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ABSTRACT 

In the agricultural state of Iowa, water quality research is of great importance for 

monitoring and managing the health of aquatic systems. Among many water quality 

parameters, water temperature is a critical variable that governs the rates of chemical and 

biological processes which affect river health. The main objective of this thesis is to 

develop a real-time high resolution predictive stream temperature model for the entire 

state of Iowa. A statistical model based solely on the water-air temperature relationship 

was developed using logistic regression approach. With hourly High Resolution Rapid 

Refresh (HRRR) air temperature estimations, the implemented stream temperature model 

produces current state-wide estimations. The results are updated hourly in real-time and 

presented on a web-based visualization platform: the Iowa Water Quality Information 

System, Beta version (IWQIS Beta). Streams of 4th order and up are color-coded 

according to the estimated temperatures. Hourly forecasts for lead time of up to 18 hours 

are also available. 

A model was developed separately for spring (March to May), summer (June to 

August), and autumn (September to November) seasons. 2016 model estimation results 

generate less than 3 °C average RMSE for the three seasons, with a summer season 

RMSE of below 2 °C. The model is transferrable to basins of different catchment sizes 

within the state of Iowa and requires hourly air temperature as the only input variable. 

The product will assist Iowa water quality research and provide information to support 

public management decisions.  
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PUBLIC ABSTRACT  

In the agricultural state of Iowa, water quality research is of great importance for 

monitoring and managing aquatic systems health. Among many water quality parameters, 

water temperature is a critical variable that governs the rates of chemical and biological 

processes which affect river health. A statistical model was developed to produce real-

time high resolution predictive stream temperature for the entire state of Iowa. The 

implemented model generates current-hour stream temperature estimations state-wide. 

Forecasts for 18 hours in advance are also available. The hourly estimation results are 

updated in real-time and presented on a web-based visualization platform: the Iowa 

Water Quality Information System, Beta version (IWQIS Beta). This product will assist 

Iowa water quality research and provide information to support public management 

decisions.
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CHAPTER 1 INTRODUCTION 

1.1 Background & Motivation 

As one of the controlling influencers of aquatic habitat, water temperature has 

great economic and ecological significance. Water temperature strongly relates to the 

biological and chemical processes in streams, as well as fish habitat distribution. Due to 

the relationship between in-stream microbial activities and stream temperature, nutrient 

growth/removal models often include stream temperature as a predictor (Crumpton, 

Stenback, Miller, & Helmers, 2006). The United States Environmental Protection Agency 

(U.S. EPA) has been establishing Regional Monitoring Networks (RMNs) to document 

current conditions and detect long-term changes in biological, thermal, hydrologic, 

physical habitat and water chemistry for freshwater wadeable streams (EPA, 2016). 

Among the many metrics being documented, water temperature is an important parameter 

that indicates the overall health of the stream ecosystem. Studies of anthropogenic 

perturbations, such as power plant cooling and global warming, and their impact on 

stream temperature, have also been attracting increased attention.  

In the state of Iowa, rural farms compose about 92.6% of the total land (Iowa 

State University Extension and Outreach, 2017). The high agricultural land rate 

introduces significant water pollution problems in Iowa. Hence water quality in the rivers 

and streams of Iowa has been one of the main focus areas studied at IIHR-Hydroscience 

& Engineering (IIHR) by the Iowa Nutrient Research Center (INRC) group. Various 

water quality parameters and their effects on stream health are being monitored and 

modeled. Additionally, the trout survival rate in north-eastern Iowa streams is also of 
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interest. Therefore, a need for dense spatially distributed stream temperature data arises. 

Hourly temporal resolution is desired to capture the stream temperature diurnal cycle 

behavior. Hence this thesis project aims to develop, evaluate, and implement a state-wide 

stream temperature model that is able to generate real-time estimation with fine spatial 

and temporal resolutions. 

The four main categories of factors influencing stream water temperature are 

atmospheric conditions, topography, discharge, and streambed, as demonstrated in Figure 

1.1. In order to predict stream water temperature, we have at hand a thermodynamics 

problem. A full-scale deterministic model that applies an energy balance approach takes 

into consideration various parameters including solar radiation, sensible heat flux, latent 

heat flux, evaporative flux, channel velocity, channel depth, relative humidity, wind 

speed, cloud cover, riparian vegetation cover, groundwater seepage, discharge, and 

artificial heat inputs. Such a model estimates stream water temperature by solving a 

partial differential equation with respect to space and time, as shown in Equation (1),  
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where U is mean channel velocity, DL is dispersion factor, ρ is the density of water, Cp is 

the specific heat of water, d is mean depth of channel, and S is source and sink of heat 

fluxes with the surrounding environment. This approach has been used to produce high-

quality temperature estimation results with fine temporal resolutions (Brown, 1969; 

Sinokrot & Stefan, 1993;  Beschta, 1997; D. Chen, Carsel, McCutcheon, & Nutter, 1998; 

Westhoff et al., 2007). However, such models call for data including meteorological 

conditions, channel geometry, land usage, and flow rate on a regular grid. Furthermore, 

the spatial extent of estimation is often limited. The full energy budget approach results 
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in a high computational burden. Because one of the main project goals is real-time 

information, the deterministic approach for a large domain, such as the entire state, with 

hourly computational updates does not serve as the best strategy.  

 
Figure 1.1 Illustration of physical factors influencing stream temperature in a control volume. 

Among the four categories mentioned previously, atmospheric conditions are 

among the most dominant in affecting stream water temperature and are responsible for 

the heat exchange that occurs between the stream and the atmosphere. The source and 

sink term from Equation (1) accounts for the energy flux terms that are influenced by 

atmospheric conditions, and is formulated in Equation (2), where QNR is net radiative 

flux, QE is evaporative heat flux, QC is conductive heat flux, QH is convective heat flux, 

and QA is advective heat flux, which is often neglected. 

 AHCENR QQQQQS   (2) 
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The net radiation is composed of both shortwave and longwave radiation. The 

shortwave (solar) radiation, QSR can be expressed as  

 )1)(( SFQQQ SoSiSR   (3) 

where SF is the fraction of solar radiation blocked due to riparian vegetation (shading). 

The longwave radiation, QLR can be expressed as 

 )(
44

aaswLR TTQ    (4) 

where Ts is the stream water temperature, Ta is the air temperature, εw is the emissivity of 

water surface, εa is the emissivity of the atmosphere, and σ is the Stefan-Boltzmann 

constant. The evaporative heat flux, QE can be expressed as 

 )(614.0 awsE eeUQ   (5) 

where U is the wind speed, ews is the saturated vapor pressure at the stream temperature, 

and ea is the atmospheric vapor pressure. The conductive heat flux, QC can be expressed 

as 

 )(
dz

dT
KQC   (6) 

where K is the thermal conductivity of the river bottom material and dT/dz is the 

temperature gradient in the river bottom. The convective heat flux, QH can be expressed 

as 
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where P is the atmospheric pressure. The saturated vapor pressure can be expressed as 
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Although a physics-based deterministic model provides a robust approach in 

which the performance is less limited by geographical features and hydrologic regimes, 

difficulty resides in the acquisition of all relevant meteorological data on a regular grid 

across a large domain. The computational burden would also be heavy and thus make it 

difficult to provide real-time hourly estimation updates.  

This thesis employs a simple logistic regression modeling approach that builds on 

the air-water temperature relationship to produce state-wide stream temperature 

estimation with fine spatial and temporal resolutions and real-time updates. The simple 

statistical approach uses air temperature as the sole predictor, which is physically related 

to the longwave radiation, evaporative, and convective energy fluxes. The product is a 

widely and easily applicable model whose real-time state-wide output is visualized on the 

Iowa Water Quality Information System, Beta version (IWQIS Beta).  

1.2 Literature Review 

As one of the most influential parameters for aquatic habitat and river ecosystem 

health, river temperature has been modeled extensively over the past 50 years. Models of 

stream water temperature aim to ultimately result in more effective fisheries and nutrient 

growth management. Existing modeling approaches for stream water temperature 

simulation or prediction generally fall within three categories: deterministic, stochastic, 

and regression. Different techniques introduce different constraints on the spatial extent, 

spatial resolution, and temporal resolution of model estimation. The sections below 

provide an overview of the three types of modeling approaches as well as the benefits and 

drawbacks of each strategy.  



 

 

6 

6
 

1.2.1 Deterministic Models 

River thermal regimes are highly influenced by meteorological and river 

conditions as well as by their geographical setting (Caissie, 2006). Deterministic models 

solve the full energy budget problem with respect to space and time through a partial 

differential equation. Equation (1) shown previously is an example of the model 

formulation developed by Sinokrot & Stefan (1993). The products usually provide high 

quality stream temperature estimations with fine spatial and temporal resolutions of 

within 1 to 2 ˚C (Brown, 1969; Sinokrot & Stefan, 1993;  Beschta, 1997; D. Chen, 

Carsel, McCutcheon, & Nutter, 1998; Westhoff et al., 2007).  

Although the deterministic modeling approach avoids making excessive 

assumptions about geographical settings, meteorological conditions, or river conditions, 

and is thus transferrable to basins of different sizes, it has a stringent data availability 

requirement. This approach requires all relevant meteorological data to calculate the 

energy flux components that affect river temperature. The models are computationally 

heavy as they integrate the partial differential equation with respect to both time and 

space. Therefore, spatial extents for deterministic model estimation often range from a 

segment of a first order stream (Westhoff et al., 2007) to the watershed level. However, 

deterministic models are well suited for impact studies as they consider the different 

energy fluxes and mixing zones within the river (Caissie, 2006). Studies on the impact of 

various factors, including streambed and groundwater heat fluxes, urbanization, and 

climate change, on stream temperature have been performed.  
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1.2.2 Stochastic Models 

When compared to deterministic models which quantify the energy flux 

components experienced by the river, stochastic models are simpler as they require only 

air temperature as the input parameter. These models often separate water temperature 

time series into two components: the long-term annual component and the short-term 

component. The annual component captures the seasonal stream temperature change and 

can be represented using a Fourier series or a sinusoidal function (V. Kothandaraman, 

1971; Cluis, 1972; Caissie, El-Jabi, & St-Hilaire, 1998; Caissie, St-Hilaire, & El-Jabi, 

2004). The short-term component represents the departure of stream water temperature 

from the annual component. Air temperature data are used to model the short-term 

component, using methods including the Box and Jenkins method and the Markov 

process (Caissie, 2006). Stochastic models are often used for estimating stream 

temperatures at a daily temporal scale, and have been proven to provide good results of 

within 2 ˚C error. These models can be applied over large geographical areas with air 

temperature as the only available meteorological data, and they do not require high 

computational ability.  

1.2.3 Regression Models 

Compared to the two previous types of models, regression models are the least 

complex, and focus mainly on the relationship between water and air temperatures. 

Regression models are divided into three groups: linear, multiple, and logistic 

regressions. Similar to stochastic models, regression models can be applied over large 
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geographical areas with air temperature as the only input parameter. The computational 

ability require is low.  

The linear regression method has been applied mostly to predict weekly or 

monthly data (Ficklin, Luo, Stewart, & Maurer, 2012). At relatively coarse temporal 

resolutions (e.g. weekly, monthly), the linear regression models generate satisfactory 

results (Ficklin et al., 2012). The multiple regression method incorporates a series of 

other explanatory variables on top of air temperature, such as solar radiation, discharge, 

and time lag. These models usually employ a suite of parameters to predict stream 

temperature (Jeppesen & Iversen, 1987; Jourdonnais, Walsh, Pickett, & Goodman, 1992).  

Studies have found that the air-water relationship changes with the temporal 

resolution (Caissie, 2006). For finer resolutions (e.g. daily, hourly), a significant 

departure from linearity in the water–air temperature relationship was observed (O. 

Mohseni & Stefan, 1999; Webb, Clack, & Walling, 2003). O. Mohseni and Stefan (1999) 

explained that due to groundwater influences at low air temperature and evaporative 

cooling at high air temperature, linear extrapolations to high and low air temperatures are 

not justified. Comparatively, logistic regression better captures non-linearity in the water-

air temperature relationship.  

 This nonlinear logistic regression approach was first used for stream temperature 

modeling by Omid Mohseni, Stefan, and Erickson (1998). The logistic function 

formulated as Equation (9) was selected to fit the S-shaped function relationship between 

water and air temperatures as it is the most stable function and its parameters possess 

physical meanings.  
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Chen and Fang (2015) employed simple methods, including linear, polynomial, 

and logistic regressions, to estimate hourly water temperatures in rivers in Alabama, and 

they applied the models to eight rivers in and outside the region. They found that logistic 

regression models outperform linear models in hourly stream temperature estimations. 

Meanwhile, Segura et al. (2015) provided a summary of the regression models derived at 

hourly, daily, weekly, and monthly scales for different spatial extents, using mostly linear 

and logistic functions. They also found that logistic regression is the better adapted 

approach of the three commonly used regression methods to estimate stream temperature 

at fine temporal resolutions (e.g. daily, hourly). The logistic regression approach has thus 

been favored for the last few decades (Omid Mohseni et al., 1998).  

One commonly included parameter in regression models is the lag time between 

daily air and water temperature peaks, often referred to as the shift parameter. Rutherford 

et al. (2004) found that for small streams, water temperature typically takes about 4 hours 

to reach dynamic equilibrium, despite the shading effect. Chen and Fang (2015) also 

found the time lag to be typically on the order of 4 to 5 hours for the eight rivers in 

Alabama. Regression models are often developed separately for every season. Segura et 

al. (2015) explained that not only the stream thermal sensitivity, but also the mean stream 

temperatures change seasonally. Hence regression parameters that capture the air-water 

relationship are fitted separately for each season. The winter season is often excluded as 

the annual temperature cycle typically spans from spring to autumn. Freezing and 

thawing processes during winter introduce separate energy components that destroy the 

temperature relation. 



 

 

10 

1
0
 

1.2.4 Parameters Neglected by Regression Models 

Compared to full energy budget deterministic models, regression models lack the 

ability to simulate stream temperature variations due to parameters such as solar 

radiation, groundwater and streambed heat fluxes, riparian shading, and anthropogenic 

perturbations. Studies were thus performed to quantify and compare heat fluxes and their 

resultant percentage variability in water temperature.  

Evans, McGregor, and Petts (1998) found that over 82% of the total energy flux 

occurred at the air–water interface and about 15% at the channel bed. Additionally, 

Sinokrot and Stefan (1994) found through sensitivity analysis that streambed heat flux 

only accounts for within -0.12 to +0.15 °C of stream temperature variability. However, 

the effect can become more significant for small streams of less than 3 meters in length 

(Caissie, 2006). Younus, Hondzo, and Engel (2000) found that solar (shortwave) 

radiation and subsurface inflow are the most significant contributors to the stream heat 

budget through modeling for an upland agricultural watershed located in Indiana for 

every 15 minutes over 25 days. Sinokrot and Stefan also stated that streambed heat fluxes 

are more important for hourly stream temperature estimations (1993). Therefore, errors in 

hourly stream temperature estimations using regression models can be due, in no small 

part, to these unaccounted-for energy fluxes.  

A few other physical factors not included in the regression models can influence 

the stream thermal regimes and ecosystems, and further influence the ecological 

processes and stream biota. For example, cumulative stream temperature dynamics 

depend on upstream heat accumulation and groundwater inputs (Kelleher et al., 2012), 

which are influenced by land cover characteristics and urbanization (Nelson & Palmer, 
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2007). Solar radiation and wind are reduced with the increase in riparian vegetation 

coverage. As a canopy reduces solar radiation influx as well as the escape of energy due 

to wind, the effects of the two components may cancel out each other and lead to a 

stronger air-water temperature relationship. Rutherford, Marsh, Davies, and Bunn (2004) 

also found that the shading effect on stream water temperature only applies over short 

distances and travel times. The effect can be neglected for larger streams.  

Anthropogenic perturbation influences are important for environmental 

assessment and modeling. Nelson and Palmer stated that “multiple anthropogenic 

stressors, including increased watershed imperviousness, destruction of the riparian 

vegetation, increased siltation, and changes in climate, will impact streams over the 

coming century” (2007). These stressors further complicate the modeling problem. For 

example, Nelson and Palmer (2007) found that land use alteration has an obvious impact 

on the daily average stream temperatures by creating surges of as large as 7 °C. The 

impacts could be especially significant for low flow sites. Hence urban streams 

experience temperature surges that need to be better quantified.  

Precipitation, as another source of inflow, can also affect stream temperature. 

High runoff precipitation events were found to cause stream temperature surges of about 

3.5 °C, which dissipate over about 3 hours (Nelson & Palmer, 2007). The surges are 

especially noticeable in the summer at urban areas. Simple regression models fail to 

quantify such surges.  
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1.2.5 Other Modeling Strategies 

Novel modeling strategies that fall outside of the three main categories exist. 

Chen and Fang (2015) developed and evaluated a modified wave function model based 

on the logistic regression approach and produced hourly water temperature estimations 

for eight major rivers in Alabama. They proved that the modified wave function model 

provides better results (NS for most rivers exceeding 0.90) than the direct linear and non-

linear regression models. With the advancement in soft computing technologies, artificial 

neural networks (ANNs) have been increasingly applied to hydrologic modeling over the 

last decade. Chenard and Caissie (2008) utilized ANNs to develop a daily maximum and 

mean stream temperature estimation model for a small drainage basin. The approach 

provided equally good results as the conventional modeling techniques, while presenting 

certain advantages, such as simplicity of use.  

1.2.6 Summary 

Current models vary on the estimation resolution, both temporally and spatially. 

The estimation duration and spatial extent can also be limited by the modeling approach. 

The EPA (2016) states that “moving average metrics such as 7-day mean and maximum 

are useful descriptors of thermal regimes and often associate well with stream fish 

distribution patterns.” Stella (2013) also states that daily maximum and minimum 

temperatures are sufficient in assessing fish habitat distributions. Hence most of the 

previous studies construct models to predict or estimate stream temperature for individual 

river/reach with relatively coarse time resolutions (e.g. daily, weekly, monthly, seasonal, 

and annual). However, higher temporal resolution is useful for nutrient growth modeling. 



 

 

13 

1
3
 

An example of a fine resolution model was presented in Westhoff et al. (2007), as the 

stream temperature was simulated at 2-minute and 1-meter resolutions for a 1,500-meter 

reach spanning one week.  
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CHAPTER 2 METHODOLOGY 

2.1 Introduction 

For this thesis, a real-time hourly stream temperature estimation model that is 

available on any arbitrary stream/river segment in the state of Iowa was developed, 

evaluated, and implemented. The procedures conducted to achieve this product were site-

specific model development, state-wide integration, and real-time implementation. This 

chapter documents the data acquisition, management, and preservation processes, as well 

as the site-specific statistical model development methodology. 

2.2 Project Scope & Available Data 

This project’s statistical model development and evaluation used historical water 

temperature measurement data from the United States Geological Survey (USGS) and 

IIHR-Hydroscience & Engineering (IIHR), as well as historical air temperature 

measurement data from the National Oceanic and Atmospheric Administration (NOAA). 

In order to capture the diurnal characteristic of water and air temperatures, hourly data 

resolution is required for both data records. Meanwhile, relative changes in stream 

temperature and model performance due to instream flow alterations were of interest. 

Hence hourly/sub-hourly stream discharge rate measurements from the USGS sites were 

acquired upon availability. Locations of the water and air temperature measurement 

stations within the state of Iowa are shown in Figure 2.1. 
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Figure 2.1 Iowa USGS, IIHR, and NOAA sites that provide hourly/sub-hourly water and air 

temperature measurements (Iowa Department of Natural Resources and Iowa Geological Survey, 

2017). 

Twenty USGS stream gages in the state of Iowa are utilized in this project. 

Drainage area sizes ranging from 7.1 to 32,375 square kilometers (2.76 to 12,500 square 

miles) were used for model development, shown in Table 2.1. Additionally, there are 25 

sensors among the IIHR Water-Quality Monitoring Network that provide sub-hourly 

water temperature measurements, in light of IIHR’s water-quality initiative. The drainage 

area sizes range from 7.77 to 20,168 square kilometers (3 to 7,787 square miles), shown 

in Table 2.2. The sensors with at least one year of recorded data are used for model 

development and evaluation. Although the exact start and end dates of the data recording 

period at each site vary, the earliest available sub-hourly water temperature 
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measurements from both USGS and IIHR start from the year 2012. A majority of the 

USGS sites selected provide hourly/sub-hourly discharge measurements, allowing for 

studies on the discharge-temperature relationship and model sensitivity analyses.  

Comparatively, NOAA has a denser population of stations located throughout the 

state that provide air temperature measurements. The Automated Weather Observing 

System (AWOS) and the Automated Surface Observing System (ASOS) networks 

together have 60 stations that record hourly/sub-hourly air temperature measurements, 

starting long before the water temperature measurements were available. Information on 

the 60 NOAA stations is shown in Table A-1. Each water temperature measurement site 

is paired with the most adjacent air temperature measurement station to provide data for 

the statistical model. The pairing information for NOAA stations and USGS and IIHR 

sites is shown in Table 2.1 and 2.2, including the distance in-between stations, which 

ranges from 2.23 to 58.4 kilometers (1.39 to 36.3 miles).  
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Table 2.1 USGS water temperature measuring stream gage (USGS, 2017) and pairing NOAA air temperature station information. 

USGS Site ID Drainage Area 

(km^2) 

Latitude Longitude Start Date End Date NOAA Site ID Distance in between 

(km) 

0546494205 7.15 41.67 -91.34 16-Mar 16-Dec IOW 16.96 

06604000 195.8 43.47 -95.12 11-Oct 16-Dec EST 31.3 

05418110 316 42.47 -91.12 12-Apr 14-Nov MXO 28.0 

06604200 324 43.38 -95.18 11-Oct 16-Dec SPW 23.5 

05455100 521 41.61 -91.45 12-Feb 15-Nov IOW 8.77 

05418400 1308 42.16 -90.73 12-May 14-Nov DBQ 26.1 

05482300 1813 42.35 -94.99 12-Mar 16-Dec SLB 33.9 

06817000 1974 40.74 -95.01 12-Sep 16-Dec ICL 2.23 

05481000 2186 42.43 -93.81 12-Mar 16-Dec EBS 5.27 

05484000 2445 41.59 -94.15 16-Feb 16-Dec PRO 26.5 

06808500 3434 40.87 -95.58 16-Mar 16-Dec SDA 19.47 

05412500 4002 42.74 -91.26 12-May 16-Dec MXO 58.4 

05458300 4007 42.74 -92.47 11-Oct 16-Dec ALO 21.1 

05482500 4193 41.99 -94.38 12-Mar 16-Dec PRO 25.1 

05418720 4841 42.16 -90.34 14-May 16-Dec CWI 37.2 

05484500 8912 41.53 -93.95 12-Mar 16-Dec DSM 24.7 

05482000 16174 41.61 -93.62 13-Sep 16-Dec DSM 9.14 

05464420 16426 42.07 -91.79 12-Oct 16-Dec CID 21.3 

05487520 30303 41.49 -93.28 11-Oct 16-Dec OXV 25.4 

05465500 32375 41.18 -91.18 11-Oct 16-Dec MUT 21.3 
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Table 2.2 IIHR water temperature measuring water quality sensor and pairing NOAA air temperature station information. 

IIHR Site ID Drainage Area 

(km^2) 

Latitude Longitude Start 

Date 

End Date NOAA 

Site ID 

Distance in 

between (km) 

1 8151 41.69 -91.55 12-Sep 15-Dec IOW 6.06 

2 254 41.68 -91.60 12-Jun 15-Dec IOW 6.08 

3 158 41.72 -91.74 12-Jun 15-Dec CID 18.35 

4 20.7 41.70 -91.86 12-Jun 14-Dec CID 23.0 

5 1492 41.47 -91.71 12-Apr 15-Dec AWG 21.9 

6 11119 41.42 -91.48 12-Jun 15-Dec AWG 23.3 

7 20168 41.41 -91.29 12-Jun 14-Dec MUT 13.37 

8 15.54 43.21 -92.75 13-Sep 15-Dec CCY 18.86 

9 119.1 42.95 -91.64 13-Jun 15-Dec DEH 36.8 

10 11168 40.75 -91.28 13-Oct 15-Dec FSW 11.06 

11 25.9 41.73 -91.91 14-Apr 15-Dec CID 22.7 

12 12.95 43.21 -92.73 14-May 15-Dec CCY 17.69 

13 44.0 43.07 -92.53 14-May 15-Dec CCY 6.93 

14 18.13 43.13 -92.57 14-May 15-Dec CCY 7.75 

15 67.3 42.95 -91.75 15-Apr 15-Dec OLZ 34.8 

16 38.8 42.95 -91.80 14-Apr 15-Dec OLZ 32.9 

17 20.7 43.13 -91.89 14-Jul 15-Dec DEH 19.75 

18 300 42.87 -91.38 14-Jul 15-Dec OLZ 52.9 

19 80.3 40.78 -92.20 14-Apr 15-Dec FFL 34.9 

21 15.54 41.72 -91.43 14-Oct 15-Dec IOW 13.42 

22 7.77 41.75 -91.43 14-Oct 15-Dec IOW 15.21 

23 6050 41.77 -90.54 15-Apr 15-Dec DVN 17.78 

24 580 42.31 -93.15 15-Apr 15-Dec IFA 19.48 

25 106 42.47 -90.68 15-Apr 15-Dec DBQ 7.97 

26 33.7 42.48 -90.70 15-Apr 15-Dec DBQ 9.29 
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Quality assurance and quality control as well as simple sampling strategies were 

performed on the raw data acquired from USGS, IIHR, and NOAA. The formatted annual 

data files contain quality controlled, continuous hourly data measurements of water 

temperature, discharge, and air temperature. Raw data files contain missing data, non-

unified time zones, and occasional unreasonable temperature values, such as air 

temperature readings of above 50 °C. A maximum threshold of 48 °C was set for air 

temperature according to the historical highest recorded at July 20, 1934 in the state of 

Iowa (NOAA, 2017a). A minimum threshold of -0.1 °C was set for water temperature to 

indicate freezing conditions. Any recorded value that did not meet the set thresholds was 

treated as missing data. All data were transformed into Coordinated Universal Time 

(UTC). The raw and modified data, as well as the data manipulation scripts were 

preserved on the IIHR network storage.  

2.2 Model Development 

The water-air temperature relationship that the statistical model is built on is 

captured by a four-parameter logistic function, shown as: 
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
  (9) 

Figure 2.2 is a graphical representation of the logistic function. The four parameters in 

the logistic function each corresponds to: historical maximum water temperature in ˚C 

(α), historical minimum water temperature in ˚C (µ), steepest slope of the function at the 

inflection point (γ), and air temperature at the inflection point in ˚C (β).  
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Figure 2.2 Logistic relationship between water and air temperatures. 

An example scatter plot of the two temperatures is shown in Figure 2.3. The 

summer 2015 hourly water temperature measurements at USGS station 05412500 on the 

Turkey River at Garber, IA (hereafter as the Turkey River site) and the pairing hourly air 

temperature measurements from NOAA station MXO were plotted. The logistic 

relationship is especially evident as the lower and upper tails approach the threshold 

asymptotes.  
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Figure 2.3 Scatter plot of stream temperature versus air temperature for summer 2015 at the 

Turkey River site. Warmer colors indicate higher density of points. 

The maximum and minimum water temperature values (α and µ) are easily 

established from the measurement data for each station and period of interest. These two 

parameters set the upper and lower bounds for water temperature estimations. The 

remaining two model parameters (γ and β) use regression fitting procedures. There are 

two computational methods developed for this task. One method is referred to as the 

Logit method, and the other is referred to as the gridded iteration method.  

The Logit method estimates γ and β values by transforming Equation (9) into a 

linear function in the form of: 

 10 axay   (10) 

with the independent variable being air temperature, and the dependent variable being 

)1log( 









sT
 (also known as Logity), calculated using water temperature data. The 

linear function parameters a0 and a1 are estimated using Equations (11) through (18), 
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where n is the number of available hourly water and air temperature measurement pairs in 

the period.  
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The logistic regression model parameters γ and β are then calculated from the linear 

function parameters, using Equations (19) and (20). 

 
1a  (19) 
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The second approach, which is the gridded iteration method, performs 

optimization through a systematic search on a regular grid to estimate γ and β values. 

Step sizes of 0.01 and 0.001 were set to be the grid resolution for the search of γ and β 

values. Values are found as the parameter pair that provides the least root mean square 
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error (RMSE) between the observed and estimated stream temperature. This method 

requires more computational time than the previous approach. However, the Logit 

method finds logistic function parameter values by achieving the least squares error on 

the transformed linear function dependent variable. Therefore, despite the higher 

computational burden, the gridded iteration method is the better approach as it finds 

parameter values through optimization on the actual stream temperature estimation. The 

gridded iteration method was thus selected for the statistical model development.  

The summer 2015 time series plot of hourly stream and air temperature 

measurements at the Turkey River site is shown in Figure 2.4. Strong seasonal cycles are 

observed in both temperatures. Due to such behavior, the model was fitted separately for 

each season of interest. Both biotic and abiotic processes occur at minimum rates in low-

temperature environments. As a result, prediction of stream temperature around freezing 

is not of main interest. Literature also shows that stream and air temperatures lose the 

logistic relationship in the winter season (Caissie, 2006). Therefore, the model was 

developed to estimate stream temperature in three seasons separately: spring (March to 

May), summer (June to August), and autumn (September to November). Summer exhibits 

the strongest logistic relationship between the two temperatures as the streambed and 

groundwater heat fluxes become relatively insignificant compared to the longwave 

radiation, latent heat, and sensible heat fluxes.  
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Figure 2.4 2015 hourly water and pairing air temperature measurements at Turkey River site. 

Blue: steam temperature. Red: air temperature. 

Stream and air temperatures both exhibit sinusoidal behavior. Stream temperature 

usually spans smaller amplitudes than air temperature. Besides the strong seasonal cycle, 

both temperatures follow the diurnal cycle. The July 2015 time series of the stream and 

air temperature measurements at the Turkey River site offers a zoomed-in view of the 

diurnal temperature behavior. The sinusoidal waves of the two temperatures, as shown in 

Figure 2.5, are not entirely in phase with each other. A constant time lag exists between 

the stream and air temperatures. The lag is existent for every site regardless of the 

geological location and season, and is due largely to the specific heat variation between 

water and air. 24 hourly temperature averages were taken using the summer period data 

to evaluate the diurnal-average peak time difference. It was found that water temperature, 

on average, reached peak value 3 hours later than air temperature in summer 2015 at the 

Turkey River site.  
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Figure 2.5 July 2015 hourly water and pairing air temperature measurements at the Turkey River 

site.  

The time lag between stream and air temperatures was included in the model as an 

additional parameter named shift. The incorporation of shift enhances the logistic 

relationship by shifting the temperature datasets. The gridded iteration process was 

performed using stream temperature measurements promoted by discrete hour amounts of 

0 to 8. The optimum shift value maximizes the predictive relationship between the two 

temperatures and is determined through the least squares error method. Hence the 

modified logistic regression equation takes the final form of: 
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Final logistic parameter values for each site and season were set to be the estimated 

values for the temperature dataset corresponding to the optimum shift hour. The model 

development scripts were preserved on the IIHR network storage as well.  
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2.3 Chapter Summary 

Each USGS and IIHR water temperature measurement location was paired with 

the most adjacent NOAA air temperature measurement station for acquisition of data for 

the spring, summer, and autumn seasons. Every seasonal dataset of hourly water and air 

temperature measurements was fitted using the logistic regression to develop site-specific 

seasonal models. The regression model incorporates an extra parameter, which is the lag 

time between stream and air temperature peaks, to enhance the logistic relationship.   

Of the four logistic regression parameters, α and µ were found as the maximum 

and minimum stream temperatures within the dataset, γ and β were found using the least 

squares error method through a systematic search on a regular grid. Grid steps of 0.01 

and 0.001 for γ and β were employed. The logistic relationship between the two 

temperatures was enhanced with the incorporation of the shift parameter. The optimum 

shift value was estimated with a search from 0 to 8 hours and is used to provide the final 

estimated logistic parameter values to achieve minimum estimation error.  

The model fitting process takes, on average, around 3 minutes to generate 

parameter values and hourly stream temperature estimations for each seasonal dataset. 

All original and modified data, as well as the data manipulation and model development 

scripts, were preserved on the IIHR network storage.  
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CHAPTER 3 MODEL EVALUATION 

3.1 Introduction 

As described in the previous chapter, the statistical stream temperature estimation 

model was developed for water temperature measurement-available sites. The estimated 

model parameter values were used to produce hourly stream temperature estimations for 

the same seasonal dataset using the hourly air temperature measurements as input. The 

model estimation root-mean-square-errors (RMSEs) were calculated and used as the 

standard parameter for estimation error. Explanatory analyses were performed to study 

error behavior, and justify the model adequacy in its state-wide implementation. The 

analyses carried include sensitivity analyses, conditional error analyses, and outlier 

analyses. Model performance for the reservoir cases were also investigated to justify the 

model assumption of reservoirs and lakes as regular stream reaches. Additionally, a 

simple energy budget calculation was done for the first day of August at a sample 

location to quantify the percentage of shortwave radiation in total energy flux that the 

model does not account for. The model evaluation analyses and results for the site-

specific regression model are documented in this chapter.  

3.2 Evaluation Criterion 

The threshold for good model performance was tentatively set to a seasonal model 

estimation root-mean-square-error (RMSE) of within 2 °C. This threshold has been used 

by other studies as a standard for good modeling results (Caissie, 2006). Nutrient growth 

activities, such as algal blooms, which are rapid growth events of microscopic algae or 
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cyanobacteria in water, require “warm” stream temperature environments. As a 

commonly used thermal threshold for nutrient growth monitoring models, 20 ˚C sets a 

value for which the temperatures above indicate accelerated nutrient survival and growth 

rates. Therefore, the model prediction is of most interest when the stream temperature 

exceeds 20 ˚C, which generally occurs from May to September in Iowa. Hence 

evaluation mainly focuses on the summer season model performance. 

During the summer of 2015, 80.2% of the stream temperature measurements 

exceed 20 ˚C at the Turkey River site. The stream and air temperature measurements, as 

well as the regression model estimations are shown in Figure 3.1 (a). The model 

estimation RMSE is 2.04 ˚C. As observed, the logistic function captures the general trend 

and shape of the temperature observations. However, the additive errors between the 

measured and estimated stream temperatures can become quite large.  

Comparatively, by altering the dataset using the optimum shift value, Figure 3.1 

(b) displays the resultant temperature measurements and model estimations. Through 

promoting the stream temperature measurements by 4 hours, the model estimation RMSE 

was improved to 1.69 ˚C. The scatter points exhibit a stronger logistic relationship, 

reducing the additive errors between the measured and estimated temperatures. Note that 

although the RMSE was improved by only 0.35 ˚C, the amount is still considerable due 

to the 2 °C error requirement. The 2015 summer and July stream temperature estimation 

time series (using 4 hours of shift) in comparison with the observation data are shown in 

Figure 3.2 and Figure 3.3, respectively. It appears that the model captures the amplitudes 

of the diurnal cycles well. However, it can fail at capturing the observed daily maximum 

or minimum temperatures.  
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Figure 3.1 Scatter plots of stream temperature versus air temperature with regression lines for 

summer 2015 at the Turkey River site. Black continuous lines indicate the fitted logistic 

regressions. (a): without shift (RMSE = 2.04 ˚C); (b): with 4-hour shift (RMSE = 1.69 ˚C). 

 
Figure 3.2 Summer 2015 stream temperature hourly observations and estimations at the Turkey 

River site. Blue: hourly observed stream temperature. Black: hourly estimated stream 

temperature. 
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Figure 3.3 July 2015 stream temperature hourly observations and estimations at the Turkey River 

site. Blue: hourly observed stream temperature. Black: hourly estimated stream temperature. 

3.3 Sensitivity Analysis 

A series of sensitivity analyses were performed to examine how the model 

performance responds to changes in different variables. The model estimation RMSEs for 

spring, summer, and autumn of every data-available year at every site appear in Tables 

A-2, A-3, A-4 in the Appendix. The analyses were conducted to provide insight on 

patterns in the statistical model performance. All analyses were done for seasonal 

datasets with more than 1000 pairs of valid hourly water and air temperature 

measurements to account for the effect of missing data on model performance. As stated 

previously, most analyses results shown are for the summer season datasets as it is the 

period of most interest with frequent in-stream biological and chemical activities. Spring 

and autumn season data have similar characteristics as summer, but display a wider range 

of temperature variability.  
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3.3.1 Model Performance and Flow 

When considering the energy budget, water quantity plays a major role in 

affecting stream water temperature behavior as it directly relates to the thermal inertia of 

the water body. Moreover, low or high flow conditions are important to fish habitat 

studies, and can alter the river thermal regimes. However, the statistical model developed 

in this thesis does not account for the impact of flow quantity on stream temperature. 

Thus the correlation between hourly discharge amount and stream temperature, as well as 

the impact of areal normalized discharge on the overall model performance, were studied.  

A majority of the USGS sites that measure stream temperature also record hourly 

discharge measurements. Hourly discharge and stream temperature values were plotted 

for the summer of 2015 at the North Raccoon site, as shown in Figure 3.4. No predictive 

relationship was observed between the two variables. Hence the conclusion arrived at 

was, although the amount of water in-stream can have an impact on the overall river 

thermal regime, the hourly discharge amount does not correlate well with the hourly 

stream temperature.  
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Figure 3.4 Scatter plots of stream temperature versus discharge for summer 2015 at the North 

Raccoon site.  

To further study the relationship between model performance and the flow 

quantity in rivers, the RMSEs for all datasets were compared against the areal normalized 

discharge values (average seasonal discharge values divided by drainage area sizes). This 

analysis gives insight into how the model responds to change in the relative quantity of 

discharge. Figure 3.5 shows the scatter plot of the two variables, where no direct 

relationship was observed. Similarly, Figure 3.6 shows the summer season model RMSEs 

versus areal normalized discharge values. Linear regression test statistics indicate that 

only 6% of the variability in model estimation RMSE could be explained by areal 

normalized discharge for all datasets, and about 3% explained for the summer season. 

This result is conceivable as the increase in discharge results from an aggregation of 

source water, for which the temperature has already been related to the air temperature 

upstream. Furthermore, air temperature does not have much variation in space, so the 

change in discharge does not affect model performance distinctly.  
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Figure 3.5 Model RMSE versus normalized discharge for all datasets (R2 = 0.058). 

 
Figure 3.6 Model RMSE versus normalized discharge for summer season datasets (R2 = 0.03). 

3.3.2 Model Performance and Drainage Area 

This analysis focuses on the impact of the drainage area size on model 

performance, to provide insight into how the model performs with changes in the size of 
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the stream. Linear regression was fit between the model estimation RMSE and drainage 

area size for every seasonal dataset. Figure 3.7 shows the summer season scatter plot. As 

observed in the graph, the IIHR sites tend to cover smaller rivers, whereas USGS sites 

span a wider range of river sizes. There is no strong correlation detected between the two 

variables. Test statistics show that the drainage basin size explains only about 0.8% of the 

variability in model estimation error. For spring and autumn seasons, drainage basin size 

explains about 24.7% and 24.0% of the variability in model estimation error, respectively 

(Figure 3.8 and Figure 3.9). Although the coefficient of determination is higher for spring 

and autumn, only 6.8% of the variability in RMSEs for all datasets could be explained by 

drainage area size (Figure 3.10).  

 
Figure 3.7 Model RMSE versus drainage area size for summer season datasets (R2 = 0.008). 

Green: USGS data. Blue: IIHR data.  
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Figure 3.8 Model RMSE versus drainage area size for spring season datasets (R2 = 0.247). 

 
Figure 3.9 Model RMSE versus drainage area size for autumn season datasets (R2 = 0.240). 
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Figure 3.10 Model RMSE versus drainage area size for all seasonal datasets (R2 = 0.068). 

3.3.3 Shift and Drainage Area 

The shift hour, as the model parameter that enhances the relationship between air 

and water temperatures, was found through a systematic search on the least model 

estimation error criterion for every dataset. The resultant optimum values were used to 

shift hourly water temperature measurements in-phase with air temperature 

measurements. The lag in the response of stream temperature to air temperature is most 

likely caused by the thermal inertia difference between water and air, and is thus 

dependent on the flow quantity, which directly relates to the drainage area size. While the 

impact of drainage area size on model estimation error was examined previously, this 

analysis examines the impact of the drainage area size on the shift parameter. Figure 3.11 

shows the scatter plot of the two variables for summer season datasets. From the test 

statistics, it appears that the drainage area can explain about 16.98% of the variability in 

shift for summer, and 32.78% and 13.54% for spring and autumn seasons.  
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Figure 3.11 Optimized shift hour versus drainage area size for summer season datasets (R2 = 

0.1698). 

Notice that despite the small drainage areas, shift values of 6 and 7 hours are 

present. Since the model selects the optimum shift based on the least model estimation 

RMSE criterion, even slight improvement in model estimation can alter the shift value. 

Hence large shifts do not necessarily equate to bad model performance. For example, the 

summer 2015 dataset for USGS station 05487520 on the Des Moines River near Swan 

has an optimum shift value of 8 hours, which produces a model RMSE of 1.93 ˚C. The 

standard deviation of the model RMSEs with all 9 shift values is 0.02 ˚C, with 0 shift 

hour (original dataset) having the worst performance (1.99 ˚C RMSE). In this case, the 

high shift value does not associate with bad model performance, nor did it improve the 

performance drastically.  
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3.3.4 Model Performance and Distance between Stations 

Since the model is built on the relationship between stream and air temperatures, 

the site-specific models should be developed, ideally, using the temperature 

measurements taken at the same locations. This would guarantee that the spatial variation 

in two temperatures would not have any effect on how one relates to the other. However, 

due to the lack of densely populated stream and air temperature measurement networks 

on a regular grid, this project, instead, paired USGS and IIHR stream temperature 

measurement sites with the most adjacent NOAA stations in Iowa. However, the 

distances in-between the measurement stations vary.  

The distance between the temperature measurement stations was studied against 

the model performance. Figure 3.12 shows the scatter plot of the model RMSE and the 

distance for all datasets. Figure 3.13 displays only the summer season model RMSE 

versus distance. There is no observed structure in either case. Test statistics show that the 

distance between stations explains only about 0.06% variability in the model RMSE for 

all three seasons’ datasets, and about 2% for the summer season. It can be argued that 

since air temperature does not vary much in space, data measured at stations within 60 

kilometers away from each other are valid to use for model development.   
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Figure 3.12 Model RMSE versus distance between water and air temperature-measuring stations 

for all datasets (R2 = 0.00593). 

 
Figure 3.13 Model RMSE versus distance between water and air temperature-measuring stations 

for summer season datasets (R2 = 0.0219). 
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3.4 Conditional Error Analysis 

Additive error values present the differences between hourly stream temperature 

model estimations and the true measurements in degrees Celsius. The hourly additive 

errors were plotted against both stream temperature and air temperature measurements to 

study the overall pattern. Error distribution for every 5 °C increase of either temperature 

was studied for the three seasons separately.  

Figures 3.14 and 3.15 both show model performance for the summer season 

datasets; the first with respect to stream temperature measurements, the latter with respect 

to air temperature measurements. Figure 3.14 suggests that the model tends to 

overestimate when stream water temperature is supposed to be low, and underestimate 

when stream temperature is supposed to be high. The lower and upper tails of the logistic 

function could be the cause of this strong downward trend. Model estimation approaches 

two asymptotes that were found, for each dataset, as the minimum or maximum of the 

measured stream temperature. However, the actual lower and upper limits may in fact be 

more extreme. Thus the set thresholds could result in poor performance in the tails. It also 

appears that for every 5 °C increment of stream temperature measurement, the error 

interquartile range does not vary much and stays less than 4 °C except for the last interval 

when stream temperature is exceedingly high.  
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Figure 3.14 Summer stream temperature hourly estimation errors with respect to stream 

temperature measurements. Extra gridlines indicate ±2 °C band of error requirement.  

Similarly, Figure 3.15 shows the error distribution with respect to air temperature, 

the main model predictor. Unlike the previous plot, this graph suggests that the hourly 

stream temperature estimation error has consistent performance regardless of the input 

value of air temperature. The error median stays around 0 °C, which indicates no obvious 

bias. And for every 5 °C air temperature interval, the interquartile ranges of additive 

errors do not exceed the span of the ±2 °C requirement.  
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Figure 3.15 Summer stream temperature hourly estimation errors with respect to air temperature 

measurements. 

The estimation error behaviors with respect to changes in stream temperature for 

spring and autumn seasons are similar to that of the summer season, as shown in Figures 

3.16 and 3.17. As the stream temperature approaches 0 °C, the model shows obvious 

overestimation. This behavior might be associated with freezing and thawing processes 

under cold weather. The amount of energy absorbed or released during phase change are 

not considered by the model. However, as evident in Figures 3.18 and 3.19, error 

distributions with respect to the actual model input show that error medians remain 

around 0 °C, with interquartile ranges around ±2 °C for spring and autumn.  
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Figure 3.16 Spring stream temperature hourly estimation errors with respect to stream 

temperature measurements. 

 
Figure 3.17 Autumn stream temperature hourly estimation errors with respect to stream 

temperature measurements. 
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Figure 3.18 Spring stream temperature hourly estimation errors with respect to air temperature 

measurements. 

 
Figure 3.19 Autumn stream temperature hourly estimation errors with respect to air temperature 

measurements. 

From the conditional error analyses, we can see that the additive error in model 

estimation is inversely related to the actual stream water temperature. However, error 
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behavior with respect to the main model predictor, air temperature, is of most interest. 

There is no correlation observed between the two. The error median stays close to 0 ˚C 

while the first and third quartiles remain around the requirement of ±2 °C. Model 

performance is the best during summer season, which is ideal as summer is the period of 

most water quality research interest. Although the model performs relatively poorly under 

cold conditions, it is not the main priority of this project to predict stream water 

temperature under cold weather, as the rates of chemical and microbial growth processes 

are at their minimum. Additive error means for spring, summer and autumn seasons were 

calculated to be -0.0002 ˚C, 0.07 ˚C, and 0.05 ˚C, respectively. Hence negligible 

systematic bias was detected for the statistical model.  

3.5 Outlier Analysis 

Previous analyses focus on studying relationships between different variables that 

may affect stream water temperature and model performance. A tentative requirement of 

±2 °C was set as an acceptable model estimation error. However, outliers exist with poor 

model performance of over 2.5 °C RMSE. Table 3.1 summarizes the outliers for the 

summer season datasets. 9 datasets were identified with poor model performance, which 

consists of 6 stations for 2 model estimation years.  
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Table 3.1 Outlier datasets for the summer season model estimation. 

Water Temperature 

Site 

NOAA 

Site 

Year DA 

(km2) 

Distance 

(km) 

Shift 

(h) 

RMSE 

(˚C) 

05482300 SLB 2013 1813 33.9 4 3.26 

05482300 SLB 2015 1813 33.9 7 2.99 

05481000 EBS 2015 2186 5.27 4 2.85 

05482500 PRO 2013 4193 25.1 4 2.78 

05482500 PRO 2015 4193 25.1 4 2.75 

05481000 EBS 2013 2186 5.27 4 2.66 

06604200 SPW 2013 324 23.5 4 2.62 

06817000 ICL 2013 1974 2.23 4 2.55 

3 CID 2015 158 18.35 3 2.51 

The geographical locations of the 6 stations with over 2.5 °C RMSE are shown in 

Figure 3.20. Although no strong linear relationship exists between model estimation error 

and drainage area size, the summer stream temperature estimation outliers are for sites 

within 5000 km2 of a drainage area. The average RMSEs over the recorded years at each 

site for spring, summer, and autumn seasons are shown in Figures 3.21, 3.22, and 3.23, 

respectively. It was also observed that most of the outlier sites are located in the western 

part of the state.  

Compared to large streams, which are more subject to solar radiation and wind, 

small streams are more subject to riparian vegetation coverage, the impact of which is 

reduced by bank to bank farming practices. Streambed and groundwater heat fluxes can 

also become significant portions of the total heat flux in small streams, especially during 

spring and autumn seasons. The western Iowa region is largely composed of farm lands, 

and has relatively fine river bed materials, such as sandy clay and loam, which are good 

heat conduction mediums. Due to tile drainage practices, the groundwater inflows merge 

into the streams with different temperatures. Hence the small steams in western Iowa are 
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more exposed to solar radiation, streambed heat flux, and groundwater heat flux that the 

model fails to account for, leading to relatively poor performance on such streams.  

Comparatively, the north-eastern Iowa region has mostly hilly terrain and 

relatively coarse river bed materials, along with high riparian coverage. These factors 

prohibit the stream temperature from fluctuating as dramatically as it would under the 

same meteorological conditions at a site located in the western region of Iowa. The 

Turkey river site serves as an example of good model performance in north-eastern Iowa.  

 
Figure 3.20 Geographical locations of summer outlier stations with over 2.5 °C RMSE. 
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Figure 3.21 Spatial representation of spring average RMSEs over the recorded years.  

 
Figure 3.22 Spatial representation of summer average RMSEs over the recorded years. 
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Figure 3.23 Spatial representation of autumn average RMSEs over the recorded years. 

Table 3.1 indicates that the years in which the summer outliers occurred were 

either 2013 or 2015. The annual time series plot of stream and air temperature 

measurements, as well as the discharge amount at USGS station 05482300 on North 

Raccoon River near Sac City (hereafter referred to as the North Raccoon River site) are 

shown in Figure 3.24. It is apparent that 2013 had a wet spring season leading into dry 

summer and autumn seasons. The relationship between stream and air temperatures is 

different for the precipitation high and low precipitation periods. As observed in Figure 

3.25, the stream temperature before July, which is the end of the high precipitation 

period, matched air temperature fluctuations with low moving averages and small 

oscillation amplitudes. The stream temperature after August remained on the higher part 

of the oscillation of air temperature fluctuations, with relatively big amplitudes.  
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Although it was found previously that no apparent correlation exists between 

model performance and normalized discharge, the hydrologic regime seems to have an 

overall impact on the stream-air temperature relationship. Stream temperature reacts 

more distinctly to changes in meteorological conditions under a precipitation-scarce 

period, and does not cool down to match the lower values of the air temperature 

oscillation. It is worth mentioning that the model RMSEs are 2.52 °C and 2.97 °C for 

spring and autumn 2013 at this site. Comparatively, the model estimation error for the 

summer of 2014 at the North Raccoon site is only 1.45 °C. As shown in the annual time 

series plot in Figure 3.26, 2014 was a hydrologically normal year. The high discharge 

amount in summer balanced the high fluctuations of stream temperature under hot 

weather conditions.  

 
Figure 3.24 2013 annual hourly stream and air temperatures and discharge time series at North 

Raccoon site.  
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Figure 3.25 2013 summer hourly stream and air temperatures and discharge time series at North 

Raccoon site.  

 
Figure 3.26 2014 annual hourly stream and air temperatures and discharge time series at North 

Raccoon site.  

The regression model assumes normal hydrologic regime, hence does not capture 

the air-water relation under different regimes. Figure 3.27 illustrates the comparison 
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between the simulated and observed stream temperature for the summer of 2013 at the 

North Raccoon site. It appears that instead of considering the steam temperature 

variations due to hydrologic regime alterations, the model assumes that the same relation 

exists between air and water temperatures throughout the period. Hence the estimated 

values fail to match the dampened amplitudes and the shifted moving maximums and 

minimums of the observed stream temperature.  

 
Figure 3.27 Summer 2013 stream temperature hourly observations and estimations at the North 

Raccoon site. Blue: hourly observed stream temperature. Black: hourly estimated stream 

temperature. 

3.6 Reservoirs 

As discussed previously, lakes and reservoirs are not treated differently from a 

normal stream reach in the statistical model. There are three major reservoirs in the state 

of Iowa: Saylorville Lake Reservoir and Lake Red Rock Reservoir, both located on the 

Des Moines River, and Coralville Lake Reservoir on the Iowa River. USGS Site 

05482000 on the Des Moines River at 2nd Ave is located downstream of Saylorville Lake 
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Reservoir, and upstream of Lake Red Rock Reservoir (Figure 3.28). Despite being 

located between two reservoirs, the site exhibits good model estimation performance of 

1.25 °C RMSE for the summer of 2014. Additionally, USGS Site 05487520 on the Des 

Moines River near Swan, which is located downstream from the previous site (Figure 

3.29), also shows exceptionally good performance of 1.12 °C RMSE for the summer of 

2014.  

 
Figure 3.28 USGS Site 05482000 on Des Moines River at 2nd Ave. at Des Moines.  



54 
 

 

5
4
 

 
Figure 3.29 USGS Site 05487520 on Des Moines River Near Swan. 

The two main factors that could largely affect the stream-air temperature 

relationship downstream from reservoirs and lakes are the water temperature stratification 

effect and the considerable amount of water released. Since no explanatory relationship 

was found between discharge and model performance, the amount of water released 

should not be a strongly influential factor for the water temperature downstream. The 

flood-control reservoirs in Iowa have relatively small magnitudes, hence the temperature 

stratification effect could be insignificant enough. Therefore, the decision to not treat 

reservoirs and lakes as separate entities in the model was justified.  

3.7 Energy Budget 

As per the outlier analyses, the solar radiation and streambed and groundwater 

heat fluxes not considered by the statistical model contribute to causing uncertainty in 
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model performance. These heat fluxes are not directly related to air temperature, and thus 

do not contribute to the model prediction. Research has shown that while comparing 

energy components, shortwave (solar) radiation is the most dominant of the total energy 

flux (Caissie, 2006), and can be especially significant for agricultural watersheds 

(Younus et al., 2000). To illustrate this, I calculated the percentage of solar radiation in 

total energy flux for August 1st, 2016 at USGS Site 06817000 on the Nodaway River at 

Clarinda.  

From Equations (7) and (8), the convective heat flux equation can be reduced to: 
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Values of shortwave radiation, longwave radiation, evaporative heat flux, and air 

temperature were acquired from the IFC evapotranspiration calculation database. The 

atmospheric vapor pressure was calculated as  
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The solar radiation percentage in the net radiation was calculated to be about 63% on 

average in the hours with available solar radiation, and standard deviation was about 

22%. The percentage in the total energy flux was about 26% with a standard deviation of 

14%. Hence a considerable part of the energy flux that influences stream temperature is 

absent from the statistical model. Including it in a more complete model should reduce 

the prediction error.  
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3.8 Chapter Summary 

 Through explanatory analyses that compare model performance with different 

variables, it was found that the discharge amount, drainage area size and distance 

between temperature stations do not have direct influence on model performance. 

However, drainage area size can explain some variability in the shift parameter. The 

hourly stream temperature estimation errors do not vary much with respect to changes in 

the model input of air temperature. However, the model performs poorly in capturing the 

upper and lower tails of stream temperature, possibly due to the set thresholds of 

temperature minimum and maximum.  

Heterogeneity exists in model performance, both geographically and 

hydrologically. The model performs less well on small streams in western Iowa, possibly 

due to the low riparian coverage, conductive bed material, and tile drainage inflows. 

Different hydrologic regimes can also alter the stream-air temperature relationship, 

creating inconsistency in model performance. Reservoirs and lakes do not introduce 

extra, unexplained behavior in model performance, and are considered as normal stream 

reaches by the model.  

To quantify the percentage of energy flux unaccounted-for by the model that 

influences stream temperature, the solar radiation percentage in total energy flux was 

calculated for a summer day at a western Iowa site. The results indicate that the statistical 

model does not consider a significant portion of the energy flux, introducing temperature 

patterns that the model fails to capture.  
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CHAPTER 4 OPERATIONAL IMPLEMENTATION & VISUALIZATION 

4.1 Introduction 

The site-specific model developed and evaluated previously was integrated into a 

state-wide product that can generate real-time hourly stream temperature estimations for 

both current and forecasted conditions. The season-specific model parameters were 

interpolated onto the cropped HRRR 3-kilometer Lambert Conformal grid for Iowa to 

match with the air temperature input. The results are then transferred onto river networks 

through grid to link association. The river network derived from a USGS 90 m DEM 

consists of 419,157 channel links in the state of Iowa, of which 3,812 are for streams of 

4th order and up. The real-time stream temperature estimations are visualized on the Beta 

version of the Iowa Water Quality Information Systems, Beta version (IWQIS Beta) 

portal.  

4.2 State-Wide Grid Parameterization 

4.2.1 Seasonal Site-Specific Parameters 

The summer season logistic regression parameter distributions appear in Figure 

4.1. The estimated maximum (α) and minimum (µ) stream temperatures, as well as the air 

temperature at the inflection point (β), all have interquartile ranges of less than 5 ˚C. The 

slope of the logistic function at the inflection point (γ) has an interquartile range of less 

than 0.05. As per the conditional error analyses, the over- and under-estimation at the 

lower and upper tails of stream temperature might be caused by minimum and maximum 
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thresholds set by the measured data of the estimation period. Hence the stream 

temperature thresholds, α and µ, will be the historical high and low values recorded at 

each site over the years for each specified season.  

The density distributions of the regression parameters for summer season datasets 

also suggest that the parameters follow a normal distribution. The β and γ values are 

associated with the inflection point of the logistic function. Hence the β and γ values will 

be the averages of the estimated values at each site over the years for each specified 

season.  

 
Figure 4.1 Probability density distributions of the logistic parameters for summer season datasets 

(α IQR = 3.25 ˚C; µ IQR = 4.15 ˚C; β IQR = 2.36 ˚C; γ IQR =0.031). 

The shift parameter distribution appears in Figure 4.2. The most frequent shift 

values are 3, 4 and 5 hours. Note that high shift values do not imply poor model 
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performance. Hence the shift value at each site could be set as the seasonal average over 

data record years. However, since an explanatory relationship exists between shift and the 

drainage area size, shift can also be determined through a simple linear function using 

drainage area as the predictor. This linear function can be developed empirically for each 

season. Both methods were used alternatively to investigate which one offers optimum 

model performance.  

 
Figure 4.2 Probability density plot of the shift parameter (IQR = 1 hour). 

4.2.3 2016 On-Site Model Evaluation 

In order to evaluate the statistical model performance on stream temperature 

prediction, I performed on-site model evaluation using 2016 measurement data and 

seasonal site-specific parameter values estimated from datasets prior to 2016. I conducted 

model evaluation using two different methods for the shift parameter estimation: one took 

the seasonal site-specific average of the historical fitted values, and the other used 



60 
 

 

6
0
 

drainage area as the independent variable in empirically fitted linear functions. A 

summary of the evaluation results appears in Table 4.1. As observed, the average 

seasonal RMSEs across the sites do not exceed 3 °C, with standard deviations of within 1 

°C, regardless of the shift estimation approach. Furthermore a simple average of the fitted 

shift parameter values from the previous years outperforms the linear function shift 

estimation approach by about 0.038, 0.014, and -0.012 °C for spring, summer, and 

autumn, respectively. Because the differences in estimation error are negligible, the 

averaging shift method is the better and simpler approach for model implementation. 

Tables A-5, A-6, A-7 in the Appendix document the model parameter values for each 

season and site. The model estimation RMSEs for spring, summer, and autumn of 2016 at 

every site appear in Table A-8 in the Appendix.  

Figures 4.3, 4.4, and 4.5 show the spatial representation of model estimation error 

for the year of 2016, using the averaged shift parameter values. Northeastern Iowa 

generally appears to perform better than the rest of the state. The summer season model 

performance is the best of all three seasons, which generates an average RMSE of 1.77 

°C, below the 2 °C standard. 

Table 4.1 2016 on-site model evaluation results with different shift estimation methods.  

Season 
Number 

of Sites 

Average RMSE (°C) Standard Deviation of RMSE (°C) 

Averaged 

Shift 

Linear Model 

Estimated Shift 

Averaged 

Shift 

Linear Model 

Estimated Shift 

Spring 27 2.95 2.99 0.985 0.955 

Summer 27 1.77 1.79 0.497 0.523 

Autumn 24 3 2.99 0.926 0.964 
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Figure 4.3 Spatial representation of 2016 spring on-site model evaluation RMSE. (Average 

RMSE = 2.95 °C; standard deviation of RMSE = 0.99 °C). 

 
Figure 4.4 Spatial representation of 2016 summer on-site model evaluation RMSE. (Average 

RMSE = 1.77 °C; standard deviation of RMSE = 0.50 °C). 
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Figure 4.5 Spatial representation of 2016 autumn on-site model evaluation RMSE. (Average 

RMSE = 3.00 °C; standard deviation of RMSE = 0.93 °C). 

4.2.2 State-Wide Parameter Integration 

The Inverse Distance Weighting (IDW) method was used to interpolate the 

seasonal site-specific parameter values onto the HRRR product grid to achieve state-wide 

model implementation. Equation (24) shows the IDW method formulation,  
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where λi is the weighting factor for the i-th site, xi is the parameter value at the i-th site, 

and n is the number of measurement-available sites.  

The Lambert Conformal conic projection 3-kilometer resolution HRRR Grib file 

was cropped to the Iowa boundary. To achieve gird parameterization for every pixel in 
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the state, IDW spatial analyst tool in ESRI ArcGIS was utilized, generating state-wide 

rasters for each parameter and season. Figure 4.6 shows the spring season α value raster. 

The parameter field exhibits some rapid variations in space in the eastern part of the state, 

where the stream temperature measurement network is more populated. Comparatively, 

the less well-sampled regions, generally the western part of the state, exhibit more 

gradual variations in parameter values.  

 
Figure 4.6 State-wide spring alpha (α) parameter value raster.  

4.4 State-Wide Stream Temperature Computation 

Hourly data for the model’s explanatory variable, air temperature, is available 

from the High-Resolution Rapid Refresh (HRRR) product generated by the NOAA 

National Centers for Environmental Prediction (NCEP). According to NOAA, the HRRR 

is a “real-time 3-km resolution, hourly updated, cloud-resolving, convection-allowing 
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atmospheric model, initialized by 3-km grids with 3-km radar assimilation” (NOAA, 

2017b). The product is available for the entire United States, and provides current as well 

as forecasted air temperature estimations for 18 hours in advance. Thus the statistical 

stream temperature model can be computed on the same 3-km HRRR grid for the state of 

Iowa.  

Figure 4.7 shows the HRRR air temperature estimation for Iowa at the 4 pm of 

March 30th, 2017. As expected, the northern part of the state is generally warmer than the 

east. Anomalies exist with certain cells having relatively higher air temperatures than the 

surrounding cells. However, when overlaid with the river network, as shown in Figure 

4.8, the anomalies only appear to occur over large water bodies, including large rivers, 

lakes, and reservoirs. Such behavior is especially apparent on the Mississippi River.  

 
Figure 4.7 HRRR air temperature estimation for Iowa at 4 pm of March 30th, 2017.  
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Figure 4.8 HRRR air temperature estimation for Iowa at 4 pm of March 30th, 2017, overlaid with 

the river network. 

State-wide stream temperature estimation was computed for 4 pm of March 30th, 

2017 on the HRRR grid. Hourly HRRR air temperature estimations from 11 am March 

29th to 4 pm March 30th, 2017 were used, to account for the time lag component. The 

computed results kept the overall patterns in the explanatory variable as well as the 

interpolated spring season parameter rasters. While the spatial variations in the gridded 

stream temperature estimation and the fact that it is available on every 3-km pixel in the 

state may seem unrealistic, it is helpful to keep in mind that the statistical model does not 

account for the propagation of water. Thus the estimated results assemble the spatial 

patterns in both the model explanatory variable and the regression parameters. The 

gridded results were later transformed onto river networks, which then possess physical 

meaning. 
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4.5 HRRR Grid to Hillslope-Link 

The IFC system uses a river network derived from a 90-meter USGS Digital 

Elevation Model (DEM). The network consists of about 620,000 links, of which 419,157 

are inside the state of Iowa. The links have lengths ranging from 160 m to 1,640 m, and 

the corresponding hillslope areas range from 0.05 km2 to 1 km2. A lookup table enables 

the association between the 3-km HRRR grid and the river network. For links spanning 

the reach of more than one pixel, temperature estimation values are assigned as the 

weighted averages of the covered grid cell values. The stream temperature estimation 

results for 4 pm on March 30th, 2017 appear in Figure 4.9. The abnormal spatial patterns 

introduced by air temperature and regression parameter values disappear on the network 

level. For visualization purposes, only streams of 4th order and up are shown, which 

include 3,812 channel links.  
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Figure 4.9 State-wide stream temperature estimations on the river network at 4 pm of March 30th, 

2017. 

4.6 Real-Time Visualization 

State-wide estimations on the river network appear on a web-based platform: the 

Beta version of the Iowa Water Quality Information System, Beta version (IWQIS Beta). 

In accordance with the input data availability, current as well as forecasted estimations of 

stream temperature are available. The HRRR product updates the current and 18 hours of 

forecasted air temperature estimations every hour. The implemented model retrieves the 

newest HRRR estimations in real-time. Hence in every hour, current state-wide stream 

temperature estimation is available as well as forecasts for lead time of up to 18 hours. 

The forecasts can have hourly resolution. Certain time lag of less than 2 hours exists in 

HRRR data acquisition. Hence the visualized product, in fact, can present 16 hours of 

forecasts. The forecast interface can later be developed by IIHR as desired.  
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The lag time between stream and air temperatures offers a prediction advantage as 

we are able to associate stream temperature with the air temperature from a set number of 

hours ago. The number of hours is determined by the shift value at each grid cell. With 

18 hours of air temperature predictions, the stream temperature model is able to provide 

predictions for shift number of hours on top of 18. For example, a site with 4 hours of 

shift time between the two temperatures would have 22 hours of predictions available. 

However, due to the varying numbers of shift available at each grid cell, the visualization 

interface would only display up to 18 hours of predictions for the entire state regardless 

of the actual available hours on each link. Figure 4.10 shows the IWQIS Beta real-time 

interface with color-coded channel links according to temperature estimations.  

 
Figure 4.10 IWQIS Beta real-time state-wide stream temperature estimation interface for 4 pm of 

April 17th, 2017. 

4.7 Chapter Summary 

The logistic regression parameters estimated using historical temperature 

measurement data at station for each season and year were utilized to develop seasonal 
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site-specific models. Regression parameters α and µ were set to be the historical high and 

low values recorded at each site over the years for the specified seasons. Parameters β, γ, 

and shift were set to be the averages of the estimated values. The averages of the 

estimated values were parameters β, γ, and shift.  

The model generated on-site stream temperature estimates for the year of 2016 

using air temperature measurement data and parameter value estimates from 2012 to 

2015. Model estimation results were within 3 °C average RMSE for the three seasons, 

with less than 1 °C standard deviation. Summer season performs the best, generating an 

average RMSE of less than 2 °C, with a standard deviation of less than 0.5 °C.  

Site-specific parameter values were interpolated onto the cropped HRRR 3-km 

grid for Iowa using the inverse distance weighting method. Seasonal parameter rasters 

were generated for the Iowa domain, and used for gridded stream temperature 

estimations. Hourly updated HRRR air temperature estimations enable the hourly updates 

of stream temperature estimations for 19 hours, including current and forecasted 

conditions. The HRRR product estimates warmer air temperatures over large water 

bodies, leading to high stream temperature estimation results at such locations.  

The state-wide gridded computational results are projected onto the hillslope-link 

network derived from a 90 m USGS DEM. Stream temperature estimations on the river 

network are updated and visualized in real-time on the IWQIS Beta web-based platform. 

Channel links of 4th order and up are color-coded according to the estimated 

temperatures. The exact value of estimation can be shown when the channel link is 

clicked.  
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CHAPTER 5 CONCLUSIONS & FUTURE IMPROVEMENTS 

This thesis presents the development, evaluation, and implementation of a state-

wide stream temperature estimation model. The statistical model is based on the 

relationship between stream and air temperatures, which can be captured by a logistic 

function. The statistical model was initially developed at USGS and IIHR stream 

temperature measurement sites and later integrated onto a 3-kilometer grid that covers the 

entire state of Iowa. Model parameters were estimated separately for March to May 

(spring), June to August (summer), and September to November (autumn).  

The NOAA NCEP HRRR product provides hourly air temperature inputs, which 

enables real-time hourly stream temperature estimations. With the grid to link 

association, the estimated results are transferred onto 419,157 river links throughout the 

state. The IWQIS Beta interface presents real-time hourly forecasts of stream temperature 

on the state-wide river network for a lead time of up to 18 hours and displays streams of 

4th order and up.  

5.1 Site-Specific Model Development 

Forty-five USGS and IIHR sites provide hourly stream temperature measurements 

in the state of Iowa. Each site has from 1 to 5 years of recorded data. The site-specific 

statistical models use the stream temperature measurements at the 45 locations and the air 

temperature measurements from most adjacent NOAA stations. Due to the seasonality in 

the two temperatures, the site-specific models were developed separately for spring, 

summer, and autumn.  
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The statistical model is based on the relationship between stream and air 

temperatures, which can be captured by a logistic function with four parameters. Due to 

the thermal capacity difference between water and air, stream temperature oscillations 

follow the air temperature oscillations with a certain time lag. Therefore, an extra model 

parameter is added to shift the two temperature records more in-phase with each other, 

hence improving the model performance. The extra parameter is named shift.    

Of the four logistic regression parameters, two were found as the maximum and 

minimum stream temperatures within the dataset. The other two were found using least 

squares error method through a systematic search on a regular grid. The shift parameter 

was found using least squares error method through a search from 0 to 8 hours. 

Reservoirs and lakes were not treated as special entities in the model as the performance 

of model at locations downstream from reservoirs does not exhibit abnormal behavior.  

5.2 Site-Specific Model Evaluation 

Sensitivity analyses indicate that the model estimation performance has no direct 

relationship with drainage area, normalized discharge, or distance between temperature 

stations. However, an explanatory relationship exists between the shift parameter and 

drainage area size. The logistic regression model does not perform well at capturing the 

upper and lower tails of stream temperature, especially under freezing/thawing 

conditions. However, with every 5 °C change in air temperature, the first and third 

quartiles of hourly model estimation errors in summer stream temperatures do not exceed 

±2 °C. Negligible model bias was detected.  
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Spatial heterogeneity exists in model performance. Western Iowa sites generally 

perform worse than those in the north-eastern region. Several factors could contribute to 

the inconsistency in performance, including different streambed formations and riparian 

coverage. The model performs less well in spring and autumn seasons than in summer, as 

the streambed and groundwater heat fluxes become more significant compared to the air-

water exchange in spring and autumn. The summer season has, on average, 1.85 °C of 

model estimation RMSE for stream temperature, with 62.9% below the 2 °C standard for 

good model performance, and 89.9% below 2.5 °C. The model also performs better under 

normal hydrologic regimes than under dry or wet regimes.  

5.3 State-Wide Model Development & Evaluation  

The set seasonal site-specific model parameter values were used to estimate 

stream temperature in spring, summer, and autumn of 2016, which yielded results of 

within 3 °C average RMSE with less than 1 °C of standard deviation. Summer season 

average RMSE was below 2 °C, with standard deviation of less than 0.5 °C. The model 

parameters were interpolated onto a 3-kilometer grid throughout the state to match with 

the High-Resolution Rapid Refresh air temperature input resolution. Inverse distance 

weighting method was utilized for interpolation. Spatial heterogeneity in stream 

temperature estimation comes from both the explanatory variable input, and the model 

parameters. It appears that the NOAA NCEP HRRR product estimation of air 

temperature tends to be higher over large river bodies, such as reservoirs, lakes, and large 

rivers. The parameter raster fields vary more rapidly in space for the well-sampled 

eastern Iowa.  
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5.4 Real-Time Implementation & Visualization 

The NOAA NCEP HRRR product generates real-time current and forecasted air 

temperature estimations, which allows for hourly updated real-time stream temperature 

predictions. The estimated stream temperatures on the 3-km grid are transferred onto the 

river network in the state through grid to link association. Estimations for streams of 4th 

order and up appear on the IWQIS Beta platform. As HRRR provides air temperature 

forecasts of 18 hours in advance, state-wide stream temperature forecasts are available 

for lead time of up to 18 hours.  

5.4 Future Improvements 

The current model utilizes site-specific model parameter values for each season to 

estimate stream temperature. It was also previously observed that two of the logistic 

parameter values introduce constraints that may negatively affect the model performance. 

Hence one can possibly enhance the performance by setting the α and µ values 

(maximum and minimum stream temperature thresholds) as moving boundaries for a 

shorter time window than distinct seasons. An example of the annual weekly stream 

temperature thresholds at the Turkey River site is illustrated in Figure 5.1. One can 

conduct model validation using the enveloping curves for α and µ to seek enhanced 

performance.  
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Figure 5.1 Annual weekly moving boundaries for stream temperature at the Turkey River site. 

Red: historical maximum weekly stream temperature. Blue: historical minimum weekly stream 

temperature. 

The data used in the project dates back to as early as 2012 as it was readily 

available on the web based platforms. However, USGS most likely stores hourly stream 

temperature measurements for a much longer period. One could make a special request to 

acquire a longer record and apply the same model fitting and parameter setting 

procedures conducted in this project. Having a longer data record period could help us 

better observe the parameter distributions and model performance behavior.  

In previous model evaluation analyses, it was observed that this simple regression 

approach does not capture the stream temperature behavior under wet or dry hydrologic 

regimes. The changes in air-water relation due to regime alterations can lead to poor 

model estimation. One can develop a simple autoregressive error model to study the 

residuals in the regression estimations and possibly make up for this shortcoming of the 

current approach.  
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One could also conduct Fourier analysis on stream temperature and discharge 

data, as not only does the temperature follow seasonal and diurnal cycles, the propagation 

of flow also has its own cycle. The two signals can be imposed upon or destroy each 

other depending on whether they are in or out of phase. This approach is similar to many 

stochastic models, which use Fourier series to represent the long-term stream temperature 

component.  

As the model relies on air temperature as the explanatory variable, the quality of 

air temperature input is crucial to the stream temperature prediction accuracy. This thesis 

utilizes the meteorology model output from HRRR as it provides high resolution air 

temperature for the entire United States with hourly updates. However, air temperature 

data with higher accuracy could further enhance the stream temperature estimation 

performance. Meanwhile, with real-time stream temperature measurements available, 

data assimilation can be conducted as well to improve performance.  

The travel time of water in streams can vary depending on the watershed 

hydrology. However, this simple statistical approach does not take basin characteristics 

into account. Hence the travel time effect on the air-water relationship is ignored. The 

width functions could accommodate this shortcoming as it accounts for water transport 

with respect to both time and distance, which is the partial differential component that 

our model lacks comparing to a deterministic model.  

Statistical models for stream temperature focus mainly on the water-air 

temperature relationship. However, a number of physical parameters that influence 

stream temperature were not accounted for, including the aforementioned riparian 

coverage and streambed material. Additionally, shortwave radiation, watershed 
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hydrology, and anthropogenic perturbations were not considered by the model either. For 

future improvements, more variables can be studied to explain residual patterns in model 

performance.  

The IWQIS Beta platform can also be configured to incorporate a self-evaluation 

mechanism that illustrates the model performance to the general public. Simple statistics 

of the evaluation can provide insight on the adequacy of estimation. Similarly, a time 

control option that allows presentation of the estimated results in the past can also be 

added to the platform.  

5.5 Final Remarks 

This thesis develops a statistical stream temperature model that uses air 

temperature as the only explanatory variable. There are obvious limitations to this 

approach. Thus the model developed and implemented in this thesis is by no means the 

only and best available stream temperature model. However, it is easily applicable for a 

large domain and requires minimal input of meteorological data. The model is also 

unique as it provides real-time hourly-updated estimations for the entire state, which is 

visualized on a web-based platform. The model performs especially well for the summer 

season and the product will assist Iowa water quality research and provide information to 

support public management decisions.  
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APPENDIX 

Table A-1 NOAA air temperature measurement stations in Iowa (NOAA, 2017a). 

NOAA Station ID Latitude Longitude Elevation Network 

AMW 41.99 -93.62 280 ASOS 

BRL 40.77 -91.13 213 ASOS 

CID 41.88 -91.72 265 ASOS 

DSM 41.53 -93.65 294 ASOS 

DBQ 42.40 -90.71 329 ASOS 

EST 43.40 -94.75 401 ASOS 

IOW 41.64 -91.54 204 ASOS 

LWD 40.63 -93.90 333 ASOS 

MIW 42.11 -92.92 297 ASOS 

MCW 43.15 -93.33 370 ASOS 

OTM 41.10 -92.44 258 ASOS 

DVN 41.61 -90.59 229 ASOS 

SUX 42.39 -96.38 336 ASOS 

SPW 43.17 -95.21 403 ASOS 

ALO 42.55 -92.40 268 ASOS 

AXA 43.08 -94.27 369 AWOS 

IKV 41.69 -93.57 271 AWOS 

AIO 41.41 -95.05 352 AWOS 

ADU 41.70 -94.92 399 AWOS 

BNW 42.05 -93.85 349 AWOS 

CIN 42.04 -94.79 365 AWOS 

TVK 40.68 -92.90 313 AWOS 

CNC 41.02 -93.36 319 AWOS 

CCY 43.07 -92.61 340 AWOS 

CKP 42.73 -95.55 374 AWOS 

ICL 40.72 -95.02 298 AWOS 

CAV 42.74 -93.76 350 AWOS 

CWI 41.83 -90.33 216 AWOS 

CBF 41.26 -95.76 378 AWOS 

CSQ 41.02 -94.36 393 AWOS 

DEH 43.28 -91.74 353 AWOS 

DNS 41.98 -95.38 381 AWOS 

FFL 41.05 -91.98 242 AWOS 

FXY 43.23 -93.62 375 AWOS 

FOD 42.55 -94.20 355 AWOS 

FSW 40.66 -91.33 220 AWOS 

GGI 41.71 -92.73 307 AWOS 
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Table A-1 NOAA air temperature measurement stations in Iowa (NOAA, 2017a) – Continued. 

HNR 41.58 -95.34 365 AWOS 

IIB 42.45 -91.95 294 AWOS 

IFA 42.47 -93.27 347 AWOS 

EOK 40.46 -91.43 205 AWOS 

OXV 41.30 -93.11 282 AWOS 

LRJ 42.78 -96.19 362 AWOS 

MXO 42.22 -91.16 255 AWOS 

MPZ 40.95 -91.51 222 AWOS 

MUT 41.37 -91.14 165.5 AWOS 

TNU 41.67 -93.02 287 AWOS 

OLZ 42.68 -91.98 328 AWOS 

ORC 42.99 -96.06 430 AWOS 

I75 41.05 -93.69 338.3 AWOS 

OOA 41.23 -92.49 256 AWOS 

PEA 41.40 -92.94 265 AWOS 

PRO 41.83 -94.16 309 AWOS 

RDK 41.01 -95.26 317 AWOS 

SHL 43.21 -95.84 432 AWOS 

SDA 40.75 -95.41 296 AWOS 

SLB 42.60 -95.24 450 AWOS 

VTI 42.22 -92.02 255 AWOS 

AWG 41.28 -91.67 229 AWOS 

EBS 42.44 -93.87 337 AWOS 

Table A-2 Spring site-specific model evaluation results for all stations and years. 

USGS Site 

ID 
Year alpha miu gamma beta 

Shift 

(h) 

RMSE 

(°C) 

Normalized 

discharge 

(m3/s-km2) 

0546494205 2016 21.1 1.8 0.123 14.02 2 1.47 -99 

06604000 2012 17.8 9.9 0.109 18.74 2 1.55 -99 

06604000 2013 17.6 -0.1 0.138 9.44 1 3.36 -99 

06604000 2014 22.2 3.8 0.093 15.46 2 2.73 -99 

06604000 2015 17.6 2 0.116 8.79 2 3.23 -99 

06604000 2016 20.9 1.5 0.1 16.91 3 3.19 -99 

05418110 2013 23.1 0 0.123 13.54 3 1.91 0.0224 

05418110 2014 24 0 0.121 13.19 3 2.18 0.0139 

06604200 2012 19.9 0 0.097 10.1 3 3.92 -99 

06604200 2013 16.8 0.1 0.124 10.73 1 2.44 -99 

06604200 2014 23.7 0.4 0.096 17.38 1 3.14 -99 
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Table A-2 Spring site-specific model evaluation results for all stations and years – 

Continued. 

06604200 2015 18 1.2 0.105 10.92 2 3.17 -99 

06604200 2016 19.8 2.2 0.102 18.04 1 2.84 -99 

05455100 2012 21.3 0.7 0.106 8.76 4 2.33 0.0096 

05455100 2013 22.6 0.5 0.137 11.48 4 2.65 0.0301 

05455100 2014 27.3 0 0.125 14.05 4 3.19 0.0056 

05455100 2015 20.7 7.7 0.137 13.35 3 1.59 0.0094 

05418400 2013 24.5 0 0.119 10.92 4 2.26 0.0213 

05418400 2014 26.8 -0.1 0.124 11.77 3 2.92 0.0113 

05482300 2012 26.2 7.9 0.094 17.13 4 2.22 0.0022 

05482300 2013 19.7 0.3 0.148 10.26 8 2.52 0.0142 

05482300 2014 26.5 0.3 0.103 11.39 3 2.81 0.0012 

05482300 2015 16.6 0.5 0.109 6.98 8 3.15 0.0113 

05482300 2016 20.4 1 0.104 11.36 6 2.14 0.0225 

06817000 2013 25.8 -0.1 0.122 10.51 4 2.50 0.0112 

06817000 2014 29.5 -0.1 0.113 14.72 4 3.54 0.0047 

06817000 2015 22.4 -0.1 0.12 9.25 3 3.27 0.0122 

06817000 2016 23.4 1 0.099 10.17 3 2.43 0.0160 

05481000 2012 27.1 -0.1 0.1 12.11 3 3.13 0.0031 

05481000 2013 20.1 -0.1 0.156 11.24 4 2.44 0.0223 

05481000 2014 24.4 -0.1 0.139 13.46 4 3.44 0.0050 

05481000 2015 18.9 -0.1 0.116 9.54 4 3.24 0.0118 

05481000 2016 19.2 0 0.112 9.21 4 2.46 0.0162 

05484000 2016 22.9 0.9 0.098 10.11 4 2.49 0.0174 

06808500 2016 19.7 2.9 0.108 10.25 4 2.16 0.0175 

05412500 2014 25.3 4 0.109 17.04 4 2.75 0.0216 

05412500 2015 21.5 2.4 0.129 9.87 4 2.54 0.0087 

05412500 2016 24.9 1.8 0.112 12.62 4 2.90 0.0141 

05458300 2012 24.4 -0.1 0.1 9.6 6 3.53 0.0070 

05458300 2013 19.7 0 0.156 10.96 5 2.77 0.0351 

05458300 2014 23.7 -0.1 0.131 14.1 4 3.60 0.0194 

05458300 2015 21.6 -0.1 0.12 10.02 5 4.05 0.0100 

05458300 2016 23 0.5 0.086 14.32 5 2.81 0.0163 

05482500 2012 27.3 8.7 0.108 18.53 4 2.02 0.0020 

05482500 2013 23.6 0 0.142 11.58 4 2.93 0.0095 

05482500 2014 27.3 -0.1 0.123 13.17 3 3.57 0.0013 

05482500 2015 20.3 -0.1 0.117 8.87 4 3.64 0.0101 

05482500 2016 21.7 1.5 0.102 12.93 4 2.60 0.0213 
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Table A-2 Spring site-specific model evaluation results for all stations and years – 

Continued. 

05418720 2015 23.2 4.1 0.129 9.97 3 2.63 0.0076 

05418720 2016 25.3 4.6 0.125 14.29 3 2.69 0.0091 

05484500 2012 28.4 9.9 0.12 19.98 3 2.09 0.0038 

05484500 2013 24.1 -0.1 0.136 12.04 4 2.93 0.0117 

05484500 2014 27.7 -0.1 0.121 14.25 4 3.59 0.0021 

05484500 2015 20.3 -0.1 0.13 8.88 4 3.37 0.0107 

05484500 2016 22.7 2.2 0.102 13.35 4 2.67 0.0176 

05482000 2014 22.2 0.4 0.109 13.51 6 3.55 0.0034 

05482000 2015 20.8 1.5 0.113 10.68 4 3.90 0.0083 

05482000 2016 23.2 2.9 0.08 15.04 3 3.54 0.0164 

05464420 2013 22.2 0.1 0.14 11.04 5 3.30 0.0261 

05464420 2014 25.7 0.2 0.101 13.94 4 3.60 0.0153 

05464420 2015 22.4 4.5 0.127 10.5 4 2.83 0.0099 

05464420 2016 24.4 1.6 0.076 15.65 5 2.96 0.0144 

05487520 2012 25.5 0.9 0.096 9.9 6 3.41 0.0044 

05487520 2013 22.1 -0.1 0.136 10.95 7 3.17 0.0094 

05487520 2014 25.2 -0.1 0.118 13.38 6 3.91 0.0040 

05487520 2015 19.7 0 0.125 7.59 6 3.72 0.0090 

05487520 2016 22.6 2.3 0.098 12.49 6 3.26 0.0157 

05465500 2012 26.7 11.5 0.105 20.3 5 2.60 0.0071 

05465500 2013 22.2 0.1 0.119 10 7 3.44 0.0238 

05465500 2014 23.2 0.1 0.117 12.84 6 3.78 0.0125 

05465500 2015 23.5 0.2 0.12 10.39 5 4.35 0.0089 

05465500 2016 25.3 2.4 0.106 14.03 5 3.51 0.0138 

Table A-3 Summer site-specific model evaluation results for all stations and years. 

USGS 

Site ID 
Year alpha miu gamma beta 

Shift 

(h) 

RMSE 

(°C) 

Normalized 

discharge 

(m3/s-km2) 

06604000 2012 32.4 20.1 0.085 27.26 2 2.10 -99 

06604000 2013 29.8 15.3 0.08 20.33 2 2.28 -99 

06604000 2014 27.9 17.5 0.064 20.75 3 1.59 -99 

06604000 2015 27.2 15.6 0.092 14.41 3 2.04 -99 

05418110 2013 27.4 13 0.137 22.44 3 1.44 0.0134 

05418110 2014 25.2 13.7 0.155 20.93 3 0.96 0.0096 

06604200 2012 30 16 0.074 19.11 3 2.27 -99 

06604200 2013 28.4 14.1 0.084 17.08 4 2.62 -99 
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Table A-3 Summer site-specific model evaluation results for all stations and years – 

Continued. 

06604200 2014 26.6 17.5 0.076 17.11 3 1.78 -99 

06604200 2015 27.6 15.7 0.084 14.9 5 2.38 -99 

05455100 2012 36.3 13.7 0.127 24.6 2 1.53 0.0011 

05455100 2013 31.5 14 0.13 22.79 3 2.19 0.0067 

05455100 2014 28 16.8 0.123 23.46 3 1.50 0.0228 

05455100 2015 28.8 14.8 0.135 22.79 3 1.86 0.0111 

05418400 2014 27.8 16.8 0.151 21.76 3 1.30 0.0165 

05482300 2012 34.4 13.9 0.111 21.47 4 2.31 0.0025 

05482300 2013 31.6 14 0.116 23.08 4 3.26 0.0093 

05482300 2014 26.4 17.1 0.104 21.19 7 1.45 0.0141 

05482300 2015 27.4 13.9 0.103 20.26 7 2.99 0.0115 

05482300 2016 29.8 15.4 0.097 18.08 5 2.32 0.0054 

06817000 2013 33.9 14.3 0.121 20.92 4 2.55 0.0088 

06817000 2014 32.1 16.6 0.09 22.97 4 2.06 0.0327 

06817000 2015 31 16.7 0.128 23.9 4 1.99 0.0223 

06817000 2016 32.8 18.6 0.136 24.23 4 1.89 0.0099 

05481000 2012 34.9 13.8 0.119 21.2 3 2.02 0.0006 

05481000 2013 32.6 14.3 0.117 24.57 4 2.66 0.0101 

05481000 2014 29.7 16.4 0.102 24.9 4 1.93 0.0153 

05481000 2015 30.7 14 0.124 22.92 4 2.85 0.0099 

05481000 2016 29.8 15.1 0.085 25.44 4 2.38 0.0089 

05484000 2016 31.3 19.6 0.131 21.81 4 1.66 0.0087 

06808500 2016 29.2 17.2 0.108 24.82 4 1.62 0.0134 

05412500 2013 29.3 16.8 0.139 22.04 4 1.33 0.0201 

05412500 2014 27.2 16.7 0.115 21.28 4 1.62 0.0180 

05412500 2015 29 16.1 0.129 22.03 4 1.69 0.0079 

05412500 2016 27.1 18.8 0.126 23.21 4 1.36 0.0220 

05458300 2012 31 15.7 0.077 17.95 6 2.14 0.0027 

05458300 2013 28.9 13.8 0.102 21.41 4 2.44 0.0204 

05458300 2014 27.7 16.7 0.087 24.3 4 1.51 0.0163 

05458300 2015 28.1 17.3 0.117 22.26 5 1.62 0.0132 

05482500 2012 33.4 15.4 0.105 20.25 4 2.07 0.0016 

05482500 2013 31.4 15.8 0.117 22.31 4 2.78 0.0101 

05482500 2014 28.7 17.8 0.109 21.42 4 1.62 0.0101 

05482500 2015 30 15.8 0.121 21.8 4 2.75 0.0145 

05482500 2016 30.2 18.8 0.12 21.88 4 1.86 0.0057 

05418720 2015 29.6 17.6 0.13 22.78 3 1.81 0.0134 
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Table A-3 Summer site-specific model evaluation results for all stations and years – 

Continued.  

05418720 2016 28 20.6 0.13 22.3 4 1.00 0.0123 

05484500 2012 34.5 14.9 0.126 22.19 3 1.57 0.0014 

05484500 2013 31.3 16.6 0.145 23.68 4 2.27 0.0132 

05484500 2014 29.5 18.3 0.13 24.11 4 1.49 0.0120 

05484500 2015 29.8 16.8 0.147 23.73 4 2.13 0.0197 

05484500 2016 30.9 19.8 0.161 23.22 3 1.58 0.0061 

05482000 2014 27.9 19.7 0.061 22.16 4 1.25 0.0165 

05482000 2015 29.4 18.7 0.118 21.44 4 2.15 0.0115 

05464420 2013 31 16.7 0.104 22.35 4 2.32 0.0232 

05464420 2014 28 18.9 0.103 22.82 4 1.51 0.0197 

05464420 2015 30 18.8 0.126 22.44 4 1.88 0.0125 

05487520 2012 32.3 18.7 0.095 21.48 4 2.17 0.0030 

05487520 2014 27.5 20.5 0.077 24.91 5 1.12 0.0154 

05487520 2015 27.8 18.1 0.088 21.58 8 1.93 0.0192 

05487520 2016 29.4 21.4 0.097 21.82 5 1.61 0.0089 

05465500 2012 35.8 17.6 0.097 23.98 4 2.32 0.0023 

05465500 2013 28.3 18.4 0.099 22.83 5 2.06 0.0192 

05465500 2014 29.9 20.8 0.079 27.34 5 1.40 0.0188 

05465500 2015 29 20.2 0.122 23.26 5 1.77 0.0149 

05465500 2016 29.4 22.4 0.103 22.68 5 1.16 0.0145 

Table A-4 Autumn site-specific model evaluation results for all stations and years. 

USGS 

Site ID 
Year alpha miu gamma beta 

Shift 

(h) 

RMSE 

(°C) 

Normalized 

discharge 

(m3/s-km2) 

06604000 2012 27.3 0.4 0.097 13.66 2 4.14 -99 

06604000 2013 26.8 -0.1 0.123 11.28 1 3.91 -99 

06604000 2014 24 0.3 0.119 8.1 3 3.71 -99 

06604000 2015 23.9 0.4 0.114 7.54 2 3.67 -99 

05418110 2013 24.6 0 0.117 11.61 3 2.36 0.0036 

05418110 2014 23.7 1.7 0.106 11.98 3 2.09 0.0040 

06604200 2012 25.4 1.8 0.09 12.3 2 3.77 -99 

06604200 2013 27.2 1.6 0.124 10.92 3 3.76 -99 

06604200 2014 24.2 0.5 0.115 6.81 3 3.52 -99 

06604200 2015 25.6 2.3 0.092 8.86 4 3.20 -99 

05455100 2012 31 0 0.106 16.07 2 2.97 0.0005 

05455100 2013 28.5 0 0.15 13.85 4 2.82 0.0003 

05455100 2014 24.7 0.7 0.104 10.77 4 2.78 0.0103 
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Table A-4 Autumn site-specific model evaluation results for all stations and years – 

Continued.  

05455100 2015 28.4 6.5 0.128 18.17 3 2.49 0.0082 

05418400 2013 27.4 0 0.132 12.16 3 2.62 0.0045 

05418400 2014 25.9 2.9 0.132 13.04 3 2.61 0.0055 

05482300 2012 27.1 2.2 0.108 14.63 4 2.97 0.0002 

05482300 2013 28.8 -0.1 0.132 13.03 3 2.97 0.0003 

05482300 2014 22.3 0 0.137 8.74 8 3.24 0.0067 

05482300 2015 24.9 4.8 0.121 13.98 6 2.55 0.0127 

05482300 2016 25.9 1.7 0.11 12.13 5 3.05 0.0151 

06817000 2013 31.6 -0.1 0.155 14.84 5 3.57 0.0009 

06817000 2014 25.2 -0.1 0.119 11.41 5 3.76 0.0222 

06817000 2015 30 1.3 0.103 15.1 4 3.25 0.0122 

06817000 2016 29 2 0.102 14.73 4 3.20 0.0088 

05481000 2012 30.4 0.9 0.103 17.21 4 3.26 0.0002 

05481000 2013 29.2 -0.1 0.141 13.54 4 3.20 0.0002 

05481000 2014 22.7 -0.1 0.133 9.66 5 3.36 0.0075 

05481000 2015 25.4 -0.1 0.11 11.67 4 3.07 0.0052 

05481000 2016 26 0.9 0.098 13.3 5 3.35 0.0243 

05484000 2016 29 2.5 0.1 14.39 3 3.42 0.0083 

06808500 2016 25.6 3.6 0.107 14.9 4 2.98 0.0131 

05412500 2013 27.4 -0.1 0.116 12.75 4 3.31 0.0032 

05412500 2014 25.4 2 0.109 11.9 4 3.05 0.0042 

05412500 2015 29.4 -0.1 0.11 14.31 3 3.21 0.0031 

05412500 2016 23.4 2.8 0.112 13.13 5 2.86 0.0256 

05458300 2012 25 0.4 0.101 11.91 8 3.68 0.0014 

05458300 2013 26.5 -0.1 0.128 11.62 7 3.58 0.0034 

05458300 2014 25 -0.1 0.124 11.14 5 3.67 0.0052 

05458300 2015 27.3 0.8 0.112 13.43 6 3.60 0.0058 

05482500 2012 29.2 0 0.098 15.13 4 3.69 0.0002 

05482500 2013 28.6 0 0.132 12.63 4 3.65 0.0003 

05482500 2014 23.4 -0.1 0.132 9.51 4 3.63 0.0106 

05482500 2015 25 4.5 0.104 14.1 6 3.60 0.0147 

05482500 2016 27.7 1.8 0.101 14.32 4 3.59 0.0112 

05418720 2015 29.2 1.1 0.115 14.14 3 3.41 0.0071 

05418720 2016 26.2 3.2 0.118 14.02 4 3.37 0.0099 

05484500 2012 31.2 -0.1 0.107 16.44 3 2.95 0.0004 

05484500 2013 29 -0.1 0.135 14.06 4 3.13 0.0006 

05484500 2014 23.8 -0.1 0.134 10.96 5 3.32 0.0161 

05484500 2015 27 3.5 0.123 15.7 4 3.02 0.0132 

05484500 2016 28.6 2.8 0.105 15.66 4 3.11 0.0089 
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Table A-4 Autumn site-specific model evaluation results for all stations and years – 

Continued.  

05482000 2014 26 0.8 0.118 10.67 5 3.83 0.0061 

05482000 2015 26.5 5.1 0.119 13.17 5 3.36 0.0075 

05482000 2016 26.9 6.6 0.103 14.24 3 3.41 0.0137 

05464420 2013 28.8 1.3 0.119 12.76 4 3.67 0.0028 

05464420 2014 25.6 1.8 0.12 10.89 4 3.62 0.0052 

05464420 2015 28.7 1.8 0.121 13.16 4 3.73 0.0069 

05487520 2012 29.8 1.4 0.093 13.85 3 4.04 0.0004 

05487520 2013 29.7 0.3 0.117 12.65 4 4.03 0.0008 

05487520 2014 24.2 -0.1 0.125 9.64 7 3.77 0.0130 

05487520 2015 25.7 3.7 0.124 13.72 6 3.56 0.0095 

05487520 2016 26.6 5.3 0.116 15.07 5 3.71 0.0105 

05465500 2012 20.4 -0.1 0.112 8.79 5 3.28 0.0010 

05465500 2013 28.6 0.1 0.104 14.54 7 3.47 0.0019 

05465500 2014 27 -0.1 0.111 11.97 5 4.08 0.0067 

05465500 2015 28.1 3.2 0.119 13.76 5 3.78 0.0080 

Table A-5 Spring site-specific parameters for model implementation.  

Water Temperature 

Site ID 

Number 

of years 
alpha beta miu gamma 

shift 

(h) 

06604000 4 22.2 13.11 -0.100 0.1140 2 

05418110 2 24.0 13.37 0.000 0.1220 3 

06604200 4 23.7 12.28 0.000 0.1055 2 

05455100 4 27.3 11.91 0.000 0.1263 4 

05418400 2 26.8 11.35 -0.100 0.1215 4 

05482300 4 26.5 11.44 0.300 0.1135 6 

06817000 3 29.5 11.49 -0.100 0.1183 4 

05481000 4 27.1 11.59 -0.100 0.1278 4 

05412500 2 25.3 13.46 2.400 0.1190 4 

05458300 4 24.4 11.17 -0.100 0.1268 5 

05482500 4 27.3 13.04 -0.100 0.1225 4 

05418720 1 23.2 9.97 4.100 0.1290 3 

05484500 4 28.4 13.79 -0.100 0.1268 4 

05482000 2 22.2 12.10 0.400 0.1110 5 

05464420 3 25.7 11.83 0.100 0.1227 4 

05487520 4 25.5 10.46 -0.100 0.1188 6 

05465500 4 26.7 13.38 0.100 0.1153 6 

1 2 24.8 11.01 0.000 0.0925 4 

2 1 21.5 12.17 3.30 0.1310 3 



85 
 

 

8
5
 

Table A-5 Spring site-specific parameters for model implementation – Continued.  

3 2 24.9 11.89 -0.06 0.1135 3 

5 2 24.3 13.90 5.47 0.1175 6 

6 1 22.8 11.57 5.60 0.1120 4 

9 1 19.5 11.05 5.32 0.1520 2 

10 1 22.6 13.65 11.00 0.1400 4 

11 1 19.5 11.83 0.76 0.1210 2 

12 1 18.5 14.84 0.39 0.1150 1 

14 1 23.1 13.27 0.01 0.1210 2 

16 1 19.4 13.13 3.12 0.1460 2 

17 1 21.3 12.22 4.13 0.1390 1 

18 1 23.3 12.91 5.15 0.1410 2 

21 1 17.2 11.22 0.83 0.1210 3 

22 1 17.3 12.58 1.41 0.1180 2 

Table A-6 Summer site-specific parameters for model implementation. 

Water Temperature 

Site ID 

Number 

of years 
alpha beta miu gamma 

shift 

(h) 

06604000 4 29.3 20.7 17.13 0.0803 2 

05418110 2 26.3 21.7 13.35 0.1460 3 

06604200 4 28.2 17.1 15.83 0.0795 4 

05455100 4 31.2 23.4 14.83 0.1288 3 

05418400 1 27.8 21.8 16.80 0.1510 3 

05482300 4 30.0 21.5 14.73 0.1085 6 

06817000 3 32.3 22.6 15.87 0.1130 4 

05481000 4 32.0 23.4 14.63 0.1155 4 

05412500 3 28.5 21.8 16.53 0.1277 4 

05458300 4 28.9 21.5 15.88 0.0958 5 

05482500 4 30.9 21.4 16.20 0.1130 4 

05418720 1 29.6 22.8 17.60 0.1300 3 

05484500 4 31.3 23.4 16.65 0.1370 4 

05482000 2 28.7 21.8 19.20 0.0895 4 

05464420 3 29.7 22.5 18.13 0.1110 4 

05487520 3 29.2 22.7 19.10 0.0867 6 

05465500 4 30.8 24.4 19.25 0.0993 5 

1 2 27.5 21.7 21.06 0.0710 4 

2 2 28.7 23.9 15.09 0.1290 3 

3 2 32.7 26.6 14.15 0.1155 4 

4 1 28.6 25.6 13.19 0.1210 3 
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Table A-6 Summer site-specific parameters for model implementation – Continued.  

5 2 29.1 23.9 17.60 0.1090 5 

6 1 28.1 21.0 20.21 0.1170 5 

7 1 38.5 30.0 16.14 0.0730 1 

8 2 29.8 22.0 15.93 0.1410 2 

9 1 24.7 21.5 13.18 0.1470 2 

10 1 27.8 20.8 18.70 0.1150 5 

11 1 25.3 21.0 10.78 0.1290 2 

12 1 20.2 18.8 9.14 0.1260 2 

13 1 26.8 21.9 12.05 0.1600 3 

14 1 35.0 23.1 10.71 0.2040 1 

16 1 24.6 20.8 10.38 0.1330 3 

17 1 28.6 21.3 11.95 0.1590 1 

19 1 31.6 22.9 14.31 0.1390 3 

21 1 24.1 22.4 10.14 0.1270 3 

22 1 22.8 22.0 10.09 0.1340 2 

Table A-7 Autumn site-specific parameters for model implementation. 

Water Temperature 

Site ID 

Number 

of years 
alpha beta miu gamma 

shift 

(h) 

06604000 4 27.3 10.145 -0.1 0.11325 2 

05418110 2 24.6 11.795 0 0.1115 3 

06604200 4 27.2 9.7225 0.5 0.10525 3 

05455100 4 31 14.715 0 0.122 3 

05418400 2 27.4 12.6 0 0.132 3 

05482300 4 28.8 12.595 -0.1 0.1245 5 

06817000 3 31.6 13.7833 -0.1 0.12567 5 

05481000 4 30.4 13.02 -0.1 0.12175 4 

05412500 3 29.4 12.9867 -0.1 0.11167 4 

05458300 4 27.3 12.025 -0.1 0.11625 6 

05482500 4 29.2 12.8425 -0.1 0.1165 4 

05418720 1 29.2 14.14 1.1 0.115 3 

05484500 4 31.2 14.29 -0.1 0.12475 4 

05482000 2 26.5 11.92 0.8 0.1185 5 

05464420 3 28.8 12.27 1.3 0.12 4 

05487520 4 29.8 12.465 -0.1 0.11475 5 

05465500 4 28.6 12.265 -0.1 0.1115 6 

1 3 29.4975 11.1633 0.70333 0.1 4 

2 3 30.15 14.6767 -0.1 0.12467 2 
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Table A-7 Autumn site-specific parameters for model implementation – Continued.  

3 3 28.9825 13.93 -0.0617 0.13133 3 

4 2 26.12 12.69 0.225 0.1235 4 

5 3 28.2 18.62 0.225 0.08933 7 

6 1 39.965 21.63 -0.1 0.082 3 

7 2 29.63 12.97 -0.0425 0.105 5 

8 1 29.4408 16.11 2.12333 0.11 2 

9 2 23.8275 11.71 0.65417 0.1065 2 

10 2 26.6058 12.125 -0.1 0.11 4 

11 1 28.0208 16.93 5.11083 0.119 2 

12 1 19.1317 13.78 6.13 0.137 3 

13 1 26.495 15.84 3.26667 0.12 2 

14 1 34.2373 18.84 2.33 0.124 2 

16 1 24.8492 16.64 3.92583 0.118 3 

17 1 27.925 14.68 0 0.107 2 

19 1 30.7767 19.23 5.19167 0.118 3 

21 1 23.18 14.96 5.64083 0.122 2 

22 1 22.6708 14.53 5.09667 0.132 3 

Table A-8 2016 on-site evaluation for spring, summer, and autumn using parameter value 

estimates from 2012 to 2015. 

Water Temperature Site 

ID 

Spring RMSE 

(°C) 

Summer RMSE 

(°C) 

Autumn RMSE 

(°C) 

06604000 3.43 2.08 3.58 

06604200 3.89 2.37 3.43 

05482300 3.51 2.71 3.38 

06817000 3.81 2.00 3.88 

05481000 4.14 2.84 4.30 

05412500 2.94 1.45 3.73 

05458300 3.39 1.13 3.63 

05482500 3.59 2.01 3.86 

05418720 3.45 1.42 3.51 

05484500 3.58 2.11 3.68 

05482000 3.81 2.12 3.78 

05464420 3.56 1.29 3.63 

05487520 3.88 2.06 4.06 

05465500 3.65 1.75 3.45 

1 3.80 1.81 3.54 

2 2.08 1.61 1.36 

3 2.00 1.42 2.88 
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Table A-8 2016 on-site evaluation for spring, summer, and autumn using parameter value 

estimates from 2012 to 2015 – Continued.  

8 -- 2.02 2.86 

9 1.65 1.14 2.25 

11 1.35 1.39 1.56 

12 1.82 1.54 1.82 

13 -- 1.20 2.23 

14 1.77 2.54 2.87 

16 1.40 1.13 1.76 

21 1.43 1.60 1.51 

22 -- 1.33 1.54 
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