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Nonlinear Dependence and Extremes in Hydrology and Climate

Shiraj Khan

ABSTRACT

The presence of nonlinear dependence and chaos has strong implications for predictive modeling and

the analysis of dominant processes in hydrology and climate. Analysis of extremes may aid in developing

predictive models in hydro-climatology by giving enhanced understanding of processes driving the extremes

and perhaps delineate possible anthropogenic or natural causes. This dissertation develops and utilizes dif-

ferent set of tools for predictive modeling, speci�cally nonlinear dependence, extreme, and chaos, and tests

the viability of these tools on the real data. Commonly used dependence measures, such as linear correla-

tion, cross-correlogram or Kendall's τ , cannot capture the complete dependence structure in data unless the

structure is restricted to linear, periodic or monotonic. Mutual information (MI) has been frequently utilized

for capturing the complete dependence structure including nonlinear dependence. Since the geophysical data

are generally �nite and noisy, this dissertation attempts to address a key gap in the literature, speci�cally, the

evaluation of recently proposed MI-estimation methods to choose the best method for capturing nonlinear

dependence, particularly in terms of their robustness for short and noisy data. The performance of kernel

density estimators (KDE) and k-nearest neighbors (KNN) are the best for 100 data points at high and low

noise-to-signal levels, respectively, whereas KNN is the best for 1000 data points consistently across noise

levels. One real application of nonlinear dependence based on MI is to capture extrabasinal connections

between El Ni�no-Southern Oscillation (ENSO) and river �ows in the tropics and subtropics, speci�cally

the Nile, Amazon, Congo, Paraná, and Ganges rivers which reveals 20-70% higher dependence than those

suggested so far by linear correlations. For extremes analysis, this dissertation develops a new measure pre-

cipitation extremes volatility index (PEVI), which measures the variability of extremes, is de�ned as the ratio

of return levels. Spatio-temporal variability of PEVI, based on the Poisson-generalized Pareto (Poisson-GP)

model, is investigated on weekly maxima observations available at 2.50 grids for 1940-2004 in South Amer-

ica. From 1965-2004, the PEVI shows increasing trends in few parts of the Amazon basin and the Brazilian
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highlands, north-west Venezuela including Caracas, north Argentina, Uruguay, Rio De Janeiro, S�ao Paulo,

Asuncion, and Cayenne. Catingas, few parts of the Brazilian highlands, S�ao Paulo and Cayenne experience

increasing number of consecutive 2- and 3-days extremes from 1965-2004. This dissertation also addresses

the ability to detect the chaotic signal from a �nite time series observation of hydrologic systems. Tests with

simulated data demonstrate the presence of thresholds, in terms of noise to chaotic-signal and seasonality to

chaotic-signal ratios, beyond which the set of currently available tools is not able to detect the chaotic com-

ponent. Our results indicate that the decomposition of a simulated time series into the corresponding random,

seasonal and chaotic components is possible from �nite data. Real stream�ow data from the Arkansas and

Colorado rivers do not exhibit chaos. While a chaotic component can be extracted from the Arkansas data,

such a component is either not present or can not be extracted from the Colorado data.
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Chapter 1

Introduction

In hydrology and climate, the presence of nonlinear dependence and chaos has strong implications for

predictive modeling and the analysis of dominant processes. Analysis of hydrological and climatological

extremes may also aid in predictive modeling by giving enhanced understanding of processes driving the

extremes and perhaps delineate possible anthropogenic or natural causes. This dissertation analyzes and

develops three components of predictive modeling, speci�cally nonlinear dependence, extremes, and chaos,

and tests their viability and scalability on the real data. This section introduces these components, describes

the state of the art in each component, points gaps in their respective literatures, and outlines procedures for

targeting their respective gaps.

In nonlinear systems, the understanding of underlying nonlinear processes and their interactions are very

important for predictive modeling as well as for generating bounds on predictability. However, data analysis

methods based on nonlinear dynamical approaches are typically not robust when applied to short and noisy

data [1]. The de�nition of what constitutes short and noisy, in terms of data sizes and noise-to-signal ratios,

may be application and context speci�c. A consideration of data availability scenarios in a couple of domains,

speci�cally the earth sciences and biomedical engineering, in conjunction with the literature on mutual in-

formation (MI) estimation methods, suggest that a critical gap continues to exist in our understanding of

situations where the length of data sets is short, particularly of the order of 100 or 1 000 data points. Linear

correlation may not be an adequate measure of dependence even for simple nonlinear functional forms. This

can be simply shown in the case of two variables (X,Y ), where (Y = X2), and X is uniformly distributed in

the interval (−1, 1). The theoretical covariance and hence the linear correlation reduces to zero even though

the variable Y is completely speci�ed once X is known. The situation gets even more problematic when the

nonlinear interactions get more complex. The problem of detecting excessive spurious dependence or missing

existing dependence structures among nonlinear signals is exacerbated for short and noisy data. The degree

to which even small amount of noise can obscure the underlying dependence structure is evident from Fig.

1 which shows two cases, such as quadratic and Henon, based on simulations with 100 points each. In both

cases, the simulated data are contaminated with Gaussian noise with zero mean and standard deviation given
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by σε/σs, which is called the noise-to-signal ratio. The variables σε and σs are the standard deviations of the

noise and signal, respectively. Visual inspection reveals that the dependence structure departs signi�cantly

from the underlying true dependence structure as the noise-to-signal ratio increases. Robust measures for

nonlinear dependence would need to capture the dependence structure even when the latter is obscured by

noise. Several methods for the estimation of MI-based nonlinear dependence have been suggested in recent

years, such as kernel denstiy estimators (KDE) [2], adaptive partitioning of the observation space [3], Parzen

window density estimator [4], k-nearest neighbors (KNN) [5], Edgeworth approximation of differential en-

tropy (Edgeworth) [6], mutual information carried by the rank sequences [7], and adaptive partitioning of the

XY plane (referred here as Cellucci) [8]. Previous studies [2, 5, 8, 9] designed to compare existing or newly

proposed methods for nonlinear dependence with each other, as well as with a standard method, have been

limited in scope. The goal of this dissertation is to investigate and compare recently developed MI estimation

methods, speci�cally KDE, KNN, Edgeworth, and Cellucci, based on simulated data generated from linear,

quadratic, periodic, and chaotic data contaminated arti�cially with various levels of Gaussian noise. The per-

formance of the MI-estimation methods are compared against each other and against baselines comprising

linear correlation coef�cient (CC) obtained from linear regression (LR) and rank-based CCs from Kendall's

τ [10]. We have also used theoretical MI values from linear, quadratic, and periodic, which can be computed

analytically, for comparing the performance of different MI-estimation methods. The purpose of the above

comparisons is to identify the one MI-estimation method or combination of MI-estimation methods in terms

of robustness to short and noisy data, at least for the illustrations considered here, whose estimation values are

closest to the theoretical MI values and signi�cantly different from linear estimates in that their con�dence

bounds do not intersect.

ENSO events impact regional precipitation in the tropics and subtropics, ultimately causing inter-annual

variability in river �ows. The ocean-atmosphere-land interactions are complex and far from being completely

understood and accurately modeled. A slight disturbance in these interactions would usually result in some-

times surprising distant correlations and climate patterns. Analyses of the rainfall anomalies during the warm

(El Ni�no) and cold (La Ni�na) episodes of ENSO suggest the existence of nonlinear sea surface temperature

(SST)-rainfall relationships in the tropics and a strong in�uence of SST forcing on equatorial rainfall in the

geographic vicinity of that forcing [11]. To properly explain and ultimately predict this variability, it is im-

portant to disentangle, as far as possible, long range climatic phenomena from recent effects such as those

possibly produced by deforestation and global warming. While the relationships among many climate and

hydrological variables are decidedly nonlinear [12], linear dependence measures are still being used as a
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matter of course to relate ENSO and inter-annual variability in river �ows. These measures have ranged from

linear correlation coef�cients (CC) in the time domain [13�16] to the cross-spectrum analysis [17, 18]. One

of the reasons for using linear measures is that the inherent noise and periodicity in the observations together

with short length of the available sample sizes make it dif�cult to use nonlinear approaches in climate and

hydrology [19�21]. The goal of this dissertation is to investigate the nonlinear dependence between ENSO

and the annual �ow of some of the largest tropical and subtropical rivers, speci�cally the Nile, Amazon,

Congo, Paraná and Ganges, through a MI-based measure.

Precipitation extremes can have signi�cant impacts on human society, economics, and nature. An under-

standing of the intensity and frequency of precipitation extremes can be very useful for infrastructure develop-

ment to prevent �ooding and landslides, as well as for water resources and agricultural management. A better

understanding of precipitation extremes can help hydrologic scientists and climatologists gain enhanced un-

derstanding of precipitation processes driving the extremes and perhaps delineate possible anthropogenic or

natural causes. Previous studies investigated trends and variability of precipitation extremes in many parts of

the world in the twentieth century, speci�cally the United States [22, 23], India [24], Southeast Asia and the

South Paci�c [25], Australia [23,26], Europe [27], Caribbean [28], Italy [29], Balkans [30], Canada, Norway,

Russia, China, Mexico [23], Japan [31], Sweden [32], southeastern South America [33], and the state of

S�ao Paulo, Brazil [34]. Recently the spatio-temporal variability of dependence among precipitation extremes

was investigated over the entire South America for the period 1940-2004 using a new approach (suggested

by Kuhn [35]) [36]. However, we are not aware of any prior investigations on spatial and temporal vari-

ability of precipitation extremes over the entire continent of South America. The generalized extreme value

(GEV) distribution, developed by Jenkinson [37], has been traditionally utilized for modeling precipitation

extremes [38�40]. This approach is also called the block maxima approach since it �ts the distribution to

the highest values in blocks of equal size, e.g., maximum yearly precipitation. It has some advantages, e.g.,

its requirements can be met by a simpli�ed summary of data and the block maxima can be assumed to be

independent random variables [41]. But the main drawback of the GEV distribution is that it does not utilize

all the available information about the upper tail of the distribution, e.g., two highest extreme precipitation

events may occur in the same year [41]. An alternative approach is to use peaks over threshold (POT) which

was originated in hydrology and makes use of all the data available, e.g., all daily precipitation data [42]. The

statistical model underlying the POT method consists of (1) Poisson process for the occurrences of extremes

over a large threshold and (2) generalized Pareto (GP) distribution (with scale (σ) and shape (ξ) parameters),

developed by Pickands [43], for the distribution of excesses over a large threshold. This model is also termed
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as Poisson-GP model. Recently, the GP distribution has been utilized for modeling threshold excesses from

daily precipitation data [44, 45]. This dissertation utilizes the Poisson-GP model for investigating the spatial

and temporal variability of precipitation extremes using daily precipitation data in 2.50 grids South America

for 1940-2004 [46]. The Poisson-GP model assumes the data to be independent and identically distributed

(IID) [39]. A long-term trend and seasonality in the data violate the assumption of identically distributed data

whereas the assumption of independent data is violated if there is temporal dependence in the data [47]. In

order to check the IID assumption for the Poisson-GP model, we consider three different sets of data based

on this daily data: daily data itself, weekly maxima, and weekly maxima residuals. Weekly maxima resid-

uals are obtained by subtracting the long term mean of weekly maxima of a particular week, i.e., mean of

maximum weekly precipitation across the same week for all years used in the analysis, from weekly maxima

of the same week. These datasets are compared to choose the best data by examining temporal dependence

through auto-correlations and seasonal trends. In order to check the quality of the Poisson-GP model, we

also compare these datasets in terms of the Poisson property of the occurrences of extremes and quality of

the GP distribution. The scale of the data and the need for ef�cient computations, which can be eventually

automated, preclude choosing thresholds based on human judgment. We choose thresholds as 95%-quantile

for weekly maxima and weekly maxima residuals and 99%-quantile for the daily data at each grid point.

Spatial variability is investigated for 65 years (1940-2004) and the last 40 years (1965-2004) are also studied

for the temporal variability with 25-year moving window, i.e., 1965-1989, 1966-1990,. . ., 1980-2004. The

temporal variability is given by the slope of a linear trend obtained by �tting a regression line to 16 values

from 16 time windows from 1965-2004. We investigate the spatial and temporal variability of thresholds,

two parameters of the GP distribution (σ and ξ) and their standard errors, 50-year and 200-year return levels

(RL), and precipitation extremes volatility index (PEVI) [46]. The PEVI measures the variability of extremes

and is de�ned as a ratio of RLs. Based on daily data, the spatial and temporal variability of the number of

consecutive 2-days and 3-days extremes and the spatial variations of the number of monthly extremes are

investigated [46].

The presence of chaos in hydrology has been suggested by previous researchers [48�64]. The ability

to detect and model chaotic behavior from �nite hydrologic time series has recently been debated [65, 66].

Characterization of chaos from real-world observations is known to be a dif�cult problem in nonlinear dy-

namics [67�69]. The complexity was highlighted in the context of climate models by [70], who demonstrated

that sensitivity to initial conditions may become less apparent when the randomness in internal atmospheric

variables begins to dominate. Fundamental questions still remain unanswered in these areas, for example
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the ability to detect chaos from a �nite time series with random and seasonal components, the ability to

decompose a time series into these components, and the corresponding implications for predictive model-

ing. However, addressing these questions is critical for hydrology. This can be gauged from the wealth of

hydrologic literature in areas like complexity analysis [71�73], predictability [64] and nonlinear predictive

modeling [74�77]. This dissertation investigates the ability of nonlinear dynamical tools to detect, character-

ize, and predict chaos from �nite hydrologic observations, using both simulated and real time series. Realistic

simulated data is generated by contaminating chaotic signals with random and seasonal components, while

real stream�ow data are used from the Arkansas and Colorado rivers. The correlation dimension method

is used for detecting the possible presence of chaos. Nonlinear predictive models, namely the phase-space

reconstruction (PSR) and arti�cial neural networks (ANN) are employed for time series decomposition and

prediction. The presence of thresholds for the detect-ability of chaos is demonstrated, speci�cally when a

chaotic signal is mixed with random or seasonal signals, or a combination thereof. These thresholds can be

expressed in terms of the relative dominance of the chaotic component compared to the random or seasonal

components. The ability to decompose a time series into the contributions from the individual components

(random, seasonal and chaotic) is shown.
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Chapter 2

Motivation

In geophysics, the ability to predict may be increased (a) by including nonlinear relationships between

geophysical processes, (b) by generating t-year return levels (levels expected to be exceeded on average once

every t years) based on the analysis of low probability and high risk geophysical events (also called extremes),

and (c) if there is a presence of chaos, which implies short-term predictability, in geophysical processes.

Since the geophysical data are generally short and noisy, there is a need to develop and investigate nonlinear

dependence, extremes, and chaos detection measures, which are robust to �nite and noisy data. Mutual

information has been frequently utilized for capturing the complete dependence structure including nonlinear

dependence. Recently, several methods have been proposed for the MI estimation, such as KDE [2], KNN [5],

Edgeworth approximation of differential entropy [6], and adaptive partitioning of the XY plane [8]. However,

outstanding gaps in the current literature have precluded the ability to effectively automate these methods,

which, in turn, have caused limited adoptions by the application communities. This dissertation attempts to

address a key gap in the literature, speci�cally, the evaluation of the above methods to choose the best method,

particularly in terms of their robustness for short and noisy data, based on comparisons with the theoretical MI

estimates, which can be computed analytically, as well with linear correlation and Kendall's τ . In addition,

there is also a need to �nd an optimal smoothing parameter for a Gaussian kernel for KDE and optimal number

of nearest neighbors for KNN when the data are short and noisy. An understanding of the intensity and

frequency of precipitation extremes can be very useful for infrastructure development to prevent �ooding and

landslides, as well as for water resources and agricultural management. Previous studies [22�32] investigated

trends and variability of precipitation extremes in many parts of the world in the twentieth century but no study

was found focussing on precipitation extremes over the entire continent of South America. Since the nations

of South America are developing, highly populated, and not capable enough to respond to disasters caused

by precipitation extremes, there is a clear need to investigate spatial and temporal variability of precipitation

extremes in South America. Extreme value distributions generate information about extremes in terms of

their parameters which can be understood only by statisticians. There is a need to develop a measure which

should be statistically valid, easily quanti�ed and visualized over large geographical areas, and understood
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not only by statisticians but also by hydrologists, climatologists, and decision-makers. In hydrological data,

the presence of noise and seasonality makes the chaos detection process challenging. There is a need to

de�ne thresholds, in terms of noise to chaotic-signal and seasonality to chaotic-signal ratios, beyond which

the set of currently available tools is not able to detect the chaotic component. If there is chaos in the data, it

would be very interesting to investigate if it is possible to separate chaotic and random components from �nite

data. Previous studies [52, 53, 55, 56] investigated the presence of chaos in many rivers around the world but

no study was found focussing on two major rivers, i.e., Arkansas and Colorado rivers, in the United States.

This dissertation targets three components, i.e., nonlinear dependence, extremes, and chaos, of predictive

modeling separately but there is also a need to look at the possibility of inter-connecting these components

for improving predictive models.
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Chapter 3

Relative Performance of Mutual Information Estimation Methods for Quantifying the Dependence Among
Short and Noisy Data

Commonly used dependence measures, such as linear correlation, cross-correlogram or Kendall's τ , can-

not capture the complete dependence structure in data unless the structure is restricted to linear, periodic or

monotonic. Mutual information (MI) has been frequently utilized for capturing the complete dependence

structure including nonlinear dependence. Recently, several methods have been proposed for the MI esti-

mation, such as kernel density estimators (KDE), k-nearest neighbors (KNN), Edgeworth approximation of

differential entropy, and adaptive partitioning of the XY plane. However, outstanding gaps in the current lit-

erature have precluded the ability to effectively automate these methods, which, in turn, have caused limited

adoptions by the application communities. This dissertation attempts to address a key gap in the literature,

speci�cally, the evaluation of the above methods to choose the best method, particularly in terms of their

robustness for short and noisy data, based on comparisons with the theoretical MI estimates, which can be

computed analytically, as well with linear correlation and Kendall's τ . Here we consider smaller data sizes,

such as 50, 100, and 1 000, where this dissertation considers 50 and 100 data points as very short and 1 000 as

short. We consider a broader class of functions, speci�cally linear, quadratic, periodic and chaotic, contami-

nated with arti�cial noise with varying noise-to-signal ratios. Our results indicate KDE as the best choice for

very short data at relatively high noise-to-signal levels whereas the performance of KNN is the best for very

short data at relatively low noise levels as well as for short data consistently across noise levels. In addition,

the optimal smoothing parameter of a Gaussian kernel appears to be the best choice for KDE while three

nearest neighbors appear optimal for KNN. Thus, in situations where the approximate data sizes are known

in advance, and exploratory data analysis and/or domain knowledge can be used to provide a priori insights

on the noise-to-signal ratios, the results in the paper point to a way forward for automating the process of MI

estimation.
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3.1 Introduction

In nonlinear systems, the understanding of underlying nonlinear processes and their interactions are very

important for predictive modeling as well as for generating bounds on predictability. However, data anal-

ysis methods based on nonlinear dynamical approaches are typically not robust when applied to short and

noisy data [1]. The de�nition of what constitutes short and noisy, in terms of data sizes and noise-to-signal

ratios, may be application and context speci�c. A consideration of data availability scenarios in a couple of

domains, speci�cally the earth sciences and biomedical engineering, in conjunction with the literature on mu-

tual information (MI) estimation methods, suggest that a critical gap continues to exist in our understanding

of situations where the length of data sets is short, particularly of the order of 100 or 1 000 data points.

Physically-based de�nitions for what constitutes long versus short data sizes need to follow from a com-

parison of sampling coverage time-span vis-à-vis the characteristic period of the dynamical system under

consideration. The characteristic period can be, for example, one full seasonal cycle for purely seasonal ob-

servations, or a complete span of the attractor for a chaotic system. If the sample size is large but the sampling

coverage is restricted to a small portion of the cycle or the attractor, then observations are still not represen-

tative of the population. In this sense, the data size must still be considered short in a physical sense because

they do not have the coverage necessary to make the relevant inferences from the data. While samples with

greater coverage is more representative of the population, the tradeoff, especially for a limited number of

samples, is that the sampling frequency needs to be adequate to capture the features of the dynamical system

and make appropriate inferences from the observations. The sampling frequency in this sense is related to

the Nyquist frequency of the system. In this sense, even if the sampling coverage is large but the frequency

is inadequate, the data size must still be considered short from a physical perspective. Thus, the Nyquist

frequency on the one hand, and the characteristic period of the dynamical system under consideration on the

other, provide guidelines for the de�nitions of long versus short data sizes, and indeed provides a physical

basis for such de�nitions. However, in real-world situations, the knowledge of the characteristic period of

the dynamical system or the signal bandwidth may not necessarily be known a priori, and in some cases,

may be dif�cult to estimate if the data are contaminated with non-repeatable patterns, measurement errors, or

other forms of noise. Thus, for such systems, there is a need for caution before making a claim that a set of

observations is short or, perhaps more important, long enough. This paper is concerned with simulated data,

where we have knowledge of the system, and generates noise sequences from independent and identically

distributed processes. Here we implicitly de�ne the characteristic time (basic period) of the system as equal
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to unity, thus the number of data points is a natural measure for our examples. In this dissertation, a data size

of 50 to 100 is referred as very short whereas a data size of 1 000 is considered short.

We use the term noise in a generic sense to include variability in measurement errors as well as any

inherent, but non-repeatable, randomness that may be present in complex systems. Indeed, noise levels

encountered in real-world data may vary considerably depending on the domain, data collection methods,

measurement accuracy, inherent randomness in the observables, as well as other factors. Here we consider

noise-to-signal ratios that range all the way from zero, which implies no noise, to unity, which implies that

the noise is as dominant as the underlying signal itself. For this dissertation, we call a noise-to-signal ratio of

zero to about a half as low noise and higher ratios as high noise.

Linear correlation may not be an adequate measure of dependence even for simple nonlinear functional

forms. This can be simply shown in the case of two variables (X,Y ), where (Y = X2), and X is uniformly

distributed in the interval (−1, 1). The theoretical covariance and hence the linear correlation reduces to zero

even though the variable Y is completely speci�ed once X is known. The situation gets even more prob-

lematic when the nonlinear interactions get more complex. However, the application of nonlinear dynamical

and/or information theoretic measures of dependence can be a challenge, especially when short and noisy

data are available. For example, the identi�cation of the underlying nonlinear dynamical component via

the correlation dimension is known to be dif�cult problem for geophysical [21] or electroencephalographic

(EEG) [78,79] signals. Similarly, the detection of the underlying interactions among variables characterizing

a complex system becomes a dif�cult task [80]. The inherent dif�culty of numerical estimation as well as

perceived problems with model parsimony or over�tting have resulted in relatively limited use of nonlinear

approaches, even when the underlying processes are known to be nonlinear. The problem exists in certain

biomedical applications [81�83], but grows more acute in domains like geophysics [21, 84] where the data

collection and generation processes are often not repeatable. Our de�nition of what constitutes short and

noisy data is motivated from problems in these domains. The references cited earlier show that very short

and short data sets, as well as low noise and high noise conditions do exist for real-world problems. Thus,

there is a clear need to investigate methods, which are robust to short and noisy data, for the determination

of nonlinear multivariate interactions. However, the methodologies need to be rigorously tested such that

well-known problems in nonlinear statistics like over�tting do not yield misleading correlations.
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Figure 1. Plot of 100 points with different noise-to-signal ratios (shown by plus) and with zero noise level
(shown by dots). Noise-to-signal ratios on the left and right �gures are 0.1 and 0.5, respectively. (A) X ∼
N(0, 1), Y : yi = xi

2 + εi, where ε ∼ N(0, σε) is the Gaussian noise with zero mean and σε standard
deviation. (B) X : xi = Hxi + εxi, Y : yi = Hyi + εyi, where HX and HY are the X and Y components of
the Henon map, respectively. εx ∼ N(0, σHX ) and εy ∼ N(0, σHY ), where σHX and σHY are the standard
deviations of HX and HY , respectively.
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The problem of detecting excessive spurious dependence or missing existing dependence structures among

nonlinear signals is exacerbated for short and noisy data. The degree to which even small amount of noise can

obscure the underlying dependence structure is evident from Fig. 1 which shows two cases, such as quadratic

and Henon, based on simulations with 100 points each. In both cases, the simulated data are contaminated

with Gaussian noise with zero mean and standard deviation given by σε/σs, which is called the noise-to-

signal ratio. The variables σε and σs are the standard deviations of the noise and signal, respectively. Visual

inspection reveals that the dependence structure departs signi�cantly from the underlying true dependence

structure as the noise-to-signal ratio increases. Robust measures for nonlinear dependence would need to

capture the dependence structure even when the latter is obscured by noise. Previous studies designed to

compare existing or newly proposed methods for nonlinear dependence with each other, as well as with a

standard method, have been limited in scope. The classic algorithm was proposed by Fraser and Swinney [9],

which was compared with the kernel density estimation (KDE) method given by Moon et al. [2]. The compar-

ison utilized the following combination of data sizes and simulations: 400 for a sinusoidal curve, 500 for an

autoregressive process, 4 096 for data sets generated from the Lorenz system, and 2 048 for Rossler, where the

last two are chaotic. Later, KDE was re�ned and validated on real-world geophysical data sets [85]. Kraskov

et al. [5] compared two k-nearest neighbors (KNN) estimators with simulations from correlated Gaussians

for data sizes of 125, 250, 500, 1 000, 2 000, 4 000, 10 000 and 20 000, as well as with simulations from

the exponential distribution. In addition, they tested their methods on gene expression data. The Edgeworth

approximation of differential entropy proposed by Hulle [6] was compared against the KNN method and

Parzen density estimator. For the comparisons, the data sets of size 1 000 and 10 000 were generated from

the Gaussian and exponential distributions. Cellucci et al. [8] focused on statistical evaluation of mutual in-

formation estimation by comparing the MI estimates with linear correlations and the rank-based correlations

from Kendall's τ . In addition, they proposed a new algorithm based on adaptive partitioning and compared

it with the Fraser-Swinney method given in [9]. Their comparisons utilized simulations from the Gaussian

distribution, linear and quadratic functions contaminated with arti�cial noise, as well as the chaotic systems,

such as Lorenz and Rossler. The data sizes utilized for the comparison were 4 096, 8 192, 10 000, 65 536 and

100 000. Cellucci et al. [8] mentioned that when they initiated their research, the KNN method by Kraskov et

al. [5] had not been published yet. Indeed, they also suggested a need of an expanded future research effort

to compare and contrast their adaptive partitioning method with the KNN and KDE methods. From these

discussions, it is clear that a thorough comparison of the various methods for the estimation of MI, speci�-

cally, KDE, KNN, Edgeworth and adaptive partitioning, do not exist in the literature. Furthermore, detailed
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comparisons have not been attempted across a wide class of simulated functional forms. In addition, the MI

estimation methods have not been compared with baseline approaches like linear correlation and Kendall's

τ , other than the speci�c comparisons presented by Cellucci et al. [8]. Finally, a clear gap exists in terms of

detailed comparisons of the various MI estimation methods for short and noisy data.

As discussed earlier, several methods for the estimation of MI have been suggested in recent years, such

as KDE [2], adaptive partitioning of the observation space [3], Parzen window density estimator [4], KNN

[5], Edgeworth approximation of differential entropy (Edgeworth) [6], mutual information carried by the

rank sequences [7], and adaptive partitioning of the XY plane (referred here as Cellucci) [8]. The goal

of this dissertation is to investigate and compare recently developed MI estimation methods, speci�cally

KDE, KNN, Edgeworth, and Cellucci, based on simulated data generated from linear, quadratic, periodic,

and chaotic data contaminated arti�cially with various levels of Gaussian noise. We generate 50, 100, and

1 000 points for our analysis. As mentioned earlier, the motivation for the data sizes comes from a speci�c

geophysical application (the relationship of the interannual climate index known as ENSO with the variability

of tropical river�ows [84]) and a speci�c biomedical application (dependence among EEG signals [81, 82]).

The simulated data allow us to compare the relative performance of the MI estimation methods across an

order of magnitude in terms of data sizes and noise-to-signal ratios ranging from 0 to 1 in increments of

0.1. Uncertainties on the MI estimates are obtained through bootstrapping and provided as 90% con�dence

bounds. The total number of bootstraps used for 50, 100, and 1 000 points are 200, 100, and 10, respectively,

re�ecting a pragmatic trade-off between the need for accuracy and computational tractability. However, such

trade-offs may not be required in more ef�cient or higher performance computational implementations. The

performance of the MI-estimation methods are compared against each other and against baselines comprising

linear correlation coef�cient (CC) obtained from linear regression (LR) and rank-based CCs from Kendall's

τ . We have also used theoretical MI values from linear, quadratic, and periodic, which can be computed

analytically, for comparing the performance of different MI-estimation methods. The purpose of the above

comparisons is to identify the one MI-estimation method or combination of MI-estimation methods in terms

of robustness to short and noisy data, at least for the illustrations considered here, whose estimation values are

closest to the theoretical MI values and signi�cantly different from linear estimates in that their con�dence

bounds do not intersect.

The rest of the paper is organized as follows. In Sec. 3.2, the MI and its estimation methods are described.

The MI is de�ned in Sec. 3.2A while we outline the four MI estimation methods, namely KDE, KNN,

Edgeworth, and Cellucci, in Sec. 3.2B. In Sec. 3.3, the description of simulated data sets to be analyzed is
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provided. We present and discuss the results obtained using four MI estimation methods, LR, and Kendall's

τ in Sec. 3.4. In Sec. 3.5, the conclusion and discussion are presented.

3.2 Mutual information and its estimation methods

Several dependence measures, such as linear correlation, cross-correlogram, Kendall's τ , and MI, have been

utilized to capture the dependence structure between a pair of variables (X,Y ). However, while the �rst three

measures can only capture linear, periodic or monotonic dependence, MI can describe the full dependence

structure including nonlinear dependence if any [86]. In addition, MI reduces to the linear dependence when

the data are indeed linearly related. In an information theoretic sense, MI quanti�es the information stored in

one variable about another variable. MI has several satisfying theoretical properties and analogous relations

with the linear correlation. While the linear CC can be used to calculate the prediction mean squared errors

(MSE) from linear regression, MI can be used to compute a bound on the achievable prediction MSE based

on the information content in the independent variables about the dependent variables. MI has been shown

to have traditional analysis of variance (ANOVA)-like interpretations [87]. For time serial data, MI can be

computed as a function of temporal lags to obtain nonlinear versions of the auto- or cross-correlation (ACF

or CCF) functions. The information theoretic properties of MI, which make it a reliable measure of statistical

dependence, have been described by Cover and Thomas [88]. The applicability of MI for feature, parameter

and model selection problems have been described by Brillinger [87]. Besides the direct use of MI in the

computation of nonlinear dependence [87, 89], MI has indicated value in areas ranging from optimal time

delay embeddings during phase-space reconstructions [9] to extracting causal relationships among variables

( [90, 91]) [8].

3.2.1 De�nitions of mutual information

For the bivariate random variables (X,Y ), the MI is de�ned as

I(X;Y ) =
∫

Y

∫

X

pXY (x, y)log
pXY (x, y)

pX(x)pY (y)
dx dy, (1)

where pXY (x, y) is the joint probability density function (pdf ) between X and Y ; and pX(x) and pY (y) are

the marginal pdfs [8]. The unit of MI is de�ned corresponding to the base of the logarithm in Eq. (1), i.e.,

nats for log, bits for log2, and Hartleys for log10. MI is positive and symmetrical, i.e., I(X; Y ) = I(Y ;X).

It is also invariant under one to one transformations, i.e., I(X; Y ) = I(U ; V ), where u = f(x), v = f(y),
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and f is invertible. If X and Y are independent, the joint pdf is equal to the product of marginal pdfs leading

to I(X; Y ) = 0 from Eq. (1). If there exists perfect dependence between X and Y , MI approaches in�nity.

MI between random variables X and Y can also be de�ned in terms of information entropies as

I(X;Y ) = H(Y )−H(Y |X)

= H(X) + H(Y )−H(X, Y ), (2)

where H(X) and H(Y ) are called the marginal information entropies which measure the information content

in X and Y , respectively, H(Y |X) is the entropy of Y conditional on X which measures the information

content remaining in Y if the information content in X is known completely, and H(X, Y ) is the joint

information entropy which measures the information content in a pair of random variables X and Y . The

bivariate case is considered here for simplicity.

The linear CC (ρ) between two variables X and Y is a measure of the strength of the linear dependence

between the variables and varies from 0 to 1. The estimation of the most likely value and the corresponding

uncertainties are relatively straightforward. However, the estimation of the mean and uncertainty bounds, for

an MI-based dependence measure that is normalized to scale between 0 to 1, is an area of ongoing research.

If (X,Y ) is bivariate normal, the MI and linear CC are related as I(X;Y ) = −0.5 log[1−ρ(X, Y )2] [92].

Joe [93] proposed a linear CC like measure for MI, which scales from 0 to 1, given as

λ̂(X, Y ) =
√

1− exp[−2Î(X; Y )], (3)

where λ̂(X,Y ) and Î(X;Y ) are the estimated nonlinear CC and MI, respectively. Later Granger and Lin

[94] used the same measure to estimate nonlinear CC from the MI. While this dissertation utilizes nonlinear

CC based solely on MI, other bases for nonlinear CC suggested in the literature include mutual nonlinear

prediction [95] and nonlinear association analysis [96]. A detailed comparison of the various de�nitions of

nonlinear CC and their relative performances are left as areas for future research. In order to estimate the

predictability of Y given X , once the MI is known, Brillinger [87] proposed an equation which provides

a lower bound on the prediction MSE. This equation, which is analogous to the MSE for linear regression

obtained from the linear correlation coef�cient, is given as

M̂SE(Y ) ≥ 1
2πe

exp[2{Ĥ(Y )− Î(X; Y )}],
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where Ĥ(Y ) is the estimated information entropy of Y and M̂SE(Y ) gives a lower bound on MSEs from

the MI and measures the predictability of Y based on the information content in X .

3.2.2 Mutual information estimators

3.2.2.1 Kernel density estimators (KDE) The MI in Eq. (1) for any bivariate data set (X, Y) of size n can

be estimated as

Î(X;Y ) =
1
n

n∑

i=1

log
p̂XY (xi, yi)

p̂X(xi)p̂Y (yi)
, (4)

where p̂XY (xi, yi) is the estimated joint pdf and p̂X(xi) and p̂Y (yi) are the estimated marginal pdfs at

(xi, yi).

For the multivariate data set (x1, .., xn), where each x is in a d-dimensional space, the multivariate kernel

density estimator with kernel K is de�ned by

p̂(x) =
1

nhd

n∑

i=1

K

(
x− xi

h

)
, (5)

where h is the smoothing parameter [97]. We choose the standard multivariate normal kernel de�ned by

K(x) = (2π)−d/2 exp
(
−1

2
xT x

)
. (6)

Using Eqs. (5) and (6), the probability density function is de�ned as

p̂(x) =
1

nhd

n∑

i=1

1√
(2π)d|S|exp

(
− (x− xi)

T S−1(x− xi)
2h2

)
, (7)

where S is the covariance matrix and |S| is the determinant of S. For a normal kernel, Silverman [97]

suggested an optimal smoothing parameter or Gaussian bandwidth given as

ho =
(

4
d + 2

)1/(d+4)

n−1/(d+4). (8)

Moon et al. [2] presented the same procedure and utilized Eq. (7) for estimating marginal probability densi-

ties, i.e., p̂X and p̂Y , and the joint probability density, i.e., p̂XY , and substituted these densities in Eq. (4) to

estimate MI.
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3.2.2.2 k-nearest neighbors (KNN) If X = (x1, .., xn), where each x is in d-dimensional space, is a

continuous random variable, the Shannon entropy of X , de�ned as

H(X) = −
∫

p(x) log p(x) dx,

can be estimated by

Ĥ(X) = − 1
n

n∑

i=1

log p̂(xi), (9)

where p̂(xi) is the estimated marginal pdf at xi. Kraskov et al. [5] expanded Eq. (9) as

Ĥ(X) = − 1
n

n∑

i=1

ψ(nx(i)) − 1
k

+ ψ(n) + log cdX

+
dX

n

n∑

i=1

log ε(i), (10)

where n and k are the number of data points and nearest neighbors, respectively; dX is the dimension of x;

and cdX
is the volume of the dX -dimensional unit ball. For two random variables X and Y , let ε(i)/2 be the

distance between (xi, yi) and its kth neighbor denoted by (kxi, kyi). Let εx(i)/2 and εy(i)/2 be de�ned as

||xi−kxi|| and ||yi−kyi||, respectively. nx(i) is the number of points xj such that ||xi−xj || ≤ εx(i)/2. ψ(x)

is the digamma function, ψ(x) = Γ(x)−1dΓ(x)/dx, which satis�es the relation ψ(x + 1) = ψ(x) + 1/x,

with ψ(1) = −C, where C = 0.5772156649 is the Euler-Mascheroni constant. Similarly, Ĥ(Y ) can be

derived by replacing x with y in Eq. (10). In the similar way, the estimated joint entropy between X and Y

can be given as

Ĥ(X, Y ) = −ψ(k) − 1
k

+ ψ(n) + log (cdX
cdY

)

+
dX + dY

n

n∑

i=1

log ε(i),

where dY is the dimension of y; and cdY is the volume of the dY -dimensional unit ball. Substituting Ĥ(X),

Ĥ(Y ), and Ĥ(X,Y ) in Eq. (2), the MI can be estimated as

Î(X;Y ) = ψ(k)− 1
k
− 1

n

n∑

i=1

[ψ(nx(i)) + ψ(ny(i))] + ψ(n),

where ny(i) is the number of points yj such that ||yi − yj || ≤ εy(i)/2 [5].
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3.2.2.3 Edgeworth approximation of differential entropy (Edgeworth) If X = (x1, .., xn), where each x

is in a d-dimensional space, the Edgeworth expansion of the density p(x) after ignoring higher order terms is

given by

p(x) ≈ φp(x)


1 +

1
3!

∑

i,j,k

κi,j,khi,j,k(x)


 , (11)

where φp(x) is the normal distribution with the same mean and covariance matrix as p; (i, j, k) is the input

dimension where (i, j, k) ∈ (1, . . . , d); κi,j,k is the standardized cumulant, i.e., κi,j,k = κijk

σiσjσk
, where κijk

is the cumulant for input dimensions (i, j, k) and σ is the standard deviation, for large number of points; and

hi,j,k is the ijkth Hermite polynomial [6].

Let p(x) be de�ned in a set X. The differential entropy of X is de�ned as

H(X) = −
∫

X
p(x) log p(x) dx.

In terms of the density, i.e., p(x), de�ned in Eq. (11), the differential entropy of X can also be de�ned as

H(p) = H(φp)− J(p)

= H(φp)−
∫

X
p(x) log

p(x)
φp(x)

dx, (12)

where H(φp) = 0.5 log |S| + d
2 log 2π + d

2 is the d-dimensional entropy of normal estimate φp, where |S|
is the determinant of a covariance matrix S; and J(p) is called negentropy, which measures the distance

to normal distribution. From Eq. (11), p(x) = φp(x)[1 + Z(x)], where Z(x) = 1
3!

∑
i,j,kκi,j,khi,j,k(x).

Substituting p(x) in Eq. (12) leads to

H(p) ≈ H(φp)−
∫

X
φp(x)[Z(x) + 0.5Z(x)2]dx.

Using
∫
X φp(x)Z(x)dx = 0 and the orthogonal properties of Hermite polynomials, i.e.,

∫∞
−∞ φp(x)hn(x)hm(x)dx =

n!δnm, where δnm is the Kronecker delta, Hulle [6] obtained an approximate expression for H(p)

H(p) ≈ H(φp) − 1
12

d∑

i=1

(κi,i,i)2 − 1
4

d∑

i,j=1,i6=j

(κi,i,j)2

− 1
72

d∑

i,j,k=1,i<j<k

(κi,j,k)2. (13)
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We utilize Eq. (13) for the estimation of Ĥ(X), Ĥ(Y ), and Ĥ(X, Y ) and substitute in Eq. (2) to get the MI

estimates.

3.2.2.4 Adaptive partitioning of the XY plane (Cellucci) Cellucci et al. [8] developed a procedure for es-

timating MI such that the null hypothesis, i.e., H0: X and Y are statistically independent, is rejected. They

used an adaptive partitioning of the XY plane to estimate the joint probability density, i.e., p̂XY . The XY

plane is nonuniformly partitioned in such a way that the Cochran criterion on EXY (i, j), i.e., EXY (i, j) ≥ 5

for at least 80% of all elements, is satis�ed, where EXY (i, j) is the expected number of points in the (i, j)th

element of the XY partition given the assumption of X and Y being statistically independent is valid. The

whole procedure of Cellucci et al. [8] is described below.

Let x and y axes be partitioned into equal number of elements denoted by NE which leads to

p̂X(i) = p̂Y (j) =
n/NE

n
, for i, j = 1, . . . , n

where n is the total number of points and p̂X(i) and p̂Y (j) are the marginal densities at ith element of the

x axis and jth element of the y axis, respectively. Under the null hypothesis that X and Y are statistically

independent, the expected number of points in the (i, j)th element of the XY partition is given as

EXY (i, j) = np̂X(i)p̂Y (j) =
n

NE
2 .

NE is computed from a more conservative criterion, i.e., EXY (i, j) = n/NE
2 ≥ 5 for all elements, rather

than the Cochran criterion. After computing NE , NE partitions in the x axis and NE partitions in the y

axis are used for the estimation of joint probability density at the (i, j)th element of the XY partition, i.e.,

p̂XY (i, j). The MI is estimated by substituting p̂X , p̂Y , and p̂XY in the equation given as

Î(X;Y ) =
NE∑

i=1

NE∑

j=1

p̂XY (i, j) log
p̂XY (i, j)

p̂X(i)p̂Y (j)
.

3.3 Details of the data

We analyze simple examples of linear, quadratic, and periodic functions, as well as a chaotic system, speci�-

cally the Henon map, contaminated with different levels of arti�cial Gaussian noise.
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• Linear: A simple linear function with Gaussian noise can be generated as

X ∼ N(0, 1), Y : yi = xi + εi,

where i = 1, . . . , n, and X is independent and identically distributed (iid). ε ∼ N(0, σε) is the

Gaussian noise with zero mean and standard deviation σε. In this case, σε gives the noise level. ε is iid

and independent of X .

• Quadratic: We generate a simple quadratic, with arti�cial Gaussian noise, in the following manner

X ∼ N(0, 1), Y : yi = xi
2 + εi,

where i = 1, . . . , n; X is iid and ε ∼ N(0, σε) is the Gaussian noise with zero mean and standard

deviation σε. ε is iid and independent of X .

• Periodic: We consider a simple periodic function, speci�cally the sine function, contaminated with

Gaussian noise in the following way

X ∼ Uniform(−π, π), Y : yi = sin(xi) + εi,

where i = 1, . . . , n, and X is uniformly distributed between -π to π. ε ∼ N(0, σε) is the Gaussian

noise with zero mean and standard deviation σε. ε is iid and independent of X .

• Chaotic: We consider the Henon map given as

HX : Hxi+1 = 1− αHxi

2 + Hyi ,

HY : Hyi+1 = βHxi ,

where i = 1, . . . , n; α = 1.4;β = 0.3; and (Hx1 ,Hy1) = (0.0, 0.0). The Henon map contaminated

with Gaussian noise is generated as

X : xi = Hxi + εxi , Y : yi = Hyi + εyi ,

where εx ∼ N(0, σHX ) and εy ∼ N(0, σHY ) are iid and independent of HX and HY , respectively.

σHX and σHY are the standard deviations of HX and HY , respectively.

20



3.3.1 Computations of theoretical mutual information

In this dissertation, we consider four different types of simulations, i.e., linear, quadratic, periodic and chaotic

system. For linear, quadratic, and periodic cases, the exact MIs as de�ned by Eq. (2) can be computed as

shown below.

3.3.1.1 Linear Let X ∼ N(0, 1), Y : yi = xi + εi, where i = 1, . . . , n; X is independent and identically

distributed (iid); and ε ∼ N(0, σε), where σε is the noise level, is iid and independent of X . Let Z = ε, so

Y = X + Z. Therefore, H(Y |X) can be obtained as

H(Y |X) = H(Z) = 0.5 log(2πeσε
2).

The probability density function (pdf ) of Z is

pZ(z) = (2π)−1/2(σε)−1 exp
(−z2

2σε
2

)
.

The pdf of X is given as

pX(x) = (2π)−1/2(σX)−1 exp
( −x2

2σX
2

)
,

where σX , which is called the signal level, is the standard deviation of X .

In order to compute H(Y ), the pdf of Y , i.e., pY (y), is needed. Since Y = X + Z, and X and Z are

independent, pY (y) can be obtained through the convolution of the pdfs of X and Z given as

pY (y) =
∫ ∞

−∞
pX(x)pZ(y − x)dx. (14)

Solving Eq. (26), we get

pY (y) = (2π)−1/2(σX
2 + σε

2)−1/2 exp
( −x2

2(σX
2 + σε

2)

)
.

Therefore, H(Y ) can be given as

H(Y ) =
∫

pY (y) log pY (y)dy = 0.5 log[2πe(σX
2 + σε

2)].
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Substituting H(Y |X) and H(Y ) in Eq. (2), we get

I(X;Y ) = 0.5 log
(

1 +
σX

2

σε
2

)
.

3.3.1.2 Quadratic Let X ∼ N(0, 1), Y : yi = xi
2 + εi, where i = 1, . . . , n; X is iid; and ε ∼ N(0, σε),

where σε is the noise level, is iid and independent of X . Let U = X2 and Z = ε, so Y = U + Z. Therefore,

H(Y |X) can be obtained as

H(Y |X) = H(Z) = 0.5 log(2πeσε
2).

The pdf of Z is given as

pZ(z) = (2π)−1/2(σε)−1 exp
(−z2

2σε
2

)
.

The pdf of U is given as

pU (u) =





(2π)−1/2(u)−1/2 exp(−u
2 ), u > 0

0, otherwise

In order to compute H(Y ), the pdf of Y , i.e., pY (y), is needed. Since Y = U + Z, and U and Z are

independent, pY (y) can be obtained through the convolution of the pdfs of U and Z given as

pY (y) =
∫ ∞

−∞
pU (u)pZ(y − u)du. (15)

H(Y ) is computed as H(Y ) =
∫

pY (y) log pY (y)dy, where pY (y) in Eq. (27) is solved using numerical

integration for different values of σε. We obtain I(X; Y ) by substituting H(Y |X) and H(Y ) in Eq. (2).

3.3.1.3 Periodic Let X ∼ Uniform(−π, π), Y : yi = sin(xi) + εi, where i = 1, . . . , n; X is uniformly

distributed between -π to π; and ε ∼ N(0, σε), where σε is the noise level, is iid and independent of X . Let

V = sin(X) and Z = ε, so Y = V + Z. Therefore, H(Y |X) can be obtained as

H(Y |X) = H(Z) = 0.5 log(2πeσε
2).

The pdf of Z is given as

pZ(z) = (2π)−1/2(σε)−1 exp
(−z2

2σε
2

)
.
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The pdf of V is given as

pV (v) = (π)−1(1− v2)−1/2 for 0≤v < 1.

In order to compute H(Y ), the pdf of Y , i.e., pY (y), is needed. Since Y = V + Z, and V and Z are

independent, pY (y) can be obtained through the convolution of the pdfs of V and Z given as

pY (y) =
∫ ∞

−∞
pV (v)pZ(y − v)dv. (16)

H(Y ) is computed as H(Y ) =
∫

pY (y) log pY (y)dy, where pY (y) in Eq. (28) is solved using numerical

integration for different values of σε. We obtain I(X; Y ) by substituting H(Y |X) and H(Y ) in Eq. (2).

3.4 Results

We �rst estimate MI from KDE, KNN, Edgeworth, and Cellucci, and then substitute in Eq. (3) to get the

nonlinear CC estimates. Linear CCs are obtained from LR whereas rank-based CCs are estimated from

Kendall's τ . The mean of CCs and its 90% con�dence bounds are evaluated using bootstrapping. The total

number of bootstrap samples used for 50, 100, and 1 000 data points are 200, 100, and 10, respectively. The

correlation coef�cient presented here is the mean of bootstrap samples. The lower and upper bounds of 90%

con�dence bounds are given as 5% and 95% quantiles of bootstrap samples, respectively.
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Figure 2. Linear: normal (left) and kernel (right) densities with different noise-to-signal ratios (σε/σs) with
100 points. For kernel density, a Gaussian kernel with optimal smoothing parameter ho given in Eq. (8) is
used. (A) σε/σs = 0.2. (B) σε/σs = 0.9. The linear dependence structure can be seen clearly in (A) but
cannot be readily identi�ed in (B) based on eye estimation.
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Figure 3. Quadratic: normal (left) and kernel (right) densities with different noise-to-signal ratios (σε/σs)
with 100 points. For kernel density, a Gaussian kernel with optimal smoothing parameter ho given in Eq. (8)
is used. (A) σε/σs = 0.2. (B) σε/σs = 0.9. At low noise, such as in (A), the nonlinear dependence can be
clearly seen as shown by the kernel density. However at high noise, such as in (B), the dependence structure
is not readily discernible visually from the kernel density.
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Figure 4. Periodic: normal (left) and kernel (right) densities with different noise-to-signal ratios (σε/σs) with
100 points. For kernel density, a Gaussian kernel with optimal smoothing parameter ho given in Eq. (8) is
used. (A) σε/σs = 0.2. (B) σε/σs = 0.9. With increasing noise levels, the nonlinear dependence structure
cannot be identi�ed visually as shown by the kernel density plots.
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Figure 5. Chaotic: normal (left) and kernel (right) densities with different noise-to-signal ratios (σε/σs) with
100 points. For kernel density, a Gaussian kernel with optimal smoothing parameter ho given in Eq. (8) is
used. (A) σε/σs = 0.2. (B) σε/σs = 0.9. Kernel density plot shows the Henon attractor in (A). However the
Henon attractor cannot be readily distinguished visually in (B).
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3.4.1 Performance of linear and nonlinear dependence measures

In order to compare the performance of different methods, we compare nonlinear CCs from KDE, KNN,

Edgeworth, and Cellucci with linear CCs obtained from LR. If the con�dence bounds of nonlinear CCs

overlap with the bounds of linear CCs, it means here that nonlinear correlations are not different from linear

correlations at 90% con�dence level. Nonlinear CCs obtained from the MI estimation methods are compared

with theoretical CCs derived from the theoretical MI values which can be computed analytically for three

out of four test cases considered here, namely linear, quadratic, and periodic. The performance of the MI

estimation methods is also compared with a rank-based correlation measure, speci�cally the Kendall's τ .

Plots of normal and kernel density estimates for linear, quadratic, periodic, and chaotic are shown in Figs.

13-16.
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Figure 6. Linear: Comparisons between linear CCs from LR and nonlinear CCs from KDE, KNN, Edgeworth,
Cellucci, and Kendall's τ , at different noise-to-signal ratios (σε/σs) for (A) 50 points, (B) 100 points, and
(C) 1 000 points.
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Table 1. Linear: Description of results where each entry consists of three columns given as (1) Column 1:
0, -, or +, where `0', `-' and `+' mean nonlinear CCs are zero, negatively and positively biased with respect
to theoretical CCs, respectively, (2) Column 2: Y or N, where `Y' and `N' mean 90% con�dence bounds
of nonlinear CCs overlap and do not overlap with theoretical CCs, respectively, and (3) Column 3: Y or N,
where `Y' and `N' mean 90% con�dence bounds of nonlinear CCs overlap and do not overlap with linear
CCs, respectively. Bold and slanted entries indicate the best and the second best methods for each case
speci�ed in the top headings of the table, respectively.

Very short data Short data
low noise high noise low noise high noise

KDE + Y Y + Y Y 0 Y Y + Y Y
KNN 0 Y Y - Y Y 0 Y Y 0 Y Y

Edgeworth + Y Y + Y Y 0 Y Y 0 Y Y
Cellucci - N N - Y Y - Y Y + Y Y

Kendall's τ - N N - N Y - N N - N N

3.4.1.1 Linear Linear and nonlinear CCs with 90% con�dence bounds are shown in Fig. 17. The theoret-

ical CC, which is computed analytically, is expected to be identical to the linear CC. As noise levels increase,

linear and nonlinear CCs decrease and their corresponding variances increase for both very short and short

data. The complete description of results obtained from KDE, KNN, Edgeworth, Cellucci, and Kendall's τ

for very short and short data at low and high noise is given in Table 1. For very short data, KNN seems to be

a better choice at low noise because it has no bias, overlaps with theoretical CCs and has narrow con�dence

bounds (Figs. 17A and 17B). At high noise, KDE is positively biased but it appears to be a better choice given

that the others have wider con�dence bounds. Thus, for very short data, KNN may be utilized at low noise but

at high noise, KDE seems to be the best choice. For short data, Kendall's τ is the worst whereas Edgeworth is

better than KDE because it overlaps exactly with theoretical CCs (Fig. 17C). LR and KNN stand out among

the rest since they have very small bias, overlap exactly with theoretical CCs and have narrow bounds at all

noise levels. Thus, for short data, either KNN or LR may be utilized at all noise levels.

29



−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

σ
ε
/σ

s

co
rr

e
la

ti
o

n
 c

o
e

!
ci

e
n

t

Theoretical LR KDE KNN Edgeworth Cellucci Kendall tau

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

σ
ε
/σ

s

co
rr

e
la

ti
o

n
 c

o
e

!
ci

e
n

t

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

σ
ε
/σ

s

co
rr

e
la

ti
o

n
 c

o
e

!
ci

e
n

t

A

B

C

Figure 7. Quadratic: Comparisons between linear CCs from LR and nonlinear CCs from KDE, KNN, Edge-
worth, Cellucci, and Kendall's τ , at different noise-to-signal ratios (σε/σs) for (A) 50 points, (B) 100 points,
and (C) 1 000 points.

Table 2. Quadratic: Description of results where each entry consists of three columns given as (1) Column 1:
0, -, or +, where `0', `-' and `+' mean nonlinear CCs are zero, negatively and positively biased with respect
to theoretical CCs, respectively, (2) Column 2: Y or N, where `Y' and `N' mean 90% con�dence bounds
of nonlinear CCs overlap and do not overlap with theoretical CCs, respectively, and (3) Column 3: Y or N,
where `Y' and `N' mean 90% con�dence bounds of nonlinear CCs overlap and do not overlap with linear
CCs, respectively. Bold and slanted entries indicate the best and the second best methods for each case
speci�ed in the top headings of the table, respectively.

Very short data Short data
low noise high noise low noise high noise

KDE - N N - Y N - N N - Y N
KNN - Y N - Y Y 0 Y N 0 Y N

Edgeworth - Y N - Y N - N N - Y N
Cellucci - N N - Y Y - N N - Y N

Kendall's τ - N Y - N Y - N Y - N Y
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3.4.1.2 Quadratic LR and Kendall's τ fail to capture the nonlinear dependence as shown by near zero CC

in Fig. 21. The variance increases for KDE, KNN, Edgeworth, and Cellucci as the noise level increases at

all noise levels. Table 2 gives the complete description of results obtained from LR, KDE, KNN, Edgeworth,

Cellucci, and Kendall's τ for very short and short data at low and high noise. For very short data, as the

noise level increases, the bias increases for KNN and Cellucci and decreases for KDE and Edgeworth (Figs.

21A and 21B). At low noise, only KNN and Edgeworth overlap with theoretical CCs but KNN is more closer

to theoretical than Edgeworth. At high noise, the performance of KDE is the best because it is closer to

theoretical CCs, does not intersect with linear CCs, and has narrow con�dence bounds as compared to that

from KNN, Edgeworth, and Cellucci. Thus, for very short data, KNN and KDE may be utilized at low and

high noise, respectively. For short data, KNN is the best because it overlaps exactly with theoretical CCs

and has narrow con�dence bounds (Fig. 21C). Cellucci is more closer to theoretical CCs than KDE and

Edgeworth. Thus, KNN seems to be the best choice for short data. KDE may be further improved at low

noise by choosing a smaller value of the smoothing parameter.

Table 3. Periodic: Description of results where each entry consists of three columns given as (1) Column 1:
0, -, or +, where `0', `-' and `+' mean nonlinear CCs are zero, negatively and positively biased with respect
to theoretical CCs, respectively, (2) Column 2: Y or N, where `Y' and `N' mean 90% con�dence bounds
of nonlinear CCs overlap and do not overlap with theoretical CCs, respectively, and (3) Column 3: Y or N,
where `Y' and `N' mean 90% con�dence bounds of nonlinear CCs overlap and do not overlap with linear
CCs, respectively. Bold and slanted entries indicate the best and the second best methods for each case
speci�ed in the top headings of the table, respectively.

Very short data Short data
low noise high noise low noise high noise

KDE - N Y - Y Y - N N - N N
KNN - Y N - Y Y 0 Y N 0 Y N

Edgeworth - N Y - N Y - N Y - N Y
Cellucci - N Y - Y Y - N N + N N

Kendall's τ - N N - N Y - N N - N N
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Figure 8. Periodic: Comparisons between linear CCs from LR and nonlinear CCs from KDE, KNN, Edge-
worth, Cellucci, and Kendall's τ , at different noise-to-signal ratios (σε/σs) for (A) 50 points, (B) 100 points,
and (C) 1 000 points. In (C), LR overlaps exactly with Edgeworth.
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3.4.1.3 Periodic Correlation coef�cients and their 90% con�dence bounds obtained from LR, KDE, KNN,

Edgeworth, Cellucci, and Kendall's τ are shown in Fig. 22. KNN overlaps with theoretical CCs for both very

short and short data at all noise levels except for the fact that at high noise it produces wide con�dence

bounds. The performance of Kendall's τ is the worst at all noise levels. Edgeworth appears to capture only

the linear correlation and produces wide con�dence bounds. In this case the density of Y is bimodal, which

causes Edgeworth estimates to be incorrect. The results obtained from LR, KDE, KNN, Edgeworth, Cellucci,

and Kendall's τ are described in Table 3 for very short and short data at low and high noise. For very short

data, the variances from all the methods are small at low noise but increase as the noise level increases (Figs.

22A and 22B). KNN and KDE have the lowest variances at low and high noise, respectively. KNN overlaps

exactly with theoretical CCs and has narrow and wide con�dence bounds at low and high noise, respectively.

Thus, KNN is a better choice at low noise. At high noise, KDE and KNN overlap with theoretical CCs as

well as with linear CCs but KDE has the smallest con�dence bounds. Thus, for very short data, KNN and

KDE may be utilized at low and high noise, respectively. For short data, there is not much difference in the

variances from all methods with Cellucci having the lowest variance (Fig. 22C). The performances of KNN

and Cellucci are better than the rest. Cellucci overlaps with theoretical CCs for only few noise levels whereas

KNN overlaps exactly with theoretical CCs and has narrow bounds. Thus, KNN has an edge over all other

methods considered here for short data across all noise levels.
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Figure 9. Chaotic: Comparisons between linear CCs from LR and nonlinear CCs from KDE, KNN, Edge-
worth, Cellucci, and Kendall's τ , at different noise-to-signal ratios (σε/σs) for (A) 50 points, (B) 100 points,
and (C) 1 000 points.
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3.4.1.4 Chaotic For very short and short data, linear CCs between X and Y components of the Henon

map are negative for all noise levels. Since nonlinear CCs from the MI estimation methods do not have

directionality, the absolute values of linear CC are considered here. Note that theoretical CCs for the Henon

map could not be computed analytically and were not found in the literature. However, given the dynamical

relation between X and Y , nonlinear CCs are expected to be greater than linear CCs at all noise levels.

Nonlinear and linear CCs decay as noise level increases.

For very short data, KNN estimates higher CCs than all other methods when σε/σs is less than around 0.5

after which KDE yields higher values compared to all other methods (Figs. 23A and 23B). The performance

of Kendall's τ is the worst since it captures less dependence than the linear correlation for the majority of

noise levels. At low noise, both Edgeworth and Cellucci are ruled out because they are lower than KNN and

KDE and have wide con�dence bounds. Thus, KNN seems to be a better choice at low noise since KDE is

negatively biased. As the noise level increases, the con�dence bounds from all methods increase. At high

noise, the con�dence bounds from KNN, Edgeworth, and Cellucci overlap with linear CCs. KDE seems to

have an edge over the other methods since it has narrow con�dence bounds and does not overlap with linear

CCs. Thus, KNN and KDE may be utilized for very short data at low and high noise, respectively. For short

data, Cellucci differs completely from the other estimators at high noise (Fig. 23C). KNN is a better choice

at low noise because it appears to be the most consistent. At high noise, KNN and Edgeworth are ruled out

because they overlap with linear CCs due to their wide con�dence bounds. KDE overlaps with KNN but it

stands out due to its ability to capture more correlation than purely linear correlation. Thus, for short series,

KNN and KDE may be utilized at low and high noise, respectively.
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Figure 10. Performance of KDE and KNN with different values of smoothing parameter (h) and number of
nearest neighbors (k), respectively. The results from quadratic and periodic are presented in the left and right,
respectively. (A) KDE with 100 points. (B) KNN with 100 points. (C) KNN with 1 000 points. In (A), ho is
the optimal smoothing parameter for a Gaussian kernel given in Eq. (8).

3.4.2 Performance of KDE and KNN with different parameter values

In the case of KDE, the amount of smoothing de�ned by smoothing parameter, h in Eq. (5), is very important

for the density estimation, which, in turn, in�uences the MI estimates. The selection of appropriate smooth-

ing parameter needs to be guided by the end-use of the density estimates. Here we use the optimal smoothing

parameter for a Gaussian kernel (ho) with KDE given in Eq. (8). We investigate the effects of h on nonlinear

CC estimates from KDE by selecting different values of h around ho. For KNN, the number of nearest neigh-

bors (k) governs the overall amount of smoothing in the densities which are subsequently used in entropy

estimation given in Eq. (10). Small values of k lead to small bias and large variance whereas large k results

in large bias and small variance. Thus, the bias-variance tradeoff, which is a common issue encountered in

statistical estimation procedures, is also important here. Kraskov et al. [5] warned against using large k since
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the decrease in variance is outweighed by the increase in bias. They proposed k ranging from 2 to 4. Here

we use k as three for KNN. We evaluate the effects of k on nonlinear CC estimates from KNN by selecting

different k values. The results presented here are obtained for two cases, speci�cally, quadratic and periodic.

For very short data, the bias and variance from KDE increase with the increase of h at low noise and all

noise levels, respectively (Fig. 10A). At low noise, KDE does not overlap with theoretical CCs. However,

KDE with h = 0.75ho and h = ho performs better at high noise since their 90% con�dence bounds overlap

with theoretical CCs. The bias and variance from KNN increase as the number of nearest neighbors increase

across all noise levels (Fig. 10B). At low noise, the performance of KNN with k = 3 is the best of all the

cases considered here since it has small bias and its con�dence bounds overlap with theoretical CCs. At high

noise, KNN has large bias and variance for all k. If KNN needs to be used at high noise, k = 3 appears to

be a better choice since it is closer to theoretical CCs as compared to the others and the variances from all k

are comparable. Thus, for very short data, KDE with h = 0.75ho or h = ho may be utilized at high noise

whereas KNN with k = 3 seems to be a better choice at low noise.

For short data, KNN with k = 3 performs better at low noise since it has small bias and variance (Fig.

10C). As k increases, the bias increases and the variance decreases at high noise. KNN with all k considered

here performs better at high noise but the selection of appropriate k needs to be guided by the acceptable

levels of bias and variance. Thus, for short data, KNN with k = 3 is the best since it overlaps exactly with

theoretical CCs and its variance does not differ signi�cantly from the others.

3.5 Conclusion and discussion

Our results indicate that two MI-estimation methods, speci�cally KDE and KNN, outperform the other meth-

ods and estimation procedures in terms of their ability to capture the dependence structure including nonlinear

dependence where present. We �nd that KNN is the best estimator for very short data with relatively low

noise while KDE works better for very short data when the noise levels are higher. A visual examination of

the density plots may help in explaining the relative performance of KDE and KNN (Figs. 13-16 in Appendix

B). For short data, KNN is the best choice for capturing the nonlinear dependence across all noise levels

except when the data are generated from chaotic dynamics, where KDE is a better choice at higher noise

levels. We surmise that the relative performance of KDE and KNN with respect to various noise levels is

a consequence of the bias-variance tradeoff. Previous literature suggests that KDE estimates can often be

highly biased if the particular KDE recipe used here is followed [85], while KNN estimates can have sig-

ni�cant variance when the number of nearest neighbors (k) is set to low values, e.g., k = 3 as used in this
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dissertation. The bias in the KDE estimates dominates the variance of the estimates for low noise-to-signal

ratios. The KNN performs relatively better for low noise levels since its bias and variance are lower than

that from KDE. However, the converse is true for high noise-to-signal ratios, and hence the KDE performs

relatively better. For high noise, the variance dominates because of the noise in the data but the variance

associated with k = 3 for KNN increases dramatically. One way to address the large variance from KNN is

to use a much larger value of k but it would also increase the bias.

In general, the above discussions and pointers appear to suggest that the results for nonlinear dependence

obtained from KDE and KNN may in fact re�ect the lower bounds of what may be potentially achievable

through improvements or intelligent combinations of KNN and KDE. Speci�cally, both the KDE and KNN

estimates can be potentially improved by utilizing a plug-in method for kernel, smoothing parameter (h), or

k selection. Such plug-in procedures would cause additional estimation variance but may reduce the overall

MSE of estimation. However, the development or utilization of procedures for the selection of optimal

kernels, smoothing parameters, or nearest neighbors, may be rather involved and hence is left as an area of

future research.

We have presented preliminary justi�cations for the relative performance of the MI estimation methods

based on considerations like the bias-variance tradeoff and the nature of the approximations underlying the

estimation procedures. Our evaluation suggests that the development of guidance for the use of the most

suitable estimation procedure may be possible and would depend on known data or domain characteristics

and exploratory data analysis. If such guidance can indeed be provided, this could conceivably lead to the

development of automated or semi-automated procedures for the choice of the most appropriate estimation

procedure and the corresponding parameters. However, signi�cant future research on multiple test cases

comprising simulated and real data may be necessary before such procedures can be deployed in real world

settings.
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Chapter 4

Nonlinear Statistics Reveals Stronger Ties Between ENSO and the Tropical Hydrological Cycle

Cross-spectrum analysis based on linear correlations in the time domain suggested a coupling between

large river �ows and the El Ni�no-Southern Oscillation (ENSO) cycle. A nonlinear measure based on mutual

information (MI) reveals extrabasinal connections between ENSO and river �ows in the tropics and subtrop-

ics, that are 20-70% higher than those suggested so far by linear correlations. The enhanced dependence

observed for the Nile, Amazon, Congo, Paraná, and Ganges rivers, which affect large, densely populated

regions of the world, has signi�cant impacts on inter-annual river �ow predictabilities and, hence, on water

resources and agricultural planning.

4.1 Introduction

ENSO events impact regional precipitation in the tropics and subtropics, ultimately causing inter-annual vari-

ability in river �ows. The ocean-atmosphere-land interactions are complex and far from being completely

understood and accurately modeled. A slight disturbance in these interactions would usually result in some-

times surprising distant correlations and climate patterns. Analyses of the rainfall anomalies during the warm

(El Ni�no) and cold (La Ni�na) episodes of ENSO suggest the existence of nonlinear sea surface temperature

(SST)-rainfall relationships in the tropics and a strong in�uence of SST forcing on equatorial rainfall in the

geographic vicinity of that forcing [11]. To properly explain and ultimately predict this variability, it is im-

portant to disentangle, as far as possible, long range climatic phenomena from recent effects such as those

possibly produced by deforestation and global warming.

While the relationships among many climate and hydrological variables are decidedly nonlinear [12],

linear dependence measures are still being used as a matter of course to relate ENSO and inter-annual vari-

ability in river �ows. These measures have ranged from linear correlation coef�cients (CC) in the time

domain [13�16] to the cross-spectrum analysis [17, 18]. One of the reasons for using linear measures is that

the inherent noise and periodicity in the observations together with short length of the available sample sizes

make it dif�cult to use nonlinear approaches in climate and hydrology [19�21].

40



The goal of this dissertation is to investigate the nonlinear dependence between ENSO and the annual

�ow of some of the largest tropical and subtropical rivers, speci�cally the Nile, Amazon, Congo, Paraná and

Ganges, through a measure based on the mutual information (MI). The results reveal a stronger extrabasinal

connection between ENSO and river �ows than the one suggested by linear analysis using linear regression

(LR). This has signi�cant impacts on scienti�c understanding and predictability as well as management of

water and agricultural resources in vast, densely populated regions of the globe.

4.2 Data and methodology

4.2.1 ENSO and river �ow data

ENSO events are associated with SST anomalies over the eastern and central equitorial Paci�c Ocean. In this

dissertation, the ENSO index is de�ned in terms of the monthly SST variations from the long-term mean,

averaged over the regions 2o − 6oN, 90o − 170oW; 2oN−6oS, 90o − 1800W; and 6o − 10oS, 110o − 150oW

of the Paci�c Ocean. This dataset was published as a homogenized monthly series of the mean SST anomaly

for the period 1872-1989 [98]. After 1989, the NINO 3.4 is used as the ENSO index because its geographical

regions (5oN−5oS; 120o − 170oW) are close to regions corresponding to the Wright SST.
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 (a)

 (b)

Figure 11. Annual �ow (a) and average monthly �ow (b) of the Nile River from 1873-1989, Amazon River
from 1903-1985, Congo River from 1905-1985, Paraná River from 1904-1997, and Ganges River from 1934-
1993. The following years are happened to be the warm episodes of ENSO: 1877, 1880, 1884, 1887, 1891,
1896, 1899, 1902, 1905, 1911, 1914, 1918, 1923, 1925, 1930, 1932, 1939, 1941, 1951, 1953, 1957, 1965,
1969, 1972, 1976, 1982, 1986, 1991, 1993, and 1997. The average annual �ow and El Ni�no years are shown
as dotted lines and solid dots, respectively, as shown in (a).
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The monthly discharge data of the Nile River was measured at Aswan (lat. 24.1oN, long. 33oE) from

1873 to 1989. This integrated runoff comprises contributions from three major tributaries, i.e. the White

Nile, the Blue Nile, and the Atbara, and represents the majority of the Nile basin. The seasonal stream�ow

cycle of the Nile indicates that the minimum and maximum discharges are observed in April and September,

respectively (Figure 11b).

The discharge data of the Amazon River was collected monthly from the Rio Negro stage at Manaus (lat.

3oS, long. 60oW) over the period from 1903 to 1985. The integrated runoff at the Manaus gauge covers

more than 3M km2 of the Andean and western Amazon watershed [17]. The seasonal stream�ow cycle

of the Amazon indicates that the minimum and maximum discharges are observed in November and June,

respectively (Figure 11b).

The Congo River discharge data was collected monthly from the river stage at Kinshasa, Zaire (lat. 4.3oS,

long. 15.3oE) from 1905 to 1985. As the Congo River basin, covering approximately 3.8M km2, is lo-

cated around the equator, it experiences a marked semi-annual rainfall cycle which is associated with the

north/south movement of the inter tropical convergence zone (ITCZ) across tropical Africa [99]. This is evi-

dent from the seasonal cycle of the Congo river indicating two peaks in May and December (maximum) and

the lowest �ow in August (Figure 11b).

The Paraná River discharge data for the period 1904-1997 was collected monthly at Corrientes (lat. 27oS,

long. 59oW) located downstream of the con�uence of the Paraguay and the Paraná rivers. The seasonal cycle

of the Paraná exhibits a single peak in February with a long recession and low discharge in September (Figure

11b).

The monthly Ganges River discharge data was recorded over the period from 1934 to 1993 at the Hardinge

Bridge in Bangladesh by the Bangladesh Water Development Board. It experiences the �ood season from

July to October, during which the average annual �ow is 82% [15]. The peak �ow and low discharge of the

Ganges are observed in August and April, respectively, as exhibited by the seasonal cycle (Figure 11b).

Table 4. Runoff data statistics (1000 m3/s).
Parameter Nile Amazon Congo Paraná Ganges
Mean 2.79 113.50 481.84 204.49 134.22
Std. dev. 0.46 85.24 50.90 49.64 27.03
Max. (year) 4.06

(1879)
1301
(1922)

659.57
(1962)

462.73
(1983)

202.84
(1956)

Min. (year) 1.46
(1913)

832 (1926) 386.81
(1984)

112.95
(1944)

75.46
(1992)
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During the year following the warm episodes of ENSO, the annual discharges of the Nile, Amazon,

Congo and Ganges Rivers fall below their average annual discharge whereas the annual Paraná discharge is

higher than the average annual discharge (Figure 11a). The runoff statistics give an idea about the discharge

characteristics of the rivers (Table 4).

4.2.2 Mutual information (MI)

MI is a measure of statistical dependence among random variables which captures the full dependence struc-

ture, both linear and nonlinear. The concept of MI was originally developed in communication theory and

has been applied to multiple domains over the last few decades [5, 9]. Considering two random variables X

and Y , the MI, denoted by I(X;Y ), is de�ned as

I(X; Y ) = H(Y )−H(Y |X) = H(X) + H(Y )−H(X, Y ), (17)

where H(X) or H(Y ) is the marginal information entropy which measures the information content in a signal

and H(X, Y ) is the joint information entropy which measures the information content in a joint system of X

and Y . The MI between two random variables X and Y can also be de�ned as

I(X;Y ) =
∫

Y

∫

X

pXY (x, y)log
pXY (x, y)

pX(x)pY (y)
dx dy, (18)

where pXY (x, y) is the joint probability density function (pdf ) between X and Y , and pX(x) and pY (y)

are the marginal pdfs. The MI values range from 0 (independent) to ∞ (completely dependent). For a

bivariate normal set (X,Y ), the MI and the linear CC, denoted by ρ, are related as I(X; Y ) = −0.5 log[1−
ρ(X,Y )2] [93]. For comparing linear and nonlinear dependence measures, the MI based nonlinear CC, i.e.,

λ, ranging from 0 to 1 is de�ned from the above relationship as

λ̂(X, Y ) =
√

1− exp[−2Î(X; Y )], (19)

where λ̂(X, Y ) and Î(X;Y ) are the estimated nonlinear CC and MI between X and Y , respectively [93,94].

In addition, just as the mean squared errors (MSE) can be derived from LR, a lower bound of MI-based MSE,

which is a measure of the predictability of Y based on the information content in X , can be estimated as

M̂SE(Y ) ≥ 1
2πe

exp[2(Ĥ(Y )− Î(X; Y ))], (20)
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where Ĥ(Y ) is the estimated entropy of Y and Î(X;Y ) is the estimated MI between X and Y [87]. ANOVA-

like interpretations have also been suggested for MI-based dependence [87]. Cellucci et al. [8] compared MI-

based dependence with traditional measures of dependence, such as Pearson linear correlation coef�cient,

Spearman rank order correlation, and Kendall's tau.

(b)

(a)

Figure 12. Comparison of linear (LR) and MI-based dependence obtained after �tting bivariate normal dis-
tribution (Norm) to each pair. The dependence is estimated with respect to different noise to signal ratios
and quarters in the simulated and real data, respectively. (a) Case 4 (Chaotic): Henon map with 100 points.
(b) Relationship between ENSO and Nile River �ow. In (a), the mean dependence from both cases are same
whereas there is a very slight difference in variances for few noise to signal ratios. In (b), both cases capture
the same mean dependece whereas variances differ very slightly for few quarters.
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The measures for linear (ρ) and nonlinear (λ) correlation quantify the strength of dependence among mul-

tiple variables (viz., ENSO and stream�ow in this dissertation). While the former quanti�es the dependence

purely in terms of the linear information content and the latter quanti�es the complete (linear and nonlinear)

information content, the two measures can be related in principle since they both capture the information

contained in one variable about the other. The relationship between the two measures (ρ and λ) has been

explained in detail by Brillinger [87]. In more rigorous terms, the two measures can be compared quantita-

tively since they directly relate to the expected MSEs from predictions (see equation (34) for MSE from the

MI-based dependence). The con�dence bounds re�ect the degree of belief in the two measures and hence

can be compared as well. The de�nition of the nonlinear measure (λ) used here has been utilized by previous

researchers [87,93,94] precisely because λ collapses to the linear measure (ρ) for the bivariate normal distri-

bution (see equation (19)). We compare ρ from LR and λ obtained from �rst estimating the MI after �tting

bivariate normal distribution to the data and then using equation (19). We test one simulation, i.e., chaotic

(described in section 4.1), and one real data, i.e., dependence between ENSO and Nile River �ow, and ob-

serve that λ obtained after �tting bivariate normal distribution is exactly similar to ρ for both cases (Figure

12). Finally, we would like to emphasize that the statements that compare linear and nonlinear correlation

measures, while statistically valid, need to be evaluated with care owing to issues pertaining to statistical

estimation like bias-variance tradeoffs.

4.3 MI estimation methods

The estimation of the MI requires the estimation of the joint and marginal pdfs, which, in turn, are frequently

obtained from histogram and kernel density based estimators. Estimates of MI are consistent and asymptot-

ically converge to the true or theoretical value when the data sets are relatively large and error-free. Since

observations of river �ows and the ENSO index are short and usually affected by various errors, it is impor-

tant to assess various MI estimation methods for short and noisy data. Recently developed methodologies

have been explored for estimating the MI, such as kernel density estimators (KDE) [2], k-nearest neighbors

(KNN) [5], and Edgeworth approximation of differential entropy (Edgeworth) [6].
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4.3.1 Kernel density estimator (KDE)

For any bivariate data set (X, Y ) of size N , Î(X; Y ) is estimated as

Î(X;Y ) =
1
N

N∑

i=1

log
p̂XY (xi, yi)

p̂X(xi)p̂Y (yi)
, (21)

where p̂XY (xi, yi) is the estimated joint pdf, and p̂X(xi) and p̂Y (yi) are the estimated marginal pdfs at

(xi, yi).

The multivariate kernel density estimator using a normal kernel is de�ned as

p̂X(x) =
1

Nhd

N∑

i=1

1√
(2π)d|S|exp

(
− (x− xi)

T S−1(x− xi)
2h2

)
, (22)

where N is the number of data points; x and xi are the d-dimensional vectors; S is the covariance matrix on

the xi; |S| is the determinant of S; and h is the kernel bandwidth also called the smoothing parameter [2]. In

this dissertation, the smoothing parameter is chosen as the optimal Gaussian bandwidth for a normal kernel

given as h = [4/(d + 2)]1/(d+4) N−1/(d+4). The MI estimates are obtained by �rst estimating p̂X , p̂Y , and

p̂XY from equation (22) and then plugging them in equation (21).

4.3.2 k-nearest neighbors (KNN)

The MI between X and Y is estimated as

Î(X;Y ) = ψ(k)− 1
k
− 1

N

N∑

i=1

[ψ(nx(i)) + ψ(ny(i))] + ψ(N), (23)

where N and k are the number of data points and nearest neighbors, respectivley; if ε(i)/2 is the distance

between (xi, yi) and its kth neighbor, denoted by (kxi, kyi), and if εx(i)/2 and εy(i)/2 are given as ||xi −
kxi|| and ||yi − kyi||, respectively, then nx(i) is the number of points xj such that ||xi − xj || ≤ εx(i)/2;

ny(i) can be calculated similarly; ψ(x) is the digamma function, ψ(x) = Γ(x)−1dΓ(x)/dx, which satis�es

the relation ψ(x + 1) = ψ(x) + 1/x, with ψ(1) = −C, where C = 0.5772156649 is the Euler-Mascheroni

constant [5]. This dissertation chooses k as 3 since Kraskov et al. [5] suggested k > 1 in order to reduce

statistical errors and also indicated to avoid large values of k which lead to the increase of systematic errors.
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4.3.3 Edgeworth approximation of differential entropy (Edgeworth)

Using Edgeworth expansion of the density p(x), x = [x1, .., xd], the differential entropy is de�ned as

H(p) = H(φp)− J(p)

= H(φp)− 1
12

d∑

i=1

(κi,i,i)2 − 1
4

d∑

i,j=1,i 6=j

(κi,i,j)2

− 1
72

d∑

i,j,k=1,i<j<k

(κi,j,k)2, (24)

where d is the dimension of x; H(φp) = 0.5 log |S| + d
2 log 2π + d

2 , where S is the covariance matrix, is

the d-dimensional entropy of the best normal estimate, i.e., φp, with the same mean and covariance matrix

as p; and κ is a standardized cumulant [6]. In equation (24), J(p) is called negentropy, which measures the

distance to normal distribution. The MI is estimated by �rst estimating Ĥ(X), Ĥ(Y ), and Ĥ(XY ) from

equation (24) and then plugging them in equation (17).

4.4 Analysis of simulations

We evaluate and compare MI estimation methods, i.e., KDE, KNN, and Edgeworth, using some simulations to

�nd the best method for the real data analysis [10]. Nonlinear CCs obtained from these methods are compared

with linear and theoretical CCs using linear, nonlinear, and periodic functions, as well as the nonlinear Henon

map, contaminated with different levels of arti�cial noise for small and large datasets. In this dissertation, 50

and 100 points (comparable to the sizes of the geophysical data sets used in the dissertation) and 1000 points

are considered as short and long time series, respectively.

4.4.1 Details of the simulated data

Case 1 (Linear): simple linear functions with Gaussian noise (ε) are used, such as X ∼ N(0, 1), Y : yi =

xi + εi for i = 1, .., N , where X is independent and identically distributed (iid) and ε ∼ N(0, σn) is iid

and independent of X . Case 2 (Quadratic): simple quadratic functions with Gaussian noise are used, such

as X ∼ N(0, 1), Y : yi = xi
2 + εi for i = 1, .., N , where X and ε have the same meaning described

above. Case 3 (Periodic): the periodical system with Gaussian noise is also analyzed, such as X, Y : yi =

sin(xi) + εi for i = 1, .., N , where X is uniformly distributed between -π to π and ε ∼ N(0, σn) is iid and

independent of X . Case 4 (Chaotic): the Henon map, which exhibits chaotic behavior, is HX : Hxi+1 = 1−
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αHxi

2 + Hyi, HY : Hyi+1 = βHxi
for i = 1, .., N , where α = 1.4;β = 0.3; and (Hx0 ,Hy0) = (0.0, 0.0).

The Henon map with Gaussian noise is also analyzed, such as X : xi = Hxi
+ εxi, Y : yi = Hyi

+ εyi

for i = 1, .., N , where εx ∼ N(0, σHX ) and εy ∼ N(0, σHY ) are iid and independent of HX and HY ,

respectively, and σHX
and σHY

are standard deviations of HX and HY , respectively. The formulations for

computing theoretical values of MI for cases 1, 2, and 3 are described in section 4.5.

4.4.2 Conclusion from simulations

The simulations indicate that the presence of noise typically leads to an under-estimation of the true MI

between the underlying nonlinear signals (see section 4.5). As compared to KNN and Edgeworth, KDE

is found to capture the underlying nonlinear dependence more consistently between two time series when

they are short and noisy assuming such dependence exists (see section 4.5). We also compare nonlinear

dependence measures, such as KDE, KNN, and Edgeworth, with a rank-based dependence measure, i.e.,

Kendall's tau. From Kendall's tau, we observe a large negative bias in nonlinear dependence in the simulated

data contaminated with noise (see section 4.5). Thus in this dissertation LR and KDE approaches have been

consistently used to estimate and compare linear and nonlinear CCs.

4.5 Comparisons of MI estimation methods using simulations

4.5.1 Comparison between KDE, KNN, and Edgeworth

The three MI estimation approaches, viz. KDE, KNN, and Edgeworth, are investigated to �nd the most

effective method in terms of quantifying the underlying nonlinear dependence for noisy and short data. Linear

and nonlinear dependence measures are evaluated and validated using simulated time series with different

linear or nonlinear behavior. The best method should give zero correlation when there is no dependence

and quantify any linear or nonlinear correlation which may be present. The presence of noise makes the

detection of linear and nonlinear dependence dif�cult, as this dependence may be obscured if the noise

component dominates. This is true especially for short time series and evident from the density plots for

linear, nonlinear, periodic, and nonlinear dynamical systems, with different noise to signal ratios (Figures 13-

16). With increasing noise levels, the linear and nonlinear dependence cannot be readily discerned visually as

shown in the kernel density plots (Figures 13-16). This dissertation chooses the best method which captures

more of the true nonlinear dependence such that 90% con�dence bounds do not overlap with the estimates
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for linear correlation (in the case of data known to have nonlinear dependence) even in the presence of noise

and for short data sets.

(a)

(c)

(b)

Figure 13. Normal and kernel densities with different noise (σn) to signal (σs) ratios for Case 1 (Linear) with
N = 100. For kernel density, a Gaussian kernel with optimal Gaussian bandwidth, given as h = N−1/6, is
used. (a) σn/σs = 0.1. (b) σn/σs = 0.5. (c) σn/σs = 1.0. The linear dependence structure can be seen
clearly for cases (a) and (b) but cannot be readily identi�ed for case (c) based on eye estimation.
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(a)

(c)

(b)

Figure 14. Normal and kernel densities with different noise (σn) to signal (σs) ratios for Case 2 (Quadratic)
with N = 100. For kernel density, a Gaussian kernel with optimal Gaussian bandwidth, given as h = N−1/6,
is used. (a) σn/σs = 0.1. (b) σn/σs = 0.5. (c) σn/σs = 1.0. At lower noise levels, such as in cases (a) and
(b), the nonlinear dependence can be clearly seen as shown by the kernel density plots. However at higher
noise levels, such as in case (c), the dependence structure is not readily discernible visually from the kernel
density.
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(a)

(c)

(b)

Figure 15. Normal and kernel densities with different noise (σn) to signal (σs) ratios for Case 3 (Periodic)
with N = 100. For kernel density, a Gaussian kernel with optimal Gaussian bandwidth, given as h = N−1/6,
is used. (a) σn/σs = 0.1. (b) σn/σs = 0.5. (c) σn/σs = 1.0. With increasing noise levels, the nonlinear
dependence structure cannot be identi�ed visually, as shown by the kernel density plots.
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(a)

(c)

(b)

Figure 16. Normal and kernel densities with different noise (σn) to signal (σs) ratios for Case 4 (Chaotic)
with N = 100. For kernel density, a Gaussian kernel with optimal Gaussian bandwidth, given as h = N−1/6,
is used. (a) σn/σs = 0.1. (b) σn/σs = 0.5. (c) σn/σs = 1.0. For cases (a) and (b), kernel density plots show
the Henon attractor. However the Henon attractor cannot be readily distinguished visually for case (c).
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4.5.1.1 Simulation cases and their theoretical values Four examples for simulations namely, linear, short

order nonlinear polynomial, periodic (or in�nite order polynomial) and nonlinear dynamical, are chosen. In

all cases, correlation coef�cients (CC) are compared with theoretical CCs which can be computed theoreti-

cally.

• Case 1 (Linear) : X ∼ N(0, 1), Y : yi = xi + εi for i = 1, .., N , where X is independent and

identically distributed (iid) and ε ∼ N(0, σn) is iid and independent of X . Let Z = ε, so Y = X + Z.

The mutual information, I(X;Y), is given as

I(X;Y ) = H(Y )−H(Y |X), (25)

where H(Y |X) = H(Z) = 0.5 log(2πeσn
2). The pdf of Z is pZ(z) = (2π)−1/2(σn)−1 exp( −z2

2σn
2 ).

The pdf of X is pX(x) = (2π)−1/2(σx)−1 exp( −x2

2σx
2 ). In order to compute H(Y), the pdf of Y, i.e.,

pY (y), is needed. Since Y = X + Z, and X and Z are independent, pY (y) is obtained through the

convolution of the pdfs of X and Z given as

pY (y) =
∫ ∞

−∞
pX(x)pZ(y − x)dx. (26)

From equation 26, the pdf of Y is given as pY (y) = (2π)−1/2(σx
2 + σn

2)−1/2 exp[ −x2

2(σx
2+σn

2) ]. The

entropy of Y is calculated as H(Y ) =
∫

pY (y) log pY (y)dy = 0.5 log[2πe(σx
2 + σn

2)]. Substituting

H(Y ) and H(Y |X) in equation 25, the MI is computed as I(X; Y ) = 0.5 log(1 + σx
2

σn
2 ).

• Case 2 (Quadratic) : X ∼ N(0, 1), Y : yi = xi
2 + εi for i = 1, .., N , where X is iid and

ε ∼ N(0, σn) is iid and independent of X . Let U = X2 and Z = ε, so Y = U + Z. The con-

ditional entropy H(Y |X) is given as H(Y |X) = H(Z) = 0.5 log(2πeσn
2). The pdf of Z is pZ(z) =

(2π)−1/2(σn)−1 exp( −z2

2σn
2 ). The pdf of U is pU (u) =





(2π)−1/2(u)−1/2 exp(−u
2 ), u > 0

0, otherwise.

In order to compute H(Y), the pdf of Y, i.e., pY (y), is needed. Since Y = U + Z, and U and Z are

independent, pY (y) is obtained through the convolution of the pdfs of U and Z given as

pY (y) =
∫ ∞

−∞
pU (u)pZ(y − u)du. (27)
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Equation 27 is solved using numerical integration for different values of σn. H(Y ), given as H(Y ) =
∫

pY (y) log pY (y)dy, is computed using pY (y). The MI is computed by substituting H(Y ) and

H(Y |X) in equation 25.

• Case 3 (Periodic) : X, Y : yi = sin(xi)+εi for i = 1, .., N , where X is uniformly distributed between

-π to π and ε ∼ N(0, σn) is iid and independent of X . Let V = sin(X) and Z = ε, so Y = V + Z.

The conditional entropy H(Y |X) is given as H(Y |X) = H(Z) = 0.5 log(2πeσn
2). The pdf of Z

is pZ(z) = (2π)−1/2(σn)−1 exp( −z2

2σn
2 ). The pdf of V is pU (u) = (π)−1(1 − v2)−1/2 for 0≤v < 1.

In order to compute H(Y), the pdf of Y, i.e., pY (y), is needed. Since Y = V + Z, and V and Z are

independent, pY (y) is obtained through the convolution of the pdfs of V and Z given as

pY (y) =
∫ ∞

−∞
pV (v)pZ(y − v)dv. (28)

Equation 28 is solved using numerical integration for different values of σn. H(Y ), given as H(Y ) =
∫

pY (y) log pY (y)dy, is computed using pY (y). The MI is computed by substituting H(Y ) and

H(Y |X) in equation 25.

• Case 4 (Chaotic) : the Henon map, which exhibits chaotic behavior, is HX : Hxi+1 = 1−αHxi

2 + Hyi, HY :

Hyi+1 = βHxi for i = 1, .., N , where α = 1.4; β = 0.3; and (Hx0 ,Hy0) = (0.0, 0.0). The Henon

map with Gaussian noise is analyzed, such as X : xi = Hxi +εxi, Y : yi = Hyi +εyi for i = 1, .., N ,

where εx ∼ N(0, σHX
) and εy ∼ N(0, σHY

) are iid and independent of HX and HY , respectively,

and σHX and σHY are standard deviations of HX and HY , respectively. For the nonlinear dynamical

example, theoretical values of I(X;Y ) could not be computed and were not found anywhere in the

literature, neither for the speci�c example of Henon map nor for any other nonlinear dynamical time

series.

In each case three sets of data of size (N ) 50, 100, and 1000 points are used. In this dissertation, 50 and

100 points (comparable to the sizes of the geophysical data sets used in the dissertation) and 1000 points are

considered as short and long time series, respectively. The total number of samples considered for N = 50,

N = 100, and N = 1000 are 200, 100, and 20, respectively. CCs are de�ned as the mean CC from the total

number of samples. The 90% con�dence bounds of CCs are given by 5% and 95% quantiles of CCs obtained

from the total samples. The correlation coef�cients are plotted against noise (σn) to signal (σs) ratio, i.e.

σn/σs. CCs obtained from KDE, KNN, Edgeworth, and LR are compared to �nd the best method which
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consistently captures the true nonlinear dependence given by theoretical CCs and its 90% con�dence bounds

do not overlap with the bounds from LR for short and noisy data sets.

Table 5. MI estimates with standard errors given in parentheses between two Gaussian noise sets (Xi, Yi) :
X ∼ N(0, 1), Y ∼ N(0, 1), i = 1, .., N , where X and Y are iid and independent of each other. The total
number of samples for N = 50, N = 100, and N = 1000 are 200, 100, and 20, respectively. The MI
estimates and its standard errors are the mean and standard deviation from the total samples. The MI should
be zero between two Gaussian noise sets. The MI estimates obtained from all three methods are close to zero
but biased upwards in the case of KDE and KNN.

Method 50 100 1000
KDE 0.1033 (0.0351) 0.0707 (0.0192) 0.0270 (0.0046)
KNN 0.0829 (0.0549) 0.0555 (0.0425) 0.0220 (0.0143)

Edgeworth 0.0298 (0.0282) 0.0139 (0.0115) 0.0016 (0.0012)

The best method needs to be robust to noise and short data, both in the sense that the dependence among

the underlying nonlinearities are captured as well as the computed dependence is indeed zero when the

variables are known to be independent. The MI between two independent variables is zero and this fact can

be utilized as a consistency check for each method. Here two Gaussian noise sets having zero mean and unit

variance are analyzed. The MI estimates are found to be close to zero from all three methods (Table 5). This

demonstrates that all three methods, viz. KDE, KNN, and Edgeworth, pass the consistency test and yield zero

dependence when the two variables are independent. Edgeworth gives the best estimates and smallest error

bounds between two uncorrelated Gaussians. The MI estimates from KDE and KNN are biased upwards.

KDE is preferable over KNN as the standard errors from KNN are more than 1.5 times larger than those from

KDE.
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(a) (b)

Figure 17. Nonlinear and linear CCs for Case 1 (Linear) with 90% con�dence bounds obtained from KDE
and LR, respectively. (a) N = 50. (b) N = 100. In all cases, linear and nonlinear estimates from all three
methods overlap with theoretical CCs indicating that the linear and nonlinear estimation methods capture the
true dependence when there is only a linear dependence. But at higher noise levels, KDE seems to have an
edge over KNN and Edgeworth because of its narrow bounds.
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1
(b)

(d)

(a)

(c)

Figure 18. Nonlinear and linear CCs between functions, such as (a) Case 1 (Linear); (b) Case 2 (Quadratic);
(c) Case 3 (Periodic); and (d) Case 4 (Chaotic), and their 90% con�dence bounds are obtained using KDE
and LR, respectively. CCs and their 90% bounds are obtained from 200 samples of size N = 50. At higher
noise levels, KDE captures the true dependence given by theoretical CCs as shown in (a), (b), and (c). In (c),
KDE estimates are not different from linear CCs considering 90% con�dence bounds. In (b) and (d), KDE
gives more correlation as compared to the linear correlation and there is a clear separation between their 90%
con�dence bounds.
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(a)

(c)

(b)

(d)

Figure 19. Nonlinear and linear CCs between functions, such as (a) Case 1 (Linear); (b) Case 2 (Quadratic);
(c) Case 3 (Periodic); and (d) Case 4 (Chaotic), and their 90% con�dence bounds are obtained using KDE
and LR, respectively. CCs and their 90% bounds are obtained from 100 samples of size N = 100. At higher
noise levels, KDE captures the true dependence given by theoretical CCs as shown in (a), (b), and (c). In (c),
KDE estimates are not different from linear CCs considering 90% con�dence bounds. In (b) and (d), KDE
gives more correlation as compared to the linear correlation and there is a clear separation between their 90%
con�dence bounds.
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(a)

(c)

(b)

(d)

Figure 20. Nonlinear and linear CCs with 90% con�dence bounds obtained from KDE and LR, respectively,
using N = 1000 points . (a) Case 1 (Linear); (b) Case 2 (Quadratic); (c) Case 3 (Periodic); and (d) Case 4
(Chaotic). At lower noise levels, KNN seems to the best as it overlaps with theoretical CCs and has narrow
bounds. In (c), linear and Edgeworth estimates overlap exactly. The performance of Edgeworth is not good
in (c) and (d). At higher noise levels, KDE and KNN estimates overlap and also include theoretical CCs but
KNN estimates also overlap with linear CCs in (d). Thus, KDE seems to have an edge over KNN as its 90%
con�dence bounds are narrow and do not overlap with linear CCs when the data is noisy and relatively large.
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4.5.1.2 Short time series Case 1 (Linear): Analysis with increasing levels of noise shows that CCs de-

crease with increasing noise to signal ratios. This is expected as the noise component obscures the underly-

ing linear dependence. Nonlinear CCs obtained from all three methods are close and overlap with theoretical

values (which, in turn, are expected to be identical to linear CCs in this case), indicating all the approaches

(Linear, KDE, KNN, Edgeworth) succeed in capturing the dependence between the random variables (Figures

17, 19a, and 18a). Nonlinear CCs from KDE are biased upwards for several noise to signal ratios (Figures

19a, 18a, and 20a). At higher noise levels, con�dence bounds obtained from KNN and Edgeworth are much

wider as compared to KDE's con�dence bounds (Figures 17 and 20a). While all correlation methods capture

the true linear dependence, KDE is the better choice as it has narrower con�dence bounds.

1 1
(a) (b)

Figure 21. Nonlinear and linear CCs for Case 2 (Quadratic) with 90% con�dence bounds obtained from
KDE and LR, respectively. (a) N = 50. (b) N = 100. All three nonlinear correlation estimates include
theoretical CCs but 90% con�dence bounds from KNN and Edgeworth also overlap with linear CCs at higher
noise levels in (a). This shows that KNN and Edgeworth estimates are not different from linear CCs at higher
noise levels. KDE quanti�es more correlation as compared to the linear correlation as their 90% con�dence
bounds do not overlap indicating that KDE can truly capture the nonlinear dependence.
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Case 2 (Quadratic): At all noise levels, linear CCs are close to zero for all values of N (Figures 21 and

20b). Estimates of nonlinear CCs obtained from KNN and Edgeworth include theoretical CCs within their

90% con�dence bounds but do not overlap with linear CCs when the noise level is low (Figure 21). But at

higher noise levels, con�dence bounds from KNN and Edgeworth do overlap with linear CCs, while there is

a signi�cant and marked difference between KDE and LR (Figures 19b, 18b, and 21). Thus, at higher noise

levels, the performance of KNN and Edgeworth deteriorates because of their large error bounds, making them

dif�cult to use. On the contrary, although KDE underestimates nonlinear CCs for low noise levels it slowly

approaches theoretical values at high noise levels with narrow con�dence bounds (Figures 21 and 20b). This

indicates that KDE may be the better choice for estimating nonlinear dependence when the noise level is high.

For lower noise levels KDE can be further improved by choosing a smaller value of the smoothing parameter

involved in the computation.

(a) (b)

Figure 22. Nonlinear and linear CCs for Case 3 (Periodic) with 90% con�dence bounds obtained from KDE
and LR, respectively. (a) N = 50. (b) N = 100. Edgeworth captures nothing more than the linear correlation.
At low noise levels, KNN seems to the best as it overlaps with theoretical CCs and its bounds are narrow.
At higher noise levels, KDE and KNN CCs overlap and also include linear and theoretical CCs but 90%
con�dence bounds from KNN are wider than that obtained from KDE. At higher noise levels and for relatively
small data, KDE seems to have an edge over KNN because of its narrow bounds.
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Case 3 (Periodic): KNN seems to be the best in capturing the true nonlinear dependence for any data

size and noise levels except for the fact that at higher noise levels it produces wider con�dence bounds

(Figures 19c, 18c, 22, and 20c). Edgeworth appears to capture only the linear correlation and produces

wider con�dence bounds (Figures 22 and 20c). In this example the density of Y is bimodal, which causes

Edgeworth estimates to be incorrect. Nonlinear CCs from KDE are biased downwards for low noise levels,

but they slowly approach theoretical values at high noise levels with narrow con�dence bounds (Figures 22

and 20c). Again, KNN is better than KDE at lower noise levels but both KDE and KNN produce better results

than Edgeworth, as far as capturing the true dependence is concerned at higher noise levels (Figure 22). For

higher noise levels, con�dence bounds obtained from KDE, KNN, and Edgeworth overlap with theoretical

and linear CCs indicating all these methods capture nothing more than the linear correlation but KDE does

seem to have an edge over others as it produces narrower con�dence bounds (Figure 22). Thus, KDE appears

to be a better choice at higher noise levels.

(a) (b)

Figure 23. Nonlinear and linear CCs for Case 4 (Chaotic) with 90% con�dence bounds obtained from KDE
and LR, respectively. (a) N = 50. (b) N = 100. At higher noise levels, KNN and Egdeworth CCs overlap
with linear CCs indicating that they do not capture anything more than the linear correlation. KDE is the best
in capturing the nonlinear dependence as its 90% con�dence bounds do not overlap with linear CCs.
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Case 4 (Chaotic): At all noise levels, linear CCs between X and Y components of the Henon map are

negative. Since nonlinear CCs from KDE, KNN, and Edgeworth do not have directionality, the absolute

values of linear CCs are considered and plotted. Analyses using short time series also show that con�dence

bounds for CCs from KDE and LR are well separated while con�dence bounds obtained from KNN and

Edgeworth do overlap with linear CCs at higher noise levels (Figures 19d, 18d, and 23). Note that theoretical

CCs for the Henon map could not be computed and were not found in the literature. At lower noise levels,

KDE and KNN perform better but at higher noise levels KDE outperforms KNN and Edgeworth. In fact,

KDE stands out by its ability to capture more correlation than purely linear correlation (Figure 23).

The Henon example above is yet another case where at higher noise levels, for known nonlinear depen-

dence between the variables, estimates of CCs based on KNN and Edgeworth, because of their large error

bounds, cannot conclusively show the presence of that dependence. Although their performance is often

better than KDE for small noise levels, they fail in large noise scenarios in small datasets. Since the data is

short and highly noisy in geophysics, this simulation exercise points at KDE as the best estimator of MI/CCs

among the estimators available.

4.5.1.3 Long time series Analyses of 1000 points show that both KDE and KNN perform better than the

others in that they are able to capture more dependence than linear correlation. KNN appears to capture the

true dependence better at lower noise levels (Figures 20a, 20b, and 20c). But at higher noise levels all the

three nonlinear correlation methods perform equally well only for case 1 and case 2 (Figures 20a and 20b).

Edgeworth captures nothing more than the linear correlation in case 3 for all noise levels (Figure 20c). At

higher noise levels, the 90% con�dence bounds from KNN and Edgeworth overlap with linear CCs for case 4

(Figure 20d). KDE appears to be the better choice at higher noise levels because its 90% con�dence bounds

are narrow and do not overlap with linear CCs for all cases. Thus, KNN is the best at lower noise levels

whereas KDE is recommended for higher noise levels.

4.5.1.4 Conclusion from the analysis of simulations The accuracy of LR and KDE are estimated based on

correspondence to theoretical dependence where these are available or can be computed, which provides a

measure of bias, as well as the performance of the con�dence bounds, which provides a measure of variance.

In addition, the expected lower bounds on predictability can be computed in terms of an error statistic (MSE).

The analysis described in the previous sections designate the KDE approach as a better quanti�er of the

dependence between time series, especially when the number of data points are small and subject to noise.
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(a)

(b)

Figure 24. Comparison of correlation coef�cients obtained for Case 2 (Quadratic) from KNN with different
number of nearest neighbors (k), i.e., 3, 7, 11, and 15. (a) N = 50. (b) N = 100. As k increases, both the
bias and variance increase at lower noise levels. For higher noise levels, the bias increases but the variance
decreases as k increases.
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4.5.1.5 Discussion from the analysis of simulations Our results from the simulated data indicate that KNN

performs better in low noise and KDE in high noise situations. An examination of the density plots may

explain the relative performance of KDE and KNN (Figures 13-16). The relative performance of KDE and

KNN with respect to noise levels is possibly a consequence of the bias-variance tradeoff, since prior literature

suggests that the KDE estimate can often be highly biased if the particular KDE recipe used here is followed,

while KNN estimates can have signi�cant variance when the number of nearest neighbors (k) is set to low

values, e.g., three as used in this dissertation. Thus for low noise to signal ratios, the bias in the KDE estimate

dominates the variance of estimate. Thus, the KNN does relatively better for low noise since the bias is lower

than KDE and the variance is small as a result of the lower noise levels. However, for high noise to signal

ratio, the converse is true, and hence the KDE performs relatively better. In this case variance dominates

because of the noise in the data but the variance associated with k = 3 for KNN increases dramatically. One

way to address the large variance from KNN is to use a much larger value of k but it would also increase the

bias (Figure 24). In general, these discussions suggest that the results for nonlinear dependence obtained from

KDE and KNN may actually re�ect the lower bounds of what may be possible if an improvement or combi-

nation of KNN and KDE are used. Speci�cally, both the KDE and KNN estimates can potentially improve

dramatically by utilizing a plug-in method for kernel, bandwidth or k selection. Such plug-in procedures

would cause additional estimation variance but may reduce the overall MSE of estimation. However, the de-

velopment or utilization of procedures for the selection of optimal kernels, bandwidths or nearest neighbors

may be rather involved and hence is left as an area of future research.

4.5.2 Comparison of nonlinear dependence measures with a rank-based dependence

Kendall's tau is a rank-based dependence measure used to estimate the strength of dependence between

variables. It provides a robust approach to assess monotonic nonlinear dependence. In fact, linear and

rank correlation have been used jointly to understand the nature of dependence in the literature [100]. Let

(X,Y ) ∼ F be a pair of random variables with distribution F and (X̃, Ỹ ) ∼ F be independent of (X, Y )

(and with the same distribution F ), Kendall's tau between X and Y is de�ned as

τ = P
((

X − X̃
) (

Y − Ỹ
)

> 0
)

−P
((

X − X̃
)(

Y − Ỹ
)

< 0
)

. (29)
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The empirical estimator of Kendall's tau for an iid sample (X1, Y1), . . . , (Xn, Yn) is

τ̂ =
2

n(n− 1)

∑

1≤i<j≤n

sign ((Xi −Xj)(Yi − Yj)) . (30)

The complete description of Kendall's tau is given in [101].

(a)

(c)

(b)

Figure 25. Correlation coef�cients for Case - Cubic with 90% con�dence bounds obtained from LR, KDE,
KNN, Edgeworth, and Kendall's tau. (a) N = 50. (b) N = 100. (c) N = 1000. For all cases, the lowest
curve is obtained from Kendall's tau. In (a) and (b), Kendall's tau overlaps with linear at lower noise levels.
But at higher noise levels, it overlaps with KNN. In (c), Kendall's tau captures the lowest dependence.
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The performance of Kendall's tau is compared with KDE, KNN, and Edgeworth using the simulated data.

Since Kendall's tau is used to assess monotonic nonlinear dependence, it would not work for the test cases

described in section 1.1, i.e., quadratic, periodic, and chaotic. Therefore, we use a different test case given

as Case - Cubic :X ∼ N(0, 1), Y : yi = xi
3 + εi for i = 1, .., N , where X is iid and ε ∼ N(0, σn) is

iid and independent of X . Since we are just interested in comparing Kendall's tau with nonlinear estimates

from KDE, KNN, and Edgeworth, we do not compute theoretical estimates for this case. We consider three

different number of points, i.e., 50 and 100 (short series), and 1000 (long series). For all three cases, Kendall's

tau is one when there is no noise (Figure 25). The variance of Kendall's tau increases as the number of points

decreases. As the noise levels increase, nonlinear dependence from Kendall's tau deteriorates and falls below

linear (LR), KDE, KNN, and Edgeworth. For short series, Kendall's tau overlaps with linear at lower noise

levels indicating that it captures nothing more than the linear dependence (Figures 25a and 25b). At higher

noise levels, Kendall's tau overlaps with KNN for short series where KNN does not perfom well and produces

large variances. Therefore, Kendall's tau is not a good estimator for short series. For long series, Kendall's

tau produces the lowest dependence and its 90% con�dence limits do not overlap with any estimator (Figure

25c). It shows that it cannot be utilized for long series also. These simulations emphasize one important point

that the performance of Kendall's tau deteriorates even at a presence of small amount of noise.
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(a)

(c)

(b)

Figure 26. The bivariate normal and kernel density between the ENSO index for different quarters and the
annual �ow of the Nile River. For kernel density, a Gaussian kernel with optimal Gaussian bandwidth, given
as h = N−1/6 where N is the total number of observations, is used. (a) Quarter 1. (b) Quarter 4. (c) Quarter
5. Quarter 1 and 5 show the lowest and highest linear CCs between the ENSO index and the Nile �ow,
respectively (Table 6). Quarter 1 and 4 show the lowest and highest nonlinear CCs between the ENSO index
and the Nile �ow, respectively (Table 6).
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(a) (b)

Figure 27. The bivariate normal and kernel density between the ENSO index for different quarters and the
annual �ow of the Amazon River. For kernel density, a Gaussian kernel with optimal Gaussian bandwidth,
given as h = N−1/6 where N is the total number of observations, is used. (a) Quarter 3. (b) Quarter 7.
Quarter 7 and 3 show the lowest and highest linear and nonlinear CCs between the ENSO index and the
Amazon �ow, respectively (Table 7).
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(a)

(c)

(b)

Figure 28. The bivariate normal and kernel density between the ENSO index for different quarters and the
annual �ow of the Congo River. For kernel density, a Gaussian kernel with optimal Gaussian bandwidth,
given as h = N−1/6 where N is the total number of observations, is used. (a) Quarter 2. (b) Quarter 3. (c)
Quarter 7. Quarter 7 and 2 show the lowest and highest linear CCs between the ENSO index and the Congo
�ow, respectively (Table 8). Quarter 7 and 3 shows the lowest and highest nonlinear CCs between the ENSO
index and the Congo �ow, respectively (Table 8).
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(a)

(c)

(b)

Figure 29. The bivariate normal and kernel density between the ENSO index for different quarters and the
annual �ow of the Paraná River. For kernel density, a Gaussian kernel with optimal Gaussian bandwidth,
given as h = N−1/6 where N is the total number of observations, is used. (a) Quarter 2. (b) Quarter 5. (C)
Quarter 8. Quarter 8 and 5 show the lowest and highest linear CCs between the ENSO index and the Paraná
�ow, respectively (Table 9). Quarter 2 and 5 show the lowest and highest nonlinear CCs between the ENSO
index and the Paraná �ow, respectively (Table 9).

72



(a) (b)

Figure 30. The bivariate normal and kernel density between the ENSO index for different quarters and the
annual �ow of the Ganges River. For kernel density, a Gaussian kernel with optimal Gaussian bandwidth,
given as h = N−1/6 where N is the total number of observations, is used. (a) Quarter 1. (b) Quarter 5.
Quarter 1 and 5 shows the lowest and highest linear and nonlinear CCs between the ENSO index and the
Ganges �ow, respectively (Table 10).
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(a) (b)

(c) (d)

(e)

Figure 31. Nonlinear and linear CCs with their 90% con�dence bounds between ENSO and annual river
�ows of Nile, Amazon, Congo, Paraná, and Ganges using KDE and LR approaches, respectively. The bias-
corrected estimates, (λ, ρ), plotted as solid dots are estimated as 2(λ̂, ρ̂) − (λ̂∗(.), ρ̂∗(.)), where (λ̂, ρ̂) are
the original nonlinear and linear CCs between the annual �ow and ENSO, respectively, considering all N
observations. (λ̂∗(.), ρ̂∗(.)) is the mean of 100 jackknife replications of size 0.8N observations. The 90%
con�dence bounds are given by 5% and 95% quantiles of 100 jackknife replications of size 0.8N .
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4.6 Real data analysis

This dissertation assumes that the seasonal cycle for a particular year consists of 12 months starting with

the month having the lowest average discharge. It also assumes that long-term �ow variability due to ENSO

can be captured in the annual �ow, which, in turn, is de�ned as the integrated stream�ow of the seasonal

cycle. Here eight quarterly ENSO indices, i.e. three quarters just before the seasonal cycle, four quarters

corresponding to the seasonal cycle, and one quarter just after the seasonal cycle, are derived from quarterly

averages of mean monthly SST anomalies. The bivariate normal and kernel density between the quarterly

ENSO indices and the annual �ow of the Nile, Amazon, Congo, Paraná, and Ganges rivers are estimated and

plotted (Figures 26-30). Linear and nonlinear CCs between the ENSO index and the annual �ow of the Nile,

Amazon, Congo, Paraná, and Ganges Rivers are obtained using LR and KDE, respectively (Figure 31). The

bias-corrected CCs and their 90% con�dence bounds are estimated using jackkni�ng.

The jackknife is used to estimate the bias-corrected λ and ρ and their standard errors using KDE and LR,

respectively. The technique is described below for λ and is the same for ρ. In the case of real data analysis,

the total number of observations (N ) varies from 60 to 117. If d observations for jackkni�ng are left out and
√

N < d < N , the number of jackknife samples, given by
(
N
d

)
[102], is large. So 100 samples of size 0.8N

are used for the analysis. λ̂∗(.) and ŝe are the mean and standard deviation of jackknife replications leaving

out d = 0.2N observations. The bias is given as b̂ias = λ̂∗(.) − λ̂, where λ̂ is the original nonlinear CCs

between the annual �ow and ENSO considering all N observations. The bias-corrected estimator, λ, is given

as λ = λ̂− b̂ias. The lower and upper bounds of 90% con�dence bounds are given by 5% and 95% quantiles

of 100 jackknife samples of size 0.8N , respectively.
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Table 6. Linear and nonlinear CCs between the annual �ow of the Nile River and the ENSO index averaged
for eight quarters. The month preceding (following) the seasonal cycle is indicated by a negative (positive)
sign following a month. The bias-corrected estimates, (λ, ρ), are estimated as 2(λ̂, ρ̂)− (λ̂∗(.), ρ̂∗(.)), where
(λ̂, ρ̂) are the original nonlinear and linear CCs between the annual �ow and ENSO, respectively, considering
all N observations. (λ̂∗(.), ρ̂∗(.)) and theirs standard errors given in parentheses are the mean and standard
deviation of 100 jackknife replications of size 0.8N observations. ρ is negative for all quarters, but the
absolute values of ρ are considered. M̂SE and its standard errors given in parentheses are the mean and
standard deviation of MSEs estimated from 100 jackknife replications of size 0.8N observations.

Quarter ρ M̂SELR

(105)
λ M̂SEKDE

(105)
Aug.−, Sep.−, Oct.− (A−S−O−) 0.135 (0.048) 2.53 (0.18) 0.300 (0.033) 2.14 (0.17)
Nov.−, Dec.−, Jan.− (N−D−J−) 0.137 (0.058) 2.53 (0.20) 0.378 (0.030) 2.03 (0.16)
Feb.−, Mar.−, Apr.− (F−M−A−) 0.286 (0.053) 2.34 (0.20) 0.475 (0.025) 1.82 (0.13)

May, Jun, Jul. (MJJ) 0.504 (0.035) 1.95 (0.16) 0.634 (0.023) 1.44 (0.12)
Aug., Sep., Oct. (ASO) 0.528 (0.037) 1.88 (0.15) 0.617 (0.027) 1.47 (0.12)
Nov., Dec., Jan. (NDJ) 0.501 (0.040) 1.92 (0.17) 0.597 (0.029) 1.51 (0.14)
Feb., Mar., Apr (FMA) 0.466 (0.037) 2.04 (0.14) 0.555 (0.029) 1.63 (0.11)

May+, Jun.+, Jul.+ (M+J+J+) 0.171 (0.042) 2.51 (0.16) 0.361 (0.030) 2.03 (0.15)

Table 7. Linear and nonlinear CCs between the annual �ow of the Amazon River and the ENSO index aver-
aged for eight quarters. The month preceding (following) the seasonal cycle is indicated by a negative (pos-
itive) sign following a month. The bias-corrected estimates, (λ, ρ), are estimated as 2(λ̂, ρ̂)− (λ̂∗(.), ρ̂∗(.)),
where (λ̂, ρ̂) are the original nonlinear and linear CCs between the annual �ow and ENSO, respectively,
considering all N observations. (λ̂∗(.), ρ̂∗(.)) and theirs standard errors given in parentheses are the mean
and standard deviation of 100 jackknife replications of size 0.8N observations. ρ is negative from quarter
2 to quarter 6, but the absolute values of ρ are considered. M̂SE and its standard errors given in parenthe-
ses are the mean and standard deviation of MSEs estimated from 100 jackknife replications of size 0.8N
observations.

Quarter ρ M̂SELR

(107)
λ M̂SEKDE

(107)
Feb.−, Mar.−, Apr.− (F−M−A−) 0.092 (0.063) 4.82 (0.41) 0.341 (0.027) 3.84 (0.29)
May−, Jun.−, Jul.− (M−J−J−) 0.202 (0.053) 4.59 (0.45) 0.379 (0.040) 3.68 (0.33)

Aug.−, Sep.−, Oct.− (A−S−O−) 0.325 (0.056) 4.29 (0.36) 0.423 (0.041) 3.49 (0.28)
Nov., Dec., Jan. (NDJ) 0.321 (0.049) 4.34 (0.38) 0.397 (0.032) 3.62 (0.30)
Feb., Mar., Apr. (FMA) 0.220 (0.052) 4.63 (0.40) 0.340 (0.039) 3.85 (0.32)
May, Jun., Jul. (MJJ) 0.141 (0.049) 4.77 (0.46) 0.302 (0.033) 3.94 (0.38)

Aug., Sep., Oct. (ASO) 0.044 (0.049) 4.85 (0.45) 0.180 (0.039) 4.16 (0.37)
Nov.+, Dec.+, Jan.+ (N+D+J+) 0.048 (0.053) 4.82 (0.43) 0.228 (0.036) 4.06 (0.34)
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Table 8. Linear and nonlinear CCs between the annual �ow of the Congo River and the ENSO index averaged
for eight quarters. The month preceding (following) the seasonal cycle is indicated by a negative (positive)
sign following a month. The bias-corrected estimates, (λ, ρ), are estimated as 2(λ̂, ρ̂)− (λ̂∗(.), ρ̂∗(.)), where
(λ̂, ρ̂) are the original nonlinear and linear CCs between the annual �ow and ENSO, respectively, considering
all N observations. (λ̂∗(.), ρ̂∗(.)) and theirs standard errors given in parentheses are the mean and standard
deviation of 100 jackknife replications of size 0.8N observations. ρ is negative from quarter 1 to quarter 7,
but the absolute values of ρ are considered. M̂SE and its standard errors given in parentheses are the mean
and standard deviation of MSEs estimated from 100 jackknife replications of size 0.8N observations.

Quarter ρ M̂SELR

(107)
λ M̂SEKDE

(107)
Nov.−, Dec.−, Jan.− (N−D−J−) 0.230 (0.045) 1.74 (0.19) 0.346 (0.034) 1.39 (0.14)
Feb.−, Mar.−, Apr.− (F−M−A−) 0.271 (0.054) 1.66 (0.18) 0.449 (0.045) 1.24 (0.13)
May−, Jun.−, Jul.− (M−J−J−) 0.261 (0.045) 1.71 (0.19) 0.478 (0.027) 1.23 (0.13)

Aug., Sep., Oct. (ASO) 0.132 (0.054) 1.79 (0.19) 0.362 (0.036) 1.38 (0.14)
Nov., Dec., Jan. (NDJ) 0.092 (0.040) 1.83 (0.21) 0.397 (0.031) 1.37 (0.15)
Feb., Mar., Apr. (FMA) 0.167 (0.049) 1.77 (0.17) 0.352 (0.035) 1.38 (0.12)
May, Jun., Jul. (MJJ) 0.023 (0.055) 1.81 (0.19) 0.229 (0.031) 1.47 (0.14)

Aug.+, Sep.+, Oct.+ (A+S+O+) 0.072 (0.054) 1.79 (0.22) 0.291 (0.038) 1.42 (0.17)

Table 9. Linear and nonlinear CCs between the annual �ow of the Paraná River and the ENSO index averaged
for eight quarters. The month preceding (following) the seasonal cycle is indicated by a negative (positive)
sign following a month. The bias-corrected estimates, (λ, ρ), are estimated as 2(λ̂, ρ̂)− (λ̂∗(.), ρ̂∗(.)), where
(λ̂, ρ̂) are the original nonlinear and linear CCs between the annual �ow and ENSO, respectively, considering
all N observations. (λ̂∗(.), ρ̂∗(.)) and theirs standard errors given in parentheses are the mean and standard
deviation of 100 jackknife replications of size 0.8N observations. M̂SE and its standard errors given in
parentheses are the mean and standard deviation of MSEs estimated from 100 jackknife replications of size
0.8N observations.

Quarter ρ M̂SELR

(107)
λ M̂SEKDE

(107)
Dec.−, Jan.−, Feb.− (D−J−F−) 0.141 (0.040) 1.59 (0.21) 0.315 (0.033) 1.08 (0.08)

Mar.−, Apr.−, May− (M−A−M−) 0.211 (0.041) 1.54 (0.22) 0.297 (0.038) 1.08 (0.09)
Jun.−, Jul.−, Aug.− (J−J−A−) 0.366 (0.043) 1.35 (0.22) 0.437 (0.032) 0.95 (0.08)

Sep., Oct., Nov. (SON) 0.435 (0.043) 1.30 (0.16) 0.513 (0.031) 0.89 (0.07)
Dec., Jan., Feb. (DJF) 0.476 (0.058) 1.25 (0.13) 0.542 (0.043) 0.85 (0.04)

Mar., Apr., May (MAM) 0.453 (0.052) 1.27 (0.13) 0.530 (0.043) 0.84 (0.06)
Jun., Jul., Aug. (JJA) 0.251 (0.055) 1.52 (0.20) 0.403 (0.033) 1.01 (0.07)

Sep.+, Oct.+, Nov.+ (S+O+N+) 0.087 (0.047) 1.60 (0.22) 0.309 (0.041) 1.08 (0.09)
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Table 10. Linear and nonlinear CCs between the annual �ow of the Ganges River and the ENSO index aver-
aged for eight quarters. The month preceding (following) the seasonal cycle is indicated by a negative (pos-
itive) sign following a month. The bias-corrected estimates, (λ, ρ), are estimated as 2(λ̂, ρ̂)− (λ̂∗(.), ρ̂∗(.)),
where (λ̂, ρ̂) are the original nonlinear and linear CCs between the annual �ow and ENSO, respectively,
considering all N observations. (λ̂∗(.), ρ̂∗(.)) and theirs standard errors given in parentheses are the mean
and standard deviation of 100 jackknife replications of size 0.8N observations. ρ is negative for all quarters,
but the absolute values of ρ are considered. M̂SE and its standard errors given in parentheses are the mean
and standard deviation of MSEs estimated from 100 jackknife replications of size 0.8N observations.

Quarter ρ M̂SELR

(106)
λ M̂SEKDE

(106)
Jul.−, Aug.−, Sep.− (J−A−S−) 0.036 (0.076) 4.70 (0.55) 0.351 (0.037) 3.64 (0.46)

Oct.−, Nov.−, Dec.− (O−N−D−) 0.130 (0.071) 4.83 (0.46) 0.359 (0.039) 3.76 (0.43)
Jan.−, Feb.−, Mar.− (J−F−M−) 0.118 (0.063) 4.71 (0.43) 0.416 (0.033) 3.53 (0.39)

Apr., May, Jun. (AMJ) 0.408 (0.051) 4.08 (0.34) 0.509 (0.040) 3.23 (0.30)
Jul., Aug., Sep. (JAS) 0.492 (0.043) 3.56 (0.34) 0.567 (0.034) 2.82 (0.31)

Oct., Nov., Dec. (OND) 0.483 (0.040) 3.73 (0.35) 0.562 (0.028) 2.99 (0.29)
Jan., Feb., Mar. (JFM) 0.415 (0.043) 3.98 (0.36) 0.516 (0.030) 3.18 (0.31)

Apr.+, May+, Jun.+ (A+M+J+) 0.270 (0.053) 4.53 (0.48) 0.490 (0.029) 3.36 (0.40)
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The prediction accuracies, in terms of MSEs, of annual river �ows based on ENSO are also estimated and

compared using LR and KDE approaches (Tables 6-10).

Table 11. Variation in the annual �ow of rivers associated with ENSO. Linear and nonlinear CCs are estimated
using LR and KDE, respectively. Months in a quarter are given in [ ]. The month preceding (following) the
seasonal cycle is indicated by a negative (positive) sign following a month.

River Previous Studies Linear CC Nonlinear CC
Nile 25% [SON] [13] 28% [ASO] 40% [MJJ]

Amazon 10% [D−JF] [14] 11% [A−S−O−] 18% [A−S−O−]
Congo 10% [MAM] [14] 7% [F−M−A−] 23% [M−J−J−]
Paraná 19% [D−JF] [14] 23% [DJF] 29% [DJF]
Ganges 29% [JJA] [15] 24% [JAS] 32% [JAS]

4.6.1 Description of results

Linear CCs between river �ows and some quarters of the ENSO index, such as, all quarters of the ENSO

index and the Nile �ow, quarter 2 to quarter 6 of the ENSO index and the Amazon �ow, quarter 1 to quarter

7 of the ENSO index and the Congo �ow, and all quarters of the ENSO index and the Ganges �ow, are

negative. Since nonlinear CCs obtained from KDE, KNN, and Edgeworth do not have directionality, the

absolute values of linear CCs are considered and plotted. The MI-based nonlinear dependence measure, i.e.

KDE, generate higher CCs and lower MSEs as compared to linear dependence measure, i.e. LR, which

shows that KDE captures more extrabasinal connection between ENSO and river �ows in the tropical and

subtropical regions of the world as compared to LR (Tables 11 and 6-10). The percentage variation in the

annual �ow of rivers associated with ENSO are calculated as the square of CCs. KDE suggests an increase

of around 20-70% in the extrabasinal connection between ENSO and river �ows over those suggested by

LR (Figure 31 and Table 11). In the case of Nile, 90% con�dence bounds of linear and nonlinear CCs are

well separated for 5 quarters including quarter with the highest nonlinear CC indicating that KDE captures

greater dependence between ENSO and the annual �ow compared to LR (Figure 31a). KDE suggests greater

dependence between the Congo �ow and ENSO since 90% con�dence bounds of linear and nonlinear CCs

are well separated for all quarters except the �rst quarter (Figure 31c). In the case of Amazon, Paraná,

and Ganges, 90% con�dence bounds of linear and nonlinear CCs overlap for all those quarters which have

higher linear CCs but for other quarters the bounds are well separated (Figures 31b, 31d, and 31e). This

indicates that both KDE and LR capture nothing more than the linear dependence for some quarters based on

90% con�dence bounds. However, there is an increase in the bias-corrected CCs from KDE as compared to
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LR for the Amazon, Paraná, and Ganges Rivers which suggests a stronger extrabasinal connection between

ENSO and the annual �ow of these rivers, however with less than 90% con�dence (Figures 31b, 31d, and

31e). When linear CCs are close to zero, the large difference between linear and nonlinear CCs should be

interpreted with caution because of an artifact of equation 19 which scales nonlinear CCs exponentially with

MI (Figures 31c and 31e).

4.6.2 Conclusion from the analysis of real data

The results with the real data reported here suggest that there exists a nonlinear extrabasinal connection be-

tween ENSO and river �ows in the topics and subtropics. This dissertation also shows an appreciable increase

in the variation of annual river �ows linked to ENSO using nonlinear relationship measure as compared to

linear measures. Hence, these results indicate additional predictability in the ENSO-stream�ow extrabasi-

nal connection when MI-based approaches are used, as compared to linear approaches used by researchers

till date. The additional dependence captured by the MI-based nonlinear CCs may be useful for develop-

ing more accurate and longer stream�ow models. This can, in turn, help in water resources management

(e.g., reservoirs and dams for �ood control, power generation, drought mitigation and preparedness for water

supply).

4.7 Discussion

Stream�ow series may re�ect monotonic trends related to anthropogenic factors, which may include diver-

sions, consumptions and �ow regulations within the basin, in addition to possible impacts of climate change.

An estimation of the likely magnitudes, as well as qualitative assessment of the evidence, of such changes

may need to be performed on a case by case basis for each basin. Just as an example, three of the co-authors

of this paper performed qualitative investigations for stream�ows of two rivers within the United States [21].

These investigations demonstrated that meaningful studies may need to be rather time-consuming, hence such

efforts are left as areas of future research for the purposes of this paper. Discussions regarding the speci�c

datasets utilized in this paper can be found within the data sources as well as within the previous studies

that have utilized these datasets [13�15, 17]. We would like to note that accounting for all the known trends,

if possible, may have signi�cant impact on the ENSO to stream�ow connection. Thus, it is likely that the

ENSO-stream�ow extrabasinal connection is actually even higher than estimated if such trends were to be

accounted for. Conversely, it is possible that some extremes are highlighted in the anthropogenic basin �ow

trends which tend to overemphasize the ENSO connection. On the other hand, an argument can perhaps
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be made that such situations are not relevant to the point of this paper since the in�uence of anthropogenic

or other trends will be re�ected in both the linear and nonlinear measures of dependence. However, while

making apriori statements may not be justi�ed, it is likely that some of the trends will be nonlinear and that

the nonlinear measures may be potentially more susceptible to the presence of outliers.

Although ENSO has a direct in�uence on rainfall anomalies over the tropical and subtropical regions,

only a portion of the variation in the annual �ow of rivers located in these regions is associated with ENSO

events. This may be due to the complex relationship between rainfall and runoff, which, in turn, depends

on surface hydrological and ocean-atmosphere-land interaction processes as well as noisy and potentially

incomplete or corrupted data.

In recent decades, economic, population and geo-political pressures have resulted in signi�cant changes

in land-use patterns that may alter the land-atmosphere-water cycle in the tropics and subtropics. These

changes in the water cycle can, in turn, impact regional precipitation, water vapor �ux, and surface water

�ows, causing regional as well as global shifts in seasonal-to-interannual atmospheric variability. A better

understanding and quanti�cation of the relationship between ENSO and river discharges can help scientists

and policy makers understand and get prepared for the changes in river discharge patterns besides attributing

such changes to natural or anthropogenic drivers.
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Chapter 5

Spatio-temporal Variability of Daily and Weekly Precipitation Extremes in South America

Spatial and temporal variability of precipitation extremes are investigated by utilizing daily observations

available at 2.50 gridded �elds in South America for the period 1940-2004. All 65 years of data from 1940-

2004 are analyzed for spatial variability. The temporal variability is investigated at each spatial grid by

utilizing 25-year moving windows from 1965-2004 and visualized through plots of the slope of the regression

line in addition to its quality measure (R2). The Poisson-generalized Pareto (Poisson-GP) model, which is a

peaks over threshold (POT) approach, is applied to weekly precipitation maxima residuals based on the 95%-

quantile threshold, while daily data are utilized to analyze the number of consecutive daily extremes and

daily extremes in a month based on the 99%-quantile threshold. Using the Poisson-GP model, we compute

parameters of the GP distribution, return levels (RL) and a new measure called the precipitation extremes

volatility index (PEVI). The PEVI measures the variability of extremes and is expressed as a ratio of return

levels. From 1965-2004, the PEVI shows increasing trends in the Amazon basin except eastern parts, few

parts of the Brazilian highlands, north-west Venezuela including Caracas, north Argentina, Uruguay, Rio De

Janeiro, S�ao Paulo, Asuncion, and Cayenne. Catingas, few parts of the Brazilian highlands, S�ao Paulo and

Cayenne experience increasing number of consecutive 2- and 3-days extremes from 1965-2004. The number

of daily extremes, computed for each month, suggest that local extremes occur mostly from December to

April with July to October being relatively quiet periods.

5.1 Introduction

Precipitation extremes can have signi�cant impacts on human society, economics, and nature. Flooding is

directly associated with precipitation extremes which can cause large number of casualties, loss of prop-

erty, waterborne disease outbreaks in humans, plants and animals [103], and extensive damage to crops. An

understanding of the intensity and frequency of precipitation extremes can be very useful for infrastructure

development to prevent �ooding and landslides, as well as for water resources and agricultural management.

This may help nations and world bodies like the UN to be better prepared for future disasters caused by �oods

and �ash �oods. A better understanding of precipitation extremes can help hydrologic scientists and clima-
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tologists gain enhanced understanding of precipitation processes driving the extremes and perhaps delineate

possible anthropogenic or natural causes.

Previous studies investigated trends and variability of precipitation extremes in many parts of the world

in the twentieth century, speci�cally the United States [22, 23], India [24], Southeast Asia and the South

Paci�c [25], Australia [23, 26], Europe [27], Caribbean [28], Italy [29], Balkans [30], Canada, Norway,

Russia, China, Mexico [23], Japan [31], Sweden [32], southeastern South America [33], and the state of S�ao

Paulo, Brazil [34]. Recently the spatio-temporal variability of dependence among precipitation extremes was

investigated over the entire South America for the period 1940-2004 using a new approach (suggested by

Kuhn [35]) [36]. However, we are not aware of any prior investigations on spatial and temporal variability of

precipitation extremes over the entire continent of South America.

Extreme value theory (EVT) has been widely used in hydrology to perform �ood frequency analyses

by utilizing historical records of precipitation, steam�ow and other variables [104]. In recent years, EVT

has been applied in multiple disciplines including hydrology [39, 44], ecology [41, 47], hurricane dam-

age [105], temperature [106], wind speed [107], and wild�re sizes [108]. The generalized extreme value

(GEV) distribution, developed by Jenkinson [37], has been traditionally utilized for modeling precipitation

extremes [38�40]. This approach is also called the block maxima approach since it �ts the distribution to

the highest values in blocks of equal size, e.g., maximum yearly precipitation. It has some advantages, e.g.,

its requirements can be met by a simpli�ed summary of data and the block maxima can be assumed to be

independent random variables [41]. But the main drawback of the GEV distribution is that it does not utilize

all the available information about the upper tail of the distribution, e.g., two highest extreme precipitation

events may occur in the same year [41]. An alternative approach is to use peaks over threshold (POT) which

was originated in hydrology and makes use of all the data available, e.g., all daily precipitation data [42]. The

statistical model underlying the POT method consists of (1) Poisson process for the occurrences of extremes

over a large threshold and (2) generalized Pareto (GP) distribution (with scale (σ) and shape (ξ) parameters),

developed by Pickands [43], for the distribution of excesses over a large threshold. This model is also termed

as Poisson-GP model. Recently, the GP distribution has been utilized for modeling threshold excesses from

daily precipitation data [44, 45]. This dissertation utilizes the Poisson-GP model for investigating the spatial

and temporal variability of precipitation extremes at each grid point in South America.

Daily precipitation data is available in 2.50 gridded �elds for the period 1940-2004 in South Amer-

ica. The Poisson-GP model assumes the data to be independent and identically distributed (IID) [39]. A

long-term trend and seasonality in the data violate the assumption of identically distributed data whereas
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the assumption of independent data is violated if there is temporal dependence in the data [47]. In order

to check the IID assumption for the Poisson-GP model, we consider three different sets of data based on

this daily data: daily data itself, weekly maxima, and weekly maxima residuals. Weekly maxima residuals

are obtained by subtracting the long term mean of weekly maxima of a particular week, i.e., mean of max-

imum weekly precipitation across the same week for all years used in the analysis, from weekly maxima

of the same week. These datasets are compared to choose the best data by examining temporal dependence

through auto-correlations and seasonal trends. In order to check the quality of the Poisson-GP model, we

also compare these datasets in terms of the Poisson property of the occurrences of extremes and quality of

the GP distribution. The scale of the data and the need for ef�cient computations, which can be eventually

automated, preclude choosing thresholds based on human judgment. We choose thresholds as 95%-quantile

for weekly maxima and weekly maxima residuals and 99%-quantile for the daily data. The thresholds are

computed at each grid, hence the extremes can be said to be local in the context of observed rainfall in the

particular grid. Spatial variability is investigated for 65 years (1940-2004) and the last 40 years (1965-2004)

are also studied for the temporal variability with 25-year moving window, i.e., 1965-1989, 1966-1990,. . .,

1980-2004. The temporal variability is given by the slope of a linear trend obtained by �tting a regression

line to 16 values from 16 time windows from 1965-2004. We also plot R2 obtained from �tting a regression

line which provides the overall measure of the quality of �tted regression line. We investigate the spatial

and temporal variability of thresholds, σ and ξ and their standard errors, 50-year and 200-year return levels

(RL), and precipitation extremes volatility index (PEVI) which measures the variability of extremes and is

de�ned as a ratio of RLs. This dissertation computes PEVI as the ratio of 200-year and 50-year RLs, where

the latter represents a design return level, e.g., the return level used for infrastructure design, while the former

represents rarer and more intense extremes. The PEVI represents a measure of surprise if the rarer extremes

were to occur. The advantages of PEVI are easy interpretability, computational ef�ciency and effective visu-

alization through a single parameter at each grid. The temporal variability of thresholds from 1965-2004 also

gives an indication about increasing or decreasing trends in precipitation during that period. Based on daily

data, the spatial and temporal variability of the number of consecutive 2-days and 3-days extremes and the

spatial variations of the number of monthly extremes are investigated.
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Figure 32. Percentage of total data available at each grid point: (a) Percentage of daily data available in 65
years from 1940-2004; and (b) Mean percentage of daily data available in 40 years from 1965-2004 computed
using 25-year moving window from 1965-2004, i.e., 1965-1989, 1966-1990,. . ., 1980-2004. Each grid point
having at least 14 years of data is considered for the analysis. This means that all grid points having more
than 22% and 56% of data are used for the analysis in (a) and (b), respectively. The white regions on the map
indicate either non-availability of data or insuf�cient data, i.e., less than 14 years of data, for the analysis.
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5.2 Data and methodology

5.2.1 Data availability

The daily precipitation data used in this dissertation was published for Brazil, Venezuela, north Argentina,

Paraguay, Uruguay, Suriname and French Guiana from 1940-2004 by Liebmann and Allured [109]. The

data was presented in 2.50 gridded �elds which were constructed using daily precipitation totals from 7900

stations. The daily precipitation at each point on a 2.50 grid was calculated by averaging daily precipitation

from all stations within a radius of 1.8750 of the point. The complete description of this data sets is given

in [109]. The spatial variability is investigated for 65 years from 1940-2004 where the percentage of data

points available for the analysis at each grid point is shown in Figure 32a. We analyze all those grid points

having 14 or more years of data. For the spatial variability from 1940-2004, 223 grid points are analyzed

since they have 14 or more years of data. We investigate temporal variability for 40 years from 1965-2004 by

considering 25-year moving window, i.e., 1965-1989, 1966-1990,. . ., 1980-2004, which generates 16 values.

Figure 32b shows the mean percentage of data points, i.e., mean of 16 percentages of data for 16 windows

from 1965-2004, available for the analysis at each grid point. A total of 216 grid points are analyzed for the

temporal variability since they have mean percentage values of 56% or more which is equivalent to 14 or

more years of data out of 25 years.

5.2.2 Methodology

5.2.2.1 Poisson-GP model If x1, . . . , xn be a sequence of IID observations, the Poisson-GP model consists

of two components: (i) the sequence of times at which exceedances occur over a large threshold u, i.e., xi > u

for some i, is governed by a Poisson process; and (ii) the limiting distribution of the excesses over a large

threshold u, i.e., xi − u for some i, is the GP distribution [39]. The �rst component implies that if threshold

exceedances occur independent in time, the time intervals between threshold exceedances, also referred as

inter-arrival times of threshold exceedances later in the dissertation, follow one-dimensional homogeneous

Poisson process. By the de�nition of one-dimensional homogeneous Poisson process, the inter-arrival times

of threshold exceedances are independent and exponentially distributed.

Let x1, . . . , xn be a sequence of IID measurements. An extreme event x is de�ned when it exceeds a

threshold u. If x(1), . . . , x(k) are the k exceedances over threshold u, then threshold excesses are de�ned

as yi = x(i) − u, for i = 1, . . . , k. If y1, . . . , yk is an independent sequence of a random variable, the

distribution of these threshold excesses can be approximated by a member of the GP family [110]. The

86



cumulative distribution function for the GP is given by

Fσ,ξ(y) =





1− [1 + (ξy/σ)]−1/ξ, 1 + (ξy/σ) > 0, ξ 6= 0

1− e−y/σ, ξ = 0
(31)

where y > 0; σ > 0 is a scale parameter; and −∞ < ξ < ∞ is a shape parameter. The shape parameter

is important to understand the qualitative behavior of the GP distribution. The GP distribution has an upper

bound for ξ < 0 (also called bounded distribution) whereas it is unbounded for ξ = 0 (also called light-tailed

distribution) and has no upper limit for ξ > 0 (also called heavy-tailed distribution) [41]. The parameters

σ and ξ of the GP distribution are estimated by maximizing the log-likelihood function since maximum

likelihood estimation assigns the highest probability to the observed data by adopting the model with the

greatest likelihood out of all the models under consideration [110]. The log-likelihood function for the GP

distribution de�ned in Equation 31 is given as

lσ,ξ =




−k log(σ)− (1 + 1/ξ)

∑k
i=1log(ci), ci > 0

−k log(σ)− 1
σ

∑k
i=1yi, ξ = 0

(32)

where ci = (1 + ξyi/σ) [110]. The GP models can be easily interpreted using extreme upper quantiles or

return levels. In hydrology, the return level is generally de�ned on an annual scale, e.g., for a return period

N , N -year return level is de�ned as the level expected to be exceeded once in every N years, or having an

exceedance probability of 1/N in any given year. N -year return level can be obtained by inverting Equation

31 as

F−1
σ,ξ = RLN =





u + σ
ξ [(Nnyζu)ξ − 1], ξ 6= 0

u + σ log(Nnyζu), ξ = 0
(33)

where u and ny are the threshold and number of observations in a year, respectively; and ζu = k/n is the

probability of an individual observation exceeding u [110].

The GP distribution is a limiting distribution of excesses over a large threshold, therefore the choice of

threshold can be critical. If a threshold is low, it is likely to violate the asymptotic basis of the model leading

to bias in estimation and extrapolation whereas a high threshold will result in small number of exceedances

for model estimation leading to large estimation variance [110]. Two methods for threshold selection, which

provide a reasonable approximation to the distribution of threshold excesses, are available: (a) �nd a threshold

u0 from the mean residual plot, which is a plot between mean of excesses and threshold u, above which the
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plot is approximately linear in u, and (b) �nd a threshold u0 above which the estimates of the shape parameter

(ξ) and scale parameter (σ) are constant [110]. These threshold choices are based on user judgements or

subjective considerations. This dissertation does not use any of the above methods for threshold selection

because it is not feasible to select thresholds based on visual inspection at each and every grid point from 223

grid points in South America. Since the extreme precipitation events are assumed to be rare, the selection

of a constant threshold for all spatial grid points is not recommended because this may give more number

of extremes at some places or less/no extremes at other places. A spatially distributed threshold is more

justi�able hydrologically because the impact of large precipitation is likely to depend on deviation from the

usual at any given spatial location. Previous researchers chose some high quantiles, e.g., 97.5% and 95%,

of the empirical distributions as thresholds [111, 112]. In this dissertation, we choose thresholds as the 99%-

quantile and 95%-quantile of the daily and weekly maxima data, respectively.

5.2.2.2 Precipitation extremes volatility index (PEVI) Hydraulic structures or other civilian infrastructures

are often designed to withstand extremes events of certain magnitudes. However, the infrastructures may fail

if they are exposed to a rarer and more intense extreme event. A measure that compares the increase in inten-

sity with the rarity of extreme events can be a useful indicator for vulnerability, assuming all other conditions

remain the same. Assuming T > t, if the T -year event, which corresponds to a (1/T ) probability of occur-

rence, were to be marginally higher than the t-year design event with a (1/t) probability, the infrastructures

can be considered to be less vulnerable compared to a situation where the difference between the intensities is

signi�cant. The difference in the intensities correspond to a measure of surprise when a lower probability and

more intense extreme event occurs compared to the design event. The PEVI is a new measure de�ned in this

dissertation to quantify and visualize the anticipated surprise caused by intense extreme precipitation events.

This measure is calculated here as a ratio of return levels, i.e., RLT /RLt, where T > t; RLT and RLt are

T -year and t-year RLs, respectively. The PEVI does not contain any new information from the point of view

of extreme value theory since the information contained in it can also be derived from the shape parameter

(ξ) and return levels obtained from the GP distribution. The PEVI is theoretically satisfying since there is a

direct relation to the shape parameter given as

PEV I =
RLT

RLt
∼





(T/t)ξ, ξ > 0,

log(T )/ log(t), ξ = 0,

1, ξ < 0,

(34)
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The PEVI takes values greater or equal to one. The engineering intuition for RLt is that it is a design RL for

t years corresponding to which hydraulic structures have been designed or disaster readiness or mitigation

systems have been put in place. RLT is analogous to a higher bound on the anticipated RL for T years which

has lower probability than RLt but may nevertheless occur in any given year. If the PEVI is unity, the higher

bound on the anticipated RL exactly equals the design RL implying very less probability of more intense

extremes. However, the degree of surprise, when more intense extreme occurs, increases with larger values

of PEVI. In this sense, the PEVI can also be used as the safety factor for engineering design. This dissertation

chooses T and t as 200 and 50 years, respectively. We also present the PEVI since it is statistically valid and

can be computed relatively ef�ciently for each grid point. It can be more easily interpreted and visualized

than the GP distribution parameters, which do not have an event-based intuitive interpretation. This provides

a measure accessible not only to statisticians but also to hydrologists, climatologists, and decision-makers.

The fact that the PEVI can be easily calculated and captured through a single number makes the application

to high-resolution data over large geographical areas possible.

5.2.2.3 Quality of the Poisson-GP model We investigate the quality of the Poisson process by comparing

the distribution of inter-arrival times of threshold exceedances with the exponential distribution. The qual-

ity of the GP distribution to threshold excesses is investigated by examining probability and quantile plots

obtained by �tting the GP distribution to threshold excesses.

We compare the distribution of the inter-arrival times of threshold exceedances with the exponential distri-

bution using the goodness-of-�t statistic DSP, suggested by Michael [113], which is based on the stabilized

probability plot. Let t1, . . . , tk be k inter-arrival times of exceedances over threshold given as the 95%-

quantile. If t1 < · · · < tk is an ordered sample drawn from an exponential distribution, whose cumulative

distribution function is given as F0(t, λ) = 1 − e−λt for t ≥ 0, the stabilized plot consists of coordinates,

(ri, si), which can be calculated as

ri =
2
π

arcsin

√
1
k

(
i− 1

2

)
,

si =
2
π

arcsin
√

1

λ̂
F0(ti, λ̂),

where λ̂ is the maximum likelihood estimator of λ under an exponential distribution. From the stabilized

plot, the deviations of plotted points from a line joining (0,0) and (1,1) indicate departures from their theo-
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retical values [114]. One attractive property of the stabilized plot is that the variances of plotted points are

approximately equal [113]. This property motivates the de�nition of a goodness-of-�t statistic DSP given as

DSP = max
i=1,...,k

|ri − si| ,

which measures the maximum deviation of the plotted points from their theoretical values and removes the

subjectivity in the interpretation of stabilized plots [113]. DSP is analogous to and more powerful than the

standard Kolmogorov-Smirnov statistic [113, 115]. DSP is used here to measure the maximum deviation of

the inter-arrival times of threshold exceedances from an exponential distribution. In order to test goodness-

of-�t of the inter-arrival times to the exponential distribution, DSP can be compared with critical values

D∗
SP. D∗

SP is obtained as some sample quantile recorded from m number of samples of sample size n

[114]. Coles [114] calculated D∗
SP as 95%-quantile of 10 000 samples of size 10, 25, and 40 data points

for normal, logistic, Cauchy, and double exponential distributions. Since this dissertation analyzes 223 grid

points and each grid point can have 728 to 3 380 data points, i.e., 14 to 65 years of weekly data, in the

interests of computational tractability, we consider 1 000 samples for the calculation of D∗
SP. We generate

1 000 independent samples of sample size n and calculate Dsim m
SP from the inter-arrival times of exceedances

over the threshold of 95%-quantile of mth sample for each m = 1, . . . , 1 000. We choose D∗
SP as the 95%-

quantile of Dsim m
SP , m = 1, . . . , 1 000. If DSP ≤ D∗

SP, the inter-arrival times of threshold exceedances

are independent and exponentially distributed with 95% probability. In order to compare DSP and D∗
SP, we

de�ne a simple measure as

DSP =
DSP

D∗
SP

. (35)

If the inter-arrival times of threshold exceedances follow one-dimensional homogeneous Poisson process,

DSP ≤ 1 with 95% probability. If DSP > 1, we reject with 95% con�dence that the inter-arrival times of

threshold exceedances follow a homogeneous Poisson process. This dissertation uses DSP at all 223 grid

points because it can be easily computed, plotted and visualized in space for comparisons.

The quality of the �tted GP model to threshold excesses can be assessed by probability and quantile plots.

If y1, . . . , yk are the k excesses over a threshold u and F̂ is an estimated GP model, the probability plot can

be generated as

{(i/(k + 1), F̂ (yi)); i = 1, . . . , k},
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where

F̂ (y) =





1− [1 + (ξ̂y/σ̂)]−1/ξ̂, 1 + (ξ̂y/σ̂) > 0, ξ̂ 6= 0

1− e−y/σ̂, ξ̂ = 0,

where σ̂ and ξ̂ are the estimated values of the scale and shape parameters, respectively. The quantile plots

can be generated by plotting the points as

{(F̂−1(i/(k + 1)), yi); i = 1, . . . , k},

where

F̂−1(y) = u +
σ̂

ξ̂
[y−ξ̂ − 1].

Both the probability and quantile plots should consist of points lying close to the unit diagonal if the GP

model is appropriate for modeling threshold excesses [110].

5.2.3 Data preparation for the validity of the Poisson-GP model

The validity of the Poisson-GP model is based on the assumption that the data should be IID. The presence of

long term trends, seasonality, and temporal correlations violate the assumption of IID data [47]. Precipitation

data may be temporally correlated and have long term or seasonal trends [47]. Galambos [116] investigated

the effect of long term trends, seasonality, and temporal dependence in the data on the validation of extreme

value theory and found that if the auto-correlation decreases as lag times increases, the asymptotic distri-

bution of extremes is the same as that from IID samples. The detection of clustering of extremes is also

important because maximum likelihood estimation technique assumes the time series of excesses over a large

threshold to be independent [41]. Clustering gradually disappears as the threshold increases but there are

some variables, such as temperature, which exhibit clustering even with high thresholds [110]. If there exists

clusters of extremes over a high threshold, Todorovic and Zelenhasic [42] presented an ad hoc and inef�cient

procedure for declustering which generates a time series by choosing the highest value of each cluster.

We analyze three different sets of data generated from the daily data, such as daily, weekly maxima, and

weekly maxima residuals, to choose the best data satisfying the IID assumption and improving the quality

of the Poisson-GP model. Instead of presenting the results from 223 grid points, we outline the results for
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two grid points representing two very different scenarios. Each of these two grid points has 65 years of daily

precipitation and their locations are given in terms of (longitude, latitude) as (315,-10) and (310,-25). At

these two grid points, we examine time series plots for detecting seasonal trends and auto-correlation plots

for detecting temporal dependence. We detect the clustering of extremes by plotting threshold excesses at

these grid points. We also compare DSP for the quality of the Poisson process, probability and quantile

plots for the quality of the GP distribution from daily, weekly maxima, and weekly maxima residuals in our

quest to �nd the best data for the analysis. For DSP, we analyze daily, weekly maxima, and weekly maxima

residuals data for all 223 grid points in South America for three time windows, i.e., 1940-2004, 1965-1989,

and 1980-2004.
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Figure 33. Grid point having (longitude, latitude) as (315,−10): Daily data with threshold given as 99%-
quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for 65 years; (b) Time series for
4 years; (c) Excesses over a threshold for the �rst 10 years; (d) Auto-correlation plot; (e) Probability plot;
and (f) Quantile plot. We observe strong seasonality and temporal dependence and also some clustering of
extremes. The quality of probability and quantile plots is poor.
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Figure 34. Grid point having (longitude, latitude) as (310,−25): Daily data with threshold given as 99%-
quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for 65 years; (b) Time series for
4 years; (c) Excesses over a threshold for the �rst 10 years; (d) Auto-correlation plot; (e) Probability plot;
and (f) Quantile plot. The seasonal patterns are weak but there exists temporal dependence and clusters of
extremes. The quality of probability and quantile plots is good.
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Figure 35. DSP for three time windows, i.e., 1940-2004, 1965-1989, and 1980-2004: (a) daily data; (b)
weekly maxima; and (c) weekly maxima residuals. If DSP ≤ 1, the inter-arrival times of threshold excesses
follow a homogeneous Poisson process with 95% probability. There is signi�cant improvement in DSP from
weekly maxima residuals over daily and weekly maxima data for all three time windows.
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5.2.3.1 Daily We �rst analyze daily precipitation data to check if the IID assumption for the Poisson-GP

model is satis�ed. The threshold is chosen as the 99%-quantile of time series at each grid point. For 1940-

2004, the time series, excesses over the threshold, and auto-correlation plots for two grid points, i.e., (315,-10)

and (310,-25), are shown in Figures 33 and 34, respectively. We do not observe any long term trends at both

grid points but they do show the presence of seasonality and temporal dependence. The grid point (315,-10)

shows greater seasonality and temporal dependence as compared to (310,-25). A total of 88%, 85%, and 82%

grid points show signi�cant auto-correlations by visual inspection for the period 1940-2004, 1965-1989, and

1980-2004, respectively. We do observe some clusters at both grid points (Figures 33a,c and 34a,c) but do

not use here the declustering method suggested by Todorovic and Zelenhasic [42] since the de�nition of

clusters is based on subjective considerations which makes this declustering procedure inef�cient for 223

grid points. DSP is more than one at a majority of locations in South America which means that we reject

with 95% con�dence that the inter-arrival times of threshold exceedances follow a homogeneous Poisson

process at these locations(Figures 35a). The quality of probability and quantile plots obtained by �tting the

GP distribution to daily data is good at (310,-25) but poor at (315,-10) (Figures 33e,f and 34e,f). Based on all

the above reasons, this dissertation rules out the analysis of daily precipitation for the investigation of spatial

and temporal variability of extremes using the Poisson-GP model. Therefore, we aggregate daily data into

weekly maxima data in order to check if it reduces temporal dependence, resolves the clustering problem and

improves DSP (described in the next section).
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Figure 36. Grid point having (longitude, latitude) as (315,−10): Weekly maxima data with threshold given
as 95%-quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for 65 years; (b) Time series
for 4 years; (c) Excesses over a threshold for the �rst 10 years; (d) Auto-correlation plot; (e) Probability plot;
and (f) Quantile plot. We observe strong seasonal patterns, clusters of extremes, and temporal dependence.
The quality of probability and quantile plots is bad.
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Figure 37. Grid point having (longitude, latitude) as (310,−25): Weekly maxima data with threshold given
as 95%-quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for 65 years; (b) Time
series for 4 years; (c) Excesses over a threshold for the �rst 20 years; (d) Auto-correlation plot; (e) Probability
plot; and (f) Quantile plot. The seasonal patterns are not evident from time series plots and there is some
improvement in clustering of extremes as compared to daily data (Figure 34c). We observe some temporal
dependence but it seems to be of the same order as from daily (Figure 34d). The quality of probability and
quantile plots is good but not better than the plots from daily (Figures 34e,f).
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5.2.3.2 Weekly maxima We generate weekly maxima precipitation time series from daily precipitation at

each grid point. In this case, the threshold is chosen as the 95%-quantile of time series at each grid point.

Both grid points, i.e., (315,-10) and (310,-25), do not show any long term trends (Figures 36a and 37a).

At (315,-10), we do not observe signi�cant changes in seasonality and clustering of extremes from weekly

maxima as compared to daily data but weekly maxima shows greater temporal dependence than daily as

shown by auto-correlation plots (Figures 33b,c,d and 36b,c,d). At (310,-25), signi�cant improvements are

observed in seasonality, clustering of extremes, and temporal dependence from weekly maxima if compared

with daily (Figures 34b,c,d and 37b,c,d). We do observe some temporal dependence in weekly maxima data

at (310,-25) (Figure 37d). Visual inspection of auto-correlation plots for all grid points indicates signi�cant

auto-correlations in nearly 80%, 80%, and 77% grid points for the period 1940-2004, 1965-1989, and 1980-

2004, respectively. At both grid points, the quality of probability and quantile plots from weekly maxima

degrades if compared with daily (Figures (33, 34, 36, 37)e,f). DSP shows slight improvements as compared

to that from daily but it is more than one at the majority of grid points in South America (Figure 35b).

The results discussed and presented in this section provide a couple of interesting insights, which, in turn,

have in�uenced our data analysis choices. First, minor to relatively more signi�cant reductions, in terms

seasonality or periodicity, clustering of extremes and autocorrelation, as well as improvements in terms of the

DSP measure, are observed from the analysis of weekly maxima data compared to the corresponding daily

data. This leads us to choose weekly data in this dissertation as they appear better suited to the type of extreme

value analysis utilized here. The fact that daily precipitation data exhibit correlations with nearby lags in well-

known and has been used, for example, in weather simulations [117]. On the other hand, the correlations are

known to decay quickly and expected to be less signi�cant at weekly time scales. While a combination of

our data analysis results with known statistical insights about precipitation leads us to the choice of weekly

data, we believe that analysis of daily data, potentially after creative post-processing designed to reduce the

observed dependence, may yield interesting insights. However, the success of the post-processing scheme

may determine our degree of belief in the results of the extreme value theory and therefore the scheme may

need to get into rather involved modeling of precipitation processes. This is left as an area of future research.

The second insight is that even the weekly aggregated data, while apparently more suitable than daily data,

continues to retain seasonal or periodic patterns and short-term temporal dependence. This leads us to further

investigate whether such patterns and dependence can be reduced from weekly data prior to extreme value

analysis (described in the next section).
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Figure 38. Grid point having (longitude, latitude) as (315,−10): Weekly maxima residuals data with
threshold given as 95%-quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for
65 years; (b) Time series for 4 years; (c) Excesses over a threshold for the �rst 10 years; (d) Auto-correlation
plot; (e) Probability plot; and (f) Quantile plot. There exists strong seasonal patterns and clusters of extremes.
We observe temporal dependence but it is less as compared to daily and weekly maxima (Figures 33d and
36d). The quality of probability and quantile plots is good and also better than that from daily and weekly
maxima (Figures 33e,f and 36e,f).
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Figure 39. Grid point having (longitude, latitude) as (310,−25): Weekly maxima residuals data with
threshold given as 95%-quantile (shown as a horizontal line in blue in (a) and (b)). (a) Time series for
65 years; (b) Time series for 4 years; (c) Excesses over a threshold for the �rst 20 years; (d) Auto-correlation
plot; (e) Probability plot; and (f) Quantile plot. The seasonal patterns are absent. There is no improvement
in clustering of extremes as compared to weekly maxima (Figure 37c). The temporal dependence disappears
completely. We observe signi�cant improvements in temporal dependence as compared to daily and weekly
maxima (Figures 34d and 37d). The quality of probability and quantile plots is good.
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5.2.3.3 Weekly maxima residuals We use a brute-force approach described by Gaines and Denny [47] to

remove seasonality from weekly maxima to generate weekly maxima residuals. Weekly maxima residuals are

obtained by subtracting the long term mean of weekly maxima of a particular week, i.e., mean of maximum

weekly precipitation across the same week for all years used in the analysis, from weekly maxima of the

same week. At each grid point, the threshold is chosen as the 95%-quantile of time series. Long term

trends at both grid points, i.e., (315,-10) and (310,-25), are absent (Figures 38a and 39a). At (315,-10),

seasonality and temporal dependence are still present for weekly maxima residuals data but it has the lowest

temporal dependence as compared to daily and weekly maxima datasets (Figures (33, 36, 38)b,d). At (310,-

25), clustering of extremes from weekly maxima residuals is not different from weekly maxima (Figures 37c

and 39c). There is no seasonality and temporal dependence in weekly maxima residuals at (310-25) (Figures

39b,d). For weekly maxima residuals, nearly 58%, 56%, and 46% grid points show signi�cant temporal

dependence by visual inspection of auto-correlation plots for the period 1940-2004, 1965-1989, and 1980-

2004, respectively, which indicates signi�cant improvement if compared with the respective �gures from

daily or weekly maxima. At both grid points, probability and quantile plots consist of points lying closer to the

unit diagonal indicating that the GP distribution is reasonable for modeling threshold excesses (Figures 38e,f

and 39e,f). DSP for 1940-2004, 1965-1989, and 1980-2004 show signi�cant improvements over daily and

weekly maxima data since DSP ≤ 1 or DSP lies between 1 and 1.5 at the majority of places in South America

for all time periods (Figures 35c). For 1965-1989 and 1980-2004, DSP from weekly maxima residuals is less

than one in more than 50% of total grid points considered in this dissertation (Figures 35c). As we move

from daily to weekly maxima residuals data for 1940-2004, DSP changes from greater than two to less than

two for grid (315,−10) whereas it changes from greater than one to less than one for (310,−25) (Figures

35a and 35c). It is interesting to note that the temporal dependence go away completely if we consider

weekly maxima residuals at (310,−25) where DSP is less than one (Figures 35c and 39d). While temporal

dependence persists even after considering weekly maxima residuals at (315,−10) where DSP is between

1.5 and 2 (Figures 35c and 38d).
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Figure 40. Scale (σ) and shape (ξ) parameters and their standard errors from weekly maxima precipitation
for 1940-2004: (a) Spatial variability of σ in mm; (b) Spatial variability of standard errors of σ in mm; (c)
Spatial variability of ξ; and (d) Spatial variability of standard errors of ξ.

103



0

1

2

3

4

5

6

280 290 300 310 320 330

−50

−40

−30

−20

−10

0

10

Longitude
L
a
ti
tu
d
e

(a) (b)

(c) (d)

0

5

10

15

20

25

30

280 290 300 310 320 330

−50

−40

−30

−20

−10

0

10

Longitude

L
a
ti
tu
d
e

−1.0

−0.5

0.0

0.5

280 290 300 310 320 330

−50

−40

−30

−20

−10

0

10

Longitude

L
a
ti
tu
d
e

0.0

0.2

0.4

0.6

0.8

1.0

280 290 300 310 320 330

−50

−40

−30

−20

−10

0

10

Longitude

L
a
ti
tu
d
e

Figure 41. Scale parameter (σ) and its standard errors in mm from weekly maxima precipitation residuals:
(a) Spatial variability of σ from 1940-2004; (b) Spatial variability of standard errors of σ from 1940-2004;
(c) Temporal variability from 1965-2004; and (d) R2 from linear trends shown in (c). In (c), the white region
at a location given by (longitude, latitude) as (295, -2.5) indicates -1.77.
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Figure 42. Shape parameter (ξ) and its standard errors from weekly maxima precipitation residuals: (a) Spatial
variability of ξ from 1940-2004; (b) Spatial variability of standard errors of ξ from 1940-2004; (c) Temporal
variability from 1965-2004; and (d) R2 from linear trends shown in (c). In (c), the white region at a location
given by (longitude, latitude) as (295, -2.5) indicates 0.063.
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The complete removal of seasonality from weekly maxima data is not possible by removing long term

mean of weekly maxima from weekly maxima (Figures 38d). This process changes the order of magnitude

of weekly maxima precipitation which leads to the changes in the order of magnitude of excesses over a

threshold. However, both weekly maxima and weekly maxima residuals may produce most of the extremes

based on their respective 95%-quantile thresholds at the same time but the excesses over their respective

thresholds do not have the same magnitudes (Figures 36c, 38c, 37c and 39c). This may happen because the

selection of extremes is based on 95%-quantile threshold of each time series rather than based on a �xed

threshold. We �t the GP distribution to excesses over 95%-quantile threshold for both weekly maxima and

weekly maxima residuals and plot the spatial variability of the scale (σ) and shape (ξ) parameters and their

standard errors (Figures 40, 41a, 41b, 42a, and 42b). We observe that the spatial variability of σ and ξ

from weekly maxima residuals shows the same patterns as obtained from weekly maxima in the most parts

of South America. However, we observe signi�cant improvements in the standard errors of σ and ξ from

weekly maxima residuals as compared to that obtained from weekly maxima. The probability and quantile

plots at two grids, i.e., (315,-10) and (310,-25), indicate better quality of the �tted GP distribution from

weekly maxima residuals as compared to that from weekly maxima (Figures (36, 37, 38, 39)e,f). Since

this dissertation deals with the spatial and temporal variability of extremes, we may get the same spatial

and temporal patterns from both weekly maxima residuals and weekly maxima and thus, may not affect our

interpretation of the results. But the analysis of weekly maxima residuals has an edge over weekly maxima

because of its lower standard errors and improvements in the quality of probability and quantile plots. Weekly

maxima residuals also show improvements in terms of temporal dependence and DSP if compared with

weekly maxima. Thus, we utilize weekly maxima precipitation residuals for the analysis. Yates et al. [118]

also considered weekly precipitation residuals to understand the spatial and temporal dependencies of the

climate variables.
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Figure 43. Threshold in mm, de�ned as the 95%-quantile of weekly maxima residuals at each grid point:
(a) Spatial variability of threshold from 1940-2004; (b) Temporal variability at each point from 1965-2004
given as the slope of linear trend obtained by �tting a regression line to 16 threshold values computed from
25-year moving window from 1965-2004, i.e., 1965-1989, 1966-1990,. . ., 1980-2004; and (c) R2 obtained
from �tting a regression line, which provides an overall measure of the quality of linear trends shown in (b).
In (b), the white region at a location given by (longitude, latitude) as (290, -5) indicates -1.64.
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Figure 44. Spatial variability of 50-year and 200-year RLs and their standard errors in mm from weekly
maxima precipitation residuals for 1940-2004: (a) 50-year RL; (b) Standard errors of 50-year RL; (c)
200-year RL; and (d) Standard errors of 200-year RL. In (d), the white region at a location given by
(longitude, latitude) as (312.5, -7.5) indicates 193.48 mm.
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Figure 45. Temporal variability of 50-year and 200-year return levels (RL) from weekly maxima precipitation
residuals for 1965-2004: (a) Temporal variability of 50-year RL from 1965-2004; (b) R2 from linear trends
shown in (a); (c) Temporal variability of 200-year RL from 1965-2004; and (d) R2 from linear trends shown
in (c). In (c), the white regions at four locations given by (longitude, latitude) as (292.5, -5), (302.5, -5),
(305, -5) and (307.5, -7.5) indicate -22.07, -26.39, -21.12, and -34.47, respectively.
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Figure 46. Precipitation extremes volatility index (PEVI), de�ned as the ratio of 200-year and 50-year RLs,
from weekly maxima precipitation residuals: (a) Spatial variability for 1940-2004; (b) Temporal variability
from 1965-2004; and (c) R2 from linear trends shown in (b). In (a), the white regions at two locations given
by (longitude, latitude) as (312.5, -7.5) and (315, -7.5) indicate 2.22 and 1.82, respectively. In (b), the
white region at a location given by (longitude, latitude) as (307.5, -7.5) indicates 0.042.
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5.3 Results and discussions

We analyze weekly maxima residuals to investigate the spatial and temporal variability of threshold, 50-year

RL, 200-year RL, and PEVI (Figures 43, 44, 45, and 46). Increasing or decreasing trends in precipitation from

1965-2004 can be evaluated from the temporal variability of thresholds. At each grid point, the threshold is

chosen as the 95%-quantile of time series. Spatial variability is investigated for 65 years (1940-2004) and the

last 40 years (1965-2004) are analyzed for the temporal variability, which is given as the slope of linear trend

obtained by �tting a regression line to 16 values computed from 25-year moving window from 1965-2004,

i.e., 1965-1989, 1966-1990,. . ., 1980-2004. Using the GP distribution, the spatial and temporal variations in

σ and ξ and their standard errors are evaluated and shown in Figures 41 and 42. σ ranges from 5-15 mm at

major parts of South America except some parts of the Amazon basin, north Argentina, and Paraguay where it

is more than 15 mm whereas the standard error of σ varies from 0-3 mm in the whole South America (Figure

41a and 41b). From 1965-2004, σ increases in eastern Brazil including Rio De Janeiro and major parts of

the Brazilian Highlands, Uruguay, Paraguay, some parts of north Argentina, south Venezuela, French Guiana

and Suriname whereas decreasing trends in σ are observed in the Amazon basin, Venezuela, the Mato Grasso

Plateau, Catingas, S�ao Paulo, and Buenos Aires (Figure 41c). The shape parameter (ξ) is mostly greater than

zero in the whole South America except eastern Brazil and north Argentina (Figure 42a). ξ ranges from 0.4-

0.6 and 0.2-0.4 in the Catingas and Mato Grasso Plateau, respectively. The standard error of ξ varies from

0.05-0.15 in the whole South America (Figure 42b). From 1965-2004, the temporal variations in ξ indicate

increasing trends in Venezuela, eastern Brazil including Rio De Janeiro and S�ao Paulo, and major parts of

the Amazon basin, the Brazilian Highlands, Uruguay, Paraguay, and north Argentina including Buenos Aires

(Figure 42c).
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Figure 47. (Please look at the last �gure for an enlarged one) Percentage of the number of consecutive 2- and
3-days extremes out of the total number of extremes based on daily precipitation for 1940-2004. Threshold
is chosen as the 99%-quantile of daily time series. (a) Spatial variability of consecutive 2-days extremes
from 1940-2004; (b) Spatial variability of consecutive 3-days extremes from 1940-2004, where the yellow
regions showing values between 0 and -2 do not indicate any values but represents regions where the number
of consecutive 3-days extremes is zero; (c) Temporal variability of consecutive 2-days extremes from 1965-
2004; (d) Temporal variability of consecutive 3-days extremes from 1965-2004, where the yellow regions
showing values between -0.6 and -0.8 do not indicate any values but represents regions where the number of
consecutive 3-days extremes is zero; (e) R2 from linear trends shown in (c); and (f) R2 from linear trends
shown in (d), where the yellow regions that lies between 0 and -0.2 do not indicate R2 values but represents
grids where the number of consecutive 3-days extremes is zero. In (c), the white region at a location given
by (longitude, latitude) as (295, -7.5) indicates 4.66. In (d), the white regions at two locations given by
(longitude, latitude) as (295, -7.5) and (302.5, -10) indicate 4.71 and -0.97, respectively.
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Figure 48. Percentage of the number of monthly extremes out of the total number of extremes based on
daily precipitation for the period 1940-2004. Threshold is chosen as the 99%-quantile of daily time series.
Extremes mostly occur from December to April with January receiving the highest number of extremes. The
period from July to October is relatively quieter with respect to extremes.
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Figure 49. Same as Figure 47.
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The daily data is analyzed to investigate the spatial and temporal variability of consecutive 2- and 3-

days extremes (Figure 47). In this case, the threshold is chosen as the 99%-quantile of daily time series.

The consecutive 2- and 3-days are de�ned in terms of the percentage of the number of extremes occurring

consecutively for 2- and 3-days out of the total number of extremes. We also investigate the spatial variations

of monthly extremes which is de�ned as the percentage of the number of extremes occurring in a particular

month out of the total number of extremes (Figure 48).

Individual nations need to make policy decisions about water resources, agricultural planning, infrastruc-

ture management and disaster readiness or mitigation strategies. Thus, we present our results by countries in

3.1-3.6. An investigation of precipitation extremes in conjunction with topography and vegetation, which is

presented in 3.7, can lead to enhanced hydrological and climatological insights.

5.3.1 Brazil

In the Amazon basin, threshold is larger than the other parts of Brazil but shows a decreasing trend from

1965-2004 (Figure 43). In the eastern parts of the Amazon basin, 50-year and 200-year RLs and their standard

errors are higher than the other parts of South America but these RLs decrease more sharply as compared to

the other parts of South America from 1965-2004 (Figures 44 and 45). Both 50-year and 200-year RLs show

decreasing trends from 1965-2004 in the whole basin (Figure 45). The PEVI is higher in some eastern parts

of the basin but it decreases sharply from 1965-2004 in those parts (Figure 46). We observe increasing PEVI

trends from 1965-2004 in the major parts of the basin including north-west (NW) where it shows sharply

increasing trends. The percentage of the number of consecutive 2-days extremes is less than 10% whereas

the major parts of the basin have zero number of consecutive 3-days extremes (Figures 47a and 47b). From

1965-2004, the percentage of consecutive 2-days extremes increases only in the western parts of the basin

whereas no trends in the percentage of consecutive 3-days extremes are observed because of zero number of

consecutive 3-days extremes in the basin (Figures 47c and 47d).

In Catingas and the Mato Grasso Plateau, thresholds are lower and show decreasing trends from 1965-

2004 (Figure 43). Catingas has the highest 50-year RL, 200-year RL, and PEVI but their trends indicate

downward behavior from 1965-2004 (Figures 44, 45, and 46). In the Mato Grasso Plateau, the PEVI is

higher relative to the major parts of South America and lies between 1.4 and 1.5 but it shows a decreasing

trend from 1965-2004 (Figure 46). The number of consecutive 2- and 3-days extremes are less than 10%

and 2% of the total extremes, respectively, in both Catingas and the Mato Grasso Plateau (Figures 47a and

47b). From 1965-2004, the percentage of consecutive 2-days extremes shows increasing trends in Catingas
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and some parts of the Mato Grasso Plateau whereas the percentage of consecutive 3-days extremes indicates

increasing and deceasing trends in Catingas and the Mato Grasso Plateau, respectively (Figures 47c and 47d).

In the Brazilian Highlands, threshold is low but it shows an increasing trend in the southern parts (Figure43).

Thresholds are low in east Brazil except south eastern Brazil where they are much higher relative to the other

parts of South America. From 1965-2004, we observe increasing trends in threshold along eastern coastal

regions of Brazil including Rio De Janeiro but thresholds show decreasing trends in Brasilia, S�ao Paulo

and their surrounding regions. 50-year RL, 200-year RL, and PEVI are low in the Brazilian Highlands and

east Brazil but they show increasing trends in the major parts of the Brazilian Highlands and east Brazil in-

cluding Rio De Janeiro and S�ao Paulo (Figures 44, 45, and 46). In Brasilia, decreasing trends in PEVI are

observed from 1965-2004 (Figure 46). 20-35% and 6-16% of the total extremes occur consecutively for 2

and 3 days, respectively, in the Brazilian highlands and north-east (NE) Brazil (Figures 47a and 47b). In Rio

De Janeiro and S�ao Paulo, 15-20% of the total extremes occur for 2 days consecutively (Figure 47a). From

1965-2004, the number of consecutive 2- and 3-days extremes show increasing trends in NE Brazil, few parts

of the Brazilian Highlands and east Brazil including S�ao Paulo but they decrease in Rio De Janeiro (Figures

47c and 47d). In Brasilia, the number of consecutive 2-days and 3-days extremes vary 20-25% and 6-8%,

respectively, and they show decreasing trends from 1965-2004 (Figure 47).

The Amazon basin experiences most of the extremes from January to April with March being the month

most prone to extremes while it receives most of the rainfall from December to May (Figure 48). The wetter

months in NE Brazil and Catingas are from December to May but they receive most of the extremes from

January to April with March receiving the highest number of extremes. The Mato Grosso Plateau experiences

most extremes from December to February with January receiving the highest number of extremes. The

Brazilian highlands and south-east (SE) Brazil receives most of the rainfall from November to April but the

highest number of extremes are observed in the summer months, i.e., December to February, with January

being the most critical with respect to the number of extremes.

5.3.2 North Argentina

Some parts of NE Argentina including Buenos Aires have higher thresholds relative to the other parts of

South America (Figure 43). From 1965-2004, increasing trends in threshold are observed in the major parts

of north Argentina excluding Buenos Aires. 50-year and 200-yr RLs do not show much variations and their

trends from 1965-2004 show increasing behavior in the major parts excluding Buenos Aires (Figures 44 and

45). The PEVI ranges from 1.1-1.2 in the major parts but it also lies between 1.2 and 1.3 in some parts
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including Buenos Aires (Figure 46). Only some parts of north Argentina excluding Buenos Aires show

increasing trends in PEVI from 1965-2004. Less than 10% of the total extremes occurs consecutively for 2

days (Figure 47a). The number of consecutive 3 days extremes is zero everywhere except in Buenos Aires

and its surrounding regions where it is less than 2% (Figure 47b). Increasing trends in consecutive 2-days

extremes are observed in the major parts from 1965-2004 (Figure 47c). For consecutive 3-days extremes,

most of the areas experiences either no trends because of zero consecutive 3-days extremes or decreasing

trends from 1965-2004 (Figure 47d). From 1965-2004, Buenos Aires receives increasing and decreasing

number of consecutive 2-days and 3-days extremes, respectively. Argentina receives most of the rainfall in

the summer months, i.e., December to February, but it experiences most of the extremes in late summer and

autumn, i.e., February to April, with March receiving the highest number of extremes (Figure 48).

5.3.3 Venezuela

In Venezuela, thresholds are low but they show increasing trends from 1965-2004 everywhere except in some

southern parts (Figure 43). We do not observe much variations in 50-year and 200-year RLs but these RLs

show increasing trends from 1965-2004 only in the northern parts including Caracas (Figures 44 and 45). The

PEVI is between 1.2 and 1.3 everywhere except in NW including Caracas where it is high and ranges from

1.3-1.6 (Figure 46). Increasing trends in PEVI are observed from 1965-2004 in the major parts including

Caracas. Some northern parts including Caracas receive 5-10% of the total extremes for 2 days consecutively

(Figure 47a). Venezuela does not experience extremes occurring for 3 days consecutively (Figure 47b). From

1965-2004, the number of consecutive 2-days extremes shows increasing trends only in south Venezuela

whereas no trends are observed in consecutive 3-days extremes in the major parts since these parts do not

receive consecutive 3-days extremes (Figures 47c and 47d). Decreasing trends in consecutive 3-days extremes

are observed from 1965-2004 only in east Venezuela. The main rainy season in Venezuela is from May to

November and it receives the most number of extremes from June to August with June being the most critical

with respect to the number of extremes (Figure 48).

5.3.4 Uruguay

Uruguay has high thresholds in South America and their trends from 1965-2004 indicate increasing levels in

the most parts except Montevideo and its surrounding regions (Figure 43). We do not observe much variations

in 50-year and 200-year RLs and their trends show increasing behavior from 1965-2004 everywhere except

in Montevideo and its surrounding areas (Figures 44 and 45). The PEVI ranges from 1.2-1.3 everywhere
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and it shows increasing trends from 1965-2004 in the whole country except Montevideo and its surrounding

regions (Figure 46). 5-10% of the total extremes occur consecutively for 2 days whereas less than 2% of

the total extremes occur for 3 days consecutively (Figures 47a and 47b). From 1965-2004, decreasing trends

in the number of both consecutive 2- and 3-days extremes are observed (Figures 47c and 47d). Uruguay

receives most of the rainfall in the autumn months, i.e., March to May, but the highest number of extremes

are observed in April and October (Figure 48).

5.3.5 Paraguay

In Paraguay, thresholds are high and they show increasing trends from 1965-2004 in most parts including

Asuncion (Figure 43). 50-year RLs do not vary much whereas some variations are observed in 200-year RLs

(Figure 44). Increasing trends in both 50-year and 200-year RLs are observed from 1965-2004 but these

trends increase more rapidly in Asuncion and its surrounding areas as compared to the other parts (Figure

45). The PEVI varies from 1.1-1.3 everywhere except in Asuncion and its surrounding regions where it varies

from 1.3-1.4 (Figure 46a). From 1965-2004, the PEVI increases in the major parts but it is increasing more

rapidly in Asuncion and its surrounding areas as compared to the other parts (Figure 46b). The number of

extremes occurring consecutively for 2 days is less than 10% of the total extremes whereas the major parts

of the country do not receive consecutive 3-days extremes (Figure 47a and 47b). Decreasing trends in both

consecutive 2- and 3-days extremes are observed from 1965-2004 (Figure 47c and 47d). In Asuncion, less

than 5% and 2% of the total extremes occur for 2 and 3 days consecutively, respectively, and their trends

show decreasing behavior from 1965-2004. Paraguay receives heavy rainfall in summer, i.e., October to

March, and experiences the most number of extremes from December to February with December receiving

the highest number of extremes (Figure 48).

5.3.6 Suriname and French Guiana

In Suriname and French Guiana, thresholds are low but their trends from 1965-2004 show sharply increasing

behavior everywhere including Paramaribo and Cayenne (Figure 43). No variations in 50-year and 200-year

RLs are observed but trends in 50-year and 200-year RLs decrease in Suriname and increase in some parts

of French Guiana including Cayenne (Figures 44 and 45). The PEVI lies between 1.2 and 1.4 in Suriname

whereas it ranges from 1.2-1.3 in French Guiana (Figure 46a). From 1965-2004, the PEVI shows decreasing

trends in both Suriname and French Guiana except Cayenne where the PEVI increases (Figure 46b). The

number of consecutive 2-days extremes varies from 1-20% in Suriname with Paramaribo receiving 15-20%
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whereas it ranges from 10-15% in French Guiana (Figure 47a). Suriname receives less than 4% of the total

extremes for 3-days consecutively with Paramaribo receiving 2-4% whereas in French Guiana, the number

of consecutive 3-days extremes is less than 2% (Figure 47b). From 1965-2004, both consecutive 2- and

3-days extremes show decreasing trends in Suriname and increasing trends in the major parts of French

Guiana including Cayenne (Figures 47c and 47d). Suriname receives heavy rainfall from April to August

and experiences most of the extremes from April to June with May being the most critical with respect to the

number of extremes (Figure 48). In French Guiana, the rainy season goes from April to July and the most

intense months in terms of the number of extremes are from March to May with May receiving the highest

number of extremes (Figure 48).

5.3.7 Extremes with topography and vegetation

In mid- and high-altitudes of the Brazilian highlands and east Venezuela, the PEVI varies from 1.1-1.4 and

shows increasing trends from 1965-2004 in some areas (Figure 46a). The high-altitudes of the Brazilian

Highlands receive 20-35% and 6-16% of the total extremes consecutively for 2 and 3 days, respectively, and

their trends show increasing behavior from 1965-2004 in some parts (Figure 47). But in the high-altitudes of

east Venezuela, consecutive 3-days extremes are not observed and less than 5% of the total extremes occur

consecutively for 2 days and its trends show decreasing behavior from 1965-2004. The mid-altitudes and

lowlands of east Brazil indicate very less variations in PEVI which lies between 1.1 and 1.2 but most of the

eastern Brazil, which includes Rio De Janeiro and S�ao Paulo, experience increasing trends in PEVI from

1965-2004 (Figure 46). In east Brazil, the number of consecutive 2- and 3-days extremes range from 10-30%

and 1-14%, respectively, and their trends show increasing behavior from 1965-2004 only in some parts in-

cluding S�ao Paulo (Figure 47). Catingas with lowlands has the highest PEVI in South America whereas the

lowlands of the Amazon basin and the Mato Grasso Plateau have higher PEVI values (Figure 46a). In the

lowlands of Venezuela, north Argentina, Uruguay, Paraguay, Suriname, and French Guiana, the PEVI lies be-

tween 1.1 and 1.3 (Figure 46a). From 1965-2004, the major parts of the lowlands of the Amazon basin, north

Venezuela, north Argentina, Uruguay, and Paraguay experience increasing trends in PEVI whereas decreas-

ing trends in PEVI are observed in the lowlands of the Mato Grasso Plateau, Suriname, and French Guiana

except Cayenne (Figure 46b). All the lowlands regions of Brazil, north Argentina, Venezuela, Paraguay,

Uruguay, Suriname and French Guiana experience less than 10% of the total extremes for 2 days consecu-

tively whereas the number of consecutive 3-days extremes is zero in most of these areas (Figures 47a and

47b). Only some of the lowlands areas of the Amazon basin particularly western parts of the basin, the Mato
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Grasso Plateau, south Venezuela, and north Argentina experience increasing number of consecutive 2-days

extremes from 1965-2004 (Figure 47c).

In the evergreen forests of the Amazon basin, south Venezuela, Suriname, and French Guiana, the PEVI

ranges from 1.1-1.3 (Figure 46a). Catingas with evergreen forest has the highest PEVI in South America.

Increasing trends in PEVI are observed only in some parts of the Amazon basin and south Venezuela (Figure

46b). In the Amazon basin, Catingas, and south Venezuela, the number of consecutive 2-days extremes is

less than 10% of the total extremes and its trends show increasing behavior from 1965-2004 (Figure 47a and

47c). In Suriname, the number of consecutive 2-days extremes varies from 1-20% and shows decreasing

trends from 1965-2004 whereas it ranges from 10-15% and indicates increasing trends from 1965-2004 in

French Guiana. The number of consecutive 3-days extremes is zero in the evergreen forests of Catingas, south

Venezuela, and some parts of the Amazon basin and shows decreasing trends in Suriname and increasing

trends in the major parts of French Guiana from 1965-2004 (Figure 47b and 47d). In the savannas of north

Venezuela, the PEVI ranges from 1.2-1.6 and shows increasing trends from 1965-2004 while the number

of consecutive 2-days extremes is less than 10% and shows decreasing trends from 1965-2004 (Figures 46

and 47). In the cropland/natural vegetation of the Brazilian highlands, the Mato Grasso Plateau, east Brazil,

north Argentina, Uruguay, and Paraguay, the PEVI is low and lies between 1.1 and 1.3 and shows increasing

trends from 1965-2004 in some of their areas (Figure 46). The Brazilian highlands and NE Brazil experience

20-35% and 6-16% of the total extremes consecutively for 2 and 3 days, respectively, and their trends show

increasing behavior from 1965-2004 in some areas (Figure 47). Less than 10% of the total extremes occur

consecutively for 2 days in the Mato Grasso Plateau, SE Brazil, north Argentina, Uruguay, and Paraguay but

their trends increase from 1965-2004 in some parts of the Mato Grasso Plateau and north Argentina. The

number of consecutive 3-days extremes is less than 2% in SE Brazil, some parts of the Mato Grasso Plateau,

north Argentina, Uruguay, and Paraguay. From 1965-2004, trends in consecutive 3-days extremes decrease

in SE Brazil, the Mato Grasso Plateau, Uruguay, Paraguay but increase in some parts of north Argentina.

A caution should be exercised while interpreting the results at all those grid points where DSP is greater

than one since at these grid points, we reject with 95% con�dence that the inter-arrival times of threshold

excesses follow a homogeneous Poisson process. The variability of extremes needs to be interpreted with

care in view of issues like spatio-temporal variability in the quality of the observations as well as the possible

in�uence of geographical features, atmospheric conditions, climate teleconnections and other phenomena that

have not been considered in this dissertation. The insights on the spatial and temporal variability of extremes
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will probably be more relevant in a comparative sense and at aggregate space-time scales rather than for the

extremal analysis of individual points or for understanding localized phenomena related to extremes.

5.4 Summary and conclusions

This dissertation analyzed the spatial and temporal variability of precipitation extremes in South America

based on daily precipitation data available in 2.50 gridded �elds from 1940-2004. At each grid point, 65

years of data from 1940-2004 were used to understand spatial variability whereas the temporal variability

was investigated for 40 years (1965-2004) and was given as the slope of linear trend obtained by �tting a

regression line to 16 values computed from 25-year moving window from 1965-2004, i.e., 1965-1989, 1966-

1990,. . ., 1980-2004. We analyzed weekly precipitation maxima residuals and utilized the Poisson-GP model

to investigate the spatial and temporal variability of threshold, the scale (σ) and shape (ξ) parameters, and 50-

year and 200-year RLs. The temporal variability of precipitation were evaluated from the temporal variability

of thresholds. The threshold was chosen as the 95%-quantile of time series. We also investigated the spatial

and temporal variability of the PEVI, which measures the variability of extremes and is de�ned as the ratio

of 200-year and 50-year RLs. Based on daily precipitation data, we investigated the spatial and temporal

variability of the percentage of the number of consecutive 2- and 3-days extremes out of the total number of

extremes. The spatial variability of the percentage of the number of extremes in a particular month out of

the total number of extremes was also investigated based on daily precipitation data. The threshold for the

analysis of daily precipitation data was chosen as the 99%-quantile of time series.

Precipitation is high indicated by high thresholds in SE Brazil, Uruguay, Paraguay, and Buenos Aires.

The PEVI is high in the eastern parts of the Amazon basin, Catingas, Mato Grasso Plateau, NW Venezuela

including Caracas, and Asuncion. From 1965-2004, both precipitation and the PEVI show increasing trends

in the eastern coastal regions of Brazil including Rio De Janeiro, the Brazilian highlands particularly south-

ern parts, north Venezuela including Caracas, some parts of north Argentina, Uruguay, Paraguay including

Asuncion, and Cayenne. The Amazon basin except eastern parts and S�ao Paulo experience increasing trends

in the PEVI and decreasing trends in precipitation. In the eastern parts of the Amazon basin, Catingas, the

Mato Grasso Plateau, Brasilia, Buenos Aires, and Montevideo, simultaneous decreasing trends are observed

in precipitation and the PEVI. The PEVI shows decreasing trends in Suriname including Paramaribo and

French Guiana excluding Cayenne although increasing precipitation trends are observed in these areas. The

number of consecutive 2- and 3-days extremes are high in the Brazilian Highlands, NE Brazil, and Brasilia.

Trends in precipitation and the number of both consecutive 2- and 3-days extremes increase in few parts of
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the Brazilian Highlands and some parts of French Guiana including Cayenne. Catingas and some parts of east

Brazil including S�ao Paulo experience increasing trends in the number of consecutive 2- and 3-days extremes

and decreasing trends in precipitation. The precipitation shows increasing trends whereas the number of

consecutive 2- and 3-days extremes show decreasing trends in NE coastal regions of Brazil, Rio De Janeiro,

Uruguay, Paraguay including Asuncion, and Suriname including Paramaribo. In Brasilia, both precipitation

and the number of consecutive 2- and 3-days extremes show decreasing trends simultaneously. The number

of consecutive 2-days extremes also show increasing trends in the Amazon basin particularly western parts,

some parts of the Mato Grasso Plateau, and Buenos Aires although precipitation shows decreasing trends

in these areas. Simultaneous decreasing trends are observed in precipitation and the number of consecutive

3-days extremes in the Mato Grasso Plateau and Buenos Aires from 1965-2004.

The areas of interest based on an increasing PEVI from 1965-2004, are the Amazon basin, the Brazilian

Highlands, Venezuela, Uruguay, Paraguay, and some of the highly populated cities in South America, speci�-

cally Rio De Janeiro, S�ao Paulo, Caracas, Asuncion, and Cayenne. Some parts of east Brazil, few parts of the

Brazilian highlands, S�ao Paulo, and Cayenne also experience increasing number of consecutive 2- and 3-days

extremes. Water resources engineers and planners, disaster management agencies, and policy makers need to

pay special attention to the regions with increasing trends in the PEVI and consecutive 2- and 3-days daily

extremes, especially when these regions overlap with densely populated areas, while planning for infrastruc-

ture development and disaster management. Civil engineers can utilize the results of this dissertation for the

design of hydraulic structures, speci�cally when considering the optimal safety factors in their design. Hy-

drologists and climatologists need to delve deeper into the potential causes of the observed spatio-temporal

trends in extremes for delineating the variability of extremes due to natural and anthropogenic effects.

Precipitation extremes may result in signi�cant loss of human life and property. However, the damages

caused by precipitation can be in�uenced by a variety of factors other than just precipitation maxima or the

statistical properties thereof. These factors include surface and sub-surface hydrology since the damages

caused by precipitation extremes are primarily caused by �oods and �ash �oods, which, in turn, are strongly

in�uenced by the physics of runoff and in�ltration. The other factor is population: certainly the (catastrophic)

impact of disasters depends on (high) population densities and the location of critical infrastructures or na-

tional/human assets which may be potentially damaged by precipitation extremes. Finally, the actual damages

would also be a function of resilience of communities and critical infrastructures to precipitation extremes

and related disasters.
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Future research needs to explore the use of extreme value theory in conjunction with more advanced

physically-based or statistical models of precipitation, as well as the utilization of emerging techniques for

the estimation of the extreme value parameters directly as a function of time, seasonality and other covariates.

In addition, development of heuristic approaches for the estimation of optimal thresholds in the context of

precipitation data may need to be explored, since similar approaches developed for other types of data may

or may not be directly applicable to precipitation data, especially when the data sets are large. Hydrologists

and climatologists can perform further research based on this dissertation to understand the natural or an-

thropogenic causes driving precipitation extremes and their spatial or temporal trends. Future research may

combine the PEVI used in this dissertation with other factors like population and critical infrastructures to

estimate the potential risks from extremes and subsequently with development or �nancial indices to estimate

the corresponding impacts.
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Chapter 6

Detection and Predictive Modeling of Chaos in Finite Hydrological Time Series

The ability to detect the chaotic signal from a �nite time series observation of hydrologic systems is ad-

dressed in this paper. The presence of random and seasonal components in hydrological time series, like

rainfall or runoff, makes the detection process challenging. Tests with simulated data demonstrate the pres-

ence of thresholds, in terms of noise to chaotic-signal and seasonality to chaotic-signal ratios, beyond which

the set of currently available tools is not able to detect the chaotic component. The investigations also indi-

cate that the decomposition of a simulated time series into the corresponding random, seasonal and chaotic

components is possible from �nite data. Real stream�ow data from the Arkansas and Colorado rivers are

used to validate these results. Neither of the raw time series exhibits chaos. While a chaotic component can

be extracted from the Arkansas data, such a component is either not present or can not be extracted from the

Colorado data. This indicates that real hydrologic data may or may not have a detectable chaotic component.

The strengths and limitations of the existing set of tools for the detection and modeling of chaos are also

studied.

6.1 Introduction

The presence of nonlinear dynamics and chaos has strong implications for predictive modeling and the anal-

ysis of dominant processes in any discipline. The existence of chaotic behavior has been demonstrated in

diverse areas ranging from turbulence [119], weather or climate [67,120�122] and geophysics [54,123�126],

to biology or medicine [127], �nance [128�130], and electrical circuits [131]. The presence of chaos in hy-

drology has been suggested by previous researchers [48�64]. The ability to detect and model chaotic behavior

from �nite hydrologic time series has recently been debated [65, 66].

Characterization of chaos from real-world observations is known to be a dif�cult problem in nonlinear dy-

namics [67�69]. The complexity was highlighted in the context of climate models by [70], who demonstrated

that sensitivity to initial conditions may become less apparent when the randomness in internal atmospheric

variables begins to dominate. Fundamental questions still remain unanswered in these areas, for example

the ability to detect chaos from a �nite time series with random and seasonal components, the ability to
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decompose a time series into these components, and the corresponding implications for predictive model-

ing. However, addressing these questions is critical for hydrology. This can be gauged from the wealth of

hydrologic literature in areas like complexity analysis [71�73], predictability [64] and nonlinear predictive

modeling [74�77].

This paper investigates the ability of nonlinear dynamical tools to detect, characterize, and predict chaos

from �nite hydrologic observations, using both simulated and real time series. Realistic simulated data is

generated by contaminating chaotic signals with random and seasonal components, while real stream�ow

data are used from the Arkansas and Colorado rivers. The correlation dimension method is used for detecting

the possible presence of chaos. Nonlinear predictive models, namely the phase-space reconstruction (PSR)

and arti�cial neural networks (ANN) are employed for time series decomposition and prediction. This disser-

tation develops several new insights and interesting results. The presence of thresholds for the detect-ability

of chaos is demonstrated, speci�cally when a chaotic signal is mixed with random or seasonal signals, or a

combination thereof. These thresholds can be expressed in terms of the relative dominance of the chaotic

component compared to the random or seasonal components. The ability to decompose a time series into the

contributions from the individual components (random, seasonal and chaotic) is shown. The corresponding

implications for predictive modeling and characterizing the nonlinear dynamics are highlighted. Real stream-

�ow data analysis provides additional insights. First, not all hydrologic time series contain chaotic compo-

nents which can de detected and modeled. Second, for certain �nite hydrologic time series, the presence

of chaos can indeed be detected, isolated from random and seasonal components, and utilized for predictive

modeling.

The rest of the paper is organized as follows. Section 2 presents the tools and methods employed in this

dissertation. The simulated and real hydrological data are discussed in Section 3. Sections 4 and 5 present

and discuss the results obtained with simulated and real hydrological time series, respectively. The summary

and conclusions of this paper are presented in Section 6.

6.2 Tools and methods

6.2.1 State of the art and literature review: tools and concepts

The theoretical concepts underlying the methodologies for the detection and modeling of nonlinear dynamical

and chaotic components, as well as their implementation, are available in the literature [64, 132�134]. The

present dissertation exploits the correlation dimension method, as well as nonlinear predictive models like

125



PSR and ANN. These tools have been used widely for the identi�cation and modeling of nonlinear dynamics

and low-dimensional chaos in short hydrological time series [50, 59, 64]. Contributions include re�nement

of these tools in terms of either the underlying methodologies or the applications. A brief discussion of the

tools and the present modi�cations is described in this section.

6.2.1.1 Correlation dimension An algorithm suggested by [135] is the most commonly used method in

hydrology to characterize chaotic attractors. In a time series of a single dynamic variable, zi, where i =

1, 2, .., N , a vector in an m-dimensional phase space may be given as Zj = (zj , zj−τ , .., zj−(m−1)τ ), where

j = mτ
∆t , .., N ; ∆t is the time interval; τ is the delay time; and m is the embedding dimension of the state

space. The correlation sum C(r) is expressed as

C(r) =
2

N(N − 1)

N∑

i=1

i−1∑

j=1

Θ(r − ‖Zi − Zj‖) (36)

where Θ is the Heaviside step function; N is the number of points in the time series; and r is the radius

of a sphere with its center at either of the current points, zi or zj . The relation between correlation sum C(r)

given by Eq. (1) and correlation exponent ν is expressed as

C(r) = lim
r→∞

crν (37)

where c is a constant and ν = limr→∞
Ln C(r)

Ln r . Since a real data set consists of a �nite number of

points, there always exists a minimum distance, dmin, between the trajectory points. When r < dmin, the

correlation sum C(r) is zero and no longer scales with r. Therefore, Eq. (2) with limit r →∞ cannot be used

directly to determine the correlation exponent. In an alternative technique, a plot of Ln C(r) vs. Ln r graph

is obtained. Several methods are available to determine the correlation exponent from this plot. The slope of

the scaling region, where the curve can be approximated as a straight line, gives the correlation exponent ν.

In the present dissertation, the least squares method is used to �t a line using a moving window of size d to

plot the slope vs. Ln r curve. The adjacent slope values lying close to a horizontal portion of the curve are

averaged to determine the correlation exponent. For the system to be chaotic, the correlation exponent should

increase up to a certain point and then saturate with an increase in the embedding dimension. To calculate the

saturation value of the correlation exponent, the acceptable error is de�ned as ε = p∗(maxci−minci), where

p is an acceptable percentage, and maxci and minci are the respective maximum and minimum correlation

exponents in a set of M values. In this dissertation, the values of p and M are taken as 1% and 20, respectively.

The difference between the adjacent values of the correlation exponent is given as δ = Cj − Ci, where
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j = i+1. If δ ≤ ε, then ∆ = |CM−Ci|
M−i . If ∆ ≤ ε, then Ci is the saturation value of the correlation exponent.

The nearest integer above the saturation value of the correlation exponent gives the correlation dimension of

the attractor. It has been proposed [59, 136] that the correlation dimension may be related to the minimum

number of variables required to extract a multidimensional description of the dynamical system. If δ > ε and

saturation never occurs, the presence of chaos cannot be con�rmed.

[137] observed that the �nite correlation exponent achieved using the correlation dimension method is not

a good indicator of the presence of chaos since linear stochastic processes may also yield a �nite correlation

exponent. The determination of correlation exponent is greatly in�uenced by several factors including limited

data size, the presence of noise, delay time, and the presence of a large number of zeros in the data set.

Hydrological time series is �nite, contaminated with noise, and may contain a large number of zeros. A �nite

and small data set produces a smaller scaling region. This may not be suf�cient to calculate the slope of the

Ln C(r) vs. Ln r curve and may result in an underestimation of the correlation exponent. A large scaling

region may be better delineated when a large data set is used which, in turn, results in a better estimation of

the slope. [138] suggested that the minimum number of data points required for the correct estimation of the

correlation exponent is Nmin = 102+0.4m, where m is the embedding dimension. The presence of noise may

affect the scaling behavior and may tend to make the slope of the Ln C(r) vs. Ln r plot larger for small values

of r resulting in an overestimation of the correlation exponent. If the delay time, τ , is too small, the phase

space may contain very little information and may result in an underestimation of the correlation exponent.

If τ is too large, the phase space may miss out nearby diverging trajectories resulting in an overestimation of

the correlation exponent. The presence of a large number of zeros in the time series produces a phase space

with limited information about the underlying dynamics and results in an underestimation of the correlation

exponent.

6.2.1.2 Arti�cial neural networks (ANNs) ANNs have been used widely for modeling nonlinear hydro-

logic processes such as rainfall-runoff, stream�ow, ground-water management, water quality simulation, and

precipitation [139]. A prediction is expressed by a function, f̂NN, that maps the input (zt, zt−τ , .., zt−(m−1)τ )

to the expected output ẑt+T , i.e. ẑt+T = f̂NN(zt, zt−τ , .., zt−(m−1)τ ), where τ and m are the delay time

and number of variables required to model the system, respectively. The present dissertation employs the

multi-layer perceptron (MLP) as a nonlinear function approximator in the context of time series observa-

tions [140, 141]. For a m-dimensional phase space, an appropriate ANN architecture could comprise m

inputs and one output. The number of hidden layers and corresponding hidden nodes would then depend

on the complexity of the functional form to be modeled. In practical applications, more than two hidden
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layers are seldom used, while a single hidden layer is usually deemed adequate. The choice of the optimal

number of hidden nodes is still an open research topic, although methods based on information criteria and

other approaches have been proposed [142]. For the purposes of this dissertation, a single hidden layer with

integer(m/2) hidden nodes is employed. The ANN is trained using the commonly used backpropagation

algorithm. This algorithm repeatedly computes an error between the output of the network and the desired

output and feeds this error back to the network. The error input is used to adjust the weights until the error

is minimized. In this dissertation, two-third of the data set is used for training and the remaining one-third

is used for predictions. The accuracy of the prediction is calculated in terms of the goodness of �t statistics,

correlation coef�cient (CC), and error statistics, mean squared error (MSE), between the original data and

the predicted data.

As the number of input nodes in the ANN is increased, the prediction skills increase up to a certain point

and then become constant. A large number of input nodes re�ects the use of additional lagged variables

to model the time series. When the number of inputs is too low, the information content in the lagged

values is not adequately captured. This results in a higher bias and hence lower prediction skills. When the

number is too large, the functional form to be modeled grows complex, leading to a larger error variance and

corresponding decay in skills. This bias-variance tradeoff (and related issues) usually results in an optimal

number of nodes where the skills attain a maxima. In certain cases, the number of input values representing

the number of lagged variables of a time series at which the skills attain a maxima have been equated with

the number of variables in�uencing the dynamical system (e.g., [59]).

6.2.1.3 Phase-space reconstruction (PSR) prediction The PSR [143] has been used widely for predicting

chaotic time series in hydrology. The time series with a single dynamical variable is embedded in a m-

dimensional state space. The dynamical system can be interpreted in the form of a nonlinear function FT ,

i.e. Zi+T = FT Zi, where Zi and Zi+T are the current state space and the future state space, respectively. In

order to predict ẑ(i + T ) using the current state Zi, a function F̂T that maps a m-dimensional state space to

a single scalar variable of the system is employed as

ẑi+T = F̂T Zi (38)

In the present dissertation, the local approximation approach suggested by [143] is used to determine F̂T .

This approach reduces the complexity of this function by dividing its domain into many neighborhoods and

estimating an approximation map for each neighborhood. As suggested by [126], F̂T can be modeled as a
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linear function for best results. Two-third of the data set is used for calibrations and the remaining one-third

for predictions. The function of Eq. (3) is modeled by using a linear regression model as




z11+T

z22+T

· · ·
zkk+T




=




z11 z11−τ · · · z11−(m−1)τ

z22 z22−τ · · · z22−(m−1)τ

· · · · · · · · · · · ·
zkk zkk−τ · · · zkk−(m−1)τ







b1

b2

· · ·
bm




(39)

where, (z11, .., z11−(m−1)τ ), .., (zkk, .., zkk−(m−1)τ ) are the k states nearest to the current state, Zi, and

are computed based on the Euclidean distance measure ‖Zi − Zj‖, where Zj = (zjj , .., zjj−(m−1)τ );

b1, .., bm are the function coef�cients; and z11+T , .., zkk+T are the k predicted data points. Using function

coef�cients, bi, from Eq. (4), the predicted value for the current state is given as ẑi+T =
∑m

r=1 zi−(r−1)τ br,

where τ is the delay time. In the present dissertation, the values employed for k and τ are 25 and 1, respec-

tively. The prediction accuracy is represented in terms of CC and MSE between the original data and

the predicted data. It has been suggested [59] that the embedding dimension at which the CC vs. m curve

saturates may indicate the minimum number of variables required to capture the dynamics of the system.

6.3 Data description

The effectiveness of the methods described in section 2.1 in terms of their ability to detect the presence of

low-dimensional chaos, as well as for short-term predictions, is investigated. This is accomplished through

an analysis of both simulated and real hydrologic data.

6.3.1 Simulated data

Hydrological time series are always �nite and may be contaminated with noise and seasonality. To obtain

realistic insights, simulated data is generated by contaminating chaotic time series with noise, i.e. white and

autoregressive, and seasonality. The chaotic time series is represented here by the Lorenz system of equations

as

dx

dt
= β(y − x),

dy

dt
= −xz + rx− y,

dz

dt
= xy − bz (40)

where β = 10; r = 28; and b = 8/3. The Lorenz system is highly sensitive to the initial con-

ditions and is, therefore, chaotic. Seasonality implies periodicity which, in turn, could broadly include
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Figure 50. Monthly stream�ow time series observed at the Arkansas river.

intra-annual and inter-annual cycles. For this dissertation, seasonality is represented by a periodic func-

tion, x(t) = A cos(2πft), where A and f are the amplitude and frequency, respectively. Noise consists of

random variations in the data. White noise is generated by using normal distribution with µ(mean) = 0 and

a user speci�ed value of σ(standard deviation).

6.3.2 Hydrologic time series

Real hydrologic series including monthly stream�ow time series of the Arkansas river at Little Rock and daily

stream�ow time series of the Colorado river below Parker dam are investigated. The raw data is obtained from

the U.S. Geological Survey site.

The presence (or absence) of low-dimensional chaos in a short hydrological (monthly stream�ow) time

series at the Arkansas river at Little Rock in Arkansas is �rst studied. The Arkansas River is the fourth

longest river in the United States and is a tributary of the Mississippi which �ows east and southeast through

Colorado, Kansas, Oklahoma and the state of Arkansas. It is located at Latitude 34o45′00′′ and Longitude

92o16′25′′. The associated drainage area is 158,090 square miles while the contributing drainage area is

135,849 square miles. The temperature at Little Rock ranges from a mean low of 40oF in January to a mean

high of 81oF in July. The mean annual precipitation at Little Rock is 50.26 inches. The stream�ow data of

43 years (October 1927 - September 1970) is analyzed. The monthly stream�ow time series at the Arkansas

river is shown in Fig. 50.

The daily stream�ow data observed at the Colorado river below Parker dam, Arizona-California is also

investigated for the existence of chaotic behavior. The Colorado River �ows through Colorado, New Mexico,

Utah, California, Arizona and Nevada. It drains a part of the arid regions on the western slopes of the Rocky
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Figure 51. Daily stream�ow series observed at the Colorado river.

Mountains. The height, crest length and base thickness of Parker dam are 320 feet, 856 feet, and 100 feet,

respectively. It is located at Latitude 34o17′44′′, Longitude 114o08′22′′. The associated drainage area is

182,700 square miles while the contributing drainage area is 178,700 square miles. The average temperature

varies from 43.1oF in winter to 107.5oF in summer. The annual average precipitation is 6.2 inches. The daily

stream�ow data observed for 4 years (June 1, 1959 - May 31, 1963) is analyzed. The variation of the daily

stream�ow series at the Colorado river is shown in Fig. 51.

Statistics of the stream�ow data observed at the Arkansas and Colorado rivers are given in Table 12.

Table 12. Stream�ow data statistics (values in m3/s)
Parameter Arkansas river Colorado river

Data points 516 1461
Number of zeros 0 0

Mean 0.6529 0.1672
Standard deviation 0.684 0.0594

Variance 0.4678 0.00353
Maximum value 4.7571 0.2819
Minimum value 0.0187 0.0334

6.4 Results with simulated data

6.4.1 Pure chaotic, random and seasonal time series

In this dissertation, a chaotic time series is represented by the X component of Eq. (5); a random series

is a normally-distributed white noise with µ = 0 and σ = 0.16; and seasonal series is represented by a

periodic function, i.e. cosine function with a frequency of 10Hz and an amplitude 10. Each series has 1000
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Figure 52. LnC(r) vs. Lnr plot for Lorenz (X component) time series. The curves are shown from top to
bottom in ascending order of embedding dimension, m = 2, 4,.., 20.

Figure 53. Relation between correlation exponent and embedding dimension for Lorenz (X component),
seasonal, and white noise series.
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Figure 54. The variation of CC and MSE with forecast lead time for white noise with σ = 0.16.
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data points, which is greater than the number of points required (102+0.4∗m = 650, where m = 2 for the

Lorenz time series) for the correct estimation of the correlation exponent of the Lorenz time series [138].

The plot of Ln C(r) vs. Ln r described in section 2.1.1 for Lorenz time series is shown in Fig. 52, while

the corresponding correlation exponent vs. m plot is shown in Fig. 53. For chaotic series, the correlation

exponent saturates at an embedding dimension of 10. The saturation value of the correlation exponent is 1.34,

while the correlation dimension of the Lorenz attractor is 2. For random series, no saturation is observed as

seen in Fig. 53. The correlation exponent shown in Fig. 53 decreases rather markedly for the seasonal

series considered here, while the Ln C(r) vs. Ln r plot shows characteristic steps [134]. For purposes of

generality, uniform and objective methods are utilized to identify the scaling regions and to calculate the

slope through the moving window technique described above. A window size of 9 is chosen and the average

of ten slope values from Ln r = 0.8 to Ln r = 1.7 in increments of 0.1 are taken. These parameters are

selected through trial and error. Once selected, they are kept constant for all the case studies with simulated

data. While this ensures uniformity, there is a possibility that judgmental approaches on each series might

have yielded differing values for the scaling region and smoothing windows. However, one purpose of the

paper is to motivate the development of tools that can be utilized in an automated fashion and that do not rely

on user judgment or subjective considerations. The results with predictive modeling approaches like PSR and

ANN indicate signi�cant prediction skills, i.e. CC = 1 and MSE = 0, for forecast lead time from one to

ten at m = 10 for the chaotic and the seasonal series. For random series, the predictive skills �uctuate around

a lower value and show only a slightly decreasing trend as shown in Fig. 54.

6.4.2 Mixed time series

As described earlier and indicated by previous researchers [60, 136, 144], hydrologic and other real systems

tend to generate observables that have random and seasonal components, in addition to any nonlinear de-

terministic (or chaotic) signal that may be present. Simulated data are generated using a mixture of these

components to understand the ability to identify, characterize and quantify chaos from amidst seasonality and

noise through the commonly used tools for nonlinear dynamics and chaos.

6.4.2.1 Mixture of chaotic and seasonal series The ability to distinguish chaotic signals, when mixed with

seasonal signals of varying amplitudes, is depicted by correlation exponent vs. m plots shown in Fig.

55. These plots are obtained using the correlation dimension method. First, it is seen that as the seasonal

component is increased, i.e. the amplitudes are made higher, the saturation value of the correlation exponent

also increases. Second, there appears to be a threshold value, expressed as the seasonality to chaotic-signal
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Figure 55. Relation between correlation exponent and embedding dimension for mixed time series. Series
includes Lorenz X-component and seasonality with f = 10Hz and different amplitudes.

ratio, for the degree of seasonality beyond which the chaotic component cannot be distinguished any longer.

The degree of seasonality is expressed in terms of the amplitude of the seasonal component for �xed value of

the chaotic Lorenz series. From eye estimation, for amplitudes of 1 and 6 in Fig. 55, the correlation exponent

appears to saturate with an increase in the embedding dimension. Based on objective techniques established

in section 2.1.1, it can be demonstrated that the saturation indeed occurs and the correlation exponent either

decreases, or remains constant, or increases within tolerable limits, till an amplitude of eleven. However,

for amplitudes larger than 11, the increase in correlation exponent no longer remains within the tolerable

limits, thus indicating the presence of a possible threshold. While the presence of a threshold is indicated, the

exact value can depend to some extent on how the criteria for saturation and the corresponding tolerances are

de�ned. It may also depend on the number of data points used for the analysis. It is further observed that the

amplitude of 11 corresponds to the highest integer value of the seasonal amplitude for which σ of the seasonal

component is lower than that of the chaotic series. The σ values for the pure chaotic series, pure seasonal

series with amplitude 11, and pure seasonal series with amplitude 12, are 8.31, 7.78, and 8.48, respectively.

For an amplitude of 11, the seasonality to chaotic-signal ratio, i.e. σs

σc
, is 0.94. Thus, the results: (a) appear

to indicate the presence of a threshold value, i.e. 0.94, for the degree of seasonality beyond which chaotic

components may no longer be distinguishable at least through the use of the correlation exponent based

approaches, and (b) suggest that the threshold may occur at the point where the seasonality to chaotic-signal

ratio roughly equals unity.
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           P e r i o d o g r a m  PSD (dB/Hz)X

  F r e q u e n c y (Hz)

Figure 56. Mixed times series (Lorenz X-component and seasonality) and its periodograms showing the
variation of power spectral density (PSD) with frequency. Top: Lorenz X-component and seasonality with
f = 10Hz and A = 5. Middle: Lorenz X-component and seasonality with f = 25Hz and A = 10. Bottom:
Lorenz X-component and seasonality with f = 50Hz and A = 13.
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Figure 57. Variation of CC and MSE with forecast lead time for chaotic and mixed series. L, WN and S stand
for Lorenz, white noise and seasonality, respectively.
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The separation of the nonlinear deterministic signal from the seasonality is next considered. Frequency

domain methods are applied to identify the dominant frequencies of the seasonal component. This implicitly

assumes that the seasonal component, if present, in a simulated or real hydrologic series, is dominant enough

to be identi�able through the periodogram estimate. Fig. 56 shows chaotic-signal mixed with seasonal

signals of different frequencies and amplitudes, and the corresponding periodogram estimates. As shown in

Fig. 56, the dominant frequency is observed for each simulation. The amplitudes selected here represent

the minimum values of the amplitudes, corresponding to the given frequencies, above which a peak can be

distinguished in the periodogram. Thus, seasonal components of higher frequencies need higher amplitudes

to make them identi�able. Once the frequencies are obtained, curve �tting techniques can be utilized to

obtain the amplitudes of the seasonal component. The remaining component is the non-seasonal portion,

which in this case would be the chaotic component. It is noted again that when extending this observation

to real data, the non-seasonal component needs to be further decomposed into random and deterministic

components. The deterministic component is next analyzed for chaotic signals. The separation of random

and deterministic (possibly chaotic) signals is discussed in section 4.2.2. Table 13 provides an example where

the white noise component has been isolated from a series which is a mixture of chaotic signal, seasonality,

and white noise. The original and recovered standard deviations of the white noise are shown along with

the corresponding errors. Once the deterministic component, i.e. chaotic + seasonality, is isolated from the

mixture, the seasonal component is separated by �tting a periodic curve with the dominant frequency found

using frequency domain analysis. The remaining chaotic component is compared with the original Lorenz

series used for the simulation. It is seen that as the white noise component in the mixture increases, the

prediction skills represented by statistics CC and MSE decrease. The PSR, with the embedding dimension of

10, is used for multi-step ahead forecasting of a mixture of chaotic series and seasonality (f = 10, A = 12;

and f = 10, A = 40). Fig. 57 shows the CC vs. Forecast lead time and MSE vs. Forecast lead time

plots. Good prediction skills with CC = 1 and MSE = 0 for a mixture of chaotic and seasonal series are

observed.
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Table 13. Separation of white noise from a mixture of chaotic, seasonal and white noise series using the PSR
with m = 10.

Org. σwn Cal. σwn % error MSE CC
0.075 0.0910 21.3 0.0083 0.9999

0.1 0.1254 25.4 0.0157 0.9999
0.1 0.2318 15.9 0.0537 0.9997

0.33 0.3608 9.33 0.1301 0.9992
1.0 1.1985 19.85 1.4349 0.9913
2.0 2.6403 32.01 6.9706 0.9587
3.0 4.1341 37.8 17.0917 0.9022
5.0 6.5895 31.8 43.4134 0.7806

10.0 12.624 26.24 159.3665 0.4948

Figure 58. Correlation exponent vs. embedding dimension plot for mixed time series consisting of Lorenz (X
component) and white noise.
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6.4.2.2 Mixture of chaotic and random series The ability to separate the deterministic component from

a mixture of chaotic and random series is studied. Correlation exponent vs. m plot obtained using the

correlation dimension method is shown in Fig. 58. Each curve represents a different value of σ for the white

noise component that is mixed with the same underlying chaotic signal. Several properties are observed.

First, the saturation value of the correlation exponent increases as the white noise component (σ) increases.

Second, a threshold value appears to exist for the noise to chaotic-signal ratio, beyond which the latter cannot

be distinguished through the use of this method. The correlation exponent does not saturate when the σ of

the white noise component becomes more than 0.17, which roughly corresponds to a threshold value of 1/49

for the noise to chaotic-signal ratio. Similar to the case of mixture of chaos and seasonality described in the

previous section, the results presented here appear to suggest the existence of a threshold. The actual value of

the threshold may vary depending on the prede�ned saturation criteria, tolerances and possibly on the number

of data points. However, the results do indicate that a threshold value may exist, beyond which the chaotic

component can not be determined from a mixture of chaotic-signal and white noise. The threshold value

appears surprisingly low (just two percent in terms of the ratio of the standard deviations) for a chaotic-signal

contaminated with pure random noise. Besides the white noise series, a mixture of chaotic series and colored

noise generated from autoregressive process of order one is studied (results not shown). The same threshold

value of 1/49 beyond which the chaotic component can not be determined from a mixture of chaotic-signal

and colored noise is observed.

The separation of the nonlinear deterministic signal from the random component is now considered. The

separation is obtained through the use of predictive modeling strategies that have demonstrated value for

chaotic systems. Several assumptions are made for this purpose. First, it is assumed that the functional form

encapsulated by the trained nonlinear predictive models can be utilized to model the deterministic compo-

nent of the time series. Thus, a decomposition of the series into a deterministic and a random component is

realized. Second, it is assumed that the chaotic-signal is contained within the deterministic component and

adequately modeled by the predictive models. Thus, if a functional form f̂NN modeled by the ANN exists,

where ẑt+T = f̂NN(zt, zt−τ , .., zt−(m−1)τ )+ ε, the ANN can be trained using the entire data set to �nd f̂NN.

Once trained, the estimate of ẑt provided by the ANN is assumed to represent the deterministic component,

and the residual is assumed to represent noise. This assumption holds as long as the functional form modeled

by the predictive model is valid. The second assumption implies that the chaotic-signal, if any, is contained

within the deterministic signal isolated using the predictive modeling-based decomposition strategy. It is

noted, however, that this approach does not distinguish between chaotic and non-chaotic determinism. Once
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the deterministic component has been isolated, the presence of chaos can be determined using the correlation

dimension method. For the simulated data, a mixture of chaotic-signal and white noise is considered. Thus,

the deterministic signal that can be isolated is assumed to be chaotic, provided the signal has been adequately

modeled. The separated components can also be compared with the original signals from which the simu-

lations are generated. Table 14 shows the comparison when the PSR is used as the predictive model, while

Table 15 shows the same for the ANN. The recovered noise is further tested for normality. A perfect recovery

would be indicated by a passing of this test with a mean that is statistically indistinguishable from zero and a

standard deviation indistinguishable from that of the original white noise. Once the deterministic component

has been isolated, it is compared with the original chaotic series used for the simulation. The prediction skills

are related to MSE and CC values obtained from the predictive models. The results presented in Table 14 and

15 indicate that for the simulated data, a fairly good degree of separation can be achieved. An embedding

dimension of 10 is used at which the saturation value of the correlation exponent of the Lorenz time series

is obtained. When these concepts are generalized to the real data, the nature of the deterministic compo-

nent is not known a priori and needs to be veri�ed using tools like correlation exponent methodologies. A

mixture of chaotic series and white noise (σ = 0.17) is analyzed for multi-step ahead forecasting using the

PSR with the embedding dimension of 10. Fig. 57 shows the CC vs. Forecast lead time and MSE vs.

Forecast lead time plots. It is observed that CC decreases and MSE increases as the forecast lead time

increases. Due to randomness, the accuracy of the prediction for a chaotic series mixed with white noise

decreases with an increase in the forecast lead time.

Table 14. Separation of white noise from a mixture of Lorenz (X component) and white noise using the PSR
with m = 10.

σwn σwn(cal) % error µ (norm �t) µci (norm �t) σci (norm �t) MSE CC
0.075 0.0861 14.8 -0.0012 -0.0066 - 0.0041 0.0825 - 0.0901 0.0074 0.9999

0.1 0.1066 6.6 -0.0022 -0.0088 - 0.0045 0.1021 - 0.1115 0.0114 0.9999
0.2 0.2008 0.4 0.0 -0.0135 - 0.0115 0.1924 - 0.2101 0.0403 0.9997

0.33 0.3502 6.12 -0.0011 -0.0229 - 0.0208 0.3355 - 0.3664 0.1226 0.9991

Table 15. Separation of white noise from a mixture of Lorenz (X component) and white noise using the ANN
with m = 10.

σwn σwn(cal) % error µ (norm �t) µci (norm �t) σci (norm �t) MSE CC
0.075 0.0871 16.1 0.0 -0.0054 - 0.0054 0.0834 - 0.0911 0.0076 0.9999

0.1 0.1129 12.9 0.0 -0.007 - 0.007 0.1081 - 0.1181 0.0138 0.9999
0.2 0.2238 11.9 0.0 -0.014 - 0.014 0.2144 - 0.2341 0.05 0.9996

0.33 0.3541 7.3 0.0 -0.0221 - 0.0221 0.3392 - 0.3704 0.1391 0.9991
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Figure 59. Correlation exponent vs. embedding dimension for monthly stream�ow series at the Arkansas
river.

Figure 60. LnC(r) vs. Lnr plot for the series, after removing noise, observed at the Arkansas river. The
curves are shown in ascending order of embedding dimension, m = 1, 2,.., 20 from top to bottom.
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Figure 61. Multistep ahead predictions for the Arkansas river stream�ow data. Top: one-step ahead predic-
tions. Middle: two-step ahead predictions. Bottom: three-step ahead predictions.
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Figure 62. Monthly stream�ow data at the Arkansas river: Variation of MSE with forecast lead time for the
original and deterministic data. The deterministic data is obtained after removing noise from original data.
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6.5 Analysis with hydrologic time series

6.5.1 Arkansas river

The monthly stream�ow time series at the Arkansas river is shown in Fig. 50 and is analyzed using the

correlation dimension method to detect the presence (or absence) of low-dimensional chaos in the system.

The methodology used for the analysis is described in section 2.1.1. A moving window of size 3 units is used

to compute the slope. The number of Ln r values for which the slope is available and constant is limited for

this data. The slope at a middle range (around Ln r = 0.8) is used as the correlation exponent. Fig. 59 shows

the correlation exponent vs. m plot for the original monthly stream�ow series which does not saturate

based either on an eye estimation or the objective techniques described in section 2.1.1. This indicates that

either the system is stochastic or the chaotic component, if present, is dominated by noise or seasonality. The

time series is analyzed using the PSR with m = 10 to isolate the deterministic component from the original

series. The methodology is similar to that used for simulated data, and is described in detail in section 4.2.

The mean and standard deviation of the non-deterministic component, i.e. noise, separated using the PSR are

−0.0097 and 0.7159, respectively. The mean and standard deviation of the original series and the series after

the removal of noise, i.e. deterministic series, are µ = 0.6529; σ = 0.6833 and µ = 0.5908; σ = 0.6564,

respectively. In the present example, the ratio of σn (0.7159) and σc (0.6529) is 1.09 which is greater than

the threshold value (i.e, 0.02) obtained for the simulated data in section 4.2.2. An attempt to �t a periodic

function to the deterministic series to isolate seasonal behavior is not made since no dominant frequency

in the series is observed from frequency domain analysis. The deterministic series is analyzed using the

correlation dimension method with the same embedding dimension, i.e. 10, and window size, i.e. 3, to

examine a low-dimensional chaos in the system. Fig. 60 shows the Ln C(r) vs. Ln r plot for the series. The

correlation exponent vs. m plot in Fig. 59 for the deterministic series shows that the correlation exponent

saturates after an embedding dimension of 15 based on the objective techniques. The saturation value of the

correlation exponent is 3.97. The number of variables required to model the stream�ow dynamical system

would be 4. The low value of correlation dimension suggests the possible presence of low-dimensional chaos

in the stream�ow dynamics. Fig. 61 shows one-step, two-step, and three-step ahead predictions for the

original monthly stream�ow series at the Arkansas river. Fig. 62 shows MSE vs. Forecast lead time

plots for the original and deterministic series. The MSE values at Forecast lead time of 7 and 8 are 27.22

and 315.27, respectively. For the original series, MSE values are high and increase as the forecast lead

time increases indicating the presence of non-deterministic component con�rming the results obtained earlier
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Figure 63. Correlation exponent vs. embedding dimension plot for daily stream�ow series at the Colorado
river.

using the PSR. This, in turn, decreases the prediction accuracy with an increase in the lead time. For the

deterministic series, the prediction accuracy is signi�cantly improved, i.e. the MSE values are very low

as compared with the original series values, indicating that the deterministic series is indeed chaotic. This

con�rms the results from the correlation dimension method.

6.5.2 Colorado river

The daily stream�ow series observed at the Colorado river below Parker dam is shown in Fig. 51. This

series is analyzed for low-dimensional chaotic behavior using the correlation dimension method. The slope

is calculated by considering a moving window of size 3 units. The correlation exponent is the slope value at

Ln r = −2.2. The correlation exponent vs. m plot for the original series is shown in Fig. 63. Based on an

eye estimation and the objective techniques described in section 2.1.1, it is seen that the correlation exponent

does not reach a saturation value. This indicates that either the system is stochastic or it contains some

dominant noise/seasonality component. To separate the non-deterministic component, the original series with

µ = 0.1672 and σ = 0.0594 is analyzed using the PSR with m = 10. The mean and the standard deviation

of the non-deterministic component, i.e. noise, separated using the PSR are 0.0 and 0.0099, respectively. The

statistics for the deterministic component that might contain chaos and seasonality are given as µ = 0.1669

146



Figure 64. LnC(r) vs. Lnr for daily stream�ow series, after removing noise and seasonality, at the Colorado
river. The curves are shown in ascending order of embedding dimension, m = 1, 2,.., 20 from top to bottom.

Figure 65. Multistep ahead predictions for the Colorado river stream�ow data. Top: one-step ahead predic-
tions. Middle: two-step ahead predictions. Bottom: three-step ahead predictions.
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Figure 66. Daily stream�ow data at the Colorado river: Variation of MSE with forecast lead time for the
original and deterministic data. The deterministic data is obtained after separating white noise and seasonality
from the original data.

and σ = 0.0593. The ratio of σn (0.0099) and σc (0.0593) is 0.167 which is greater than the threshold

value of 0.02, obtained for the simulated data in section 4.2.2. The series, after the removal of noise, is

analyzed using the frequency domain method to determine the dominant frequency. No peak is observed in

the periodogram. However, based on an eye estimation a possible seasonal behavior in the data is observed.

To isolate and remove the possible presence of seasonality, a periodic function is chosen to �t the data such

that the MSE is minimized. This function is obtained using a trial and error procedure. The mean and the

standard deviation of the series after the removal of noise and seasonality, i.e. deterministic series, according

to the methods described earlier are 0.0469 and 0.0328, respectively. The deterministic series is analyzed

using the correlation dimension method with the same embedding dimension, i.e. 10, and window size, i.e.

3. Fig. 64 shows the Ln C(r) vs. Ln r plot for the deterministic series. The correlation exponent vs.

m curve shown in Fig. 63 for the deterministic series does not saturate based on an eye estimation and the

objective techniques indicating that the system is stochastic. Fig. 65 shows one-step, two-step, and three-step

ahead predictions for the original daily series at the Colorado river. The MSE vs. Forecast lead time plots

for the original and deterministic series are shown in Fig. 66. The prediction accuracy is high, i.e. MSE

values are low, due to the presence of seasonality in the data. For the original series, the MSE increases

with an increase in the forecast lead time. The prediction accuracy does not change signi�cantly for the

deterministic series, i.e. MSE values are very close to the original series values, indicating the absence

of chaos in the deterministic series. This indicates that the system is stochastic con�rming the results from
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the correlation dimension method. The stream�ow measurement gauge is located at a distance of 100 feet

downstream of the dam ( [145]). In addition, the �ow at the dam is regulated based on requirements ( [146]) .

These, in turn, may depend on various factors on a day-to-day basis leading to signi�cant randomness in the

observations. The measured �ow at the dam, thus, re�ects a variety of human controls implying that natural

variability no longer is the dominant factor. This is the most likely cause for the loss of nonlinear dynamical

information in the time series.

6.6 Summary and conclusions

The strengths of the use of nonlinear dynamical tools in conjunction with statistical time and frequency do-

main methodologies were demonstrated in this work. This dissertation investigated the ability to detect and

model chaos from �nite hydrologic observations, especially when randomness and seasonality are present.

The ability to detect and model nonlinear dynamical and chaotic components, from �nite real-world ob-

servations, is likely to have signi�cant implications for scienti�c understanding and predictive modeling in

multiple disciplines. This research represents a step forward in these directions. The results of the present

investigation demonstrated the presence of thresholds, expressed in terms of noise to chaotic-signal and sea-

sonality to chaotic-signal ratios. The ability to detect chaos from observations depends on whether the chaotic

component in the hydrologic time series is dominant enough to satisfy the thresholds. It was shown that the

overall time series can be decomposed into the contributing random, seasonal and chaotic components. Time

series was decomposed using nonlinear predictive modeling for separating the chaotic component, statistical

methods for characterizing random data, and frequency domain approaches for isolating seasonality. This

has direct implications for a scienti�c understanding of hydrologic phenomena and the dominant processes

that may be present as well as in the development of predictive models. For example, it was shown that the

chaotic component, once detected and isolated, can be better predicted in the short-term through nonlinear

models like ANN and PSR. The insights obtained from simulated data were used to interpret the results of

real stream�ow data from the Arkansas and Colorado rivers. It was observed that a chaotic component can

be detected, isolated and utilized for improved predictive modeling from �nite hydrologic time series like the

Arkansas data. However, it was seen that for certain hydrologic data like the Colorado river data, this may

not be possible. This may be due to the absence of chaotic/nonlinear dynamical component in the data. If

the data observed at the Colorado river does contain chaotic/nonlinear dynamic component, then it may be

completely dominated by randomness introduced as a result of the stochastic mode of dam operation on a

daily basis.
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Chapter 7

Conclusions

The application of different tools, speci�cally nonlinear dependence, extremes, and chaos, on the real

data indicates that these tools may be easily �t as different components in developing predictive models for

hydrology and climate. The insights obtained from the real data analysis using these tools are described

below separately.

Rigorous analysis of recently developed MI-estimation methods indicate that two MI-estimation methods,

speci�cally KDE and KNN, outperform the other methods and estimation procedures in terms of their ability

to capture the dependence structure including nonlinear dependence where present. We �nd that KNN is the

best estimator for very short data with relatively low noise while KDE works better for very short data when

the noise levels are higher. For short data, KNN is the best choice for capturing the nonlinear dependence

across all noise levels except when the data are generated from chaotic dynamics, where KDE is a better

choice at higher noise levels. We surmise that the relative performance of KDE and KNN with respect to

various noise levels is a consequence of the bias-variance tradeoff. The bias in the KDE estimates dominates

the variance of the estimates for low noise-to-signal ratios. The KNN performs relatively better for low

noise levels since its bias and variance are lower than that from KDE. However, the converse is true for high

noise-to-signal ratios, and hence the KDE performs relatively better. For high noise, the variance dominates

because of the noise in the data but the variance associated with k = 3 for KNN increases dramatically.

The application of MI-based nonlinear dependence on the real data suggests that there exists a nonlinear

extrabasinal connection between ENSO and river �ows in the topics and subtropics. This study also shows

an appreciable increase of 20-70% in the variation of annual river �ows linked to ENSO using nonlinear

relationship measure as compared to linear measures. Hence, these results indicate additional predictability

in the ENSO-stream�ow extrabasinal connection when MI-based approaches are used, as compared to linear

approaches used by researchers till date. The additional dependence captured by the MI-based nonlinear

CCs may be useful for developing more accurate and longer stream�ow models. Although ENSO has a

direct in�uence on rainfall anomalies over the tropical and subtropical regions, only a portion of the variation

in the annual �ow of rivers located in these regions is associated with ENSO events. This may be due to
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the complex relationship between rainfall and runoff, which, in turn, depends on surface hydrological and

ocean-atmosphere-land interaction processes as well as noisy and potentially incomplete or corrupted data.

Analysis of precipitation extremes in South America indicate that the areas of interest based on an increas-

ing PEVI from 1965-2004, are the Amazon basin, the Brazilian Highlands, Venezuela, Uruguay, Paraguay,

and some of the highly populated cities in South America, speci�cally Rio De Janeiro, S�ao Paulo, Caracas,

Asuncion, and Cayenne. Some parts of east Brazil, few parts of the Brazilian highlands, S�ao Paulo, and

Cayenne also experience increasing number of consecutive 2- and 3-days extremes. Water resources engi-

neers and planners, disaster management agencies, and policy makers need to pay special attention to the

regions with increasing trends in the PEVI and consecutive 2- and 3-days daily extremes, especially when

these regions overlap with densely populated areas, while planning for infrastructure development and disas-

ter management.

Analysis of chaos indicate that the chaotic component, once detected and isolated, can be better predicted

in the short-term through nonlinear models like ANN and PSR. The insights obtained from simulated data

are used to interpret the results of real stream�ow data from the Arkansas and Colorado rivers. It is observed

that a chaotic component can be detected, isolated and utilized for improved predictive modeling from �nite

hydrologic time series like the Arkansas data. However, for certain hydrologic data like the Colorado river

data, this may not be possible. This may be due to the absence of chaotic/nonlinear dynamical component

in the data. If the data observed at the Colorado river does contain chaotic/nonlinear dynamic component,

then it may be completely dominated by randomness introduced as a result of the stochastic mode of dam

operation on a daily basis.

The above results also indicate the possibility of inter-connecting these tools for the purpose of developing

predictive models. Since the geophysical data are generally noisy and MI-estimation methods are sensitive to

noise, the noisy component in the data can be reduced, before applying MI-estimation methods for capturing

nonlinear dependence, using ANN or PSR provided there is a presence of chaos in the data. This procedure

may enhance the capability of MI-estimation methods for capturing nonlinear dependence. Nonlinear de-

pendence between variables can help in identifying critical prediction variables out of many predictors and

also enhance scienti�c understanding of relationships between different geophysical processes. The identi�-

cation of relationships between variables may help in identifying additional variables, also called covariates,

for extreme value distributions in order to improve extreme value models. There is a caveat that the use of

covariates, having greater dependence, in extreme value distributions may not necessarily improve extreme

value models.
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