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SUMMARY

Helicopter performance capabilities are limited by maximum lift characteristics and

vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly

increase the amplitude of vibratory loads. Experiments and computational simulations

alike have indicated that a variety of active rotor control devices are capable of reducing

vibratory loads. For example, periodic blade twist and flap excitation have been optimized

to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order

to increase lift coefficient, delay stall, or weaken transonic effects.

To explore the potential benefits of active controls, computational methods are being

developed for aeroelastic rotor evaluation, including coupling between computational fluid

dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contem-

porary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the

interface by single dimension.

Some methods retain the conventional one-dimensional beam model while prescribing

an airfoil shape to simulate active chord deformation. However, to simulate the actual

response of a compliant airfoil it is necessary to include deformations that originate not

only from control devices (such as piezoelectric actuators), but also inertial forces, elastic

stresses, and aerodynamic pressures. An accurate representation of the physics requires

an interaction with a more complete representation of loads and geometry. A CFD/CSD

coupling methodology capable of communicating three-dimensional structural deformations

and a distribution of aerodynamic forces over the wetted blade surface has not yet been

developed.

In this research an interface is created within the Fully Unstructured Navier-Stokes

(FUN3D) solver that communicates aerodynamic forces on the blade surface to University

of Michigan’s Nonlinear Active Beam Solver (UM/NLABS – referred to as NLABS in this

thesis). Interface routines are developed for transmission of force and deflection information
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to achieve an aeroelastic coupling updated at each time step. The method is validated first

by comparing the integrated aerodynamic work at CFD and CSD nodes to verify work

conservation across the interface. Second, the method is verified by comparing the sectional

blade loads and deflections of a rotor in hover and in forward flight with experimental data.

Finally, stability analyses for pitch/plunge flutter and camber flutter are performed with

comprehensive CSD/low-order-aerodynamics and tightly coupled CFD/CSD simulations

and compared to analytical solutions of Peters’ thin airfoil theory to verify proper aeroelastic

behavior. The effects of simple harmonic camber actuation are examined and compared to

the response predicted by Peters’ finite-state (F-S) theory.

In anticipation of active rotor experiments inside enclosed facilities, computational sim-

ulations are performed to evaluate the capability of CFD for accurately simulating flow

inside enclosed volumes. A computational methodology for accurately simulating a rotor

inside a test chamber is developed to determine the influence of test facility components

and turbulence modeling and performance predictions. A number of factors that influence

the physical accuracy of the simulation, such as temporal resolution, grid resolution, and

aeroelasticity are also evaluated.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Helicopter performance in forward flight is limited by maximum lift characteristics and

vibratory loads [1]. As the advance ratio increases, large fluctuations in relative wind speed

increase variations in blade loading, resulting in larger vibratory hub loads. Transonic flow

over the advancing side of the rotor and dynamic stall on the retreating side introduce

additional sources of vibratory loading [2, 3]. Vibratory hub loads shorten pilot endurance,

decrease the life of structural components, and limit performance capabilities, such as lift,

forward speed, and maneuverability [4, 5].

Several design concepts have been investigated with the intention of expanding the flight

envelope and improving helicopter performance. These can be categorized as: 1) methods

in which one or more discrete control surfaces are rigidly deflected, and 2) methods in which

the blade is elastically deformed. One disadvantage of rigid control surfaces is the increase

in drag due to hinge gap and discontinuous surface geometry [6, 7]. Active blade morphing

concepts present a control solution in which this drag penalty is avoided, since the blade

surface remains continuous as it is deformed. A number of airfoil morphing schemes have

been developed in which the cross-sectional thickness or camber is altered to actively adapt

stall, lift, and moment characteristics [8, 9, 10, 11, 12, 13]. As deflection of the camber

line can affect the pitching moment, active airfoil morphing may also be implemented as a

means for achieving active blade twist.

Currently the state of the art for the structural model of a rotor blade in computational

aeroelastic analyses is a one-dimensional beam model. While some CFD/CSD rotor simu-

lations have included prescribed airfoil deformations [10, 14] to simulate active camber, in

most cases it is assumed that the airfoil shape is rigid. Traditionally, aerodynamic pressures

have little effect on airfoil deformation, since the cross section of a rotor blade is usually

3



constructed to be very stiff to ensure stability. However, if compliant materials are inte-

grated into the blade structure [15] to decrease the force required from control devices for

airfoil deformation, then the airfoil becomes more susceptible to aeroelastic deformations.

Experimental results [16, 17] reveal that recirculation of the wake can influence thrust

and torque characteristics as well as vibratory hub loads. Therefore, to evaluate the influ-

ence of active controls on blade loading, the influence of test facility components on rotor

performance must also be determined. If significant non-periodic vibratory loads result from

recirculatory effects or the test rig, then it may not be possible to isolate the aeroelastic

effects of active controls from those of the test facility.

1.2 Control Mechanisms

Various concepts for flow control, including leading edge slats, trailing edge flaps, active

blade twist, and active airfoil morphing, have been investigated to improve the perfor-

mance capabilities of rotorcraft. The intended effects of these blade modifications in-

clude: increasing maximum lift coefficient, reducing drag, and minimizing vibratory loads

[8, 9, 10, 11, 12, 13]. A description of various control devices under current development

and the contributions of past and current research efforts are presented in the following

sections.

1.2.1 Actuator Materials

Due to weight and space limitations, designing an actuation mechanism that can feasibly

be implemented can be a challenge. Smart materials are useful in the design of control

mechanisms, as they are lightweight and capable of supplying the forces required for effective

control surface excitation. A combination of active and compliant materials can be applied

in order to achieve the desired elastic deformations. Shape memory alloys and piezoelectrics

are two classes of materials that are commonly integrated into active control mechanisms.

1.2.1.1 Shape Memory Alloy

Shape memory alloys (SMA) are alloys which can revert to multiple structural shapes upon

activation. Activation is accomplished by simply heating or cooling the SMA, causing
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a phase change in the crystal structure from martensite to austenite or vice versa, and

allowing the structural geometry to be changed during flight [18]. Roglin and Hanagud [19]

applied SMA technology to rotor blades as a collective control device. In their approach

SMA wires were configured to adjust the trailing edge flap deflection when activated. This

concept was successfully demonstrated on a model-scale helicopter. Although SMA devices

are capable of producing large deflections, they generally have a slow response due to the

time required for heating and cooling the materials, and therefore they are not suitable for

applying high-frequency deflections.

1.2.2 Piezoelectric Materials

Piezoelectric devices are ideal for active blade controls because they are lightweight, com-

pact, and capable of producing large forces at high frequencies [20]. The main disadvantage

is that they are only capable of generating very small strains. Therefore, control systems

must be configured in such a way that small strains in piezoelectric devices are amplified

to provide sufficient blade surface deflections. There are two principal methods for imple-

menting piezoelectric devices. The first is to integrate piezoelectric stacks within the airfoil

structure. Internal piezoelectric stacks can actuate a hinged control device, such as trailing

edge flap. A number of mechanisms have been developed for amplification of piezoelectric

stroke, such as double-lever (L-L) amplification mechanisms [21], double C-block actuators

[22], double X-frame actuators [23], and bimorph levers [24]. In an L-L mechanism (Fig.

1(a)) two levers are connected serially to the piezoelectric stack to amplify the stroke. A

C-block actuator (Fig. 1(b)) embeds a series of curved piezoelectric materials in a “C”-

shaped structure. A pair of C-block actuators can be mounted to a flap and, by expanding

one actuator and contracting the other, apply a deflection. When the piezoelectric material

on an X-frame actuator (Fig. 2(a)) is excited, the two outer ends move together, and an

output lever is deflected. The deflection of piezoelectric bimorphs (Fig. 2(b)), which bend

when a voltage is applied, can be amplified by a lever mechanism to increase the deflection

of a the trailing edge flap. To maintain a continuous blade surface, the internal structure

can be covered by a flexible skin so that the surface remains smooth but deformable.
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(a) Double lever [21]

(b) C-block actuator [22]

Figure 1: Schemes for using piezoelectric material for airfoil deformation.
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(a) Double X-frame actuator [23]

(b) Bimorph levers [24]

Figure 2: Continued, schemes for using piezoelectric material for airfoil deformation.
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1.2.3 Flaps and Slats

Sufficient improvements in rotor performance must be demonstrated to justify the increased

cost of developing and manufacturing control devices. Chandrasekhara et al. [8] performed

an experiment comparing stall characteristics of a RC(6)-08 airfoil (Fig. 3a) with and

without a leading edge slat. When the slat was deployed stall was delayed as airflow

through the slot prevented the flow from detaching from the main section of the airfoil at

higher angles attack. Deep stall could be delayed by about 2◦ if a 6◦ slat was attached (Fig.

3b), and by 3.5 degrees if a 10◦ slat was attached (Fig. 3c).

Figure 3: Airfoils with a) no leading edge slat b) 6◦ leading edge slat c) 10◦ leading edge
slat [8].

Gurney flaps have also been investigated as a means of increasing the maximum lift.

These small tabs are typically attached to the trailing edge of an airfoil, normal to the

blade surface [25] (Fig. 4). Maughmer et al. [26] measured up to 30% increase in maximum

lift coefficient for the S903 airfoil when applying a 0.02c Gurney flap at the trailing edge.

However, the nose-down pitching moment increased in magnitude by about 0.1 for most

angles of attack. In addition, significant increases in drag were measured in the pre-stall

regime. Lee and Su [27] conducted experimental studies on a NACA 0015 airfoil which

demonstrated that lift increases as Gurney flap height increases, but again an increase in

drag and pitching moment was observed. In rotorcraft applications a deployable Gurney

flap may be useful for increasing maximum lift for short periods of time on the retreating

side of the blade. If the Gurney flap is moved forward of the trailing edge, then it is more

8



feasible to design an active Gurney flap which is periodically retracted. Thus, during times

when the Gurney flap is not beneficial, it can be retracted to avoid the adverse effects on

drag and pitching moment. Shifting the Gurney flap location does, however, reduce its

effectiveness.

Figure 4: Airfoil with Gurney flap.

1.2.4 Active Trailing Edge Flaps

Trailing edge flaps (Fig. 5) can optimize performance in various flow conditions by altering

the effective camber of an airfoil and thereby the lift and moment characteristics. The

deflection angle of the flap can be activated at various frequencies to reduce harmonic

loads.

Figure 5: Airfoil with active trailing edge flap.

Straub et al. [28] introduced a Smart Material-Actuated Rotor Technology (SMART)

design in which trailing edge flap deflections are driven by piezoelectric stacks. In 2009

Straub et al. [29] demonstrated through extensive wind tunnel testing that by optimizing

the excitation frequency and amplitude of active trailing edge flaps, vibratory normal forces

could be reduced by up to 80% for five-per-revolution loading, 98% for one-per-revolution

loading, and 83% for the RMS unsteady loads of all harmonics. This experiment confirmed
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that periodic adaptation of the airfoil shape can offer substantial reductions in vibratory

loads.

Kim et al. [30] investigated blade load control using classical incompressible theory for

rotor blades with one-per-revolution active trailing edge flaps. The aeroelastic model was

used to develop an optimized control function that reduced maximum flap bending moment

by 33%. They also predicted that maximum pitch link loads could be reduced by 40% to

81%, depending on the camber of the airfoil.

The disadvantage of flap mechanisms is that the surface of the blade is discontinuous at

the hinge and ends of the flaps, resulting in a drag increase. In addition, trailing edge flaps

greatly increase the complexity of the blade structure with additional hinges and activation

mechanisms.

1.2.5 Active Twist Rotors

Elastic blade deformation is preferable to flaps, because the blade surface remains smooth,

and therefore the control device does not introduce drag penalties. An active twist rotor

(ATR) allows the blade pitch to be controlled as a function of both azimuth and radial

position and therefore offers more control over cyclic loading and provides a means for

vibration reduction. Shin et al. [31, 32] demonstrated through experimental tests that

active twist, achieved through actuation of piezoelectric fibers embedded in the skin, can

reduce vibratory loads by 90% in forward flight. In wind tunnel tests, one-per-revolution

and 4 per revolution normal hub forces were successfully reduced by up to 40 dB [32] through

application of closed-loop cyclic control. Bernhard et al. [33] obtained similar results using

piezoelectric plies to apply active twist, reducing the vibratory loads by 63% in forces, 90%

in rolling moment, and 74% in pitching moment at advance ratio µ = 0.33.

Coupling between twist modes and other elastic modes in composite materials can be

used advantageously for active twist control. Haynes [34] determined through finite-element

analysis that extension-twist and bend-twist coupling can be achieved by applying the

proper layup of composite laminates. He derived the necessary conditions for stability,

determined the minimum number of plies for stability, and optimized the laminates for
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extension-twist, bend-twist, anticlastic, extension-bend, and shear-twist coupling. The op-

timized configuration for extension-twist and bend-twist were demonstrated experimentally.

This verifies that optimized layup of composite materials can be applied for active twist

and reduction of hub loads.

1.2.6 Airfoil Morphing

Airfoil shape may also be modified to alter the aerodynamic characteristics of a blade.

Chandrasekhara [8] demonstrated that the radius of the leading edge may be increased to

increase the lift-to-drag ratio at high angles of attack. His experiments demonstrated that

an airfoil with a large radius at the leading edge is less susceptible to separation at high

angles of attack.

Variable droop leading edges (VDLE) have also been investigated for delaying leading-

edge separation. In VDLE applications a significant portion of a leading edge of the airfoil

is deflected downward [10, 11]. At high angles of attack this can prevent leading-edge

separation, allowing larger maximum values of lift to be produced.

Active trailing edge deflection can also enhance rotor performance. Bilgen et al. [35]

conducted wind tunnel tests of a wing section in which variable camber was applied by

macro-fiber composites (MFC) embedded in the skin on the trailing section of the airfoil.

The lift coefficient was increased near stall by up to 5.2%. Gandhi et al. [36] designed and

optimized a variable-camber wing section through integration of piezoelectric stacks within

the wing structure, with a compliant skin applied on the wing surface. Two optimum designs

– highest tip deflection per unit strain energy and maximum trailing edge deflection – were

determined in an ANSYS analysis. In both the computational study and in a structural

prototype 0.73%c and 1.2%c trailing edge deflections were achieved when applying 1000 V

across the actuators for the maximum ratio and maximum deflection objectives, respectively.

The latter results in 17− 22% increase in predicted lift at 5◦ angle of attack. Aerodynamic

loads computed by X-FOIL were applied in the computational analysis, in which a 0.064%c

deflection was predicted.

Grohmann et al. [37] presented the design of an active trailing edge and active tab
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which were deformed by layers of piezoelectric fibers. The design was successful at pro-

viding deflections at frequencies ranging from two-per-revolution to six-per-revolution. In

hover conditions aerodynamic effects reduced the control authority by approximately 20%,

indicating that aeroelastic effects must be included in analysis of blade loading response.

In an experimental study Bilgen et al. [12] demonstrated that adding energy in the

boundary layer can also improve performance at high angles of attack. The energy is added

via piezoelectrically-excited surface deformation on the suction surface near the leading

edge. Bilgen et al. demonstrated that the technique can delay stall, and in doing so

increase the maximum lift by up to 7.6%.

These methods represent several applications of surface deformation have potential for

improving maximum-lift characteristics and delaying stall.

1.3 Computational Methods for Aeroelastic Analysis

Early methods of calculating lift coefficient developed by Young [38] were used to predict

lift based on empirical lift increments for deflected flaps, with adjustments for the ratio of

chord length to the effective chord length. The Douglas Aircraft Company [39], employed a

simple empirical method for extending two-dimensional characteristics by applying a ratio

of the control surface areas
Sr
S

for trailing-edge flaps or fraction of the affected span
br
b

for

leading-edge flaps. Generally error in these predictions ranged from 10% to 30% [40]. In the

1970’s Smith [41] formulated a theoretical approach for calculating lift of a multi-element

airfoil. This theory was based on the influence of induced velocity from one element on

upstream elements, which he called the “dumping effect.”

As computational methods were developed and more resources became available, im-

plementation of the Euler and Navier-Stokes solutions became feasible for aerodynamic

analyses. Brune and McMasters [42] demonstrated the importance of viscous effects in de-

termining the lift characteristics of flapped and slotted airfoils with computational analysis.

Unstructured grid methodologies simplified grid generation for complex structures, such as

those which include leading edge slats and trailing edge flaps. For example, Newman et al.

[43] performed a two-dimensional CFD analysis for shape optimization of a four-element
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airfoil designed for high lift.

Computational fluid dynamics analysis has greatly extended the capability to evaluate

aeroelastic behavior of wings, especially in flows where nonlinear aerodynamic behavior,

such as transonic flow or stall, is significant. Guruswamy [44] developed an aeroelastic

method for coupling a structural analysis with an Euler solution from the CFD code EN-

SAERO. In his work, structural modes were computed via finite element analysis applying

the Rayleigh-Ritz method. The time-accurate aeroelastic equations of motion were then

solved:

[M ]{q̈}+ [C]{q̇}+ [K]{q} = {F} (1)

where {q} is the generalized displacement vector, [M ], [C], and [K] are the modal mass,

damping and stiffness matrices, respectively, and {F} is the generalized aerodynamic force

vector. Guruswamy applied this method to flutter analysis of a wing in transonic flow,

and the computed pressure results agreed well with experimental data, although some dis-

crepancies arose due to grid resolution. His results demonstrated the potential value of

computational aeroelastic analysis, especially in flows where small-disturbance assumptions

are not valid.

Bauchau and Ahmad [45] outlined a method for coupling CFD and CSD for aeroelastic

rotor simulation. The blade is modeled as a one-dimensional beam with a number of

airstations along the span. Aerodynamic sectional forces and moments are calculated at

each section and communicated to the CSD solver. Deflections and rotations of each section

are communicated from the CSD solver to the CFD solver and applied to the grid nodes in

a coordinate transformation. This method provides a basis upon which most other coupling

methods are based [46, 47, 48, 49]. Bauchau and Ahmad also describe three schedules in

which information is exchanged in the fluid-structure interface:

1. Full coupling – The structural and aerodynamic solutions are solved simultaneously.

This is the most accurate method of aeroelastic analysis, but is computationally ex-

pensive.
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2. Tight coupling – Information between the structural and aerodynamic solvers is ex-

changed every time step. For better convergence multiple iterations of the data ex-

change and solutions may be performed for a single time step.

3. Loose coupling – Information is exchanged in the fluid-structure interface periodically,

usually once per revolution or Nb times per revolution, where Nb is the number of

blades. The process is repeated until convergence is reached, at which time the solution

becomes periodic.

Farhat [50] contributed valuable insight into methods for parallel CFD/CSD coupling

and development of fluid-structure interfaces (FSI). In particular, he presented a method for

communication of data between “incompatible” mesh interfaces, in which the CFD and CSD

nodes are not coincident. In this methodology the aerodynamic forces are communicated

to the structural solver by integrating over the wetted surface of structural elements. For a

node i on the fluid interface, the force fi on a structural element e is:

fi = −
∫
Ω̄(e)

Nipvdσ (2)

where Ω̄(e) is the domain of element e, Ni is the shape function associated with i, p is the

pressure, and v is the unit normal to Ω̄(e). Farhat notes that most structural codes evaluate

this integral via the quadrature rule,

fi = −
ng∑
g=1

wgNi(Xg)p(Xg), (3)

where wg is the weight of Gauss point Xg. In this manner forces can be integrated from a

pressure distribution defined on the fluid mesh. Likewise, the structural deformations can

be transferred to fluid nodes by finite element interpolation:

x⃗(Sj) =

wne∑
k=1

Nk(ξj)q⃗(e)k, (4)

where Sj represents a fluid grid point on the interface surface, wne represents the number of

nodes in the nearest structural element e, ξj are the natural coordinates of Sj in Ω̄(e), and

q⃗k is the structural displacement of node k. This contribution from Farhat is valuable, as
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structural and fluid grids are often generated independently and are governed by a different

set of criteria for grid resolution.

In cases where the airfoil is flexible, methods have been developed for including cross-

sectional deformations. Yeo [11] performed two-dimensional airfoil analyses on various

airfoils at several Mach numbers and angles of attack and tabulated the aerodynamic char-

acteristics. He performed an aeroelastic analysis by applying lifting-line theory to the

tabulated airfoil characteristics. This method lacks accuracy due to the two-dimensional

assumption, but may be able to estimate the effectiveness of cyclic airfoil deformations.

In order to achieve a more accurate analysis, Kerho [10] created several volume grids with

variable droop leading edges and interpolated between grids to create a blade with partial

droop at each time step. Such a method has improved accuracy over a lifting-line method

in estimating the effectiveness of an airfoil deformation.

Pawar et al. [51] performed a comprehensive analysis for an active-twist rotor (ATR),

applying a free-wake model developed by Bagai and Leishman [52] for computation of aero-

dynamic forces and moments. The structural model was represented by a one-dimensional

beam, which was actively deformed by single-crystal piezoceramics. In forward flight cases

at µ = 0.15 and 0.30, it was predicted that over 90% of the vibratory shear forces could

potentially be eliminated through use of ATR.

Jain et al. [14] performed a CFD/CSD analysis implementing loose coupling between

CFD solver WIND-US-HELI and CSD solver RCAS. A delta-loads technique [49, 53, 54]

was applied for trim convergence. Various simulations were performed to examine the effects

of active twist, trailing-edge deflection (TED), and leading-edge deflection (LED) on rotor

performance. Blade deflections were computed via the conventional one-dimensional beam

model. In order to define the LED and TED, points at the leading edge or trailing edge

were shifted downward. A set of B-splines were defined to smoothly deform the airfoil to

conform to the leading-edge and trailing-edge points.

Padthe et al. [55] conducted a computational analysis that predicted a potential reduc-

tion in vibratory loads as large as 92% using a single 0.015c deployable Gurney flap between

86%R and 90%R, using an active 0.2c trailing edge flap on a four-bladed rotor at advance
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ratio µ = 0.15 and descending flight angle of 6.5◦, with weight coefficient CW = 0.005. Jain

et al. [14] implemented CFD/CSD coupling to predict rotor loads affected by active leading

edge and trailing edge deflections. They demonstrated that LED is well suited to high-

thrust forward flight conditions, in which power could be reduced by 12.4% and vibratory

hub loads could be reduced by 40%. TED is better suited for high speed forward flight, as

30% to 54% reduction in vibratory loads, 4.7% to 7.3% gain in lift-to-drag, and 2.3% to

3.3% reduction in power were observed.

Ravichandran et al. [56] performed a comprehensive analysis of rotor blades with slats,

modeled as Euler-Bernoulli beams with lifting-line aerodynamic loads applied. At high

advance ratios, µ = 0.2 − 0.4, results indicated that the leading edge slats could increase

maximum lift capabilities by 25-30% and reduce torque by 10-20%.

Other efforts have improved structural modeling for components that cannot accurately

be reduced to a one-dimensional model. Near the hub there are components with smaller

aspect ratios and certain constraints in which a beam approximation is not appropriate.

Datta and Johnson [57] developed a three-dimensional brick finite-element method (FEM)

for rotorcraft applications that may improve structural accuracy in CFD/CSD coupling.

This method is particular beneficial for structural components with smaller aspect ratios,

such as the pitch link and hub joint. Although it has a much larger computational cost than

a beam model analysis, the computational expense is of the same order of magnitude as CFD

analysis over a given azimuthal interval, and grid partitioning for parallelization has been

developed for reduction of computation wall time and efficient use of processors in future

CFD/CSD coupling efforts. Load distributions have been applied for testing purposes, but

CFD/CSD coupling that implements this structural model is yet to be developed.

Flutter has been evaluated via CSD/CFD analysis [58, 59] to improve on the classical

analysis, particularly in cases where nonlinear aerodynamic behavior is significant. Taylor

et al. [60] investigated two structural models for CFD/CSD aeroelastic analysis: mode

extraction and mass/stiffness matrix analysis. It was determined that the latter of these

methods tends to provide more consistent results, while in a modal analysis it is often

unclear a priori how many modes are necessary to obtain an equally accurate solution.
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Parabolic camber deformation has also been tested for vibratory load reduction. In 2008

Palacios and Cesnik investigated the effects of camber deformation on harmonic loading, and

determined that the camber deformation due to aerodynamic loads is usually small except

for very thin airfoils [61]. They modeled a 2.0 x 0.2 m cantilevered strip of aluminum

and performed an aeroelastic simulation at 25 m/s sea-level airflow at 5◦ angle of attack

using a comprehensive CSD analysis. The aluminum strip was perturbed by 1 degree

angle of attack over π/10 seconds. Without camber actuation the system was very lightly

damped, and after several seconds the amplitude of normal force oscillation showed very

little attenuation. They applied a harmonic parabolic camber force, or camber bi-moment,

at 70% span to create harmonic camber actuation. They were able to reduce the normal

force oscillations by an order of magnitude within 2 seconds. Their results demonstrated the

capability of CFD/CSD coupling for analyzing the effects of camber actuation in vibratory

load reduction.

Kumar and Cesnik [62] developed an optimization technique for use with the Univer-

sity of Michigan, Nonlinear Asymptotic Beam Solver - Aerodynamics (UM/NLABS-A) to

optimize camber actuation frequency and phase for minimization of vibratory loads and

improvement of rotor performance at an advance ratio of 0.33. A combination of surrogate

models and an Efficient Global Optimization (EGO) technique were applied to determine

optimal control settings. Results indicated that 4 per revolution vertical forces could be

reduced by 99% with optimized camber actuation, and 50% of the combined vibratory

forces and moments could be eliminated simultaneously. In addition, optimized camber

actuation was determined for minimized shaft torque to improve performance by 3.5%.

The EGO method requires numerous samples of actuation schedules and magnitudes, and

would not be computationally feasible for application in CFD/CSD simulation. However, a

solution obtained via a comprehensive analysis may serve as a preliminary solution which

could be further optimized in a CFD/CSD analysis by applying other techniques, such

as a Jacobian-based approach in which phase and magnitude are adjusted based on their

influence on vibratory loads.
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Murua et al. [63] conducted a two-dimensional aeroelastic analysis using a Peters aero-

dynamic model [64] to include pitch, plunge, and parabolic camber modes. Numerical

results indicated that camber effects alone can cause flutter, and that the camber mode

greatly influences stability boundaries when coupled with pitch and plunge modes. This

linearized aerodynamic formulation is limited to thin airfoils with subsonic, attached flow.

Transonic flow, dynamic stall, and wake effects add to the physical complexity of the system

in forward or maneuvering flight conditions.

Dunn and Dugundji [65] addressed the influence of nonlinear effects on flutter behavior

by applying a semi-empirical unsteady aerodynamic theory developed at the Office National

d’Etudes et de Recherches Aérospatiales (ONERA). They conducted aeroelastic simulations

of a cantilevered wing in the nonlinear flutter regime and were able to match trends of

experimental data. The same method was later applied to a rotor with hingeless composite

blades in hover, by Kim and Dugundji [66]. Using this method they were able to predict

the aeroelastic behavior of dynamic stall.

For types of flows that include multiple complex phenomena, such as a stalled flexible

airfoil in transonic flow, a full solution of the Navier-Stokes equations remains the most

reliable solution method for accurately obtaining performance characteristics. Therefore,

a coupled CFD/CSD analysis including aeroelastic camber deformations is expected to

provide more accurate performance predictions than linearized thin airfoil theory.

1.4 Influence of Wake Vorticity and Turbulence

The influence of a rotor wake can have significant effects on performance and blade loading,

as demonstrated by Caradonna and Tung [67]. They constructed a hovering rotor and con-

ducted tests at various Mach numbers inside an enclosed chamber in which the wake flowed

into an exhaust duct to avoid recirculation effects. Pressure distributions on the blade were

tabulated, along with locations of tip vortices, and it was evident that tip vortex strength

and position had a large effect on the spanwise blade loads. This experiment demonstrated

that correctly modeling tip vortices is necessary for accurate blade load prediction.

Until the mid-1990’s the nature of turbulence in tip vortices was debated. In 1996 a
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wing-tip experiment performed by Devenport et al. [68] conclusively determined that a tip

vortex core, though initially very turbulent due to roll-up of the boundary layer, quickly

becomes laminar due to large strain rates in the core, which drive the core toward rigid-

body-rotation. Thus near the core very little turbulence production is observed. In 1997

Chow et al. [69] confirmed the results of Devenport. Utilizing “triple-wire” probes, they

were able to measure individual components of the Reynolds stress. In doing so they found

that the tip vortex is not isotropic, as there is a 45◦ rotation in the v′w′ turbulent stress with

respect to the corresponding strain. Later experiments by Ramasay et al. [70], in which fluid

velocities were measured with dual-plane stereoscopic particle image velocimetry, confirmed

the anisotropic behavior of tip vortices. Ramasay et al. [70] determined that shear stresses

decreased and shifted away from the center of the vortex as its age increases. These findings

indicate that numerical simulations in which large amounts of turbulence are present in the

vortex core are erroneous, and that assumptions based on isotropic vorticity are incorrect.

The re-laminarization of the tip vortex preserves the maximum velocities in the vortex and

prevents its dissipation.

1.5 Influence of Test Facility

In order to evaluate the influence of active controls, tests must be performed in an environ-

ment in which the source of unsteady blade loads can be determined. In enclosed facilities

this can be a challenge, as aperiodic loads can result from interference of test facility com-

ponents or vorticity in the recirculating wake. It has been shown through experimentation

[71, 72, 73] that nearby components, such as walls, can alter rotor performance significantly

and introduce large fluctuations in hub loads. In computational efforts the primary chal-

lenges include accurately resolving complex wake features in the recirculating wake and

accurately modeling turbulence properties in the wake.

In an experiment conducted by Felker and Light [71], the presence of a wing under the

rotor increased the thrust by 3%. When an image plane was added 1.21R from the rotor axis

the figure of merit reduced 1.6% less than in the isolated case. In subsequent investigations

experimental data [72] and computational results [73] reveal that the combination of a wing
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and image plane can cause small regions of recirculation, also known as “fountain flow”,

near the image plane. Although the image plane does not affect the mean inflow over most

of the rotor disk, lift is greatly reduced on the outboard portion of the blade when the blade

tip is in the fountain flow region. The induced velocity through the rotor causes a reduction

in time-averaged thrust and an increase in vibratory loading.

The influence of the wake in ground effect was quantified at low advance ratios by

Ganesh [74], who found that at very low advance ratios the wake is reingested through the

rotor, while at slightly higher advance ratios a ground vortex forms on the upwind side

of the rotor. The ground vortex entrains vorticity from the tip vortices and can increase

to over 4 times the magnitude of the tip vortices. Ganesh [75] was also able to determine

that long-period unsteadiness in the ground vortex resulted in increased unsteadiness of the

loads in ground effect. These indicate that even at low advance ratios the influence of the

ground can cause unsteady loading via a different phenomenon other than recirculation.

In an enclosed test facility the effects of fountain flow can significantly alter time-

averaged and unsteady loads even if the walls are located far from the rotor. Shivananda

[16] investigated the effects of recirculation and applied a method for reducing these effects.

He tested a series of rotors ranging in diameter from 7 inches to 14 inches in two configura-

tions: a “free air” configuration inside a large room, and an enclosed configuration inside a

chamber measuring 27 inches wide, 27 inches long, and 62 inches tall. Inside the chamber

the observed thrust was reduced by as much as 25% compared to the free air value, and

variations in thrust were as large as 8% of the mean value. A honeycomb structure with

a hole cut out for the wake region was installed downstream of the rotor to straighten the

return flow, and as a result the thrust inside the chamber increased to 99% of the free air

value. Thus, the effects of recirculation, though significant in some cases, may be largely

reduced by taking proper measures to reduced vorticity and velocity fluctuations in the

return flow.

Piziali and Felker [17] later conducted a similar experiment on a larger-scale rotor of

diameter 6 feet in a pentagonal room in which each wall was 6R from the hub at the nearest

point and the ceiling height was 30R. Although the room was very large in comparison to
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the rotor size, significant oscillations in thrust, torque, and flapping (12% peak-to-peak)

were measured. Applying the same approach as Shivananda, a honeycomb structure was

placed downstream of the rotor with a cutout for the wake region. A layer of plastic window

screening was laid on top of the honeycomb structure to smooth random variations in return

flow by providing flow resistance proportional to velocity. This modification decreased

variations in normal hub forces to within 1.5% of the mean values. The experiments of

Shivananda and of Piziali and Felker demonstrate the large influence that wake recirculation

can have on hub loads inside a closed facility.

Timm [76] demonstrated experimentally that when a rotor is near the ground even small

obstructions can cause local recirculation. Timm explored several factors, including size of

the obstruction, distance from the rotor, and height of the rotor above the ground. The

experiment indicated that when a rotor is near the floor that relatively small protrusions

can have a significant effect on recirculation patterns.

1.6 Computational Modeling of a Rotor Inside a Test Facility

Computational simulations can provide some insight into what configurations may be most

suitable for evaluation of vibratory loads. To provide accurate computational modeling it

must be verified that the wind tunnel and test rig geometry and the turbulence are properly

modeled.

1.6.1 Wake and Wind Tunnel Modeling

The long-term influence of the wake can significantly alter rotor loads. In free wake simula-

tions by Kini and Conlisk [77] in 2002, it was observed that even in free air that variations

in thrust were present due to interaction of the vortices. In climb tip vortices were spaced a

sufficient distance to preclude interaction of the vortices, resulting in steady thrust. How-

ever, simulations of one-bladed and two-bladed rotors in hover demonstrated the tendency

of vortex pairs to approach each other when they are close in proximity. This interaction

can lead to aperiodic wake solutions, which alter the induces velocity and cause variations

in hub loads.

Singh and Brown [78] performed CFD simulations for a hovering rotor using an actuator
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disk rotor model to calculate pressure loads. The observed impact of the test stand and

shroud was a 6% increase in thrust and 3% increase in torque compared to an isolated rotor.

The test stand and ground caused contraction of the rotor wake, altering the induced inflow.

After inverting the rotor the thrust and torque predictions were nearly identical to those of

the isolated rotor case.

Computational analyses of a rotor inside a test facility that include solid boundaries of

the ceiling, walls, and floor are limited, but recent efforts are being made toward under-

standing the influence of tunnel walls. For example, Romander et al. [79] simulated a rotor

in forward flight with free air boundary conditions and with facility walls. They observed

that at µ = 0.15 the torque prediction increased by approximately 5% when including the

facility walls in the simulation model.

These computational efforts demonstrate the necessity for further evaluation of the

physics in an enclosed facility and investigation of computational requirements for accu-

rately simulating such cases. If accurate results can be achieved through computational

simulations, then hub loads of a rotor in a test facility can be predicted before conducting

experiments to determine if the configuration is suitable. In addition, computational studies

may provide insight into the source of vibratory loads. Proper adjustments can then be

made to reduce vibratory loads when configuring the experiment.

1.6.2 Turbulence Modeling

In free air Reynolds-Averaged Navier-Stokes (RANS) turbulence models can provide accu-

rate results if the flow remains attached to solid surfaces. In these cases the wake trav-

els downstream, and the modeled and resolved turbulence have little influence on surface

pressures. Inside an enclosed facility the wake recirculates, and the influence of turbu-

lence model on the rotor loads is unknown. Models that rely on higher fidelity turbulence

resolution require much more temporal and spatial resolution to accurately predict flow

features. Direct Numerical Simulation (DNS) must be implemented to completely resolve

turbulent features. However, DNS simulations are extremely computationally expensive,

and this limits simulations to very small domains for a very short physical time, relative
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to the duration of a single rotor revolution. Turbulence models greatly reduce the compu-

tational expense, but the accuracy has a high level of dependence on geometry and flight

conditions. Modifications have been developed for various turbulence models to improve

prediction of turbulence properties. These models are often tuned to wall-bounded flows

using experimental data, and although they may be very useful in some circumstances, their

performance is case-dependent. In many cases RANS models have the ability to produce

reasonably accurate results with a relatively small computational cost. RANS models are

primarily tuned for boundary layer flow in steady-state cases. In Unsteady RANS (URANS)

simulations a RANS turbulence model is applied to find Reynolds-averaged velocities in the

boundary layer, but a global time step is applied for uniform time marching so that large-

scale unsteady flow can be resolved. Computational modeling of turbulence production and

dissipation is generally based on distance from the nearest viscous surface. However, in

the wake this dependence is non-physical, since turbulence is affected to a greater extent

by flow features far from the solid bodies. In general, RANS and URANS models are not

physically valid in separated flow and other regions of vorticity-dominated flow [80].

One of the greater challenges in capturing tip vortices is limiting the dissipation of

the vortices to physically-accurate levels. In turbulent rotor simulations Duraiswamy and

Baeder [81] identify two sources of tip vortex dissipation: 1) numerical dissipation due

to spatial discretization of the computational grid, and 2) viscous dissipation. The first

source of dissipation can be remedied by increasing the grid resolution and spatial order of

accuracy. The second source of dissipation is dependent on fluid viscosity, and in turbulent

simulations the viscous dissipation relies heavily on the turbulence model that is applied.

These two sources of dissipation are discussed in more detail below.

While it is simple to uniformly refine a grid, the number of grid nodes, and therefore the

computational expense, increase rapidly as the grid spacing is reduced. The tip vortex core,

defined as the distance from the minimum value of the cross-flow velocity to the maximum

value, has been experimentally measured to be approximately 10%c [82, 83] shortly after

leaving the trailing edge. In a computational simulation of the Tilt Rotor Aeroascoustic

Model (TRAM) Holst and Pulliam [84] estimated that providing a uniform grid spacing
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that would guarantee 10 nodes across the vortex core in the wake (for a distance of 20

chord lengths below the rotor) would require 8 billion nodes in the wake alone. Given the

current state of computational capabilities it is not feasible to perform simulations with

a grid this size. Therefore, in order to accurately capture tip vortices, it is necessary to

refine the grid in a more intelligent manner. Holst and Pulliam have modified the CFD

solver OVERFLOW2, developed by Benek et albbbbbb. [85] and Buning et al. [86] –

a Navier-Stokes solver for overset structured grids. They implemented an adaptive mesh

refinement (AMR) [87] methodology where an off-body Cartesian grid is first generated and

then refined. A threshold may be specified for flowfield gradients, so that in regions where

the threshold is exceeded, overset meshes are added to the grid set. The grid can be refined

by an arbitrary number of levels to comply with the threshold limit. The grid set is updated

periodically to maintain optimal refinement as the vortices move. With two levels of grid

adaptation Holst and Pulliam reduced the error in figure of merit prediction from 6% to

4%, and with increased nearbody grid resolution and three levels of grid adaptation, they

reduced the error to 1.3%.

Following this methodology of AMR, the High Performance Computing Institute for

Advanced Rotorcraft Modeling and Simulation (HI-ARMS) and the Air Vehicles element

of the Computational Research and Engineering for Acquisition Tools and Environments

(CREATE-AV) [88] developed a multi-disciplinary computational tool called Helicopter

Overset Simulations (Helios) [89]. The adaptive mesh aspect of Helios is similar to that

of OVERFLOW2; however, the solution for a near-body unstructured grid is resolved by

the CFD solver NSU3D developed at the University of Wyoming [90, 91], while the off-

body Cartesian grid is obtained by the SAMARC solver developed by Lawrence Livermore

National Laboratory [92, 93] and the NASA Ames Research Center [94]. This overset

method simplifies grid generation for complex geometries by applying unstructured grids

near surfaces while taking advantage of the computational efficiency of Cartesian grids in

off-body regions. To account for structural deformations, a loose-coupling technique using

delta-loads is implemented, with the Rotorcraft Comprehensive Analysis System (RCAS)
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developed by the U.S. Army Aeroflightdynamics Directorate (AFDD) and Advanced Rotor-

craft Technology, Inc. (ART) [95]. The three-dimensional surface patch forces from NSU3D

are applied to a one-dimensional beam model in RCAS to compute aeroelastic deformations.

Kamkar and Wissink [96] explored the numerical accuracy of the solver for various temporal

and spatial resolutions and applied the Helios methodology to the TRAM rotor, and they

succeeded in predicting figure of merit with 0.4%. Wissink et al. [97] further extended

the capabilities of Helios for coupling with CSD solver CAMRAD II, and application of

detached eddy simulation (DES) turbulence modeling in the near-body grid.

Another source of dissipation is fluid viscosity, and in turbulent simulations the viscous

dissipation relies heavily on the turbulence model that is applied. In addition to molecular

viscosity, many turbulence models prescribe an eddy viscosity term, which is an artificial

viscosity meant to approximate the influence of turbulent mixing caused by features too

small for the grid to resolve. Eddy viscosity models are commonly used for modeling

boundary layer turbulence, as the flow features are very small in this region. However, care

must be taken to ensure that the levels of eddy viscosity are valid and do not adversely

affect the solution.

Réthoré [98] explored the influence of ambient eddy viscosity on the axial induction of

a wind turbines with diameters of 35–40 m and freestream velocity of 8 m/s. He performed

a numerical actuator disk analysis to determine a “threshold value” for eddy viscosity of

the ambient flow. Above the threshold value the eddy viscosity had significant influence

on the axial induction factor and the velocity profile of the wake. Réthoré determined that

the threshold value in the wind turbine simulations was 0.1 kg/(m-s), which is equivalent

to a nondimensional value of µt = 5.6e3. He also found that in the presence of atmospheric

turbulence, LES provided velocity profiles and turbulence levels comparable to experimental

measurements, while an unsteady k − ϵ RANS model performed poorly. It was concluded

that the URANS simulation was unable to simultaneously model the large-scale atmospheric

turbulence and the small-scale turbulence in the wake, and was therefore not suitable for

wind turbine simulations with turbulent freestream flow. Similar results were observed in

an analysis performed by Gundling et al. [99] in an actuator disk simulation performed
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with DiskFloW. Gundling et al. also determined that replacing the actuator disk with

discrete blades improved turbulence levels in the wake and predictions of wind speed deficits

compared to experimental measurements.

1.6.2.1 Unsteady Reynolds-Averaged Navier-Stokes Model

Many rotor simulations produce acceptable predictions for blade loading using unsteady

RANS. To apply Reynolds-averaging the variables ρ and p are separated into mean (f) and

fluctuating (f ′) components. The ui, e, and h terms are decomposed into Favre or mass-

averaged values, such that f̃ = ρf/ρ and f = f̃ + f ′′. The Favre-averaged Navier-Stokes

equations can be written
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ẽ+

1

2
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where the Reynolds stress tensor τij is defined ρτij = −ρu′′i u′′j , the turbulence kinetic energy

k is defined ρk = 1
2ρu

′′
i u

′′
i , and the turbulent transport of heat is qTj = ρu′′i h

′′. The

tjiu′′i and u′′jρu
′′
i u

′′
i terms are the molecular diffusion and turbulent transport of turbulence

kinetic energy, and are neglected. Closure for the Reynolds-stress tensor is obtained via the

Boussinesq approximation [100] as

τij = 2νtSij −
2

3
kδij (6)

The Menter SST turbulence model solves two equations that model the turbulence

kinetic energy k and the dissipation rate per unit turbulence kinetic energy ω. The equations
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implemented to resolve these equations are
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where the RANS subscript indicates a variable based on a RANS formulation. The con-

stants in Eq. 7 are β∗ = 0.09, σk = 0.85, σω = 0.5, σω2 = 0.856, and F2 is defined

as

F2 = tanh


[
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2
√
k

β∗ωy
,
500ν

y2ω

)]2 . (8)

where y is the distance to the nearest wall. The original formulation of Menter [101] models

the term τRANSij
∂ui
∂xj

based on the vorticity magnitude Ω =
√

ΩijΩij where

Ωij =
1

2

(
∂ui
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)
. (9)

Recent modifications to the model [102] replace Ω with the strain rate S =
√

2SijSij where

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (10)

URANS turbulence models typically base the turbulence kinetic energy production k

on either vorticity or strain rate. Spalart [80] demonstrates that while vorticity is more

commonly used, the actual physics of turbulence production are based on strain rate. In

the boundary layer the choice of vorticity or strain-rate makes little difference, since the

values are similar in that region. However, in other regions where vorticity is much larger

than the strain rate, k can be over predicted in a vorticity-based model. The original k-ω

SST model presented by Menter [101] was based on vorticity. Moore [103] declares that

this model produces realizable turbulence properties if strain rate replaces vorticity and the

blending function is neglected. Recently the SST model has been modified by Smirnov and

Menter [104] with a formulation based on strain rate.

Dacles-Mariani et al. [105, 106] introduced a method for reducing large non-physical

values of turbulence kinetic energy in tip vortex cores by replacing Ω terms with (Ω +
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2min(0, |S| − |Ω|) in production terms. This limits production in regions where vorticity

is much larger than strain rate, such as in the tip vortex, while having little influence in

regions where vorticity and strain rate are approximately equal, such as the boundary layer.

Application of the method resulted in a reduction of tip vortex dissipation and reduced the

error in total velocity in the tip vortex core from 25% to less than 3%. While this method

improves turbulence modeling of some URANS models, more physically valid models, such

as large eddy simulation (LES) can be also be applied for improved results.

1.6.2.2 Large Eddy Simulation Model

Large eddy simulation was originally proposed by Smagorinsky [107] for weather forecasting

applications. In LES larger eddies are resolved while subgrid-scale turbulence is modeled.

Since LES can still be computationally intense in boundary layer regions, hybrid methods

have been formulated in which URANS equations are applied in viscous regions dominated

by small-scale turbulence features, while LES is applied in vorticity-dominated regions where

larger-scale turbulence features are present. Detached Eddy Simulation (DES) is a hybrid

method in which the transition from URANS to LES is determined by grid metrics. Travin

et al. [108] demonstrated that DES is able to capture wake features in flow past a cylinder

that resemble those in experiments with much better fidelity than URANS simulations. In

Hybrid RANS-LES (HRLES) simulations the RANS-to-LES transition is determined from

flow properties rather than grid metrics. A HRLES model was implemented in FUN3D by

Lynch [109], in which significant improvements in the wake of a cylinder were observed, and

drag predictions were greatly improved in comparison to URANS simulations. The HRLES

model implemented by Lynch blends the Menter Shear Stress Transport (SST) [101] and

the Smagorinsky approach [107] for Large Eddy Simulation [109, 110].

The LES formulation was successfully implemented by Lynch [109] to solve a single

equation for resolving the subgrid scale turbulence kinetic energy:

∂

∂t

(
ρkSGS

)
+

∂

∂xj

(
ρũjk

SGS
)
=

τSGSij

∂ũi
∂xj

− Cϵρ

(
kSGS

)3/2
∆

+
∂

∂xj

[(
µ̃

P r
+
µSGSt

Prt

)
∂kSGS

∂xj

]
, (11)
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where Cϵ = 0.916 and ∆ is the characteristic length given by ∆ = V
1/3
cell where Vcell is the

dual cell volume. Subgrid scale eddy viscosity is

νSGSt = Cν∆
√
kSGS , (12)

where Cν is a constant value 0.0667.

Kim and Menon [111] presented a localized dynamic kinetic energy model (LDKM) in

which the Cν and Cϵ coefficients are solved at a test filter scale and then applied to the

turbulence equations at the subgrid scale, rather than assuming a constant value. This

model was first derived for incompressible flow and later extended for compressible flow by

Menon and Patel [112].

Menon et al. [112] base the formulation on experimental results which indicate that the

subgrid-stress tensor τSGSij at the grid level ∆ and the Leonard’s stress Lij = (⟨ρũiũj⟩ −

⟨ρũi⟩⟨ρũj⟩)/⟨ρ⟩ at the test filter level ∆̂ are self-similar, where ⟨f⟩ indicates application of

the test filter to a variable f . Typically the test filter length is ∆̂ = 2∆. In the LDKM

method it is assumed that the subgrid stress τ̂SGSij is also self similar, so that

τ̂SGSij = ĈLLij , (13)

where ĈL is a constant that is assumed to be 1 in computations performed by Menon et al.

If the sub-scale kinetic energy k̂ at the test filter is defined as

k̂ =
1

2

(
⟨ρũ2k⟩
⟨ρ⟩

− ⟨ρũk⟩2

⟨ρ2⟩

)
(14)

then the Leonard’s stress (and test-level stress tensor) can be written as

Lij = ⟨τSGSij ⟩ = −2⟨ρ⟩Cν
√
k̂∆̂

(
⟨S̃kk −

1

3
⟨S̃kk⟩δij

)
+

2

3
⟨ρk̂δij⟩. (15)

In the set of equations above the only unknown is Cν ; therefore Menon et al. implement a

least-squares method presented by Lilly [113]:

Cν = −
L′
ijMij

2MijMij
, (16)

where

L′
ij = Lij −

2

3
⟨ρk̂δijMij = ⟨ρ

√
k̂∆̂

(
⟨S̃ij⟩ −

1

3
⟨S̃kk⟩δij

)
. (17)
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The Cϵ coefficient is determined in a similar manner:

Cϵ =
∆̂ (µ+ µt)

⟨ρ⟩k̂3/2

(
⟨T̃ij

∂ũj
∂xi

⟩ − ⟨T̃ij⟩⟨
∂ũj
∂xi

⟩
)
, (18)

where the tensor T̃ij is defined as

T̃ij =

[
∂ũi
∂xj

+
∂ũj
∂xi

− 2

3

∂ũk
∂xk

δij

]
. (19)

The filter is applied for every grid point at each time step to determine the local coefficients.

This method has been successfully demonstrated by Kim and Menon [111] and by Menon

and Patel [112], who obtained accurate results for incompressible and compressible turbulent

flows, respectively.

1.6.2.3 Hybrid Blending Function

In many HRLES approaches it is assumed that the URANS and LES regions transition can

be applied through a simple blending function:

G⃗HY BRIDT = FG⃗RANST + (1−F)G⃗SGST , (20)

where F is the blending function, and is equal to 1 in purely URANS zones and 0 in purely

LES zones.

The work of Sánchez-Rocha [114] indicates that simply blending the terms is not suffi-

cient, since the turbulence that was modeled in the URANS zone is not immediately resolved

upon transitioning to the LES zone. Non-physical effects were reported to be greatest in

regions in which there was an abrupt transition from URANS to LES. Sánchez-Rocha de-

rived specific hybrid terms which he included in the governing equations for a more physical

accurate model. He determined, however, that the computational expense of solving the ex-

act equations too great for practical purposes and instead proposed approximation terms.

Although implementation of the hybrid terms outlined by Sánchez-Rocha is beyond the

scope of this research, it is worth noting that without including the mixing terms the flow

solution was more sensitive to the blending function.

Sánchez-Rocha applied various blending functions, two of which have the following form:

Fo(y) =
1

2

{
1− tanh

[
C1(y/Ly − C2)

(1− 2C2)y/Ly + C2

]
/ tanh(C1)

}
, (21)
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where C1 and C2 are selected to be 2 and 0.2, respectively, and Fo is based on the function

defined by Kawai and Fujii [115], and is used in blending functions F1 and F2. Sánchez-

Rocha implemented five blending functions and compared the results of each:

F1(y) =

 Fo(y) for y ≤ d = Ly/4

0 for y > d

F2(y) = Fo(y), d = Ly

F3(y) =


1 for y ≤ L1

1− (y − L1)/(L2 − L1) for L1 ≤ y ≤ L2

0 for y > L2

F4(y) = e−y/Ly [cos(5πy/Ly) + 1] /2

F5(y
+) =

 1 for y+ < 45

0 for y+ ≥ 45
, (22)

where Ly is the dimension of the grid normal to the viscous wall and is equal to 3δ to 3.5δ

(where δ is boundary layer thickness) for Reynolds numbers 1400 to 3300. For F3, blending

terms are set as L1 = Ly/100 and L2 = Ly/3. The blending functions in these cases are all

based on distance from the wall.

When Sánchez-Rocha did not apply hybrid terms skin friction was under predicted by

HRLES simulations by 2–14%, depending on the blending function, while the error was

only 1.5–5.8% when hybrid terms were included.

For the HRLES model implemented in FUN3D there are currently two blending func-

tions simultaneously applied to different turbulence terms. These functions are based on

turbulence properties rather than distance from the nearest viscous surface. The first func-

tion,

x = max

( √
k

β∗ωy
,
500ν

y2ω

)
F1 = tanh(x4), (23)

is applied to turbulence production terms. The second function,

x = max

(
2

√
k

β∗ωy
,
500ν

y2ω

)
F2 = tanh(x2), (24)
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is applied to turbulence eddy viscosity. While these have been demonstrated to greatly

improve results [116] compared to the URANS equations in many cases, in other cases non-

physical results may result in zones where location of the RANS-to-LES transition is very

different between the blending functions.

In this research the Menter-SST model is used for forward flight cases, two-dimensional

cases, and hover cases, as specified. In enclosed test facility cases, although the flow is

attached on the blade surface, there are large regions of flow separation from nearby com-

ponents, which may influence blade loads. Because URANS turbulence models are only

accurate for attached flow, the HRLES model is applied in enclosed facility cases for im-

proved turbulence modeling in the wake.

1.6.2.4 Realizability Constraints

In many instances turbulence models can produce turbulence properties which are not

physically possible. Non-realizable properties can be produced due to approximations of

the turbulence model and numerical error. Realizability constraints are often enforced for

numerical stability and more realistic predictions of turbulence kinetic energy. A set of

conditions that should be met to ensure physically realizability in two-equations RANS

equations is outlined by Vreman [117]:

τii ≥ 0

(τij)
2 ≤ τiiτjj for i ̸= j

det(τij) ≥ 0. (25)

Equation 25 implies that the turbulence kinetic energy must be greater than or equal to

zero. Equation 25 can also be used to determine other constraints for turbulence properties,

based on the turbulence model, as described below.

Menter [101] proposed limits for turbulence kinetic energy and eddy viscosity to elim-

inate nonphysical buildup of eddy viscosity in stagnation regions and improve numerical
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stability:

Pk = min(Pk, ClDk)

µt ≤
a1k√
2|Ω|

, a1 = 0.31 (26)

where Pk is turbulence kinetic energy production term, Dk is the dissipation term, and Ω

is vorticity. In the original formulation Cl = 20 and a1 = 0.31. These constraints were

applied in the current version of FUN3D.

Realizability conditions have also been determined for the LES equations. Fang and

Menon [118] derived realizability constraints for a Kinetic-Eddy Simulation (KES) approach.

In most of the computational domain the KES formulation is similar to the LES formula-

tion. In coarser regions where the grid scale is not sufficient for LES, the behavior of KES

approaches that of Very Large Eddy Simulation (VLES). From the second realizability

constraint (Eq. 25) Fang and Menon derived the constraint,

kSGS ≥
√
3

Cα
νt

√
2SijSij −

2

3
S2
kk, (27)

where Cα is the constraint coefficient which is taken as Cα = 1 in the cited work. Fang and

Menon utilized the third constraint (Eq. 25) to provide a limit on the coefficient Cν used

in Eq. 12 for computing eddy viscosity:

Cν = min

Cν , 1√
6

√
kSGS/lSGS√
SijSij − 1

3S
2
kk

,

 (28)

where lSGS is the turbulence length scale. As the value of lSGS approaches ∆ the KES

formulation approaches LES; therefore, in Eq. 28, lSGS is set to ∆ when implementing this

LES realizability constraint in FUN3D.

1.7 Contributions to State of the Art

Fully three-dimensional coupling between CFD and CSD solvers has not yet been applied

to rotor applications. The primary objective of this research is to develop an interface

for CFD/CSD coupling that communicates three-dimensional blade deformations and a

three-dimensional distribution of forces on the blade surface. Rather than communicating
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information at the quarter-chord, according to the standard convention, all information is

exchanged at individual nodes and faces on the CSD and CFD surface meshes. Since the

meshes are not identical, data interpolation is required for communication between each

set of nodes. This type of interface permits both cross-sectional and spanwise aeroelastic

coupling and facilitates the simulation of active controls that produce airfoil deflections.

Verification is achieved in part through a work conservation analysis across the inter-

face and also by performing an aeroelastic stability analysis including pitch, plunge, and

camber modes and comparing to analytical solutions. Computational hover and forward

flight performance predictions are also compared with experimental data to verify blade

torsion and flap bending aeroelastic behavior. In addition, response to camber actuation

is verified by comparison to theoretical response as computed by Peters’ finite-state theory

for flexible airfoils. A stability analysis for varying camber stiffness in compressible flow is

also demonstrated in two-dimensional analyses for a section of the HART blade.

Effects of camber actuation on blade deformations as well as hub loads are examined.

Specifically, the vibratory load magnitudes are analyzed to determine the potential for

camber actuation to be used for reduction in vibratory loading. Results of finite-state-

based and CFD-based computations are compared to evaluate accuracy of the finite-state

approach and determine any advantages of the CFD-based approach.

Simulations are performed inside a test facility configuration to determine the influence

of the facility walls and components. Results are verified for free air and enclosed facility

cases by comparing to experimental data from the HART II [119] and HOTIS [120] exper-

imental tests. The influence of turbulence models and implementation of LDKM in the

HRLES turbulence model are examined to determine requirements for physical results to

be achieved during the simulation.
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CHAPTER II

DESCRIPTION OF CODE

An interface was developed in which a distribution of forces over the entire wetted surface

of the blade is transmitted from the CFD solver to the CSD solver, and then updated

CFD surface mesh coordinates of the deformed blade are returned to the CFD solver. This

coupling method permits communication of arbitrary force distributions and deformations

in both the spanwise and chordwise directions. The capabilities introduced by this research

include simulation of active camber and introduction of camber bending due to aerodynamic

pressure distribution, inertial terms, and elastic stresses.

2.1 CSD Model – UM/NLABS

The CSD code chosen to demonstrate the coupling methodology presented in this the-

sis is the University of Michigan Nonlinear Active Beam Solver (UM/NLABS, simply

called NLABS in this thesis). This CSD solver is ideal because it accurately and effi-

ciently computes three-dimensional deformations of a rotor. The structural method imple-

mented in NLABS separates a nonlinear three-dimensional blade structure into a series of

two-dimensional blade sections and a nonlinear one-dimensional beam. By combining the

two solutions, the deformed three-dimensional rotor blade surface can be recovered. This

method was introduced by Cesnik and Hodges [121]. Structural properties of a cross section

are computed by a finite-element analysis performed in the University of Michigan Vari-

ational Asymptotic Beam Sectional analysis (UM/VABS), and these properties are then

utilized by NLABS for the cross-section analysis [13, 122]. This method of approximat-

ing three-dimensional blade deformations is much more computationally efficient than an

equivalent three-dimensional structural method. NLABS can compute aerodynamic loads

as well as prescribed forces that are applied to the structure. A finite-state model based

on Peters’ finite-state theory for flexible airfoils [64] is provided in NLABS for aeroelastic

analysis at a much smaller computational cost, although it is of lower fidelity than CFD
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computations. A comprehensive solution using the finite-state and structural models can

be utilized as a fast approximation of blade deflections, motion, and an initial trim solution

before coupling with FUN3D. Interface routines in NLABS contributed by Thepvongs et

al. [123] facilitate the coupling procedure.

2.1.1 Structural Model

In the structural formulation of NLABS the rotor blade is modeled as a one-dimensional

beam with its span along a reference line that may have curvature and twist. Deflections are

solved via nonlinear beam equations so that large deflections can be accurately computed.

Unlike typical methods for rotor blade analysis, the cross-section of the blade is allowed to

dynamically deform.

To construct a three-dimensional model from the cross-section and beam deformations,

a transformation of the cross-sectional reference frame is constructed. The method follows

the formulation developed by Palacios and Cesnik [122]. A reference line r is defined along

the dominant direction of the structure (such as the elastic axis or quarter chord of a rotor

blade). Vector r⃗ is defined as the position of a point along r, and x⃗ is defined as the

position vector for a point inside the undeformed three-dimensional structure, as illustrated

by Palacios and Cesnik [122] in Fig. 6. A reference frame b is defined such that b1(x1)

is tangent to r, and bα(x1) defines the undeformed cross-section. For convenience, the

subscript α is used to indicate indices 2 and 3. In this manner the position of a point in the

undeformed structure has been separated into spanwise and cross-sectional components:

x⃗(x1, x2, x3) = r⃗(x1) + xαbα(x1). (29)

In order to define the deformed structure, X⃗ is defined as the position after deformation

of a particle initially at x⃗, and R⃗ is equal to the averaged value of X⃗ on the cross sections of

r, defining the deformed reference line R. Vector B⃗1 is defined as the deformation tangent

to R, and B⃗α is the deformation of b⃗. The deformed position of any point in the structure

can then be defined as:

X⃗(x1, x2, x3) = R⃗(x1) + xαB⃗α(x1) + w⃗(x1, x2, x3), (30)
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Figure 6: Structural deformation model of Palacios and Cesnik [122].

where w⃗ is a measure of the cross-sectional deformation after rigid-body translations and

rotations have been removed. The warping, which is assumed to be small, is decomposed

using a Ritz approximation into a set of assumed cross-sectional deformation functions and

residual three-dimensional warping:

w⃗(x1, x2, x3) =

Nq∑
m=1

qm(x1)ψqm(x2, x3) + w⃗r(x1, x2, x3). (31)

Distributions of cross-sectional displacements {ψqm} or “finite section deformation modes”

form a complete and orthogonal set of cross-sectional deformation functions. The values

of {qm} are the corresponding amplitudes. Kinematics of the one-dimensional beam are

represented by torsion, the bending in two directions, and axial strain. These strains are

written as vector ϵ⃗:

ϵ⃗(x1) = {ε11, hcκ1, hcκ2, hcκ3}, (32)

where hc is the characteristic length of the cross section, ε11 is the axial force strain measure

and κi are the moment strain measures. The three-dimensional strain is written as a

column matrix ε⃗T = {ε11, 2ε12, 2ε13, ε22, 2ε23, ε33}, and combining components of the beam
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deflections and cross-sectional warping, the strain is:

ε(x⃗) = εhŵ(x⃗) + (hc/RC)εRŴ (x⃗) + (hc/LC)εlŵ
′, (33)

where ŵ is the nondimensional warping vector w⃗/hc and the matrix operators are defined

by Cesnik and Hodges [121].

To perform a dimensional reduction, three characteristic lengths are identified: 1) the

cross-sectional characteristic dimension, hc; 2) the characteristic wavelength of the response

along the reference line, Lc; and 3) the characteristic length of the initial curvature and twist,

Rc. It is assumed that hc ≪ Lc ≈ Rc. The cross-sectional characteristic length ĥc is defined

as

ĥc = hc/Lc ≈ hc/Rc ≪ 1. (34)

It is also assumed that the classical beam strains ϵ are on the same order as ĥc, and a scaled

strain parameter is introduced:

ϵ̂ = ĥc
−1
ϵ ∼ 1. (35)

Warping of the cross-section is solved by finite-element analysis, with homogenization

of the spatial variables only, rather than both time and space. This quasi-static formula-

tion solves arbitrary cross-sectional deformations, but neglects inertia of the cross-sectional

warping deformations. In order to include inertial terms for more accurate solutions of a

dynamic system, finite-section modes may be included. This method was implemented by

Palacios and Cesnik in UM/VABS.

2.1.2 Aerodynamic Model

In the NLABS aerodynamic model, airloads are computed using Peters’ flexible airfoil

aerodynamics [64] and finite-state inflow model [124] in combination with empirical data

for profile drag and stall loads. Peters’ finite-state model [64] approximates arbitrary camber

deflections using Chebyshev polynomials. This model also accounts for variable freestream

velocity and induced flow due to the wake as well as other sources. The assumptions of

Peters’ theory are that of a thin, inviscid airfoil, and that the airfoil is operating in the

linear aerodynamic regime. The matrix form of the lift and drag equations are as follows
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[64]:

1

2πρ
{Ln} = −b2[M ]{ḧn + v̇n} − bu0[C]{ḣn + vn − λ0} − u20[K]{hn}

−b[G]{u̇0hn + ū0ζn − u0vn + u0λ0}
1

2πρ
{D} = −b{ḣn + vn − λ0}T [S]{ḣn + vn − λ0}+ {ḧn + v̇n}T [K −H]{hn}

+{u̇0hn + ū0ζn − u0vn + u0λ0}T [H]{hn}, (36)

where

{vn} =

[
v0 v1 0 0 . . .

]T
{λ0} =

[
λ0 0 0 0 . . .

]T
{λ1} =

[
λ0 λ1 0 0 . . .

]T
{1} =

[
1 0 0 0 . . .

]T
, (37)

in which vi terms are the generalized inflow velocities and λi terms are the generalized

induced velocities. The matrix for the aerodynamic stiffness, [K], is defined as

K1,n = (n− 1) for odd n

K2,n = (n− 1)f for even n

Kn,n = −(n− 1)/2

Km,n = 0 for all other Km,n, (38)

matrices for the aerodynamic damping, [C] and [S], are defined as

C1,1 = f

C1,2 = 1

Cn,(n−1) = −1/2

Cn,(n+1) = 1/2

Cm,n = 0 for all other Cm,n, (39)
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and

S1,1 = f

Sm,n = 0 for all other Sm,n. (40)

The matrix for inertia [M ] is defined as

M0,0 = 1/2

M1,1 = 1/16

M0,2 = M2,0 = −1/4

Mn,n =
n

4(n2 − 1)
for n ≥ 2

Mn−1,n+1 = Mn+1,n−1 = −1/8n for n ≥ 2

Mm,n = 0 for all other Mm,n, (41)

and matrices for the inflow, [G] and [H], are defined as

G1,2 = 1/2

G2,3 = 1/4

Gn,(n−1) = −1/4

Gn,(n+1) = 1/4 for n ≥ 3

Gm,n = 0 for all other Gm,n (42)

and

Hn,n = (n− 1)/2

Hm,n = 0 for all other Hm,n. (43)

Although Peters’ theory does not implicitly include compressibility effects, the Prandtl-

Glauert correction factor
1

1−M2
∞

is applied to the aerodynamic stiffness matrix [K] [64].

In NLABS the implementation of this model applies a dynamic inflow model based on

the Peters and He model [124] for solution of the wake-induced velocity λ0. This model

makes the assumption that w, the velocity normal to the rotor plane, can be expressed as
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a function of radial and azimuthal terms:

w(r, ψ, t) =

∞∑
s=0

∞∑
j=s+1,s+ψ,...

ϕsj(r)
[
αsj(t)cos(sψ) + βsj (t)sin(sψ)

]
, (44)

where r and ψ are radius and azimuth, respectively, and ϕ is the set of radial expansion

functions. The α and β coefficients are inflow states, which are dependent on circulatory

lift, and defined in [124]. The zeroth-order inflow λ0 is determined as:

λ0 =

∞∑
s=0

∞∑
j=s+1,s+3,...

J0

(sb
r

)
ϕsj(r)

[
αsj(t)cos(sψ) + βsj (t)sin(sψ)

]
, (45)

where b is the semi-chord and J0 is the Bessel function of the first kind.

Induced drag is defined in Peters’ theory, but the profile drag must also be included

to obtain an accurate drag calculation. NLABS corrects the airloads with a quasi-static

profile drag term, as well as a dynamic stall term based on the ONERA model [125], taking

the approach outlined by Stumpf and Peters [126]. The derivation used in NLABS can be

found in Thepvongs et al. [127], and the corrected airloads can be written as:

L0,tot = L0,fs − ρbcd0(u
2
0 + vTSv)

1
2Sv + ρu0Γ0

L1,tot = L1,fs + ρu0Γ1

D0,tot = D0,fs + ρbcd0(u
2
0 + vTSv)

1
2u0, (46)

where cd0 is the profile drag, Γs,0 and Γs,1 are dynamic stall states, and subscripts tot

and fs refer to the total airloads and finite-state airloads, respectively. Profile drag and

dynamic stall states are determined near stall by XFOIL [128], a panel code with boundary

layer and compressibility corrections for two-dimensional airfoils, and in deep stall they

are determined by an empirically-derived approximation. The drag and stall states are

formulated as functions of Reynolds number, angle of attack, and camber deformation.

2.1.3 CSD/Finite-State Aerodynamics Coupling

The set of aeroelastic equations are defined by the structural, finite-state, wake, and dynamic

stall equations previously described. The aerodynamic motion and forces are related with
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those of the structural dynamics through the expression derived in Thepvongs et al. [127]:

A(X)Ẋ + S(X, X̂) = Lfs(X, Ẋ, X̂, α, β,Γs)

BC(X̂) = 0, (47)

where A is the inertia matrix operator, S is the structural matrix operator, X, Ẋ, and

X̂ are the structural state vector, its time derivative, and its boundary conditions. The

aerodynamic loading operator Lfs is a function of the structural, inflow, and dynamic

stall states. A three-point backwards Euler scheme is carried out for time integration of

the first-order equations, and a four-point backwards Euler scheme is used for integration

of the second-order dynamic stall equations. This formulation allows for a simultaneous

solution of the structural and aerodynamic equations, which is solved via Newton-Raphson

iterations.

2.1.4 Trim

In this research rotor simulations are trimmed for steady level flight through adjustment

of the collective, lateral cyclic, and longitudinal cyclic controls. The state of current flight

conditions is defined as the time-averaged thrust, pitching moment, and roll moment, which

are driven to specified trim values. An auto-pilot method described by Peters et al. [129]

is applied, in which control settings are updated every time step. The governing equations

for these control settings are

τ θ̈ + θ̇ = J−1{a(G− g)− bġ − dg̈}

Jkl ≈ 1

T

∫ T

0

∂gk
∂θ1

dt, (48)

where θ = [θ0 θ1c θ1s]
T is the set of collective, lateral, and longitudinal control settings, T is

the period, and G and g are the target and current values of the trim settings, respectively.

In the simulations performed in this research the coefficients b, d, and τ are set to 0, and

a = 1/T . The Jacobian J is numerically approximated by applying a step change in control

settings and recording the response after one revolution. This trim method is independent

of the structural and aerodynamic equations; therefore, the aerodynamic model can be
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interchanged without affecting the trimming process, and for convenience it is used in both

the finite-state and CFD-based simulations.

2.2 CFD Model – FUN3D

The CFD solver chosen for this analysis is Fully Unstructured Navier-Stokes Three-Dimensional

flow solver (FUN3D) developed by NASA Langley Research Center [130, 131]. FUN3D is

a flow solver for unstructured grids, which has been demonstrated by O’Brien [132] and Re-

naud et al. [133] to give comparable results with structured mesh methods for compressible

and incompressible equation sets.

An overset rotor application was developed by O’Brien [132] to facilitate common blade

motions for overset meshes, and full rotor articulation was added by Abras [134]. FUN3D

has the capability to make calls to the Donor interpolation Receptor Transaction Library

(DiRTLib) [135] and the Structured, Unstructured, Generalized overset Grid Assembler

(SUGGAR) [136] library developed by Ralph Noack to perform “on-the-fly” hole cutting

and generation of domain connectivity information. This feature is essential for the coupling

process, as it allows arbitrary deflections to be applied to the CFD grid at every time

step. Body motion can be applied through rigid grid rotation, grid deformation, or both.

Rigid rotations are applied through a simpled coordinate transformation of all grid nodes.

For deforming grids, a boundary surface can be transformed or specified. Cells off the

surface of the blade are deformed by applying static elasticity equations to edges of the cell

and solving the system iteratively. Biedron and Lee-Rausch [48, 137, 138] loosely coupled

FUN3D with CSD solver CAMRAD II with elastic bending and twisting degrees of freedom

to include aeroelastic influences in forward flight airload predictions and perform a blade-

vortex interaction analysis.
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2.2.1 Governing Equations

FUN3D uses a finite-volume scheme to solve the instantaneous Navier-Stokes equations,

which are expressed in tensor form as

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂p

∂xi
+
∂tji
∂xj

∂

∂t

[
ρ

(
e+

1

2
uiui

)]
+

∂

∂xj

[
ρuj

(
h+

1

2
uiui

)]
=

∂

∂xj
(uitij)−

∂qj
∂xj

, (49)

where e is internal energy and h = e+ p/ρ is the specific enthalpy. The formulation for the

viscous stress tensor tij assumes a Newtonian fluid:

tij = 2µ

(
sij −

1

3
skkδij

)
, (50)

where µ is molecular viscosity, sij is the strain-rate tensor equal to
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, and

δij is the Kronecker delta.

The heat flux vector qj is

qj = −κ ∂T
∂xj

, (51)

where κ is the thermal conductivity and T is the temperature. Constant specific heat

coefficients are assumed, allowing the following relation to be made:

qj = − µ

Pr

∂h

∂xj
, (52)

where Pr is the Prandtl number.

The static pressure term p is determined through the equation of state for a perfect gas,

p = (γ − 1)
(
E − ρ

u2 + v2 + w2

2

)
, (53)

and the laminar viscosity µ is determined by Sutherland’s law:

µ =
1 + C∗

T + C∗T
3/2, (54)

where C∗ = 198.6/T∞.
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CHAPTER III

THREE-DIMENSIONAL COUPLING INTERFACE

The fluid-structure interface of many CFD/CSD rotor coupling methods apply blade de-

flections via coordinate transformations at the elastic axis. Local deflections and rotations

of the airfoil about the three coordinate axes are applied to each node on the blade surface

(Fig. 7(a)). Aerodynamic forces and moments are then sampled or integrated on sections

along the span of the blade, and the three forces and three moments are communicated to

the CSD solver (Fig. 7(b)). This method has been demonstrated to be effective in many

computational efforts [45, 46, 48, 49].

For three-dimensionally morphing structures a one-dimensional FSI is not sufficient.

Information about the chordwise distribution of pressure is necessary for the CSD solver

to solve airfoil deflections. To provide sufficient information for arbitrary camber modes,

forces are calculated for each cell on the CFD surface mesh (Fig. 7(d)), and these forces are

applied to an interface mesh generated by the CSD solver. The interface mesh consists of a

triangulation of the nodes that define blade cross sections at several stations along the span

of the blade. These forces are used to solve for spanwise deflections as well as deformations

of the airfoil. Coordinates of the CFD surface mesh are then interpolated from the deformed

CSD interface mesh and transferred back to the CFD solver (Fig. 7(c)) using an inverse

isoparametric scheme [139, 140]. This method allows for arbitrary deformations of the

blade, limited only by the resolution of the grids, and the assumption that the rotor radius

is large compared to the chord.

3.1 Data Interpolation Across the Coupling Interface

The interpolation scheme employed by NLABS is an inverse isoparametric mapping method

[139, 141] implemented by Lee [140]. In this scheme a search is performed to determine the

CSD element in which each CFD node is located. A node is considered to be contained

by an element if there exists a vector normal to the blade surface that intersects both the
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(a) Conventional structural interface (b) Conventional airload interface

(c) New structural interface (d) New airload interface

Figure 7: Conventional FSI method and new FSI method.
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CFD node and CSD element. If the CFD node is contained by more than one element then

the element closest in distance to the node is used for interpolation. The displacement of a

CFD node j is defined as [123]

uCFDj = Nju
CSD
i , (55)

where Nj is a row matrix of the element shape functions for node j, and uCSDi is a column

matrix of the displacements of the nodes defining CSD element i.

The assumption in Eq. 55 is that the distance from the CFD node to the CSD element

is small. However, this distance can become large at places where there is a discontinuity

in cross-section geometry. In a test case of the CFD/CSD interface, a “wrinkling” of the

blade surface appeared at some locations, as observed just inboard of the trailing edge tab

when a 20◦ rigid pitch rotation is applied (Fig. 8(a), 8(b)). This is a combined effect of

the rotation of the grid surface and the separation distance of the CFD node from the CSD

element. Equation 55 has been modified with an additional term to include deflections due

to rotation of the element. This term improves the smoothness of the surface even when

very large deflections are applied:

uCFDj = Nju
CSD
i + Cdj , (56)

where dj is the distance of CFD node j to the corresponding structural element, and C

is the rotation matrix that transforms the element normal vector from its undeformed to

deformed orientation. When the rotation term Cdj is included, the smoothness of the

airfoil geometry is preserved (Fig. 8(c)). Although the CFD and CSD surface meshes both

represent the same geometry, there may be CFD nodes that are not within the any of the

CSD elements due to the different surface discretizations. In this case the deflections are

extrapolated as:

uCFDj =

P∑
i=1

[
γij(x

CSD
i − xCFDj )2 + r2

]1/2
(57)

where xCSDi and xCFDj are the positions of CSD and CFD surface nodes, respectively. P

is the number of structural nodes used for the extrapolation, r is the shape parameter

[141], and γij are the weighting coefficients. Displacements of extrapolated nodes are av-

eraged with surrounding interpolated nodes to improve the smoothness of the surface near
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(a) Original mesh

(b) Deformed mesh without rotation term

(c) Deformed mesh with rotation term

Figure 8: CFD surface mesh with and without rotational term in the interpolation equation.
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extrapolated regions.

Interface routines in NLABS allow external (e.g. aerodynamic) forces to be applied to

structural nodes. The transfer of forces from the CFD cell faces to the CSD nodes applies the

same finite-element shape functions that were used for blade deformations. Aerodynamic

forces are distributed to CSD nodes of element j in the following manner [123]:

FCSDi = NkF
CFD
k (58)

where FCSDi is the portion of the force at CFD face center k distributed to CSD node i,

and Nk is the row matrix of shape functions evaluated at the center of CFD cell k. If a cell

center is not enclosed by any structural element, then its corresponding force and moment

contribution are applied to the nearest structural node.

Unnecessary computational effort can be spent searching for the CSD element used for

interpolation if the search is performed over all CSD elements. For computational efficiency,

each blade surface is divided into the following surface patches: top, bottom, root and tip.

The interpolation and extrapolation routines are performed separately for each of these

smaller domains on each blade.

3.2 Modifications to FUN3D

The primary contribution of this research is the formulation, implementation, and testing

of a CFD interface methodology for coupling the CFD solver with the CSD solver. Modifi-

cations for implementation of the methodology in NLABS were contributed by Thepvongs

[123], while the contribution of the author was in implementing the coupling interface in

FUN3D. While routines were previously available in FUN3D for coupling with CSD codes

CAMRAD II [48] and DYMORE [49], these methodologies did not provide capabilities

for a three-dimensional fluid-structure interface. The approach taken in this research up-

dates three-dimensional deformations in the CFD blade surface mesh and communicates a

three-dimensional distribution of forces on the blade surface to the structural solver.

The CFD portion of the interface begins by collecting all nodes on the blade surface.

These nodes are sorted by blade and surface patch and transferred to NLABS for initial-

ization of the inverse isoparametric mapping. Similarly, the cell face centers on the blade
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surface are calculated and sorted. The coordinates of nodes and face centers are communi-

cated to NLABS, which performs the searches for corresponding structural elements used

for interpolation. This procedure is performed only on the first iteration; the mapping in-

formation is stored and accessed in future iterations. Subsequently, a call is made to the

structural solver in the NLABS library each time step to transfer blade loads and to receive

updated node coordinates from the CSD solver (Fig. 9).

Forces are computed at the center of each triangular cell face that lies on the surface of

the blade. From the pressure coefficients at face vertices, a linear interpolation is performed

to define the pressure at the face center. The area and normal vector of the triangular faces

are calculated from the cross product of two cell edges:

Acell =
|⃗a× b⃗|

2

n⃗ =
a⃗× b⃗

2Acell
, (59)

where Acell is the area of the face, n⃗ is the normal unit vector, and a⃗ and b⃗ are vectors from

the first to second node and from the first to third node defining the cell face, respectively.

The force vector F⃗ is then calculated for each cell on the blade surface:

F⃗ = cpq∞Acelln⃗, (60)

where q∞ is the freestream dynamic pressure. The skin friction is expected to have negligible

influence on normal blade loading and is not currently included in these forces, but can be

added.

These forces are communicated to NLABS and applied as external loads during the

next structural time step. After the structural solution is computed, updated CFD nodes,

as well as Euler angles describing blade root orientation and root-to-tip orientation of the

blade, are returned to FUN3D. Root-to-tip angles (subscript r-t) include both the rigid

and elastic deflections from the root and tip, and are defined as

θr−t =
1

2
(θroot + θtip)

βr−t = tan−1
( ztip − zroot
xtip − xroot

)
ζr−t = tan−1

( ytip − yroot
xtip − xroot

)
, (61)
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Figure 9: Flowchart of FUN3D/NLABS coupling process.
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where θr−t is the pitch angle, βr−t is flap angle, and ζr−t is lead/lag angle. An inverse

transformation is next applied to the CFD node coordinates using the root-to-tip Euler

angles of the blade. These deflections are reapplied later as rigid rotations of the entire

blade grid. The purpose of this procedure is to minimize the deformation of grid cells, and

thus retain grid quality and prevent deformation of cells to the extent that their volumes

become negative. The transformations are defined as

Cθ =


0 0 0

0 cos θr−t sin θr−t

0 − sin θr−t cos θr−t



Cζ =


cos ζr−t sin ζr−t 0

− sin ζr−t cos ζr−t 0

0 0 0



Cβ =


cosβr−t 0 sinβr−t

0 0 0

− sinβr−t 0 cosβr−t

 (62)

and are applied in the following order:

X∗
i = C−1

θ C−1
ζ C−1

β Xi. (63)

Xi is a column matrix of the original coordinates of surface mesh node i in the rotating

frame, and X∗
i is a column matrix of the deformed mesh coordinates in the blade frame.

Nodes on the CFD blade surface mesh are updated with the values of X∗
i . An existing

volume grid deformation routine in FUN3D is called to deform the blade volume grid to

conform to the new boundary surfaces. The grid deformation routine utilizes a static elastic

model that applies strains to cell edges until an equilibrium position is reached. The root-

to-tip angles are then applied as a rigid rotation to the volume grid of the blade:

Xn
j = CβCζCθX

∗
j , (64)

where j is the index of volume grid nodes. A “dci-on-the-fly” feature in FUN3D uti-

lizes the SUGGAR [136] library for hole-cutting and computation of domain connectivity

interpolation between the overset grids.
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To prevent possible aeroelastic instabilities or large excursions in trim and elastic motion

from the converged solution, the trimmed solution from a comprehensiveNLABS simulation

is used for the initial rigid and elastic motion of the blade. Initially finite-state aerodynamic

loads are applied, after which a transition to CFD loads is made, using a weighting term.

In the current implementation f is piecewise linearly dependent on time, such that

f = 0, ψ ≤ ψ1

f =
ψ − ψ1

ψ2 − ψ1
, ψ1 < ψ < ψ2

f = 1, ψ ≥= ψ2, (65)

where ψ is the current azimuth and ψ1 and ψ2 are user-defined. This method is intended

to avoid large blade deflections that might result from the initial CFD solution, and aid in

the convergence of the flow solution and trim solution.

3.2.1 Conservation of Work

The aerodynamic and structural components should ideally form a closed system, as dis-

cussed by Smith [142]. Since the method of extrapolating and integrating forces does not

automatically enforce conservation of work in the present method, work is compared on

the CFD and CSD surface meshes to determine the magnitude of error in work across the

interface.

Comparison of the integrated work on each side of the interface over one time step can

provide insight into the magnitude of error introduced by data interpolation. Aerodynamic

work is calculated and integrated over the entire blade surface, for a single time step [142]:

Wn
AERO =

N∑
i=1

(Fni · rnd,i), (66)

where n is the time step index, i is the face index, F is the force vector, and r is the

displacement vector in the rotating frame over one time step. When quarter-chord forces

are communicated across the interface the contributions of work from moments are also

included. Work was integrated over each cell, over the entire blade surface; thus moment

contributions were included implicitly. Work was integrated separately over the set of CFD
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nodes and the set of CSD grid nodes. Work is conserved across the interface if

Wn
CFD =Wn

CSD. (67)

Otherwise the error is defined as the difference between the spatially-integrated work on

the CFD and CSD grids:

ϵ =Wn
CFD −Wn

CSD. (68)

Two test cases were explored to determine the magnitude of error in work. In the first

case work was evaluated on CFD and CSD surface meshes in compliant-airfoil simulations

at M∞ = 0.64. Camber stiffness was varied in two different cases, such that ωδ/ωα = 12.1

and ωδ/ωα = 60.5, where ωδ is the natural frequency of the camber mode, and ωα is the

natural frequency of the pitch mode. Pitch and plunge values were set such that the natural

frequencies were equivalent to the first natural frequencies of the HART [119] rotor at 109

rad/s. In the lower-stiffness case, even when large high-frequency camber oscillations were

present, the normalized error, ϵn = (Wn
CFD −Wn

CSD)/(W
n
CSD,max −Wn

CSD,min), remained

under 1.5% at all time steps. In the higher-stiffness case the normalized error was less

than 0.5% throughout the simulation. The error is largest during the periods when high-

frequency oscillations (Fig. 10) were generated due to the high-frequency excitation of the

camber mode.

Error in conservation of work was also evaluated in a three-dimensional rotor configura-

tion. In the baseline case the normalized error is within 0.08%, and in a zero-phase, 0.5%c

magnitude camber (C0) actuation case, it is less than 0.05% (Fig. 11). During several

revolutions error in aerodynamic work may become cumulatively large. To ensure that the

cumulative error was small and bounded the work was integrated in both time and space

[142]:

WAERO =

Nn∑
n=1

Wn
AERO =

Nn∑
n=1

N∑
i=1

Fni · rnd,i, (69)

where N is the number of surface points and Nn is the number of time steps. In each blade

section case work was integrated over a time interval beginning and ending at peaks of pitch

oscillations. The integrated work in each case is very small: 0.21% in the ωδ/ωα = 12.1

case and 0.57% in the ωδ/ωα = 60.3 case. In the baseline case aerodynamic there is

54



0 5 10 15 20 25

−0.5

0

0.5

1

t* = ω
α
 t

W
n / (

1/
2 

ρ 
V

∞2
 c

 t)

 

 

NLABS, ω
δ
/ω

α
 = 12.1

FUN3D, ω
δ
/ω

α
 = 12.1

NLABS, ω
δ
/ω

α
=  60.5

FUN3D, ω
δ
/ω

α
 = 60.5

(a) Rate of work vs. time

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

t* = ω
α
 t

N
or

m
al

iz
ed

 E
rr

or
, %

 

 

ω
δ
 / ω

α
 = 12.1

ω
δ
 / ω

α
 = 60.5

(b) Relative error across the interface

Figure 10: Comparison of work calculated on each side of fluid-structural interface
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(a) Work per radian vs. azimuth
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Figure 11: Comparison of work calculated on each side of fluid-structural interface for
baseline and 0-phase camber actuation case
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a 0.010 N-m/rev difference in the work integrated on the CSD grid (Table 1), while in

the camber actuation case there is a 0.004 N-m/rev difference. The error is normalized

by the integrated aerodynamic work done by the active rotor in one revolution, E∗ =

(WCFD −WCSD)/WCSD,C0, which results in an error of 1.02% and 0.42% for the baseline

and actuated cases, respectively. Thus, it is concluded that the relative error is small for

both the instantaneous and time-integrated work.

Table 1: Integrated aeroelastic work (N-m) over one rotor revolution.
Baseline Camber actuation

(0◦phase, 0.25%c)
Maximum rate of work, N·m/rad 10.2 26.9
Minimum rate of work, N·m/rad -12.0 -35.2
NLABS time-integrated work, N·m/rev 0.036 0.953
FUN3D time-integrated work, N·m/rev 0.046 0.957
Error in integrated work, N·m/rev 0.010 0.004
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CHAPTER IV

VERIFICATION OF THE METHODOLOGY

Experimental data for full rotor configurations with variable-camber blades are not yet

available; therefore, verification of the methodology has been performed for one-dimensional

beam deflections and for two-dimensional cross sectional deflections. Together, these con-

figurations map the three-dimensional effects.

4.1 One-Dimensional Beam Model

A one-dimensional beam model is verified with experimental results for performance charac-

teristics of a rotor in hover and in forward flight. The experimental data are obtained from

two sources: 1) the Higher Harmonic Control Aeroacoustic Rotor Test (HART) test [119]

performed in the large low-speed wind tunnel Deutsches Zentrum für Luft- und Raumfahrt

(DLR), or German Aerospace Center, in 1995; and 2) the Hover Tip Vortex Structure (HO-

TIS) [120, 143] test performed in the rotor preparation hall of the DLR Institute of Flight

Systems in Braunschweig, Germany in 2006. In these experiments the thrust, figure of

merit, blade loading, and flow properties of a 40% scaled model of the four-bladed BO-105

rotor were evaluated.

Performance results for a rotor in forward flight and in hover were obtained from the

HART II [144] and HOTIS experiments [120, 143], respectively. In the HOTIS experiment

the rotor was nearly centered in a 6R× 6R× 4R (width × length × height) room, and the

rotor plane was 1.43R above the ground. Forward flight results were taken from the HART

II experiment [144], in which the rotor was placed 5R above the ground in the large wind

tunnel at the DLR. In both experiments the rotor was constructed with a NACA 23012

airfoil and had a radius 2m, chord length 0.121m, solidity 0.077, and a linear twist −8◦ per

radius length. In the HOTIS test there was a pre-cone angle of 2.5◦. Structural dimensions

and properties are available from the HART II experiment and are listed in Table 2.
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Table 2: HART/HOTIS Rotor Properties

Geometry

Radius, m 2.00
Root cutout, m 0.44
Chord, m 0.121
Geometric twist, deg/m -4.0
Solidity 0.077

Stiffness properties

Elastic axis, chords 0.275
EA, N·m 1.17× 107

GJ , N·m2 160
EI2, N·m2 250
EI3, N·m2 5200

Mass and inertia properties

m, kg/m 0.95
mθ1, kg·m 7.47× 10−4

mθ2, kg·m 1.70× 10−5

mθ3, kg·m 7.30× 10−4

4.1.1 CSD Grid

As described in Section 2.1, the CSD model consists of a nonlinear one-dimensional beam

model along the span of the blade and a two-dimensional model of the airfoil section at

each radial station. At the fluid-structure interface, 80 nodes define the airfoil cross section

of the blade at each of 44 radial stations. These nodes are connected to form a structured

mesh which serves as an interface surface for communication of forces and displacements

between the CFD and CSD solvers. Inverse isoparametric mapping (IIM) is performed to

interpolate data from the CFD grid to the CSD grid and vice-versa.

4.1.2 CFD Grid Independence

A HART II blade grid was obtained from NASA. The grid extends two chord lengths in all

directions from the blade, except at the blade root where it extends only one chord length

inboard. There are 20,400 nodes on the blade surface and a total of 0.896 million total

nodes in the blade grid, and the grid spacing at the outer boundaries of the coarse blade

grid is 0.17c. After initial simulations it was verified that the initial spacing normal to the

blade surface provides a y+ < 1.
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Grid quality was verified by Biedron and Lee-Rausch [48] in an analysis of vertical

vibratory loads. In the present research rotor performance was a key metric, and accuracy

was also required for in-plane loading. Therefore additional analysis was performed to verify

the required resolution for computing shaft torque.

4.1.2.1 Grid Analysis of a Blade Section

To determine the chordwise spacing necessary for accurate drag predictions, a grid study

was performed, comparing simulation results for blade sections to experimental data for the

NACA 23012 airfoil [145].

The circumferential grid spacing was refined as outlined in Table 3. Static simulations

were performed at M∞ = 0.5, Re = 1.7 million, and 0◦ angle of attack, and results were

compared to experimental data for the NACA 23012 airfoil obtained by Jacobs and Clay

[145]. The airfoil model in the experiment has a sharp trailing edge, while the HART rotor

has a 4.5%c, 0◦ tab with a blunt trailing edge. An airfoil grid with a sharp trailing edge

was generated to compare lift and drag with experimental data. Another grid with the

trailing edge tab was also generated to verify that grid independence was reached near

the trailing edge. Through computational analysis it was determined that 0◦ the trailing

edge tab increases lift by 8% and increases drag coefficient by 5% compared to the sharp

trailing edge. Computational lift and drag coefficients were corrected for this difference.

The Prandtl-Glauert correction factor

√
1

1−M2
∞

can be applied to the experimental lift

data, which was measured at incompressible freestream Mach numbers.

The characteristic spacing of the coarse grid in Table 3 is the same as the spacing of the

initial HART II blade grid. A fine grid (“Fine a”) with reduced leading edge and trailing

edge spacing was generated, as well as grids with further reduction of the leading edge

spacing (“Fine b”) and trailing edge spacing (“Fine c”).

The coarse grid over predicts drag by 124%. While grid refinement altered lift predictions

by less than 2%, drag predictions decreased up to 41% through grid refinement. Though

grid refinement greatly improves drag predictions, it still over predicts the experimental

value by 32-38%. This is expected to some extent, since the boundary layer is assumed to
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Table 3: Influence of grid spacing on lift and drag

Experiment Coarse Fine a Fine b Fine c

Chordwise l. e. spacing – 0.826%c 0.165%c 0.083%c 0.165%c
Chordwise t. e. spacing – 0.826%c 0.083%c 0.083%c 0.042%c
Lift coefficient 0.115± 0.01 0.131 0.129 0.130 0.129
Drag coefficient 0.0082± 0.0005 0.0184 0.0113 0.0108 0.0113

be fully turbulent, and this is reflected in the viscous drag, which constitutes 62% of the

total profile drag. The wing section in the experiment was covered with a smooth sheet

of aluminum, and Jacobs and Clay [145] state that some effects of turbulent transition

were observed, causing increases in lift and drag. Because there was little change in lift

and drag predictions through further refinement of the leading edge or trailing edge, the

characteristic spacing of the “Fine a” grid was used in generating refined three-dimensional

HART II blade grids with tetrahedral elements. Finer leading edge spacing was used near

the blade tip, since the area near the tip has a large influence on torque predictions because

of the high dynamic pressure and large moment arm associated with this region.

4.1.2.2 Grid Analysis of a Static Blade

A static simulation of the three-dimensional finite rotor blade with M∞ = 0.5 was first

performed to confirm that the changes in lift and drag for the refined blade grid were

similar to those observed in the blade section simulations. An intermediate blade grid was

also generated to verify that grid convergence was reached. Details are of the grids are

outlined in Table 4 and can be observed in Figures 12 and 13.

In the static blade simulation, the fine grid increased the lift prediction by 2% and

decreases the drag prediction 28%. The influence of grid resolution on drag prediction is

qualitatively observed upon examination of the pressure distribution (Fig. 14) on a cross-

section of the blade. At the leading edge the refined grid more accurately resolved the

pressure distribution, improving the drag prediction. Overall, the pressure was reduced

in the region near the stagnation point. Pressure distribution was also more accurately

resolved across the trailing edge due to the additional points across this surface. This

resulted in a pressure recovery across the trailing edge and therefore a decrease in drag
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Table 4: Blade discretization summary (per blade).

Structural model
Structural interface nodes 3680
Structural 1-D elements 43

CFD blade grid Coarse Medium Fine

Total number of nodes 896,241 2,298,435 3,479,399
Number of surface nodes 20,398 53,211 77,106
Circumferential leading edge spacing 0.826%c 0.248%c 0.165%c
Circumferential trailing edge spacing 0.826%c 0.124%c 0.083%c

CFD background grid Coarse Fine

Total number of nodes 1,046,807 4,219,631
Grid spacing near rotor plane 25%c 10%c

(a) Coarse (b) Fine

Figure 12: Leading edge of coarse and fine HART blade grids.

(a) Coarse (b) Fine

Figure 13: Trailing edge of coarse and fine HART blade grids.
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Figure 14: Pressure distribution comparison of medium and fine grid.

prediction. There was little effect on the lift, since pressure was primarily affected at the

leading edge and trailing edge.

4.1.2.3 Rotor in Hover

Finally, hover simulations were performed with the rotating four-bladed rotor configuration.

The coarse, medium, and fine grids described in Table 4 were applied in a steady simulation

of a rotor hovering in free air. The tip Mach number was 0.633 with collective pitch of 8◦,

which is near the maximum collective angle in the HOTIS experiments at the same Mach

number. In these CFD simulations airfoil deformations were prevented by setting a very

high cross-sectional stiffness. The pressure coefficient of the medium and fine grids were

nearly identical at 75%R, 85%R, and 95%R.

For further confirmation of grid convergence, the rotor performance characteristics were

compared among the three grids. The thrust coefficient of the medium and coarse grids
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Figure 15: Pressure distribution comparison of coarse and fine grid.
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varied from that of the fine grid by only 2-2.4% (Fig. 16). However, the coarse grid resulted

in a figure of merit (FM) prediction 14% lower than that of the fine grid, while the FM

predicted on the medium grid differed from the fine grid results by only 1.7% (Fig. 16(b)).

Therefore, the medium grid was used in subsequent simulations.

4.1.3 Validation of Rotor Performance in Hover

A rotor simulation with the medium grid in free air verified the behavior of the experimental

model. There was a 7% difference in thrust coefficient measured in the HOTIS and HART

II experiments, and there are at least three possible causes for the discrepancy. First,

there were slight differences in rotor configurations such as the geometry of the HART

versus HOTIS test rig. The fuselage in the HART experiment was larger in size than

the test rig used in the HOTIS experiment, and this can affect blade loading. Second, in

the HOTIS experiment, recirculation and test components had some effect on the rotor

performance [120, 143]; these issues are addressed in subsequent chapters. The HART

II experiment [119, 144] was conducted in a large wind tunnel with anechoic walls, and

therefore recirculation was assumed to be very small. Finally, the rotor is in ground effect

in the HOTIS experiment (1.43R above ground), while in the HART II experiment it is

over 5R above the ground.

Thrust was over predicted by 17% in FUN3D simulations when the rotor blades were

assumed to be rigid. In FUN3D/NLABS simulations a reduction in thrust was observed

due to elastic twist of the blade, caused by the nose-down pitching moment of the airfoil

at quarter-chord. The thrust coefficient prediction was greatly improved after aeroelastic

effects were applied, with a thrust 4.7% lower than a curve fit of the HOTIS data, and 2.1%

higher than the CT measured in the HART experiment (Fig. 17).

A curve fit was applied to the HOTIS data with the equation FM ≈ −4.503×10−4C−1.89
T +

0.6862. The rigid and elastic rotor simulations under predict the experimental fit by 6.7%

and 4.3%, respectively, indicating that aeroelastic effects were primarily important in de-

termining thrust in this case, with small improvements of less than 1% in figure of merit

prediction.
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Figure 16: Performance characteristics for various grid resolutions for the rigid HOTIS
rotor in hover.
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Figure 18: Normal force of HART II rotor at µ = 0.15

4.1.4 Validation of Rotor Airloads in Forward Flight

The FUN3D/NLABS coupling methodology was next applied in forward flight, following the

specifications in the HART II documentation [119]. Experimental data are not available at

the same flight conditions as the HART II baseline case, in which µ = 0.25 and αs = −5.0,

the flight conditions are similar. However, experimental data at similar flight conditions

was examined. The rotor was simulated at an advance ratio of 0.15 with a shaft angle of

−3.7◦. Thrust was trimmed to 3300 N, and both the lateral and longitudinal hub moments

were trimmed to 0 N-m. The unsteady sectional normal force coefficient and the vertical

tip deflection predicted by FUN3D were compared with experimental measurements [144].

4.1.4.1 Sectional Aerodynamic Loads

The FUN3D/NLABS analysis accurately predicts the azimuthal location of most of the

normal force coefficient peaks (Fig. 4.1.4.1). The phase error of predicted peak normal

forces at 71◦, 109◦, 243◦, and 282◦ azimuth is 1◦–8◦, and magnitude error of most of the

peaks is within 1–7% of the experimental value. However, at 141◦ azimuth the predicted

normal force peak lags the experimental data by 16◦, and the peak at 183◦ azimuth is not

captured. At 71◦ and 282◦ azimuth the normal force is under predicted by 26–33%.

When the mean is removed, then normal force peaks vary from experimental data by

10–24%. These results are comparable to results presented by van der Wall et al. [146], in

which loads and deflections from comprehensive analyses performed at German Aerospace
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Center, US Army AFDD and NASA Langley, Konkuk University of South Korea, ONERA,

University of Maryland, and Georgia Institute of Technology. Comprehensive analyses by

van der Wall et al. were performed for the HART II rotor at µ = 0.15, with a nose-up shaft

angle of 5.3◦. In the baseline case normal forces (with mean removed) at 155◦ azimuth

differed by 13–30% from exerimental measurements, and the peak normal forces at 253◦

differed by 1–18%. In CFD/CSD simulations performed by Smith et al. [147] at the same

institutions, peak normal force predictions at 155◦ were improved significantly, with errors

of less than 0.3–6%, except for a hybrid CFD/free wake simulation, in which the error was

30%. At 253◦ results were varied, with errors of 1–21%. While the normal force in under

predicted in the present case in some regions, errors in normal force are comparable to most

CFD/CSD and comprehensive results.

4.1.4.2 Vertical Tip Deflection

The vertical tip deflections are compared to verify the structural deflections are accurately

modeled (Fig. 4.1.4.2). Peak-to-peak vertical deflections are under predicted by the com-

putational simulation by 43%. The phase of the experimental measurements predicted by

FUN3D/NLABS simulations agreed with experimental measurements within the margin of

experimental error. Part of the error in deflection magnitude may be due to the uncer-

tainty in the HART II [146] experimental hub moment, in which the margin of accuracy

was ±15 − 20 N-m. In the results presented by van der Wall et al. [146] similar un-

der predictions (23–50%) in peak-to-peak vertical tip deflections were observed in all six

comprehensive analyses, relative to the averaged peak-to-peak deflections of the four rotor

blades. CFD/CSD analyses by Smith et al. [147] elastic flap predictions were comparable

to comprehensive results, under predicting peak-to-peak flap predictions by 23–63% in all

cases except in the analysis performed using the hybrid CFD/free wake code GENCAS, in

which elastic deflections were over predicted by 3%. In all cases except when GENCAS

is applied, vertical tip deflections are greatly under predicted. Predictions for vertical tip

deflections in the present case are typical of several other published CFD/CSD solutions.
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Figure 19: Tip deflections of HART II rotor at µ = 0.15

4.2 Two-Dimensional Cross Section Model

The primary advancement in CFD/CSD coupling capabilities contributed by this work is

the ability to analyze the influence of cross-sectional blade deformations. To verify that

aeroelastic cross-sectional deformations are modeled correctly, computational results were

compared to those of analytical models developed by Theodorsen [148] and Murua et al.

[63].

Modifications to the NLABS code were necessary to simulate the aeroelastic behavior

of the two-dimensional cross section. New translational and torsional boundary conditions

(Fig. 20) have been added to model the pitch and plunge degrees of freedom:

Mbc = −kαα (70)

Fbc = kζζ (71)

Beam deflections were eliminated by increasing the bending and torsional stiffnesses to 1020

N-m2, which eliminated deflections to less than 10−6c, so that the beam could be assumed

to be rigid.
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Figure 20: Diagram for airfoil with pitch and plunge degrees of freedom.

4.2.1 Theodorsen’s Model for Pitch and Plunge Modes

A classical flutter solution for slender wings with rigid airfoil sections was developed by

Theodorsen [148] in 1935. He derived a formula for frequency-based response of the pitch

and plunge modes of an airfoil in uniform freestream. Theodorsen’s method incorporates a

lift-deficiency function,

C(k) = F (k) + iG(k) =
H

(2)
1 (k)

H
(2)
1 (k)iH

(2)
0 (k)

, (72)

where k is the reduced frequency ω/bV∞, and H
(2)
0 (k) and H

(2)
1 (k) are Hankel functions

of the zeroth and first kinds, respectively. The real value of this function is near 1 at low

frequencies, indicating a similar lift response to that of a steady airfoil; and it approaches

0.5 as the frequency increases to infinity, indicating a 50% decrease in lift response, due to

induced downwash of the shed wake.

The vertical displacement (positive down) of the airfoil for small deflections is approxi-

mated as:

h(x, t) = ζ(t) + (x− ab)α(t), (73)

where ζ and α are the plunge and pitch deflections, respectively. The generalized forces Ln

are defined as

Ln = −b
∫ 1

−1
Tn(ξ)∆pdξ, (74)

where Tn(ξ) are the Chebyshev polynomials, ∆p is the pressure difference across the airfoil,

and ξ is the nondimensional distance from the midchord, x/b. The equation for lift (−L0)
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is formulated to include the lift deficiency function:

L0

πρb
= −b

(
ζ̈ − abα̈+ V∞α̇

)
− 2V∞C(k)αqs, (75)

where the left three terms are apparent mass terms, caused by acceleration of the fluid, and

the quasi-steady angle of attack αqs is defined as

αqs = ζ̇ +
(1
2
− a
)
bα̇+ V∞α. (76)

The generalized aerodynamic force L1 is the pitching moment of the airfoil at midchord,

and is equal to

L1

πρb
= −b

2

8
α̈− V∞b

2
α̇+ V∞C(k)αqs. (77)

The generalized aerodynamic forces, along with the generalized structural forces and

inertia, can be applied in the equations of motion to analytically determine flutter speed of

an airfoil or wing.

4.2.2 Analytical Flutter Model for Parabolic Camber

Peters [64] extended flexible thin airfoil theory for small arbitrary airfoil deformations with

variable freestream velocity. Peters’ thin airfoil theory has been applied by Murua et al. [63]

to derive flutter and divergence properties of a thin airfoil with three degrees of freedom:

pitch, plunge, and parabolic camber.

When the parabolic camber mode is included, the vertical displacement of the airfoil for

small deflections is approximated as

h(x, t) = ζ(t) + (x− ab)α(t) + Ψ(x)δ(t), (78)

where δ is the generalized camber deflection, and Ψ is the assumed camber shape. In this

case the camber shape is assumed to be parabolic, with a constant vertical offset to impose

orthogonality of the mode shapes:

Ψ(x) =
(x
b

)2
− 1

3
, (79)
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where b is the airfoil semichord. The equations of motion per Murua et al. [63] are then

ζ̈

b
+ xαα̈+ ω2

ζ

ζ

b
+Ψ(ab)ω2

δ

δ

b
=

κ

π

(V∞
b

)2
cl

xα
ζ̈

b
+ r2αα̈+ (rαωα)

2α = 2
κ

π

(V∞
b

)2
cm,ab

r2δ
δ̈

b
+Ψ(ab)ω2

ζ

ζ

b
+ ([rδωδ]

2 + [Ψ(ab)ωζ ]
2)
δ

b
=

κ

π

(V∞
b

)2
cΛ, (80)

where xα is the distance of the center of mass aft the elastic axis in airfoil semichords, a is

the location of the elastic axis relative to the midchord, κ is the inverse mass ratio, ω is the

natural frequency of the mode indicated by its subscript, rα is the radius of gyration, and rδ

is the nondimensional moment of inertia of the camber mode, defined as rδ =
√
Iδ/m. For

a flat plate with uniformly distributed mass, these quantities are r2δ = 4/45, r2α = 1/3 + a2,

and xα = −a. The generalized camber force Λ is given by Murua et al. [63] as a function

of distributed pressure p(x) and the camber shape Ψ(x):

Λ =

∫ b

−b
∆p(x)Ψ(x)dx. (81)

If harmonic oscillations are assumed then the generalized forces [149] are

L0

πρb
= −b

(
ζ̈ − abα̈− 1

12
δ̈ + V∞α̇

)
− 2V∞C(k)(αqs + δqs)

L1

πρb
= −b

2

8
α̈− V∞b

2
α̇− V∞

2
δ̇ − V 2

∞
2
δ + V∞C(k)(αqs + δqs)

L2

πρb
=

b

2
ζ̈ − ab2

2
α̈− b

12
δ̈ + V∞bα̇+

V 2
∞
b
δ, (82)

where the quasi-steady angle of attack and camber deformations are defined as

αqs = ζ̇ +
(1
2
− a
)
bα̇+ V∞α

δqs =
1

6
δ̇ +

V∞
b
δ. (83)

If there are no camber deflections this reduces to Theodorsen’s unsteady airfoil theory.

The generalized aerodynamic loads can then be written as

L =
∫ b
−b∆p(x)dx = −L0

Mab = −
∫ b
−b∆p(x)(x− ab)dx = bL1 − abL0

Λ = −
∫ b
−b∆p(x)

[(
x
b

)2
− 1

3

]
dx =

1

2
L2 +

1

6
L0. (84)
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From Eqs. 82 and 84 it is apparent that both lift and pitching moment are influenced by

the camber mode. Since pitch and plunge modes are dependent on the pitching moment

and lift, respectively (Eq. 80), the motion of these modes is coupled with parabolic camber.

For an airfoil with only the camber degree of freedom, flutter occurs at a nearly constant

reduced frequency per Murua et al. [63]:

kF = −6
G(kF )

F (kF )
≈ 1.07, (85)

which gives an approximate solution for nondimensional flutter speed that depends only on

inverse mass ratio:

VF
bωδ

=
1√

k2F + C(kF )κ
≈ (1.14 + 3.91κ)−1/2. (86)

4.2.3 Verification of Aeroelastic Airfoil Model

The CFD/CSD coupling methodology presented in this thesis thus far has been verified for

cross-sectional motions and deflections by comparing results with the analytical solutions

for the flutter speed derived by Murua et al. [63]. First, the NLABS parabolic camber mode

was examined for NLABS with its F-S aerodynamic model, and then the FUN3D/NLABS

solution was compared to these results.

4.2.3.1 Grid Analysis

The NACA 0012 airfoil was chosen for this validation case, as it is in accordance with thin

airfoil theory. A grid study was performed in which the damping ratios computed on four

grids of various size (Table 5) were compared at κ = 0.1 with a nondimensional freestream

velocity of V ∗ = 0.8. Grids were generated by extruding a two-dimensional unstructured

grid onto three planes. Grid cells were hexahedral in the boundary layer and pentahedral

in the farfield. In each level of refinement the circumferential resolution was doubled, and

the normal grid spacing is defined in Table 5. Grid C predictions resulted in an error in

the damping ratio of 2% (Fig. 21) compared to Grid D; this resolution limited the error

in flutter speed to less than 0.2%. The remainder of the simulations in the camber and

pitch/plunge stability analyses were performed on Grid C.
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Table 5: Two-Dimensional NACA 0012 Grids.

Grid Number Initial Normal Leading Trailing Maximum Damping
of nodes normal growth edge edge circumferential ratio

spacing rate spacing spacing spacing

A 13,476 1.7×10−5 c 1.2 0.002c 0.002c 0.02c 0.1049
B 40,937 8.5×10−6 c 1.15 0.001c 0.001c 0.01c 0.0338
C 141,068 4.2×10−6 c 1.1 0.0005c 0.0005c 0.005c 0.0304
D 403,226 2.1×10−6 c 1.1 0.00025c 0.00025c 0.0025c 0.0312
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Figure 21: Error in damping ratio versus number of grid nodes, relative to the finest grid
of 403k nodes.
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Figure 22: Flutter speed for camber mode.

4.2.3.2 Camber Mode

The stability of a wing section with a single parabolic camber degree of freedom was first

evaluated and compared with the approximation (Eq. 86) by Murua [63] using Peters’ [64]

thin flexible airfoil equations. The approximation of Murua depends only on the inverse

mass ratio, κ =
πρ∞b

m
.

Predictions were computed using the finite-state/NLABS (F-S/NLABS) and FUN3D/NLABS

solvers. The predictions were computed in the incompressible Mach region, with m = 112

kg/m, Iδ = 10 kg/m, b = 2 m, and ωδ = 1. The freestream density was varied so that values

of κ ranged from 0.0125 to 0.8. The flutter speed was determined by performing an iterative

analysis of the damping ratio, which were first sampled at various V∞ values. The flutter

speed was determined from the results via linear interpolation at ζd = 0. Simulations were

performed near the interpolated value for flutter speed in order to ensure that the margin

of error was within 1%. Solutions of the flutter speed obtained with the F-S/NLABS code

were within 1% of the analytical results of Murua (Fig. 22). Close agreement between

Murua’s results and F-S/NLABS solutions are expected, since both methods apply Peters’

finite-state aerodynamics.

FUN3D/NLABS simulations were performed with nondimensional time steps of 0.016,

76



which yielded about 500 steps per period of a camber oscillation. These results changed

less than 1% when doubling the number of time steps per period. Less than 1% difference

between F-S/NLABS and FUN3D/NLABS at κ = 0.8 (Fig. 22); however, as much as 25%

deviation is observed at much lower inverse mass ratios. The larger flutter speeds predicted

in the FUN3D/NLABS analysis indicates larger damping when CFD is applied. For all

values of κ, the finite-state aerodynamic load predictions lead those of the CFD analysis

by 2.5◦ to 4.9◦. However, the derivative of damping ratio with respect to nondimensional

velocity V ∗ =
V

ωδb
(numerically-computed at the flutter point) varies by two orders of

magnitude in the cases evaluated:
∂ζd
∂V ∗ ≈ −0.09 for κ = 0.05 and

∂ζd
∂V ∗ ≈ −7.4 for κ = 0.8.

Due to the sensitivity of flutter speed to damping ratio at low inverse mass ratios, the

change in flutter speed due to a phase shift in camber loads will be one to two order of

magnitude larger at κ =0.05 than at κ =0.8.

There are various assumptions that are made in the Peters’ finite-state aerodynamic

analysis which are generally assumed to be negligible, but may in fact affect aeroelastic

characteristics. First, it is assumed that viscous forces have little influence on lift and

moment. The validity of this assumption is investigated by performing an inviscid simulation

at κ = 0.05 and comparing the results to those of the viscous analysis. The grid on which

the inviscid simulation was performed had identical circumferential resolution as the grid

in the viscous analysis, and contained 86k nodes. Results indicated that including viscosity

in the analysis lowered the predicted flutter speed by only 1.4%.

Another assumption of the finite-state aerodynamic formulation is that airfoil deflections

are small compared to freestream velocity. In order to determine the influence of the

magnitude of deflection on camber stability, the analysis was performed with initial camber

deflections of 0.001c to 0.05c. Less than 1% difference in damping ratio was observed as a

result of the magnitude of deflections.

Finally, in the inflow model, the wake is constrained to the x axis, with no movement

in the vertical direction. Jones and Platzer[150] evaluated the unsteady thrust and drag

on a pitching and plunging airfoil at frequency ratios of 0.1 to 4. They performed a panel

method analysis with wake elements that were allowed to move freely in the downstream
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and vertical directions. Flutter speed predictions were compared to predictions in which a

linear wake model was employed. Results indicated that at reduced frequencies higher than

0.5, wake deformation can have significant influence on aerodynamic loads, and that roll-up

of the wake vortices was the primary source in variation of the nonlinear and linear wake

results. At flutter speed for isolated camber deflections flutter occurs at approximately

k = 1.07, indicating that nonlinear wake effects may have a significant effect on flutter

speeds.

4.2.3.3 Pitching and Plunging Modes

Theodorsen and Garrick [148] computed flutter velocities as a function of elastic axis lo-

cation, center of mass, and inverse mass ratio. Zeiler [151] re-evaluated these results and

presented corrected solutions, three of which are selected for analysis here. The nondimen-

sional structural and fluid properties for these cases evaluated were: a = −0.3, κ = 0.05,

and r2α = 0.25. In the three respective cases, values of xα = 0.0, 0.1, and 0.2 are assigned

for center of mass, which is measured in semichords aft of the aeroelastic axis.

For all three cases the F-S/NLABS flutter speed predictions were within 3% of those

presented by Zeiler [151] (Fig. 23), as expected, since both analyses apply Peters’ flexible

thin airfoil theory.

Computations for the case where xα = 0.1 were next performed with the FUN3D/NLABS

aeroelastic solver. There was less than 5% difference between CFD and finite-state aero-

dynamics in flutter speed predictions for values of ωζ/ωα less or equal to 0.9, while the

CFD solution deviated from the finite-state predictions by 47% at ωζ/ωα =1.4 (Fig. 23).

At frequency ratios larger than 0.9, the pitch mode begins to dominate the flutter motion.

Linear theory predicts that the aerodynamic center and center of pressure are located at the

quarter-chord. In an analysis of pitching moment at various angles of attack the aerody-

namic center deviated by 0.004c from the quarter-chord. These results are consistent with

experimental measurements of Pope [152] and Critzos et al. [153], as well as computational

results of Smith et al. [154].
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Figure 23: Flutter speed for pitch-plunge modes.

4.3 Summary of Verification Cases

The one-dimensional elastic beammodel implemented in NLABS has been validated through

comparison of performance characteristics in hover at 7.6◦ collective pitch. The influence

of elastic deformation is observed in the elastic twist caused by the nose-down pitching

moment of the NACA 23012 airfoil section, which leads to lower blade loading. Sectional

normal force and blade tip deflections have also been compared with measurements from the

HART II test at µ = 0.15. A sectional analysis has also been performed to verify the pitch

and plunge modes, as well as the parabolic camber mode. These results indicate that the

methodology has successfully extended computational aeroelastic evaluation capabilities to

full three-dimensional blade deformation.
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CHAPTER V

BLADE SECTION STABILITY IN COMPRESSIBLE FLOW

The F-S/NLABS and FUN3D/NLABS analyses have also been applied to a NACA 23012

airfoil at subsonic compressible free stream velocities to determine the minimum stiffness

required for a flexible airfoil section to remain stable. The airfoil is that of the rotor used

in the Hover Tip Vortex Structure (HOTIS) test [120]. The torsion and flap stiffnesses

(126 N-m/rad and 15.4 kN/m, respectively) were chosen so that the natural frequencies

correspond to the first natural frequencies of twist (415 rad/s) and flap (121 rad/s) of the

rotor rotating at 109 rad/s. Simulations were performed at three nondimensional velocities

of 6.5, 8.7, and 10.8 (M∞=0.48, 0.64, and 0.80, respectively). These correspond to the

velocity at 0.75R and 1.0R in hover, and the maximum tip velocity during forward flight

at µ = 0.25. The inverse mass ratio is 0.0148, and the elastic axis and center of mass are

located at the quarter chord.

5.1 Finite-State/NLABS

Results with NLABS using finite-state aerodynamics indicate that static divergence due to

camber-pitch coupling was encountered before the onset of flutter. The static deflections of

the airfoil (Fig. 24) identify the minimum frequency ratios required for stability at V ∗ =

6.5, 8.7, and 10.8 to be approximately ωδ/ωα = 12, 24 and 72, respectively.

5.2 FUN3D/NLABS

Simulations were next performed with the FUN3D/NLABS code. Time step and grid

analyses were first performed to verify convergence.

5.2.1 Time Step Analysis

A time step analysis using a baseline grid of 35k nodes was performed to determine the

temporal resolution required to minimize temporal errors. The test was performed at Mach
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(a) Pitch

(b) Camber

Figure 24: Mean deflections for NACA 23012 airfoil. The amplitude of unsteady deflections
is indicated in parentheses when present. The response was steady for all cases when finite-
state aerodynamics were used.
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0.64 with a camber stiffness corresponding to ωδ/ωα = 240, which is one order of magnitude

larger than the stability point determined using lower-order aerodynamics. The analysis

was performed for three different time steps, corresponding to 50, 100, and 200 time steps

per camber oscillation period. Damping ratios were extracted from the camber response,

and the error associated with 50 and 100 steps per period is within 6% and 1% with respect

to the case with 200 steps, indicating that 100 steps per period are necessary to accurately

determine stability.

5.2.2 Grid Analysis

Results of the prior grid analysis were applied in the development of the NACA 23012 grids.

FUN3D/NLABS simulations were performed on two-dimensional grids (Table 6) to verify

sufficient resolution in the circumferential direction. In the boundary layer hexahedral cells

were generated with normal spacing of the first cell equal to 6.75× 10−6c, providing 36–44

points in the normal direction to capture the boundary layer, as recommended by Smith et

al. [155]. For static computations at 5.9◦ pitch and an Re = 1.8 million, the predicted lift

and moment coefficients of the two grids are within 0.1% of one another.

Table 6: Two-Dimensional NACA 23012 Grids.
Grid Number Leading Trailing Maximum cm cl

of nodes edge edge circumferential
spacing spacing spacing

A 35, 455 0.0014c 0.0014c 0.014c −0.0147 0.801
B 103, 723 0.0007c 0.0007c 0.007c −0.0147 0.802

5.2.3 Results

In cases where the flow remained subsonic over the airfoil (M∞ = 0.48 and 0.64 at 0◦ <

α < −3◦), the pitch deflections of the F-S/NLABS and FUN3D/NLABS simulations agree

to within 10% at M∞ = 0.48 and within 12% at M∞ = 0.64. As stiffness decreases, the

airfoil deflections increase, and the flow becomes transonic. The behavior of the NLABS

and FUN3D/NLABS simulations begins to diverge as the local flow becomes transonic. At

M∞ = 0.80, flow was transonic at all angles of attack, resulting in discrepancies in pitch
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larger than 41%, regardless of camber stiffness. In all cases (Figs. 24(a) and 24(b)) the

magnitude of steady pitch and camber deflections predicted by NLABS are larger than

those predicted by FUN3D/NLABS.

FUN3D/NLABS results predict a blade with increasing unsteady pitch (Fig. 24(a)) and

camber (Fig. 24(b)) as the camber stiffness approaches the flutter point. Large airfoil de-

flections and transonic flow produce separation vortices, which introduce unsteady pressure

loads that drive the oscillatory deflections. These vortices are not modeled by the finite-

state aerodynamic model in NLABS, and as a result the NLABS deflections were steady. In

the following sections the influence of transonic flow and separation vortices on aeroelastic

behavior are further examined.

At M∞ = 0.48 flow remains subsonic until the camber stiffness approaches the diver-

gence point, which occurs at ωδ/ωα = 12.0. At ωδ/ωα = 12.0, the camber deflection be-

comes very large, and shocks near the leading edge (Fig. 25) and boundary layer separation

generate large pressure gradients that drive the pitch and camber oscillations.

At M∞ = 0.64, when ωδ/ωα = 24.1 the magnitude of unsteady camber deflections is

less than 1%c, but it produces sufficient pitching moment to significantly alter the pitch

deflection (Fig. 24). As the camber stiffness continues to decrease, camber deflections begin

to dominate the oscillatory deflections (Fig. 26). Transonic flow and stall occur only as the

magnitude of airfoil deflection increases. At t1 in Fig. 26(b) a discontinuity is present in

which the pressure coefficient after the shock on the lower surface at x/c = 0.45. The slope

of the cp versus x curve suddenly changes sign, and there is a small increase and subsequent

decrease in pressure due to a separation bubble that will later be examined in flowfield

visualization.

At M∞ = 0.80 transonic flow over the airfoil results in multiple shocks and separated

flow, on both the upper and lower surface of the airfoil (Fig. 27). This alters the pitching

moment, resulting in a significant difference in pitching moment between the F-S/NLABS

and FUN3D/NLABS solutions. The nonlinear aerodynamic effects decrease the magnitude

of pitch deflections and improve the stability compared to predictions of the finite-state
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(a) Airfoil shape (b) ωδ/ωα = 12.1

(c) ωδ/ωα = 18.1, 96.3

Figure 25: Airfoil surface and pressure coefficients for aeroelastic two-dimensional BO-105
blade sections with CFD/CSD coupling at Mach 0.48, V ∗ = 6.5
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ωδ/ωα=12.0, t2

ωδ/ωα=12.0, t1

ωδ/ωα=96.3

ωδ/ωα=24.1, t1

ωδ/ωα=24.1, t2

(a) Airfoil shape (b) ωδ/ωα = 12.0

(c) ωδ/ωα = 24.1 (d) ωδ/ωα = 48.2, 96.3

Figure 26: Airfoil surface and pressure coefficients for aeroelastic two-dimensional BO-105
blade sections with CFD/CSD coupling at Mach 0.64, V ∗ = 8.7
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model. As camber stiffness decreases to the point where ωδ/ωα = 24.1, large pitch deflec-

tions are observed, followed by large camber deflections after further decreasing stiffness.

5.2.4 Evaluation of Nonlinear Aerodynamics

The history of loads at M∞=0.64 are further examined to determine the nature of the

unsteady nonlinear aeroelastic behavior of the airfoil. As the camber stiffness is decreased,

pitch deflections become larger, and nonlinear effects cause unsteady airfoil loads resulting

in limit cycle oscillations at low frequencies due to the plunge mode, and higher frequencies

due to the pitch and camber modes (Fig. 28(a)) At lower camber stiffness, the camber

deflections become larger and begin to dominate the physical nature of the flow. These

high-frequency oscillations also drive pitch oscillations, while the plunge mode is damped

(Fig. 28(b)).

A single camber oscillation period (Fig. 29) is next analyzed to examine the effects of

transonic flow and separation vortices. Flow contours are examined at time intervals s =0.9,

from 0.0 to 7.2.

At s =1.8 a vortex forms on the lower surface of the airfoil due to the large camber

deflection (Fig. 30(c)). As the vortex travels along the lower side of the airfoil, it creates

a low-pressure region near the midchord, driving a negative camber deflection (Fig. 30,

s =2.7–4.5). At the same time, a shock forms at 60%c on the upper surface and moves

forward until it reaches the leading edge (Fig. 30(b), s =2.7–6.3). The shock induces

boundary layer separation, resulting in a new vortex on the upper surface of the airfoil

((Fig. 30(c)). As this vortex passes the midchord of the airfoil it creates a low-pressure

region on the upper surface, which drives a positive camber deflection (Fig. 30(d), s =6.3–

7.2, s =0.0–1.8). At s =1.8 the vortex on the upper surface reaches the trailing edge as

another separation vortex forms on the lower surface at the leading edge, and the cycle

repeats.

The stability limit for the case at M∞=0.48, which corresponds to 0.75R for the HART

II rotor, is ωδ/ωα=12. The dimensional frequency for this value is 5000 rad/s, or 800 Hz.
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ωδ/ωα=12.0, t2

ωδ/ωα=12.0, t1

ωδ/ωα=96.3

ωδ/ωα=24.1, t1

ωδ/ωα=24
.1, t2

(a) Airfoil shape (b) ωδ/ωα = 12.0

(c) ωδ/ωα = 24.1

x/c

C
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0.5

1

Cp, crit

(d) ωδ/ωα = 96.3

Figure 27: Airfoil surface and pressure coefficients for aeroelastic two-dimensional BO-105
blade sections with CFD/CSD coupling at Mach 0.80, V ∗ = 10.8
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(a) ωδ/ωα = 24.1

(b) ωδ/ωα = 12.0

Figure 28: Time history of aeroelastic response for CFD/CSD coupling at Mach 0.64
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Figure 29: Aeroelastic response over one period for CFD/CSD coupling at Mach 0.64 and
ωδ/ωα = 12.0. Circles in Fig. 30 indicate instances at which the flowfield is examined,
occurring at time intervals of dt∗=0.9

The camber stiffness for the HART II rotor is not documented so that there are no data

for comparison. For most rotors the airfoil stiffness is very high to ensure that camber

deflections are negligible. However, for deformable airfoils the use of compliant materials

reduces the stiffness, making them more susceptible to instability.

In comparable experimental studies a unimorph cambering airfoil design based on the

NACA 0010 airfoil was analyzed by Bilgen et al. [35]. They measured the frequency of

the first airfoil bending harmonic to be 270 Hz for a wing section of chord length 0.163 m,

which is comparable to the stability limit in the present study.

89



(a)
Time

(b) Mach number (c) Vorticity
magnitude

(d) Pressure coef-
ficient

Figure 30: Mach, vorticity, and pressure contours for the NACA 23012 airfoil atM∞ = 0.64,
ωδ/ωα=12.0, corresponding to the load/deflection history in Fig. 29.
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CHAPTER VI

FORWARD FLIGHT ROTOR ANALYSIS WITH ACTIVE CAMBER

The methodology is next evaluated for a three-dimensional rotor with active camber. To

isolate camber response to control input, camber stiffness was increased to ∼ 1020 so that

deflections were influenced only by prescribed camber loads. The influence of prescribed

camber deflection on rotor performance and vibratory loading was then assessed.

6.1 Rotor Specifications and Flight Conditions

Specifications for the forward flight case were based on the Higher Harmonic Control (HHC)

Aeroacoustic Rotor Test (HART) test [119] performed at DLR in 1995. In this experiment,

a 40% scaled of the four-bladed BO-105 rotor was tested inside a wind tunnel at various

flight conditions. Structural dimensions and properties are available from the HART II

experiment, and are listed in Table 2. The flight conditions and trim conditions for the case

investigated in this study are shown in Table 7.

Table 7: HART Test Case Configuration

µ 0.25
Mtip 0.64
Retip, million 1.80
αs, deg -5.0
Thrust, N 3100
Roll moment, N 0
Pitch moment, N 0

A harmonic generalized forcing function was applied to drive active parabolic camber

deflections centered at the midchord, and are defined by the following the following function

[127]:

Ψ =


0

0

ξ2 − 1
3

 . (87)
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6.2 CSD Model

The CSD model consists of a nonlinear one-dimensional beam along the radius of the blade

as well as a two-dimensional model of the airfoil section at each radial station. At the fluid-

structure interface, 80 nodes define the cross section of the blade at each of 44 spanwise

stations. The mass and stiffness matrices, which include six degrees of freedom for beam

section translation and rotation, as well as one degree of freedom for camber, are specified

from the structural properties outlined in Table 2.

6.3 CFD Grid Independence

The blade grid used in the forward flight cases is the same as that used in the hover

simulation in Section 4.1. Grid independence has been verified for hover cases, but grid

requirements may be more constrictive in forward flight, due to the influence of transonic

flow and boundary layer separation. Therefore, the coarse, medium, and fine grids of Table

3 were again analyzed in a baseline forward flight case with rigid airfoil sections and in an

active-rotor case in which harmonic parabolic camber was forced.

The simulations were performed with a radially elastic blade and rigid airfoil. Each case

was trimmed to 3100 N with zero pitch and roll moments by trimming the collective and

cyclic pitch angles. The trimmed collective pitch setting is 0.3 degrees smaller with the

medium and fine grid than with the coarse grid (Table 8). The primary cause is that the

nose-down pitching moment is significantly lower over the entire rotor disk in the medium

and fine cases (Fig. 31), resulting in a larger angle of attack for a given control setting, thus

requiring a smaller collective pitch. The average nose-down pitching moment is 25% smaller

in magnitude for the medium grid and 23% smaller for the fine grid. The trim differences

(Table 8) may also be attributed in part to the 1−2% differences in lift predictions between

the blade grids for a given pitch. The drag coefficient, averaged over the rotor disk, is 22%

smaller for both the medium and fine grid compared to the coarse grid (Fig. 32). Contour

plots of the normal force and drag (Figs. 33–32) indicate that the influence of the tip

vortex is captured with more resolution in the medium and fine cases. This is evident in

the increased gradient in lift at r/R = 0.65 between ψ = 160◦ and ψ = 180◦ and the reduced

92



drag at r/R = 0.65 between ψ = 106◦ and ψ = 270◦, which corresponds to the location of

the tip vortex observed in the Q criterion (second invariant of the velocity gradient tensor)

isosurface (Fig. 34). The effects of the tip vortex are diminished due to dissipation when

coarse grid spacing is used.

Table 8: Trim settings for various grids (3100 N thrust, 0 N-m pitch and roll moments).

Coarse Medium Fine
θ0 10.8 10.5 10.5
θ1c -2.5 -2.6 -2.6
θ1s 0.7 0.6 0.7

A blade section at 75%R is next examined. The instantaneous normal force (Fig. 35)

values differs by at most 8% between the coarse and fine grid, and 4% between the medium

and fine grid. There is also a phase shift of up to 10◦ between the coarse and fine unsteady

normal force, while the medium and fine normal force phases agree.

The predicted mean pitching moment is 25% and 26% lower with the medium and fine

grids, respectively, than with the coarse grid (Fig. 36(a)). The unsteady pitching moment of

the coarse grid differs in magnitude near 90◦ and 360◦ (Fig. 36(b)) while both the medium

and fine grid cases phases agree and magnitude.

There are large offsets (22% to 26%) in the average drag and moment coefficient of the

coarse grid compared to the medium and fine grids. In addition, the trimmed collective

pitch of the coarse grid is 3% higher than that of the medium and fine grids. In contrast,

the medium and fine grids agree within 4% in instantaneous normal forces, and within 1%

in collective trim, average pitching moment, and average drag coefficient. It was concluded

that the medium grid was sufficiently grid independent, and it was used for subsequent

simulations.

6.4 Rotor with Rigid Airfoil

The next evaluation of the methodology’s validity was a comparison of the periodically-

converged, trimmed responses of the NLABS and FUN3D/NLABS analyses, which at non-

transonic, non-stall conditions delineated earlier should provide similar trends for the lift.
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(a) Coarse

(b) Medium

(c) Fine

Figure 31: Pitching moment, M2cm, HART II baseline case, µ = 0.15, αs = −5.0
(freestream left to right).
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(a) Coarse

(b) Medium

(c) Fine

Figure 32: Drag, M2cd, HART II baseline cas, µ = 0.15, αs = −5.0e (freestream left to
right).
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(a) Coarse

(b) Medium

(c) Fine

Figure 33: Normal force, M2cn, HART II baseline case, µ = 0.15, αs = −5.0 (freestream
left to right).
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Figure 34: Q criterion isosurface, HART II baseline case, µ = 0.15, αs = −5.0 (freestream
left to right).

Figure 35: Normal force at 75%R, HART II baseline case, µ = 0.15, αs = −5.0 (freestream
left to right).
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Figure 36: Pitching moment at 75%R, HART II baseline case, µ = 0.15, αs = −5.0
(freestream left to right).

98



The analysis was first performed for two baseline cases without camber actuation. The

elastic axis of the blade was allowed to bend and twist, while the blade cross sections

remained rigid. To reduce computational time for the CFD/CSD simulation, a converged

solution from F-S/NLABS was used as a starting solution. After a converged solution was

achieved, the coupled FUN3D/NLABS code was applied.

6.4.1 Baseline Comparison of Finite-State and CFD Aerodynamics

The baseline case was simulated at an advance ratio of 0.25, trimming the thrust to 3100 N

and the longitudinal and lateral hub moments to 0 N-m. The computational results of the

NLABS simulation were compared in detail to those of the FUN3D/NLABS simulation.

The trim and structural solution of the NLABS simulation were used as a starting point

for the FUN3D/NLABS simulation. To transition from Peters’ finite-state aerodynamics to

CFD aerodynamics, a weighting function (Eq. 65) was applied. Three different schedules for

transitioning from F-S to CFD airloads were compared. In each schedule the transition was

initiated after one complete revolution. The transition was completed over three different

azimuthal periods: 0◦ (step transition), 180◦, and 360◦.

Although the step transition results in higher excursions in magnitude of trim and air-

loads from the converged value, the convergence time is smaller than when a ramp transition

is used. This indicates that the aerodynamic damping is large enough to prevent oscilla-

tions in the control settings. The control pitch and cyclic pitch were trimmed in NLABS to

achieve the trim targets. The trimmed control pitch using aerodynamic loads from FUN3D

was slightly larger than when low-order aerodynamics were used, while the cyclic controls

were slightly smaller in magnitude, as listed in Table 9.

Table 9: Converged control settings for forward flight case.

Controls CFD Finite-state

θ0, deg 10.51 10.19
θ1c, deg 0.63 0.86
θ1s, deg -2.55 -2.82

Qualitatively, the NLABS and FUN3D/NLABS simulations provide a similar normal
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Figure 37: Convergence of loads and controls using stepped/ramped CSD-to-CFD loading
transition (legend indicates number of revolutions completed while transitioning from low-
order loads to CFD loads).
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force distribution over blade span and azimuth (Fig. 38). Between 0◦ and 20◦ the normal

force distribution shifts slightly inboard when CFD loads are applied, and between 135◦ and

280◦ the influence of the tip vortex is dissipated in the F-S results. This second discrepancy

is investigated in Section 6.6 to determine if more fidelity can be provided by the low-order

finite-state aerodynamic model in NLABS.

F-S/NLABS predictions of the pitching moment are much smaller than FUN3D/NLABS

predictions for almost all spanwise and azimuthal positions (Fig. 39). In addition, the

influence of the tip vortex observed in the FUN3D/NLABS moment predictions (Fig. 39(b))

is completely absent in the F-S moment predictions (Fig. 39(a)). The pitching moments

are sampled at 50%R, 75%R, and 90%R for further analysis.

A large offset in the pitching moment is observed between the NLABS and FUN3D/NLABS

results (Fig. 40). While the one-per-revolution pitching moment responses predicted by

NLABS and FUN3D/NLABS are in phase, the magnitude of the nose-down pitching mo-

ment predicted by NLABS is 40 − 75% lower than the pitching moment predicted by

FUN3D/NLABS at all three radial stations.

The impact of pitching moment on elastic twist is observed in Fig. 41. Due to the large

nose-down pitching moment on the advancing side of the rotor, the blade pitches down.

These results indicate that elastic twist has a large contribution to the differences in the

trim solution observed in Table 9. The collective pitch must be increased to compensate for

the nose-down twist, so that the specified thrust can be achieved. Since largest deflections

are in the second quadrant the lateral control must decrease and the longitudinal control

must increase to maintain the balance of loads over the rotor disk.

Since there is no pre-cone angle in HART II cases, the blade tip is deflected upward

(Fig. 42), with largest tip deflections occurring on the retreating side of the blade near

270◦ azimuth. Larger tip deflections occur on the retreating side of the blade due to the

outboard shifting of blade loads as the dynamic pressure near the hub becomes very low.
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(a) F-S/NLABS

(b) FUN3D/NLABS

Figure 38: Normal force, M2cn, for F-S/NLABS and FUN3D/NLABS HART II baseline
cases at µ = 0.25 with αs = −5.0.
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(a) F-S/NLABS

(b) FUN3D/NLABS

Figure 39: Pitching moment, M2cm, for F-S/NLABS and FUN3D/NLABS HART II base-
line cases at µ = 0.25 with αs = −5.0.
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Figure 40: Pitching moment, M2cm, for F-S/NLABS and FUN3D/NLABS HART II base-
line cases at µ = 0.25 with αs = −5.0.
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(a) F-S/NLABS

(b) FUN3D/NLABS

Figure 41: Elastic twist, deg, for F-S/NLABS and FUN3D/NLABS HART II baseline cases
at µ = 0.25 with αs = −5.0.
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(a) F-S/NLABS

(b) FUN3D/NLABS

Figure 42: Vertical displacement, z/c, for F-S/NLABS and FUN3D/NLABS HART II
baseline cases at µ = 0.25 with αs = −5.0.
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6.5 Rotor with Prescribed Parabolic Camber

A significant advantage of the FUN3D/NLABS aeroelastic methodology is that it allows

arbitrary blade surface deformation to be modeled directly. Control input loads can also

be prescribed, so that this capability can be applied for evaluation of camber actuation.

To demonstrate this capability, the classic aeroelastic test case of an airfoil with parabolic

camber centered at midchord (Fig. 43) is chosen. The nondimensionalized parabolic camber

deflection can be expressed as z/c = −a(x/c)2, where a is the amount of camber, x/c is the

distance from the midchord, and z/c is the vertical distance from the chord to the camber

line.

(a) Deformed blade without camber actuation

(b) Deformed blade with camber actuation

Figure 43: CFD surface mesh at blade tip demonstrating grid deformation with prescribed
camber.

One of the primary objectives of camber actuation is to reduce hub loads. To confirm the

potential benefits of camber actuation, camber actuation must produce a sufficient response

to minimize vibratory loads. A set of CFD rotor simulations were computed, using the

same conditions as the baseline HART II simulation, but with the inclusion of prescribed

camber deformations. Camber deformation was achieved by assigning an arbitrarily high
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camber stiffness and applying finite-section forces in NLABS. In this case, maximum camber

deflections of 0.5%c (“full-camber”) and 0.25%c (“half-camber”) were imposed uniformly

across the radius of the rotor, except near the root. Camber force was applied over time

as a sinusoidal function with a frequency three times the rotational velocity of the rotor at

various phase offsets of 0◦, 90◦, 180◦, and 270◦ to examine the rotor response.

The trim solution changed very little for the prescribed-camber cases compared to the

rigid-airfoil case in both finite-state and CFD aerodynamics (Table 10). For camber actua-

tion of amplitude 0.005c the collective varied by ±0.05◦, the lateral cyclic varied by ±0.33◦,

and the longitudinal cyclic varied by ±0.39◦. The lack of change in collective trim indicates

that the 3 per revolution camber deflections have very little impact on the mean thrust.

Trends are similar for the comprehensive and CFD/CSD trim solutions as the phase of

camber actuation is altered. In all cases, the CFD-based analysis resulted in a 0.32− 0.37◦

increase in collective control, 0.19−0.326◦ decrease in lateral cyclic control, and 0.05−0.33◦

increase in longitudinal control compared to the finite-state-based analysis.

Table 10: Converged control settings for forward flight case.

Controls Rigid airfoil 0◦ phase 90◦ phase 180◦ phase 270◦ phase

Finite-state
θ0, deg 10.19 10.22 10.14 10.15 10.22
θ1c, deg 0.86 0.96 0.53 0.73 1.18
θ1s, deg -2.82 -2.93 -3.20 -2.68 -2.43

CFD
θ0, deg 10.51 10.55 10.51 10.50 10.56
θ1c, deg 0.63 0.76 0.34 0.43 0.86
θ1s, deg -2.55 -2.66 -2.87 -2.63 -2.38

The F-S/NLABS and FUN3D/NLABS sectional normal force responses to camber actu-

ation are similar in phase and magnitude (here, the 0◦ phase lag is chosen as a representative

case in Fig. 44). However, the influence of the tip vortex is not captured in the F-S/NLABS

results, and as a result there is up to 25% difference in normal force at 75%R (Fig. 45)

predicted by FUN3D/NLABS and F-S/NLABS near ψ = 120◦, with 13◦ phase offset in the

peak forces. On the retreating side of the rotor, there is much better agreement with a

maximum of 7% difference in the instantaneous force and less than 7◦ phase difference in
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the azimuth of force oscillations.

Pitching moments for the camber actuation case with 0◦ offset are next examined.

When camber actuation is applied, the camber deflections generate large 3 per revolution

oscillations in the pitching moment (Fig. 46). The average value of the pitching moment

predictions by F-S are smaller than those of FUN3D by ∆(M2cm) = 0.0018 at 75%R (Fig.

47). On the advancing side of the blade the NLABS pitching moment predictions (with

mean removed) are within 9% of the FUN3D predictions. Near 120◦ the pitching moments

deviate by as much as 55% due to the influence of the tip vortex on CFD loads. The

azimuthal location of peak pitching moments are within 4◦ at all peaks.

Very little difference is observed in the FUN3D/NLABS and F-S/NLABS responses of

elastic twist to camber actuation (Fig. 48). Local pitch values of a blade section at 75%R

differ by less than 7% at all azimuthal locations.

The aeroelastic response at
r

R
= 75%, where

r

R
is the non-dimensional local radius,

is examined for the baseline case, half-camber actuation, and full-camber actuation with

0 degrees phase offset (Fig. 50). Although the direct response of normal force to camber

actuation is small, the parabolic camber has a large influence on pitching moment (Fig.

50(a)). This causes an elastic twist deflection (Fig. 50(b)), which generates a large response

in normal force (Fig. 50(c)). These results are consistent with results from Section 5.2 which

indicate that small camber deflections have a large influence on pitching moment and blade

deflection. Due to the significant coupling of camber and pitch modes, elastic twist amplifies

the effects of camber actuation.

Figure 50 indicates that the response to camber actuation has a nearly linear relationship

with the magnitude of the camber deflection, as the normal force coefficient of the half

camber case can be approximated as

cn,half ≈ 1

2
(cn,full + cn,baseline) (88)

within 10% accuracy at all azimuth locations.

The vibratory response to camber deformations is next evaluated to determine whether

the magnitude of camber deflections is sufficient for minimizing vibratory loads. The results
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(a) F-S/NLABS

(b) FUN3D/NLABS

Figure 44: Delta in normal forces, (M2cn)C0 − (M2cn)Base, for F-S/NLABS and
FUN3D/NLABS HART II cases at µ = 0.25 with αs = −5.0, where C0 indicates 0.5%c pre-
scribed camber deflection with 0◦ phase, and Base indicates the baseline case (freestream
is left to right).
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Figure 45: Sectional normal force with 3/rev camber actuation at 75%R, for F-S/NLABS
and FUN3D/NLABS HART II cases at µ = 0.25 with αs = −5.0; prescribed 0.5% camber
deflection with 0◦ phase.

displayed in Fig. 51 indicate that a magnitude 0.25%c camber actuation at a frequency of

3 per revolution is sufficient for minimizing any of the forces or moments, as the origin

falls within the outlined region of vibratory response. There is a significant offset in mag-

nitude and phase of the CFD/CSD case compared to the finite-state case, and almost all

force and moment responses predicted by FUN3D/NLABS are larger than the NLABS

predictions. The comprehensive solution predicts a lower-magnitude response to camber

actuation. Therefore, when determining the magnitude of camber forces and deflections

that will be required to minimize hub loads, the F-S/NLABS solution provides a more

conservative estimate.

6.6 Finite-State Rotor Inflow Analysis

In the forward flight simulations it was observed that the tip vortex only had an apparent

influence on the FUN3D/NLABS normal force and pitching moment. In addition, there

were significant differences in the magnitude and phase of vibratory hubloads. A study

was conducted to determine the influence of the number of finite-state inflow modes on

the distribution of normal force and pitching moment, particularly in the region of blade
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(a) F-S/NLABS

(b) FUN3D/NLABS

Figure 46: Delta in pitching moments, (M2cm)C0 − (M2cm)Base, for F-S/NLABS and
FUN3D/NLABS HART II cases at µ = 0.25 with αs = −5.0, where C0 indicates 0.5%c
prescribed camber deflection with 0◦ phase, and Base indicates the baseline case (freestream
is left to right)).
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Figure 47: Sectional pitching moment with 3/rev camber actuation at 75%R, for F-
S/NLABS and FUN3D/NLABS HART II cases at µ = 0.25 with αs = −5.0; prescribed
0.5% camber deflection with 0◦ phase.

passage over the first tip vortex.

As previously discussed, the NLABS inflow model is the Peters and He finite-state model

[124] (Eqs. 44, 45), in which several radial and azimuthal modes are used for approximating

the induced inflow solution. In this case the number of radial and azimuthal shape functions

were kept equal; otherwise radial oscillations in the normal loads appeared. In the azimuthal

direction harmonic functions are used, while in the radial direction polynomials are applied.

To determine the required number of finite-state modes, a study was conducted in which 8–

24 modes were used in the baseline case, and 8–20 modes were used in cases with prescribed

camber actuation of amplitude 0.5%c and frequency 3 per revolution. Increasing the number

of modes beyond these values resulted in numerical instability in the NLABS computations.

A qualitative comparison is first made in the normal force distribution and pitch-

ing moment distribution on the rotor disk. In Fig. 52 the difference in normal forces,

M2(cCFDn − cCSDn ), demonstrates that the finite-state solution approaches the CFD solu-

tion as the number of states is increased. In particular, on the upwind side of the rotor

the discontinuity in normal forces is better captured as the number of states increases. In

addition, the difference in normal force outboard of 0.9R diminishes, and the finite-state
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(a) F-S/NLABS

(b) FUN3D/NLABS

Figure 48: Delta in elastic twist, deg, θC0 − θBase, for F-S/NLABS and FUN3D/NLABS
HART II cases at µ = 0.25 with αs = −5.0, where C0 indicates 0.5%c prescribed camber
deflection with 0◦ phase, and Base indicates the baseline case (freestream is left to right).
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Figure 49: Local blade pitch with 3/rev camber actuation at 75%R, for F-S/NLABS and
FUN3D/NLABS HART II cases at µ = 0.25 with αs = −5.0; prescribed 0.5% camber
deflections with 0◦ phase.

solution also approaches the CFD solution between 0◦ and 90◦ between 0.6R and 0.9R. It

is also observed, however, that when a large number of states is used (at least 20), radial

oscillations in the normal force appear, and eventually the solution becomes unstable.

In examining the pitching moment, M2(cCFDm,qc − cCSDm,qc ), in Fig. 53, it is evident that the

number of states in the inflow model does not improve the moment coefficient. The inflow

model is unable to predict any influence of the wake vortices on pitching moment. While

the influence of the tip vortex is relatively mild in this case, it indicates that the finite-

state model is not suitable for cases in which significant wake interaction or blade-vortex

interaction is expected. This observation is confirmed by the results of Smith et al. [147]

in comparisons of the aeroelastic behavior of the HART II rotor in forward predicted by

various computational methodologies, which included CFD and lifting line methodologies.

At µ = 0.15 with αs = 5.3, experimental measurements indicated large fluctuations in

pitching moment were caused by blade-vortex interactions (BVI). CFD/CSD simulations

were able to predict the unsteady pitching moments to varying levels of accuracy; however,

when lifting-line aerodynamics had been applied, the fluctuations in pitching moment were

absent during BVI events except in cases where the data was obtained from lookup tables.
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(a) Pitching moment coefficient

(b) Elastic twist

(c) Normal force coefficient

Figure 50: CFD/CSD blade pitch and aerodynamic response to camber actuation at 75%R
for HART II rotor at µ = 0.25 with αs = −5.0; full camber indicates 0.5%c deflections, and
half camber indicates 0.25%c deflections.
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Figure 51: 4 per revolution vibratory load response to camber actuation for F-S/NLABS
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(a) 8 harmonics (b) 12 harmonics

(c) 16 harmonics (d) 20 harmonics

(e) 24 harmonics

Figure 52: Delta in normal forces,M2(cCFDn −cCFDn ), for F-S/NLABS and FUN3D/NLABS
HART II baseline cases at µ = 0.25 with αs = −5.0 with various number of rotor inflow
modes.
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(a) 8 harmonics (b) 12 harmonics

(c) 16 harmonics (d) 20 harmonics

(e) 24 harmonics

Figure 53: Delta in pitching moments, M2(cCFDm,qc − cCSDm,qc ), for F-S/NLABS and
FUN3D/NLABS HART II baseline cases at µ = 0.25 with αs = −5.0 with various number
of rotor inflow modes.
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As the distribution of normal loads predicted by the finite-state model approaches that

of the CFD model, the hubloads of the comprehensive analysis also approach that of the

CFD/CSD simulations (Fig. 54). With only 8 harmonics the comprehensive loads under

predict the peak forces and moments for Fx, Fy, Fz,Mx, and My (where z is aligned in the

shaft axis). The vertical force Fz and roll moment Mx are not only predicted to have lower

amplitudes, but also large phase offsets in comparison to the CFD/CSD loads. There is a

large offset between the CFD/CSD and comprehensive yaw moment Mz which is because

only pressure loads are communicated from the CFD solver. As the number of harmonics

is increased, the phase improves for Fz, Mx, and Mz, and the peak values of Fx, Fy, and

My approach those of the CFD/CSD analysis.

A case with prescribed camber actuation of amplitude 0.005c, frequency 3 per revolution,

and phase offset of 0◦ is next analyzed. Figure 55 illustrates that as the number of harmonics

is increased, the peak values of Fx, Fy, and My approach those of the FUN3D/NLABS

simulation.

Finally, the change in vibratory loads is quantified in terms of magnitude and phase of

the 4 and 8 per revolution hubloads; these are the frequencies at which the largest magnitude

vibratory loads occur. In this analysis the change in loads for the rigid-airfoil case is defined

as

∆Fi,rigid = (FCSDi,rigid − FCFDi,rigid)/F
CFD
i,rigid. (89)

For the cases with prescribed camber only the response to camber deflections is compared:

∆Fi,camber =
[
(FCSDi,camber − FCSDi,rigid)− (FCFDi,camber − FCFDi,rigid)

]
/(FCFDi,camber − FCFDi,rigid). (90)

In this manner the change in loads due to camber response is isolated from the other loads.

In Fig. 56 significant improvements are observed in the magnitude of 4 per revolution

vibratory loads Fx, Fy, Mx, and My for the rigid airfoil case. However, the magnitude of

vertical force Fz and yaw moment Mz deviate further from the CFD/CSD solution as the

number of finite-state harmonics is increased. Little or no improvement is observed in the

magnitude of vibratory load response to camber deflections. In comparing the phase offset

of 4 per revolution vibratory loads, increasing the number of states significantly improves
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agreement with CFD/CSD results in the baseline case except for the drag force Fx. For all

other forces and moments the phase improves until reaching 16 harmonics, after which there

is little change in phase. In the prescribed camber cases there is little or no improvement

in phase as the number of states is increased.

In examining the magnitude of 8 per revolution vibratory loads (Fig. 58) there is no

consistent improvement in finite-state loads as the number of states is increased. However,

the phase of almost all forces and moments improve with increased number of states for

both the baseline case and the prescribed camber responses. In particular, the normal forces

consistently approach those of CFD/CSD loads for all cases. Initially there are −81◦ to

−151◦ phase offsets in 8 per revolution normal loads, which are reduced to 16◦ to −87◦

phase offsets as the number of finite-state harmonics is increased.

It has been observed that 8 finite-state harmonics are not sufficient to capture the

wake features or accurately predict vibratory loads. Although there are still discrepancies

in magnitude and phase as the number of harmonics is increased, the solution begins to

approach those of the CFD/CSD results from a qualitative and quantitative perspective.

However, increasing the number of harmonics beyond 20–24 may result in numerical insta-

bility. Based on these results it is recommended that 16–20 finite-state harmonics be used

to more accurately resolve the wake and hub loads while remaining in a numerically stable

range.

6.7 Computational Cost

By increasing the number of finite-state harmonics in the comprehensive analysis more ac-

curate agreement with CFD/CSD predictions is reached. If the comprehensive analysis can

be applied predominantly in the design of actuation systems, then computational cost can

be greatly reduced. One time step of the CFD analysis for a 13.2 million node grid on128

Cray XT5 2.3GHz Opteron processors requires 1 minute and 32 seconds of wall clock time.

In a CFD/CSD simulation hole-cutting and computation of domain connectivity informa-

tion must be computed at every time step, as well as the application of a grid deformation

process. The total time required for one time step of a CFD/CSD rotor simulation is 3
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Figure 57: Phase response of F-S/NLABS 4 per revolution vibratory loads for HART II
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Figure 59: Phase response of F-S/NLABS 8 per revolution vibratory loads for HART II
rotor with various number of finite-state harmonics with respect to FUN3D/NLABS results;
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minutes and 20 seconds, which is equivalent to 7.1 central processing unit (CPU) hours

when 128 processors are used.

The comprehensive analysis requires only 2.1 seconds per time step, which is two orders

of magnitude less wall time and four order of magnitude less total CPU hours if approxi-

mately 1× 102 processors are used. Therefore, efforts to improve the finite-state model and

apply it when appropriate can greatly improve the computational efficiency of an aeroelastic

analysis.
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CHAPTER VII

COMPUTATIONAL EVALUATION OF THE INFLUENCE OF A

TEST FACILITY

Simulations are next performed for the HOTIS configuration [120, 143], in which a scaled

BO-105 rotor operates inside an enclosed facility to determine if performance characteristics

and vibratory loads can be accurately evaluated for a rotor inside a test facility. The effects

of various turbulence models, including Menter SST, HRLES, and HRLES with LDKM,

are compared in this study. The influence of geometry fidelity throughout the test facility

is also analyzed.

7.1 Configuration and Flight Conditions

The HOTIS test [120, 143] is an experiment performed in 2006 for a rotor in hover inside an

enclosed facility. In this experiment the rotor was nearly centered in a 6R×6R×4R (width

× length × height) room, and the rotor plane was 1.43R above the ground (Fig. 60). The

rotor was a 40% scaled BO-105 rotor with four blades, which is the same rotor (Table 2)

that was used in the HART II tests, with a pre-cone angle of 2.5◦. The HOTIS test was

performed at the rotational velocity Ω = 109 rad/s to obtain a tip Mach number of 0.633.

Data were obtained at various levels of thrust, ranging from CT = 0.0 to CT = 5.5× 10−3,

at collective pitch angles up to 8◦ with reference to the 70%R, using force transducers

and a torque meter in the test rig to measure the forces and moments at the hub. In the

computational analysis simulations are run with a collective pitch of 8◦ for comparison to

experimental data.

The same blade grids (Table 4) that were applied previously in the forward flight rotor

cases were used in the HOTIS simulations. A grid spacing of 1%c was applied near the rotor

in the background farfield and test facility grids, and adaptive mesh refinement was applied

to better resolve tip vortices and root vortices. A study of the effects of temporal resolution

revealed that there was less than 2% difference between the CT and CP computed using
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(a) Side view

(b) Top view

Figure 60: Dimensions of the HOTIS test facility.
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0.5◦ time steps compared to 1◦ steps. Time steps of 3◦ result in an over prediction of torque

by 30% and therefore are not appropriate for performance predictions. However, there was

little difference in thrust (2%) when using 3◦ steps, indicating that the momentum added by

the rotor is nearly equivalent when 1◦ steps are used. Therefore, 3◦ steps were first applied

until approaching convergence to reduce computational expense induced by the long-term

wake effects. Subsequently 1◦ steps were used for performance metric predictions.

7.2 Results

The test facility walls were initially modeled with inviscid boundary conditions, and the

Menter SST turbulence model with vorticity-based turbulence production was applied. A

region of “false convergence” was reached within about 6-8 rotor revolutions, where the

thrust and power coefficients reached plateaus (Fig. 61). After 15 revolutions the first two

tip vortices were still similar in magnitude and displacement, comparing the free air and

test facility cases (Fig. 63). However, in the test facility case at 27 revolutions the tip

vortices moved downward and radially outward, and by the 39th revolution the tip vortices

traveled nearly straight down and quickly dissipated. The movement of the tip vortices was

caused by an increasing induced velocity through the rotor disk, while the dissipation was

due to an over-predicted eddy viscosity as the wake circulated throughout the facility (Fig.

64). Thrust began to decrease due to a smaller effective angle of attack and the shifted

location of the tip vortex. As the inflow velocity decreases between 39 and 72 revolutions

(Fig. 64) the thrust increases again. Between 72 and 150 revolutions the wake vortices shift

downward (Fig. 65), altering the inflow velocity (Fig. 64) and again increasing thrust (Fig.

61). However, figure of merit was still under predicted by 27% (Table 11, Fig. 66). The

HOTIS facility simulation required more than 100 rotor revolutions to achieve convergence,

compared to approximately 12 required by the free-air hover simulation. Further analysis

was performed to determine in more detail the effects of the test facility.

As the wake began to recirculate, the loading near the blade tip was first affected as

the tip vortices dissipated (Fig. 67). An increase in induced flow through the rotor plane

moved the tip vortices downward at a higher rate and further outboard. As a result, the
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Figure 61: Thrust history for the HOTIS rotor computations at ΩR = 0.64 and at collection
pitch 8.0◦collectivepitch.

Figure 62: Vorticity contours for the HOTIS rotor in free air.

Table 11: Time-Averaged Converged Performance Results.

CT CT FM FM
×1000 Error Error

8.0◦ Collective Pitch
Experiment 4.58 – 0.604 –
Free air 5.48 19.7% 0.576 -4.6%
Menter SST, inviscid walls 5.02 9.6% 0.443 -26.7%
Menter SST, vorticity-based 4.21 -8.0% 0.404 -33.1%
Menter SST, strain-rate-based 3.85 -16.0% 0.356 -41.1%
HRLES 4.44 -3.0% 0.424 -29.7%
HRLES with LDKM 4.35 -5.0% 0.436 -27.8%
HRLES with protrusions 5.15 12.4% 0.531 -12.1%

8.3◦ Collective Pitch
Experiment 4.77 – 0.597 –
Free air, elastic 4.54 -4.8% 0.567 -5.0%
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(a) 15 revolutions (b) 27 revolutions

(c) 39 revolutions (d) 150 revolutions

Figure 63: Vorticity contours for the HOTIS rotor in a facility with inviscid walls.
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(a) 15 revolutions (b) 27 revolutions

(c) 39 revolutions (d) 72 revolutions

(e) 150 revolutions

Figure 64: Mach contours for the HOTIS rotor in a facility with inviscid walls.
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(a) 72 revolutions (b) 150 revolutions

Figure 65: Vorticity contours for rotor in facility with inviscid walls.
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Figure 66: Figure of merit history for HOTIS cases with viscous facility walls at ΩR = 0.64
and at collection pitch 8.0◦collectivepitch.
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loading was decreased near the blade tip. As the fountain flow increased the inflow velocity

through the rotor plane, the loads over the entire blade were reduced due to a decrease in

effective angle of attack. As inflow velocity began to decrease again the effective angle of

attack increased, and blade loads began to increase again.
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Figure 67: Radial normal force distribution (non-dimensionalized by blade-tip dynamic
pressure) of the HOTIS rotor inside a facility at ΩR = 0.64 and at collection pitch
7.6◦collectivepitch.

To determine the influence of turbulence model on the flow characteristics, eddy viscosity

was examined on a vertical plane through the center of the rotor (Fig. 68). As the wake

moved along the walls the eddy viscosity began to reach non-physical values as large as

µt/µ =270,000. The extremely large values of eddy viscosity caused the wake vortices

to generate large regions of rotational flow which caused the increased values of induced

velocity. After the recirculation vortices shifted toward the floor, eddy viscosity decreased

to some extent, but maximum values of µt/µ = remained near 100,000 (Fig. 68), and as a

result tip vortices were still greatly dissipated (Fig. 63(d)).

These results indicate that nonphysical turbulence properties are generated when the in-

viscid boundary condition is applied to the test facility walls and the Menter SST turbulence

model is applied. Because turbulence properties in the Menter SST model are dependent on
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(a) 15 revolutions (b) 27 revolutions

(c) 39 revolutions (d) 72 revolutions

(e) 150 revolutions

Figure 68: Eddy viscosity contours for the HOTIS rotor in a facility with inviscid walls.
The scale varies to show levels at different times.
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distance from the nearest viscous surface, the boundary condition on test facility walls has

a significant effect on the flowfield solution. Hunt [156] and Spalart [80] both indicate that

in general URANS models are appropriate only in thin shear layers, and do not accurately

model turbulence outside the boundary layer. In a closed volume the turbulent wake of

the rotor recirculates through the rotor plane, and thus inaccurate turbulence modeling can

greatly impact rotor performance. Since URANS models typically rely on a dependence to

wall distance, it is more appropriate to select a turbulence model such as the HRLES model,

in which the URANS equations are applied near viscous surfaces, while LES equations are

applied elsewhere.

7.2.1 Influence of Turbulence Model

To more accurately model the turbulence in the wake region the baseline HRLES and

HRLES-LDKMmodels were applied. In URANS turbulence models it may be more accurate

to calculate turbulence production based on the strain rate, rather than vorticity, which is

the convention in many models [80]. Therefore, four test cases with viscous test facility walls

were evaluated; each case was identical except for the turbulence model. The turbulence

models applied in theses cases were the vorticity-based Menter SST, strain-rate Menter

SST, HRLES, and HRLES with LDKM.

The trends of thrust and figure of merit are very similar for all cases (Figs. 61, 66). In

comparison with experimental data of van der Wall and Richard [120], thrust is initially over

predicted by up to 27%, and figure of merit is over predicted by 0-11%. The difference in

thrust is expected, since it was determined that the elastic effects, which are not included in

these simulations, decrease thrust. Due to ground effects thrust and figure of merit are also

larger than the predicted free-air values. At twenty to thirty revolutions both thrust and

figure of merit gradually decline due to the influence of wake recirculation. At 50 revolutions

the thrust and figure of merit temporarily plateau. However, at 60 revolutions the thrust

and figure of merit again begin to decrease, and becomes more unsteady in nature. By 100

revolutions the figure of merit is greatly under predicted in all four viscous-wall simulations

(Fig. 66, Table 11). In some cases the thrust is well predicted, but this is spurious; an
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increase in thrust due to a lack of modeled blade twist is canceled by a decrease in thrust

due to recirculation.

To determine why thrust predictions decrease as the simulation time increases, the

flowfield is sampled at four times during the simulations. Samples are taken at 5 and 10

revolutions to determine the reason for the increase in thrust during that period. Another

sample is taken at 50 revolutions to determine why the thrust has decreased in comparison

to the solution at 10 revolutions and why the thrust is momentarily constant. Finally,

samples are taken after convergence at 100-150 revolutions to determine the reason for the

second drop in thrust and the increased unsteadiness. At each sampling time the vorticity,

Mach number, and eddy viscosity contours are examined.

The tip vortices and sectional blade loading are first analyzed. The history of normal

forces is examined at radial stations from r/R =0.25 to 0.95 at increments of 0.10 (Fig. 69).

During the first ten revolutions the influence of the tip vortex increases slightly, increasing

the overall thrust. As the downward velocity through the rotor plane increases, the tip

vortices are washed downward, and the normal loads diminish near the blade tip (Figs.

70, 71). In all cases the influence of the tip vortex is completely diminished beyond 100

revolutions due to the high downward convection rate of the tip vortices. In the HRLES-

LDKM and vorticity-based Menter SST simulations the tip vortex is dissipated less than in

the other cases; however, little influence on blade loading is observed, since the tip vortex

is far from the rotor.

The downward convection of tip vortices observed in the computational simulations was

not observed in the experiment of van der Wall and Richard [120]. The location of tip

vortices is compared at a vortex age of 5◦ (Table 12). In the experiment the tip vortex

travels upward and toward the root before being washed down through the rotor disk. In

the converged solutions of the simulations the tip vortices travel immediately downward.

The Mach number is next evaluated to determine the reason for the variation in tip

vortex location (Fig. 72, 73). Between 20 and 50 revolutions the wake moves up along

the wall, and begins to induce a larger inflow through the rotor plane. At approximately

50 revolutions the wake has reach the ceiling, and after 60 revolutions the wake begins
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(a) Menter SST, vorticity-based (b) Menter SST, strain-rate-based

(c) Baseline HRLES (d) HRLES with LDKM

Figure 69: Normal force on blade sections from r/R =0.25 to 0.95, increments of 0.10R for
rotor in facility.

Table 12: Tip vortex locations at wake age of 5◦.
∆z/R r/R

Experiment [120] 5.03e-3 0.9922
Menter SST, vorticity-based -3.95e-3 0.9951
Menter SST, strain-rate-based -4.89e-3 0.9953
Baseline HRLES -5.95e-3 0.9965
HRLES with LDKM -3.32e-3 0.9956
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(a) 5 revolutions (b) 10 revolutions

(c) 50 revolutions (d) 106 revolutions

Figure 70: Vorticity contours for rotor in facility, viscous walls, HRLES model with LDKM.
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(a) Menter SST, vorticity-
based

(b) Menter SST, strain-rate-
based

(c) Baseline HRLES (d) HRLES with LDKM

Figure 71: Final vorticity contours for rotor in facility with viscous walls, after convergence.
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to approach the rotor. The high-momentum fluid in the wake begins to wash the tip

vortices downward as it recirculates through the rotor disk. In addition, fluctuations in

wake properties alter the inflow through the rotor plane, causing variations in thrust.

(a) 5 revolutions (b) 10 revolutions

(c) 50 revolutions (d) 100 revolutions

Figure 72: Mach number contours for rotor in facility, viscous walls, HRLES model with
LDKM.

In comparison to the inviscid-wall case, there is much more fluctuation in thrust coeffi-

cient for the viscous-wall cases. This is a result of velocity fluctuations in the wake which

were smoothed by the large eddy viscosity in the inviscid wall case.

Eddy viscosity is next examined in the cases with viscous walls to determine the influence

of turbulence model and the boundary condition of test facility walls on the solution (Figs.

74–77). In both URANS cases the maximum eddy viscosity is reduced by an order of

magnitude in comparison to the inviscid-wall case. However, even after very long time

periods eddy viscosity continues to increase throughout the chamber (Figs. 74–75). In the

HRLES cases maximum eddy viscosity is much smaller than in the URANS cases, with

maximum values near µt/µ =1000. The maximum eddy viscosity changes little throughout

the simulation. The baseline HRLES case models a more continuous eddy viscosity, while
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(a) Menter SST, vorticity-
based, 100 revolutions

(b) Menter SST, strain-
rate-based, 100 revolutions

(c) Baseline HRLES, 100
revolutions

(d) HRLES with LDKM,
100 revolutions

Figure 73: Mach number contours for rotor in facility with viscous walls.

values are localized to flow features in the HRLES-LDKM case.

In URANS models it is assumed that all turbulence length scales are modeled, and that

the influence of turbulence can be approximated with time-averaged flow properties. In

URANS simulations the buildup of eddy viscosity is due to dependence of the turbulence

model on a characteristic length based on the distance of each grid node from the nearest

viscous wall. The formulation is based on flow physics of the boundary layer, and does

not have physical relevance outside the boundary layer, where turbulence is dependent

on wake features rather than distances from the nearest viscous surface. In the HRLES

simulations eddy viscosity is based on grid resolution, and in LES regions only the subgrid-

scale turbulence is modeled. The characteristic length is therefore based on the volume of a

cell rather than its distance from a viscous wall. This provides a more physically accurate

prediction of turbulence properties outside of boundary layers, and reduces eddy viscosity

by an order of magnitude compared to URANS simulations.
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(a) 5 revolutions (b) 10 revolutions

(c) 50 revolutions (d) 100 revolutions

Figure 74: Eddy viscosity contours for rotor in facility, viscous walls, Menter SST vorticity-
based model. Scale varies to show levels at different times.
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(a) 5 revolutions (b) 10 revolutions

(c) 50 revolutions (d) 100 revolutions

Figure 75: Eddy viscosity contours for rotor in facility, viscous walls, Menter SST strain-
rate-based model. Scale varies to show levels at different times.
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(a) 5 revolutions (b) 10 revolutions

(c) 50 revolutions (d) 100 revolutions

Figure 76: Eddy viscosity contours for rotor in facility with viscous walls and standard
HRLES turbulence model.

(a) 5 revolutions (b) 10 revolutions

(c) 50 revolutions (d) 100 revolutions

Figure 77: Eddy viscosity contours for rotor in facility with viscous walls and HRLES-
LDKM turbulence model.
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7.2.2 Influence of Facility Components

In the HOTIS test facility [120] (Fig. 78) several protrusions and cavities along the floor,

walls, and ceiling were present during the hover test. While the exact measurements of these

components were not available, the dimensions of several components such as the sting, ma-

chinery, cabinets, and window cavities were approximated based on digitized data extracted

from photographs of the facility. These components were modeled in the background grid

as simple prisms and cylinders with viscous surfaces, and the HRLES turbulence model

with constant coefficients was applied. Grid spacing was again 0.121c near the rotor, and

the composite grid consisted of the new background grid with the cavities and protrusions

added and the previously-used “medium” blade grid.

Figure 78: HOTIS test room [120].

With the geometric protrusions modeled in the test facility the figure of merit prediction

improved greatly, diminishing the error with respect to experimental measurements, which

ranged from -28 to -41% in cases without protrusions, to -12% error. In cases where the

protrusions were not modeled the wake initially had little influence on the rotor. After 20

revolutions the thrust began to drop as large recirculation patterns began to form inside the

test facility, and the mean thrust continued to decrease until reaching 100 revolutions, where

the mean figure of merit was 0.36 to 0.44. When the protrusions were modeled the figure

of merit was initially lower, due to recirculation patterns forming more quickly and nearer
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to the rotor. However, perturbations in the flow disrupted the larger vortex structures, and

over time the effects of recirculation were smaller with protrusions included, as exhibited in

the thrust and figure of merit predictions (Fig. 61, 66).

The location of the recirculation vortices influence the direction and magnitude of the

tip vortices. In cases without protrusions the inflow velocity is greater, and almost directly

downward. When protrusions are modeled the inflow velocity is lower, and as a result the

tip vortices remain nearer the rotor (Fig. 79). In all cases except the case with protrusions

the influence of the tip vortex is completely diminished beyond 100 revolutions (Fig. 80) due

to the dissipation and downwash of the tip vortices, and at 95%R the normal force drops by

an average of 26% from 50 to 100 revolutions. In the HRLES-LDKM and vorticity-based

Menter SST simulations the tip vortex is dissipated less than in the other cases; however,

little influence on blade loading is observed compared to the other cases, since the tip vortex

is far from the rotor. In the HRLES case with protrusions the normal force at 95%R is

diminished by only 4% during the same time period.

(a) Without protrusions, y-
plane

(b) With protrusions, y-plane (c) With protrusions, x-plane

Figure 79: Vorticity contours near blade tip at ψ=180◦ in HOTIS facility with and without
protrusions modeled, after convergence.

The figure of merit prediction is also improved compared to cases without the pro-

trusions. The inflow velocity and eddy viscosity, which are influential in figure of merit

predictions, are examined. When protrusions are present the inflow velocity is greatly re-

duced (Fig. 81) due to the size and location of wake vortices. On average, the downward

velocity 1R above the rotor disk is 65% greater when the protrusions are not included. The
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(c) 100 revolutions

Figure 80: Radial normal force distribution (averaged over one revolution) of HOTIS rotor
with rigid blades, modeled with and without facility protrusions and cavities.
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inflow velocity not only decreases the effective angle of attack, but also has a large influence

on movement of the tip vortex, which greatly alters blade loading near the tip.

(a) Without protrusions, y-
plane

(b) With protrusions, y-plane (c) With protrusions, x-plane

Figure 81: Mach number contours in HOTIS facility with and without protrusions, after
convergence.

In the case with protrusions, the eddy viscosity reaches 400–500 in isolated regions;

however, throughout the facility eddy viscosity is typically 100–300, compared to values of

300–800 more typical of the HRLES case without protrusions. It is observed that in the

regions near and below the rotor the eddy viscosity is lower than in the surrounding regions.

This can be attributed to the inverse dependency on V
1/3
cell (Eq. 6), as the grid spacing near

and below the rotor is approximately 0.10c, while it is as high as 0.75c away from the rotor.

In all HRLES cases the nondimensional eddy viscosity is lower than the “threshold value” of

5.6e3 determined by Réthoré ([98]), indicating that it should not have a severe influence on

performance predictions, while in all RANS cases the eddy viscosity exceeds the threshold

value. These results are in agreement with his conclusion that RANS turbulence modeling

is not suitable for cases in which both small and large scale turbulence is being modeled.

7.3 Summary of Test Facility Analyses

The influence of four turbulence models on rotor performance and flowfield characteristics

has been examined. In the two URANS cases, eddy viscosity became very large due to

the presence of vortical wake structures away from viscous walls. Figure of merit was sig-

nificantly under predicted in both cases. Although eddy viscosity predictions were greatly
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(a) Without protrusions, y-
plane

(b) With protrusions, y-plane (c) With protrusions, x-plane

Figure 82: Eddy viscosity contours in HOTIS facility with HRLES model, after convergence.

reduced when HRLES turbulence models were applied, the figure of merit predictions im-

proved only slightly (Table 11, Fig. 66). No significant improvements in figure of merit

resulted from implementation of LDKM in the HRLES turbulence model. While the con-

verged figure of merit predictions of the inviscid wall case are comparable to predictions

of the HRLES cases, very large eddy viscosities were generated throughout the simulation,

which resulted in a large drop in figure of merit between 35 and 70 revolutions in compari-

son to all other cases. Inclusion of the cavities and protrusions that were present along the

floor, ceiling, and walls of the test facility had a significant influence on wake recirculation

characteristics, and the resulting figure of merit predictions were greatly improved (Table

11, Fig. 66). These results indicate that even facility components that are far from the

rotor are important in the computational model because of their influence on the wake

structure. The thrust (Table 11, Fig. 61) is over predicted when the components are in-

cluded; however, free air analyses of the HOTIS rotor with rigid and elastic blades indicate

that the over-predicted thrust is caused by the rigid blade modeling. When the rotor is

modeled with elastic blades, torsion of the blades decreases the average pitch angle and

reduces thrust. Thus, for computational modeling of a rotor inside an enclosed chamber it

is recommended that an HRLES turbulence model be applied, and that all components in

the facility be modeled.
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CHAPTER VIII

CONCLUSIONS

A tight CFD/CSD coupling methodology for aeroelastic analysis of rotor with morphing

airfoils has been developed. The method has been validated by comparing computational

predictions for rotor performance with experimental data. Unsteady camber behavior has

been verified through simulation of flexible wing sections performed with the F-S/NLABS

and FUN3D/NLABS codes and comparison of flutter speeds with analytical solutions. A

stability analysis was also demonstrated for flexible airfoils in compressible flow. Finally,

the methodology was demonstrated for three-dimensional rotor cases in forward flight with

camber actuation. The influence of test facility components and turbulence modeling were

also evaluated. The results obtained from this research yields the following conclusions:

• A methodology for coupling CFD and CSD codes with the capability of modeling

radial and chordwise pressure distributions, as well as three-dimensional structural

deflections, has been developed and demonstrated.

• In airfoil and rotor analyses it was demonstrated that, although the CFD/CSD inter-

face does not strictly enforce conservation of work, the error in work was small and

bounded over time.

• Application of the CFD/CSD methodology to a rotor in hover improved free-air thrust

predictions and figure of merit prediction to within 5% of the HART II and HOTIS

data. Significant changes in thrust with respect to the rigid case were observed due

to the torsional deflection of the rotor blades.

• F-S/NLABS analysis predicted pitch/plunge flutter speeds within 3% of the solutions

presented by Zeiler, and parabolic camber flutter within 1% of the approximate so-

lution presented by Murua. The close agreements is expected, since the analyses all

applied Peters finite-state aerodynamics.
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• FUN3D/NLABS and F-S/NLABS predicted flutter speeds within 5% of each other

at low ωζ/ωα, while deviating at higher values of ωζ/ωα as the pitch mode began to

dominate the instability. This change was traced to a small offset in location of the

aerodynamic center from the quarter-chord in CFD results, while in Peters’ finite-state

aerodynamics, in which inviscid flow and a linear wake are assumed, the aerodynamic

center is predicted to be at the quarter-chord.

• The FUN3D/NLABS and F-S/NLABS predictions for parabolic camber flutter speed

were 1% at large inverse mass ratios, though differences as large as 25% were observed

at small inverse mass ratios. At all inverse mass ratios there is a 2.5% to 4.9% phase

difference in the aerodynamic loads. At low inverse mass ratios the flutter speed is

more sensitive to phase offsets of the aerodynamic loads, which may be caused by the

fidelity of inflow modeling.

• Two-dimensional analyses at compressible speeds indicated that for a NACA 23012

blade section, with pitch and plunge frequencies based on those of the HART II rotor

with a rotational speed of 109 rad/s, pitch deflections of the FUN3D/NLABS and

F-S/NLABS analyses were within 10-12% of one another in the linear regime, while

large differences in behavior were observed once transonic flow became significant.

In the F-S/NLABS simulations static divergence was encountered before flutter. In

the FUN3D/NLABS simulations limit cycle oscillations were observed once deflections

became large, due to the unsteady nonlinear aerodynamics. An analysis of the flowfield

and pressure distributions indicated that the motion of the airfoil in FUN3D/NLABS

simulation was caused by shed vortices which were produced by shocks and large

airfoil deflections.

• In simulations of a NACA 23012 airfoil in compressible flow stiffness requirements

for stability were determined. Despite the differences in aeroelastic behavior near the

minimum stable camber stiffness, both FUN3D/NLABS and F-S/NLABS predicted

similar stiffness requirements for stability.

• A FUN3D/NLABS analysis was performed for the HART II rotor in hover and forward
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flight and compared to experimental data. Normal forces were under predicted in

dynamic stall and transonic flow regions, but errors were comparable to those of similar

CFD/CSD and comprehensive CSD analyses. Peak-to-peak vertical tip deflections

were in phase with experimental data, but the magnitude was under predicted. Similar

CFD/CSD analyses under predict tip deflections of the HART II rotor by a similar

margin.

• In forward flight FUN3D predicts a larger nose-down pitching moment than F-S aero-

dynamics. This affected the blade torsion, and resulted in a collective trim setting

0.3◦ larger when CFD loads were applied than when F-S aerodynamics was applied.

In addition.

• The influence of wake induced inflow on sectional normal forces was observed in the

FUN3D and F-S aerodynamic results. However, while the influence of the tip vortices

on pitching moment was observed in FUN3D results, F-S aerodynamics failed to

model these influences. These results are consistent with previous analyses in which

aerodynamic methods based on lifting-line models fail to predict the influence of tip

vortices.

• An analysis of the rotor inflow finite-state modes was performed, and it was determined

that it was necessary to include at least 16 modes in order to sufficiently resolve the

influence of the wake and reduce deltas with respect to CFD loads.

• Prescribed harmonic camber motion was applied at various phases and magnitudes.

FUN3D/NLABS and F-S/NLABS predicted a similar phase response to camber actua-

tion in all cases. In most cases FUN3D/NLABS analyses predicted a larger magnitude

response, indicating that the NLABS results provide a more conservative solution for

the required camber deflections.

• FUN3D/NLABS and F-S/NLABS solutions indicated that the response to 0.25%c

camber actuation is sufficient to minimize individuals hub loads and moments if the

actuation phase and magnitude are optimized.
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• In complete test facility simulations it was observed that the URANS turbulence

model yielded very high eddy viscosity which significantly altered the flowfield and

resulted in poor predictions of rotor performance. The HRLES model yielded better

results due to improved modeling in eddy viscosity.

• In enclosed facility simulations, inclusion of actual protrusions and cavities along

the walls, ceiling, and floor of the facility are important in evaluation of the rotor.

Although the components were far from the rotor they altered recirculatory flow

structures, which have a significant influence on rotor performance.

• If the effects of elasticity are not included the thrust predictions for the HART II

rotor are over predicted. For cases inside a test facility the computational cost for

a converged CFD/CSD simulation is estimated to be on the order of 1 × 106 CPU

hours, which was not feasible in the current effort. Little influence of aeroelasticity

was observed on figure of merit predictions.

8.1 Recommendations for Future Work

The following recommendations are made for future work:

• Simulations performed in this research have been performed for compliant airfoils

without actuation and for prescribed airfoil motion in which the stiffness prevented

deflections from aerodynamic loads. Stability analyses for a full rotor configuration

with and without active camber should be performed to evaluate the interaction be-

tween active camber deflections and aerodynamic deflections and to determine the

stability limits.

• There is a large difference in the very small time scales required for capturing the

near-blade physics and the large time scales required for convergence of the wake

solution throughout the test chamber. Due to the number of revolutions required,

achieving converged solutions inside an enclosed facility is very computationally ex-

pensive. Possible alternatives include hybrid CFD/vortex transport simulations and

hybrid CFD/free wake simulations. These methods may have the capability to resolve
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wake features more efficiently for long enough durations of time to better evaluate re-

circulatory effects.

• To reduce unsteady loads in experiments, some researchers have added honeycomb

structures and screens to dissipate recirculating wake vortices and reduce large re-

turn velocities. Others have placed a duct below the rotor to prevent fountain flow.

Employing one of these techniques would allow vibratory loading to be examined with-

out interference from wake vorticity. A methodology for performing computational

simulations of this type of configuration should be designed and analyzed.

• Camber actuation was not optimized for vibratory load reduction in the present work.

It is not feasible to perform the large sampling of FUN3D/NLABS analyses required

by many optimization methods. It may be possible, however, to use F-S/NLABS sim-

ulations in performing a search for optimal solutions, and then to use the solution as

a beginning point in a gradient-based approach for optimization in a FUN3D/NLABS

analysis.
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