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SUMMARY 
 

 

 

Combustion instability plagues the combustion community in a wide range of 

applications.  This un-solved problem is especially prevalent and expensive in aerospace 

propulsion and ground power generation.  The challenges associated with understanding 

and predicting combustion instability lie in the flame response to the acoustic field.  One 

of the more complicated flame response mechanisms is the velocity coupled flame 

response, where the flame responds dynamically to the acoustic velocity as well as the 

vortically induced velocity field excited by the acoustics.  This vortically induced, or 

hydrodynamic, velocity field holds critical importance to the flame response but is 

computationally expensive to predict, often requiring high fidelity CFD computations.  

Furthermore, its behavior can be a strong function of the numerous flow parameters that 

change over the operability map of a combustor. 

This research focuses on a nominally two dimensional bluff body combustor, which 

has rich hydrodynamic stability behavior with a manageable number of stability 

parameters.  The work focuses first on experimentally characterizing the dynamical flow 

and flame behavior.  Next, the research shifts focus toward hydrodynamic stability 

theory, using it to explain the physical phenomena observed in the experimental work.  

Additionally, the hydrodynamic stability work shows how the use of simple, model 

analysis can identify the important stability parameters and elucidate their governing 

physical roles.  Finally, the research explores the forced response of the flow and flame 

while systematically varying the underlying hydrodynamic stability characteristics.  In 

the case of longitudinal combustion instability of highly preheated bluff body 
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combustors, it shows that conditions where an acoustic mode frequency equals the 

hydrodynamic global mode frequency are not especially dangerous from a combustion 

instability standpoint, and may actually have a reduced heat release response.  This 

demonstrates the very non-intuitive role that the natural hydrodynamic flow stability 

plays in the forced heat release response of the flame. 

For the fluid mechanics community, this work contributes to the detailed 

understanding of both unforced and forced bluff body combustor dynamics, and shows 

how each is influenced by the underlying hydrodynamics.  In particular, it emphasizes the 

role of the density-shear layer offset, and shows how its extreme sensitivity leads to 

complicated flow dynamics.  For the flow-combustor community as a whole, the work 

reviews a pre-existing method to obtain the important flow stability parameters, and 

demonstrates a novel way to link those parameters to the governing flow physics.  For the 

combustion instability community, this thesis emphasizes the importance of the 

hydrodynamic stability characteristics of the flow, and concludes by offering a paradigm 

for consideration of the hydrodynamics in a combustion instability problem. 
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CHAPTER 1.  INTRODUCTION 

1.1 Bluff Body Combustors 

The technological setting of this thesis is bluff body combustors.  Bluff body 

combustors are prevalent in industrial and aerospace applications; for example, bluff 

body combustors are a popular method for flame stabilization in simple duct burners.  

The work is motivated by understanding the role of hydrodynamics in the combustion 

instability of these and other systems.  Before discussing the details of the background 

and motivation for this work, which come in the next chapter, it is helpful to introduce 

the basics of bluff body flames.  Therefore, this chapter provides a very brief introduction 

to bluff body flames and the problem of combustion instability.  The details and literature 

review associated with these concepts are provided in Chapter 2, Background and 

Motivation. 

The bulk flow speed in combustors is typically much greater than the flame speed.  

This necessitates a method for anchoring the flame so that the flame is not blown off and 

exhausted from the combustor.  In premixed combustors, this is done by creating a 

location in the combustor where the flame speed and the flow speed are equal.  This can 

be accomplished aerodynamically by placing a blunt object in the flow, known as a bluff 

body or a flameholder, which forms a wake in the flow.  This wake serves the purpose of 

locally slowing the gas so that the flame becomes anchored immediately behind the bluff 

body; from this anchoring location, the flame propagates freely into the unburned 

reactant mixture.  For a bluff body which spans a rectangular channel, this tends to create 

a nominally two-dimensional “V” shaped flame, like the one illustrated in Figure 1-1.  
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Compare this to an actual time-averaged chemiluminescence image from the current 

work in Figure 1-2a. 

 

 

 

Figure 1-1. Notional cartoon of bluff body stabilized flame 

 
 
 

a) 

 

b) 

 

Figure 1-2. Line of sight chemiluminescence flame images showing a) a time-

averaged flame image and b) an instantaneous flame image (1/5000
th

 second 

exposure) 
 
 
 
While the bluff body flame stabilization ideas discussed above are conceptually 

simple, the details of the fluid dynamics in the high Reynolds number wake of a bluff 

body can complicate the picture.  As will be investigated in detail throughout the thesis, 

acoustic waves and coherent structures born from hydrodynamic instabilities (as well as 

broadband turbulence) can disturb the flame front from the nominal V shape in Figure 

1-1, leading to a temporally evolving, wrinkled flame.  This is illustrated above in Figure 

1-2b, which shows an instantaneous flame image. 
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1.2 Combustion Instability in Bluff Body Combustors 

Bluff body combustors of industrial interest usually involve significant heat release 

confined inside a hard-walled duct.  Therefore, they are prone to resonant coupling 

between the duct acoustic modes and the unsteady heat release of combustion.  This is a 

thermoacoustic instability, known specifically as combustion instability, which can cause 

severe damage to hardware, heat transfer issues, and even blowout of the flame.  

Additionally, combustion instability is an expensive, unsolved issue in rockets and the 

lean premixed combustors used in ground power generating gas turbines.  Although these 

systems typically do not employ bluff body combustors, the relative simplicity of planar 

bluff body flows facilitates the detailed study of many key processes involved in the 

combustion instability phenomenon. 

As mentioned above, combustion instability involves a coupling between acoustic 

oscillations and the oscillatory heat release of the flame.  This self excited feedback loop 

therefore relies on the response of the flame to the acoustic field.  The mechanisms by 

which the acoustic motions can influence the flame dynamics are numerous.  One such 

mechanism is through hydrodynamic motions in the wake of the bluff body that are 

excited by the acoustic field.  As such, combustion instability is sensitive to 

hydrodynamic flow stability characteristics.  Therefore, the hydrodynamic stability of 

reacting bluff body wakes and its impact on the flame response to acoustic forcing is the 

focus of this thesis. 

1.3 Research Topics 

This effort has four objectives, which are detailed at the end of Chapter 2, Background 

and Motivation, and categorized here as follows.  The first objective is the experimental 
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exploration of hydrodynamic instabilities in reacting bluff body wakes.  The second 

objective is the direct comparison of the experimentally observed unsteady flame and 

flow features to hydrodynamic stability calculations.  The third objective is the use of 

hydrodynamic stability analysis to identify the key parameters and physical processes 

that govern the flow stability.  The fourth objective is application of the first three 

objectives to combustion instability by experimentally observing the flame response to 

acoustic forcing while varying the background hydrodynamic stability characteristics.  
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CHAPTER 2. BACKGROUND AND MOTIVATION 

2.1 Nonreacting Bluff Body Literature 

The concepts in this chapter lay a critical foundation for the work presented in this 

thesis.  The chapter begins with a review of un-forced, non-reacting bluff body wakes.  

This includes the identification of time-averaged wake features, as well as the unsteady, 

large-scale coherent structures found in these flows.  The chapter then shifts focus to the 

bluff body hydrodynamic stability literature.  These hydrodynamics concepts are useful 

for understanding the final three topics of the chapter: reacting wakes, acoustically forced 

wakes, and combustion instability. 

The unsteady flow fields of reacting bluff body wakes are often dominated by large 

scale coherent structures, embedded upon a background of acoustic waves and broadband 

fine scale turbulence.  These large scale structures play important roles in such processes 

as combustion instabilities [1-5], mixing and entrainment, flashback, and blowoff [1], and 

they arise because of underlying hydrodynamic instabilities of the flow field [2].  There 

are two key flow features downstream of the bluff body in high Reynolds number flows; 

these include the separating free shear layers [3] and the wake, both of which strongly 

influence the flame.  Flow visualization of a typical non-reacting bluff body flowfield is 

shown in Figure 2-1.  The separated shear layer is convectively unstable due to the 

Kelvin-Helmholtz mechanism for ~1200DRe   [4], leading to shear layer rollup into 

tightly concentrated vorticity.  This  induces a flow field that wraps the flame around 

these regions of concentrated vorticity [5].  In most practical configurations, the flame 

lies nearly parallel to the flow and, thus, almost directly in the bluff body shear layer for 
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high velocity flows.  Small perturbations in convectively unstable flows are amplified as 

they convect downstream, but not locally at their source locations.  In other words, 

convectively unstable flows have positive temporal growth rates for one or more 

disturbance wavelengths with nonzero group velocity, but all disturbances of zero group 

velocity are damped.  These flows are disturbance amplifiers [6-8].   

 

 

 

Figure 2-1. Visualization of flow past a bluff body at Re = 10,000, reproduced from 

Prasad and Williamson [4] 

 
 

The time averaged bluff body flowfield has one major feature, the recirculation zone, 

which is represented in Figure 2-2 by streamlines from a PIV measurement.  In non-

reacting flows, this recirculation zone typically hosts a large pocket of absolute 

instability.  This results in a globally unstable wake characterized by large scale, 

asymmetric rollup of the wake into staggered vortical structures [9].  The key distinction 

from a convectively unstable flow is that an absolutely unstable flow profile leads to 

amplification of some disturbances of zero group velocity.  Therefore, the associated 

global instability features a flow exhibiting intrinsic oscillations at a global mode 

frequency [6-8].  In bluff body wakes, this instability is often referred to as the Von 

Karman vortex street, and has a characteristic frequency [4] of 
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where DSt  is the Strouhal number.  For circular cylinders, DSt  is independent of 

Reynolds number ( 0.21DSt  ) in the turbulent shear layer, laminar boundary layer 

regime, ~ 200,000D~ 1000 < Re   [10].  Above ~ 200,000DRe  , the boundary layer 

starts to transition to turbulence and there are some indications that this Strouhal number 

value changes [11-12].  The concepts of convective, absolute, and global instability 

mentioned in the above paragraphs are discussed in significantly more detail below in 

section 2.2, Hydrodynamic Stability Analysis of Planar Wake Flows. 

 

 

 

Figure 2-2. Streamlines and vectors measured using PIV, illustrating the time-

averaged bluff body flowfield 

 

 

 

Bluff body shape also influences the Strouhal number for the Von Karman vortex 

street [13].  In particular, DSt  is lower for “bluffer” bodies, i.e., those with higher drag 

and wider wakes [14].  For example, ~ 0.18DSt  for a 90 degree “v-gutter” and drops to 

0.13 for a sharp edge, vertical flat plate [15].  Roshko [14, 16] suggests that DSt  

fundamentally scales with the wake width and, therefore, care must be applied in 

inferring Strouhal numbers from one bluff body shape to another.  For example, flow 

separation is retarded for circular bluff bodies when the boundary layer transitions to 



 

8 

turbulence, implying a reduction in wake width and turbulent vortex roll-up [17].  In 

contrast, the flow separation point often does not move in bluff bodies with sharp trailing 

edges. 

2.2 Hydrodynamic Stability Analysis of Planar Wake Flows 

This chapter now shifts focus to hydrodynamic stability theory with application to 

planar wake flows.  The concepts discussed here serve as background for the reacting and 

forced wake phenomena introduced at the end of this chapter.  The discussion begins 

with local, spatio-temporal stability analysis.  Spatio-temporal stability analysis was first 

used in the context of stratified wake and jet flows by Yu and Monkewitz [18].  More 

recently, Juniper et al. [19] have developed a significant computational framework for 

this type of analysis, with application to wakes, jets, and swirling jets.  This work has 

been especially useful for determining the role of confinement in the hydrodynamic 

stability of wake flows. 

Local, spatio-temporal stability analysis is used to distinguish between absolutely and 

convectively unstable regions in the flow.  In general, a flow that temporally amplifies a 

disturbance of any single wavelength is temporally unstable.  If the group velocities of all 

temporally amplified disturbances are nonzero, the flow is convectively unstable.  

Physically, this means that while the envelope of the packet of disturbance waves is 

growing in time, it is being convected away from its point of origin in the lab-fixed 

reference frame.  Thus, a particular location in a convectively unstable flow will exhibit 

oscillations only if perturbations are continuously fed to the instability.  Thus, these flows 

behave as disturbance amplifiers. 
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Absolute instability is purely a local concept, meaning that it describes flow profiles in 

a nominally parallel flow, for example at a fixed axial position.  The distinction between 

absolute and convective instability depends on the long-time behavior of the flow 

dynamics in the lab-fixed reference frame after a finite-duration perturbation.  The 

instability is absolute if any temporally amplified wavelength has a zero group velocity.  

Physically, this represents the situation when the disturbance envelope grows temporally 

while remaining at the location of its inception.  These types of flows are self-excited, 

meaning that they continue to oscillate in the lab-fixed reference frame once they are 

perturbed.  Unlike a convectively unstable flow, oscillations persist without continuous 

excitation.  If a sufficiently large “pocket” of absolute instability exists, this region may 

serve as a wave-maker which drives a global instability.  Global instability occurs when 

the self-excited oscillations permeate the entire flow, creating a temporally growing and 

oscillating spatial pattern known as the global mode.  Note that global instability 

describes the physical embodiment of the instability, while absolute instability is a local 

construct which describes a local flow profile. 

As mentioned above, the local stability analysis is concerned with flow profiles, 

typically at fixed axial positions.  As such, the analysis of a given flow involves the 

analyses of many slices of the flow, each at a unique axial position.  The inputs to the 

analysis include the Reynolds number and the base flow, which consists of mean velocity 

and density profiles.  The general analysis procedure involves the solution of a dispersion 

relation, which is an equation or family of equations that relate the wavenumber and 

frequency of harmonic flow disturbance oscillations.  Solution of the dispersion relation 

results in a complex eigenvalue, which is the unknown frequency or wavenumber, and an 
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eigenvector, which provides the mode shape of the flow disturbances.  If a real frequency 

is used to solve the dispersion relation, the resulting complex wavenumber is the solution 

to a spatial stability problem.  This complex wavenumber contains the wavenumber of 

the disturbance as well as the spatial growth rate.  If a real wavenumber is input, a 

temporal stability analysis is performed where the dispersion relation is solved for the 

complex frequency.  The complex frequency contains information on the temporal 

frequency and growth rate.  In a spatio-temporal stability analysis, the frequency and 

wavenumber may both be complex simultaneously.  This analysis is used to identify the 

temporal frequency, temporal growth rate, and complex wavenumber corresponding to a 

wave packet with zero group velocity.  These are known as the absolute frequency, 

absolute growth rate, and absolute wavenumber, respectively.  Generally, if an unstable 

global mode exists, its frequency will be close to the absolute frequencies from the region 

of absolute instability.   

The implications of the global/convective instability distinction above are particularly 

significant in thermoacoustic instability problems, where vortical structures excited by 

acoustic waves play important roles in the feedback mechanism [20].  The convectively 

unstable system is quite sensitive to acoustic excitation [21] and tends to amplify them.  

In contrast, the absolutely unstable system is an oscillator – it exhibits intrinsic, self-

excited oscillations and does not require external disturbances to persist.  In such a self-

excited system, the limit cycle behavior may remain independent of the external forcing, 

unless the amplitude is high enough that the phenomenon of “lock-in” occurs [13, 22].    

In one case, low amplitude acoustic excitation will induce a proportional response while 
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in the other it may not.  In turn, this has important implications on which type of flow 

instabilities can be involved in linear combustion instability mechanisms.   

  The baseline flow stability characteristics of the two-dimensional wake can be altered 

by heating the fluid in the wake [16-18, 23-24], by addition of a splitter plate [3], and  

through base bleeding/blowing, to name several examples.  Of most interest to this study 

are wake density ratio effects (due to heating, for example).  It has been shown that a 

sufficiently hot wake relative to the free stream eliminates the absolute instability of the 

wake, so that the flow’s dynamics are then controlled by the convectively unstable shear 

layers.  This suggests that simulating combustion instabilities in simplified lab 

combustors with high density ratios may lead to completely different acoustic-

hydrodynamic coupling processes than what may be actually occurring in the low flame 

density ratio application of interest.  For example, Yu and Monkewitz [18] performed 

parallel stability analyses of variable density wakes, characterized by an outer flow with a 

density, u , and time-averaged velocity, uU , and wake region with density b  and 

velocity bU  (see Figure 2-3).  For an inviscid flow with a step jump in properties 

between the two fluids, they showed that the absolute stability boundary depends upon 

density ratio between the outer flow and the wake, as well as the ratio of reverse flow 

velocity in the wake to outer flow velocity,  , defined below:  

  
 

 

U x
bx

U x
u

    (2.2) 

The convective/absolute stability boundary predicted by their analysis is plotted in 

Figure 2-3.  For the purpose of this study, only the sinuous (asymmetric) mode stability 

boundary is plotted, as it is consistently less stable in wakes than the varicose 
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(symmetric) mode [18].  The figure shows that absolute instability is promoted with 

lower density ratios, u b  , and higher wake reverse flow velocities.  For the reacting 

mixtures considered in this study, the density ratios plotted in the figure are also 

essentially identical to the flame temperature ratio, b uT T .  Similar stability calculations 

have also been performed using more realistic velocity and density ratio profiles, such as 

hyperbolic tangent profiles, and incorporating viscous effects [25].  A major topic in this 

thesis is to study the effects of the flame upon the absolute and convective instability 

characteristics of the wake (Huerre and Monkewitz 1990; Anderson et al. 1996; 

Godreche and Manneville 1998; Schmid and Henningson 2001).  Therefore, the velocity 

and density profiles shown in Figure 2-3a provide a model of particular interest, since 

they approximate the flowfield downstream of a bluff body flameholder. 

 

  

a) 

 

b) 

 
 

Figure 2-3.   a) Flow geometry used for the local parallel stability analysis, and b) 

tested conditions overlaid onto stability map obtained from local parallel stability 

analysis for the wake’s sinuous mode [18]  
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2.3 Reacting Bluff Body Literature  

The previous section focused on the general hydrodynamic wake stability literature, 

and identified the density ratio as an important parameter.  A significant density ratio 

appears in the reacting wake of a flameholder.  In these flows, the fluid density drops 

across each of the two flame branches (see Figure 1-1 in Chapter 1, Introduction), 

creating a density profile reminiscent of the model shown in Figure 2-3a.  Thus, reacting 

bluff body wakes can have significantly different stability characteristics than 

nonreacting wakes.   

A variety of prior studies have noted fundamental differences in the dynamic character 

of the flame and/or flow field at different velocity and fuel/air ratio conditions [26-27], 

particularly under near blowoff conditions [33-39] or in flames utilizing highly preheated 

reactants [23, 28-29].  Near blowoff, the flame exhibits substantially increased levels of 

fluctuations in position, due to local extinction on the flame [30-34], as well as large 

amplitude sinuous motions of the flow field which resemble the Von Karman vortex 

street.  Hertzberg et al. [30] and Anderson and Hertzberg [35] appear to have first used 

convective and absolute instability notions to explain various structural features in the 

flame/flow field, such as vortex shedding and near blowoff flame dynamics.  

The first systematic demonstration showing the effects of flame density ratio in 

combusting flows was presented by Erickson et al. [23] and is reproduced in Figure 2-4.  

Their results show that a large sinuous flow feature gradually grows in prominence as 

density ratio across the flame is decreased below values of approximately 2-3.  This 

observation is quite significant as it demonstrates that the dominant fluid mechanics in a 

lab burner with non-preheated reactants, which has a “high” density ratio, can be very 
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different from those of a facility with highly preheated reactants, such as many 

combustion applications.  For example, stoichiometric methane air flames with reactant 

temperatures of 300 and 1000 K have density ratios of 7.5 and 2.6, respectively. 

 

 

 

Figure 2-4. Computationally predicted vorticity field and instantaneous flame edge 

for two flame temperature ratios, reproduced from Erickson et al. [23] 

 

 

 

There have been no parallel experimental studies that have systematically studied 

flame density ratio effects on unsteady flow/flame features.  The reason for this is that 

obtaining a stable (i.e., one that is not near blowoff) flame over a range of density ratios, 

particularly low density ratios, is quite difficult.  Flames propagating into room 

temperature reactants will blowoff at density ratios much higher than where the 

phenomenon of interest occurs.  For example, a methane/air flame at an equivalence ratio 

of 0.6   and 300T  K has a density ratio of 5.6u b   .  Increasing the equivalence 

ratio to 1.0   leads to a density ratio of 7.5.  This density ratio variation of ~25% is all 

that is possible over the typical range of experimentally accessible fuel/air ratios over 

which a stable flame can be achieved when fueled with reactants at standard temperature 

and pressure.  In contrast, in a gas turbine combustor with a combustor inlet temperature 



 

15 

of 800K [36] and equivalence ratio of 0.6, the flame temperature ratio is 2.6 for a 

methane-air flame.  Similarly, high efficiency recuperated cycles or reheat cycles may 

have inlet temperatures of 1000K-1100K [36-37], leading to temperature ratios of ~2. 

2.4 Forced Response of Hydrodynamically Unstable Flows 

2.4.1  Convectively Unstable Flows 

As discussed above, high density ratio bluff body flows, like those in most lab scale 

burners, are convectively unstable.  These flows respond strongly to longitudinal acoustic 

forcing [5, 38-40].  With or without forcing, each shear layer rolls up into concentrated 

regions of vorticity, which pair as they convect downstream.  Vortex pairing [38] occurs 

when the concentrated vorticity from two adjacent vortices merges into a new, single 

structure.  This occurs due to mutual induction of the two vortices.  A vortex pairing 

event is associated with a halving of the vortex passing frequency.  

For a shear layer in the presence of harmonic forcing, the pairing process is adjusted 

so that vortices pass at the forcing frequency.  For example, a train of vortices passing at 

three times the forcing frequency will tend to merge three at a time to match the forcing 

frequency.  If the forcing frequency is much larger than the vortex passage frequency, a 

phenomenon called “collective interaction” occurs.  In this case, a large number of 

vortices are spatially localized and merged into one, much larger vortex.   In a forced, 

convectively unstable wake, the two shear layers evolve independently, with structures 

passing at the forcing frequency due to the vortex pairing/collective interaction processes.  
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2.4.2  Globally Unstable Flows 

Low density ratio bluff body flames, as found in many highly preheated industrial 

applications, tend to be globally unstable.  The forced excitation of globally unstable 

bluff body flows involves the interaction of the two convectively unstable shear layers, 

which leads to interesting nonlinear phenomena, such as frequency locking [39-44].  

Frequency locking occurs through the vortex rollup, pairing, and shedding processes.  A 

detailed summary of these vortex dynamics is presented by Lieuwen [45].  For the bluff 

body wake, the global mode manifests itself as sinuous rollup of the wake into the Von 

Karman vortex street.  When such flows are forced at low amplitudes, the wake is 

generally not receptive to the forcing and continues to oscillate at its global mode 

frequency, nf , as it does in the unforced case.  However, the wake dynamics can be 

forced to oscillate at the external excitation frequency at sufficient forcing amplitudes. 

This process is referred to as frequency locking.  The amplitude required for frequency 

locking is a function of the relative values of the forcing and global mode frequencies, 

ff  and nf , respectively.   Similarly, frequency locking may be achieved over a wider 

range of forcing frequencies with increased forcing amplitude.  A conceptual lock-in map 

is presented in Figure 2-5, where rf  denotes the response frequency of the wake. 
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Figure 2-5. Conceptual lock-in map demonstrating the range of offset between the 

forcing frequency and natural frequency that results in frequency locking. 
 

 

In an unforced wake, vortices in the shear layers continue pairing as they convect 

downstream, growing in size and reducing their passage frequency.  The vortex pairing 

causes growth of the shear layers, which eventually grow sufficiently large to interact 

with one another.  The mutual interaction of the vorticity in the two layers leads to 

instability, manifested as the staggering of vorticity into a sinuous wake pattern [46].  

This motion leads to collection of the small shear layer structures into much larger 

vortices, which pass through the wake at the global mode frequency. 

A harmonically forced bluff body flowfield is more complicated than a single shear 

layer, particularly in the reacting case where it can be either convectively or globally 

unstable. Multiple scenarios are possible: 

(1) If the wake is globally stable, but convectively unstable, axial excitation leads to 

rollup of the two shear layers, which remain symmetrically spaced across the flow 

centerline 
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(2) If a globally unstable wake is subjected to strong harmonic forcing, but is forced at 

a frequency far from the global mode frequency, the forcing competes with the global 

mode.  Axial forcing drives collective interaction, leading to large scale structures which 

pass at the forcing frequency, but remain symmetrically spaced across the flow 

centerline.  Simultaneously, the wake tries to amplify the global mode, which competes 

for the shear generated vorticity and rolls up large structures alternately at the global 

mode frequency.  As will be shown later in this paper, a bimodal spectrum is common in 

this situation, with responses at both the forcing frequency and the global mode 

frequency.  This bimodal behavior has been observed previously in frequency locking 

studies of nonreacting, forced wakes [44].   

(3) If the excitation frequency is close to the global mode frequency and/or of 

sufficient amplitude, then the global mode locks into the forcing.  

To date, this frequency locking phenomenon has not been investigated systematically 

in a reacting bluff body flowfield, whose global instability frequency and growth rate are 

themselves parameters.  A related investigation has been performed for 

thermoacoustically unstable, reacting flows.  Here, Chakravarthy et al. investigated the 

relationship between the dominant acoustic frequency and the vortex shedding frequency 

in a combustor undergoing natural oscillations [47] and found that the dominant 

oscillation frequency locked into the vortex shedding frequency.   

2.5 Combustion Instability 

The work in this thesis is motivated by combustion instabilities.  Therefore, this 

section will provide brief background on this matter, only to introduce where this work 

fits into the big picture of combustion instabilities.  Combustion instability is a resonant 
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coupling between the acoustic field inside the combustor and the unsteady heat release of 

the combustion process.  The unsteady heat release of combustion is a direct monopole 

sound source, and is relatively well understood.  The effect of the acoustic field on the 

combustion process can take place through many paths and is not as well understood. 

In general, the acoustic field may perturb the heat release of combustion through 

pressure, entropy, equivalence ratio, or velocity fluctuations.  A thorough review of the 

numerous coupling mechanisms is provided by Lieuwen [48].  Flame response to 

velocity fluctuations is known as a velocity coupled flame response.  The velocity 

coupled flame response stems from the unsteady velocity fields of the acoustic motions 

themselves, and the acoustically excited hydrodynamic response.  This thesis focuses on 

understanding the latter; namely, the coupling between the acoustic field and 

hydrodynamic behavior, and the resulting implications on the unsteady heat release of the 

flame.  This mechanism was shown to be of significant importance in the context of 

transversely forced bluff body flames [49].  The above general picture of the velocity 

coupled flame response is sketched in the flow chart in Figure 2-6, with emphasis on the 

focus of the current work.   
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Figure 2-6. Diagram of the combustion instability feedback loop through a velocity 

coupled flame response.  This work focuses on the red branch. 

 

 

2.6 Study Objectives 

The four objectives of this study which were briefly identified at the end of Chapter 1, 

Introduction are the following.  The first is to experimentally characterize the unsteady 

flow evolution as the flame density ratio is monotonically varied in the vicinity of the 

predicted hydrodynamic stability limit.  To do this, it is necessary to highly preheat the 

reactants to obtain flames that are stable (i.e., well removed from blowoff), yet of low 

density ratio.  This was accomplished by developing a vitiated facility, which has two air 

injection locations to allow independent control of the mass flowrates and equivalence 

ratios in the vitiator and test section combustors.  Such a facility is able to achieve broad 

ranges of flame density ratio, and has substantial flexibility in operating conditions.  This 

facility is detailed in Chapter 3, Experimental Facility and Design of Experiments, and 

the results of this experiment are discussed in Chapter 5, Experimental Results: Unforced 

Flame and Flow Dynamics and Chapter 7, Intermittency of Limit Cycle Events. 

The second study objective is to compare the empirical results from the first objective 

to the results of local stability theory.  The goal of this comparison is to verify that the 
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key stability parameters have been identified to describe the absolute/convective stability 

characteristics of reacting wakes.  In particular, the work should determine if the density 

ratio and backflow ratio have the same measured effect as theory would suggest they do.  

The results will show that they do, but that an additional parameter is important: the 

spatial offset between the mean density and velocity gradients.  These comparisons will 

also lead to conclusions about the utility of stability analysis of model flow profiles, as 

well as stability analysis of the full time-averaged flow.  This objective is discussed in the 

first half of Chapter 6, Local Hydrodynamic Stability Analysis. 

The third study objective is to determine the vortical processes that govern the flow 

stability, and how they themselves are controlled by the identified stability parameters.  

This work will draw physical links between the flow stability parameters and the 

predicted/observed flow stability.  The results will show that deriving such physical 

meaning is a useful strength of the model stability analysis.  This objective is explored in 

the second half of Chapter 6, Local Hydrodynamic Stability Analysis. 

The fourth study objective is to experimentally determine the effects of the 

hydrodynamic stability on the velocity-coupled flame response.  This final objective 

relates the previous three objectives to the bluff body combustion instability problem.  

Results will reveal non-intuitive conclusions about the unsteady heat release of a globally 

unstable bluff body combustor that is longitudinally acoustically forced at the global 

mode frequency.  These results appear in Chapter 8, Experimental Results: forced Flame 

and Flow Dynamics.  
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CHAPTER 3. EXPERIMENTAL FACILITY AND DESIGN 

OF EXPERIMENTS 

This chapter describes experimental facility and the experiments that were selected to 

accomplish the research goals outlined at the end of Chapter 2, Background and 

Motivation.  All of the research goals are centralized around the hydrodynamics of 

combusting bluff body wakes.  More specifically, the experimental work shall investigate 

the hydrodynamic stability characteristics of this flow, and the effect of the 

hydrodynamics on the flame response to longitudinal acoustic forcing.  In order to study 

both the hydrodynamic characteristics and the flame response behavior, diagnostics 

should quantify the unsteady flow field, the unsteady flame position, and the unsteady 

heat release of combustion.  Therefore, the experimental facility is an optically accessible 

bluff body combustor with very flexible operating conditions, thus allowing parametric 

studies of the hydrodynamic stability characteristics.  This experimental facility and the 

design of experiments are detailed next.  

3.1 Experimental Facility 

3.1.1 Desired Performance 

As mentioned above, the two-dimensional bluff body combustor facility must provide 

control over the hydrodynamic stability characteristics of the flow.  These stability 

characteristics include both the growth rate and the frequency of the global mode.  In 

Chapter 2, Background and Motivation, the density ratio across the flame, u b  , and 
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backflow ratio,  ,  were identified as important parameters governing the absolute 

growth rate (and presumably the global mode growth rate) in the wake. 

The density ratio across the flame may be varied by either adjusting the equivalence 

ratio or the reactant temperature.  As covered in Chapter 2, Background and Motivation, 

the density ratio range for convective/absolute instability transition in a burning wake 

often occurs in the range ~ 2 3u b   .  For room temperature reactants, this would 

occur at an equivalence ratio much leaner than lean blowoff for a methane/air bluff body 

flame.  Therefore, it is necessary to highly preheat the reactants to obtain flames that are 

stable (ie, well removed from blowoff), yet of low density ratio.  For this reason, the 

selected experimental facility should provide control over the level of preheat and the 

equivalence ratio in the test section. 

Chapter 2, Background and Motivation also provided a discussion of the global mode 

frequency in nonreacting wakes, BVKf .  The global mode frequency typically occurs at a 

fixed Strouhal number for a given bluff body shape, and therefore scales with bluff body 

lip velocity.  Therefore, the selected experimental facility should allow control of the 

bluff body lip velocity at fixed u b   so that the global mode frequency can be varied.  

Results from this work will demonstrate that the global mode frequency in reacting 

wakes does in fact follow a Strouhal number scaling over the density ratios tested.   

The primary diagnostics chosen are particle image velocimetry (PIV) to make the 

flowfield measurements and high speed chemiluminescence to make the flame dynamics 

and unsteady chemiluminescence measurements.  Details on these techniques are 

provided in Chapter 4, Instrumentation and Diagnostic Techniques.  Both of these 
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diagnostics techniques require substantial optical access to the test section combustor.  

Therefore, all four rectangular walls of this combustor are made of quartz. 

3.1.2 Design of Facility 

Independent control of the global mode growth rate and frequency necessitates 

independent control over the level of preheat, the test section equivalence ratio, and the 

bluff body lip velocity.  This was accomplished by developing a facility capable of 

vitiating the flow, with independent control of the equivalence ratios of the two burners.  

Such a facility is able to achieve broad ranges of flame density ratio.  In order for the 

density ratio and the lip velocity to be varied independently also requires a second, 

separately controlled air injection source. The ability to control two independent air flows 

and two independent fuel/air ratios leads to substantial flexibility in operating conditions.   

The facility, shown in Figure 3-1, consists of two premixed, methane-air combustors 

in series.  The figure identifies the various components, which are detailed from Figure 

3-3 through Figure 3-16 to allow simulation or reconstruction of the experiments.  The 

first combustor is used to vitiate the flow.  The second, bluff body stabilized combustor 

consists of a rectangular section with a bluff body spanning the width of the combustor, 

creating a nominally 2D flow.  The aspect ratio of bluff body height to chamber width is 

0.15.  This combustor has quartz windows for optical access from all four sides. Two 

different bluff bodies were used in the test section: a 2D ballistic shape (shown in Figure 

3-17a), and a v-gutter (shown in Figure 3-17b).  From here on, the 2D ballistic shape will 

be referred to as the ballistic bluff body. 
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Figure 3-1. Drawing of the experimental facility, showing layout of the various 

components which are detailed next 
 

 

 

Figure 3-2. Schematic of the primary burner (vitiator), dimensions in inches 
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Figure 3-3. Drawing of the vitiator swirler assembly 
 

 

 

Figure 3-4. Schematic of the vitiator swirler assembly, dimensions in inches 
 

 

 

Figure 3-5. Drawing of the air dilution section 
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Figure 3-6. Schematic of the air dilution section, dimensions in inches 
 

 

 

Figure 3-7. Drawing of the flow straightener 
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Figure 3-8. Schematic of the flow straightener, dimensions in inches 
 

 

 

Figure 3-9. Drawing of the fuel mixing and acoustic forcing section 
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Figure 3-10. Schematic of the fuel mixing and acoustic forcing section, dimensions in 

inches 
 

 

 

Figure 3-11. Drawing of the first flow settling section 
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Figure 3-12. Schematic of the first flow settling section, dimensions in inches 
 

 

 

Figure 3-13. Drawing of the second flow settling section 
 

 

 

Figure 3-14. Schematic of the second flow settling section 
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Figure 3-15. Drawing of the test section with ballistic bluff body installed 
 

 

 

Figure 3-16. Schematic of the test section with ballistic bluff body installed, 

dimensions in inches 
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a) 

 

b) 

 

Figure 3-17. Schematics of bluff bodies, a) ballistic, b) v-gutter   

 

 

 

The rig operates as a blow-down facility using the 2500 psi air supply in the Ben T. 

Zinn Combustion Lab at the Georgia Institute of Technology.  Upstream of the control 

valves and instrumentation, the air supply is regulated down to 150 psi.  Primary air and 

fuel were premixed upstream of the vitiator.  Secondary air and fuel were plumbed into 

the rig and premixed in a 1.4 m long settling section aft of the vitiator, and upstream of 

the test section.  Fuel is inserted from a manifold of eight injectors, each of which 

penetrates 2.5 cm into the flow; three injectors pass through the top wall, three through 

the bottom wall, and 1 injector passes through each side wall.  Using absorption 

spectroscopy, the natural gas concentration was analyzed as a function of position on the 

test section inlet plane, and was uniform within 10% ; uniform equivalence ratio was 

assumed and the effects of nonuniform equivalence ratio [53-55] were not considered.  

In order to study flame response to acoustic forcing, the facility was constructed such 

that the test section could be longitudinally acoustically forced.  Transverse forcing was 

not part of this work, although it has received attention in a parallel study [49-50].  The 

forcing tone was created with a function generator, and was introduced by two 

loudspeakers, which were mounted to tubes that entered the combustor several meters 

upstream of the test section. 
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3.2 Background Flow Noise 

For the conditions reported in this thesis, the background flow noise of the rig (due to 

acoustics and turbulence, for example) was insignificant compared to the limit cycling 

behavior of interest.  To demonstrate this, Figure 3-18 shows axial velocity spectra for 

several velocities and density ratios.  In the figures, a small hexagram hovers above the 

global mode frequency.  The spectra show that when present, the global mode is 

responsible for the dominant axial velocity oscillations in the combustor. 

 

 

a) 2.5,  30 m/su b lipU     

 

g) 2.5,  60 m/su b lipU     

 
b) 2.4,  30 m/su b lipU     

 

h) 2.4,  60 m/su b lipU     

 
Figure 3-18. Axial velocity spectra, showing the dominance of the hydrodynamic 

limit cycle behavior over the background acoustics.  Results are shown for many 

combinations of density ratio and velocity, with conditions shown above each plot. 
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c) 2.2,  30 m/su b lipU     

 

i) 2.2,  60 m/su b lipU     

 

d) 2.0,  30 m/su b lipU     

 

j) 2.0,  60 m/su b lipU     

 

e) 1.9,  30 m/su b lipU     

 

k) 1.9,  60 m/su b lipU     

 

Figure 3-18 continued  
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f) 1.7,  30 m/su b lipU     

 

l) 1.7,  60 m/su b lipU     

 

Figure 3-18 continued  

 

 

At a density ratio of 1.7u b    and lip velocity of 65 m/slipU  , the vitiator begins 

to become unstable.  This is detected audibly by a very faint “hum.”  Figure 3-19 shows 

the axial velocity spectrum for this case, which has a significant peak associated with the 

acoustics of the vitiator instability.  Conditions like this, with significant background 

acoustics, were not included in this study. 

 

 

 
Figure 3-19. Axial velocity spectra for 1.7, 50 m/su b lipU    , showing a case 

with significant background acoustics stemming from combustion instability in the 

vitiator 
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3.3 Two-Dimensionality 

This work assumes a two-dimensional flame and flowfield.  In reality, three-

dimensionality is introduced by turbulence, secondary instabilities, and end-wall effects.  

The high speed chemiluminescence measurement is a line-of-sight measurement, and 

therefore captures the effects of three-dimensionality.  In order to demonstrate the 

downstream growth of three-dimensional effects, the full width at half maximum of the 

luminosity of one flame branch was instantaneously measured at each axial position, and 

then temporally averaged.  This quantity is normalized by its value at the flame 

attachment point, where three-dimensional effects are expected to be weakest.  The 

result, defined as FWHM , is shown in Figure 3-20 for several density ratios and 

velocities, showing the growth in the apparent flame thickness as three-dimensional 

effects develop with downstream position.  The first observation is that three-dimensional 

effects seem to grow more quickly for low velocity cases, and high density ratio cases.  

The second observation is that in the wavemaker region, three dimensional effects have 

only grown such that the apparent flame thickness has roughly doubled (to be contrasted 

with a factor of as much as 7 for locations farther downstream).  Chapter 6, Local 

Hydrodynamic Stability Analysis will show that this region, located between one and two 

bluff body diameters downstream for this flow, is the most important region for 

hydrodynamic stability predictions. 
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a) 2.5,  30 m/su b lipU     

 

g) 2.5,  60 m/su b lipU     

 
b) 2.4,  30 m/su b lipU     

 

h) 2.4,  60 m/su b lipU     

 
c) 2.2,  30 m/su b lipU     

 

i) 2.2,  60 m/su b lipU     

 
Figure 3-20. Indication of three dimensionality of the line of sight integrated 

chemiluminescence for several test conditions.  Conditions are indicated above each 

plot. 
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d) 2.0,  30 m/su b lipU     

 

j) 2.0,  60 m/su b lipU     

 

e) 1.9,  30 m/su b lipU     

 

k) 1.9,  60 m/su b lipU     

 

f) 1.7,  30 m/su b lipU     

 

l) 1.7,  60 m/su b lipU     

 

Figure 3-20 continued 
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3.4 Design of Experiments 

Two sets of experiments were performed, an unforced study and a forced study.  Both 

experiments measured the flame and flow dynamics using high speed chemiluminescence 

and time resolved PIV, respectively.  This section describes the design of the test 

matrices for these experiments.  

3.4.1 Test Matrix for Unforced Experiments 

The purpose of the unforced study was to experimentally characterize the 

hydrodynamic stability of the reacting wake in the vicinity of the global mode stability 

limit.  Test matrix design was motivated by the stability map from the analysis of Yu and 

Monkewitz [18], shown in Figure 3-21, which parameterizes the flow stability in terms of 

a backflow ratio and a density ratio.  The backflow ratio (defined in Chapter 2, 

Background and Motivation) is a convenient measure of the shear.  Additionally, the 

density ratio used in this thesis is the inverse of the density ratio used by Yu and 

Monkewitz (where they use S), so that it will remain greater than 1.   

The test matrix was laid out as follows.  For each of the two bluff bodies shown in 

Figure 3-17, a density ratio sweep was performed at a fixed bluff body lip velocity of 50 

m/s, and again at 20 m/s.  Density ratio was swept from 1.7 to 2.5u b    for PIV 

measurements and from 1.7 to 3.2u b    for high speed chemiluminescence 

measurements.  The systematic density ratio sweeps were meant to study the density ratio 

as a parameter influencing the hydrodynamic global instability growth rate.  Likewise, 

the two different bluff body geometries allowed testing of two different backflow ratio 

parameters.  The two different lip velocities allow application of Strouhal scaling to 
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confirm the hydrodynamic rather than acoustic nature of the observed dynamics.  The 

PIV measurement was conducted over a narrower range of density ratios because at 

density ratios greater than 2.5, insufficient seeding density was present in the low density 

combustion products to make good velocity measurements in the products.  This limited 

range of density ratio was acceptable, because the phenomena of interest occurred at and 

below 2.5u b    as evidenced by the chemiluminescence measurements.  This 

problem could be overcome by increased overall seeding density; however, such attempts 

led to rapid accumulation of seed particles on the windows, obscuring successful image 

capture.   

The actual conditions tested in the unforced PIV experiments are overlaid on the 

stability map, where the backflow ratio max  is determined from the maximum value of 

  (which itself varies axially).  Note that the v-gutter provides larger reverse flow than 

the ballistic bluff body.  Contours of constant  0, / 2i avD U  are provided as well, and 

correspond to the absolute spatio-temporal growth rate as computed from density and 

velocity measurements in conjunction with linear stability theory.  These theoretical 

values are calculated with a model stability analysis assuming top hat density and 

velocity profiles, parallel flow, and high Reynolds number.  While this simplified, model 

stability analysis is useful for parameterizing the stability problem and designing the test 

matrix, a detailed local stability analysis is performed to compare stability theory results 

to experimental observations.  The stability analysis details and results are discussed later 

in Chapter 6, Local Hydrodynamic Stability Analysis. 
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Figure 3-21. Tested conditions overlaid onto stability map obtained from 2D parallel 

flow stability analysis for the sinuous wake mode. 

 

 

3.4.2 Test Matrix for Forced Experiments 

The forced experiments were conducted to investigate the interaction of the 

hydrodynamics with the acoustic forcing, over a range of hydrodynamic global mode 

growth rates and frequencies.  Therefore, the test matrix design was based off of the test 

matrix from the unforced experiments, where hydrodynamic stability characteristics were 

systematically varied.  In the forced experiments, only the ballistic bluff body was 

studied.  The density ratio was varied over the range 1.7 to 2.5u b    to modulate the 

global mode growth rate.  For each density ratio, the lip velocity was varied from 20 to 

70 m/s in order to vary the global mode frequency.   

For every combination of density ratio and lip velocity, the flow was first set to the 

conditions of interest and an unforced test was conducted.  Then, without adjusting any 

valves, a longitudinally acoustically forced test was conducted.  This procedure allowed 

measurement of the true global mode frequency, without influence from forcing, and 

ensured that the density ratio and lip velocity did not drift between the unforced and 

forced cases due to error introduced by manually adjusting valves and reading gauges.  In 
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order to mitigate drifts in the global mode frequency due to thermal transients, the rig was 

“warmed up” before each series of measurements at a given density ratio and lip velocity.  

Most conditions were tested with only an unforced and a forced case, however forcing 

amplitude sweeps were performed at density ratios of 1.7 and 2.0u b   . 

The forcing amplitude was quantified by fA , which is the ratio of the acoustic particle 

displacement amplitude to the bluff body diameter.  The strongest forcing corresponded 

to a particle displacement amplitude of 0.5 mm, or 0.02fA  .  Displacement based 

forcing amplitudes were used to make the data comparable to the early literature, where 

the bluff body was physically displaced.  An amplitude of 0.02fA   corresponds to 

roughly 3% of the bluff body lip velocity for 50 m/slipU  .  For 

1.9, 2.2, 2.4, and 2.5u b   , forcing amplitudes of 0 and 0.02fA   were used.  For 

1.7 and 2.0u b   , forcing amplitude sweeps were conducted with 

0, 0.005, 0.01, 0.015, and 0.02fA  .  This test matrix for forced experiments resulted in 

a large database of PIV and high speed chemiluminescence data each with 182 cases. 

The forcing frequency is held fixed at 515 Hz for all experiments, since the combustor 

has a longitudinal acoustic mode at this frequency.  Although this response will change 

somewhat with temperature, the response peak is broad enough that the effect is not too 

pronounced.  Over the range of conditions tested, there is not a significant change in the 

acoustic response of the rig at 515 Hz.  

For the acoustically forced cases, sampling was performed such that spectral leakage 

from the forcing frequency would be negligible.  This ensures that measurements of 

dynamics at the global mode frequency are not contaminated artificially by spectral 
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energy leaking from the forcing frequency, even when the two frequencies are close.  

This was accomplished by setting the forcing frequency, sampling frequency, number of 

samples, and number of ensembles such that Eq. (3.1) was satisfied [51].  In the equation, 

eN  represents the number of ensembles for spectral averaging; this is not necessarily the 

same as the total number of ensembles, which may be increased further by spatial 

averaging.  In essence, this equation ensures that an integer number of cycles of the 

forced response are sampled.  sN  represents the total number of samples, not the number 

of samples per ensemble, and j  is any integer.  For example, in this study 515ff  , 

4eN  , 5000samplef   Hz, and 4000sN  , which corresponds to 103j   cycles per 

ensemble (or 412 cycles for the entire data record). 

 f e sample sf jN f N  (3.1) 

3.4.3 General Test Matrix Considerations 

Bluff body lip velocity was calculated using the formula  lip lip lip lipU m A , which 

is an average axial flow velocity.  The density for the lip velocity calculation was 

determined from the temperature measured just before the test section and the gas 

composition of the secondary air and fuel adiabatically mixed with the equilibrium 

vitiated gas.  An equilibrium gas solver was then used to calculate the adiabatic density 

ratio across the test section flame.  The area, lipA , is the cross-sectional area of the flow at 

the plane of the bluff body trailing edge.  The flame density ratio, u b  , is defined as 

the ratio of the density entering the test section to the density of the post flame gases in 

the test section. 
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In terms of the lip velocity and density ratio, the operating map of the combustor is 

limited by combustion instability, blowoff, and thermal constraints.  The bluff body lip 

velocity is limited to a range of roughly 20 m/s to 70 m/s because of combustion 

instability in the vitiator at low and high flowrates and conditions of interest.  The lower 

limit of the density ratio occurs when the vitiator flame is “hot,” the test section flame is 

“cold,” and the test section flowrate is not much greater than the vitiator flowrate.  This is 

not as simple as running the vitiator at stoichiometric fuel air ratio, adding a small 

secondary air flow, and running the test section as lean as possible.  This is because the 

vitiator cannot be run near stoichiometric without significant secondary air injection due 

to melting of the downstream flow straightener.  This significant air addition does not 

facilitate low density ratios because of the decreased temperature and increased mass 

flow entering the test section.  Typically the vitiator was run at an equivalence ratio 

between 0.7 and 0.8 where the secondary air addition was not driven by cooling needs.  

The lean blowout limit of the test section flame was generally close to 0.55   for the 

typical oxygen content of the vitiated flow.  Furthermore, great care was taken to stay 

well away from blowoff boundaries, where additional flame dynamics can occur [1, 52-

53].  The test section equivalence ratio was kept in the range 0.70 0.75   .  In light of 

all of these considerations, the density ratio was limited to 1.7u b   . 

It is the independent control of the primary and secondary air and fuel supplies that 

allows the flame density ratio and bluff body lip velocity to be varied independently in 

the test section.  For example, if a density ratio sweep is desired at a fixed bluff body lip 

velocity, the secondary air flowrate can be varied.  Increasing the secondary air flowrate 

raises the mass flowrate through the test section combustor, but reduces the temperature 
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entering the test section (and hence raises the density at the bluff body lip).  In terms of 

bluff body lip velocity, these two effects roughly balance one another.  In terms of flame 

density ratio, the reduced inlet temperature leads to higher flame density ratio.  The 

primary air and fuel flowrates as well as the secondary fuel flowrate may then be tweaked 

to ensure the desired lip velocity. 

Samples of the design parameters used to achieve a constant lip velocity density ratio 

sweep are presented next.  Figure 3-22 plots the experimental air flowrates and 

equivalence ratios from the ballistic bluff body at 50 m/s.  The figure demonstrates how 

air flowrates and equivalence ratios in the two burners may be adjusted so that the density 

ratio can be swept while lip velocity is held constant. For the reasons discussed above, 

the secondary air flowrate is the key control parameter for a density ratio sweep at 

constant velocity.   

 

a) 

 

b) 

 
Figure 3-22. Experimental design parameters for ballistic bluff body at Ulip = 50 

m/s, showing a) primary and secondary air flowrates and b) the equivalence ratios 

in both combustors 
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A lip velocity sweep at constant density ratio is much simpler.  To achieve this, all 

four flowrates are multiplied by the same factor to alter the total mass flow and therefore 

multiply the bluff body lip velocity by that factor.  This process maintains the same 

stoichiometry in the two burners and hence the test section inlet temperature and the 

flame density ratio. 
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CHAPTER 4. INSTRUMENTATION AND DIAGNOSTIC 

TECHNIQUES 

This chapter details the instrumentation installed in the facility and the diagnostic 

techniques used in the experimental work.  The two primary diagnostic techniques were 

particle image velocimetry (PIV) and chemiluminescence imaging.  Time-resolved PIV 

was used to measure the mean and unsteady velocity and vorticity fields.  High speed 

chemiluminescence was used to capture the mean and fluctuating flame position and to 

estimate the flame’s unsteady heat release.  In addition to these techniques, laser Doppler 

velocimetry (LDV) was used to resolve the boundary layer at the bluff body lip, and Mie 

scattering was used to obtain planar flame position measurements synchronized with the 

PIV measurements. 

4.1 Flow Instrumentation 

Mass flowrates for the primary and secondary air and fuel were measured across 

calibrated knife-edge orifice plates using the static upstream pressure and the differential 

pressure across the plate, measured with Omega PX209 solid state pressure transducers 

and Omega PX771A differential pressure transmitters, respectively.  The temperature just 

upstream of the test section (after addition of secondary air and fuel) was measured by a 

type K thermocouple and an Omega TX13 Transmitter.  Values were recorded once 

every second for ten seconds, and then averaged. Typical measured gas temperatures 

entering the test section were 25-30% lower than the calculated adiabatic temperature, as 

might be expected due to heat loss in the settling section.  The flame density ratio was 

estimated from an equilibrium solution for the adiabatic flame temperature, using the 
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measured approach flow temperature and using a gas composition determined from an 

adiabatic mixing calculation of the secondary air, fuel, and equilibrium vitiated gas.   

Uncertainty in the density ratio was estimated from the Mie scattering images taken 

during the PIV measurements.  The density ratio was estimated by measuring the 

intensity summed over a 140 pixel region on each side of the flame, for several images.  

The ratio of the intensity in the unburned region to that in the burned region was defined 

as MieS .  The mean and 95% confidence intervals of MieS  are plotted in Figure 4-1 

against the density ratio defined above, u b  .  A one-to-one line is shown to aid 

comparison. 

 

 

 
Figure 4-1. Density ratio uncertainty estimated from Mie scattering images 

 

 

 

For the 50 m/s cases, the uncertainty in measured gas flowrates and the resulting 

temperature and density ratios was about 2%.  For the 20 m/s cases, uncertainty was 

about 4% for the measured gas flowrates, and about 10% for the temperature and density 

ratios.  Uncertainties are bounded by worst case combinations of maximum and 
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minimum flowrates and thermocouple readings for a given test.  Uncertainty in 

thermocouple readings was less than 1%. 

4.2 Particle Image Velocimetry 

The high speed, time-resolved PIV measurements were obtained with a LaVision 

Flowmaster Planar Time Resolved system.  The laser system is a Litron LDY303He 

Nd:YLF system with a laser wavelength of 527 nm, pulse duration of 10 ns, and 5 

mJ/pulse pulse energy.  Each of the two lasers in the system has a maximum 10 kHz 

repetition rate.  Images were captured using the Photron High Speed Star 6 camera. 

The flow was seeded with 5 μm Al2O3 particles.  This ceramic material was chosen 

due to its durability in reacting flows and its high refractive index [54].  This particle size 

was chosen because it is large enough to resist accumulation on and clouding of the test 

section windows, although accumulation was still somewhat troublesome.  Also, this 

particle size has a sufficiently small Stokes number to accurately track the flow at the 

frequencies of interest.  Following the work by Mei [55], the Stokes number calculated 

for this flow and seed particle combination was 0.015.  This Stokes number is based on 5 

μm seeding particles, with environmental kinematic viscosity of 3x10
-4

 m
2
/s, and 

oscillation frequency of 850 Hz (roughly the highest global mode frequency 

encountered).  The high temperature and corresponding high viscosity in the test section 

facilitate the use of such a particle.  This Stokes number is comfortably below the cutoff 

Stokes number for solid particles in air [55], which is in the range of .02-.04 and would 

correspond to a frequency of at least 1500 Hz. 

The DaVis 7.2 software from LaVision was used to process the PIV data, performing 

background subtraction and then calculating the velocity fields.  All velocity calculations 
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were performed using the LaVision multi-pass method; this consisted of a single pass 

with 64x64 pixel interrogation windows and 50% overlap between interrogation 

windows, followed by 2 passes with 32x32 pixel interrogation windows and 50% overlap 

between the interrogation windows.  The next two sections provide details on the PIV 

measurements that are specific to either the unforced or forced experiments.  A typical 

instantaneous velocity field measured with PIV is shown in Figure 4-2.  Note that boxes 

around velocity fields are not meant to indicate the locations of the channel walls.  The 

PIV measurement did not reach close enough to the channel walls to capture their 

boundary layers. 

 

 

 

Figure 4-2.  Typical instantaneous velocity field from PIV measurement.  This 

measurement was taken with the ballistic bluff body at 20 m/s, 1.9u b     

 
 

4.2.1 Unforced Experiments 

For the unforced experiments, the camera was operated with a pixel resolution of 

640x448.  A total of 2000 PIV image pairs was taken at a frame rate of 10 kHz with 12 μs 

between images for a given pair. A BG-28 optical filter was placed in front of the camera 

for removal of red and infrared radiation during reacting tests.  The filter transmission 

exceeds 10% for wavelengths between 340 and 630 nm, and peaks at 82% transmission 

at 450 nm.   
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Post-processing on the velocity vectors was performed with the DaVis 7 software, as 

follows.  For 50 m/s cases, any velocity vector with an axial component outside of the 

±90 m/s range or a transverse component outside of the ±45 m/s range was discarded.  

For 20 m/s cases, the accepted range of axial velocities was ±36 m/s and for transverse 

velocities was ±18 m/s.  Furthermore, any velocity vector whose velocimetry calculation 

had a peak correlation coefficient less than 0.2 was discarded, as were neighboring 

vectors whose ratio of difference to average velocity magnitude was greater than 20 

percent of the rms of the nearest neighbors. 

Studies were performed with two fields of view and corresponding resolutions.  The 

larger field captured a region of the combustor that was nominally 250 mm long in the 

axial direction and 80 mm wide in the transverse direction.  This field of view had a 

velocity field resolution of 4.8 mm per pixel using a 50 mm lens at f/1.8.  The smaller 

field of view captured a region in the combustor that was 100 mm x 80 mm, and had a 

velocity field resolution of 3.0 mm per pixel using an 85mm lens at f/2.8.  The spatial 

resolution of the mie scattering images is 16 times greater than the corresponding 

velocity field resolution, due to the use of 32x32 pixel interrogation windows and 50% 

overlap in the velocimetry calculation. 

4.2.2 Acoustically Forced Experiments 

For the forced experiments, the camera was again operated with a pixel resolution of 

640x448, but this time with image pairs being acquired at a frame rate of 5 kHz.  The 

reason for the reduced sampling rate was to capture a greater number of cycles of the 

forced response than what could be acquired at the maximum 10 kHz..  This increases the 

frequency bin resolution of the ensuing fast Fourier transforms, at the expense of a lower 
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Nyquist frequency.  A 55 mm Nikon lens was mounted to the camera and operated at 

f/5.6.  A 527/20 nm BrightLine single-band bandpass optical filter (Part number FF01-

527/20-25) was placed in front of the camera in order to capture only light originating 

from the laser (particularly, for removal of red, blue, and infrared radiation associated 

with combustion).  The filter pass-band is centered at 527nm and has greater than 93% 

transmission between 517 and 437nm.  This filter was an upgrade from the one used in 

the unforced experiments, and provided significantly more transmission of laser light.  

Consequently, the reason for the reduced aperture was to avoid saturating the camera.  

Post-processing on the velocity vectors was performed with the DaVis 7 software, as 

follows.  Any velocity vector with an axial component outside of the ±90 m/s range or a 

transverse component outside of the ±45 m/s range was discarded.  Furthermore, any 

velocity vector whose velocimetry calculation had a peak correlation coefficient less than 

0.2 was discarded, as were neighboring vectors whose ratio of difference to average 

velocity magnitude was greater than 20 percent of the rms of the nearest neighbors. 

All studies from the forced experiments were performed with a single field of view.  

The field of view covered a region of the combustor that was roughly 160 mm long in the 

axial direction and 80 mm wide in the transverse direction, with to a velocity field 

resolution of 2.84 mm per pixel.  The spatial resolution of the corresponding Mie 

scattering images is 16 times greater, due to the use of 32x32 pixel interrogation windows 

and 50% overlap in the velocimetry calculation. 

4.3 High Speed Chemiluminescence 

The next two sections discuss the methodology used to capture high speed 

chemiluminescence images for both the unforced and forced experiments.  While 



 

53 

chemiluminescence provides a useful estimation of the unsteady heat release of the flame 

[56], it also captures the space-time evolution of the flame position.  The flame position 

was quantified from edge detection, by normalizing the chemiluminescence intensity at 

each axial position, binarizing the resulting image according to an intensity threshold, and 

then extracting the longest two interfaces in the binarized image. 

4.3.1 Unforced Experiments 

For the unforced experiments, high speed chemiluminescence imaging was performed 

with a Photron Fastcam SA3 camera.  The flame was imaged through a BG-28 filter, 

which is characterized in the discussion of the unforced experiments above in section 4.2, 

Particle Image Velocimetry.   

Acquisition parameters were set up as follows.  A total of 8029 images were captured 

for each test at a 3000 Hz frame rate and 512 x 256 pixel resolution.  The camera was 

operated continuously such that the exposure time was 1/3000
th

 s.  The flame was imaged 

from the bluff body trailing edge to approximately nine bluff body diameters 

downstream, with a spatial resolution of about 0.42 mm/pixel.  A typical flame image 

from this set of experiments is shown in Figure 4-3. 

 

 

 
Figure 4-3. Typical flame image from the unforced experiments with edge tracking 

overlaid.  This image was taken with the ballistic bluff body at 50 m/s, 1.7u b    
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4.3.2 Acoustically Forced Experiments 

Due to equipment upgrade, a different camera and filter were used for the acoustically 

forced cases.  Images were captured with a NAC Memrecam GX-3 camera with a 135 

mm lens and an intensifier.  The camera was operated at a 5000 Hz frame rate with a total 

of 4000 images stored in each run. The selection of frame-rate and number of images 

captured is explained in Chapter 3, Experimental Facility and Design of Experiments.  

The exposure time was 1/5000 seconds.  Shorter exposure times were investigated, but 

produced qualitatively similar images and required more intensifier gain.  The lens 

aperture was wide open at f/2.8.  The flame was imaged through a 434/17 nm BrightLine 

single-band bandpass filter for chemiluminescence imaging.  The filter has a pass band 

centered at 434 nm, with 90% transmission between 425.5nm and 442.5 nm.   

The camera was operated at a 384 x 768 pixel resolution.  The resolution for these 

measurements was roughly 0.4 mm per pixel.  Thus, the field of view included the entire 

channel height, and an axial domain 15D  downstream of the bluff body.  A typical flame 

image from this set of experiments is shown in Figure 4-4. 

 

 

 
Figure 4-4. Typical flame image from the forced experiments with edge tracking 

overlaid.  This image was taken with the ballistic bluff body at
 

1.7u b   , a 

natural to forced frequency ratio of 1.1n ff f  , and a forcing amplitude of 

.005fA   
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4.4 Laser Doppler Velocimetry 

Two-component Laser Doppler Velocimetry (LDV) was used to measure the 

boundary layer thickness at the trailing edge of the bluff body.  Seeding material 

consisted of 5 μm aluminum oxide, whose frequency response characteristics were 

discussed previously.  For each measurement volume, data acquisition was limited to 

either 30 seconds or 5000 counts, whichever came first.  The acquisition channel used for 

axial velocity measurements used a laser wavelength of 514.5 nm, a fringe spacing of 

7.9196 μm, a beam waist of 70.19 μm, and a Bragg cell frequency of 40 MHz.  The 

resulting low and high velocity limits were -24 m/s and 119 m/s, respectively.  The 

acquisition channel used to measure the transverse velocity used a laser wavelength of 

488 nm, a fringe spacing of 7.5117 μm, a beam waist of 66.57 μm, and a Bragg cell 

frequency of 40 MHz.  For this channel, the low and high velocity limits were -68 m/s 

and 68 m/s.  Both channels had a focal length of 300 mm, a beam separation of 19.5 mm, 

a beam diameter of 2.8 mm, and used a 20 MHz high pass filter.  

4.5 Mie Scattering 

Flame edge tracking was performed on the mie scattering images from PIV.  Details 

on the acquisition of these images can be found in the above sections.  It should be noted 

that Mie scattering was not the primary method for obtaining flame location information.  

It is, however, the only flame location measurement available that is synchronized with 

the PIV measurement.  Although flame edge detection generally works quite well with 

these types of mie scattering images, it is difficult at the low flame density ratios of 

interest in this work.  Additionally, edge detection in Mie scattering images is often more 

computationally expensive and of lower spatial resolution than edge detection from 
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chemiluminescence.  It is for these reasons, in addition to the desire to estimate heat 

release oscillations, that chemiluminescence flame imaging was performed. 

Flame edge detection on the Mie scattering images was performed as follows.  First, a 

maximum filter was used between the two Mie scattering images of a given pair.  This 

was done to superimpose the particles from the two images and increase the particle 

count.  Next, a minimum filtered image from the two pairs was subtracted, which served 

as a rudimentary background subtraction to remove reflections and artifacts from fogged 

quartz.  The resulting image was median filtered with 10 pixel by 10 pixel windows.  

This had the effect of “smearing” the reflected light from particles nearly continuously in 

the denser regions of reactant gas.  Next, the intensity at each axial position was 

normalized by the maximum value in order to remove effects due to non-uniform laser 

sheet intensity.  Finally, the image was binarized according to a threshold intensity, and 

the longest interface in the binary field was extracted as the instantaneous flame edge.  

This process was only performed on a single flame edge (the upper edge) due to its 

computational expense.  The computational expense primarily stems from the median 

filter.  A typical pair of Mie scattering images superimposed on each other with flame 

edge detection overlaid is shown in Figure 4-5a. 

In addition, the time averaged density field was determined from the flame edge 

detection.  The instantaneous density was then specified as a binary field having either 

the burned or unburned value.  These instantaneous values were then averaged at each 

location to obtain the temporally averaged density field.  The key assumption behind this 

procedure is that the flame is very thin relative to bluff body diameter, which is well 

satisfied for this problem, as verified by detailed chemical kinetic calculations of an 
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unstretched, premixed flame (using GRI 3.0) showing that the estimated flame thickness 

is roughly 2% of the bluff body diameter.  A typical mean density field resulting from 

this method is shown in Figure 4-5b. 

 

 

a) 

 

b) 

 

Figure 4-5.  a) Flame edge tracking overlaid on a typical mie scattering image and b) 

resulting mean density field with     0.1, 0.9b u b       contours.  Mean 

density field is a reflection from the upper flame branch about the flow centerline.  

Conditions were 2.5u b   , 50 m/slipU  , unforced. 
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CHAPTER 5. EXPERIMENTAL RESULTS: UNFORCED 

FLAME AND FLOW DYNAMICS 

This chapter discusses results of the unforced experiments.  In these experiments, the 

flow stability characteristics were altered by varying density ratio, bluff body lip velocity, 

and bluff body shape.  The chapter begins with a description of the time averaged inflow 

conditions and velocity field.  The time averaged velocity field is used to approximate the 

base flow in Chapter 6, Local Hydrodynamic Stability Analysis, and the inflow conditions 

are needed for computational simulations of this flow.  The chapter next shifts attention 

to the unsteady flame and flow dynamics, focusing on experimental characterization of 

the flow stability characteristics and identification of the important hydrodynamic 

stability parameters.  

5.1 Mean Flowfield Characteristics 

This section summarizes the time averaged flow characteristics and inflow conditions.  

These data are useful as inputs for flow stability or computational predictions.  First is a 

presentation of LDV-based measurements of the inflow velocity, specifically the 

boundary layer at the bluff body lip.  Next is a presentation of PIV-based measurements 

of the time averaged and fluctuating root mean square (rms) velocity field characteristics.  

Several important flow parameters are then extracted from these data, including 

recirculation zone length, location and value of peak reverse flow velocity in the wake, 

and the dependencies of these quantities upon flame density ratio and bluff body lip 

velocity.  All of these base flow features have important implications on flow stability 

characteristics. 
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Consider first the inflow conditions.  Two dimensional LDV measurements were 

obtained at the bluff body trailing edge by scanning the flow transversely in steps of 0.1 

mm, as shown in Figure 5-1.  Supplemental data are presented in Appendix A.  LDV was 

selected for this measurement because it is well suited to fine spatial resolution, and has 

less trouble than PIV with laser light reflecting from the bluff body.  The velocity 

components measured were the axial velocity, u , and the transverse velocity, v .  These 

data show that the separating boundary layer approaches the freestream velocity at a 

distance of about 1 mm from the flameholder.  The momentum thickness was calculated 

with the relation: 
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yielding 0.14   and 0.10   mm for 1.7u b    and 2.5u b   , respectively, for 

the v-gutter at 50m/slipU  .  This leads to a most-amplified frequency for the Kelvin 

Helmholtz instability in the shear layers of 12KHf   kHz and 21KHf   kHz respectively 

using the relation [57]  

 0.032
lip

KH

U
f


  (5.2) 

These high frequency shear layer dynamics cannot be temporally resolved by the 10 

kHz PIV system.  The lower density ratio case has a thicker boundary layer since the 

reactant temperature (and therefore viscosity) for low density ratio cases is higher than 

that for high density ratio cases.  In comparison to the v-gutter, the momentum thickness 

at the ballistic bluff body trailing edge was somewhat higher, as would be expected 

because of the boundary layer’s longer development length in this case.  For most cases, 
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the momentum thickness at the trailing edge of the ballistic bluff body was 1.7 times that 

of the v-gutter.  Measured momentum thickness values and estimated KHf  values are 

presented in Table 1 for both bluff bodies. 

 
 

a) 

 

b) 

 

Figure 5-1.  Boundary layer profiles for the v-gutter at 50lipU  m/s, and a density 

ratio of a) 1.7u b    and b) 2.5u b   , showing point of inflection 
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Table 1.  Measured momentum thickness and estimated Kelvin Helmholtz 

frequency, as well as outer flow turbulence intensity, for both bluff bodies and 

several flow conditions 

Bluff Body U lip (m/s) ρ u /ρ b u ’rms /U lip θ  (mm) f KH  (Hz)

V-gutter 50 1.7 0.08 0.14 12000

V-gutter 50 2.5 0.10 0.09 21000

V-gutter 20 1.9 0.15 0.15 5300

V-gutter 20 3.2 0.15 0.20 4600

Ballistic 50 1.7 0.16 0.25 5900

Ballistic 50 2.5 0.13 0.15 12000

Ballistic 20 1.9 0.22 0.26 2200

Ballistic 20 3.2 0.23 0.16 4300  

 
 

Returning to Figure 5-1, note the differences in the near wall velocity profile in the 

high and low density ratio cases.  This is due to heat transfer from the hot bluff body to 

the boundary layer.  In the high temperature ratio case, the v-gutter becomes very hot 

with respect to the much cooler reactant temperature; therefore there is heat conduction 

from the flame holder to the reactant gas.  This is a destabilizing effect [58], and leads to 

a point of inflection profile (as evidenced by the data in Figure 5-1b).  However, no 

boundary layer separation was observed, as shown by the data in the figure.  The profiles 

for the high density ratio case are “clipped” at 1 millimeter because of thermal expansion 

of the v-gutter in the transverse direction (again, because the flameholder becomes very 

hot for this case), which obscured the first 1 2  millimeter of the transverse scan.  The rig 

is restrained such that axial thermal expansion is not a concern.  

The measured turbulence intensity, approximated from the rms axial velocity  rmsu y  

and rms transverse velocity  rmsv y  is plotted as a function of transverse position in 

Figure 5-2.  Inflow turbulence intensity,    
2 2

/turb rms rms lipI u v U   , was about 9% in 
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the outer flow and ranged from roughly 15 percent to 25 percent in the boundary layers 

for the v-gutter at 50 m/slipU  . 

 
 

 

Figure 5-2. LDV measurement of the turbulence intensity at the bluff body trailing 

edge, as a function of transverse position, for the v-gutter at 50lipU  m/s.  

 

 

 

Consider next the time averaged flow features downstream of the bluff body.  A 

typical flow field is shown in Figure 5-3, illustrating the expected high velocity outer 

flow and wake region behind the bluff body, which transitions from negative to positive 

velocity at nearly three bluff body diameters downstream.  The time averaged density 

field for a low density ratio case is plotted in Figure 5-4.  
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Figure 5-3. Illustration of the time averaged bluff body flowfield, showing region of 

reverse flow in the wake (shown for ballistic bluff body at 50lipU  m/s, 

2.5u b   ); Black line dividing backflow and forward flow regions indicates 

contour of zero axial velocity. 
 
 
 

 

Figure 5-4. Contours of the reacting bluff body mean density field determined from 

Mie scattering images, shown for ballistic bluff body at 50lipU  m/s, 1.9u b    

 

 

 

Figure 5-5 plots streamlines in the wake of the v-gutter for several representative 

cases; the top half of each image represents a 50 m/s case, and the bottom half of each 

image represents a 20 m/s case for the same density ratio.  These plots show that the v-

gutter wake has a significant time-averaged transverse velocity component, especially in 

the bluff body nearfield.  The plots also show an increase of recirculation zone length, 

rL , with increasing density ratio, and also that rL  is relatively insensitive to velocity (but 

slightly longer for higher velocity).  Both observations are quantified later.  
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a)  

 
b)  

 
c)  

 
Figure 5-5. Time-averaged streamlines and velocity vector fields for the v-gutter at 

several density ratios; top half of each image is from a 50lipU  m/s test, bottom half 

of each image is from a 20lipU  m/s test.  Density ratios shown are a) 1.0u b   , 

b) 1.7u b   and c) 2.5u b     

 
 
 
Figure 5-6 plots the dependence of the time-averaged axial flow field along axial and 

transverse cuts.  Start with Figure 5-6a, which plots the axial variation of the velocity at 

two transverse locations, corresponding to the bluff body centerline and one half diameter 

beyond the bluff body lip.  The figure illustrates how the reverse flow in the recirculation 

zone evolves with axial position, reaching a maximum reverse flow velocity at a location 

denoted as maxL  which is typically about 1.5 bluff body diameters downstream.  The 
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recirculation zone length, rL , is also indicated on the figure.  The transverse profiles of 

axial velocity are shown in Figure 5-6b.  These transverse profiles of axial velocity, taken 

at fixed axial positions, illustrate the recirculation zone and wake profile characteristics.  

The corresponding mean density profiles are overlaid.  Note that the density gradient 

region is slightly thinner than, although comparable to, the shear layer thickness at a 

given axial position.  Note also that the point of inflection of the average density profile 

is located near that for the velocity.  In general, near the bluff body the flame tends to sit 

slightly closer to the flow centerline than the shear layer point of inflection (“inboard” of 

the shear layer), whereas farther downstream the flame tends to sit farther from the flow 

centerline (“outboard” of the shear layer) due to its propagation into the reactants. 

 
 

a)  

 

d)  

 
Figure 5-6. Mean axial velocity and density profiles, showing a) axial profiles & b) 

transverse profiles for the ballistic bluff body at 50lipU   m/s, 2.5u b   .  Arrows 

indicate which axis of ordinates belongs to which dataset. 
 
 
 

The effects of density ratio on the recirculation zone characteristics are illustrated in 

Figure 5-7 and Figure 5-8.  These plots show that the recirculation zone length generally 

increases with density ratio.  This seems to be consistent with the idea that recirculation 
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zone length increases as large-scale vortex shedding is suppressed [3, 5, 59].  

Furthermore, the magnitude and location of peak reverse velocity also increase with 

density ratio.  These latter parameters have important implications on the hydrodynamic 

global mode growth rate, and location of the pocket of absolute instability (the 

wavemaker for the global mode).  These points will be discussed in significantly more 

detail in Chapter 6, Local Hydrodynamic Stability Analysis.  When reviewing the time 

averaged velocity field characteristics, it is important to remember that these data are 

obtained under "limit cycle" conditions for the globally unstable cases.  Therefore, the 

reverse flow velocities and recirculation zone geometry are presumably impacted by the 

global instability of the flow under the lower density ratio conditions.  This influence of 

the flow instability on the time-averaged flowfield should be kept in mind when 

considering the time-averaged flowfield to be the base flow for a hydrodynamic stability 

calculation.  Finally, the data in Figure 5-8 show a relatively weak dependence of 

recirculation zone characteristics on velocity, consistent with previous observations [60]. 

 
 

 
Figure 5-7. Centerline time-averaged axial velocity for the v-gutter at various 

density ratios and 50lipU  m/s. 
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a) 

 

b) 

 
c)  

 

 

 

 

 

Figure 5-8. Dependence of the recirculation zone geometry on the density ratio, 

showing a) the recirculation zone length, b) the peak backflow velocity and c) the 

axial location of peak backflow velocity.  

 

 

5.2 Unsteady Flowfield Characteristics 

This section describes key dynamical characteristics of the flame and flow dynamics.    

In order to present a qualitative picture of the flow first, Figure 5-9 illustrates typical 

instantaneous streamlines and flame images from low and high density ratio flames.  The 

flame images show clear, spatially sinuous undulations at low density ratios which 

largely disappear at higher density ratios.  This is supplemented in Appendix A, which 
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shows time-sequences of flame images from a range of density ratios.  These 

observations are in agreement with previous experiments [61] and computations [23] 

reviewed in the Background section.   

 

 

a) 

       

c) 

 

b) 

       

d) 

 

Figure 5-9.  Typical instantaneous visualizations of flame and flow structure for the 

ballistic bluff body with 50lipU  m/s at two density ratios, showing a) streamlines 

at 1.7u b   , b) streamlines at 2.4u b   ,  c) flame with edge tracking at 

1.7u b    and d) flame with edge tracking at 2.4u b    

 

Flame dynamics were quantified using the transverse positions of the top and bottom 

flame branch edges,  ,U x t  and  ,L x t , as functions of axial position and time, as 

shown in Figure 5-9c.  For brevity, the flame edge position is shortened to  ,x t  if 

there is no need to distinguish between the two flame branches.   The flame position 

measurements resulted in time series for edge positions along both flame branches at 

each axial position. These time series are Fourier transformed to determine their temporal 

spectra, given by  ˆ ,U x f  and  ˆ ,L x f . 
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  PIV data were used for corresponding analysis of flowfield dynamics.  PIV data 

shown in this section were taken from the transverse velocity along the combustor 

centerline,  , 0,v x y t  whose Fourier transform is given by  ˆ , 0,v x y f . The next 

section summarizes the key results obtained from analysis of the time series and spectra 

of both flame and flow dynamics as functions of flame density ratio.   

5.2.1 Spectral Analysis 

Figure 5-10 presents the flame and flow spectra at their axial positions of peak 

magnitude, for three density ratios, as functions of Strouhal number, D lipSt fD U .  

Figure 5-10a shows this result for the upper flame edge.  At the highest density ratio 

shown, 2.4u b   , spectral energy is broadly distributed across all frequencies, with a 

small peak at ~ 0.24DSt .  As the density ratio is decreased to 2.0, a clear feature appears 

centered near 0.24DSt  .  As the density ratio is further decreased to 1.7, the response at 

0.24DSt   becomes more narrowband and prominent.  Figure 5-10b shows spectra of the 

unsteady transverse velocity for the same flow conditions, and demonstrates that the flow 

similarly exhibits a growing narrowband spectral feature at 0.24DSt  . 
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a) 

 

b) 

 

Figure 5-10.  Spectra for ballistic bluff body at 50lipU  m/s at the axial position of 

peak response for a) upper flame edge displacement and b) centerline transverse 

unsteady velocity magnitude 

 

 

 

The spatial evolutions of the velocity and flame displacement spectra are summarized 

in Figure 5-11.  The top two figures correspond to the lowest density ratio, 1.7u b   .  

Both figures show a strong narrowband peak at 0.24DSt   for the low density ratio case, 

whose magnitude varies non-monotonically with axial location.  These flame spectra 

envelope results are typical of those measured in flames forced by narrowband acoustic 

disturbances and reflect the additional effect of flame anchoring and kinematic 

restoration [62].  Results for the higher density ratio values of 2.0 and 2.4 are shown in 

the 2nd and 3rd rows, respectively, illustrating a decrease in amplitude of the narrowband 

response feature.  The envelopes of the spatial evolution of the responses at 0.24DSt   

are overlaid in Figure 5-12 for ease of comparison between the various density ratios.  

Notice that the flame response and the flow response are related, as would be expected.  

The peak flame response occurs a few bluff body diameters downstream of the peak 
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centerline flow response, and a “stronger” flow response results in a stronger flame 

response.  A comprehensive overview of this data is presented in Appendix A. 

 

 

a) flame edge, 1.7u b    

 

b) flow, 1.7u b    

 

c) flame edge, 2.0u b    

 

d) flow, 2.0u b    

 

e) flame edge, 2.4u b    

 

f) flow, 2.4u b    

 

Figure 5-11. Spectra for the ballistic bluff body at 50lipU  m/s, as a function of 

axial position.  Left and right images correspond to flame and flow spectra, 

respectively.  Images ordered top to bottom with increasing density ratio, 

1.7u b   , 2.0, and 2.4. 
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a) 

 

b) 

 

Figure 5-12. Axial profiles of a) the flame and b) the flow, showing the response at 

0.24DSt   for the ballistic bluff body at 50lipU  m/s 

 

 

 

In order to focus on the characteristics near the frequency of peak response, the 

integrated power under the spectral peak between Strouhal numbers of 0.20 and 0.28 is 

computed as a function of density ratio.  This energy is converted to an rms square of the 

signal at the response frequency by use of Parseval’s theorem, using the relation below 

that relates the rms of the time series  s t  of duration T  and spectrum  ŝ f , 

  
21

ˆ
rmss s f df

T
   (5.3) 

These rms values are presented in Figure 5-13 for both the flame and the fluctuating 

velocity.  The flame data in Figure 5-13 show that the unsteady flame displacement rms 

has a value of roughly 4% of the bluff body diameter over the 2.4 3.4u b    range.  

Below a value of 2.4u b   , the response gradually increases to 18% at 1.7u b   .  

Similar behavior is shown by the velocity data.  This plot also indicates that the transition 



 

73 

in flow and flame characteristics is not an abrupt bifurcation with change in density ratio, 

but a more gradual increase in narrowband response as the density ratio decreases.  

Spectral energies for other bluff body/velocity combinations are included in Appendix A. 

 
   

a) 

 

b) 

 

 

Figure 5-13. Dependence of narrowband spectral energy ( 0.20 0.28DSt  ) upon 

density ratio for ballistic bluff body at 50lipU  m/s, expressed as rms flame edge 

displacement averaged over both flame branches, and rms centerline transverse 

velocity.  Measurement was taken at a) the axial position of peak response and b) 

3.5x D    

 
 

5.2.2 Correlation Analysis 

The correlation coefficient between the two flame branches, ,U Lr  (defined below), 

provides important information on the scale and/or correlation between the underlying 

flow structures perturbing them.   
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Note that negative and positive correlation coefficients imply asymmetric and 

symmetric flame wrinkling, respectively (take note of the sign convention for U  and L  

in Figure 5-9c).  Furthermore, a nearly zero correlation coefficient implies that the flame 

branches are disturbed by uncorrelated structures with a scale much smaller than their 

transverse separation distance.  The dependence of the correlation coefficient upon 

u b   is plotted in Figure 5-14, showing that the correlation coefficients are near zero or 

positive, for ~ 2.5u b   .  The correlation coefficient monotonically decreases towards 

values of , ~ 0.6U Lr  , indicative of growing correlation and asymmetric motion with 

decreasing flame density ratio.  

 

 

a) 

 

b) 

 
Figure 5-14. Correlation coefficient between top and bottom flame edge position for 

ballistic bluff body at 50lipU  m/s.  Measurement was taken at a) the axial position 

of peak response and b) 2.0 and 6.0x D   
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5.3 Closing Remarks 

To summarize these dynamical data, Figure 5-13 shows that there is a gradual increase 

in spectral energy at the asymmetric vortex shedding frequency as density ratio is 

decreased.  Figure 5-14 shows a gradual increase in asymmetry and correlation between 

the two flame branches for decreasing u b  , suggesting the appearance of large 

structures in the wake.  The very narrowband spectral nature of the flow in Figure 5-10 

suggests that the flow evolves to a limit-cycling, globally unstable flow at low density 

ratios.  Simultaneously, the limit cycle amplitude of the global mode grows gradually and 

monotonically with decreases in density ratio for 2.4u b   .  This latter result is 

significant, as it shows that the flow does not abruptly bifurcate to the globally unstable 

state below some threshold density ratio.  A first look at this result suggests that the 

amplitude of the limit cycle monotonically increases with decreasing density ratio.  While 

this is certainly true in a time averaged sense, Chapter 7, Intermittency of Limit Cycle 

Events will show that a better description of the phenomenon comes from time-localized 

analysis.  The results there will show that this behavior arises due to an intermittent 

transition of the flow between two states. The next chapter will compare the observations 

from this chapter to results derived from local, parallel stability analyses using the time 

averaged, unforced PIV measurements as the base flow. 
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CHAPTER 6. LOCAL HYDRODYNAMIC STABILITY 

ANALYSIS 

The previous chapter discussed unsteady flame and flow characteristics as density 

ratio was varied.  It was shown that low flame density ratios promoted a sinuous, limit 

cycling behavior in the wake, while at high density ratios this motion was suppressed.  In 

this chapter, local, spatio-temporal, hydrodynamic stability analysis is used to describe 

these observations, and to find the key parameters governing the hydrodynamic stability 

of premixed, reacting wakes.  Stability analysis is useful for such parameter studies due 

to its lack of computational expense when compared to computational fluid dynamics.  

Two general types of stability analysis will be reviewed: analysis of model base flow 

profiles with a single equation dispersion relation, and a spectral analysis of the full base 

flow profiles.  These will be referred to as the model stability analysis and the detailed 

stability analysis, respectively.  This chapter will show that both have their merits.  

Stability analysis of the full base flow profiles can give accurate predictions for quantities 

such as the expected global mode frequency, the direct and adjoint global mode shapes, 

and the structural sensitivity of the wake.  The model stability analysis offers extensive 

computational savings and rich, easy to access physical insight on the stability parameters 

and base flow features. 

As mentioned in Chapter 2, Background and Motivation, the test conditions for the 

unforced experiments (shown previously in Chapter 5, Experimental Results: Unforced 

Flame and Flow Dynamics) were motivated by the stability analysis of Yu and 

Monkewitz [18].  Figure 6-1 overlays those test conditions on a contour map showing the 

absolute growth rates predicted by their parallel, local stability analysis.  The figure 
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demonstrates the resultant range of predicted absolute growth rates tested near the 

stability limit (where 0, 2 0i avD U  ), which was the goal of the test matrix design. 

 

 

 

 

Figure 6-1. Contour map of predicted absolute growth rate, 
0,

2

i

av

D

U


, as a function of 

backflow ratio and density ratio [18].  Contour values are labeled on plot.  Test 

conditions from the unforced experiments are overlaid. 
 
 

6.1 Parallel Flow Assumption 

The stability analyses discussed in this chapter implement the parallel flow 

assumption.  To quantify the degree to which the velocity field deviates from parallel 

flow, xx plots contours of the absolute value of the mean velocity vector angles.  In this 

convention, zero degrees indicates purely axial velocity, and 90 degrees indicates purely 

transverse velocity.  The parallel flow assumption implies a purely axial mean velocity 

field.  Note that this assumption holds well throughout the flow, except at the ends of the 

recirculation bubble.  In spite of the deviation from parallel flow, this chapter will show 

that parallel stability analysis makes useful predictions for this flow. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
Figure 6-2. Contours of velocity vector angles, in degrees, quantifying degree to 

which flow is parallel for 30 m/slipU   and a) 1.7u b   , b) 1.9u b   , c) 

2.0u b   , d) 2.2u b   , e) 2.4u b   , and f) 2.5u b    
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6.2 Model Local Stability Analysis Procedure 

The model stability analysis discussed in this chapter stems from the analysis of Yu 

and Monkewitz [18], whose result is shown above in Figure 6-1.  This analysis is a local, 

parallel stability analysis that assumes top hat velocity and density profiles (see Figure 

6-3), and reduces to a single-equation dispersion relation which can be solved 

analytically.  From here on, all such analyses will be referred to as model stability 

analyses.  The analysis leads to a dispersion relation which is a function of the backflow 

ratio, the density ratio, and the hydrodynamic symmetry (i.e., sinuous vs varicose mode 

shape).  In order to plot the experimental test conditions on the stability map as shown in 

Figure 6-1, knowledge of the backflow ratio and density ratio was required for each 

condition. The centerline and freestream axial velocity fields obtained from PIV data 

were used to calculate the velocities needed to quantify the backflow ratio,  x .  The 

density ratio was obtained as discussed in Chapter 4, Instrumentation and Diagnostic 

Techniques.  Although this stability analysis treats both sinuous and varicose modes, 

results are only shown for the sinuous mode since it is always the most absolutely 

unstable mode in this flow. 
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Figure 6-3. Velocity and density profiles used in the model, local, parallel stability 

analysis. 

 

 

 

It will be useful at this point to define several characteristic velocities to relate the 

experimentally measured flow profiles to the model profile shown in Figure 6-3.  The 

backflow ratio, defined in Chapter 2, Background and Motivation, is the ratio of reverse 

flow velocity in the wake to outer flow velocity,      b ux U x U x   .  The average 

velocity is defined as the average velocity between the inner and outer streams, 

  2av u bU U U  , and is a function of axial position.  Finally, a velocity difference is 

defined as u bU U U   .  

The stability prediction procedure is as follows.  The measured local backflow ratio 

(corresponding to a flow profile at a given axial position) and density ratio were inserted 

into the inviscid dispersion relation from Yu and Monkewitz [18] for a large grid of 

complex wavenumbers, k , in order to map complex frequency, r ii    , onto the 

complex k-plane.  Saddle points were located on the resulting Riemann surface and 

verified to be valid k k   pinch points [21] (which identifies them as “valid saddle 

points”).  The growth rate at the most elevated valid saddle point corresponded to a 
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predicted, local, absolute spatio-temporal growth rate, 0,i .  This process was then 

repeated at each axial position, for each test condition. 

6.3 Detailed local stability analysis procedures 

In addition to the above described model analysis, a detailed analysis was performed 

which took the measured mean velocity and density profiles as inputs.  This analysis uses 

a software tool developed by Matthew Juniper [19, 63].  The absolute growth rate, 0,i , 

and absolute wavenumber, 0k , were calculated at each axial station by performing a 

spatio-temporal stability analysis on the time-averaged velocity and density profiles. The 

linearized, low Mach number Navier-Stokes equations were reduced to three ODEs in 

three primitive variables  , ,u v p , which were solved using Chebyshev spectral methods 

on Gauss-Lobatto spaced gridpoints. The procedure is described in previous work 

performed at Cambridge University [19, 64-65]. As in the model analysis, saddle points 

were found in the complex k-plane and verified to be valid  k k   pinch points [21]. The 

valid saddle point with the highest absolute growth rate was labeled the dominant saddle 

point. If the absolute growth rate of this saddle point is greater than zero then this slice of 

the flow is absolutely unstable.  

The choice to use an incompressible, three equation analysis (for both the model and 

detailed studies) is well justified by comparison to a compressible, five equation stability 

analysis.  A fully compressible (without low Mach number assumption) five equation 

analysis (in , , , , u v w p T ) was performed for some cases and was verified to very nearly 

match the incompressible analysis.  The solution scheme for the compressible analysis 

was the same as the general procedure above, with the addition of the spanwise (with 
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respect to the bluff body) momentum equation and the energy equation.  A specific heat 

ratio of 1.3   and gas constant of  298 J/ KgKR   were specified, along with a base 

flow temperature profile (calculated from the base flow density, the mean atmospheric 

pressure, and the gas constant).  A comparison between the five equation compressible 

and three equation incompressible predictions is shown in Figure 6-4,  showing 

unperceivable differences. 

 

 

a) 

 

b) 

 

Figure 6-4. Comparison of compressible and incompressible detailed, local, spatio-

temporal stability analyses for 2.4u b   , 50 m/slipU  , showing a) absolute 

frequency and b) absolute growth rate 
 

6.4 Comparison of measured flow dynamics to stability predictions 

The global mode frequency measured with PIV is compared to the local absolute 

frequency,  
 0,

0
2

r x D
f x D




 , for both the model and detailed stability analyses in 

Figure 6-5a.  The horizontal line indicates the measured global mode frequency.  The 

curves that vary with axial position indicate the absolute frequency.  Figure 6-5b shows 
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the corresponding absolute growth rates to help identify the most amplified region and to 

further compare the two analyses.  Figure 6-5 draws attention to three important 

observations.  The first observation is that in the vicinity of the absolute instability 

pocket, the detailed stability analysis predicts absolute frequencies that are very close to 

the measured global mode frequency.  The second observation is that the model stability 

analysis predicts frequencies that do not have such a good quantitative comparison.  This 

is due to the infinitely thin shear layer used in the model, which introduces quantitative 

error.  The third observation is that the model stability analysis predicts a much lower 

absolute growth rate, the reason for which is discussed later.  Despite its quantitative 

shortcomings, this section will show that the model stability analysis is successful at 

capturing qualitative stability trends, and thus the roles of the stability parameters.  The 

end of this chapter will show that the model stability analysis provides a simple, tractable, 

physical interpretation of the key stability parameters and base flow features. 
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a) 

 

b) 

 

Figure 6-5. Comparison of the detailed and model stability analyses, zoomed in on 

the most amplified region, showing a) frequency and b) growth rate.  The measured 

global mode frequency, nf , is overlaid as a horizontal line in part (a).  Conditions 

were ballistic bluff body, 2.4u b   , 50 m/slipU  .  

 

 

 

Isocontours of the nondimensional absolute growth rate,  0, / 2i avD U , are presented 

in Figure 6-6.  This figure plots calculated absolute growth rate contours as functions of 

axial position and density ratio for both bluff bodies at lip velocities of 50 m/s and 20 

m/s.  Each of these plots was compiled from the measured velocity fields (and hence 

 x ) of tests at several density ratios and a given bluff body and lip velocity.  The plots 

show that regions of largest local absolute instability,  0, / 2 0i avD U  , occur at low 

density ratios and at axial positions of roughly ~ 3 2x D  near where the reverse flow 

velocity is highest. The spatial extent of these predicted absolute instability pockets 

grows with decreasing density ratio.  Note that the absolute instability region does not 

start immediately aft of the bluff body, because of the low backflow velocities 

immediately downstream of the bluff body. 
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a) Detailed result, ballistic bluff body at 

50 m/s 

 

b) Model result, ballistic bluff body at 50 

m/s 

 
c) Detailed result, ballistic bluff body at 

20 m/s 

 

d) Model result, ballistic bluff body at 20 

m/s 

 
e) Detailed result, v-gutter at 50 m/s 

 

f) Model result, v-gutter at 50 m/s 

 
 

Figure 6-6. ω0,iD/(2Uav) contour maps vs axial position and density ratio, for a&b) 

ballistic bluff body at Ulip = 50 m/s, c&d) ballistic bluff body at Ulip = 20 m/s, e&f) v-

gutter at Ulip = 50 m/s, g&h) v-gutter at Ulip = 20 m/s.  First column shows detailed 

analysis result, second column shows model analysis result 
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g) Detailed result, v-gutter at 20 m/s 

 

h) Model result, v-gutter at 20 m/s 

 

Figure 6-6 continued 

 

Note that the predictions obtained from the model profile shown in Figure 6-6 and the 

calculations obtained from the actual measured profiles are qualitatively similar.  

However, a key quantitative difference between the two is the larger growth rates, and the 

prediction of absolute instability for a much broader range of density ratios, obtained 

from the computed results that used the measured profiles. For example, consider Figure 

6-6c and Figure 6-6d, showing local absolute stability results for the ballistic bluff body 

at 20 m/s.  At a density ratio of 2.6u b   , the model analysis solution predicts the 

flow to be convectively unstable at all spatial positions using the simple profile, while the 

flow is predicted to have a pocket of absolute instability with the detailed computation.   

Figure 6-7 plots the measured axial dependence of the centerline velocity fluctuations 

at 0.24DSt  .  The axial coordinate is referenced to the location of maximum absolute 

growth rate, AIx  (obtained from Figure 6-6), which for the simple top hat profile 

corresponds to the location of maximum backflow ratio.  Both plots show that, for a 
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range of conditions, growth of the narrowband ~ 0.24DSt  fluctuations begins at 

approximately the same location, within roughly a half of the bluff body diameter of one 

another, and that this location is centered near the peak in absolute growth rate at 

~ 0AIx x  for the detailed stability analysis.  The peak absolute growth rate in the model 

analysis occurs slightly farther upstream, such that narrowband velocity fluctuations 

begin to grow at   ~ 0.5AIx x D  .  Once the oscillations are initiated in the pocket of 

absolute instability, the structure associated with this mode continues to grow spatially as 

it passes through the downstream convectively unstable region.  

 

 

a) 

 

b) 

 

 
 

Figure 6-7. v’rms  at StD~0.24 vs distance downstream from the predicted location of 

maximum absolute growth rate for several test conditions showing a) detailed 

analysis result, b) model analysis result 
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The detailed stability analysis can also provide some useful insight into the location of 

the wavemaker, and the region of greatest sensitivity to passive forcing.  These results 

were obtained using numerical tools written by Matthew Juniper [3-4, 7].  In short, these 

results are obtained by considering all of the local analyses (for each axial position) and 

extrapolating the complex absolute frequency into the complex axial position plane.  A 

valid saddle point of  0 ,r ix x  is located and determined to correspond to the global 

mode frequency, g , and growth rate, and identifies the wavemaker location.  All local 

analyses downstream of this location are forced at g  assuming downstream wave 

propagation (using the k   branch), and all local analyses upstream are forced at g  

assuming upstream wave propagation (using the k   branch).  This constitutes a 

numerical “stitching” together of the local analyses to form the global mode, and the 

results of this process are the direct and adjoint global modes. 

The global mode shape was obtained from the PIV measurement by conditionally 

averaging the transverse velocity.  Averages were conditioned as follows.  First, a sine fit 

was performed on a local portion of the velocity signal with duration of twice the global 

mode period.  Next, this sine fitting procedure was repeated while shifting through the 

signal.  Finally, the velocity average was conditioned on the phase of these sine fits.   The 

result is shown in Figure 6-8a, and compared to the direct global mode shape from 

stability analysis in Figure 6-8b.  Note the excellent agreement of the axial wavelength.  

Figure 6-8c shows the magnitude of the adjoint global mode for axial velocity 

fluctuations (chosen because the forced experiments use axial forcing).  Figure 6-9 plots 

the global mode frequency prediction vs. the measured global mode frequency and shows 

close comparison.  The adjoint global mode identifies the spatial locations that are most 
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sensitive (most receptive) to passive forcing, which for this flow is the shear layers near 

the bluff body trailing edge.  Figure 6-8d shows the magnitude of the maximum energy of 

the overlap between the direct and adjoint global modes.  Physically, this captures a 

closed loop forcing between the direct and adjoint global modes (ie, where the 

fluctuations are greatest vs where the flow is most sensitive to them), and it identifies the 

region with the greatest structural sensitivity.  In other words, it identifies the location of 

the wavemaker, which in this case is strongest at about 1.5x D  and essentially covers 

the recirculation zone.  This is the region that would have to be “disrupted” in order for 

such a disruption to have the greatest impact on the global mode.  A comprehensive set of 

these computations is presented in Appendix B.  The appendix utilizes data taken over the 

wide range of velocities and densities from the unforced cases of the acoustically forced 

test matrix. 
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a) 

 
b) 

 
c) 

 
d) 

 
Figure 6-8. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes 
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Figure 6-9. Comparison of predicted and global mode frequency for three density 

ratios, over the range of lip velocities tested 

 

 

 

It should be emphasized that the parallel stability analysis assumes a “quiescent” base 

state; i.e., one without coherent or turbulent fluctuations.  When the system is globally 

unstable, large vortices are alternately shed from the bluff body.  Measurements are 

obtained under finite amplitude, limit cycle conditions where these cause the time 

averaged profiles to differ from the true base flow.  Therefore, while quantitative 

variations between this type of stability analysis and these data should be expected, the 

general agreement between model and data shown above illustrate that the key physical 

processes are nonetheless captured. 

6.5 Flame-Shear Layer Offset 

The differences between the model and detailed stability analyses are largely due to 

two important simplifications of the geometry used for the model stability analysis: (1) 

co-located base flow density and velocity discontinuities and (2) an infinite domain.  For 

high Reynolds number wake flows, confinement destabilizes the sinuous mode in wake 

flows such as these, as discussed by Rees and Juniper [65].  Further effects which 
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influence the stability prediction and are not accounted for by the simplified analysis, 

such as no slip boundary conditions, finite Reynolds number, and global vs. local results, 

are detailed by Juniper et al. [19].  In addition, the absolute instability growth rate is a 

very sensitive function of the relative locations of the gradients in density and velocity.  

In order to illustrate this point, the simple model flow profile shown in Figure 6-3 was 

generalized to include confinement and non co-located density and velocity jumps (see 

Figure 6-11).  This analysis is summarized below, which provides the generalized 

dispersion relation for the sinuous mode.  Figure 6-10 plots the dependence of the density 

ratio of the absolute/convective instability transition upon the density-velocity jump 

offset, u  .  These results are shown at a fixed backflow of 0.25   and are shown 

both with and without confinement.  The velocity jump is located at a distance (from the 

centerline) corresponding to the bluff body half width, and the confinement was chosen 

to match the experimental facility.  The plot shows the strong destabilizing effects of 

non-colocated density and shear layers, as well as confinement.  For example, begin with 

co-located velocity and density jumps for the unconfined case.  If the velocity jump 

location is held fixed, and the density jump is shifted away from (outside of) the flow 

centerline by 10% of its original position, then the density ratio for the AI/CI transition 

increases by 50%, from about 1.6 to 2.4.  Adding confinement on top of this further shifts 

the density ratio for the AI/CI transition to about 2.7.     
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Figure 6-10. Stability limit as a function of the density-velocity jump offset, for a 

constant backflow ratio of 0.25  , a velocity jump located at the bluff body half 

width ( 0.5u D  ), and for the confined case a geometry of 2H D  . 

 

 

 

The basic trends in Figure 6-10 (i.e., that a shift in the relative positions of velocity 

and density gradients away from one another, in either direction, is destabilizing), can be 

understood from the two limiting cases.  If the density layers are moved far outboard of 

the shear layers, the wake and its shear layers essentially sit in a uniform density fluid, 

and the stability boundary tends toward that of the iso-density case.  The same result may 

be expected if the density layers are moved inboard to the flow centerline; in this case, 

the density ratio becomes an increasingly irrelevant quantity since the inner density 

region becomes pinched into a progressively thinner slab along the centerline, and again 

the wake effectively sits in a uniform density fluid.  Indeed, it can be shown that the 

dispersion relation shown next limits to the uniform density case in these two extremes.   

The dispersion relation for the confined, sinuous wake mode with non-colocated 

density and shear layers and rigid walls at y H  , when the density layer is closer to the 

flow centerline than the shear layer, is 
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where   is a confinement parameter defined by  

 
2

2

k kkHu u

k kkHu u

e e e

e e e

 

 










 (6.2) 

The dispersion relation for when the shear layer is closer to the flow centerline than 

the density layer is 
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where α is defined by  
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The geometry used in these equations is provided in Figure 6-11.  This geometry was 

assumed symmetric about the bluff body centerline, which is shown at the bottom of the 

figure.  In the limiting case of H   ( 1  ) and u   , these dispersion relations 

simplify to the unconfined result of Yu and Monkewitz [18] and Huerre and Monkewitz 

[21].  
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Figure 6-11. Geometry governing the dispersion relations in Eq. (6.1) and Eq. (6.3), 

for the sinuous wake mode with non-colocated density and shear layers 
 
 
 

Having shown that the basic trends shown in Figure 6-10 can be understood from 

limiting cases, this work next investigates the significant sensitivity of the stability 

boundary to even very small changes in relative locations of the gradients.  This point is 

both predicted by the analysis and borne out by the comparisons between the 

measurements and the two different stability calculations.  The important effect of non-

colocation of density and shear layers was observed in the stability analysis of low 

density jets with co-flow by Raynal et al. [66].  The effect of non-colocated density and 

shear layers on flow stability has also been observed previously in DNS of a variable 

density jet flow [67], showing that a small degree of misalignment materially changes the 

flow stability characteristics.  It should be noted that because that study investigated low 

density ratio jets, this misalignment was a stabilizing effect, in contrast to the 

destabilizing effect it has in these low density ratio wakes.  Similar observations on the 

hydrodynamic stability sensitivity to this misalignment have been observed 

experimentally in the context of shear layers [68]. 

Figure 6-12a plots the solution to the non-colocated dispersion relation over a range of 

density ratios and levels of non-colocation for the model stability analysis.  Figure 6-12b 
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mimics this study with the detailed stability analysis.  This comparison captures the 

quantitative differences between the two stability analyses that cannot be attributed to 

non-colocation effects.  Note that both analyses show a significant sensitivity to the 

degree of non-colocation, although for large values of  u u    (when the density 

layer is approaching the confining wall) there are slight differences.  This may be due to 

the fact that the model analysis is inviscid, while the detailed analysis captures a 

boundary layer in the fluctuating velocity at the wall.  Such an effect will only be 

significant when the near wall fluctuating velocity is significant, like when base flow 

features are located near the wall.   

 

 

a) 

 

b) 

 

Figure 6-12. Contours of  0, / 2i avD U  for 0.15   from the a) model stability 

analysis and b) detailed stability analysis 

 

 

 

For both 2-D jets and wakes, the global stability of the system is crucially affected by 

the nature of the interactions between the two shear layers.  In particular, the two shear 



 

97 

layers which would be nominally convectively unstable in isolation, interact with each 

other to cause global instability for the wake problem.  The spatial variations in density 

can influence these interactions through two processes which are shown in the vorticity 

equation below: baroclinic torque and gas expansion.   
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Gas expansion reduces vorticity magnitudes, and consequently weakens the degree of 

interactions between the two shear layers.  Therefore, it has a stabilizing effect on the 

system.  In addition, vorticity is created through baroclinic torque, which also modifies 

the strength of the vorticity in the two shear layers.  Moreover, the baroclinic mechanism 

is only active in regions with simultaneously misaligned pressure and density gradients; 

for the linearized analysis presented here, this is due to the mean density gradient in the 

transverse direction interacting with the fluctuating pressure gradient in the axial 

direction. 

In reacting flows, this degree of misalignment between the time averaged density and 

velocity gradients will be a strong function of the turbulent burning velocity, which 

controls the time averaged speed at which the flame propagates into the unburned 

mixture and, thus, moves out of the shear layer.  For example, increasing laminar burning 

velocity or turbulence intensity will act to increase turbulent burning velocity and, hence, 

alter the relative locations of velocity and density gradients.  The importance of this 

effect as a result of varying preheat temperature has been observed by Erickson and 
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Soteriou [69], who suggested that the resulting variations in wake structure that were 

observed were due in part to the flame moving away from the shear layer.  This 

observation also suggests an explanation for why the transition in wake structure has 

been observed at different density ratio ranges in different experimental facilities.  For 

example, the wake stability boundary has been observed within the density ratio range 

3.2 5.6u b    [70], 1.25 2.0u b    [71], and 1.7 2.4u b    (current study).  

Each of these facilities has different operating conditions, fuels and Reynolds numbers, 

and as a result likely has significantly different offsets between the density and shear 

layers.  Even for a single backflow ratio, Figure 6-10 shows the wide range of values that 

the stability limit could have in terms of density ratio, if the mean flame position moves 

only a tenth of the bluff body diameter.  In addition, with different bluff body geometries, 

these facilities may have different maximum backflow ratios.   

6.6 Stability Analysis and the Vorticity Equation: The Vorticity Budget 

Up to this point, this chapter has shown that the model stability analysis of this flow 

does not necessarily quantify the flow stability characteristics successfully.  It is, 

however, useful for verifying the key stability parameters and determining their 

influences on the flow stability characteristics.  Therefore, the model stability analysis 

holds clues on why the parameters have such influences.  This motivates a study to read 

these clues, namely to identify the relationships between key physics, the stability 

parameters, and the instability growth rate.  The rest of this chapter is dedicated to such 

an effort, the result of which is named the “vorticity budget.” 
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6.6.1 Relationship Between the Vorticity Equation and the Rayleigh Equation  

Previously, the vorticity equation was introduced along with a brief discussion of 

some of the terms, and their relevance to the wake stability.  This section derives the 

Rayleigh equation and the governing equation for the model stability analysis from the 

vorticity equation.  Each of the terms of the vorticity equation is “tagged” so that it may 

be tracked through the derivation.  This helps identify the physical processes that are 

captured in the stability analysis.  The process begins with the vorticity equation, Eq. 

(6.5), which is repeated below with a coefficient (letters A through E) added in front of 

each term.  These added coefficients are the tags that will be used to track the terms 

throughout the derivation.  
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 (6.6) 

For a two-dimensional inviscid flow in the x-y plane, there is no vortex stretching or 

bending, and Eq. (6.6) reduces to: 
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 (6.7) 

where   represents the out of page vorticity component (in the z  direction).  Note that 

the absence of vortex stretching and bending highlights a weakness of the two-

dimensionality assumption, since streamwise vorticity due to secondary instabilities is 

known to occur in bluff body wakes [72].  Decomposing the vorticity, velocity, density, 

and pressure into mean and fluctuating components, linearizing and assuming parallel 

base flow leads to: 
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Zero mean pressure gradient is assumed for this analysis.  Under the assumptions of 

the Rayleigh equation (namely linear in flow perturbations, inviscid flow, and parallel 

base flow), the Reynolds Averaged Navier Stokes (RANS) equations are satisfied with 

with this assumption due to the absence of viscosity, Reynold’s stress, and mean flow 

acceleration.  Hence, the zero mean pressure gradient assumption is consistent with the 

other assumptions, and one of the baroclinic terms is eliminated: 

  0 0
0 0 2

0

d p
A Au Av B u D

t x dy





     
       

 
 (6.9) 

Finally, the cross product in the remaining baroclinic term can be simplified due to the 

2D flow and parallel flow assumptions.  Expanding the cross product and expressing 

mean vorticity in terms of the 2D, parallel base flow velocity leads to: 
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 (6.10) 

This vorticity budget analysis will probe the fluid dynamics inside the infinitely thin 

base flow discontinuities, which include a density jump.  Assuming zero mass 

accumulation at the discontinuity leads to: 

 0
t





 (6.11)  

From the continuity equation: 

    0u   (6.12) 
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Under the assumption of parallel base flow, and with Eq. (6.11) in mind, Eq. (6.12) is 

linearized to 

   0
0 0

d
u v
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
      (6.13) 

  It is now convenient to express Eq. (6.10) in terms of a density weighted fluctuating 

stream function,   , such that Eq. (6.13) is satisfied: 
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Inserting Eq. (6.14) into Eq. (6.10) leads to: 
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 (6.15) 

Next, the fluctuating flow variables are expanded in normal modes as 
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Plugging in this expansion and using the canonical relationship k c , Eq. (6.15) 

can be rearranged into a form of the Rayleigh equation [73] including the effect of 

nonuniform mean density: 
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Eq. (6.17) allows each term in the Rayleigh equation to be related to rotational 

phenomena from the vorticity equation.  If the base flow velocity and density profiles are 

tophat profiles (as in the simple models described throughout this chapter), then their 
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spatial derivatives are everywhere zero (except at the jump discontinuities associated 

with the shear layer and flame).  Hence, Eq. (6.17) simplifies to 

 

2
2

2

ˆ
ˆ 0

d
k

dy


   (6.18) 

with jump conditions for particle displacement and pressure [73] at the base flow 

discontinuities.  This second order, linear ODE is the same equation used in the analysis 

of Yu and Monkewitz (although in their work it is written in terms of pressure, and is 

derived from the continuity, Navier Stokes, virial equation of state, and the energy 

equations) [18].  It is valid only for discontinuous step profiles of velocity and density, 

for high Reynolds number, for parallel base flows, and for incompressible flows.  It is 

also the governing equation used to derive all model analysis dispersion relations in this 

work.  Note that where the base flow velocity and density profiles are spatially uniform, 

Eq. (6.18) is equivalent to  ˆ 0y  .  Therefore, the unsteady velocity field is 

irrotational everywhere except at the base flow discontinuities. 

It is immediately evident that Eq. (6.18) captures only the “A” term from the vorticity 

equation, which is the substantial derivative of the vorticity.  This governing equation 

contains no vorticity sources or sinks.  However, unsteady vorticity and its sources (and 

sinks) may be present at the base flow discontinuities (in both velocity and density) 

where the right hand side of Eq. (6.17) is nonzero.  Therefore, these physics are captured 

through the jump conditions at the base flow discontinuities. 
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6.6.2 Jump Conditions 

  As utilized in the stability analysis of Yu and Monkewitz [18] and outlined in 

Godreche [73], the jump conditions require continuity of unsteady particle displacement 

and unsteady pressure.  However, the stability analysis of Yu and Monkewitz [18] was 

interested only in the fluid dynamics of the top-hat slabs of fluid, and not in the dynamics 

inside of the infinitely thin discontinuities, and hence used the standard, zero dilatation 

stream function and its associated jump conditions.  Therefore, this section re-derives the 

jump conditions under the same assumptions as the previous section, using the density 

weighted stream function. 

6.6.2.1 Particle Displacement 

The derivation of the particle displacement jump condition begins by defining an 

interface that fluctuates in the transverse direction about a fixed transverse position, 0y , 

with amplitude  : 

  0 ,y y x t   (6.19) 

By definition, the material derivative of this interface position is the transverse velocity.  

Under this consideration, Eq. (6.19) is linearized to: 

 1 0v u
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 (6.20) 

 

Using the normal modes expansion in Eq. (6.16), inserting the density weighted stream 

function, the particle displacement is: 
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This quantity shall be constant across the base flow discontinuity. 

6.6.2.2 Pressure 

The unsteady pressure is derived from the inviscid, axial momentum equation.  Under 

the assumptions of this analysis, the linearized axial momentum equation is: 
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duu u p
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  
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 (6.22) 

Inserting the density weighted stream function and applying the normal modes 

decomposition from Eq. (6.16), this becomes: 
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Like the particle displacement, this quantity shall be constant across the base flow 

discontinuities. 

6.6.3 Integrated Vorticity at Base Flow Discontinuities 

The velocity jump in the shear layer and the density jump across the flame are clearly 

linked to the jump conditions, but their physical influences on the unsteady vorticity and 

the hydrodynamic stability are not immediately clear.  Furthermore, it is not apparent 

how the offset between the shear layer and the density jump physically enters the stability 

analysis.  The irrotational, hydrodynamic velocity field is induced by unsteady vortex 

sheets that partition the flow at the base flow discontinuities.  Therefore, the physics of 

the base flow discontinuities may be described in terms of their unsteady vorticity.  This 

requires integrating the vorticity equation across the base flow discontinuities, identifying 

the contributing terms, and expressing them in terms of quantities that are available in the 
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stability analysis (in this case, the unsteady pressure).  The rest of this chapter is 

dedicated to such an effort.   

The top-hat nature of the modeled velocity and density fields presents a challenge 

when quantifying the right hand side of Eq. (6.17).  This is because the mean velocity and 

density are discontinuous; their derivatives in the transverse spatial direction are Dirac 

delta functions.  Since these quantities enter directly into the unsteady vorticity, the 

vorticity and its sources are expected to be composed of Dirac delta functions.  This 

motivates integration of the unsteady vorticity equation across the base flow 

discontinuities, which allows identification and quantification of the active terms in Eq. 

(6.17) at each base flow discontinuity.  Although it cannot identify which terms are 

active, Stokes’ theorem provides a way to quantify the unsteady vorticity, and is used to 

validate the integral method. 

The analysis begins with the vorticity equation, starting from its form in Eq. (6.17).  

Here, the left hand side is written in terms of vorticity instead of the stream function. 
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This equation may be rearranged to take the following form, which will be integrated 

across the base flow discontinuities: 
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The right hand side of Eq. (6.25) has three terms which govern the local unsteady 

vorticity.  From the term tracking in the previous section, these are identified as follows.  

From left to right, the first term is conversion of mean vorticity to unsteady vorticity by 
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transport due to the unsteady velocity.  This will be referred to as the shear-associated 

vorticity.  The second and third terms are strictly source/sink terms, and are due to 

dilatation and baroclinic torque, respectively. 

6.6.3.1 Shear-associated vorticity 

This section integrates the first term on the right hand side of Eq. (6.25) across the 

base flow discontinuities: 
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





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   (6.26) 

The second order derivative in Eq. (6.26) is problematic for integration, and can be dealt 

with using integration by parts: 
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The first term on the right hand side of Eq. (6.27) is zero, since it is evaluated at its end-

points (which can reach into the top-hat velocity profile where 0 0u y   ).  Expanding 

the derivative in the other term and re-grouping the resulting terms allows Eq. (6.27) to 

be rewritten as follows: 
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 (6.28) 

This is very convenient, since all fluctuating quantities in the first term can be written in 

terms of the unsteady pressure, and the unsteady quantities in the second term can be 

written in terms of the particle displacement: 
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Recall that this analysis is concerned with infinitely thin regions, across which the 

pressure and particle displacement must be continuous.  Therefore, in the limit of zero 

density layer or shear layer thickness, these quantities are constant across the jump.  

Applying this logic, and consolidating the base flow velocity and its derivative, Eq. 

(6.29) is rewritten as:   
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The first term on the right hand side of Eq. (6.29) is evaluated using quadrature, by 

taking the limit of a linearly varying velocity layer.  The discontinuity geometry may be 

conveniently approximated according to Figure 6-13.  Thus, the derivative in Eq. (6.30) 

becomes a constant quantity and may be taken outside the integral.  Applying quadrature 

to the remaining integral quantity leads to: 
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   (6.31) 

 

 

 

 
Figure 6-13. Schematic of geometry for integrating shear-associated vorticity 
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The second term on the right hand side of Eq. (6.31) integrates to infinity if there are 

simultaneous density and velocity jumps; otherwise, it is zero.  The next section will 

show, however, that this component of the shear-associated vorticity is exactly balanced 

by the unsteady dilatation. 

6.6.3.2 Dilatation 

This section integrates the second term on the right hand side of Eq. (6.25) across the 

base flow discontinuities: 
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This can be expressed in a cleaner form by substituting the particle displacement, and 

taking it outside the integral (as justified in section 6.6.3.1, Shear-associated vorticity): 
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 



 
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This term is nonzero only when there are simultaneous velocity and density 

discontinuities.  This is easily explained physically, since the first order contribution of 

dilatation to the unsteady vorticity is due only to unsteady dilatation of the mean vorticity 

(this is evident from a return to the linearized vorticity equation, Eq. (6.8)).  Unsteady 

dilatation occurs due to unsteady velocity across the mean density jump, and mean 

vorticity exists only at the mean velocity jump.  When these two discontinuities are co-

located, Eq. (6.33) is nonzero and integrates to infinity.  It is exactly balanced, however, 

by the second term on the right hand side of the shear associated vorticity in Eq. (6.31).  
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In other words, co-location of the density and shear layers leads to a nonzero and infinite 

dilatation, which is counteracted by part of the shear associated vorticity. 

As a closing commentary on the dilatation contribution to the unsteady vorticity, note 

that the dilatation is only due to unsteady dilatation of the mean vorticity.  Mean 

dilatation of the unsteady vorticity, which is perhaps a more familiar vorticity sink from 

the viewpoint of flow across a flame, does not exist in the framework of this parallel flow 

model since it does not accommodate mean flow across the density jump.   

6.6.3.3 Baroclinic Production 

This section integrates the last term of Eq. (6.25) across the base flow discontinuities: 
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The pressure can be taken outside the integral since it is a constant quantity across the 

jump, and the mean density and its derivative can be consolidated: 
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Like the shear-associated vorticity, quadrature is used to evaluate the integral, this time 

taking the limit of a linearly varying density layer.  In this case, it is convenient to 

approximate the discontinuity geometry according to Figure 6-14.  The derivative in Eq. 

(6.35) becomes a constant quantity and may be taken outside the integral.  Evaluating the 

remaining integral with quadrature gives: 
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Figure 6-14. Schematic of geometry used for quadrature of the density layer 

 

 

6.6.4 Stokes’ Theorem 

The previous three sections have identified and quantified the physical sources of 

unsteady vorticity at the base flow discontinuities.  Stokes’ theorem provides a simple 

way to verify these quantifications (although it cannot identify which vortical terms are 

active).  The unsteady vorticity sheets at the base flow discontinuities induce potential 

velocity fields in the surrounding flow.  Stokes’ theorem relates the circulation of these 

velocity fields to the vortex sheet strength.  This analysis begins with Stokes’ theorem, 

  
A

v ds v dA      (6.37) 

where s  is the local unit tangent to the closed line integration path, and A  is the domain 

enclosed by that path.  In this section, the “primes” will be dropped from unsteady 

velocities and stream functions to avoid cluttered notation; base flow velocities will retain 

the subscript zero.  For a 2D flow, Eq. (6.37) is simply 

  

A

v ds dA     (6.38) 
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where   is the unsteady out of page component of vorticity.  Applying this to a velocity 

field which is discontinuous in the transverse direction, such that the line integration path 

encloses a differential fluid element spanning the discontinuity (see Figure 6-15), leads 

to: 
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y y x x y y x y x
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Higher order terms, associated with the axial variation of the velocity, have been 

discarded in Eq. (6.39).  This equation reduces to: 
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Equation (6.40) may be rewritten in terms of the density weighted stream function (Eq. 

(6.14)): 
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Finally, taking the limit as 0x  , 
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Expanding in normal modes (as in Eq. (6.16)), this simplifies to:  
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Thus, Eq. (6.43) provides the integrated vorticity at discontinuities in the unsteady 

velocity field (which, in this analysis, must occur at discontinuities in the base flow). 
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Figure 6-15. Integration path enclosing a discontinuity in the unsteady velocity field. 

 

 

 

Stokes’ theorem is expected to provide the total integrated vorticity (ie, the sum of 

vorticity due to the shear-associated term, the dilatation, and the baroclinic term).  

Adding these integrated vorticity contributions (from Eq. (6.31), Eq. (6.33), and Eq. 

(6.36)) and cancelling opposing terms gives: 
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Keeping in mind the equation for the unsteady pressure (Eq. (6.23)), this is: 
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which is equivalent to the result from Stokes’ hypothesis in Eq. (6.43). 

Previously, it was shown that the flow is irrotational outside of the base flow 

discontinuities.  The previous sections have shown that integrating the vorticity equation 

across the base flow discontinuities identifies and quantifies three active vorticity terms: 

shear-associated vorticity due to transport of the mean vorticity by the unsteady velocity, 

dilatation due to unsteady dilatation of the mean vorticity, and baroclinic torque due to 
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the unsteady axial pressure gradient interacting with the mean density gradient from the 

flame.  The backflow ratio parameter directly controls the shear-associated vorticity, and 

the density ratio parameter directly controls the baroclinic torque.  When the two layers 

are co-located, the backflow ratio and density ratio both contribute to an additional shear 

associated vorticity and a nonzero dilatation a; these two contributions infinite, but 

exactly cancel.  When considering the direct influences of the various stability 

parameters, however, it is important to keep in mind that each vorticity sheet is 

influenced by the induced velocity of the other.  

The previous sections showed that the dilatation is only nonzero when density and 

shear layers are colocated, is infinite in this case, and is always exactly balanced by one 

term in the shear-associated vorticity.  In the next section, the quantifications of the shear 

associated vorticity and the baroclinic vorticity production derived above are compared to 

the predicted instability growth rates over a broad parameter range.  For the remainder of 

this chapter, the shear-associated vorticity will include the dilatation to remain non-

singular when the two layers are colocated. 

6.6.5 Vorticity Budget Results 

The previous sections derived expressions for the unsteady shear-associated vorticity, 

dilatation, and baroclinic production, in terms of the base flow properties and unsteady 

pressure and particle displacement (which can easily be extracted from the stability 

analysis).  This section will show a strong relationship between the relative values of 

these vorticity terms and the predicted stability characteristics.  The relative contribution 

of these terms to the total unsteady vorticity is referred to here as the “vorticity budget.” 
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As mentioned in the previous section, the remaining analysis will lump together the 

shear associated vorticity and the dilatation, so that they remain non-singular for co-

located layers.  The shear-associated vorticity and baroclinic vorticity production may 

augment or inhibit each other depending on their relative phases.  In order to consider a 

vorticity “budget,” it is convenient to define a total vorticity, total baroclinic shear     , 

which is the sum of the magnitudes of the shear-associated and baroclinic vorticity.  

Figure 6-16 shows the relative magnitudes and phases of baroclinic and shear-associated 

vorticity terms when the density ratio is held constant, and the degree of non-colocation 

is varied.  The figure shows that this parameter has a significant influence on the relative 

phases of the two terms.  As the two layers move away from one another, the phases of 

the baroclinic and shear-associated vorticity become more aligned.  Thus, non-colocation 

of the two layers moves the two vorticity sources in-phase with one another.  Figure 6-16 

shows that this effect is especially pronounced when the density layer is outboard of the 

shear layer.  This is reflected in the corresponding growth rates in Figure 6-12a, which 

indicates much greater destabilization when the density layer moves outboard instead of 

inboard.  Jumps in the plots (other than when the shear layer moves across the density 

interface) occur when two pinch point saddles (saddles in the Riemann surface of 

 ,r ik k ) exchange dominance. 
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a) 

 

d) 

 
b) 

 

e) 

 
c) 

 

f) 

 
Figure 6-16. Comparison of magnitudes of the shear-associated and baroclinic 

vorticity (left column) and phase difference between the two terms for 

1.4,  2.0,  and 2.5u b    (top to bottom) 
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Figure 6-17 shows the relative magnitudes and phases when the degree of non-

colocation is held fixed and the density ratio is varied.  The figure shows that the density 

ratio primarily influences the relative magnitude of the baroclinic vorticity and has little 

influence on the phase.  Higher density ratios lead directly to greater baroclinic vorticity 

generation.  In general, when the two vorticity terms are out of phase, this effect is 

stabilizing as the baroclinic vorticity balances the shear associated vorticity (over the 

range of density ratios studied, baroclinic vorticity is lower magnitude than shear-

associated vorticity).  Likewise, when the two vorticity terms are very nearly in-phase 

(i.e. the density layer is far outboard of the shear layer), increasing the density ratio can 

actually become destabilizing (see again Figure 6-12a).  

 

 

a) 

 

b) 

 
Figure 6-17. Relative a) magnitudes and b) phases of the baroclinic and shear 

associated vorticity during a density ratio sweep, for   0.2u u     
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If the total vorticity in one half plane ( 0 y H  ), denoted half
plane

 , is equal to the 

instantaneous sum of the baroclinic and shear-associated vorticity, 
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 (6.46) 

then the amplitude of this summed vorticity may be determined by summing the two 

harmonic, like-frequency, phase shifted, vorticities according to Eq. (6.47): 

 
2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 coshalf baroclinic shear baroclinic shear baroclinic shear
plane

          (6.47) 

This analysis was performed such that the stream function eigenfunction is normalized by 

its complex amplitude in the outer layer, and the result is plotted in Figure 6-18.  Note the 

valley of small total vorticity amplitude when the flame and shear layer are colocated, 

which is reminiscent of the valley of small 0,i  in Figure 6-12a. 

 

 

 

Figure 6-18. Isocontours of the total unsteady vorticity amplitude, half
plane

  
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It is important to keep the boundary conditions in mind.  For the sinuous mode, the 

flow centerline requires zero unsteady axial velocity, and the confining wall requires zero 

unsteady transverse velocity.  These boundary conditions can be satisfied with the 

method of images.  In this sense, each vortex sheet has a like-signed mirror image across 

the flow centerline.  Likewise, each vorticity sheet has an opposite-signed mirror image 

across the confining walls.  This leads to an infinite series of sources on each side of the 

flow centerline.  The present analysis has shown, however, that analysis of a single half 

of the flow, without considering the image sources, can significantly enhance physical 

understanding of the role of the stability parameters.  Studies of highly confined flows 

would likely benefit from modeling some image sources near the wall. 

This section has shown that the flow stability characteristics have a strong dependence 

on the vorticity budget, which is dominated by the shear-associated vorticity and the 

baroclinic vorticity production.  When the density jump and shear layer are colocated, the 

integrated dilatation becomes nonzero and singular, and is exactly balanced by part of the 

integrated shear associated vorticity.  Under the assumptions of this analysis, shear-

associated vorticity is produced by transport of mean vorticity by the unsteady velocity, 

baroclinic vorticity production is due only to the unsteady axial pressure gradient acting 

on the mean density gradient, and dilatation is due to unsteady dilatation of the mean 

vorticity.   

6.7 Closing Remarks 

This chapter began with a classical model stability analysis.  Data from the unforced 

experiments were compared to the classical analysis, and then to a higher fidelity 

analysis.  Both analyses showed the same qualitative trends and demonstrated a good 
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parameterization of the stability problem, although quantitative differences were 

identified.  Both types of stability analysis have their merits.  The detailed analysis results 

in a good quantitative description of the frequency and flow stability, and offers 

considerable computational savings over a global stability or CFD analysis.  The model 

stability analysis does not make such a good quantitative prediction.  However, it offers 

further computational savings, exhibits the correct qualitative trends, and allows easy 

identification of the important stability parameters and their physical roles.  Therefore, it 

is a useful tool for determining the key flow stability parameters and how they physically 

influence the flow stability.  An improved model analysis dispersion relation was 

presented, which included the effects of confinement (which had been investigated 

already by Rees and Juniper [65]) and non co-location of the density and velocity jumps, 

which is a contribution of this work.  This analysis showed that the degree of non-

colocation primarily affects the flow stability by influencing the relative phasing of the 

baroclinic and shear-associated vortex sheets. 
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CHAPTER 7. INTERMITTENCY OF LIMIT CYCLE 

EVENTS 

This chapter builds on the discussion from Chapter 5, Experimental Results: Unforced 

Flame and Flow Dynamics.  It has been postponed until this point in the manuscript 

because it draws from the results in Chapter 6, Local Hydrodynamic Stability Analysis.  

Additionally, it is a major finding of this work and thus deserves its own chapter.  

Chapter 5, Experimental Results: Unforced Flame and Flow Dynamics concluded that the 

flow stability characteristics do not bifurcate sharply as the density ratio is varied; rather, 

the limit cycle amplitude of the sinuous mode appears to grow gradually and 

monotonically as this parameter is reduced.  This chapter justifies the statement that a 

better description of this behavior requires time-local analysis of the unsteady flame and 

flow dynamics. 

7.1 Time-local Description 

Chapter 5, Experimental Results: Unforced Flame and Flow Dynamics showed that 

there is a gradual increase in spectral energy at the asymmetric vortex shedding 

frequency as density ratio is decreased.  In other words, the flow does not abruptly 

bifurcate to a globally unstable mode below some threshold density ratio.  However, the 

measures of the flame and flow response illustrated so far are averaged temporal 

attributes and do not illustrate that the flame dynamics are actually highly intermittent in 

time.  As will be shown next, it appears that rather than characterizing the limit cycle as 

monotonically growing in amplitude with u b  , a better description is that the flow has 

two possible states (the noise-driven base flow, and a stable limit cycling oscillation) and 
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intermittently varies between them.  The relative fraction of time the flow spends in each 

state monotonically varies with density ratio.  This intermittent character is evident from 

Figure 7-1, which shows a short sequence of flame images at the same operating 

condition; the flame has a generally symmetric structure at the beginning of the sequence, 

and has switched to a sinuous mode by the end.  Likewise, Figure 7-2 shows 

instantaneous vectors and streamlines calculated from PIV measurements at the same 

conditions.  Figure 7-1 and Figure 7-2 show the large scale, asymmetric undulations of 

the flame/flow in some frames, with more disorganized features in other frames.  The 

intermittent nature of the flame (and flow) is also apparent when observing the measured 

time signals from high speed video and PIV.  For example, in time signals of flame edge 

displacement (see Figure 7-5a), there are clearly periods of time where the signal is very 

noisy, but there are also periods of time when the signal appears to be nearly sinusoidal.  

It should be emphasized that the word “intermittency” is used here in the nonlinear 

dynamics sense, not to reference the internal or external intermittency phenomena 

discussed in the turbulent flows literature [74].   
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a) t = 0.00 ms 

 

c) t = 2.67 ms 

 

b) t = 1.33 ms 

 

d) t = 4.00 ms 

 

Figure 7-1. Sequence of flame images with edge tracking, demonstrating 

intermittent flame structure for ballistic bluff body at 50lipU   m/s and 

2.0u b     

 

 

 

a) 

 

b) 

 

Figure 7-2. Instantaneous velocity vectors and streamlines at two different times but 

same operating condition for v-gutter at 50lipU   m/s, 2.0u b   , showing 

intermittent character of the wake flow.  
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7.2 Proper Orthogonal Decomposition 

This chapter discusses the intermittent appearance of the sinuous wake mode.  Proper 

orthogonal decomposition (POD) was performed on the PIV data, using the DAVIS 7.2 

software, to determine if any other significant modes were present.  The POD analysis 

revealed that the only coherent, non-noisy mode was the sinuous mode.  A series of the 

first 8 POD modes is shown in Figure 7-3 for a low density ratio case.  These first eight 

modes collectively contain 48% of the total energy of the POD.  The figure is arranged so 

that the mode number increases from one to eight from top to bottom, with energy 

decreasing as mode number increases.  The left column shows the spatial modes, and the 

right column shows the spectrum of the corresponding time coefficients.  Modes 2 and 3 

show the sinuous mode, oscillating periodically at the global mode frequency.  These 

modes are spatially shifted from one another by half of the axial wavelength and 

temporally shifted by 90° of the global mode cycle, and both are required to reconstruct 

the global mode.  This pairing phenomenon will be present in the POD discussion in 

Chapter 8, Experimental Results: forced Flame and Flow Dynamics.  The other modes 

shown are noisy and incoherent.  This is representative of the POD result from other 

unforced cases.  Results from other density ratios and lip velocities are shown in Figure 

7-4, showing only the pair of coherent modes.  Note that the global mode becomes 

difficult to detect as density ratio increases. 
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Figure 7-3. First ten POD modes for 1.7, 30 m/su b lipU     
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a) 

 
b) 

 
c) 

 
Figure 7-4. POD modes contributing to the global mode for 50 m/slipU   and a) 

1.7u b   , b) 1.9u b   , and c) 2.0u b    
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7.3 Statistical distribution of periodic events 

Analysis of various time windows of a given data set show that the flame and flow 

behavior erratically changes between apparently random oscillations over a certain time 

interval, n , to highly periodic oscillations over another time interval, s .  To quantify 

these observations, these intervals are be indexed such that ,n j  represents the thj  noisy 

event, and ,s i  represents the thi  sinusoidal event.  Figure 7-5 illustrates these 

characteristic times using flame edge data.  The duration of these two time intervals is a 

strong function of density ratio.  Although these different behaviors appear erratically, 

they can be statistically characterized.  It is now convenient to define a time period, 

1n nT f , which is the period of the limit cycle behavior.  As a method to quantify this 

intermittency, the time series were locally fit to a sinusoidal fluctuation with a fixed 

frequency of 0.24 /n lipf U D  over a 2 nT  window, providing an amplitude  Z x  and 

phase  x .  Within each two period window, a correlation coefficient, fr  (defined 

below), was calculated between the sine fit and the actual data, providing a measure of 

the goodness of fit.   
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Figure 7-5. Top) Time signal of flame edge motion for 50lipU   m/s, 2.0u b   , 

partitioned (and labeled accordingly) into sinusoidal times and noisy times; Bottom) 

fr ,  defining when each time signal is approximately sinusoidal according to a 

threshold value, tr   

 

 

 

Figure 7-6 shows a sample of flame displacement time signals for many density ratios, 

with the resulting fr  below each one.  Figure 7-7 shows the same for the transverse 

velocity.  The figures illustrate that for lower density ratio cases, the signal spends a 

significant fraction of time between 0.9 1.0fr    for flame edge displacement (slightly 

less for the unsteady transverse velocity), but also has certain periods of time where it 

drops to values well below 0.5.  In contrast, the results at higher density ratios 

( 2.4u b    and above) show substantially more time with low correlation coefficients. 
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a) 1.7u b    

 
b) 2.0u b    

 
c) 2.2u b    

 
d) 2.4u b    

 
Figure 7-6.  Sample of flame edge displacement signal and corresponding fit 

correlation coefficient for a) 1.7u b   , b) 2.0u b   , c) 2.2u b   , d) 

2.4u b   , e) 2.7u b   , f) 2.9u b   , g) 3.1u b    
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e) 2.7u b    

 
f) 2.9u b    

 
g) 3.1u b    

 
Figure 7-6 continued 
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a) 1.7u b    

 
b) 2.0u b    

 
c) 2.2u b    

 
d) 2.4u b    

 
Figure 7-7. Sample of transverse velocity signal and corresponding fit correlation 

coefficient for a) 1.7u b   , b) 2.0u b   , c) 2.2u b   , d) 2.4u b   , e) 

2.5u b    
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e) 2.5u b    

 
Figure 7-7 continued 

 

 

The fraction of time, F , that this correlation coefficient, fr , exceeds a specified 

threshold value, tr , was computed at each spatial location and density ratio.  Here, F  

will be termed the intermittency factor.  Figure 7-8 plots typical results for the density 

ratio dependence of the intermittency factor at two threshold values, 0.5tr   and 0.8.  

Notice the similarities between the spectral energy plot, (see Figure 5-13 of Chapter 5, 

Experimental Results: Unforced Flame and Flow Dynamics), and the intermittency plot, 

Figure 7-8.  Figure 7-9 shows a similar result, plotting the axial dependence of the 

intermittency factor for several density ratios.  

 



 

132 

a) 

 

b) 

 

Figure 7-8. Intermittency factor for ballistic bluff body at 50lipU   m/s, 3.5x D   

for a) flame edge and b) centerline transverse unsteady velocity.  Results for two 

threshold values are presented. 

 

 

 

 

Figure 7-9.  Axial dependence of the intermittency factor for ballistic bluff body 

flame edge at 50lipU   m/s  

 

 

 

These data clearly show that the rise in narrowband energy is associated with an 

increased fraction of time that the flow spends in a limit-cycling state, manifested by 
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asymmetric structures with length scales of the order of the bluff body diameter.  

However, the growth in amplitude with decreasing density ratio shown in Chapter 5, 

Experimental Results: Unforced Flame and Flow Dynamics is not only due to 

intermittency effects, but also a rise in limit cycle amplitude during the time instants 

when the flow exhibits highly periodic character.  This point is quantified by the 

conditional amplitude of the sinusoidal fits averaged over the time intervals when f tr r , 

denoted by  rms f tr r    in Figure 7-10.  The figure shows that the monotonic increase in 

narrowband spectral energy is not only due to changes in intermittency characteristics, 

but also because of a rise in limit cycle amplitude of the sinusoidal configuration as 

density ratio decreases. This is clearly evident in the time signals of flame edge motion 

presented in Figure 7-6, where a doubling of the amplitude of the sinusoidal parts of the 

time signal is observed when decreasing the density ratio from 2.4u b    to 

1.7u b   . 

 
 

 

Figure 7-10. Effect of density ratio and intermittency on flame limit cycle amplitude 

for ballistic bluff body at 50lipU   m/s, 3.5x D   
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As introduced previously, the time intervals of the “sinusoidal” and “random” bursts 

in the flame edge time series were determined, and were named s  and n , respectively. 

These were obtained by traversing through the correlation coefficient time series, and 

recording the time between crossings of the correlation coefficient threshold as shown in 

Figure 7-5.  Time spent above the threshold was associated with sinusoidal bursts, and 

time below the threshold was associated with random bursts.  Thus, event durations were 

accumulated for both sinusoidal and random bursts.  The probability density functions 

(pdfs) of the sinusoidal event durations, s , are shown in Figure 7-11a and correlate well 

to exponential distributions,  pdf 0, e      , where   is a constant often referred 

to as the "rate parameter".  The pdfs were fit to exponential pdfs using MATLAB’s 

expdf() function, and the result is shown in Figure 7-11b.  Qualitatively, the pdfs of s  

reveal that as density ratio decreases, longer duration sinusoidal events become 

increasingly common (an increasingly large fraction of events have large s ).  Although 

an exponential distribution provided the best fit to these pdfs (compared to lognormal, 

Poisson, and normal pdf fits), s  and n  also correlated well to lognormal distributions.  

Lognormal behavior of intermittent fluid phenomena is not uncommon.  Kolmogorov 

[75] suggested that the interval between intermittent “bursts” in a turbulent boundary 

layer is distributed lognormally, a prediction that has also been experimentally observed 

[76]. Likewise, turbulence intensity in atmospheric boundary layers is distributed log-

normally [77].  Intermittency is also present in other aspects of bluff body flows, such as 

Rai's [78] observations of shear layer amplification rates. 
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a) 

 

b) 

 
Figure 7-11. pdfs of the duration of sinusoidal bursts for several density ratios, 

showing a) raw data and b) fits to exponential pdfs. 

 

 

 

The average durations of these “sinusoidal” time intervals, ,s i , normalized by the 

limit cycle period, are plotted against density ratio in Figure 7-12 using two different 

window sizes.  This result shows that ,s i  increases monotonically with decreasing 

density ratio.  The figure shows that at the lowest density ratios, the average duration of 

the limit cycling behavior occupies as many as 32 periods of the oscillation (depending 

on selection of tr ), whereas at higher density ratios this behavior persists, on average, for 

only 2 or 3 periods (hardly more than the window size).  This result shows that as density 

ratio is decreased, the sinuous, narrowband state becomes present for increased durations 

of time; i.e., the monotonic dependence on density ratio shown in Figure 7-8 is not due to 

an increased event rate, but an increased event duration.  This becomes evident from 

Figure 7-13a, which presents the pdfs of the event arrival rates; notice that the mean 

arrival rate first increases and then decreases as density ratio is decreased. In fact, the 

event rate for sinusoidal intervals becomes very low at low density ratios.  This is 
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because as density ratio decreases and the signal dwells in a sinusoidal configuration for 

much longer intervals, the event rate necessarily becomes low.  This concept is illustrated 

in Figure 7-14.  The pdf’s shown in Figure 7-13 correlate very well to a Poisson 

distribution, although a true Poisson process describes events of zero duration.  The 

MATLAB function poisspdf() was used to fit the data to Poisson distributions, as shown 

in Figure 7-13b.  A comprehensive review of the intermittency statistics, including many 

more density ratios, is included in Appendix C.  

 
 

a) 

 

b) 

 

Figure 7-12. Density ratio dependence of ,s i  based on a) 0.5tr   and b)  0.8tr  , 

at 3.5x D   .  Note the different scaling in the axis of ordinates between (a) and (b). 
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a) 

 

b) 

 
Figure 7-13. Smoothed distributions of the sinusoidal event arrival rate for several 

density ratios, showing a) raw data and b) fits to Poisson distributions.  Data is from 

the upper flame edge signal for the ballistic bluff body at 50lipU   m/s 

 
 

 

 

Figure 7-14. Notional chart demonstrating relationship between density ratio and 

sinusoidal event arrival rate, event duration, and fraction of time that signal is 

sinusoidal 
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7.4 Comparison of Intermittency to Local Absolute Growth rate 

This section revisits the local stability theory.  As alluded to previously, comparison to 

local stability theory is complicated by the fact that no sharp bifurcation in flow stability 

actually occurs.  In order to compare the stability characteristics of the different 

geometries and velocities, Figure 7-15 summarizes the data by plotting the maximum 

 0, 2i avD U  for a given test (corresponding to the location of maximum backflow 

ratio) as a function of the intermittency factor, F .  Intermittency factor is quantified here 

by the fraction of time that 0.5f tr r  .  The figure shows that there is a good 

correlation between absolute growth rate and intermittency.  Moreover, the slopes of all 

four data sets are comparable.  It is also evident that predicted absolute growth rate values 

are systematically lower with the ballistic shape than the v-gutter (consistent with the 

lower backflow ratio for the ballistic shape).  These results show that the variation in 

intermittent characteristics of the flow, namely the intermittency factor, is related to the 

absolute stability of the base flow.   



 

139 

 

a) 

 

b) 

 

Figure 7-15. Dependence of predicted absolute growth rate upon measured 

intermittency factor, showing a) detailed result from smoothed data, b) model result 

from top hat base flow profiles 

 

 

7.5 Source of intermittency 

7.5.1 General Types of Intermittency 

Intermittent behaviors have been discussed extensively in the context of nonlinear 

dynamical systems, and may arise from either deterministic or stochastic processes.  

Hilborn [79] discusses in detail several deterministic sources of intermittency, which 

include tangent bifurcation intermittency (Type I), Hopf-bifurcation intermittency (Type 

II), period-doubling intermittency (Type III), and on-off intermittency.  For example, the 

Pomeau-Manneville scenario [80] is a deterministic route to chaos through intermittency; 

such an intermittency may be present even in a noiseless system.   

Stochastic processes associated with either additive or parametric noise may also 

cause intermittency [81].  For example, consider a bi-stable dynamical system, such as a 
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system in the vicinity of a subcritical Hopf bifurcation with a stable fixed point and stable 

limit cycle.   In the presence of additive noise, the system may be bumped back and forth 

between the two stable solutions; the stationary probability density of such a system 

would have local maxima at values consistent with the locations of the potential wells.  

For example, Waugh and Juniper [82] demonstrated this phenomenon in the context of 

the Rijke tube. 

Parametric noise can also lead to intermittency in systems with supercritical 

bifurcations [81].  For example, consider a dynamical system with a single stable solution 

in the unforced system.  Parametric noise can shift the stability boundary, as well as 

change the number or location of the maxima in the stationary probability density.  A 

qualitative shift in the stationary pdf is thus possible in the context of parametric noise. 

7.5.2 Effects of Additive and Parametric Noise 

The effects of noise may be demonstrated using the Landau equation as a model 

problem: 

 
2dZ

Z B Z Z
dt

   (7.2) 

The Landau equation naturally appears in weakly nonlinear stability analyses of wakes 

[73], and describes the behavior of the complex amplitude Z  when the system is in the 

vicinity of a supercritical Hopf bifurcation.  In Eq. (7.2),   represents how far a stability 

parameter is from its critical value (for example, how far the Reynolds number or the 

density ratio is from its value at the onset of vortex shedding), and B  is the Landau 

constant.  Eq. (7.2) has an equilibrium point at 0Z   for all  , which is stable for 

negative  .  As   increases past 0  , the 0Z   solution becomes unstable and new 
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stable solutions appear at Z B  .  This represents a supercritical Hopf bifurcation, 

whose bifurcation diagram is shown in Figure 7-16.  The following model problem 

demonstration will consider the case of Z  and 1B  .  

 

 

 

Figure 7-16.  Bifurcation diagram showing the supercritical Hopf bifurcation 

represented by the Landau equation.  Solid and dashed lines represent stable and 

unstable solutions, respectively. 

 

 

 

In the presence of noise, the system is stochastic and rather than stable states, it instead 

has potential wells.  The Fokker-Planck equation may be used to find the Stationary pdf 

of Z , and hence the expected value of Z .  Within the framework of Itō calculus, a 

stochastic differential equation (SDE) may be expressed as 

    t t t tdX f X dt g X dW   (7.3) 

where tX  is the time-dependent variable of interest, f  and g  are functions of tX ,   is 

the variance of the noise, and tW  represents a Wiener process.   

The Landau equation may be subjected to additive white noise and written as an SDE 

as follows: 
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2

t t t t tdZ Z B Z Z dt dW    
 

 (7.4) 

Likewise, parametric noise may be added on top of the additive noise, so that the SDE 

takes the form: 

  
2

t t t t t tdZ Z B Z Z dt A Z dW     
 

 (7.5) 

Here, the additive noise is proportional to the constant A , and the parametric noise is 

proportional to the time-dependent value of Z .   

The stationary pdf, sP , of Eq. (7.3) given by the Fokker Planck equation is: 
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The stationary pdf for the model with additive noise alone follows from plugging Eq. 

(7.4) into Eq. (7.3) and applying Eq. (7.6): 
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 Likewise, the stationary pdf for the model with both additive and multiplicative noise 

follows from plugging Eq. (7.5) into Eq. (7.3) and applying Eq. (7.6): 
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 (7.8) 

In Eq. (7.7) and (7.8) N  represents the normalizing factor required to satisfy 

  1sP Z dZ





 .  The left column of Figure 7-17 shows pdfs of Z  under various levels 

of additive noise.  Notice first that the additive noise has the effect of broadening the 

peak in the pdf.  Also, notice what happens when the noise is strong and the limit cycle 

amplitude is small- there is significant probability density at zero.  This is because the 
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noise extends far enough that the system is being pushed back and forth between opposite 

phases of its cycle.  In the phase plane, it would appear that the noise pushes the system 

through (or near) the origin, taking a shortcut to the other side of the cycle rather than 

continuing around at the limit cycle amplitude.  Although the system is not bistable, this 

is somewhat analogous to the bistable system with additive noise that pushes it back and 

forth between its two potential wells.  Finally, note that the peak in the pdf is never 

moved by the noise.  Additive noise, although it may shift the expected value of Z  (see 

Figure 7-18a), cannot change the location or number of peaks in the pdf.  In other words, 

additive noise cannot alter the most probable value of Z . 

The right column of Figure 7-17 shows pdfs of Z  under various levels of parametric 

noise.  A small level of additive noise ( 0.1A  ) has been included to force the system to 

wander from its stable equilibrium state for negative   ( 0Z   remains a true 

equilibrium state with the parametric noise alone).  The figure show that the parametric 

noise can have a serious influence on the stationary pdf of Z .  For example, all levels of 

parametric noise shift the peak in the pdf, altering the most probable value.  Furthermore, 

Figure 7-17d shows that a second peak can be formed in the pdf for 2 10  , and Figure 

7-17e-f show a complete change in the qualitative nature of the pdf for 2 10  .  Figure 

7-18b shows the expected value of the system with parametric noise, demonstrating that 

parametric noise, like additive noise, is capable of “smoothing” the sharp bifurcation that 

is experienced by the noiseless system.   

This section has shown, though, that even very simple sources of parametric noise can 

cause profound changes in the system behavior.  These changes can include qualitative 



 

144 

changes in the stationary probability of the system, which can range from a shift in the 

most probable state to the creation of new, co-existing most probable states.  Parametric 

noise, therefore, is a prime environment for intermittent behavior, and therefore a 

plausible source of the behavior of the data shown in Figure 7-10. 
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a) additive noise, 1.0   

 

d) parametric noise, 1.0   

 
b) additive noise,  3.0   

 

e) parametric noise,  3.0   

 
c) additive noise,  5.0   

 

f) parametric noise,  5.0   

 
Figure 7-17. Stationary pdfs of the Landau equation subjected to various levels of 

noise.  Left column is for additive noise only, according to Eq. (7.4).  Right column is 

for parametric noise according to Eq. (7.5) with 0.1A  .  a,d) 1.0  , b,e) 3.0  , 

c,f) 5.0  . 
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a) 

 

b) 

 

Figure 7-18. Expected value of Z  for a) additive noise only, according to Eq. (7.4), 

and b) parametric noise according to Eq. (7.5) with 0.1A   

 
 

7.5.3 Intermittency in Low Density Ratio Wakes 

The viscous, iso-density bluff body wake undergoes a super-critical Hopf bifurcation 

at Re 35D   [83].  While the author is not aware of theoretical studies that have explored 

the nature of this bifurcation for non-constant density wakes, analysis of these data 

suggests that the bifurcation to asymmetric vortex shedding remains supercritical.  For 

example, Figure 7-19 plots the pdf of the amplitude of the flame front oscillations,   , 

obtained from its Hilbert transform, H  . 
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Figure 7-19. Pdf of the envelope of flame edge displacement, shown for several 

density ratios at 4x D   

 

 

This figure does not show any behavior indicative of multiple peaks in the amplitude 

pdf, which would be suggestive of a bi-stable system.  Rather it shows a gradual shift in 

the peak amplitude to higher values as density ratio is reduced.  Thus, these results 

suggest that the system undergoes a supercritical bifurcation in the presence of parametric 

background noise.  An important remaining question, then, is what is the source of the 

parametric noise that leads to this intermittent behavior?  This section shows next that 

this is due to random drifts in relative location of the shear layer and flame front.   

The influence of the random drift of these two features was illustrated in Chapter 6, 

Local Hydrodynamic Stability Analysis.  Recall that the limit cycling behavior was 

attributed to the hydrodynamic global mode of the wake.  The global mode was shown to 

be generated by a wavemaker region, which is located in the recirculation zone behind 

the bluff body.  Analysis of model stability problems emphasized that the global mode 

growth rate is highly sensitive to the degree of non-colocation between the density and 

shear layers, where increased non-colocation of the two layers was shown to be 
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destabilizing.  The sensitivity of the growth rate to this parameter is such that small, 

relative motion of the shear layer and flame edge within the wave-maker region can lead 

to stochastic modulation of the global mode amplification rate.  For these low density 

ratio wakes, which are near the hydrodynamic stability limit, this can have the effect of 

turning the instability off and on.   

In order to illustrate this point, Figure 7-20 plots a pdf of the moving average (over a 

time interval of 3 nT ) of the offset between the flame and the shear layer.  The flame edge 

was obtained by edge-tracking the abrupt change in density in the Mie scattering images, 

and the shear layer point of inflection was obtained from the PIV measurement.  The data 

for this plot were taken at 2.0x D  , near the peak in absolute growth rate.  Two pdfs 

are presented, one unconditional, and the other conditioned on the value of 0.5fr   

(indicative of periodicity of the flame measurement at the global mode frequency).  At 

this axial position, the mean flame sits inboard of the shear layers (farther downstream, 

the mean flame propagates outboard of the shear layers).  When a high degree of 

periodicity at the global mode frequency is observed, the flame is preferentially located 

even farther inboard; i.e., the peak in the pdf of the conditioned offset is more than 50% 

larger than the unconditioned value.  Thus, the most probable offset between the flame 

and the shear layer is greater when periodic oscillations are observed than the most 

probable, unconditional offset between these layers.   
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Figure 7-20. Pdf of the unconditioned and conditioned offset between the flame edge 

and the shear layer.  
 
 

7.6 Closing Remarks 

Chapter 5, Experimental Results: Unforced Flame and Flow Dynamics identified a 

bifurcation in flow structure that occurs as flame density ratio is reduced.  This 

bifurcation manifests itself as the appearance of limit cycling behavior in the flow and 

flame, characterized by sinuous, narrowband vortex shedding.  Spectral techniques 

identified that the bifurcation in wake structure is not sudden, but very gradual.  Using 

time-local techniques, this chapter showed that in the transitional range of density ratios, 

the limit cycling behavior is actually highly intermittent in time.   

This intermittency was investigated statistically, showing increasing duration of limit 

cycling events as density ratio is reduced.  This leads to an overall greater fraction of time 

that limit cycling behavior is observed at lower flame density ratios.  Several sources of 

intermittency were discussed, and parametric noise was suggested as the source of this 

intermittency.  The parametric noise source is believed to be the extreme sensitivity of 

the hydrodynamic instability responsible for the limit cycle behavior to small offsets 
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between the time averaged flame and shear layer positions, which “breaths” slowly in 

time.  This was supported by showing that the flame-shear layer offset is preferentially 

large when the limit cycling behavior is strong.  This also highlights the important reality 

that can result from introducing larger Reynolds numbers to sever hydrodynamic 

sensitivities: small-scale lab burners may simply not capture the phenomena that actually 

occur in industrial-scale burners. 

 



 

151 

CHAPTER 8. EXPERIMENTAL RESULTS: FORCED 

FLAME AND FLOW DYNAMICS 

The previous chapters presented an experimental dataset of unforced flame and flow 

dynamics, and characterization of this flow’s hydrodynamics from both experimental and 

theoretical viewpoints.  This chapter discusses a set of experiments conducted with 

longitudinal acoustic forcing.  As discussed in Chapter 3, Experimental Facility and 

Design of Experiments, two main parameters were varied in these experiments: the bluff 

body lip velocity, and the density ratio.  This has the effect of independently varying the 

global mode frequency and growth rate, respectively.  Additionally, for two density 

ratios, a forcing amplitude sweep was performed.  The forcing amplitude, fA , denotes 

the ratio of the acoustic particle displacement amplitude to the bluff body diameter.  The 

strongest forcing corresponded to a particle displacement amplitude of 0.5 mm, or 

.02fA  .  A total of 5 forcing amplitudes was used, 0, .005, .010, .015, and .020fA  .  

Unless otherwise specified, forced results in this thesis correspond to .02fA  .  

  For chemiluminescence imaging, a few additional tests were performed beyond the 

test matrix at higher density ratios ( 3.1u b    and 7.0u b   ).  These tests could not 

cover the full range of desired lip velocities, however, because of their low preheat 

combined with the maximum available air mass flowrate.   Such higher density ratio 

testing was not done for the PIV measurement due to insufficient seed density in the post-

flame gases. 

To impose an acoustic field allows study of the flame and flow response branches of 

the combustion instability cycle.  This chapter will demonstrate the important interactions 
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that occur between the forced response and the hydrodynamic global mode oscillations.  

These interactions will be used to explain the behavior of the forced heat release response 

of the flame.  This behavior includes the important observation that having a longitudinal 

acoustic mode frequency equal to the natural vortex shedding frequency is not as 

dangerous as previous notions would suggest- in other words, it does not lead to 

increased heat release oscillations. 

8.1 Forced Response Characteristics: Basic Features 

This section briefly introduces the basic forced response characteristics of the flow 

and flame.  Chapter 5, Experimental Results: Unforced Flame and Flow Dynamics 

presented time averaged flow characteristics for the unforced experiments.  The effect of 

forcing on the time averaged flow is minor, and leads to a slight reduction in recirculation 

zone length.  This is consistently observed for all cases, and is illustrated by the 

streamlines in Figure 8-1.  This chapter will therefore focus purely on the dynamics of the 

forced flame and flow responses.   
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a) 

 
b) 

 
Figure 8-1. Streamlines for 1.9  u b , 50lipU  m/s, for a) unforced and b) forced 

cases 
 
 
 

The effect of forcing on the recirculation zone length is summarized in Figure 8-2, 

which compares rL  between forced and unforced cases for the full range of test 

conditions measured with PIV.  Results from the forced experiments clearly indicate an 

increase and saturating behavior of the recirculation zone length with bluff body lip 

velocity.  Also, the reduction of recirculation zone length for forced flows is consistently 

observed over the full range of test conditions.  As forcing amplitude is reduced, this 

effect is diminished.  The influence of forcing amplitude on the recirculation zone length 

is summarized in Figure 8-3 for the two density ratios where forcing amplitude sweeps 

were performed.  The figure emphasizes the reduction of recirculation zone length as 

forcing amplitude increases. 
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a) 0.020fA   

 

c) 0.010fA   

 
b) 0.015fA   

 

d) 0.005fA   

 
Figure 8-2. Comparison of forced to unforced recirculation zone lengths from PIV 

measurements of the full range of test conditions.  Filled symbols indicated forced 

flows, unfilled symbols indicated unforced flows.  Forcing amplitudes were a) 

0.020fA  , b) 0.015fA  , c) 0.010fA  , and d) 0.005fA   
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a) 

 

b) 

 
Figure 8-3. Contours of recirculation zone length as a function of forcing amplitude 

and lip velocity for a) 1.7u b    and b) 2.0u b   .  Contour levels of rL D  are 

labeled on the plots. 

 

 

 

External forcing strongly influences the rollup of the separating shear layers and how 

they subsequently merge and interact to form larger scale structures.  In addition, the 

flame wrinkles in response to the unsteady flow [5, 62, 84].  The change in character of 

the underlying flow field with density ratio can be clearly seen from the image in Figure 

8-4b which shows a forced, globally stable (but convectively unstable) flame; note the 

manifestation of the symmetric vortices in the flame wrinkling.  This is even more 

pronounced in the forced, un-vitiated ( 7u b   ), flame shown in Figure 8-4a, which 

would be typical of many non-preheated lab burners.  All flame images presented in this 

chapter have been contrast enhanced for visualization. 

The clear change in character of the underlying flow field at 1.7u b    is evident in 

Figure 8-4f-h, where the flame exhibits a strong sinuous character.  As such, low density 
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ratio flames tend to exhibit an asymmetric structure, even in the presence of symmetric 

forcing - the vortex staggering mechanism for this is discussed later.  

A typical flame edge displacement spectrum for a forced flame is shown in Figure 8-5.  

Notice that the spectrum has several distinct features.  First, note the broad peak at the 

global mode frequency, 0.24DSt  .  Next, note the narrowband peak at the forcing 

frequency, ff , as well as its harmonics.  Many addition flame and velocity spectra are 

presented in section 8.3, Forced Response Characteristics: Frequency Effects and Lock-

in.   
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a) 7.0u b    

 
b) 3.1u b    

 
c) 2.5u b    

 
d) 2.4u b    

 
e) 2.2u b    

 
f) 2.0u b    

 
g) 1.9u b    

 
h) 1.7u b    

 
Figure 8-4. Instantaneous chemiluminescence images of forced flames at several 

density ratios.  Density ratios are labeled above each figure.  
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Figure 8-5.  Forced flame edge displacement spectrum at 3x D  , 0.8n ff f  , 

1.9u b     

 
 

8.2 Forced Response Characteristics: Linear Receptivity to Forcing 

Chapter 6, Local Hydrodynamic Stability Analysis introduced a linear stability analysis 

methodology which was shown to successfully capture global stability characteristics.  

This section extends the linear stability analysis to a spatial stability analysis, and 

compares the results to the forced flow response measurements.  As discussed in Chapter 

2, Background and Motivation, the spatial stability analysis is performed by solving the 

hydrodynamic dispersion relation with a known pure real frequency, r , to find the 

corresponding complex wavenumber, k , and mode shape.  The real component of the 

complex wavenumber gives the axial flow disturbance wavelength, and the imaginary 

component gives the spatial growth rate.  These quantities describe the spatial evolution 

of a disturbance oscillating at the imposed frequency, r .  This solution process is 

repeated at all axial positions, resulting in a wavenumber dependent on axial position, as 
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well as complex transverse mode shapes (e.g. v̂  for transverse velocity) at each axial 

position. 

Once the spatial stability analysis has been performed at all axial positions, the forced 

response is reconstructed using the WKBJ approximation.  For example, for the spatial 

stability analysis of transverse velocity fluctuations, this is:  

      
0

ˆ, , , exp

x

rv x y t v x y i t k d  
   

    
    

  (8.1) 

where v̂  and k  are obtained from the dispersion relation for r  .  The magnitude of 

Eq. (8.1) provides an envelope of the forced response magnitude.  

The measured transverse velocity magnitude at the forcing frequency is compared to 

the linear stability result in Figure 8-6 for several density ratios.  As shown by the adjoint 

global mode in Figure 6-8c of Chapter 6, Local Hydrodynamic Stability Analysis, the 

flow is most sensitive to axial velocity forcing in the shear layers, very close to the bluff 

body trailing edge.  This is in contrast to the global mode, which was shown to have its 

greatest structural sensitivity (and therefore its wavemaker) in the recirculation zone [19].  

Unfortunately, for application to spatial stability analysis, the PIV spatial resolution is not 

fine enough to resolve the thin shear layer near the trailing edge.  Therefore, the base 

flow approximation was interpolated from the 50 m/s LDV measurements at the bluff 

body lip (discussed in Chapter 5, Experimental Results: Unforced Flame and Flow 

Dynamics), to the PIV measurement at 1.0x D  .  Downstream of this location, the PIV 

data was used.  To compare the spatial growth characteristics, the linear stability curve 

amplitude is matched to the experimental measurement at 0x D  .  Note that the 

agreement is good for small amplitudes, and for high density ratios.  Agreement is likely 
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poor at low density ratios due to nonlinear exchange of energy between the global mode 

and the forced response, which is discussed later in section 8.4, Bicoherence. 

 

 

a) 

 

c) 

 
b) 

 

d) 

 
Figure 8-6.  Comparison of linear spatial stability analysis to measured transverse 

velocity fluctuations at 0.6y D , 0.02fA , and a) 2.5  u b , b) 2.4  u b , 

c) 2.2  u b , d) 1.9  u b  
 
 

8.3 Forced Response Characteristics: Frequency Effects and Lock-in 

Section 8.1, Forced Response Characteristics: Basic Features demonstrated the 

significant difference in topology of the forced flame response in low and high density 
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ratio cases.  This section further explores the processes leading to these differences, as 

well as the important role that forcing frequency and amplitude play in these results.   

Figure 8-7 through Figure 8-11 present flame and flow spectra where the global mode 

frequency is swept from 0.8n ff f   to 1.5n ff f  .  Data from the many cases not 

shown here are presented in Appendix D.  Each figure from Figure 8-7 to Figure 8-10 

shows a different density ratio, with strong forcing of .02fA  .  Figure 8-11 shows a low 

density ratio ( 1.7u b   ) case with weak forcing ( .001fA  ), which combines the 

strongest global mode with the weakest forcing. 
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Figure 8-7. Flame displacement (left column) and vorticity (right column) spectra as 

n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  Conditions 

are 1.7  u b , 0.02fA  , 3x D  . 
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Figure 8-8. Flame displacement (left column) and vorticity (right column) spectra as 

n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  Conditions 

are 1.9  u b , 0.02fA  , 3x D  . 
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Figure 8-9. Flame displacement (left column) and vorticity (right column) spectra as 

n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  Conditions 

are 2.0  u b , 0.02fA  , 3x D  . 
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Figure 8-10. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 2.4  u b , 0.02fA  , 3x D  . 
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Figure 8-11. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 1.7  u b , 0.005fA  , 3x D  . 
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In the figures above, notice the evolution of the broad peak at ~ 0.24DSt  and how it is 

subsumed by the peak at the forcing frequency.  Although the peak at the forcing 

frequency is taller than the hump about the natural frequency, the broad natural flow 

response often contains significantly more integrated spectral energy than the narrowband 

forced response.  The relative energy of the forced and natural motions can be 

quantitatively compared by their root mean square, rms, values, using Parseval's theorem.  

This expression relates the rms of the time series  s t   of duration T  and spectrum 

 ŝ f :   

 
21

ˆ( )
f

rms

f

s s f df





 


 (8.2) 

The data acquisition parameters were set up such that a frequency bin is located 

exactly at the forcing frequency, so that  ˆ 2rms fs s f f  . The rms of the natural 

response was obtained by setting the lower and upper integration limits at Strouhal 

numbers of 0.20 and 0.28.  The response frequency, rf , is defined here as  the frequency 

corresponding to the motions with larger rms values.   

Results from a frequency sweep are summarized in Figure 8-12, which shows a lock-

in map as quantified by the centerline vorticity.  Points lying along the diagonal, 

r f n ff f f f , line correspond to conditions where the dominant response is at the 

global mode frequency.  Points lying at 1r ff f   line correspond to conditions where 

the response is locked into the excitation.  Figure 8-12b defines the range of frequencies, 

Lockf , over which frequency locking was observed.  Lock-in maps from the remaining 

test cases are presented in Appendix D.  



 

168 

 

 

a) 

 

c) 

 
b) 

 

d) 

 
Figure 8-12. Lock-in map from centerline vorticity measured at 3x D   and 

0.02fA  , for a) 1.7  u b , b) 1.9u b   , c) 2.0  u b , d) 2.4  u b  

 
 
 

As discussed in the background section, the frequency locking range, Lockf , is 

sensitive to the forcing amplitude.  This is demonstrated in Figure 8-13a, which plots 

Lockf  as a function of fA .  Notice that Lockf  varies significantly with forcing 

amplitude, and that a saturating behavior appears at high forcing amplitudes.  Also, notice 
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that Lockf  appears to be sensitive to density ratio; at 1.7u b   , frequency locking is 

not observed without significant forcing amplitude.  The dependence of Lockf  on u b   

is quantified in Figure 8-13b, which shows that low density ratios have a narrower 

frequency locking range.  This is expected, and it reinforces the idea that the more 

globally unstable flow, 1.7u b   , is less receptive to external forcing.  Hence, higher 

density ratio wakes are receptive to forcing over a greater range of forcing frequencies. 

 

 

a) 

 
b) 

 
Figure 8-13. Dependence of the frequency locking range on a) forcing amplitude and 

b) density ratio for 0.02fA  . 
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8.4 Bicoherence 

The previous section showed spectra that exhibit bimodal character, with oscillations 

at both the global mode and forcing frequencies.  Spectra cannot indicate whether the 

origin of this bimodal behavior is nonlinear, or due to linear superposition of oscillations 

at the two frequencies.  Furthermore, Chapter 7, Intermittency of Limit Cycle Events 

identified intermittent appearance of the global mode.  Therefore, if the bimodal behavior 

is nonlinear, its origin requires further clarification: is it a random switching between 

global mode oscillation and convectively unstable amplification of the forcing, or is there 

phase coupling between the forced and global mode oscillations?  Higher order spectra 

can shed light on this issue by identifying phase-coupled, nonlinear interactions between 

oscillators at different frequencies. 

For example, the third order cumulant spectrum, or bispectrum, is defined as: 

       
1 2

3 1 2 3 1 2 1 1 2 2, , expC c i
 

      
 

 

     (8.3) 

where 3c  is the third order cumulant of a time signal,  s t , and 3C  is its bispectrum.  

Analyses of the finite duration datasets discussed in this thesis provide an estimation of 

3C , and would benefit from a window function applied to 3c .  The bispectrum may 

equivalently be obtained from the FFTs of many ensembles of the signal [85].  This 

method was used due to its significantly reduced computational expense, so that the 

bispectrum applied to the discrete datasets studied here is defined as: 

        *
1 2 1 2 1 2

1

1ˆ ˆ ˆ ˆ,
N

n n n

n

B f f s f s f s f f
N 

   (8.4) 
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Here,  ˆ
ns f  is the complex Fourier coefficient of the FFT of the thn  ensemble of time 

signal  s t , and  *ˆ
ns f  is its complex conjugate.  The bispectrum magnitude is 

significant and nonzero for frequency pairs where quadratic phase coupling occurs 

between harmonic oscillations at the two paired frequencies [86].  Some intuition for this 

can be gained from inspecting Eq. (8.4).  First, consider the phase differences between 

 ˆ
ns f  at 1f , 2f , and 1 2f f .  Observe that the ensemble average operation in Eq. (8.4) 

drives the magnitude of B̂  towards zero if the phase differences vary randomly between 

0  and 360  from ensemble to ensemble.  Secondly, notice that this phase coupling is 

identified between two frequencies and their sum frequency, a necessary attribute of a 

quadratic nonlinearity.  This quadratic phase coupling would not occur for either 

superposition of, or random switching between, two simple harmonic oscillators.   

Like any truncated statistical measure, the bispectrum estimation has variance, and its 

variance is a strong function of 1f  and 2f .  Unfortunately, this variance is large where 

the bispectrum magnitude tends to be large: at frequency pairs where either  1ŝ f , 

 2ŝ f , or both are large, and at frequency pairs harmonically related to peaks in the 

power spectrum.  The variance of the bispectrum estimation is proportional to 

     1 2 1 2p f p f p f f  [87], where  p f  is the power spectrum estimation defined as 

       *

1

1
ˆ ˆ

N

n n

n

p f s f s f
N 

  .   (8.5) 

The bicoherence leverages this proportionality to normalize the bispectrum and 

provide a more useful measure, and can be defined as 
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  
   

     

*
1 2 1 22

1 2

1 2 1 2

ˆ ˆ, ,
,

B f f B f f
b f f

p f p f p f f



  (8.6) 

where 2b  is the squared bicoherence, simply referred to from here on as the bicoherence.  

Note that there are several accepted definitions of bicoherence, stemming from different 

normalizations of the bispectrum.  Eq. (8.6) essentially provides a measure of skewness 

of the bispectrum magnitude, and is used by the Higher Order Spectra Toolbox for 

Matlab [88], HOSA, which was used to compute the bicoherencies in this thesis.  For the 

current work, the HOSA toolbox was used with ensemble lengths (and FFT lengths) of 

1000 samples, 99% overlap between ensembles, and Hanning windows.  In addition to 

the ensemble averaging inherent to the bispectrum estimation, the bicoherence was 

spatially ensemble averaged over 11 points within the region 3 0.1x D   .   

Sample “cuts” of bicoherence of flame edge displacement are shown for an amplitude 

sweep at low density ratio in the left column of Figure 8-14.  These cuts are performed so 

that one frequency is fixed at the forcing frequency, and the other remains an independent 

variable.  Thus, these plots identify the frequencies with the strongest quadratic phase 

coupling to the forcing frequency.  Notice that the bicoherence is noisy despite the 

significant ensemble averaging.  At higher density ratios, its signal to noise prohibits 

interpretation. 

The left column of Figure 8-14 shows bicoherence, and the right column shows the 

corresponding spectra (with the same ensemble averaging).  Notice from the spectra that 

this is a bimodal case, with significant response at both the forcing and global mode 

frequencies.  At the lowest forcing amplitude, .005fA  , the spectrum shows response 

only at these two frequencies and a very faint bump at their sum frequency ( n ff f ), and 
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the bispectrum shows a response only at the frequency pairing  ,n ff f .  This suggests 

that the responses at nf  and ff  are related through quadratic phase-coupling.  At 

.01fA  , the first harmonic of the forcing frequency ( 2 ff ) appears in the spectrum, and 

at .02fA  , its response becomes more prominent.  Likewise, there is a growth of the 

bicoherence at  ,f ff f  as forcing amplitude is increased. This suggests that the forced 

response itself has become strong enough to exhibit quadratic nonlinearity.  As forcing 

amplitude increases, the growth of bicoherence between the forcing frequency and other 

harmonically relevant frequencies further highlights the complicated, phase coupled 

nonlinearity that is present during this bimodal behavior. 
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a) .005fA   

 

d) .005fA   

 
b) .01fA   

 

e) .01fA   

 
c) .02fA   

 

f) .02fA   

 
Figure 8-14.  Bicoherence (left column) and corresponding spectra (right column) 

for flame edge displacement during forcing amplitude sweep, at 3x D , 

1.7  u b , and 1.25n ff f .  Forcing amplitudes are labeled above plots. 
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A low amplitude frequency sweep is shown in Figure 8-15, again with bicoherence in 

the left column and spectra in the right column.  At all three values of n ff f , there is 

significant bicoherence at  ,n ff f .  This continues to show that the responses at nf  and 

ff  interact through nonlinear phase coupling.  Notice, however, that when nf  and ff  

are close ( 0.8n ff f   and 1.2n ff f  ), the response in the spectra at ff  becomes 

strong (strong enough to generate its first harmonic), while the response in the spectra at 

nf  is weak.  Thus, close to frequency locking, there is a strengthening of the forced 

response at the expense of the natural response in the presence of strong bicoherence.  

This suggests that frequency locking is associated with a transport of energy between the 

two responses through quadratic, and probably higher order, nonlinear coupling. 
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a) 0.8n ff f   

 

d) 0.8n ff f   

 
b) 1.2n ff f   

 

e) 1.2n ff f   

 
c) 1.25n ff f   

 

f) 1.25n ff f   

 
Figure 8-15. Bicoherence (left column) and corresponding spectra (right column) for 

flame edge displacement during n ff f  sweep, at 3x D , 1.7  u b , and 

.001fA .  Values of n ff f are labeled above plots. 
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8.5 Forced Response Characteristics: Lock-in Effects Upon Flow Topology 

Given that the flow is forced longitudinally, this boundary condition forces symmetric 

oscillatory conditions at the upper and lower separation points of the bluff body. 

Frequency locking manifests itself in a fundamental change in the way that vortices in the 

upper and lower side of the flow are arranged relative to each other.   

The two shear layers roll up initially into larger structures that are symmetrically 

placed on the upper and lower half of the flow.  However, these two shear layers interact 

and their subsequent evolution is strongly controlled by the overall hydrodynamic 

stability of the flow.  In particular, shear layer interaction can lead to staggering of the 

vortices after some distance, StaggerL , which is defined later. The distance required for 

staggering is primarily a function of the frequency ratio n ff f . 

This staggering phenomenon is illustrated in Figure 8-16, which shows phase-

averaged iso-vorticity contours at two different values of n ff f .  Phase averaging was 

performed over the forcing period, to identify the structure of the forced response.  

Although the density ratio is the same for the two cases, note the completely different 

evolution of vorticity.  The left column corresponds to non-frequency locked cases - note 

how the vorticity iso-contours remain symmetrically placed as far downstream as 

6x D  . The right column of Figure 8-16 corresponds to frequency locked cases, 

showing how the vortices quickly stagger into an antisymmetric configuration for these 

low density ratio flames. 
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a) 1.7u b    

 

g) 1.7u b    

 
b) 1.9u b    

 

h) 1.9u b    

 
c) 2.0u b    

 

i) 2.0u b    

 
d) 2.2u b    

 

j) 2.2u b    

 
e) 2.4u b    

 

k) 2.4u b    

 
f) 2.5u b    

 

l) 2.5u b    

 
Figure 8-16. Phase averaged vorticity contours for several density ratios forced with 

0.02fA  , such that the left column 0.8n ff f   and the right column is 

1.1n ff f  .  Density ratios are labeled above plots.  
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Figure 8-17 presents flame images at several density ratios and frequencies, revealing 

a similar phenomenon.   Notice the sinuous flame structure in the right column that 

appears when operating in a frequency-locked condition.  Also notice that, although the 

2.5u b    flame is not globally unstable, the lightly damped global mode is still 

receptive to forcing (see how the sinuous flame shape appears even in Figure 8-17g).  

This is important because the effects of frequency locking will be applicable even to 

flows whose global mode is lightly damped. 
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a) 2.5, 0.8u b n ff f     

 

g) 2.5, 1.1u b n ff f     

 
b) 2.4, 0.8u b n ff f     

 

h) 2.4, 1.1u b n ff f     

 
c) 2.2, 0.8u b n ff f     

 

i) 2.2, 1.1u b n ff f     

 
d) 2.0, 0.8u b n ff f     

 

j) 2.0, 1.1u b n ff f     

 
e) 1.9, 0.8u b n ff f     

 

k) 1.9, 1.1u b n ff f     

 
f) 1.7, 0.8u b n ff f     

 

l) 1.7, 1.1u b n ff f     

 
Figure 8-17. Chemiluminescence images of low density ratio flames at several 

combinations of n ff f  and u b   (labeled above each figure).  The left column 

shows cases away from lock-in, and the right column shows cases at lock-in.  
 

The axial variation of the transverse velocity phase at the forcing frequency is 

presented in Figure 8-18.  Results are shown for two spatial positions straddling the flow 

centerline, 0.3y D   .  The nearly linear phase roll-off of each curve indicates a nearly 

constant phase speed.  Notice, however, that the two curves are not quite linear, as 
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indicated by their separation.  Their separation is approximately 180° near the bluff body, 

and decreases to almost zero farther downstream.  This is due to the vortex staggering 

effect, and is described in more detail next. 

 
 

 

Figure 8-18. Axial dependence of the phase of the transverse velocity from the upper 

and lower sides of the flow centerline.  The phase is at the forcing frequency.  Flow 

conditions were 1.9u b   , 1.0n ff f , and 0.02fA  . 

 
 
 

Vortex staggering, which is a function of axial position, is quantified by the phase 

difference between the transverse velocities at 0.3y D    and 0.3y D   .  The phases 

at these two positions will be denoted     and v f v ff f f f    , respectively, and 

their difference will be denoted   (as illustrated in Figure 8-18).  A phase difference of 

180° indicates a varicose structure since, at a given axial position, the transverse velocity 

has opposite sign on opposing sides of the flow centerline.  Likewise, a value of zero 

indicates sinuous behavior.  Figure 8-19 illustrates this phase difference as a function of 

axial position, for a fixed u b  .  This shows that in the frequency locking case 

( 1.1n ff f  ) the vortices are typically staggered after about two bluff body diameters 
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downstream.  Figure 8-20 shows the stagger length, StaggerL , which is defined as the axial 

location where 90    (see Figure 8-18 for illustration).  Note that the stagger lengths 

are dramatically reduced when ~n ff f .  Interestingly, u b   does not have a significant 

influence on StaggerL .  This is apparent in the figure, where stagger lengths overlaid from 

many density ratios fall virtually onto one curve.  This may be due to the fact that the 

most locally amplified region in this flow, the “wavemaker” region near where the 

reverse flow velocity peaks, is located at a fixed x D  that is relatively insensitive to 

density ratio [89]. 
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a) 1.7u b    

 

c) 2.0u b    

 

b) 1.9u b    

 

d) 2.4u b    

 

Figure 8-19. Degree of stagger for two values of n ff f  at several density ratios 

(labeled above plots) and 0.02fA   
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Figure 8-20. Stagger length for all density ratios at 0.02fA 
 

 

 

8.6 Proper Orthogonal Decomposition 

Proper orthogonal decomposition (POD) was performed using the DAVIS 7.2 

software.  For low density ratio cases with large forcing amplitude, the natural sinuous 

mode, the forced varicose mode, and the vortex staggering effect are all well captured 

(many noisy and incoherent modes are also present).  The first six modes are shown in 

the figures below for a sweep of n ff f .  The figure is arranged so that the mode number 

increases from one to six from top to bottom, with energy decreasing as mode number 

increases.  For the cases shown, the first six modes contain between 42% and 54% of the 

total POD energy.  The left column shows the spatial modes, and the right column the 

spectra of their corresponding time coefficients.  The pairing of modes is discussed in the 

POD discussion of the unforced results in section 7.2, Proper Orthogonal 

Decomposition.  Figure 8-21 shows a non-frequency locked at 0.8n ff f  , primarily 
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showing the varicose structure responding at the forcing frequency with a hint of vortex 

staggering.  Figure 8-22 shows the result for 1.0n ff f  , revealing a predominantly 

sinuous response at the overlapping forcing/global mode frequency.  Figure 8-23 shows 

the frequency-locked case of 1.1n ff f  , and shows a partially staggered structure 

responding at both the forcing and global mode frequency.  Finally, Figure 8-24 shows 

another non-frequency locked case at 1.2n ff f  , which clearly shows the varicose 

response peaking at the forcing frequency and the sinuous response peaking at the global 

mode frequency. 
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Figure 8-21. First six POD modes for 1.7, A 0.02, 0.8u b f n ff f      
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Figure 8-22. First six POD modes for 1.7, A 0.02, 1.0u b f n ff f      
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Figure 8-23. First six POD modes for 1.7, A 0.02, 1.1u b f n ff f      
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Figure 8-24. First six POD modes for 1.7, A 0.02, 1.2u b f n ff f      

 
 

8.7 Forced Response Characteristics: Local Heat Release Response  

This section considers the flame symmetry, the magnitude of the flame displacement 

and local heat release fluctuations, and their sensitivities to frequency and density ratio.  
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Here, the words “local heat release” will refer to the combined heat release of both flame 

branches at a single axial position.  As would be expected, frequency locking is 

associated with large fluctuations in vorticity, flow velocity, and, therefore, flame edge 

displacement.  For example, Figure 8-25 plots the dependence of the magnitude of flame 

wrinkling amplitude upon forcing frequency, showing that it peaks near n ff f .  Note 

that the peak is symmetric, however.  In general, flame displacement response at values 

of n ff f  above the peak is greater than at values below the peak.  This is likely due to 

the fact that nf  was varied by sweeping lipU , which likely influences the global mode 

growth rate by altering the backflow ratio and degree of non-colocation of the flame and 

shear layer. 

 

 

 

Figure 8-25. Flame edge displacement amplitude at 3x D   as a function of 

n ff f , for 0.02fA  .  

 
 
 

The magnitude of flame flapping is roughly proportional to the local heat release rate 

fluctuations, as local heat release rate is proportional to flame area, 
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 
2

~ 1dS dL dx dx .  However, the heat release rate fluctuations at each axial location 

are controlled by the relative phasing of the upper and lower flame branches.  As such, 

the degree of symmetry of the two branches has an important impact on the relationship 

between local flame flapping and the associated heat release fluctuations.  In particular, 

varicose flow/flame oscillations cause the oscillations of the two flame branches to be in 

phase, while the converse occurs for sinuous oscillations.  Thus, in terms of heat release 

oscillations, lock-in leads to two competing phenomena: large flame displacement and 

area fluctuations, but a sinuous flame structure.  This is illustrated as follows.  The local 

unsteady heat release rate is the sum of the heat release rate of the two flame branches as 

shown below: 

 

 ( , ) ( , ) ( , )q x f q x f q x f    (8.7) 

 

The heat release rate of one flame branch may be related to the heat release rate of the 

other by a phase offset,  , such that ( , ) ( , )cos( ( , ))q x f q x f x f  .  Eq. (8.7) then 

reduces to the following expression:  

 2 ( , )
( , ) ( , ) cos ( )

2
Displacement

StaggerEffect
Effect

x f
q x f q x f


  (8.8) 

This expression illustrates the competing effects of flame edge displacement and 

staggering.  Flame edge displacement drives the unsteady heat release rate of a given 

branch, and staggering affects the phase offset between the two branches.  Note that a 

phase offset of 180    drives this expression to zero, even if the local unsteady heat 
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release of the individual flame branches is large.  Recall that the flame is sinuous when 

0   , since the upper and lower branches are moving “up” in sync.  It is important to 

notice that this sinuous configuration, 0   , occurs when the heat release of the two 

flame branches is out of phase, 180   .  

The dependence of the local heat release fluctuations upon n ff f  is plotted in Figure 

8-26. This figure shows that the local heat release oscillations decrease near lock-in, an 

effect that is more pronounced at lower density ratios. 

 
 

 

Figure 8-26. Local heat release amplitude at 3x D   vs n ff f , for 0.02fA  .  

 

 

 

Here, the local unsteady heat release has been nondimensionalized by the mean 

spatially integrated heat release, 0Q .  This local minimum in heat release reflects the fact 

that the staggering effect dominates the increased flame displacement effect, as shown in 

Figure 8-27a.  This plot overlays the frequency dependence of the flame displacement 

amplitude, the degree of stagger between the two flame branches (  ), and the local 

heat release amplitude, for a low density ratio case.  Notice that the flame displacement 
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amplitude is maximized when ~n ff f .  However, when ~n ff f , the phase difference 

between the two flame branches indicates a sinuous configuration, and the local heat 

release amplitude is minimized.  Figure 8-27b shows the same behavior for a higher 

density ratio, although the effects are less pronounced.  Finally, Figure 8-27c shows the 

axial dependence of the relationship of local heat release amplitude to frequency ratio.  

As the figure suggests, the minimum in local heat release amplitude when ~n ff f  

persists at all axial positions downstream of the initial staggering.  Thus, the local heat 

release response of low density ratio flames at lock-in is significantly less than that of 

flames away from lock-in.  A comprehensive review of the flame response data is 

presented in Appendix D. 
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a) 

 
b) 

 
c) 

 
Figure 8-27. Frequency dependence of flame edge displacement amplitude, local 

heat release amplitude, and flame stagger at 3x D  , 0.02fA  , a) 1.9u b    

and b) 2.5u b   .   c) Dependence of local heat release amplitude on axial position 

and n ff f  for 1.9u b   , 0.02fA  . 
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This has important and very non-intuitive implications.  It shows that, for longitudinal 

acoustic modes, the hydrodynamic global mode of the wake inhibits the flame’s forced 

heat release response, due to the flame’s resulting sinuous structure.  Thus, for low 

density ratio flames, overlap of the hydrodynamic global mode frequency and 

longitudinal acoustic modes is not as dangerous as previously thought. 

8.8 Forced Response Characteristics: Global Heat Release Response  

The response of the spatially integrated heat release, referred to here as the global heat 

release, is of particular interest from a combustion instability standpoint.  The global heat 

release is defined as 

    
0

, ,

fx L

f

x

Q L t q x t dx





   (8.9) 

where fL  is the axial flame length.  The global heat release is a strong function of fL .  

This is due to the spatially oscillatory nature of the local heat release.  The local heat 

release is spatially modulated at the flame surface wrinkle wavelength.  The flame 

wrinkle wavelength is related to the flame wrinkle propagation speed and frequency, 

according to f f fc f  , which stems from the canonical relationship k c .  Here, 

f  is the flame wrinkle wavelength, and fc  is the flame wrinkle propagation speed.  

Rewriting Eq. (8.9) to consider only the component of the local heat release at the forcing 

frequency:  

    
0

2
, , exp 2

fx L

f f f

fx

Q L t q x f i f t x dx









   
     

   
  (8.10) 
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For this study, f  is determined experimentally from the spatial evolution of the 

Fourier coefficients of the flame edge displacement according to 

 2
ˆf

x
 







 (8.11) 

The ratio in Eq. (8.11) is the inverse of the slope of the axially varying flame phase.  

For this work, x  is 12 bluff body diameters and ̂  is the flame displacement phase 

difference spanning the 12 bluff body diameters from 2x D   to 14.  Therefore, the 

measured flame wrinkle wavelength is an axially averaged quantity from this domain. 

Careful inspection of Eq. (8.10) reveals that the global heat release is an oscillatory 

function of the flame length.  In fact, if the local heat release magnitude were a constant 

function of axial position, the global heat release would have a pattern of nodes and 

antinodes spaced at integer multiples of f .  Such a pattern is easily recognized in the 

data shown in Figure 8-28 and Figure 8-29, which show the global heat release 

magnitude at the forcing frequency as a function of flame length (integration length). 
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a) 

 

b) 

 
Figure 8-28.  Spatially integrated heat release vs flame length for 0.02fA   and 

a) 2.5u b    and b) 1.9u b    

 

 

 

 
Figure 8-29.  Spatially integrated heat release vs flame length for 0.02fA   and 

3.1u b     

 

 

 

The nodes and antinodes in this pattern simply arise due to destructive/constructive 

phase interference between the highs and lows on the instantaneous local heat release 

wave,  q x .  Note that flame lengths corresponding to the peaks in this pattern stand to 

benefit the most from reduced heat release response.  Figure 8-28 shows the globally 
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integrated heat release as a function of flame length for two density ratios and two values 

of n ff f .  The figure shows that during frequency locking, 1.0n ff f  , there is a slight 

reduction in global heat release response for most flame lengths compared to 

0.8n ff f  .  The effect is not as pronounced, however, as it is for the local heat release 

response (see Figure 8-27a).  This does support the argument, however, that alignment of 

the hydrodynamic frequency with the acoustic frequency is not necessarily dangerous for 

a longitudinal mode.  In fact, such frequency alignment may even be slightly beneficial.   

Figure 8-29 shows global heat release response vs flame length for a higher density 

ratio, 3.1u b   .  At this density ratio the sinuous global mode is heavily damped, and 

no level of forcing amplitude or alignment of nf  and ff  resulted in vortex staggering.  

Not surprisingly, n ff f  has little effect on the global heat release in this case. 

The effects of n ff f  and u b   may be summarized with the contour plots shown in 

Figure 8-30 and Figure 8-31.  Figure 8-30 shows contours of global heat release 

magnitude as a function of flame length and n ff f .  Notice the slight valley that appears 

at 1n ff f  , reinforcing the notion that the global heat release is slightly reduced during 

frequency locking (at flame lengths where the global heat release response is significant).   

Figure 8-31a shows another such contour plot but at a higher density ratio, 

demonstrating that the global heat release is insensitive to n ff f  when the global mode 

is heavily damped.  Figure 8-31b shows the global heat release as a function of flame 

length and density ratio.  As density ratio is reduced, the global heat release first 

decreases and then increases.  This is due to the competing effects of flame edge 

displacement and vortex staggering, as discussed in section 8.7, Forced Response 
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Characteristics: Local Heat Release Response.  At high density ratios, the flow is 

convectively unstable and strongly amplifies the forcing with a varicose structure.  When 

the density ratio becomes sufficiently low, vortex staggering occurs during frequency 

locking, with an associated reduction in the global heat release response.  As the density 

ratio is reduced further, the global heat release begins increasing.  Here, the flame edge 

displacement is increasing as the global mode amplification increases.   

 

 

a) 

 

b) 

 

Figure 8-30. Contours of constant   0


fQ f Q  vs axial position and n ff f  for a) 

2.5  u b  and b) 1.9  u b .  Contours are labeled at   0 0.01 fQ f Q  for 

reference, and have increments of 0.01.  
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a) 

 

b) 

 

Figure 8-31. Contours of constant   0


fQ f Q  vs axial position and a) n ff f  for 

3.1  u b , b)  u b  for  n ff f .  Contours are labeled at   0 0.01 fQ f Q  

for reference, and have increments of 0.01. 

 

 

 

In summary, the global heat release is a strong function of the integration length (the 

flame length).  At some flame lengths global heat release response amplitude is very 

small, while at others it is significant (as much as 10% of the total heat release rate).  For 

flame lengths associated with significant global heat release, the global heat release is 

slightly minimized when the forcing frequency equals the natural asymmetric vortex 

shedding frequency, and when the density ratio is lowered only enough for the forced 

shedding to stagger to an asymmetric pattern.  An important observation is that alignment 

of the forcing and hydrodynamic global mode frequencies does not cause a maximum in 

global heat release response, and therefore does not promote combustion instability.  This 

conclusion is valid only for longitudinal acoustic modes, and is likely to be different for 

transverse forcing. 
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8.9 Closing Remarks 

This chapter has addressed longitudinally acoustically forced, low density ratio 

flames.  The experiments discussed show that when the forcing frequency is in the 

vicinity of the global mode frequency, frequency locking occurs; the wake and, hence, 

the flame then respond more strongly at the forcing frequency than the global mode 

frequency.  When this happens, the vortices which were initially shed from the bluff body 

in a varicose configuration (due to the symmetric nature of the forcing) quickly stagger to 

a sinuous pattern.  The flame also transitions from a varicose to a sinuous structure; this 

is associated with an increase in oscillatory flame edge displacement, but a decrease in 

local oscillatory heat release fluctuations at the forcing frequency.  This effect is also 

present, although less pronounced, in the global heat release response.  This is important 

and non-intuitive, as it suggests that forcing a flame on top of its hydrodynamic global 

mode actually leads to a slight reduction in the flame’s heat release response.  Finally, 

analysis showed that the global heat release response is a strong function of flame length, 

exhibiting a pattern of nodes and antinodes.  For flame lengths associated with significant 

global heat release response, this response is minimized when the density ratio is just low 

enough (but no lower) for vortex staggering to occur, and when the acoustic and 

hydrodynamic frequencies are equal. 
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CHAPTER 9. CONCLUDING REMARKS 

Combustion instabilities in bluff body combustors motivated this work.  In particular, 

the effort was focused on combustors with low flame density ratios (due to highly 

preheated reactants), and longitudinal acoustic modes.  This thesis has presented both 

experimental and theoretical work, designed to accomplish the goals laid out at the end of 

Chapter 2, Background and Motivation.  This chapter summarizes the contributions of the 

work, draws conclusions about the important role that hydrodynamic instability plays in 

the combustion instability feedback loop, and provides recommendations to the 

combustion community. 

9.1 Summary of Contributions  

This thesis has explored the flame and flow dynamics of bluff body combustors at low 

flame density ratios.  It has demonstrated that these flows tend to sit near a global 

hydrodynamic stability limit, and that the global mode is characterized by narrowband, 

asymmetric vortex shedding which wraps the flame into a sinuous structure.  

Experiments showed that such behavior becomes more prevalent as density ratio is 

reduced, and occurs in intermittent bursts due to parametric noise affecting the flow 

stability.  This intermittency demonstrated that industrially relevant, high Reynolds 

number flows can have complex dynamics in the presence of sensitive hydrodynamics 

The theoretical work has demonstrated the applicability of linear, local hydrodynamic 

stability analysis to these flows.  Two different types of stability analysis were 

performed: one using the full measured base flow profiles, and one using simpler, model 
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base flow profiles.  Both types of analysis turned out to have useful characteristics.  

Stability analysis of the full measured base flow profiles provided good quantitative 

prediction of the global mode frequency.  This analysis lent itself to reconstruction of the 

direct global mode shape, which provided the adjoint global mode and the structural 

sensitivity.  The stability analysis of the model base flow profiles identified key flow 

features to express as stability parameters.  In this effort, a pre-existing model stability 

problem was further developed to include four important stability parameters: density 

ratio, backflow ratio, confinement, and density-shear layer offset.  Owing to its 

simplicity, this analysis helped elucidate the underlying physics governing the 

hydrodynamic stability of the reacting wake.     

The final study in this thesis experimentally explored the effects of the hydrodynamic 

stability characteristics on the velocity-coupled flame response.  Experimental results 

showed that the global mode does interact significantly with the forced flame response.  

However, the results led to a counter-intuitive conclusion: when the hydrodynamic 

instability frequency equals a longitudinal acoustic mode frequency, the flame’s heat 

release response amplitude does not become a local maximum in the studied parameter 

space, and can actually be minimized.  Therefore, such frequency alignment is not 

especially dangerous for longitudinal combustion instability of bluff body combustors.  

This result demonstrates the important and non-intuitive role that hydrodynamic 

instabilities can play in the combustion instability feedback loop. 

9.2 Conclusions 

This thesis demonstrated the role of hydrodynamic instability in longitudinal bluff 

body combustion instabilities, thus emphasizing the important and complicated role that 
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hydrodynamic instability plays during combustion instabilities in general.  The 

experiments showed that there can be an important, nonlinear interaction between a 

combustor’s acoustics and fluid dynamics.  In light of this interaction, hydrodynamic 

amplification of the acoustic velocity field can provide a non-intuitive fluid-dynamic 

response, and hence a velocity disturbance field that differs significantly from its acoustic 

origin.  Therefore, the hydrodynamic stability characteristics of a given combustor’s 

flowfield must be understood in order to understand the flame response.  Specifically, it 

is of critical importance to identify any unstable or weakly damped hydrodynamic global 

modes, as well as their frequencies and mode shapes.  Furthermore, it is of practical 

importance to determine the key flow features that govern these hydrodynamic 

characteristics.  Stability analysis of the full base flow profiles is a helpful tool for 

quickly determining the global mode stability, frequency, and structure.  Stability 

analysis of model base flow profiles is a perfect tool for parameterizing the base flow into 

key stability parameters, determining the effect of those parameters on the flow stability 

characteristics, and elucidating the physics governing the flow stability. 

9.3 Recommendations to the Combustion Community 

9.3.1 Future Bluff Body Experimental Work 

The hydrodynamic stability analysis work discussed in this thesis motivates a study to 

experimentally verify the effect of density-shear layer offset.  Such an offset was present 

in the current study, but remained relatively fixed over the range of conditions tested.  

This author recommends an experiment which varies the density-shear layer offset in the 

vicinity of the wave-maker region.  The challenges associated with this study would be 

fixing the other stability parameters, especially the density ratio, while varying the 
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density-shear layer offset.  Much like this study investigated the role of density ratio as a 

stability parameter, the recommended study should determine if the flow stability is as 

sensitive to the density-shear layer offset as stability analysis suggests.  In the context of 

reacting wakes, this is unexplored experimental territory.  To confirm this prediction 

would further support the use of linear, model stability analysis as a tool for 

parameterizing real reacting base flows into a manageable number of important 

parameters. 

9.3.2 Improved Model Stability Analyses 

This thesis showed that the stability analysis of model base flow profiles is reduced-

order, such that the major flow features may be expressed as stability parameters.  

Therefore, it is a useful engineering tool that allows its user to determine how (and why) 

a given change to the base flow is expected to change the flow dynamics.  For this flow, 

however, this level of simplification did not enable successful quantitative prediction.  

The model used in this thesis assumed regions of uniform base flow velocity and 

density, separated by discontinuous jumps; this form of the base flow allows 

simplification of the Rayleigh equation, Eq. (6.17), to the much simpler form shown in 

Eq. (6.18).  This simplification is still valid, however, for a linearly varying velocity 

profile as long as the base flow model is still limited to discontinuous regions of uniform 

density.  Therefore, in an effort to improve the quantitative prediction of this model 

analysis, this author recommends development of a dispersion relation where the shear 

layer thickness is captured by a linear velocity profile model. 
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9.3.3 Use of Nonlinear Stability Analysis 

The intermittency observed in the unforced flow inspired a discussion of bi-stable 

systems.  Although the observed intermittency was not due to a bi-stable system, this 

serves as a reminder that not all bifurcations behave similarly.  For example, the strong 

parametric noise present in the current study complicated the identification of the 

bifurcation as subcritical or supercritical.  Although linear stability analyses are useful for 

locating these bifurcations, they cannot provide insight into important nonlinear 

behaviors such as hysteresis, intermittency and limit cycle amplitude.  Therefore, 

nonlinear stability analysis via branch tracing and continuation software is recommended 

as a straightforward way to understand flow behavior in the vicinity of a stability 

bifurcation, and therefore to better understand the hydrodynamic stability of a given 

system.  Nonlinear stability analysis would be extremely useful in the context of reacting 

wakes.  The uniform density wake is well known to experience a supercritical Hopf 

bifurcation near Re 40D  .  As density ratio increases, however, this bifurcation point 

moves to much higher Reynolds numbers, and its behavior is not well known.  For 

example, in the Reynolds number – density ratio parameter space, the bifurcation 

diagram could hypothetically experience a cusped catastrophe such that the bifurcation 

transitions to subcritical.  Although the present analysis suggests the bifurcation remains 

supercritical, nonlinear stability analysis would be useful to support this conclusion. 

9.3.4 The Role of Hydrodynamics in Combustion Instabilities 

The forced experiments in this thesis showed the important and non-intuitive role that 

hydrodynamic instabilities can play in combustion instabilities.  For example, in some 

situations, it may not be helpful to avoid commensurate acoustic and hydrodynamic 
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global mode frequencies.  Therefore, careful consideration of the hydrodynamics is 

strongly recommended for any effort to understand a velocity-coupled combustion 

instability problem.  This consideration should aim to address the following sequence of 

questions: 

1. Is there an unstable or weakly damped hydrodynamic global mode? 

2. Under what flow/flame conditions does the global instability exist? 

3. Does the global instability tend to exhibit frequency locking behavior when 

acoustically forced? 

4. During frequency locking, does the flow structure shift from the convectively 

unstable response to a structure resembling the hydrodynamic global mode?  

5. Which general flow/flame structure is likely to be more dangerous from a 

combustion instability standpoint: the structure associated with convectively 

unstable amplification of the acoustic forcing, or the global mode structure? 

6. In consideration of the above questions, what are the conditions (flow/flame 

conditions as well as frequencies) where the velocity coupled heat release will 

be most severe? 

This is the most valuable recommendation of the thesis, as it extends the established 

paradigm toward velocity coupled flame response in the combustion instability feedback 

loop to include a more careful consideration of the hydrodynamics.  
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APPENDIX A. SUPPLEMENTAL DATA FROM UNFORCED 

EXPERIMENTS 

Appendix A.    

A.1 Boundary Layer Measurements 

 
Figure A-1. Boundary layer measurement at the trailing edge of the v-gutter, 

unvitiated, nonreacting test section 

 

 

 
Figure A-2. Boundary layer measurement at the trailing edge of the v-gutter, 

vitiated, nonreacting test section 
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Figure A-3. Boundary layer measurement at the trailing edge of the v-gutter, 

1.7u b    

 

 

 
Figure A-4. Boundary layer measurement at the trailing edge of the v-gutter, 

2.0u b    
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Figure A-5. Boundary layer measurement at the trailing edge of the v-gutter, 

2.4u b    

 

 

 
Figure A-6. Boundary layer measurement at the trailing edge of the v-gutter, 

2.7u b    
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Figure A-7. Boundary layer measurement at the trailing edge of the v-gutter, 

3.2u b    



 

212 

 

A.2 Flame Images 

 

 

 

 

 

 

 
Figure A-8. Sequence of flame images for 1.7u b   , spaced by 0.667 ms 
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Figure A-9. Sequence of flame images for 2.0u b   , spaced by 0.667 ms 
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Figure A-10. Sequence of flame images for 2.2u b   , spaced by 0.667 ms 
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Figure A-11. Sequence of flame images for 2.4u b   , spaced by 0.667 ms 
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Figure A-12. Sequence of flame images for 2.7u b   , spaced by 0.667 ms 
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Figure A-13. Sequence of flame images for 2.9u b   , spaced by 0.667 ms 
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Figure A-14. Sequence of flame images for 3.2u b   , spaced by 0.667 ms 
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A.3 Flame Displacement Spectra: Waterfall Plots 

a) 1.7u b    

 

e) 2.7u b    

 
b) 2.0u b    

 

f) 2.9u b    

 
c) 2.2u b    

 

g) 3.2u b    

 
d) 2.4u b    

 

 

Figure A-15. Axial development of flame displacement spectra for the ballistic bluff 

body at 50lipU   m/s for several values of u b   (labeled above plots) 



 

220 

A.4 Spatial Growth of Forced Flow Response 

a) 1.7u b    

 

d) 2.4u b    

 

b) 2.0u b    

 

e) 2.5u b    

 
c) 2.2u b    

 

 

 

Figure A-16. Centerline transverse velocity fluctuation amplitude at 0.24DSt   for 

the ballistic bluff body at 50lipU   m/s and several values of u b   (noted above 

figures) 
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a) 1.9u b    

 

d) 2.7u b    

 
b) 2.1u b    

 

e) 3.0u b    

 
c) 2.4u b    

 

f) 3.2u b    

 
Figure A-17. Centerline transverse velocity fluctuation amplitude at 0.24DSt   for 

the ballistic bluff body at 20lipU   m/s and several values of u b   (noted above 

figures) 
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a) 1.7u b    

 

d) 2.2u b    

 
b) 1.9u b    

 

e) 2.4u b    

 
c) 2.0u b    

 

f) 2.5u b    

 
Figure A-18. Centerline transverse velocity fluctuation amplitude at 0.24DSt   for 

the v-gutter at 50lipU   m/s and several values of u b   (noted above figures) 
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a) 1.9u b    

 

d) 2.7u b    

 
b) 2.1u b    

 

e) 3.0u b    

 
c) 2.4u b    

 

f) 3.2u b    

 
Figure A-19. Centerline transverse velocity fluctuation amplitude at 0.24DSt   for 

the v-gutter at 20lipU   m/s and several values of u b   (noted above figures) 
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A.1 Spectral Energy of Forced Flow Response 

a) 

 

c) 

 
b) 

 

 

Figure A-20. Integrated spectral energy of centerline transverse velocity fluctuation 

about 0.24DSt  , expressed as an rms according to Parseval’s theorem, for a) v-

gutter at 20lipU   m/s, b) v-gutter at 50lipU  , ballistic bluff body at 20lipU   
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APPENDIX B. SUPPLEMENTAL DATA FROM 

HYDRODYNAMIC STABILITY 

ANALYSIS 

Appendix B.    

B.1 Direct and Adjoint Global Modes 

 

Figure B-1. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.7, Ulip = 28 m/s 
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Figure B-2. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.7, Ulip = 37 m/s 
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Figure B-3. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.7, Ulip = 40 m/s 
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Figure B-4. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.7, Ulip = 44 m/s 
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Figure B-5. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.7, Ulip = 44 m/s 
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Figure B-6. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.7, Ulip = 48 m/s 
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Figure B-7. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.7, Ulip = 51 m/s 
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Figure B-8. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.7, Ulip = 56 m/s 
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Figure B-9. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.7, Ulip = 60 m/s 
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Figure B-10. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.9, Ulip = 29 m/s 
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Figure B-11. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.9, Ulip = 33 m/s 
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Figure B-12. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.9, Ulip = 37 m/s 
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Figure B-13. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.9, Ulip = 39 m/s 

 



 

238 

 

Figure B-14. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.9, Ulip = 43 m/s 
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Figure B-15. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.9, Ulip = 44 m/s 

 



 

240 

 

Figure B-16. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.9, Ulip = 47 m/s 
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Figure B-17. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.9, Ulip = 57 m/s 
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Figure B-18. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.9, Ulip = 58 m/s 
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Figure B-19. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 1.9, Ulip = 64 m/s 
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Figure B-20. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 2.0, Ulip = 37 m/s 
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Figure B-21. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 2.0, Ulip = 38 m/s 
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Figure B-22. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 2.0, Ulip = 41 m/s 
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Figure B-23. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 2.0, Ulip = 43 m/s 
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Figure B-24. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 2.0, Ulip = 44 m/s 
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Figure B-25. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 2.0, Ulip = 49 m/s 
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Figure B-26. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 2.0, Ulip = 55 m/s 
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Figure B-27. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 2.0, Ulip = 62 m/s 
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Figure B-28. Comparison of a) Measured global mode shape from conditionally 

averaged transverse velocity, b) direct global mode shape (transverse velocity) from 

detailed stability analysis, c) magnitude of adjoint global mode (axial velocity) from 

detailed stability analysis, d) magnitude of maximum energy of overlap of direct and 

adjoint global modes.  Conditions are ρu/ρb = 2.0, Ulip = 66 m/s 
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APPENDIX C. SUPPLEMENTAL DATA FROM 

INTERMITTENCY OF LIMIT CYCLE 

EVENTS 

Appendix C.    

C.1 Intermittency Statistics 

a) 

 

b) 

 
Figure C-1. Statistics of flame displacement limit cycle events for 1.7u b   , 

50lipU   m/s, showing a) pdf of event duration and b) pdf of event arrival rate 

 
 
 

a) 

 

b) 

 
Figure C-2. Statistics of flame displacement limit cycle events for 2.0u b   , 

50lipU   m/s, showing a) pdf of event duration and b) pdf of event arrival rate 
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a) 

 

b) 

 
Figure C-3. Statistics of flame displacement limit cycle events for 2.2u b   , 

50lipU   m/s, showing a) pdf of event duration and b) pdf of event arrival rate 

 
 
 

a) 

 

b) 

 
Figure C-4. Statistics of flame displacement limit cycle events for 2.4u b   , 

50lipU   m/s, showing a) pdf of event duration and b) pdf of event arrival rate 
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a) 

 

b) 

 
Figure C-5. Statistics of flame displacement limit cycle events for 2.7u b   , 

50lipU   m/s, showing a) pdf of event duration and b) pdf of event arrival rate 

 
 
 

a) 

 

b) 

 
Figure C-6. Statistics of flame displacement limit cycle events for 2.9u b   , 

50lipU   m/s, showing a) pdf of event duration and b) pdf of event arrival rate 
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a) 

 

b) 

 
Figure C-7. Statistics of flame displacement limit cycle events for 3.2u b   , 

50lipU   m/s, showing a) pdf of event duration and b) pdf of event arrival rate 

 

 

 

Figure C-8. pdfs of the Hilbert transform of the flame edge displacement for 

3.2u b   , 2.9u b   , 2.7u b   , 2.4u b   , 2.2u b   , 2.0u b   , 

and 1.7u b    
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APPENDIX D. SUPPLEMENTAL DATA FROM FORCED 

EXPERIMENTS 

Appendix D.    
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D.1 Forced Flame and Flow Spectra 

 
Figure D-1. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 1.7u b   , 0.020fA   
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Figure D-2. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 1.7u b   , 0.015fA   
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Figure D-3. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 1.7u b   , 0.010fA   
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Figure D-4. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 1.7u b   , 0.005fA   
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Figure D-5. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 1.9u b   , 0.020fA   
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Figure D-6. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 2.0u b   , 0.020fA   
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Figure D-7. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 2.0u b   , 0.015fA   
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Figure D-8. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 2.0u b   , 0.010fA   
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Figure D-9. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 2.0u b   , 0.005fA   
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Figure D-10. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 2.2u b   , 0.020fA   
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Figure D-11. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 2.4u b   , 0.020fA   
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Figure D-12. Flame displacement (left column) and vorticity (right column) spectra 

as n ff f  is swept through values 0.8, 0.9, 1.1, 1.3, and 1.5 (top to bottom).  

Conditions are 2.5u b   , 0.020fA   
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D.2 Lock-in Maps for Cases with Amplitude Sweeps 

a) 

 

c) 

 
b) 

 

d) 

 
Figure D-13. Lock-in maps from centerline vorticity measured at 3x D   for 

1.7  u b  
and a)

 
.020fA  , b) .015fA  , c)

 
.010fA  , and d) .005fA 
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a) 

 

c) 

 
b) 

 

d) 

 
Figure D-14. Lock-in maps from centerline vorticity measured at 3x D   for 

2.0u b  
 
and a)

 
.020fA  , b) .015fA  , c)

 
.010fA  , and d) .005fA   
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a) 

 

c) 

 
b) 

 

d) 

 
Figure D-15. Lock-in map from centerline vorticity measured at 3x D   for 

.020fA   and a) 1.9u b   , b) 2.2u b   , c) 2.4u b   , and d) 2.5u b    
  

 

 

 

 

 

 

 

 



 

273 

D.3 Flame Response at the Forcing Frequency 

a) 

 

c) 

 
b) 

 

 

Figure D-16. Forced flame response for 1.7u b   , showing a) local heat release, 

b) flame edge displacement, and c) flame edge phase difference (zero indicates 

sinuous) 
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a) 

 

c) 

 
b) 

 

 

Figure D-17. Forced flame response for 1.9u b   , showing a) local heat release, 

b) flame edge displacement, and c) flame edge phase difference (zero indicates 

sinuous) 
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a) 

 

c) 

 
b) 

 

 

Figure D-18. Forced flame response for 2.0u b   , showing a) local heat release, 

b) flame edge displacement, and c) flame edge phase difference (zero indicates 

sinuous) 
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a) 

 

c) 

 
b) 

 

 

Figure D-19. Forced flame response for 2.2u b   , showing a) local heat release, 

b) flame edge displacement, and c) flame edge phase difference (zero indicates 

sinuous) 
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a) 

 

c) 

 
b) 

 

 

Figure D-20. Forced flame response for 2.4u b   , showing a) local heat release, 

b) flame edge displacement, and c) flame edge phase difference (zero indicates 

sinuous) 
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a) 

 

c) 

 
b) 

 

 

Figure D-21. Forced flame response for 2.5u b   , showing a) local heat release, 

b) flame edge displacement, and c) flame edge phase difference (zero indicates 

sinuous) 
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