙  and (௞)ܛ be greater than 0 for all (௞)ܡ

 vectors used to update BFGS matrices.  This ensures the positive definiteness of (௞)ܡ

BFGS matrices generated using the approach.  However, in practical implementations, it 

is desirable that ܛ(௞) ∙  remain greater than a small positive number.  Here, we use the (௞)ܡ
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requirement on ܛ(௞) ∙  proposed by Morales (2002), which is similar to SNOPT’s (௞)ܡ

requirement on ܛ(௞) ∙  Morales’ requirement is satisfied so long as the stepsize   .(௞)ܡ

obtained during linesearch satisfies Wolf’s curvature condition, which is presented in the 

next chapter.  Also, in the case of constrained algorithms where linesearches may be 

performed on merit functions and satisfaction of Wolf’s curvature condition can’t be 

guaranteed, Morales’ requirement becomes a useful check.  This is discussed more in 

Chapter IV.  Nocedal’s L-BFGS approach integrated into a bound-constrained algorithm 

is shown in section 2.3.1.  Per the recommendations of Schwartz and Polak (1997), 

algorithmic parameters ߪଵ and ߪଶ have been chosen as 0.0002 and √1000×10ଷ, 

respectively.  Nocedal’s numerical testing suggested that performance improved as the 

number of corrections, ݉, stored increased.  Liu and Nocedal (1989) observed that the 

number of function evaluations decreased, in general, as the number of corrections stored 

increased from 15 to 40, but that the decrease was not dramatic.  Morales (2002) 

achieved his impressive results by taking the number of corrections stored as 20.  

Therefore, the number of corrections stored is taken as 20 in algorithm 2.3.1 as well.  In 

line with the recommendations of Morales (2002) and others, factors ߩ and ߚ are taken as 

0.0001 and 0.9, respectively.    

2.3.1 Bound-Constrained L-BFGS Algorithm 

The following bound-constrained algorithm applies to optimization problems with 

lower and upper bounds on the design variables defined as: 

minimize  ݂(ܠ)  

subject to ݈௜ ≤ ௜ݔ ≤ ݅     ௜ݑ = 1, ݊   

Step 1: Set k = 0, ܪ଴
(௞) = 1, ߝ௔ = 10e-8, ߝ௖ = 10e-6, ߩ = ߚ ,0.0001 = 0.9, ݉ =

ଶߪ ଵ = 0.0002, andߪ ,20 = √1000×10ଷ, where k is the minor iteration counter, ܪ଴
(௞) is an 

initial approximation of the elements of the diagonal inverse Hessian matrix for the kth 

iteration, ߝ௔ is the constraint activity parameter, ߝ௖ is the convergence parameter, ߩ is a 
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factor between 0 and 1, ߚ is a factor between ߩ and 1, ݉ is a nonnegative integer 

specifying the number of L-BFGS correction vectors to store, and ߪଵ and ߪଶ are 

algorithmic parameters.     

Step 2: Ensure all design variables are on or within their bounds by applying the 

projection operator, i.e. eqn. 2.1, on each element of ܠ(௞) such that ݔ௜
(௞) =  ௜ܲቀݔ௜

(௞)ቁ. 

Step 3: Calculate the gradient vector at the current design ܠ(௞) as in eqn. 2.2. 

Step 4: Identify the active- and inactive-sets ܣ௞ and ܫ௞ of the design variables, 

respectively; Calculate the Lagrange multipliers for the lower- and upper-bound 

constraints and the active elements of the search direction vector ܌(௞) using the 

active/inactive variables procedure shown in section 2.1.1.1. 

Step 5: Check if either of the convergence criteria, i.e. eqn. 2.3 or eqn. 2.4, are 

satisfied.  If satisfied, stop.  Otherwise, continue. 

Step 6: Calculate the components of the search direction vector corresponding to 

the inactive set (i.e., ܌ூೖ

(௞)).  If ݇ < 1 set ܌ூೖ

(௞) = −સࢌூೖ

(௞) (i.e., the steepest descent 

direction).  Otherwise, calculate ܌ூೖ

(௞) = −۶ூೖ

(௞)સࢌூೖ

(௞) (where ۶ூೖ

(௞) contains the elements of 

the inverse Hessian approximation of the objective corresponding to the inactive set) 

using the L-BFGS two-loop recursion given in section 2.3.1.1. 

Ensure that the search direction obtained is a direction of descent by checking the 

conditions of eqns. 2.5 and 2.6.  If either of the conditions is not satisfied, restart the 

algorithm from the current design by taking the search direction as that of steepest 

descent and by throwing out historical information used in calculating ܌ூೖ

(௞). 

Step 7: Find a step size ߙ∗ > 0 that satisfies the Armijo-like rule of eqn. 2.7.  

Note: at trial steps the design should be updated using the projection operator defined in 

step 2 such that ܠ(௞ାଵ) = (௞)ܠ)ࡼ + (௞ାଵ)ܠ Update the design by setting  .((௞)܌ߙ =

(௞)ܠ)ࡼ +  .(௞ାଵ)ࢌCalculate સ  .((௞)܌∗ߙ

Step 8: Set ܛ(௞) = (௞ାଵ)ܠ − (௞)ܡ and (௞)ܠ = સࢌ(௞ାଵ) − સࢌ(௞).  Note: For ݇ > ݉, 

  .are stored in their place, respectively (௞)ܡ and (௞)ܛ are discarded and (௞ି௠)ܡ and (௞ି௠)ܛ
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Also, if storing ܛ and ܡ vectors in ݉×݊ matrices ܁ and ܇ the correction location 

corresponding to the kth iteration, ݆(݇), can be calculated using the formula: 

݆(݇) = ݇ − ݐ݊݅×݉ ቀ
௞

௠
ቁ  (2.8) 

where int() truncates k/m to an integer value that represents the number of times m has 

been traversed.  Last, ensure that the inverse Hessian approximation of the objective will 

maintain positive definiteness by checking that ܛ(௞) ∙ (௞)ܡ ≥ ߚ)∗ߙ − 1)સࢌ(௞) ∙  If  .(௞)܌

this condition is not satisfied, discard the current ܛ(௞) and ܡ(௞) and do not use them when 

updating the inverse Hessian approximation of the objective during subsequent iterations.     

Step 9: Set ݇ = ݇ + (௞)ܠ ,1 = (௞)ࢌસ ,(௞ାଵ)ܠ = સࢌ(௞ାଵ), and go to Step 4. 

2.3.1.1 L-BFGS Two-Loop Recursion  

The following two-loop recursion proposed by Nocedal (1980) and clarified by 

Sun and Yuan (2006) offers a computationally efficient means of computing ۶ூೖ

(௞)સࢌூೖ

(௞).  

Per the findings and recommendations of Liu and Nocedal (1989), the dynamic scaling 

factor ܪ଴
(௞) is used.  Per the findings of Schwartz and Polak (1997), ܪ଴

(௞) is restricted such 

that 10ିଷ ≤ ଴ܪ
(௞) ≤ 10ଷ.   

ܙ = સࢌூೖ

(௞) 

LIMIT = ൜
0 ݂݅ ݇ < ݉

݇ − ݉ ݂݅ ݇ ≥ ݉   

for ݅ = ݇ − 1 ∶  −1 ∶  ݅ ≥ LIMIT 

     set ݆ to the correction location for the ith iteration (i.e. ݆(݅) in step 8). 

      store  ߩ௜ =
1

ூೖܛ

(௝) ∙ ூೖܡ

(௝) 

      store  ߙ௜ = ூೖܛ௜ቀߩ

(௝) ∙  ቁܙ

ܙ       = ܙ − ூೖܡ௜ߙ

(௝) 

end 
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଴ܪ
(௞) =

ூೖܛ

(௞ିଵ) ∙ ூೖܡ

(௞ିଵ)

ூೖܡ

(௞ିଵ) ∙ ூೖܡ

(௞ିଵ) 

restrict ܪ଴
(௞) such that 10ିଷ ≤ ଴ܪ

(௞) ≤ 10ଷ  

ܚ = ଴ܪ
(௞)ܙ 

for ݅ = LIMIT ∶  +1 ∶  ݅ ≤ ݇ − 1 

     set ݆ to the correction location for the ith iteration (i.e. ݆(݅) in step 8). 

ߚ       = ூೖܡ௜ቀߩ

(௝) ∙  ቁܚ

ܚ       = ܚ + ூೖܛ

(௝)(ߙ௜ −  (ߚ

end 

ூೖ܌

(௞) =  ܚ−

where ܚ = ۶ூೖ

(௞)સࢌூೖ

(௞).     

2.3.2 L-BFGS Numerical Results 

Table 2.2 compares the performance of the Steepest Descent and L-BFGS bound-

constrained algorithms using the Standard Armijo’s Rule linesearch on the bound-

constrained test problems.  As expected, the L-BFGS bound-constrained algorithm 

outperformed the Steepest Descent bound-constrained algorithm by a substantial margin 

on all five test problems. 
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Table 2.2 L-BFGS Numerical Results. 

   SAR 
SD 

SAR 
L-BFGS 

No. Problem n Iter (F) Iter (F) 

1 Hock-Schittkowski Problem 1 2 18,291 (257,000) 18 (67) 

2 Hock-Schittkowski Problem 2 2 4,132 (62,543) 13 (63) 

3 Hock-Schittkowski Problem 4 2 1 (20) 1 (4) 

4 Hock-Schittkowski Problem 5 2 25 (93) 7 (17) 

5 Hock-Schittkowski Problem 110 10 26 (120) 7 (18) 

2.4 Conjugate Gradient 

Conjugate gradient methods continue to be a popular option for high-dimensional 

problems because of their simplicity, small storage requirements, and strong convergence 

properties.  One of the most popular implementations of the method is that proposed by 

Fletcher and Reeves (1964).  In order for such conjugate gradient methods to be 

competitive with BFGS methods, however, innovative new strategies are required.  Some 

researchers have proposed variable storage or preconditioned conjugate gradient methods 

that attempt to scale the conjugate gradient direction such that fewer linesearch iterations 

are required.  These methods are effective at reducing the number of objective function 

evaluations, but do little to reduce the number of unconstrained iterations to convergence.  

Other researchers have proposed hybrid strategies that attempt to combine favorable 

properties of various conjugate gradient techniques such that convergence is improved.  

These methods are effective at reducing the number of unconstrained iterations to 

convergence, but do relatively little to reduce the number of objective function 

evaluations.  In section 2.4.1, the traditional Fletcher and Reeves (1964) conjugate 

gradient method, a preconditioned version of Fletcher’s (1987) conjugate descent 

method, and a hybrid approach proposed by Zhou, Zhu, Fan, and Qing (2011) are 

integrated into a bound-constrained algorithm.  In section 2.4.2, the numerical 

performance of the three methods is studied. 
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2.4.1 Bound-Constrained Conjugate Gradient Algorithm 

The following bound-constrained algorithm applies to optimization problems with 

lower and upper bounds on the design variables defined as: 

minimize  ݂(ܠ)  

subject to ݈௜ ≤ ௜ݔ ≤ ݅     ௜ݑ = 1, ݊   

Step 1: Set k = 0, ܪ଴
(௞) = 1, ߝ௔ = 10e-8, ߝ௖ = 10e-6, ߩ = ߚ ,0.0001 = 0.9, ݉ =

ଶߪ ଵ = 0.2, andߪ ,20 = 10, where k is the minor iteration counter, ܪ଴
(௞) is an initial 

approximation of the elements of the diagonal inverse Hessian matrix for the kth iteration, 

 is a factor ߩ ,௖ is the convergence parameterߝ ,௔ is the constraint activity parameterߝ

between 0 and 1, ߚ is a factor between ߩ and 1, ݉ is a nonnegative integer specifying the 

number of L-BFGS correction vectors to store, and ߪଵ and ߪଶ are algorithmic parameters.     

Step 2: Ensure all design variables are on or within their bounds by applying the 

projection operator, i.e. eqn. 2.1, on each element of ܠ(௞) such that ݔ௜
(௞) =  ௜ܲቀݔ௜

(௞)ቁ. 

Step 3: Calculate the gradient vector at the current design ܠ(௞) as in eqn. 2.2. 

Step 4: Identify the active- and inactive-sets ܣ௞ and ܫ௞ of the design variables, 

respectively; Calculate the Lagrange multipliers for the lower- and upper-bound 

constraints and the active elements of the search direction vector ܌(௞) using the 

active/inactive variables procedure shown in section 2.1.1.1. 

Step 5: Check if either of the convergence criteria, i.e. eqn. 2.3 or eqn. 2.4, are 

satisfied.  If satisfied, stop.  Otherwise, continue. 

Step 6: Calculate the components of the search direction vector corresponding to 

the inactive set (i.e., ܌ூೖ

(௞)).  If ݇ < 1 set ܌ூೖ

(௞) = −સࢌூೖ

(௞) (i.e., the steepest descent 

direction).  Otherwise, calculate ܌ூೖ

(௞) using any of the conjugate gradient directions 

defined in sections 2.4.1.1 to 2.4.1.3. 

Ensure that the search direction obtained is a direction of descent by checking the 

conditions of eqns. 2.5 and 2.6.  If either of the conditions is not satisfied, restart the 
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algorithm from the current design by taking the search direction as that of steepest 

descent and by throwing out historical information used in calculating ܌ூೖ

(௞). 

Step 7: Find a step size ߙ∗ > 0 that satisfies the Armijo-like rule of eqn. 2.7.  

Note: at trial steps the design should be updated using the projection operator defined in 

step 2 such that ܠ(௞ାଵ) = (௞)ܠ)ࡼ + (௞ାଵ)ܠ Update the design by setting  .((௞)܌ߙ =

(௞)ܠ)ࡼ +  .(௞ାଵ)ࢌCalculate સ  .((௞)܌∗ߙ

Step 8: Set ܛ(௞) = (௞ାଵ)ܠ − (௞)ܡ and (௞)ܠ = સࢌ(௞ାଵ) − સࢌ(௞).  Note: For ݇ > ݉, 

  .are stored in their place, respectively (௞)ܡ and (௞)ܛ are discarded and (௞ି௠)ܡ and (௞ି௠)ܛ

Also, if storing ܛ and ܡ vectors in ݉×݊ matrices ܁ and ܇ the correction location 

corresponding to the kth iteration, ݆(݇), can be calculated using eqn. 2.8.  Last, ensure that 

the inverse Hessian approximation of the objective will maintain positive definiteness by 

checking that ܛ(௞) ∙ (௞)ܡ ≥ ߚ)∗ߙ − 1)સࢌ(௞) ∙  ,If this condition is not satisfied  .(௞)܌

discard the current ܛ(௞) and ܡ(௞) and do not use them when updating the inverse Hessian 

approximation of the objective during subsequent iterations.     

Step 9: Set ݇ = ݇ + (௞)ܠ ,1 = (௞)ࢌસ ,(௞ାଵ)ܠ = સࢌ(௞ାଵ), and go to Step 4. 

2.4.1.1 Traditional Conjugate Gradient 

The traditional Fletcher and Reeves (1964) conjugate gradient method calculates 

the search direction as follows: 

௞ࢊ = ௞ࢍ− + ௞ߚ
ிோࢊ௞ିଵ  (2.9) 

where 

௞ߚ
ிோ = 

ೖࢍ
೅ࢍೖ

ೖషభࢍ
೅ ೖషభࢍ

  (2.10) 

2.4.1.2 Preconditioned Conjugate Descent 

The preconditioned version of Fletcher’s (1987) conjugate descent method 

calculates the search direction as follows: 

௞ࢊ = −۶୐୆୊ୋୗࢍ௞ + ௞ߚ̅
஼஽ࢊ௞ିଵ  (2.11) 
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where 

௞ߚ̅
஼஽ = − 

ೖࢍ
೅۶ైాూృ౏ࢍೖ

ೖషభࢊ
೅ ೖషభࢍ

  (2.12) 

2.4.1.3 Hybrid Conjugate Gradient 

The hybrid approach proposed by Zhou, Zhu, Fan, and Qing (2011) calculates the 

search direction as follows: 

௞ࢊ = ௞ࢍ− + ௞ߚ
ுࢊ௞ିଵ  (2.13) 

where 

௞ߚ
ு = ݔܽ݉ ቄ0, ݉݅݊ሼߚ௞

௅ௌ, ௞ߚ
஼஽ሽቅ  (2.14) 

and 

௞ߚ
௅ௌ = − 

ೖࢍ
೅࢟ೖషభ

ೖషభࢊ
೅ ೖషభࢍ

  (2.15) 

௞ߚ
஼஽ = − 

ೖࢍ
೅ࢍೖ

ೖషభࢊ
೅ ೖషభࢍ

  (2.16) 

2.4.2 Conjugate Gradient Numerical Results 

Table 2.3 compares the performance of the Steepest Descent, L-BFGS, 

Traditional Conjugate Gradient (T-CG), Preconditioned Conjugate Descent (P-CD), and 

Hybrid Conjugate Gradient (H-CG) bound-constrained algorithms using the Standard 

Armijo’s Rule linesearch on the bound-constrained test problems.  The L-BFGS bound-

constrained algorithm outperformed all other methods on four of the five test problems 

and the P-CD bound-constrained algorithm outperformed all other methods on one of the 

five test problems.  Of the conjugate gradient methods, the P-CD method performed best 

overall with the T-CG method taking second and the H-CG method coming in third.  It is 

interesting to note, however, that for four of the five problems the H-CG method 

converged in the same or fewer iterations than the T-CG.  Furthermore, upon further 

study, if a more exact linesearch technique is used then the H-CG method outperforms 
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the T-CG method both in terms of iterations and function evaluations.  Since the L-BFGS 

method still outperforms the other methods, it is used throughout the rest of this work. 

Table 2.3 Traditional, Preconditioned, and Hybrid Conjugate Gradient Performance. 

   SAR 
SD 

SAR 
L-BFGS 

SAR 
T-CG 

SAR 
P-CD 

SAR 
H-CG 

No. Problem n Iter (F) Iter (F) Iter (F) Iter (F) Iter (F) 

1 H-S Problem 1 2 18,291 
(257,000) 

18 (67) 538 
(5,205) 

>> 1,524 
(14,799) 

2 H-S Problem 2 2 4,132 
(62,543) 

13 (63) 37 (374) 17 (50) 33 (317) 

3 H-S Problem 4 2 1 (20) 1 (4) 1 (20) 1 (20) 1 (20) 

4 H-S Problem 5 2 25 (93) 7 (17) 22 (90) 16 (71) 17 (162) 

5 H-S Problem 110 10 26 (120) 7 (18) 13 (142) 10 (56) 13 (142) 
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CHAPTER III 

DESIGN OF ALGORITHM FOR CALCULATING STEP SIZE 

3.1 The Armijo’s Rule Line Search 

Inexact line search techniques that satisfy global convergence requirements are 

preferable to exact line search techniques when efficiency is of the essence.  One of the 

most widely used inexact line search rules is that proposed by Armijo (1966).  Armijo’s 

rule guarantees that the step size is not too large by requiring a sufficient decrease in the 

cost function.  This so-called sufficient decrease condition, however, has the drawback 

that it may accept arbitrarily small step sizes that keep the algorithm from making 

reasonable progress towards the minimum.  Wolfe (1969) and (1971) overcame this 

drawback by introducing a so-called curvature condition that guarantees a step size is not 

too small by requiring that the slope at the step size be greater than the slope at a step size 

of 0 by some factor.  Nocedal and Wright (2006) modified Wolfe’s curvature condition 

by requiring that the slope at the step size be negative.  They then combined this modified 

curvature condition with Armijo’s sufficient decrease condition to form what is known as 

the strong Wolfe conditions, which are used in the basic Armijo’s rule line search 

algorithm presented in this section. 

3.1.1 Flow Diagram 

The overall flow of the basic Armijo’s rule line search algorithm is shown in 

Figure 3-1 and involves: selecting an initial step size ߙ௞, increasing ߙ௞ repeatedly by a 

factor ߟ until the sufficient decrease condition is violated or decreasing ߙ௞ repeatedly by 

a factor ߟ until either the sufficient decrease condition is satisfied or the modified 

curvature condition is violated, selecting the largest step size satisfying the strong Wolfe 

conditions. 
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Figure 3.1 Basic Armijo’s Rule Line Search Flow Diagram. 
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3.1.2 Basic Algorithm 

Here, the basic Armijo’s rule line search algorithm is presented.  It applies to the 

step size calculation sub-problem of finding ߙ௞ to    

minimize  (ߙ) = ܠ)݂ +   (܌ߙ

Step 1: Set ݇ = ߩ ,௞ = 1ߙ ,0 ∈ ߚ ,[0,1) ∈ ,ߩ) 1], and ߟ = ൫1 + √5൯/2, where k is 

the line search iteration counter, ߙ௞ is the trial step size at the current iteration, ߩ is a 

factor between 0 and 1, ߚ is a factor between ߩ and 1, and ߟ is a factor greater than 1 

used to decrease the current step size. 

Step 2: Calculate the line search function and its inactive-set slope at the current 

design (i.e. (0) and ᇱ(0) = સࢌ ∙  .(respectively ,܌

Step 3: Calculate (ߙ௞) (i.e., the line search function at the trial design).  Check 

if the sufficient decrease conditions (i.e. eqn 3.1) is satisfied.  If satisfied, ߙ௞ is 

considered not too large and the step size is repeatedly increased by the factor ߟ until the 

sufficient decrease condition is violated.  If not satisfied, ߙ௞ is considered too large and 

the step size is repeatedly decreased by the factor ߟ until the sufficient decrease condition 

or the curvature condition (i.e. eqn 3.2) is satisfied.  Take the final step size ߙ௞ as the 

largest step size satisfying the strong Wolfe conditions (i.e. eqns 3.1 and 3.2). 

(ߙ௞) ≤ (0) + (௞ߙ)ᇱ(0)]  ܽ݊݀  ሾ ߩ௞ሾߙ < (ߙ௞ିଵ)  ݂݅  ݇ > 0] (3.1) 

|ᇱ(ߙ௞)| ≤ (௞ߙ)ᇱ(0)|  ܽ݊݀  ᇱ|ߚ < 0  (3.2) 

3.1.3 Modified Step Size Procedure 

In practice, it is common to apply some type of interpolation scheme to try to 

improve upon the step size identified by Armijo’s rule, ߙ௞.  Here, a modified step size 

procedure is presented that uses a quadratic interpolation outer iteration to try to improve 

upon the step size.  The overall procedure is shown in Figure 3-2 and involves: locating 

the interval of uncertainty using Armijo’s rule, performing quadratic interpolation, 

selecting the appropriate step size.  The algorithm is described in detail in section 3.1.3.1. 
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Figure 3.2 Modified Step Size Procedure Flow Diagram.  
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3.1.3.1 Modified Step Size Procedure Algorithm 

The following modified step size procedure constructs a quadratic curve (ߙ)ݍ that 

approximates (ߙ), finds the minimum point of this curve ߙത, identifies the quadratic 

interpolation step size ߙொூ, and selects ߙ௞ to 

minimize  (ߙ) = ܠ)݂ +   (܌ߙ

Step 1: Locate the interval of uncertainty (ߙ௟,  ௜ߙ ௨) and an intermediate pointߙ 

using the Armijo’s Rule described previously.  Let (ߙ௟), (ߙ௜), and (ߙ௨) be the values 

of (ߙ) at ߙ௟, ߙ௜, and ߙ௨, respectively.  Note that if Armijo’s Rule exited before 

completing a full iteration (i.e. before locating the interval of uncertainty), then quadratic 

interpolation is skipped and the step size is taken as the one obtained by Armijo’s Rule. 

Step 2: Calculate the coefficients ܽ଴, ܽଵ, and ܽଶ in the quadratic function 

(ߙ)ݍ = ܽ଴ + ܽଵߙ + ܽଶߙଶ as follows.  Also, solve the necessary condition ݀ߙ݀/ݍ = 0 to 

get ߙത, verify the sufficiency condition ݀ଶߙ݀/ݍଶ > 0, and evaluate (ߙത). 

 ܽଶ = 
ଵ

(ఈೠିఈ೔)
ቂ
(ఈೠ)ି(ఈ೗)

(ఈೠିఈ೗)
−

(ఈ೔)ି(ఈ೗)

(ఈ೔ିఈ೗)
ቃ  (3.3) 

 ܽଵ = 
(ఈ೔)ି(ఈ೗)

(ఈ೔ିఈ೗)
 −ܽଶ(ߙ௟ +  ௜)  (3.4)ߙ

 ܽ଴ = (ߙ௟) − ܽଵߙ௟ − ܽଶߙ௟
ଶ  (3.5) 

ௗ௤

ௗఈ
= 0   ⇒     ܽଵ + 2ܽଶߙ = 0   ⇒ തߙ    = −

௔భ

ଶ௔మ
;    ݂݅   

ௗమ௤

ௗఈమ = 2ܽଶ > 0 (3.6) 

Step 3a: If ߙ௜ < (௜ߙ)ത, continue with this step.  Otherwise, go to Step 3b.  If ߙ <

(ߙത), then the new limits of the reduced interval of uncertainty are set to ߙ௟
ᇱ = ௜ߙ ,௟ߙ

ᇱ =

௨ߙ ௜, andߙ
ᇱ = ௟ߙ ത sinceߙ ≤ ௞ߙ ≤  ത.  Otherwise, set the new limits of the reduced intervalߙ

of uncertainty to ߙ௟
ᇱ = ௜ߙ ,௜ߙ

ᇱ = ௨ߙ ത, andߙ
ᇱ = ௜ߙ ௨ sinceߙ ≤ ௞ߙ ≤    .௨.  Go to Step 4ߙ

Step 3b: If ߙ௜ ≥ (௜ߙ)ത, continue with this step.  Otherwise, go to Step 4.  If ߙ <

(ߙത), then the new limits of the reduced interval of uncertainty are set to ߙ௟
ᇱ = ௜ߙ ,തߙ

ᇱ =

௨ߙ ௜, andߙ
ᇱ = തߙ ௨ sinceߙ ≤ ௞ߙ ≤  ௨.  Otherwise, set the new limits of the reducedߙ

interval of uncertainty to ߙ௟
ᇱ = ௜ߙ ,௟ߙ

ᇱ = ௨ߙ ത, andߙ
ᇱ = ௟ߙ ௜ sinceߙ ≤ ௞ߙ ≤  .௜ߙ
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Step 4: Take ߙொூ = ௜ߙ
ᇱ. 

Step 5: If ൫ߙொூ൯ < (ߙ௞), then take ߙ௞ =  ௞ asߙ ொூ and stop.  Otherwise, takeߙ

the step size and stop. 

3.1.4 Armijo’s Rule Numerical Results 

Table 3.1 compares the performance of the standard Armijo’s Rule (SAR) and the 

modified step size procedure (SAR+QI), which completes a quadratic interpolation 

iteration after the standard Armijo’s Rule has run, on fifteen of the unconstrained test 

problems from the Hock-Schittkowski collection.  As expected, the more accurate step 

size obtained by the modified procedure allows for convergence in fewer L-BFGS 

iterations and enables convergence of poorly scaled problems that require a more 

accurate step.  While all problems converged in fewer L-BFGS iterations, only half of the 

problems converged with fewer calls to the objective function.  In other words, the 

improved convergence of the modified procedure was not always enough to offset the 

additional function evaluation incurred by the quadratic interpolation iteration.  Studying 

the detailed output from these problems, however, showed that the majority of them were 

cases where the L-BFGS search direction was well scaled and all the quadratic 

interpolation iteration was doing was calculating a step size very close to the expected 

value of one.  This motivates the backtracking approach presented in the next section 

where the step size is only allowed to decrease from its expected value of one. 

 

 

 

 

 

 



32 
 

 
 

Table 3.1 Standard Armijo’s Rule and Modified Step Size Procedure Performance. 

   SAR 
L-BFGS 

SAR+QI 
L-BFGS 

No. Problem n Iter (F) Iter (F) 

1 Helical valley function 3 - - 

2 Biggs EXP6 function 6 30 (114) 28 (132) 

3 Gaussian function 3 5 (22) 3 (21) 

4 Powell badly scaled function 2 - 133 (5829) 

5 Box three-dimensional function 3 20 (93) 19 (108) 

6 Variably dimensioned function 6 8 (74) 4 (47) 

7 Watson function 9 70 (295) 39 (261) 

8 Penalty function I 8 44 (151) 26 (162) 

9 Penalty function II 3 47 (165) 38 (174) 

10 Brown and Dennis function 4 26 (444) 15 (193) 

11 Trigonometric function 20 43 (114) 41 (155) 

12 Extended Rosenbrock function 14 77 (197) 70 (247) 

13 Extended Powell singular function 16 43 (182) 32 (163) 

14 Beale function 2 14 (43) 11 (48) 

15 Wood function 4 13 (61) 9 (62) 

3.2 Efficient Backtracking Algorithm 

A different approach to the basic Armijo’s rule line search presented in section 

3.1 is what is known as a backtracking algorithm.  In general, a backtracking algorithm 

starts with a larger step size and repeatedly decreases the step size until either the 

sufficient decrease condition or the modified curvature condition is satisfied.  

Backtracking algorithms are typically used in Newton or quasi-Newton unconstrained 

algorithms.  Since these methods create a quadratic model with exact minimizer one, a 

starting step size of one is expected to be optimal for the majority of iterations.  Here, we 

present a novel efficient backtracking algorithm that makes use of standard backtracking, 

quadratic interpolation, cubic interpolation, and quadratic regression wherever possible 

without incurring additional function evaluations.  Figure 3-3 shows the overall flow of 
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the algorithm and sections 3.2.1 through 3.2.4 describe the specific backtracking 

techniques. 
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Figure 3.3 Efficient Backtracking Step Size Algorithm Flow Diagram.  
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3.2.1 Standard Backtracking 

Standard backtracking to get ߙ஻் is performed as follows: 

஻்ߙ = 
ఈೖ

ఎమ  (3.7) 

3.2.2 Quadratic Interpolation 

3.2.2.1 Quadratic Interpolation Algorithm 1 

Quadratic interpolation using (0), ᇱ(0), and (ߙ௞) to get ߙொூ is performed by: 

calculating the coefficients ܽ଴, ܽଵ, and ܽଶ of the quadratic function (ߙ)ݍ =

ܽ଴ + ܽଵߙ + ܽଶߙଶ, solving the necessary condition ݀ߙ݀/ݍ = 0 to get ߙொூ, verifying the 

sufficiency condition ݀ଶߙ݀/ݍଶ > 0. 

 ܽ଴ = (0)  (3.8) 

 ܽଵ = ᇱ(0)  (3.9) 

 ܽଶ = 
(ఈೖ)ି௔బି௔భఈೖ

௔ೖ
మ   (3.10) 

ௗ௤

ௗఈ
= 0   ⇒     ܽଵ + 2ܽଶߙ = 0   ⇒ ொூߙ    = −

௔భ

ଶ௔మ
    (3.11) 

݂݅   
݀ଶݍ
ଶߙ݀ = 2ܽଶ > 0   ܽ݊݀   0 < ொூߙ < ொூߙ   ݐ݁ݏ ݁ݏ݈݁   ொூߙ   ݌݁݁݇ ℎ݁݊ݐ   ௞ߙ = 0 

3.2.2.2 Quadratic Interpolation Algorithm 2 

Quadratic interpolation using (0), (ߙ௞ିଵ), and (ߙ௞) to get ߙொூ is performed 

by: calculating the coefficients ܽ଴, ܽଵ, and ܽଶ of the quadratic function (ߙ)ݍ =

ܽ଴ + ܽଵߙ + ܽଶߙଶ, solving the necessary condition ݀ߙ݀/ݍ = 0 to get ߙொூ, verifying the 

sufficiency condition ݀ଶߙ݀/ݍଶ > 0. 

ܽଶ = 
ଵ

(ఈೖషభିఈೖ)
ቂ
(ఈೖషభ)ି(଴)

(ఈೖషభ)
−

(ఈೖ)ି(଴)

(ఈೖ)
ቃ (3.12) 

ܽଵ = 
(ఈೖ)ି(଴)

(ఈೖ)
 −ܽଶ(ߙ௞)  (3.13) 
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ܽ଴ = (0)  (3.14) 

ௗ௤

ௗఈ
= 0   ⇒     ܽଵ + 2ܽଶߙ = 0   ⇒ ொூߙ    = −

௔భ

ଶ௔మ
    (3.15) 

݂݅   
݀ଶݍ
ଶߙ݀ = 2ܽଶ > 0   ܽ݊݀   0 < ொூߙ < ொூߙ   ݐ݁ݏ ݁ݏ݈݁   ொூߙ   ݌݁݁݇ ℎ݁݊ݐ   ௞ߙ = 0 

3.2.3 Cubic Interpolation 

3.2.3.1 Cubic Interpolation Algorithm 1 

Cubic interpolation using (0), ᇱ(0), (ߙ଴), and (ߙ௞) to get ߙ஼ூ is performed 

by: calculating the coefficients ܽ଴, ܽଵ, ܽଶ, and ܽଷ of the cubic function ܿ(ߙ) =

ܽ଴ + ܽଵߙ + ܽଶߙଶ+ ܽଷߙଷ, solving the necessary condition ݀ܿ/݀ߙ = 0 to get ߙ஼ூ, 

verifying the sufficiency condition ݀ଶܿ/݀ߙଶ > 0. 

 ܽ଴ = (0)  (3.16) 

 ܽଵ = ᇱ(0)  (3.17) 

 ܽଶ = 
ఈబఈೖ

య ௔భାఈೖ
య( ௔బି(ఈబ))ିఈబ

య( ௔బାఈೖ ௔భି(ఈೖ))

ఈబ
మ(ఈబିఈೖ)ఈೖ

మ  (3.18) 

 ܽଷ = 
ିఈబఈೖ

మ ௔భାఈೖ
మ(ି ௔బା(ఈబ))ାఈబ

మ( ௔బାఈೖ ௔భି(ఈೖ))

ఈబ
మ(ఈబିఈೖ)ఈೖ

మ  (3.19) 

ௗ௖

ௗఈ
= 0   ⇒    ܽଵ + 2ܽଶ3ܽ +ߙଷߙଶ = 0   ⇒ ஼ூଵ,஼ூߙ    = 

ି௔మ±ට௔మ
మିଷ௔భ௔య

ଷ௔య
 (3.20) 

ௗమ௖

ௗఈమ > 0   ⇒   2ܽଶ + 6ܽଷߙ > 0  (3.21) 

݂݅   ܽଶ
ଶ − 3ܽଵܽଷ ≥ 0   ܽ݊݀   0 < ஼ூଵߙ < ௞   ܽ݊݀   2ܽଶߙ + 6ܽଷߙ஼ூଵ >  ஼ூଵߙ   ݌݁݁݇ ℎ݁݊ݐ   0

஼ூଵߙ   ݐ݁ݏ ݁ݏ݈݁    = 0 

݂݅   ܽଶ
ଶ − 3ܽଵܽଷ ≥ 0   ܽ݊݀   0 < ஼ூଶߙ < ௞   ܽ݊݀   2ܽଶߙ + 6ܽଷߙ஼ூଶ > ஼ூߙ   ݌݁݁݇ ℎ݁݊ݐ   0  

஼ூଶߙ   ݐ݁ݏ ݁ݏ݈݁    = 0 

஼ூߙ = max (ߙ஼ூଵ, ஼ூߙ )  (3.22) 
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3.2.3.2 Cubic Interpolation Algorithm 2 

Cubic interpolation using (0), (ߙ௞ିଶ), (ߙ௞ିଵ), and (ߙ௞) to get ߙ஼ூ is 

performed by: solving four equations for the four unknown coefficients ܽ଴, ܽଵ, ܽଶ, and 

ܽଷ of the cubic function ܿ(ߙ) = ܽ଴ + ܽଵߙ + ܽଶߙଶ+ ܽଷߙଷ, solving the necessary 

condition ݀ܿ/݀ߙ = 0 to get ߙ஼ூ, verifying the sufficiency condition ݀ଶܿ/݀ߙଶ > 0. 

(0) = ܽ଴  (3.23) 

(ߙ௞ିଶ) = ܽ଴ + ܽଵߙ௞ିଶ + ܽଶߙ௞ିଶ
ଶ+ ܽଷߙ௞ିଶ

ଷ (3.24) 

(ߙ௞ିଵ) = ܽ଴ + ܽଵߙ௞ିଵ + ܽଶߙ௞ିଵ
ଶ+ ܽଷߙ௞ିଵ

ଷ (3.25) 

(ߙ௞) = ܽ଴ + ܽଵߙ௞ + ܽଶߙ௞
ଶ+ ܽଷߙ௞

ଷ  (3.26) 

ௗ௖

ௗఈ
= 0   ⇒    ܽଵ + 2ܽଶ3ܽ +ߙଷߙଶ = 0   ⇒ ஼ூଵ,஼ூߙ    = 

ି௔మ±ට௔మ
మିଷ௔భ௔య

ଷ௔య
 (3.27) 

ௗమ௖

ௗఈమ > 0   ⇒   2ܽଶ + 6ܽଷߙ > 0  (3.28) 

݂݅   ܽଶ
ଶ − 3ܽଵܽଷ ≥ 0   ܽ݊݀   0 < ஼ூଵߙ < ௞   ܽ݊݀   2ܽଶߙ + 6ܽଷߙ஼ூଵ > ஼ூߙ   ݌݁݁݇ ℎ݁݊ݐ   0  

஼ூଵߙ   ݐ݁ݏ ݁ݏ݈݁    = 0 

݂݅   ܽଶ
ଶ − 3ܽଵܽଷ ≥ 0   ܽ݊݀   0 < ஼ூଶߙ < ௞   ܽ݊݀   2ܽଶߙ + 6ܽଷߙ஼ூଶ > ஼ூߙ   ݌݁݁݇ ℎ݁݊ݐ   0  

஼ூଶߙ   ݐ݁ݏ ݁ݏ݈݁    = 0 

஼ூߙ = max (ߙ஼ூଵ,  ஼ூଶ)  (3.29)ߙ

3.2.4 Quadratic Regression 

Quadratic regression using (0) and ௜ = (ߙ௜) for all ݅ = 0 to k to get ߙொோ is 

performed by: solving a linear system for the coefficients ܽ଴, ܽଵ, and ܽଶ of the quadratic 

function (ߙ)ݍ = ܽ଴ + ܽଵߙ + ܽଶߙଶ, solving the necessary condition ݀ߙ݀/ݍ = 0 to get 

ଶߙ݀/ݍொோ, verifying the sufficiency condition ݀ଶߙ > 0. 

݈ = 1 + ݇  (3.30) 
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൦

݈ ∑ ௝ߙ
௟
௝ୀ଴ ∑ ௝ߙ

ଶ௟
௝ୀ଴

∑ ௝ߙ
௟
௝ୀ଴ ∑ ௝ߙ

ଶ௟
௝ୀ଴ ∑ ௝ߙ

ଷ௟
௝ୀ଴

∑ ௝ߙ
ଶ௟

௝ୀ଴ ∑ ௝ߙ
ଷ௟

௝ୀ଴ ∑ ௝ߙ
ସ௟

௝ୀ଴

൪ ൥
ܽ଴
ܽଵ
ܽଶ

൩ =

ۏ
ێ
ێ
ێ
ۍ ∑ ௝

௟
௝ୀ଴

∑ ௝௝ߙ
௟
௝ୀ଴

∑ ௝ߙ
ଶ

௝
௟
௝ୀ଴ ے

ۑ
ۑ
ۑ
ې
 (3.31) 

ௗ௤

ௗఈ
= 0   ⇒     ܽଵ + 2ܽଶߙ = 0   ⇒ ொோߙ    = −

௔భ

ଶ௔మ
    (3.32) 

݂݅   
݀ଶݍ
ଶߙ݀ = 2ܽଶ > 0   ܽ݊݀   0 < ொோߙ < ொோߙ   ݐ݁ݏ ݁ݏ݈݁   ொோߙ   ݌݁݁݇ ℎ݁݊ݐ   ௞ߙ = 0 

3.2.5 Efficient Backtracking Armijo’s Rule Numerical 

Results 

Table 3.2 repeats the results of the previous section and compares performance to 

the modified step size procedure with backtracking only, which we refer to here as 

standard backtracking (SBT+QI), and the new efficient backtracking procedure 

(EBT+QI) just presented.  Both backtracking procedures take more iterations to 

converge, but require significantly fewer function evaluations than the standard and 

modified Armijo’s Rule.  The new efficient backtracking procedure outperforms the 

standard backtracking procedure, in terms of function evaluations, roughly three-quarters 

of the time by a good margin and barely underperforms the standard procedure the other 

quarter of the time.        
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Table 3.2 Standard Backtracking and Efficient Backtracking Performance. 

   SAR 
L-BFGS 

SAR+QI 
L-BFGS 

SBT+QI  
L-BFGS 

EBT+QI   
L-BFGS 

No. Problem n Iter (F) Iter (F) Iter (F) Iter (F) 

1 Helical valley function 3 - - - 50 (143) 

2 Biggs EXP6 function 6 30 (114) 28 (132) 41 (54) 40 (45) 

3 Gaussian function 3 5 (22) 3 (21) 4 (10) 6 (8) 

4 Powell badly scaled function 2 - 133 (5829) 323 (5174) 91 (909) 

5 Box three-dimensional function 3 20 (93) 19 (108) 30 (57) 37 (46) 

6 Variably dimensioned function 6 8 (74) 4 (47) 6 (44) 8 (30) 

7 Watson function 9 70 (295) 39 (261) 79 (103) 56 (66) 

8 Penalty function I 8 44 (151) 26 (162) 51 (82) 66 (85) 

9 Penalty function II 3 47 (165) 38 (174) 16 (24) 15 (19) 

10 Brown and Dennis function 4 26 (444) 15 (193) 15 (165) 20 (205) 

11 Trigonometric function 20 43 (114) 41 (155) 49 (58) 48 (59) 

12 Extended Rosenbrock function 14 77 (197) 70 (247) 90 (126) 98 (131) 

13 Extended Powell singular function 16 43 (182) 32 (163) 70 (86) 49 (51) 

14 Beale function 2 14 (43) 11 (48) 15 (26) 16 (18) 

15 Wood function 4 13 (61) 9 (62) 22 (39) 23 (26) 

3.3 Incorporation of a Trust Region 

As we have seen, line search based methods first calculate a search direction and 

then determine a step to take in that direction using an iterative scheme.  Alternatively, 

trust region based methods place an upper bound on the step, based on the performance 

of previous steps, and then solve a sub-problem to ascertain a search direction / step 

combination or trial step.  Trust region based methods are very efficient in terms of 

function evaluations since they typically only require a single function evaluation per 

unconstrained iteration.  However, when a trust region trial step is rejected, the trust 

region sub-problem must be repeatedly solved until a trial step is accepted, which can 

become computationally expensive.  Line search based methods explicitly calculate a 

search direction, making them computationally efficient, but are often inefficient in terms 
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of function evaluations since they typically require multiple iterations to identify an 

acceptable step if the initial step is rejected. 

3.3.1 Literature Review 

A good deal of research has been done to study how line search and trust region 

concepts can be combined to develop more efficient step size calculation methods.  Most 

work has centered on incorporating line search concepts into trust region methods.  For 

instance, Nocedal and Yuan (1998) suggested that a backtracking line search be 

performed, in lieu of re-solving the sub-problem, when a trust region trial step resulted in 

an increase in the objective function.  In their method, backtracking is performed from 

the failed point along the direction of the failed trial step using a truncated quadratic 

interpolation scheme.  Numerical results for this approach were promising with the new 

combined technique outperforming the pure line search and pure trust region techniques.  

Similarly, Yu, Wang, and Yu (2004) proposed an algorithm that switches to a line search 

when the trust region trial step is rejected.  Their approach differed from that of Nocedal 

and Yuan in that they focused on the specific case of equality constrained problems, 

added a correction step to the trust region step instead of performing standard 

backtracking, and employed a nonmonotone line search technique.  Likewise, Yuan, 

Meng, and Wei (2009) as well as Ou (2011) proposed trust region based methods that use 

backtracking line searches when the trial step is unsuccessful.      

All of the approaches discussed thus far use the ratio of actual to predicted 

reduction in the objective function, along with some conditional logic, to expand or 

contract the trust region radius between unconstrained iterations.  In general, the trust 

region radius is: expanded if the ratio is close to 1 (i.e. agreement between actual and 

predicted reduction is good) and the accepted step was taken as the full trust region radius 

in the previous iteration, contracted if the ratio is close to 0 (i.e. agreement between 

actual and predicted reduction is bad), left the same if the ratio is roughly midway 
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between 0 and 1 (i.e. agreement is neither good nor bad).  This standard approach to 

updating the trust region radius can be improved upon by using so called self-adaptive 

trust region methods that use problem information at each iteration to automatically 

adjust the trust region radius.  Quite a few researchers have proposed such self-adaptive 

methods including Zhang, Zhang, and Liao (2002), Hei (2003), Fu and Sun (2005), Shi 

and Guo (2008), Sang and Sun (2011), Cui and Wu (2011), and most recently Liu (2013).  

Liu (2013) still uses the ratio of actual to predicted reduction.  However, the actual 

update of the trust region radius is completed using just about all of the available problem 

information: the ratio of the actual to predicted reduction at the current and previous 

iteration, the Hessian approximation at the current and next iteration, the search direction 

at the current iteration, the gradient at the current iteration.  Numerical results show that 

Liu’s approach outperforms both the standard trust region updating scheme and Zhang, 

Zhang, and Liao’s (2002) self-adaptive scheme both in terms of total iterations and 

function evaluations.   

3.3.2 A Novel Hybrid Line Search / Trust Region 

Approach 

Here, a hybrid line search / trust region approach is presented.  Unlike previous 

hybrid approaches, which incorporated line search concepts into trust region algorithms, 

the approach presented here incorporates trust region concepts into a line search 

algorithm.  The overall procedure is shown in Figure 3-4 and involves: setting the initial 

step size to Liu’s self-adaptive trust region radius for the next bound constrained 

iteration, checking the strong Wolfe conditions and, if not satisfied, performing a 

backtracking line search.  Liu’s self-adaptive method for updating the trust region radius 

for the next bound constrained iteration is described in detail in section 3.3.2.1. 
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Figure 3.4 Hybrid Line Search / Trust Region Flow Diagram.  
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3.3.2.1 Liu’s Rule for Updating the Trust Region Radius 

The following rule may be used to update the trust region radius for the next 

bound constrained iteration: calculate the change in design, calculate the ratio of the 

actual to predicted reduction to assess how well the quadratic model is representing the 

underlying function, implement Liu’s self-adaptive rule.   

ܠ∆ = (௞ାଵ)ܠ −  (3.33)  (௞)ܠ

݉௞(૙) = ൫ܠ(௞)൯           (3.34) 

݉௞(∆ܠ) = ൫ܠ(௞)൯ + ൫સ(௞)൯
்

ܠ∆ +
ଵ

ଶ
 (3.35) ܠ∆(௞)۰்ܠ∆

௞ݎ = 
൫ܠ(ೖ)൯ି൫ܠ(ೖశభ)൯

௠ೖ(૙)ି௠ೖ(∆ܠ)
   (i. e.  ratio of actual to predicted reduction) (3.36) 

۰(௞ାଵ) = ൜ ۰(௞) ௞ݎ ݂݅ < 0.1
۰(௞ାଵ) ݁ݏ݅ݓݎℎ݁ݐ݋

  (3.37) 

௞ݎ̂ = ൜
௞ݎ ݇ = 0

௞ݎ0.9 + (1 − ௞ିଵݎ(0.9 ݇ ≥ 0  (3.38) 

௞ାଵߤ = ቐ
௞ߤ2 ௞ݎ̂ ݂݅ > 0.9

௞ߤ0.5 ௞ݎ̂ ݂݅ < 0.1
௞ߤ ݁ݏ݅ݓݎℎ݁ݐ݋

  (3.39) 

∆௞ାଵ= min{ ߤ௞ାଵ
ೖ‖మࢊ‖

ೖࢊ
೅ൣ଴.ଽ۰(ೖశభ)ା(ଵି଴.ଽ)۰(ೖ)൧ࢊೖ

 ฮસ(௞ାଵ)ฮ , 1} (3.40) 

where ۰(௞) is the Hessian approximation corresponding to the current search direction 

technique.  For example, ۰(௞) would be a zero matrix when the steepest descent direction 

is taken as the search direction and would be the L-BFGS approximation of the Hessian if 

the L-BFGS direction was taken as the search direction.  In order to avoid storing the full 

L-BFGS approximation of the Hessian, the product ∆۰்ܠ(௞)∆ܠ  may be calculated 

directly as follows: 

଴ܤ
(௞) =

ଵ

ுబ
(ೖ)  (3.41) 

for ݅ = LIMIT ∶  +1 ∶  ݅ ≤ ݇ − 1 
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(݅)݌       = ݅ − ݐ݊݅×݉ ቀ
௜

௠
ቁ  (3.42) 

௣܊       = 
(࢖)ܡ

൫(࢖)ܛ∙(࢖)ܡ൯
భ/మ  (3.43) 

௣܉       = ଴ܤ
(௞)(3.44)  (࢖)ܛ 

     for ݆ = LIMIT ∶  +1 ∶  ݆ < ݅ 

(݆)ݍ             = ݆ − ݐ݊݅×݉ ቀ
௝

௠
ቁ  (3.45) 

௣܉             = ௣܉ + ൣ൫܊௤ ∙ ௤܊൯(࢖)ܛ − ൫܉௤ ∙  ௤൧ (3.46)܉൯(࢖)ܛ

     end 

= ௣܉      
೛܉

൫܉∙(࢖)ܛ೛൯
భ/మ  (3.47) 

end 

ܠ∆(௞)۰்ܠ∆ = ଴ܤ்ܠ∆
(௞)۷ ∆ܠ + ∑ ሾ∆܊்ܠ௜܊௜

ܠ∆் − ௜܉௜܉்ܠ∆
௠[ܠ∆்

௜ୀ଴   (3.48) 

where ݉ is the total number of corrections being stored.  

3.3.3 Hybrid Line Search / Trust Region Numerical Results 

Table 3.3 repeats the results of the previous section for the efficient backtracking 

procedure, presents new results incorporating the hybrid line search / trust region 

approach just described, and compares performance of the resulting L-BFGS algorithm 

(H+EBT+QI) with that of the BFGS hybrid trust region / line search algorithm (TR+BT) 

presented by Nocedal and Yuan (1998).  The new hybrid line search / trust region 

approach outperformed the efficient backtracking procedure by a significant margin on 

two problems and by a lesser margin on one problem.  It underperformed the efficient 

backtracking procedure by a significant margin on one problem and by a lesser margin on 

two problems.  The balance of the problems had no change in performance.  The 

problems that the hybrid method yielded the greatest improvement on were those where 

the L-BFGS algorithm consistently failed to produce a search direction scaled for a step 
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size of one and backtracking had to be performed.  Conversely, the problems that the 

hybrid method yielded worse performance on were those where the L-BFGS algorithm 

switched back and forth frequently between producing a well scaled and poorly scaled 

search direction.   Overall, the new hybrid line search / trust region algorithm performed 

comparably to Nocedal and Yuan’s hybrid trust region / line search algorithm despite 

their use of a full BFGS approximation to the inverse Hessian.  

Table 3.3 Efficient Backtracking and Hybrid Method Performance. 

   EBT+QI 
L-BFGS 

H+ EBT+QI 
L-BFGS 

TR+BT 
BFGS 

No. Problem n Iter (F) Iter (F) Iter (F) 

1 Helical valley function 3 50 (143) 50 (143) 24 (26) 

2 Biggs EXP6 function 6 40 (45) 40 (45) 35 (36) 

3 Gaussian function 3 6 (8) 6 (8) 5 (6) 

4 Powell badly scaled function 2 91 (909) 197 (1863) 175 (212) 

5 Box three-dimensional function 3 37 (46) 37 (46) 30 (31) 

6 Variably dimensioned function 6 8 (30) 9 (31) 17 (17) 

7 Watson function 9 56 (66) 56 (66) 66 (70) 

8 Penalty function I 8 66 (85) 43 (48) 70 (82) 

9 Penalty function II 3 15 (19) 15 (19) 12 (13) 

10 Brown and Dennis function 4 20 (205) 22 (157) 24 (31) 

11 Trigonometric function 20 48 (59) 47 (57) 46 (51) 

12 Extended Rosenbrock function 14 98 (131) 102 (132) 112 (138) 

13 Extended Powell singular function 16 49 (51) 49 (51) 76 (87) 

14 Beale function 2 16 (18) 16 (18) 16 (16) 

15 Wood function 4 23 (26) 23 (26) 67 (79) 
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CHAPTER IV 

DESIGN OF ALGORITHM FOR CONSTRAINED OPTIMIZATION 

PROBLEMS 

4.1 Augmented Lagrangian 

Augmented Lagrangian or multiplier methods solve constrained optimization 

problems by solving a sequence of essentially unconstrained problems.  Specifically, the 

methods form an augmented Lagrangian function, which adds a penalty term to the 

traditional Lagrangian for each violated constraint, and minimize this function to obtain 

new estimates of the design variables.  Then, the Lagrange multipliers and penalty 

parameter are updated, as needed, creating a new augmented Lagrangian function to be 

minimized.  This process is repeated until some optimality and feasibility convergence 

criteria are reached.   

Augmented Lagrangian methods generally offer the following benefits: (1) good 

conditioning / numerical stability, since they do not require the penalty parameter to go to 

infinity; (2) converge to a local minimum from any starting point, i.e. globally 

convergent; (3) converge faster than penalty or barrier function methods; (4) remove 

inactive constraints from the problem automatically; (5) perform updates to the Lagrange 

multiplier variables, instead of solving a computationally expensive linearly-constrained 

quadratic-programming sub-problem at every iteration; (6) efficiently handle high-

dimensional problems with many simple bound constraints; (7) convergence towards 

optimality matches that of the underlying bound-constrained algorithm, which can be 

quite strong.  Augmented Lagrangian methods do, however, have a few notable 

drawbacks: (1) solution of an unconstrained sub-problem at every iteration, before 

updating the Lagrange multiplier variables, may result in slow progress towards 

feasibility; (2) using traditional Lagrange multiplier updating limits convergence towards 

feasibility to being linear; (3) selecting too small of a penalty parameter may result in 
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non-convexity; (4) selecting too large of a penalty parameter may result in slow progress 

towards optimality or even numerical instability.  In section 4.1.5, these challenges are 

studied in more depth and strategies to overcome them are identified.  However, first, a 

closer look is taken at the basic augmented Lagrangian algorithm. 

4.1.1 Basic Algorithm 

The following augmented Lagrangian algorithm applies to generally constrained 

optimization problems defined as: 

minimize  ݂(࢞)  

subject to ݈௜ ≤ ܿ௜(࢞) ≤ ݅     ௜ݑ = 1, ݉  

Reformatting of Constraints: To simplify implementation, it is helpful to convert 

both lower and upper bound constraints to the form (࢞)ࢎ = ૙ and (࢞)ࢍ ≤ ૙ and 

consider the constraint on each bound individually.  This can be achieved, without 

incurring additional constraint function or gradient evaluations, by redefining each 

constraint and its gradient as follows: 

ℎ௜(࢞) ≡ ܿ௜(࢞) −
ଵ

ଶ
௜ݑ) + ݈௜) = 0;     ∇ℎ௜(࢞) ≡ ∇ܿ௜(࢞);      ݅ ∈  (4.1) ܧ

݃௎௜(࢞) ≡ ܿ௜(࢞) − ௜ݑ ≤ 0;     ∇݃௎௜(࢞) ≡ ∇ܿ௜(࢞);      ݅ ∈  (4.2) ܫ

݃௅௜(࢞) ≡ ݈௜ − ܿ௜(࢞) ≤ 0;     ∇݃௅௜(࢞) ≡ −∇ܿ௜(࢞);      ݅ ∈  (4.3) ܫ

where ܧ = ሼ ݅ |  |ݑ௜ − ݈௜| ≤ ;ߜ  ݅ = 1, ݉ ሽ and ܫ = ሼ ݅ |  |ݑ௜ − ݈௜| > ;ߜ  ݅ = 1, ݉ ሽ 

Step 1: Set k = 0, K = 1020; estimate ࢞(଴), ࣆ(଴), ࢁࣅ
(଴)≥ 0, ࡸࣅ

(଴) ≥ 0, r > 0; set α > 1, 

β > 1, 0 < ߜ, where k is the iteration counter, K is the maximum constraint violation  

parameter used in determining whether the constraint violation improved, ࢞(଴) is the 

vector containing the design variable values at k = 0,  ࣆ(଴) is the vector containing the 

equality constraint Lagrange multiplier values at k = 0, ࢁࣅ
(଴) is the vector containing the 

upper bound inequality constraint Lagrange multiplier values at k = 0, ࡸࣅ
(଴) is the vector 

containing the lower bound inequality constraint Lagrange multiplier values at k = 0, r is 
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the penalty parameter, α is the factor used to test if the constraint violation has improved 

sufficiently, β is the factor used to increase the current penalty parameter value, ߜ is the 

constraint violation tolerance.     

Step 2: Set k = k + 1  

Step 3: Obtain ࢞(௞) by performing bound-constrained minimization on the 

augmented Lagrangian function, , with gradient, ∇, given in equations 4.4 and 4.5, 

respectively, keeping the current r, ࣆ(௞), ࢁࣅ
(௞), and ࡸࣅ

(௞) fixed: 

(࢞, ,ݎ ,ࣆ ,ࢁࣅ     (ࡸࣅ

= (ݔ)݂ + ∑ ቂߤ௜ℎ௜(ݔ) +
ଵ

ଶ
ℎ௜ݎ

ଶ(ݔ)ቃ௜∈ா   

+ ∑ ቐ
(ݔ)௎௜݃௎௜ߣ +

ଵ

ଶ
௎௜݃ݎ

ଶ (ݔ) ݂݅ ݃௎௜ +
ೆ೔ߣ

௥
≥ 0

−
ଵ

ଶ௥
௎௜ߣ

ଶ ݂݅ ݃௎௜ +
ೆ೔ߣ

௥
< 0

௜∈ூ  (4.4) 

+ ∑ ቐ
(ݔ)௅௜݃௅௜ߣ +

ଵ

ଶ
௅௜݃ݎ

ଶ (ݔ) ݂݅ ݃௅௜ +
ಽ೔ߣ

௥
≥ 0

−
ଵ

ଶ௥
௅௜ߣ

ଶ ݂݅ ݃௅௜ +
ಽ೔ߣ

௥
< 0

௜∈ூ   

which has the gradient: 

સ(࢞, ,ݎ ,ࣆ ,ࢁࣅ  (ࡸࣅ

= (ݔ)݂∇ + ∑ (ݔ)௜∇ℎ௜ߤൣ + ൧௜∈ா(ݔ)ℎ௜∇(ݔ)ℎ௜ݎ   

+ ∑ ቐ
(ݔ)௎௜∇݃௎௜ߣ + (ݔ)௎௜݃∇(ݔ)௎௜݃ݎ ݂݅ ݃௎௜ +

ೆ೔ߣ

௥
≥ 0

0 ݂݅ ݃௎௜ +
ೆ೔ߣ

௥
< 0

௜∈ூ   (4.5) 

+ ∑ ቐ
(ݔ)௅௜∇݃௅௜ߣ + (ݔ)௅௜݃∇(ݔ)௅௜݃ݎ ݂݅ ݃௅௜ +

ಽ೔ߣ

௥
≥ 0

0 ݂݅ ݃௅௜ +
ಽ೔ߣ

௥
< 0

௜∈ூ   

Step 4: Using current constraint function values, ࢎ൫࢞(௞)൯, ࢁࢍ൫࢞(௞)൯, and 

 :ഥ, as followsܭ ,൯, determine the current constraint violation parameter(௞)࢞൫ࡸࢍ

ഥܭ = ݔܽ݉ ቄ|ℎ௜|, ݅ ∈ ቀ݃௎௜ݔቚ݉ܽ ;ܧ , ௎௜ߣ−
(௞)/ݎ௞ቁቚ , ݅ ∈ ;ܫ  ቚ݉ܽݔቀ݃௅௜ , ௅௜ߣ−

(௞)/ݎ௞ቁቚ , ݅ ∈  ቅ (4.6)ܫ
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Step 5: Check if constraint violation tolerance is satisfied (i.e. ܭഥ ≤  If  .(ߜ

satisfied, stop.  Otherwise, continue. 

Step 6: Check if ܭഥ ≥  If satisfied (i.e. the constraint violation has not  .ܭ

improved), increase the penalty parameter by the factor β such that ݎ௞ାଵ =  ௞ and go toݎߚ

step 2.  Otherwise, continue. 

Step 7: Update the Lagrange multipliers as follows: 

௜ߤ
(௞ାଵ) = ௜ߤ

(௞) + ;൯(௞)ݔ௞ℎ௜൫ݎ   ݅ ∈  (4.7)  ܧ

௎௜ߣ
(௞ାଵ) = ௎௜ߣ

(௞) + ௞ݎ max ൤݃௎௜൫ݔ(௞)൯, −
ೆ೔ߣ

(ೖ)

௥ೖ
൨ ;  ݅ ∈  (4.8) ܫ

௅௜ߣ
(௞ାଵ) = ௅௜ߣ

(௞) + ௞ݎ max ൤݃௅௜൫ݔ(௞)൯, −
ಽ೔ߣ

(ೖ)

௥ೖ
൨ ;  ݅ ∈  (4.9) ܫ

Before continuing, ensure that if ݃௎௜൫࢞(௞)൯ ≥ 0 then ߣ௅௜
(௞ାଵ) = 0 and if 

݃௅௜൫࢞(௞)൯ ≥ 0 then ߣ௎௜
(௞ାଵ) = 0. 

Step 8: Check if ܭഥ ≤  If satisfied (i.e. the constraint violation has improved  .ߙ/ܭ

by the factor α), set ܭ =  .ഥ and go to step 2.  Otherwise, continueܭ

Step 9: Set ݎ௞ାଵ = ܭ ௞ andݎߚ =  .ഥ and go to step 2ܭ
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4.1.2 Flow Diagram for Basic Algorithm 

The overall flow of the basic augmented Lagrangian iteration is shown in Figure 

4.1 and involves: initializing algorithmic parameters; performing bound constrained 

minimization on an augmented Lagrangian function; calculating the current constraint 

violation at the updated design; checking for convergence; increasing the penalty 

parameter and re-minimizing if constraint violation did not improve; updating the 

Lagrange multipliers if the constraint violation did improve; setting the maximum 

constraint violation parameter to the current constraint violation parameter and re-

minimizing if the constraint violation improved by a factor alpha; increasing the penalty 

parameter and setting the maximum constraint violation parameter to the current 

constraint violation parameter and re-minimizing if the constraint violation did not 

improve by a factor alpha. 
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Figure 4.1 Basic Augmented Lagrangian Iteration Flow Diagram. 
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4.1.3 Limitations of the Basic Algorithm 

The basic augmented Lagrangian algorithm permits convergence, in terms of the 

design variables, at a rate consistent with the underlying bound-constrained algorithm.  

However, convergence of the constraint or Lagrange multiplier variables is only as good 

as the linear, or steepest ascent, Lagrange multiplier updates given in formulas 4.7 to 4.9.  

Furthermore, updates to the Lagrange multiplier variables only occur after nearly exact 

bound-constrained minimization, further slowing progress towards feasibility.  Ideally, 

Lagrange multiplier variables should converge at the same rate as the design variables, so 

that feasibility and optimality can be achieved in as few iterations as possible.  In fact, 

this is one of the primary reasons for the recent popularity of Sequential Quadratic 

Programming (SQP) and Interior Point (IP) methods for solving constrained problems, as 

they typically simultaneously update the Lagrange multiplier and design variable values.  

Another limitation of the basic augmented Lagrangian algorithm, is its heavy reliance on 

the penalty parameter.  Selecting too small of a penalty parameter may lead to a non-

convex bound-constrained sub-problem.  Selecting too large of a penalty parameter may 

lead to a numerically unstable bound-constrained sub-problem.  In the sections that 

follow, however, it is shown how continuous Lagrange multiplier update strategies and 

ideas from SQP and IP methods can be combined to create an augmented Lagrangian 

algorithm competitive with SQP and IP methods. 

4.1.4 Literature Review 

One of the most important aspects of designing an efficient and robust augmented 

Lagrangian algorithm is the selection of an augmented Lagrangian function.  Many 

augmented Lagrangian functions have been proposed.  In general, however, they fall into 

two categories, non-smooth and smooth.  Nocedal and Wright (2006) note that the most 

popular of the non-smooth functions is the exact L1 penalty function.  Its exactness 

property makes its performance less dependent on the penalty parameter update strategy, 
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since its minimizer will be the same as the minimizer of the original, non-penalized, 

problem for any positive value of the penalty parameter.  Since the L1 penalty function 

uses the L1 norm to penalize constraint violations, it naturally treats all constraint 

violations as close to equally as possible when deciding where to move to improve 

feasibility.  The L1 norm’s nearly ideal ability to capture constraint sensitivity, however, 

comes at the cost of non-smoothness at the constraint boundaries, which can hinder 

progress towards optimality if a gradient based method is being used to perform the 

unconstrained minimizations.  Getting around non-smoothness of the L1 penalty function 

involves: developing a quadratic model of the L1 penalty function; introducing two slack 

variables for every linearized equality constraint and one slack variable for every 

linearized inequality constraint to promote smoothness; solving a linearly constrained 

quadratic programming sub-problem, similar to that of an SQP method running in elastic 

mode, to handle inconsistent constraint linearizations.  This approach has been 

implemented successfully in practice.  However, ideally an augmented Lagrangian 

function should not increase the dimensionality of the problem and should use a 

problem’s objective and constraint functions directly, instead of quadratic and linear 

approximations of them.  Furthermore, solution of a computationally expensive linearly 

constrained quadratic programming sub-problem, in order to ascertain a search direction, 

defeats the purpose of using an augmented Lagrangian approach over an SQP approach. 

To avoid these complications, smooth exact augmented Lagrangian functions, 

notably the penalty Lagrangian developed by Hestenes (1969) and Powell (1969) have 

been used.  Similar to the L1 penalty function, Hestenes and Powell’s penalty 

Lagrangian’s exactness property makes its performance less dependent on the penalty 

parameter update strategy used.  Since their penalty Lagrangian uses the square of the 

constraint violation in its penalty terms, smoothness at the constraint boundary is ensured 

and the expensive and potentially problematic solution procedure required by the L1 

penalty function is avoided.  The only potential drawback of their penalty Lagrangian, is 
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that the square of the constraint violations in the penalty terms may encourage 

satisfaction of constraints with quickly increasing violations first, rather than seeking 

satisfaction of all constraints at a relatively equal rate like the L1 penalty function.  

However, since practical use of Hestenes and Powell’s penalty Lagrangian does not 

require linearization of the constraints, progress towards feasibility may be competitive 

with that of the L1 penalty function.   

Rockafellar (1973) was the first to extend Hestenes and Powell’s penalty 

Lagrangian for the case of inequality constraints.  Rockafellar’s penalty Lagrangian is 

impressive in that it automatically adds and removes constraints that are violated and 

satisfied, respectively, from the problem.  However, it has the drawback of not offering a 

convenient choice of penalty parameter and of having discontinuities in the second 

derivative, which may adversely affect line search iterations.  Gill, Murray, Saunders, and 

Wright (1986) noted these drawbacks while researching which augmented Lagrangian 

function to use as a merit function, to assess trial line search steps with in SNOPT’s SQP 

implementation.  They circumnavigated these drawbacks by explicitly incorporating 

slack variables into Hestenes and Powell’s penalty Lagrangian, which essentially 

converted all constraints to equality constraints for line search purposes.  Furthermore, 

they avoided increasing problem dimensionality by deriving explicit procedures for 

calculating starting slack variable values and slack variable search direction values that 

were compatible with the solution to their QP subproblem. 

As noted in section 4.1, a crucial aspect of achieving rapid convergence towards 

feasibility with augmented Lagrangian algorithms is the choice of Lagrange multiplier 

update formula and the frequency with which those updates occur.  Arora, Chahande, and 

Paeng (1991) reviewed various augmented Lagrangian or multiplier methods and their 

applicability to engineering design problems.  They also provided an interesting review 

of Lagrange multiplier update procedures and an introduction to continuous multiplier 

update methods.  Arora et al. note, for continuous multiplier update methods, the 
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importance of design variable and Lagrange multiplier variable update procedures being 

compatible, i.e. a quasi-Newton design variable update used with a quasi-Newton 

Lagrange multiplier variable update.  Compatibility between updates to the primal or 

design variables and dual or Lagrange multiplier variables allows for exact unconstrained 

minimization in terms of the design variables to be bypassed and the Lagrange multiplier 

variables to be updated continuously with the design variables, similar to an SQP method.  

In fact, Arora et al. show that one iteration of a quasi-Newton unconstrained algorithm, 

followed by a compatible update of the Lagrange multipliers, corresponds to one iteration 

of an SQP method.  Specifically, they show that if the Lagrange multiplier variables are 

updated using the solution of the SQP method’s QP sub-problem at each unconstrained 

iteration, then the multiplier method iterations are equivalent to the SQP method 

iterations. 

Nocedal and Wright (2006) study the solution of local SQP methods’ QP sub-

problems in depth, before incorporating line search or trust region techniques to develop 

global SQP methods.  They note how local SQP methods’ QP sub-problems may be 

derived simply by applying Newton’s method to the KKT optimality conditions for the 

constrained problem.  This clearly shows the extension of unconstrained Newton / quasi-

Newton methods to constrained problems.  Similar to the case of unconstrained problems, 

the solution of the resulting Newton-KKT system is a Newton step in the design and 

Lagrange multiplier variables, which may also be viewed as search directions in the 

design and Lagrange multiplier variables, respectively, for line search purposes.  Also of 

interest, they derive local SQP methods’ QP sub-problems in the form of a quadratic 

program and perform some algebraic manipulations that suggest a strategy for updating 

the Lagrange multiplier and design variables in sequence instead of simultaneously, 

which is useful for continuous multiplier update methods.  Arora et al. (1991) recognized 

this as well and derived an explicit formula for calculating the design variable search 
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direction in terms of Lagrange multiplier variable values updated using a compatible 

update formula or method. 

Tapia (1977) studied various Lagrange multiplier update formulas and proposed a 

diagonalized quasi-newton multiplier method for equality constrained problems that used 

a new Lagrange multiplier update formula, which was consistent with quasi-newton 

design variable updates, to continuously update the Lagrange multipliers with every 

update to the design variables.  The general steps of Tapia’s method include: setting 

initial values of the design variables, Lagrange multiplier variables, penalty parameter, 

and inverse Hessian approximation; using their new Lagrange multiplier update formula 

to update the Lagrange multipliers; performing a Newton step to update the design 

variables; updating the Lagrange multipliers again for the new design; updating the 

penalty parameter; updating the inverse Hessian approximation using updated Lagrange 

multiplier values.  However, Tapia notes that the penalty parameter need not be updated 

at every iteration and that the second Lagrange multiplier update need not be performed if 

descent is enforced, i.e. a decrease in the augmented Lagrangian is ensured via some type 

of line search on both the Lagrange multiplier and design variable updates.  Tapia 

extended his diagonalized multiplier method to the case of the general equality-inequality 

constrained problem by introducing slack variables to the inequality constraints and 

converting them to equality constraints. 

At the same time Tapia (1977) was developing his diagonalized multiplier 

method, Han (1977) was developing his dual variable metric (i.e. quasi-Newton) 

algorithm for constrained optimization.  While Han proposed updating equality constraint 

Lagrange multiplier variables by solving a system of linear equations instead of 

evaluating an explicit update formula like Tapia, both approaches are essentially the same 

and generate the same sequence of Lagrange multiplier variable values.  Where Han and 

Tapia differ, however, is in their treatment of the general equality-inequality constrained 
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problem.  Instead of converting inequalities to equalities, Han proposes a separate 

quadratic programming sub-problem to handle inequality constraints directly. 

Mayne and Polak (1980) also handled updating both equality and inequality 

constraint Lagrange multiplier variables directly and were the first to propose a combined 

sub-problem that updated them simultaneously.  Mayne and Polak’s approach uses the 

KKT conditions for the generally constrained problem to develop an objective function 

that, when minimized, provides estimates of the Lagrange multiplier variable values at 

the current candidate minimum point.  This approach is general in that it is not dependent 

on the specific search direction technique and augmented Lagrangian function used like 

Tapia and Han’s methods, which are specifically designed for quasi-newton search 

direction techniques and the penalty Lagrangian developed by Hestenes (1969) and 

Powell (1969).  However, it suffers from the drawback of requiring complicating penalty 

terms in the proposed objective function to ensure continuity. 

The final challenge identified in section 4.1 to achieving rapid convergence with 

augmented Lagrangian algorithms, was devising a robust penalty parameter update 

strategy.  The relationship between the Lagrange multiplier variables and the penalty 

parameter was studied in depth by Mayne and Polak (1982).  Specifically, they studied 

properties of the penalty parameter necessary for global convergence and proposed an 

automatic rule for selecting and updating the penalty parameter that ensures these 

properties are satisfied.  They note that if a given primal and dual step is a KKT triple for 

the quadratic program then the primal search direction is a direction of descent for the 

augmented Lagrangian if the inverse Hessian approximation is positive definite and the 

penalty parameter is larger than the sum of the absolute values of the Lagrange multiplier 

variables.  Taking this into account and recognizing that current estimates of the 

Lagrange multiplier variables may not be accurate at a point far from the solution, their 

proposed formula for estimating the penalty parameter sums the absolute values of the 

Lagrange multiplier variables and then increases that value by ten-percent to ensure that 
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the current estimate of the penalty parameter is large enough.  Their automatic procedure 

for selecting and updating the penalty parameter works by: starting with an initial penalty 

parameter value; calculating the penalty parameter value predicted by their formula; 

keeping the penalty parameter value unchanged if it is already larger than that predicted 

by the formula; taking the penalty parameter as the maximum of 10 times its current 

value or the value predicted by the formula if it is smaller than that predicted by the 

formula; performing unconstrained minimization in order to move to the next design 

point.  This process is repeated as necessary until convergence is reached.  It ensures that 

the penalty parameter is never smaller than the conditions necessary to ensure global 

convergence and keeps the penalty parameter from becoming too large. 

While Mayne and Polak’s (1982) penalty parameter update strategy is based on 

conditions required for global convergence and is applicable to multiple augmented 

Lagrangian functions, it is still heuristic in nature.  Gill, Murray, Saunders, and Wright 

(1986) noted that, for their SQP method’s augmented Lagrangian merit function, the 

penalty parameter update need not be heuristic.  In fact, they noted that a current value of 

the penalty parameter could be calculated directly using a condition required for global 

convergence and the fact that rapid convergence is strongly tied to keeping the penalty 

parameter as small as possible.  Specifically, their method calculates the current value of 

the penalty parameter, before each line search, such that the projected gradient of the 

merit function, i.e. line search function slope, will satisfy a condition required for global 

convergence.  

4.1.5 Overcoming Limitations of the Basic Algorithm 

Here, ideas from L-BFGS bound-constrained algorithms, augmented Lagrangian 

algorithms, and SQP algorithms are combined and extended to create a novel generally 

constrained augmented Lagrangian algorithm. 
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The augmented Lagrangian merit function proposed by Gill, Murray, Saunders, 

and Wright is taken as the augmented Lagrangian to be minimized, over Rockafellar’s 

traditional augmented Lagrangian, for its continuous second derivatives and convenient 

choice of penalty parameter.  While Gill, Murray, Saunders, and Wright’s augmented 

Lagrangian merit function does introduce somewhat complicating slack variables, it is 

shown how their search direction can be calculated explicitly, to avoid increasing 

problem dimensionality. 

Since the augmented Lagrangian function chosen converts general constraints to 

equalities, a similar method to Tapia and Han’s may be used for updating the equality 

constraint Lagrange multiplier variable values.  However, instead of evaluating an 

explicit update formula or solving a system of linear equations, a simple unconstrained 

QP sub-problem is proposed.  After the updated Lagrange multiplier variable values have 

been identified, Arora’s technique for calculating a search direction consistent with the 

updated Lagrange multiplier variable values may be applied and a line search along the 

design variable, Lagrange multiplier, and slack variable search directions performed. 

4.1.6 Novel Algorithm  

The following novel augmented Lagrangian algorithm applies to generally 

constrained optimization problems of the form: 

minimize   ݂(࢞)  (4.10a) 

subject to   ࢒ ≤ ቀ
࢞

ቁ(࢞)ࢉ ≤  (4.10b)   ࢛

where ݂(࢞) represents the objective function, ࢞ represents the vector of design 

variables, (࢞)ࢉ represents the vector of linear and nonlinear general constraints, ࢒ 

represents the vector of lower bounds on ࢞ and (࢞)ࢉ, and ࢛ represents the vector of upper 

bounds on ࢞ and (࢞)ࢉ.  Note that equality constraints may be specified by setting the 

lower and upper bounds equal for a constraint. 
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Reformatting of constraints: To simplify implementation, it is helpful to define 

transformed vectors of constraints of the form (࢞)ࢎ = ૙ and (࢞)ࢍ ≤ ૙.  Note that 

evaluation of (࢞)ࢎ and (࢞)ࢍ need not require more than one evaluation of the vector of 

constraints (࢞)ࢉ: 

(࢞)ࢎ ≡ (࢞)ࡱࢉ −
ଵ

ଶ
ࡱ࢒) + (ࡱ࢛ = ૙;   (࢞)ࢎࡶ ≡ ࡱࢉࡶ

 (4.11) (࢞)

(࢞)ࢍ ≡ ൬
(࢞)ࢁࢉ − ࢁ࢛

ࡸ࢒ − (࢞)ࡸࢉ
൰ ≤ ૙;   (࢞)ࢍࡶ ≡ ቆ

ࢁࢉࡶ
(࢞)

ࡸࢉࡶ−
 ቇ  (4.12)(࢞)

where 

,(࢞)ࡱࢉ ,ࡱ࢒ ࡱ࢛ ∈ ℝ ࢏ × ૚; ࡱࢉࡶ   
(࢞) ∈ ℝ ࢔ × ࢏;    ݅ ∈  (4.13) ࡱ

,(࢞)ࢁࢉ ࢁ࢛ ∈ ℝ ࢏ × ૚; ࢁࢉࡶ   
(࢞) ∈ ℝ ࢔ × ࢏;    ݅ ∈  (4.14) ࢁ

,(࢞)ࡸࢉ ࡸ࢒ ∈ ℝ ࢏ × ૚; ࡸࢉࡶ   
(࢞) ∈ ℝ ࢔ × ࢏;    ݅ ∈  (4.15)  ࡸ

and equality, upper bound inequality, and lower bound inequality constraint sets ࢁ ,ࡱ, 

and ࡸ, respectively, are defined as follows: 

ࡱ = ൛݅:  |ݑ௜ − ݈௜| ≤ ௙ߝ ,   ݅ = ݊ + 1, ݊ + ݉ൟ  (4.16) 

ࢁ = ൛݅:  |ݑ௜ − ݈௜| > ௜ݑ  & ௙ߝ ≠ ∞,     ݅ = ݊ + 1, ݊ + ݉ൟ (4.17) 

ࡸ = ൛݅:  |ݑ௜ − ݈௜| > ௙ &  ݈௜ߝ ≠ −∞,     ݅ = ݊ + 1, ݊ + ݉ൟ (4.18) 

where ߝ௙ represents the constraint feasibility tolerance, ݊ represents the number of 

design variables ࢞, and ݉ represents the number of linear and nonlinear general 

constraints in (࢞)ࢉ.  Finally, to further simplify implementation, it is helpful to define 

bookkeeping variables ݉ா, ݉௎, and ݉௅ representing the total number of transformed 

equality, upper bound inequality, and lower bound inequality constraints, respectively: 

݉ா =  (4.19)   (ࡱ)ℎݐ݈݃݊݁

݉௎ =  (4.20)   (ࢁ)ℎݐ݈݃݊݁

݉௅ =  (4.21)     (ࡸ)ℎݐ݈݃݊݁
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Stating the generally constrained optimization problem in terms of the 

transformed vectors of constraints gives: 

minimize   ݂(࢞)  (4.22a) 

subject to   ݈௜ ≤ ௜ݔ ≤ ௜ݑ ,   ݅ = 1, ݊  (4.22b) 

(࢞)ࢎ                   = ૙  (4.22c) 

(࢞)ࢍ                   ≤ ૙   (4.22d) 

where (࢞)ࢎ ∈ ℝ ݉1 ×  ܧ and (࢞)ࢍ ∈ ℝ (ܷ݉+݉ܮ)  × 1.  This is the form used throughout the 

algorithm that follows.  Also, for clarity, transformed equality and transformed inequality 

constraints are referred to as equality and inequality constraints. 

 In general, the algorithm that follows consists of 14 steps: (1) Initialize 

algorithmic parameters, ensure all design variables are on or within their bounds, and 

evaluate the optimization problem functions; (2) Calculate starting slack variable values, 

corresponding to the inequality constraints, that minimize the augmented Lagrangian 

function, subject to non-negativity of the slack variables; (3) Calculate the maximum 

constraint violation from the equality constraints, inequality constraints, and inequality 

constraint Lagrange multiplier non-negativity constraints; (4) Calculate the inactive-

variable-set and active-constraint-set.  The inactive-variable-set consists of variables 

within their bounds or variables near their bounds that tend to move inward towards the 

feasible region.  The active-constraint-set consists of inequality constraints with 

corresponding slack variables that are near their bounds and tend to move outward 

towards the infeasible region, i.e. negativity.  Here, the Lagrange multipliers for the lower 

and upper bound constraints on the design and slack variables, the active design variable 

search direction components, the active slack variable search direction components, the 

inactive inequality constraint Lagrange multipliers, and the inactive inequality constraint 

Lagrange multiplier search direction components are also set; (5) Calculate the gradient 

of the Lagrangian function with respect to the design variables and take the maximum 
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optimality violation as the infinity norm of the components of the Lagrangian gradient 

corresponding to the inactive-variable-set; (6) Check if the current point is a KKT point, 

i.e. the maximum constraint violation and maximum optimality violation are small.  If so, 

stop.  Otherwise, continue; (7) Calculate second order equality constraint and active 

inequality constraint Lagrange multiplier search direction components by solving a linear 

system of equations or by solving an equivalent unconstrained sub-problem, considering 

inactive design variables only.  Either solution method is equivalent to solving the KKT 

system of equations for an equality constrained problem explicitly.  Also, set the 

Quadratic Programming (QP) Lagrange multipliers; (8) Calculate second order inactive 

design variable search direction components using the L-BFGS two-loop recursion of 

section 2.3.1.1, taking the gradient vector to be multiplied by the inverse Hessian 

approximation as the gradient of the Lagrangian evaluated at the QP Lagrange 

multipliers.  Once again, this is equivalent to solving the KKT system of equations for an 

equality constrained problem explicitly; (9) Calculate QP slack variables corresponding 

to the linearized inequality constraints, considering inactive design variables only, and set 

the inactive slack variable search direction components to the difference between the 

current slack variable values and the QP slack variable values; (10) Update each 

constraint’s penalty parameter, as necessary, to ensure the directional derivative of the 

line search function is sufficiently negative; (11) Use the efficient backtracking line 

search procedure given in section 3.2 to find a step size satisfying Armijo’s sufficient 

decrease rule.  Update the design variables, slack variables, and Lagrange multipliers; 

(12) Evaluate the optimization problem functions for the next iteration; (13) Set the L-

BFGS vectors used to approximate the inverse Hessian of the Lagrangian function; (14) 

Set all problem variables for the next iteration, increment the iteration counter, and go to 

step 3.        
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 The Lagrangian function and its gradient with respect to the design variables, 

which is used in second order search direction calculations and to assess optimality, is 

given by: 

,࢞)ܮ ,ࣆ (ࣅ = (࢞)݂ + (࢞)ࢎ்ࣆ + (࢞)ࢍ)்ࣅ  +  (4.23) (ࢠ

∇௫࢞)ܮ, ,ࣆ (ࣅ = ∇௫݂(࢞) + ࣆ்(࢞)ࢎࡶ +  (4.24)  ࣅ்(࢞)ࢍࡶ

 The augmented Lagrangian function and its gradient with respect to the design 

variables, slack variables, equality constraint Lagrange multipliers, and inequality 

constraint Lagrange multipliers is given by: 

Φ൫࢞, ,ࢠ ,ࣆ ,ࣅ ,ࢎࡼ ൯ࢍࡼ = (࢞)݂ + (࢞)ࢎ்ࣆ +
ଵ

ଶ
 (4.25)  (࢞)ࢎࢎࡼܶ(࢞)ࢎ

(࢞)ࢍ)்ࣅ + + (ࢠ +
ଵ

ଶ
(࢞)ࢍ) + (࢞)ࢍ)ࢍࡼ்(ࢠ +   (ࢠ

∇௫Φ൫࢞, ,ࢠ ,ࣆ ,ࣅ ,ࢎࡼ ൯ࢍࡼ = ∇௫݂(࢞) + ࣆ்(࢞)ࢎࡶ +  (4.26)  (࢞)ࢎࢎࡼ்(࢞)ࢎࡶ 

ࢍ۸ +
ࣅܶ(࢞) + ࢍࡶ 

(࢞)ࢍ)ࢍࡼܶ(࢞) +    (ࢠ

∇௭Φ൫࢞, ,ࢠ ,ࣆ ,ࣅ ,ࢎࡼ ൯ࢍࡼ = ࣅ + (࢞)ࢍ)ࢍࡼ +  (4.27)  (ࢠ

,࢞Φ൫ࣆ∇ ,ࢠ ,ࣆ ,ࣅ ,ࢎࡼ ൯ࢍࡼ =   (4.28)                                                                                   (࢞)ࢎ

,࢞Φ൫ࣅ∇ ,ࢠ ,ࣆ ,ࣅ ,ࢎࡼ ൯ࢍࡼ = (࢞)ࢍ +  (4.29)                                                         ࢠ

It is used in identifying the inactive-variable-set, identifying the active-constraint-set, and 

assessing sufficient decrease during line search iterations.  It is not used in calculating 

second order search directions, as is typical in augmented Lagrangian methods, since it 

depends on a penalty parameter.  Dependence on a penalty parameter has been observed 

to cause numerical instability when the penalty parameter becomes large.  Therefore, the 

Lagrangian function is used in calculating second order search directions and positive 

definiteness of the inverse Hessian approximation is maintained by placing limits on the 

L-BFGS correction vectors.   Interestingly, when the Lagrangian function is used in 
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calculating second order search directions, the sequence of iterates is identical, in theory, 

to that of an SQP method.    

Step 1: Set ݇ = ௢ߝ ,0 = 1.1݁ − ௙ߝ ,6 = 1.1݁ − ߩ ,6 = ࢎ࢖ ,0.0001
(௞) = 0.01, 

ࢍ࢖
(௞) = 0.01, and ݉௖ = 20; estimate ࢞(௞), ࢠ(௞), ࣆ(௞), ࣅ(௞), ࢒ࣅ

(௞), and ࢛ࣅ
(௞); ensure all ࢞(௞) 

are on or within their bounds by applying the projection operator, i.e. eqn. 2.1, on each 

element of ࢞(௞); evaluate ݂(௞), ࢎ(௞), ࢍ(௞), ∇݂(௞), ࢎࡶ
(௞), and ࢍࡶ

(௞); where ݇ is the iteration 

counter, ߝ௢ is the optimality tolerance, ߝ௙ is the feasibility tolerance, ߩ is a factor between 

0 and 1 used by Armijo’s rule in determining satisfactory step sizes, ࢎ࢖
(௞) ∈ ℝ ௠ಶ × ଵ 

contains the penalty parameter values corresponding to the equality constraints for 

iteration ݇, ࢍ࢖
(௞) ∈ ℝ (௠ೆା௠ಽ) × ଵ contains the penalty parameter values corresponding to 

the inequality constraints for iteration  ݇, ݉௖ is the number of L-BFGS corrections to 

store, ࢞(௞) ∈ ℝ ௡ × ଵ contains the design variable values for iteration ݇, ࢠ(௞) ∈

ℝ (௠ೆା௠ಽ) × ଵ contains the slack variable values for iteration ݇, ࣆ(௞) ∈ ℝ ௠ಶ × ଵ contains 

the equality constraint Lagrange multiplier values for iteration ݇, ࣅ(௞) ∈ ℝ (௠ೆା௠ಽ) × ଵ 

contains the inequality constraint Lagrange multiplier values for iteration ݇, ࢒ࣅ
(௞) ∈

ℝ (௡ା௠ೆା௠ಽ) × ଵ contains the lower bound constraint Lagrange multiplier values for 

iteration ݇ for the lower bounds on the design and slack variables, ࢛ࣅ
(௞) ∈ ℝ (௡ା௠ೆା௠ಽ) × ଵ 

contains the upper bound constraint Lagrange multiplier values for iteration ݇ for the 

upper bounds on the design and slack variables, ݂(௞) contains the objective function 

evaluated at ࢞(௞), ࢎ(௞) ∈ ℝ ௠ಶ  × ଵ contains the equality constraints evaluated at ࢞(௞), 

(௞)ࢍ ∈ ℝ (௠ೆା௠ಽ)  × ଵ contains the inequality constraints evaluated at ࢞(௞), ∇݂(௞) ∈

ℝ ௡ × ଵ contains the gradient of the objective function with respect to the design variables 

evaluated at ࢞(௞), ࢎࡶ
(௞) ∈ ℝ ௠ಶ × ௡ contains the Jacobian of the equality constraints 

evaluated at ࢞(௞), and ࢍࡶ
(௞) ∈ ℝ  (௠ೆା௠ಽ) × ௡ contains the Jacobian of the inequality 

constraints evaluated at ࢞(௞). 
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Step 2: Using current inequality constraint function values, ࢍ(௞), inequality 

constraint Lagrange multiplier values, ࣅ(௞), and inequality constraint penalty parameter 

values, ࢍ࢖
(௞), calculate slack variable values, ࢠ(௞): 

௝ݖ = ቐ
,൫0ݔܽ݉ −݃௝൯ ௚௝݌ ݂݅ = 0

ݔܽ݉ ൬0, −݃௝ −
ఒೕ

௣೒ೕ
൰ ݁ݏ݅ݓݎℎ݁ݐ݋

,   ݆ = 1, … , ݉௎ + ݉௅  (4.30) 

This equation, for penalty parameter values greater than zero, is equivalent to minimizing 

the augmented Lagrangian function with respect to the slack variables alone.  Thus, 

equation 4.30 calculates current optimal slack variable values.  This equation was first 

discovered by Gill, Murray, Saunders, and Wright (1986) and has been modified here for 

the case of less-than-or-equal-to type constraints.    

Step 3: Using current transformed constraint function values, ࢎ(௞) and ࢍ(௞), and 

inequality constraint Lagrange multiplier values, ࣅ(௞), calculate the maximum feasibility 

violation, ܨത, as follows: 

തܨ = ݅   ,|൛|ℎ௜ݔܽ݉ = 1, … , ݉ா;  max൫0, ݃௝൯ ,   ݆ = 1, … , ݉௎ + ݉௅ൟ  (4.31) 

Step 4: Using the procedure below, identify the inactive-variable-set and active-

constraint-set, ࡵ(௞) and ࡭(௞), respectively.  Set the lower- and upper-bound constraint 

Lagrange multipliers,  ࢒ࣅ
(௞) and ࢛ࣅ

(௞), respectively, for the bound constraints on the design 

and slack variables.  Set the active design and slack variable search direction components 

such that a step size of one moves a variable, at most, to its bound or to the steepest 

descent step, whichever is closer.  This way, in algorithms where the largest step allowed 

is one, variables that are close to their bounds can move towards their bounds, but not 

past their bounds.  Set each inactive inequality constraint Lagrange multiplier to zero to 

enforce the KKT complementary slackness condition for the constraint.  Similarly, set the 

inactive inequality constraint Lagrange multiplier search direction components to zero.      

݅ ݎ݋݂ = 1, … , ݊  

if  ݈௜ ≤ ௜ݔ
(௞) ≤ ݈௜ + ௙ and ∇௫Φ௜ߝ

(௞) > 0 (i.e., lower-bound is active) 
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     then  ݅ ∉ ௟௜ߣ  ,(௞)ࡵ
(௞) = ∇௫Φ௜

(௞),  ߣ௨௜
(௞) = 0, and  ݀௫௜

(௞) = ቀ−∇௫Φ௜ ݔܽ݉
(௞), ݈௜ − ௜ݔ

(௞)ቁ 

else if  ݑ௜ − ௙ߝ ≤ ௜ݔ
(௞) ≤ ௜ݑ  and ∇௫Φ௜

(௞) < 0 (i.e., upper-bound is active) 

     then  ݅ ∉ ௟௜ߣ  ,(௞)ࡵ
(௞) = ௨௜ߣ  ,0

(௞) = −∇௫Φ௜
(௞), and ݀௫௜

(௞) = ݉݅݊ ቀ−∇௫Φ௜
(௞), ௜ݑ − ௜ݔ

(௞)ቁ 

else  ݈௜ + ௙ߝ < ௜ݔ
(௞) < ௜ݑ −  ௙ (i.e., neither bound is active)ߝ

     then  ݅ ∈ ௟௜ߣ  ,(௞)ࡵ
(௞) = 0,  and  ߣ௨௜

(௞) = 0 

݆ ݎ݋݂ = 1, … , ݉௎ + ݉௅  

if  0 ≤ ௝ݖ
(௞) ≤ ௙ and ∇௭Φ௝ߝ

(௞) > 0 (i.e., inequality constraint is active) 

     then  ݆ ∈ ௟(௡ା௝)ߣ  ,(௞)࡭
(௞) = ∇௭Φ௝

(௞),  ߣ௨(௡ା௝)
(௞) = 0, and ݀௭௝

(௞) = ቀ−∇௭Φ௝ ݔܽ݉
(௞), ௝ݖ−

(௞)ቁ 

else  ߝ௙ < ௝ݖ
(௞) < ∞ (i.e., inequality constraint is inactive) 

     then  ݆ ∉ ௟(௡ା௝)ߣ  ,(௞)࡭
(௞) = ௨(௡ା௝)ߣ  ,0

(௞) = ௝ߣ  ,0
(௞) = 0, and ࢊఒ௝

(௞) = 0 

where 

∇௫Φ(௞) ≡ ∇௫Φቀ࢞(௞), ,(௞)ࢠ ,(௞)ࣆ ,(௞)ࣅ ࢎࡼ
(௞), ࢍࡼ

(௞)ቁ  (4.32) 

and 

∇௭Φ(௞) ≡ ∇௭Φቀ࢞(௞), ,(௞)ࢠ ,(௞)ࣆ ,(௞)ࣅ ࢎࡼ
(௞), ࢍࡼ

(௞)ቁ  (4.33) 

Note, ࢎࡼ
(௞) and ࢍࡼ

(௞) represent diagonal matrices containing the values of ࢎ࢖
(௞) and 

ࢍ࢖
(௞), respectively.  Also, in steps 5, 7, 8, and 9 that follow, calculations are carried out in 

terms of the inactive set of design variables only.  In step 9, calculations are carried out in 

terms of the inactive set of constraints only. 

Step 5: Using current transformed constraint Jacobian values, ࢎࡶ
(௞) and ࢍࡶ

(௞), and 

Lagrange multiplier values, ࣆ(௞) and ࣅ(௞), calculate the maximum optimality violation, 

തܱ, as follows: 

തܱ = ฮ∇ܮݔ(݇)ฮ
ஶ

   (4.34) 

where 
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∇௫ܮ(௞) ≡ ∇௫࢞)ܮ(௞), ,(௞)ࣆ  (4.35)   ((௞)ࣅ

Note: the maximum optimality violation of equation 4.34 is calculated considering the 

inactive set of design variables only, since the KKT conditions for active design variables 

are enforced explicitly in step 4. 

Step 6: Check if current point is a KKT point, i.e. check if the following criteria 

are satisfied: 

തܨ ≤  ௙   (4.36)ߝ

തܱ ≤  ௢   (4.37)ߝ

If current point is a KKT point, stop.  Otherwise, continue.  

Step 7: If ݇ < 1, take ࡴ(௞) as an identity matrix and solve the following 

unconstrained sub-problem for equality constraint and active inequality constraint 

Lagrange multiplier search direction components, ࡭ࣅࣆࢊ

(௞) : 

minimize     ݍ =
ଵ

ଶ
࡭ࣅࣆࢊ

(௞) ்
࡭ࣅࣆࢊ ۰

(௞) − ࡭ࣅࣆࢊ

(௞) ்
 (4.38)                                                           ܊

which has gradient      ∇ݍ = ࡭ࣅࣆࢊ ۰

(௞) −  (4.39)                                                              ܊

where 

۰ = ൭
ࢎࡶ

(௞)

࡭ࢍࡶ

(௞)൱ (௞)ࡴ ൭
ࢎࡶ

(௞)

࡭ࢍࡶ

(௞)൱

்

     (4.40) 

܊ = ቆ
(௞)ࢎ

࡭ࢍ
(௞)ቇ − ൭

ࢎࡶ
(௞)

࡭ࢍࡶ

(௞)൱ ,(௞)࢞)ܮ௫∇(௞)ࡴ ,(௞)ࣆ  (4.41)             ((௞)ࣅ

࡭ࣅࣆࢊ

(௞) = ൭
ࣆࢊ

(௞)

࡭ࣅࢊ

(௞)൱   (4.42) 

Note: the above unconstrained sub-problem solves the positive-definite linear system 

࡭ࣅࣆࢊ ۰

(௞) = ࡭ࣅࣆࢊ for ܊

(௞) , which is equivalent to solving the KKT system, for the equality 

constrained problem, explicitly for a Lagrange multiplier search direction.  Tapia (1977) 

and Han (1977) were the first to propose such a sub-problem.  The sub-problem proposed 
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here, however, is more robust since it does not require the inverse of matrix ۰, which 

may be quite large and poorly conditioned.      

If ݇ ≥ 1, take ࡴ(௞) as the L-BFGS approximation of the inverse Hessian of the 

Lagrangian function and solve the above unconstrained sub-problem.   

Set the Quadratic Programming (QP) Lagrange multipliers: 

ഥࣆ = (௞)ࣆ + ࣆࢊ
(௞)    (4.43) 

തࣅ = (௞)ࣅ + ࣅࢊ 
(௞)    (4.44) 

Note: inactive inequality constraint Lagrange multiplier search direction components 

were set during step 4.  Also, the QP Lagrange multipliers generated by equations 4.43 

and 4.44 are equivalent, in theory, to those generated by an SQP algorithm.  Lastly, 

matrix ۰ and vector ܊ are computed considering inactive design variable components of 

the constraint Jacobians, inverse Hessian approximation, and Lagrangian gradient only. 

Step 8: If ݇ < 1, set the inactive components of the design variable search 

direction, ࢞ࢊ
(௞), to that of steepest descent: 

࢞ࢊ
(௞) = −∇௫࢞)ܮ(௞), ,ഥࣆ  ത)    (4.45)ࣅ

If ݇ ≥ 1, use the L-BFGS two-loop recursion given in section 2.3.1.1 to calculate 

the inactive components of the design variable search direction: 

࢞ࢊ
(௞) = ,(௞)࢞)ܮ௫∇(௞)ࡴ− ,ഥࣆ  ത)    (4.46)ࣅ

where ࡴ(௞) represents the L-BFGS approximation of the inverse Hessian of the 

Lagrangian function.     

Step 9: Calculate QP slack variables, ࢠത, corresponding to the linearized inequality 

constraints as follows: 

(௞)ࢍ + ࢍࡶ
(௞)࢞ࢊ

(௞) ≤ ૙            (4.47) 

(௞)ࢍ + ࢍࡶ
(௞)࢞ࢊ

(௞) + തࢠ = ૙           (4.48) 

തࢠ = ࢍࡶ −
(௞)࢞ࢊ

(௞) −  (4.49)           (௞)ࢍ

Set the slack variable search direction, ࢠࢊ
(௞): 



69 
 

 
 

ࢠࢊ
(௞) = തࢠ −  (4.50)    (௞)ࢠ

Note: QP slack variables are computed considering inactive design variable components 

of the constraint Jacobian and design variable search direction only.   

Step 10: Update equality and inequality constraint penalty parameter vectors, ࢎ࢖
(௞) 

and ࢍ࢖
(௞), respectively, using the following procedure.   

First, solve a linearly constrained least-squares sub-problem for intermediate 

equality and inequality constraint penalty parameter vectors, ࢖ෝࢎ and ࢖ෝࢍ, respectively: 

minimize     ‖࢖‖ଶ                                                                                                         (4.51)  

subject to     ߶ᇱ(0, (࢖ =
ଵ

ଶ
∇௫ܮ൫࢞(௞), ,ഥࣆ ത൯ࣅ

்
࢞ࢊ

(௞)                                                           (4.52) 

࢖                      ≥ ૙                                                                                                       (4.53)  

where 

࢖ = ൬
ࢎ࢖
ࢍ࢖

൰                                                                                                                      (4.54) 

߶ᇱ(0, (࢖ = ∇௫Φ൫࢞(௞), ,(௞)ࢠ ,(௞)ࣆ ,(௞)ࣅ , ࢎࡼ ൯ࢍࡼ
்

࢞ࢊ
(௞)  (4.55) 

,(௞)࢞Φ൫ࢠ∇ + ,(௞)ࢠ ,(௞)ࣆ ,(௞)ࣅ , ࢎࡼ ൯ࢍࡼ
்

ࢠࢊ
(௞)  

,(௞)࢞Φ൫ࣆ∇ + ,(௞)ࢠ ,(௞)ࣆ ,(௞)ࣅ , ࢎࡼ ൯ࢍࡼ
்

ࣆࢊ
(௞)  

,(௞)࢞Φ൫ࣅ∇ + ,(௞)ࢠ ,(௞)ࣆ ,(௞)ࣅ , ࢎࡼ ൯ࢍࡼ
்

ࣅࢊ
(௞)  

represents the concatenated penalty parameter vector and the directional derivative of the 

line search function.  Gill, Murray, and Saunders (2005) were the first to propose this 

sub-problem, which derives from Gill, Murray, Saunders, and Wright’s (1986) previous 

work.  The sub-problem finds the smallest positive penalty parameters that ensure the 

directional derivative of the line search function satisfies a condition associated with 

global convergence.  Here, it is shown how this sub-problem can be transformed into a 

simpler bound-constrained sub-problem.  
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To simplify implementation, it is helpful to note that the above sub-problem is a 

least-norm problem, i.e. minimize ‖࢖‖ଶ subject to ࢖࡯ =  with non-negativity of the ,ࢉ

design variables, ࢖.  Boyd (2016) shows that the KKT conditions for least-norm 

problems are straight forward to write: 

ቀ2ࡵ ்࡯

࡯ ૙
ቁ ቀ

࢖
ቁࣆ = ቀ૙

ࢉ
ቁ   (4.56) 

where, for the sub-problem above, ࡵ is an identity matrix of size 

ℝ (௠ಶା௠ೆା௠ಽ) × (௠ಶା௠ೆା௠ಽ), ࡯ is a matrix of size ℝ (ଵ) × (௠ಶା௠ೆା௠ಽ), ࢉ is a vector of 

size ℝ (ଵ) × (ଵ), ࣆ is a vector of size ℝ (ଵ) × (ଵ), and ࢖ is a vector of size 

ℝ (௠ಶା௠ೆା௠ಽ) × (ଵ):   

ࢉ = ቄ
ଵ

ଶ
∇௫ܮ൫࢞(௞), ,ഥࣆ ത൯ࣅ

்
࢞ࢊ

(௞) − ∇௫ܮ൫࢞(௞), ,(௞)ࣆ ൯(௞)ࣅ
்

࢞ࢊ
(௞)                                          (4.57) 

்(௞)ࣅ−
ࢠࢊ

(௞) − ்(௞)ࢎ
ࣆࢊ

(௞) − ൫ࢍ(௞) + ൯(௞)ࢠ
்

ࣅࢊ
(௞)ൠ     

࡯ = ൝
௜ࢎࡶ

(௞)࢞ࢊ
(௞)ℎ௜

(௞),   ݅ = 1, … , ݉ா; 

௝ࢍࡶ
(௞)࢞ࢊ

(௞)ቀ݃௝
(௞) + ௝ݖ

(௞)ቁ + ݀௭௝
(௞)ቀ݃௝

(௞) + ௝ݖ
(௞)ቁ,   ݆ = 1, … , ݉௎ + ݉௅

ൡ (4.58) 

Enforcing non-negativity of the design variables is straight forward when the KKT 

system is solved as a bound-constrained sub-problem: 

minimize     ݍ =
ଵ

ଶ
ቀ

࢖
ቁࣆ

்
ቀ2ࡵ ்࡯

࡯ ૙
ቁ ቀ

࢖
ቁࣆ − ቀ

࢖
ቁࣆ

்
ቀ૙

ࢉ
ቁ                        (4.59)

  

subject to     ࢖ ≥ ૙           (4.60) 

which has gradient      સࢗ = ቀ2ࡵ ்࡯

࡯ ૙
ቁ ቀ

࢖
ቁࣆ − ቀ૙

ࢉ
ቁ                              (4.61) 

This sub-problem is equivalent to the original sub-problem and can be solved using 

bound-constrained techniques.  Let the solution to this sub-problem be the intermediate 

penalty parameter vector, ࢖ෝ, where: 

ෝ࢖ = ൬
ࢎෝ࢖

ࢍෝ࢖
൰                                                                                                                      (4.62) 
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Second, update penalty parameter vector, ࢖(௞), as follows:   

௜݌
(௞) = ቐ

, ௜̂݌ቀݔܽ݉ ௜݌
(௞)ቁ ௜݌ ݂݅

(௞) < 4൫̂݌௜ + ∆௣൯

ݔܽ݉ ൬̂݌௜ , ቀ݌௜
(௞)൫̂݌௜ + ∆௣൯ቁ

ଵ/ଶ
൰ ݁ݏ݅ݓݎℎ݁ݐ݋

                           (4.63) 

݅ = 1, … , ݉ா + ݉௎ + ݉௅  

Third, re-evaluate ∇௫Φ(௞), ∇௭Φ(௞), and ߶ᇱ൫0,  ൯ for updated penalty parameter(௞)࢖

vector, ࢖(௞).  

Step 11: Initialize ߙത = 1.  Use the efficient backtracking line search procedure 

given in section 3.2 to find a step size ߙത ∈ (0,1] satisfying Armijo’s rule: 

߶൫ߙത, ൯(௞)࢖ ≤ ߶൫0, ൯(௞)࢖ + ,ത ߶ᇱ൫0ߙ ߩ  ൯   (4.64)(௞)࢖

where 

,ߙ)߶ (࢖ = Φ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

(௞)࢞ቀࡼ + ࢞ࢊ ߙ
(௞), , ࢒ ,ቁ ࢛

(௞)ࢠቀࡼ + ࢠࢊ ߙ
(௞), 0 , ∞ ቁ,

(௞)ࣆ + ࣆࢊ ߙ
(௞),

(௞)ࣅቀࡼ + ࣅࢊ ߙ
(௞), 0 , ∞ ቁ,

ࢎࡼ 
(௞),

ࢍࡼ
(௞)

ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

   (4.65) 

Let  

(௞)ߙ =  ത   (4.66)ߙ

and update the design variables, slack variables, and Lagrange multipliers: 

(௞ାଵ)࢞ = (௞)࢞ቀࡼ + ࢞ࢊ(௞)ߙ
(௞), , ࢒  ቁ   (4.67) ࢛

(௞ାଵ)ࢠ = (௞)ࢠቀࡼ + ࢠࢊ(௞)ߙ
(௞), 0 , ∞ ቁ   (4.68) 

(௞ାଵ)ࣆ = (௞)ࣆ + ࣆࢊ(௞)ߙ
(௞)   (4.69) 

(௞ାଵ)ࣅ = (௞)ࣅቀࡼ + ࣅࢊ(௞)ߙ
(௞), 0 , ∞ ቁ   (4.70) 

where ࡼ represents the projection operator, i.e. eqn. 2.1. 
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Note: ࢠ ,࢞, and ࣅ should be updated using the projection operator at each line 

search iteration to ensure they remain within their bounds.  Calculating ߶(0,  does not (࢖

incur additional objective or constraint function evaluations since these are known from 

the previous iteration.  Similarly, calculating ߶ᇱ(0,  does not incur additional objective (࢖

or constraint gradient evaluations since these are known from the previous iteration. 

Step 12: Evaluate ݂(௞ାଵ), ࢎ(௞ାଵ), ࢍ(௞ାଵ), ∇݂(௞ାଵ), ࢎࡶ
(௞ାଵ), and ࢍࡶ

(௞ାଵ).  Note, 

݂(௞ାଵ), ࢎ(௞ାଵ), and ࢍ(௞ାଵ) need only be set since they were evaluated at the final line 

search iteration, i.e. when ߶(ߙത) was evaluated. 

Step 13: Set L-BFGS vectors: 

(௞)࢙ = (௞ାଵ)࢞ −  (4.71)   (௞)࢞

(௞)࢟ = ,(1+݇)࢞)ܮݔ∇ ,(1+݇)ࣆ ((1+݇)ࣅ − ,(݇)࢞)ܮݔ∇ ,(1+݇)ࣆ  (4.72)  ((1+݇)ࣅ

For ݇ >  are stored in their (௞)ܡ and (௞)ܛ are discarded and (௞ି௠)ܡ and (௞ି௠)ܛ ,݉

place, respectively.  Also, if storing ܛ and ܡ vectors in ݉௖ × ݊ matrices ܁ and ܇, the 

correction location corresponding to the kth iteration, ݆(݇), can be calculated using eqn. 

2.8.  Last, to ensure that the L-BFGS approximation of the inverse Hessian of the 

Lagrangian function maintains positive definiteness, discard any ܛ(௞) and ܡ(௞) not 

satisfying: 

ࢀ(௞)ܛ
(௞)ܡ > 2.2×10ିଵ  ฮܡ(௞)ฮ

ଶ
    (4.73) 

Step 14: Set ࢞(௞) = (௞)ࢠ ,(௞ାଵ)࢞ = (௞)ࣆ ,(௞ାଵ)ࢠ = (௞)ࣅ ,(௞ାଵ)ࣆ = (௞)݂ ,(௞ାଵ)ࣅ =

݂(௞ାଵ), ࢎ(௞) = (௞)ࢍ ,(௞ାଵ)ࢎ = (௞)݂∇ ,(௞ାଵ)ࢍ = ∇݂(௞ାଵ), ࢎࡶ
(௞) = ࢎࡶ

(௞ାଵ), ࢍࡶ
(௞) = ࢍࡶ

(௞ାଵ), and 

݇ = ݇ + 1.  Go to Step 3. 

To summarize, at each iteration, the above algorithm calculates second order 

design variable, slack variable, and Lagrange multiplier search directions and then 

determines a distance to step in those directions.  The above algorithm is unique in that it 

decouples the search direction QP sub-problem, typical of SQP methods, into three 

simple parts using ideas from augmented Lagrangian methods.  These three simple parts 
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need only require the solution of two positive-definite linear systems.  One of which can 

be solved using the efficient and robust L-BFGS two-loop recursion.  It is true that 

Interior Point methods need only require the solution of one linear system to calculate a 

search direction.  However, that linear system is much larger than both linear systems 

described here combined and requires specialized, more computationally expensive, 

linear system solvers that can handle indefinite matrices.  The above algorithm is also 

novel in the way it transforms the equality constrained penalty parameter sub-problem 

into a simpler, yet equivalent, bound constrained sub-problem.  Finally, the above 

algorithm effectively extends bound-constrained optimization concepts to generally 

constrained algorithms.  This allows for the explicit handling of bound-constraints and 

the removal of active variables from the problem entirely, potentially greatly reducing the 

dimensionality of the search direction sub-problem.  Using bound-constrained concepts 

to identify active slack variables provided an intuitive and innovative means of 

identifying the active-constraint-set at each iteration.  The result of these innovations is 

an algorithm that: (1) has convergence properties competitive with its peers, (2) can 

handle problems with many variables efficiently, (3) can handle problems with many 

simple bound constraints efficiently, (4) can handle problems with many general 

constraints efficiently, (5) is more computationally efficient than its peers.        

4.1.7 Flow Diagram for Novel Algorithm 

The overall flow of the novel augmented Lagrangian algorithm is shown in Figure 

4.2 and involves: initializing algorithmic parameters; ensuring all design variables are on 

or within their bounds; evaluating the problem functions at the current design; calculating 

initial slack variable values; calculating the maximum feasibility violation; identifying 

the inactive-variable-set and active-constraint set; calculating the maximum optimality 

violation; checking if the current point is a KKT point; calculating a set of second order 
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search directions; updating the penalty parameters as necessary to ensure the directional 

derivative of the line search function is sufficiently negative; finding a step size satisfying 

Armijo’s sufficient decrease rule; updating the design, slack, and Lagrange multiplier 

variable values for the next iteration; evaluating the problem functions for the next 

iteration; updating the L-BFGS correction vectors. 
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Figure 4.2 Novel Augmented Lagrangian Algorithm Flow Diagram. 
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4.1.8 Novel Algorithm Numerical Results  

Table 4.1 compares the performance of LASO’s Augmented Lagrangian (AL) 

implementation, SNOPT’s Sequential Quadratic Programming (SQP) implementation, 

IPOPT’s Interior Point (IP) implementation, LOQO’s IP implementation, and 

LANCELOT’s AL implementation on 15 constrained problems from the Hock-

Schittkowski test problem collection.  The SNOPT results are those obtained by Gill, 

Murray, and Saunders (2002).  The IPOPT and LOQO results are those obtained by 

Wächter and Biegler (2006).  The LANCELOT results are those obtained by Bongartz, 

Conn, Gould, Saunders, and Toint (1997).  In terms of objective function evaluations, 

LASO outperformed SNOPT on 7 of 15 problems.  SNOPT outperformed LASO on 6 of 

15 problems.  LASO and SNOPT performed the same on 2 of 15 problems.  LASO 

outperformed IPOPT on 6 of 15 problems, IPOPT outperformed LASO on 8 of 15 

problems.  LASO and IPOPT performed the same on 1 of 15 problems.  LASO 

outperformed LOQO on 9 of 15 problems.  LOQO outperformed LASO on 5 of 15 

problems.  LASO and LOQO performed the same on 1 of 15 problems.  LASO 

outperformed LANCELOT on 11 of 15 problems.  LANCELOT outperformed LASO on 

4 of 15 problems.  In general, LASO performed comparably to or better than SNOPT, 

IPOPT, LOQO, and LANCELOT, which are all considered to be state-of-the-art 

implementations of their underlying algorithms.  This suggests that AL algorithms can be 

made to be competitive with state-of-the-art SQP and IP algorithms. 
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Table 4.1 LASO and SNOPT Performance on Hock-Schittkowski Test Problems. 

    LASO 
AL 

SNOPT 
SQP 

IPOPT 
IP 

LOQO 
IP 

LANCELOT 
AL 

No. Problem n ncnln Iter (F) Iter (F) Iter (F) Iter (F) Iter (F) 

1 HS006 2 1 8 (13) 4 (8) 5 (7) 10 (11) (57) 

2 HS010 2 1 11 (12) 12 (17) 15 (17) 15 (16) (18) 

3 HS015 2 2 5 (10) 2 (5) 17 (22) 30 (31) (47) 

4 HS018 2 2 16 (24) 13 (24) 15 (19) 15 (16) (92) 

5 HS021 2 1 1 (3) 2 (6) 8 (9) 12 (13) (2) 

6 HS022 2 2 5 (6) 0 (3) 6 (7) 9 (10) (10) 

7 HS028 3 1 3 (5) 3 (7) 1 (2) 9 (10) (4) 

8 HS033 3 2 9 (10) 2(6) 13 (16) 11 (12) (13) 

9 HS035 3 1 8 (11) 7 (10) 7 (8) 10 (11) (7) 

10 HS039 4 2 13 (16) 16 (28) 13 (14) 14 (15) (21) 

11 HS040 4 3 7 (8) 5 (9) 3 (4) 8 (9) (11) 

12 HS043 4 3 9 (12) 9 (14) 9 (10) 15 (42) (23) 

13 HS050 5 3 16 (22) 19 (27) 9 (10) 16 (17) (13) 

14 HS055 6 6 2 (3) 0 (3) 8 (9) 10 (11) (7) 

15 HS071 4 2 7 (9) 5 (8) 8 (9) 13 (14) (16) 
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CHAPTER V 

PARALLELIZATION 

Indeed, researchers have parallelized function and gradient evaluations and linear 

algebra calculations and seen good results.  A few researchers have even implemented 

parallelization during the line search to either identify an acceptable step size more 

quickly or more accurately.  These works are commendable and offer many sound 

strategies for parallelizing optimization software, but there is still room for improvement 

on these strategies and for creative new strategies to be developed.  Furthermore, a robust 

and efficient commercial code that takes advantage of parallelization and is designed to 

be run on a desktop workstation is lacking.   

5.1 Literature Review 

Eldred and Hart (1998) categorized the opportunities for parallelization in 

optimization into four main-areas: algorithmic coarse-grained parallelism (e.g. 

parallelization of numerical finite difference gradients, analytical gradients, and/or line 

search function evaluations), algorithmic fine-grained parallelism (e.g. parallelization of 

the linear algebra calculations that occur in various parts of the algorithm), function 

evaluation coarse-grained parallelism (e.g. parallelization of the individual objective and 

constraint functions themselves by concurrently calculating their separable parts), 

function evaluation fine-grained parallelism (e.g. parallelization of the individual steps of 

a single analysis code that must be run to evaluate objective and constraint functions).  

They note the limitations of single-level parallelism (i.e. optimizers that take advantage 

of only one of the opportunities listed above) and provide motivation for the use of multi-

level parallelism in the DAKOTA (Design Analysis Kit for Optimization and Terascale 

Applications) toolkit, which integrates various commercial and in-house codes into more 

advanced optimization/solution strategies that are well suited for parallel computation on 

networks of workstations and the Intel TeraFLOPS supercomputer.  One important 
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finding of their analyses, which is relevant to the present work, is that preference should 

be given to coarse-grained parallelism, whenever possible, before considering fine-

grained parallelism.         

Eldred and Schimel (1999) built upon the work of Eldred and Hart (1998) and 

proposed a four-level parallelization scheme that achieved near linear scaling (i.e. 

speedup of the software increased almost linearly with the number of processors) on 

massively parallel computers.  Their scheme took advantage of algorithmic coarse-

grained parallelism through concurrent function evaluations, speculative parallel or 

gradient based line searches, and a concurrent iterator strategy.  It also took advantage of 

function evaluation coarse-grained parallelism by providing an extended interface that 

allowed individual function evaluations to be broken into a serial preprocessing portion, 

concurrent analysis portions, and a serial postprocessing portion.  Speculative parallel 

line searches speculate that the current step size will be successful and proceed with 

calculating the gradient concurrently with the line search function at the trial step.  

Gradient-based line searches calculate the gradient concurrently with the line search 

function as well, but use the gradient information to develop a cubic approximation of the 

merit function for use in line searches.  Numerical results for a test problem with the 

number of processors equivalent to the number of required gradient and function 

evaluations showed a 4.80 times speedup of the gradient-based strategy over the serial 

code and a speedup of 4.12 times for the speculative strategy.  In general, the gradient-

based method is expected to be most efficient in situations where the number of 

processors is greater than or equal to the number of required gradient and function 

evaluations, since it often allows convergence in fewer iterations.  The speculative 

method is expected to be most efficient otherwise, since any gradient and function 

evaluations exceeding the number of processors can be terminated if the trial step is 

rejected.  A concurrent iterator strategy essentially runs multiple optimizations 

simultaneously that are controlled by a parallel branch and bound, multi-start local 
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search, or island-model genetic algorithm optimization method.  Eldred and Schimel used 

a parallel branch and bound method in their concurrent iterator strategy.    

 Eldred, Hart, Bohnhoff, Romero, Hutchinson, and Salinger (1996) investigated 

various concurrent iterator or hybrid optimization strategies for use in the DAKOTA 

toolkit.  They developed these strategies in the C++ programming language in order to 

take advantage of object-oriented software design, which lends itself naturally to 

parallelization.  The hybrid strategies developed combine global Genetic Algorithm (GA) 

methods, local Nonlinear Programming (NLP) methods, and Coordinate Pattern Search 

(CPS) methods in two-pass sequences, which take advantage of the strengths of each 

method to improve robustness and efficiency of the overall optimization process: 

GA/NLP, GA/CPS, CPS/NLP.  The switch between methods occurs when progress slows 

or when a method reaches its budget on function evaluations.  For the problems studied, 

both GA/NLP and GA/CPS hybrids outperformed the standard NLP and CPS methods, 

respectively.  GA/CPS outperformed GA/NLP in converging to a local minimum.  The 

CPS/NLP hybrid proved to be an efficient and accurate local search technique since it 

converged in half the time as NLP alone and to a more optimal result than CPS could 

achieve alone.  Areas identified for potential future research included the development of 

improved algorithm switching criteria and the development of a three-pass GA/CPS/NLP 

hybrid.  

 Ghattas and Orozco (1997) address parallelization in the situation that the 

required analysis is so large that one function evaluation consumes the majority of the 

available computing resources.  They primarily focus on this issue as it relates to shape 

optimization, but really this issue could be of concern, to varying degrees, in any problem 

with expensive function evaluations.  Their solution to not being able to execute function 

and gradient evaluations in parallel was to, instead, focus on parallelizing the linear 

algebra in various parts of the algorithm.  The final result of their work was a parallel 

reduced hessian SQP method for shape optimization. 
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Nash and Sofer (1989) proposed a block truncated-newton method that took 

advantage of parallelism by calculating an additional set of gradients at each major 

iteration and using those gradients to obtain a finite difference approximation of the 

Hessian.  Nash and Sofer (1991) extended their previous work by introducing multiple 

enhancements to their algorithm.  Among these enhancements, was a parallel line search 

that evaluated a set of trial steps in parallel and took the one that gave the minimal 

objective function value and satisfied an Armijo type rule.  Byrd, Schnabel, and Schultz 

(1988a) proposed a set of algorithms that take advantage of any extra processors to 

calculate extra finite difference gradients in carefully chosen directions.  These gradients 

are then used to improve the current approximation of the Hessian.  These methods are 

essentially interpolations between Newton and quasi-Newton methods.  The most 

promising of these algorithms appeared to be one that used BFGS updates followed by a 

finite difference update of part of the Hessian.  This algorithm performed better than the 

BFGS algorithm alone when one extra processor was available to calculate extra finite 

difference gradients.  Thus, giving it a convergence rate somewhere between super-linear 

and quadratic.  The primary drawback of this method lies in the seeming inability to 

intuitively identify directions to calculate the extra finite difference gradients in.   

Byrd, Schnabel, and Shultz (1988b) offered an improvement to their BFGS / finite 

difference method, which takes advantage of the situation where gradients are calculated 

at each trial step in parallel with the line search function and can be used to perform 

intermediate updates to the BFGS search direction before a successful step has been 

identified.  While this improvement only affects iterations where the initial step is not 

accepted, a 3-12% reduction in the average number of trial point function evaluations was 

observed for the test problems considered.           
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5.2 Parallel L-BFGS 2-Loop Recursion 

So far parallelization schemes have, for the most part, either focused on 

improving computational efficiency or convergence efficiency.  The one exception being 

the DAKOTA toolkit, which incorporates a variety of parallelization strategies, but is 

primarily designed for use on very large supercomputers where multi-level parallelization 

is possible.  Examples of improving computational efficiency seen so far include: (1) 

concurrent function evaluations, (2) speculative parallel line searches, (3) extended 

interfaces for parallelization of individual function evaluations, and (4) linear algebra 

parallelization.  Examples of improving convergence efficiency seen so far include: (1) 

gradient based line searches, (2) concurrent iterator strategies, (3) hybrid algorithm 

strategies, and (4) finite difference enhancements to the Hessian.   

In chapter 7, a holistic strategy for parallelization, which incorporates multiple of 

the strategies listed above, is proposed as an area for further research.  Here, acceleration 

of the optimization process itself, not function and gradient evaluations, is the goal.  

Furthermore, of primary interest, are high-dimensional problems where the linear algebra 

calculations at each iteration tend to dominate solution times.  Therefore, this chapter 

focuses on studying Central Processing Unit (CPU) versus Graphics Processing Unit 

(GPU) parallelization of the algorithm’s linear algebra operations, to assess which offers 

the greatest promise for real time optimization.  Specifically, a parallel L-BFGS 2-loop 

recursion is implemented on the CPU and GPU and its performance studied.  This part of 

the algorithm was chosen to be parallelized after profiling of the serial code suggested 

that 25% of solution time is spent here.  The parallel recursion that follows is a 

modification of the serial recursion of section 2.3.1.1 where high-dimensional dot 

products and other operations with equals signs prefixed by a colon, i.e. ≔, are carried 

out in parallel.   

≕ ܙ સࢌூೖ

(௞) 
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LIMIT = ൜
0 ݂݅ ݇ < ݉

݇ − ݉ ݂݅ ݇ ≥ ݉   

for ݅ = ݇ − 1 ∶  −1 ∶  ݅ ≥ LIMIT 

     set ݆ to the correction location for the ith iteration. 

      store  ߩ௜ ≔
1

ூೖܛ

(௝) ∙ ூೖܡ

(௝) 

      store  ߙ௜ ≔ ூೖܛ௜ቀߩ

(௝) ∙  ቁܙ

ܙ       ≔ ܙ − ூೖܡ௜ߙ

(௝) 

end 

଴ܪ
(௞) ≔

ூೖܛ

(௞ିଵ) ∙ ூೖܡ

(௞ିଵ)

ூೖܡ

(௞ିଵ) ∙ ூೖܡ

(௞ିଵ) 

restrict ܪ଴
(௞) such that 10ିଷ ≤ ଴ܪ

(௞) ≤ 10ଷ  

ܚ ≔ ଴ܪ
(௞)ܙ 

for ݅ = LIMIT ∶  +1 ∶  ݅ ≤ ݇ − 1 

     set ݆ to the correction location for the ith iteration. 

ߚ       ≔ ூೖܡ௜ቀߩ

(௝) ∙  ቁܚ

ܚ       ≔ ܚ + ூೖܛ

(௝)(ߙ௜ −  (ߚ

end 

5.3 Parallelization on the Central Processing Unit (CPU) 

Parallelization on the CPU has been implemented using the Armadillo library 

built with the OpenBLAS library.  Armadillo is a high-quality open-source template-

based C++ library for linear algebra and is developed by Conrad Sanderson and Ryan 

Curtin (2016).  OpenBLAS is an optimized open-source implementation of the BLAS 

(Basic Linear Algebra Subprograms) library and is developed by Zhang Xianyi (2012).  
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OpenBLAS is multi-threaded and supports up to 16 parallel threads.  The number of 

threads may be specified at run time by setting environment variables or by calling 

special built-in functions, which OpenBLAS provides.  Tests were run using 1, 4, and 8 

threads.  To conduct each test, the variably dimensioned extended Rosenbrock function 

was minimized 100 times and the average solution time from those 100 runs was taken as 

the solution time for that test.  To make solution times problem independent, solution 

time was taken as the total time minus the time spent evaluating problem functions.  Tests 

were run on 100, 500, and 1,000 variable extended Rosenbrock functions.  Tests were run 

on an Intel Xeon E5 1620 v2 3.70GHz CPU, which has 4-cores and 8-threads.     

Table 5.1 CPU Parallelized LASO Performance on Extended Rosenbrock Function. 

 Solution time [seconds] 

Number of variables 1 thread 4 threads 8 threads 

100 0.04914 0.05573 0.05383 

500 1.05113 1.06585 1.04524 

1,000 4.70435 4.78944 4.6683 

 

For the 100-variable problem, the serial algorithm, i.e. 1-threaded algorithm, 

outperformed the 4-threaded and 8-threaded algorithms.  Though the 8-threaded 

algorithm did outperform the 4-threaded algorithm.  This indicates that the acceleration 

due to parallelization is not yet large enough to offset the communication overhead 

incurred sending data to and launching multiple threads.  For the 500-variable problem, 

the 8-threaded algorithm was 0.56% faster than the serial algorithm, but the 4-threaded 

algorithm was still slower.  This suggests that at 500-variables or more, the acceleration 

due to parallelization on 8 or more threads starts to offset the communication overhead.  

For the 1,000-variable problem, the 4-threaded algorithm was once again slower than the 

serial code and the 8-threaded algorithm was 0.77% faster.  Overall, margins between the 
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serial and multi-threaded solution times were small.  However, trends in the data above, 

at least for the 8-threaded algorithm, suggest that margins should increase as problem size 

increases and the communication to computation ratio decreases.  Also, margins should 

increase as more of the algorithm is parallelized. 

5.4 Parallelization on the Graphics Processing Unit (GPU) 

During the completion of this research, massively parallel GPUs, which can carry 

out scientific computations, have substantially decreased in price and now come standard 

on many desktop workstations.  NVIDIA’s CUDA parallel computing platform and 

Application Programming Interface (API) currently leads in popularity.  However, 

OpenCL is quickly gaining in popularity and supports parallelization on both NVIDIA 

and non-NIVIDIA GPUs as well as a diverse array of CPUs.  WebCL, while still nascent, 

is exciting in that it would allow parallel scientific computation in a web browser.  

However, currently no mainstream browsers support it.  Current generation NVIDIA 

GPUs can have up to 3,500 CUDA cores.  These GPUs can also be networked together.  

Amazon Web Services rents servers by the hour with up to 16 networked GPUs.  These 

servers can have up to 40,000 CUDA cores.   

To assess the potential of GPUs for real time optimization, the parallel L-BFGS 2-

loop recursion of section 5.2 was implemented using the cuBLAS or CUDA Basic Linear 

Algebra Subroutines library, which is described in the cuBLAS CUDA Toolkit 

Documentation by NVIDIA (2017).  Then the testing methodology described in the 

previous section was carried out in serial on an Intel Xeon E5 1620 v2 3.70GHz CPU and 

in parallel on a NVIDIA Quadro K2000 GPU with 384 CUDA cores. 
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Table 5.2 GPU Parallelized LASO Performance on Extended Rosenbrock Function. 

 Solution time [seconds] 

Number of variables 1 thread 384 CUDA cores 

100 0.04914 2.188 

500 1.05113 11.308 

1,000 4.70435 25.314 

 

The GPU parallelized algorithm was much slower than the serial algorithm and all 

the CPU parallelized algorithms.  This indicated a very high communication to 

computation ratio.  The likely cause: the communication cost to send 3 n-dimensional 

vectors to the GPU and return 1 n-dimensional vector from the GPU at every 

optimization iteration, since data transfer to and from the GPU is slow.  However, upon 

further investigation, the primary cause became apparent: the cost to coordinate work 

among cores on the GPU.  All the operations being parallelized in the algorithm of 

section 5.2 involve 1-dimensional vectors.  The GPU divides these vectors into sections 

and assigns each core a section to work on.  If vectors are small relative to the number of 

cores on the GPU, then relatively little computation will be assigned to each core and the 

cost to coordinate the work dominates. 

 Despite negative test results, the findings above suggest that GPU parallelization 

may still be an attractive option for achieving real time optimization when: (1) problem 

functions and all high-dimensional data / linear algebra operations can be stored / 

computed on the GPU to minimize communication overhead between the CPU and GPU, 

(2) the problem dimensionality is very high relative to the number of cores on the GPU, 

say hundreds of thousands for a few hundred core GPU, or (3) a custom kernel, i.e. the 

program operating on a section of data on each core of the GPU, can be written that 

combines multiple sequential operations into one to maximize the computation on each 

core.  The third option is most promising for problems that are not massively scaled. 
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CHAPTER VI 

DIGITAL HUMAN WALKING PROBLEM 

In order to test the constrained algorithm’s applicability to digital human 

simulation, a digital human walking problem is solved.  Specifically, the digital human 

walking problem formulated by Xiang et al. (2009), which simulates one step of human 

walking, is solved.  As mentioned in the introductory remarks, even this seemingly 

simple task is a challenging problem requiring a minimum of 330 design variables and 

1036 nonlinear constraints.  A summary of the design variables, objective function, and 

constraints implemented by Xiang et al. (2009) is presented in the sections that follow.  

For details beyond those discussed here, see Xiang et al. (2009).  Lastly, numerical 

results showing LASO’s performance on the digital human walking problem are reported 

and LASO’s applicability to digital human simulation is established. 

6.1 Design Variables 

As mentioned in the introductory remarks, the spatial digital human model 

developed at The University of Iowa consists of 55 Degrees of Freedom (DOF) of which 

6 are virtual DOFs that represent global translation and rotation and 49 are physical joint 

angle DOFs that represent local joint rotations.  The 49 physical joint angle DOFs consist 

of 12 DOFs at the 4 joints representing the spine, 6 DOFs at the 2 joints representing the 

hips, 2 DOFs at the 2 joints representing the knees, 4 DOFs at the 2 joints representing 

the ankles, 2 DOFs at the 2 joints representing the 2 forefeet, 4 DOFs at the 2 joints 

representing the clavicle, 6 DOFs at the 2 joints representing the shoulders, 4 DOFs at the 

2 joints representing the elbows, 4 DOFs at the 2 joints representing the wrists, 3 DOFs at 

the joint representing the lower neck, and 2 DOFs at the joint representing the upper 

neck.  Time histories of these 55 DOFs make up the design variables.  Thus there are an 

infinite number of design variables.  However, the design variables are represented by 
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cubic B-splines to transform the problem to a finite dimensional one.  The control points 

of each B-spline are the final design variables that are finite in number.  

In the human walking simulation problem formulated by Xiang et al. (2009), there 

are 55 DOFs total, as shown in Figure 5-1 below, that are represented by cubic B-splines 

having 6 control points each.  This makes for 330 design variables in all.  However, 17 of 

the 49 physical joint angle DOFs do not play a significant role and can be frozen at their 

neutral angles, leaving 228 design variables to be determined by the optimization process.  

It is interesting to note that freezing DOFs is accomplished by setting the lower and upper 

bounds on the DOFs, or more specifically the control points, equal to one another.  This 

simple solution avoids redefinition of the skeletal model, which would be a tedious task.  

The specific joints frozen include the wrist joints, clavicle joints, lower neck joint, and 

two spine joints.  These joints are those enclosed in dashed lines in Figure 5-1 below.   
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Figure 6.1 55-DOF Digital Human Model from Xiang et al. (2009). 

6.2 Objective Function 

The objective function chosen by Xiang et al. (2009) is the time integral of the 

squares of all of the joint torques or, put succinctly, the dynamic effort.  This choice of 

objective assumes that humans move in a way that minimizes energy expended over the 

entire duration of a motion and guides the optimization process towards values of the 

design variables that achieve this goal.  Different joints have different limits on the 

maximum joint torque that can be produced in the joint.  Therefore, the square of each 

joint torque is normalized by the square of the maximum joint torque for each joint 
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before integrating over the duration of a task.  This normalization of the joint torques 

keeps joints with very high maximum joint torques from dominating the objective, which 

could lead to joints with lower maximum joint torques more or less being ignored. 

The joint torques in the objective can be calculated explicitly in terms of the knot 

vector, i.e. time discretization, and the control points or design variable vector, i.e. joint 

angle values corresponding with the time discretization.  Specifically, joint torques are 

calculated using a backward recursive dynamics procedure, which depends on the 

following kinematic state variables for each joint: angular displacement, angular velocity, 

angular acceleration.  These state variables are calculated using a forward recursive 

kinematics procedure, which depends on the knot vector and control points vector. 

Additionally, sensitivity or gradient information of the joint torques with respect to the 

kinematic state variables is calculated using a recursive Lagrangian dynamics 

formulation.  This sensitivity information, in turn, is used along with the chain rule to 

obtain sensitivity information of the joint torques with respect to the control points, which 

the optimization process requires.  Recursive kinematic and Lagrangian formulations 

were adopted over the regular Lagrangian formulation for their extremely low O(n) 

computational costs relative to the regular method’s O(n4) computational cost.  Another 

important benefit of this approach, is that it avoids integration of the equations of motion, 

which would be a complicated and cumbersome task to perform at every optimization 

iteration. 

The explicit expression for the equations of motion or joint actuation torque 

resulting from the aforementioned approach includes terms for inertia and Coriolis 

torque, gravity load torque, external forces torque, and external moments torque.  

Therefore, in addition to kinematic state variables, the torque expression also depends on 

the mass and inertia properties of the links connecting the joints.  The required 

anthropometric data needed to calculate these properties was generated using a 

commercial software package for a skeletal model representing a 50th percentile male.  
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6.3 Constraints  

Optimization constraints are used to enforce the real world limitations that come 

into play when simulating human walking.  These constraints generally fall into one of 

two categories: time-dependent constraints, time-independent constraints.  Time-

dependent constraints are imposed throughout the duration of the motion and include: 

joint limit constraints that ensure joint angles remain within physical ranges of motion, 

torque limit constraints that ensure joint torques remain within physical limitations on 

human strength, ground penetration constraints that ensure feet remain stationary when 

on the ground, dynamic balance constraints that give the digital human a sense of 

balance, arm-leg coupling constraints that ensure a realistic arm motion, self-avoidance 

constraints that ensure body parts do not intersect.  Time-independent constraints are 

imposed at specific points in time during the motion and include: symmetry constraints 

that ensure a smooth and continuous motion, ground clearance constraints that ensure a 

realistic gait is achieved that clears the ground, initial and final foot contacting position 

constraints that tell the optimization process what motion to predict.    

6.3.1 Joint Limits 

These simple bound constraints on the design variables limit joint angles to their 

physical ranges of motion, thus avoiding hyperextension.  They also may be used to 

freeze a particular joint at a particular angle by setting the lower and upper bounds for the 

specified joint equal to the specified angle.  In Xiang et al. (2009) realistic joint limits for 

specific joints are obtained from the biomechanics literature and frozen joints are set at 

their neutral angles.   

6.3.2 Torque Limits 

Like joint angles, joint torques are also bounded by their physical limits, which 

are obtained from the biomechanics literature.  Unlike joint angles, however, joint 

torques are nonlinear expressions in terms of the joint angles and, as such, represent 
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nonlinear constraints when limits are placed on them.  These nonlinear constraints cannot 

be handled explicitly like simple bound constraints and require the use of constrained 

optimization techniques. 

6.3.3 Ground Penetration 

Over the course of a single step there are 4 modes in which combinations of the 

left and right heel, ball, and toe come into contact with the ground: right toe left heel, left 

heel left ball, left ball left toe, left toe right heal.  During each of these contacting 

conditions, equality constraints are imposed on the points contacting the ground to ensure 

their heights and velocities remain at 0.  Conversely, inequality constraints are imposed 

on the height of non-contacting points to ensure they remain above 0. 

6.3.4 Dynamic Balance 

Dynamic balance is achieved by constraining the Zero Moment Point (ZMP) for 

the digital human model to fall within a so-called Foot Support Polygon (FSP) defined in 

the plane of the ground between ground contact points.  The ZMP, as the name suggests, 

is the point in the plane of the ground where the resultant tangential moments of the 

active forces are 0.  Therefore, the location of the ZMP can be calculated relatively 

straight forwardly by: taking sum of moments equal to 0 along the axes that define the 

ground plane and solving the resulting equations for the ZMP location along each axis.  

Constraining the ZMP to fall within the FSP is accomplished by requiring that the cross 

product of each vector extending from a corner of the FSP to the ZMP with a vector 

extending from the same corner of the FSP to the adjacent FSP corner in the 

counterclockwise direction, be negative, since the right hand rule for cross products 

requires this for any point lying in the polygon. 



93 
 

 
 

6.3.5 Arm-Leg Coupling 

During walking, it is generally the case that arm swing on one side counteracts leg 

swing on the other side in order to reduce trunk moment in the vertical direction and thus 

help balance the upper body.  Xiang et al. (2009) enforce this behavior for their one step 

formulation by considering the left arm and right leg as individual pendulums and placing 

a coupling constraint on them.  Mathematically this is accomplished by requiring that the 

product of the left arm pendulum’s direction of swing and the right leg pendulum’s 

direction of swing is positive, since they move together whether it be forward or 

backward.  It is important to note that, while the swing direction of the left arm and right 

leg is explicitly enforced by the arm-leg coupling constraint, the swing angle of the left 

arm and right leg is determined by the optimization process. 

6.3.6 Self-Avoidance 

In order to avoid contact of the arm with the body, a self-avoidance constraint 

between the wrist and hip is enforced.  Mathematically this is accomplished by placing 

appropriately sized spheres at the wrist and hip joints and requiring that the distance 

between their surfaces always be greater than zero.  It is interesting to note that this so-

called sphere filling technique is general purpose in nature and may be applied wherever 

it is a requirement that two surfaces not intersect. 

6.3.7 Symmetry Conditions 

As the current formulation is for one step of human walking, it is desirable that 

the initial and final postures and velocities satisfy certain symmetry conditions so a 

smooth continuous walking motion is generated when the motion for the first step is 

mirrored for the second step.  This is accomplished by requiring that the joint angles and 

joint angle velocities for symmetric joints on opposite sides of the body and for self-

symmetric joints be equal to one another at the beginning and end of the simulation. 



94 
 

 
 

6.3.8 Ground Clearance 

Rather than arbitrarily imposing a maximum height of the swing leg to avoid foot 

drag motion, Xiang et al. (2009) use information gleaned from biomechanics experts that 

knee flexion during normal gait at mid-swing is roughly 60 degrees, regardless of age and 

gender, to create a constraint that avoids foot drag motion in a more natural way.  

Specifically, they require the joint angle at the knee to be within plus or minus 5 degrees 

of the 60 degree norm at the time of mid-swing. 

6.3.9 Initial and Final Foot Contacting Position 

The optimization process predicts the motion between two points, however, 

certain initial and final conditions must be specified to tell the optimization process what 

motion to predict.  For the problem of simulating one step of human walking, foot contact 

positions make up these initial and final conditions.  The exact positions are calculated 

based on the step length input by the user. 

6.4 Numerical Results  

Table 6.1 compares the performance of LASO’s Augmented Lagrangian (AL) 

implementation and SNOPT’s Sequential Quadratic Programming (SQP) implementation 

on the digital human walking problem just described.  LASO and SNOPT are very 

competitive for the first 20 iterations.  However, after iteration 20, SNOPT begins to 

achieve superlinear convergence and reaches the desired 1e-3 feasibility and optimality 

quickly.  LASO, after iteration 20, continues to make slow progress, never achieving 

superlinear convergence, and fails to reach the desired 1e-3 feasibility and optimality.    

LASO’s failure to reach superlinear convergence, however, is most likely due to a 

difference in the problem formulation used by LASO and SNOPT.  SNOPT benefits 

when equality constraints can be relaxed, i.e. replaced by inequality constraints with tight 

lower and upper bounds.  LASO, however, does not.  Since, in this situation, it is difficult 

to identify the optimal active set.  Research to improve LASO’s procedure for identifying 
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the optimal active set is currently underway and will be published as part of a future 

paper.  

Table 6.1 LASO and SNOPT Walking Problem Performance. 

 
LASO 

AL 
SNOPT 

SQP 

No. Iterations 50 26 

No. Function Evaluations 101 52 

Feasibility (Start) 1.7e-002 3.1e-002 

Feasibility (Finish) 3.0e-003 8.9e-005 

Optimality (Start) 1.4e-001 3.8e-002 

Optimality (Finish) 6.0e-002 3.1e-004 

Objective (Start) 7.6524520e+001 7.6524520e+001 

Objective (Finish) 6.5472358+001 6.29010539+001 

Merit (Start) 7.6524520e+001 7.6524520e+001 

Merit (Finish) 6.4762536+001 6.3006027+001 
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CHAPTER VII 

CONCLUSIONS AND AREAS FOR FURTHER RESEARCH 

7.1 Conclusions 

Bound-constrained, step size, and constrained algorithms have been developed 

that push the state-of-the-art.  The bound-constrained formulation presented in chapter II, 

which used L-BFGS search directions, was found to converge fastest with the pre-

conditioned conjugate gradient algorithm coming in second.  The innovative efficient 

backtracking line search procedure proposed in chapter III was found to be quite effective 

at reducing the number backtracking steps and improving convergence, without incurring 

additional function evaluations.  The novel hybrid line search / trust region approach 

proposed in chapter III reduces the number of function evaluations on poorly scaled 

problems, which consistently have poorly scaled L-BFGS Hessian matrices, and has little 

impact on other problems.  The novel augmented Lagrangian algorithm proposed in 

chapter IV bridges the performance gap between augmented Lagrangian methods and 

SQP and IP methods.  Key innovations include: (1) Decoupling of the search direction 

sub-problem into two simpler sub-problems capable of being solved directly; (2) 

Transformation of the equality constrained penalty parameter sub-problem into a simpler, 

yet equivalent, bound-constrained sub-problem; (3) The extension of bound-constrained 

optimization concepts to generally constrained algorithms.  CPU parallelization was 

found to be most attractive for real time optimization when problems are not massively 

scaled, all high-dimensional data/operations cannot be stored/computed on the GPU, 

and/or custom GPU kernels cannot be written that combine multiple sequential 

operations into one.  Conversely, GPU parallelization was found to be most attractive 

when problems are massively scaled, all high-dimensional data/operations can be 

stored/computed on the GPU, and/or custom GPU kernels can be written.    
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7.2 Areas for Further Research 

Over the course of this research, two areas for further research have been 

identified: (1) Development of a holistic strategy for parallelization, which focuses on 

improving computational and convergence efficiency.  One such strategy is suggested in 

section 7.2.1; (2) Development of a nonmonotone line search rule, which uses concepts 

from simulated annealing algorithms to allow more greedy line search steps in early 

iterations and less greedy line search steps in later iterations.  One such strategy is 

suggested in section 7.2.2. 

7.2.1 A Holistic Strategy for Parallelization 

The parallelization scheme proposed here is a holistic approach to parallelization 

that combines many strategies for improving both computational and convergence 

efficiency in a way that is ideally suited for multi-core desktop workstations.  

Furthermore, the proposed scheme combines concepts from concurrent iterator and 

hybrid algorithm strategies to create a new multi-directional search strategy. 

In line with the findings of Eldred and Hart (1998), preference is given to coarse-

grained parallelism over fine-grained parallelism wherever a conflict between the two 

occurs.  However, to allow for a high degree of coarse- and fine-grained parallelism on a 

multi-core workstation where only single-level parallelization is possible, coarse- and 

fine-grained calculations have been segmented to the maximum extent possible to create 

alternating periods of coarse-grained parallelization and fine-grained parallelization.  This 

makes the resulting parallelization scheme well suited for a multitude of problem 

scenarios: expensive function evaluations but relatively few design variables, cheap 

function evaluations but very large number of design variables, expensive function 

evaluations and very large number of design variables. 
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The proposed parallelization scheme is shown in Figure 7.1.  It starts by 

evaluating the objective function (fObj), objective gradient (gObj), constraint function 

(fCon), and constraint Jacobian (gCon) in parallel.  Next, if the problem has relatively 

few design variables then L-BFGS, Preconditioned Conjugate Gradient, and potentially 

other search directions are calculated in parallel.  If the problem has a very large number 

of design variables then the linear algebra required to update the current approximation of 

the Hessian and its inverse is calculated in parallel and the individual search directions 

are calculated sequentially.  This so called multi-directional search strategy, which 

considers multiple search directions at every iteration, will increase the likelihood that the 

initial line search trial step is accepted and will help ensure that the maximum reduction 

in the cost function is achieved at every iteration.  Last, fObj, gObj, fCon, and gCon are 

evaluated in parallel at every line search iteration.  Only this time, if fObj finishes 

evaluating and the trial step is rejected, then the remaining gObj, fCon, and gCon 

processes are killed.  The components of gObj, fCon, and gCon that were evaluated are 

used to perform partial updates to the Hessian and a partial gradient-based line search. 
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Figure 7.1 A Holistic Parallelization Scheme for Multi-Core Workstations. 

7.2.2 Nonmonotone Line Search Rule 

Nonmonotone step size schemes have proven to be more efficient, on average, 

than monotone techniques.  Their property of not requiring a decrease at every step also 
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makes them less likely to converge to a local minimum.  Both line search and trust region 

nonmonotone strategies have been developed and have been proven to be globally 

convergent.  In general, they work by requiring a decrease against some other value than 

the cost function value at the previous iteration (e.g. the maximum cost function value 

over the previous 5-iterations).  In this section, the literature surrounding nonmonotone 

techniques is reviewed and a new simulated annealing like nonmonotone rule is 

proposed.    

7.2.2.1 Literature Review 

Grippo, Lampariello, and Lucidi’s (1986) nonmonotone line search technique is 

regarded as the traditional nonmonotone technique.  They recognized that existing line 

search techniques, which required a decrease in the cost function at every iteration, could 

considerably slow the rate of convergence of Newton’s method during intermediate 

stages of the minimization process by selecting step sizes not equal to unity.  This 

behavior was particularly pronounced in problems with narrow curved valleys.  Their 

solution was to require only that Armijo’s line search condition be satisfied against the 

maximum cost function value for the previous ten iterations.  Numerical results for their 

technique were quite promising with some problems exhibiting up to 50% reduction in 

the number of function evaluations and iterations.  They also were able to make the 

following observations regarding their technique: it was most beneficial during 

intermediate stages of the minimization process, requiring monotonicity during the first 

two or three iterations yields the best results, considering the maximum cost function 

value for the previous five to ten iterations yields the best results. 

Zhang and Hager (2004) proposed modifying Grippo, Lampariello, and Lucidi’s 

(1986) approach by requiring that the average of all previous function values decreased 

instead of the maximum of the most recent function values.  Their approach required 

fewer function and gradient evaluations, on average, than the traditional approach.  They 
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computed their average using a convex combination method that allowed them to adjust 

the degree of nonmonotonicity.  They found that their strategy performed best when the 

degree of nonmonotonicity was large far away from the optimum and small near the 

optimum.  Their approach implicitly enforces some degree of monotonicity during the 

first few iterations since it is based on a cumulative average.  Cui and Yang (2012) 

offered a generalization and development of Zhang and Hager’s (2004) work that allowed 

them to prove global convergence under weaker conditions than previous works.               

7.2.2.2 A Novel Simulated Annealing Like Rule 

Here, a simulated annealing like nonmonotone rule is presented.  Similar to 

Grippo, Lampariello, and Lucidi’s (1986) work monotonicity is explicitly enforced 

during early iterations.  Unlike previous works, a rigorous statistical approach is used to 

allow a high degree of nonmonotonicity far from the optimum and to decrease 

nonmonotonicity exponentially as the optimum is approached.  The overall procedure is 

shown in Figure 7.2 and involves: performing a backtracking line search for the first two 

or three bound constrained iterations, setting a time variable for the current bound 

constrained iteration to monitor progress towards the optimum, calculating the current 

temperature, checking the strong Wolfe conditions and, if not satisfied on the first line 

search iteration, checking a simulated annealing like condition. 
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Figure 7.2 Simulated Annealing Like Nonmonotone Rule Flow Diagram.  
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1. The LASO Interface 

LASO is a general purpose C++ optimization software package for the solution of small- and 
large-scale linear and nonlinear unconstrained and constrained optimization problems.  LASO 
needs only objective and constraint functions to run, however, for optimal performance it is 
recommended that objective- and constraint-gradients be provided as well.  LASO handles 
optimization problems of the form: 

minimize  ݂(ܠ)  

subject to ݈ ≤ ቀ
ܠ

ቁ(ܠ)ܿ ≤  ݑ

 

This general formulation allows LASO to efficiently handle unconstrained, bound-constrained, 
or generally-constrained problems from a single LASO call without additional configuration.  
Equality constraints may be specified by setting the lower- and upper-bounds equal to one 
another.  Strictly less-than or greater-than type constraints can be specified by setting the 
lower-bound equal to -1020 or the upper-bound equal to 1020, respectively.  Free constraints, 
which have neither lower nor upper bounds, can be specified by setting the lower-bound equal 
to -1020 and the upper-bound equal to 1020. 

1.1. Quick-Start – Unconstrained Example 

LASO is typically called by: creating an optimization problem object, providing an initial 
estimate of the design variables, setting the lower- and upper-bounds for the problem, 
changing any optional configuration parameters desired from their default values, and running 
LASO on the optimization problem object.  Creating an optimization problem object requires 4-
input parameters: number of design variables n, number of constraints ncnln, subroutine 
funobj, and subroutine funcon.  Subroutines funobj and funcon are discussed in detail 
later in this guide.  For now, it is only important to know that funobj is a subroutine for 
calculating the objective function and its gradient and funcon is a subroutine for calculating 
the constraint functions and their gradients or Jacobian.   

Here, we wish to solve the following unconstrained optimization problem: 

minimize  ݂(ܠ) = (1 − ଵ)ଶݔ + ଶݔ)100 − ଵݔ
ଶ)ଶ 

which has gradients: 

ௗ௙(ܠ)

ௗ௫భ
= −2(1 − (ଵݔ − ଶݔ)ଵݔ400 − ଵݔ

ଶ)  

ௗ௙(ܠ)

ௗ௫మ
= ଶݔ)200 − ଵݔ

ଶ)  

A simple C++ program that uses LASO to solve this problem may look like:  
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#include "LASO.h" // Must include LASO library 
 
/** 
 * User provided subroutine funobj calculates objective function, fObj, and objective               
 * function gradient, gObj. 
 */ 
int funobj(  long int *mode , long int *n , double *x , double *fObj , double *gObj ,  

long int *nState ) 
{ 
 switch ( *mode ) 
 { 
  case 0: 
   { 

*fObj = pow(((double)1 - x[0]),(double)2) + (double)100*pow((-
pow(x[0],(double)2) + x[1]),(double)2); 

 
    return 0; 
   } 
   break; 
  case 1: 
   { 

gObj[0] = -(double)2*((double)1 - x[0]) - (double)400*x[0]*(-
pow(x[0],(double)2) + x[1]); 
 

    gObj[1] = (double)200*(-pow(x[0],(double)2) + x[1]); 
 
    return 0; 
   } 
   break; 
 } 
} 
 
/** 
 * User provided subroutine funcon is left empty for unconstrained problems. 
 */ 
int funcon(  long int *mode , long int *ncnln , long int *n , long int *ldg ,  

long int *needc , double *x , double *fCon , double *gCon ,  
long int *nState ) 

{ 
 switch ( *mode ) 
 { 
  case 0: 
   { 
    return 0; 
   } 
   break; 
  case 1: 
   { 
    return 0; 
   } 
   break; 
 } 
} 
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/** 
 * Main routine sets up and solves the problem. 
 */ 
int main() 
{ 
 long int n = 2; // Number of design variables, n, is set to 2 
 long int ncnln = 0; // Number of constraints, ncnln, is set to 0 
 
 // An optimization problem object, OPO, is created and initialized. 
 LASO::OptimizationProblemObject OPO( &n , &ncnln , funobj , funcon ); 
 
 // Initial estimates of the design variables are set. 
 OPO.xDesignVariables[0] = -(double)1.2; 
 OPO.xDesignVariables[1] = (double)1; 
 
 // Lower and Upper limits on the design variables are set. 
 OPO.blLowerBound[0] = - pow( (double)10 , (double)20 ); 
 OPO.blLowerBound[1] = - pow( (double)10 , (double)20 ); 
 OPO.buUpperBound[0] = pow( (double)10 , (double)20 ); 
 OPO.buUpperBound[1] = pow( (double)10 , (double)20 ); 
 

// An optimization solver object, OSO, is created and the solver is run on the  
// desired optimization problem object. 

 LASO::OptimizationSolverObject OSO( OPO ); 
 OSO.run_Solver( OPO ); 
} 
 

1.2. Quick-Start – Constrained Example 

Here, we wish to solve the following constrained optimization problem: 

minimize  ݂(ܠ) = ଵݔ) − 2)ଶ + ଶݔ) − 1)ଶ 

which has gradients: 

ௗ௙(ܠ)

ௗ௫భ
= ଵݔ)2 − 2)  

ௗ௙(ܠ)

ௗ௫మ
= ଶݔ)2 − 1)  

subject to  ܿଵ(ܠ) ≡ 0 ≤ 1 − ଵݔ0.25
ଶ − ଶݔ

ଶ 

and  ܿଶ(ܠ) ≡ 1 + ଵݔ − ଶݔ2 = 0 

which have gradients: 

ௗ௖భ(ܠ)

ௗ௫భ
=   ଵݔ0.5−

ௗ௖భ(ܠ)

ௗ௫మ
=   ଶݔ2−

and 

ௗ௖మ(ܠ)

ௗ௫భ
= 1  



113 
 

ௗ௖మ(ܠ)

ௗ௫మ
= −2  

 

A simple C++ program that uses LASO to solve this problem may look like:  

 
#include "LASO.h" // Must include LASO library 
 
/** 
 * User provided subroutine funobj calculates objective function, fObj, and objective               
 * function gradient, gObj. 
 */ 
int funobj(  long int *mode , long int *n , double *x , double *fObj , double *gObj ,  

long int *nState ) 
{ 
 switch ( *mode ) 
 { 
  case 0: 
   { 

*fObj = pow((x[0]-(double)2),(double)2) +  
pow((x[1]-(double)1),(double)2); 

 
    return 0; 
   } 
   break; 
  case 1: 
   { 

gObj[0] = (double)2 * (x[0]-(double)2); 
 

    gObj[1] = (double)2 * (x[1]-(double)1); 
 
    return 0; 
   } 
   break; 
 } 
} 
 
/** 
 * User provided subroutine funcon calculates constraint functions, fCon, and constraint  
 * Jacobian, gCon. 
 */ 
int funcon(  long int *mode , long int *ncnln , long int *n , long int *ldg ,  

long int *needc , double *x , double *fCon , double *gCon ,  
long int *nState ) 

{ 
 switch ( *mode ) 
 { 
  case 0: 
   { 

fCon[0] = -(double)1*(-(double)1 + (double)0.25 *  
pow(x[0],(double)2) + pow(x[1],(double)2)); 

     
fCon[1] = (double)1 + x[0] - (double)2*x[1]; 

 
    return 0; 
   } 
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   break; 
  case 1: 
   { 
    /// Note: Jacobian is stored in single dimensional array. 
    /// Numbering system is as follows: [ design variable number * 

/// total number of constraints + constraint number ] 
    gCon[0*2+0] = -(double)1*((double)0.5 * x[0]);  
    gCon[1*2+0] = -(double)1*((double)2 * x[1]); 
 
    gCon[0*2+1] = (double)1; 
    gCon[1*2+1] = -(double)2; 
 
    return 0; 
   } 
   break; 
 } 
} 
 
/** 
 * Main routine sets up and solves the problem. 
 */ 
int main() 
{ 
 long int n = 2; // Number of design variables, n, is set to 2 
 long int ncnln = 2; // Number of constraints, ncnln, is set to 2 
 
 // An optimization problem object, OPO, is created and initialized. 
 LASO::OptimizationProblemObject OPO( &n , &ncnln , funobj , funcon ); 
 
 // Initial estimates of the design variables are set. 
 OPO.xDesignVariables[0] = (double)2; 
 OPO.xDesignVariables[1] = (double)2; 
 
 // Lower and Upper limits on the design variables and constraints are set. 
 OPO.blLowerBound[0] = -pow( (double)10 , (double)20 ); 
 OPO.blLowerBound[1] = -pow( (double)10 , (double)20 ); 
 OPO.blLowerBound[2] = (double)0; 
 OPO.blLowerBound[3] = (double)0; 
 OPO.buUpperBound[0] = pow( (double)10 , (double)20 ); 
 OPO.buUpperBound[1] = pow( (double)10 , (double)20 ); 
 OPO.buUpperBound[2] = pow( (double)10 , (double)20 ); 
 OPO.buUpperBound[3] = (double)0; 
 

// An optimization solver object, OSO, is created and the solver is run on the  
// desired optimization problem object. 

 LASO::OptimizationSolverObject OSO( OPO ); 
 OSO.run_Solver( OPO ); 
} 
 

1.3. Calling LASO 
The LASO interface has been designed to be intuitive and simple, but still offer a high-degree of 
flexibility to accommodate advanced use cases.  As seen in previous sections, LASO is called by 
creating and configuring an optimization problem object, creating an optimization solver object, 
and running the solver on the optimization problem object.  An optimization problem object is 
created with the following line of code: 
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LASO::OptimizationProblemObject OPO( &n , &ncnln , funobj , funcon ); 
  
Here, an optimization problem object, OPO, is created and initialized.  Initializing OPO requires 4 
user provided input parameters to be passed in by address: a long int containing the number 
of design variables, n; a long int containing the number of constraints, ncnln; user-supplied 
subroutine funobj; user-supplied subroutine funcon. 
 
Next, OPO is configured for the problem at hand and any optional configuration parameters the 
user wishes to change are set.  In configuring OPO for the problem at hand, initial estimates of 
the design variables as well as lower and upper limits on the design variables and constraints 
are set: 
 
// Set initial estimates of the design variables 
OPO.xDesignVariables[0] = (double)0; 
. 
. 
. 
 
// Set lower limits on the design variables and constraints 
OPO.blLowerBound[0] = -pow( (double)10 , (double)20 ); 
. 
. 
. 
 
// Set upper limits on the design variables and constraints 
OPO.buUpperBound[0] = pow( (double)10 , (double)20 ); 
. 
. 
. 
 
Last, an optimization solver object, OSO, is created and run on OPO: 
 
LASO::OptimizationSolverObject OSO( OPO ); 
OSO.run_Solver( OPO ); 
 

1.4. User-Supplied Subroutine funobj 
The user must supply subroutine funobj, which defines the objective function and (optionally, 
but strongly recommended) the objective function gradient.  On every call, this subroutine 
must return appropriate values of the objective, fObj, and objective gradient, gObj.  Similar to 
the example problems in the quick-start sections, the general form of funobj is as follows: 
 
/** 
 * User provided subroutine funobj calculates objective function, fObj, and objective               
 * function gradient, gObj. 
 */ 
int funobj(  long int *mode , long int *n , double *x , double *fObj , double *gObj ,  

long int *nState ) 
{ 
 switch ( *mode ) 
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 { 
  case 0: 
   { 

*fObj = ... 
 
    return 0; 
   } 
   break; 
  case 1: 
   { 

gObj[0] = ... 
    . 
    . 
    . 
 
    return 0; 
   } 
   break; 
 } 
} 
   
On entry: 
 
mode is set by LASO to 0 or 1 depending on whether the objective, fObj, or 

objective gradient, gObj, is needed, respectively. 
n is the number of design variables, which also describes the dimension of 

x and gObj, for a given problem.  This number is provided by the user to 
LASO when a new optimization problem object is created and initialized.  
This number does not change during a LASO run and must not be 
changed by funobj. 

x(n) is an array of dimension n containing the values of the design variables 
for which fObj or gObj must be evaluated.  It is LASO’s job to determine 
these values.  Therefore, it is important that funobj not alter any of 
these values.  

nstate  is not used in this version of LASO. 
  
On exit: 
 
fObj  must contain the value of the objective function evaluated at x. 
gObj(n) must contain the components of  the objective function gradient 

evaluated at x. 
 

1.5. User-Supplied Subroutine funcon 
The user must also supply subroutine funcon, which defines the constraint functions and 
(optionally, but strongly recommended) the constraint function gradients or Jacobian.  On 
every call, this subroutine must return appropriate values of the constraint functions, fCon, 
and constraint function gradients, gCon.  Unless a problem is unconstrained, in which case, 
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funcon does nothing.  Similar to the example problems in the quick-start sections, the general 
form of funcon is as follows: 
 
/** 
 * User provided subroutine funcon calculates constraint functions, fCon, and constraint  
 * Jacobian, gCon. 
 */ 
int funcon(  long int *mode , long int *ncnln , long int *n , long int *ldg ,  

long int *needc , double *x , double *fCon , double *gCon ,  
long int *nState ) 

{ 
 switch ( *mode ) 
 { 
  case 0: 
   { 

fCon[0] = ... 
. 
. 
. 

     
    return 0; 
   } 
   break; 
  case 1: 
   { 
    /// Note: Jacobian is stored in single dimensional array. 
    /// Numbering system is as follows: [ design variable number * 

/// total number of constraints + constraint number ] 
gCon[design variable number * total number of constraints + 
constraint number] = ... 
. 
. 
. 

 
    return 0; 
   } 
   break; 
 } 
} 
   
On entry: 
 
mode is set by LASO to 0 or 1 depending on whether the constraints, fCon, or 

Jacobian, gCon, is needed, respectively. 
ncnln is the number of constraints, which also describes the dimension of fCon 

for a given problem.  The dimension of gCon is ncnln*n.  The value of 
ncnln is provided by the user to LASO when a new optimization problem 
object is created and initialized.  This number does not change during a 
LASO run and must not be changed by funcon. 

n is the number of design variables, which also describes the dimension of 
x for a given problem.  This number is provided by the user to LASO when 
a new optimization problem object is created and initialized.  This 
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number does not change during a LASO run and must not be changed by 
funcon. 

ldg  is not used in this version of LASO. 
needc  is not used in this version of LASO. 
x(n) is an array of dimension n containing the values of the design variables 

for which fCon or gCon must be evaluated.  It is LASO’s job to determine 
these values.  Therefore, it is important that funcon not alter any of 
these values.  

nstate  is not used in this version of LASO. 
  
On exit: 
 
fCon(ncnln) must contain the values of the constraint functions evaluated at x. 
gCon(ncnln*n) must contain the components of the constraint Jacobian evaluated at x. 
 

1.6 Optional Parameters and Configuration 

LASO’s performance depends on a number of internal algorithmic parameters and 
configurations.  Default values of these parameters and configurations should be suitable for 
most problems.  However, the user may adjust these parameters and configurations, as 
desired, to fine tune LASO’s performance on a particular problem.  Each parameter and 
configuration is a named member variable of the optimization problem object class and may be 
accessed from an optimization problem object, OPO, as follows: OPO.variableName or 
OPO.vectorName[].    
 
vEqualityLMs(n+ncnln) is a vector of dimension n + ncnln and of type double 

containing the equality constraint Lagrange multiplier 
values.  vEqualityLMs defaults to a 0-vector, but initial 
estimates of vEqualityLMs may be set by the user if 
information is known a priori about the equality constraint 
activity near the optimum.  Providing good estimates of 
vEqualityLMs ahead of time can reduce the number of 
constrained iterations and markedly improve LASO’s 
performance on constrained problems. 

 
ulInequalityLMs(n+ncnln) is a vector of dimension n + ncnln and of type double 

containing the lower bound or greater than type inequality 
constraint Lagrange multiplier values.  ulInequalityLMs 
defaults to a 0-vector, but initial estimates of 
ulInequalityLMs may be set by the user if information 
is known a priori about the inequality constraint activity 
near the optimum.  Providing good estimates of 
ulInequalityLMs ahead of time can reduce the number 
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of constrained iterations and markedly improve LASO’s 
performance on constrained problems. 

 
uuInequalityLMs(n+ncnln) is a vector of dimension n + ncnln and of type double 

containing the upper bound or less than type inequality 
constraint Lagrange multiplier values.  uuInequalityLMs 
defaults to a 0-vector, but initial estimates of 
uuInequalityLMs may be set by the user if information 
is known a priori about the inequality constraint activity 
near the optimum.  Providing good estimates of 
uuInequalityLMs ahead of time can reduce the number 
of constrained iterations and markedly improve LASO’s 
performance on constrained problems. 

 
epsilonConvergence is the convergence or optimality criteria for the problem.  

It is of type double and has a default value of 10e-6. 
 
etaArmijo is the Armijo stepsize parameter used to calculate the 

standard Armijo’s rule stepsize.  It is of type double and 
defaults to the Golden Ratio, which is approximately 
1.618. 

 
configuration is the search direction configuration parameter.  It is of 

type int and defaults to 3, which is the L-BFGS search 
direction.  Steepest descent and conjugate gradient search 
directions may be used by setting configuration to 1 
and 2, respectively. 

 
outputLevel is the output level parameter.  It is of type int and 

defaults to 1, which outputs summary information about 
each major iteration.  Level 0 outputs no information, 
which may be desirable in production settings.  Level 2 
outputs detailed information about each major iteration 
and level 3 outputs detailed information about each major 
and minor iteration. 

 
epsilonTolerance is the tolerance or feasibility criteria for the problem.  It is 

of type double and has a default value of 10e-6. 
 
mCorrections is the number of L-BFGS corrections to store.  It is of type 

int and has a default value of 20, which has been shown 
to be efficient on a wide range of problems.  It may, 
however, be desirable to decrease the number of 
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corrections to store when dealing with very large problems 
where memory storage is an issue. 

 
equalityTolerance is the tolerance used to determine whether or not a 

constraint is an equality constraint.  It is of type double 
and has a default value of 0.005.  A constraint will be 
treated as an equality constraint if the difference between 
the lower bound and upper bound is less than or equal to 
this value. 

 
rPenalty is the initial estimate of the penalty parameter used to 

penalize violated constraints in the Augmented 
Lagrangian.  It is of type double and has a default value of 
1.  This parameter is updated dynamically during L-BFGS 
iterations and is increased monotonically by a factor, 
betaFactor, during conjugate gradient and steepest 
descent iterations when feasibility has not improved. 

 
betaFactor is the factor that the penalty parameter is increased by 

when constraint violation has not improved.  It is of type 
double and has a default value of 10. 

 
rhoArmijo is the rho parameter used in Armijo’s sufficient decrease 

condition.  It is of type double and defaults to 10e-4 for 
L-BFGS and conjugate gradient iterations and 0.2 for 
steepest descent iterations. 

 
betaArmijo is the beta parameter used in Armijo’s curvature 

condition.  It is of type double and defaults to 0.9. 
 
checkGradient is the parameter used to turn finite difference gradient 

checking on and off.  It is of type bool and defaults to 
FALSE.  If set to TRUE, the objective function gradient will 
be checked prior to problem start.  

 
checkJacobian is the parameter used to turn finite difference Jacobian 

checking on and off.  It is of type bool and defaults to 
FALSE.  If set to TRUE, the constraint function gradients / 
Jacobian will be checked prior to problem start.  

 
differenceMethod is the parameter used to specify the finite difference 

method to be used during gradient checking and 
numerical gradient calculations.  It is of type int and 
defaults to 1, which corresponds to the forward difference 
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method.  The central and backward difference methods 
may be selected by setting differenceMethod to 2 and 
3, respectively.  

 
gradientProvided is the parameter used to specify whether or not an 

analytical gradient of the objective function has been 
provided by the user.  It is of type bool and defaults to 
TRUE.  If set to FALSE, gradients will be calculated 
numerically by the finite difference method specified by 
differenceMethod.  

 
jacobianProvided is the parameter used to specify whether or not analytical 

gradients of the constraints have been provided by the 
user.  It is of type bool and defaults to TRUE.  If set to 
FALSE, gradients of the constraints will be calculated 
numerically by the finite difference method specified by 
differenceMethod.  
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