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SUMMARY

This thesis presents a methodology to create surrogate models of large time

sequential (TS) datasets using piecewise linear regressions (PLRs) as it pertains to

the engineering design of systems that perform operations and sustainment (O&S) of

vehicles. The challenges tackled by the engineering design process continue to grow

more complex, and one example of such challenges is the design and implementation

of the O&S system for the F-35 Joint Strike Fighter. The vehicle needs thousands of

parts to operate, and it will be supported by a global supply chain while operating

under a cost-constrained budget. Establishing a sustainable O&S strategy is crucial

for the success of the program, and this has to be designed and implemented before the

fleet is fully deployed. Modeling and simulation (M&S) allows the testing of different

approaches before the final implementation, and advancements in computing enable

the exploration of many potential solutions. Surrogate modeling is used to summarize

the data and to interpolate between existing data points, and advanced visualizations

help decision makers understand the key tradeoffs.

O&S systems are complex, and M&S is a powerful approach to gain insight into

them. An O&S system can be composed of various sub-systems that are organized

in a complex network, and its dynamic behavior can be tracked as a time history.

The trends indicate the performance and health of the system, and they are used to

identify any anomalies. TS data of key metrics can be generated using simulation

xxi



models, and parameters of the simulation can be varied to study the interactions

between inputs and outputs. To fully study a complex system, many combinations of

parameter values need to be evaluated, but running the simulation for all potential

solutions may take too long. Moreover, finding the important trends in the resulting

dataset may prove to be difficult because of its size and high dimensionality.

Surrogate models can be used to estimate new data points and enable advanced

visualization techniques, but care must be taken when fitting the models. For any

given project, there is a limit to computational resources and time to perform sim-

ulation runs, and surrogate models can be used to fill the gaps by interpolating the

data. They can also enhance the user experience of visual analytics tools such as

interactive views and connected graphs by making them more portable and continu-

ously parameterized, which is made possible by replacing the data with mathematical

equations. One drawback is that regression methods have practical limits to fitting

large TS datasets. The time to fit a surrogate model is directly related to the size

of the dataset as well as the type of the method. The accuracy of the model is also

influenced by the method, and creating a surrogate model for nonlinear data requires

an equally sophisticated regression method, which takes longer to run. A tradeoff

must be made between fit time and the accuracy of the model, but current methods

do not provide a favorable compromise for design applications.

To create a surrogate model that can accommodate large TS datasets, the pro-

posed methodology was developed using insights gained from analyzing the structure

of O&S simulation models and its output data. The TS shapes that were generated

xxii



by the simulation models were organized into a reduced set, and a natural progres-

sion from one shape to the next was found. This observation uncovered an underlying

mechanism of the simulation model, where the inputs were transformed into internal

variables that ultimately determined the output shape. The Surrogate Model and

Regression for Time Sequences (SMARTS) methodology was developed by imitating

this two-step structure by using two regression models. One of the regressions cap-

tures the full range of TS shapes in the data, while the other regression creates a

mapping between the input variables and its corresponding shape. An intermediate

domain was introduced to serve as the bridge between the input and output domain,

and principal component analysis (PCA) was determined to be the most appropriate

method to calculate this intermediate domain.

TS shape function was created by extending PLR so that it can capture a wide

range of TS shapes. The TS can be described as a shape composed of line segments.

For example, a triangular wave can be represented as a sequence of rising and falling

lines. In order to accommodate slight differences in the shapes, each segment of the

PLR was parametrized, and separate PLRs were fit to distinctly different TS shapes

and features. To find these groupings automatically, clustering methods and feature

selection methods were explored. The most effective set of features was demonstrated

to be the PCA of the TS dataset and the PCA of the breakpoint locations of each of

the TS. This set with a model-based clustering method created groups of points that

resulted in PLRs with good fit characteristics.

The SMARTS methodology was tested against linear regression and NN using

data from the Multirole Fighter Aircraft Maintenance and Operations Simulation

xxiii



(MRFAMOS) model. The simulation was based on a maintenance scenario for a

fighter aircraft fleet, and it captures the sortie generation, maintenance, and spare

parts supply chain processes. The SMARTS methodology provided a balanced so-

lution for fitting TS data with a fast fit time and good fit characteristics. In terms

of visual representation of the TS data, it was one of the best among the regression

methods. The experiments demonstrated that the SMARTS methodology is condi-

tionally better than other regression methods in representing TS data for engineering

design applications.
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CHAPTER I

INTRODUCTION

1.1 Engineering Design

Engineering design is a decision-making process to select the best solution to solve a

problem or satisfy a need. It involves understanding the relationships between vari-

ables such as how increased performance affects the cost, and the design space is

explored systematically to enumerate the potential solutions. Modeling and simula-

tion (M&S) is used to provide insights into the complex interactions between systems,

and surrogate models are often used to summarize the data, to capture its trends,

and to analyze the impact of design decisions. Surrogate models are essential in the

management and navigation of large design problems, and new techniques are needed

as these engineering challenges continue to grow in dimension and complexity.

The process of problem solving as described by the Top-Down Design Decision

Support (TD3S) process are composed of the following steps [104]:

1. Establish the Need

2. Define the Problem

3. Establish Value

4. Generate Feasible Alternatives

5. Evaluate Alternative
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6. Make Decision

The first step in solving a problem is to identify that indeed a problem exists,

whether it is improving an existing system or designing something new. The need

should have sufficient consequence; otherwise, higher priority issues should be ad-

dressed first. Next is to formulate and structure the problem so that specific solutions

can be designed to solve the challenge. A baseline and set of metrics also need to

be defined so that the solution candidates can be evaluated. Then, the design space

is populated with alternatives and compared. Finally, the decision is made, and the

impact is tracked to check if it satisfies the original need. The TD3S process is generic

and can be applied recursively to sub-problems that arise through the process.

Within this context, this thesis focuses on improving the surrogate modeling of

multi-dimensional and sequential data, namely time sequential (TS) data. Surrogate

modeling is involved in the last three steps of the TD3S process. One way to generate

feasible alternatives is to use M&S, and because not all options can be evaluated due

to resource constraints, some can be interpolated using regression. Evaluation of

the alternatives and decision making are aided by using visualization, and surrogate

models can be used to represent the dataset rather than querying a large table of

values. The goal is to extend the capabilities of surrogate model to incorporate TS

data into this process.

M&S is a low-cost alternative to physical experimentation in order to explore the

design space and find feasible alternatives. As a problem becomes more complex,

additional dimensions are typically required to capture the complexity, and this also
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introduces the dilemma of handling large datasets. This is known as the “curse

of dimensionality” [5]. Improvements in microprocessors and computing have made

operating on datasets on the order of 10 to 100 MB a simple task today, but this was

much slower only a few years ago. Large datasets with high number of dimensions

also make it difficult to identify the important trends and key tradeoffs. The scope

and complexity of engineering designs have also grown over the years [55], ensuring

the longevity of this “curse”.

Surrogate modeling has many applications to design and aids in coping with large

datasets. It can be used to estimate design points that have not been evaluated with

M&S. It can also be used to gain “increased insight in the problems” [29] by finding

relationships that are obscured by the multiple dimensions and large volume of data.

Surrogate models are embedded into decision making tools to approximate complex

simulation models, and they are enablers for this style of knowledge discovery. The

screenshot shown in Figure 1 is an example of a decision making tool that employs

surrogate modeling to capture important interactions. This particular tool allows

the user to compare the benefits of upgrading the aging fleet of aircraft using the

data from a simulation model. Because the data for the entire design space is too

large to be portable, a set of surrogate models is used as a substitute, and it enables

interpolation to estimate values for design cases that have not been simulated. This

interface is described in more detail in Section 1.4.

The ability to present TS data onto visual interfaces is important to decision

making. TS data provides insight into the behavior of a system over time, and it is

a key characteristic about dynamic systems. Time variant data can be reduced to
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Figure 1: An example of a decision support tool [98]

statistics such as mean and standard deviation, but this can hide trends. For example,

two systems can have the same mean, but one can be trending upward while the other

downward. For certain systems such as for operations and sustainment, viewing

the TS can offer insights into the behavior of the system as it adapts to changing

conditions.

1.2 Operations and Sustainment

The motivation for a new regression method originates from studying operations and

sustainment or support (O&S) systems. The O&S system encompasses the operations

and maintenance of a vehicle as well as the support structure to sustain its activities.

The cost for O&S represents a majority of the total ownership cost of a vehicle system.

For military systems, the O&S cost is responsible for over 60% [121], as shown in

Figure 2. One example is the F-35 Joint Strike Fighter program. Its acquisition is

estimated to cost nearly $400 billion [115] while its O&S is projected to cost over $1

trillion across a period of 55 years [12, 105].

4



Figure 2: Operations and sustainment cost as percent of total ownership cost [121]

There is significant potential for cost reduction for operators and profits for service

providers. In 2011, the United States Air Force (USAF) spent fifty billion dollars on

operations and maintenance programs [122], which includes facility upkeep and up-

grades as well as training and administrative costs. Looking at the direct operational

and maintenance costs of its primary combat forces, the USAF spent over six billion

dollars on its operations and another two billion on its depot maintenance [122], and

this represents about 18% of the USAFs operations and maintenance budget. On

the commercial aviation side, the market for maintenance, repairs, and overhauls of

aircraft (not including aircraft weighing less than 19,000 lbs. spares, and inventory)

was estimated to be $36.1 billion in 2003. In the current environment of shrinking

budgets and commercial competition, effort is needed to help reduce costs, and by

tackling a large piece like O&S, a small percentage reduction is still large in total

dollars.

The challenges faced by an O&S system can vary from strategic to operational in

scope. Strategic questions include policies on how to control inventory, investment
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decisions on infrastructure, structuring supply chain assets for higher profitability,

and impact analysis of new regulations and economic changes. Operational questions

include how to use the available assets to meet changing demands and how efficiently

the current logistics network performs its tasks. The O&S system has many com-

ponents, and the complex connections between the subsystems make it difficult to

assess the impact of any changes made to it.

Before beginning to find a way to answer the questions about the O&S system,

a basic understanding of its processes and purpose is needed. The three main pro-

cesses of O&S that is of interest for this research are sortie generation, maintenance,

and spare parts repair and logistics. Sortie generation is the process in which air-

craft are used to complete specific tasks, and the requirements for sortie generation

typically drive the overall requirements for the rest of the O&S system because it is

directly related to accomplishing the goals of the organization. Maintenance includes

both preventive maintenance, such as inspection and scheduled servicing, as well as

corrective or unscheduled maintenance to replace the broken parts. The logistics en-

compasses the management and transportation of spare parts and equipment that

is needed for the maintenance of the vehicles. The relationship between the three

processes are illustrated in Figure 3.

In the sortie generation process, aircraft that are capable of flying are matched

with missions. Missions can have specific hardware requirements; for example, a

reconnaissance mission may require a certain suite of sensors. These mission-specific

hardware can be unavailable or broken, but that does not prevent an aircraft from

flying other missions. Once the aircraft is assigned a mission, there can also be
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Figure 3: The relationship between sortie generation, maintenance, and spare parts
repair and logistics

pre-flight routines such as a mission briefing and equipment loading.

The maintenance process begins after the vehicle returns from its mission [24].

It first undergoes routine inspections and post-mission activities. Then, it performs

any corrective or unscheduled maintenance to fix parts that have broken during the

mission, any predictive maintenance for vehicles with prognostic capabilities like prog-

nostic health management (PHM), and any scheduled maintenance that is due. The

scheduled maintenance is typically based on a measurable metric such as flight time,

distance traveled or number of operational cycles. Once all the maintenance tasks for

the vehicle are complete, turnaround activities are performed such as refueling before

the vehicle is ready for more missions.

Alongside the maintenance process are the logistics to transport, to repair, and

to restock broken and spare parts. When a vehicle returns with a broken part, the

part is removed and replaced with a new one from inventory. Depending on the part,

it can be fixed locally or sent to a repair depot. After it is repaired, it is transported

back to the warehouse. Depending on the size and complexity of the distribution

network, there can be a larger centralized warehouse that receives the fixed parts and

replenishes the smaller local inventory.
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The steps of the maintenance and logistics processes are simple: inspect and

identify broken parts, replace aging and broken parts, perform turnaround tasks, send

out broken parts, and stock new spare parts. The difficulty arises when considering the

details. Vehicles require many unique parts to function, and these parts are delivered

through various supply chain networks. There are different management strategies to

govern the O&S system. For example, a broken part on a vehicle can be replaced as

soon as it breaks or an alternative strategy is to defer the maintenance until a major

failure causes the vehicle to be inoperable. Furthermore, these activities face human

and geographical constraints. For a vehicle with many critical and highly technical

parts such as an aircraft, the O&S system is vast, and making the right decisions

that balance the “competing needs of improving performance, reducing costs, and

enhancing safety” is difficult [87]. In these situations, M&S offers a cost effective

method to understand the consequences of proposed changes.

1.3 Modeling and Simulation of O&S Systems

Most O&S systems are complex, and they involve multiple transport vehicles, differ-

ent destinations, scheduling issues, and many constraints. It is also an area of great

interest because a significant portion of the total cost of a product or service is in

the O&S. Cost reduction can be achieved through different options such as through

investing in new technologies, optimizing scheduling and asset mix, and changing

management strategies to a lean approach. For example, Subramanian et al. devel-

oped a better fleet scheduling algorithm for Delta Airlines, and they reported a daily

savings of $220,000 from their initial tests and projected to save $100 million annually
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[114]. Subramanian’s fleet scheduling technology is one of many solutions to improve

the O&S system, and the ability to investigate and prioritize the options can help

maximize the cost savings.

Modeling and simulation (M&S) is useful for these type of problems. M&S is an

effective alternative to physical experimentation which is often difficult to conduct and

sometimes impossible for large complex systems such as those for logistics and supply

chain [14]. Other benefits include cost and time savings, ability to run replications,

and safety from loss of profit and resources [84]. M&S enables the efficient exploration

of different alternatives in a controlled environment.

There are different M&S tools available to analyze logistics problems [14]. Spread-

sheet models are fast to run and simple to use, and they are suited for evaluating

many scenarios. However, they are usually deterministic. There are analytical models

that are fast to execute, and they are suited for scenario comparison and analysis of

long-term behavior. Finally, simulation models offer the most flexibility and capa-

bility because they can model a problem to a high degree of fidelity. However, they

usually take longer to run, and the results may be difficult to interpret and require

statistical analysis.

According to Sadoun, there are mainly three types of simulations [96]. The Monte

Carlo simulation uses random numbers for probabilistic problems that do not vary

with time. The trace-driven simulation uses time-dependent data for input, such as

weather prediction models. In a discrete event simulation (DES) model, a system is

modeled as a series of events. The system state changes at a discrete time within the

simulation as opposed to continuous systems where the states change continuously
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over time.

The structure of DES is well-suited for a logistics problem, and consequently, it is

the most common when such system is being modeled [46, 92, 116]. For example in

an aircraft maintenance scenario, an aircraft’s arrival at an airbase is an event. The

amount of detail included in the simulation can vary, such as modeling the time it

takes for each airplane to land and taxi or in finer detail by accounting for individual

cargo inside the aircraft. This fidelity depends on each problem, the desired results

from the model, and on the amount of resources available to pursue the answers.

TS data can be generated from DES by calculating and tracking metrics within

the simulation. DES makes calculations at each event so that computation is not

wasted on time steps with no events. This allows DES to simulate long time horizons

efficiently. Whenever there is a change in one of the metrics, the values can be

recorded with a time stamp so that this data can be plotted and analyzed after the

simulation. Because the simulation is event driven, there is no guarantee that the

metrics will vary in a smooth manner.

Two simulation models were developed to gain a better understanding of the inter-

actions between these processes. The first model, the Fighter Aircraft Maintenance

and Operations Simulation (FAMOS) model, was developed to simulate a fleet of

aircraft while tracking a single generic part that can break and be replaced. The

successor to the FAMOS model is the Multirole Fighter Aircraft Maintenance and

Operations Simulation (MRFAMOS) model, and it is a higher fidelity model. It can

simulate multiple missions types as well as multiple types of parts. Figure 4 shows

a simplified depiction of these two simulation models. To support the modeling and
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Figure 4: Simplified depiction of the simulation model

simulation activity for operations and sustainment, the Virtual Environment for O&S

Process Simulation (VE-OPS) was also developed [50], and VE-OPS provides a set

of tools built on on the Simulation in Python (SimPy) package [69] in the Python

programming language [86]. More details on the O&S modeling and simulation, the

FAMOS and MRFAMOS models, and the VE-OPS environment are discussed in

Chapter 2.

Once the simulation model is created, many different design points can be run to

explore the design space, but with a complex system such as with O&S, there can be

many variables and interactions between them. Understanding the data can become

a very challenging task, and visual analytics are proposed as a useful means for a user

or decision maker to understand the relationships between the variables.

1.4 Visualization

Visual analytics are popular and powerful tools to help sift through large amounts of

data, such as simulation data, and extract meaningful insights about the O&S system.

Because simulation models can be executed repeatedly and relatively quickly, a lot of
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data can be generated. Although, humans are good at detecting trends in the data,

this task becomes cognitively difficult with large number of dimensions and with large

amount of data; in other words, people get overwhelmed and overloaded with data.

In order to assist in this task, visual tools such as line graphs and bar charts have

been created, but these have their practical limits.

To help people cope with more dimensions and larger datasets, visual analytics use

advanced visualization techniques and tools such as interactive charts and connected

views. Figure 1 shows the Strategic Airlift Comparison Tool (SACT) [98], and it

is an example of a visual analytics interface. It was designed to compare strategic

airlift options such as C-5A and C-5M under different scenario conditions. The tool is

interactive, and the results are updated automatically on the right as the inputs are

specified on the left. Figure 5 shows a close-up view of the input panel. Many different

combinations of input parameters can be specified using the interface so that different

scenarios can be considered. Starting with the top-left section of the input panel, the

overall scenario is specified by selecting two airports and the cargo. The first airport is

where the cargo originates, and the second is the destination. Thousands of airports

are stored in the tool to enable any number of airport combinations, and even an

unspecified location can be used for the scenario by inputting the distance from the

starting location. The flight route can also include an en route refueling location.

The type of cargo is specified next, and depending on the type, the total payload

amount and packing factor have already been preprogrammed into the interface.

The bottom-left section shows a three-dimensional representation of the aircraft and

cargo. The chart on the top-right displays the payload-range curve, and the slider
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Figure 5: The inputs panel of the decision support tool shown in Figure 1 [98]

bars underneath it allows the user to change the temperature and other assumptions.

The bar charts on the right and the bottom-right are the settings for fleet size and

aircraft repair rates, respectively, and their values can be changed by dragging the

handles like a slider bar.

Figure 6 shows the output panel of the SACT. The two views on the top show

the flight routes projected onto two- and three-dimensional maps. The flat map is

convenient to look at, but the routes are not accurate because they do not use the

great circle routes. The three-dimensional globe provides a better perspective when

evaluating the true flight paths. The charts on the bottom-left show the output
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Figure 6: The outputs panel of the decision support tool shown in Figure 1 [98]

metrics including the time duration to complete the mission, total cost of fuel for the

mission, and fleet utilization. The bottom-right chart is an animated bubble chart

that illustrates how the aircraft in the simulation transport the cargo between the

destinations.

The SACT is a feature-rich tool that allows the user to explore various combina-

tions and understand the relationships between the inputs and outputs. Any changes

made to the slider bars and various options on the input panel are instantaneously

updated in the outputs, and it makes the data exploration interactive. As slider bars

are moved, the user can test his or her assumptions of how it impacts the outputs by
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visually inspecting the behavior of the outputs. Traditionally, any new input combi-

nation would require a new simulation run, and generating and preparing the results

may take a some time. With this interface, the results and trends are at the user’s

fingertips because they have already been generated by running a large number of

simulation runs and by fitting surrogate models to the data.

The use of these visualizations are important for decision making because it helps

identify the important tradeoffs in the problem. Even with simulation models for

large-scale systems such as O&S systems, there are other considerations that are

difficult to capture, such as political objectives and hidden motives of each decision

maker. Visual analytics are useful in conveying the technical tradeoffs, and they

provide the technical context upon which the negotiations and decision making can

take place.

1.5 Surrogate Modeling

Surrogate modeling is a common technique in aerospace design and also an enabler of

visual analytics techniques. The goal is to estimate and represent the true behavior of

a model or system using a limited amount of data collected from it [87]. A representa-

tive set of points of the design space is selected, generally with a design of experiments

(DoE), and simulations are run on that sample. If the model is stochastic, several

repetitions are run to capture the average behavior. The points are then used to

fit regression equations. Surrogate models are suited to grasp a global view of the

problem. Because they run quickly across many variables and over wide ranges, an

analyst can perform sensitivity studies and experiment with different design variable
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combinations. This can reveal hidden trends and provide insight into the problem

[29]. It is also useful in optimization where it serves as the predictor of the optimum.

Because surrogate modeling is the central topic to this thesis, a working definition is

provided below. The topic is also further discussed in Chapter 4.

Definition 1: Surrogate Modeling

A set of techniques and methods employed for the creation of mathematical

representations of simulation models based on structural combinations of input

and output data obtained from these models

There have been numerous advances in surrogate modeling, but engineering de-

sign tasks continue to outgrow the capabilities of these methods. The problems are

more complex, and the resulting design space is a combination of being large, non-

linear, noisy, discontinuous and multimodal. The established methods have difficulty

generating an accurate representation of this kind of output with a limited set of

resources of time, computational power and data storage (e.g. Figures 100 - 104 in

Section 8.2.5).

There are many types of surrogate models, and each have their strengths and

weaknesses. Some of the popular methods include polynomial response surfaces,

neural networks (NN), Gaussian process (GP) models, radial basis functions, support

vector machines, autoregressive models, and regression trees [75, 111, 106]. Among

these, the first three are perhaps the most widely used in engineering design.

Polynomial response surface models are one of the fastest to fit, but they do not

perform well when fitting complex surfaces associated with nonlinear and multimodal
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spaces. NN can fit nonlinear spaces well in a relatively short amount of time, but

it has a tendency to overfit or smooth out sharp corners. GP models fits nonlinear

spaces very well, but it takes a long time to fit and are inconvenient to store and

transfer.

The complexity or flexibility of a model is a measure of the range of shapes it

can take. This is controlled by the number of parameters included in the equation

and how they are combined [76]. For example, a cubic polynomial equation with four

parameters, f(β0, β1, β2, β3) = β0 + β1x + β2x
2 + β3x

3, has lower complexity than a

sine function with four parameters, f(β0, β1, β2, β3) = β0 + β1sin(β2x + β3), because

the sine function can also handle cyclical data, but that is not to say that the sine

function is always the better choice. It is typically better to choose the less complex

model to avoid overfitting the data.

Despite the advances in surrogate modeling techniques, there are still datasets

that it has trouble fitting properly. Large TS datasets that are generated in design

space exploration activities are one of these because it is large and nonlinear.

1.6 Challenges of Working with Time Sequential Data

Time sequential (TS) data are a set of time-ordered values and are a practical output

for the analysis and design of simulation models and dynamic systems. This type of

data can be found in logistics and supply chain problems, and simulation models are

created to analyze these systems. The time history provides context to the metrics of

interest, and this additional information can aid decision making by providing insight

into how the system evolves. For example, there is a significant operational difference
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Figure 7: Comparison of TS data plotted against time and a box plot representation

between systems if the system utilization for one was running consistently at the

target value of 90% compared to one that averages to 90% by cycling between 100%

and 0%. This behavior is difficult to convey with an aggregated metric such as an

average, but it is apparent when the TS is plotted as demonstrated in Figure 7.

The challenges of working with TS data can be organized into three main issues.

The first is the large volume of data that is generated (Section 1.6.1). By recording

the time history of a variable, the data grows with the length of the time sequence,

which can get large for long simulations. The second is the nonlinearity of TS data

(Section 1.6.2). The nonlinear shape is difficult to fit with surrogate models especially

across a wide design space. The third is the difficulty in aggregating replications of

TS data (Section 1.6.3). These three aspects are discussed in further detail in the

subsections below.

More commonly, time sequential data are called time series data, but the term

“time series” has subtle differences in connotation depending on the field of study.

For example, in finance and economics, time series typically refers to stock prices

and various indexes, and the goal of fitting the data is to predict the direction of
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the price. In control theory, the system response is tracked over time to control its

future behavior, and properties like zero mean and stationarity is of great interest.

The goal of this thesis is to preserve the general shape of the time sequence at each

design point. Furthermore, mathematically speaking, series is the sum of a sequence

of terms [77]. For the purposes of this thesis, this type of data will be referred to as

time sequential data to avoid confusion of mixing the similar literature and different

motivations. The only exception is when referring to a specific field with “time series”

in the name such as time series data mining in respect of the body of literature.

Definition 2: Time Sequential Data

Any data that is ordered by time, where given any output variable yi, there is

an associated time value ti

To demonstrate the problems of working with TS data, a sample dataset from an

aircraft sustainment supply chain model is presented below.

Example 1.1: TS data of aircraft operational availability

Figure 8 plots the output of operational availability (AO) of the training fleet

of aircraft, and this metric is measured daily. The data is generated using the

Fighter Aircraft Maintenance Operations Simulation (FAMOS) model, which is

covered in detail in Section 2.3. AO is defined as the number of aircraft available to

fly missions divided by the total number of aircraft in the fleet, and it ranges from

0% to 100%. (More detail on AO is provided in Section 2.1.1). The simulation

has a warm-up period which is not shown. There are two operations that require
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a subset of the training fleet, and each lasts 180 days. The first operation begins

on Day 0, and the second operation begins on Day 15. The vertical lines in

the graph represent the beginning of the first operation and the end of the last

operation. Each graph shows five repetitions with the same input values, and

between each graph, all variables are held constant except the ratio of the total

inventory of spare parts to the baseline value, which is varied from 90% to 110%.
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Figure 8: Simulation data from aircraft sustainment model. Total inventory is

varied from 90% to 110% of baseline in 5% increments. Each graph shows five

replications. Vertical lines indicate the beginning and end of operations.

For this example, a total of 25 runs have been simulated, and it produced

approximately 0.1 MB of data. Considering 10 variables at 2 settings with 30

repetitions resulted in approximately 120 MB of data for a single metric. This
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value can quickly grow large with more variables, more settings, and more out-

put metrics. This would be inconvenient to manipulate and analyze, and the

surrogate modeling process will take a long time.

The shape of the curves vary from a flat line at 90% inventory to a bathtub

shape at 110%, and although not shown, the line becomes a flat line at about

95% AO at higher inventory values. The behavior is nonlinear, and there is large

uncertainty in some parts of the design space such as seen at the beginning of

95% inventory and at end of 100% and 105% inventory.

Finally, the stochastic nature of the simulation causes a shifting of TS features.

The features in the example include the steady state region before the beginning

of the first operation, the subsequent fall in AO, the small peaks, and the eventual

recovery after the end of the last operation. Within each graph, each line exhibits

a common set of features with slight variations. For example, the recovery in the

fifth graph with 110% total inventory occurs at different timings and with varying

slopes, which shows that this feature can shift and warp horizontally.

The three main issues that were raised previously and demonstrated in the exam-

ple will now be explored in further depth.

1.6.1 Large Dataset

The main problem with a large TS dataset is that it is inconvenient to work with;

for example, analysis of the data will take longer because there are more data points

to sort and evaluate. Regressions take longer to fit because there are more points,

and the fit time is not linear to the number of points. For example, Gaussian process
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models scale on the order of cubic time (O(n3)) or number of points to the third

power [40], and a regression of data that takes 10 seconds to fit will take 80 seconds if

the data size is doubled. When sufficient computational resources are not available,

it simply means more time is required to accomplish the tasks, but time may also be

limited.

1.6.2 Nonlinear TS data

Fitting complex TS data can be done, but the task becomes difficult when it also has

to fit across a large design space. Most surrogate models have to balance between

being specific enough to capture certain features but general enough to explain global

trends. A method may be capable of capturing the shape of a single run well, but

when it is required to account for multiple dimensions of the design space at the same

time, it may have to compromise its fits of each TS run to capture the trends in the

design space.

The balance between fitting the local and global features and trends corresponds

to the balance that exists between overfitting and smoothing. In an extreme case of

overfitting, the regression will fit each point by fitting a wavy function that passes

through all the points, but the result may not be representative of the underlying

function. This is not useful for predicting new points or interpolating between the

points. On the other hand, surrogate modeling can be used to smoothen the local

variability to approximate the underlying function, and its extreme case is the av-

erage of the data, which is also not useful as a representation. Surrogate modeling

algorithms balance between these two extremes. If the underlying function is not
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known, the “correct” fit comes down to a subjective decision.

Smooth functions have a difficult time fitting nonlinear outputs. For example, a

simple function X−X
2−Y 2

is plotted in Figure 9. The values have been defaulted to

0 under a threshold of 0.001. This is done to mimic the behavior in discrete event

simulations where events occur at some time and not at infinite time. When a neural

net is fitted to this peak and valley function, it fits the peak and valley of this space

well, but it overfits the flat regions, causing it to be wavy.

Z =


X−X

2−Y 2
ifX−X

2−Y 2
> 0.001

0 ifX−X
2−Y 2

< 0.001

(1)

Figure 9: Peak Valley Function. Left: Points generated from -5 to 5 with 0.5 spacing.
Center: NN, 1 hidden layer, 20 nodes, Overfit Penalty = 0.001, R2=0.98142, Right:
NN, 1 hidden layer, 30 nodes, Overfit Penalty = 0.001, R2=0.99767, No validation
points

A real world extension to this kind of output data could be found when studying

the inventory policy of an aircraft repair facility. For example, a notional part on an

aircraft takes an average of six months to repair while it takes an average of three

months to break. Because the part breaks faster than it can be fixed, extra parts need

to be stocked so that it can be replaced on the aircraft when it comes in for repairs.
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The rate at which the parts are breaking needs to be balanced with the rate at which

the parts are being fixed. This is accomplished by adjusting the level of inventory so

there are enough parts in the repair queue. If there are not enough parts, there will

be a backlog of aircraft, and if there is an excess, then it is extra inventory, which is

not cost effective.

Finding the optimum level of inventory in this simple scenario is an easy task

because it reaches a steady state after a while. In real world applications, there are

occasions when aircraft are flown more often such as during a holiday season, and

this will cause the parts to fail correspondingly. If the inventory does not account for

this new rate of failure, it will soon run out of spare parts.

If the backlog over time is tracked for this example, there will be several distinct

features. For those situations with an excess of inventory, the backlog will always be

low. For those with just enough inventory for normal operations, the backlog will

increase when the peak season arrives, and it will return to normal after the peak

season ends. For those situations with insufficient inventory, the backlog will increase

until all the aircraft are in backlog. As in the peak valley example, there are flat

regions and “mountainous” regions with distinct boundaries. Smooth equations like

NN tend to overfit flat regions and output negative backlog, which is impossible.

1.6.3 Aggregating Repetitions of TS data

The overall behavior of a stochastic simulation is usually similar for the same inputs.

There are certain characteristics and features that are unique to each simulation

model, and those can be used to compare different TS data. Distinguishing features
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include flat segments, general upwards or downwards trends, peaks and valleys, and

noise. When two TS segments have the same initial inputs, the two should look

similar with a few minor differences, unless there is a high level of uncertainty or

stochasticity in the simulation model.

The difference between two time sequences from a stochastic simulation mainly

stems from the randomness programmed into the model. Randomness manifests itself

in a few different ways. Uncertainty can be incorporated by assigning random vari-

ables to model parameters. The variables can have shape functions such as uniform,

triangular, and normal distributions, and they get aggregated through the simulation

to provide the distribution of an output parameter. For example, the level of inven-

tory depends on how the simulation has been consuming the inventory up to that

point. In such case, the consumption rate can be a random variable. The level of

inventory at any given time will have a standard deviation which can be interpreted

as the uncertainty or variability.

TS data can have a special error called autocorrelation error because the current

value typically depends on the previous value, and so, it is correlated with itself. When

creating a surrogate model for this data, it violates the assumption that the errors

are independent. If care is not taken to account for autocorrelation, the calculated

error when fitting the model will be much larger than it is supposed to be.

One of the problems with fitting multiple TS data is that the features may be

shifted and warped in each replication. For example, Figure 10a is a notional TS

dataset of ten runs. There is an underlying process that moves the response from 0

to 10 at a random time and rate. The randomness causes the horizontal shift and
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Figure 10: Overlays of time sequential data with shifting and variable slope coeffi-
cients. Red line is a piecewise continuous linear line based on intuition. The black
line is a 9th order spline.

warping.

Generating a representative or aggregate curve of the lines in Figure 10a is a tricky

task. The data provides insight into the underlying process, and the curve needs to

capture this process. The TS replications in the figure have sharp corners so the

representative line should also have sharp corners like the red line in Figure 10c. If

a smooth regression function is used to fit the data, it would produce something like

the black line, which has rounded corners, and this artificial smoothness could be

misleading. Figures 10b and 10d have the same underlying TS as the plots to its left,

but they have been corrupted with autoregressive noise to represent a more realistic

scenario. These figures illustrate how noise in the data makes the task of determining

the representative curve more difficult because the corners are obscured.
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Even if the features and the differences are identified, quantifying the differences

is a difficult task. In design space exploration, multiple repetitions are run to quantify

the uncertainty due to the stochasticity of the model. In a non-TS dataset, the output

values may be different, but they are not dependent on time so there is no problem of

shifting and warping. A surrogate model is fit using some form of best fit criteria such

as an ordinary least squares approach while and another surrogate model could be fit

on the data’s standard deviation. Collapsing this dataset into a set of statistics is not

an issue. The same cannot be said for TS data because the behavior and the shape

of the sequence is equally important as the data. Hence, to capture the behavior,

the model parameters such as the intercept and slope need distributions. Otherwise,

if the standard procedure is taken to regress a model to time series data, there will

be large deviations in the region where the outputs have shifted. In regressing this

type of data, it is important to realize that the problem is not only that the values

become highly uncertain during the transition but also that other parameters, such

as the timing of the transition, are uncertain.

1.7 Previous Research on TS data and Engineering Design

Most of the literature that is related to TS data regression focuses on trend extrap-

olation, such as for stock market forecasting. Geospatial regression is also relevant

because the relative location of the data with respect to other points is important,

but the Kriging method that is popular for this application is known have long fit

times.
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There is little research being done with respect to TS regression to aid in engi-

neering design and simulation. Moon modeled advanced ship concepts that have a

self-reconfigurable fluid system [72]; these ships are designed to reroute its fluid sys-

tem in the event that certain areas of the ship are damaged. In order to simulate

the ship-level reaction to damages, the component-level systems need to be simulated

as well, and this can take a long time due to the complexity. In order to reduce the

simulation time, Moon created surrogate models for the components, which were then

used in place of the actual component simulation blocks. Because the responses are

nonlinear and transient, he modified recurrent neural networks to model the compo-

nents. The fit times of each of these surrogate models varied from several minutes

to several hours depending on the complexity of the data. Moreover, some of the

fits did not accurately match the original data, but it was sufficient for the target

investigation.

Phan incorporated time-transient regimes into aircraft design space exploration,

such as fluctuations of voltages due to high electric loads [83]. The transient outputs

from various simulation runs were plotted onto a single plot, and the visualization

allowed the user to filter out the responses that violated a specific constraint in

an interactive manner. To create the surrogate model, Phan used wavelet neural

networks or wavenets. The fit times of these wavenets took 2 hours per response for

a set of 250 cases of runs.

In both Moon’s and Phan’s research, a variant of the NN was used because of its

ability to fit highly nonlinear data. However, the fit times of these advanced NN are

long, and its use is limited to low number of dimensions and small datasets.
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1.8 Research Goal and Method Overview

The main research objective that drives the investigation is posed as follows:

Research Objective

Create a rapid and efficient regression method for the visualization and analysis

of sequential data to support engineering design decision making

In accomplishing this objective, there are also several requirements. The resulting

surrogate model needs to have good model representation, both statistically and

visually. The model execution needs to be quick because it will be used to interpolate

points in visual interfaces. The model should also have fast fit times because no

matter how sophisticated the method is, it still requires iteration to create a good

model. Finally, it needs to handle large and nonlinear datasets.

A preview of the proposed methodology is presented here to serve as a guide

through the literature review in the succeeding chapters. To overcome the challenges

listed above, the proposed methodology splits the regression into two steps, which

have different roles. The first step is responsible for capturing the variability caused

by changing the input values. The second step is responsible for recreating the full

range of possible TS shapes.

This is accomplished by introducing a third domain (Z) to connect the input (X)

to the output (Y ). The Z domain is calculated from the outputs using principal

component analysis (PCA). PCA is a dimensionality reduction technique and will be

covered more in depth in Chapter 3.
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PCA reduces the TS data from n dimensions to one dimension, where n is the

length of the TS. Then a regression is fit from the X domain to the Z domain using

NN. A separate regression is fit from the Z domain to the Y using piecewise linear

regression (PLR). The Z → Y regression involves several steps such as data reduction

and clustering, which will be discussed in Chapters 4 and 5.

The resulting method is called the Surrogate Modeling And Regression of Time

Sequences (SMARTS), and the main steps are summarized below.

1. Create an intermediate set of axes (Z domain) from the output data (Y domain)

2. Fit a regression model from the input space (X domain) to the Z domain

3. Fit a piecewise linear regression model from the Z domain to the output TS

space (Y domain)

A detailed development of the SMARTS methodology is provided in Section 6.3.

The methodology combines methods from various fields, and Figure 11 organizes the

content and steps with respect to the chapter numbers in which they are described.

1.9 Summary

This introductory chapter presented the goal of this thesis, which is to create a surro-

gate modeling methodology for large datasets with sequential data. The motivation

is derived from the need to approximate a simulation model for O&S design problems.

The surrogate model enables visually-driven data exploration and supports decision

making, which will hopefully help reduce O&S costs. The main challenges in creating

such a mathematical approximation lies in the size of the design space, nonlinearity
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of the TS data, and the stochasticity of the model. A new method called SMARTS

is proposed to answer these challenges.

The succeeding chapters will describe and explore the concepts that compose

the proposed method. It will also address the problems highlighted in this chapter.

Chapter 2 covers the M&S background for O&S applications and the VE-OPS tool

set, which is used to create O&S simulation models. It also examines a sample dataset

which provides insights and important observations to guide the research. Chapter

3 focuses on dimensionality reduction techniques and discusses the benefits of using

an intermediate dimension for regression of high-dimensional outputs. Chapter 4

reviews surrogate modeling methods and lead to the decision to use piecewise linear

regressions. Chapter 5 discusses TS segmentation and extracting features from the

data for clustering applications.

Chapter 6 covers the proposed method in depth and introduces a morphological

matrix containing alternative approaches and methods to each of the steps listed

above. Chapter 7 provides the claims, hypothesis, and experiments. Chapter 8 dis-

cusses the details of each experiments, presents the results, and discusses its im-

plications. Finally, Chapter 9 will wrap up the research with conclusions, list of

contributions, and potential extensions.
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CHAPTER II

OPERATIONS AND SUSTAINMENT SIMULATION

MODELING

In the previous chapter, a brief background to modeling and simulation (M&S) and

its utility to analysis of operations and sustainment (O&S) systems was introduced.

In this chapter, a more thorough background on O&S simulation modeling is pro-

vided (Section 2.1). Then, the Virtual Environment for O&S Process Simulation

(VE-OPS) is quickly reviewed to give insight into how O&S simulation models are

structured (Section 2.2).

2.1 Maintenance and Logistics Simulation Background

Over the course of the past five decades, different aspects of the maintenance and

logistics process have been studied. Simulation models are being used to study re-

quirements for inventory levels, logistics, workforce size, and workforce skill sets.

With the development of the Joint Strike Fighter (JSF), numerous studies and theses

have been produced to understand the impact of autonomic logistics systems (ALS)

and prognostic and health management (PHM) systems on the maintenance and lo-

gistics process. There are also studies that provide insight into better planning and

scheduling strategies.

One of the main applications for simulation modeling is to determine the inven-

tory and logistics requirements, and there are many tools to support this activity.
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The Logistics Composite Model (LCOM) is a Monte Carlo simulation model that

was originally developed in the 1960s by the RAND Corporation and the Air Force

Logistics Command to advise base-level logistics requirements [8]. The Multi-Echelon

Technique for Recoverable Item Control (METRIC) and its variants, MOD-METRIC

and VARI-METRIC, are analytical models first developed in the late 1960s to eval-

uate the operational availability (AO) of an aircraft based on the multilevel supply

stock levels [109, 73, 110, 108]. The military uses a variety of tools for their logistics

and supply chain analysis and requirements building including Logistics Simulation

and Analysis Model (LogSAM), Supply Chain Operational Performance Evaluator

(SCOPE), Scalable Integration Model for Objective Resource Capability Evaluations

(SIM-FORCE), and SIMLOX [38, 94].

Another important use of maintenance and logistics modeling is to analyze the

size and composition of the workforce. LCOM has been continually improved over

the years [19], and one of its main applications is to determine the manpower re-

quirements for maintenance [8]. Gallasch et al. study personnel requirements using a

Colored Petri Net model and explore different ways of representing personnel within

the simulation [35]. Bazargan and Jiang develop a detailed Arena model of AirTran’s

maintenance operation to improve the company’s manpower planning capability [13].

MacKenzie uses an agent-based model to study the impact of different skill levels of

the maintenance workers on the sortie generation rate of a single fighter aircraft unit

[66, 67].

Some of the recent research efforts by the military focus on the ALS and the PHM

system that are being implemented on the Joint Strike Fighter (JSF) program. One
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of the early simulation projects is documented in Rebulanan’s thesis in 2000 where

he creates a simulation model called ALSim [91] in JAVA using the Silk simulation

package [44]. This initial model is extended to study the benefits of PHM system for

the JSF [46, 68]. Around the same time, Schaefer and Haas investigate the impact

of health and usage monitoring system (HUMS) on helicopter operations and main-

tenance [103]. Yager models the ALS using a queuing network model to study its

impact on sortie generation rates [124]. Tsoutis studies the impact of ALS to failures

per mission (FPM) and maintenance man hours per flight hour (MMHF) by applying

ALS to the repair process of the Navy’s F/A-18E/F jet engines using a DES package

Simkit [120]. One of the major concerns for a PHM system is the impact of false

alarms to its performance, and several studies have highlighted the importance of the

detection accuracy of PHM systems [103, 25, 71].

There have been other research efforts to investigate the development, deployment

and execution strategies of maintenance and logistics systems. Cannibalization and

different cannibalization policies for aircraft fleets have been studied using analytical

models, inventory models and simulation models [28, 27, 97]. Rodrigues et al. explore

inventory consolidation and part transfer time of critical components with long repair

cycle times as a way to maintain high readiness levels of A-4 fleets for Argentinian

and Brazilian military [93]. Sarma and Ramchand study the interaction between air

fleet and maintenance system from a control theory perspective to provide options

for fleet performance improvement [100, 99]. Hill et al. examine different deployment

strategies of equipment needed for specific repairs on vehicles [46]. Iakovidis evalu-

ates the impact of different maintenance scheduling philosophies on the operational
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performance of an F-16 fighter fleet in the Arena DES package [49]. Pendley et al.

demonstrate through a simulation that different maintenance priorities, such as first

in first out (FIFO), can impact the metrics measured at higher levels of an organi-

zation and conclude that lower level metrics need to align with the top level goals

[80].

Simulation models have been created and used to understand the impact of various

O&S factors to the outcomes of interests. The number of studies and their variety

have increased over time, and this can be attributed to a number of factors including

the progress of computation capabilities and ubiquity, the improvements to M&S

tools, and the acceptance of M&S as a tool to study these problems. Furthermore,

as systems become more complex and as constraints such as costs get tighter, the

need for more sophisticated analysis techniques and accurate results will drive new

improvements to M&S tools and methods.

2.1.1 Metrics for O&S Simulation

Metrics are measurements that provide insight into the health of a system [88]. They

can be quantitative or qualitative, and they are recorded over time so that a baseline

value can be established. The baseline serves as a point of comparison for future mea-

surements of performance, and the time history provides a way to track improvement.

There are a variety of metrics in O&S, and some of the high level metrics for O&S

include sortie generation rate (SGR), operational availability (AO), mission capable

(MC) and not mission capable (NMC).

Sortie Generation Rate
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SGR is the sustainable number of missions an aircraft unit can generate over a specific

time period [21]. It is an overall metric of an aircraft unit’s performance, and it

encompasses maintenance and supply chain aspects as well as the reliability of the

aircraft and parts. It is calculated as follows:

SGR =
aircraft launches

time

Operational Availability

AO is an overall metric that measures the percentage of the time a system is ready

for use or action [13]. It is expressed as a value between 0 and 1 or as a percentage,

and the equation is written as follows:

AO =
uptime

uptime + downtime

where uptime is the time the system is available for use and downtime is when the

system is not available due to maintenance or other reasons. The instantaneous

fleet-wide AO can be calculated using MC and NMC:

AO =
MC

MC + NMC

Mission Capable

Mission capable is the number of aircraft that are ready to fly missions [88]. MC

can also be expressed in hours or rates, at which point MC becomes AO. Depending

on the aircraft, there can also be fully mission capable (FMC), where the vehicle is

fully repaired, or partially mission capable (PMC), where some parts are broken or

missing but the aircraft can still fly some missions.
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Not Mission Capable

Not mission capable is the complement to MC, and it can be further classified into

NMC due to supply (NMCS) and due to maintenance (NMCM) [88]. NMCS is caused

when a part is not available, and it is a measure of the supply chain effectiveness.

NMCM is caused by a lack of personnel to perform the maintenance, and it can be

an indicator of lack of maintenance staff, poor scheduling, and insufficient equipment

and facilities.

2.2 VE-OPS

A set of modeling tools tailored to generate O&S simulation models is being devel-

oped at Gerogia Tech’s Aerospace Systems Design Laboratory (ASDL) as a part of an

ongoing collaboration with Lockheed Martin Company (LMC). The toolset is called

the Virtual Environment for O&S Process Simulation (VE-OPS), and it is a frame-

work with associated programming functions and structured variables to simplify the

creation of simulation models of medium complexity [50]. The goal of VE-OPS is to

reduce the need to reinvent the wheel by standardizing model components that are

common across different O&S simulation projects.

There are several factors that influenced the design and implementation of VE-

OPS. Some of the criteria that were sought at the beginning of the project include

the following:

• Fast execution time for Monte Carlo analysis

• Ease of sharing and executing the model on different computers
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• Ease of modifying the behavior and model structure

• Ability to handle large numbers of simulation objects

• Ability to create a “server” version of the model which would execute simula-

tions on-demand when given the appropriate inputs

Fast execution time is desirable because thousands and potentially millions of

simulation runs will be performed to explore large design spaces. Simulation models

may be probabilistic so multiple runs will be needed to capture the uncertainty. The

need for easy sharing was inspired by the overhead involved with working with sharing

tools developed on engineering software platforms. Commercial programs usually

require licenses, and some can be expensive. A similar problem can occur when

executing the program on multiple machines because each machine would require its

own license. Once the model is developed, it would save time and effort if it were

easy to modify for different types of experiments and adaptable to other projects.

Some simulation programs have difficulty handling large numbers of objects, and

this is a problem when studying large O&S systems. Lastly, being able to connect

the model to a visual interface allows new simulation runs to be performed while

exploring parts of the design space that have not been sampled before, and this is

why a “server” version that can form a live connection with other tools is part of the

VE-OPS development criteria.
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2.2.1 Discrete Event Simulation and Software Platform Selection

A brief introduction to discrete event simulation (DES) was provided in Chapter

1. As mentioned previously, DES is well-suited to model systems that are process-

driven, meaning there are well-defined steps in accomplishing a task. This works well

for O&S systems which usually have set processes. Many of the simulation models

mentioned in Section 2.1 are DES models. One interesting exception is MacKenzie’s

agent-based model (ABM) that investigates the impact of human resources to the

mission readiness [66, 67], and although this could have been accomplished in DES,

the unique need to define the behaviors of individual workers is better captured in an

ABM.

There are many DES software packages that are available commercially, and

some of the more popular ones include Arena, Extend, Flexsim, Process Simulator,

SimEvents, and Simio. While most of these are standalone platforms, Process Sim-

ulator works with Microsoft Visio, and SimEvents is an additional package to MAT-

LAB’s Simulink environment. The Simio model is visualized in a three-dimensional

virtual environment, and this is useful when studying problems with spatial compo-

nents. There are also open-source projects such as OMNeT++, PowerDEVS, Simkit,

SimPy, and SystemC.

Based on the criteria stated above, VE-OPS was developed on the Simulation in

Python (SimPy) package [69] in the Python programming language. Python is an

open source, object-oriented programming language that is platform independent [69].

SimPy is a process-based DES package for Python, and it is an open source project
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as well [74]. SimPy has been used for various applications including teaching, disease

epidemics, air space surveillance and logistics [74, 4, 98]. Although this platform

is not as user-friendly as commercial software, it is light-weight and flexible, and it

avoids the licensing challenges, making it a useful platform for research. An example

using SimPy is provided below to show how a simulation is developed and executed.

Example 2.1: DES example using SimPy

A simple coding example is presented here to illustrate how DES models are

created in SimPy. This example models the loading operations of an aircraft

at an airport. The actual loading operation will simulated as a simple wait

time. For the simulation, an airport, aircraft, queue1, and queue2

objects are created. The cargo is represented as float (or real) values. The entire

simulation will consist of the airport process grabbing an aircraft object

from queue1, loading the cargo, and putting the aircraft into queue2.

The model parameters are summarized in Table 1.

Table 1: Mission parameters for the SimPy example

Task Values Units

Load Time 1.5 hr

Fleet Size 5 aircraft

Carrying Capacity 20 tonnes

Amount of Cargo 90 tonnes
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First, the necessary Python packages are imported, and the variables in Table

1 are initialized.

1 # Package Imports
2 from SimPy.Simulation import *
3 import numpy
4
5 # Variable Initialization
6 load_time = 1.5
7 fleet_size = 5
8 carrying_capacity = 20.
9 total_cargo = 90.

Figure 12: Package imports and variable initializations

Next, the aircraft class is defined, as seen in Figure 13. The aircraft

class is initialized with a name parameter and given a carrying capacity of how

much cargo it can hold. At the beginning, the aircraft holds no cargo.

1 class aircraft(object):
2 ’’’ Defines the aircraft class object ’’’
3 def __init__(self, name, carrying_capacity):
4 self.name = name
5 self.carrying_capacity = carrying_capacity
6 self.cargo = 0.0

Figure 13: Class definition for the aircraft class

Then the airport class is defined, as seen in Figure 14. It inherits from

the Process class, which is a SimPy class that enables event scheduling within

the simulation. DES is built up by scheduling these events and processing them

sequentially. When an instance of the airport class is created, it is initialized

with the reference to queue1 and queue2, and it is given a cargo amount

sitting at the airport. The sim variable is necessary to associate this object to

the simulation being created. A print statement is also included to indicate
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when the loading operation is completed for one aircraft. The load aircraft

method is the main routine for this class, and it defines its behavior during the

simulation. Finally, the get cargo method determines if there is enough cargo

at the airport, and returns the lesser of the requested amount and amount left.

1 class airport(Process):
2 ’’’ Takes an aircraft object from get_ac_q1, loads cargo, and
3 puts the aircraft in put_ac_q2 ’’’
4 def __init__(self, sim, get_ac_q1, put_ac_q2, init_cargo=0):
5 super(airport, self).__init__(sim=sim)
6 self.get_ac = get_ac_q1
7 self.put_ac = put_ac_q2
8 self.cargo = init_cargo
9 def load_aircraft(self):

10 while True:
11 # Get an aircraft from queue1
12 yield get, self, self.get_ac, 1
13 ac = self.got[0]
14
15 # Load cargo onto the aircraft
16 capacity = ac.carrying_capacity
17 cargo = self.get_cargo(amount_requested=capacity)
18 yield hold, self, 1.5
19 ac.cargo = cargo
20 print (’At time ’ + str(self.sim.now()) +
21 ’, finished loading ’ + str(cargo)
22 + ’ tonnes of cargo onto ’ + ac.name)
23
24 # Put the aircraft in queue2
25 yield put, self, self.put_ac, [ac]
26 def get_cargo(self, amount_requested):
27 ’’’ Determines the lesser of requested amount and amount
28 of cargo left at the airport ’’’
29 cargo = numpy.min((amount_requested, self.cargo))
30 self.cargo -= cargo
31 return cargo

Figure 14: Class definition for the airport class

The simulation is constructed using the components defined thus far. The

simulation is first initialized. Then the aircraft, queues, and airport objects are

instantiated. The queues use a special SimPy class called Store that handles
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the storage and retrieval of objects, which in this case are the aircraft objects.

Because the airport is a SimPy Process class, it needs to be activated before

it can schedule events. Finally, the simulation is run.

1 # Initialized the Simulation
2 sim = Simulation()
3 sim.initialize()
4
5 # Instantiate the aircraft
6 queue_of_aircraft = []
7 for i in range(fleet_size):
8 ac_name = ’_’.join((’aircraft’, str(i+1)))
9 ac = aircraft(name=ac_name,

10 carrying_capacity=carrying_capacity)
11 queue_of_aircraft.append(ac)
12
13 # Instantiate the queues
14 queue1 = Store(name=’Aircraft Queue 1’,
15 initialBuffered=queue_of_aircraft, sim=sim)
16 queue2 = Store(name=’Aircraft Queue 2’, sim=sim)
17
18 # Instantiate the airport
19 myAirport = airport(sim=sim,
20 get_ac_q1=queue1,
21 put_ac_q2=queue2,
22 init_cargo=total_cargo)
23
24 # Activate Process components and Execute
25 sim.activate(myAirport, myAirport.load_aircraft())
26 sim.simulate(100);

Figure 15: Main code block

Finally, the simulation output is given as print statements, which was pro-

grammed in the aircraft class, and the output text is shown in Figure 16.

1 At time 1.5, finished loading 20.0 tonnes of cargo onto ac_1
2 At time 3.0, finished loading 20.0 tonnes of cargo onto ac_2
3 At time 4.5, finished loading 20.0 tonnes of cargo onto ac_3
4 At time 6.0, finished loading 20.0 tonnes of cargo onto ac_4
5 At time 7.5, finished loading 10.0 tonnes of cargo onto ac_5

Figure 16: Outputs from the example simulation
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In this way, new process blocks can be created to perform different tasks

and chained together to form a more complex simulation. New objects such as

vehicle parts and workers can also be defined depending on whether the simulation

project needs to track these objects.

2.2.2 Simulation Flow

VE-OPS captures the sortie generation, maintenance, and spart parts logistics pro-

cesses, which are the three main processes involved in operating and maintaining a

vehicle. The simulation flow of VE-OPS is depicted in Figure 17. The arrows rep-

resent the flow of the simulation objects and the boxes are the processes. There are

five types of simulation objects that are tracked, and these are vehicles, parts, mis-

sions, workers, and workstations. Although these objects have specific names, they

are simply a container for attributes, such as the vehicle name, part life, and number

of hours in operation. The processes perform different tasks and change the objects’

attributes. For example, in the Mission Executor block, the vehicle will perform its

mission, and the block will modify the number of hours the vehicle was in use and

record if the mission was a success or a failure. Once the process block completes its

list of tasks, the object is passed to the next process like on an assembly line.

All objects in the simulation are derived from a generic simulation object class that

has an identification and name properties. The vehicle class has properties associated

with the usage of the vehicle as well as parts and missions assigned to it. The vehicle

has the capacity to carry multiple parts, and depending on the configuration, it can

be partially mission capable. The vehicle object also tracks the amount of time it is
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in operation as well as the number of missions it has executed. The vehicle class also

has methods associated with updating its status, adding flight hours, and removing

and installing parts.

The part class also has similar properties as the vehicle class such as flight hours

and number of flights flown. The life of each part is pre-calculated when it is created or

fixed using a distribution associated with it. As these parts are used by the vehicle, it

accumulates flight hours, and when the flight hours exceed the part life, it is declared

broken. When a part object is created, it is also assigned a distribution for time to

repair it, time to replace a broken part from the vehicle, and time it takes to transfer

between the supply depot and the repair facilities, and a new value is calculated each

time one of these operations are performed.

The mission tracks the length, mission type, and success or failure. The mission

length can be set separately using a distribution. The worker and workstation classes

can be used to introduce operational constraints, such as the total number of workers

and available workstations. Furthermore, workers can have specific working hours,

skill sets, and locations they are supposed to work at. Workstations can have types

of fixes it can perform as well as location information.

The process blocks can be categorized into three groups, which are the sortie

generation, maintenance, and parts repair processes. The sortie generation process is

responsible for using the vehicles and breaking the parts. It consists of the Mission

Manager, Mission Executor, Mission Generator and Mission Assessment blocks. The

Mission Manager is responsible for assigning vehicles to missions, and some vehicles

may not be able to perform certain missions so there is a matching that occurs.
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Currently, the matching occurs by picking the mission at the top of the stack of

missions and picking the first vehicle that can execute it, and there is room for

improving this matching to optimize the number of missions flown. The Mission

Executor is responsible for executing the missions and determining if a vehicle part

fails due to usage. When a part breaks while the mission is being executed, the

mission is aborted. The Mission Generator creates missions based on scenario inputs,

and it has the ability to create a mission profile with a varying number of missions

per day. Additionally, different mission types can be generated such as air-to-air and

reconnaissance missions, and the mission type is responsible for defining its length

and distribution. As missions are generated by the Mission Generator, its type is

chosen randomly from a list of possible missions, and the probability of picking a

specific mission type can be varied as well. The Mission Assessment process tracks

the mission success, the aborts, and the incomplete missions that could not be flown

that day if the missions are not allowed to rollover to the next day.

The maintenance process determines if a vehicle needs a repair and fixes it if

necessary. It consists of the Vehicle Assessment, Maintenance Manager, and Repair

Vehicle blocks. The Vehicle Assessment process determines if the vehicle needs to go

to repair or into the working vehicles queue. Depending on the repair policy, it may

assign only some of the broken parts to be replaced to bring the vehicle to partial

mission capable status. A vehicle can operate while having broken parts that are not

critical to its missions. The Maintenance Manager process coordinates the available

resources to repair the fleet of broken aircraft. It pulls the necessary parts, workers,

and workstation objects that are needed to perform the maintenance activity. The
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Figure 17: Simulation Block Flow Diagram

vehicle is repaired in the Repair Vehicle process, and the repair is simulated by a

wait time that corresponds to the time it takes to remove the broken part and install

a spare part. The vehicle is then sent back to the Vehicle Assessment process to

determine if further repairs are necessary. The broken part is sent to the part repair

loop, and the worker and workstation objects are placed back into their respective

pools of resources.

The parts repair process consists of the Repair Parts process. The broken parts

are delivered to the process block, the part is held for a certain amount of time

to simulate the part being repaired, and the part is returned to the spare parts

inventory. This repair loop is simplistic, but it can be replaced with other supply

chain and logistics programs or new blocks can be created to give more fidelity to this

process. Alternatively, a parts maintenance loop can be developed like the vehicle

maintenance loop.

This simulation block flow diagram is similar to Faas’ simulation diagram, which

was created for the sortie generation process, and his diagram included scheduled and

unscheduled maintenance [24]. The blocks in VE-OPS do not include as much detail
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as Faas’ model, but it can be added easily. Furthermore, the VE-OPS can create

models with a loop for spare parts supply chain and logistics.

2.3 Characterizing the O&S Simulation Data

Time sequential (TS) data from an O&S model is evaluated to learn more about the

data and the behavior of the simulation model. The Fighter Aircraft Maintenance

and Operations Simulation (FAMOS) model was created in partnership with LMC

as an initial phase to provide insight into O&S modeling for aircraft fleets. It was

designed to capture the overall trends of aircraft fleet performance such as AO and

mission effectiveness. The FAMOS effort was the precursor to the development of

VE-OPS, and it follows a similar structure as described previously where there is a

sortie generation, maintenance and spares logistics cycle.

The FAMOS model simulates fleet sizes of over 1000 aircraft to assess the ag-

gregate impact on the spare parts logistics and fleet-level performance metrics. At

the beginning of the simulation, all aircraft fly training missions to satisfy a monthly

flight hour requirement. Around halfway through the simulation, two contingencies

occur that require two subsets of aircraft to be deployed at a remote airbase, and

these aircraft fly longer missions and fly more frequently. These contingencies are

meant to burden the O&S system. Each vehicle also has one generic part that can

be removed and replaced after it breaks, and in addition to the part failures, vehicles

have a failure mechanism that is based on random chance. The overall failure rate of

the aircraft is calibrated by adjusting the part life and the frequency of the non-part

failure. The simulation is in turn calibrated by adjusting the spares inventory level
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Figure 18: Example output from the FAMOS model with an overlay of 25 repetitions

such that the AO of the fleet is at 90%.

A set of repetitions of a TS output for AO is plotted in Figure 18. The chart shows

the time history of the AO of the training fleet, and it spans the entire simulation of

855 days. 25 repetitions were run for a set of input parameters, and the plot shows

the overlay of these repetitions. In this scenario, the AO quickly drops to zero, and

it does not recover for the entire simulation. Either because of lack of parts or high

break rates, the majority of the vehicles in the simulation remain broken except for

the rare occasion when a vehicle manages to get repaired, but the part on the vehicle

breaks again very quickly.

To illustrate how inputs vary the output behavior of AO with simulation inputs,

two input variable were varied, and the result is presented in Figure 19 as a table of

charts. The plots vary horizontally by mean flight hours between failure (MFHBF).

MFHBF is the average flight time between one part failure to the next, and it is

an indicator of part reliability. The panels vary vertically with the global inventory

multiplier, and this multiplier is applied to the calibrated inventory value of the
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Figure 19: TS plots from FAMOS model. Each panel shows the operational availabil-
ity (AO) of training fleet vs time. (Horizontal spacing is purposefully non-uniform)

simulation.

The preferred state is the bottom right corner where the AO is high throughout

the simulation. As the MFHBF and global inventory are lowered, the AO degrades.

The top left panel shows how the AO drops down close to zero as soon as the sim-

ulation begins. Around the midpoint of the simulation, the contingency operations

begin. Because contingency missions have higher priority than training, parts are

preferentially sent to the contingency bases at the expense of the inventory of the

training. That is why the AO for training suffers in the second half of the simulation

in some of the panels.

The cause of low AO produced from these simulations is mainly due to a lack of

spare parts to repair the vehicle, and this shortage of parts can be caused by different

mechanisms. The parts can be used faster than the rate that they can be replenished
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into the inventory. The part consumption rate is influenced by how long and often the

vehicles are flown and the life of the parts. For example, as seen in Figure 19, MFHBF

is directly related to part life, and as MFHBF is lowered, the part consumption rate

goes up. The rate of spares replenishment is affected by how quickly the parts can

be repaired. If a broken part can be repaired immediately, then there would be no

need for spares at all. There are different aspects of the system that can be varied,

but ultimately, the goal is to balance the consumption and supply while optimizing

metrics such as performance and cost.

As mentioned previously, the benefit of using a simulation model is the ability to

adjust the parameters and observe the outcome quickly, independent of the actual

O&S system. However, there is a limit to the number of solutions that can be eval-

uated due to the curse of dimensionality. Another aspect of the curse is the amount

of data that is produced, and recording time sequential data as seen in Figure 19

results in large amounts of data. For the plots shown in the figure, there are 20 input

settings and 25 repetitions, which is 500 simulation runs, and for each run, 855 time

steps are kept, which results in 427,500 values. Another way to think about TS data

is to compare it with how many input variables it corresponds to. For example, 100

time steps is on the same magnitude as seven variables at 2 settings each (27 = 128).

Observation 1

Time sequential data exacerbates the curse of dimensionality. For the same data

volume, the length of the TS data must be traded off with the number of variables

and their levels.
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Another observation can be made based on the panels of line graphs in Figure

19. There is a progression of shapes that can be inferred, and if the plots are re-

organized into a single row, it can be shown as Figure 20. Even though the input

space is two-dimensional (MFHBF and global inventory multiplier), the behavior is

one-dimensional. This result is consistent with what is known about how the AO is

tied to the movement of spare parts in the simulation.

Figure 20: Panels from Figure 19 arranged in one dimension

The TS output from the FAMOS model can be considered as having 855 dimen-

sions, which is one dimension per time step of the output. Based on the observation

from Figure 20, this can be reduced to a handful of dimensions, and in the case of

the FAMOS model outputs, 855 can be reduced to 1.

Observation 2

The time sequential output data generated by simulation models has the poten-

tial to be organized in a dimensional space that is lower than the original input

dimensions.

In terms of regressions, the typical mapping from inputs to outputs (X → Y ) is

accomplished through a third dimension (X → Z → Y ). The intermediate space can

be derived from the outputs that simplify the regressions (Z → Y ), and the inputs

can be regressed to this intermediate dimension using normal regression methods.
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The benefits of this intermediate dimensional space are further discussed in Chapter

3.

One last observation that can be made from the FAMOS model outputs is that the

line graphs in Figure 19 can be approximated as piecewise linear segments. Although

there are portions of the TS that are noisy, there are general trends that can be

discerned. The average or median can be taken to reduce the noise due to variations

between repetitions.

Observation 3

Time sequential data from long-term O&S simulations that have large transi-

tions, such as AO from the FAMOS model, can be approximated as piecewise

linear segments.

2.4 Multirole Fighter Sustainment Scenario Description

The Multirole Fighter Aircraft Maintenance and Operations Simulation (MRFAMOS)

model is the follow-on project to the FAMOS model, and it was developed using the

VE-OPS toolset. The logic within the simulation was developed based on publicly

available literature on O&S processes, such as from Faas [24], and it was verified

with the help of researchers from LMC. The data and the results presented in this

document do not include any proprietary information from the project; however,

the output data is representative of what is normally expected from this simulation

model. The MRFAMOS model follows the same simulation flow described in Section

2.2.2 and Figure 17. The goal of the scenario is to sustain a high AO for a fleet
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of aircraft, and the sustainment operations encompass the unscheduled maintenance

and a simple spare parts supply chain.

The MRFAMOS model improves on the FAMOS model in several aspects. First,

the simulation is structured to be more modular so that various model decision pro-

cesses such as the Mission Manager and the Vehicle Assessment can be swapped out

with different variants. This allows the user to adjust certain aspects of the simulation

without touching the rest. More than one mission type can be defined, and although

missions are just a length of time that the aircraft is flying, each mission type can

have its own distribution. Furthermore, the aircraft can carry multiple parts, and

each part can be labeled as being significant to specific missions. There are also con-

straints that can be placed on the number of maintenance workers and workstations.

Consequently, because there are more objects and “moving parts” in the simulation,

the runtime of the MRFAMOS model is longer than the FAMOS model for the same

amount of aircraft, but it has more parameters that can be varied.

The MRFAMOS model is used to test the scalability of the SMARTS methodology.

The description of this dataset can be found in Section 8.1.3.

2.5 Gray Box Modeling

Insights from the simulation can be used to help with the surrogate modeling process.

In the field of system identification, this is called gray box modeling [64, 65]. When

no information about the system is used to create a surrogate model, this is called

black box modeling because the system is treated as a black box as depicted on the

top in Figure 21. This leads to the following research question:

55



Figure 21: Depiction of black box and gray box surrogate modeling

Research Question 1

What aspects of O&S simulation models and its TS outputs can be exploited to

help create surrogate models?

The FAMOS model can be described as the interaction of two processes, which

are the consumption of parts and replenishment of parts. As mentioned before, the

simulation model for O&S systems combines the sortie generation, maintenance, and

spare parts repair and logistics processes. The sortie generation is responsible for

breaking the parts on the vehicle, and maintenance replaces these broken parts. The

net outcome of these two processes is to break parts. On the other hand, the main-

tenance process swaps a good part from inventory with a broken part, and the repair

and logistics takes broken parts and replenishes the inventory with good parts. The

net outcome is to fix broken parts. This interaction of consumption and replenishment
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Figure 22: Generalizing the simulation processes with parts consumption and replen-
ishment cycles

of parts is depicted in Figure 22.

To a large degree, the behavior of the simulation is dictated by the ratio of the

rates at which the parts are consumed and replenished. If the parts are consumed

faster than they are replenished, then spare parts in the inventory will run out and

lead to lower AO, and vice versa. Then, a wide range of TS shapes produced by

the simulation can be explained by this ratio, and the input parameters that go

into the simulation are responsible for changing the two rates. This also provides

an explanation to Observation 2, which stated that the TS output shapes that were

generated by the FAMOS model could be ordered as a linear sequence even though

the input was multivariate.

This insight into the O&S simulation model can be generalized. When the input

space is multi-dimensional and the simulation TS outputs can be organized in lower

dimensions (as shown in Figure 20), then there is a set of hidden or untracked variables

in the simulation that controls the outputs. In the case of the FAMOS model, this

variable was the ratio between consumption and replenishment rates. Identifying

these hidden factors are important in understanding the underlying mechanics of the

simulation, but depending on the simulation, these factors may not be as intuitive or
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physically meaningful. For the purposes of creating a surrogate model, the meaning

of these variables is not important. However, the insight that the variables can be

transformed into a smaller set of variables or dimensions is useful.

The simulation model, which was created using DES for FAMOS and MRFAMOS,

can be described using a set of variables and functions. Using the FAMOS model as

an example, the simulation model takes MFHBF and global inventory multiplier (x)

and transforms them into an intermediate variable z which is ratio of consumption

and replenishment (z u consumption
replenishment

). Then using the value from z, the TS output

AO (y) is generated (AO = h(z)). The functions g() and h() are responsible for

transforming the variables between the three domains. The FAMOS model performs

these transformations using simulation.

The surrogate model for the TS data can follow a similar two-step structure by

separating the responsibilities of capturing the design space variability and creating

the TS regression. The first function g() is responsible for capturing how the shape

changes as the input variablesX are varied. Certain combinations of input parameters

will result in the TS taking certain shapes. Using the FAMOS model outputs as shown

in Figure 19 as an example, an MFHBF of 3.5 hours and global inventory multiplier

of 0.75 results in a cliff-shaped TS line, while MFHBF of 4.4 hours and a multiplier

of 1.25 results in a flat TS line. A new scale can be created to identify these shapes;

for example, the cliff-shaped line can be 0 in this new scale while the flat line can be

a 1. If the other TS lines are organized as in Figure 20, then they can be assigned

values that fall between 0 and 1. The g() function will be responsible for calculating

the values on the new scale based on the input variables.
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The second function h() is then responsible for creating all the possible TS shapes

from the simulation. Given a set of TS shapes, such as from Figure 20, h() should be

able to recreate those shapes with some level of accuracy and do so parametrically.

Because g() maps the X to Z, then h() needs to be able to take the values in Z

to recreate TS shapes in Y . So, when g() returns a 0, then the h() function needs

to create a cliff-shaped line. This leads to a research question regarding the new

structure of the regression that is being proposed.

Research Question 2

Will creating regressions that use an intermediate set of axes lead to a better

regression when fitting TS data?

In order to answer this question, the regression methodology needs to be fully

developed and tested. Creating a surrogate model using this divide-and-conquer

approach takes three main steps. The first is to create the intermediate set of di-

mensions, which will be called Z. Then, the TS shape function h(), which outputs a

TS line given a set of values from Z, is generated. Finally, the g() function, which

transforms X to Z, is created. The order of the last two steps is interchangeable,

but for the purposes of the narrative, the development of the TS shape function is

described first.

2.6 Summary

Modeling and simulation has supported O&S for over four decades, and its use is be-

coming more common due to a variety of factors such as improving user-friendliness

and computational power. More models are being created, and the problems they
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tackle are targeted to more specific problems. The FAMOS and MRFAMOS models

were created to understand the complex nature of O&S systems. A sample dataset

from the FAMOS model was examined more closely, and several observations regard-

ing the characteristics of the data were made, which are the following:

Observation 1 Time sequential data exacerbates the curse of dimensionality.

Observation 2 The time sequential data generated by simulation models has the

potential to be organized in a dimensional space.

Observation 3 Time sequential data from logistics simulation can be approximated

as piecewise linear segments.

Insights were drawn from the simulation model in order to assist in the surrogate

modeling process. With O&S models like the FAMOS and MRFAMOS models, the

internal mechanism can be described as the interaction between the consumption

and replenishment of vehicle parts. This led to the realization that there are hidden

factors or variables (Z) inside of simulation models which drive its behavior and that

the simulation can be conceptualized as a pair of transformation functions where the

first transforms the inputs (X) into the intermediate domain (Z), and the second

transforms the Z into the output (Y ). A similar structure can be applied to the

regression model where the first function identifies what the output should be based on

the inputs, and the second function generates the actual data. To create this surrogate

model, three steps are necessary, which are summarized in Figure 23, and these

three steps constitute the Surrogate Modeling And Regression for Time Sequences

(SMARTS) methodology.
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Figure 23: Three main steps for the SMARTS methodology

In the following chapters, the specific methods for each of the empty boxes on the

right of Figure 23 will be defined. Next chapter focuses on Step 1 and Observation

2, and it explores dimensionality reduction techniques in order to reduce the data

volume and find a way to handle nonlinear TS datasets.
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CHAPTER III

DIMENSIONALITY REDUCTION

The previous chapter discussed the need to create an intermediate Z domain to

separate the responsibility of capturing the design space variability and replicating

the different TS output shapes. This leads to the following research question:

Research Question 3

What method should be used to derive a Z domain so that it can be used for

TS regression?

To answer this question, this chapter expands on Observation 2, which stated

that the dimensionality of time sequential (TS) data from operations and sustainment

(O&S) simulations can be reduced. Dimensionality and data reduction techniques for

high-dimensional data are covered, and in particular, principal component analysis

(PCA) is described in detail. Then benefits of splitting the regression into two steps

are discussed.

3.1 Dimensionality and Data Reduction Techniques

Data generation has been made easier thanks to the proliferation of computers, im-

provement in data storage devices and reduction in cost of size of sensors. Moreover,
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there is a cultural shift towards taking, maintaining and analyzing data. Conse-

quently, overabundance of data has become a problem, and there are various tech-

niques to sift through this data to find the relevant and useful trends.

Dimensionality reduction is a category of techniques that looks for a relational

organization of the data using fewer dimensions. The main assumption is that a

dataset with hundreds of attributes (i.e. columns in the dataset) only has a handful

of attributes that have a large impact to the trend of interest. This is an applica-

tion of the Pareto principle and is the same concept as screening tests in design.

Dimensionality reduction techniques are useful in determining these factors. There

are many dimensional techniques and variants in literature, and some of the most

popular ones are presented below. These are principal component analysis (PCA),

multidimensional scaling (MDS), Isomap and locally linear embedding (LLE).

Similar to dimensionality reduction, data reduction aims to reduce the amount of

volume while retaining the main features of the data. Data reduction methods can be

used on simulation data, but the reduced data may be expressed in variables that do

not exist in the original data. Two popular data reduction methods, discrete Fourier

transform (DFT) and discrete wavelet transform (DWT), are presented as well.

To illustrate how the different dimensionality reduction techniques transforms the

data, a sample dataset composed of black and white images is used. The image is

of a black box, and the position of the box within the image is varied horizontally

and vertically. The entire set of images are shown in Figure 24. Because the box

moves in two dimensions, only two axes are necessary to differentiate between the

images. Dimensionality reduction techniques will be applied to this set of images as
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Figure 24: Set of images of a black box with a white background

an example of how each technique transforms the data.

3.1.1 Principal Component Analysis

PCA is a data transformation technique that aligns the data to a different set of

orthogonal axes. The first axis or principal component (PC) is chosen so that it has

the largest possible variance, and the successive PCs has the next largest possible

variance while maintaining orthogonality. There are various ways PCA can be cal-

culated such as by taking the eigenvalues and eigenvectors of the covariance matrix

of the data [53]; however, many support the computation using singular value de-

composition (SVD) as the best approach [36, 53]. The algorithm for PCA using the

eigenvalues and eigenvectors of the covariance matrix is summarized in Algorithm 1.

An example using this algorithm is provided below to demonstrate how PCA

works.
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Algorithm 1 Principal Component Analysis

1: X ′ = X − X̄ {Subtract the Mean}
2: C = cov(X ′) {Calculate Covariance Matrix}
3: det(C − λI) {Calculate Eigenvalues}
4: Cv − λv = 0 {Calculate Eigenvectors}
5: {Order the eigenvectors}
6: {Calculate the new axis values}

Example 3.1: Derivation of PCA using covariance matrix

The derivation of PCA using the covariance matrix is presented. This approach

provides an intuitive understanding of what the method is doing compared to

some of the other, more efficient algorithms. First set of values is plotted in

Figure 25 and also presented in Table 2.

Figure 25: Plot of the data in Table 2

65



Table 2: Sample data for PCA example

X Y

-0.417 -0.251

-0.056 0.631

-2.136 -2.124

1.640 1.305

-1.793 -1.632

-0.842 -1.021

0.503 0.497

-1.245 -0.893

-1.058 -1.282

-0.909 -0.906

Step 1: Subtract the Mean

The data is adjusted so that each column of data is subtracted by its mean. The

resulting data is shown in Table 3.
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Table 3: Mean adjusted data

X’ Y’

0.2143 0.3166

0.5753 1.1986

-1.5047 -1.5564

2.2713 1.8726

-1.1617 -1.0644

-0.2107 -0.4534

1.1343 1.0646

-0.6137 -0.3254

-0.4267 -0.7144

-0.2777 -0.3384

Step 2: Calculate the covariance matrix

The covariance of Table 3 is calculated. The equation for the covariance matrix

is the following:

cov(X, Y ) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

(n− 1)

The resulting covariance matrix is the following:

C =

 1.235 1.166

1.166 1.185


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Step 3: Calculate the Eigenvalues and Eigenvectors

Next step is to calculate the eigenvalues (λ) and eigenvectors (v) of the covari-

ance matrix. The eigenvalues can be calculated by solving for the roots of the

characteristic polynomial of C.

det(C − λI)

The eigenvectors are vectors that satisfy the eigenvalue equation for C.

Cv − λv = 0

The eigenvalues and eigenvectors of C are the following:

eigenvalues = λ =

 2.376

0.0444



eigenvectors = V =

 0.715 −0.700

0.700 0.715


The eigenvectors form the new axis in which the data can be transformed, and

the eigenvalues show the relative importance of each axis. The first eigenvalue

has a very large value, and the eigenvector that is associated with it aligns with

the data. The eigenvectors are plotted with the data in Figure 26.
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Figure 26: Plot of the data with the eigenvectors

Step 4: Order the eigenvectors

The next step is to order the eigenvectors based on decreasing value of eigenvalues.

In the example case, the eigenvectors are already in the right order.

Step 5: Calculate the new axis values

The last step is to calculate the values of the data in the new coordinate system.

This is accomplished by multiplying the transpose of the eigenvectors (V ) and

the mean adjusted data (Madj).

New Data = V TMadj

The new values are shown in Table 4 and plotted in Figure 27.
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Table 4: Data transformed into new axes

Xnew Ynew

0.375 0.076

1.250 0.454

-2.164 -0.060

2.933 -0.251

-1.575 0.052

-0.468 -0.177

1.555 -0.033

-0.666 0.197

-0.805 -0.212

-0.435 -0.048

Figure 27: Data transformed into new axes (Table 4)

PCA is applied to the set of images with the black boxes, and the result is shown
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in Figure 28. The figure on the right plots the set of images as shown on the left using

the first and second PC. Each dot from the right figure represents an images from the

left figure. Although PCA finds some form of structure between the images, it does

not appear that the method found the expected uniform grid-like structure. This is

because PCA is a linear dimensionality reduction technique while images typically

require nonlinear techniques. For TS data from O&S applications, it will be shown

later that PCA is one of the best methods.

(a) Original Images (b) PCA

Figure 28: PCA applied to the set of images with the moving black box

3.1.2 Multidimensional Scaling

Multidimensional scaling (MDS), similar to PCA, is a linear dimensionality reduction

technique. Classical MDS calculates a reduced set of dimensions that preserves the

interpoint distances, and it is equivalent to PCA when Euclidean distances are used

[118]. Given a matrix D of squared distances between all the points in the dataset,
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(a) Original Images (b) MDS

Figure 29: MDS applied to the set of images with the moving black box

MDS calculates the eigenvalues and eigenvectors of the matrix −1
2
HDH, where H =

In×n− 1
n
1n×n and n is the number of data points. Then, in a similar fashion to PCA,

the original data can be projected onto the new coordinate system created by MDS.

The MDS algorithm is summarized in Algorithm 2.

Algorithm 2 Multidimensional Scaling

1: Mdist {Calculate distance matrix}
2: Dij = M2

ij {Square distance matrix}
3: −1

2
HDH − λI {Calculate Eigenvalues}

4: H = In×n − 1
n
1n×n

5: −1
2
HDHv − λv = 0 {Calculate Eigenvectors}

6: {Calculate New Values}

Figure 29 shows the results of MDS applied to the set of black box images. Al-

though MDS is a linear method, it performs significantly better than PCA in organiz-

ing the images. The right figure shows how the images have a grid-like relationship;

however, the arrangement of the points are not straight, making it look “bloated”.
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3.1.3 Manifold Learning Techniques

Manifold learning techniques use a different approach to find a lower dimensional

relationship between the data compared to PCA. Manifold learning is a general class

of methods for nonlinear dimensionality reduction, and two of the most popular ones

are presented - Isomap and locally-linear embedding (LLE).

Isomap

The isometric feature mapping (Isomap) tries to preserve the “intrinsic metric struc-

ture” or the distance along an inherent manifold [117]. Isomap is very similar to

MDS, and in fact, it uses a portion of the MDS algorithm as its last step. The key

difference with Isomap is that it calculates the distance along geodesic paths instead

of a Euclidean distance. The algorithm has three main steps [118]. The first step

is to construct the neighborhood matrix. Neighbors of each point is determined by

either defining a fixed radius ε or K nearest neighbor. The next step is to calculate

the shortest distance between all pairs of points using the neighborhood matrix. The

final step is to apply MDS to the matrix of distances calculated in the second step.

The Isomap algorithm is summarized Algorithm 3.

Algorithm 3 Isomap

1: Construct neighborhood matrix
2: Calculate shortest distance between all pairs of points
3: Apply MDS to matrix of distances

Figure 30 shows the results of applying Isomap to the black box image set. It is

better able to capture the global relationship as shown by the “square” configuration

of the points, but the local spacing is not uniform.
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(a) Original Images (b) Isomap

Figure 30: Isomap applied to the set of images with the moving black box

Locally Linear Embedding

In contrast to Isomap which tries to preserve global distances, locally linear embedding

(LLE) is focused on preserving local distance structures [95]. The algorithm begins by

finding neighbors of each point by using methods such as K nearest neighbors. Then,

each point is estimated using a weighted sum of the neighbors determined in the first

step with a constraint that the weights must sum to 1. Finally, a new set of lower

dimensional coordinates Yi is calculated by minimizing embedding cost function:

min
Y

Φ(Y ) =
∑
i

∣∣∣∣∣−→Yi −∑
j

Wij
−→
Yj

∣∣∣∣∣
2

which can be rewritten as

Φ(Y ) =
∑
ij

Mij(
−→
( Yi) ·

−→
Yj)

where

Mij = δij −Wij −Wji +
∑
k

WkiWkj

74



δij =


1, i = j

0, i 6= j

The optimal embedding is then found by calculating the bottom d+1 eigenvectors

of the M matrix, where d is the number of desired dimensions, and the last eigenvector

is discarded because it is the unit vector with all components. The LLE algorithm is

summarized in Algorithm 4.

Algorithm 4 Locally Linear Embedding

1: Find neighbors of all points
2: Reconstruct each point as a weighted sum of its neighbors

3: min Φ(Y ) =
∑

i

∣∣∣−→Yi −∑jWij

−→
Yj

∣∣∣2

Figure 31 shows the results of applying LLE to the black box image set. LLE tries

to preserve the local relationships by representing each point using its neighbors, and

this is apparent in the right figure. The points in the middle are evenly spaced, but

the edge and corners are more crowded. The global structure (the “square” shape) is

not preserved like with Isomap.

3.1.4 Discrete Fourier Transform

Discrete Fourier transform (DFT) is a signal processing technique that converts the

TS data into the frequency domain [43]. It represents the TS data into a linear com-

bination of sinusoidal waves, and each wave is represented with a Fourier coefficient,

which is a complex number [107]. When the TS is converted into the frequency do-

main, most of the Fourier coefficients have a small amplitude and thus contribute

little to the overall signal. These would be considered as noise in the signal. The

data can be truncated to remove these noise components and to reduce the data size
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(a) Original Images (b) LLE

Figure 31: LLE applied to the set of images with the moving black box

while retaining its important features. To reduce the data, DFT is applied to each

TS in the dataset and set number of components are kept.

3.1.5 Discrete Wavelet Transform

Discrete wavelet transform (DWT) represents the data using a linear combination

of a base function called a mother wavelet [57]. A wavelet is a function with a

feature that is localized in time; for example, the Haar wavelet is like a square wave

with one period (Figure 32). These mother wavelets are scaled and transformed to

create a representation of the data. The DWT is similar to the DFT, but the wave

components in DFT are defined globally while the wavelets in DWT are localized.

This allows DWT to create wavelets that are specific to a subregion of the TS data,

and this is useful for multiresolution analysis. The overall trends of the data can be

coarsely defined with a few wavelets, and certain regions can be given more fidelity
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Figure 32: Haar wavelet

with additional wavelets [57]. Similar to DFT, wavelets that contribute little to the

overall signal can be truncated [43]. To reduce the data with DWT, the transform is

applied to each TS in the dataset and a certain number of components are kept.

3.2 Selecting a Dimensionality Reduction Technique for TS
Data

The dimensionality reduction techniques were introduced and described in the previ-

ous section, and each technique was applied to a set of images to show that there are

differences in the results due to the intent and the algorithms. This leads to the next

research question.

Research Question 4

Which dimensionality reduction technique is the most suitable for TS of O&S

simulation?

To answer this question, it is necessary to apply dimensionality reduction tech-

niques to TS data. Because the goal of the dimensionality reduction is to find trends

within the data, a sample dataset is generated with intentional relationships between
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Figure 33: A matrix plot of TS outputs from a TS function

the outputs. A TS function Y = f(X1, X2) is created such that it takes two inputs

to create the TS outputs as shown in Figure 33.

PCA, MDS, Isomap, and LLE are applied to the TS outputs, and the results are

plotted in Figure 34. In each of the plots, the bottom histogram represents where the

TS plots from Figure 33 fall along the first axis, and the top row of TS plots shows

the TS taken from along that axis.

Among the four methods, PCA and Isomap have the correct order of shapes from

the flat line to the cliff-shape line. The order of shapes produced by the MDS seems

to jump around where the bucket-shape line is next to the cliff-shape line around

PC1 = 0.35 and vice versa around PC1 = 0.65. The LLE method also misplaces the

TS shapes such as the cliff-shape line at PC1 = 0.5, which should be at the end at

PC1 = 1.0. Based on this investigation, PCA will be used to derive the Z domain.
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(a) PCA

(b) MDS

(c) Isomap

(d) LLE

Figure 34: Ordering TS dataset using dimensionality reduction techniques
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3.3 Discretization of the Z domain

When a design space is sampled to create a surrogate model, the inputs points are

spaced, typically using a design of experiments (DoE), to maximize the information

gained from the simulation model or function of interest, and the distribution of the

points is close to uniform. However, there is no guarantee that the distribution of TS

outputs projected into the Z domain is uniformly distributed, and most likely it is

not, as demonstrated in Figure 34. This could potentially be a problem when fitting

a regression to the shapes in Step 3 of the Surrogate Modeling and Regression for

Time Sequences (SMARTS) methodology because the shapes with a higher occurrence

would essentially be weighted more than the others.

There is also a possibility that the Z domain is oversampled for the purposes of

creating the Z → Y mapping. The Z domain can have fewer dimensions than the X

domain, and this is the case with the FAMOS model. When this is true, the density of

points in the Z domain is higher (assuming that the axes in X and Z are normalized).

For example, 1000 points sampled from a design space with 10 variables has a lower

sampling density or points per variable compared to 1000 points from 5 variables.

This increased density of points can be exploited in several ways. It is beneficial

for the regression for the Y → Z mapping because there are more points that can be

used for this regression. If there is little noise between similar points, a subsample

of the data can be taken for the regression, and this helps reduce the total volume

of data needed to create y = g(z). In order to make the distribution of TS shapes

uniform, the data can be binned or discretized according to a uniform grid in the Z
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Figure 35: Three main steps of the SMARTS methodology with the Step 1 filled in

domain. If there is uncertainty in the model outputs, a representative TS shape can

be derived from each of the bins using an average or median in a similar way to how

repetitions are used.

3.4 Summary

This chapter presented an overview of dimensional and data reduction techniques

based on Observation 2, which was on the lower dimensional nature of the TS output

data from an exploratory modeling exercise. PCA, MDS, Isomap, and LLE were

applied to a sample TS dataset, and PCA was chosen to be the most appropriate

method to derive the Z domain from TS datasets. Figure 35 shows the three steps

of the SMARTS methodology updated with the PCA as the first step.

It was also found that the number of TS needed to create the TS shape function

can be greatly reduced. The data can be discretized and downsampled once the

outputs are transformed into the Z domain because there are redundant shapes.

In the next chapter, Step 3 of the SMARTS methodology will be developed by

exploring various surrogate modeling methods to find a technique that can help tackle
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the problem of creating regressions for large TS datasets, which was a problem stated

in Observation 1.
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CHAPTER IV

SURROGATE MODELING AND PIECEWISE LINEAR

REGRESSIONS

The previous chapter explored dimensionality reduction techniques to derive the Z

domain that will be used to connect the inputs in the X domain and the time se-

quences (TS) in the Y domain, and it determined that principal component analysis

(PCA) to be the most appropriate technique for Step 1 of the Surrogate Modeling and

Regression for Time Sequences (SMARTS) methodology. This chapter and the next

focus on finding techniques to create the TS shape function, which is Step 3 of the

SMARTS methodology. This function is responsible for generating the corresponding

TS data given a set of values from the Z domain.

The TS shapes can vary significantly within the design space, and this motivates

the main research question for this chapter.

Research Question 5

What regression method is capable of representing the entire range of TS shapes

in a TS dataset?

This chapter begins with a review on surrogate modeling literature in order to

identify strategies to regress with large TS datasets. Among the regression methods

that are introduced, attention is given to piecewise linear regression (PLR), which
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divides data into smaller portions, and this approach helps reduce the complexity of

the data and the regression fit time. This aligns with the Observation 3, which stated

that TS data can be represented with linear segments, and it also helps alleviate the

problem of trying to fit large and complex TS datasets (Observation 1). The rest of

the chapter focuses on extending the PLR from representing a single TS to apply to

the entire design space.

4.1 Surrogate Modeling

In Chapter 1, the difficulties of fitting a surrogate model to TS data for some de-

sign space problems were shown. In search of a solution, the surrogate modeling

literature is first reviewed to gain an understanding of how different techniques per-

form their regressions. The literature spans many application domains including data

representation, data compression, classification, clustering, design space exploration,

optimization, and system identification. Some of the most popular methods include

linear regression, neural networks (NN), and Gaussian Process (GP) models. There

are additional techniques such as hybrids, ensembles, and piecewise regressions. A

brief explanation of these various techniques are provided below.

4.1.1 Surrogate Modeling Methods

Linear Regression

In linear regression, the data is assumed to be in the form of the following equation

[75]:

y = β0 + β1x1 + ...+ βnx
n + ε = Xβ + ε
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where β are the linear model parameters and ε is the error, which is assumed to

normally distributed with a mean of 0 and standard deviation of 1 N(0, 1). The

model parameters are fit by minimizing the least squared error. It is one of the

simplest and fastest surrogate modeling techniques, but it does not handle nonlinear

data well. Response surface equations (RSE) used in engineering design is a linear

regression.

There are a variety of extensions to linear regression to make it more flexible. One

approach is to transform the data, assuming the underlying data can be fit with a

linear model. For example, logistic regression assumes a logistic function, and this

works well with binary data.

y =
1

1 + e−x

To overcome some of the problems associated with calculating the model param-

eters, people have proposed adding regularization parameters to control overfitting,

and examples include ridge and lasso regression.

Piecewise Regression

Piecewise regressions are composed of multiple functions, and each function is used

to represent a portion of the entire space. They typically have logical operators

or activation functions to turn on or off functions depending on the input values.

Continuity between functions is not guaranteed, but the boundaries can be made

continuous and smooth using link functions such as sigmoid functions. There are

several popular piecewise functions such as the regression trees [10], multi-attribute

adaptive regression splines (MARS) [33], B-splines and P -splines [78, 22]. Piecewise
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regression is discussed in further detail below in Section 4.2.

Support Vector Regression

The support vector machine (SVM) algorithm finds the optimal hyperplane that

separates groups of points. SVM is used in classification tasks, and the relevant points

are the ones that define the group boundaries. Support vector regression (SVR) flips

the SVM problem formulation by calculating a “hyper-tube” that encompasses most

of the points. SVR uses a regularization parameter that smooths the regression to

control the “flatness” [113]. If needed, the dataset is transformed so that a linear

separation can be achieved. Similar to NN, SVR produces a smooth function and can

have smoothing problems.

Neural Network

The neural network (NN) regression model borrows its structure from the biological

organization of neurons [75]. It is organized in layers, and the simplest is the 1-hidden

layer model where there is a layer for inputs, a layer for outputs, and a layer of activa-

tion functions, which is the hidden layer. The hidden layer has multiple independent

functions called nodes, and these are typically functions that are asymptotic between

two values so that it operates like a step function. These nodes are then summed at

the output layer. These coefficients or weightings are determined through a fitting or

training process.

Different functions can be used for the activation function of the NN. The most

common is the hyperbolic tangent. If radial basis functions are used, then the NN

becomes a radial basis function network.

NNs use simple functions for the nodes of the hidden layer, but it can be highly
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flexible due to its network structure. By adding additional nodes and hidden layers,

it can fit highly nonlinear functions. Recursion can also be added to capture cyclic

effects in the data.

Gaussian Process Regression

The basic idea of the GP regression, also known as Kriging, is that the data is

sampled from a multivariate Gaussian distribution from a high-dimensional space,

and this distribution is allowed to have a complex correlation structure [85]. New

points are estimated from this underlying distribution. Because the model is based

on a distribution, the output is the expected value at the new location.

Ensemble Methods

The reasoning behind ensemble methods is that a weighted sum of multiple regressors,

which are derived from the same data, will yield better results rather than using a

single regression [34, 37]. This aggregate or network approach is similar to NN. One

downside to ensemble methods is that the model becomes less interpretable because

it is now a collection. There are different approaches to creating ensembles such as

the generalized additive model (GAM) and boosting methods. GAM takes a set of

generalized linear regression models and uses a backfitting algorithm to fit and weight

the models. Boosting on the other hand iteratively changes the weighting on the data

based on how well successive models fit certain regions of the data. In this way, the

next iteration tries to overcome the weaknesses of the previous model.

K Nearest Neighbor Regression

K nearest neighbor (KNN) regression takes k number of nearest neighbors and esti-

mates the value at an unknown location [20]. It retains the original dataset, and for
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large design spaces, an equivalently large dataset is necessary for good results.

4.1.2 Methods Related to Time Sequences

ARIMA Model

TS data are usually correlated in time where each point is influenced by previous

points. ARIMA models try to account for this correlation. ARIMA stands for au-

toregressive integrated moving average (ARIMA), and it is a combination of the three

types of models. The model is usually written as ARIMA(p,d,q), where the parame-

ters correspond to each of the autoregressive, integrated, and moving average models,

and the functional form is given by the following equation [11]:

(
1−

p∑
i=1

φiL
i

)
(1− L)dXt =

(
1 +

q∑
i=1

θiL
i

)
εt (2)

where φi are the parameters for the autoregressive part, L is the lag operator where

(LXt = Xt−1), Xt is the TS data indexed by t, θi are the parameters for the moving

average part, and εt are the error terms (εt = N(µ = 0, σ2)).

Kalman Filtering

Kalman filtering finds the optimal estimate of the system state from timed mea-

surements with noise and other inaccuracies [54]. The system state is a property of a

system such as position and velocity. Kalman filtering is useful for applications where

the system state cannot be measured directly or without some uncertainty. The al-

gorithm works in two steps, the prediction and update steps. It first predicts the

next values of the system states and its uncertainties using a model that was created

from previous measurements. Each time a new measurement is made, the model is
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updated using weighted averages, giving preference to the estimates which have less

uncertainty. Kalman filtering is used extensively in guidance, navigation and control

because it can synthesize inputs from multiple sensors to provide higher accuracy as

a whole compared to the accuracy of the individual sensors.

4.1.3 Discussion of regression methods

Generally, there are two metrics that are of interest when performing a regression,

which are regression time and goodness of fit, and the goal is to reduce time and

increase goodness of fit. The regression time is dependent on the flexibility or com-

plexity of the method and the volume of data, and an increase in flexibility or volume

corresponds to an increase in time. Goodness of fit is also dependent on the flexibility

of the regression method and the complexity or nonlinearity of the data, and an in-

crease in method flexibility increases goodness of fit while increase in data complexity

usually decreases goodness of fit.

Regression Time ≈ f(Flexibility of Method, Volume of Data)

Goodness of Fit ≈ f(Flexibility of Method, Complexity of Data)

Regression assumes that there is some underlying function f that explains the

relationship between the inputs x and the outputs y with some error ε, y = f(x) + ε.

The regression methods that were reviewed above use a combination of strategies to

improve its ability to conform to nonlinear data. Some of these include:

• Varying the functional form

• Transforming the data
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• Aggregating a set of functions

• Constructing a unique structure of functions

• Interpolating between input points

• Decomposing the data into smaller subsets

Data of different shapes can be fit by varying the functional form such as different

order polynomials and trigonometric functions. Transformations can also be consid-

ered as part of the overall function, and it can help reveal a hidden structure within

the data. When one function is insufficient, multiple functions can be combined and

aggregated to absorb the complexity of the data using the structure, and ensemble

and network methods are representative of this. Some methods rely on estimating

data using its relationship to existing points. Finally, data decomposition manages

complexity with the divide-and-conquer approach.

With respect to the two metrics for regressions, most of the regression strategies

are relevant in terms of the flexibility of the method, and only the data decomposition

is relevant to the data. Ideally, the regression method should be the simplest possible

for the purposes of regression time and parsimony of the equation. If the data can be

smartly decomposed so that the subsets have lower complexity, then the regression

of each subset can be performed with a less flexible method.

The only class of regression techniques that uses subsets of data is the piecewise

regression. One of the drawbacks to using piecewise regression is that a new problem

of grouping the data is incurred. However, there maybe a way to extend piecewise

regressions to large time sequential datasets.
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Observation 4

Piecewise regressions divide the data into smaller groups, which can result in

faster fit times. The partitioning of the data also aids in reducing the complexity

of nonlinear data. This makes piecewise models an ideal candidate for fitting

large nonlinear datasets.

4.2 Piecewise Regressions

The process of creating a piecewise regression can be split into two steps, the par-

titioning step and the regression step. The partitioning step creates the groups of

points, and there are two main approaches to generate these groupings. The first

is the recursive partitioning approach where groups are iteratively broken up into

smaller groups until a fit criteria is met. The recursive approach in fact iterates be-

tween the partitioning and the regression steps, and regression trees and MARS are

representative of this. The other approach is to predefine the number boundaries of

the groups as done with B-splines and P -splines.

4.2.1 Regression Trees

The regression tree algorithm recursively partitions the data to create a hierarchical

set of rules. It is also known as recursive partitioning and decision trees. At each step

of the algorithm, the tree is grown by picking a design variable at random and picking

a value at random, which becomes a new rule. Everything to the left of the value

is one subset, and everything to the right is another. The resulting subset in tree

modeling terminology is called a leaf or terminal node. A fit statistic is calculated
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and compared to the tree prior to the new rule, and if it is an improvement, it is kept.

This process is repeated for each of the leaves or subspaces until some threshold is

satisfied. The algorithm can be improved by including different processes in addition

to the growing step such as pruning less effective branches, changing the partition

rule value, and swapping the rule order.

Regression trees were popularized through Breiman, Friedman, Olshen and Stone’s

classification and regression trees (CART) [10]. A Bayesian formulation was devel-

oped by Chipman, George, and McCulloch [16, 17, 18]. The original regression trees

fit a mean to the terminal node or subset, and this is applicable in classification

but not necessarily for regression because the output varies over the range. Differ-

ent regression functions have been used at the terminal nodes starting with linear

regressions [9, 32] to GP models [40, 39, 41].

One of the problems with regression trees is that it performs poorly when coupling

effects are present. The method proposes cuts along a single input variable at a time so

the subsets are always rectangular. There are two ways to overcome this shortcoming

and increase the flexibility of regression trees. The first is to change the partitioning

rules of the method from a univariate rule to a more flexible rule such as support

vector machines (SVM) [15, 26]. The other approach is to use a flexible model at the

terminal node such as GP models [40]. This increases the complexity and execution

time of the tree regression, but this also results in a smaller tree.
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4.2.2 Splines

There are various spline techniques that employ a chain of simple regressions con-

nected by link functions or by sharing common points to enforce smoothness. These

include MARS, B-splines and P -splines.

The MARS method is a nonparametric regression technique that automatically

generates a piecewise linear regression [33]. It is composed of weighted basis functions,

which can be a constant, a hinge function or a product of more than one hinge

functions. The algorithm takes a forward pass to add the basis functions and a

backward pass to prune the least effective ones, which is a function of the model

complexity and goodness of fit. MARS borrows elements from regression trees, but

unlike the latter, the models are continuous and can incorporate interactions.

B-splines are piecewise functions that are composed of overlapping polynomials

connected at specific locations called knots. They are an attractive option for re-

gression because B-splines are flexible, continuous and differentiable up to a certain

degree. However, it is difficult to optimize the number of knots and their locations

automatically [22]. To make B-splines into a more robust surrogate model, a penalty

function was added to the regression objective function [78, 22], and this new function

is called P -splines. The model is given a large number knots which would overfit the

data, but the penalty function helps control the smoothness of the model to produce

a more ideal surrogate model.
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4.2.3 Discussion of Piecewise Regressions

There is a balance that must be found between the number of subsets and the flex-

ibility of the surrogate model [22] just as there is a balance between overfitting and

underfitting in regression. Flexible models are more computationally expensive and

do not scale linearly with the number of rows of data points. For example, Gaussian

process models scale on the order of O(N3) time, where N is the number of data

points [40]. If the regression is split into two GP models, it would take roughly a

quarter of the time to fit, O(2 × (1
2
N)3) = O(1

4
N3). There is a natural synergy in

splitting up the modeling into smaller pieces. Furthermore, there are times when some

of the partitions are flat like a plane so a flexible model would only add unnecessary

computational burden.

There are several strategies to handle complexity using piecewise regressions. Fig-

ure 36 shows three different types of regression trees. A traditional regression tree

method such as CART uses linear regression at its leaf node to fit the data, and in

order to fit nonlinear data, it has to increase the size of the tree to absorb the com-

plexity. The resulting tree will have many small subspaces that are fit using linear

regression models. In this approach, the method “absorbs” or compensates for the

complexity by expanding the structure of the tree and making the tree proportionally

as complex as the data.

Another approach is to use more flexible methods at the nodes and leaf. At the

nodes, the CART method uses a simple rule to split the data. The data is split along

a coordinate axis, and anything less than a certain value falls into one grouping and
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(a) Simple Regression Tree (b) Regression Tree with
SVM nodes

(c) Regression Tree with
GP leaves

Figure 36: Illustration of different ways of handling complexity (LR is linear regres-
sion, SVM is support regression machine, and GP is Gaussian process)

anything greater in the other. This rule can be made more complex. For example,

SVMs can be used to divide the data, and this is beneficial if the partitions are

nonlinear or if there is any interaction between the input parameters. This tree

structure is depicted in Figure 36b. By using a more flexible node, the resulting tree

will have less nodes and result in a smaller tree, and the complexity of the model has

shifted from the structure of the tree to its nodes. Similarly, the leaf of the regression

tree can be made complex instead by changing the linear regression into a GP, for

example. Even if the partitioning is insufficient, a flexible regression method at the

leaf can make up for the difference. Hence, more of the complexity is shared by the

leaf, and the size of the resulting tree will be smaller. In these ways, tradeoffs can be

made with how to absorb the complexity of the data using piecewise regressions.

There are different levels of integration when using partitioning and regression

together. They can be performed separately or together. When they are performed

separately, the subsets and their boundaries are determined first, and then each part
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is fit individually. The benefit to this strategy is that different algorithms for par-

titioning and for surrogate modeling can be used according to the problem. One of

the drawbacks with this approach is that there is no guarantee that the partitioned

parts are simple enough to be fit by the surrogate model. Also, the continuity at the

boundaries are not ensured unless boundary conditions are imposed or a link function

is used.

Many of the methods that perform piecewise modeling perform the two functions

together because the two can work in synergy. The regression provides the goodness-

of-fit metrics that the partitioning algorithm can use to accept or reject the new

partition boundaries. Because the number of partitions and the optimal boundary

locations are unknown, some methods iterate between creating partitions and fitting

the models until some convergence is met, and this iteration can take a while.

4.3 Extending Piecewise Linear Regression

In the time series data mining literature, piecewise linear regression can also be called

piecewise linear approximation or representation, and it is found to be an acceptable

way to represent time sequential data for various tasks such as compression and

querying [58]. Depending on the level of coarseness, this is also visually acceptable.

However, these representations are only created for each TS at a time.

Research Question 6

How can piecewise linear regression be extended to fit time TS data for design

space exploration applications?
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Figure 37: Panels from Figure 19 arranged in one dimension

In piecewise regressions for TS, functions are generally defined for specific time

segments (ti, ti+1). This would need to be extended so that it can also accept pa-

rameters that change the shape of each of the functions, and the final form of the

regression would need to assume something like this:

y(t) = f(t, z) =



g1(t, z) a1 < t ≤ t2

g2(t, z) a2 < t ≤ t3

...

gk(t, z) ak < t ≤ tk+1

where z is the vector of parameters (in this case the coordinates from the Z domain),

t is for time, gi (i = 1 . . . k) is the piecewise function, k is the number of piecewise

segments, and tj where j = 1 . . . k+1 is the breakpoint that defines the bounds of the

segments. This assumes that the number of segments k and the breakpoint locations

tj are constant. However, these assumptions are too restrictive. As seen in Figure

37, some parts of the data can be represented with just one segment, while others

require much more.

One option is to calculate the maximum number of segments that are necessary

and apply that across the entire design space. The drawback to this approach is

that it still does not fully address the problem with the breakpoint locations. The

breakpoints can be assumed to be static, but this is not optimal. If the breakpoint
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locations are allowed to vary across the design space, then breakpoint locations from

all sequences can be collected, and the unique set of breakpoints can be applied to all

sequences. In the limiting case, every time step in the sequence will be a breakpoint

location, which does not seem efficient.

So far, only the segmentation of the individual TS have been considered. What

if the data is also partitioned into smaller groups? Then perhaps the groups can be

created with unique properties that lead to the creation of piecewise regressions with

good fits.

Research Question 7

What unique properties should each group exhibit to create piecewise regressions

with good fits?

In order to make groups that will result in a good fit for PLR, there are three

main considerations.

Membership Are the points in the group the right ones?

Alignment Are the set of breakpoints in the group similar?

Volume Are there enough points to make a regression?

If a these aspects are satisfied, the group of points will yield good fit characteristics

when a PLR is created. These groups of points that satisfy the requirements will be

called piecewise linear regression data groups (PLRDG) for convenience. Next, each

requirement is discussed in further detail.
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Membership

There are within-group and across-group conditions for membership. Within-group

membership is concerned with shape of each TS point in the group and the number of

transitions. First of all, each group needs to have a set of similar TS shapes and the

number of segments need to be the same. This is the similarity rule. Furthermore,

Second, these “similar” TS shapes should have either have the same general shape or

be smoothly transforming from one shape to the next. This transformation rule is

necessary to ensure smooth fits of piecewise regressions when the input parameters

are varied. Figure 38a shows a set of lines with some normally distributed noise.
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Figure 38: TS data with transformation and the data projected onto the first and
second principal components

Because the regressions are going to be first-order linear equations, the transfor-

mation in each group should also be linear. As will be shown later, this complexity

rule is solved by using a data-derived coordinate system that linearizes TS transfor-

mations.
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The membership can be checked by performing PCA. If the shapes are similar

with no transition, then the points should tightly cluster together; otherwise, there

will be more than one cluster. If there is one transformation, then the result should be

a linear line, and if there are two, then the line will be bent. The set of lines in Figure

38a has two transformations. The first transformation is the rise of the end point

from 0 to 1 while the start point is held constant at 0. The second transformation

is the rise of the start point from 0 to 1 while the end point is held constant at 1.

When the data is dimensionally reduced using PCA, the plot of the first two PCs

is shown in Figure 38b. The linear trends indicate the transformation and the bend

shows that there are two transformations occurring in the dataset.

Across-group membership requires that there is no overlap between the groups

within the parameter space in which the regression will occur. This constraint can

be relaxed if the boundaries between groups are assumed to be fuzzy, but this leads

to the question of transition rules between groups. To limit the scope of the current

research, the groups are considered to be hard clusters.

Alignment

Alignment is strictly concerned with the accuracy of the breakpoint locations. Be-

cause the breakpoints are found using segmentation algorithms, there is a possibility

that the breakpoints are incorrect despite having the same general shape. If the break-

points are not correctly found, the regression of the segments will be biased because it

would be similar to creating a regression with outliers. Furthermore, the breakpoint

locations are also estimated using a regression, and it will end up providing biased

starting and ending locations when estimating the segments.
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Even though the number of segments may be the same, there is the possibility

that the shapes are different, and this can be captured by checking alignment of

the breakpoint locations in each TS. Because the breakpoints are allowed to vary,

the alignment rule is necessary to ensure good fits when creating regressions of the

breakpoint locations.

Volume

The linear regressions are hyperplanes that span the time domain and unknown num-

ber of design space variables so there needs to be a minimum number of points to

which a regression is fit (sparsity rule).

Having decided on the structure of the regression, the next question is how groups

are created from the data. Because the number of segments k per group is constant

based on the similarity rule, one way to group the data is to cluster using k. However,

each group should also result in having good fit characteristics when the regression

is performed. Most piecewise methods use an iterative method to find the optimal

groupings, but it is preferable if there are properties that can guarantee a good fit

and are simpler to assess than actually fitting a regression.

This grouping problem falls under the field of data clustering literature, which

focuses on finding clusters or groups of points that are associated with each other in

some way.

4.4 Data Clustering

Breaking up a problem into smaller steps is a fundamental principle in problem solv-

ing [3]. The body of work that studies the meaningful decomposition of data is cluster
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analysis or clustering, and various algorithms exist that accomplish this task. Sub-

sets created by clustering can be called a block, cluster, part, segment, subsection,

subsequence, subset and subspace depending on the field of study. The objects or

functions that define the bounds of separation are called boundaries, divisions, parti-

tioning rules, and rules. These terms will be used interchangeably to fit the context

of the discussion.

Partitioning rules can be created using different approaches. They are typically

generated according to a similarity metric such as the Euclidean distance, and the

partitioning process uses information gathered from the data to find an optimal lo-

cation for each boundary. Rules can be decided independent of the data, such as an

equally spaced grid, but this does not take advantage of the natural groupings that

occur in the data. Prior knowledge about the data structure can be used to create

rules as well. Koch splits the surrogate modeling of a turbine design problem based on

the physical and functional hierarchy of the design variables [59]. He notes, however,

that natural groupings may not exist or the decomposition may be difficult for some

problems.

Clustering is helpful when analyzing large data. It reduces the complexity of the

data by grouping similar points. The analysis is made simpler because the data can

be studied in parts, and new comparisons can be made across the subsets. This is

also useful in regression because a simpler surrogate model can be used, but it does

add an extra step to the overall regression process.
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4.4.1 Clustering Methods

The field of cluster analysis has a comprehensive collection of black-box approaches

to divide the data. Its goal is to gain new insight into the dataset by looking for

similarities and differences of groupings of points. In literature, clustering techniques

are generally classified into hierarchical and partitioning1 clustering techniques [6].

With both hierarchical and partitioning algorithms, the number of clusters (n) is

usually predefined. There are other techniques that do not quite fall into either

categories such as density-based models.

Hierarchical clustering algorithms build up to n clusters. Partitioning clustering

algorithms begin with n clusters and adjust the groupings until some convergence

criteria is met. Hierarchical clustering can be further categorized based on whether it

is a bottom-up or top-down approach, which in the literature is called agglomerative

and divisive clustering, respectively. An agglomerative algorithm will first determine

which points are closest to each other to form a cluster, and the distance that deter-

mines the cluster boundary is increased until there is one cluster. Divisive algorithms

start with one cluster and create smaller clusters until n number of clusters are created

or until each point is in its own cluster. In this way, hierarchical algorithms create

a hierarchy of clusters which can be represented as a tree or dendrogram. Classifica-

tion tree and methods based on singular value decomposition fall under the divisive

category. There are different ways of measuring the distance or length of linkages

1It is important to note that the term partitioning in the cluster analysis literature refers to a
set of particular techniques, while in this document, it is used broadly to refer to any method that
purposefully splits the data.
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between points such as a simple Euclidean distance. Because the distance between

each point must be calculated, it does not scale well for large number of points.

Partitioning clustering algorithms can be further classified based on the approach

of how clusters are created [6]. In the first kind, the clusters are defined by opti-

mizing an objective function such as the distance between points to the center of

the cluster and the distances between cluster centers. K-means and k-medoids fall

into this category. These algorithms begin with n reference locations within the data

space from which a cluster-defining boundary or an association rule is calculated, and

the locations are updated according to the points around it. The other is to take a

“conceptual” view of a cluster, and the algorithm determines the underlying param-

eters that define the cluster [6]. Model-based or probabilistic models fall into this

category. Model-based models assumes that the data is a mixture or combination of

an unknown number of multivariate normal distributions [30]. Based on the data,

it infers the size, shape and orientation of the distributions. It also identifies groups

automatically and is robust to noise. It performs well if the clusters are ellipsoidal.

Density-based clustering algorithms such as DBSCAN (Density Based Clustering

of Applications with Noise) create clusters based on the proximity of points [23].

These methods apply the concept of density by measuring the distance between

neighborhood points. If the points are within some threshold of each other, they

are grouped as being part of the same group, regardless of the shape of the clus-

ter, while the points which are far away from these dense clusters are categorized as

outliers. It is also one of the few methods that can identify outliers in the data.

Other techniques exist that do not fit in this classification scheme for clustering
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algorithms [6]. There are grid-based methods that divide the data into subspaces.

Another variation is to apply the methods that are mentioned above on the statistics

calculated from the data instead of working with the data directly. Other methods

use the attributes, which are in the columns, instead of the rows of the data.

Having reviewed some of the clustering methods available, this leads to another

research question:

Research Question 8

What is the appropriate clustering technique to create groups that will yield

piecewise linear regressions with good fits?

In order to reduce the number of candidates, the methods will be examined in the

next section.

4.4.2 Discussion of Clustering Methods

Based on initial evaluation of the available clustering methods, the hierarchical clus-

tering methods and partitioning methods that rely on an objective function, such as

K-means, do not seem appropriate because they require the user to specify the num-

ber of clusters to generate. This can be overcome by sweeping through the number

of clusters and calculating a goodness metric that penalizes solutions that creates

unnecessarily large numbers of clusters. However, after the data is processed with

methods like PCA, it is expected that the points will be organized in a line and not

in hemispherical clusters. Hierarchical and partitioning clusters are better suited for

round clusters and not for the data organized in lines, which is the case with data

examined in this thesis. This point is highlighted using Example 4.1.
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Example 4.1: Hierarchical and Partitioning Clustering on TS data with

3 transformations

To illustrate the point that hierarchical and partitioning algorithms are not well

suited for TS data that varies smoothly across a design space, a sample dataset

is depicted in Figure 39. The dataset is composed of lines, each with 100 time

steps and small amount of noise. Furthermore, it is contains 3 transformations:

(1) end point rises from 0 to 1, (2) start point rises from 0 to 1, and (3) end

point rises from 1 to 1.5. In total, there are 25 rows of time sequences. The

last transformation is shorter than the first two to give some asymmetry to the

dataset.
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Figure 39: Sample dataset for clustering example

PCA is applied to this dataset, and Figure 40a shows the data plotted against

the first and second principal components, and the points are colored by their

correct clusters. For the hierarchical clustering, a method based on the Ward

algorithm from Python’s scikit-learn package is used, and for the partitioning,
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the K-means algorithm from scikit-learn is used [79]. As there are three trans-

formations, the algorithms were run to find three clusters, and the results are

shown in Figure 40b and 40c, respectively.
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(a) Correct Clustering
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(b) Hierarchical (Ward)
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(c) Partitioning (K-means)

Figure 40: Data plotted along the first and second principal components

Hierarchical and partitioning algorithms fail to make a distinction when the

trend changes in the data, and the algorithms make arbitrary boundaries.

Density-based clustering can find clusters of arbitrary shape as long as the points

are in proximity of each other. This characteristic is useful for the TS data that is

under investigation. However, it also groups points from different transformations

if the clusters are connected; for example, the points in Figure 40a will be grouped

as a single cluster by the DBSCAN algorithm. But this problem can be resolved as

long as clusters form straight lines using algorithms that specifically look for these

attributes such as a segmentation algorithm, the detail of which is discussed later in

Section 5.2.

DBSCAN is coupled with a multi-dimensional line segmentation algorithm to over-

come this problem to create DBSCANmod. The segmentation algorithm is executed
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on each of the clusters identified by DBSCAN.

Model-based clustering and Gaussian mixture models at first glance would seem

ill-suited because the underlying assumption is that the data is normally distributed

in some hyper-spherical shape. The partitioning clustering algorithm, namely K-

means, suffered from the same problem. However, the shape of the spheroid can be

stretched to fit a line or plane of points. To demonstrate this aspect, the same dataset

is clustered using model-based clustering in Example 4.2.

Example 4.2: Model-based clustering on sample TS datasets

The mclust package from R is used for the model-based clustering [30, 31]. The

same dataset from Example 4.1 was clustered using the mclust package, and

the results are shown in Figure 41.
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Figure 41: Model-based clustering on sample dataset

4.4.3 Data Features

The use of appropriate data for clustering is as important to choosing the appropriate

clustering algorithm. In this case, the data can be the actual output data or attributes

derived from the data. There are several issues when dealing with high-dimensional
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data like TS datasets [60]. For example, as the number of dimensions grow, the

combinations of axes that define the subspaces in which the data can be clustered

grows. Also, two points become more difficult to discriminate using concepts like

proximity distance in higher dimensions.

Kriegel et al. phrases the problems of high-dimensional data clustering concisely:

In fact, when clustering high-dimensional data, we face two separate

problems. The first problem is the search for the relevant subspaces and

the second problem focuses on the detection of the final clusters. [60]

Recalling Chapter 3, PCA performed well in organizing the data, but there are

other dimensions reduction techniques and other attributes of the data that can be

extracted. In particular, because the TS are being segmented in the regression, the

number of segments and the breakpoint locations can also be used as attributes for

clustering. With several options available, the selection of features needs further

investigation, and this will be addressed later in Chapter 5.

Research Question 9

What are the appropriate features to use for clustering TS datasets to create

piecewise linear regressions with good fits?

4.5 Summary

Presented with the research question how to fit large TS datasets with nonlinear

behavior (Research Question 5), various surrogate modeling methods were surveyed,

and piecewise linear regression was identified as a potential solution. Breaking up
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the data can lead to a better fit of the surrogate models because each model can be

tailored to the smaller subspace [59, 40]. PLR can be applied to individual TS, and

this was expanded to accommodate the rest of the design space by creating PLR Data

Groups, which are groupings of TS that are similar enough to yield PLR with good

fits. This approach solves Research Question 6. However, this requires an additional

step of data clustering to the overall surrogate modeling process, and while decreasing

the computational burden of the regression, it has its own computations which must

be taken into account. Various clustering techniques are available in literature, and

DBSCAN, DBSCANmod, and model-based clustering were chosen as candidates. Be-

cause the choice of data features affects the performance of the clustering algorithms,

different combinations of clustering algorithms and data features will be examined

later using experiments. This leaves Research Questions 8 and 9 unanswered, which

are the ones that pertain to clustering and features, respectively. In the next chapter,

TS segmentation and feature selection are explored to develop features to cluster the

TS dataset.
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CHAPTER V

TIME SEQUENCE SEGMENTATION AND DATA

FEATURES

This chapter continues to develop Step 3 of the SMARTS methodology, which is

responsible for creating a function that can represent TS data. The previous chapter

introduced general clustering and piecewise regression methods. Furthermore, it was

determined that clustering techniques are needed to create groups to which piecewise

linear regressions (PLR) are fitted. In order to perform clustering on high-dimensional

data, relevant features must be extracted from the time sequential (TS) data, and

that is the focus of this chapter. More attention is given to TS segmentation methods

and feature extraction methods to aid with the clustering and regression.

The chapter begins with an introduction to time sequential (TS) data with an

overview of TS data mining literature. Then, TS segmentation methods are examined

to find a suitable algorithm to break up the TS data. To answer Research Question

9, which is about determining the correct features for clustering, various feature

extraction methods are introduced.

5.1 Time Sequence Data

Time sequence or time sequential data, or commonly known as time series, is an

“ordered collection of elements”, which has a time stamp and value [45]. TS data

and graphs are ubiquitous because they are easy to make and understand. They
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can be found in finances, economics, agriculture, meteorology, physics, medicine,

and transportation to name a few fields of study. If measurements can be made

consistently over time, then TS data can be collected. Examples of TS graphs are

given in Figure 42. TS are studied to find hidden trends and patterns, and this insight

can be used to make future predictions of how the series will continue.
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Figure 42: Time sequence data examples [48]. Top-left: Monthly totals of interna-
tional airline passengers, Jan. 1949 - Dec. 1960. Top-right: Quarterly S&P Index,
1900 - 1996. Bottom-left: Woefler annual sunspot numbers, 1770 - 1889. Bottom-
right: Annual rainfall at Fortaleza, Brazil, 1849 - 1979

TS data are also found in engineering and design. Manufacturing looks at the

process flow and seeks to optimize the system by tracking performance metrics like

utilization over time. Control theory deals with TS outputs using system identifi-

cation, which is defined as the “art and science of building mathematical models of

dynamic systems” [65]. Many simulation models used in engineering are time based

such as discrete event simulation and agent-based simulation.
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The purpose of studying TS data in engineering design is different from the main-

stream of TS analysis and data mining. Under disciplines like finance and meteo-

rology, empirical data cannot be recreated under similar conditions, and as much as

there is a desire to understand the underlying process, the purpose is to predict the

future and act upon it. In engineering design, the main goal is to understand the

underlying process so that it can be modified and improved.

Figure 43 displays the TS data of a simulation run on a user interface for decision

making. The input parameters can be controlled using slide bars on the left, and

the corresponding time sequence is displayed on the right. The data for these types

of applications are generated through computer simulations, and the dashboards are

effective tools to navigate high-dimensional problems [98]. Generating all the relevant

data points can take a long time, and once they are generated, storage becomes an

issue. Typically, these types of dashboards use surrogate models, which compromises

accuracy for speed and portability. Unfortunately, it is difficult to fit surrogate models

which retain the sharp features such as transitions from one state to another because

surrogate models are also smoothing techniques.

There are several qualities that are sought when creating TS surrogate models

for decision making tool applications. The model needs good fit characteristics. The

representation should have limited overfitting and smoothing, especially in regions

with sharp transitions. If the regression is piecewise, there should not be an excessive

number of partitions because this is also a case of overfitting. If there are upper

and lower bounds such as a metric measured in percentages, the modeling should not

exceed these limits.
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Figure 43: Decision support tool with TS output

In order to create PLR models, it is important to split time sequences into seg-

ments that are straight, and the breakpoint locations should be consistent across

similar TS shapes. One field that focuses on TS segmentation is the time series data

mining community. A review of this field is given below in Section 5.1.1 and its

relevant methods in Section 5.2.

5.1.1 Time Series Data Mining

The research in time series data mining emerged to address the problems of managing,

analyzing and extracting insights from the rapidly growing volume of TS data. There

are seven major tasks that are of interest to the time series data mining community:

indexing, clustering, classification, prediction, summarization, anomaly detection and

segmentation [89]. Many of these tasks use some form of similarity measures to com-

pare the time series and generalize the data. Because data mining typically involves

a large amount of data, there has also been research into reducing the volume of data

and its dimensionality so that the tasks can be accomplished within a reasonable
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amount of time and resources and without significant loss in accuracy. The con-

cepts from time series data mining are summarized to find applicable methods for

partitioning.

Major Tasks of Time Series Data Mining

A quick description of the tasks in time series data mining will be given in order to

highlight relevant tasks to surrogate modeling.

Indexing or Query by Content is a matching task to find the most similar time series

in the database to one that is supplied.

Clustering looks for natural groupings within the database based off of a similarity

measure.

Classification is an assignment problem where a time series not included in the

database is assigned to the closest predefined clusters.

Prediction or Forecasting involves looking for precursors of an event of interest (such

as natural disasters) based on past time series data.

Summarization provides an overall view of the data most often through text or

graphical visualization.

Anomaly Detection looks for the “odd man out” or abnormal behavior in the time

series, such as an irregular heartbeat.

Segmentation approximates the time series with a linear combination of simple

functions to reduce the amount of data required to represent it.
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One of the steps to create the surrogate models is to split the design space into

smaller groups, which is a clustering task. The surrogate models will have better fits

if the shapes are similar. Also, to make the fits better, the surrogate models can fit

TS segments, which requires a segmentation step. Regression allows the estimation

of regions between the data points, which is similar to the prediction task but the

purpose in this case is not the future. Finally, the goal of creating the surrogate

model is inspired by the desire to communicate data to decision makers through

visualizations, which is similar to the summarization task.

Similarity Measures

Similarity measures are metrics that can be used to compare the similarity of two

time sequences. The simplest and most popular method is to measure the Euclidean

distance between the points of each TS. The sum of the distances can be used as a

metric to compare its similarity with other pairs. Figure 44 illustrates this concept.

It is possible that the two TS are vertically offset or scaled differently, and in these

situations, the TS are normalized before the comparison.

There are other measures that try to overcome certain issues such as time shifting.

Dynamic time warping deals with time series data that have similar shapes but do not

line up along the x-axis. The method applies a non-linear transform or accelerates

some of the time segments while slows down others so that the two TS line up better.

Another similarity measure looks for the longest common subsequence. There are

also measures based on probabilistic models.

In searching for a way to partition the design space, grouping similar TS using

metrics that compare every data point can become time prohibitive for large datasets.
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Figure 44: Illustration of Euclidean distance metric for time series comparison
(Adapted from [89])

There are some tricks to speed up the process, but these are task specific. For example,

there is the early abandoning technique that is used in the indexing task where the

comparison is stopped if the cumulative deviation exceeds a certain threshold. In the

next section, TS representation methods are evaluated in search of ways to reduce

the data volume.

5.1.2 Time Series Representation

Data mining of TS databases typically involves large volumes of data, and the bulk

of the computational effort is consumed by the data transactions between the hard

disk and main working memory. In order to reduce the access to the hard disk, one of

the standard procedures is to create a reduced set of the data from which a candidate

solution is found, and this point is validated with the real data. This approach follows

the same principles as surrogate-based optimization, which is a common technique in

engineering design. A surrogate model is used to find a candidate solution of a design

problem because of the inconveniences of working with the actual model.
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The class of methods of reducing the dataset is called TS approximation or rep-

resentation. Some of the more popular methods include discrete Fourier transforma-

tion (DFT), discrete wavelet transformation (DWT), singular value decomposition

(SVD), piecewise linear approximation (PLA), and piecewise aggregate approxima-

tion (PAA). Some of these methods were covered in Section 3.1. Fundamentally, all

of these methods are linear combinations or piecewise combinations (which is a linear

combination if the irrelevant portions are reduced to zero) of different basis functions

of sinusoidal waves, square wavelets, localized waves, lines and square waves, respec-

tively. The main goal of data reduction in time series data mining is to improve the

time efficiency of tasks such as pattern matching and querying so the visual aspects

are not as important. When the data needs to be shown, the actual data can be

plotted.

In representing TS data for design space exploration and visual applications, PLA

is an appropriate choice. Methods that use waves to approximate the data, such as

DFT and SVD, run the risk of overfitting or smoothing out the corners because the

basis functions are smooth waves. Methods that use square waves and wavelets, such

as DFT with Haar wavelets and PAA, are poor at visually representing slopes because

they approximate it as a step function. PLA can capture sharp transitions as well

as sloping lines, and curves can be represented using several segments, making it an

appealing representation method for visualization.

Keogh et al. [58] categorizes PLR algorithms into the following three:

Sliding Window Segments are created sequentially by approximating a line to a
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subsequence of data points. Starting from one end, the subsequence is expanded

until the fit of the line exceeds a threshold. Then a new line is created starting

from the next point, and this is repeated until finished.

Top-down The TS is split recursively until some stopping criteria, such as total

number of segments, is satisfied.

Bottom-up The TS is built up from the simplest representation (such as a line

segment of two adjacent points). The segments are merged into larger segments

until some stopping criteria is satisfied.

Among these three types of algorithms, the bottom-up and top-down approaches

outperform the sliding window when compared in batch or offline mode, as opposed

to online where the TS data is streaming [56]. The sliding window is the only one that

can be used online. Bottom-up is also better in most segmentation tasks compared

to the top-down approach, and in cases where top-down is better, the difference is

small.

When using PLR methods, the individual lines or segments can be approximated

using the following two methods:

Linear interpolation A line is drawn from the starting to the end point.

Linear regression A line is fit to the subset of points.

Linear interpolation may not be the best fit line to each segment, but it preserves

continuity of the line and is simple to implement and faster to run. When using linear

regression, there is no guarantee that each segment will connect to form a continuous
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line. The resulting model can be used as the surrogate model for the deterministic

case. The PLR can also be modified to use different regressions for the segments, but

determining how to segment the TS becomes a trickier task. Different TS regression

techniques are covered in the next section.

5.2 TS Segmentation

Several TS representation methods were introduced in the previous section, and PLR

was determined to be the suitable choice for the intended application of this research,

which is visual representation for engineering decision making. To create PLR, the

bottom-up and top-down algorithms were found in literature to be effective in seg-

menting TS data. Each of these algorithms are described in further detail in this

section and demonstrated using simple examples in order to answer the following

research question:

Research Question 10

What TS segmentation algorithm is suitable for splitting TS data to help create

PLR Data Groups?

The PLR Data Groups (PLRDG) are groups of TS that will lead to PLR with good

fit characteristics. Because each algorithm has certain weakness that are drawbacks

for TS segmentation to create PLRDG, a hybrid algorithm which uses both algorithms

in series is proposed. The bottom-up and top-down algorithms were coded in Python

based on pseudocode by Keogh et al. [58]. Stopping conditions for these algorithms

are also addressed.
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Figure 45: TS segmentation using a bottom-up and top-down algorithms
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Figure 46: Segmentation algorithm dealing with discontinuity in the TS data

5.2.1 Bottom-Up Algorithm

A bottom-up algorithm is used to determine the number of segments. In Figure 45a, a

sample TS data set is segmented using a bottom-up algorithm. Bottom-up algorithm

creates pairs of neighboring points (creating n/2 segments) as the first step of the

algorithm, and this can cause a problem when there are discontinuities in the data.

Depending on where the discontinuity occurs, this discontinuity can be captured as

a near-vertical segment as shown in Figure 46a.
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Algorithm 5 Bottom-Up TS Segmentation Algorithm (Adapted from [58])

1: Given TS data Y and stopping condition maxError or minSegments
2: for i = 1:length(Y)/2 {Pair Up Points}
3: Segments[i] = Y [2i : 2i+ 1]
4: end
5: for i = 1:length(Segments)−1 {Find cost of merging segments}
6: cost[i] = fnCalculateCost(Segments[i], Segments[i+1])
7: end
8: while stoppingCondition == false
9: index = argmin(cost) {Find lowest cost merge}

10: Segments[index] = fnMerge(Segments[index], Segments[index+1]) {Merge
Pair}

11: fnDelete(Segments[index+1]) {Update records}
12: cost[index] = fnCalculateCost(Segments[i], Segments[i+1])
13: cost[index-1] = fnCalculateCost(Segments[i-1], Segments[i])
14: if use(maxError) {Check Stopping Condition}
15: stoppingCondition = (min(cost) < maxError)
16: else
17: stoppingCondition = (length(Segments) < minSegments)
18: end
19: end

5.2.2 Top-Down Algorithm

The top-down algorithm evaluates the benefit of splitting a TS data at every location,

selects the best one, splits the data into two sets, and continues performing this

operation on each of the new sets until some stopping condition is met. Figure 45b

uses the same data as Figure 45a but uses a top-down algorithm to segment the data.

As seen in the figure, the top-down algorithm does not necessarily capture the correct

breakpoints. However, it does not have the pairing problem like in the bottom-up

algorithm as show in Figure 46b.

5.2.3 Hybrid Algorithm

In order to overcome the drawbacks of each algorithm, both of the algorithms can be

used in succession. The top-down algorithm is used first to create more segments than
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Algorithm 6 Top-Down TS Segmentation Algorithm (Adapted from [58])

1: Given TS data Y and stopping condition maxError
2: for i = 2:length(Y)-2 {Find best place to split}
3: improvementToSplit = fnImprovementSplittingHere(Y,i)
4: improvementToSplit < bestSoFar
5: breakpoint = i
6: bestSoFar = improvementToSplit
7: end
8: end
9: {Recursively Split Left and Right Segment if necessary}

10: if fnCalculateError(Y[1:breakpoint]) > maxError
11: Segments = fnTopDownAlgorithm(Y[1:breakpoing])
12: end
13: if fnCalculateError(Y[breakpoint+1:length(Y)])
14: Segments = fnTopDownAlgorithm(Y[breakpoint+1:length(Y)], maxError)
15: end
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Figure 47: TS segmentation using the hybrid algorithm

desired, then the bottom-up algorithm is used to reconnect some of the segments to

meet the threshold or desired numbers of segments. Figure 47 show how the hybrid

algorithm performs on the two sample datasets. It avoids oversegmenting the valley-

shaped TS, and it also does not have the pairing problem like with the bottom-up

algorithm.
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Algorithm 7 Hybrid TS Segmentation Algorithm

1: Given TS data Y and stopping condition maxError or maxSegments
2: if use(maxError)
3: Segments = fnTopDownAlgorithm(Y, maxError/2)
4: Segments = fnBottomUpAlgorithm(Segments, maxError)
5: else
6: sigma = fnStandardDeviation(Y)
7: while length(Segments) < maxSegments ×2
8: Segments = fnTopDownAlgorithm(Y, sigma)
9: sigma = sigma/2

10: end
11: Segments = fnBottomUpAlgorithm(Segments, maxSegments)
12: end

5.2.4 Stopping conditions

In order to create PLRs, finding the right number of segments in a consistent manner

is important. The TS segmentation algorithms use a threshold variable to determine

when to stop. When applying these algorithms to a TS dataset with varied charac-

teristics, such as varying amplitude and noise, a single setting for the threshold can

cause underfitting or overfitting.

There are two main ways to define the stopping conditions for TS segmentation

algorithms. One is to predefine how many segments are to be created, and the other

is to set a threshold for the goodness of fit, such as standard deviation. For the

purposes of defining groups based on the segmentation the TS, the first approach is

not compatible. The second approach is the logical choice; however, it also poses

problems because the appropriate threshold setting could vary throughout the design

space. The problem of using a static threshold setting is illustrated in Example 5.1.
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Example 5.1: Static Threshold Setting for Segmentation

To illustrate why using a static threshold setting for TS segmentation algorithms

in design space exploration applications, an example using a triangle wave is

presented. The hybrid segmentation algorithm was applied to a triangle wave

with three periods, amplitude of one, and varying levels of noise (σ) that is

normally distributed. For a triangle wave of three periods, the correct number of

segments is seven. The data is shown in Figure 48.
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Figure 48: Triangle waves with varying levels of noise

The hybrid segmentation algorithm was applied to the triangle wave dataset

at three threshold values (0.2, 0.4, 0.6). The threshold values in the algorithm

represents the maximum level of standard deviation that each segment can have.

The results are plotted in Figure 49.
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Figure 49: Number of segments vs. the artificial noise in the data

For a low threshold value, the segmentation is correct at low noise levels, but

the algorithm oversegments the data with more noise in the data. With higher

threshold values, the segmentation algorithm will undersegment the data. Based

on the results, it can be seen that the correct threshold standard deviation varies

with the standard deviation of noise in the data, and a static threshold setting

for segmentation algorithms is not a robust choice.

If the number of segments cannot be used and a static threshold is not sufficient,

then the threshold value needs to be calculated based on the data.

Research Question 11

How can a robust threshold setting be derived from the data for TS with noise?

5.2.5 Estimating Noise in a Time Sequential Data

As was shown in Example 5.1, an automatic method to find the threshold value for

TS segmentation algorithms is needed. In order to determine the setting, it is first

necessary to estimate the noise in the data. One way to do this is to take the difference
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between the original TS and one that has been smoothed by using techniques like

moving average. The noise can then be estimated by taking the standard deviation

of the residuals.

There are a variety of techniques to smooth or denoise the data. One approach is

to use a set of repeated simulation runs; by executing the simulation model with the

same initial conditions, the effects of the stochasticity in the model can be quantified.

Another set of methods use a “moving window”, which is a technique to select a

subset of consecutive points, and a function, such as a mean, is used to calculate a

representative value for that window location. Regression techniques can also be used

as a smoothing function, and there are also algorithms that are specifically designed

for data smoothing like the Kalman smoother and Savitsky-Golay algorithm. These

smoothing methods will now be presented in further detail.

Smoothing Using Repetitions

If the simulation model is stochastic like the FAMOS model, then repetitions are

useful to characterize the distribution of outputs that the model generates. If the

data is noisy, then the repetitions can be used as a smoothing technique. The average

can be taken at each time step to create a mean TS for a set of repetitions. With

this approach, the standard deviation of the noise can be reduced at most by
√

1
n
,

where n is the number of repetitions, and this is under the assumption that the noise

is normally distributed. This is because the mean of n random variables (x), which

are normally distributed, results in a new random variable α, which has a mean of

1
n

∑
x and a variance of σ2

α = 1
n

∑
σ2
x. If 30 repetitions are used, this will result in

a maximum of over 80% reduction in noise. In a similar fashion, the median of the
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values at each time step can be taken. The benefit of the median is that it is not

influenced by outliers as much as the mean.

Smoothing Using Moving Windows

If there are no repetitions or the number of repetitions is low, taking the mean or

median at each time step may not be effective. A moving windows approach

attempts to solve this by incorporating adjacent values to calculate the mean or

median. The number of points to use to calculate the mean or median depends on

the window size. For example, if the window size is three, then points before and

after time step ti is used to calculate the value at ti, then the window is advanced

to ti+1 to calculate the next time step. Because this window moves across the length

of the data, it is called the moving windows. The moving average uses an uniform

weighting to calculate the value, but different weighting schemes can be used such as

a bell curve or Gaussian shaped weighting and triangular weighting schemes.

Smoothing Using Regression

Regression techniques can also be used as a mechanism to smooth the data. They

are simplified representation of the data, and they are suited to capture the overall

trend of the data while suppressing the noise. Many of the methods have already

been introduced in Section 4.1.1.

Other Smoothing Techniques

There are other smoothing techniques that are popular in literature. Kalman smooth-

ing techniques use Kalman filtering in the forward pass and use a backward pass to

estimate the smoothed values. Another popular one is the Savitsky-Golay smoothing

filter, which performs a polynomial regression in a moving window fashion to calculate

128



the smoothed value.

Research Question 12

Which smoothing technique is appropriate for smoothing TS data to estimate

the noise in the data?

The descriptions of the method do not provide any guidance towards favoring one

algorithm over another. In order to determine the appropriate smoothing technique

for TS data, an experiment is conducted using different smoothing techniques and by

varying different parameters such as TS shape, number of repetitions and amount of

noise. The details of this experiment are presented in Section 8.2.2.

5.3 Feature Extraction and Selection

Feature extraction and selection is an important step in mining high-dimensional

data [42]. In the case of TS data where each column is not a unique variable, ex-

traction of features from the data becomes important. Feature extraction is a subset

of dimensionality reduction, and it is also known as feature transform, generation or

construction [119]. There are various possible features to use for the clustering of TS

data, and the depending on the application the optimal set of features can change

[63]. An experiment is conducted to determine which features were the best to use

for O&S simulation data (answers Research Question 9).

In looking for appropriate features to cluster the data, several popular methods

from feature extraction techniques and several features based on the TS data were

selected as candidates. Based on the literature surveyed, the following features were

selected to be tested in the Clustering Experiment (Section 8.2.3).
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Mean average of output values of each TS.

Standard Deviation standard deviation of each TS.

Principal Component Analysis (PCA) creates orthogonal axes where subsequent

axes are aligned to maximize the remaining variance in the data.

Sorted PCA the order number after the data is sorted instead of the principal

component (PC) values. The sorting is based on the first PC.

Isometric Feature Mapping (Isomap) a manifold learning technique that incor-

porates the geodesic distances between data points.

Locally Linear Embedding (LLE) a manifold learning technique that preserves

local distance structures.

Discrete Fourier Transform (DFT) a discrete transform technique that repre-

sents the time sequence in the frequency domain.

Number of Segments number of segments needed to represent the TS using piece-

wise linear segments.

PCA of breakpoints The first PC of the breakpoint locations of each TS is used.

Base2 of breakpoints By representing the breakpoint locations as 1s on a vector

of 0s that is as long as the time sequence, a unique value of the breakpoint

locations can be created in binary. This binary value is averaged with a binary

that is in the reverse order to create this feature.
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In order to incorporate the breakpoint locations of the TS, two methods were

created to project the breakpoint locations onto a one-dimensional axis. The first

method uses PCA on the breakpoint locations. The breakpoint locations of each

TS is represented as a vector of indexes. Because the number of segments can vary,

shorter vectors are padded with zeros to match the length of the longest one. Finally,

PCA is used on this matrix, and the first principal component is retained as the

feature.

The second method represents breakpoint locations in binary. A binary string of

0s that is as long as the time sequence is created, and the breakpoints are marked

on this string as a 1. The string is then converted into a decimal value, and the

logarithm to the base 2 is taken. If the TS has many time steps, then breakpoints

on the smaller digits are dwarfed by the larger digits so the binary string is read in

both directions, and the two values are averaged to make the feature. An example is

presented below to illustrate how this feature is calculated.

Example 5.2: Binary String Representation of Breakpoints

To demonstrate the binary string representation, two different TS shown in Figure

50 are used. Each TS is 100 time steps long. The first TS (ts1) has breakpoints

at t = {3, 6}, and the second TS (ts2) has breakpoints at t = {3, 6, 95, 98}. In

binary string form, the breakpoints (BP) would be represented as:
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Figure 50: Example time sequences

BPts1 = 00100100...0000000

BPts2 = 00100100...0100100

This binary string is read from left to right and converted to decimal notation.

Because the value is extremely large (x = 1.7829), the logarithm to base 2 is

taken. The values then are xts1 ≈ xts2 = 97.2, and the difference between the

two are minuscule. If the string is read in the other direction, the values are

xts1 = 5.17 and xts2 = 97.17. To calculate the feature value, the two values are

normalized, and the weighted sum is returned.

5.3.1 Choosing a Subset of Principal Components

In applying PCA to a dataset, there are three main questions that arise in its appli-

cations [123]. Is there any value in using PCA (applicability)? How many should be

kept (selection)? What do the selected principal components mean (interpretability)?
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For the purposes of this research, the first two questions are relevant to creating re-

gression models, and the need for PCA has already been expressed. While the third

is interesting in understanding the simulation data, this is omitted as it is beyond the

scope. Interested readers should refer to the following references [52, 53, 81].

Research Question 13

How many principal components should be kept after principal component anal-

ysis (PCA) is applied to a dataset?

In choosing the right number of principal components to represent the data, litera-

ture is divided on how to choose the correct number of PCs. Basilevsky dismisses rules

of thumbs as statistically flawed after a presenting various proper ways of selecting

PCs [2]. On the other hand, Jolliffe argues that these statistically sound approaches

“offer little advantage over simpler rules” [53]. Among the methods that have been

proposed, parallel analysis (PA) is one of the better performing method [82], and it

has also been found to be effective with TS data [47, 61] so it will be investigated in

further detail.

Parallel Analysis

The parallel analysis (PA) method compares the eigenvalues of the data and eigenval-

ues calculated from a set of random datasets [82]. Each random dataset is the same

size and shape as the output data, and the set is comprised of 1000 of these random

datasets. For each of these, the eigenvalues of its correlation matrix are calculated

and tabulated, and confidence intervals are derived from the set of eigenvalues.

1. For an output matrix (n × p), create a matrix with random values N(0, 1) of
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the same size (n× p)

2. Calculate the eigenvalues of the correlation matrix (p × p) and record into a

temporary matrix

3. Repeat 1 and 2 for 1000 times

4. Calculate the test statistic for each axis and assess the significance of each

eigenvalue (95% α = 0.05 one-sided test)

Although Peres et al. recommends the use of Bartlett’s test to determine whether

or not PCA is warranted, Bartlett’s test cannot be performed for datasets that have

less samples n than features p. The test uses the determinant of the correlation

matrix, which is zero for matrices that are rank deficient. When describing p features

with n vectors, only n features can be expressed uniquely, and the rest will be linear

combinations of the first n. The PA can be used without the Bartlett’s test, and if a

set of TS has the same shape, it can return that no PC are needed.

Example 5.3: Parallel Analysis

The parallel analysis (PA) method is used to show how it can determine the

number of principal components (PC) to keep from a set of time series data.

Three datasets are used to show that it can determine whether PC are needed,

and if it is, how many should be kept. Each dataset has n = 400 repetitions, and

each TS is 400 time steps (p) long so the dataset is 400×400. The first set is a set

of flat lines with normally distributed noise with standard deviation of N(0, 1),

and this will be referred to as FLAT. The second is a set of triangle waves
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(TRIANGLE) with noise of N(0, 0.1). The third is a set of lines (LINES) is a

similar set of data as shown in Figure 38a where the start point and end point of

the line are varied, but this time a larger set of TS is used. The LINES dataset

also has a noise of N(0, 0.1). The datasets are illustrated in Figure 51.
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Figure 51: Parallel Analysis Example Charts

Step 1: Each dataset is standardized so that it has a mean of (µ = 0) and

standard deviation of (σ = 1). The eigenvalues of the datasets are also

calculated.

Step 2: A n×p matrix with random values is generated. Each value is normally

distributed with standard deviation of 1, N(0, 1).

Step 3: A p× p correlation matrix is calculated.

Step 4: The eigenvalues of the correlation matrix is calculated, and the values

are recorded.

Step 5: Steps 2 through 4 are repeated 1000 times.
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Step 6: The mean and standard deviation is calculated for each eigenvalue com-

ponent.

Step 7: A one-sided 95% significance test is performed to see if the eigenvalues

calculated from the dataset are significantly higher than the ones derived

from the random matrix.

This approach assumes that the eigenvalues of the correlation matrix is nor-

mally distributed, and this can be verified by using a Shapiro-Wilk test for nor-

mality [90]. The results of the first five eigenvalues are presented in Table 5 and

seen in Figure 52.

Table 5: Comparison of eigenvalues from the parallel analysis example

λ1 λ2 λ3 λ4 λ5

FLAT 3.8771 3.8455 3.7924 3.7456 3.6692

TRIANGLE 3.8694 3.8284 3.8071 3.6686 3.5998

LINES 333.6751 26.9739 0.3905 0.3802 0.3712

PA baseline µ 3.9284 3.8341 3.7632 3.7019 3.6483

PA baseline σ 0.0596 0.0463 0.0394 0.0353 0.0333
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Figure 52: Comparison of eigenvalues

Figure 52 shows that the first and second PC of the LINES dataset are

significant because both of them are clearly greater than the baseline while the

rest are below. The eigenvalues for the FLAT and TRIANGLE datasets are

very close to the baseline, and they are difficult to distinguish in the figure. Based

on values shown in Table 5, the eigenvalues are within one standard deviation of

the baseline mean, and thus, the two datasets do not have significant PCs. This

statistically shows that each row of TS in the datasets are essentially the same

aside from the noise.

The example demonstrated the ability of the PA method to determine the number

of significant PC for a limited set of TS data. In order to test the broader effectiveness

of the PA method, a more extensive experiment is conducted, and the details are

presented in Section 8.2.1.
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5.4 Summary

In this chapter, TS segmentation and feature extraction methods were presented.

The bottom-up and top-down segmentation algorithms were selected for further in-

vestigation, and in the end, the hybrid algorithm, which uses both bottom-up and

top-down, was selected, thus answering Research Question 10.

In order to segment TS data, the segmentation algorithms require a threshold

setting, but it was shown that a static threshold is not robust to different degrees

of noise in the data. This problem is captured by Research Question 11, and one

approach to calculate such a threshold setting is to take the standard deviation of

the difference between the original data and the smoothed version of the data. There

are various smoothing techniques that were presented, and to determine which one

to choose (Research Question 12), an experiment is conducted. The details of this

experiment are presented in Section 8.2.2.

To cluster the data for piecewise regressions, features from the data need to be

extracted, and so different features were examined as potential candidates. Because

no definitive guidance was found in literature, another experiment is conducted to

select the appropriate set of features (Research Question 9). The details are presented

in Section 8.2.3.

One of the methods for feature extraction is PCA, and this method will return

as many features or principal components (PC) as there are number of variables or

number of time steps. However, most of these PC are irrelevant. In order to determine

the appropriate number of components to keep, the parallel analysis (PA) method
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Figure 53: Summary of Step 3 and Chapters 4 and 5

was chosen, and an experiment is conducted to demonstrate its effectiveness on TS

data. The details are further discussed in Section 8.2.1.

Figure 53 summarizes the research questions and the solutions found in Chapters

4 and 5. The boxes on the left show the questions, and the boxes on the right are the

algorithms and methods selected. The specific methods are not yet determined, and

these are colored in gray. The conducted experiments will be discussed in Chapter

8 to choose the appropriate methods. In the next chapter, Step 2 of the SMARTS

methodology will be discussed, and the entire methodology will be reviewed in whole.
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CHAPTER VI

SMARTS METHODOLOGY

This chapter will summarize what has been presented and develop the Surrogate

Modeling and Regression for Time Sequences (SMARTS) methodology. The previous

chapters have covered many different methods and algorithms to address Step 1 and

3 of the SMARTS methodology, and these will be reviewed. Then, Step 2 will be

discussed before the entire SMARTS methodology is described as a whole.

6.1 Method Morphological Matrix

Various fields and subfields of study are explored throughout this dissertation includ-

ing data mining, surrogate modeling, dimensional reduction, time series data mining,

time series segmentation, and clustering. Table 6 organizes the various methods that

were discussed in a concise format. The grayed out options will not be explored fur-

ther because they are not applicable to the problem or they were determined to be

inferior to the other methods for the intended application.

6.1.1 Sampling the Design Space

For most applications, the offline sampling using a design of experiments (DoE) is

simpler to implement compared to online or adaptive sampling. It can be performed

separately from the surrogate modeling process. The simulation runs can be executed

in parallel to speed up the process. This approach will most likely require more points
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than adaptive sampling because it will sample portions of the design space that could

have been estimated through interpolation. Offline sampling is a better choice when

the simulation runs are fast, and large amounts of data can be generated quickly.

Adaptive sampling can have synergistic benefits to the piecewise modeling ap-

proach, but it is more complex to implement and computationally more expensive.

The sampling algorithm can be written to focus more points on the boundaries of

the partition subspaces so that they are better defined. In this way, adaptive sam-

pling will provide more useful information about the design space than a DoE for the

same number of points. To implement adaptive sampling with the partitioning and

surrogate modeling, these steps have to be integrated. The modeling will drive the

partitioning by informing how well the models can fit the subsets. The partitioning

will provide the information about the partition boundaries to drive the adaptive

sampling. This option becomes favorable if the simulation runs take much longer

than the partitioning and surrogate modeling.

For this dissertation, the adaptive sampling option will not be explored because

the focus is on the regression method and not adaptive sampling. Also, the simulation

runs using FAMOS and MRFAMOS are relatively fast.

6.1.2 Discussion of Methods

Dimensionality reduction methods were covered in Chapter 3. Principal component

analysis (PCA) and two manifold learning techniques, Isomap and locally linear em-

bedding (LLE), are selected for further investigation.

Clustering methods were covered in Section 4.4.1. The two major categories are
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hierarchical and partitioning methods. Hierarchical methods and objective-based

partitioning methods were found to be inappropriate for TS data for design space

exploration. Density-based and model-based clustering were determined to be better

options instead because the data points are arranged in lines.

As discussed in Section 5.2, there are three main strategies to determine the

segments in a TS: sliding window, top-down, and bottom-up. The top-down and

bottom-up can be used serially to form a hybrid method. For offline data, sliding

windows approach is consistently lower performing than the others [56]. The hybrid

method was chosen as the best option because it overcomes the shortcomings of the

top-down and bottom-up by combining the two together.

There are five popular methods for TS representation, which are discrete Fourier

transformation, discrete wavelet transformation, singular value decomposition, piece-

wise linear approximation and piecewise aggregate approximation. Based on the ob-

servations made about the TS data from simulations, piecewise linear approximations

was chosen to be the best choice.

There are many different surrogate modeling methods that are available, and

linear regression and neural networks (NN) will be used as benchmark methods.

6.2 Step 2 of the SMARTS methodology

The second step of the SMARTS methodology involves mapping the input X domain

to the intermediate Z domain. This step is simplest of the three steps because so-

lutions readily exist in the literature, and thus, it was left until now to discuss the

details. The Z domain is nonlinear with respect to X, and the dimensionality is much
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lower that the output Y domain. The mapping is a nonlinear multivariate regression,

and the research question that results from this is the following:

Research Question 14

What regression method is appropriate for capturing nonlinear variations in the

design space?

Some of the features that are sought from the regression method for Step 2 in-

clude the ability to handle nonlinear data, the availability of tools to implement the

regression, and the robustness and simple implementation of the method. Various

regression methods that are listed in Table 6 have been used for design space regres-

sion for aerospace design applications [7, 55, 70]. Among the available methods, NN

is one of the most versatile and commonly used regression methods because of its

ability to handle nonlinear data, and NN is chosen to fulfill Step 2 of the SMARTS

methodology.

6.3 Development of the SMARTS methodology

The Surrogate Modeling and Regression for Time Sequences (SMARTS) methodology

is developed in this section. The demonstration of the PA method and the selection

of the smoothing technique, clustering method, and set of features for clustering have

yet to be performed, which will conducted in the later chapters.

The SMARTS methodology is composed of three major steps:

1. Create an intermediate set of axes (Z domain) from the output data (Y domain)

2. Fit a regression model from the input space (X domain) to the Z domain
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3. Fit a piecewise linear regression model from the Z domain to the output TS

space (Y domain)

Step 1

The first step is to create a set of intermediate axes (Z domain) based on the output

data (Y domain). The reason why the Z domain is derived from the Y domain is

because there is no point in reducing the dimensions of the inputs (X domain). The

set of inputs are typically chosen using a DoE to reveal the relationship between the

output behavior and the inputs, and there should be no hidden structure in the X

domain if the sampling is done correctly.

Dimensionality reduction methods were discussed in Chapter 3, and these are

used to reduce the Y domain into significantly lower dimensions. The Y domain has

n dimensions and n is the number of time steps each TS, and this is reduced to less

than 10 for most cases. For the SMARTS method, PCA is applied to the TS outputs,

and the first principal component (PC) is kept as the Z domain.

Step 2

The next step is to create a mapping from the X domain to the Z domain. The

dimensionality of the TS output data has been reduced significantly by applying

PCA, and normal regression methods for nonlinear data can now be used. For the

SMARTS method, NN is used, and the best of ten fits is kept as the regression. As

default parameters for using NN, it uses one hidden layer with five nodes. Training is

capped at 500 iterations, and the absolute and relative tolerances are 1 × 10−10 and

1× 10−20, respectively.

145



Step 3

The final step is to create a mapping from the Z domain to the Y domain. This

involves the following main steps:

1. Reduce the size of the output data

2. Determine the breakpoint location of each TS

3. Cluster the output data based on extracted features

4. Fit linear regressions to the segments and breakpoints

Data reduction is important for regression fit time and to reduce the noise in the

TS. The Z domain organizes the TS shapes so that similar shapes are closer together,

and the order is such that the TS shape transforms smoothly from one to another.

However, the density of points along the axes of the Z domain is not uniform because

the TS data was originally created using the sampling in the X domain. A grid

or bins can be created in the Z domain, and a representative TS can be selected

or calculated from each bin in order to create a uniform density of points in the Z

domain. This also helps reduce the total size of the data used for regressions. If there

is noise in the TS data, the average or median can be calculated for each bin to create

the representative TS. The SMARTS method takes the median from each bin because

the average can be more susceptible to outliers. The default for the number of bins is

200, but any bins that have fewer than 20 TS is merged with its neighbors so that the

median TS is based on a sufficient amount of data. As a result, the final number of

bins can be less than 200. The number of bins and the number of TS per bin can be
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adjusted based on the dataset. As a quick example, if the dataset was created using

a full factorial of ten input variables at three settings with ten repetitions, then this

will result in roughly 600,000 cases, and this can be reduced to 200 rows of TS data,

where each row represents a unique TS shape.

The threshold value which will be used by the TS segmentation algorithm in

the next sub-step is also calculated with the data reduction step. To calculate the

threshold, the difference between the TS and the smoothed version of the TS needs

to be taken. As shown later in the Robust Threshold and TS Smoothing Experiment

in Section 8.2.2, there are two options for TS smoothing, which are the median and

the moving median. When there are less than five repetitions, the moving median

algorithm is the better choice. Because the default minimum bin size is 20, the median

TS that was already calculated can be used as the smoothed TS. For each bin, the

median TS is subtracted from each TS in the bin, and the standard deviation of the

differences is calculated as the threshold value for that median TS.

Once the data has been reduced, the breakpoint locations are estimated using a

segmentation algorithm. The SMARTS method uses a hybrid segmentation method.

A top-down segmentation method first creates more segments than necessary; then a

bottom-up segmentation method recombines the segments. Hybrid segmentation is

applied to the median TS from each bin to calculate the breakpoints and the number

of segments.

Piecewise Linear Regression Data Groups (PLRDG) are formed using clustering.

Although clustering algorithms can be applied to raw data, this is ill-advised for
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high-dimensional outputs such as TS. In the Feature Selection and Clustering Exper-

iment in Section 8.2.3, the combination of set of features and clustering algorithm

are determined. The set of features consists of the first few PCs of the data and the

first PC of the breakpoint locations as described in Section 5.3. The number of PCs

is determined by using the Parallel Analysis (PA) method, but it is capped at ten

because that is sufficient for most applications. The PCA of the breakpoint locations

helps with keeping the number of segments of the TS within each group equal, and

it also helps to ensure that the breakpoints in each group are aligned. For the clus-

tering algorithm, model-based clustering using Gaussian mixture models are used.

It can cluster a line of points, and bent lines are clustered as two separate clusters.

Furthermore, model-based clustering is robust to noise and outliers.

Once the clusters are created, several checks are performed. First, each group is

checked to make sure that the number of segments are the same for each TS. If they are

not, the most common number of segments is applied to the ones that have different

number of TS. The breakpoint locations of the neighboring TS are used as the initial

location, and these locations are optimized using a downhill simplex algorithm. The

standard deviation of the difference between the TS and the piecewise linear regression

is minimized. Any overlap between groups in the Z domain is corrected.

Piecewise linear regression models are created to map the Z domain to the Y

domain. A set of linear regression models are created to represent each segment of a

group. Another set of linear regression models are created for the breakpoints, which

define the beginning and end of each segment. Also, a mapping function between the

Z domain and the groups is also created.
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Figure 54: Block flow diagram of the SMARTS methodology. The numbers are the
order in which the blocks are executed.

Now that the pieces of the SMARTS methodology have been selected, they can

be used to replace the block flow diagram that drove the research of the SMARTS

methodology to create the diagram in Figure 54. Each of the blocks have now been

replaced with the actual methods that fulfill that role, and the arrows show the

direction in which information is passed. The numbers in the chart show the order

in which the blocks are executed.

The SMARTS methodology is implemented in the Python programming language,

and the source code is provided in Appendix A. There are six main Python files that
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are needed to create PLRs.

ApplyClustering.py contains the clustering methods that are used for the ex-

periments in Chapter 8.

FeatureExtract.py contains the methods to extract features from the TS output

data such as DFT and Isomap. It also contains the implementation for the PA

method.

multivariate piecewise linear regression.py is the main file to create

PLRs. It contains the multivariatePiecewiseRegresesion and the

PrepOutputData classes. The PrepOutputData class imports the TS out-

puts which is saved as a comma separated value (CSV) file, applies PCA

to the data (Step 1), and reduces the data volume (part of Step 3). The

multivariatePiecewiseRegression class creates the X → Z regres-

sion using NN, and it also creates the Z → Y regression using PLR. Once the

regressions have been created, it has methods to interpolate new TS, and it has

several methods for plotting as well.

my functions.py is a collection of generic helper functions such as normalizing a

set of values in an array.

smoothers.py contains all the smoothing functions that were introduced in Section

5.2.5, such as the moving median and Savitsky-Golay smoother.

ts segments.py contains the methods and classes for creating the canonical TS
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datasets such as square and sine waves. The file also contains the TS segmen-

tation methods.

A step by step execution of the methodology using test data is presented in Section

8.2.4 in the SMARTS Feasibility Experiment.

6.4 Upper and Lower TS Bounds for Stochastic Simulation

Given the same input parameters, stochastic simulation models such as those for

operations and sustainment produce TS outputs with variations between repetitions.

This uncertainty in behavior is a key piece of information when making decisions,

and they can be represented using with upper and lower bounding lines. The focus of

the SMARTS methodology so far has been on the development of a surrogate model

of the median or mean of the TS data. The methodology can be adapted to create

the surrogate models of the bounds.

There are two approaches in which the bounds of the TS data can be captured.

The first is to create a different TS shape function for each bounding line. This

approach results in three different surrogate models in Step 3 of the SMARTS to

capture the upper, lower, and middle lines. The other approach is to capture the

bounds using different mappings between X to Z, so there will be three NN in Step

2. Using these two approaches, surrogate models of the bounds can be created.

The first approach creates a separate TS shape function for the upper and lower

bounds. The regression can be fit to different percentiles of the TS data including the

minimum and maximum. The set of repetitions that were initially run to quantify

the uncertainty of the simulation is an obvious grouping of the data to calculate the
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statistics. Another option is to use the bins from Step 3. Using different statistics

results in a set of shapes that are different from those for the median, and the regres-

sion fitted to the data will also be different. The benefit of this approach is that it

can capture the true bounds of the data.

One drawback to the first approach is that the data of the bounds can be noisy and

highly irregular, and fitting a PLR model to this kind of data is difficult. Taking the

median of the set of TS helps smooth the data, and the regressions can be fitted more

easily. Taking the extremes such as the minimum or maximum, on the other hand,

do not have the same smoothing effect and can instead accentuate the irregularities.

One way to achieve a smooth upper and lower bound is to use a large number of

repetitions or a large bin size, but this requires more simulation runs.

The second approach captures the TS uncertainty by using different regressions

in Step 2 while using the same TS shape function in Step 3. Each simulation run

corresponds to a value in the Z domain, and because the repetitions are slightly

different from each other, this corresponds to a distribution of points on Z. In the

SMARTS methodology described above, all the repetitions are used to fit the NN

from X to Z. In the second approach, this is modified to capture the upper and lower

bounds of this distribution on the Z domain. The variations between repetitions are

assumed to be normally distributed, and the mean and standard deviation of the first

PC values (or z values) of that set of repetitions are calculated. Then, new first PC

values which represent the upper or lower bound are calculated using three standard

deviations from the mean. This approach operates under the assumption that the TS

shape function can represent all possible TS shapes from the simulation model. The
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upper and lower bounds represent the range in which the median can vary. There

may be a few outliers that exceed the bounds, but the majority of the lines will be

contained within them. The benefit of this approach is that only the TS function for

the median is needed, and so it is more robust to noisy data.

6.5 Summary

This chapter summarized the methods and techniques presented in the previous chap-

ters. The steps of the SMARTS methodology was also presented in detail. The second

step of SMARTS was also discussed in this chapter, and neural network was chosen

as the suitable regression method to map the X domain to the Z domain, thus an-

swering Research Question 14. In the next chapter, research objectives are reviewed

and formalized by restating the research questions, claims and hypotheses.
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CHAPTER VII

FORMULATION OF HYPOTHESES

The previous chapters provided the theoretical background to formulate a new sur-

rogate modeling approach to represent time sequential (TS) data for a design space

exploration application. This chapter summarizes the observations and research ques-

tions that motivate the method and formulates the hypotheses that structure the

experiments in Chapter 8.

7.1 Review of Observations and Research Questions

Chapter 1 outlined the need for a regression method that can handle TS data for de-

sign space exploration. Several observations were made through a closer examination

of sample data from the FAMOS model and through examining surrogate modeling

literature. The observations are summarized below:

Observation 1 TS data exacerbates the curse of dimensionality.

Observation 2 TS data generated by simulation models have the potential to be

organized in a lower dimensional space.

Observation 3 TS data from logistics simulation can be approximated as piecewise

linear segments.

Observation 4 Piecewise regressions are ideal candidates for fitting large nonlinear

datasets.
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Observation 2 provided a hint to develop the SMARTS methodology into a three

step method. A closer examination of operations and sustainment (O&S) simulation

models also uncovered a similar mechanism by which the inputs are transformed into

internal simulation variables, which are then used to run the simulation and generate

TS outputs. In the case of the FAMOS model, the inputs affect the consumption and

replenishment rates of spare vehicle parts. This X → Z → Y process was adopted for

the SMARTS methodology. By separating the task of capturing the variability across

the design space (X → Z) and representing the range of shapes that are present in the

design space (Y → Z), each regression is made into a simpler problem. This answers

Research Question 1, which sought for aspects of the simulation and TS outputs that

can be exploited to improve the surrogate modeling process. An additional benefit

of this approach is that the output data can be discretized and aggregated in the Z

domain in a way that was not possible before, leading to significant data reduction.

This leads to Research Question 2, which questions the efficacy of such approach.

To create the Z domain, dimensionality reduction techniques were found to be

effective, thus answering Research Question 3. This was naturally followed by Re-

search Question 4 which sought for the appropriate method to reduce TS data, and

principal component analysis (PCA) was chosen.

After reviewing the literature on various surrogate modeling techniques, piecewise

linear regression (PLR) was identified to possess the potential to have lower fit times

and good fit characteristics because the method decomposes the data into smaller

groups. This choice also aligned with Observation 3. The PLR still needed to be

extended for design space exploration, and Research Question 6 was formed to capture
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this requirement.

Because the TS shapes varied across the design space, a part of the regression

process was formulated as a clustering problem. A PLR model was created from

each of these clusters. Before this can happen, the definition of what makes a good

cluster was defined (Research Question 7). In order to cluster the TS data, the

literature recommended using features extracted from the data instead of using the

entire dataset, and Research Question 9 addressed the selection of the appropriate

features. A robust method to segment the TS was investigated, and an accurate

estimate of the inherent noise was found to be an important parameter because it

can be used as the threshold setting for segmentation algorithms (Research Question

11 and 12).

For convenience, the research questions are consolidated below:

RQ 1 What aspects of O&S simulation models and its TS outputs can be exploited

to help create surrogate models?

RQ 2 Will creating regressions that use an intermediate set of axes lead to a better

regression when fitting TS data?

RQ 3 What method should be used to derive a Z domain so that it can be used for

TS regression?

RQ 4 Which dimensionality reduction technique is the most suitable for TS of O&S

simulation?

RQ 5 What regression method is capable of representing the entire range of TS

156



shapes in a TS dataset?

RQ 6 How can piecewise linear regression be extended to fit time TS data for design

space exploration applications?

RQ 7 What unique properties should each group exhibit to create piecewise regres-

sions with good fits?

RQ 8 What is the appropriate clustering technique to create groups that will yield

piecewise linear regressions with good fits?

RQ 9 What are the appropriate features to use for clustering TS datasets to create

piecewise linear regressions with good fits?

RQ 10 What TS segmentation algorithm is suitable for splitting TS data to help

create PLR Data Groups (PLRDG)?

RQ 11 How can a robust threshold setting be derived from the data for TS with

noise?

RQ 12 Which smoothing technique is appropriate for smoothing TS data to estimate

the noise in the data?

RQ 13 How many principal components (PCs) should be kept after principal com-

ponent analysis (PCA) is applied to a dataset?

7.2 Development of Hypotheses

In this section, several hypotheses are developed with a discussion on the reasoning

and likely outcome.
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The main hypothesis of this thesis tests the SMARTS methodology.

Hypothesis 1

In the context of design space exploration using simulation models, if the output

data consists of high-dimensional and sequential outputs such as a time sequence,

then the SMARTS methodology will yield regression models that are equal or

better in performance (fit time, model fit, and representation errors) compared

to other regression methods.

For TS datasets generated in a design exploration exercise, the inputs are varied

in small increments, and the corresponding outputs are TS with shapes that also

vary correspondingly in small amounts. There is an assumption that the shape of TS

outputs from the simulation model will vary in a smooth manner if the inputs are

varied smoothly as well. It is also assumed that the simulation model does not have

discontinuities. If this is the case, then separating the regression into two steps like

the SMARTS methodology will lead to better fits because it compartmentalizes the

regression complexity. The first regression captures the variability in the design space

while the second captures how the TS shapes change. In contrast, a single regression

model will need to capture these two aspects at the same time.
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Hypothesis 2

If principal components (PCs) of the time sequential dataset and the first PC

of its breakpoints are used as the features for clustering, then the model-based

clustering that uses Gaussian mixture models will yield clusters that are suited

for piecewise linear regressions.

Both the features derived from the data and the breakpoints are necessary to

satisfy the conditions of a good cluster to make PLRs. The PCs of the TS data are

necessary to ensure good membership so that the shapes in each cluster are similar

and that the transformation of the TS is one-dimensional. The breakpoints feature

is necessary to ensure that the breakpoints within the cluster are aligned.

The TS data should be arranged in line segments when they are projected onto

these two feature sets, and density-based and model-based methods are appropriate

to cluster these lines. However, if two lines with different angles are touching at

the ends, then density-based methods will label these two lines of points as one

cluster when they should indeed be two clusters. On the other hand, model-based

clustering should be able to identify this as two clusters because it fits an ellipsoidal

Gaussian distribution to each line of points as long as the they are distinct enough.

Furthermore, if there is some scattering or noise when the data points are projected

using the features, density-based clustering may not be able to find the appropriate

clusters while model-based clustering can vary the width of the distribution for each

cluster.
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Claim 1

A smoothing technique can be applied to a time sequence to estimate the noise

in the data to a sufficient accuracy so that it can be used as the threshold setting

for TS segmentation methods.

It was shown on simulated TS data that a segmentation algorithm can accurately

determine the number of segments that compose a TS if the algorithm is applied to

the average of the set of repetitions and if the inherent noise in the TS is used as

the threshold setting for the algorithm. One of the ways to estimate the noise is to

take the difference between the original data and one that has been smoothed by a

smoothing algorithm. There are various smoothing algorithms, and they each have

different strengths. The appropriate method is needed for TS smoothing.

Claim 2

The parallel analysis method is an appropriate method to determine the number

of components to keep when applying principal component analysis to a time

sequential dataset that is generated by an engineering simulation model for design

space exploration.

The experiment on the parallel analysis (PA) method is a demonstration and a

test of its robustness, and this is why the statement is made as a claim instead of a

hypothesis. The literature demonstrates PA as a reliable method, and it is reasonable

to believe that it is also applicable for high dimensional TS data.
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7.3 Development of Experiments

The experiments are presented in reverse order compared to the research questions

and hypotheses. This is because the SMARTS methodology builds and relies on

the results of the lower level components before it can proceed to the higher level

objectives.

Parallel Analysis Experiment

In order to determine how many PCs should be kept after PCA is applied to a dataset,

the PA method was found to be one of the best performing techniques. Section 5.3.1

discussed the details of the PA method and presented an example. To determine

how the PA method performs with TS data, an experiment is designed with a wide

range of TS shapes and sizes, and it is presented in Section 8.2.1. The purpose of

the test is to determine the robustness and accuracy of the PA method to TS data.

The PA method has been tested with a wide range of data [51, 82], but it has not

been specifically tested for long TS data. The results of this experiment will answer

Research Question 13 and demonstrate Claim 2.

Robust Threshold and TS Smoothing Experiment

Various smoothing techniques were presented in Section 5.2.5, and for the SMARTS

methodology, they are used to determine the noise in the TS data. To determine the

best smoothing technique for SMARTS, the experiment is designed to test all the

smoothing functions using a wide range of simulated sequential data, and the details

of the experiment are presented in Section 8.2.2. The results of this experiment will

answer Research Questions 11 and 12 and demonstrate Claim 1.
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Feature Selection and Clustering Experiment

Feature selection and clustering are complementary steps because there are certain

types of features that work well with certain clustering algorithms, and these two need

to be tested together to find the best combination. A candidate set of features was

presented in Section 5.3. These will be tested with a density-based clustering, a mod-

ified version of a density-based clustering, and a model-based clustering algorithm.

For the actual implementation, DBSCAN from the Python package scikit-learn [79]

and R package mclust [31] will be used, respectively. A canonical set of TS datasets

will be used to test the performance of the clustering algorithms and the feature set.

This process requires the breakpoint locations of each TS and the number of compo-

nents for methods like PCA. To keep the experiments independent, the breakpoint

locations will be provided as a known quantity, and the number of components will

be used as a parameter of the experiment. The experiment will test Hypothesis 2,

and its results will answer Research Questions 8 and 9.

SMARTS Methodology Feasibility and Scalability Experiments

The final set of experiments will test the performance of the SMARTS methodology.

The first experiment will test the SMARTS methodology against a simulated TS

dataset. This is presented in Section 8.2.4. This experiment will verify that the

SMARTS methodology will work on a canonical dataset. Some of the implementation

details were provided in Section 6.3, and this experiment will provide a step-by-step

account of how the methodology is executed. More details of the implementation will

also provided with notes to the code and functions used to create the PLR.

The next experiment will test if the SMARTS methodology can be applied to
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a more realistic set of data using simulation data generated using the MRFAMOS

model. The experiment is presented in Section 8.2.5. The SMARTS methodology

will be compared against several other regression techniques for fit time, model fit

error (MFE), and model representation error (MRE). The visual appeal will also be

examined because one of the main application areas is for visualization in decision

making interfaces.

The final experiment will demonstrate that the regression output from the SMARTS

model is applicable for visualization, and it is presented in Section 8.2.6. The data

from the previous experiment will be used to develop upper and lower bounds for

the TS data. Because the regression is not perfect, the upper and lower bounds can

intersect, and visualizations that have constraints to avoid the intersecting lines will

be presented.

7.4 Summary

This chapter summarized the observations and research questions that were made

throughout this thesis and provided a short narrative of its development. Then hy-

potheses were formulated based on the research questions, and a short discussion

was provided to explain the rationale behind each hypothesis and claim. The exper-

iments were created to answer the hypotheses, and the next chapter describes the

experiments in detail and presents the results.
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CHAPTER VIII

EXPERIMENTS

The previous chapter reviewed the research questions, formulated the hypotheses and

claims, and introduced the necessary experiments. This chapter presents the details of

each experiment and its results. The experiments that are performed in this chapter

are the following:

1. Parallel Analysis (PA) Experiment

2. Robust Threshold and Time Sequence (TS) Smoothing Experiment

3. Feature Selection and Clustering Experiment

4. SMARTS Methodology Feasibility Experiment

5. SMARTS Methodology Scalability Experiment

6. SMARTS Methodology Visualization Experiment

First, a description of the canonical data is presented, which is used in the experi-

ments. Then, each of the experiments will be explained in detail, and the results will

be presented and discussed.
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Figure 55: Illustration of the flat and sloped lines

8.1 Data Used in the Experiments

8.1.1 Canonical Datasets

The canonical datasets are composed of different types of TS waves. Some of the waves

are flat lines with noise and the sloped lines. Others include the square, triangle,

sawtooth and sine waves. These are shown in Figures 55 and 56. Depending on

the experiments, these lines and waves are manipulated to create different sequential

datasets that change in noise level, amplitudes, phases, number of periods, mean and

slope.

Using the different types of TS shapes, four categories of datasets are created,

and these are listed in Table 7. Among the four categories, there are seven sets of

datasets, which will be called test sets, and each of these test sets are described in

further detail in the sections below.

These categories are designed to test different requirements of a piecewise lin-

ear regression data group (PLRDG) (see Section 4.3 for PLRDG). For example, the

Transformation category contains datasets that test the transformation rule as well
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Figure 56: Illustration of the square, sine, triangle and sawtooth waves

Table 7: Categories of datasets

Category Description Test Set

Null Each dataset contains a single TS shape
with no variation in its parameters aside
from noise

null

Transformation Parameters such as amplitude and slope
are varied smoothly

line, waves

Shape Parameters are varied discretely to create
distinct clusters

shapes,
discrete,
outliers

TS Imitates simulation outputs using a spe-
cially created TS function

ts
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Table 8: Description of the null test set

Dataset Name Description Expected
# of PC

Correct
# of
Clusters

null-flat Set of noisy flat lines

1 1
null-sawtooth Set of sawtooth waves with 3 peri-

ods
null-sine Set of sine waves with 3 periods
null-square Set of square waves with 3 periods
null-triangle Set of triangle waves with 3 periods

as the alignment rule, and the Shape category checks the similarity rule. This cat-

egorization and design of the datasets are important for the clustering experiment

(Section 8.2.3), and they will also be used in the parallel analysis experiment (Sec-

tion 8.2.1).

null test set

The null test set consists of five different datasets as listed in Table 8. The goal of

this test set is to determine the behavior of algorithms when there are no differences

between the TS aside from the random noise. Therefore, there is only one PLRDG

for each dataset, and only one principal component (PC) is needed to discriminate

the rows of TS.

line test set

Each dataset in the line test is composed of linear lines, and the slope and intercept

is varied by moving the start and end points. There are three datasets in the line

test set, line-1, line-2, and line-3. A summary of this provided in Table 9.

The line-1 dataset consists of one transformation. The starting point is held
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Table 9: Description of the line test set

Dataset Name Description Expected
# of PC

Correct
# of
Clusters

line-1 Line with starting point at 0
and end point varied from 0
to 1

1 1

line-2 All of line-1 plus start-
ing point varied from 0 to 1
while keeping end point at 1

2 2

line-3 All of line-2 plus the end
point varied from 1 to 2
while keeping starting point
at 1

2 3

constant at 0 while the ending point is varied smoothly from 0 to 1, and so each

TS has a different ending point. The ending points are evenly discretized with a

spacing of 1
n−1 , where n is the number of TS in the data. Because there is only one

transformation, it has one PLRDG, and only one PC should be needed to differentiate

the TS.

The line-2 dataset consists of two transformations. The first transformation is

the same as line-1. The second transformation holds the ending point constant

at 1, and the starting point is smoothly raised from 0 to 1. Because there are two

transformations, there are two PLRDGs in this dataset, and at most, two PCs are

needed to capture the variation in the data.

The line-3 dataset consists of three transformations. The first two transforma-

tions are the same as line-2. The third transformation holds the starting point

constant at 1, and the ending point is again raised from 1 to 2. Because there are

168



Table 10: Description of the waves test set

Dataset Name Description Expected
# of PC

Correct
# of
Clusters

amp-smooth-sawtooth
(Peak) amplitude is varied
smoothly from A = (1, 2)

1 1
amp-smooth-sine
amp-smooth-square
amp-smooth-triangle

phase-sawtooth
Phase is varied smoothly
φ = (− π

10
, π
10

)
1 1

phase-sine
phase-square
phase-triangle

ph-amp-sawtooth Phase is varied smoothly
φ = (−π

8
, π
8
), then the

amplitude is varied
smoothly A = (1, 2)

2 2
ph-amp-sine
ph-amp-square
ph-amp-triangle

three transformations, there are three PLRDGs in this dataset. The transformations

are simple, and the first and third transformation are similar, so two PCs should be

sufficient to capture the variation between the TS.

waves test set

The waves test set varies parameters of wave functions, and the set consists of the

amp-smooth, phase, and ph-amp datasets. Each of these are composed of four

datasets for each of the different wave functions, which are the sawtooth, sine, square,

and triangle waves. Table 10 provides a short description of each of these datasets.

The amp-smooth datasets smoothly increase the peak amplitude (A) from 1 to

2 for four wave functions, which are sawtooth, sine, square, and triangle waves. Each

wave consists of three periods. Because there is only one transformation, each dataset

contains one PLRDG, and one PC should be sufficient to capture the variation in the
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data.

The phase datasets smoothly vary the phase (φ) of the wave functions from

φ = − π
10

to φ = π
10

. Each wave consists of three periods. Because there is only one

transformation, each dataset contains one PLRDG, and one PC should be sufficient

to capture the variation in the data.

The ph-amp datasets are a combination of the amp-smooth and phase datasets.

First, the phase is varied from φ = − π
10

to φ = π
10

. Then, while holding φ constant,

the amplitude is increased from 1 to 2. Each wave consists of three periods. Because

there are two transformation, each dataset in ph-amp contains two PLRDGs, and

two PC are needed to capture differences between TS.

shapes test set

The shapes datasets contain different TS shapes, and it is similar to combining

datasets from the null test set into one dataset. The purpose of this test set and

the following discrete test set is to check if clustering methods can satisfy the

similarity rule when creating PLRDGs. By creating distinct groups of points, the

methods can be checked if they misplace points. This dataset checks to see if different

shapes get mislabeled by clustering methods. The shapes test set consists of the

shapes-2 dataset and the shapes-4 dataset, and a summary is provided in Table

11.

The shapes-2 dataset consists of two TS shapes, which are flat linear lines and

square waves. The square waves consist of 3 periods and has an amplitude of 1.

Because there are two different shapes, there are two PLRDGs, and only one PC is

necessary to differentiate between the flat line and square waves.
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Table 11: Description of the shapes test set

Dataset Name Description Expected
# of PC

Correct
# of
Clusters

shapes-2 Set of 2 different TS shapes:
flat and square

1 2

shapes-4 Set of 4 different TS shapes:
sawtooth, sine, square, tri-
angle

3 4

The shapes-4 dataset consists of four TS shapes, which are the four wave types.

Each wave consists of 3 periods and has an amplitude of 1. Because there are four dif-

ferent shapes, there are four PLRDGs, and up to three PCs are needed to differentiate

between the different wave types.

discrete test set

The discrete test set is created by varying parameters discretely. This creates

groups of TS in each dataset that are similar but distinctly different from each other.

The discrete test set consists of the amp-discrete datasets and the periods

datasets, and these are summarized in Table 12.

The amp-discrete datasets are similar to the amp-smooth datasets, but they

vary the amplitude (A) discretely. The amplitude settings are A = 1, 2, 3. Because

there are three different settings of the amplitude and there is no transformation

between them, there are three PLRDGs, but only one PC is needed because only the

amplitude is varied.

The periods datasets vary the frequency of the wave functions so that the

number of periods (N) in the TS are different. The number of periods in the datasets
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Table 12: Description of the discrete test set

Dataset Name Description Expected
# of PC

Correct
# of
Clusters

amp-discrete-sawtooth
(Peak) amplitude varied
discretely A = {1, 2, 3} 1 3

amp-discrete-sine
amp-discrete-square
amp-discrete-triangle

periods-sawtooth
Number of periods varied
discretely N = {1, 2, 3, 4} 1 4

periods-sine
periods-square
periods-triangle

are N = 1, 2, 3, 4, and the amplitude is 1. Because there are four different settings of

the period and there is no transformation between them, there are four PLRDGs, but

only one PC should be needed because only the period is varied. However, different

numbers of periods may appear nonlinear, more PCs may be identified as significant

by PA.

outlier test set

The outlier test set creates data in the same way as the shapes and discrete

test sets, but it replaces some of the rows of the TS dataset with outliers. This test

set consists of the outlier-flat, outlier-waves, outlier-amps, and the

outlier-periods datasets. The last two datasets represent four datasets each,

one for each wave type. The outlier test set is used to see if clustering methods

can identify outliers. The outlier test set is summarized in Table 13.

The outlier-flat consists of flat lines, and as outliers, square waves with 3

periods and an amplitude of 1 are inserted. This is the same as null-flat dataset
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Table 13: Description of the outlier test set

Dataset Name Description Expected
# of PC

Correct
# of
Clusters

outlier-flat Set of flat lines with a square
wave as an outlier shape

1 1

outlier-waves Similar to shapes-4 set
with flat line as an outlier
shape

3 4

outlier-amps Similar to amp-discrete
datasets with outlier TS
with amplitude of A =
1.5 or 2.5 with random uni-
form probability

1 3

outlier-periods Similar to periods
datasets with outlier TS
with N number of periods,
where N = 1.5, 2.5 or 3.5
with random uniform
probability

1 4
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with outliers. There is only one PLRDG, and one PC is needed to group the flat lines

and separate out the outlier.

The outlier-waves is the same as shapes-4, and some of the TS are replaced

by flat lines as outliers. There are four PLRDGs, and up to 3 PCs are needed.

The outlier-amps is the same as amp-discrete, and some of the TS are

given different amplitudes. With a random uniform probability, the amplitude of

A = 1.5 or A = 2.5 is given, and these values were chosen to be between the amplitude

of the actual clusters, which is A = 1, 2, 3. There are three PLRDGs, and because

only the amplitude is varied, only one PC is needed.

The outlier-periods is the same as the periods dataset, and some of the

TS are given different number of periods. With a random uniform probability, the

number of periods of N = 1.5, 2.5 or 3.5 is given, and these values were chosen so

that the outliers are between the main settings, which is N = 1, 2, 3, 4. There are

four PLRDGs, and because only the period is varied, one PC is needed.

ts test set

Based on the data from the FAMOS model that was presented in Section 2.3, a

piecewise linear test function was created. The original data and the test function

are shown in Figure 57. These shapes are created by defining a TS function that

outputs these shapes at certain values. The function receives a single value to create

a TS output that is 350 time steps long.

The ts test set only consists of the ts dataset, and Table 14 provides a quick

summary. There are six PLRDGs based on the transformations and the number of

breakpoints. Only one PC is needed to organize the data as in Figure 57, but the PA
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(a) Output from the FAMOS model
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(b) Time sequence output from the test function

Figure 57: Output from the FAMOS model and the TS test function

Table 14: Description of the ts test set

Dataset Name Description Expected
# of PC

Correct
# of
Clusters

ts Dataset created by the TS
test function

5 6

method may identify more significant PCs because the transformations are complex

and because dataset contains a variety of shapes. So, for the estimated number of

PCs, a number one less than the number of PLRDGs, 5, is chosen as the estimated

number of PCs.

8.1.2 Sample Simulation Dataset

A demonstrative TS dataset (demo-TS) is developed using the TS test function so

that it can be used to test the SMARTS methodology before applying it to actual

simulation outputs. A simulation model takes a number of input values and returns

a TS output. In order to imitate this multivariate input, the demo-TS is created in

two steps.

The TS test function was described in the previous section. As an input to this
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Figure 58: Contour plot of the input function and matrix of TS Outputs of demo-TS
dataset

TS test function, a separate multivariate input function is defined that takes multiple

variables as an input and outputs a single value. The input function has two inputs,

X and Y , and the ranges on each are (0, 5). The range is sampled evenly at 21

locations, for a total of 441 input locations. The function has the form Z = 1
e
X + Y ,

and a contour plot of this function is plotted in Figure 58a. The values from the

input function are then fed to the TS test function. Each input value is repeated 10

times. The resulting data can be viewed as a matrix or table of TS plots as shown in

Figure 58b.

8.1.3 Simulation Dataset

The simulation dataset is created using the MRFAMOS model, which is a high-level

simulation of a fleet of fighter aircraft. It combines three main processes of operations
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and sustainment (O&S), which are sortie generation, unscheduled maintenance pro-

cess, and spare parts logistics. The details of the MRFAMOS model was presented

in Section 2.4.

Several scenario-level and vehicle-level parameters are chosen to capture the im-

pact to the fleet-level operational availability (AO). The parameters to the model

are varied according to Table 15. Some of the parameters are varied as a group.

In total, there are seven variable groupings. A full-factorial design of experiments

at three settings per variable is used to generate the test data. Furthermore, each

case is repeated 10 times. This results in 21,870 simulation runs. To generate the

validation dataset, an additional 10,000 simulation runs are made with randomized

values between the minimum and maximum values in Table 15.

Some of the sample TS from this dataset are shown in Figure 59. Each plot shows

all 10 repetitions from a set of input settings, and the dark black line is the median of

the 10 runs. The output data is significantly noisier than the data from the FAMOS

model, but the median shows a distinct trend through the band of uncertainty.

8.2 Experiments

8.2.1 Parallel Analysis Experiment

The parallel analysis (PA) method is used to determine the number of PCs to be

kept from a principal component analysis (PCA). There are alternative methods

to accomplish this task, and the justification for PA is made in Section 5.3.1. To

quickly summarize the PA method, the eigenvalues from the data and the baseline

are compared, and the number of the first few eigenvalues that are greater than the
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Table 15: Input parameters and values for MRFAMOS model

Variable Name Type Grouping Values Units

Fleetsize integer – 90, 100, 110 aircraft

Training flight
hours per month

float – 20.0, 22.0, 24.0 hours

C1* fleetsize integer 1 10, 12, 14 aircraft
C2* fleetsize integer 1 10, 12, 14 aircraft

C1* sorties per
day

integer 1 10, 12, 14 missions

C2* sorties per
day

integer 1 10, 12, 14 missions

Mission A length float 2 1.0, 1.5, 2.0 hours
Mission B length float 2 2.0, 3.0, 4.0 hours
Mission C length float 2 2.0, 3.0, 4.0 hours

Part Life** Exp(lambda) – 0.054, 0.06, 0.066 1/hours

Part Repair
Time**

Tri(mode,
min, max)

(1296, 972, 2592)
hours– (1440, 1080, 2880)

(1584, 1188, 3168)

Global Inventory
Level**

integer – 400, 450, 500 parts

* C1, C2 is Contingency Operation 1 and 2

** applies to all parts in the simulation
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Figure 59: Sample runs from the MRFAMOS model. Operational availability AO
plotted over simulation time. Each plot shows 10 repetitions of actual simulation
results, and the black line is the median of the 10 runs.
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Table 16: Design space for varying the size of the baseline dataset

Number of Rows 10, 30, 50, 100, 150, 200, 300, 400, 500, 1000, 2000
Number of Columns 100, 200, 300, 400, 500

baseline is the number of PCs to keep. The eigenvalues are calculated from the

correlation matrix of the TS dataset, and the baseline is calculated from a set of

randomly generated matrices, which has the same dimensions as the original data.

Example 5.3 explains the PA method step-by-step.

8.2.1.1 Baseline Investigation

The trends of the baseline are examined first to understand the behavior of the

baseline. The size of the baseline dataset is varied according to Table 16. The results

are plotted in Figure 60. To generate these eigenvalues, the average of the first 10

eigenvalues from 1,000 datasets is taken. The plots show the first 10 values of the

eigenvalues calculated from the baseline datasets. As the number of rows increases,

the values decrease, and as the number of columns or variables increases, the values

of the first 10 eigenvalues also increase. The eigenvalues indicate the amount of

variability that is captured by that axis, so with more rows, the ability to explain the

variability in the data is more evenly distributed. Therefore, the value of the first 10

eigenvalues decrease. Because the random dataset is not truly random, it is possible

to collect more of the variability of the data into the first 10 eigenvalues. If the

number of columns or variables is increased, then this increases the dimensionality of

the data as well as the total amount of variability that can be explained by the first

few components.
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Figure 60: Values of the first 10 eigenvalues of the baseline varied by the number of
rows (n) and columns (p)

8.2.1.2 Focused investigation

Next, the behavior of eigenvalues of specific canonical datasets are examined. The

datasets that are used include the following: line-1, line-2, line-3, shapes-4,

periods-square, amp-smooth-square, and phase-square. These are se-

lected because each dataset varies a specific aspect of the TS. The results are plotted

in Figures 61 and 62, and the respective baselines are overlaid in black.

The shapes-4 dataset uses four different waves shapes so at most three differ-

ent axes are needed to distinguish the shapes, and Figure 62 shows that the first

three are above the baseline, meaning three PCs have meaningful information. The

amp-smooth-square dataset only needs one PC, and this is confirmed by the fig-

ure as well. Similarly, the periods-square, line-1, line-2, and line-3 have
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Figure 61: Plots of the values of the first 10 eigenvalues of the correlation matrix of
the lines dataset against the PA baseline mean

Figure 62: Plots of the values of the first 10 eigenvalues of the correlation matrix
of amp-smooth-square, periods-square, phase-square, and shapes-4
against the PA baseline mean
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Figure 63: Comparison of the first 10 eigenvalues of the phase dataset against the
baseline

results that are consistent with expectation. Most of the results show the eigenval-

ues sharply declining after the first few. The only exception is the phase-square

dataset, which unlike the others has a more gently sloping line, and this results in

more PCs being retained than necessary when only one is needed. This is perhaps

due to the discontinuity in the square waves causing a nonlinear correlation between

the time steps.

To investigate the smooth decay of eigenvalue values in phase-square dataset,

the phase-sawtooth, phase-sine, and phase-triangle are also evaluated.

The results are compared in Figure 63. The data with discontinuities, phase-square

and phase-sawtooth, have a smoothly decaying eigenvalues while the ones for

phase-sine and phase-triangle drop off sharply.
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Table 17: Parameters that are varied in each of the datasets

Type Values
Number of repetitions 10
Number of time steps (columns)* 400
Size of data in rows 10, 50, 100, 200
Standard deviation of noise (N(0, σ))** 0.1, 0.2, 0.3, 0.4

*ts dataset has length of 350 time steps

**ts dataset only has one noise setting, σ = 0.1 l

Figure 64: Overall results of the full investigation for PA, broken down by individual
datasets

8.2.1.3 Full Investigation

For the full investigation, the PA method is tested against a wide range of canonical

datasets, which were described in Section 8.1.1. The ranges of parameters that are

varied are summarized in Table 17. The results from the full investigation are shown

in Figure 64. The line graphs are the average values of 10 repetitions.

The PA method correctly identified zero significant PC for the null test set, but
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Figure 65: Number of significant PCs as determined by PA for phase and
phase-amp datasets

the identification is not perfect. For the line test set, the PA method seems to

have trouble when the dataset is small (Nrows = 10). With the shapes test set, the

PA method does not have trouble with the shapes-2 dataset, but it estimates a

lower number of PCs with the shapes-4 dataset. Depending on the size of data

and the level noise, the result varies from 2 to 3, while the expected number is 3.

For the amp dataset, the PA method result is the same as the expected result. For

the periods dataset, the PA method overestimates the number of significant PC.

The expected value is 1 PC because only the number of periods is varied, but the

PA result is 3 significant PCs. For the phase datasets, the PA method in general

identifies more than the expected value, and this is consistent with the findings from

the previous focused investigation. For the phase-amp datasets, the PA method

also overestimates the number of PCs.

Figure 65 shows the results of phase and phase-amp, and each of the wave

function shapes are broken out into their own lines. The PA method identifies more
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Figure 66: The impact of noise to the number of significant PCs as determined by
PA

significant PCs for sawtooth and square waves, which is consistent to what was ob-

served in the previous section. The results from sine and triangle shapes are closer

to expectation.

For the ts dataset, there is no “correct” number of significant PCs. The data

can be organized with one PC, and there appears to be a meaningful structure in the

fourth PC. It is interesting to note that the number of significant PCs identified by

the PA method varies with the size of the dataset. One explanation is that a larger

dataset can capture the complex transformations of the TS in better detail.

Figure 66 shows the results from PA method and the expected results with respect

to the noise level. The noise level does not make a difference for most datasets. There

is a trend to identify less PCs with increase in noise for the phase, phase-amp,
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and shapes-4 datasets.

8.2.1.4 Conclusion of the Parallel Analysis Experiment

The PA Experiment was designed to determine if the PA method could determine

the significant PCs when PCA is applied to a dataset. Overall, the PA method

demonstrated that it can select the same number of PCs as expected.

8.2.2 Robust Threshold and TS Smoothing Experiment

To estimate the noise in the TS, various smoothing techniques are applied to the test

datasets. Smoothing functions were introduced in Section 5.2.5, and the algorithms

that will be tested are the following:

case mean taking the mean of the repetitions at each time step

case median taking the median of the repetitions at each time step

moving average taking the mean of points across n time steps, where n is the

window size, at each time step. The window is centered at the current time

step

moving median taking the median of points within the window size at each time

step

moving triangle taking a weighted moving average, where the weights are dis-

tributed in an equilateral triangle form

moving Gaussian taking a weighted moving average, where the weights are dis-

tributed according to a Gaussian distribution
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Table 18: Morphological matrix of test functions parameters

Shape sawtooth sine square triangle
Noise N(0, σ) 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Length of TS 100 200 300 400
Number of periods 1 2 3
Amplitude 1 2 3
Repetitions 1 5 10 15 20 25 30

MARS multivariate adaptive regression spline in one-dimension

SVR support vector regression in one-dimension

Kalman one-dimensional Kalman smoother

Savitsky-Golay this smoothing filter fits a polynomial regression within the moving

window at each time step, and two variants are tested

• S-G simple uses a linear regression with a window size of 3

• S-G auto automatically determines the best window size and power of

the polynomial

The parameters of the test datasets that are varied in the experiment are listed in

Table 18. The repetitions parameter is the number of TS that is used to determine

the noise in the data, and each of the TS have the same parameter settings. Some

methods can use the repetitions to determine the noise, such as the case mean.

The moving smoothers and the regressions (MARS and SVR) use the repetitions

as well. For Kalman and Savitsky-Golay, the algorithms are applied to each

repetition separately, and so they do not use the repetitions to its advantage.
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Figure 67: Normalized difference between the estimated and actual noise plotted
against the moving window size

The first set of experiments determines the appropriate window size for the “mov-

ing” smoothers. An experiment is performed varying the window size from 3 to 13.

Figure 67 shows the average difference between the estimated noise using the moving

smoothers compared to the actual noise that was present in the data. The actual

noise is calcuated by taking the difference between the noisy data and the original

signal that was used to create the data. In the plot, the x-axis is the window size, and

each line represents the different number of repetitions in the dataset. The effects of

the other parameters such as the shape of the wave function and number of periods

are collapsed into the mean.

As the window size is increased, the moving smoothers overestimate the noise.

The repetitions do not seem to have much impact beyond five repetitions. For all

four moving averages, a window size of 3 is the best choice when estimating the error.

Because moving median outperforms the other three, only the moving median
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Figure 68: Normalized difference between the estimated and actual noise plotted
against the number of repetitions

will be evaluated against the rest of the options in the next experiment.

The rest of the smoothers are evaluated next. Figure 68 shows the results of

MARS, SVR, case mean, case median, and moving median. The plot shows

the normalized difference between the estimated noise that the smoothers calculated

and the actual noise in the data, and the x-axis is now the number of repetitions.

Overall, the moving median performs the best across wide ranges of repetitions.

For higher number of repetitions, the case mean and case median perform better

than the moving median, but they perform poorly when there are no repetitions

because they fail to smooth the data.

Figure 69 shows the results of Kalman and Savitsky-Golay against the moving

median. The x-axis this time is the length of the TS. The repetitions do not make an

impact to the performance of the Kalman and Savitsky-Golay smoothers because

the algorithms are applied to each TS even if a set of repetitions are provided to the
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Figure 69: Normalized difference between the estimated and actual noise plotted
against the length of the TS. S-G is short for Savitsky-Golay

algorithms. The noise estimates improve with the length of the TS, and the moving

median is the best choice among these smoothers.

8.2.2.1 Conclusion of the Smoothing Experiments

Based on the experiments, the moving median smoother with a window size of

3 was determined to be the best overall choice to estimate the noise in TS data.

However, when there are repetitions that can be used to smooth the data, then case

mean and case median are better choices. The median has an additional benefit

of being more robust to outliers. So, if there are repetitions, then case median is

the best smoother, and if there are no repetitions, then moving median should be

used.

191



Table 19: List of parameters used for the canonical datasets

Parameters Values

Shape sawtooth sine square triangle
Noise N(0, σ) 0.1 0.2 0.3
Length of TS 400
Number of rows 10 50 100 200
Number of outliers 1 2 3
Number of principal components 1 2 3 4
Repetitions 10

8.2.3 Feature Selection and Clustering Experiment

The Feature Selection and Clustering Experiment is conducted to determine the best

combination of set of data features and a clustering algorithm to group TS data.

The description of the datasets have already been given in Tables 8 to 14. Table 19

lists the parameters that are varied, and not all datasets use all the parameters. For

example, the line test set does not use the shape parameter.

The set of features are listed in Table 20. For some of the feature extraction meth-

ods like PCA, there are multiple features (i.e. multiple PCs) that can be kept, and

the number of features that are kept from these algorithms is varied as a parameter.

Features can also be used together, but this is a combinatorial problem. Even con-

sidering pairs of features results in 56 combinations, and this excludes the additional

dimensions of multiple PCs from some of the methods. Furthermore, these sets of

features need to be tested with clustering algorithms. In the interest of time, several

promising feature combinations are handpicked. PCA is chosen as one of the main

features because it performs relatively well on TS datasets. Breakpoint locations are
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used in some of the combinations because they are important for fitting PLR. The

sorted PCA has interesting characteristics where it spaces out data points that are

close together. The mean and standard deviation are included to see if it enhances

the capabilities of the PCA.

Three clustering algorithms will be used together with the set of features, and

the specific implementations of the algorithms are DBSCAN, DBSCANmod, and

mclust. DBSCAN is a density-based clustering algorithm. DBSCANmod runs a

multivariate line segmentation to the results of DBSCAN. The R package mclust is

a density-based clustering algorithm. The details of these methods are discussed in

Section 4.4.1 and 7.3.

There are a total of (14 feature sets× 3 clustering algorithms = 42) combinations

of feature sets and clustering algorithms. If the number of components, such as PCs

from PCA, are considered separately, then there are an additional 90 combinations.

These combinations are tested against 44 datasets, and each of the datasets are cre-

ated using the parameters in Table 19.

8.2.3.1 Metrics of Interest

To evaluate the performance of the clustering algorithms, the metrics of interest are

related to the characteristics that make a good cluster for PLR, which was discussed

in Section 4.3. The two important criteria are membership of the clusters and the

alignment of the breakpoint locations, and these can be checked by evaluating two

metrics. The first is to check the number of clusters that are calculated by the

clustering algorithm, and this can be easily performed by counting the number of
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Table 20: Data feature combinations

Categories Feature Names ID#

Dimension reduction Principal Component Analysis (PCA)* 1
Isomap* 2
Locally Linear Embedding (LLE)* 3

General statistics Mean 4
Standard deviation 5

Other Discrete Fourier Transform* 6
PCA(Breakpoints)** 7
Base2(Breakpoints) 8

Combinations PCA* + PCA(Breakpoints)** 9
PCA* + Base2(Breakpoints) 10
PCA* + sorted PCA** + PCA(Breakpoints)** 11
PCA* + sorted PCA** + Base2(Breakpoints) 12
PCA* + mean 13
PCA* + standard deviation 14

* Number of components kept was varied from 1 to 4

** Only the first principal component kept
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unique labels that are assigned to the data points. This will be referred as the Ncluster

metric. The other metric is to verify that the points in each cluster are indeed in the

correct cluster, and this can be accomplished by comparing the assigned cluster label

and the correct cluster label, which is determined beforehand. This will be referred

as the membership metric.

Sometimes the clustering algorithm fails to find any clusters due to an error during

the calculation or in the case of density-based clustering, the points are too far apart

to develop any clusters. Checking the number of failed clustering attempts provides

insight into the clustering process.

Most of the results will be displayed as outlier box plots. Each data point for the

plot is the result of running the clustering algorithm to a set of features extracted

from a dataset that was generated using a certain combination of parameters. For

example, the DBSCAN is run on the first two PCs of the null-flat dataset with

noise of N(0, 0.1), 50 rows of TS, and no outliers, and the resulting membership is 0.5.

Figure 70 is an example of a box plot. The box portion spans from the first to the

third quartile, and this range covers 50% of the data and is called the interquartile

range (IQR) [102]. The middle line is the median. The whiskers extend out to the

furthest point within 1.5×IQR. Points beyond the whiskers are displayed as dots.

8.2.3.2 Evaluation of the null test set

The null test set is a repetition of the same basic shape so there is only one cluster.

This experiment checks to see what the clustering algorithm does in the presence of no

sub-clusters, and if there are more than one cluster, then the algorithm is overfitting
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(a) membership

(b) Ncluster

Figure 70: Aggregated results of the clustering experiment for the null test set

the space. First the aggregated results are presented in Figure 70. It is important

to note that the aggregated results can be biased from the selection of features that

were chosen. Furthermore, it includes failed points, so Figure 70 and similar plots

should only be used to provide an initial insight into the results.

From the aggregated results, it can be seen that DBSCANmod does not perform

well compared to DBSCAN and mclust. When inspecting the Ncluster, it is clear

that DBSCANmod is creating more clusters than necessary. On the other hand, the
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Figure 71: Failed cases categorized by the feature set

model-based clustering is performing better than the others, and its median on the

membership metric is around 80%, which is very promising considering that this is

an aggregated view.

Evaluation of the Failed Cases from the null Dataset Experiment

Next, the failed cases are evaluated. There were a total of 3,707 failed runs out of

14,400, which is about 25%. First the failed cases are evaluated by categorizing them

using the features as shown in Figure 71.

Failed Cases vs. Features

Each feature set was run with 960 runs each. There was no variation in the break-

point locations in the null dataset, so the values for PCA(breakpoints) and

Base2(Breakpoints) are the same value. This would result in a singular value

when the PCA is applied. Also, normalization is applied to the features as a pre-

processing step to the clustering algorithms, and if the vector of feature values is the
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Figure 72: Failed cases categorized by the size of the data n, noise in the data sd,
and the number of components kept by PCA, DFT, Isomap and LLE

same number, this would result in a division by zero. This would cause the clustering

to fail, and this is the case with Base2(Breakpoints).

The sets of features that use the sorted PCA are the third and fourth highest

in the number of failed cases. These also use the breakpoints, but as another prepro-

cessing step, the columns with non-real numbers (such as NaN or “not a number”)

are eliminated so the breakpoints features should not have an impact on the results.

Thus, it appears that the combination of PCA + sorted PCA yields more failed

cases than just using PCA on its own. DFT has the lowest number of failed cases.

Next, the failed cases are categorized using other parameters of the experimental

design, and these are presented in Figures 72 and 73.

Failed Cases vs. Data Size

When the failed cases are categorized according to the size of the data (Figure 72), the

small data size of 10 points claims roughly half of all the failed cases, which is a little

over 10% of the entire null test set. Even if the points are grouped closely together,
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the normalization can make the distances between the points to appear greater if

the sample size is small. Density-based clustering would especially have a difficult

time because it uses a fixed distance ε to determine its neighborhood of points. So if

the points are farther apart, then each point will not be able find neighbors without

increasing ε. A dataset with 10 points is very small, and there is no point in applying

a clustering algorithm. However, it has been useful in highlighting the importance of

scaling of the feature values.

Failed Cases vs. Noise

The middle bar chart of Figure 72 shows the failed cases as a function of noise, and

at least in this view, noise does not have a noticeable impact to failed cases. The only

difference between the rows of TS in each dataset is the random noise, and because

the data is normalized before clustered, the change in noise has no impact.

Failed Cases vs. Number of Components

The histogram on the right of Figure 72 shows the failed cases as a function of the

number of components used for PCA, DFT, Isomap, and LLE. An increase in the

number of components corresponds to a rise in failed cases. This result is consistent

with the reasoning presented when evaluating the impact of the size of the data.

Adding components increases the dimension of the feature domain, and this causes

the points to be farther apart when the distance is measured using Euclidean distance.

Once again, this is due to the fact that the features are normalized. Furthermore, the

null test set should only require one component, and additional components only

add extraneous features that do not help differentiate the data points.

Failed Cases vs. Clustering Method
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Figure 73: Failed cases categorized by the clustering algorithms and the datasets

The left histogram of Figure 73 shows the number of failed cases as categorized by

the clustering algorithms. Although there is no large difference between the methods,

the model-based method has a higher number of failed cases compared to the other

two.

Failed Cases vs. Dataset

The right histogram of Figure 73 shows the number of failed cases as categorized by

each datasets in the null test set. The distribution of failed cases is uniform across

the datasets. There are no major differences besides the shape as expected. The

failed cases are driven more by the other factors such as the type of features or the

size of the data.

Evaluation of the Good Cases from the null Test Set

The failed cases are removed from the results of the null test set experiment to

evaluate the good case runs. The membership and Ncluster metrics are evaluated

against the datasize (n) and the number of components. The final assessment is made
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Figure 74: Plot of membership accuracy vs. datasize (n) and clustering methods

by considering the membership against the feature set and clustering algorithm. The

membership and Ncluster metrics are plotted against the data size (n) in Figures 74

and 75.

membership vs. Data Size

In the analysis of failed cases, the data size was one of the largest contributors. The

sparsity of data points make the clustering task difficult. This result is also reflected

in Figure 74. The membership accuracy is low for a small data size. There is only one

valid grouping for all of the null datasets, and the failed cases have been removed.

Thus, a low membership implies that the clustering algorithms identifies more than

one cluster or classified some of the points as outliers.

The model-based method performs the best among the three methods and with

good margin. One unexpected behavior is that the membership accuracy for the

model-based method peaks at n = 50 and slightly declines thereafter. This could be

due to the fact that the higher number of points could make it easier for more than

one cluster to be identified.

Ncluster vs. Data Size
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Figure 75: Plot of number of clusters vs. data size (n) and clustering methods

Figure 76: Plot of membership accuracy vs. number of components and clustering
methods

Next the relationship between Ncluster and data size is evaluated in Figure 75. The

number of clusters identified by the DBSCANmod method grows linearly with the

data size, and the large number of clusters suggests that it is over partitioning the

data. While the DBSCAN method does grow as well, it does not grow as quickly.

The DBSCANmod uses the DBSCAN as the starting point, so this suggests that the

modifications made to improve DBSCAN is actually detrimental. The model-based

method identified more clusters with smaller data, and this is consistent with the

observation made when evaluating the membership results.

membership vs. Number of Components
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Figure 77: Plot of number of clusters vs. number of components and clustering
methods

Based on the results from the failed cases, an increase in the number of components

should correspond to worse performance. Figure 76 plots the membership against

the number of components. DBSCAN and DBSCANmod behave according to expec-

tations. Additional dimensions increase the distance between points when the axes

are normalized and when Euclidean distance is used. The model-based method, on

the other hand, is not affected by the number of components. This robustness to

additional components can be useful in case the number of components cannot be

predicted accurately.

Ncluster vs. Number of Components

In Figure 77, Ncluster is plotted against the number of components. The one striking

aspect is that the number of clusters identified by DBSCANmod peaks at 2 and

declines. With a closer look at the plot, the method is amplifying the number of

clusters identified by DBSCAN. As more clusters are identified by DBSCAN, the

modified version is splitting up the clusters into smaller sub-clusters.

Membership vs. Feature Sets
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Figure 78: Box plot of membership accuracy vs. feature sets and clustering methods
for the null test set
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Finally, the clustering methods and the feature sets are evaluated together using the

membership accuracy metric in Figure 78. In order to fit the labels, the outlier box

plot is transposed, and the membership metric is along the bottom axis while the

features are stacked on the vertical axis. Each set of features has three box plots,

one for each clustering method. The breakpoints features (numbers 7 and 8) form

singular clusters and are not meaningful to compare using this test set so there were

omitted from the figure.

Overall, the model-based method outperforms the other two methods with the

null test set. The mclust algorithm seems to be incompatible with the sorted

PCA feature (numbers 11 and 12) as there are no box plots for it in the respective rows.

This also explains the high failure count in Figure 71 for that feature. The feature

sets with breakpoints (numbers 9 and 10) did not improve the results compared to

the plain PCA, and this is expected because the breakpoint locations did not change

and provided no additional information. The best performing feature sets with the

model-based clustering include those with PCA (numbers 1, 2, 9, 10, 13, and 14) and

DFT. The mean and standard deviation also performed well for all clustering

methods, and this is understandable considering there is only one cluster in the data.

Conclusion of the null test set experiment

The null test set provided important insights into how the clustering methods react

to small data sizes and how the number of components affects the inter-point distance

after the data is normalized. The model-based clustering was the clear winner in this

first experiment, but there is no clear choice for the feature set to couple with the

clustering algorithm yet.
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(a) membership

(b) Ncluster

Figure 79: Aggregated results of the clustering experiment for the line test set

8.2.3.3 Evaluation of the line test set

The line test set is composed of a linear line segment with noise that has moving

starting and ending points. Because the TS is a line, the breakpoint metrics are not

meaningful as it was shown previously, so the features PCA(breakpoints) and

Base2(breakpoints) (numbers 7 and 8) are not considered in this evaluation.

The aggregated results are presented in Figure 79.

Membership vs. Feature Sets

Figure 80 shows the membership against the features and clustering algorithms. The
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model-based clustering method performs the best overall, and the combinations with

the PCA feature yield the best results. Although the Mean feature does not yield

good clustering results on its own, the combination with the PCA gives the best

results. DBSCAN and DBSCANmod have difficulty finding the right clusters. Even

though the breakpoints do not contribute meaningful features in this test set, the PCA

+ Base2(Breakpoints) yields better results than PCA alone. This is probably

caused by the removal of the poor performing points, which improved the overall

results for PCA + Base2(Breakpoints) feature.

Conclusion of line test set experiment

The combination of PCA + Mean feature set and model-based clustering give the

best results for clustering the line test set. The PCA feature set with the model-

based clustering follows closely behind in performance.

8.2.3.4 Evaluation of the waves test set

The waves test set contains datasets with TS transformations such as amplitude

and phase variation. Similar to the previous set, the goal is to determine if TS

transformations can be clustered properly, but these datasets use wave functions

instead of linear lines. The aggregated results are presented in Figure 81, and they

are slightly better than compared to the ones from the line test set. The overall

results of DBSCAN is on par with the model-based clustering algorithm.

Membership vs. Feature Sets

Overall, the model-based clustering using Standard Deviation feature had the

best results, followed by the Mean feature. The other combinations of clustering
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Figure 80: Plot of membership accuracy vs. feature sets and clustering algorithms
for the line datasets
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(a) membership

(b) Ncluster

Figure 81: Aggregated results of the clustering experiment for the waves test set
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method and feature sets produce mediocre results. The increase in amplitude in

the amp-smooth essentially improves the signal-to-noise ratio because the data is

normalized before clustering so the effective noise in the data shrinks linearly with

amplitude and the mean does not change. This will appear as a single cluster in

those two feature spaces. And the others should not have that much difficulty with

this one as well. In the phase dataset, the mean and standard deviation do not

change so the points will appear as one cluster in the two feature spaces. However,

in the other feature spaces, this could be more challenging, especially if there are

discontinuities like the square and sawtooth waves as was seen in the PA Experiment.

Similar conclusions can be made about the phase-amp dataset.

The breakpoints features performed better than Isomap and LLE features, but

they still performed poorly. It provided a slight improvement to the PCA when com-

bined together.

Conclusion of the waves test set

Overall, the Standard Deviation and Mean features with the model-based clus-

tering algorithm produces the best results for the waves test set.

8.2.3.5 Evaluation of the shapes test set

The shapes test set is composed of datasets with distinctly different shapes. The

goal is to determine if the clustering methods with the features can discriminate

between these shapes. The aggregated results are presented in Figure 83.

Based on Figure 83, DBSCAN is the overall best method for clustering TS data

in the shapes test set. Because the data is created using discrete settings, the
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Figure 82: Plot of membership accuracy vs. feature sets and clustering algorithms
for the waves test set
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(a) membership

(b) Ncluster

Figure 83: Aggregated results of the clustering experiment for the shapes test set
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Figure 84: Plot of membership accuracy vs. feature sets and clustering algorithms
for the shapes test set

points should cluster tightly around each other for the same settings. This situation

is ideal for density-based clustering because the correct points are already in the same

neighborhood. On the other hand, the model-based method seems to have difficult

dealing with these tight clusters and performs poorly.

Membership vs. Feature Sets

When the membership metric is broken down to show the feature sets as shown

in Figure 84, the performance of DBSCAN becomes even clearer. DBSCAN and
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the model-based method with the PCA feature provide good results, but when DB-

SCAN is paired with PCA and a breakpoints feature (PCA(breakpoints) and

Base2(breakpoints)), the accuracy is close to perfect. On the other hand, the

model-based clustering with the same set of features actually yields a worse result

than PCA alone. The PCA + Standard Deviation feature set with both DB-

SCAN and model-based clustering also produced good results.

Conclusion of shapes test set

The experiments using the shapes test set illustrated the importance of choosing

the correct clustering algorithm with the correct set of features. An addition of

a feature can improve or worsen the clustering results, and care is needed in the

selection process. The breakpoints features are not useful on their own, but it can be

very useful when used together with other features. Also, the model-based clustering

showed good results when the data was noisy and spread out, such as in the null

test set experiments, but it has difficulty clustering highly localized set of points.

8.2.3.6 Evaluation of the discrete test set

The datasets in the discrete test set are made with discrete settings for the various

wave functions. Same as shapes test set, the goal is to see if the clustering methods

correctly categorize the TS with different attribute settings. The overall results are

provided as box charts in Figure 85.

The overall results for membership and Ncluster puts DBSCAN better than the

rest, but the median results do not look promising and the variability of the results

is large.
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(a) membership

(b) Ncluster

Figure 85: Aggregated results of the clustering experiment for the discrete test
set
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Membership vs. Feature Sets

As shown in Figure 86, the PCA feature with model-based clustering has the best re-

sult, and PCA + Mean and PCA + Standard Deviation are close seconds. The

box plot in Figure 85 gives the impression that the overall results of the model-based

clustering has a large spread, but when the results are broken down into features, the

wide range is due to a mix of good results and poor results.

The DBSCAN and DBSCANmod methods on the other hand have wide ranges in

both figures. The TS shapes should appear as tight groups just like in the shapes

test set because the parameters are varied discretely, and the density-based methods

should have performed better than the model-based clustering.

Conclusion of discrete test set

Overall, the model-based clustering method with PCA and combinations with PCA

have the best results. The density-based methods have a difficult time with the

discrete test set.

8.2.3.7 Evaluation of the outlier test set

The outlier test set contains a handful of TS that clearly do not belong to a

cluster and thus is an outlier. The aim of this test set is to evaluate how the different

clustering algorithms handle outliers, which is a concern when creating groups of

points for piecewise linear regressions. The overall results are shown in Figure 87.

One of the key features of density-based clustering methods is that it can identify

outliers that are isolated. At first glance this would appear to be the reason why

DBSCAN is performing the best. However, it is important to note that the test data
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Figure 86: Plot of membership accuracy vs. feature sets and clustering algorithms
for the discrete test set
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(a) membership

(b) Ncluster

Figure 87: Aggregated results of the clustering experiment for the outlier test set
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Figure 88: Plot of membership accuracy vs. feature sets and clustering algorithms
for the outlier test set

is practically the same as the shapes test set, and in that experiment, DBSCAN

was already the best of the three methods.

Membership vs. Feature Sets

The overall trend with DBSCAN across the different feature sets is the same as

compared to the results from the shapes test set. However, the performance of

DBSCAN actually degrades compared in the outlier test set, which suggests that

it was not successful in identifying the outliers, at least in some situations.
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(a) membership

(b) Ncluster

Figure 89: Aggregated results of the clustering experiment for the ts test set

8.2.3.8 Evaluation of the ts test set

The ts test set emulates the FAMOS model data using a function that varies the TS

shape. This test set is the most complex of the canonical test sets as it has different

shapes of TS that vary smoothly, and the breakpoints are different across the TS.

The number of segments also varies depending on the shape.

The aggregated results in Figure 89 show the model-based clustering having a

slightly higher performance, but the median performance for membership is around

60%. Looking at the Ncluster chart, the correct number of clusters is 6, but DBSCAN
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Figure 90: Plot of membership accuracy vs. feature sets and clustering algorithms
for the ts test set

identifies around 3 in the median. This is because the clusters are organized as lines

and different clusters are intersecting in the feature space. The median value from

DBSCANmod, which was designed to solve this problem, is closer to the correct

number of clusters, although it still has a problem of creating too many clusters.

Membership vs. Feature Sets

Overall, the model-based clustering is the best performing of the methods if the fea-

ture sets including sorted PCA are ignored as shown in Figure 90. The membership

accuracy seems to hit a ceiling around 0.8 for all features and methods, and this may
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be a difference in interpretation of what the correct answer should be.

The DBSCAN and DBSCANmod show good median values when using feature

sets that have the breakpoints features. However, the IQR is very wide, and the

whiskers of the box plot extend out to 0. This suggests that there is a bimodal

distribution with a fair amount of points clustered at 0.8 and 0. With most feature sets

in Figure 90, DBSCANmod outperforms DBSCAN, and this is most likely because

some of the clusters are touching, and DBSCAN groups them together (as it was

discussed in Section 4.4.1) while DBSCANmod separates those clusters.

Next, individual feature sets are evaluated. The simple metrics of Mean and

Standard Deviation perform poorly as there are complex TS transformations

that are occurring that cannot be captured with a simple statistic. DFT also per-

forms poorly, and in fact it is the worst. This is somewhat unexpected considering

how well it performed in the null test set and decently in the other test sets. This

maybe caused by the number of components that are used, and for the DFT to prop-

erly capture the variations in the TS shapes, more components may be necessary. The

manifold learning methods (Isomap and LLE) do not perform that well, and they

are on par with the Standard Deviation feature. PCA with model-based cluster-

ing performs well, and the breakpoints features, particularly PCA(breakpoints),

perform really well as standalone features.

Figure 90 shows that combining other features with PCA does improve the results

over just using only PCA but with mixed effects. With DBSCAN and DBSCAN-

mod with PCA and breakpoint locations (feature sets 9, 10, 11, and 12), the me-

dian is improved but the IQR becomes wider, and with PCA + Mean and PCA +
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Standard Deviation, the results do not improve. Model-based clustering with

PCA + PCA(Breakpoints) and PCA + Base2(Breakpoints) improves the

median compared to when the features are used separately, but the ranges on the box

plots also widen.

Conclusion of ts test set experiment

The ts test set experiment showed that the model-based method to be the best

performing clustering method. It also highlighted the descriptive power of using

breakpoints as a feature.

8.2.3.9 Conclusion of the Clustering Experiment

The combination of fourteen sets of features and three clustering algorithms were

tested using canonical datasets. The experiments were designed to determine if any

of the combinations of methods and features would yield PLRDGs. The test sets

identified different weaknesses in each of the methods and the features.

The model-based clustering performed the best overall. It is robust to some level of

noise, and it finds clusters in straight lines. However, it fails to clusters that are tightly

grouped together in the feature space. Because the method tries to fit a Gaussian

distribution to the clusters, some noise or variation between points are needed. On

the other hand, DBSCAN performed well where the model-based clustering failed,

but because it grows clusters by adding nearby points, it groups clusters that are

touching as a single cluster. DBSCANmod tries to fix this problem, but it is prone

to creating too many clusters when there is noise.

Among the dimensional reduction methods, PCA consistently performs better
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than Isomap and LLE. Perhaps the data was too simple to warrant the more pow-

erful nonlinear dimensional reduction techniques. The statistics of the TS, Mean

and Standard Deviation, performed well with the null test set, but they had

mediocre results otherwise. However, when they are combined with the PCA feature,

they generally improved the membership accuracy. The DFT feature performed well

with the null test set, but otherwise was one of the weaker features for clustering,

especially in the case of the ts test set.

The PCA(Breakpoints) and Base2(Breakpoints) features performed well

when it mattered. Most of the datasets were ill-suited for the breakpoints fea-

tures because they either did not have any breakpoints or the breakpoint locations

did not move, but when breakpoints did exist and shift, like in the ts test set,

they performed really well. In fact, it was one of the best performing features to

create clusters. The difference in performance between PCA(Breakpoints) and

Base2(Breakpoints) was minor. To maintain the simplicity of the method, us-

ing PCA(Breakpoints) is preferred so that the same PCA method is applied to

the data and the breakpoints.

Model-based clustering with PCA + PCA(Breakpoints) is the best combina-

tion to cluster TS datasets to create PLRDGs.

8.2.4 SMARTS Feasibility Experiment

The feasibility of the SMARTS methodology is tested using the demo-ts dataset.

It consists of 4410 rows of TS, which are 350 time steps long. The methodology

will be demonstrated step by step along with notes on how it is implemented in

224



0.0 0.2 0.4 0.6 0.8 1.0
PC 1

0.0

0.2

0.4

0.6

0.8

1.0

PC
 2

(a) First vs. Second PCs

0.0 0.2 0.4 0.6 0.8 1.0
PC 1

0.0

0.2

0.4

0.6

0.8

1.0

PC
 3

(b) First vs. Third PCs

Figure 91: Plot of the first three principal components of the demo-ts data

the Python source code. Because most of the methods are implemented in the

multivariate piecewise linear regression 7.py file, references to class

variables and methods will be from this file unless explicitly called out.

Step 1: Create Z Domain

The first step is to create the intermediate Z domain using the dimensionality reduc-

tion technique PCA. The first three PCs are plotted in Figure 91. Although the data

has meaningful structures in the 2nd and third dimensions instead of random scatter,

the TS shapes can be organized using just the first PC as shown in Figure 92, so only

the first PC will be used to create the Z domain.

This step is implemented in the perform pca() method, which is a part of the

PrepOutputData class. Because the results from the PCA are also used later in

the clustering step, the other PCs are kept as well. To determine how many PCs are

kept, the PA method is used, and this results in 5 PCs. Although only the first PC

is used in Step 1, the remaining four PCs are carried over until Step 3.

Step 2: X → Z Regression

The input domain X is mapped to the intermediate Z domain using NN. The inputs
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Figure 92: demo-ts output data organized along the first PC. The points are jittered
to avoid overlaps, and the plots of TS are associated with location along the PC.

are fit to the Z domain values (the first PC) calculated in Step 1. The NN settings

are 1 hidden layer with 5 nodes. The best of 10 training sessions is used, and each

NN is trained for a maximum of 500 epochs.

This step is implemented by the x to z2() method, which is a part of the

multivariatePiecewiseRegression class. This is also where the user can

specify if the regression is to capture the median, lower or upper line. If the median

is chosen, then the regression will use all the points in the Z domain to create the

NN regression. If the lower or upper option is chosen, then the function calculates

the three sigma value using the z values of the repetitions for each set of inputs, and

uses this new z value for the regression.

Step 3a: Reduce the Data

The next step is to reduce the data by combining similar shapes. The TS are binned

in the Z domain, which in this case is one-dimensional along the first PC. Figure

93 shows the distribution of points after the data has been organized. There is a

large amount of TS at the two extremes, which are the “cliff” shape and the flat

line. Because the goal of the Z → Y regression is to capture the shape and its
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Figure 93: Distribution of points along the first PC

variations and not to fit the data, there is no need to retain all the TS because they

are redundant shapes.

The data is binned along the first PC, and initially, 200 bins are targeted. A

minimum threshold of 10 data points per bin is used to ensure that each bin has a

sufficient number of points. The default is 20 points, but because the dataset is small,

a lower bin size is used here. Then the median of the TS in each bin is taken as the

representative TS shape. The median is used because it is less influenced by outliers,

but depending on what is sought, different statistics can be used such as the mean.

Instead of using the statistics, a random TS can be selected as well. It was discussed

in Section 6.4 of how the upper and lower bounds can be captures in two ways, and

one of them was implemented in Step 2. The other approach is to implement it here

by choosing a different statistics such as the minimum, maximum or some quantile.

Several other values are prepared here for the later steps. The PC values that

were calculated in Step 1 are averaged across the bin to create a representative value.

There were five that were saved from Step 1, and they will be used for the clustering

step. The first PC value is also used for creating the PLR. The noise in the TS is also
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estimated using the bins. Because there are more than 20 TS per bin, the median of

each time step (instead of the moving median) is used to estimate a smooth version

of the TS per bin. Then the difference is taken from each TS with the smoothed TS.

The standard deviation of the residuals is recorded as the threshold setting which will

be used by the TS segmentation step.

After this process, the 44,100 rows of TS in the original demo-ts are reduced to

196. Because some bins contain less than the threshold of 10 points, they are merged

with its neighbors.

This step is implemented in the reduce data() method, which is a part of the

PrepOutputData class. The class can receive the data as an input or import the

data using the file locations of the output data. The number of bins and bin size can

be specified as well.

Step 3b: Determine the Breakpoints of the TS

The estimated noise from the previous step is used as the threshold to segment the

TS. A hybrid segmentation algorithm is applied to each TS, and the breakpoint

locations and the number of segments are recorded. Figure 94 shows examples of the

TS segmentation.

The TS segmentation is performed by the initial segmentation() method,

which is a part of the multivariatePiecewiseRegression class, and this

method loops through each TS in the reduced TS dataset to apply hybrid seg-

mentation algorithm, which is implemented by the hybrid aggr() method in the

ts segments.py file.

Step 3c: Cluster the Data
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Figure 94: Examples of segmented TS

The next step is to cluster the data into PLRDGs. The features that will be used

are the PCs from Step 3a and the breakpoints from Step 3b. The breakpoints are

transformed using PCA so they can be used as a feature. Because the TS have

different number of breakpoints, those with fewer breakpoints are padded with zeros.

A matrix of breakpoints is created where the number of rows is the same as the

number of TS and the number of columns is the maximum number of segments, so

in this case, the matrix is 196rows × 5columns. The first PC is kept from applying

PCA to the matrix of breakpoints.

Based on the results from the Feature Selection and Clustering Experiment, the

PCA + PCA(Breakpoints) feature set will be used. Five PCs were kept from Step

1 and reduced in Step 3a, and one PC from the breakpoints was just calculated. This

creates a matrix with six features. Model-based clustering is applied to this matrix.

The initial result of the clustering is presented in Figure 95, which plots the data with

respect to the first PC as calculated in Step 3a and the first PC of the breakpoints.

The numbers indicate the group label with which the point is associated.
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Figure 95: First PC of the data vs. the first PC of the breakpoints
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Figure 96: First PC of the data vs. the number of segments

Figure 96 shows a similar view but with the y-axis being the number of segments.

Points of a single group should lie on the same segment number, but group 8 is split

across different number of segments at the right hand side. The clustering process is

not perfect, and the groups need refinement.

A simple routine is implemented to check and fix the number of segments in each

group. The majority rule is implemented if there are different numbers of segments

in a group. Overlaps are also resolved, and the overlapped region is incorporated into

the group with a higher number of segments. Figure 97 shows the data organized in

first PC and number of segments after the refinement procedure.
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Figure 97: First PC of the data vs. the number of segments after refinement

One thing to note about model-based clustering is that it has a tendency to

breakup a line of points if there is little noise. For example, in Figure 97, groups 4

and 5 (between 0.4 and 0.6 on the x-axis) should technically be a single group. This

does not pose a problem for the regression.

The PCA(Breakpoints) feature is calculated by the extract PCA Breakpoints()

method. It creates a matrix of breakpoints as described above, applies PCA, and

saves the normalized first PC. The clustering is performed by the group data()

method, which in turn calls the model based clustering() method in the

ApplyClustering.py file. This method is a wrapper for the R package mclust.

The clean up groups 2() and check group nseg() methods are responsi-

ble for resolving the overlaps and ensuring that TS within each group has the same

number of segments.

Step 3d: Z → Y Regression

Now that the points are grouped into PLRDGs, a PLR model can be fit to each

of them. For each group, the segments are fit separately with a first order linear

regression, and the breakpoint locations are also fit in the same way. So, for a group
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Figure 98: Z → Y regression plotted with the TS shape from the original data with
the closest Z domain value. Starting from the top-left, the plots are ordered from left
to right and continue on successive rows.

with three segments, a total of five linear regressions are fit, and the start and end

points are also recorded for bookkeeping purposes. In order connect the Z domain

to the group labels, a mapping function is created. Figure 98 plots the shapes of

the Z → Y regression in blue as it sweeps across the Z domain. The TS from the

original data with the closest Z domain value is also plotted in red, but it is difficult

to distinguish between the two because of the close fit.

This regression step is performed by the create regressions() method.

It calls the create regressions segments() method to fit the segments of

each group, and it calls the create regressions breakpoints() method for

the breakpoints. The mapping is created with Python’s lambda function and the

give me vals() method.

Using the PLR

Once the SMARTS methodology is completed, the regression can be used to recreate
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Figure 99: SMARTS model output plotted in blue and actual data in red

and interpolate TS data. Figure 99a shows the prediction by the SMARTS model in

blue with the original data in red. For completeness, Figure 99b shows the estimates

by the SMARTS model for points that were not included in the original demo-ts

dataset.

To use the PLR, the predict() method is used. The input variables and the

time steps are passed to the method, and the corresponding TS data is returned.

Conclusion of the Feasibility Experiment

The SMARTS methodology was applied to the demo-ts dataset, which uses a TS

function that was derived from simulation data. The data has little noise or vari-

ability between TS with the same inputs, and the TS have very prominent features.

Details on the implementation and notes on the programming code were also pro-

vided. Through this experiment, it was shown that the SMARTS model was able to

capture the corners of the TS and matched the original data very closely.
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Table 21: List of regression methods used for the scalability experiment

Method Model Name Settings Notes

Mean mean Average of the output data

Linear Re-
gression

linreg2 2nd order linear regression
with interaction terms

Neural
Networks

nn20 1 hidden layer, 20 nodes On entire dataset

nn20-ts 1 hidden layer, 20 nodes On each time step
nn20-ts
(smooth)

1 hidden layer, 20 nodes nn20-ts smoothed with
moving median

SMARTS SMARTS 1000 bins

8.2.5 SMARTS Scalability Experiment

To test the scalability of the SMARTS methodology, regressions using competitive

methods were performed on data generated by the MRFAMOS model. The data was

previously presented in Section 8.1.3. The regression methods and their settings are

listed in Table 21. The mean is listed as a baseline to compare the other results,

and the regression methods need to have better results than the mean. The linear

regression is a second order linear regression with interactions, and this is basically

the response surface method. Several variants of the neural network (NN) is used.

The nn20 fits a NN to the entire dataset, while the nn20-ts fits a NN to each

time step. For the MRFAMOS data, this amounts to 850 regressions. The nn20-ts

(smooth) applies a moving median smoother on the output of nn20-ts because

the output is very noisy. Finally, the SMARTS methodology is used with 1000 bins.
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8.2.5.1 Metrics of Interest

In comparing the different regression methods, there are four metrics of interest.

The first is the time it takes to fit the regression models. Fitting a good regression

model takes several iterations of trial and error despite the sophistication of modern

statistical software tools, and additional simulation runs may be necessary if the fits

are poor. Faster fit times allow the user to try different settings and conduct more

iterations in the same amount of time. Therefore, faster fit times are better.

The next are the model fit error (MFE) and the model representation error (MRE).

The MFE is a measure of how well the regression model represents the training data

that was used to fit the model. The MRE is a measure of how well the regression

model represents the simulation model in regions between the points in the test data,

and this is also known as the validation set [1, 7]. These will be measured using

the root mean square error (RMSE), which is expressed using the following equation

[112]:

RMSE =

√∑n
i=1(yi − ŷi)2

n

where n is the number of points in the dataset. The MFE will use the training data,

and the MRE will use a separate validation dataset.

The fourth metric that will be used is the visual representation of the TS by the

regression models. This is a subjective metric, but it is important nonetheless. One

of the intended applications for the regression method is to present the data in a

decision making interface, and the visual appearance of the model is also important.
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Table 22: Regression results (values in parentheses are the ratio to the mean model
or SMARTS model)

Model Runs Fit Time [sec] MFE MRE platform

mean – – 0.384 (2.97) 0.365 (2.49) JMP
linreg2 20 35 (0.16) 0.240 (1.85) 0.227 (1.55) JMP
nn20 1 85,700 (379.27) 0.119 (0.916) 0.314 (2.15) JMP
nn20-ts 3 21,800 (97.36) 0.113 (0.874) 0.239 (1.64) JMP
nn20-ts
(smooth)

3 21,800 (97.36) 0.113 (0.873) 0.122 (0.84) JMP

SMARTS 10 224 (1.00) 0.129 (1.00) 0.146 (1.00) Python
Script
on Linux
VM

8.2.5.2 Fit time, MFE, and MRE of the Regression Fits

Each of the regression methods were fit several times to get an average performance.

Because of the size of the training data (over 18 million data points), some of the

methods could only be executed a couple times. The regression time, MFE and MRE

are summarized in Table 22.

The machine that was used to fit these regressions is an Intel Core i7-2600 running

at 3.40 GHz with 8 GB of RAM and 64-bit Windows 7 operating system. Most of

the models were created using the JMP version 10 software [101], and the program

utilizes multithreading to take advantage of the multi-core processors. The SMARTS

model on the other hand was created using Python scripts that used various Python

and R libraries, and the script was executed on a virtual machine (VM) on the same

computer running Linux Mint operating system [62], which is an Ubuntu distribution.

The script did not use multi-threading. Thus, in terms of computational resources,
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it is not an equivalent comparison, but in terms of user experience, it is a fair com-

parison.

The SMARTS model performed the best overall compared to the other regression

methods. In terms of regression time, it was second to the 2nd order linear regression

model linreg2, and compared to the neural networks, it is two orders of magnitude

faster. Looking at the model fit error (MFE), the nn20 and nn20-ts model have

better MFE than the SMARTS model. However, when the model representation error

(MRE) is examined, SMARTS outperforms the nn20-ts. The MRE for nn20-ts is

in fact higher than the MFE despite the training data being over double the size of

the testing data. This indicates that the nn20-ts model is overfitting the training

data. The nn20-ts (smooth), on the other hand, does not fall victim to the

overfitting due to the smoothing function, and in both the MFE and MRE, nn20-ts

(smooth) outperforms the SMARTS model by 13% and 16%, respectively. However,

it still suffers from the long fit times.

8.2.5.3 Visual Inspection of the Regressions

Because the original motivation was to create a simplified visual representation of

TS data, it is important to examine the plots of the time sequential data. Figures

100 through 104 show plots of each regression methods. Ten sets of inputs from

the testing dataset are shown. The actual input parameters are given in Tables 23

through 27.

Each figure shows the simulation outputs at two different input settings, and

they are juxtaposed because the output TS shapes are similar. The black lines in
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each plot are overlays of 30 simulation runs, and the thicker colored lines are the

respective regressions, which are linreg2, nn20, nn20-ts, nn20-ts (smooth),

and SMARTS.

Overall, the linreg2 model captures the general trend, but it is far from captur-

ing the nonlinear behavior of the TS shapes. The nn20 model is better at capturing

the data, but there are segments along the TS that do not match the data at all. For

instance in Run 2, the regression line falls off the margins of the plot after t = 600.

The nn20-ts captures the general shape well, but it is also extremely noisy. Because

there are no constraints to be similar to neighboring time steps, the manner in which

it overfits the data causes this noisy output. By applying a smoothing filter, this

noise is reduced in nn20-ts (smooth), and it produces a good regression result.

The SMARTS model captures the shape really well, especially the distinct features

such as the “cliffs” in Figure 100. But it still has difficulty with segments of the TS

that are very noisy, such as the first half of the TS in Figure 102.

Now inspecting the fits one figure at a time, Figure 100 shows two different inputs

that result in the “cliff” occurring at different locations. In the context of the simula-

tion, the sudden drop in Run 1 occurs because the simulation has not “warmed up”

yet. Once the parts in the inventory are consumed, the AO drops because the con-

sumption rate is much faster than the replenishment rate. The sudden drop in Run 2

occurs because of the beginning of the contingency missions. The contingencies have

priority over the training and have a higher consumption rate. The parts are diverted

from being used for aircraft that are flying training missions, and the AO suffers due

to a lack of parts. The input settings are such that the AO does not recover even after
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the end of contingency missions. For these two inputs, the SMARTS model predicted

the shapes very accurately. The nn20-ts model appears to do well aside from the

noise, but it is somewhat deceiving because the degree of underfitting is not apparent

due to the setting of the axes.

Figure 101 shows two cases that form the “bucket” shape. The ann20 model

tries to capture the bucket shape, but it does a poor job. The nn20-ts model does

a much better job, but it appears to be underfitting in Run 4 at around t = 700. The

SMARTS model does a good job fitting the left half of the TS. In Run 3, it appears

to be overfitting in the second half of the TS, and this may be due to the use of the

median when aggregating the TS. In Run 4, the SMARTS model misses the transition

timing.

Figure 102 shows plots where there is significant uncertainty between t = 100 to

t = 500. All the regression models to a decent job of going through the noisy section,

and with the regression models used here, there is probably no good way of capturing

the uncertainty in behavior of the TS.

Figures 103 and 104 show the variability in the MRFAMOS output based on how

the regression models fail to conform to the data. Figure 103 shows two plots that

also show similar uncertain behavior as in Figure 102. Run 7 has a drop at t = 300

with an attempt to recover the AO at t = 500, whereas Run 8 has a permanent drop

at t = 500 with some random random dips beforehand. The regression models fit

these two with basically the same output shapes. Similarly, in Run 10, the SMARTS

model traces the recovery of the AO after t = 700, but the actual data remains flat.
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(a) Run 1 (b) Run 2

Figure 100: Comparison of regression results. Runs 1 and 2.

Table 23: Input parameters for runs 1 and 2

Run # Fleetsize Training
FHPM1

Contin-
gency2

Mission
A Len.

Mission
B & C
Len.

Part
Life

Part
Repair
TAT3

Inv.4

[# a/c] [hrs] [hrs] [hrs] [1/hrs] [hrs]

Run 1 103 23.2 11 1.65 3.31 0.0550 1604 479
Run 2 92 21.9 13 1.86 3.71 0.0630 1700 420
1 FHPM - Flight Hours Per Month
2 Represents the number of aircraft sent to Contingency 1 and 2 as well as the number of missions
flown per day during contingency operations
3 TAT - Turnaround Time
4 Inv. - Inventory Level
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(a) Run 3 (b) Run 4

Figure 101: Comparison of regression results. Runs 3 and 4.

Table 24: Input parameters for runs 3 and 4

Run # Fleetsize Training
FHPM1

Contin-
gency2

Mission
A
Length

Mission
B & C
Lengths

Part
Life

Part
Repair
TAT3

Inv.4

[# a/c] [hrs] [hrs] [hrs] [1/hrs] [hrs]

Run 3 90 21.5 13 1.59 3.18 0.0574 1268 483
Run 4 91 20.2 12 1.01 2.02 0.0613 1299 414
1 FHPM - Flight Hours Per Month
2 Represents the number of aircraft sent to Contingency 1 and 2 as well as the number of missions
flown per day during contingency operations
3 TAT - Turnaround Time
4 Inv. - Inventory Level
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(a) Run 5 (b) Run 6

Figure 102: Comparison of regression results. Runs 5 and 6.

Table 25: Input parameters for runs 5 and 6

Run # Fleetsize Training
FHPM1

Contin-
gency2

Mission
A
Length

Mission
B & C
Lengths

Part
Life

Part
Repair
TAT3

Inv.4

[# a/c] [hrs] [hrs] [hrs] [1/hrs] [hrs]

Run 5 93 23.8 10 1.35 2.69 0.0613 1635 476
Run 6 103 20.0 10 1.99 3.98 0.0606 1710 429
1 FHPM - Flight Hours Per Month
2 Represents the number of aircraft sent to Contingency 1 and 2 as well as the number of missions
flown per day during contingency operations
3 TAT - Turnaround Time
4 Inv. - Inventory Level
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(a) Run 7 (b) Run 8

Figure 103: Comparison of regression results. Runs 7 and 8.

Table 26: Input parameters for runs 7 and 8

Run # Fleetsize Training
FHPM1

Contin-
gency2

Mission
A
Length

Mission
B & C
Lengths

Part
Life

Part
Repair
TAT3

Inv.4

[# a/c] [hrs] [hrs] [hrs] [1/hrs] [hrs]

Run 7 92 22.9 10 1.18 2.36 0.0628 1202 455
Run 8 95 21.9 12 1.54 3.08 0.0608 1715 477
1 FHPM - Flight Hours Per Month
2 Represents the number of aircraft sent to Contingency 1 and 2 as well as the number of missions
flown per day during contingency operations
3 TAT - Turnaround Time
4 Inv. - Inventory Level
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(a) Run 9 (b) Run 10

Figure 104: Comparison of regression results. Runs 9 and 10.

Table 27: Input parameters for runs 9 and 10

Run # Fleetsize Training
FHPM1

Contin-
gency2

Mission
A
Length

Mission
B & C
Lengths

Part
Life

Part
Repair
TAT3

Inv.4

[# a/c] [hrs] [hrs] [hrs] [1/hrs] [hrs]

Run 9 92 20.4 14 1.72 3.44 0.0635 1493 479
Run 10 93 21.1 11 1.55 3.11 0.0582 1535 438
1 FHPM - Flight Hours Per Month
2 Represents the number of aircraft sent to Contingency 1 and 2 as well as the number of missions
flown per day during contingency operations
3 TAT - Turnaround Time
4 Inv. - Inventory Level
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8.2.5.4 Discussion of the Scalability Experiment

The SMARTS methodology was used on a set of simulation data from the MR-

FAMOS model, and the results were compared against several regression methods.

The SMARTS methodology is not a winner in any one category, but when the overall

aspects are considered, it is a very competitive method. The MRE and MFE are sec-

ond to nn20-ts (smooth), and the fit times are on the order of several minutes

compared to hours using NN.

In the execution of the SMARTS code, the PA is used to determine the number

of PCs to keep. It returned the maximum number of 10 PCs, and it appears that the

PA is not robust to significant noise in the TS data. However, the regressions results

from the SMARTS model looked acceptable, and it demonstrates the robustness of the

model-based clustering to noise.

8.2.6 SMARTS Visualization Experiment

The SMARTS Visualization Experiment is designed to demonstrate that the regres-

sion outputs from the SMARTS model can be used to create plots that can be incor-

porated into visualizations. Some of the same data and plots that were used in the

previous experiment will be used to show the bounds. The upper and lower bounds

do not represent the minimum and maximum. Instead, they show the three sigma

bounds of what the median value can take. Figure 105 shows examples of the upper

and lower bounds created using SMARTS. The median line is plotted in blue while

the bounds are in orange. The black lines represent 30 repetitions of actual simulation

runs.
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(a) Run 1 (b) Run 2

(c) Run 5 (d) Run 10

Figure 105: Showing the upper and lower bounds created using SMARTS. The light
blue lines are the median, and the orange lines are the upper and lower bounds.

Because regressions are not perfect, they can violate implicit rules such as the

upper and lower bounds should not intersect. When visualizations are created, these

rules are enforced to reflect how the data should look like. Several constraints are

applied to the PLRs and plotted in Figure 105. The constraints include the following:

making sure the upper bound, lower bound, and the median line do not intersect, the

lines are greater than or equal to zero because the plot charts operational availability

which is defined from zero to one, and the lines should not exceed 0.86 because that

is the observed maximum from the dataset.

The simulation runs from Run 1 all follow the same “cliff” shape pattern, and

the bounds reflect this. The upper and lower lines tightly bound the median line.

The small bumps at around time step 500 appear to be outliers, and the bounds also
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ignore them. The simulation data in Run 2 appears extremely noisy, but the plot

shows a narrow range. The lower bound seems to suggest that the noisy activity

before time step 400 is an outlier and that most of the TS hover above 0.8. Similar

conclusion can be drawn about the lines in Run 10. The bounds in Run 5 neatly

capture the upper and lower bounds of the data. The upper bound towards the end

of the simulation time shows a small rise, suggesting that for some repetitions, the

AO would begin to recover.

Summary of SMARTS Visualization Experiment This experiment demon-

strated that the upper and lower bounds can be generated using the SMARTS method

and that the bounds can sufficiently encompass the data. Because the bounds are

created using three standard deviations from the average PC in the Z domain, it does

not capture the minimum and maximum. It does vary the range of possible shapes

depending on the situation. It also ignores TS segments that appear to be outliers.

8.3 Summary

The experiments were introduced in Chapter 7, and the details and the results were

presented in this chapter. Each experiment was designed to test specific aspects of

the SMARTS methodology. The Parallel Analysis Experiment demonstrated that

the PA method is capable of determining the correct number of PCs. The Robust

Threshold and TS Smoothing Experiment found that case mean and case median

are the best method for smoothing data when repetitions can be used. Otherwise,

the case median with a window size of three outperforms other smoothing methods.

The Feature Selection and Clustering Experiment conducted an extensive evaluation
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of various combinations of clustering methods and feature sets, and model-based

clustering using PCA of the data and TS breakpoints as the features proved to be the

best combination to cluster TS data and create PLRDGs. The SMARTS Feasibility

Experiment provided a step-by-step example of implementing the methodology, and

the experiment proved the feasibility on a sample dataset. The SMARTS Scalability

Experiment tested the methodology on data from the MRFAMOS model, and showed

that it performs really well as a whole. The SMARTS Visualization Experiment

showed that upper and lower bounds can also be generated using the methodology.

In the next chapter, the results from the experiments are reviewed, and the hypotheses

and research questions are revisited.
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CHAPTER IX

DISCUSSION AND CONCLUSIONS

The previous chapter performed the experiments that were introduced in Chapter 7

and presented the initial findings. In this chapter, the results are summarized and

discussed, and the claims and hypotheses are revisited in light of the new information

from the experiments. The chapter concludes with a summary of contributions and

suggestions for future extensions of the research.

The Surrogate Model and Regression for Time Sequences (SMARTS) methodol-

ogy has been developed to create surrogate models tailored for TS data. The main

application for the regression is for visualization purposes so that the information can

be represented and interpolated without the original data. The regression of large TS

datasets is difficult because they are nonlinear, and the size of the datasets causes the

regression to be slow. These types of datasets can be found with simulation models

for operations and sustainment (O&S) research where the simulation is run varying

multiple variables at the same time. To help with the modeling, initial insights were

drawn from studying the Fighter Aircraft Maintenance and Operations Simulation

(FAMOS) model. It was observed that TS data can be represented using piecewise

linear regression (PLR), and the entire dataset can be captured using two separate

regressions, where is for the design space variability while the other for the TS shapes.

This led to the development of the SMARTS methodology into a three step process as
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Figure 106: Three steps of the SMARTS methodology and the corresponding methods
that satisfy the steps

depicted in Figure 106. The literature was surveyed to determine how to accomplish

those steps, and experiments were designed for those with inconclusive answers, and

the following section discusses the results of these experiments.

9.1 Discussion of Results and Revisiting the Hypotheses

9.1.1 Parallel Analysis Experiment

The parallel analysis (PA) experiment was designed to test Claim 2, which stated

the following, “The parallel analysis method is an appropriate method to determine

the number of components to keep when applying principal component analysis to

a time sequential dataset that is generated by an engineering simulation model for

design space exploration.” The PA method was tested against a large set of test data,

and it was indeed successful in identifying the correct number of PCs in most cases.

However, the PA method had trouble with sets of discontinuous TS that were phase

shifting.

Principal component analysis (PCA) used the covariance matrix to capture the
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Figure 107: The covariance matrix of phase-sawtooth and phase-triangle
datasets with data size of n = 400 and noise of σ = 0.1. The red color indicates high
covariance, and blue indicates low covariance.

relationship between the variables, and it did not presume that the data is sequential.

The sequential nature of TS was captured by calculating the correlation of a point

moving in consort with its neighbors. Therefore, a discontinuity that “moves through”

the TS through phase shifting disrupts the correlation with its neighboring variables.

This caused the variance to be distributed into more dimensions or PCs.

The differences can be seen by comparing the heat map of the covariance matrix

as shown in Figure 107. The phase-sawtooth and phase-triangle datasets

with data size of n = 400 and noise of σ = 0.1 were used to create the plots. In the

regions of the discontinuity with phase-sawtooth (e.g. time step = 100), there is

a high covariance, but the shape is also highly elliptic. The relationship between the

time steps is distinctly different when compared with the covariance matrix calculated

from phase-triangle dataset.
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When the PA method was used in the Scalability Experiment (Section 8.2.5), the

method consistently returned the maximum limit of 10 PCs, which is a preset upper

limit for the SMARTS methodology. This indicated that the PA method is not robust

a to large amount of noise. The MRFAMOS data also showed regions that looked

like square waves where the operational availability (AO) jumped between 0 and 0.9

due to the stochasticity in the simulation model, and perhaps, a phenomenon similar

to the phase shifting problem was occurring here as well.

Discontinuous data is a possibility in simulation models, and phase shifting and

feature shifting are also potential problems. However, these are beyond the scope of

this thesis. At least for the data that was used and presented in this thesis, shifting

was minimal, and the noise did not pose a problem to the results of the experiments.

Responding to the Claim 2, the experiment demonstrated the effectiveness of PA

in identifying the correct number of PCs.

Claim 2 is demonstrated.

This claim ties back to Research Question 13, which stated “How many principal

components should be kept after principal component analysis (PCA) is applied to a

dataset?” By using the PA method, the correct number of PCs can be determined.

9.1.2 Robust Threshold and TS Smoothing Experiment

The robust threshold experiment was designed to test Claim 1, which stated the

following, “A smoothing technique can be applied to a time sequence to estimate the

noise in the data to a sufficient accuracy so that it can be used as the threshold setting

for TS segmentation methods.” Various smoothing functions were tested against a set
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Figure 108: Comparison of the moving average and moving median smoothers
with window size of 9 on a square and sawtooth wave

of sequential data, and the case median and the moving median with a window size

of 3 determined to be the best options. The case median was superior when there

are repetitions to use for smoothing, while the moving median was the better option

when there are fewer than five repetitions to use. For the SMARTS methodology, the

case median was used because it has repetitions for smoothing.

The higher performance of moving median smoother among the other moving

window smoothers was partially due to the TS datasets that were used to evaluate

the smoothers. The moving average and its variants (moving triangle and mov-

ing Gaussian) tended to deemphasize sharp corners and features as illustrated in

Figure 108. The comparison is slightly exaggerated in the figure by using a larger

window size of 9 for both smoothers. As mentioned previously, discontinuous data

is a possibility, and so, the use of the square and sawtooth waves for comparing the

smoothing functions was fair.

With respect to the other smoothers, the case mean and case median are better

performing methods when repetitions are guaranteed. The Kalman smoother and

Savitsky-Golay smoothing filter could also be modified to incorporate repetitions

by applying the algorithms on an averaged TS (or the result of case mean), but
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Figure 109: Estimation of noise in TS using a moving median smoother varied over
the number of repetitions used for the estimate. (This is a closeup view from Figure
68)

this mixes different algorithms and opens doors to a large number of combinations.

These combined approaches were not explored. The Savitsky-Golay method fits a

regression to a subset of points, and if the simplest linear regression is used, it would

suffer similar problems to the moving average. There were options to specify a

higher order polynomial which could avoid this problem. Figure 109 shows a closeup

view of the moving median from Figure 68. For most of the data that was tested,

the moving median estimates had less than 5% error.

In answering Claim 1, certain smoothing algorithms were indeed capable of ap-

proximating the noise in the TS, and the case median and the moving median

with a window size of 3 were the best among them for the tested conditions.

Claim 1 is demonstrated.
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The result of this experiment answers Research Question 11, which stated “How

can a robust threshold setting be derived from the data for TS with noise?” and

Research Question 12, which stated “Which smoothing technique is appropriate for

smoothing TS data to estimate the noise in the data?” The case median and

moving median can be used as a smoother to determine the threshold setting for

the TS segmentation algorithms.

9.1.3 Clustering and Feature Selection Experiment

The clustering and feature selection experiment was designed to test Hypothesis 2.

The hypothesis stated the following, “If principal components (PC) of the time se-

quential dataset and the first PC of its breakpoints are used as the features for clus-

tering, then the model-based clustering that uses Gaussian mixture models will yield

clusters that are suited for piecewise linear regressions.” The experiment concluded

that indeed model-based clustering using PCA on the output data and breakpoints

as features was the best combination overall, but it did identify a few weaknesses.

For example, model-based clustering did not perform well when a cluster is singular

in any dimension.

In the context of clustering the data from simulation models, singular data is

unlikely. Instead, it is more likely to have noisy data, and in the case where the

PA method overestimates the number of PCs, there could be extraneous feature

dimensions. This situation was observed in the scalability experiment where the

PA method identified ten or potentially more significant PCs, and despite this, the

model-based clustering performed well.
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The density-based clustering DBSCAN performed well where the model-based

method faltered. Density-based methods worked well when the points were clustered

together as it was demonstrated with the shapes test set where there were distinct

clusters of points. However, it did have trouble with the discrete test set, which

was also designed to have easily identifiable clusters. The distance between the clus-

ters may have been too close and caused DBSCAN to group them together. Another

issue identified with DBSCAN was that the inter-point distances can be distorted

after the data is normalized, and this caused points in a cluster to be too far apart

to be grouped together. This was especially true when there are few points in the

dataset.

Because DBSCAN grouped intersecting clusters together, the modified version

DBSCANmod applied a line segmentation algorithm to the results of DBSCAN. The

clusters for TS data formed lines in n-dimensional space with each cluster pointing

in different directions, and the ends of the clusters could be touching as the data

transitions from one type of transformation to another. DBSCAN grouped these two

together because they were touching, so a segmentation algorithm was needed to

detect the change in direction and segment the cluster. DBSCANmod adopted the

shortfalls of DBSCAN, and it had its own share of problems. Because the threshold

for this method was difficult to set, it oftentimes ended up oversegmenting the data,

especially if the data is noisy. It succeeded in performing better than DBSCAN

as intended when it was applied to the ts test set, but it was still inferior to the

model-based clustering method.

The PCA feature was one of the best performing features overall. Isomap and
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LLE did not do well, and perhaps the TS data is not suited for these methods. The

Mean and Standard Deviation features worked pretty well for being a simple

feature, and this could be because most of the testing datasets were also simple in

nature. The two features did not perform well with the ts test set, which has more

complex transformations. The DFT feature performed really well with the null test

set, but it was inferior to other features in other test sets. The breakpoints features

were mainly useful with the ts test set as expected.

Combinations of features have resulted in mixed results. Sometimes, the clustering

accuracy was between that of the individual features. In other circumstances, the

combined performance was better than any of its constituent features alone. More

information about the data was not necessarily better, and it suggested that the

features should be chosen and used carefully. For the purposes of creating PLRDGs,

PCA + PCA(Breakpoints) feature set was the best option because it captured

aspects of the data as well as its breakpoints.

Hypothesis 2 is supported.

The results of this experiment answered Research Question 8, which asked, “What

is the appropriate clustering technique to create groups that will yield piecewise lin-

ear regressions with good fits?” and Research Question 9, which asked, “What are

the appropriate features to use for clustering TS datasets to create piecewise linear

regressions with good fits?”

Also, with the conclusions from the Robust Threshold and TS Smoothing Exper-

iment and the Clustering and Feature Selection Experiment, the sub-steps of Step 3
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Figure 110: Steps and methods of Step 3 of the SMARTS methodology

were completed. Figure 110 shows the complete list of methods that satisfy Step 3.

9.1.4 SMARTS Experiments

Two experiments were conducted to test Hypothesis 1, which stated, “In the context

of design space exploration using simulation models, if the output data consists of

high-dimensional and sequential outputs such as a time sequence, then the SMARTS

methodology will yield regression models that are equal or better in performance (fit

time, model fit, and representation errors) compared to other regression methods.”

The SMARTS Feasibility Experiment tested if the SMARTS methodology was effec-

tive on a set of test data, and the results were promising. Then the method was
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applied to data generated by the Multirole Fighter Aircraft Maintenance and Opera-

tions Simulation (MRFAMOS) model, and the SMARTS method was overall a highly

competitive method but was not superior in any particular metric.

However, the regression model generated using SMARTS had the best overall per-

formance. In terms of the fit time, it was second to the second-order linear regression,

and it was two orders of magnitude faster than the neural network (NN) regression

models. Two NN models were initially created. One fit a NN to the entire dataset

while the other fit NNs to each time step. Both of these NN models had better model

fit errors (MFEs) than the SMARTS model, but it was clear that it was overfitting

the data when the model representation errors (MREs) were evaluated. When the

models were compared visually, the NN models generated TS shapes that were either

noisy or poor representations. Then, the NN model that was fit to each time step was

modified by applying a moving median smoother. This modified NN had better MFE

and MRE than the SMARTS model by about 15%, and the visual representation was

also good. The SMARTS model appeared somewhat simplistic when plotted with the

noisy MRFAMOS data, but it captured the major features very well.

The SMARTS Visualization Experiment was performed to show that the SMARTS

methodology could be used to capture the upper and lower bounds for a specific input.

The SMARTS method did not capture the absolute minimum or maximum but rather

showed the ±3 standard deviations range in which the median could vary. It also did

not capture outlier segments that strayed from the rest of the TS segments, which

were caused by the stochasticity in the model.

259



10-1 100 101 102 103

Fit Time [log(seconds)]

0.8

1.0

1.2

1.4

1.6

1.8

(M
FE

+
M

R
E

)/2 linreg2
nn20
nn20-ts
nn20-ts (smooth)
SMARTS

Figure 111: Fit times vs. the average of MFE and MRE for several regression meth-
ods. Values are scaled to the SMARTS regression model.

Hypothesis 1 stated that the SMARTS methodology would be superior in perfor-

mance to other regression methods. The results showed that the methodology was not

superior in any one particular metric of fit time, fit error, and visual representation.

However, it was conditionally better compared to the others when its performance

was considered as a whole. Figure 111 shows the results of the SMARTS Scalability

Experiment. The x-axis plots the normalized fit times in log scale, and the y-axis is

the average of the normalized MFE and MRE. The linear regression, the smoothed

NN for every time step, and the SMARTS methodology lie on the Pareto frontier of

fit time and performance, and tradeoffs can be made depending on what is desired

when choosing a regression method for TS data.

Hypothesis 1 is conditionally supported.

This experiment ultimately satisfied the initial goals of this research which were
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discussed in the first chapter, which was to create a regression methodology to rep-

resent large datasets with sequential data.

9.2 Summary of Contributions

The main contributions are the following:

• The use of an intermediate domain to split the regression into two steps, separat-

ing the complexity into two separate regressions - one to capture the variability

due to design space variables and one to capture the output TS shapes

• The method to create piecewise linear regressions (PLR) for TS data generated

by simulation models for operations and sustainment

• The method to create PLRs using model-based clustering as the method for

partitioning the data

• The evaluation of the parallel analysis method for time sequential data over a

wide range of parameter settings

• The evaluation of a comprehensive set of smoothing techniques on time sequen-

tial data

• The criteria which a group of points should satisfy in order to result in good

PLR fits

The most significant contribution was the splitting of the regression into two steps

to manage the complexity and to reduce the amount of data that is required for the
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regression. This approach bridged the field of image processing with the field of engi-

neering design. Currently, there is significant research being done in image processing

to organize a set of unlabeled photographs in relation to each other, and manifold

learning techniques are heavily employed to reduce the dimensions of the images to

capture the underlying actions. In image processing, the process usually stops with

finding this manifold and using it for pattern matching or image regression. This is

because the images are the starting and ending point, whereas in design, the starting

point is the set of inputs into a system or simulation model. Purposeful changes are

made using the design of experiments, and the end results are the TS shapes. This

was how the SMARTS methodology bridged design and image processing.

The next contribution built on the first to enable regressions of TS data to be used

in the engineering design process. Regression models are useful in design tasks such

as decision making. The surrogate models can be used in decision making interfaces

to allow quick tradeoff studies, and design points can be interpolated easily. It also

improves the portability of these tools because the large datasets are represented

using equations and functions and do not need to accompany the tools. The SMARTS

methodology expands the tools available to engineers so regression models can be fit

to TS data.

The SMARTS methodology approached piecewise regression (PR) differently from

the conventional PR methods and demonstrated a novel combination of techniques

tailored towards TS data. PR methods such as regression trees use a recursive ap-

proach to partition the data until a threshold condition is satisfied. On the other
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hand, B-splines and P -splines start with more than enough breakpoints and use op-

timization routines to fit the model. The SMARTS methodology took a more serial

approach where the regression did not inform the creation of the pieces of the piece-

wise regression. Instead, the methodology tried to guarantee the goodness fit across

these pieces by using a specific combination of clustering and data feature sets.

The PA method had been tested against a large selection of test data [51, 82],

and a limited study had been performed on TS data [47, 61]. However, there has not

yet been a study published on the PA method applied to TS data to this detail. One

of the more interesting findings was the impact of discontinuities or large jumps in

phase shifting sequential data to the results of the PA method.

Another contribution was the comprehensive study performed on one-dimensional

smoothing techniques on test TS data. The investigation also included repetitions

of data, which is usually not done because data with the same initial conditions are

difficult to collect in real world applications.

The piecewise linear regression data groups (PLRDGs) provided requirements that

a group of points must exhibit, and if satisfied, a PLR model generated from that

group of points had some level of guarantee of having good fit characteristics.

9.3 Potential Extensions

The SMARTS methodology can be considered as a framework for sequential data

regression, and it was tailored for TS data from O&S simulation results. There is room

for improvement because the investigations into each components were not exhaustive.

Furthermore, there are potentially new applications based on some findings from the
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research.

The choice of PLR was driven by the observations and the need for data reduction,

but this can be relaxed if the visual representation does not need to be piecewise and

linear or if the data constraints are not as severe. Once the Z domain is created,

the task of capturing the shape could be performed with other regression methods

besides PLR.

The Z domain in this thesis was limited to one dimension to limit the scope of the

work but also because the simulation model only behaved in such a way. A Z domain

with more than one dimension is theoretically possible, but it was not demonstrated

in this thesis. Some of the challenges associated with this would be the resolution

of overlapping groups after the clustering. Also, as more dimensions are added, the

number of individual regressions can increase very rapidly.

The creation of the Z domain introduces a new way to sample the design space

for adaptive sampling. Because the TS is fit using the Z domain, it is most effective

to add points to where it is the most sparse in the intermediate domain. However, if

the number of dimensions in Z is less than X, it is likely that there is a non-unique

mapping from Z → X. At the same time, there is a need to sample sparse areas in

X to make a better mapping of X → Z. There is an opportunity to optimize the

points that are sampled in X which will maximize the information gained in both

mappings.
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9.4 Summary

This final chapter summarized the research through the performed experiments, high-

lighted the contributions, and discussed avenues of extending the research. The exper-

iments and development of the SMARTS methodology was successful, but it did not

satisfy the audacious goal of becoming a regression method that is better compared

to existing methods in fit time, accuracy, and visual appeal for TS data. However,

the methodology presented a good and competitive compromise of these aspects.

Many options were explored through an extensive literature survey and experi-

mentation process to create the final form of the SMARTS methodology, but many

more improvements can be made to the approach and implementation. Creating sur-

rogate models for large TS datasets is challenging, and the SMARTS methodology has

successfully overcome this trial with an ingenuous combination of existing methods

and prior knowledge, and this was only made possible by standing on the shoulders

of giants.

265



APPENDIX A

SMARTS SOFTWARE CODE

A.1 multivariate piecewise linear regression.py

1 import ts_segments_2 as ts_segments
2 import TimeSeriesDB
3 import my_functions
4 import smoothers
5 import MyScripts.FeatureExtract as FeatureExtract
6 import MyScripts.ApplyClustering as ApplyClustering
7
8 import numpy as np
9 from sklearn.decomposition import PCA

10 from sklearn.cluster import DBSCAN
11 from scipy.spatial import distance
12 from itertools import cycle
13 import rpy2 as rp
14 import rpy2.robjects as robjects
15 import pandas as pd
16 import pandas.rpy.common
17 from rpy2.robjects.packages import importr
18 from matplotlib import gridspec, offsetbox
19 import matplotlib.pyplot as plt
20 import copy
21 from collections import Counter
22 from itertools import izip
23
24 from pybrain.datasets import SupervisedDataSet
25 from pybrain.tools.shortcuts import buildNetwork
26 from pybrain.supervised.trainers import BackpropTrainer
27 from rpy2.robjects.packages import importr
28 import gc
29 from setuptools.dist import Feature
30 from scipy.interpolate import interp1d
31
32 def lazyprop(fn):
33 attr_name = ’_lazy_’ + fn.__name__
34 @property
35 def _lazyprop(self):
36 if not hasattr(self, attr_name):
37 setattr(self, attr_name, fn(self))
38 return getattr(self, attr_name)
39 return _lazyprop
40
41 class multivariatePiecewiseRegression(object):
42 def __init__(self, df, name=’MPLR’, test_data=None,
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43 df_inputs=None):
44 super(multivariatePiecewiseRegression, self).__init__()
45 self.name = name
46 assert isinstance(df, pd.DataFrame)
47 self.df = copy.copy(df)
48 self.test_data = test_data
49 if df_inputs is None:
50 self.df_inputs = self.df.xs(’inputs’, axis=1)
51 self._assign_pca()
52 self.df_pca = self.df.xs(’attr’,
53 axis=1).xs(’pca’,axis=1)
54 else:
55 self.df_inputs = df_inputs.xs(’inputs’, axis=1)
56 self.df_pca = df_inputs.xs(’attr’,
57 axis=1).xs(’pca’,axis=1)
58 self.df_run_numbers = df_inputs.xs(’run_numbers’,
59 axis=1)
60 self._x_to_z_NN = None
61 self._z_to_y_breakpoints = None
62 self._z_to_y_regressions = None
63 self._z_to_y_pca2groups = None
64 self._df_pca_pred = None
65
66 @classmethod
67 def from_mplr(cls, mplr):
68 df_pca = pd.DataFrame(mplr.df_pca, columns=[’pca’])
69 df_inputs = pd.concat({’inputs’:mplr.df_inputs,
70 ’attr’:df_pca,
71 ’run_numbers’:mplr.df_run_numbers},
72 names=[’L1’,’L2’], axis=1)
73
74 reg = cls(df=mplr.df, name=mplr.name,
75 test_data=mplr.test_data,
76 df_inputs=df_inputs)
77 reg._x_to_z_NN = mplr._x_to_z_NN
78 reg._z_to_y_breakpoints = mplr._z_to_y_breakpoints
79 reg._z_to_y_regressions = mplr._z_to_y_regressions
80 reg._z_to_y_pca2groups = mplr._z_to_y_pca2groups
81 reg._df_pca_pred = mplr._df_pca_pred
82 return reg
83
84 @staticmethod
85 def update_mplr(mplr):
86 return multivariatePiecewiseRegression.from_mplr(mplr)
87
88 @lazyprop
89 def _x_var_names(self):
90 nms = list(self.df_inputs)
91 if ’mc’ in nms:
92 nms.remove(’mc’)
93 return np.sort(nms)
94
95 def make_regressions(self):
96 self._z_to_y()
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97 self._x_to_z()
98
99 def _z_to_y(self):
100 self._initial_segmentation()
101 self._extract_features()
102 self._group_data()
103 self._segmentation_by_group()
104 self._clean_up_groups_2()
105 self._check_group_nseg()
106 self._extract_features()
107 self._create_regressions()
108
109 def _x_to_z2(self, how=’median’):
110 if how == ’median’:
111 self._x_to_z()
112 elif how == ’min’:
113 self._x_to_z_min()
114 elif how == ’max’:
115 self._x_to_z_max()
116 else:
117 raise RuntimeError("mplr._x_to_z2 --> invalid ’how’")
118
119 def _x_to_z_min(self):
120 # For each input case, calculate the average and
121 # standard deviation
122 # of the first PC. The "min" value is 3 deviations away.
123 run_numbers = set(self.df_run_numbers.values.ravel())
124 df_pca = self.df_pca
125 df_pca_min = pd.DataFrame([])
126 for rn in run_numbers:
127 df_pca_subset = df_pca[self.df_run_numbers.xs( \
128 ’run_number’, axis=1)==rn]
129 pca_values = df_pca_subset.values
130 pca_mean = np.mean(pca_values)
131 pca_std = np.std(pca_values)
132 # add because pca flips the axes
133 pca_val = pca_mean + pca_std * 3
134 if pca_val < 0: pca_val = 0
135 df_pca_min = pd.concat((df_pca_min,
136 pd.DataFrame([pca_val],
137 columns=[’pca’],
138 index=[df_pca_subset.index[0]])))
139
140 nms = list(self.df_inputs.columns)
141 nms1 = np.array(nms)
142 if ’mc’ in nms1:
143 nms.pop(np.argwhere(nms1 == ’mc’))
144 df_inputs = self.df_inputs.xs(np.sort(nms), axis=1)
145 df_inputs = df_inputs.ix[df_pca_min.index]
146
147 # Merge Inputs and PCA so that run_id matches
148 df_all = df_inputs.join(df_pca_min)
149
150 # Split pandas DataFrame into Inputs and PCA
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151 nms = list(df_all.columns)
152 nms1 = np.array(nms)
153 nms.pop(np.argwhere(nms1 == ’pca’))
154 pca = df_all.xs([’pca’], axis=1)
155
156 df_inputs = df_all.xs(nms, axis=1)
157
158 # R
159 R = robjects.r
160 importr(’nnet’)
161
162 R_df_x = pandas.rpy.common.convert_to_r_dataframe(df_inputs)
163 R_df_y = pandas.rpy.common.convert_to_r_dataframe(pca)
164 fit_nn = None
165 fit_value = 1e10
166 for i in range(10):
167 nn = R.nnet(x=R_df_x, y=R_df_y, size=5, maxit=500,
168 decay=1e-4, abstol = 1.0e-10,
169 reltol = 1.0e-20, trace=False)
170 if fit_value > nn.rx2(’value’)[0]:
171 fit_value = nn.rx2(’value’)[0]
172 fit_nn = nn
173 self.fit_nn = fit_nn
174 self._x_to_z_NN = fit_nn
175 self.garbage_collect()
176
177 def _x_to_z_max(self):
178 # For each input case, calculate the average and
179 # standard deviation
180 # of the first PC. The "min" value is 3 deviations away.
181 run_numbers = set(self.df_run_numbers.values.ravel())
182 df_pca = self.df_pca
183 df_pca_max = pd.DataFrame([])
184 for rn in run_numbers:
185 df_pca_subset = df_pca[self.df_run_numbers.xs(
186 ’run_number’, axis=1)==rn]
187 pca_values = df_pca_subset.values
188 pca_mean = np.mean(pca_values)
189 pca_std = np.std(pca_values)
190 # subtract 3*pca_std because pca flips the axes
191 pca_val = pca_mean - pca_std * 3
192 if pca_val > 1: pca_val = 1
193 df_pca_max = pd.concat((df_pca_max,
194 pd.DataFrame([pca_val],
195 columns=[’pca’],
196 index=[df_pca_subset.index[0]])))
197
198 nms = list(self.df_inputs.columns)
199 nms1 = np.array(nms)
200 if ’mc’ in nms1:
201 nms.pop(np.argwhere(nms1 == ’mc’))
202 df_inputs = self.df_inputs.xs(np.sort(nms), axis=1)
203 df_inputs = df_inputs.ix[df_pca_max.index]
204
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205 # Merge Inputs and PCA so that run_id matches
206 df_all = df_inputs.join(df_pca_max)
207
208 # Split pandas DataFrame into Inputs and PCA
209 nms = list(df_all.columns)
210 nms1 = np.array(nms)
211 nms.pop(np.argwhere(nms1 == ’pca’))
212 pca = df_all.xs([’pca’], axis=1)
213
214 df_inputs = df_all.xs(nms, axis=1)
215
216 # R
217 R = robjects.r
218 importr(’nnet’)
219
220 R_df_x = pandas.rpy.common.convert_to_r_dataframe(df_inputs)
221 R_df_y = pandas.rpy.common.convert_to_r_dataframe(pca)
222 # fit_nn = R.nnet(x=R_df_x, y=R_df_y, size=10,
223 decay=0.0001, maxit=500)
224 fit_nn = None
225 fit_value = 1e10
226 for i in range(10):
227 nn = R.nnet(x=R_df_x, y=R_df_y, size=5,
228 maxit=500, decay=1e-4,
229 abstol = 1.0e-10, reltol = 1.0e-20,
230 trace=False)
231 if fit_value > nn.rx2(’value’)[0]:
232 fit_value = nn.rx2(’value’)[0]
233 fit_nn = nn
234 self.fit_nn = fit_nn
235 self._x_to_z_NN = fit_nn
236 self.garbage_collect()
237
238 def _x_to_z(self):
239 # Arranges the Inputs to NN
240 nms = list(self.df_inputs.columns)
241 nms1 = np.array(nms)
242 if ’mc’ in nms1:
243 nms.pop(np.argwhere(nms1 == ’mc’))
244 df_inputs = self.df_inputs.xs(np.sort(nms), axis=1)
245 df_pca = self.df_pca
246
247 # Merge Inputs and PCA so that run_id matches
248 df_all = df_inputs.join(df_pca)
249
250 # Split pandas DataFrame into Inputs and PCA
251 nms = list(df_all.columns)
252 nms1 = np.array(nms)
253 nms.pop(np.argwhere(nms1 == ’pca’))
254 pca = df_all.xs([’pca’], axis=1)
255
256 df_inputs = df_all.xs(nms, axis=1)
257
258 # R
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259 R = robjects.r
260 importr(’nnet’)
261
262 R_df_x = pandas.rpy.common.convert_to_r_dataframe(df_inputs)
263 R_df_y = pandas.rpy.common.convert_to_r_dataframe(pca)
264 fit_nn = None
265 fit_value = 1e10
266 for i in range(10):
267 nn = R.nnet(x=R_df_x, y=R_df_y, size=5, maxit=500,
268 decay=1e-4, abstol = 1.0e-10,
269 reltol = 1.0e-20, trace=False)
270 if fit_value > nn.rx2(’value’)[0]:
271 fit_value = nn.rx2(’value’)[0]
272 fit_nn = nn
273 self.fit_nn = fit_nn
274 self._x_to_z_NN = fit_nn
275 self.garbage_collect()
276
277 def fn_X2Z(self, x_df):
278 assert isinstance(x_df, pd.DataFrame)
279 if self._x_to_z_NN is None:
280 myMsg = ’Neural Net for X to Z does not exist’
281 raise RuntimeError(myMsg)
282 # Check column names
283 col_nms = list(x_df.columns)
284 assert len(col_nms) == len(self._x_var_names)
285 if np.any(self._x_var_names != np.sort(col_nms)):
286 myMsg = ’Input var names do not match to existing ones’
287 raise RuntimeError(myMsg)
288 # R
289 R = robjects.r
290 df_inputs = x_df.xs(self._x_var_names, axis=1)
291 R_df_x = pandas.rpy.common.convert_to_r_dataframe(df_inputs)
292 pca_pred = R.predict(self._x_to_z_NN, newdata=R_df_x)
293 return pca_pred
294
295 def predict(self, inputs, t):
296 pca = self.fn_X2Z(inputs)
297 myOut = []
298 for p in pca:
299 if p > 1:
300 p = 1
301 elif p < 0:
302 p = 0
303 new_y = self.fn_Z2Y(p, t)
304 myOut.append(new_y)
305 return myOut
306
307 def _extract_features(self, n_components=None):
308 df_bp_pca = self._extract_PCA_Breakpoints()
309 var = df_bp_pca.columns.tolist()[0]
310 if var in self.df.columns.tolist():
311 self.df.update(df_bp_pca)
312 else:
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313 self.df = pd.merge(self.df, df_bp_pca,
314 left_index=True, right_index=True)
315
316 def _extract_PCA(self, n_components=2):
317 # Extract PCA
318 y = self.df.xs(’outputs’, axis=1).values
319 fit_pca = PCA(n_components=n_components)
320 X_pca = fit_pca.fit_transform(y)
321 X_pca = my_functions.normalize(X_pca)
322 var = range(n_components)
323 col_names = [’’.join((’pca’,str(i))) for i in var]
324 col_idx = pd.MultiIndex(levels=[[’ApplyPCA’], col_names],
325 labels=[[0]*n_components,
326 range(n_components)],
327 names=[’L1’,’L2’])
328 df = pd.DataFrame(X_pca, index=self.df.index,
329 columns=col_idx)
330 return df
331
332 def _extract_PCA_Breakpoints(self):
333 # Extract Breakpoints PCA
334 segs = self.df.xs(’attr’, axis=1).xs(’segs’, axis=1).values
335 segs = [eval(row) for row in segs]
336 bp = FeatureExtract.breakpoint_formatting(segs,
337 style=’short’)
338 fit_pca = PCA(n_components=1)
339 X_bp_pca = fit_pca.fit_transform(bp)
340 X_bp_pca = my_functions.normalize(X_bp_pca)
341
342 col_names =[’pca0’]
343 col_idx = pd.MultiIndex(levels=[[’ApplyPCA_Breakpoints’],
344 col_names],
345 labels=[[0],[0]],
346 names=[’L1’,’L2’])
347 df = pd.DataFrame(X_bp_pca, index=self.df.index,
348 columns=col_idx)
349 return df
350
351 def _assign_pca(self):
352 ’’’ Perform PCA on data. ’’’
353 y = self.df.xs(’outputs’, axis=1).values
354 fit_pca = PCA(n_components=1)
355 X_pca = fit_pca.fit_transform(y)
356 X_pca = my_functions.normalize(X_pca)
357 df_pca = pd.DataFrame(X_pca, index=self.df.index,
358 columns=[(’attr’,’pca’)])
359 if df_pca.columns[0] in self.df.columns:
360 self.df.update(df_pca)
361 else:
362 self.df = pd.merge(self.df, df_pca,
363 left_index=True, right_index=True)
364
365 def _initial_segmentation(self):
366 ’’’ Segments the runs. ’’’
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367 # Grab Data
368 mat = self.df.xs(’outputs’, axis=1).values
369 sigmas = self.df.xs(’attr’, axis=1).xs(’sigma’,
370 axis=1).values
371 # Prep
372 nr, nc = mat.shape
373 t = range(nc)
374 segs = [’’] * nr
375 nseg = [0] * nr
376 # Segmentation
377 for i, (y, sd) in enumerate(izip(mat, sigmas)):
378 ts, ys = ts_segments.hybrid_aggr(t, y, sd)
379 seg_index = ts_segments.return_break_index(t, ts)
380
381 ref_seg = [x1[0] for x1 in seg_index]
382 ref_seg = ref_seg[1:]
383
384 ts, ys = ts_segments.optimize_segmentation(t, y,
385 ref_seg)
386 seg_index = ts_segments.return_break_index(t, ts)
387
388 segs[i] = str(seg_index)
389 nseg[i] = len(seg_index)
390 d = {(’attr’,’segs’): segs, (’attr’,’nseg’): nseg}
391 df_segs = pd.DataFrame.from_dict(d)
392 df_segs.index = self.df.index
393 # Save segmentation
394 self.df = pd.merge(self.df, df_segs, left_index=True,
395 right_index=True)
396
397 def _segmentation_by_group(self):
398 ’’’ Segments the runs by groups. ’’’
399 # get groupings
400 grps = list(set(self.df.ix[:, (’attr’,’group’)].values))
401
402 for g in grps:
403 # Get index of groups
404 idx = self.df.index[self.df.xs((’attr’,’group’),
405 axis=1)==g]
406 # Grab Data
407 df_subset = self.df.ix[idx]
408 mat = df_subset.xs(’outputs’, axis=1).values
409 sigmas = df_subset.xs((’attr’,’sigma’), axis=1).values
410 # Prep
411 nr, nc = mat.shape
412 t = range(nc)
413 segs = [’’] * nr
414 nseg = [0] * nr
415 # Segmentation
416 for i, (y, sd) in enumerate(izip(mat, sigmas)):
417 ts, ys = ts_segments.hybrid_aggr(t, y, sd)
418 seg_index = ts_segments.return_break_index(t, ts)
419
420 ref_seg = [x1[0] for x1 in seg_index]
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421 ref_seg = ref_seg[1:]
422
423 ts, ys = ts_segments.optimize_segmentation(t, y,
424 ref_seg)
425 seg_index = ts_segments.return_break_index(t, ts)
426
427 segs[i] = str(seg_index)
428 nseg[i] = len(seg_index)
429 d = {(’attr’,’segs’): segs, (’attr’,’nseg’): nseg,
430 (’attr’,’group’):g}
431 df_segs = pd.DataFrame.from_dict(d)
432 df_segs.index = idx
433 # Save segmentation
434 self.df.update(df_segs, ’left’)
435
436 def _group_data(self):
437 ’’’ Cluster data using DBScan and line_regression on
438 PCA and PCA(Breakpoints). ’’’
439 df1 = self.df.xs(’ApplyPCA’, axis=1)
440 df2 = self.df.xs(’ApplyPCA_Breakpoints’, axis=1)
441 df = pd.concat({’ApplyPCA’: df1,
442 ’ApplyPCA_Breakpoints’: df2},
443 names=[’L1’,’L2’], axis=1)
444 print ’((( features for clustering: ’, df.columns, ’)))’
445 lbls = ApplyClustering.model_based_clustering(df)
446 lbls = np.array(lbls, dtype=int)
447 df_grp = pd.DataFrame(lbls, index=df.index,
448 columns=[(’attr’,’group’)])
449 if (’attr’,’group’) in self.df.columns.tolist():
450 self.df.update(df_grp)
451 else:
452 self.df = pd.merge(self.df, df_grp, left_index=True,
453 right_index=True)
454
455 def _check_group_nseg(self):
456 ’’’ This checks to see if the number of segments is the
457 same across a group ’’’
458 groups = list(set(self.df.ix[:, (’attr’,’group’)]))
459 # loop over groups
460 for g in groups:
461 if g == -1: continue
462 m = self.df[self.df.ix[:,(’attr’,’group’)]==g]
463 nsegs = m.ix[:,(’attr’,’nseg’)].values
464 # If just one nseg, skip
465 if np.all(nsegs == nsegs[0]):
466 continue
467 else:
468 # Find the most common nseg --> dominating
469 nseg_dom = -1
470 nseg_dom_ind = np.array([])
471 nseg_options = list(set(nsegs))
472 for ns in nseg_options:
473 x = np.argwhere(nsegs == ns).ravel()
474 if len(x) > len(nseg_dom_ind):
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475 nseg_dom_ind = x
476 nseg_dom = ns
477 # If most common nseg is 1 segment,
478 # make all else nseg=1
479 if nseg_dom == 1:
480 idx = list(m.index)
481 segs = m.ix[:,(’attr’,’segs’)].values
482 new_seg = eval(segs[nseg_dom_ind[0]])
483 for i in range(len(m)):
484 if i not in nseg_dom_ind:
485 self.df.ix[idx[i], (’attr’,’segs’)] = \
486 str(new_seg)
487 self.df.ix[idx[i], (’attr’,’nseg’)] = 1
488 # Otherwise, enforce nseg on the other ones using
489 # optimized segmentation
490 else:
491 nseg_dom_ind2 = m.index[nseg_dom_ind]
492 pcas = m.ix[:, (’attr’,
493 ’pca’)].values[nseg_dom_ind]
494 m_ = m.xs(’attr’, axis=1).xs([’pca’, ’nseg’],
495 axis=1)
496 for i, v in m.iterrows():
497 if i not in nseg_dom_ind2:
498 arg = my_functions.arg_closest(
499 v[(’attr’, ’pca’)], pcas)
500 arg = nseg_dom_ind[arg]
501 ref_seg = eval(m.ix[m.index[arg],
502 (’attr’,’segs’)])
503 ref_seg = [x1[0] for x1 in ref_seg]
504 ref_seg = ref_seg[1:]
505 y = m.xs(’outputs’,
506 axis=1).ix[i,:].values
507 t = range(len(y))
508 ts, ys = \
509 ts_segments.optimize_segmentation(t, y,
510 ref_seg)
511 seg_index = \
512 ts_segments.return_break_index(t, ts)
513 self.df.ix[i, (’attr’,’segs’)] = \
514 str(seg_index)
515 self.df.ix[i, (’attr’,’nseg’)] = \
516 nseg_dom
517
518 def _find_good_neighbors(self, x, neighs, grps,
519 n=5, outlier= -1):
520 ind = np.argwhere(x == neighs)
521 upper = []
522 lower = []
523 i9, j9 = 0, 0
524 while len(upper) < n:
525 i9 += 1
526 ind1 = ind + i9 + j9
527 try:
528 up1 = grps[ind1]

275



529 if up1 != outlier:
530 upper.append(np.asscalar(ind1))
531 else:
532 j9 += 1
533 except:
534 break
535 i9, j9 = 0, 0
536 while len(lower) < n:
537 i9 += 1
538 ind1 = ind - i9 - j9
539 try:
540 lo1 = grps[ind1]
541 if lo1 != outlier:
542 lower.append(np.asscalar(ind1))
543 else:
544 j9 += 1
545 except:
546 break
547 return lower, upper
548 def _new_label(self, ind, pca, seg, that_mat, outlier= -1):
549 ’’’ This function finds a group with the same number
550 of segments
551 ’’’
552 mat10 = that_mat.copy()
553 # Sort based on closest PCA
554 mat10[:, 2] = np.abs(mat10[:, 2] - pca)
555 mat10_sort = mat10[mat10[:, 2].argsort()]
556 seg10 = seg
557 new_group = None
558 i = 0
559 for i in range(1, len(mat10_sort)):
560 if mat10_sort[i, 3] != outlier:
561 if mat10_sort[i, 1] == seg10:
562 new_group = mat10_sort[i, 3]
563 return new_group
564 # If no group is found, make a new one
565 groups = self.tsDB.groups
566 new_group = max(groups) + 1
567 return new_group
568
569 def _clean_up_groups_2(self):
570 ’’’ This module takes care of overlaps between groups ’’’
571 ## Prep Data
572 attr = self.df.xs(’attr’,axis=1)
573 nseg_pca_grp = attr.xs([’nseg’,’pca’,’group’], axis=1)
574 runid = pd.DataFrame(self.df.index, columns=[’run_id’])
575 Runid_nseg_pca_grp = runid.join(nseg_pca_grp)
576
577 my_order = Runid_nseg_pca_grp.values
578 my_order2 = Runid_nseg_pca_grp.values
579
580 groups = list(set(self.df.ix[:, (’attr’,’group’)].values))
581
582 # Take care of overlaps
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583 gs11 = groups
584 min_max = []
585 nseg11 = []
586 # Get the upper and lower pca values for each group
587 for gr in gs11:
588 if gr == -1:
589 continue
590 temp = Runid_nseg_pca_grp[ \
591 Runid_nseg_pca_grp.xs(’group’, axis=1) == gr]
592 mi = np.min(temp.xs(’pca’, axis=1).values)
593 ma = np.max(temp.xs(’pca’, axis=1).values)
594 ns = temp.xs(’nseg’, axis=1).values[0]
595 min_max.append([gr, mi, ma])
596 nseg11.append(ns)
597 min_max = np.array(min_max)
598 nseg11 = np.array(nseg11)
599 new_order = np.argsort(min_max[:, 1], axis=0).ravel()
600 min_max12 = min_max[new_order, :]
601 gs12 = np.array(min_max12[:,0], dtype=int)
602 min_max12 = min_max12[:,[1,2]]
603 nseg12 = nseg11[new_order]
604
605 # Determine which groups are overlapping
606 overlap = []
607 for i in range(len(min_max12) - 1):
608 if min_max12[i, 1] > min_max12[i + 1, 0]:
609 overlap.append(i)
610 if len(overlap) > 0:
611 for i in overlap:
612 # check if range of [i+1] is within the range of [i]
613 if min_max12[i, 1] > min_max12[i + 1, 1]:
614 # determine which has a larger nseg
615 if nseg12[i] < nseg12[i + 1]:
616 # range of [i+1] is within
617 # the range of [i] and nseg of [i+1]
618 # is larger so raise nseg of [i] that
619 # overlaps with [i+1]
620 ind12_0 = np.argwhere(my_order2[:, 2] >= \
621 min_max12[i + 1, 0]).ravel()
622 ind12_1 = np.argwhere(my_order2[:, 2] <= \
623 min_max12[i + 1, 1]).ravel()
624 ind12_2 = np.argwhere(my_order2[:, 3] == \
625 gs12[i]).ravel()
626 change_index = np.intersect1d(ind12_0,
627 ind12_1)
628 change_index = np.intersect1d(change_index,
629 ind12_2)
630 for i12 in change_index:
631 my_order2[i12, 1] = nseg12[i + 1]
632 my_order2[i12, 3] = gs12[i + 1]
633 # split [i] into 2 groups
634 ind12_3 = np.argwhere(my_order2[:, 2] > \
635 min_max12[i + 1, 1]).ravel()
636 ind12_4 = np.argwhere(my_order2[:, 3] == \
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637 gs12[i]).ravel()
638 change_index = np.intersect1d(ind12_3,
639 ind12_4)
640 new_g12 = int(np.max(gs12) + 1)
641 gs12 = np.hstack((gs12, new_g12))
642 for i12 in change_index:
643 my_order2[i12, 3] = new_g12
644 else: # nseg12[i] > nseg12[i+1]:
645 # This means range of [i+1] is within
646 # range of [i] and nseg is lower
647 # so [i+1] will get absorbed by [i]
648 ind12_ = np.argwhere(my_order2[:, 3] == \
649 gs12[i + 1])
650 for i12 in ind12_:
651 my_order2[i12, 1] = nseg12[i]
652 my_order2[i12, 3] = gs12[i]
653 else: # min_max12[i,1] <= min_max12[i+1,1]:
654 if nseg12[i] < nseg12[i + 1]:
655 ind12_0 = np.argwhere(my_order2[:, 2] >= \
656 min_max12[i + 1, 0]).ravel()
657 ind12_1 = np.argwhere(my_order2[:, 2] <= \
658 min_max12[i + 1, 1]).ravel()
659 ind12_2 = np.argwhere(my_order2[:, 3] == \
660 gs12[i]).ravel()
661 change_index = np.intersect1d(ind12_0,
662 ind12_1)
663 change_index = np.intersect1d(change_index,
664 ind12_2)
665 for i12 in change_index:
666 my_order2[i12, 1] = nseg12[i + 1]
667 my_order2[i12, 3] = gs12[i + 1]
668
669 gr1 = Runid_nseg_pca_grp[ \
670 Runid_nseg_pca_grp.xs(’group’,
671 axis=1).values==gs12[i]]
672 gr2 = Runid_nseg_pca_grp[ \
673 Runid_nseg_pca_grp.xs(’group’,
674 axis=1).values==gs12[i+1]]
675 idx1, idx2 = my_functions.find_overlap( \
676 gr1.xs(’pca’,axis=1).values,
677 gr2.xs(’pca’,axis=1).values)
678 pca1 = gr1.xs(’pca’,axis=1).values
679 pca2 = gr2.xs(’pca’,axis=1).values
680 else: # nseg12[i] >= nseg12[i+1]:
681 ind12_0 = np.argwhere(my_order2[:, 2] >= \
682 min_max12[i, 0]).ravel()
683 ind12_1 = np.argwhere(my_order2[:, 2] <= \
684 min_max12[i, 1]).ravel()
685 ind12_2 = np.argwhere(my_order2[:, 3] == \
686 gs12[i + 1]).ravel()
687 change_index = np.intersect1d(ind12_0,
688 ind12_1)
689 change_index = np.intersect1d(change_index,
690 ind12_2)
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691 for i12 in change_index:
692 my_order2[i12, 1] = nseg12[i]
693 my_order2[i12, 3] = gs12[i]
694 if len(overlap) > 0:
695 # Apply new segmentation
696 # find where my_order differs from my_order2
697 new_seg13 = np.argwhere(my_order2[:,3]!=my_order[:,3])
698 new_seg13 = new_seg13.ravel()
699 # print ’len(new_seg13):’,len(new_seg13)
700 # print ’new_seg13:’, new_seg13
701 for i in new_seg13:
702 run_id, new_nseg, pca, grp = my_order2[i, :]
703 # print type(new_nseg)
704 y = self.df.xs(’outputs’,axis=1).ix[run_id,
705 :].values
706 t = range(len(y))
707 # ts, ys = ts_segments.bottom_up_aggr(t, y,
708 nseg=new_nseg)
709 ts,ys = ts_segments.hybrid_aggr(t, y,
710 nseg=int(new_nseg))
711 seg_index = ts_segments.return_break_index(t, ts)
712 self.df.ix[run_id, (’attr’,’segs’)] = str(seg_index)
713 self.df.ix[run_id, (’attr’,’nseg’)] = len(seg_index)
714 self.df.ix[run_id, (’attr’,’group’)] = grp
715 def _clean_up_groups(self):
716 # Prep Data
717 cases = self.tsDB.get_case_numbers()
718 nseg = self.tsDB.get_val_each_case(’db_attr’, ’nseg’)
719 nseg = [row[0] for row in nseg.values()]
720 pcas = self.tsDB.get_val_each_case(’db_attr’, ’pca’)
721 pcas = [row[0] for row in pcas.values()]
722 grps = self.tsDB.get_val_each_case(’db_attr’, ’group’)
723 grps = [row[0] for row in grps.values()]
724 # Create a matrix of [case#, nseg, pca, grp]
725 my_order = np.array((cases, nseg, pcas, grps))
726 my_order = my_order.T
727
728 # Take Care of Outliers
729 # sort by pca
730 my_order_pca = my_order[my_order[:, 2].argsort()]
731 # find where group == -1, outlier
732 k_outlier = np.arange(len(my_order))[my_order_pca[:,
733 3] == -1]
734
735
736 if len(k_outlier) > 0:
737 new_seg_9 = []
738 for i3 in k_outlier:
739 good_neighs = self._find_good_neighbors( \
740 my_order_pca[i3, 2],
741 my_order_pca[:, 2],
742 my_order_pca[:, 3])
743 if len(good_neighs[0]) > 0:
744 l9 = my_order_pca[np.array(good_neighs[0]), 1]
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745 else:
746 l9 = [0]
747 if len(good_neighs[1]) > 0:
748 r9 = my_order_pca[np.array(good_neighs[1]), 1]
749 else:
750 r9 = [0]
751 new_9 = int(np.max((np.median(l9), np.median(r9))))
752 new_seg_9.append(list(my_order_pca[i3,
753 :]) + [i3, new_9])
754 new_seg_9 = np.array(new_seg_9)
755 new_gs = []
756 for row in new_seg_9:
757 new_g = self._new_label(*row[[4, 2, 5]],
758 that_mat=my_order_pca)
759 new_gs.append(new_g)
760
761 # print ’k_outlier’,k_outlier
762 # print ’new_seg_9’,new_seg_9
763
764 # update the nseg and grouping of the
765 # temporary matrix my_order
766 new_gs_ = np.array(new_gs).reshape((-1, 1))
767 new_seg_10 = np.hstack((new_seg_9, new_gs_))
768 my_order2 = my_order.copy()
769 for row in new_seg_10:
770 ind11 = int(row[0])
771 my_order2[ind11, 1] = row[5]
772 my_order2[ind11, 3] = row[6]
773 else:
774 my_order2 = my_order.copy()
775
776 # Take care of overlaps
777 gs11 = list(set(my_order2[:, 3])) # sort by group number
778 gs11.sort()
779 min_max = []
780 nseg11 = []
781 # Get the upper and lower pca values for each group
782 for i in gs11:
783 temp = my_order2[np.argwhere(my_order2[:,
784 3] == i).flatten()]
785 mi = np.min(temp[:, 2])
786 ma = np.max(temp[:, 2])
787 ns = temp[0, 1]
788 min_max.append([mi, ma])
789 nseg11.append(ns)
790 min_max = np.array(min_max)
791 nseg11 = np.array(nseg11)
792 new_order = np.argsort(min_max[:, 0], axis=0)
793 min_max12 = min_max[new_order]
794 nseg12 = nseg11[new_order]
795 gs12 = np.array(gs11)[new_order]
796
797 # Determine which groups are overlapping
798 overlap = []
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799 for i in range(len(min_max12) - 1):
800 if min_max12[i, 1] > min_max12[i + 1, 0]:
801 overlap.append(i)
802 if len(overlap) > 0:
803 for i in overlap:
804 # check if range of [i+1] is within the range of [i]
805 if min_max12[i, 1] > min_max12[i + 1, 1]:
806 # determine which has a larger nseg
807 if nseg12[i] < nseg12[i + 1]:
808 # range of [i+1] is within the
809 # range of [i] and nseg of [i+1]
810 # is larger so raise nseg of
811 # [i] that overlaps with [i+1]
812 ind12_0 = np.argwhere(my_order2[:, 2] >= \
813 min_max12[i + 1, 0]).ravel()
814 ind12_1 = np.argwhere(my_order2[:, 2] <= \
815 min_max12[i + 1, 1]).ravel()
816 ind12_2 = np.argwhere(my_order2[:, 3] == \
817 gs12[i]).ravel()
818 change_index = np.intersect1d(ind12_0,
819 ind12_1)
820 change_index = np.intersect1d(change_index,
821 ind12_2)
822 for i12 in change_index:
823 my_order2[i12, 1] = nseg12[i + 1]
824 my_order2[i12, 3] = gs12[i + 1]
825 # split [i] into 2 groups
826 ind12_3 = np.argwhere(my_order2[:, 2] > \
827 min_max12[i + 1, 1]).ravel()
828 ind12_4 = np.argwhere(my_order2[:, 3] == \
829 gs12[i]).ravel()
830 change_index = np.intersect1d(ind12_3,
831 ind12_4)
832 new_g12 = int(np.max(gs12) + 1)
833 gs12 = np.hstack((gs12, new_g12))
834 for i12 in change_index:
835 my_order2[i12, 3] = new_g12
836 else: # nseg12[i] > nseg12[i+1]:
837 # This means range of [i+1] is
838 # within range of [i] and nseg is lower
839 # so [i+1] will get absorbed by [i]
840 ind12_ = np.argwhere(my_order2[:,
841 3] == gs12[i + 1])
842 for i12 in ind12_:
843 my_order2[i12, 1] = nseg12[i]
844 my_order2[i12, 3] = gs12[i]
845 else: # min_max12[i,1] <= min_max12[i+1,1]:
846 if nseg12[i] < nseg12[i + 1]:
847 ind12_0 = np.argwhere(my_order2[:, 2] >= \
848 min_max12[i + 1, 0]).ravel()
849 ind12_1 = np.argwhere(my_order2[:, 2] <= \
850 min_max12[i + 1, 1]).ravel()
851 ind12_2 = np.argwhere(my_order2[:, 3] == \
852 gs12[i]).ravel()
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853 change_index = np.intersect1d(ind12_0,
854 ind12_1)
855 change_index = np.intersect1d(change_index,
856 ind12_2)
857 for i12 in change_index:
858 my_order2[i12, 1] = nseg12[i + 1]
859 my_order2[i12, 3] = gs12[i + 1]
860 else: # nseg12[i] >= nseg12[i+1]:
861 ind12_0 = np.argwhere(my_order2[:, 2] >= \
862 min_max12[i, 0]).ravel()
863 ind12_1 = np.argwhere(my_order2[:, 2] <= \
864 min_max12[i, 1]).ravel()
865 ind12_2 = np.argwhere(my_order2[:, 3] == \
866 gs12[i + 1]).ravel()
867 change_index = np.intersect1d(ind12_0,
868 ind12_1)
869 change_index = np.intersect1d(change_index,
870 ind12_2)
871 for i12 in change_index:
872 my_order2[i12, 1] = nseg12[i]
873 my_order2[i12, 3] = gs12[i]
874 if (len(k_outlier) > 0) or (len(overlap) > 0):
875 # Apply new segmentation
876 # find where my_order differs from my_order2
877 new_seg13 = np.argwhere(my_order2[:,1]!=my_order[:,1])
878 for i in new_seg13:
879 ddd = self.tsDB.get_by_case(int(i))
880 for d in ddd.values():
881 t = d[’t’]
882 y = d[’y’]
883 ts, ys = ts_segments.bottom_up_aggr(t, y,
884 nseg=my_order2[i, 1])
885 seg_index = ts_segments.return_break_index(t,ts)
886 self.tsDB.change_segs(segs=seg_index,
887 run_id=d[’run_id’])
888 # Change Groups
889 case_run_id = self.tsDB.get_val_each_case(’db_attr’,
890 ’run_id’)
891 for row in my_order2:
892 for i in case_run_id[row[0]]:
893 self.tsDB.change_group(grp=row[3], run_id=i)
894 def _check_and_fix_group_membership(self):
895 ’’’ sqlite3 can only handle 999 sql variables per retrieval
896 so this is tocheck to make keep the number of runs per
897 group to an acceptable level
898 ’’’
899 pca = self.tsDB.get_val_all(’db_attr’, ’pca’, ’data frame’)
900 groups = self.tsDB.get_val_all(’db_attr’, ’group’,
901 ’data frame’)
902 cases = self.tsDB.get_val_all(’db_attr’, ’case’,
903 ’data frame’)
904 groups_pca = pandas.merge(cases, groups, on=’run_id’)
905 groups_pca = pandas.merge(groups_pca, pca, on=’run_id’)
906 groups_pca = groups_pca.values
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907 group_counts = Counter(groups.values[:, 1])
908 # print ’group_counts:’, group_counts
909
910 for k, v in group_counts.items():
911 if k == -1: continue
912 # Check if the number of items is greater than the limit
913 if v > 900:
914 # Split the group into n groups
915 n_split = int(np.ceil(len(groups_pca) / 900))
916 gr_pca = groups_pca[np.argwhere(groups_pca[:,
917 2] == k).ravel()]
918 gr_pca0 = gr_pca[gr_pca[:, 3].argsort()]
919 n_gr_pca = np.array_split(gr_pca0, n_split)
920 # print ’n_split:’, n_split
921 # print ’n_gr_pca:’, n_gr_pca
922 groups = self.tsDB.groups
923 for i, S in enumerate(n_gr_pca[1:]):
924 group_number = groups[-1] + i + 1
925 for run_id in S[:,0]:
926 self.tsDB.change_group(grp=group_number,
927 run_id=run_id)
928 def _give_me_vals(self, target, ranges, vals):
929 assert len(ranges) == len(vals) - 1
930 for i, x in enumerate(ranges):
931 if target < x:
932 return vals[i]
933 return vals[-1]
934
935 def _create_regressions_segments(self, grps):
936 ’’’ Creates a piecewise function that can
937 be regressed by PCA values
938 ’’’
939 # Create Regressions by Groups by Segments
940 fits = dict([(x, {}) for x in grps])
941 R = robjects.r
942 mfe = 0.
943 for g in grps:
944 df_g = self.df[self.df.ix[:, (’attr’,’group’)]==g]
945 nr, nc = df_g.shape
946 segs = df_g.ix[:, (’attr’,’segs’)].values
947 segs = [eval(row) for row in segs]
948 nseg = list(set(df_g.ix[:, (’attr’,’nseg’)].values))
949 if len(nseg) > 1:
950 myMsg1 = ’Making Regressions: nseg of ’
951 myMsg2 = ’group {} is not uniform’.format(g)
952 raise RuntimeError(myMsg1 + myMsg2)
953 nseg = int(nseg[0])
954 ys = df_g.xs(’outputs’,axis=1).values
955 tt = range(len(ys[0]))
956 pcas = df_g.ix[:, (’attr’,’pca’)].values
957
958 for i_seg in range(nseg):
959 d = {’y’: [], ’t’: [], ’pca’: []}
960 m = pd.DataFrame.from_dict(d)
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961 for i_row, row in enumerate(ys):
962 st, en = segs[i_row][i_seg]
963 if st == en:
964 continue
965 y = row[st:en]
966 t = range(st,en)
967 p = pcas[i_row]
968 d = {’y’: y, ’t’: t, ’pca’: p}
969 df = pd.DataFrame.from_dict(d)
970 m = pd.concat((m,df), axis=0, ignore_index=True)
971 # print m.head(20)
972
973 R_df = pandas.rpy.common.convert_to_r_dataframe(m)
974 fit_lm = R.lm(’y˜pca+t+pca*t’, data=R_df)
975 # fit_lm = R.lm(’y˜pca+t+I(tˆ2)+pca*t’,data=R_df)
976 # fit_lm = R.lm(’y˜pca+I(pcaˆ2)+t+pca*t’,data=R_df)
977 fits[g][i_seg] = fit_lm
978 # print ’g,seg: ’, g, seg
979 return fits
980
981 def _create_regressions_breakpoints(self, grps):
982 # Create Regressions for intersections of segments
983 R = robjects.r
984
985 brks = dict([(x, {}) for x in grps])
986 for g in grps:
987 # Get data by group
988 df_g = self.df[self.df.ix[:, (’attr’,’group’)]==g]
989 nr, nc = df_g.shape
990 # get breakpoint locations
991 segs = df_g.ix[:, (’attr’,’segs’)].values
992 segs = [eval(row) for row in segs]
993 nseg = list(set(df_g.ix[:, (’attr’,’nseg’)].values))
994 if len(nseg) > 1:
995 myMsg1 = ’Making Regressions: nseg of ’
996 myMsg2 = ’group {} is not uniform’.format(g)
997 raise RuntimeError(myMsg1 + myMsg2)
998 nseg = int(nseg[0])
999 pcas = df_g.ix[:, (’attr’,’pca’)].values

1000
1001 # Collect Data
1002 for i_seg in range(nseg):
1003 pca_beg = np.zeros((nr,2))
1004 pca_end = np.zeros((nr,2))
1005 for i_row, row in enumerate(segs):
1006 pca_beg[i_row, 1] = row[i_seg][0]
1007 pca_beg[i_row, 0] = pcas[i_row]
1008 pca_end[i_row, 1] = row[i_seg][1]
1009 pca_end[i_row, 0] = pcas[i_row]
1010 # Create regressions for the segment beginnings
1011 df_br = pd.DataFrame(pca_beg, columns=[’pca’,’br’])
1012 cmn = pandas.rpy.common
1013 R_df_br = cmn.convert_to_r_dataframe(df_br)
1014 fit = R.lm(’br˜pca’, data=R_df_br)
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1015 brks[g][i_seg] = fit
1016 # Create one regression for the end
1017 df_br = pd.DataFrame(pca_end, columns=[’pca’,’br’])
1018 cmn = pandas.rpy.common
1019 R_df_br = cmn.convert_to_r_dataframe(df_br)
1020 fit = R.lm(’br˜pca’, data=R_df_br)
1021 brks[g][i_seg+1] = fit
1022 return brks
1023
1024 def _create_regressions(self, grps=None):
1025 ’’’ Creates a piecewise function that
1026 can be regressed by PCA values
1027 ’’’
1028 if grps is None:
1029 grps = list(set(self.df.ix[:, (’attr’,’group’)].values))
1030 if -1 in grps:
1031 grps.remove(-1)
1032 fits = self._create_regressions_segments(grps)
1033 brks = self._create_regressions_breakpoints(grps)
1034
1035 # Create the PCA to group relationship
1036 ranges14 = []
1037 vals14 = []
1038 for g in grps:
1039 df_g = self.df[self.df.ix[:, (’attr’,’group’)]==g]
1040 ranges14.append(df_g.ix[:, (’attr’,’pca’)].max())
1041 vals14.append(g)
1042 ranges15 = np.array(ranges14)
1043 vals15 = np.array(vals14)
1044 ranges16 = ranges15[ranges15.argsort()]
1045 vals16 = vals15[ranges15.argsort()]
1046 ranges16 = ranges16[:-1]
1047
1048 print ranges16
1049 print vals16
1050
1051 self._z_to_y_breakpoints = brks
1052 self._z_to_y_regressions = fits
1053 self._z_to_y_pca2groups = lambda \
1054 pca: self._give_me_vals(pca, ranges16,
1055 vals16)
1056 # # Create Regression Function
1057
1058 def fn_Z2Y(self, pca, t):
1059 ’’’ Returns the predicted values ’’’
1060 # Stuff in the Beginning
1061 pca = float(pca)
1062 assert pca >= 0
1063 assert pca <= 1
1064 R = robjects.r
1065 t = np.array(t, dtype=np.float)
1066 g = self._z_to_y_pca2groups(pca)
1067 g_fits = self._z_to_y_regressions[g]
1068 g_brks = self._z_to_y_breakpoints[g]
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1069 # Calculate the Breaks
1070 my_breaks = []
1071 for i in range(len(g_brks)):
1072 X_1 = pandas.DataFrame([pca], columns=[’pca’])
1073 R_X_1 = pandas.rpy.common.convert_to_r_dataframe(X_1)
1074 bk = R.predict(g_brks[i], R_X_1)[0]
1075 my_breaks.append(bk)
1076 # if the breakpoints are not
1077 # monotonically increasing, don’t use it
1078 use_these = [i for i in range(1,
1079 len(my_breaks)) if my_breaks[i] > my_breaks[i - 1]]
1080 use_these = [0] + use_these
1081 # Predict
1082 # pw = np.array([])
1083 pw = np.zeros(len(t))
1084 for i0, i1 in zip(use_these[0:-1], use_these[1:]):
1085 st = my_breaks[i0]
1086 en = my_breaks[i1]
1087 use_fit = g_fits[i1 - 1]
1088 locs = np.all((t >= st, t < en), axis=0)
1089 t_args = np.argwhere(locs)
1090 t_seg = t[t_args]
1091 dat1 = {’t’:t_seg.flatten(), ’pca’:pca}
1092 X_1 = pandas.DataFrame(dat1)
1093 R_X_1 = pandas.rpy.common.convert_to_r_dataframe(X_1)
1094 y_out = R.predict(use_fit, R_X_1)
1095 # pw = np.hstack((pw,np.array(y_out)))
1096 pw[locs] = np.array(y_out)
1097 return pw
1098
1099 def _fit_error(self, test_data=None):
1100 if test_data is None:
1101 if self.test_data is None:
1102 raise RuntimeError(’No Test Data’)
1103 else:
1104 test_data = self.test_data
1105 fit_err = 0.
1106 n = 0.
1107 inputs = test_data.xs(’inputs’, axis=1)
1108 col_names = list(inputs.columns)
1109 # print col_names
1110 # col_names.remove(’run_id’)
1111 if ’mc’ in col_names:
1112 col_names.remove(’mc’)
1113 inputs = inputs.xs(col_names, axis=1)
1114 for i in range(len(inputs)):
1115 # d = test_data.get_run(i)
1116 y_test = test_data.xs(’outputs’, axis=1).ix[i,:].values
1117 t = range(len(y_test))
1118 x = inputs.take([i])
1119 # print x
1120 y_pred = self.predict(x, t)
1121 # print len(np.array(d[’y’])),np.array(d[’y’])
1122 # print len(y_est[0]),y_est[0]
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1123 err = y_test - y_pred[0]
1124 fit_err += sum(err ** 2)
1125 n += len(err)
1126 return fit_err, n
1127
1128 def MSE(self, test_data=None):
1129 fit_err, n = self._fit_error(test_data)
1130 return fit_err / float(n)
1131
1132 def MFE(self):
1133 mfe = 0.
1134 for fit in self._z_to_y_regressions.values():
1135 for seg in fit.values():
1136 mfe += np.sum(np.array(seg.rx2(’residuals’))**2)
1137 return mfe
1138
1139 def MRE(self, test_data=None):
1140 if test_data is None:
1141 test_data = self.test_data
1142 fit_err, n = self._fit_error(test_data)
1143 return fit_err
1144
1145 def mplot_regressions_vs_actual(self, nr=4, nc=5, fig=None,
1146 font_settings=None,
1147 show_text=True,
1148 df_pca=None, df_outs=None):
1149 nr15 = nr
1150 nc15 = nc
1151 sweep = np.linspace(0, 1, nr15 * nc15)
1152 if fig is None:
1153 fig = plt.figure(figsize=(2 * nc15, 2 * nr15))
1154 if font_settings is None:
1155 font_settings = {’fontsize’:14, ’fontname’:’sans’}
1156
1157 if show_text:
1158 spacing = {’hspace’:.3}
1159 else:
1160 spacing = {’hspace’:.1, ’wspace’:.1}
1161 gs = gridspec.GridSpec(nr15, nc15, **spacing)
1162
1163 # id_pca = self.tsDB.get_val_all(’db_attr’, ’pca’)
1164 if df_pca is None:
1165 pcas = self.df.ix[:, (’attr’,’pca’)].values
1166 df_outs = self.df.xs(’outputs’,axis=1)
1167 else:
1168 pcas = df_pca.values
1169
1170 y_min = self.df.xs(’outputs’, axis=1).min().min()
1171 y_max = self.df.xs(’outputs’, axis=1).max().max()
1172 y_min -= np.abs(y_min)*.15
1173 y_max += np.abs(y_max)*.15
1174 for i, v in enumerate(sweep):
1175 ax = plt.subplot(gs[i])
1176
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1177 # plot original
1178 run_id = my_functions.arg_closest(v, pcas)
1179 closest_pca = pcas[run_id]
1180 y = df_outs.ix[run_id, :].values
1181 t = range(len(y))
1182 # ax.plot(t, y, lw=1, c=’r’)#c=’0.8’)
1183 ax.plot(t, y, ’.’, c=’k’)#c=’0.8’)
1184
1185 # plot fit
1186 y = self.fn_Z2Y(v, t)
1187 ax.plot(t, y, c=’r’,lw=1)
1188 ax.plot(t[0],y[0],’o’)
1189 if show_text:
1190 xpos = (t[0] + t[-1]) / 2.
1191 ax.text(xpos, y_max*1.25,
1192 ’Act.= ’+str(round(closest_pca, 3)),
1193 ha=’center’, **font_settings)
1194 ax.text(xpos, y_max * 1.05,
1195 ’PCA = ’ + str(round(v, 3)),
1196 ha=’center’, **font_settings)
1197
1198 plt.xticks([])
1199 plt.yticks([])
1200 plt.ylim([y_min, y_max])
1201 # plt.tight_layout()
1202 return fig
1203 def plot_pca_1D(self, ts_resample=’auto’, dot_size=0, fig=None,
1204 font_settings=None):
1205 ’’’ plots the image of the time series along
1206 the first PCA axis with equal spacing
1207 ’’’
1208 yvals = self.df.xs(’outputs’, axis=1).values
1209 minimum = np.min(np.min(yvals))
1210 minimum -= np.abs(minimum)*.1
1211 maximum = np.max(np.max(yvals))
1212 if ts_resample == ’auto’:
1213 L = len(yvals[0, :])
1214 ts_resample = int(L / 65)
1215 # print L,ts_resample
1216 # pca = self.tsDB.get_val_all(’db_attr’, ’pca’)
1217 pca = self.df.xs(’attr’,axis=1).xs(’pca’,axis=1).values
1218 X = pca
1219
1220 x_min, x_max = np.min(X, 0), np.max(X, 0)
1221 X = (X - x_min) / (x_max - x_min)
1222
1223 sweep = np.linspace(0, 1, 11)
1224 if fig is None:
1225 fig = plt.figure(figsize=(20, 5))
1226 if font_settings is None:
1227 font_settings = {’fontname’: ’sans’, ’fontsize’: 12}
1228 ax = plt.subplot(111)
1229 # yloc = np.sin(np.arange(len(X)) * 2) / 4
1230 yloc = np.random.uniform(-.25, .25, len(X))
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1231 for i in range(len(X)):
1232 plt.plot(X[i], yloc[i], ’o’)
1233
1234 if hasattr(offsetbox, ’AnnotationBbox’):
1235 # only print thumbnails with matplotlib > 1.0
1236 for sw in sweep:
1237 i = my_functions.arg_closest(sw, X)
1238 # d = self.tsDB.get_run(i)
1239 y = self.df.xs(’outputs’,axis=1).ix[i,:].values
1240 img = my_functions.make_ts_img(y, ts_resample,
1241 dot_size,
1242 minimum, maximum)
1243 imagebox = offsetbox.AnnotationBbox(
1244 offsetbox.OffsetImage(img,
1245 cmap=plt.cm.gray_r, zoom=1),
1246 (X[i], .8))
1247 ax.add_artist(imagebox)
1248 plt.xlim([-.1, 1.1])
1249 plt.ylim((-.5, 1.5))
1250 # plt.xticks([])
1251 plt.yticks([])
1252 plt.setp(ax.get_xticklabels(),**font_settings)
1253 plt.xlabel(’PC 1’, **font_settings)
1254 return fig
1255
1256 def plot_pca_1D_hist(self, ts_resample=’auto’, dot_size=0,
1257 fig=None, font_settings=None):
1258 ’’’ plots the image of the time series along the
1259 first PCA axis with equal spacing ’’’
1260 yvals = self.df.xs(’outputs’, axis=1).values
1261 minimum = np.min(np.min(yvals))
1262 minimum -= np.abs(minimum)*.1
1263 maximum = np.max(np.max(yvals))
1264 if ts_resample == ’auto’:
1265 L = len(yvals[0, :])
1266 ts_resample = int(L / 65)
1267 # print L,ts_resample
1268 # pca = self.tsDB.get_val_all(’db_attr’, ’pca’)
1269 pca = self.df.xs(’attr’,axis=1).xs(’pca’,axis=1).values
1270 X = pca
1271
1272 x_min, x_max = np.min(X, 0), np.max(X, 0)
1273 X = (X - x_min) / (x_max - x_min)
1274
1275 sweep = np.linspace(0, 1, 11)
1276 if fig is None:
1277 fig = plt.figure(figsize=(20, 5))
1278 if font_settings is None:
1279 font_settings = {’fontname’: ’sans’, ’fontsize’: 12}
1280 ax2 = plt.subplot(212)
1281 # yloc = np.sin(np.arange(len(X)) * 2) / 4
1282 # yloc = np.random.uniform(-.25, .25, len(X))
1283 # for i in range(len(X)):
1284 # plt.plot(X[i], yloc[i], ’o’)
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1285
1286 ax2.hist(X, bins=50, normed=False, color=’b’, edgecolor=’b’)
1287 plt.xlim([-.1, 1.1])
1288 # ax2.set_yticklabels([])
1289 # ax2.set_yticks([])
1290 ax2.yaxis.labelpad = -10
1291 plt.xlabel(’PC 1’, **font_settings)
1292
1293 ax1 = plt.subplot(211)
1294 if hasattr(offsetbox, ’AnnotationBbox’):
1295 # only print thumbnails with matplotlib > 1.0
1296 for sw in sweep:
1297 i = my_functions.arg_closest(sw, X)
1298 # d = self.tsDB.get_run(i)
1299 y = self.df.xs(’outputs’,axis=1).ix[i,:].values
1300 img = my_functions.make_ts_img(y, ts_resample,
1301 dot_size, minimum, maximum)
1302 imagebox = offsetbox.AnnotationBbox(
1303 offsetbox.OffsetImage(img,
1304 cmap=plt.cm.gray_r, zoom=1),
1305 (X[i], 0))
1306 ax1.add_artist(imagebox)
1307 plt.ylim([-1,1])
1308 plt.xlim([-.1,1.1])
1309 plt.xticks([])
1310 plt.yticks([])
1311 ax2.set_xticks(np.arange(0,1.1,.2))
1312 plt.setp(ax2.get_xticklabels(),**font_settings)
1313
1314 ax2.spines[’top’].set_visible(False)
1315 ax1.spines[’bottom’].set_visible(False)
1316 fig.subplots_adjust(hspace=0)
1317 return fig
1318
1319 def plot_pca_vs_nseg(self, fig=None, font_settings=None):
1320 x = self.df.ix[:, (’attr’,’pca’)].values
1321 y = self.df.ix[:, (’attr’,’nseg’)].values
1322 g = self.df.ix[:, (’attr’,’group’)].values
1323 groups = list(set(g))
1324 # x = self.tsDB.get_val_all(’db_attr’, ’pca’)
1325 # y = self.tsDB.get_nsegs()
1326 # g = self.tsDB.get_val_all(’db_attr’, ’group’)
1327 # x = x[:, 1]
1328 # y = y.xs(’nseg’, axis=1).values
1329 # g = g[:, 1]
1330 # groups = self.tsDB.groups
1331 if fig is None:
1332 fig = plt.figure()
1333 if font_settings is None:
1334 font_settings = {’fontsize’:14, ’fontname’:’sans’}
1335 ax = plt.subplot(111)
1336 for gr in groups:
1337 ind = np.argwhere(g == gr)
1338 if gr == -1:
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1339 ax.plot(x[ind], y[ind], ’ok’)
1340 else:
1341 marker = ’$’ + str(int(gr)) + ’$’
1342 ax.plot(x[ind], y[ind], ’.’, marker=marker, ms=10.)
1343 plt.xlim([-.1, 1.1])
1344 # plt.ylim([np.min(groups)-.5,np.max(groups)+.5])
1345 plt.ylim([0, np.max(y) + .5])
1346 plt.xlabel(’PC 1’, **font_settings)
1347 plt.ylabel(’# of segments’, **font_settings)
1348 plt.setp(ax.get_xticklabels(),**font_settings)
1349 plt.setp(ax.get_yticklabels(),**font_settings)
1350
1351 return fig
1352
1353 def plot_pca_vs_brkpca(self, fig=None, font_settings=None):
1354
1355 groups = list(set(self.df.ix[:, (’attr’, ’group’)].values))
1356
1357 # Plot Figure
1358 if fig is None:
1359 fig = plt.figure()
1360 if font_settings is None:
1361 font_settings = {’fontsize’:14, ’fontname’:’sans’}
1362 ax = plt.subplot(111)
1363 for gr in groups:
1364 df_subset = self.df[self.df.ix[:, (’attr’,
1365 ’group’)] == gr]
1366 pca = df_subset.ix[:, (’attr’, ’pca’)].values
1367 brk_pca = df_subset.ix[:,
1368 (’ApplyPCA_Breakpoints’,’pca0’)].values
1369 if gr == -1:
1370 ax.plot(pca, brk_pca, ’ok’)
1371 else:
1372 marker = ’$’ + str(int(gr)) + ’$’
1373 ax.plot(pca, brk_pca, ’.’, marker=marker, ms=10.)
1374 plt.xlim([-.1, 1.1])
1375 # plt.ylim([np.min(groups)-.5,np.max(groups)+.5])
1376 y_min = self.df.ix[:, (’ApplyPCA_Breakpoints’,
1377 ’pca0’)].min() - .2
1378 y_max = self.df.ix[:,
1379 (’ApplyPCA_Breakpoints’,’pca0’)].max() + .2
1380 plt.ylim([y_min, y_max])
1381 plt.xlabel(’PC 1’, **font_settings)
1382 plt.ylabel(’PCA(Breakpoints)’, **font_settings)
1383 plt.setp(ax.get_xticklabels(),**font_settings)
1384 plt.setp(ax.get_yticklabels(),**font_settings)
1385
1386 return fig
1387
1388 def plot_y_by_group(self, fig=None):
1389 ’’’ This plot function plots the runs in the
1390 database and each plot is grouped by the grouping
1391 ’’’
1392 if fig is None:
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1393 fig = plt.figure()
1394
1395 # Set up Data
1396 ys = self.tsDB.get_y()
1397 grps = self.tsDB.get_val_all(’db_attr’, ’group’,
1398 out_style=’data frame’)
1399 grps.columns = pd.MultiIndex(levels=[[’run_id’,’group’],
1400 [’run_id’,’group’]],
1401 labels=[[0, 1],[0,1]])
1402 df = pd.merge(ys, grps)
1403 groups = self.tsDB.groups
1404
1405 gs = gridspec.GridSpec(nrows=len(groups), ncols=1)
1406
1407 for i_row, gr in enurate(groups):
1408 df_test = df[ df.xs((’group’,’group’),axis=1) == gr]
1409 ys_test = df_test.xs(’y’,axis=1)
1410 segs_test = df_test.xs(’segs’,axis=1)
1411 ax = plt.subplot(gs[i_row])
1412 for y in ys_test.iterrows():
1413 ax.plot(y[1].values)
1414 return fig
1415
1416 def plot_y_by_group_and_seg(self, fig=None):
1417 ’’’ Plots the y in the database.
1418 Produces a n x m matrix of plots, where n is the
1419 number of groups and m is the maximum number of
1420 segments + 1.
1421 Plots the whole y in the first column.
1422 Plots each of the segments in the rest of the columns.
1423 ’’’
1424 if fig is None:
1425 fig = plt.figure(figsize=(20,20))
1426
1427 # Prepare the data
1428 # Grab the Y
1429 ys = self.tsDB.get_y()
1430 # Grab Groups
1431 grps = self.tsDB.get_val_all(’db_attr’, ’group’,
1432 out_style=’data frame’)
1433 grps.columns = pandas.MultiIndex(levels=[[’run_id’,’group’],
1434 [’run_id’,’group’]],
1435 labels=[[0, 1],[0,1]])
1436 # Grab Segmentation
1437 segs = self.tsDB.get_val_all(’db_attr’, ’segs’,
1438 out_style=’list’)
1439 segs_ = [ [k, str(v)] for k, v in segs ]
1440 segs_ = np.array(segs_)
1441 run_ids_ = np.array(segs_[:,0],dtype=int)
1442 segs_ = segs_[:,1]
1443 d_segs = {(’run_id’,’run_id’):run_ids_,
1444 (’segs’,’segs’):segs_}
1445 df_segs = pandas.DataFrame.from_dict(d_segs)
1446 # Merge Data
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1447 df = pandas.merge(ys, grps)
1448 df = pandas.merge(df, df_segs)
1449 # Determine max number of segments
1450 df_nseg = self.tsDB.get_val_all(’db_attr’,
1451 ’nseg’,out_style=’data frame’)
1452 max_nseg = np.max(df_nseg.ix[:,1].values)
1453 groups = self.tsDB.groups
1454 # Option to remove the outlier points
1455 #if -1 in groups: groups.remove(-1)
1456 # Specify the number of rows and columns in graph
1457 nr = len(groups)
1458 nc = max_nseg + 1
1459 # Define gridspec
1460 gs = gridspec.GridSpec(nrows=nr, ncols=nc)
1461
1462 my_iter=0
1463
1464 # Iterate over the groups
1465 for i_row, gr in enumerate(groups):
1466 # Grab subset of data for each group
1467 df_test = df[ df.xs((’group’,’group’),axis=1) == gr]
1468 ys_test = df_test.xs(’y’,axis=1)
1469 segs_test = df_test.xs(’segs’,axis=1)
1470 seg_ = eval(segs_test.get_value(segs_test.index[0],
1471 ’segs’))
1472 ax = plt.subplot(gs[i_row,0])
1473 axs = [ plt.subplot(gs[i_row,
1474 c+1]) for c in range(len(seg_)) ]
1475 # Iterate over each row in group
1476 for y, seg in izip(ys_test.iterrows(),
1477 segs_test.iterrows()):
1478 # First Column of plots is all the segments
1479 ax.plot(y[1].values)
1480 # Iterate over the segments
1481 seg_ = eval(seg[1].values[0])
1482 t = np.arange(len(y[1].values))
1483 for i_col, (st,en) in enumerate(seg_):
1484 ax_ = axs[i_col]
1485 ax_.plot(t[st:en],y[1][st:en])
1486 # if my_iter > 3:
1487 # break
1488 # else:
1489 # my_iter += 1
1490 # break
1491
1492 # update axes
1493 all_axes = fig.axes
1494 y_min = np.min(df.xs(’y’,axis=1).values)
1495 y_max = np.max(df.xs(’y’,axis=1).values)
1496 y_range = y_max - y_min
1497 y_min -= y_range*.1
1498 y_max += y_range*.1
1499 x_min = 0
1500 x_max = len(y[1].values)+1
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1501
1502 print df
1503 print ’y_min, y_max:’, y_min, y_max
1504 print ’x_min, x_max:’, x_min, x_max
1505
1506 for ax in all_axes:
1507 ax.set_ylim(y_min, y_max)
1508 ax.set_xlim(x_min, x_max)
1509 plt.tight_layout()
1510 return fig
1511
1512 def garbage_collect(self):
1513 gc.collect()
1514 R = robjects.r
1515 R.gc()
1516 # R(’gc()’)
1517 gc.collect()
1518
1519 class PrepOutputData(object):
1520 def __init__(self, df, n_bins=500,
1521 bin_threshold=20, resample=None):
1522 self.df = df
1523 self.n_bins = n_bins
1524 self.bin_threshold = bin_threshold
1525 if isinstance(resample, int):
1526 self.df = df.ix[:,::resample]
1527
1528 @classmethod
1529 def from_file_paths(cls, output_files,
1530 n_bins=1000, resample=None):
1531 ’’’
1532 Create instance using csv file paths
1533
1534 :param output_files: list of output file locations
1535 ’’’
1536 # instantiating as a dataframe is faster than sqlite3
1537 df_out = pd.DataFrame([])
1538 for file_path in output_files:
1539 df_part = pd.DataFrame.from_csv(file_path)
1540 df_part = df_part.ix[np.argsort(df_part.index), :]
1541 df_out = pd.concat((df_out, df_part), axis=0)
1542 if isinstance(resample, int):
1543 df_out = df_out.ix[:,::resample]
1544 return cls(df=df_out, n_bins=n_bins)
1545
1546
1547 def perform_pca(self, n_components=5):
1548 ’’’
1549 Perform pca on data (df).
1550
1551 :param n_components: number of PCs to return
1552 :returns: data frame with principal components
1553 ’’’
1554 if n_components == ’auto’:
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1555 print ’[[[ Calculating n_components ]]]’
1556 temp_fn = FeatureExtract.determine_n_components
1557 n_components = temp_fn(dat=self.df.values,
1558 reps=1000)
1559 print ’[[[ n_components = ’, n_components, ’]]]’
1560 return self._perform_pca(self.df, n_components)
1561
1562 def _perform_pca(self, df, n_components=5):
1563
1564 fit_pca = PCA(n_components=n_components)
1565 X_pca = fit_pca.fit_transform(df.values)
1566 X_pca = my_functions.normalize(X_pca)
1567
1568 nr, nc = X_pca.shape
1569 pca_col_names = [’’.join((’pca’,str(i))) for i in range(nc)]
1570 df_pca = pd.DataFrame(X_pca, index=df.index,
1571 columns=pca_col_names)
1572 return df_pca, n_components
1573
1574 def reduce_data(self, n_components=5, how=’median’):
1575 df_pca, n_components = self.perform_pca(n_components)
1576
1577 df_pca_r = df_pca.apply(np.round, decimals=3)
1578 df_pca_rs = df_pca_r.sort(list(df_pca.columns))
1579
1580 idx_pca_rs_split = self.make_bin_index2(df_pca, df_pca_r)
1581
1582 nr, nc = self.df.shape
1583 n_bins = len(idx_pca_rs_split)
1584 mat_collapsed = np.zeros((n_bins, nc))
1585 mat_ = np.zeros((1, nc))
1586 sigmas = np.zeros(n_bins)
1587 pcas = np.zeros((n_bins, n_components))
1588 for i, idxs in enumerate(idx_pca_rs_split):
1589 df_temp = self.df.ix[idxs, :]
1590 if how == ’median’:
1591 mat_collapsed[i,:] = df_temp.median(axis=0)
1592 mat_[0,:] = df_temp.mean(axis=0)
1593 sigmas[i] = np.std(df_temp.values - mat_[0,:])
1594 elif how == ’mean’:
1595 mat_collapsed[i,:] = df_temp.mean(axis=0)
1596 mat_[0,:] = df_temp.mean(axis=0)
1597 sigmas[i] = np.std(df_temp.values - mat_[0,:])
1598 elif how == ’min’:
1599 idx = copy.copy(idxs)
1600 if i > 1:
1601 idx.extend(idx_pca_rs_split[i-1])
1602 if i < len(idx_pca_rs_split)-1:
1603 idx.extend(idx_pca_rs_split[i+1])
1604 if i > 2:
1605 idx.extend(idx_pca_rs_split[i-2])
1606 if i < len(idx_pca_rs_split)-2:
1607 idx.extend(idx_pca_rs_split[i+2])
1608 df_temp = self.df.ix[idx,:]
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1609
1610 temp_min = df_temp.min(axis=0)
1611 temp_t = np.arange(len(temp_min))
1612 min_upper = self.find_upper_envelope_v2(temp_t,
1613 temp_min, 20)
1614 min_lower = self.find_lower_envelope_v2(temp_t,
1615 temp_min, 20)
1616 min_middle = (min_upper + min_lower)/2
1617 mat_collapsed[i,:] = min_middle
1618 sigmas[i] = np.std(temp_min - min_middle)
1619 elif how == ’max’:
1620 idx = copy.copy(idxs)
1621 if i > 1:
1622 idx.extend(idx_pca_rs_split[i-1])
1623 if i < len(idx_pca_rs_split)-1:
1624 idx.extend(idx_pca_rs_split[i+1])
1625 if i > 2:
1626 idx.extend(idx_pca_rs_split[i-2])
1627 if i < len(idx_pca_rs_split)-2:
1628 idx.extend(idx_pca_rs_split[i+2])
1629 df_temp = self.df.ix[idx,:]
1630
1631 temp_max = df_temp.max(axis=0)
1632 temp_t = np.arange(len(temp_max))
1633 max_upper = self.find_upper_envelope_v2(temp_t,
1634 temp_max, 20)
1635 max_lower = self.find_lower_envelope_v2(temp_t,
1636 temp_max, 20)
1637 max_middle = (max_upper + max_lower)/2
1638 mat_collapsed[i,:] = max_middle
1639 sigmas[i] = np.std(temp_max - max_middle)
1640 pcas[i,:] = df_pca.ix[idxs,:].mean(axis=0)
1641
1642 mat_collapsed = np.vstack((np.repeat(mat_collapsed[:1,:],
1643 10, axis=0), mat_collapsed))
1644 mat_collapsed = np.vstack((mat_collapsed,
1645 np.repeat(mat_collapsed[-1:,:],
1646 10,axis=0)))
1647 pcas = np.vstack((np.repeat(pcas[:1,:], 10, axis=0), pcas))
1648 pcas = np.vstack((pcas, np.repeat(pcas[-1:,:], 10, axis=0)))
1649 pcas[:10,0] += np.arange(-.1, 0, .01)
1650 pcas[-10:,0] += np.arange(.01, 0.11, .01)
1651 sigmas = np.hstack((np.repeat(sigmas[0],10),
1652 sigmas, np.repeat(sigmas[-1], 10)))
1653
1654 headers = [’’.join((’pca’,
1655 str(i) )) for i in range(n_components)]
1656 df_pca_reduced = pd.DataFrame(pcas, columns=headers)
1657 d_attr = {’pca’:pcas[:,0], ’sigma’:sigmas}
1658
1659 self.df_pcas_all = df_pca
1660 self.df_pca_reduced = df_pca_reduced
1661 self.df_outs = pd.DataFrame(mat_collapsed,
1662 columns=self.df.columns)
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1663 self.df_attr = pd.DataFrame.from_dict(d_attr)
1664
1665 def make_bin_index1(self, df_pca_rs):
1666 idx_pca_rs = df_pca_rs.index
1667 idx_pca_rs_split = np.array_split(idx_pca_rs, self.n_bins)
1668
1669 def make_bin_index2(self, df_pca, df_pca_r):
1670 pca0_range = df_pca_r.min()[0], df_pca_r.max()[0]
1671 pca0_bins = np.linspace(pca0_range[0],
1672 pca0_range[1], self.n_bins)
1673 idx_pca_rs_split = []
1674 pca0_vals = df_pca.xs(’pca0’, axis=1).values
1675 i = 0
1676 while i < len(pca0_bins)-1:
1677 idx = []
1678 i2 = i
1679 while len(idx) < self.bin_threshold:
1680 i2 += 1
1681 if i2 > len(pca0_bins):
1682 break
1683 mi = pca0_bins[i]
1684 ma = pca0_bins[i2]
1685 idx_gt = np.argwhere(pca0_vals >= mi).ravel()
1686 idx_lt = np.argwhere(pca0_vals < ma).ravel()
1687 idx = list(set(idx_gt).intersection(idx_lt))
1688 idx_pca_rs_split.append(idx)
1689 i = i2
1690 return idx_pca_rs_split
1691
1692 def find_upper_envelope_v2(self, t, y, n_split=10):
1693 t_split = np.array_split(t, n_split)
1694 y_split = np.array_split(y, n_split)
1695 t_new = [0]
1696 y_new = [y[0]]
1697 for i1, i2 in zip(t_split,y_split):
1698 i3 = np.argmax(i2)
1699 t_new.append(i1[i3])
1700 y_new.append(i2[i3])
1701 t_new.append(t[-1])
1702 y_new.append(y[-1])
1703 f_upper = interp1d(t_new, y_new)
1704 y_new2 = f_upper(t)
1705 idx = np.isnan(y_new2)
1706 y_new2[idx] = y[idx]
1707 return y_new2
1708
1709 def find_lower_envelope_v2(self, t, y, n_split=10):
1710 t_split = np.array_split(t, n_split)
1711 y_split = np.array_split(y, n_split)
1712 t_new = [0]
1713 y_new = [y[0]]
1714 for i1, i2 in zip(t_split,y_split):
1715 i3 = np.argmin(i2)
1716 t_new.append(i1[i3])
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1717 y_new.append(i2[i3])
1718 t_new.append(t[-1])
1719 y_new.append(y[-1])
1720 f_lower = interp1d(t_new, y_new)
1721 y_new2 = f_lower(t)
1722 idx = np.isnan(y_new2)
1723 y_new2[idx] = y[idx]
1724 return y_new2
1725
1726
1727 if __name__==’__main__’:
1728 print ’hello’A.2 ts segments.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import TimeSeriesDB
4 import pandas
5 import scipy.optimize
6
7 import smoothers
8 from scipy.odr.odrpack import _conv
9

10 class tsBase(object):
11 name = ’base’
12 def __init__(self,t,mu,sd):
13 self.t = np.array(t)
14 self.size = np.size(t)
15 self.y = np.zeros(len(t))
16 self.mu = mu
17 self.sd = sd
18 def noise(self):
19 if self.sd == 0:
20 return np.zeros(self.size)
21 else:
22 return np.random.normal(0,self.sd,self.size)
23 def plot(self,fig=None):
24 if fig is None:
25 fig=plt.figure()
26 ax = plt.subplot(111)
27 ax.plot(self.t,self.y)
28 def _find_bkpts(self,y):
29 ’’’ returns segment start and end as pairs given a
30 list of disjoint groupings of integers ’’’
31 breakpoints = []
32 v1 = y[0]
33 b0 = 0
34 for i,x in enumerate(y):
35 if x != v1:
36 b1 = i-1
37 if b0 == b1:
38 continue
39 breakpoints.append([b0,b1])
40 b0 = i
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41 v1 = x
42 breakpoints.append([b0,i])
43 self.breakpoints = breakpoints
44
45 class tsFlatLine(tsBase):
46 name = ’flat’
47 def __init__(self,t,mu=0,sd=0):
48 super(tsFlatLine,self).__init__(t,mu,sd)
49 self.y = self._make_flat_y()
50 self.make_y = self._make_flat_y
51 self.type = "flat"
52 self.breakpoints = [[0,len(self.t)-1]]
53 def _make_flat_y(self):
54 if self.sd == 0:
55 y = np.repeat(self.mu,self.size)
56 else:
57 y = np.random.normal(self.mu,self.sd,self.size)
58 return y
59
60 class tsSineWave(tsBase):
61 name = ’sine’
62 def __init__(self,t,mu=0.,sd=0.,
63 amplitude=1.,n_waves=1.,phase=0.):
64 super(tsSineWave,self).__init__(t,mu,sd)
65 self.A=amplitude
66 self.f = float(n_waves)/(t[-1]-t[0])
67 self.phi = phase
68 self.y = self._make_wavy_y()
69 self.type = ’sine’
70 def _make_wavy_y(self):
71 noise = self.noise()
72 s = 2*np.pi*(self.f*self.t + self.phi)
73 y = self.A * np.sin(s) + noise + self.mu
74 s2 = np.zeros((len(s)))
75 ss = np.abs(np.sin(s))
76 sc = np.cos(s)
77 for x in [30,60]:
78 s2 += (ss>=np.sin(np.pi*x/180.))*np.sign(sc)
79 self._find_bkpts(s2)
80 return y
81
82 class tsSquareWave(tsBase):
83 ’’’ Creates a Square Wave. Ratio controls the length
84 of the high and low and ranges from -1 to 1.
85 ratio of -1 would mean all low and 1
86 would be all high. It’s based on sine wave so the
87 ratio is nonlinear.
88 ’’’
89 name = ’square’
90 def __init__(self,t,mu=0.,sd=0.,amplitude=1.,
91 n_waves=1.,phase=0.,ratio=0.):
92 super(tsSquareWave,self).__init__(t,mu,sd)
93 self.A = amplitude
94 self.f = float(n_waves)/(t[-1]-t[0])
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95 self.r = -ratio
96 self.phi = phase
97 self.y = self._make_square_y()
98 self.type = ’square’
99 def _make_square_y(self):
100 noise = self.noise()
101 s = np.sin(2*np.pi*(self.f*self.t + self.phi))
102 y = ((s>=self.r) * 1 + (s<self.r)*-1)
103 self._find_bkpts(y)
104 y = self.A * y + noise + self.mu
105 return y
106
107 class tsTriangleWave(tsBase):
108 name = ’triangle’
109 def __init__(self, t, mu=0., sd=0.,
110 amplitude=1., n_waves=1., phase=0.):
111 super(tsTriangleWave,self).__init__(t,mu,sd)
112 self.A = amplitude
113 self.a = 0.5*(t[-1]-t[0])/float(n_waves)
114 self.phi = phase
115 self.y = self._make_triangle_y()
116 self.type = ’triangle’
117 def _make_triangle_y(self):
118 noise = self.noise()
119 a = self.a
120 t = self.t + (self.phi+.5)*self.a*2
121 y = self.A*(2./a)*(t-a*np.floor(t/a+0.5))
122 y *= (-1)**np.floor(t/a-0.5)
123 y += noise + self.mu
124 self._find_bkpts((-1)**np.floor(t/a-0.5))
125 return y
126
127 class tsSawtooth(tsBase):
128 name = ’sawtooth’
129 def __init__(self, t, mu=0., sd=0.,
130 amplitude=1., n_waves=1., phase=0.):
131 super(tsSawtooth,self).__init__(t,mu,sd)
132 self.A = amplitude
133 self.a = 0.5*(t[-1]-t[0])/float(n_waves)
134 self.phi = phase
135 self.y = self._make_triangle_y()
136 self.type = ’triangle’
137 def _make_triangle_y(self):
138 noise = self.noise()
139 a = self.a
140 t = self.t + (self.phi+.5)*self.a*2
141 y = self.A*2*(t/a-np.floor(t/a+0.5)) + noise + self.mu
142 self._find_bkpts(np.floor(t/a+0.5))
143 return y
144
145 class tsStep(tsBase):
146 name = ’step’
147 def __init__(self,t,mu=0.,sd=0.,separation=1.,loc=0.5):
148 super(tsStep,self).__init__(t,mu,sd)
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149 self.sep = separation
150 self.loc = int(len(t)*loc)
151 self.y = self._make_step_y()
152 self.breakpoints = [[ 0, self.loc ],
153 [ self.loc+1, len(self.t)-1 ]]
154 self.type = ’step’
155 def _make_step_y(self):
156 noise = self.noise()
157 ind = np.arange(self.loc,len(self.t))
158 y = np.zeros(len(self.t)) + noise
159 y[ind] = y[ind]+self.sep + self.mu
160 return y
161
162 class tsRandomWalk(tsBase):
163 ’’’ Generates a random walk of length t. The default is
164 Unif(-0.1,0.1)
165 ’’’
166 name = ’random walk’
167 def __init__(self, t, rand_fn=np.random.uniform,
168 rand_args=[-.1,.1]):
169 super(tsRandomWalk,self).__init__(t,0,0)
170 self.rand_vec = rand_fn(*rand_args,size=len(t))
171 self.y = self._make_random_walk()
172 self.breakpoints = [ 0, self.t[-1] ]
173 self.type = ’random walk’
174 def _make_random_walk(self):
175 y = []
176 c = 0.
177 for i in self.rand_vec:
178 c += i
179 y.append(c)
180 return y
181
182 class tsLinearLine(tsFlatLine):
183 name = ’sloped’
184 def __init__(self, t, mu=np.nan, sd=0,
185 slope=np.nan, ystart=np.nan, yend=np.nan):
186 if np.isnan(mu):
187 mu = 0
188 mu_was_nan = True
189 else:
190 mu_was_nan = False
191 super(tsLinearLine,self).__init__(t,mu,sd)
192 self.ystart = np.float(ystart)
193 self.yend = np.float(yend)
194 if np.all(np.isnan([slope,ystart,yend])):
195 ystart = 0
196 yend = 1
197 if np.isnan(slope):
198 self._calc_slope()
199 if self.slope == 0.:
200 if mu_was_nan:
201 self.mu = ystart
202 else:
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203 self.slope = slope
204 if np.isnan(ystart):
205 self.ystart = mu
206 self.yend = self.slope*self.t[-1]+self.ystart
207 self.y = self._make_sloped_y()
208 self.make_y = self._make_sloped_y
209 self.breakpoints = [[ 0, len(self.t)-1 ]]
210 self.type = "sloped"
211 def _make_sloped_y(self):
212 if self.slope == 0:
213 y = super(tsLinearLine, self)._make_flat_y()
214 else:
215 y = self.slope*self.t + self.ystart
216 y = y + super(tsLinearLine,self)._make_flat_y()
217 return y
218 def _calc_slope(self):
219 if np.isnan(self.ystart):
220 self.slope = 0
221 self.ystart = self.mu
222 self.yend = self.mu
223 else:
224 self.slope = (self.yend - self.ystart)/(self.t[-1] - \
225 self.t[0])
226
227 class tsLine( tsLinearLine ):
228 def __init__( self, t, mu=0, sd=0, slope=np.nan,
229 ystart=np.nan, yend=np.nan ):
230 if np.isnan(slope) and np.isnan(ystart) and np.isnan(yend):
231 # This is a flat line so initialize using parent of
232 # tsLinearLine which is tsFlatLine
233 super(tsLinearLine,self).__init__(t=t,mu=mu,sd=sd)
234 else:
235 # This is a sloped line so initialize with parent of
236 # tsLine which is tsLinearLine
237 super(tsLine,self).__init__(t=t,mu=mu,sd=sd,slope=slope,
238 ystart=ystart,yend=yend)
239 def add_right(self,seg):
240 new_t = seg.t + self.t[-1] + 1
241 self.t = np.append( self.t, new_t )
242 self.y = np.append( self.y, seg.y )
243 self.breakpoints = np.append( self.breakpoints,
244 seg.breakpoints+new_t[0] )
245 def merge_with_linear_connector( self, seg,
246 transition_x=np.arange(5),
247 sd=None ):
248 if sd is None:
249 sd = self.sd
250 if self.type=="flat":
251 start_point = self.y[-1]
252 elif self.type=="sloped":
253 start_point = self.yend
254 if seg.type=="flat":
255 end_point = seg.y[0]
256 elif seg.type=="sloped":
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257 end_point = seg.ystart
258 seg_connect = tsLinearLine(t=transition_x,mu=0,sd=sd,
259 ystart=start_point,
260 yend=end_point)
261 self.add_right(seg_connect)
262 self.add_right(seg)
263
264 class make_ts(object):
265 def __init__(self,y_val,mc=1):
266 self.mc = mc
267 self.x_len = 350
268 self.segs = []
269 self.brkpts = []
270 levels = [float(x) for x in range(1,8)]
271 if y_val < levels[0]:
272 fn = self.type1
273 elif y_val < levels[1]:
274 self.val = (y_val-levels[0])/(levels[1]-levels[0])
275 fn=self.type2
276 elif y_val < levels[2]:
277 self.val = (y_val-levels[1])/(levels[2]-levels[1])
278 fn = self.type3
279 elif y_val < levels[3]:
280 self.val = (y_val-levels[2])/(levels[3]-levels[2])
281 fn = self.type4
282 elif y_val < levels[4]:
283 self.val = (y_val-levels[3])/(levels[4]-levels[3])
284 fn = self.type5
285 elif y_val < levels[5]:
286 self.val = (y_val-levels[4])/(levels[5]-levels[4])
287 fn = self.type6
288 else:
289 fn =self.type7
290 self.run_mc(fn)
291 def plot(self):
292 for seg in self.segs:
293 plt.plot(seg.t,seg.y)
294 plt.ylim((0,1))
295 plt.show()
296 def run_mc(self,fn):
297 for i in range(self.mc):
298 seg,brkpts = fn()
299 self.segs.append(seg)
300 self.brkpts.append(brkpts)
301 def type1(self):
302 val1 = round(np.random.normal(50.0,1.0))
303 val3 = round(np.random.normal(self.x_len-60,1))
304 x1 = np.arange(val1)
305 x2 = np.arange(self.x_len-val1-val3)
306 x3 = np.arange(val3)
307 seg1 = tsLine(t=x1,mu=.9,sd=.01)
308 seg3 = tsLine(t=x3,mu=.1,sd=.01)
309 seg1.merge_with_linear_connector(seg3, transition_x=x2,
310 sd=.01)
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311 self.seg = seg1
312 self.brkpt = [[0,len(x1)-1],[len(x1),len(x1)+len(x2)-1],
313 [self.x_len-len(x3),self.x_len-1]]
314 self.group = 2
315 return seg1, self.brkpt
316 def type2(self):
317 x_target = 90*self.val + 60
318 val1 = round(np.random.normal(50,1))
319 val3 = round(np.random.normal(self.x_len-x_target,1))
320 x1 = np.arange(val1)
321 x2 = np.arange(self.x_len-val1-val3)
322 x3 = np.arange(val3)
323 seg1 = tsLine(t=x1,mu=.9,sd=.01)
324 seg3 = tsLine(t=x3,mu=.1,sd=.01)
325 seg1.merge_with_linear_connector(seg3, transition_x=x2,
326 sd=.01)
327 self.seg=seg1
328 self.brkpt = [[0,len(x1)-1],[len(x1),len(x1)+len(x2)-1],
329 [self.x_len-len(x3),self.x_len-1]]
330 self.group = 2
331 return seg1, self.brkpt
332 def type3(self):
333 val1 = round(np.random.normal(50,1))
334 val2 = round(np.random.normal(100,1))
335 val4 = round(np.random.normal(self.x_len-160,1))
336 x1 = np.arange(val1)
337 x2 = np.arange(val2)
338 x3 = np.arange(self.x_len-val1-val2-val4)
339 x4 = np.arange(val4)
340 y_target=(0.9-0.1)*self.val+0.1
341 seg1 = tsLine(t=x1,mu=.9,sd=.01)
342 seg2 = tsLine(t=x2,sd=.01,ystart=0.9,yend=y_target)
343 seg4 = tsLine(t=x4,mu=.1,sd=0.01)
344 seg1.add_right(seg2)
345 seg1.merge_with_linear_connector(seg4,
346 transition_x=x3,
347 sd=.01)
348 self.seg=seg1
349 self.brkpt = [[0,len(x1)-1],[len(x1),len(x1)+len(x2)-1],
350 [len(x1)+len(x2),len(x1)+len(x2)+len(x3)-1],
351 [self.x_len-len(x4),self.x_len-1]]
352 self.group = 3
353 return seg1, self.brkpt
354 def type4(self):
355 val1 = round(np.random.normal(150,1))
356 val2 = round(np.random.normal(10,1))
357 val3 = round(np.random.normal(80,1))
358 x1 = np.arange(val1)
359 x2 = np.arange(val2)
360 x3 = np.arange(val3)
361 x4 = np.arange(self.x_len-val1-val2-val3)
362 y_target = (0.9-0.1)*self.val
363 y_target += 0.1
364 y_target += np.random.normal(0,.3)*(1-self.val)*(self.val)
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365 if y_target > .9:
366 y_target = .9
367 if y_target < .1:
368 y_target = .1
369 y_target -= .1
370 seg1 = tsLine(t=x1,mu=.9,sd=.01)
371 seg3 = tsLine(t=x3,mu=.1,sd=.01)
372 seg4 = tsLine(t=x4,mu=0.1,sd=.01,ystart=0,yend=y_target)
373 seg1.merge_with_linear_connector(seg3,
374 transition_x=x2,
375 sd=.01)
376 seg1.add_right(seg4)
377 self.seg=seg1
378 self.brkpt = [[0,len(x1)-1],[len(x1),len(x1)+len(x2)-1],
379 [len(x1)+len(x2),len(x1)+len(x2)+len(x3)-1],
380 [self.x_len-len(x4),self.x_len-1]]
381 self.group = 4
382 return seg1, self.brkpt
383 def type5(self):
384 x_target = 100*self.val
385 val1 = round(np.random.normal(150,1))
386 val2 = round(np.random.normal(10,1))
387 val3 = round(np.random.normal(80,1))
388 val5 = round(np.random.normal(x_target,2))
389 if val5 < 1:
390 val5 = 1
391 x1 = np.arange(val1)
392 x2 = np.arange(val2)
393 x3 = np.arange(val3)
394 x4 = np.arange(self.x_len-val1-val2-val3-val5)
395 x5 = np.arange(val5)
396 seg1 = tsLine(t=x1,mu=.9,sd=.01)
397 seg3 = tsLine(t=x3,mu=.1,sd=.01)
398 seg5 = tsLine(t=x5,mu=.9,sd=.01)
399 seg1.merge_with_linear_connector(seg3, transition_x=x2,
400 sd=.01)
401 seg1.merge_with_linear_connector(seg5, transition_x=x4,
402 sd=.01)
403 self.seg=seg1
404 self.brkpt = [[0,len(x1)-1],[len(x1),len(x1)+len(x2)-1],
405 [len(x1)+len(x2),len(x1)+len(x2)+len(x3)-1],
406 [len(x1)+len(x2)+len(x3),
407 len(x1)+len(x2)+len(x3)+len(x4)-1],
408 [self.x_len-len(x5),self.x_len-1]]
409 self.group = 5
410 return seg1, self.brkpt
411 def type6(self):
412 val1 = round(np.random.normal(150,1))
413 val2 = round(np.random.normal(10,1))
414 val3 = round(np.random.normal(80,1))
415 val4 = round(np.random.normal(10,1))
416 x1 = np.arange(val1)
417 x2 = np.arange(val2)
418 x3 = np.arange(val3)
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419 x4 = np.arange(val4)
420 x5 = np.arange(self.x_len-val1-val2-val3-val4)
421 y_target = (0.9-.1)*self.val
422 y_target += .1
423 y_target += np.random.normal(0,.2)*(1-self.val)*(self.val)
424 if y_target > 0.9:
425 y_target=.9
426 if y_target < .1:
427 y_target = .1
428 seg1 = tsLine(t=x1,mu=.9,sd=.01)
429 seg3 = tsLine(t=x3,mu=y_target,sd=.01)
430 seg5 = tsLine(t=x5,mu=.9,sd=.01)
431 seg1.merge_with_linear_connector(seg3, transition_x=x2,
432 sd=.01)
433 seg1.merge_with_linear_connector(seg5, transition_x=x4,
434 sd=.01)
435 self.seg=seg1
436 self.brkpt = [[0,len(x1)-1],[len(x1),len(x1)+len(x2)-1],
437 [len(x1)+len(x2),len(x1)+len(x2)+len(x3)-1],
438 [len(x1)+len(x2)+len(x3),
439 len(x1)+len(x2)+len(x3)+len(x4)-1],
440 [self.x_len-len(x5),self.x_len-1]]
441 self.group = 6
442 return seg1, self.brkpt
443 def type7(self):
444 x1 = np.arange(self.x_len)
445 seg1 = tsLine(t=x1,mu=.9,sd=.01)
446 self.seg=seg1
447 self.brkpt = [[0,self.x_len-1]]
448 self.group = 7
449 return seg1,self.brkpt
450
451 #def bottom_up_aggr(t,y,sigma=1.0):
452 def bottom_up_aggr(t,y,*args,**kwargs):
453
454 t = np.asarray(t)
455 y = np.asarray(y)
456
457 if len(args) == 1:
458 myCutoff_sd = args[0]
459 myOption = ’sigma’
460 else:
461 if ’sigma’ in kwargs:
462 myCutoff_sd = kwargs[’sigma’]
463 myOption = ’sigma’
464 elif ’nseg’ in kwargs:
465 myNumSegs = kwargs[’nseg’]
466 myCutoff = int(np.ceil(len(y)/2.) - myNumSegs)
467 myOption = ’nseg’
468 if myNumSegs == 1:
469 return [t],[y]
470
471 def calc_stddev_of_resid(T,Y):
472 T = np.array(T)
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473 Y = np.array(Y)
474 A = np.vstack((T,np.ones(len(T))))
475 fit = np.linalg.lstsq(A.T,Y)
476 resid = np.dot(fit[0],A)-Y
477 return np.std(resid)
478
479 if myOption == ’sigma’:
480 y3sd = calc_stddev_of_resid(t, y)
481 if y3sd < myCutoff_sd:
482 return [t],[y]
483
484 t2 = list()
485 y2 = list()
486
487 L1 = len(y)
488 L2 = int(np.floor(L1/2))
489
490 ### Pair Up Points ###
491 for i in range(L2):
492 t2.append(t[2*i:2*i+2])
493 y2.append(y[2*i:2*i+2])
494 # Check to see if sequence is odd
495 if np.mod(L1,2) == 1:
496 t2.append([t[-1]])
497 y2.append([y[-1]])
498
499 ### Calculate Linear Regression of adj. sets
500 ### Calculate std. dev.
501 y3sd = list()
502 for i in range(len(y2)-1):
503 t3 = []
504 t3.extend(t2[i])
505 t3.extend(t2[i+1])
506 y3 = []
507 y3.extend(y2[i])
508 y3.extend(y2[i+1])
509 y3sd.append(calc_stddev_of_resid(t3, y3))
510 # print y3sd
511 myMins = [0]
512 myDelta = []
513 myX = []
514
515 if myOption == ’sigma’:
516 i2 = -1
517 while min(y3sd) < myCutoff_sd:
518 i2 += 1
519 #print i2
520 myMins.append(np.min(y3sd))
521 myDelta.append(myMins[i2+1]-myMins[i2])
522 myX.append(myMins[i2+1]/np.mean(myMins[:(i2+2)]))
523 myIndex = y3sd.index(myMins[-1])
524
525 # print i2,myIndex,y2
526 y2[myIndex] = np.concatenate((y2[myIndex],
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527 y2[myIndex+1]))
528 y2.pop(myIndex+1)
529 t2[myIndex] = np.concatenate((t2[myIndex],
530 t2[myIndex+1]))
531 t2.pop(myIndex+1)
532 y3sd.pop(myIndex)
533
534 if myIndex == len(y2)-1:
535 i3 = [-1]
536 elif myIndex == 0:
537 i3 = [0]
538 else:
539 i3 = [-1,0]
540 #print myIndex, i3, len(y2)
541 for i in i3:
542 t3 = []
543 t3.extend(t2[myIndex+i])
544 t3.extend(t2[myIndex+i+1])
545 y3 = []
546 y3.extend(y2[myIndex+i])
547 y3.extend(y2[myIndex+i+1])
548 y3sd[myIndex+i] = calc_stddev_of_resid(t3, y3)
549 if len(y2) < 3:
550 break
551 elif myOption == ’nseg’:
552 for i2 in range(myCutoff):
553 #print i2
554 myMins.append(np.min(y3sd))
555 myDelta.append(myMins[i2+1]-myMins[i2])
556 myX.append(myMins[i2+1]/np.mean(myMins[:(i2+2)]))
557 myIndex = y3sd.index(myMins[-1])
558
559 y2[myIndex] = np.concatenate((y2[myIndex],
560 y2[myIndex+1]))
561 y2.pop(myIndex+1)
562 t2[myIndex] = np.concatenate((t2[myIndex],
563 t2[myIndex+1]))
564 t2.pop(myIndex+1)
565 y3sd.pop(myIndex)
566
567 if myIndex == len(y2)-1:
568 i3 = [-1]
569 elif myIndex == 0:
570 i3 = [0]
571 else:
572 i3 = [-1,0]
573 #print myIndex, i3, len(y2)
574 for i in i3:
575 t3 = []
576 t3.extend(t2[myIndex+i])
577 t3.extend(t2[myIndex+i+1])
578 y3 = []
579 y3.extend(y2[myIndex+i])
580 y3.extend(y2[myIndex+i+1])
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581 y3sd[myIndex+i] = calc_stddev_of_resid(t3, y3)
582 if len(y2) < 3:
583 break
584 # print y3sd
585 myOut = np.array(t2),np.array(y2)
586 return myOut
587
588 def bottom_up_aggr_std(t,y,sigma=1.,**kwargs):
589 ’’’ This version standardizes the y ’’’
590 t = np.asarray(t)
591 y = np.asarray(y)
592 y = (y-np.mean(y))/np.std(y)
593
594 if ’nseg’ in kwargs:
595 myNumSegs = kwargs[’nseg’]
596 myCutoff = len(y) - myNumSegs
597 myOption = ’nseg’
598 if myNumSegs == 1:
599 return t,y
600 else:
601 myCutoff_sd = sigma
602 myOption = ’sigma’
603 myCutoff = len(y) - 3
604
605 def calc_stddev_of_resid(T,Y):
606 T = np.array(T)
607 Y = np.array(Y)
608 A = np.vstack((T,np.ones(len(T))))
609 fit = np.linalg.lstsq(A.T,Y)
610 resid = np.dot(fit[0],A)-Y
611 return np.std(resid)
612
613 if myOption == ’sigma’:
614 y3sd = calc_stddev_of_resid(t, y)
615 if y3sd < myCutoff_sd:
616 return [t],[y]
617
618 t2 = list()
619 y2 = list()
620
621 L1 = len(y)
622 L2 = int(np.floor(L1/2))
623
624 ### Pair Up Points ###
625 for i in range(L2):
626 t2.append(t[2*i:2*i+2])
627 y2.append(y[2*i:2*i+2])
628 # Check to see if sequence is odd
629 if np.mod(L1,2) == 1:
630 t2.append([t[-1]])
631 y2.append([y[-1]])
632
633 ### Calculate Linear Regression of adj. sets
634 ### Calculate std. dev.

309



635 y3sd = list()
636 for i in range(len(y2)-1):
637 t3 = []
638 t3.extend(t2[i])
639 t3.extend(t2[i+1])
640 y3 = []
641 y3.extend(y2[i])
642 y3.extend(y2[i+1])
643 y3sd.append(calc_stddev_of_resid(t3, y3))
644 # print y3sd
645 myMins = [0]
646 myDelta = []
647 myX = []
648
649 for i2 in range(myCutoff):
650 myMins.append(np.min(y3sd))
651 myDelta.append(myMins[i2+1]-myMins[i2])
652 myX.append(myMins[i2+1]/np.mean(myMins[:(i2+2)]))
653 myIndex = y3sd.index(myMins[-1])
654
655 #print i2,myIndex,y
656 y2[myIndex] = np.concatenate((y2[myIndex], y2[myIndex+1]))
657 y2 = np.delete(y2,myIndex+1)
658 t2[myIndex] = np.concatenate((t2[myIndex], t2[myIndex+1]))
659 t2 = np.delete(t2,myIndex+1)
660 y3sd.pop(myIndex)
661
662 # print len(t),y3sd
663 if myIndex == len(y2)-1:
664 i3 = [-1]
665 elif myIndex == 0:
666 i3 = [0]
667 else:
668 i3 = [-1,0]
669 # print myIndex, i3, len(y2)
670 for i in i3:
671 t3 = []
672 t3.extend(t2[myIndex+i])
673 t3.extend(t2[myIndex+i+1])
674 y3 = []
675 y3.extend(y2[myIndex+i])
676 y3.extend(y2[myIndex+i+1])
677 y3sd[myIndex+i] = calc_stddev_of_resid(t3, y3)
678 if myOption == ’sigma’:
679 if min(y3sd) >= myCutoff_sd:
680 # print ’y3sd:’,y3sd
681 break
682 # print ’y3sd:’,y3sd
683 myOut = t2,y2
684 return myOut
685
686 def bottom_up_aggr_2(t,y,*args,**kwargs):
687 t2,y2 = bottom_up_aggr(t,y,*args,**kwargs)
688 iter_range = range(len(t2))[1:-1]
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689 for i in iter_range:
690 if len(t2[i]) == 2:
691 l1 = len(t2[i-1])
692 l2 = len(t2[i+1])
693 if np.all((l1>2,l2>2),axis=0):
694 t_ = t2[i]
695 t2[i-1] = np.concatenate((t2[i-1],[t_[0]]))
696 t2[i+1] = np.concatenate(([t_[1]],t2[i+1]))
697 y_ = y2[i]
698 y2[i-1] = np.concatenate((y2[i-1],[y_[0]]))
699 y2[i+1] = np.concatenate(([y_[1]],y2[i+1]))
700 t2 = np.delete(t2,i,0)
701 y2 = np.delete(y2,i,0)
702 iter_range.pop(-1)
703 i -= 1
704 return t2,y2
705
706 def weighted_residual_squared(coef,t1,y1,w1):
707 ’’’ This calculates weighted residual squared ’’’
708 new_x = np.vstack((t1,np.ones(len(t1))))
709 new_y = np.dot(coef,new_x)
710 resid = y1 - new_y
711 r2sum = sum(resid*w1*resid)
712 return r2sum
713
714 def bottom_up_aggr_weighted(t,y,w,*args,**kwargs):
715 t = np.asarray(t)
716 y = np.asarray(y)
717 w = np.asarray(w)
718
719 # Determine which mode it is in
720 if len(args) == 1:
721 myCutoff_sd = args[0]
722 myOption = ’sigma’
723 else:
724 if ’sigma’ in kwargs:
725 myCutoff_sd = kwargs[’sigma’]
726 myOption = ’sigma’
727 elif ’nseg’ in kwargs:
728 myNumSegs = kwargs[’nseg’]
729 myCutoff = int(np.ceil(len(y)/2.) - myNumSegs)
730 myOption = ’nseg’
731 if myNumSegs == 1:
732 return [t],[y]
733
734 # Check to see if segmentation is necessary
735 if myOption == ’sigma’:
736 A = np.vstack((t,np.ones(len(t))))
737 result = np.linalg.lstsq(A.T,y)
738 coef = result[0]
739
740 wsd = weighted_residual_squared(coef,t,y,w)
741 print ’wsd: ’,wsd
742 if wsd < sigma:

311



743 return [t],[y]
744
745 t2,y2,w2 = [],[],[]
746
747 L1 = len(y)
748 L2 = int(np.floor(L1/2))
749
750 ### Pair Up Points ###
751 for i in range(L2):
752 t2.append(t[2*i:2*i+2])
753 y2.append(y[2*i:2*i+2])
754 w2.append(w[2*i:2*i+2])
755 # Check to see if sequence is odd
756 if np.mod(L1,2) == 1:
757 t2.append([t[-1]])
758 y2.append([y[-1]])
759 w2.append([w[-1]])
760
761
762 ### Calculate Linear Regression of adj. sets
763 ### Calculate std. dev.
764 y3sd = list()
765 for i in range(len(y2)-1):
766 t3 = []
767 t3.extend(t2[i])
768 t3.extend(t2[i+1])
769 y3 = []
770 y3.extend(y2[i])
771 y3.extend(y2[i+1])
772 w3 = []
773 w3.extend(w2[i])
774 w3.extend(w2[i+1])
775 # print w2,w3,i
776 A = np.vstack((t3,np.ones(len(t3))))
777
778 result = np.linalg.lstsq(A.T,y3)
779 coef = result[0]
780 # wsd = np.sqrt(weighted_residual_squared(coef,t3,y3,w3))
781 # print coef,t3,y3,w3
782 wsd = weighted_residual_squared(coef,t3,y3,w3)
783 y3sd.append(wsd)
784
785 #print y3sd
786 myMins = [0]
787 myDelta = []
788 myX = []
789 # myNumSegs = 4
790 # myCutoff = len(y2) - myNumSegs
791 # myCutoff_sd = sigma
792
793 if myOption == ’sigma’:
794 i2 = -1
795 while min(y3sd) < myCutoff_sd:
796 i2 += 1
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797 #print i2
798 myMins.append(np.min(y3sd))
799 myDelta.append(myMins[i2+1]-myMins[i2])
800 myX.append(myMins[i2+1]/np.mean(myMins[:(i2+2)]))
801 myIndex = y3sd.index(myMins[-1])
802
803 y2[myIndex] = np.concatenate((y2[myIndex],
804 y2[myIndex+1]))
805 y2.pop(myIndex+1)
806 t2[myIndex] = np.concatenate((t2[myIndex],
807 t2[myIndex+1]))
808 t2.pop(myIndex+1)
809 w2[myIndex] = np.concatenate((w2[myIndex],
810 w2[myIndex+1]))
811 w2.pop(myIndex+1)
812 y3sd.pop(myIndex)
813
814 if myIndex == len(y2)-1:
815 i3 = [-1]
816 elif myIndex == 0:
817 i3 = [0]
818 else:
819 i3 = [-1,0]
820 for i in i3:
821 t3 = []
822 t3.extend(t2[myIndex+i])
823 t3.extend(t2[myIndex+i+1])
824 y3 = []
825 y3.extend(y2[myIndex+i])
826 y3.extend(y2[myIndex+i+1])
827 w3 = []
828 w3.extend(w2[myIndex+i])
829 w3.extend(w2[myIndex+i+1])
830 A = np.vstack((t3,np.ones(len(t3))))
831
832 result = np.linalg.lstsq(A.T,y3)
833 coef = result[0]
834 wsd = weighted_residual_squared(coef,t3,y3,w3)
835 y3sd[myIndex+i] = wsd
836 if len(y2) < 3:
837 break
838 else:
839 for i2 in range(myCutoff):
840 myMins.append(np.min(y3sd))
841 myDelta.append(myMins[i2+1]-myMins[i2])
842 myX.append(myMins[i2+1]/np.mean(myMins[:(i2+2)]))
843 myIndex = y3sd.index(myMins[-1])
844
845 y2[myIndex] = np.concatenate((y2[myIndex],
846 y2[myIndex+1]))
847 y2.pop(myIndex+1)
848 t2[myIndex] = np.concatenate((t2[myIndex],
849 t2[myIndex+1]))
850 t2.pop(myIndex+1)
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851 w2[myIndex] = np.concatenate((w2[myIndex],
852 w2[myIndex+1]))
853 w2.pop(myIndex+1)
854 y3sd.pop(myIndex)
855
856 if myIndex == len(y2)-1:
857 i3 = [-1]
858 elif myIndex == 0:
859 i3 = [0]
860 else:
861 i3 = [-1,0]
862 for i in i3:
863 t3 = []
864 t3.extend(t2[myIndex+i])
865 t3.extend(t2[myIndex+i+1])
866 y3 = []
867 y3.extend(y2[myIndex+i])
868 y3.extend(y2[myIndex+i+1])
869 w3 = []
870 w3.extend(w2[myIndex+i])
871 w3.extend(w2[myIndex+i+1])
872 A = np.vstack((t3,np.ones(len(t3))))
873
874 result = np.linalg.lstsq(A.T,y3)
875 coef = result[0]
876 wsd = weighted_residual_squared(coef,t3,y3,w3)
877 y3sd[myIndex+i] = wsd
878 if len(y2) < 3:
879 break
880 myOut = t2,y2
881 return myOut
882
883 def _bottom_up_aggr(t,y,*args,**kwargs):
884
885 # t = np.asarray(t)
886 # y = np.asarray(y)
887 t = list(t)
888 y = list(y)
889 assert len(t) == len(y)
890 try:
891 t[0][0]
892 except:
893 print ’The input is not structured correctly’
894 return t,y
895 if len(t) < 2:
896 return t,y
897
898 if len(args) == 1:
899 myCutoff_sd = args[0]
900 myOption = ’sigma’
901 else:
902 if ’sigma’ in kwargs:
903 myCutoff_sd = kwargs[’sigma’]
904 myOption = ’sigma’
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905 myCutoff = len(y) - 3
906 elif ’nseg’ in kwargs:
907 myNumSegs = kwargs[’nseg’]
908 myCutoff = len(y) - myNumSegs
909 myOption = ’nseg’
910 if myNumSegs == 1:
911 return t,y
912 else:
913 raise RuntimeError
914
915 def calc_stddev_of_resid(T,Y):
916 T = np.array(T)
917 Y = np.array(Y)
918 A = np.vstack((T,np.ones(len(T))))
919 fit = np.linalg.lstsq(A.T,Y)
920 resid = np.dot(fit[0],A)-Y
921 return np.std(resid)
922
923 #TODO: This is a temporary fix
924 def _calc_stddev_of_resid(T,Y):
925 T = np.array(T)
926 Y = np.array(Y)
927 Y_ = np.interp(T, T[[0,-1]], Y[[0,-1]])
928 return np.std(Y-Y_)
929
930 ### Calculate Linear Regression of adj. sets
931 ### Calculate std. dev.
932 y3sd = list()
933 for i in range(len(y)-1):
934 t3 = []
935 t3.extend(t[i])
936 t3.extend(t[i+1])
937 y3 = []
938 y3.extend(y[i])
939 y3.extend(y[i+1])
940 y3sd.append(calc_stddev_of_resid(t3, y3))
941
942 if myOption == ’sigma’:
943 # y3sd_tf = np.less_equal(y3sd,myCutoff_sd)
944 ## print ’y3sd:’,y3sd
945 # if np.all(y3sd_tf):
946 if min(y3sd) >= myCutoff_sd:
947 return t,y
948
949 # print ’y3sd:’,y3sd
950 # print ’myCutoff_sd:’,myCutoff_sd
951 myMins = [0]
952 myDelta = []
953 myX = []
954
955 for i2 in range(myCutoff):
956 myMins.append(np.min(y3sd))
957 myDelta.append(myMins[i2+1]-myMins[i2])
958 myX.append(myMins[i2+1]/np.mean(myMins[:(i2+2)]))
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959 myIndex = y3sd.index(myMins[-1])
960
961 # print i2,myIndex,y
962 y[myIndex] = np.concatenate((y[myIndex], y[myIndex+1]))
963 y = np.delete(y,myIndex+1)
964 t[myIndex] = np.concatenate((t[myIndex], t[myIndex+1]))
965 t = np.delete(t,myIndex+1)
966 y3sd.pop(myIndex)
967
968 # print len(t),y3sd
969 if myIndex == len(y)-1:
970 i3 = [-1]
971 elif myIndex == 0:
972 i3 = [0]
973 else:
974 i3 = [-1,0]
975 #print myIndex, i3, len(y)
976 for i in i3:
977 t3 = []
978 t3.extend(t[myIndex+i])
979 t3.extend(t[myIndex+i+1])
980 y3 = []
981 y3.extend(y[myIndex+i])
982 y3.extend(y[myIndex+i+1])
983 #print y3sd,i,myIndex
984 y3sd[myIndex+i] = calc_stddev_of_resid(t3, y3)
985 if myOption == ’sigma’:
986 if min(y3sd) >= myCutoff_sd:
987 # print ’y3sd:’,y3sd
988 break
989 # print ’y3sd:’,y3sd
990 myOut = t,y
991 return myOut
992
993 def return_break_index(original,segmented):
994 myOut = []
995 original = np.array(original)
996 for seg in segmented:
997 p1 = int(np.where(original == seg[0])[0])
998 p2 = int(np.where(original == seg[-1])[0])
999 myOut.append([p1,p2])

1000 return myOut
1001
1002 def top_down_aggr(t,y,sigma=1.0,depth=1):
1003 ’’’ Coded based on psuedocode from ’Chapter 1: Segmenting
1004 Time Series: A Survey and Novel Approach’ by Keogh, Chu,
1005 Hart and Pazzani in ’Data Mining in Time
1006 Series Databases’ 2004
1007 ’’’
1008 assert len(t) == len(y)
1009 t = np.asarray(t)
1010 y = np.asarray(y)
1011
1012 if len(t) < 7:
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1013 return [t],[y]
1014 #TODO: this is a temporary fix
1015 #def lin_interp_resid(T,Y):
1016 def linreg(T,Y):
1017 T = np.array(T)
1018 Y = np.array(Y)
1019 Y_ = np.interp(T, T[[0,-1]], Y[[0,-1]])
1020 return Y-Y_
1021 # def _linreg(T,Y):
1022 # T = np.array(T)
1023 # Y = np.array(Y)
1024 # A = np.vstack((T,np.ones(len(T))))
1025 # fit = np.linalg.lstsq(A.T,Y)
1026 # resid = np.dot(fit[0],A)-Y
1027 # return resid
1028 if np.std(linreg(t,y)) < sigma:
1029 return [t],[y]
1030
1031 bestsofar = np.inf
1032 bestsofar_l = 0
1033 bestsofar_r = 0
1034 best_t = [t]
1035 best_y = [y]
1036 for i in range(3,len(t)-3):
1037 tl, tr = t[:i],t[(i):]
1038 yl, yr = y[:i],y[(i):]
1039 sdl = linreg(tl,yl)
1040 sdr = linreg(tr,yr)
1041 #sd_temp = (sdl+sdr)/len(t)
1042 # Assumption that normal is wrong!!
1043 # sd_temp = (sdl**2+sdr**2)**.5
1044 sd_temp = np.std(np.hstack((sdl,sdr)))
1045 if sd_temp < bestsofar:
1046 bestsofar = sd_temp
1047 bestsofar_l = np.std(sdl)
1048 bestsofar_r = np.std(sdr)
1049 best_t = [tl,tr]
1050 best_y = [yl,yr]
1051
1052 if bestsofar_l > sigma:
1053 #print ’left’
1054 tl, yl = top_down_aggr(best_t[0], best_y[0],
1055 sigma, depth=depth+1)
1056 best_t.pop(0)
1057 best_t = tl+best_t
1058 best_y.pop(0)
1059 best_y = yl+best_y
1060 if bestsofar_r > sigma:
1061 #print ’right’
1062 tr, yr = top_down_aggr(best_t[-1], best_y[-1],
1063 sigma, depth=depth+1)
1064 best_t.pop(-1)
1065 best_t = best_t+tr
1066 best_y.pop(-1)
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1067 best_y = best_y+yr
1068 return best_t, best_y
1069
1070 def top_down_aggr_std(t,y,sigma=1.0,depth=1):
1071 ’’’ Coded based on psuedocode from ’Chapter 1: Segmenting
1072 Time Series: A Survey and Novel Approach’ by Keogh, Chu,
1073 Hart and Pazzani in ’Data Mining in Time Series
1074 Databases’ 2004
1075 This version standardizes the y beforehand
1076 ’’’
1077 assert len(t) == len(y)
1078 t = np.asarray(t)
1079 y = np.asarray(y)
1080 y = (y-np.mean(y))/np.std(y)
1081
1082 if len(t) < 7:
1083 return [t],[y]
1084 def linreg(T,Y):
1085 T = np.array(T)
1086 Y = np.array(Y)
1087 A = np.vstack((T,np.ones(len(T))))
1088 fit = np.linalg.lstsq(A.T,Y)
1089 resid = np.dot(fit[0],A)-Y
1090 return resid
1091 if np.std(linreg(t,y)) < sigma:
1092 return [t],[y]
1093
1094 bestsofar = np.inf
1095 for i in range(3,len(t)-3):
1096 tl, tr = t[:i],t[(i):]
1097 yl, yr = y[:i],y[(i):]
1098 sdl = linreg(tl,yl)
1099 sdr = linreg(tr,yr)
1100 #sd_temp = (sdl+sdr)/len(t)
1101 # Assumption that normal is wrong!!
1102 #sd_temp = (sdl**2+sdr**2)**.5
1103 sd_temp = np.std(np.hstack((sdl,sdr)))
1104 if sd_temp < bestsofar:
1105 bestsofar = sd_temp
1106 bestsofar_l = np.std(sdl)
1107 bestsofar_r = np.std(sdr)
1108 best_t = [tl,tr]
1109 best_y = [yl,yr]
1110
1111 if bestsofar_l > sigma:
1112 #print ’left’
1113 tl, yl = top_down_aggr(best_t[0], best_y[0],
1114 sigma, depth=depth+1)
1115 best_t.pop(0)
1116 best_t = tl+best_t
1117 best_y.pop(0)
1118 best_y = yl+best_y
1119 if bestsofar_r > sigma:
1120 #print ’right’
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1121 tr, yr = top_down_aggr(best_t[-1], best_y[-1],
1122 sigma, depth=depth+1)
1123 best_t.pop(-1)
1124 best_t = best_t+tr
1125 best_y.pop(-1)
1126 best_y = best_y+yr
1127 return best_t, best_y
1128
1129 def hybrid_aggr(t,y,sigma=None,nseg=None):
1130 assert len(t) == len(y)
1131 t = np.asarray(t)
1132 y = np.asarray(y)
1133
1134 if np.all((sigma is None, nseg is None)):
1135 print ’sigma or nseg must be specified’
1136 return [t],[y]
1137 if np.all((sigma is not None, nseg is not None)):
1138 print ’please specify only sigma or nseg’
1139 return [t],[y]
1140
1141 if sigma is not None:
1142 if np.std(y) < sigma:
1143 return [t],[y]
1144 sigma2 = sigma/2
1145 t1,y1 = top_down_aggr(t,y,sigma=sigma2)
1146 # for t_,y_ in zip(t1,y1):
1147 # plt.plot(t_,y_)
1148 # plt.show()
1149 # print ’sigma,sigma2:’,sigma,sigma2
1150 t1,y1 = _bottom_up_aggr(t1,y1,sigma=sigma)
1151 return t1,y1
1152 else:
1153 y1 = [[0]]
1154 sigma2 = np.std(y)/nseg
1155 while len(y1) < nseg*2:
1156 t1,y1 = top_down_aggr(t,y,sigma=sigma2)
1157 sigma2 *=.5
1158 # print np.std(y),sigma2
1159 # for t_,y_ in zip(t1,y1):
1160 # plot(t_,y_)
1161 t1,y1 = _bottom_up_aggr(t1,y1,nseg=nseg)
1162 return t1,y1
1163
1164 def hybrid_aggr_std(t,y,sigma=1.0,nseg=None):
1165 assert len(t) == len(y)
1166 t = np.asarray(t)
1167 y = np.asarray(y)
1168 y = (y-np.mean(y))/np.std(y)
1169
1170 if nseg is not None:
1171 y1 = [[0]]
1172 sigma2 = np.std(y)/nseg
1173 while len(y1) < nseg*2:
1174 t1,y1 = top_down_aggr(t,y,sigma=sigma2)
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1175 sigma2 *=.5
1176 # print np.std(y),sigma2
1177 # for t_,y_ in zip(t1,y1):
1178 # plot(t_,y_)
1179 t1,y1 = _bottom_up_aggr(t1,y1,nseg=nseg)
1180 else:
1181 sigma2 = sigma/2
1182 t1,y1 = top_down_aggr(t,y,sigma=sigma2)
1183 # for t_,y_ in zip(t1,y1):
1184 # plt.plot(t_,y_)
1185 # plt.show()
1186 t1,y1 = _bottom_up_aggr(t1,y1,sigma=sigma)
1187 return t1,y1
1188
1189 return t1,y1
1190
1191 def optimize_segmentation(t,y,initial_pos,bounds=None):
1192 ’’’ This finds the segmentation using fmin, which uses a
1193 downhill simplex algorithm. It’s very sensitive to
1194 the initial starting position. t and y must be a vector
1195 of time stamps and values
1196 initial_pos is a vector of initial positions of break points
1197 bounds is a list of upper and lower bounds for each break
1198 point in initial _pos
1199 ’’’
1200
1201 if bounds is None:
1202 bounds = []
1203 for i in range(len(initial_pos)):
1204 # upper = initial_pos[i] + int(len(t)*.1)
1205 # lower = initial_pos[i] - int(len(t)*.1)
1206 upper = initial_pos[i] + 5
1207 lower = initial_pos[i] - 5
1208 if lower < 0:
1209 lower = 0
1210 if upper > len(t):
1211 upper = len(t)
1212 bounds.append([lower,upper])
1213 for b1,b2 in zip(bounds[:-1],bounds[1:]):
1214 if b1[1] > b2[0]:
1215 v1 = int((b1[1]+b2[0])/2.)
1216 b1[1] = v1
1217 b2[0] = v1
1218 def calc_stddev_of_resid(T,Y):
1219 T = np.array(T)
1220 Y = np.array(Y)
1221 A = np.vstack((T,np.ones(len(T))))
1222 fit = np.linalg.lstsq(A.T,Y)
1223 resid = np.dot(fit[0],A)-Y
1224 return np.std(resid)
1225 def func(x):
1226 x0 = x
1227 x = np.array(x,dtype=np.int)
1228 x1 = x
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1229 r = 0.
1230 for i in range(len(bounds)):
1231 if x[i] > bounds[i][1]:
1232 r += 100+(x[i]-bounds[i][1])*10
1233 x[i] = bounds[i][1]
1234 if x[i] < bounds[i][0]:
1235 r += 100+(bounds[i][1]-x[i])*10
1236 x[i] = bounds[i][0]
1237 for i in range(len(x)-1):
1238 if x[i] == x[i+1]:
1239 x[i+1] = x[i] + 1
1240 #print x,x1,x0
1241 brks = np.hstack((t[0],x,t[-1]))
1242 for ind in zip(brks[:-1],brks[1:]):
1243 r += calc_stddev_of_resid(t[ind[0]:ind[1]],
1244 y[ind[0]:ind[1]])
1245 return r
1246 result = scipy.optimize.fmin(func,initial_pos,
1247 maxiter=100,disp=0,xtol=1)
1248 result = np.hstack((0,np.array(result,dtype=np.int),len(t)))
1249 t_out = []
1250 y_out = []
1251 for i in zip(result[:-1],result[1:]):
1252 t_out.append(t[i[0]:i[1]])
1253 y_out.append(y[i[0]:i[1]])
1254 return t_out,y_out
1255
1256 def make_dataset(ts_fn,X,Z,mc,t,sd,filename,**kwargs):
1257 ’’’ Makes a dataset for given X and Z inputs.
1258 ts_fn is the time series class object that makes time
1259 series data from the ts_segments module.
1260 Options are: sine, square, triangle, sawtooth, flat,
1261 sloped and step
1262 X is the pandas Data Frame for inputs
1263 Z is the pandas Data Frame for values for variables
1264 that need to be varied.
1265 The column names should be keywords into the time series
1266 function.
1267 mc is the number of repititions of the time series
1268 t is for list of time steps
1269 sd is the standard deviation for noise that is normally
1270 distributed
1271 filename is the name of the saved file
1272 kwargs has parameters for other parts of the ts generating
1273 function
1274 wave fn: amplitude, n_waves, phase, (square: ratio)
1275 sloped: (slope and ystart) or (ystart and yend)
1276 step: separation, loc
1277 ’’’
1278 t = np.array(t)
1279 ts_attr = {}
1280 ts_attr[’t’] = t
1281 ts_attr[’sd’] = sd
1282
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1283 ts_attr.update(kwargs)
1284
1285 df = None
1286 design_input_names = list(X.columns)
1287 design_input_names.append(’mc’)
1288 ts_input_names = list(Z.columns)
1289 design_input_col_index = pandas.Index(design_input_names,
1290 name=’inputs’)
1291 attributes_col_index = pandas.Index([’case’],name=’attributes’)
1292 time_step_col_index = pandas.Index(t,name=’time’)
1293
1294 for i_doe in range(len(X)):
1295 # Grab the DoE variable values
1296 ins = X.take([i_doe]).values
1297 # Prepare the attributes
1298 df_attr = pandas.DataFrame([i_doe],
1299 columns = attributes_col_index)
1300 # Modify inputs into time series function
1301 d = dict(zip(ts_input_names,Z.take([i_doe]).values))
1302 ts_attr.update(d)
1303
1304 for i_mc in range(mc):
1305 ts = ts_fn(**ts_attr)
1306 # Prepare the doe inputs to be merged
1307 data1 = np.asarray(ins).flatten()
1308 data1 = np.append(data1,i_mc)
1309 df1 = pandas.DataFrame([data1],
1310 columns=design_input_col_index)
1311 # Prepare the ts outputs to be merged
1312 data2 = np.round(ts.y,3)
1313 df2 = pandas.DataFrame([data2],
1314 columns=time_step_col_index)
1315 # Merge the inputs, attributes and ts outputs
1316 data3 = {’inputs’:df1,
1317 ’attributes’:df_attr,’outputs’:df2}
1318 df3 = pandas.concat(data3,axis=1,names=[’L1’,’L2’])
1319
1320 if isinstance(df, pandas.DataFrame):
1321 df = pandas.concat([df,df3],
1322 axis=0, ignore_index=True)
1323 else:
1324 df = df3.copy()
1325 df.to_csv(filename)
1326
1327 def from_pandas_csv(filename):
1328 ’’’ This function takes csv files exported via pandas
1329 and returns a TimeSeriesDB object.
1330 ’’’
1331 df = pandas.DataFrame.from_csv(filename)
1332 # Make columns multi level index
1333 cols = df.columns
1334 cols = [eval(x) for x in cols]
1335 cols = pandas.MultiIndex.from_tuples(cols)
1336 df.columns = cols
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1337 df_in = df.xs(’inputs’,axis=1)
1338 inputs_names = list(df_in.columns)
1339 ins = df_in.values
1340 outs = df.xs(’outputs’,axis=1).values
1341 outputs_names = [str(x) for x in range(len(outs[0,:]))]
1342 if ’attributes’ in df.columns.levels[0]:
1343 df_attr = df.xs(’attributes’,axis=1)
1344 attr_names = list(df_attr.columns)
1345 attr = df_attr.values
1346 else:
1347 attr = None
1348
1349 tsDB = TimeSeriesDB.TimeSeriesDB()
1350 for i in range(len(df_in)):
1351 x_in = ins[i,:]
1352 x_in = dict(zip(inputs_names,x_in))
1353 y_in = outs[i,:]
1354 t = np.arange(len(y_in))
1355 if attr is None:
1356 d = {’inputs’:x_in,’t’:t,’y’:y_in,’case’:i}
1357 else:
1358 attr_in = attr[i,:]
1359 attr_in = dict(zip(attr_names,attr_in))
1360 d = {’inputs’:x_in,’t’:t,’y’:y_in}
1361 d.update(attr_in)
1362 tsDB.record(d)
1363 return tsDBA.3 my functions.py

1 import matplotlib.pyplot as plt
2 from matplotlib import offsetbox
3 import numpy as np
4
5 # Scale and visualize the embedding vectors
6 def plot_embedding_1D(X, images=None, title=None,
7 xlim = [-.1,1.1], fig=None):
8 x_min, x_max = np.min(X, 0), np.max(X, 0)
9 X = (X - x_min) / (x_max - x_min)

10
11 sweep = np.linspace(0, 1, 11)
12 if fig is None:
13 fig = plt.figure(figsize=(20,5))
14 ax = plt.subplot(111)
15 # yloc = np.sin(np.arange(len(X))*2)/4
16 yloc = np.random.uniform(-.25,.25,len(X))
17 # yloc = 0
18 for i in range(len(X)):
19 if X[i] > xlim[0]:
20 plt.plot(X[i], yloc[i],’o’)
21
22 if images is not None:
23 if hasattr(offsetbox, ’AnnotationBbox’):
24 # only print thumbnails with matplotlib > 1.0
25 for sw in sweep:
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26 i = arg_closest(sw, X)
27 if np.all((X[i] >= xlim[0],X[i] <= xlim[1])):
28 imagebox = offsetbox.AnnotationBbox(
29 offsetbox.OffsetImage(images[i],
30 cmap = plt.cm.gray_r,
31 zoom=.9),
32 (X[i],.8),pad=0.1)
33 ax.add_artist(imagebox)
34
35 plt.xlim(xlim)
36 # plt.ylim((-.5,1.5))
37 plt.ylim((-.5,1.5))
38 #plt.xticks([])
39 plt.yticks([])
40 if title is not None:
41 plt.title(title)
42 return fig
43
44
45 def plot_pca_1D_hist(X, dat, ts_resample=’auto’,
46 dot_size=0, fig=None,
47 font_settings=None, yticks=None):
48 ’’’ plots the image of the time series along the first
49 PCA axis with equal spacing ’’’
50 minimum = np.min(np.min(dat))
51 minimum -= np.abs(minimum)*.1
52 maximum = np.max(np.max(dat))
53 if ts_resample == ’auto’:
54 L = len(dat[0, :])
55 ts_resample = int(L / 65)
56
57 x_min, x_max = np.min(X, 0), np.max(X, 0)
58 X = (X - x_min) / (x_max - x_min)
59
60 sweep = np.linspace(0, 1, 11)
61 if fig is None:
62 fig = plt.figure(figsize=(20, 5))
63 if font_settings is None:
64 font_settings = {’fontname’: ’sans’, ’fontsize’: 12}
65 ax2 = plt.subplot(212)
66
67 ax2.hist(X, bins=50, normed=False, color=’b’, edgecolor=’b’)
68 plt.xlim([-.1, 1.1])
69 ax2.yaxis.labelpad = -10
70 plt.xlabel(’PC 1’, **font_settings)
71 if yticks:
72 plt.yticks(yticks)
73
74 ax1 = plt.subplot(211)
75
76 # if images is not None:
77 if True:
78 if hasattr(offsetbox, ’AnnotationBbox’):
79 # only print thumbnails with matplotlib > 1.0
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80 for sw in sweep:
81 i = arg_closest(sw, X)
82 y = dat[i,:]
83 img = make_ts_img(y, ts_resample, dot_size,
84 minimum, maximum)
85 imagebox = offsetbox.AnnotationBbox(
86 offsetbox.OffsetImage(img, cmap=plt.cm.gray_r,
87 zoom=1),
88 (X[i],0),pad=0.1)
89 ax1.add_artist(imagebox)
90 plt.ylim([-1,1])
91 plt.xlim([-.1,1.1])
92 plt.xticks([])
93 plt.yticks([])
94 ax2.set_xticks(np.arange(0,1.1,.2))
95 plt.setp(ax2.get_xticklabels(),**font_settings)
96
97 ax2.spines[’top’].set_visible(False)
98 ax1.spines[’bottom’].set_visible(False)
99 fig.subplots_adjust(hspace=0)
100 return fig
101
102 def arg_closest(target,lst):
103 ta = np.array(target)
104 ls = np.array(lst)
105 ls = ls-ta
106 ls = np.absolute(ls)
107 ls1 = np.array((range(len(ls)),ls))
108 ls1 = ls1.T
109 ls1 = ls1[np.argsort(ls1[:,1])]
110 return int(ls1[0,0])
111
112 def make_ts_img(yvals,resample=3,dot_size=0,minimum=0,maximum=1):
113 yvals = yvals[::resample]
114 yvals = normalize(yvals,minimum,maximum)
115 dot_size=int(dot_size)
116 l = len(yvals)
117 buff = np.floor(l*.05)
118 if buff < 1:
119 buff = 1
120 img_temp = np.zeros((l,l))
121 y = yvals/(np.max(yvals,0))*(l-buff*2)
122 y = np.floor(y)
123 for i in range(l):
124 r1 = l-y[i] - dot_size
125 r2 = l-y[i] + 1+dot_size
126 c1 = i - dot_size
127 c2 = i + 1+dot_size
128 img_temp[r1:r2,c1:c2] = 1
129 # img_temp[l-y[i]][i] = 1
130 return img_temp
131
132 def normalize(vec,minimum=None,maximum=None):
133 ’’’ Normalize a Vector of values to 0 to 1 or given values ’’’
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134 vec = np.array(vec)
135 if minimum is None:
136 mi = np.float(np.min(vec))
137 else:
138 mi = np.float(minimum)
139 if maximum is None:
140 ma = np.float(np.max(vec))
141 else:
142 ma = np.float(maximum)
143 myOut = (vec-mi)/(ma-mi)
144 return myOut
145
146 def normalize2(vec,minimum,maximum):
147 ’’’ Normalize a Vector of values where min and max are
148 specified
149 ’’’
150 normalized = normalize(vec)
151 mi = np.float64(minimum)
152 ma = np.float64(maximum)
153 myOut = (normalized)*np.abs(ma-mi) + mi
154 return myOut
155
156 def movingaverage(interval, window_size,mode=’valid’):
157 window = np.ones(int(window_size))/float(window_size)
158 return np.convolve(interval, window, mode)
159
160 def combine_mu(mus,ns):
161 assert len(mus) == len(ns)
162 mus = np.array(mus,dtype=np.float)
163 ns = np.array(ns,dtype=np.float)
164 return np.sum(np.dot(mus,ns))/np.sum(ns)
165
166 def combine_sd(mus,sds,ns):
167 assert len(mus) == len(ns)
168 mus = np.array(mus,dtype=np.float)
169 sds = np.array(sds,dtype=np.float)
170 ns = np.array(ns,dtype=np.float)
171 n_tot = np.sum(ns)
172 MU = combine_mu(mus,ns)
173 sum1 = np.sum(np.dot((ns-1),sds**2) + np.dot(ns,mus**2))
174 sum2 = n_tot*MU**2
175 return np.sqrt((sum1-sum2)/(n_tot-1))
176
177 def find_overlap_partial(x1, x2):
178 ’’’ This method finds the partial overlapping region along a
179 1-D axis of two vectors x1 and x2
180
181 inputs
182 ------
183 x1, x2 - list or numpy array of real numbers that are
184 partially overlapping with x1 being less than x2
185
186 outputs
187 -------
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188 idx1, idx2 - index of x1 and x2 that are overlapping
189 ’’’
190 x1 = np.array(x1)
191 x2 = np.array(x2)
192 assert np.min(x1) < np.min(x2)
193 assert np.max(x1) < np.max(x2)
194 idx1 = np.argwhere( x1 >= np.min(x2) ).ravel()
195 idx2 = np.argwhere( x2 <= np.max(x1) ).ravel()
196 return idx1, idx2
197
198 def find_overlap_complete(x1, x2):
199 ’’’ This method finds the complete overlapping region along a
200 1-D axis of two vectors x1 and x2
201
202 inputs
203 ------
204 x1, x2 - list or numpy array of real numbers that are
205 completely overlapping with x1 encompassing x2
206
207 outputs
208 -------
209 idx1, idx2 - index of x1 and x2 that are overlapping,
210 values that are the same are also returned
211 ’’’
212 x1 = np.array(x1)
213 x2 = np.array(x2)
214 assert np.min(x1) < np.min(x2)
215 assert np.max(x1) > np.max(x2)
216 min1, min2 = np.min(x1), np.min(x2)
217 max1, max2 = np.max(x1), np.max(x2)
218
219 idx1a = np.argwhere(x1 >= min2).ravel()
220 idx1b = np.argwhere(x1 <= max2).ravel()
221 #print idx1a, idx1b
222 idx1b_, idx1a_ = find_overlap_partial(idx1b, idx1a)
223 idx1 = idx1b[idx1b_]
224 idx2 = range(len(x2))
225 return idx1, idx2
226
227 def find_overlap(x1, x2):
228 ’’’ This method finds the overlapping region along a 1-D axis
229 of two vectors x1 and x2
230
231 inputs
232 ------
233 x1, x2 - list or numpy array of real numbers
234
235 outputs
236 -------
237 idx1, idx2 - index of x1 and x2 that are overlapping
238 ’’’
239
240 x1 = np.array(x1)
241 x2 = np.array(x2)
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242
243 min1, min2 = np.min(x1), np.min(x2)
244 max1, max2 = np.max(x1), np.max(x2)
245
246 # Check how it overlaps
247 # There are 6 possible ways (3 unique) that they can be arranged
248 # There are 4 possible ways (2 unique) that they can overlap
249 mat = np.array([[1, min1],
250 [1, max1],
251 [2, min2],
252 [2, max2]])
253 mat_sorted = mat[ np.argsort(mat[:, 1]).ravel(), :]
254 my_order = mat_sorted[:,0]
255
256 # If my_order is [1 1 2 2] or [2 2 1 1], then no overlap
257 if all(my_order == [1, 1, 2, 2]) or \
258 all(my_order == [2, 2, 1, 1]):
259 return [], []
260 # If my_order is [1 2 1 2],
261 # then partial overlap with max(x1) > min(x2)
262 elif all(my_order == [1, 2, 1, 2]):
263 return find_overlap_partial(x1, x2)
264 # If my_order is [2 1 2 1],
265 # then partial overlap with max(x2) > min(x1)
266 elif all(my_order == [2, 1, 2, 1]):
267 idx2, idx1 = find_overlap_partial(x2, x1)
268 return idx1, idx2
269 # If my_order is [1 2 2 1],
270 # then complete overlap w/ x1 encompassing x2
271 elif all(my_order == [1, 2, 2, 1]):
272 return find_overlap_complete(x1, x2)
273 # If my_order is [2 1 1 2],
274 # then complete overlap w/ x2 encompassing x1
275 elif all(my_order == [2, 1, 1, 2]):
276 idx2, idx1 = find_overlap_complete(x2, x1)
277 return idx1, idx2
278
279 def make_white(fig):
280 ’’’
281 Sets figure parameters to white for presentations with
282 dark background
283
284 :param fig: matplotlib figure object
285 ’’’
286 all_axes = fig.get_axes()
287 col = ’w’
288 for ax in all_axes:
289 ya = ax.yaxis
290 # you modify x ticks indepently
291 xa = ax.xaxis
292 ya.set_tick_params(labelcolor=col) # label
293 ya.set_tick_params(color=col) # ticks
294 xa.set_tick_params(labelcolor=col) # label
295 xa.set_tick_params(color=col) # ticks
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296 ax.spines[’bottom’].set_color(col)
297 ax.spines[’top’].set_color(col)
298 ax.spines[’right’].set_color(col)
299 ax.spines[’left’].set_color(col)
300 ax.yaxis.label.set_color(col)
301 ax.xaxis.label.set_color(col)
302 return(fig)A.4 smoothers.py

1 import numpy
2 import rpy2 as rp
3 import rpy2.robjects as robjects
4 import pandas
5 import pandas.rpy.common
6 from rpy2.robjects.packages import importr
7 from sklearn import svm
8 from math import factorial
9 import copy

10 from sklearn.decomposition import PCA
11
12 def moving_average(data, window_size=3,mode=’same’):
13 window = numpy.ones(int(window_size))/float(window_size)
14 return numpy.convolve(data, window, mode)
15
16 def moving_triangle(data,window_size=3,mode=’same’):
17 weight = []
18 degree = window_size/2.
19 for x in range(1,window_size):
20 weight.append(degree-abs(degree-x))
21 w=numpy.array(weight)/(numpy.sum(weight))
22 return numpy.convolve(data, w, mode)
23
24 def moving_gaussian(data,window_size=5,mode=’same’):
25 weight = []
26 degree = window_size/2.
27 weightGauss=[]
28 for i in range(window_size):
29 i2=i-degree+0.5
30 frac=i2/float(window_size)
31 gauss=1/(numpy.exp((4*(frac))**2))
32 weightGauss.append(gauss)
33 weight=numpy.array(weightGauss)/(numpy.sum(weightGauss))
34 # print weight
35 return numpy.convolve(data, weight, mode)
36
37 def moving_median(data,window_size=7):
38 ’’’ Performs moving median smoothing.
39 window_size must be odd ’’’
40 if window_size == 1:
41 return data
42 else:
43 return moving_median_set(data,window_size)
44
45 def svr_1d(data,t=None,t_pred=None):

329



46 y = numpy.array(data)
47 if t is None:
48 t = numpy.arange(len(data))
49 t_fit = t.reshape((-1,1))
50 svr_fit = svm.SVR()
51 svr_fit.fit(t_fit,y)
52
53 if t_pred is None:
54 t_pred = t_fit
55 elif len(t_pred.shape) < 2:
56 t_pred = t_pred.reshape((-1,1))
57 y_new = svr_fit.predict(t_pred)
58 return numpy.array(y_new)
59
60 def mars_1d(data,t=None,t_pred=None):
61 y = numpy.array(data)
62 if t is None:
63 t = numpy.arange(len(data))
64 d_in = {’t’:t}
65 d_ou = {’y’:y}
66 df_in = pandas.DataFrame.from_dict(d_in)
67 df_ou = pandas.DataFrame.from_dict(d_ou)
68
69 R = robjects.r
70 earth = importr(’earth’)
71 R_df_in = pandas.rpy.common.convert_to_r_dataframe(df_in)
72 R_df_ou = pandas.rpy.common.convert_to_r_dataframe(df_ou)
73 fit_mars = R.earth(x=R_df_in,y=R_df_ou,degree=2)
74
75 if t_pred is None:
76 R_df_pred = R_df_in
77 else:
78 d_pred = {’t’:t_pred}
79 df_pred = pandas.DataFrame.from_dict(d_pred)
80 temp_fn = pandas.rpy.common
81 R_df_pred = temp_fn.convert_to_r_dataframe(df_pred)
82 y_new = R.predict(fit_mars,newdata=R_df_pred)
83 y_new = numpy.array(list(y_new))
84 return y_new
85
86 def kalman_filter_1d(data,R=0.0001):
87 L = len(data)
88 sz = (L,)
89 xhat=numpy.zeros(sz) # a posteri estimate of x
90 P=numpy.zeros(sz) # a posteri error estimate
91 xhatminus=numpy.zeros(sz) # a priori estimate of x
92 Pminus=numpy.zeros(sz) # a priori error estimate
93 K=numpy.zeros(sz) # gain or blending factor
94 z = data
95
96 Q = 1e-5 # process variance
97 # estimate of measurement variance, change to see effect
98 # R = 0.01**2
99
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100 xhat[0] = 0.0
101 P[0] = 1.0
102
103 for k in range(1,L):
104 # time update
105 xhatminus[k] = xhat[k-1]
106 Pminus[k] = P[k-1]+Q
107
108 # measurement update
109 K[k] = Pminus[k]/( Pminus[k]+R )
110 xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k])
111 P[k] = (1-K[k])*Pminus[k]
112 return xhat
113
114 def savitzky_golay_simple(y):
115 return savitzky_golay(y, 3, 1)
116
117 def savitzky_golay_auto(y):
118 window_size = int(numpy.max((3,numpy.round(len(y)*.01)*2+1)))
119 order = int(numpy.max((1,numpy.floor(window_size**.5))))
120 return savitzky_golay(y,window_size,order)
121
122 def savitzky_golay(y, window_size, order, deriv=0, rate=1):
123 """ Smooth (and optionally differentiate) data with a
124 Savitzky-Golay filter. The Savitzky-Golay filter removes
125 high frequency noise from data.
126
127 It has the advantage of preserving the original shape and
128 features of the signal better than other types of filtering
129 approaches, such as moving averages techniques.
130 Parameters
131 ----------
132 y : array_like, shape (N,)
133 the values of the time history of the signal.
134 window_size : int
135 the length of the window. Must be an odd integer number.
136 order : int
137 the order of the polynomial used in the filtering.
138 Must be less then ‘window_size‘ - 1.
139 deriv: int
140 the order of the derivative to compute
141 (default=0 means only smoothing)
142 Returns
143 -------
144 ys : ndarray, shape (N)
145 the smoothed signal (or it’s n-th derivative).
146 Notes
147 -----
148 The Savitzky-Golay is a type of low-pass filter,
149 particularly suited for smoothing noisy data. The main idea
150 behind this approach is to make for each point a
151 least-square fit with a polynomial of high order over a
152 odd-sized window centered at the point.
153 Examples
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154 --------
155 t = numpy.linspace(-4, 4, 500)
156 y = numpy.exp( -t**2 ) + numpy.random.normal(0, 0.05,
157 t.shape)
158 ysg = savitzky_golay(y, window_size=31, order=4)
159 import matplotlib.pyplot as plt
160 plt.plot(t, y, label=’Noisy signal’)
161 plt.plot(t, numpy.exp(-t**2), ’k’,
162 lw=1.5, label=’Original signal’)
163 plt.plot(t, ysg, ’r’, label=’Filtered signal’)
164 plt.legend()
165 plt.show()
166 References
167 ----------
168 .. [1] A. Savitzky, M. J. E. Golay,
169 Smoothing and Differentiation of
170 Data by Simplified Least Squares Procedures.
171 Analytical Chemistry, 1964, 36 (8), pp 1627-1639.
172 .. [2] Numerical Recipes 3rd Edition:
173 The Art of Scientific Computing
174 W.H. Press, S.A. Teukolsky, W.T. Vetterling,
175 B.P. Flannery Cambridge University Press
176 ISBN-13: 9780521880688
177 ---------
178 http://www.scipy.org/Cookbook/SavitzkyGolay
179 """
180 try:
181 window_size = numpy.abs(numpy.int(window_size))
182 order = numpy.abs(numpy.int(order))
183 except ValueError, msg:
184 myMsg = "window_size and order have to be of type int"
185 raise ValueError(myMsg)
186 if window_size % 2 != 1 or window_size < 1:
187 myMsg = "window_size size must be a positive odd number"
188 raise TypeError(myMsg)
189 if window_size < order + 2:
190 myMsg = "window_size is too small for the polynomials order"
191 raise TypeError(myMsg)
192 order_range = range(order+1)
193 half_window = (window_size -1) // 2
194 # precompute coefficients
195 b = numpy.mat([[k**i for i in order_range] for k in \
196 range(-half_window, half_window+1)])
197 m = numpy.linalg.pinv(b).A[deriv] * \
198 rate**deriv * factorial(deriv)
199 # pad the signal at the extremes with
200 # values taken from the signal itself
201 firstvals = y[0] - numpy.abs( y[1:half_window+1][::-1] - y[0] )
202 lastvals = y[-1] + numpy.abs(y[-half_window-1:-1][::-1] - y[-1])
203 y = numpy.concatenate((firstvals, y, lastvals))
204 return numpy.convolve( m[::-1], y, mode=’valid’)
205
206
207 def _set_up_ndarray(data,window_size,w=None):

332



208 assert window_size%2 == 1
209 L = window_size
210 if w is None:
211 w = numpy.ones(L)
212 ys = numpy.asmatrix(data)
213 nr,nc = ys.shape
214 ys2 = None
215 for i in range(L):
216 ys1 = numpy.hstack((numpy.ones((nr,i))*numpy.nan,ys,
217 numpy.ones((nr,L-i-1))*numpy.nan))
218 ys1 *= w[i]
219 if ys2 is None:
220 ys2 = ys1
221 else:
222 ys2 = numpy.vstack((ys2,ys1))
223 L2 = (L-1)/2
224 ys2 = numpy.asarray(ys2[:,L2:-L2])
225 ys2_masked = numpy.ma.masked_array(ys2)
226 ys2_masked[numpy.isnan(ys2)] = numpy.ma.masked
227 return ys2_masked
228
229
230 def moving_average_set(data, window_size=3):
231 data = numpy.matrix(data)
232 if window_size == 1:
233 myOut = numpy.mean(data,axis=0)
234 myOut = numpy.asarray(myOut).ravel()
235 else:
236 ys2_masked = _set_up_ndarray(data, window_size)
237 myOut = numpy.ma.mean(ys2_masked,axis=0)
238 return numpy.asarray(myOut)
239
240 def moving_triangle_set(data,window_size=3,mode=’same’):
241 weight = []
242 degree = (window_size+1)/2.
243 for x in range(1,window_size+1):
244 weight.append(degree-abs(degree-x))
245 w=numpy.array(weight)/(numpy.sum(weight))/len(data)
246 # print w
247 y_masked = _set_up_ndarray(data, window_size, w)
248 return numpy.ma.sum(y_masked,axis=0)
249
250 def moving_gaussian_set(data,window_size=5,mode=’same’):
251 weight = []
252 degree = window_size/2.
253 weightGauss=[]
254 for i in range(window_size):
255 i2=i-degree+0.5
256 frac=i2/float(window_size)
257 gauss=1/(numpy.exp((4*(frac))**2))
258 weightGauss.append(gauss)
259 weight = numpy.array(weightGauss)/(numpy.sum(weightGauss))
260 weight /= len(data)
261 # print weight

333



262 y_masked = _set_up_ndarray(data,window_size,weight)
263 return numpy.ma.sum(y_masked,axis=0)
264
265 def moving_median_set(ys,window_size=7):
266 ’’’ Performs moving median smoothing.
267 window_size must be odd ’’’
268 if window_size == 1:
269 myOut = numpy.median(ys,axis=0)
270 else:
271 ys2_masked = _set_up_ndarray(ys,window_size)
272 #print ys2_masked
273 myOut = numpy.ma.median(ys2_masked,axis=0)
274 return numpy.asarray(myOut)
275
276 def moving_max_set(ys,window_size=3):
277 ’’’ Perform moving max smoothing. ’’’
278 if window_size == 1:
279 myOut = numpy.max(ys,axis=0)
280 else:
281 ys2_masked = _set_up_ndarray(ys,window_size)
282 #print ys2_masked
283 myOut = numpy.ma.max(ys2_masked,axis=0)
284 return numpy.asarray(myOut)
285
286 def moving_min_set(ys,window_size=3):
287 ’’’ Perform moving min smoothing. ’’’
288 if window_size == 1:
289 myOut = numpy.min(ys,axis=0)
290 else:
291 ys2_masked = _set_up_ndarray(ys,window_size)
292 #print ys2_masked
293 myOut = numpy.ma.min(ys2_masked,axis=0)
294 return numpy.asarray(myOut)
295
296 def svr_1d_set(data,t=None):
297 ’’’ Performs SVR on a set of repeated time series data.
298 Each time series should be in the row and the columns
299 are the time steps
300 ’’’
301 data = numpy.array(data)
302 nr,nc = data.shape
303 if t is None:
304 t = numpy.array(range(nc)*nr)
305 else:
306 t = numpy.array(t)
307 t = t.ravel()
308 return svr_1d(data.ravel(),t,numpy.arange(nc))
309
310 def mars_1d_set(data,t=None):
311 ’’’ Perform MARS on a set of repeated time series data ’’’
312 data = numpy.array(data)
313 nr,nc = data.shape
314 if t is None:
315 t = numpy.array(range(nc)*nr)
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316 else:
317 t = numpy.array(t)
318 t = t.ravel()
319 return mars_1d(data.ravel(),t,numpy.arange(nc))
320
321 def calculate_residuals(func, data, **kwargs):
322 ’’’ Calculates the residuals by estimating the signal
323 using the func and taking the difference of data and
324 estimated signal
325 ’’’
326 data = numpy.asarray(data)
327 est = func(data,**kwargs)
328 resid = data - est
329 return residA.5 FeatureExtract.py

1 import numpy as np
2 from itertools import izip
3 from sklearn.decomposition import PCA, ProbabilisticPCA
4 from sklearn.decomposition import RandomizedPCA
5 from sklearn.manifold import LocallyLinearEmbedding, Isomap
6 import warnings
7 import scipy.stats
8
9 import my_functions
10 import ApplyClustering
11 import copy
12
13 def ApplyAll(tsDB, n_components=3):
14 ApplyPCA(tsDB, n_components=n_components, downsample=1)
15 ApplyPCAmod(tsDB)
16 ApplyMean(tsDB)
17 ApplyStd(tsDB)
18 ApplyFFT(tsDB, n_components=n_components)
19 ApplyLLE(tsDB, n_components=n_components, downsample=1)
20 ApplyIsomap(tsDB, n_components=n_components, downsample=1)
21 ApplyPCA_Breakpoints(tsDB, n_components=n_components)
22 ApplyBase2_Breakpoints(tsDB)
23
24 def ApplyAll_auto(tsDB, reps=100):
25 dat = tsDB.get_y().xs(’y’,axis=1).values
26 n_components = determine_n_components(dat,reps)
27 print ApplyAll_auto.func_name, ’n_components:’, n_components
28 # if n_components is 0, there is no point in
29 # doing feature extraction
30 if n_components > 0:
31 ApplyPCA(tsDB, n_components=n_components, downsample=1)
32 ApplyPCAmod(tsDB)
33 ApplyFFT(tsDB, n_components=n_components)
34 ApplyLLE(tsDB, n_components=n_components, downsample=1)
35 ApplyIsomap(tsDB, n_components=n_components, downsample=1)
36 ApplyMean(tsDB)
37 ApplyStd(tsDB)
38 ApplyPCA_Breakpoints(tsDB, n_components=1)
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39 ApplyBase2_Breakpoints(tsDB)
40 return n_components
41
42 class GrabY(object):
43 def __init__(self, tsDB, name):
44 self.tsDB = tsDB
45 self.name = name
46 def __enter__(self):
47 # print ’enter’
48 df = self.tsDB.get_y()
49 self.run_ids = df.xs(’run_id’, axis=1).values
50 self.y = df.xs(’y’, axis=1).values
51 return self
52 def normalize_X(self):
53 shape = self.X.shape
54 if len(shape) < 2:
55 self.X = my_functions.normalize(self.X)
56 else:
57 X = self.X.reshape((-1,1))
58 X = my_functions.normalize(X)
59 self.X = X.reshape(shape)
60 # self.X = map(my_functions.normalize, self.X.T)
61 # self.X = np.array(self.X).T
62 def __exit__(self, type_, value, tb):
63 if np.any([y == 0 for y in self.X.shape]):
64 self.X = np.zeros((len(self.run_ids)))
65 self.normalize_X()
66 self.tsDB.add_val_list(tab=’db_attr’,
67 run_ids=self.run_ids,
68 name=self.name,
69 vals=self.X)
70
71 def assign_val(db, run_ids, vals, name):
72 print ’assign’
73 assert len(run_ids) == len(vals)
74 for run_id, v in izip(run_ids, vals):
75 db.add_val(tab=’db_attr’, run_id=run_id, name=name, val=v)
76
77 def ApplyPCA(tsDB, n_components=1, downsample=2):
78 with GrabY(tsDB, ApplyPCA.func_name) as g:
79 # Downsample data
80 data_small = g.y[::, ::downsample]
81 # PCA
82 fit_pca = PCA(n_components=n_components)
83 g.X = fit_pca.fit_transform(data_small)
84
85 def ApplyPCAmod(tsDB):
86 with GrabY(tsDB, ApplyPCAmod.func_name) as g:
87 fit_pca = PCA(n_components=2)
88 X = fit_pca.fit_transform(g.y)
89 temp = np.arange(len(X)).reshape((-1,1))
90 X = np.hstack((temp,X))
91 X = X[np.argsort(X[:,1]),:]
92 new_order = np.hstack((X,temp))
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93 new_order = new_order[np.argsort(new_order[:,0]),:]
94 g.X = new_order[:,3]
95
96 def ApplyMean(tsDB):
97 with GrabY(tsDB, ApplyMean.func_name) as g:
98 g.X = np.mean(g.y, axis=1)
99
100 def ApplyStd(tsDB):
101 with GrabY(tsDB, ApplyStd.func_name) as g:
102 g.X = np.std(g.y, axis=1)
103
104 def ApplyFFT(tsDB, n_components=3):
105 with GrabY(tsDB, ApplyFFT.func_name) as g:
106 n_comp = 2 * n_components - 1
107 X = np.fft.fft(g.y, n=n_components, axis=1)
108 g.X = np.real(X[:, ::2])
109
110 def ApplyLLE(tsDB, n_components=1, downsample=2):
111 with GrabY(tsDB, ApplyLLE.func_name) as g:
112 # Downsample data
113 data_small = g.y[::, ::downsample]
114 # LLE standard
115 lle = LocallyLinearEmbedding(n_components=n_components,
116 method=’standard’)
117 g.X = lle.fit_transform(data_small)
118
119 def ApplyIsomap(tsDB, n_components=1, downsample=2):
120 with GrabY(tsDB, ApplyIsomap.func_name) as g:
121 # Downsample data
122 data_small = g.y[::, ::downsample]
123 # Isomap
124 iso = Isomap(n_components=n_components)
125 g.X = iso.fit_transform(data_small)
126
127 # Make different breakpoint representations
128 def breakpoint_formatting(bp, style=’short’):
129 ’’’ bp is a list of pairs of segment beginning and
130 ending indices. This outputs the breakpoints in the short
131 and long format. Short is just the beginning locations,
132 padded with zeroes. Long is in 0,1 representation ’’’
133 t_len = np.max(bp[0]) + 1
134 st = []
135 break_points_long = np.zeros((len(bp), t_len), dtype=np.int)
136 for i, row in enumerate(bp):
137 st_ = np.zeros(len(row), dtype=np.int)
138 for i2, pair in enumerate(row):
139 st_[i2] = pair[0]
140 st.append(st_)
141 break_points_long[i, st_[1:]] = 1
142 if style == ’short’ or style == ’both’:
143 max_L = np.max([len(x) for x in st])
144 break_points_short = np.zeros((len(bp), max_L))
145 for i, row in enumerate(st):
146 x = max_L - len(row)
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147 break_points_short[i, x:] = row
148 if style == ’both’:
149 return break_points_short, break_points_long
150 # return break_points_short[:, 1:], break_points_long
151 else:
152 return break_points_short
153 # return break_points_short[:, 1:]
154 else:
155 return break_points_long
156
157 class GrabBreakpoints(GrabY):
158 def __enter__(self):
159 # print ’enter’
160 segs = self.tsDB.get_val_all(’db_attr’, ’segs’,
161 out_style=’list’)
162 self.run_ids = [row[0] for row in segs]
163 self.segs = [row[1] for row in segs]
164 self.break_points_short, self.break_points_long = \
165 breakpoint_formatting(self.segs, style=’both’)
166 return self
167
168 def ApplyPCA_Breakpoints(tsDB, n_components=1):
169 with GrabBreakpoints(tsDB, ApplyPCA_Breakpoints.func_name) as g:
170 if n_components >= g.break_points_short.shape[1]:
171 n_components = g.break_points_short.shape[1] - 1
172 if n_components < 1:
173 n_components = 1
174 fit_pca = PCA(n_components=n_components)
175 g.X = fit_pca.fit_transform(g.break_points_short)
176
177 def sum_base2(x):
178 ’’’ Given a list of 1 and 0, it produces a base 2 sum
179 where the location of the 1 is the power, so 2ˆi.
180 This is processed from left to right ’’’
181 myOut = 2.
182 for i, idx in enumerate(x):
183 if idx == 1:
184 myOut += 2 ** i
185 return myOut
186
187 def breakpoint_metric_sum_base2(bp):
188 ’’’ Calculates a metric based on breakpoint locations
189 bp is in the long format ’’’
190 l_sum = np.zeros(len(bp))
191 r_sum = np.zeros(len(bp))
192 for i, row in enumerate(bp):
193 l_sum[i] = np.float64(sum_base2(row))
194 r_sum[i] = np.float64(sum_base2(row[::-1]))
195 l_sum, r_sum = map(np.log2, [l_sum, r_sum])
196 l_sum, r_sum = l_sum / np.max(l_sum), r_sum / np.max(r_sum)
197 return (l_sum - r_sum * .5)
198
199 def ApplyBase2_Breakpoints(tsDB):
200 with GrabBreakpoints(tsDB,
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201 ApplyBase2_Breakpoints.func_name) as g:
202 g.X = breakpoint_metric_sum_base2(g.break_points_long)
203
204
205 def make_comparison_eigs(r, c, reps=100,
206 n_eigs_2_keep=10,
207 out_option=’stats’):
208 ’’’ Calculates the average eigenvalues from rxr
209 correlation matrix.
210
211 Correlation matrix is calculated from a rxc matrix,
212 where each element is N(0,1).
213 Also calculates the Shapiro-Wilk test for normality on each
214 component
215
216 inputs
217 ------
218 r - number of rows of random matrix
219 c - number of columns of random matrix
220 reps - number of repetitions
221 n_eigs_2_keep - number of eigenvalues to keep
222 ( n_eigs_2_keep <= c)
223 out_option - [’stats’, ’vals’]: stats gives
224 back mean and std
225 vals gives back original values
226
227 outputs
228 -------
229 myOut - (if out_option==’stats’) - (n_eigs_2_keep)x2 matrix,
230 1st col - mean, 2nd col - std dev
231 myOut - (if out_option==’vals’) - reps x n_eigs_2_keep -
232 matrix of eigenvalues
233 shapiro_wilk - list of tuples (Shapiro-Wilk statistic,
234 probability for hypothesis test)
235 ’’’
236 # Check if number of components to keep is >= c
237 if n_eigs_2_keep > c:
238 n_eigs_2_keep = c
239 myMsg = "# of eigenvalues is more than # of columns"
240 warnings.warn(myMsg)
241 # Calculate eigenvalues
242 matrix_of_eigenvalues = np.zeros((reps, n_eigs_2_keep),
243 dtype=float)
244 for i in range(reps):
245 test_data = np.random.normal(0, 1., (r,c))
246 R = np.corrcoef(test_data) # makes rxr matrix
247 eigenvalues = np.linalg.eigvals(R)
248 matrix_of_eigenvalues[i,:] = \
249 np.real(eigenvalues[:n_eigs_2_keep])
250 # Format Output
251 if out_option == ’stats’:
252 myOut = np.zeros((n_eigs_2_keep, 2), dtype=float)
253 myOut[:,0] = np.mean(matrix_of_eigenvalues, axis=0)
254 myOut[:,1] = np.std(matrix_of_eigenvalues, axis=0)
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255 elif out_option == ’vals’:
256 myOut = matrix_of_eigenvalues
257 # Perform Shapiro-Wilk test for normality
258 shapiro_wilk = []
259 for i in range(n_eigs_2_keep):
260 shapiro_wilk.append( \
261 scipy.stats.shapiro(matrix_of_eigenvalues[:,i]) )
262
263 return myOut, shapiro_wilk
264
265 def determine_n_components(dat, reps=100):
266 ’’’ Determines the number of components to keep using the
267 parallel analysis method.
268
269 inputs
270 ------
271 dat - (n x p) - matrix of n samples and p features
272 (time steps)
273
274 outputs
275 -------
276 n_components - the number of components to keep for PCA
277 ’’’
278 dat_ = copy.deepcopy(dat)
279 # Center and Standardize Data
280 # Var need to be in the rows when for correlation matrix
281 dat_ = dat_.T
282 dat_ -= np.mean(dat_)
283 dat_ /= np.std(dat_)
284 p, n = dat_.shape
285 # print ’new n, p:’, n, p
286
287 # Calculate Eigenvalues of Correlation Matrix
288 R = np.corrcoef(dat_)
289 eigs = np.linalg.eigvals(R)
290
291 # Calculate test eigenvalues (mean, std)
292 n_consider = np.min([p, 10])
293 p_significance = 0.95 # Perform one-tail significance test
294 eig_stats, shapiro_wilk_stats = make_comparison_eigs(p, n,
295 reps=100,
296 n_eigs_2_keep=n_consider,
297 out_option=’stats’)
298
299 # Count how many principal components to keep
300 n_keep = 0
301 for i in range(n_consider):
302 av = eig_stats[i,0]
303 sd = eig_stats[i,1]
304 test_stat = (np.real(eigs[i]) - av)/sd
305 my_prob = scipy.stats.zprob(test_stat)
306 if my_prob > p_significance:
307 n_keep += 1
308 else:
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309 # As soon as it hits false, break and return
310 break
311 return n_keepA.6 ApplyClustering.py

1 import numpy as np
2 import pandas as pd
3 import copy
4 import rpy2 as rp
5 import rpy2.robjects as robjects
6 from sklearn.decomposition import PCA
7 from sklearn.cluster import DBSCAN
8 from sklearn import cluster
9 from scipy.spatial import distance

10 from collections import Counter
11 import gc
12
13 def GrabColumns(dat, columns=None):
14 if columns is None:
15 return dat
16 if isinstance(columns, int):
17 columns = range(columns)
18 _, c0 = dat.shape
19 columns = list(set(range(c0)) & set(columns))
20 if isinstance(dat, np.ndarray):
21 return dat[:, columns]
22 elif isinstance(dat, pd.DataFrame):
23 return dat.ix[:, columns]
24
25 def GrabAttributes(tsDB, attrs, out_style=’data frame’):
26 ’’’ This grabs the features data from the database
27
28 inputs
29 ------
30 attrs - list of attributes to be extracted from the database
31 out_style - [’data frame’, ’matrix’]
32
33 outputs
34 -------
35 Returns a pandas data frame or numpy ndarray of the
36 attributes.
37 If data frame, the row index are the run_ids.
38 ’’’
39 df = None
40 for attr in attrs:
41 # Check if attr is a list
42 if isinstance(attr, list):
43 attr_name = attr[0]
44 cols = attr[1]
45 else:
46 attr_name = attr
47 cols = False
48 # check if attribute exists
49 if attr_name in tsDB.attr_var_names:
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50 # Grab the attribute values
51 ls = tsDB.get_val_all(’db_attr’, attr_name,
52 out_style=’list’)
53 # Separate run_ids and attribute values
54 run_ids = np.zeros(len(ls))
55 vals = []
56 for i, (k, v) in enumerate(ls):
57 run_ids[i] = k
58 vals.append(v)
59 # reformat vals to be column vector
60 vals = np.array(vals)
61 if cols:
62 vals = vals[:, cols]
63 if len(vals.shape) < 2:
64 vals = vals.reshape((-1, 1))
65 else:
66 run_ids = range(tsDB.n_runs)
67 vals = np.zeros((len(run_ids),1))
68 # set up indices and column headers
69 idx = pd.Index(run_ids, name=’run_ids’, dtype=int)
70 if vals.shape[1] > 1:
71 headers = [ ’.’.join([ attr_name,
72 str(x) ]) for x in xrange(vals.shape[1])]
73 else:
74 headers = [attr_name]
75 # create and concat as pandas data frame
76 if df is None:
77 df = pd.DataFrame(data=vals, index=idx, columns=headers)
78 else:
79 df_ = pd.DataFrame(data=vals, index=idx,
80 columns=headers)
81 df = pd.concat((df, df_), axis=1)
82 if out_style == ’data frame’:
83 return df
84 elif out_style == ’matrix’:
85 return df.values
86 else:
87 return df
88
89 def _check_clean_data(dat):
90 # check data
91 dat = np.atleast_2d(dat)
92 row = dat[0,:]
93 keepcol = []
94 for i, x in enumerate(row):
95 if x is not None:
96 if not np.isnan(x):
97 keepcol.append(i)
98 dat = dat[:,keepcol]
99 return dat
100
101 def dbscan_wrapper(dat, **kwargs):
102 # check and remove None and nan
103 dat = _check_clean_data(dat)
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104 # format data
105 D = distance.squareform(distance.pdist(dat))
106 S = 1 - (D / np.max(D))
107 if np.isnan(np.sum(S)):
108 return np.ones(len(dat))*-1
109 # print np.sum(S)
110 _, labels = cluster.dbscan(S, **kwargs)
111 return labels
112
113 def dbscan_wrapper_mod(dat, **kwargs):
114 ’’’ Performs a linear regression clustering after the dbscan ’’’
115 # Perform DBSCAN and get labels
116 dat = _convert_data_format(dat, out_format=’ndarray’)
117 lbls = dbscan_wrapper(dat, **kwargs)
118 lbl_set = list(set(lbls))
119 # print ’lbl_set:’, lbl_set
120
121 lbls_3 = np.zeros(lbls.shape, dtype=np.float64) - 1
122 for i, lbl_ in enumerate(copy.copy(lbl_set)):
123 # Skip outliers
124 if lbl_ == -1: continue
125 # run_ids = tsDB.get_matching_ids(tab=’db_attr’,
126 # name=label_name, val=x)
127 # temp3 = temp.ix[run_ids]
128 # dat_3 = temp3.values
129 #print lbls
130 row_idx = np.argwhere( lbls == lbl_ ).ravel()
131 row_idx = np.array(row_idx, dtype=int)
132 # print ’lbl_:’, lbl_
133 # print ’row_idx:’, row_idx
134 # print dat
135 dat_3 = dat[row_idx,:]
136 # print dat_3
137 lbl_3 = lin_reg_cluster(dat_3)
138 lbl_3 = np.array(lbl_3)
139 lbl_3_set = list(set(lbl_3))
140 if len(lbl_3_set) > 1:
141 # print ’lbl_3_set:’, lbl_3_set
142 lbl_3 += np.max(lbl_set) + 1
143 lbl_3_set = list(set(lbl_3))
144 lbl_set.extend(lbl_3_set)
145 # print ’lbl_set:’, lbl_set
146 else:
147 lbl_3[:] = lbl_
148 lbls_3[row_idx] = np.array(lbl_3, dtype=np.float64)
149 # print ’lbls_3:’, set(lbls_3)
150 return lbls_3
151
152 def CheckGrouping(tsDB, attr_names=None):
153 ’’’ Checks the grouping accuracy of the data
154
155 inputs
156 ------
157 tsDB - TimeSeriesDB instance
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158
159 outputs
160 -------
161 groupings - returns the group values ordered by run_id
162 check_accuracy - for each grouping, gives a 0 for right
163 grouping
164 and a -1 for wrong grouping
165 description
166 -----------
167 The method looks for a "right_group" attribute in the tsDB,
168 and this acts as the baseline. Then it looks for attributes
169 with "label:" in the name, which is a flag for comparison.
170 Then for each attribute it finds, it extracts the grouping
171 and compares that value against the "right_group".
172 ’’’
173 if attr_names is None:
174 attr_names = tsDB.attr_var_names
175 attr_names = [x for x in attr_names if ’label:’ in x]
176 # print attr_names
177
178 right_group = tsDB.get_val_all(tab=’db_attr’,
179 name=’right_group’,
180 out_style=’data frame’)
181 groupings = right_group.copy()
182 # check_accuracy = right_group.copy()
183 check_accuracy = pd.DataFrame(data=np.zeros(len(groupings)),
184 index=groupings.index,
185 columns=[’right_group’])
186 for attr_name in attr_names:
187 df = tsDB.get_val_all(tab=’db_attr’, name=attr_name,
188 out_style=’data frame’)
189 groupings = pd.merge(groupings, df, on=’run_id’)
190 g0 = groupings.xs(’right_group’, axis=1).values
191 g1 = groupings.xs(attr_name, axis=1).values
192 # print np.vstack((g0,g1))
193 grouping_check = check_set(g0, g1)
194 # print grouping_check
195
196 df1 = pd.DataFrame(grouping_check, index=right_group.index,
197 columns=[attr_name])
198 check_accuracy = pd.merge(check_accuracy, df1,
199 left_index=True,
200 right_index=True)
201 return groupings, check_accuracy
202
203 def check_set(s1, s2):
204 ’’’ This method tests the mismatch in groupings between the
205 first and second sets of values. The grouping labels between
206 the two maybe different so the method will take a guess at
207 it. It uses the first list as the "right" grouping and
208 checks the second one against it.
209
210 inputs
211 ------
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212 s1, s2 - list or np.array of values
213
214 outputs
215 -------
216 accuracy_lbl - numpy array of 0 and -1. 0 means correct
217 grouping
218 and -1 means wrong grouping
219 ’’’
220 # s1 is the ’right’ set so there shouldn’t be a -1 in the set
221 s1 = np.array(s1)
222 s2 = np.array(s2)
223 # set1 = set(s1)
224 counts1 = Counter(s1)
225 counts1 = np.asarray(counts1.items())
226 counts1 = counts1[np.argsort(counts1[:, 1]), :]
227 set1 = counts1[::-1,0]
228 # print counts1
229 # print set1
230 numbers_used = {-1:-1}
231 accuracy_lbl = np.zeros(len(s1))
232 for i in set1:
233 # print ’numbers_used:’, numbers_used
234 # Find indices where value is i in s1
235 idx = np.argwhere(s1 == i).flatten()
236 # print ’idx:’, idx
237 # Grab indices from s2
238 s2_ = s2[idx]
239 set2 = list(set(s2_))
240 # print ’s2_, set2:’, s2_, set2
241 if len(set2) == 1:
242 if set2[0] in numbers_used.values():
243 accuracy_lbl[idx] = -1
244 else:
245 numbers_used[i] = set2[0]
246 else:
247 counts = Counter(s2[idx])
248 # print ’counts:’, counts
249 for k, v in counts.items():
250 # print ’k, v:’, k,v
251 if k in numbers_used.values():
252 idx2 = np.argwhere(s2 == k).flatten()
253 idx3 = list(set(idx) & set(idx2))
254 # print ’idx2:’, idx2
255 # print ’idx3:’, idx3
256 accuracy_lbl[idx3] = -1
257 counts.pop(k)
258 counts = np.asarray(counts.items())
259 # print ’counts2:’, counts
260 if len(counts) > 1:
261 # counts = counts[np.argsort(counts[:, 1]), :]
262 counts = counts[np.argsort(counts[:, 1]), :]
263 # print ’counts3:’, counts
264 numbers_used[i] = counts[-1][0]
265 for k in counts[:-1, 0]:
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266 idx2 = np.argwhere(s2 == k).flatten()
267 idx3 = list(set(idx) & set(idx2))
268 accuracy_lbl[idx3] = -1
269 elif len(counts) == 1:
270 numbers_used[i] = counts[0][0]
271 else:
272 pass
273 return accuracy_lbl
274
275
276 def bottom_up_aggr_multivariate(X, sigma=.1):
277 ’’’ A bottom up aggregation using multivariate linear
278 regression. X is a (n x m) matrix, where n is the number of
279 points, and m is the number of variables. So for a 3
280 dimensional line, where coordinates in cartesian are
281 [x,y,z], then X is (n x 3)
282 ’’’
283 L1, W1 = X.shape
284 L2 = int(np.floor(L1/2.))
285 Y = np.array(X)
286 Z = np.vstack(( np.ones(L1), range(L1) )).T
287
288 def calc_stddev_of_resid(Z, Y):
289 Z = np.array(Z)
290 Y = np.array(Y)
291 fit = np.linalg.lstsq(Z, Y)
292 resid = np.dot(Z, fit[0]) - Y
293 return np.std(resid)
294
295 sd = calc_stddev_of_resid(Z, Y)
296 # print sd
297 if sd < sigma:
298 return [Z], [Y]
299
300 ### Pair Up Points ###
301 z2, y2 = [], []
302 for i in range(L2):
303 z2.append( Z[2*i:2*i+2, :] )
304 y2.append( Y[2*i:2*i+2, :] )
305 # Check to see if sequence is odd
306 if np.mod(L1,2) == 1:
307 z2.append([Z[-1,:]])
308 y2.append([Y[-1,:]])
309
310 ### Calculate Linear Regression of adj. sets
311 ### Calculate std. dev.
312 def calc_local_sd(X, Y, idx):
313 x = np.array( X[idx] )
314 x = np.vstack( (x, np.array(X[idx+1])) )
315 y = np.array( Y[idx] )
316 y = np.vstack( (y, np.array(Y[idx+1])) )
317 return calc_stddev_of_resid(x, y)
318
319 y3sd = []
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320 for i in xrange(len(y2)-1):
321 y3sd.append( calc_local_sd(z2, y2, i) )
322
323 myMins = [0]
324
325 def merge_and_pop(vec, idx):
326 v = copy.copy(vec)
327 v1 = v.pop(idx)
328 v2 = v.pop(idx)
329 v3 = np.vstack(( v1, v2))
330 v.insert(idx, v3)
331 return v
332
333 while min(y3sd) < sigma:
334 myMins.append(np.min(y3sd))
335 myIndex = y3sd.index(myMins[-1])
336
337 y2 = merge_and_pop(y2, myIndex)
338 z2 = merge_and_pop(z2, myIndex)
339 y3sd.pop(myIndex)
340
341 if myIndex == len(y2)-1:
342 i3 = [-1]
343 elif myIndex == 0:
344 i3 = [0]
345 else:
346 i3 = [-1,0]
347 for i in i3:
348 y3sd[myIndex+i] = calc_local_sd(z2, y2, myIndex+i)
349
350 if len(y2) < 3:
351 break
352 return z2, y2
353
354
355 def lin_reg_cluster(dat, is_sorted=False):
356 ’’’ Clusters points in a line using a modified time series
357 segmentation algorithm. It’s assumed that the data is
358 organized as a line in n-dimensional space.
359
360 Inputs
361 ------
362 dat - (n x m) matrix where n is the number of samples and
363 m is number of features
364 is_sorted - if False, the data is sorted using the first PC
365 of PCA
366
367 Outputs
368 -------
369 labels - (n) list of labels
370 ’’’
371
372 dat = _check_clean_data(dat)
373
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374 # Sort the data using PCA
375 if not is_sorted:
376 pca = PCA(n_components=1)
377 result = pca.fit_transform(dat)
378
379 mat1 = np.hstack(( np.arange(len(result)).reshape((-1,1)),
380 result.reshape((-1,1)) ))
381 mat2 = np.hstack(( mat1, dat ))
382 mat3 = mat2[np.argsort(mat1[:,1]),:]
383 mat_ordered = mat3[:,2:]
384 else:
385 mat_ordered = dat
386
387 Z, Y = bottom_up_aggr_multivariate(mat_ordered, sigma=.01)
388 labels = np.zeros(len(dat), dtype=np.float64)
389 idx = 0
390
391 for i, z in enumerate(Z):
392 idx2 = idx + len(z)
393 labels[idx:idx2] = i
394 idx = idx2
395
396 if not is_sorted:
397 mat4 = np.hstack(( mat3[:,[0]], labels.reshape((-1,1)) ))
398 mat4 = mat4[np.argsort(mat4[:,0]), :]
399 return mat4[:,1]
400 else:
401 return labels
402
403 def _convert_data_format(dat, out_format=’ndarray’):
404 ’’’ Converts data into desired format
405
406 inputs
407 ------
408 dat - data, accepts numpy ndarray and pandas data frame
409 out_format - [’ndarray’, ’data frame’, ’list’]
410
411 outputs
412 -------
413 returns data as specified by out_format
414 ’’’
415 columns = None
416 idx = None
417 if isinstance(dat, np.ndarray):
418 mat = dat
419 elif isinstance(dat, pd.DataFrame):
420 mat = dat.values
421 columns = dat.columns
422 idx = dat.index
423 else:
424 raise TypeError(’dat is not right format’)
425
426 if out_format == ’ndarray’:
427 return mat
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428 if out_format == ’data frame’:
429 if not columns:
430 col_name = [ ’’.join((’x’, str(i))) for i in \
431 range(dat.shape[1])]
432 return pd.DataFrame(mat, columns=col_name)
433 else:
434 return pd.DataFrame(mat, index=idx, columns=columns)
435 if out_format == ’list’:
436 return [x.tolist() for x in mat]
437 else:
438 raise TypeError(’out_format is not recognized format’)
439
440
441 def model_based_clustering(dat):
442 ’’’ Wrapper for the Mclust method from mclust package in R
443 Performs model-basee clustering
444 ’’’
445 dat_ = _convert_data_format(dat, out_format=’ndarray’)
446 dat_ = _check_clean_data(dat_)
447 if dat_.size < 1:
448 return np.ones(len(dat))*-1
449 df = _convert_data_format(dat_, out_format=’data frame’)
450 # print ’[model_based_clustering] df:’, df
451 R_df = pd.rpy.common.convert_to_r_dataframe(df)
452 R = rp.robjects.r
453 R(’library(mclust)’)
454 rp.robjects.globalenv[’R_df’] = R_df
455 if dat_.shape[1] > 1:
456 R(’mclust <- Mclust( R_df, modelNames=c("VVV") )’ )
457 # R(’mclust <- Mclust( R_df, modelNames=c("VVV","VEV") )’ )
458 # R(’mclust <- Mclust( R_df )’ )
459 else:
460 R(’mclust <- Mclust( R_df )’ )
461 # R(’mclust <- Mclust( R_df, modelNames=c("V") )’ )
462 print R(’mclust$modelName’)
463 lbls = list(R(’mclust$classification’))
464 garbage_collect()
465 # print ’done mclust’
466 return lbls
467
468 def garbage_collect():
469 gc.collect()
470 R = robjects.r
471 R.gc()
472 gc.collect()
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