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Chapter 1

Introduction

Developing and implementing total maximum daily loads (TMDLs) is a controversial

process. TMDLs are potentially costly and there is a disconnect between who pays

and who benefits. For example, farmers are likely to bear a large portion of the

costs whereas fishermen are likely to benefit the most. Furthermore, developing a

TMDL is time-consuming as many parties with diverse interests must jointly develop

their strategies to meet the TMDL standards. Finally, even establishing target water

quality standards is challenging and sometimes controversial in and of itself. The

target pollution limits to restore fisheries can be uncertain, as is the potential for a

water body to support a fishery even in a pristine state. In some situations, such

as in open access fisheries, improvements in water quality may even lead to negative

social returns (McConnell and Strand, 1989). However, there are many potential

benefits. For example, there may be benefits to commercial and recreational fisheries

and recreation activities, increases to property values, avoided costs of future water

treatments, and co-benefits of best management practices (BMPs) by farmers.

The goal of this paper is to value water quality changes using the Maryland com-

mercial blue crab fishery as a component of social benefits. This fishery is chosen
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because it is one of the most productive fisheries in the Bay, accounting for over 65%

of landings. The analysis is performed in two stages. First, a set of bio-economic

models is developed and estimated using water quality data, stock data estimates,

and harvest data from 2000-2010. Second, a model of fishermen behavior is devel-

oped and estimated using logbook data from 2000-2010. The models are then used

to simulate the effects of a water quality policy, such as the Chesapeake Bay TMDL,

on the Maryland blue crab fishery.

This analysis builds on an existing literature of habitat valuation (e.g., Anderson,

1989; Barbier et al., 2002; Huang et al., 2011, Kahn and Kemp, 1985; Mistiaen et

al., 2003). These studies often use a bio-economic modelling approach to relate water

quality to the stock and harvest of a species. As data are often difficult to obtain,

only a few studies are able to capture spatial and seasonal variations (e.g., Barbier

et al., 2002; Mistiaen et al., 2003; Smith, 2007; Smith and Crowder, 2011; Huang et

al., 2011). Spatial variation is an important component as habitat quality, including

water quality, varies across space and fish are able to adapt by migrating between

areas. Seasonal variation is also important because changes in habitat and the effects

of these changes can occur on a relatively fine time scale. For example, in some cases,

fish can respond to instantaneous changes in water quality and fishermen can quickly

adapt their effort level in response to changes in stock availability.

Most of the prior valuation studies assume that fishermen respond to changes in habi-

tat in a limited way. For example, fishermen may be able to adjust the number of

hours spent harvesting per trip, but not the number of trips. These studies typically

follow an initial application by Bockstael and Opaluch (1983) of discrete choice mod-

eling to study fishery choice behavior in New England’s ports. This seminal study

changed the focus of fisheries economics literature from bio-economic optimization to

the prediction of fishermen’s responses to changes in policy and management efforts.
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Other studies apply a group of discrete choice models for studying fishermen behav-

ior in terms of fishery choice (Holland and Sutinen, 1999; Larson et al., 1999; Curtis

and Hicks, 2000; Curtis and McConnell, 2004; Pradhan and Leung, 2004; Vermard

et al., 2008), fishing location (Eales and Wilen, 1986; Mistiaen and Strand, 2000;

Smith, 2000; Smith and Wilen, 2003; Curtis and McConnell, 2004; Hutton et al.,

2004; Strand, 2004; Smith, 2005), and fishing gear (Eggert and Tveteras, 2004).

The contributions of the present paper are to expand upon and unify the two bodies

of literature - environmental valuation and fishermen behavior. This is achieved

through the use of improved empirical techniques and the construction and use of a

richer data set. The data set allows the analysis to include more refined temporal

relationships and incorporate heterogeneity across fishermen. Furthermore, the trip-

level and water quality data are spatially differentiated, allowing for spatial variations

to be included. The present paper also extends the theoretical model by directly

representing a fisherman’s decision to switch to a new location. While many studies

have recognized that inertia - the tendency for a fisherman to return to the same

location - is an important factor, it has not been explicitly modeled. This study

formally models this phenomenon as opposed to assuming it is an exogenous decision.

The results of this study indicate that water quality, measured as levels of dissolved

oxygen, may affect stock mortality, harvest, stock distribution, or some combination of

the three. These results also show that both stock and harvest respond inelastically to

changes in water quality. With regards to fishermen behavior, the decision of whether

to switch sites within the fishery is found to be a significant factor in a fisherman’s

decision making process. Finally, the benefits of increased water quality to the blue

crab commercial fishery are found to be relatively small in the policy simulations.

The remainder of this paper is organized as follows. The first chapter below, Chapter

2, presents the model used for analyzing the effects of water quality on stock, harvest,
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and fishermen behavior. Then Chapter 3 describes the data set. The results are

presented in Chapter 4. Chapter 5 applies these results in a policy setting. Finally,

Chapter 6 discusses the implications of these findings.

4



Chapter 2

Model

The overall model used in this study combines an environmental valuation model

with a fisherman choice model. The first part of the model tests the relationship

between water quality, stock, and harvest using a traditional bio-economic model. The

second part of the model estimates the determinants of a fisherman’s daily decisions

using a discrete-continuous choice model. These two models are linked through profit

expectations: water quality affects the expected profitability of fishing, which in turn

affects fisherman behavior.

2.1 Bio-Economic Model

This section examines multiple hypotheses for the effect of water quality on a given

fish species. The first and most orthodox hypothesis, the Mortality Hypothesis, is

that water quality affects the mortality of a species. Under this hypothesis, the stock

level will rise as water quality improves. The second hypothesis is that water quality

affects the availability of a species to fishermen. Under this hypothesis, as water qual-

ity improves, the species will become more mobile and more likely to interact with
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passive gear, thus becoming easier to harvest. The first hypothesis is purely biological.

The second hypothesis, the Availability Hypothesis, is a fairly recent premise in the

bio-economic literature (e.g., Mistiaen et al., 2003). There is a third potential mech-

anism for water quality and fish species to interact - that water quality affects the

spatial distribution of a species. Under this hypothesis, the Distribution Hypothesis,

the species will move towards areas with relatively higher levels of water quality. This

hypothesis has the least empirical underpinning (e.g., Huang et al., 2011; Kociolek,

2011). Finally, there are four different combinations of these three base hypothe-

ses: Mortality and Availability (Mortality/Availability), Distribution and Availabil-

ity (Distribution/Availability), Mortality and Distribution (Mortality/Distribution),

and Mortality, Availability, and Distribution (Mortality/Availability/Distribution).

All seven hypotheses are tested to determine whether the assumed relationship be-

tween water quality and the fishery significantly affects the estimated benefits of water

quality improvements.

In the context of the bio-economic model, dissolved oxygen is the policy-relevant water

quality variable for two reasons. First, dissolved oxygen is one of the main measures of

water quality that affect blue crabs, the others being water temperature and salinity.

However, both water temperature and salinity are correlated with dissolved oxygen

- when either increases, oxygen is less soluble in water. The second reason for using

dissolved oxygen is because of its policy relevance. Dissolved oxygen is likely to be

affected by a policy such as a TMDL whereas water temperature and salinity are not.

The conceptual model comprises a stock growth function and a harvest production

function as follows:

Stockj,t = f(Stockj,t−1, Harvestj,t−1, P redationj,t[,WQj,t])

Harvesti,j,t = f(Efforti,j,t, Skilli,j,t, Stockj,t[,WQj,t])
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In this model, the stock at a given location j and time period t is a function of

lagged stock in location j, the lagged harvest in location j, predation in location j

and time period t, and potentially the level of water quality in location j and time

period t. Lagged harvest (Harvestj,t−1) is used instead of current harvest to satisfy

the exclusion restriction for simultaneous equations. The harvest for individual i at a

given location j and time period t is a function of his effort level in the given location

j and time period t, skill in the given location j and time period t, the stock in the

given location j and time period t, and, again, potentially level of water quality in

location j and time period t.

Four assumptions are made when moving from the conceptual to the econometric

model. First, that recruitment and juveniles are independent across seasons (Pearson,

1948). Therefore, it is not necessary to model growth between seasons. Second, that

there are thresholds above or below which further changes in dissolved oxygen have no

apparent effect. For example, Selberg (2001) finds that there are significantly fewer

blue crabs in areas where dissolved oxygen is below 2.4 mg/l and that catch per unit

effort increases from around 2.4 mg/l to somewhere between 4 mg/l and 6 mg/l. In

order to account for these thresholds, splines with knots at two different thresholds

will be used. Third, that the error terms may be correlated across the stock and

harvest equations. Therefore, each system of equations is estimated using seemingly

unrelated regressions (SUR). Fourth, that the annual stock index for striped bass

(SBI) is a proxy for blue crab predation as striped bass are predators to the blue crab

and the striped bass population is likely correlated with the populations of other blue

crab predators.

One final note to make before developing the econometric models is that stock is

measured in terms of combined male and female stock whereas harvest is measured

in terms of male hard crabs (i.e., #1 and #2 Males). This is primarily due to
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data limitations as the stock is a combined measure of males and females. While a

separate female harvest equation could be added, the restrictions on female harvests

in Maryland are numerous and difficult to predict. Therefore, an additional term is

added to the harvest production function in the econometric estimation to account

for locations and months where female harvest is likely to be high.

Mortality Hypothesis

Under this hypothesis, water quality affects stock growth. Therefore, the stock growth

equation is as follows:

Xj,t = λ0 + λ1Xj,t−1 + λ2Hj,t−1 + λ3SBIj,t

+ λ4DOj,t · 1(DO4→8) + λ5DOj,t · 1(DO8→12) + νj,t (2.1)

where Hj,t is the sum of all harvests in location j during time period t, Xj,t is the

stock density in location j during time period t, SBIj,t is the striped bass stock index

in location j during time period t, DOj,t is the milligrams of dissolved oxygen per liter

of water in location j during time period t, 1(DO4→8) and 1(DO8→12) are indicator

variables representing the thresholds at 4 mg/l and 8 mg/l, and νj,t is a normally

distributed error term.

The motivation for this equation is that higher previous stocks are likely to lead to

higher current stocks. On the other hand, higher previous harvests and higher preda-

tor population levels are likely to lead to lower current stocks. As stated previously,

dissolved oxygen is assumed to affect stock growth, but only within certain ranges.

The thresholds of 4 mg/l and 8 mg/l are chosen because 1) 4 mg/l has been shown

to be a threshold for blue crabs (e.g., Selberg (2001)) and 2) those thresholds evenly

divide the range of dissolved oxygen values.
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The harvest production function is as follows:

Hi,j,t = β0 + β1Ei,j,t + β2Xj,t + β3Agei,t + β4Age
2
i,t + β5FHj,t + ηi,j,t (2.2)

whereHi,j,t is the harvest for fisherman i at location j and time period t, Ei,j,t indicates

the number of hours fished by fisherman i at location j and time period t, Xj,t is the

stock density in location j during time period t, Agei,t is the age of fisherman i during

time period t, FHj,t is a dummy variable equal to one if female harvest is expected

to be high and zero otherwise, and ηi,j,t is a normally distributed error term. For the

female harvest dummy variable, female harvest is expected to be high in the southern

portion of the Bay and in the eastern tributaries during October and November.

The motivation for this equation is that as effort and stock increase, the fisherman’s

harvest is expected to increase as well. Individual specific characteristics are often

included in harvest production functions to account for heterogeneous fishermen. Age

and home state are the only individual specific characteristics available, so age was

chosen as it is a better proxy for skill and it has more variation than home state.

Finally, the female harvest dummy is incorporated to account for female harvests.

Availability Hypothesis

Under this hypothesis, water quality affects the harvest production function:

Hi,j,t = β0 + β1Ei,j,t + β2Xj,t + β3Agei,t + β4Age
2
i,t + β5FHj,t

+ β6DOj,t · 1(DO4→8) + β7DOj,t · 1(DO8→12) + ηi,j,t (2.3)

Therefore, the stock growth function is as follows:

Xj,t = λ0 + λ1Xj,t−1 + λ2Hj,t−1 + λ3SBIj,t + νj,t (2.4)
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It should be observed that the water quality terms move from the stock equation to

the harvest equation under this hypothesis.

Distribution Hypothesis

Under this hypothesis, “relative water quality” enters the stock growth equation in

the following form:

∆DOj,t

where ∆DOj,t is the difference between the level of dissolved oxygen in location j and

the average level of dissolved oxygen in the adjacent locations.

Therefore, the system of equations is:

Xj,t = λ0 + λ1Xj,t−1 + λ2Hj,t−1 + λ3SBIj,t

λ4∆DOj,t · 1(∆DO−3→0) + λ5∆DOj,t · 1(∆DO0→3) + νj,t (2.5)

Hi,j,t = β0 + β1Ei,j,t + β2Xj,t + β3Agei,t + β4Age
2
i,t + β5FHj,t + ηi,j,t

where 1(∆jDO−3→0) and 1(∆jDO0→3) are indicator variables representing the thresh-

olds at -3 and 0.

The motivation for this representation is that, as with the mortality and availability

hypotheses, relative dissolved oxygen is assumed to affect stock growth, but only

within certain ranges. The thresholds of -3 and 0 are chosen in order to evenly divide

the range of relative dissolved oxygen values.
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Mortality/Availability Hypothesis

Under this combined hypothesis, water quality affects both stock growth and the

harvest production function:

Xj,t = λ0 + λ1Xj,t−1 + λ2Hj,t−1 + λ3SBIj,t

+ λ4DOj,t · 1(DO4→8) + λ5DOj,t · 1(DO8→12) + νj,t

Hi,j,t = β0 + β1Ei,j,t + β2Xj,t + β3Agei,t + β4Age
2
i,t + β5FHj,t

+ β6DOj,t · 1(DO4→8) + β7DOj,t · 1(DO8→12) + ηi,j,t

Distribution/Availability Hypothesis

Under this combined hypothesis, water quality affects both stock distribution and the

harvest production function:

Xj,t = λ0 + λ1Xj,t−1 + λ2Hj,t−1 + λ3SBIj,t

+ λ4∆DOj,t · 1(∆DO−3→0) + λ5∆DOj,t · 1(∆DO0→3) + νj,t

Hi,j,t = β0 + β1Ei,j,t + β2Xj,t + β3Agei,t + β4Age
2
i,t + β5FHj,t

+ β6DOj,t · 1(DO4→8) + β7DOj,t · 1(DO8→12) + ηi,j,t

Mortality/Distribution Hypothesis

Under this combined hypothesis, water quality affects both stock growth and distri-

bution:

Xj,t = λ0 + λ1Xj,t−1 + λ2Hj,t−1 + λ3SBIj,t

+ λ4DOj,t · 1(DO4→8) + λ5DOj,t · 1(DO8→12)

+ λ6∆DOj,t · 1(∆jDO−3→0) + λ7∆DOj,t · 1(∆DO0→3) + νj,t (2.6)

Hi,j,t = β0 + β1Ei,j,t + β2Xj,t + β3Agei,t + β4Age
2
i,t + β5FHj,t + ηi,j,t
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Mortality/Availability/Distribution Hypothesis

Under this combined hypothesis, water quality affects stock growth and distribution

as well as the harvest production function:

Xj,t = λ0 + λ1Xj,t−1 + λ2Hj,t−1 + λ3SBIj,t

+ λ4DOj,t · 1(DO4→8) + λ5DOj,t · 1(DO8→12)

+ λ6∆DOj,t1 · (∆jDO−3→0) + λ7∆DOj,t · 1(∆DO0→3) + νj,t

Hi,j,t = β0 + β1Ei,j,t + β2Xj,t + β3Agei,t + β4Age
2
i,t + β5FHj,t

+ β6DOj,t · 1(DO4→8) + β7DOj,t · 1(DO8→12) + ηi,j,t

2.2 Fisherman Choice Model

A discrete-continuous choice model is developed in this section to model daily fisher-

man decisions. The discrete portion models a fisherman’s fishing and location choice

decisions using a repeated nested logit. The continuous portion models fishermen’s

daily effort in hours spent harvesting using a linear regression. As it is a discrete-

continuous choice model, the discrete choices made by a fisherman are incorporated

into his effort decision.

2.2.1 Discrete Choice Model

Each day, a fisherman makes a series of discrete choices. The first is whether to fish

on that day. If he chooses to fish, then he must decide whether to fish in his prior

location or switch locations. If he chooses to switch locations, then he needs to decide

which location to choose from the remaining locations available.

A repeated nested logit (McFadden, 1973) is used to model this set of decisions. Using
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this type of model, individual fishermen assign different utilities to each alternative

(i.e., fish/no fish, switch/no switch, and location) based on the characteristics of the

fisherman and each alternative. The fisherman then chooses the alternative which

maximizes his utility for each decision.

The decision tree each fishermen faces is shown in the Figure 2.1.

Figure 2.1: Decision Tree

The first three decisions are discrete: fish/no fish, switch/no switch, location. Each

time a fisherman makes these decisions, he solves them bottom-up. First, assuming he

had chosen to fish and switch to a new location, he determines which location would

generate the maximum utility. Then, assuming he had chosen to fish, he compares the

expected utility from returning to the same location with the utility from the chosen

alternative location. Finally, he compares the utility from fishing (i.e., maximum

utility from deciding whether to switch) with the utility from not fishing. When

making decisions sequentially, the fisherman incorporates the expected utilities of

subsequent decisions in the sequence to his evaluation of the current choice.

The final decision is continuous: hours. Based on his location choice, fishermen who

choose to fish must then decide how many hours to spend harvesting.

Three main variables are typically used in fishermen decision models: 1) a measure
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of risk aversion, 2) a measure of “inertia,” and 3) a measure of information sharing

or congestion.

In this study, fishermen are assumed to be risk neutral. Since Bockstael and Opaluch

(1983), it has been customary to assume that fishermen are expected utility maxi-

mizers; that is, they care about profits as well as the variability of profits. Thus,

variables representing risk are commonly included in preference models. However,

there are several reasons to doubt that risk aversion is an important determinant in

the decision making process. Arrow (1971) shows that expected utility maximizers

are almost everywhere arbitrarily close to risk neutral when the stakes are arbitrar-

ily small. Furthermore, Rabin (2000) presents a theorem that shows that, “within

the expected utility model, anything but virtual risk neutrality over modest stakes

implies manifestly unrealistic risk aversion over large stakes.” Additionally, a few

survey-based studies have targeted this question. For example, Eggert and Mar-

tinsson (2003) present stated preference data indicating that risk aversion is not an

important influence for choice among locations.

In the formulation of this nested logit model, “inertia,” a reluctance to switch fishing

locations, enters as a decision nest (i.e., switch/no switch) as opposed to a dummy

variable in the location decision (i.e., inertia is equal to 1 if the given location was

chosen in the previous period and 0 otherwise). Inertia is a commonly used variable

in fishermen decision studies; however, it appears to be a “catch all” and masks

the effects of other variables. In the studies by Bockstael and Opaluch (1983) and

Opaluch and Bockstael (1984), the coefficient on inertia is four times as large as their

other variables. Holland and Sutinen (1999) include seven inertia variables in their

model. When these variables are removed, the model’s predictive power falls from 0.5

to 0.35. Other studies which incorporate some measure of inertia include Curtis and

Hicks (2000), Eggert and Tveteras (2004), Curtis and McConnell (2004), Pradhan
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and Leung (2004), Vermard et al. (2008), and Andersen et al. (2010).

Finally, information sharing or congestion is represented by the number of other fish-

ermen in a given location. If there are many fishermen in a given location, then

that might be a sign of “hot spot” fishing (Larson et al., 1999). However, too many

fishermen may indicate congestion. A few studies include this type of information

sharing. Larson et al. (1999) and Curtis and McConnell (2004) both find positive in-

formation sharing effects, suggesting that information sharing dominates congestion.

Alternatively, Curtis and Hicks (2000) find evidence of congestion effects.

The utility derived from choosing to fish on a given day, V F , is modeled as follows:

V F
i,t = αF

1 Sun | Mont + αF
2 Agei,t + αF

3 Age
2
i,t + αF

4 Weathert (2.7)

where Sun | Mont represent whether the day of the week is a Sunday or Monday

during time period t, Agei,t is the age of fisherman i during time period t, and

Weathert are the weather conditions during time period t.

The motivation for this equation is as follows. Fishermen are less likely to fish on a

Sunday or Monday due to Maryland state regulations requiring blue crab fishermen

to take at least one of those days off each week. Age is included to link a given

fisherman’s decisions across choice occasions and to act as a proxy for outside op-

portunities. For example, age may be correlated with wealth or the availability of

part-time employment, both of which may affect a fisherman’s decision to fish on a

given day. Finally, fishermen are less likely to fish during inclement weather. Weather

is defined as a vector of weather conditions, including temperature, precipitation, and

wind speed.

The utility derived from switching locations from the last location fished, V S|F , is
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modeled as follows:

V
S|F
i,j,t =

N∑
n=1

Locationi,t−1 ·Montht (2.8)

(2.9)

where Locationi,t−1 is the location choice made by fisherman i in time period t − 1,

Montht is month during time period t, and N is equal to (J − 1) · (T − 1).

The motivation for this equation is that fishermen are likely to exhibit seasonal and

regional patterns based on expected stock migration when deciding whether or not to

switch locations. Generally speaking, juveniles migrate north during the spring and

females migrate south during the fall.

The utility derived from selecting a given location after a decision to switch, V L|S, is

modeled as follows:

V
L|S
i,j,t = αL

1E(Πi,j,t) + αL
2E(Nj,t) (2.10)

where E(Πi,j,t) is the expected profit for individual i in location j during time period

t and E(Nj,t) is the expected number of vessels in locationj at time period t.

Expected profits are calculated as expected location-specific revenue less expected

individual-specific costs, where revenue is the value of the catch and costs are a

function of time spent fishing and distance traveled to the fishing location.

The motivation for this equation is that fishermen are expected profit maximizers.

Additionally, they may either view other fishermen as information about which loca-

tions are hot spots or as sources of congestion.

An autoregressive model of order seven (AR(7)) with month and location fixed effects

is used to forecast expected harvests, number of trips, and hours spent fishing. The
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model is of order seven to capture the trends of the previous week. The general

specification of the model is:

Yi,j,t =
7∑

d=1

βdYi,j,t−d +
M∑

m=1

βm+7Monthm,t +
N∑

n=1

βn+M+7Locationn,t + εi,j,t

where Yi,j,t represents the variable being forecast, Monthm,t and Locationn,t are indi-

cator variables equal to 1 if t occurs during month m or location n, respectively, and

0 otherwise.

The four equations are estimated simultaneously using three-stage least squares (3SLS)

regression: #1 Male harvest, #2 Male harvest, number of trips, and hours. The

equations are estimated simultaneously in order to account for cross-equation error

correlations. For example, factors that increase the expected harvest of #1 Males

are likely to also increase the expected harvest of #2 Males. Moreover, if expected

harvest is greater, then expected effort (trips and hours) is likely to be higher, as well.

From the results of the discrete choice model, the probability that each fishermen

chooses a given location can be estimated (Small and Brownstone, 1989) (individual

and time subscripts have been omitted to simplify the notation):

P ∗
j = Pj|s · Ps|f · Pf (2.11)

where

Pf =
eVf+ρsIVs

1 + eVf+ρsIVs
(2.12)

Ps|f =
e

Vs|f+ρjIVj

ρs

e
Vj′
ρs + e

Vs|f+ρjIVj

ρs

(2.13)
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Pj|s =
e

Vj|s
ρj∑J

j e
Vj|s
ρj

where j ̸= j′ (2.14)

where the subscript j is an index for the given location, subscript j′ is an index for

the previously chosen location, subscript s is an index for switch, and subscript f is

an index for fish. The dissimilarity parameters for the switch and location nests are

ρs and ρj. IVs and IVj are the inclusive values for the switch and location nests.

Sequential estimation, rather than simultaneous estimation, will be used to derive

these parameters since the alternatives in the location nests are different for each

person and time period. The coefficients for the location model will be estimated first.

Using these estimated coefficients, the inclusive value is calculated for the location

decision. Then, the coefficients for the switch model will be estimated with the

inclusive value for the location decision entering as an explanatory variable. Finally,

using the estimated coefficients, the inclusive value for the switch decision is calculated

and enters as an explanatory variable in the fish model.

When using simultaneous estimation, the regression outputs include “base” coeffi-

cients and scaling factors (dissimilarity parameters) for each nest. In order to obtain

the nest-specific coefficients, the base coefficients must be divided by the dissimilar-

ity parameters for that nest. When using sequential estimation, nest-specific data

are used to obtain nest-specific coefficients. In order to obtain the base coefficients

that correspond to simultaneous estimation, these nest-specific coefficients need to be

scaled (multiplied) by their nest-specific dissimilarity parameters.

Additionally, when using simultaneous estimation, the error terms within a nest are

positively correlated. That is, for two alternatives j and i in a given nest:

V ar(ϵj − ϵi) = V ar(ϵj) + V ar(ϵi)− 2Cov(ϵjϵi)
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It is assumed that V ar(ϵj) = V ar(ϵi) = σ2 and Cov(ϵjϵi) = ρσjσi = ρσ2 where ρ is

the measure of correlation between ϵj and ϵi. Thus:

V ar(ϵj − ϵi) = 2σ2 − 2ρσ2

= 2σ2(1− ρ)

= 2σ2τ 2 (τ =
√

1− ρ) (Heiss, 2002)

Therefore, the variance is deflated by τ 2 to reflect correlations within a nest. However,

when using sequential estimation, the error terms are assumed to be independent.

Therefore, the variances from the sequentially estimated models must be corrected

using the τ 2 deflation factor.

Table 2.1 summarizes the relations between simultaneous and sequential estimations

of coefficients and standard errors and the nest-specific estimates:

Table 2.1: Recovering Nest-Specific Parameters

Sequential Simultaneous Nest

Coefficients β
τ

β β
τ

Standard Errors σ σ στ

Finally, as noted by Cameron and Trivedi (2005), there is one further complication

which must be addressed when using this approach:

This sequential estimator is less efficient than the FIML [Full Information

Maximum Likelihood] estimator, and at the second stage the usual CL

[conditional logit] standard errors understate the true standard errors of

the sequential estimator since they do not allow for the estimation error

in computing the inclusive value. McFadden (1981) gives the formula for

correct standard errors, or the bootstrap can be used.

In this study, the models of the fishing and location switch decisions will be boot-
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strapped in order to obtain correct estimates of standard errors.

2.2.2 Continuous Choice Model

The next step in the fisherman’s decision process is to decide how many hours to spend

harvesting. As this is estimated within a discrete-continuous choice framework, the

fisherman’s predicted probabilities of choosing each location are used as opposed to

using a set of dummy variables to indicate location choice.

The choice of hours is modeled as an input demand function. The number of hours

spent harvesting depends on the location choice as well as potential costs (fixed

costs) and benefits (prices). These trade-offs may vary by age. Additionally, if an

individual’s license allows him to drop more crab pots, then he may allot more time

towards harvesting. Season-location fixed effects are also included.

The choice of hours is modeled as follows:

Ei,j,t = γ0 +
J−1∑
l=1

γlPr∗i,j,t + γJFCi,j,t + γJ+1Pt + γJ+2Agei,t

+ γJ+3Age
2
i,t + γJ+4Pot Limiti,t + γJ+5P (#1)t + γJ+6P (#2)t + µi,j,t (2.15)

where Pr∗i,j,t are the predicted probabilities for individual i to choose location j in

time period t, FCi,j,t is the fixed costs for individual i, location j, and time period

t, Agei,t is the age for individual i at time period t, Pot Limiti,t is the maximum

amount of pots individual i is allowed to drop at time period t, P (#1)t and P (#2)t

are the prices for #1 and #2 male crabs, respectively, at time period t, and µi,j,t is a

normally distributed error term.

Fixed costs are calculated as the costs an individual incurs for traveling from his home

location to his fishing location.
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Chapter 3

Data

Several data sets were combined in this study. The primary data set is derived from

daily logbooks submitted by fishermen from 2000-2010 (MDNR). These logbooks con-

tain information about when and where fishermen harvested, as well as information

about harvest, effort, and fishermen age. Monthly crab abundances were taken from a

study by Drs. Lipton and Holzer (manuscript in progress). Monthly crab prices were

derived from dealer reports. Daily weather data was obtained from the Chesapeake

Bay Program (CBP). Finally, monthly water quality data was derived from the 2002

Chesapeake Bay Eutrophication Model (EPA, 2004) and a separate study which an-

alyzes the spatial effort of Maryland commercial crab pot fishermen (Versar, 2012).

The 2002 Chesapeake Bay Eutrophication Model divides the Chesapeake Bay into

grids and interpolates the water quality data for each grid at approximately 1 meter

intervals through the water column based on water quality measurements taken from

monitoring stations. The spatial effort data records the GPS locations and depths of

a sample of crab pots in the Maryland portion of the Chesapeake Bay.

The following procedure was used to derive the water quality estimates:

1. From the spatial effort data set, the average depths at which crab pots are

21



dropped is determined.

• March to May: 0.5 to 6 meters deep

• June to September: 0.5 to 5 meters deep

• October to December: 0.5 to 8 meters deep

2. All grid points in the Eutrophication Model which are considered to be “too

deep” are removed.

3. The bottom level estimates of water quality for the remaining grides are aver-

aged for each area as crab pots rest at the bottom of the Bay.

This procedure derives a more accurate measurement of the water quality encoun-

tered by the blue crabs than other potential measurements, such as bottom level

measurements (Mistiaen et al., 2003, Huang et al., 2011) or averages across depths.

The geographical region considered is divided into 26 fishing sites as defined by the

National Oceanic and Atmospheric Administration (NOAA). Of those sites, six sites

have both harvest and stock data (see Figure 3.1).
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Figure 3.1: Selected Fishing Sites

The specific subset of fishermen analyzed in this study are those using crab pots.

Only one gear type was chosen because there are variations in catch rate per unit of

gear, targeted crab market category, and so on, among gear types. A model with too

many variations would, most likely, lead to indeterminacy. Crab pots in particular

were chosen because they are one of the most common gear types used in the Bay

and the value of their catch comprises roughly 80% of the total value of crabs caught

in the Bay.

Crab pots are large square traps made out of galvanized chicken wire or PVC mesh.

The trap has two internal chambers: a bottom chamber which consists of two or

four entrance tunnels which allow the crabs to enter and a top chamber which is the

holding area. Inside the bottom chamber is a mesh bait box constructed to attract the

crabs without allowing them to reach the bait. Once trapped, the crabs instinctively
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swim towards the surface and become trapped in the holding area. Most crab pots

have two small exit holes in the holding area to allow smaller crabs to escape. An

important regulation regarding crab pots is that there are restrictions on where they

can be set. For example, they cannot be set in water less than four feet deep at mean

low tide except for certain areas in the Pocomoke and Tangier Sounds. Therefore,

many crabbers place their crab pots at the mouths of tributaries.

The specific crab market categories analyzed are #1 and #2 Male crabs. This is

for three main reasons. First, due to the migration patterns of the blue crab, male

crabs are more likely to be found in the Maryland side of the Bay and females in the

Virginia side. Second, there are harvest restrictions against harvesting female crabs

in Maryland which are provided by public notice. These regulations make it more

difficult to model female harvests. Third, the value of male catches is roughly 70% of

the total value of crabs caught by crab pots in Maryland.

Travel costs and fuel costs are used as the costs to harvesting and data are unavailable

for labor costs. Travel costs are based on an estimated cost per meter for the distances

to the site. ESRI ArcGIS is used to approximate the distances to the centroid of

the fishing sites based on the ZIP codes of the fishermen. Total distance is then

doubled to account for a two-way trip and multiplied by the Internal Revenue Service

(IRS) national reimbursement rate per meter (converted from per mile), yielding an

estimated cost of fuel and maintenance for a vehicle.

Following Weninger (1998), vessel fuel consumption can be estimated as the product

of engine horsepower, hours spent fishing, and a constant 0.04 to account for gallons

used per unit horsepower. Fuel costs are then calculated as the product of hourly fuel

consumption and fuel prices for #2 diesel (U.S. Department of Energy). Therefore,
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trips costs are calculated in the following way:

trip costs = two-way distance · reimbursement rate + hours · hp · 0.04 · diesel price

As the travel cost distance is measured as the shortest distance between two points

and labor costs are not considered, the profit results of this study can be considered

as an upper bound.

The data sets contain missing values for some observations. Single-imputation tech-

niques were used to estimate the missing variables and allow the remainder of the

data in the observations to be used.

The data set is missing 9% of age observations and 49% of horsepower observations.

These missing age observations were imputed using the number of hours, trips, and

harvest per time period. As there are no apparent trends to the missing observations,

the average motor horsepower across the data set was used to estimate these missing

values.

Table 3.1 summarizes the total number of trips, the total number of trips per season,

and the total number of switches per location in the logbook data set.

Table 3.1: Fishing Trips and Location Switches Using Fisherman Logbook Data

Location Trips Spring Summer Fall Switch (to) Switch (from)
1 88,007 7,590 49,712 30,705 583 557
2 100,394 13,404 51,204 35,786 500 501
3 80,349 14,289 39,054 27,026 496 499
4 27,876 6,415 15,608 5,853 126 131
5 39,771 7,425 21,073 11,326 78 84
6 56,361 10,448 31,645 14,336 330 346

Total 408,391 59,822 217,285 131,284 2,411 2,411

Table 3.2 summarizes the trip level means for the significant variables in this study.
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Age is measured in years, profit in dollars, harvests in pounds, stock in crabs per

1,000 square meters, and dissolved oxygen (DO) in milligrams per liter.

Table 3.2: Mean Values of Significant Variables

Location Age Profit #1 Harvest #2 Harvest Stock DO Hours
1 49.52 328.61 137.58 45.69 95.70 7.74 6.06
2 49.78 332.78 146.62 38.18 64.06 8.39 6.47
3 48.32 361.31 164.00 39.89 47.24 8.60 6.89
4 48.01 249.50 63.62 50.15 29.89 8.43 6.99
5 49.42 182.89 76.26 20.82 69.01 7.86 4.41
6 48.88 237.00 86.75 34.05 76.59 8.22 6.80

Mean 49.17 306.09 127.83 40.43 67.60 8.20 6.32
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Chapter 4

Results

The results of the bio-economic and fisherman choice models defined in Section 2 are

presented in this chapter.

4.1 Bio-Economic Results

The results for the bio-economic model are summarized in Tables 4.1, 4.2, and 4.3.

Each column represents a different hypothesis about the interactions between density,

harvest, and dissolved oxygen. In Table 4.1, the Mortality Hypothesis assumes that

dissolved oxygen affects the stock level, the Availability Hypothesis assumes that dis-

solved oxygen affects the harvest level, and the Distribution Hypothesis assumes that

dissolved oxygen affects the spatial distribution of the stock. In Tables 4.2 and 4.3, the

Mortality/Availability Hypothesis combines the Mortality and Availability Hypothe-

ses, the Distribution/Availability Hypothesis combines the Distribution and Avail-

ability Hypotheses, the Mortality/Distribution Hypothesis combines the Mortality

and Distribution Hypotheses, and the Mortality/Availability/Distribution Hypothe-

sis combines the Mortality, Availability, and Distribution Hypotheses. For notational
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simplicity, DO4→8 represents DO · 1(DO4→8), DO8→12 represents DO · 1(DO8→12),

∆DO−3→0 represents ∆DO·1(∆DO−3→0), and ∆DO0→3 represents ∆DO·1(∆DO0→3).

Additionally, Season·Location fixed effects are included in both the density and har-

vest equations and Year fixed effects are included in the density equation.
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Table 4.1: Bio-Economic Results

Mortality Availability Distribution
Density
Lag Density 0.06*** 0.06*** 0.06***

(1.57E-3) (1.55E-3) (1.55E-3)
Lag Total Harvest -3.45E-5*** -3.36E-5*** -2.98E-5***

(1.27E-6) (1.26E-6) (1.28E-6)
DO4→8 0.30*** – –

(0.09)
DO8→12 -0.84*** – –

(0.08)
∆DO−3→0 – – 8.58***

(0.27)
∆DO0→3 – – -3.25***

(0.23)
SBI -2.74*** -2.68*** -2.52***

(0.07) (0.07) (0.07)
Constant 56.84*** 56.34*** 58.08***

(0.95) (0.66) (0.68)
Fixed Effects Season·Location Season·Location Season·Location

Year Year Year

Male Harvest
Density 0.07*** 0.07*** 0.07***

(4.47E-3) (4.47E-3) (4.47E-3)
Female Harvest 85.72*** 70.20*** 85.52***

(1.94) (2.03) (1.94)
Age 5.59*** 5.58*** 5.59***

(0.22) (0.22) (0.22)
Age2 -0.07*** -0.07*** -0.07***

(2.20E-3) (2.20E-3) (2.20E-3)
Hours 35.74*** 35.66*** 35.73***

(0.16) (0.16) (0.16)
DO4→8 – -0.47* –

(0.24)
DO8→12 – 3.34*** –

(0.23)
Constant -221.83*** -224.88*** -221.86***

(5.51) (5.70) (5.51)
Fixed Effects Season·Location Season·Location Season·Location
Observations 367,478 367,478 367,478
BIC 9,085,175 9,084,983 9,084,614
***p<0.01, **p<0.05, *p<0.1
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All coefficients are of the expected sign and significant and are similar across models.

If the units for density (crabs/1,000 square meters) and lag total harvest (pounds)

are both converted to crabs, then the interpretation becomes: for every crab that is

harvested, there are approximately 8 fewer crabs in the population. One reason that

this ratio is not 1:1 could be that there are other crab market types (e.g., female),

gear types (e.g., trot lines), and recreational fishermen which are not included in the

analysis. For the Mortality Model, dissolved oxygen increases density from 4 to 8

mg/l and decreases density from 8 to 12 mg/l. For the Distribution Model, relative

dissolved oxygen increases density from -3 to 0 and decreases density from 0 to 3.

Dissolved oxygen has the opposite effect in the Availability Model: male harvest

decreases from 4 to 8 mg/l and increases from 8 to 12 mg/l.
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All coefficients are of the expected sign and significant and are similar across models.

As with the three base models, for every crab that is harvested, there are approxi-

mately 8 fewer crabs in the population. In all four models, dissolved oxygen decreases

harvest from 4 to 8 mg/l and increases harvest from 8 to 12 mg/l. Additionally, rel-

ative dissolved oxygen always increases harvest from 0 to 3 and decreases harvest

from 3 to 5. However, the effect of dissolved oxygen on stock becomes negative

whenever relative dissolved is also included. Therefore, it is unlikely that a model

containing both the Mortality and Distribution hypotheses is realistic. Of the remain-

ing five models, Mortality/Availability and Distribution/Availability have the lowest

Bayesian Information Criterion (BIC) values, so they will be used in the rest of the

analysis.

Based on the results from these models, Figure 4.1 shows the stock and harvest elas-

ticities with respect to changes in dissolved oxygen for both the Mortality/Availability

and Distribution/Availability Models.
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Figure 4.1: Harvest and Stock Elasticity With Respect to Dissolved Oxygen;
Top: Mortality/Availability Model, Bottom: Distribution/Availability Model

As these elasticities show, the assumptions on how water quality affects stock and

harvest appear to have a significant affect on stock and harvest predictions. While

both models predict similar trends, only stock responds elastically to changes in

dissolved oxygen in the Distribution/Availability Model from 5.4 to 7.5 mg/l and

11.8 to 12 mg/l.
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4.2 Fisherman Choice Results

4.2.1 Discrete Choice Results

Table 4.4 summarizes the coefficient estimates derived from the nested logit model.

The Fish and Switch equations are estimated using 500 bootstrap replications. This

number of replications was chosen because at this size the standard errors did not

change significantly when the random seeds were changed. None of the variables

became insignificant with the use of bootstrapping. The Fish and Switch models are

also clustered at the individual level. The Location model is not clustered as it is

estimated using a conditional/fixed effects logit. The coefficients and standard errors

for the Switch and Location models are nest-specific. This is because there is only

one non-degenerate nest in each level of the model. Finally, month fixed effects are

included in the fish choice model and year fixed effects in the Fish and Switch models.
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All coefficients are of an expected or reasonable sign and magnitude, except for the

coefficient on IVS. In order for the model to be consistent with utility-maximizing

behavior, this coefficient must be between 0 and 1. If this coefficient is equal to

zero, then there is no nesting of the decisions. That is, the decision to switch is not

made separately from the location choice. One possible explanation for this result

is that there may be misreporting of location choice by fishermen. If fishermen are

inaccurately reporting their locations, then they are not correctly being assigned

as “switchers” or “non-switchers.” If this is the case, then it makes sense that the

switching decision would not appear to be significant when estimated.

A separate study has looked into the spatial effort of Maryland commercial crab pot

fishermen (Versar, 2012). The GPS coordinates of crab pots were recorded for the

years 2002-2004 and 2007-2010. Their data show that fishermen switch locations much

more frequently than previously thought. Of the roughly 10,000 recorded trips, about

half of them are considered “switches.” Unfortunately, this data set does not contain

much additional information, so a complete analysis is not possible. However, a more

accurate representation of location choice can be estimated for the logbook data set.

In order to correct for potential misreporting, fishermen were “assigned” locations

based on the proportion of trips and switches taken to and from each location. For

example, according to the GPS data set, fishermen switch out of Location 1 roughly

40% of the time in May. Those that switch choose Location 2 61% of the time,

Location 3 30% of the time, and Location 5 9% of the time. This information was

estimated for each month using the GPS data set and applied to the fishermen in the

logbook data set.

The fisherman choice model was then re-estimated using the estimated location

choices (Table 4.5).

37



T
ab

le
4.
5:

D
is
cr
et
e
C
h
oi
ce

R
es
u
lt
s

F
is
h

S
w
it
ch

L
o
ca

ti
o
n

S
u
n
|M

on
-0
.3
6*
**

IV
L

0.
04
**
*

E
(P

ro
fi
t)

0.
04
**
*

(0
.0
5)

(0
.0
1)

(4
.5
8E

-5
)

A
ge

0.
01

C
on

st
an

t
0.
19
**
*

E
(N

)
0.
04
**
*

(0
.0
2)

(0
.0
4)

(5
.3
3E

-6
)

A
ge

2
-1
.2
0E

-0
4

(1
.9
3E

-0
4)

A
ir
T
em

p
er
at
u
re

-0
.0
1*
**

(3
.3
2E

-0
3)

A
ir
T
em

p
er
at
u
re

2
3.
10
E
-4
**
*

(8
.9
6E

-0
5)

W
in
d
S
p
ee
d

-0
.0
5*
**

(0
.0
1)

C
lo
u
d
C
ov
er

-0
.0
5*
**

(4
.8
8E

-3
)

P
re
ci
p
it
at
io
n

0.
10
**
*

(0
.0
2)

IV
S

0.
69
**
*

(0
.0
7)

C
on

st
an

t
-0
.2
2*
**

(0
.4
9)

F
ix
ed

E
ff
ec
ts

M
on

th
M
on

th
·L
o
ca
ti
on

Y
ea
r

O
b
se
rv
at
io
n
s

13
4,
46
7

39
2,
18
6

1,
01
2,
49
2

L
L

-9
0,
53
3.
87

-2
44
,1
25

-2
58
,9
56
.5
5

C
lu
st
er
s

1,
32
5

1,
37
5

B
o
ot
st
ra
p
R
ep
li
ca
ti
on

s
50
0

50
0

**
*p

<
0.
01
,
**
p
<
0.
05
,
*p

<
0.
1

38



All coefficients are of the same sign (except for the constants) and similar magnitudes

as with the logbook data. However, now the coefficient on IVS is within the unit

interval. Furthermore, the coefficients in the switching equation are now significant

(see Table 2.1). These results suggest that misreporting may be the reason for the

insignificant coefficient on IVS.

4.2.2 Continuous Choice Results

Using Equations 2.11 and 2.12 and the results from Table 4.5, the predicted proba-

bilities are estimated. The results for the hours estimation are shown in Table 4.6

and the standard errors are clustered at the individual fisherman level.
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Table 4.6: Hours Choice Results

Hours Coefficient
(SE)

Pr(1) 8.71E-5
(1.16E-4)

Pr(2) 3.40E-4***
(5.65E-5)

Pr(3) 1.31E-3***
(2.28E-4)

Pr(4) 2.90E-3
(3.54E-3)

Pr(5) -0.01***
(1.83E-3)

Pr(6) -0.01
(1.49E-3)

LN(Fixed Costs) 0.27***
(0.06)

Age -0.07***
(0.04)

Age2 4.49E-4
(3.55E-4)

Pot Limit 3.45E-03***
(1.78E-4)

#1 Male Price 0.06***
(0.02)

#2 Male Price 0.21***
(0.07)

Constant 6.11***
(0.85)

Fixed Effects Location·Season
Observations 394,081
R2 0.31
Clusters 1,373
***p<0.01, **p<0.05, *p<0.1

The results indicate that, except for the two locations, fishermen do take into account

their location choice when deciding the number of hours to spend harvesting. Fixed

costs, measured in terms of the travel cost to get from the home location to the fishing

site, have a positive effect on effort, as expected. The linear term on age is negative

and significant. The effect of the maximum number of allowable pots (pot limit) is
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positive and significant. As the maximum number of allowable pots is 900, this effect

could be as high as 3 hours. Finally, the effect of both #1 and #2 male prices are

positive and significant.
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Chapter 5

Policy Application

The results of the bio-economics and fisherman choice models are used to simulate the

effects of a policy geared toward water quality improvement. In 2010, the U.S. Envi-

ronmental Protection Agency (EPA) established the Chesapeake Bay Total Maximum

Daily Load (TMDL) to restore clean water in the Chesapeake Bay and its tributaries

by 2025. Implementing the TMDL will be costly to states and local jurisdictions. For

example, the projected costs to Maryland are approximately $14.5 billion, whereas

the value of the commercial blue crab fishery has averaged $52.9 million annually

from 2008 to 2012, an increase of 49% since 2005 to 2007 (MDNR). As previously

noted, there are concerns that improvements to water quality may not yield long-term

benefits to fisheries.

The simulation runs from 2010-2019 and uses baseline and TMDL dissolved oxygen

data derived from the 2002 Chesapeake Bay Eutrophication Model (EPA, 2004).

Initial values, as well as striped bass population indices and juvenile recruitment, are

estimated using Monte Carlo simulations.

Four scenarios are tested: the two chosen bio-economic models (Mortality/Availability

and Distribution/Availability) with and without the fisherman behavior model incor-
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porated. The scenarios using only the bio-economic models are run to test the value

of incorporating fisherman behavior into the analysis.

Table 5.1 shows the percentage change in profit, revenue, cost, and stock from the

TMDL for each of the fourteen scenarios.

Table 5.1: Simulation Results - Percent Changes under TMDL

Model Profit Revenue Cost Stock
(SE) (SE) (SE) (SE)

Mort/Avail
Full 4.01* 2.63* 0.48 36.64

(2.40) (1.51) (1.15) (93.61)
Bio-Economic 0.90 0.77 0.22 -18.39

(1.06) (0.90) (0.57) (32.32)
Dist/Avail
Full 3.04 1.98 -0.04 11.94

(4.38) (3.23) (1.40) (48.85)
Bio-Economic 0.70 0.61 0.22 -16.45

(1.12) (0.94) (0.57) (29.89)
***p<0.01, **p<0.05, *p<0.1

There are a few general observations that can be made about these results. The

first is that the mean percent changes in the variables of interest tend to be greater

under the full specification than the bio-economic only model. Furthermore, the

mean percent changes (standard errors) tend to be greater (smaller) under the Mor-

tality/Availability Model than the Distribution/Availability Model. Finally, while

most of the results are positive, only profit and revenue increase significantly under

the Mortality/Availability Model. Therefore, it appears as if the TMDL may have a

small, positive effect on both profits and revenues if any effect at all. This result is

likely due to the fact that, under the TMDL, dissolved oxygen is roughly 8.4 mg/l on

average - outside of the range where significant effects were expected.
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Chapter 6

Conclusion

The goal of this paper was to develop and estimate a model of water quality improve-

ment on a commercial fishery. The first step was to develop a set of bio-economic

models linking the effects of water quality to stock and harvest. Seven hypotheses on

the effect of water quality were examined using data on the Maryland commercial blue

crab fishery. The statistical analysis demonstrated that the Mortality/Availability

and Distribution/Availability models are the most plausible. That is, water quality

is likely to affect both stock and harvest simultaneously. One-period elasticity results

highlighted the effect that these assumptions have on stock and harvest predictions.

Stock and harvest were found to respond inelastically to changes in dissolved oxygen

under the Mortality/Availability Model, but elastically for certain ranges of dissolved

oxygen under the Distribution/Availability Model.

The increase in fishermen productivity due to an increase in water quality has inter-

esting implications for the dynamics of the stock. For example, in areas with relatively

high levels of dissolved oxygen, the harvests are likely to be higher and, therefore,

the stocks are likely to be lower than in areas with relatively low levels of dissolved

oxygen. If this is the case, then low water quality areas may act as a refuge (Mistiaen
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et al., 2003). This hypothesis is supported by the results of the models incorporating

the Mortality Hypothesis.

The second step was to model fishermen behavior. Four decisions - fish, switch,

location, and effort - were modeled and estimated. The decision to switch was found

to be significant as its inclusive value was both positive and significant. However,

when using the logbook data, this value was insignificant. This is most likely caused

by misreporting of fishing locations. This hypothesis is supported by an examination

of a spatial effort data set, which confirms that switching occurs more frequently than

previously believed. When fishermen were assigned locations based on the spatial

effort data set, the inclusive value became significant and within the unit interval,

supporting the misreporting hypothesis. This is an important result as the majority

of studies assume that the decision to switch is exogenous.

Modeling the decision to switch locations has important policy implications, as well,

as it provides more insight into the location choices made by fishermen. As fishery

policies are becoming more spatially-oriented (e.g., area closures, restrictions on gear

placement), understanding how commercial fishermen choose their fishing grounds is

crucial in effective fishery management.

The results of the bio-econometric and fisherman behavior models were incorporated

into a simulation of the Chesapeake Bay TMDL on the Maryland commercial blue

crab fishery. Four scenarios were run. The first two combined the fisherman behavior

model with the two chosen bio-economic models. The next two only used the bio-

economic models. The results show that the predicted effects of the TMDL are

greater and more significant under the full model than under the bio-economic model.

However, only profit and revenue under the Mortality/Availability Model increased

significantly. This is likely due to the fact that the current levels of dissolved oxygen

are suitable for the blue crabs.
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These results do not imply that the benefits from improved water quality are insignif-

icant. There are a number of other benefit categories not considered in this paper.

For example, there may be improvements to other commercial fisheries, recreational

fishing, other recreational activities, and property values. The avoided costs of future

water treatment and co-benefits of BMPs by farmers should be considered, as well.

Finally, the overall modeling structure used in this study has policy implications of its

own. First, this type of model may be able to determine the potential benefits from

different areas of a body of water. This information can be used to determine which

spatial land use policies will be the most cost-effective at improving water quality.

Second, this type of model is useful when estimating the effects of climate change on

a fishery. Climate change is likely to have spatially differentiated effects on marine

organisms, such as changes in stock productivity, species distribution, and ecosystem

productivity. The current literature on this subject is growing, but is mainly focused

on biologic models as opposed to ones which incorporate fishermen behavior. Knowing

how fishermen will react to these changes, as well as how they may directly react to

changes in climate, is key when determining the effects of climate change on a fishery.
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