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RKEM Implementation for Strain Gradient Theory in Multiple Dimensions

Abhishek Kumar

ABSTRACT

The Reproducing Kernel Element Method (RKEM) implementation of the Fleck-Hutchinson phenomeno-

logical strain gradient theory in 1D, and higher dimension is implemented in this research. Fleck-Hutchinson

theory fits within the framework of Touplin-Mindlin theories and deals with first order strain gradients and

associated work conjugate higher-order stress. Theories at the intrinsic or material length scales find appli-

cations in size dependent phenomena. In elasticity, length scale enters the constitutive equation through the

elastic strain energy function which depends on both strain as well as the gradient of rotation and stress. The

displacement formulation of the Touplin Mindlin theory involves diffrential equations of the fourth order, In

conventional FEM C1 elements are required to solve such equations. C1 elements are cumbersome in 2D

and unknown in 3D. The high computational cost and large number of degrees of freedom soon place such

formulation beyond the realm of practicality.

Recently, some mixed and hybrid formulations have been developed which require onlyC 0 continuity but

none of these elements solve complicated geometry problems in 2D and there is no problem yet solved in 3D.

The large number of degrees of freedom is still inevitable for these formulations. As has been demonstrated

earlier RKEM has the potential to solve higher-order problems, the degree of freedom consist of nodal dis-

placement and their derivatives. This method has the promise to solve important problems formulated with

higher order derivatives, such as The strain gradient theory.
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Chapter 1

Introduction

Classical (local) continuum constitutive models possess no material/intrinsic length scale. The typical

dimensions of length that appear in the corresponding boundary value problems are associated with the overall

geometry of the domain under consideration. In spite of the fact that classical theories are quite sufficient for

most applications, there is ample experimental evidence which indicates that, in certain applications, there is

significant dependence on additional length/size parameters. Some of these instances, as selected from the

literature, include the dependence of the initial flow stress upon particle size, the dependence of hardness

on size of the indenter, the effect of wire thickness on torsional response, the development and evolution

of damage in concrete, etc. All these investigations highlight the inadequacy of local continuum models in

explaining the observed phenomena, thereby motivating the need to introduce non-local continuum models

that have length scales present in them. An extensive summary of this experimental evidence is given in

a recent review article by Fleck and Hutchinson [9]. In ”gradient-type” plasticity theories, length scale is

introduced through the coefficient of spatial gradients of one or more internal variables. In elasticity, length

scale enters the constitutive equation through the elastic strain energy function, which in this case depends

not only on the strain tensor but also on gradients of the rotation and strain tensor.

Conventional continuum mechanics theories assume that stress at a material point is a function of ’state’

variables, such as stress at the same point. This local assumption has long been proved to be adequate when

the wavelength of the deformation field is much larger than the micro-structural length scale of the material.

However when the two length scales are comparable, the assumption is questionable as the material behavior

at a point is influenced by deformation of neighboring points. Starting from the pioneering Cosserat couple

stress theory [3], various non-local or strain gradient continuum theories have been proposed. In the full

Cosserat theory [3], an independent rotation quantity θ is defined in addition to the material displacement u;

couple stresses (bending moment per unit area) are introduced as the work conjugate to the micro-curvature

(that is, the spatial gradient of θ). Later, Toupin [29] and Mindlin [22] proposed a more general theory which

includes not only micro-curvature, but also gradients of normal strain. Both the Cosserat and Toupin-Mindlin

theories were developed for linear elastic materials. Afterwards, non-local theories for plastic materials
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was developed by, among others, Aifantis [7] and Fleck and Hutchinson [8, 9]. Fleck-Hutchinson strain

gradient plasticity theories fall within the Touplin -Mindlin framework. Interest in non-local continuum

plasticity theories have been rising recently due to an increasing number of observed size effects in plasticity

phenomena. Variants of this strain gradient plasticity theory have also appeared [11, 14, 31]. These theories

have been widely applied to studying length scale-dependent deformation phenomena in metals. Polar and

higher-order continuum theories have been applied to layered materials, composites and granular media, in

addition to polycrystalline metals.

The solution of the initial and boundary value problems posed in terms of the higher-order theories is

not straight forward: the governing differential equation and boundary conditions are complicated [29] and

analytical solutions are restricted to the simplest cases. Computational difficulties also arise. While boundary

conditions are easier to treat in the variational setting, requirements of regularity dictates that the displacement

must be aC1 function over the domain. The degrees of freedom include nodal displacement and displacement

gradients. The situation is partially analogous to classical Bernoulli-Euler beam and Poisson-Kirchhoff plate

theories in one and two spatial dimension respectively.

A finite element formulation incorporating C1 displacement fields are therefore a natural first choice

for strain gradient theories. For example, the use of Specht’s triangular element [27] for the special case of

couple stress theory was examined [32]. The element contains displacement derivatives as extra nodal degrees

of freedom and C1 continuity is satisfied only in a weak averaged sense along each side of the element;

therefore the element is not a strict C1 element. Furthermore, the element fails to deliver an accurate pressure

distribution for an incompressible, non linear solid. There is a rectangular C1 element [23], but its shape

and number of degrees of freedom are strong limitation for its implementation in two and higher dimensional

problems. As is easily appreciated, the computational cost is high; the large number of degrees of freedom

soon place such formulation beyond realm of practicality.

The lack of robust C1-continuous elements then motivated the development of various C0-continuous

elements for couple stress theory in recent decades( [32], [15], [30] [6] [33], [21] [18] etc). Finite element

formulations for the Fleck-Hutch strain gradient plasticity theory have been developed with plate elements

as a basis, but were generally found to perform poorly [32]. Mixed and hybrid formulations have also been

developed in the same work and elsewhere the work of [30] introduced some C0 element types, where nodal

degrees of freedom include nodal displacement and corresponding gradients, and the kinematic constraint

between displacement and displacement gradient are enforced via the Lagrange multiplier method. Their

lowest order triangular element requires 28 unknowns per element, and their lowest order quadrilateral ele-
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ment 38 unknowns; Amanatidou and Aravas [6] proposed mixed C0 -continuity finite element formulations,

where every element includes around 70 nodal degrees of freedom in 2-D problems. G.Engel et. al. [21] tries

to solve the same problem using a continuous/discontinuous finite element approximation. In this work they

have presented rate of convergence and error estimates derived for energy and L2 norms. But this has been

limited to 1D problems and to the best of the author’s knowledge there is no extension of this formulation

to two and higher dimension. From this information it is evident that currently no finite element method nor

extensions of finite element methods is available for strain gradient theory formulation in higher dimensions.

During the last two decades, the technique of meshless interpolation of trial and test functions has been

attracting great attention. Meshfree methods such as the hp-cloud method [2], the method of finite spheres [4],

the particle partition of unity method [13], reproducing kernel particle methods [?] , the element free Galerkin

method [28], the finite point method [5], the diffuse element method [1], the modified local Petrov-Galerkin

method [26], smooth particle hydrodynamics [20], among others, offer an attractive alternative for solution of

many classes of problem that are difficult or even not feasible to solve using the finite elements because these

methods posess intrinsic non-local properties. Unlike a typical finite element method, the nonlocal properties

of meshfree approximations confer an arbitrary degree of smoothness on solutions and have been applied to

various problems.

The Reproducing Kernel Element Method(RKEM) first presented by Liu et al.is the first globally com-

patible, minimal degree of freedom, arbitrary degree of continuity basis function on a given mesh. The salient

feature of RKEM is the hybridization of finite element shape functions with the mesh free kernel function.

Detailed formulation for RKEM is given in section 3. Use of RKEM to solve plate and shell structures

problem which contain higher order differential derivative has been demonstrated . In this work, the detail

review of strain gradient theory is given in chapter 2. The application of RKEM to strain gradient theory

is discussed in detail in chapter 3 and 4. To study the accuracy of the present method, convergence test are

carried out and several problems in one and two dimensions are analyzed in chapter 5 and 6. From these

tests, the RKEM method is found to give quite accurate results. The remarkable accuracy in these numerical

simulations show promising characteristics for solving general problems for materials whose constitutive law

involve strain-gradients.
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Chapter 2

Review of Linear Elastic Strain Gradient Theory

Touplin [29] and Mindlin [22] developed a theory of linear elasticity whereby the strain energy density per

unit volume(w) depends upon both the strain εij ≡ (ui,j + uj,i)/2 and strain gradient ηijk ≡ uk,ij . Here u

is the displacement field and comma represents partial differentiation with respect to a Cartesian co-ordinate.

In addition to the Cauchy stress σij , this theory also takes into account higher order stress τijk which is work

conjugate to ηijk .

Due to the symmetric property of strain tensor εij = εji .

The strain energy function w is assumed to be a convex function, with respect to its argument(ε, η) for

each point x of a solid of volume V. The total energy W stored in the solid is determined by the displacement

field u(x) within V

W (u) ≡
∫

V

w(ε(u), η(u);x) dx (1)

with ε , η being derived from u, as discussed above.

The energy variation of the solid due to an arbitrary variation of the displacement u is :

δW =

∫

V

(σijδεij + τijkδηijk) dx. (2)

Mindlin [22] showed that for a general isotropic linear hyper-elastic material the solid strain energy per unit

volume( w) can be expressed as

w =
1

2
λεiiεjj + νεiiεjj + a1ηijjηikk + a2ηiikηkjj + a3ηiikηjjk + a4ηijkηijk + a5ηijkηjki (3)

in terms of the invariants of the second-order strain tensor and the third-order strain gradient tensor. Here λ

and ν are the standard Lame constants and the five an are additional constants of dimensions of stress times

length squared.
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From the constitutive law the stress σij and the higher order stress ηijk for an elastic solid is derived as :

σij =
∂w

∂εij

and

τijk =
∂w

∂ηijk

For Linear Elasticity σij and ηijk can be written as

σij =
∂w

∂εij
= 2νεij + λεkkδij (4)

ηijk =
∂w

∂ηij

= a1(ηippδjk + ηjppδik + a2(ηkppδij +
1

2
ηppiδjk

+
1

2
ηppjδik + a3(2ηppkδij) + a4(2ηijk) + a5(ηjki + ηikj ) (5)

The principal of virtual work can be expressed as [9]

∫

V

[σijδεij + τijkδηijk ]dV =

∫

v

[bkδuk]dV +

∫

s

[fkδuk + rkDδuk]dS (6)

for an arbitrary displacement increment δu. Here bk is the body force per unit volume of the body V while

fk and rk are the traction and double stress traction per unit area of the surface S, respectively. They are in

conjunction with the Cauchy stress σij and higher order stress τijk according to

bk + (σik − τjik,j ),i = 0 (7)

fk = ni(σik − τjik,i) + ηiηjτijk(Dpηp) −Dj(ηiτijk) (8)

and

rk = ηiηjτijk (9)

In the above equation Dj(·) = (δjk − ηjηk) ∂(·)
∂xk

is a surface gradient operator and D(·) = ηk
∂(.)
∂xk

is surface

normal-gradient operator. ni is the ith componenent of the unit surface normal operator. The strain gradi-

ent theory dictates that, in order to have a unique solution, six boundary conditions must be independently
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prescribed at any point on the surface of the body , i.e. fk or uk, and rk or Duk. The extra boundary condi-

tions on rk or Duk are characteristic of the strain gradient theory and, as can be seen later in one particular

example, they imply strain continuity across the interface between two dissimilar materials.
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Chapter 3

Review of RKEM

A new class of method, the Reproducing Kernel Element Method(RKEM) [17] , [16] [19], [24] has

been recently developed. This method takes salient features from the FEM and meshfree methods. The

essence of RKEM is to extend the notion of the FEM element shape functions to the entire domain and use

a meshfree kernel to combine them in such a way as to ensure global compatibility, partition of unity and

global reproducing properties.

3.1 Concept of RKEM

The RKEM method is illustrated briefly in this section.

As the name implies, RKEM is an element based method not like meshless methods. An element is a

subset of the domain of the problem. The solution is represented as a linear combination of shape or basis

functions on the domain. The shape functions are associated with nodal degrees of freedom (DOF) at each

node, which are related to the primary unknowns and its various derivatives. For each DOF associated global

partition polynomials are constructed. Unlike the construction of high order finite element shape functions,

the RKEM shape function does not need any extra degrees of freedom either on the side of the element or in

the interior. The requirement on the number of degrees of freedom is absolutely minimum.

The RKEM is developed to achieve these following objectives:

1. No numerically induced discontinuity between elements. Inter-element boundary continuities limit the

smoothness of FEM shape function. For example, to solve a fourth order differential equation, one

needs C1 elements in a standard conforming method. In practice it is very difficult to get continuity

between two such element in two or higher dimensional domains. RKEM is developed to overcome

this difficulty.

2. No special treatment required for enforcing essential boundary conditions. For most meshfree meth-

ods, the treatment of Dirichlet boundary conditions is problematic due to loss of the Kronecker delta
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property of meshfree shape functions. The treatment of Dirichlet boundary conditions in RKEM is

straightforward.

3. High order smooth interpolation in arbitrary domains of multiple dimensions.

RKEM shape functions are formed by combining global partition polynomials and the meshfree repro-

ducing kernel functions. Global partition polynomials (gpp) for RKEM have the same properties as those of

FEM, but they are defined globally. Detailed formulation of gpp’s are given in the next section in this chapter.

It should be noted that the gpp’s are always constructed to be Hermite polynomials. Kernel functions are used

to truncate the gpp’s outside a compact support such that the reproducing conditions are satisfied. The term

reproducing condition refers to ability of shape function to reproduce a constant, as part of the requirements

for convergence.

An RKEM interpolation field is defined as:

If(x) =

Nelem
∑

e=1

[

∫

Ωe

Kρ(x − y : x)dy

(

nnodes
∑

i=1

ψe,i(x)f(xe,i)

)]

(10)

where f(x) is the interpolated function;Kρ is the meshfree kernel function; Nelem is the number of elements

in the domain; nnodes is the number of nodes for a particular element, e.g. nnodes =3 for a triangular element;

Ωe is element domain, ψe,i(x) are the global partition polynomials; and I is the interpolation operator.

After nodal integration Eq. 10 can be written as

Ihf(x) = A
e∈

V

E









nnodes
∑

j=1

Kρ(x − xe,j : x)∆Ve,j





(

nnodes
∑

i=1

ψe,i(x)f(xe,i)

)



 (11)

where ∆Ve,j is the nodal integration weight, the Lobatto quadrature rule [12] [16] is used to assign this

weight. The symbol A
e∈

V

E

is the assembly operator and denotes the summation over the set of elements, (
∧

E

of the mesh.

The reproducing kernel function is a function with compact support and is chosen to have the form

Kρ =
1

ρd
e,j

w

(

x − xe,j

ρe,j

)

b(x) (12)

where ρ is the support radius, d is the spatial dimension, x is the point at which the kernel is evaluatedd, w

is a compactly-supported smooth window function, and the factor b(x) is used for normalization. A smooth
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window functionCn(Ω) is chosen to serve as the core of the kernel. In the present work, w in one dimension

is taken to be a cubic spline, which gives C2 continuity.

If f(x) = 1 in Eq. 11 then we have

1 = A
e∈

V

E









nnodes
∑

j=1

1

ρd
e,j

w

(

x− xe,j

ρe,j

)

b(x)∆Ve,j





(

nnodes
∑

i=1

ψe,i(x)

)



 (13)

Since the global partition polynomials for a single element are a partitions of unity Ωe , i.e:

(

nnodes
∑

i=1

ψe,i(x)

)

= 1

we have

A
e∈

V

E











nnodes
∑

j=1

1

ρd
e,j

w

(

x

−xe,jρe,j

)

b(x)∆Ve,j











= 1 ∀x ∈ Ω

The expression for the normalizer b(x) can be written using above equation as :

b(x) :=







A
e∈

V

E









nnodes
∑

j=1

1

ρd
e,j

w

(

x − xe,j

ρe,j

)

∆Ve,j















−1

(14)

Using the connectivity relation, the shape function (ΨI(x)) for RKEM at node I can be written as

ΨI(x) =

l
∑

k=1





∑

j∈
V

ek

1

ρd
e,j

w

(

x − xe,j

ρe,j

)

∆Ve,j



 b(x)ψek ,ik
(x) (15)

and the reproducing kernel element interpolation in term of RKEM shape function can be written as

Ihf(x) =

Nnodes
∑

I=1

ΨI(x)fI (16)

where Nnodes is total number of nodes for domain.

The RKEM shape functions are Generalized Hermite Functions, these are a set of functions, not neces-

sarily polynomials which satisfies the interpolation condition

P k(ξi) = yi, k = 0, 1, · · · , ni − 1, 1 = 0, 1, · · · ,m (17)

9



where P is polynomial and yi is value of polynomial at ξi, i.e. Hermite interpolation interpolates not only the

primary variable, but also the first ni - 1 derivatives.

We will denote the RKEM domain by Ω throughout this thesis.

3.2 Global Partition Polynomial

The construction of global partition polynomials for RKEM is similar to that of FEM, except that it is defined

globally instead of locally in FEM. The systematic procedure to construct the global partition polynomial

is given in [25]. In this section the global partition polynomial for the element used in this work, the so

called L4P3I1 and T9P2I1 will be discussed. The nomenclature L4P3I1 stands for Linear element which

has 4 degrees of freedom, globally reproduces 3rd order Polynomials and Interpolates 1st order derivatives

and T9P2I1 stands for Triangular element which has 9 degrees of freedom, globally reproduces 2nd order

Polynomials and Interpolates 1st order derivatives.

3.2.1 The L4P3I1 Element

For one dimensional elements, the global partition polynomials are particularly easy. Depending on the order

of interpolation, one uses the appropriate Hermite interpolant. The L4P3I1 element is constructed using the

first order Hermite polynomials.

First order Hermite polynomials on an interval of length ∆xe with ξ ∈ [0,1] are:

H0
1 (ξ) = 1 − 3ξ2 + 2ξ3 (18)

H0
2 (ξ) = 3ξ2 − 2ξ3) (19)

H1
1 (ξ) = ∆xe(ξ − 2ξ2 + ξ3) (20)

H1
2 (ξ) = ∆xe(ξ

3 − ξ2) (21)

(22)

The global partition polynomials for this element are the same as the standard FEM beam element shape

functions. The shape function Ψ00 and Ψ10 for this element is shown in Fig. ?? and Fig. ??

10



[u1, u1,x, u1,y]

[v1, v1,x, v1,y]

[v3, v3,x, v3,y]

[u2, u2,x, u2,y]

[v2, v2,x, v2,y]

[u3, u3,x, u3,y]

Figure 1. The T9P2I1 element with variable associated at each nodes

(0,0) (1,0)

(1,1)

Figure 2. The parent triangle for T9P2I1 element
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3.2.2 The T9P2I1 Element

The triangular element used in this work is the T9P2I1. In Fig. 1 the solid circle in triangle represents

the node, nodal degrees of freedom associated with each node is given at each vertex, u and v represent

displacement in x and y direction respectively.

As mentioned previously in this section, the smoothness or continuity of the global RKEM shape function

is determined by the continuity of the reproducing kernel, a third order spline is used as the window function

for this element. Therefore, the element is a global C2 compatible element. The element has 9 degrees of

freedom, the global partition polynomials are constructed using the parametric approach. In the parametric

approach the geometric(physical) triangle shown in Fig. 1 is mapped to a parent triangle shown in Fig. 2.

The reason for choosing this parent triangle is explained in [25].

The shape function for this parent triangle are:

N1(s, t) = 1 − s (23)

N1(s, t) = s− t (24)

N1(s, t) = t (25)

The global partition polynomials are derived by considering the following element interpolation field in a

three node triangular parent element (e),

If =
3
∑

i=1

(

ψ
(00)
e,i (x)fe,i + ψ

(10)
e,i (x)

∂f

∂x

∣

∣

∣

∣

e,i

+ ψ
(01)
e,i (x)

∂f

∂y

∣

∣

∣

∣

e,i

)

= ΨTf (26)

where ψ is denoted as the local shape function array and vector f is nodal data array, i.e.

ψT :=
[

ψ00
e,1 , ψ10

e,1 , ψ01
e,1 , ψ00

e,2 , ψ10
e,2 , ψ01

e,2 , ψ00
e,3 , ψ10

e,3 , ψ01
e,3

]

(27)

fT :=
[

fe,1 , fe,1,x
, fe,1,y

, fe,2 , fe,2,x
, fe,2,y

, fe,3 , fe,3,x
, fe,3,y

]

(28)
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Based on [25] the final result for the global partition polynomials for this parent element are:

ψ̃
(00)
1 = 2s3 − 3s2 + 1 (29)

ψ̃
(10)
1 = s3 − 2s2 + s (30)

ψ̃
(01)
1 =

1

2
(st2 + s2t− t2 − 3st) + t (31)

ψ̃
(00)
2 = 2t3 − 2s3 + 3s2 − 3t2 (32)

ψ̃
(10)
2 =

1

2
(t2 − st2 − s2t+ st) + s3 − s2 (33)

ψ̃
(01)
2 = t3 − 1

2
(st2 + s2t+ 3t2 − 3st) (34)

ψ̃
(00)
3 = 3w2 − 2w3 (35)

ψ̃
(10)
3 =

1

2
(sw2 + s2w − w2 − ws) (36)

ψ̃
(01)
3 =

1

2
(tw2 + t2w − w2 − wt) (37)

(38)

The global RKEM interpolation field is constructed based on the Eq. 15. Quadratic Polynomials are repro-

duced using these shape functions. The shape and profile of the global RKEM shape function of this element

is displayed in Fig. 3. It is important to note that each plot is scaled for visibility, thus relative magnitudes

cannot be determined from the plots. The shape of the global interpolation function depends upon the mesh

and node, whether it is a boundary node or it is in the interior of the domain. The shape functions plotted in

Fig. 3 are computed for the middle node of the mesh shown in Fig. 9.

3.3 Salient Features of RKEM

The following are some salient features of RKEM which differentiates it from FEM and other meshless

methods:

1. The shape functions are Generalized Hermite interpolants. As such, at each node the primary variable

and various of its derivatives are interpolated. This property is useful in interpolating derivatives of

primary variable, e.g. stresses in elasticity problems.

2. The shape functions possess the Higher-order Kronecker-δ property:

DαΨ
(β)
I

∣

∣

∣

x=xJ

= δIJδαβ , xI , xJ ∈ Ω̄, |α|, |β| ≤ m, (39)

13



Figure 3. The global shape function of T9P2I1 element (a)Ψ(00)
1 , (b)ψ(10)

1 (c)ψ(01)
1
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Index β means which derivative of shape function, e.g. in one dimension Ψ00 corresponds to β = 0

and Ψ10 correspond to β = 1, α is an integer the maximum value of which depends on highest order to

which RKEM shape function is differentiable. I and xj are node and coordinates respectively at which

RKEM shape function are evaluated.

This property is helpful for treatment of Dirichlet boundary conditions, the majority of meshless meth-

ods have difficulty in imposing these boundary conditions.

3. The shape functions form a Partition of Unity:
∑

I Ψα
I (x) = 1 ∀x ∈ Ω; |α| = 0. This helps to

ensure consistency for RKEM kernel function

4. The shape functions possess the global reproducing property:

∑

I

{

∑

α

Ψα
I (x)(Dαxβ)|x=xI

}

= xβ , ∀ x ∈ Ω (40)

5. Each shape function has compact support with fixed size, regardless of reproducing order. The support

size is dependent solely on the topology of the RKEM mesh.This property make the stiffness matrix

sparse,lending to economic formation and solution.

6. Smoothness: Given a kernel function that is Cn continuous, the resulting RKEM shape functions

are also Cn. This property is useful for smooth geometry representation in computational geometry.

( [25]).

To guarantee the above properties, RKEM meshes must satisfy a quasi-uniformity condition as discussed

in [16]. In simple terms, this condition places some restriction on the aspect ratio of individual elements and

the gradation of element sizes within the mesh.
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Chapter 4

Galerkin Formulation for Strain Gradient Problems

The plane stress/strain assumption is taken in 2D examples in this research. In general, the displacement

field for two dimensional problems are

ui = ui(x1, x2) i = 1, 2 u3 = 0

strain and strain gradients are

εij =
1

2
(ui,j + uj,i) i = 1, 2 : j = 1, 2 (41)

ηijγ = uγ,ij γ = 1, 2 (42)

and the corresponding conventional and higher order stresses are

σij =
∂w

∂εij
= 2νεij + λεkkδij (43)

ηijk = a1(ηippδjk + ηjppδik + a2(ηkppδij +
1

2
ηppiδjk

+
1

2
ηppjδik + a3(2ηppkδij) + a4(2ηijk) + a5(ηjki + ηikj)

(44)

The equilibrium equation for strain gradient theory is given by Eq. 7, and the corresponding weak form for

the problem is

∫

V

[σijδεij + τijkδηijk ]dV =

∫

v

[bkδuk]dV +

∫

s

[fkδuk + rkDδuk]dS (45)

For convenience, we assume the body force and body double force to be zero, due to this assumption the

weak form becomes
∫

V

[σijδεij + τijkδηijk ]dV =

∫

s

[fkδuk]dS (46)
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The unknown variable u(displacement in x direction) can be written in terms of RKEM shape functions as :

u(x) =

Nnodes
∑

I=1

(

Ψ00
I u

I + Ψ00
I u

I + Ψ00
I u

I
)

(47)

It is convenient to recast this in matrix form as

u(x) = Nu

where

N = [N1 N1,x N1,y N2 N2,x N2,y · · ·NNnodes
NNnodes,x NNNodes,y]

and

uT = [u1 u1,x u1,y u2 u2,x u2,y · · ·uNnodes
uNnodes,x uNNodes,y]

Similarly δu(x) = δuTNT ,

For two dimensional problems strain and strain-gradient can be written in vector form as

ε =













εxx

εyy

εxy













=













u,x

v,y

(v,x + u,y)













(48)

η =

























ηxxx

ηxyx

ηyyx

ηxxy

ηxyy

























=

































u,xx

u,xy

uyy

vxx

vxy

vyy

































(49)

where v is displacement in y direction.

For the T9P2I1 element, the strain-displacement matrix (Bi) for node i is given as

Bi =













ψ00
i,x ψ10

i,x ψ01
i,x 0 0 0

0 0 0 ψ00
i,y ψ10

i,y ψ01
i,y

ψ00
i,y ψ10

i,y ψ01
i,y ψ00

i,x ψ10
i,x ψ01

i,x













(50)
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such that

ε(x) = Bu

and strain gradient-displacement matrix (BSG)i is

BSGi =

































ψ00
i,xx ψ10

i,xx ψ01
i,xx 0 0 0

ψ00
i,xy ψ10

i,xy ψ01
i,xy 0 0 0

ψ00
i,yy ψ10

i,yy ψ01
i,yy 0 0 0

0 0 0 ψ00
i,xx ψ10

i,xx ψ01
i,xx

0 0 0 ψ00
i,xy ψ10

i,xy ψ01
i,xy

0 0 0 ψ00
i,yy ψ10

i,yy ψ01
i,yy

































(51)

so that η(x) = BSGu

where ψ00, ψ10 and ψ01 are the three RKEM shape functions for node i.

Stress and conjugate stress can be written in vector form as

σ =













σxx

σyy

σxy













(52)

τ =

























τxxx

τxyx

τyyx

τxxy

τxyy

























(53)

For plane stress, the elastic modulus matrix (D) that relates stress (σ) with strain(ε) is

D =
E

1− ν2













1 ν 0

ν 1 0

0 0 1−ν
2













(54)

where E and ν are Young’s Modulus and Poisson’s ratio, respectively
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For 2D problem the matrix(DSG that relate τ with η) is given as

DSG =















































































2(a1 + a2+ 0 (a2 + 2a3) 0 (a2 + 2a3) 0

a3 + a4 + a5)

0 (a1 + a5 0 (a5 + 0.5a2) 0 (a1 + 0.5a2)

+2a4)

2(a2 + 2a3) 0 2(a3 + a4) 0 (a2 + 2a5) 0

0 (a2 + 2a5) 0 2(a3 + a4) 0 (a2 + 2a3)

(a1 + 0.5a2) 0 (a5 + 0.5a2) 0 (a1 + 2a4+ 0

a5)

0 (2a1 + 2a2) 0 (a2 + 2a3) 0 2(a1 + a2+

a3 + a4 + a5)















































































(55)

The matrix equivalent of the weakform is given as follows

Ku = P (56)

Where u is a vector of nodal unknowns, P represents a set of loads applied at the nodes, and K is the stiffness

matrix. Both K and P involve integrals over the problem domain. The integrands involve the basis functions

or various of their derivatives and products of such functions.The stiffness matrix K can be written as sum

of two stiffness matrix terms K1 and K2, K1 corresponds to the first term on the left hand side of Eq. (46)

while K2 correspond to the second term on the left hand side of the same equation. The stiffness matrix term

K1 can be written as

K1 =

∫

B

BT(x,y) ·D ·B(x,y)dxdy. (57)

The stiffness matrix term K2 can be written in this form

K2 =

∫

B

BSG
T(x,y) · DSG · BSG(x,y)dxdy. (58)
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The load vector Pi for node i because of traction load is given as

P =

∫

Ω

N · t dΩ. (59)

where N is 6X2 matrix given as

N =

































ψ00 0

ψ10 0

ψ01 0

0 ψ00

0 ψ10

0 ψ01

































(60)

and

t =







tx

ty






(61)

where tx and ty traction in x and y direction.Point load can be added directly into Load Vector as in FEM.
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Chapter 5

1D Examples

5.1 One-dimensional Toupin-Mindlin Strain Gradient Theory

Toupin and Mindlin included higher-order stresses and strains in their theory of linear elasticity, which serves

today as the foundation of more advanced strain gradient plasticity formulations [29] [22] [8].Let us introduce

a one-dimensional problem following their concepts. The solution for problem choosen in this section has

been solved by C/DG method [21]

Let Ω be an open, bounded domain and Γ its boundary. Let Γg, Γq, Γt and Γr denote the displacement,

displacement gradient, couple stress and traction boundaries, respectively.

The strong form of the problem can be written as

σ,x − σ̄,xx + f = 0 in Ω, (62)

φ = g on Γg (63)

φ,xṅ = q on Γq (64)

σ̄ = r on Γr (65)

(σ − σ̄,xṅ = t on Γt (66)

We have Γg

⋃

Γt = Γ , Γg

⋂

Γt = ∅ , Γq

⋃

Γr = Γ , Γq

⋂

Γr = ∅ , and f,g,q,r and t are given data. The

constitutive equations for the stress σ and higher order stress σ̄ can be expressed as

σ = µψ,x, (67)

σ̄ = µl2ψ,xx, (68)
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where µ is a material parameter and l is a length scale. We can write eq(62) to eq(66) with eq(67) and eq(68)

as

(µψ,x),x − (µl2ψ,xx),xx + f = 0 in Ω, (69)

φ = g on Γg (70)

φ,xṅ = q on Γq (71)

µl2ψ,xx = r on Γr (72)

µψ,x − (µl2ψ,xx),xṅ = t on Γt (73)

From a mathematical point of view, the one-dimensional Toupin-Mindlin strain gradient theory is a general-

ization of the Bernoulli-Euler beam theory, involving in addition to the fourth-order derivative also a second

order derivative.

5.2 Shear Layer Problem with the Toupin-Mindlin Theory

Toupin-Mindlin shear layer problem is considered as a model problem to validate our method(RKEM) for

a strain gradient theory.Model problem its exact solution and convergence study is presented in this section.

We want to simulate a shear-deformable body which is fixed on its left and upon which a traction acts on its

right as shown in fig(4), in this problem the length from the attachment to where the traction acts is assumed

to be L. The problem can be formulated as

(µψ,x),x − (µl2ψ,xx),xx + f = 0 in]0;L[, (74)

φ(0) = 0 (75)

φ,x(0) = 0 (76)

φ,x(L) = 0 (77)

µψ,x(L) − µl2ψ,xx(L) = t (78)
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Figure 4. Shear layer attached on the left side (x =0) with traction acting on the right side (x=L)
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5.2.1 Model Problem

The exact solution to this problem can be expressed as

ψ(x) =
tl

µ(e
L
l + l)

(

1 − e
L
l + e

L−x
l − e

x
l

)

+
t

µ
x (79)

The comparison of exact solution with RKEM solution is shown in Fig. (5) and plot of error(Exact solution

- RKEM solution) is shown in Fig.(6)

5.2.2 Convergence Study

The convergence rates for interpolation can be seen in Fig.(7), where we haveNel = 1
h

. Rate of convergence

in L2 Norm is 3.5. Our numerical observations confirm our analytical results and order of interpolation

considered lead to good rate of convergence in the L2 Norm.
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Figure 5. Exact solution vs RKEM solution for Toupin-Mindlin shear layer model problem
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Chapter 6

2D Examples

6.1 Numerical Examples in Two Dimension

Due to the complexity and difficulity of a gradient theory, the obtainable analytical solutions are restricted to

some simple problems.In this section we will focus on two problems :

1. Boundary layer analysis; and

2. The stress field analysis in an infinite plate, with a hole, subject to a bi-axial tension p at infinity, under

a plane stress assumption.

6.1.1 Boundary Layer Analysis

Higher-order gradient theories predict the existence of a boundary layers adjacent to inhomogeneties such as

interfaces. Consider, for example, a bimaterial composed of two perfectly bonded half planes of elastic strain

gradient solids, subjected to remote shear stress σ∞
12 as shown in Fig(8).

6.1.2 Analytical Solution

An analytical solution is presented for a bimaterial, consisting of two perfectly bonded half planes of dis-

similar linear elastic strain gradient solids. The bimaterial is subjected to a remote uniform shear stress σ∞
12

as shown in Fig(8). Here, we assume that material 1 lying below interface has a shear modulus µ1, and an

internal length scale l1. while Material 2, lying above interface has a shear modulus µ2, and an internal length

scale l2.

For this bimaterial system, conventional elasticity theory dictates that the shear stress is uniform and the

shear strain jumps in magnitude at the interface from ε12 =
σ∞

12

2µ1
in material 1 to ε12 =

σ∞

12

2µ2
to material 2.

By including strain gradient effects, a continuously distributed shaer strain can be obtained. In this prob-

lem, the only non-zero displacement, strain, stress and higher order stress are u1,ε12,σ12 and τ221, respec-

tively, and they are functions of the co-ordinate x2 only. From constitutive equation[6] and [7], it follows

26



Material # 2

Material # 1

o

σ21

σ21

x1

x2

Figure 8. Geometry of a bimaterial under uniform shear
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that

σ12 = 2µε12 andτ221 = 2µl2i η221 = 4µl2i
∂ε12
∂x2

(80)

in material i. Substitution of the above relation into the equilibrium equation[7] leads to

∂ε12
∂x2

− l̂i
2 ∂3ε12

∂x2
3 = 0 (81)

where l̂i =
√

2li. The general solution to the above ordinary diffrential equation is

ε12 = d1 + d2e
x2

l̂1 + d3e
−x2

l̂1 forx2 < 0 (82)

and

ε12 = d4 + d5e
x2

l̂2 + d6e
−x2

l̂2 forx2 > 0 (83)

Here d1 to d6 are 6 constants yet to be determined. The general solution is subjected to the following boundary

condtions

1. ε12 → σ∞

12

2µ1
and x2 → −∞ and ε12 → σ∞

12

2µ2
as x2 → ∞

and at the interface

2. continuity of traction: (σ21 − τ221,2)|x2→0−
= (σ21 − τ221,2)|x2→0+ ;

3. continuity of double stress traction τ221,2|x2→0−
= τ221,2|x2→0+ ;

4. continuity of strain ε12|x2→0− = ε12|x2→0+

The particular solution satisfying all these conditions is

ε12 =
σ∞

12

2µ1

{

1 +
µ1 − µ2

µ2

µ2 l̂2

µ1 l̂1 + µ2 l̂2
e

x2

l̂1

}

for x2 < 0 (84)

ε12 =
σ∞

12

2µ2

{

1 +
µ2 − µ1

µ1

µ1 l̂1

µ1 l̂1 + µ2 l̂2e
−x2

l̂2

}

for x2 > 0 (85)

In a specific quantative example, we shall make the following arbitrary choice of constitutive parameters.

The shear modulus µ of material 1 is taken as to be twice that of material 2. For each material, the constants

a3 and a4 as defined in eq(5) are equal to 1
2µl

2, while a1,a2 and a5 vanish. Here l is usually called the internal

length scale of materials with strain gradient effects.
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Mesh for a typical problem is shown in Figure(9),size of domain is(1 X 1) or (50lX50l), where l is length

scale boundary condition is of pure shear,beside this force boundary condition we set u=v=0 at left-bottom

corner and v=0 at right-bottom corner to avoid the rigid movement.

Plot of shear strain ε12 for whole domain is given in Fig(10),Fig(11) is shear strain plot by conventional

theory. A clear continious band along the interface is clear from comparison of these two plots.To make point

more clear we have shown plot of shear strain along x=0.5 by both strain gradient and conventional theory

in Fig(12) Fig(13) is comparison of analytical result and result obtained by RKEM, from this plot it is quite

evident that solution by RKEM matches closely with analytical solutionThe L2 error for this problem were

computed and plotted in Fig(14).The slope of line as determined by regression is 0.857

50l
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t
1

=
0
t
2

=
−

σ
2
1

t
1

=
0
t
2

=
σ

2
1

t1 = −σ21t2 = 0

t1 = σ21t2 = 0

Figure 9. Mesh for bundary layer analysis
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Figure 10. Shear strain plot by strain gradient theory
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Figure 11. Shear strain plot by conventional theory
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6.2 An Infinite Plate With a Hole

In this section we consider the problem of an infinite plate with a hole of radius a subjected to a biaxial

tension p at infinity under plane strain condition as shown in Fig(15). The constitutive model presented in

chapter 2 is used to describe the mechancical response of the elastic material.

The problem is axially symmetric and the displacement field is of the form

ur = u(r), uθ = uz = 0,

where(r,θ,z) are cylindrical coordinates centered at center of the hole.

The exact solution of this problem has been developed by Exadaktylos [10] and is of the form

u(r) =
p

2G

{

(1 − 2ν)r +
a2

r
+
l

c

[a

r
K1(

a

l
) − (1 − 2ν)K1(

r

l
)
]

}

(86)

where

c =
1 − 2ν

2
K0(

a

l
) +

1 − ν

2

(

4l

a
+
a

l

)

K1(
a

l
) (87)

and Kn(x) are the well known modified Bessel functions of the second kind. The problem is solved numeri-

cally using the RKEM with T9P2I1 element. One quarter of the plate is analyzed because of symmetry; the
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Figure 15. Notation and geometry of an infinite plate subjected to bi-axial remote tension
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Figure 16. mesh for plate problem

35



mesh used for solving the problem is shown in Fig(16). The numerical calculations are carried out for ν =

0.3 and radius of hole(a) =3l, l is internal length scale of material. The size L of the domain analyzed is taken

to be L = 10a. Since L is large compared to both a and l, the solution of this problem is expected to be close

to that of an infinite plate.

Fig(17) is comparison of analytical result and result obtained by RKEM for plate problem, from this plot

it is quite evident that solution by RKEM matches closely with analytical solution given in [?].

In Fig(18) and Fig(19) variation of σrr and σθθ has been shown respectively, these stress values are

calculated along a radial line θ = 50. From these result we can make conclusion for stress concentration
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Figure 17. Variation of ur for the plate with a hole

values, classical elasticity solution with l=0 predicts a stress concentration σθθ|r=a = 2p and a value of

σrr|r=a = 0, whereas the present elasticity solution with a =3l predicts σθθ|r=a = 1.94p and σrr|r=a =

0.16p
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Figure 19. Variation of σθθ for the plate with a hole
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Chapter 7

Conclusions

The Reproducing kernel Element Method(RKEM) has been developed for materials with the Toupin-

Mindlin framework of strain gradient type constitutive theory. The good accuracy in these numerical simu-

lations shows promising characteristics of RKEM for general problems of material in elasticity, where strain

gradient effect may be important. The concepts and methods developed in this thesis are easily generalizable

to other situations and offer the opportunity to derive new formulations for the new classes of problems and

for problems abandoned in the past due to their complexity.
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