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SUMMARY 

If the implications of requirements and constraints are not adequately captured in 

the early stages of design, the result is often expensive and timely engineering changes. 

Traditionally, the early stages of design have focused on static performance analyses 

without considering the design impacts on dynamic maneuvers; however, typical military 

helicopter operation requires precise maneuverability performance for successful mission 

completion. Therefore, the focus of this work is to address the issues with integrating 

maneuverability analysis into a conceptual design process. The problem in this effort is 

decomposed into three major areas within this work: designing for maximum 

maneuverability, capturing controllability concerns, and defining the mission maneuvers. 

In order to capture the impact of design variations on maneuverability, a model 

formulation that includes the necessary measures and captures the impact of changing 

requirements real-time is required. In order to overcome these challenges, the integration 

of a parametric helicopter model into a dynamic simulation environment is presented. 

The parametric rigid body formulation is shown to offer a more conservative estimate of 

maneuverability than traditional energy-based formulations through quantitative analysis 

of a typical pop-up maneuver. The maneuverability limits are captured in multiple 

dimensions such that the variability in design parameter values can be directly traced to 

maneuver performance attributes. Additionally, the dynamic motion is simulated 

independent of the control system due to human-interaction and dimensionality 

constraints associated with conceptual design. 
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Although the control system design is not directly integrated into the conceptual 

design process, it is important to capture control constraint and requirement information 

as early as possible. Without this knowledge, infeasible dynamic maneuvers are deemed 

feasible. Hence, control related measures are required to relate the control system design 

constraints to the vehicle maneuver limits. These measures must account for a multitude 

of control design decisions, while remaining at the appropriate level of detail for 

conceptual design. Two measures are integrated in this work, which include control 

deflection rate and trajectory divergence rate. Both of these measures are general enough 

to be applied to any control architecture, while at the same time provide quantitative 

measures that relate overall vehicle maneuverability to control system requirements. It is 

demonstrated that the control constraints offer a more conservative and robust solution 

due to the elimination of infeasible designs. 

These maneuverability trades must be conducted for the entire helicopter flight 

envelope, which is unaffordable at the conceptual stage. As a result, a maneuver 

taxonomy is developed such that the immense maneuver space can be expressed through 

a subset of maneuvers. However, the complexity of the maneuver mathematical 

formulation presents difficulties when integrating into a design framework. Therefore, the 

mathematical formulation is modified to reduce the number of variables required. The 

combination of the maneuver model and the taxonomy allow for the performance of 

individual maneuvers to be analyzed such that the impact of design constraints or 

changes in the maneuver definition can be fully explored real-time.  
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Addressing the three major needs yielded a methodology termed GT-RISE, which 

stands for Georgia Tech Rotorcraft Inverse Simulation Environment. The methodology 

enables the impact of design choices on maneuverability to be assessed for the entire 

helicopter flight envelope, while enabling constraints from control system design to be 

assessed real-time. A canonical example from helicopter literature that emphasizes the 

need to perform Nap-of-the-Earth flight analyses and conceptual design simultaneously is 

analyzed using the GT-RISE methodology. The process is shown to provide the 

systematic and traceable real-time analysis trades required to elevate knowledge in the 

conceptual design stages through quantitative maneuverability analysis, which mitigates 

cost, risk, and uncertainty. 
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CHAPTER  1 

INTRODUCTION AND PROBLEM FORMULATION 

The majority of the product cost is committed by the end of the conceptual design 

phase [1-3]. As a result, a greater focus on conceptual design is essential in meeting the 

new and specialized requirements of the customer. Traditionally, the early stages of 

helicopter design have focused on static performance analyses, such as excess power 

techniques, without considering the impacts of maneuvering flight [4]. This approach has 

been implemented mainly due to the combinatorial limitations posed by design and the 

incomplete knowledge of constraints and requirements [3, 5].  However, military 

helicopter operations require precise maneuverability characteristics for successful Nap-

of-the-Earth (NOE) flight maneuvers. NOE flight consists of precise maneuvering in and 

around obstacles, which the helicopter uses for cover, thus, enabling completion of 

missions unique to helicopter platforms. Many military helicopter NOE flight scenarios 

and problems are classified; therefore, a literature search was performed to find an 

unclassified canonical example that could be used as a surrogate for formulating the 

problem. The classified problems are indirectly assessed through determining the 

necessary requirements and solving the unclassified example. 
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Figure 1.1: AHS Design Competition 2012 

Sikorsky [6] has recently introduced the 2012 American Helicopter Society 

(AHS) design competition that forces the designer to consider effects on maneuverability 

characteristics resulting from design decisions. The top-view of the mission is shown in 

Figure 1.1. The importance of capturing the impacts on performance, cost, and safety 

using maneuverability analyses has been discussed since the 1970s [7]. However, due to 

the combinatorial problems of integrating maneuverability analyses with design, this 

integration has not been completed. As a result, flight dynamics and control implications 

are not considered until the preliminary design stages, which often results in costly design 

modifications later in the design process [8, 9]. Maneuverability analyses provide many 

valuable insights into the helicopter NOE operational envelope [8, 10], which directly 

impacts important design decisions [11] related to maneuverability, agility, and control.  
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This information is of great interest, which is demonstrated by recent focus on multi-role 

type design efforts such as the Joint Multi-role Rotorcraft [12]. In order to incorporate 

maneuverability analysis capabilities into the helicopter design framework, a thorough 

literature review must be conducted to uncover all of the hurdles that must be addressed.  

The AHS design problem is an unclassified example of NOE flight operations that 

must be addressed by the helicopter design community. In order to provide the most 

traceability and understanding, the problem is decomposed into three major areas: 

designing for maximum maneuverability, capturing controllability concerns, and defining 

the mission maneuvers. This decomposition is represented in Figure 1.2.  These three 

research areas relate directly to NOE flight requirements. The first area, which is 

designing for maximum maneuverability, is important for both military NOE operations 

and the AHS design competition because the design that can outperform the other 

helicopter designs will win in NOE combat scenarios. The ‘maximum maneuverability’ is 

defined by the minimum mission time although other measures, such as blade loading, 

could be considered simultaneously. The second research area specifies the need to 

capture the controllability concerns. This requirement is stated because during NOE flight 

operations a precise maneuver path must be followed. Any divergence from the path can 

be catastrophic because the helicopter is flying in and around obstacles. Similarly, the 

AHS design competition requires the helicopter to follow a specific mission path, while 

considering the implications of traveling into a pylon or the spectators. The third research 

area deals with the mission maneuver specifications since there are an immense number 

of NOE flight operations that must be analyzed. Additionally, the maneuver 
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specifications are dynamic in nature and cannot be analyzed with only steady-state 

analysis techniques. These problem areas require a shift in design and maneuver analysis 

capabilities [13-15], which are discussed in more detail in the following sections. The 

objective is to determine all of the requirements that must be addressed to enable 

successful design for helicopter NOE flight. 

 

Figure 1.2: Decomposition of the Problem 

1.1 Designing for Maximum Maneuverability 

As previously mentioned, the first category of the decomposition is designing for 

maximum maneuverability, which consists of determining design parameters that 

produce minimum maneuver time. Historically, design methods have employed the use 

of static based analyses to make important design decisions regarding performance; 

however, the 2012 AHS design competition requires simultaneous design and analysis of 

dynamic NOE maneuvers. A summary of the literature review is presented in this section 

Design for Maximum 
Maneuverability

Define the Mission

Maneuvers

Capture Controllability
Concerns
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to aid in defining the needs of the problem. A more complete literature review is 

presented in Chapter 2 when the remaining questions are addressed.  

The objective of the design process is to make important design decisions such 

that the minimum time mission is achieved. This goal is consistent for both the 2012 

AHS design competition and typical military helicopter NOE flight procedures. In order 

to accomplish this task, the method employed must determine the impact on 

maneuverability due to the design variations for dynamic operations. This requires 

appropriate model formulation to capture the necessary measures and apply the required 

constraints. Additionally, the capability to capture variability in the design parameters 

independent of controller design is essential. Finally, the manner in which the 

maneuverability information is collected and presented must be systematic, traceable, and 

real-time to allow for the greatest amount of knowledge to be gained. These requirements 

for design for maximum maneuverability are discussed in the following sections. 

A notional example of capturing the required performance constraints for 

dynamic operation is demonstrated in Figure 1.3 where the time histories are shown for 

both main rotor collective and power required when performing a 10.6 second pop-up 

maneuver. The yellow constraints represent the design requirements on the system. The 

bottom portion of the figure shows the power required during the maneuver, which is 

obtained using an energy-based design approach. The top portion of the figure displays 

the main rotor collective time history with the maximum control deflection constraint 

imposed. This kinematic constraint represents one of the many constraints that can be 

implemented with the rigid body formulation. If only the energy-based formulation is 



6 

 

applied, the main rotor collective constraint could not be imposed or analyzed. As a 

result, infeasible solutions may be missed and selected as the optimum design, which will 

not be uncovered until later stages when the rigid body formulation is applied. Avanzini 

[16] notes that, “mechanical limitations of control travel or control rates” are just a few of 

the constraints that lead to poor predictions using the energy-based formulation alone. 

 

Figure 1.3: Model Fidelity Related Constraints 

Additionally, various assumptions can be applied when forming the rigid body 

helicopter model and the previous example only represents a notional case. Hence, a 

more thorough down selection from the various fidelity approaches in literature must be 

completed. This investigation is presented in Chapter 2 of this thesis; the findings are 

summarized here in order to provide a clear scope for the present work. Avanzini [17] 

Control Deflection Constraint

Maximum Power Constraint
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analyzed 13 various fidelity rigid body models and the results are summarized in Figure 

1.4.  

 

Figure 1.4: Various Fidelity Rigid Body Formulations 

The results demonstrate that the most simple rigid body formulation, which is 

shown as the blue dashed line, closely approximates the control time histories of higher 

fidelity formulations when performing a smooth maneuver. Design space exploration is 

the major focus in the early design stages, which means that many different designs must 

be investigated. The computational time increase for the small increase in accuracy 

obtained from the higher fidelity rigid body formulation is not beneficial in the early 

stages of design; hence, a simple rigid body helicopter model is sufficient. Additionally, 

the information that is required to populate the parameters of the higher fidelity models is 

unknown in this stage. Often times, even if the information is available, the combinatorial 
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nature of the problem prevents adequate sampling of the space due to computational 

limits. The simplifying assumptions and the resulting limitations of the simple rigid body 

model are discussed during mathematical model development. 

 

Figure 1.5: AH-1 SeaCobra Variants 

The second attribute of the problem to take into account when designing for 

maximum maneuverability is the impact of design parameter variations on 

maneuverability characteristics. For this exercise, assume that the AH-1 SeaCobra is 

selected as the appropriate starting point for design since commonly design starts from a 

previous design exercise [3]. It turns out that multiple variants of the AH-1 exist that alter 

the weight, center of gravity, tailboom length, and engine properties as displayed in 

Figure 1.5 [18]. The implications of these various alterations must be quantitatively 
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captured, in addition to other parameters, in a systematic and traceable manner. 

Additionally, much benefit is gained if these trades can be conducted in a real-time 

parametric sense, rather than sequential one point at a time trade studies. Both of these 

characteristics enable faster iterations and more transparent results, which result in a 

decrease in time, risk, and overall cost.  

The final requirement for addressing design for maximum maneuverability is the 

presentation of maneuverability information. In order for the most knowledge to be 

gained during trade studies, the data must be analyzed systematically and real-time. 

Additionally, the data must include the quantitative time history data to enable 

determination of the sources for constraint violation. Some previous studies have 

summarized the maneuverability results in tabular form with little information provided 

from the time history analyses [19, 20]. However, Celi [21] shows that the entire 

maneuverability time histories can be used to analyze the impact from the various 

constraints and requirements through analysis of a fixed design for a slalom maneuver. 

This becomes even more important for analyzing maneuverability during design because 

the maneuver performance for each configuration is going to be dictated by different 

constraints. Hence, the ability to filter down through the results to determine the 

constraints that are impacting the maneuverability limits is necessary. The differences in 

displaying the time history information versus only summarizing the data is demonstrated 

in Figure 1.6, where the top portion of the figure is the time history and the bottom 

portion is only summarizes the characteristics of the maneuver. 
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Figure 1.6: Performance Summary versus Time Histories 

Determining the appropriate techniques necessary to form a method that can 

address all of the needs simultaneously requires careful analysis of literature. It is shown 

in Chapter 2 that no single reference addresses all of the necessary attributes of the 2012 

AHS design problem. As a result, the first research objective of this work is established. 

It must be kept in mind that only the requirements related to designing for maximum 

maneuverability have been introduced. The remaining two areas of the problem, which 

include capturing controllability concerns and defining the mission maneuvers are 

introduced separately. The final objective of this work is determining a methodology that 
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addresses all of the requirements of the problem simultaneously. The requirements 

associated with designing for maximum maneuverability, which have been discussed in 

this section, are summarized in the following bulleted list and are used later in this work 

to develop an overall research objective and form research questions. 

Designing for Maximum Maneuverability Requirements 

 Capture the maneuverability for dynamic NOE operations 

 Measure the maneuverability independent of control design 

 Include quantitative impact of appropriate fidelity constraints 

 Capture the effect from variability in multiple design parameters 

 Provide traceable and real-time design tradeoff capabilities 

 

1.2 Capturing Controllability Concerns 

The second component of the decomposition is capturing controllability concerns 

that stem from control design and integration decisions. Control system design decisions, 

both hardware and software, have a major impact on maneuverability of the system. 

Chipperfield [22] states, “these include, but are not limited to, the type and location of 

sensor and actuator devices, the sensed parameters used to close control loops, the form 

of control to be employed and the size of design margins for stability, robustness, and 

degradation.”  All of these decisions have a major impact on the integration of the 

controller into the system, which can substantially degrade the performance capabilities 

from that of the ideally controlled system.  

It is important to capture this information as early in the design as possible; 

however, difficulties arise because of the quantity and quality of data required for these 

types of trades. For example, the moment that a control architecture is chosen for the 
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system, a large number of controller specific tuning parameters are introduced. The curse 

of dimensionality arises as the parameters are added to the design process. Furthermore, 

two or more different control architectures may need to be compared quantitatively to 

choose the correct scheme. As a result, there must be a tradeoff in the amount of control 

information in the design process and the capability to make quantitative trades that aid in 

controller development.  

The importance of capturing the performance degradation due to these control 

selection decisions is presented in the notional example in Figure 1.7. As stated 

previously, the performance measure is minimum time to complete the mission. The 

horizontal axis in Figure 1.7 displays four different maneuvers. This number varies 

depending on the number of maneuvers within the mission definition. The figure 

demonstrates the impact on maneuver capabilities from fixing the control decisions early 

in the design process. The blue curve in the figure represents the helicopter design 

parameters resulting in the maximum maneuverability. This design is integrated with a 

perfect controller such that the maneuverability is dictated by the design parameters 

rather than the controller. Since a perfect controller is implemented the maximum 

theoretical maneuverability is achieved. The other two curves represent the performance 

degradation from integrating a non-perfect controller with the same helicopter design. 

The orange curve represents a notional nonlinear controller, while the green curve 

displays a notional linear controller with fixed gains. The main point of this figure is to 

show that some degradation in performance occurs during integration of any non-perfect 

controller. 
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With the wider availability of sensor and actuator components, and more engine 

parameters becoming measurable and controllable, more detailed models are necessary to 

include all of these control parameters into the maneuverability analyses, which pose 

problems for conceptual design due to the combinatorial nature. Chipperfield [22] states 

that “the task of selecting a suitable control configuration is thus further complicated by 

the number of possible, but perhaps undesirable, configurations.” Hence, the curse of 

dimensionality prevents inclusion of all the various architectures and trades in the early 

stages of design.  

 

Figure 1.7: Notional Example of Control Integration 

The previous example demonstrates that the vehicle maneuverability must be 

evaluated separate from the maneuverability of the control integrated system; however, 

the quantitative degradation in maneuverability due to control decisions cannot be 

ignored. This hurdle is addressed by reviewing the control integration and design process, 

which is displayed in Figure 1.8. The control integrated maneuverability process begins 

with control system design, which involves detailed control decisions regarding 

processing, actuator, and sensor types/locations. These decisions cannot be made during 

the conceptual design process because the detailed nature of such decisions. The second 

step of the process is the characterization of the control system. This involves developing 
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an understanding of how the various control system design decisions propagate to the 

overall controller characteristics. These characteristics can vary greatly depending on the 

stage of the design and the amount of information available. Finally, these characteristics 

directly impact the control integrated system maneuverability. 

 

Figure 1.8: Control Integrated Maneuverability Evaluation Process 

Commonly, the control system design problem consists of the specification of a 

plant and a few operating points of interest, and the control designer is required to meet 

some performance criteria [23]. This process involves a compromise in order to meet the 

performance requirements at the various points within the envelope. As determined 

through literature review, the link between the control integrated maneuverability and the 
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control design appears through the control system characteristics, which is displayed in 

Figure 1.8. The approach of analyzing maneuverability independent of controller 

characteristics has been common in recent years; however, none have bridged the gap of 

coupling maneuverability and design [24-27].  

 

Figure 1.9: Trajectory Error Resulting from Controller Integration 

Additionally, the NOE flight operations require the tracking of precise flight paths 

for safe and successful mission completion. The control system design decisions directly 

impact the capabilities for a control integrated system in performing these NOE 

operations. It is essential to capture the impact from control system errors that result in 

the path following divergence when performing NOE maneuvers. For a fixed helicopter 

design, the various control designs may result in vastly different maneuverability 

capabilities as indicated in Figure 1.9. The figure shows the maneuver capabilities for 

two different controllers for the same design. Hence, the integrated vehicle may not be 

able to follow the desired trajectory depending on the control decisions. The requirements 
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determined through the literature review are summarized below and are discussed in 

detail in Chapter 3. These needs are the motivation for the second research objective of 

this work. 

Capturing Controllability Concerns Requirements 

 Capture impact of control system degradations on maneuverability 

independent of control system design 

 Account for error propagation using appropriate measures 

1.3 Defining the Mission Maneuvers 

The third and final decomposition area of the AHS design problem is defining the 

dynamic NOE mission maneuvers. The competition is unique from previous design 

problems because the maneuvers cannot be defined by only steady-state points. Rather, 

the mission consists of multiple dynamic maneuvers that represent military helicopter 

NOE flight, which are combined in a sequential manner. Analyzing dynamic operation is 

more computationally challenging than analyzing steady-state operation. Further 

expanding on this issue, the dynamic maneuver operational envelope is immense as 

indicated by Figure 1.10, which shows just 15 of the possible pop-up trajectories for a 

fixed altitude and time frame. This notional pop-up maneuver space represents the 

numerous trajectories for a simple planar motion of two variables. Once the other 

parameters and planes of motion are introduced, analyzing the entire maneuver space 

quickly becomes intractable in conceptual design. 

Multiple problems arise when trying to analyze the entire mission space for all 

axes motion. As stated by Perez [8], “The number of analyses required to cover the entire 

envelope becomes unaffordable at the conceptual stage.” Hence, a literature review must 
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be conducted to determine how to handle the entire helicopter operational space during 

conceptual design. This literature review, which is fully discussed in Chapter 4, includes 

approaches from the spacecraft design, the path planning, and the helicopter performance 

analysis communities. 

 

Figure 1.10: Various Pop-Up Maneuvers 

Although, flight dynamics and controllability concerns in aircraft design have 

been considered since the 1970s [28] most of the integration has occurred in the later 

stages of design. Another major challenge posed by the competition is that the maneuvers 

are under-constrained.  As a result, multiple paths exist that offer potential solutions to 

each of the maneuvers within the overall mission. This is demonstrated in Figure 1.11 

where three different pop-up maneuvers produce the same end result. The optimum path 
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is the path that requires the least amount of time to complete without violating any design 

or maneuver constraints. 

 

Figure 1.11: Multiple Paths for Single Maneuver Definition 

As the number of maneuvers within the mission increases, the combinatorial 

issues grow exponentially. Additionally, the results from one maneuver dictate 

constraints on the subsequent maneuver because of the sequential mission definition. An 

optimization algorithm for determining the fastest mission can be easily integrated; 

however, without a human driving the constraints, the impact from the various constraints 

on each of the maneuvers within the mission cannot be adequately captured and analyzed. 

Furthermore, these trades must be conducted in real-time and the ability to analyze any 

maneuver within the helicopter operational envelope is essential. These observations 

result in the third and final set of requirements. 
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Defining the Mission Maneuvers Requirements 

 Analyze the maneuverability over the immense helicopter operational 

envelope 

 Enable human-driven real-time trades for both missions and individual 

maneuvers 

1.4 Thesis Structure 

The research presented is not intended to provide all the modeling capabilities of 

the early stages of design; consequently, the role is addressing important areas of research 

that enable design for helicopter NOE flight to be completed. This is accomplished by 

using the AHS design competition as a surrogate to the military helicopter problem since 

many aspects of military problem are classified. The objective of this work is to provide 

the designer with an understanding of the impacts of design decisions on the 

maneuverability characteristics, while offering control requirements to be passed to the 

control design engineer. Additionally, the process developed in this work captures the 

quantitative dynamic helicopter maneuverability in the entire operational envelope, which 

enables use for any future design problems with NOE design goals.  

Three major areas of the problem decomposition were introduced in the previous 

sections and the requirements within each area are summarized in Figure 1.12. All three 

areas must be addressed in order to completely address the NOE helicopter design 

problem; additionally, each of the issues is dependent upon selection of the methods used 

in the other areas. The chapters are presented such that each area contains the literature 

review necessary to address the posed questions, while at the same time building from 

previous steps. The problem is decomposed in order to make incremental changes to the 

process, which results in a more clear and traceable presentation. Each of the research 
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areas is presented in a separate chapter and upon conclusion of the final question; the 

motivating problem is fully addressed. 

 

Figure 1.12: Summary of Problem Requirements 

Chapter 1 presented the motivating problem and the research areas necessary to 

fully address the needs. Additionally, the problem decomposition was presented that 

divided the problem into three categories, which is shown in Figure 1.12. These 

categories separate the contributions into three separate but dependent chapters, which 

when combined enable a methodology for solution of the motivating problem. 

Chapter 2 reintroduces the aspects of the AHS motivating problem from the 

design for maneuverability perspective. Considerations for the maneuver space and 

controllability are made at this point; however, these problems are not addressed until the 

later chapters. The necessary adjustments to include design assessment into the dynamic 

maneuverability analysis are presented through a literature review. A process is presented 

for enabling parametric design trades in the early stages of design using maneuverability 
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characteristics. Emphasis is placed on the capability to systematically perform real-time 

trades that provide improved and traceable results over traditional methods. 

Chapter 3 expands upon the framework developed in Chapter 2 by including 

controllability measures into the systematic and traceable process. Control integration 

literature is reviewed and a method for control integration into early design without 

detailed control system development is presented. The method is then integrated, thus, 

enabling controllability concerns to be included in the analysis framework. 

The dynamic maneuver space is addressed in Chapter 4, which requires a 

literature search of methods for defining and capturing the helicopter operational 

envelope. The flight envelope for helicopters is immense. Multiple sources for defining 

this space are presented and the most thorough technique for the helicopter problem is 

selected. Additionally, several methods are reviewed for systematically decomposing the 

maneuver and mission space into a subset of maneuvers in order to overcome 

combinatorial issues. A modified taxonomy approach for conceptual design is developed 

that uses multiple sources in literature. 

The AHS design problem can be addressed after all of the research questions are 

discussed and methods for solving the problems are presented. A methodology for using 

the tools developed in Chapters 2, 3, and 4 is summarized that includes all of the essential 

characteristics. Finally, possible areas of future work are presented to show various ways 

that the presented method and tools can be expanded upon. 
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CHAPTER  2 

DESIGNING FOR MAXIMUM MANEUVERABILITY 

2.1 Introduction 

As defined in the AHS 2012 design competition [6], there is a need in rotorcraft 

literature to analyze the maneuverability characteristics of rotorcraft for dynamic 

maneuvers, while accounting for changing constraints as knowledge of the problem 

progresses. Additionally, the rotorcraft community has noted the importance of capturing 

impacts resulting from configuration variability, which introduces additional difficulties 

in dealing with maneuverability analyses [29]. Third, the quantitative real-time 

maneuverability analyses must provide traceability through application of appropriate 

fidelity modeling and constraints.  Finally, control design and tuning has a major impact 

on maneuverability of the final design; hence, in order to determine the vehicle design 

parameters for maximum maneuverability, the vehicle maneuverability limits must be 

decoupled from the maneuverability degradations of the control system [21]. In order to 

better understand the direction of this chapter, the overall research objective is first 

presented. and then supporting literature on the first aspect of the objective is reviewed. 

Overall Research Objective: Develop a methodology that enables real-time 

and traceable assessment of: 

 Design parameter impacts on maneuverability characteristics 

 Maneuverability degradations due to control system characteristics 

 Entire helicopter operational envelope maneuverability 
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The focus of Chapter 2 is addressing the first aspect of the overall research 

objective, which is capturing design parameter impacts on maneuverability 

characteristics. Recently, rotorcraft mission definitions have expanded to include 

requirements associated with dynamic maneuvers in order to capture requirements related 

to NOE flight. The dynamic maneuver requirements directly impact the vehicle definition 

by dictating design parameter values and configuration choices. The difficulty of 

capturing these constraints stems from the fact that NOE flight cannot be defined by 

steady-state operations. Hence, the performance of dynamic maneuvers is required, 

which was not included in previous conceptual design analyses because of complexity 

and combinatorial limitations. Examples of dynamic maneuver requirements are 

stipulated in the AHS design competition [6] and include such tasks as slalom, pop-up, 

and 180-degree turn maneuvers. Figure 2.1 summarizes the mission and maneuver 

requirements.  

Additional difficulties arise because of the design-related knowledge gap, which 

forces researchers to investigate the effects of design parameter variability on 

maneuverability characteristics [30]. The dynamic nature of the maneuvers forces the 

process to account for design parameters associated with controllability in addition to the 

geometric, propulsive, and aerodynamic related parameters, which furthers 

dimensionality and model fidelity considerations. Moreover, mathematical modeling of 

the actual system requires various levels of assumptions depending on the formulation 

employed. Due to the number and type of assumptions made, the best design according to 

the analysis may drastically over-predict maneuverability estimates of the real system. 
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Through literature review, it is shown that the some assumptions must be removed in 

order to capture the measures necessary for a design for maneuverability framework. 

 

Figure 2.1: 2012 AHS Design Competition Mission Requirements 

The final requirements to consider when assessing the impact of vehicle design 

variables on maneuverability characteristics are related to control system design and 

integration decisions. The objective of this chapter is not to address the controller design, 

but to understand the maneuverability limits of the vehicle independent from the 

controller. Control design cannot be included in the conceptual design phase because of 

the combinatorial nature of the design problem and the inability to include the detailed 
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information necessary for adequate control system development. Hence, it is necessary to 

analyze methods that decouple the controller when analyzing vehicle maneuverability 

characteristics. In the next section, the requirements associated with designing for 

maximum maneuverability are investigated through literature review, which is presented 

in three categories: model fidelity considerations, inclusion of design parameter 

variability, and separation of control design and vehicle design during maneuverability 

assessment.  

2.2 Literature Review 

The problems associated with selecting the appropriate model fidelity for 

maneuverability analysis, capturing changes in maneuverability characteristics due to 

design parameter variability, and decoupling the control and vehicle maneuverability 

contributions are investigated. First, the issues associated with selecting the fidelity of 

model necessary for inclusion of maneuverability measures are explored. Various 

methods of dynamic analysis as related to maneuverability calculations and inclusion of 

constraints are introduced. Second, the process of relating maneuverability characteristics 

to variability in design parameters for changing constraints and requirements is discussed. 

A plethora of techniques exist in literature for capturing variability; however, properties 

of the rotorcraft problem limit the applicability of some of the methods, which is 

examined and documented. Third, the impact of control integration on the overall system 

maneuverability is presented and a method is uncovered that allows the user to decouple 

these contributions.  
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2.2.1 Model Fidelity Considerations 

Determining if a design is dynamically capable of performing a required 

maneuver is key knowledge that will limit rework, increase safety, and decrease risk and 

cost [31]. Flight mechanics analysis provides this necessary information, which is defined 

by Phillips [32] as “the science of predicting and controlling aircraft motion.” For 

nonlinear dynamic systems, such as helicopters, developing a technique for analyzing 

maneuvering flight is one of the most complex and challenging problems in applied flight 

mechanics [33]. As early as the 1970s, flight mechanics analysis programs have focused 

on capturing the kinematic characteristics of maneuvering flight [34, 35]. Although 

greatly simplified, these programs offer necessary insight into the improvements required 

for integrating maneuverability analyses with design [36]. 

 Fidelity of the rotorcraft mathematical model has a major impact on accuracy of 

results, as well as computational cost and time. Additionally, the fidelity has large 

implication on whether a particular maneuver is feasible or not. The feasibility of a 

maneuver, subject to the vehicle dynamics and limited control authority (control 

saturation), is typically ensured by proper constraints placed on the state and control 

variable limits. Hence, appropriate model fidelity is required in order to account for these 

constraints [37-39]. Understanding what information is to be extracted from the 

experiment and the corresponding computational effects are essential in selecting the 

appropriate fidelity method. For example, assume that a design requirement is that a 

helicopter must perform a specified pop-up maneuver within a constrained time interval. 

It may be the case that the feasibility of this maneuver depends on the control surface 
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effectiveness and corresponding kinematic limits rather than traditional static 

performance measures such as power available or blade loading.  

 

Figure 2.2: Control Time Histories 

Figure 2.2 is a notional representation of this scenario where the collective 

kinematic limit of 15 degrees is reached prior to reaching the maximum power limit of 

2000 hp. This example demonstrates that the helicopter modeling environment must 

provide the capability to acquire the necessary information to capture these limits such 

that design decisions can be systematically made. Assumptions are required within any 

modeling framework and the validity of such arguments must be investigated. The 

fidelity of modeling methods are organized into three major groups in this work; energy-

based methods, rigid body methods, and higher fidelity methods. 

Control Deflection Constraint

Maximum Power Constraint
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2.2.1.1 Energy-Based Formulation 

The energy-based approach applies multiple assumptions, which results in a 

formulation that ignores body properties such as inertias and control settings. With these 

limitations, the analysis breaks down when applied to some accelerated maneuvers [21, 

40, 41]. This energy-based formulation is an extension of the common power balance 

used in rotorcraft analysis studies that is based on power available and power required. 

Power available is the result of engine properties at speed and altitude; however, 

depending on the configuration, power available can also include a component of lift. 

Power required is based on drag of the vehicle and is dependent upon altitude, speed, and 

attitude of the vehicle [42, 43]. A standard power required curve is presented in Figure 

2.3 [44]. 

The attribute that allows the energy-based method to expand analysis capabilities 

to dynamic maneuvers rather than static operating points stems from the process of 

velocity integration. As the velocity increases, the point on the power required curve is 

shifted to the right and the corresponding excess power is changed. Excess power is 

directly correlated with capability to accelerate. The method obtains a quasi-dynamic 

maneuverability estimate by interpolating and integrating between steady operating 

points. As a result, this method is not capturing any of the transients, which is why the 

method is termed quasi-dynamic [19].  
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Figure 2.3: Power Required Diagram 

One major concern is that energy-based methods may predict values which 

exceed the physical limits of the real vehicle as noted by Avanzini [16], “which might 

include mechanical limitations of control travel or control rates, limitations of rotor and 

tail rotor torque, and even structural limits of critical components.” Moreover, it should 

be noted that the method determines that a maneuver is successful if the power available 

is larger than the power required. It does not account for any measure of controllability, 

which limits the method’s ability to adequately capture the necessary performance 

measures required [19]. 

2.2.1.2 Rigid Body Formulation 

The goal in mathematical modeling is to find a technique that is powerful enough 

to adequately represent the helicopter maneuverability characteristics over the entire 

operational envelope, but at the same time is efficient enough for conducting design 
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analysis trades. This means that part of the accuracy obtained through complex models 

must, often times, be sacrificed in the early stages of design. Frazzoli [45] states that 

“such a model can be derived by physical intuition and first principles: at the basis of the 

model we have the rigid body dynamics, coupled with momentum theory and basic 

aerodynamics for the computation of forces acting on the helicopter.” In recent work, 

Avanzini [46] addresses short term agility, which is defined by the time derivative of 

acceleration vector in [47], using the rigid body Equations of Motion (EoM) with good 

correlation with flight data. 

Equation 2.1: EoM General Functional Form 

),,( timecontrolsstatefunctionstate 


 

The nonlinear rigid body EoM for dynamic analysis has been applied to many 

research efforts in recent years [48]. Usually, the EoM are not time dependent; however, 

for rotating subsystems such as helicopter rotors, the equations may be periodic in time 

[49]. Many of the earliest works assumed linearized dynamics and small angle 

approximation, which were found to be too limiting when applied to helicopter maneuver 

simulation [33].  

As with the energy-based approach, the rigid body formulation requires 

assumptions; however, the assumptions are much less limiting. One important 

simplifying assumption as expressed by Anderson [50] is that the dynamics of the “main 

rotor coupled lead/lag and rotorspeed degrees of freedom” are often ignored. 

Additionally, rigid body rotorcraft models are usually confined to quasi-steady 
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aerodynamics through a uniform induced velocity distribution assumption [51-53]. The 

various assumptions limit applicability to analysis involving specific types of maneuvers; 

hence, there is a tradeoff between higher fidelity modeling techniques and design space 

exploration capabilities. 

2.2.1.3 Higher Fidelity Formulations 

Much rotorcraft design literature calls for higher fidelity analysis methods, which 

is confirmed when considering the complex problem of rotorcraft maneuverability 

analysis for a well-defined vehicle. However, the applicability of the various methods in 

conducting maneuverability in early design, when much of the detailed aspects of the 

vehicle are unknown, must be examined.  Avanzini [17] analyzed the reliability in 

predicting the required control action using 13 models of varying fidelity for a set of 

three rotorcraft maneuvers: hurdle-hop, slalom, and lateral repositioning. Results from 

the analysis indicate minor loss of fidelity for much less computational complexity when 

the simple rigid body EoM are used. 

Figure 2.4 [17] shows the command time histories for a pop-up maneuver via 

showing control displacement from the initial trim position. All 13 models are shown on 

the figure, which demonstrates that there is little difference between the various fidelity 

methods. Hence, although the higher fidelity methods may provide slightly more accurate 

results, they require many more variables to approximate the response and exponentially 

more time for computation. Avanvini’s [17] work provides quantitative evidence 

supporting application of the lower fidelity rigid body model rather than higher fidelity 
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formulations for early design purposes when analyzing smooth maneuvers. Additional 

rationale for using the simple rigid body formulation is presented by Anderson and 

Bottasso.  Anderson [50] shows that simple modifications to the process alone can 

recover performance that is often lost with much simpler models. Consequently, Botasso 

[37] investigates the implications of forcing smooth control histories, which essentially 

approximates the effects of modeling a higher fidelity system model when studying the 

trajectory problem.  

 

Figure 2.4: Control Time Histories for Multiple Fidelities 

As complexity of the model increases so does the level of knowledge that is 

required to populate the model. Much information is unknown during early design and 

some of the more detailed parameters are difficult to predict. Even if all of the parameter 
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ranges could be drastically reduced, the curse of dimensionality prevents adequate 

searching of the design space due to computational limitations. Therefore, a simplified 

rigid body model is selected over the higher fidelity formulations because of the 

complexity, marginal increase in accuracy, dimensionality concerns, and computational 

requirements associated with complex formulations. 

2.2.2 Capturing Variability in Design Parameters  

Previous rotorcraft design studies have had little integration of configuration 

variability effects on maneuverability analysis. This section introduces the differences 

between variability and uncertainty and discusses the applications to aerospace 

engineering in recent years. Once variability and uncertainty are introduced, a few of the 

most common analyses methods in aerospace engineering design are presented. The 

complex nature of the rotorcraft problem and the required ability to quickly adjust 

constraints greatly limits the application of some variability and uncertainty inclusion 

techniques. Through literature review, it is determined that a probability distribution 

based method that utilizes data filtering techniques provides the necessary attributes to 

address all aspects of the problem. The other mathematical techniques that are 

investigated do not allow for easy recalculation of design space as requirements and 

constraints are changed. 



34 

 

2.2.2.1 Variability versus Uncertainty 

Only recently has an effort been made of classifying and defining variability and 

uncertainty in aerospace engineering. Uncertainty and variability are philosophically 

different and are commonly separated for risk analysis design studies. Variability is 

defined as the effect of chance, which cannot be reduced through further study or 

measurement because it is a function of the system. Hence, variability analysis captures 

the helicopter configuration design space of alternatives, which has been a major focus in 

recent years. Bivens [54] and Dooley [55] address maneuverability with inclusion of a 

few design variable impacts for NOE operation, but do so based on handling qualities 

rather than by analyzing maneuverability limits. This analysis was expanded upon by 

Kim [20] where a control architecture was assumed to be linear so it is unknown whether 

the vehicle or the controller is the limiting case. Cao [56] analyzes one helicopter versus 

another helicopter but does not link the performance differences to design variables. Celi 

[57] calculates the sensitivities of the quickness with respect to rotor/fuselage design 

parameters and achieves max quickness through design value selection; however, the 

author notes that the method generates too aggressive maneuvers and analyzes the effects 

one variable at a time. 

DeLaurentis [30] defines uncertainty as “the incompleteness in knowledge, that 

causes model-based predictions to differ from reality in a manner described by some 

distribution function.”  Although more detailed hierarchical taxonomies exist [58], the 

most basic grouping of aleatory  and epistemic [59-62] is sufficient for understanding the 

uncertainty in design parameters required in this work. Aleatory uncertainty is the 
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intrinsic variation associated with a physical system or environment. Epistemic 

uncertainty is any lack of knowledge during formulation of the modeling process, which 

occurs due to incomplete information of some characteristic of the system or the 

environment [58]. The next few sections introduce various analysis techniques used in 

aerospace literature, which can be implemented to capture either variability or uncertainty 

depending on how the technique is applied.  

2.2.2.2 Convex Underestimates  

Convex underestimating algorithms account for variability in function value over 

a range of inputs by developing multipolynomials that bound the function space. These 

multipolynomials, termed underestimators, are convex polynomial expressions that are 

guaranteed to bound actual function values over the entire range of inputs. The function 

bounds are indicative of variability within the function approximation. These methods 

have been mainly applied to find global optimum solutions [63] in nonconvex spaces. 

The determination of proper underestimators is a major computational expense and a new 

set of underestimtors must be determined each time that the design variable ranges 

change. Moreover, for large input variable ranges, the underestimators can drastically 

over predict the true function bounds. 

The development of guaranteed underestimators requires much knowledge about 

the function. To guarantee proper underestimation requires function second derivative 

information [63-65]. This type of information is difficult to guarantee for many problems, 

especially functions without analytic forms [66, 67]. In many cases the helicopter EoM 
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do not have an analytic derivative [68], which causes undesired error to occur when 

numeric derivatives are calculated [69].  The theoretical guarantee of global optimality 

when determining proper underestimating functions is discussed in [70-72]. Failure to 

achieve optimality guarantees is presented by Singer [73], where the solutions are 

determined by using standard numerical methods. As a result of the numerical errors, 

there is no guarantee that the solution bounds are valid [63]. See [74-78] for a thorough 

review of recent advances in convex underestimating algorithm development. Efficient 

recalculation of the feasible space is required in order to conduct design trades, 

unfortunately, both convex underestimating algorithms and interval analysis methods fail 

to meet this requirement.  

2.2.2.3 Interval Analysis 

Interval mathematics is derived in R.E. Moore’s Ph.D. thesis from the 1960s [79, 

80]. Moreover, this mathematical framework was implemented on a digital computer as 

early as 1970 [81]. Van Kampen [82] states that “interval arithmetic can cope with the 

inherent problems related to the limited precision of numbers in digital computers.” 

Interval analysis (IA) is used as a global optimization technique for determining global 

maximums, minimums, or zeros of rational functions over a rectangular search region 

[83]. Interval algorithms solve for global solutions of equations by decomposing the 

function into basic mathematical operations and using logic to bound each operation. By 

bounding each operation, the variability of the entire function is bounded [84]. The major 

benefit of interval methods is that they are capable of operating on the actual function 

rather than requiring the generation of underestimators. As noted by Manetsch [85], “the 
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efficient solution of global optimization problems requires methods that do not require 

analytical expressions for the objective function or its derivatives.” 

One problem with IA is that the computation time tends to grow exponentially 

with the dimension. Even for small problems, enormous computation time is required if 

the problem is highly nonlinear or ill-conditioned [86]. Although interval methods are 

mathematically proven to guarantee solution bounds for a rational function, they can 

suffer computationally due to dependency issues, which stem from interval logic and the 

additive nature of terms. See [87] for a thorough discussion on the theory and application 

of interval analysis mathematics. 

2.2.2.4 Fuzzy Logic 

Fuzzy numbers and fuzzy arithmetic have been studied in recent years as a way to 

model the variability and uncertainty in engineering design problems [88]. Fuzzy set 

theory stems from the need for a more complete model of uncertainty [89] . Similar to 

interval method,  implementation of extended arithmetic operators on fuzzy numbers is 

computationally complex [90]. Many applications overcome this difficulty by limiting 

the membership functions to certain shapes, usually either triangular fuzzy numbers 

(TFN) or trapezoidal fuzzy numbers (TrFN). Unfortunately the TFN shape is not closed 

under multiplication and division [91]; hence, the resulting shape is only approximated 

and can lead to incorrect results when used in engineering applications [92, 93]. Although 

developed separately, recent literature shows the relationship between fuzzy set theory 

and interval methods, with regards to their topological properties [94, 95]. The real-time 
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analysis requirements limit applicability of both Fuzzy Logic and Interval Analysis. 

Additional implementation difficulties arise due to the complex iterative nature of the 

helicopter EoM. 

2.2.2.5 Monte Carlo Methods 

The Monte Carlo (MC) method was developed in the 1940s by John von 

Neumann, Stanislaw Ulam, and Nicholas Metropolis at the Los Alamos National 

Laboratory. As stated by Stuckman [96],“the Monte  arlo method of global optimization 

is strictly a uniform random search technique.” The method has been expanded to allow 

various types of probability distributions to represent an input [97]. The method works by 

randomly selecting each input variable from its respective distribution and then 

evaluating the function with the chosen inputs [98]. Advantages of the method were 

realized when studying systems of particles, which had complicated interaction effects 

[99].  The mathematical representation most commonly used for uncertainty analysis is a 

probability distribution coupled with Monte Carlo analysis because of the robustness and 

the simplicity of the method [100]. 

Filtered Monte Carlo (FMC) is an extension of the MC method, which first 

computes function values over a random probability distribution of input parameters. The 

distribution of each parameter can be selected independently of other parameter 

distributions. The results are collected and a resulting response distribution is created. 

Kuhn [97] states that then “post-processing of the output occurs through a series of filters 

to ensure constraints are met.” This process can also be applied to stochastic optimization 

http://en.wikipedia.org/wiki/John_von_Neumann
http://en.wikipedia.org/wiki/John_von_Neumann
http://en.wikipedia.org/wiki/Stanislaw_Ulam
http://en.wikipedia.org/wiki/Nicholas_Metropolis
http://en.wikipedia.org/wiki/Los_Alamos_National_Laboratory
http://en.wikipedia.org/wiki/Los_Alamos_National_Laboratory
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problems with sequential filtering and sampling techniques [101]. FMC techniques have 

been applied to a wide range of optimization and requirements analysis problems [102]. 

Unlike the other methods reviewed, the filtered data method provides the capability to 

systematically add and change requirements and view the resulting feasible design space 

in real-time; therefore, it is selected as the appropriate variability analysis technique to 

capture the impact from variability in the design variables. 

2.2.3 Separation of Vehicle and Control Maneuverability Effects 

Controllability measures must be included in the design process because rotorcraft 

platforms are inherently unstable and control integration is becoming increasingly 

important with highly maneuverable and autonomous configurations [8, 11, 13, 103-108].  

One major point of contention is that the control decisions directly impact the 

maneuverability characteristics of the system. For example, assume that the system under 

analysis is to be integrated with a linear gain-scheduled controller. It is well documented 

that linear gain-scheduled controllers are limited to scheduling variables with slow 

dynamics. This design choice may pose performance limitations when comparing a 

system with faster dynamics to a system with more slowly varying parameters. As a 

result, it may be the case that the slow varying system will outperform the fast varying 

system when integrated with a linear gain-scheduled controller because the choice of 

controller is not adequate for stability of the fast varying system. However, if a different 

controller architecture is integrated, the fast varying system may have more potential to 

outperform the slow varying system [109-113]. 
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Figure 2.5 summarizes these observations by displaying the same helicopter 

design with a notional linear, nonlinear, and a perfect controller. The nonlinear controller 

is shown to outperform the linear controller for three of the four maneuvers tested; the 

only maneuver for which the linear controller has better maneuver performance is the 

notional acceleration maneuver. Further analysis of the figure shows an additional curve 

that demonstrates the absolute best performance that can be achieved with an ideal 

controller; this curve is termed controller independent analysis. The helicopter and 

controller combination that results in the optimum performance depends on the maneuver 

under investigation; however, if a perfect controller is integrated, the maximum 

theoretical maneuverability due to design parameters is obtained for all maneuvers. 

 

Figure 2.5: Importance of Control Architecture on Dynamic Performance 

Additionally, control design is an iterative and human driven process and in order 

to assess the true maneuverability of the vehicle, the control architecture cannot be fixed. 

In past design efforts, the controller selection and tuning was typically performed prior to 

or during dynamic simulation [103]. The previous example shows that it is essential to 

obtain dynamic maneuver limits independent of controller design in order to capture the 

true design limits. Fortunately, a technique has been provided in literature that addresses 

this need and has received much attention in recent years.  
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This method, which is termed inverse simulation [48], uses an optimization 

routine to calculate the controls necessary to follow a prescribed path through time 

integration. This is opposite to the original line of thought, which consisted of perturbing 

the controls and recording the resulting motion. As a result of the mathematical 

formulation, inverse simulation has been found to provide a better format to validate 

against actual flight test data than traditional methods, which are based on bifurcation and 

continuation theory. Furthermore, Murray-Smith [48] mentions that inverse methods are 

well-formulated for capturing the performance effects of configuration changes, such as 

the mass or the position of the centre of gravity, in a straightforward fashion. Moreover, 

the results are based in the time domain, which makes for easy interpretation. Both 

bifurcation and inverse simulation methods are reviewed in the next sections to 

demonstrate the benefit of inverse simulation compared to the traditional method. 

Additional literature is also included that addresses some of the fundamental 

considerations and concerns that must be addressed when applying inverse simulation 

techniques.  

2.2.3.1 Bifurcation and Continuation Techniques 

Bifurcation has been used since the early 1980s and is a standard tool in use today 

for the analysis of nonlinear phenomena in aircraft flight dynamics [114, 115]. 

Bifurcation analysis is very useful when studying systems of smooth and continuous 

nonlinear ordinary differential equations (ODE), especially in those regimes where 

nonlinear phenomena are dominant [116]. Bifurcation analysis is a mathematical 

technique that determines the steady-state equilibrium conditions and trim settings for a 
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given set of continuous nonlinear equations [117]. A bifurcation occurs when the system 

exhibits a qualitative transition in local stability [118]. Iqbal [117] comments that 

“mathematically the occurrence of a bifurcation exists whenever the eigenvalues migrate 

from the stable region of the complex s-plane across the imaginary axis into the unstable 

region or vice versa.” For an introduction to bifurcation theory see Crawford [119] and 

Strogatz [120]. 

 

Figure 2.6: Bifurcation Diagrams Helilink Helicopter  

During analysis, the technique records all of the critical points in the state-control 

space in which equilibrium solutions are created, destroyed, or undergo a change in 

stability [121]. A global picture of the steady-states and stability characteristics may be 

generated over a wide range of conditions by recording the critical points. After 

completing the analysis and recording the data, the results are displayed in bifurcation 

diagrams for examination similar to that shown in Figure 2.6 [115, 122-124]. If 

conducting maneuverability analysis and design simultaneously, all of these diagrams 

would need to be generated for each design. This results in a large amount of data that 

must be generated and stored. Additionally, when calculating the control settings required 
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to follow a prescribed path, these tables must be used for interpolation since there is no 

direct relationship. This step introduces more computational burden and a greater amount 

of error into the analysis. 

Bifurcation analysis has been extended and manipulated over the years in order to 

provide the necessary tool set for various types of problems. Constrained bifurcation 

analysis (CBA) is a bifurcation method that is augmented with constraint equations to 

obtain desired flight conditions or operational scenarios. CBA is expected to correlate 

better with flight tests because maneuvers flown by pilots can be modeled more 

accurately using the constraints to obtain only the trim conditions of interest [114]. 

Extended bifurcation analysis provides the analyst with the ability to analyze non-steady 

state operational conditions by adding a set of kinematical constraint equations [125].  

Bifurcation analysis techniques have been used to study numerous nonlinear flight 

dynamics problems for various platforms and operational scenarios. Poli [124, 126] used 

similar methods to study the influence of various design parameters in an undersling load 

helicopter model. Avanzini [127] applied the method to a highly augmented aircraft 

model, which is an actively controlled vehicle with negative or marginal static stability. 

These methods have also been used to determine control law parameters for gains in 

control design [128]. Critical flight regimes for helicopters and flexible aircraft problems 

have also been analyzed [118, 129]. For a review of bifurcation method applications to 

aircraft dynamics problems see Goman [130]. 
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In order to achieve the benefits of bifurcation analysis in a well structured 

manner, continuation methods are utilized [131]. Continuation is a path-following 

algorithm that traces out a curve of steady-states while varying one parameter [118]. 

Sibilski [129] further elaborates on the origin by stating that “continuation methods are a 

direct result of the implicit function theorem, which proves that the steady-states of a 

system are continuous functions of the parameters of the system at all steady-states 

except for steady-states at which the linearized system is singular.” Numerical 

continuation methods have been used for many years in aircraft nonlinear dynamics 

studies to track the equilibrium in nonlinear flight regimes [122]. Anathkrishnan [121] 

was able expand the method in order to generate complete bifurcation diagrams of 

multiple parameters with a single computation. 

2.2.3.2 Inverse Simulation Methods 

Inverse simulation techniques approach the aircraft maneuver problem using the 

opposite thought process, which involves defining a path and calculating the control 

histories [27]. Anderson [50] states that inverse simulation methods have been 

successfully employed for several years to analyze “the maneuverability, operational 

suitability, and conceptual design of helicopters.” Although there is no standard way of 

taking into account control saturation or flight envelope constraints, even for 

differentially flat systems [132, 133], inverse simulation provides satisfactory 

approximations.  
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In practice, simulation models are more often used off-line to assess an aircraft’s 

response to control stimuli or to examine its stability characteristics. Thomson [134] 

explains that “the crucial advantage of a helicopter is its ability to operate close to the 

ground tracking a precise flight path.” Since the required control inputs are unknown a 

priori, this was impossible to replicate efficiently prior to the formulation of inverse 

simulation techniques. In addition to the advantages in path tracking, inverse simulation 

also provides much benefit when the complexity arising from coupling terms are included 

in the analysis.  

The coupling problems associated with helicopter control can be appreciated by 

considering the example of forward acceleration without changing heading or altitude. 

The acceleration is achieved by application of forward longitudinal cyclic, which tilts the 

rotor disc forward and produces a forward pitch. The component of the thrust vector that 

balances the weight is reduced through this action; hence main rotor collective must be 

increased to account for this loss in thrust. As a result, tail rotor collective must increase 

to account for the added torque. Finally, lateral cyclic is required to balance out this side 

force that is created due to the increase in tail collective, which in turn has an impact on 

the other forces and moments [134]. When applying bifurcation, only one control is 

adjusted while the other variables are held constant; therefore, this situation could not be 

analyzed in a straightforward manner. On the other hand, the inverse simulation 

technique can solve for these required control inputs using numerical optimization 

algorithms. Additionally, the changes in control settings that result from design changes 

can be easily tracked and compared using inverse methods [48]. This application has 
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been demonstrated in Nannoni and Stabellini [135] for a helicopter design for takeoff 

maneuvers.  

 

Figure 2.7: State and Control Time Histories 

The validity of inverse simulation has been shown through comparisons of state 

and control histories against actual helicopter flight test data. Whalley [136] validated 

rotorcraft inverse simulation results through a series of piloted simulations by comparing 

state and control time histories [41]. Although, the maneuvers were not exactly identical, 

the state and control responses could be used to predict time histories of the actual 
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system. Figure 2.7 [136] shows typical time histories for a pop-up maneuver for a 

traditional single main rotor helicopter configuration. 

Inverse simulation techniques use time-based analyses to determine responses to 

either control or state constraints. De Matteis [137] states that “time-based analysis is 

used rather than frequency based because it allows for the solution to have physical 

meaning.” Throughout the years, the inverse simulation method has evolved in order to 

address many types of problems [138-140]. Cao [33, 56] expanded the method to model 

aerobatic maneuvers by dividing the flight envelope into longitudinal, lateral, and 

coupled maneuvers. Through this analysis, the authors were able to calculate state and 

control time histories for pop-up, lateral jink, and 180 degree turn maneuvers. Recently, 

Avanzini [46] has shown that analyzing short-term metrics using inverse simulation 

techniques can lead to determination of the max attainable agility components. This is 

accomplished by using the simplified rigid body EoM to simulate three common 

helicopter maneuvers: rapid deceleration, max performance turn, and a reverse turn. The 

control time histories to complete the maneuvers are displayed, which provide the 

maximum performance for each of the maneuvers tested for a fixed helicopter design. Su 

[141] furthered the research by investigating a coaxial helicopter using inverse simulation 

methods.  Additionally, inverse methods have been applied to the control problem [142]. 

Inverse simulation techniques fall into three major categories: differential, 

integration, and global methods. Differential methods [143] are “suitable for nominal 

problems only, where the number of control inputs equals that of the tracked variables 

[16].” The solution of the inverse problem is a significantly more challenging for the 
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rotorcraft case than for a conventional airplane, especially when individual blade 

dynamics are incorporated in the model [21, 50]. Differential methods do not provide the 

necessary functionality for capturing the complexity associated with helicopter models 

[27]. Wood [34] treated the helicopter as a simple system and analyzed its ability to 

maneuver based on the energy balance approach, which utilized the differentiation 

inverse method. Differentiation consists of discretizing the flight path into a series of time 

steps, using numerical differentiation to obtain angular rates, and solving the equations of 

motion at each time step as a set of algebraic equations as presented in Kato [143]. The 

problem with this technique, as stated by Thomson [144] is that “even small changes to 

the mathematical model can require a significant effort in recasting the inverse solver.” 

 Integration methods [26] are mathematically robust and can be applied to a broad 

spectrum of problems, even those with redundancies [137]. Among other methods, one 

advantage of integration methods is the capability of dealing with complex, high order 

mathematical models on the basis of a solution scheme that can be applied with only 

minor variations to the dynamical models of various order and complexity [16]. For 

helicopter application, the earliest study was the optimization of helicopter takeoff and 

landing performance [145].  At the same time, Thomson [146] investigated the inverse 

solution for a prescribed flight path based on a set of linearized equations of motion. As 

the nonlinear EoM are applied, additional concerns regarding algorithm stability are 

introduced. For example, constraint oscillations are induced in certain unconstrained 

states whenever an inverse simulation is performed [147, 148]. The characteristics of 

these oscillations are a complex function of the model order, which are due to internal 
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zero dynamics [149]. Integration methods are the most commonly implemented because 

the computational concerns can be handled through appropriate constraint selection and 

maneuver definition [150].  

Finally, global methods [151] determine the time-history of the control variables 

by means of a variational approach and the benefit is that this method can be used to 

track the control changes over the entire mission [16]. Recently, Avanzini [46] has shown 

that analyzing short-term metrics using inverse simulation techniques can lead to 

determination of the max attainable agility components. Hence, there is no need to 

analyze the entire mission at once but rather it can be analyzed in smaller subsets.  

 Inverse simulation is not the same as model inversion although they share 

similarities. Both use previously defined trajectories and mathematical optimizers to find 

proper control setting. Differences originate in where the inversion process is applied. 

Model inversion calculates the inverse model in advance and then performs forward 

simulation by feeding the defined trajectory with the corresponding derivatives of 

appropriate order [152-154]. On the other hand, inverse simulation uses the full nonlinear 

EoM to find optimized control settings at each time step to meet an objective function. 

This process forces the vehicle to follow a prescribed path, which is essential for analysis 

of NOE maneuvers. 

2.2.3.3 Computational Considerations 

The first consideration when applying inverse simulation techniques is specifying 

the correct number of constraints for the number of controls. In the inverse problem, if 
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both flight trajectory and flight attitude are given, there will be no solution because the 

problem will be over-constrained. If either flight trajectory or flight attitude alone is 

given, then there will be many solutions. This is because the degree of freedom of a 

controlled maneuver for an helicopter is between three and four [143]. For example, one 

constraint method presented by Sentoh [142] specifies the initial and final states, while an 

optimization technique minimizes an integral performance index that is based on the 

square deviation of the actual state from the desired one with constraints on the controls. 

Additional issues arise when implementing a minimization method because of 

nonconvexities within the maneuver space. As a result, it is possible that two solutions 

may exist in the same minimum neighborhood resulting in oscillation between the 

solutions for successive time steps in the simulation. Hess [26] recommended a high 

frequency filter technique to stabilize the results. Hess was matching states rather than 

accelerations, which are more affected by this oscillation phenomena.  

The second consideration originates because solving the equations of motion of 

the vehicle in an inverse manner is not a trivial task. Avanzini [155] states that, “issues 

such as numerical stability and accuracy, computational time, and reliability of the 

algorithm are taken into consideration.” Numerical errors result from machine error, 

which occur because computers can only retain a certain number of bits in the stored 

variables [69]. Integration errors are an outcome of using the linearized version of the 

Taylor Series to approximate the integration process. Various integration routines have 

been developed for particular problems to minimize the error. Betts [156] points out that 

less sophisticated, fixed-step ODE solvers can often be more efficient because they do 
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not introduce numerical noise in the gradients [21]. “In general, ode45 is the best function 

to apply as a first try for most problems [157].” The Fourth-Order Runge-Kutta (RK4) 

method was chosen because of the model prediction capabilities, robustness, integration 

time efficiency, and ease of implementation. The objective is to evaluate the dynamic 

performance for a pre-defined maneuver and relate the limits to the vehicle design 

parameters; hence, inverse simulation is chosen over the traditional approach. 

2.3 Approach 

The approach to the remaining problem, as determined through literature review, 

is presented in four parts. First, the research question is formulated based on findings 

from the literature review that includes several key needs that are provided in the 2012 

AHS design competition. Secondly, the process is decomposed into a series of elements, 

each of which is explained. Third, the hypothesis is presented that address the research 

question using the formulated process components. Finally, a test plan is formulated that 

details what simulations are to be conducted and what information is to be extracted from 

the process when applied to the rotorcraft problem in order to substantiate the hypothesis. 

2.3.1 Research Question 

The focus of the first thesis contribution is to address all of the requirements 

necessary for design for maximum maneuverability. The requirements are summarized in 

the following research question, which is formulated based on extensive review of model 

fidelity considerations, design variability inclusion methods, and control design 

independent dynamic simulation techniques.  
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Research Question 1: How can the impact of design parameter variability on 

rotorcraft maneuverability limits be quantitatively captured independent of control 

design for changing requirements? 

The research question has multiple characteristics that warrant further elaboration. 

First, the question specifies application to design of rotorcraft platforms, which are 

chosen because of the need presented in the 2012 AHS design competition. Second, the 

analysis methodology must provide quantitative results that are independent of control 

design such that the true maneuverability limits resulting from design parameter selection 

may be quantitatively captured. The third requirement is that the effects of configuration 

variability on maneuverability characteristics must be captured. Finally, this decision 

making framework must allow for easy manipulation of design, performance, and 

kinematic constraints because of the fluid nature of design requirements throughout the 

design process. In combination, these attributes create a very difficult problem that 

requires a well structured, traceable, and systematic process. Furthermore, due to the 

changing constraints and requirements throughout design, the method must enable real-

time analysis such that the relationship between design parameters, maneuverability 

characteristics, and constraints may be captured. 

2.3.2 The Process 

A systematic and traceable process is required to formulate a hypothesis that 

addresses the first research question. The process, which is presented in Figure 2.8, has 

several important components that have been selected using the research presented in the 
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literature review section. The combination of these techniques offers unique attributes 

and capabilities not possible using previously developed approaches. Three major 

elements are integrated in order to fulfill the needs when provided with the initial design 

information from the problem description. The first element is the parametric rigid body 

rotorcraft model along with a novel parametric maneuver model that enable design 

integrated maneuver analysis. Secondly, inverse simulation techniques are included in the 

process to enable trajectory analysis for NOE flight maneuvers independent of control 

design. Finally, a filtered data technique is included in the post processing to provide 

systematic, traceable, and real-time design trade analysis capabilities. These elements are 

combined to form a four step process which consists of the problem formulation, 

mathematical model development, simulation, and post processing/data filtering. 

The design information consists of the baseline design specification, upper and 

lower bounds on the variability of the design definition, and a baseline maneuver. All of 

which are assumed to be provided in order to begin the process. The mission definition is 

usually provided in the initial problem definition, while the baseline design may consist 

of a set of various designs that are being considered as potential solutions to the problem. 

Each design needs to be executed through the process separately unless the entire design 

space exploration is desired. If this is the case, then the design variability must cover the 

entire ranges of the designs. The initial configuration space is based on previous design 

for maneuverability literature in order to more fully mimic an actual design process. 

These ranges and variables are discussed more fully during implementation. 
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Figure 2.8: Process Flow 
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The second step of the process is to take the information provided and develop 

mathematical models of the system and the maneuver to be performed. The mathematical 

model of the system must be parametric such that design variations can be analyzed. 

Additionally, the system parameters must be maintained to a reasonable number to 

mitigate combinatorial issues, while at the same time offering the appropriate fidelity to 

include necessary constraints. The mathematical models must be structured for inclusion 

into the simulation environment, which requires careful selection of states and controls 

for the system definition. The system model development requires the second order 

ordinary differential equations of the system, which are the EoM of a helicopter in this 

analysis, to be described in a manner in which integration provides the next state when 

given the current state and control settings. The various assumptions of the selected rigid 

body model are discussed during implementation. The maneuver must also be modeled 

mathematically and can be specified by various mathematical representations. The 

selection and development of a parametric maneuver model for defining the conceptual 

design maneuver space is derived and discussed during implementation. 

After the appropriate ranges are selected to encompass the design variability, the 

total number of simulations must also be determined. The number of runs is based on 

experience and knowledge of the problem and determining the appropriate number is 

commonly an iterative process. Previous literature notes that dynamic simulation is 

computational expensive, thus, it is essential to use as few experimental runs as possible 

to accurately describe the design space. The number of runs is selected using Design of 

Experiments, which is a structured methodology for selecting experimental runs such that 
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the most information can be gathered for the least number of runs. This enables much less 

computational burden than pure random sampling of the design space that is common 

among Monte Carlo techniques [158].  

Once the models are generated and the inputs defined, the simulation environment 

is used to determine the trim solution. This portion of the analysis does not require the 

entire maneuver definition, only the initial steady-state conditions. The trim solutions are 

used to verify that the system model is closely approximating the actual system. Solver 

selection and constraint variable determination must be made during this step. The solver 

is the main contributor to the robustness, computational efficiency, and accuracy of the 

simulation.  

The second step of the simulation environment performs dynamic analysis of the 

system attempting to perform the defined maneuver. The important technique enabling 

NOE maneuver analysis independent of control design is inverse simulation. The results 

of this simulation are then compared to actual helicopter flight test data. The simulation 

captures the change in maneuverability characteristics resulting from the variation in 

design parameters. The failed runs are not discarded because they represent the cutoff 

between the feasible and infeasible maneuver and design combinations, which allows for 

important design trades. 

Additionally, inverse simulation requires constraints for satisfactory optimization 

of the solution. Depending on the application, the designer may wish to constrain any 

combination of position, velocity, acceleration, or orientation. These constraints can be 
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placed on any state or control variables; however, selection of the appropriate constraints 

should be done with extreme care. All of these issues are problem specific and are 

discussed during implementation. 

The final element of the process is based on a Monte Carlo data filtering 

technique that permits real-time and traceable design space exploration with changing 

constraints and requirements. The Filtered Monte Carlo (FMC) method uses a database of 

previously computed maneuverability information. All prior rotorcraft dynamic analysis 

techniques applied constraints into the mathematical definition of the vehicle; however, 

this formulation allows constraints to be dynamically placed on design variables and 

performance measures. As a result, the designer can view the impact of these constraints 

real-time rather than being required to run an entirely new set of optimizations. Filtered 

data techniques allow for visual verification of trends in the data that can be helpful with 

validation purposes and provides traceability for developing understanding of the 

problem. Furthermore, FMC is robust and enables integration of the complex helicopter 

EoMs.  

2.3.3 Hypothesis 

The key components of the hypothesized method are discussed here briefly to 

show how the need is being addressed. The first characteristic is fulfilled by the 

combination of a mathematical rotorcraft model and inverse simulation techniques. By 

integrating these two components, the maneuverability of rotorcraft vehicle can be 

captured quantitatively. Additionally, by using a six degree-of-freedom rigid body rather 
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than only the energy-based formulation, which is implemented in previous design efforts, 

more conservative maneuverability estimates are captured. The rotorcraft model is 

parametric such that, the design variables can be easily adjusted to view the impact on 

maneuverability due to changing design variable settings. In addition to fulfilling the 

dynamic analysis requirement, inverse simulation also allows the maneuverability to be 

calculated independent of control architecture. Finally, by specifying parameter ranges on 

the design variables of the parametric rotorcraft model, variability in dynamic 

performance can be captured and the impact of changing constraints can be assessed 

using the filtered data approach.  Through combination of these components, the first 

hypothesis of this thesis work is established. 

Hypothesis 1: A six degree-of-freedom rigid body parametric rotorcraft 

inverse simulation model in combination with Filtered Monte Carlo provides 

improved quantitative maneuverability tradeoff capabilities over traditional design 

methods.  

2.3.4 Test Plan 

The question as to what information is to be gathered through experimentation 

and analyzed through data filtering has yet to be fully addressed. The experimental 

information consists of both inputs to the environment and outputs that indicate dynamic 

maneuver and system characteristics. Inputs to the simulation environment consist of 

design parameter ranges and the maneuver definitions. The combination of these two 

pieces of information completely defines the context of each experimental run. The 
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model outputs appear at two levels within the simulation environment: trim analysis 

determination and dynamic motion simulation. Conducting dynamic motion simulation is 

dependent on whether a trim solution is determined in the previous step. 

The trim condition is defined as steady-level flight at a constant forward velocity, 

which is specified in the maneuver definition. Some design parameter combinations may 

not have a trim solution. The failure to determine a trim condition can result due to no 

solution existing or can result due to inability of the optimizer to determine the solution. 

The inability to converge on the solution results from nonlinearities and nonconvexities 

within the mathematical representation [159]. The optimizer’s convergence properties are 

dependent on the algorithm. A failed trim case does not necessarily mean that no solution 

exists. This emphasizes the importance of selection of optimization algorithm on the 

simulation results. If a trim condition is determined, the state and controls that provide 

this solution are stored, while an additional variable tracks the experimental runs that 

failed.  

Once the trim solution is determined, the dynamic simulation of the vehicle may 

be conducted for the specified maneuver. All the states, controls, and auxiliary variables, 

such as torques and powers, are calculated at each time step as the specified path is 

followed.  As a result, a large amount of data is created during simulation. All of which is 

not necessary in the data analysis portion of the process. Hence, the parameters of interest 

are extracted from this data, which include maximum and minimum control deflections, 

states, torques, and required powers. Obtaining the control deflections and the required 

powers enables trades that demonstrate the benefits of including rigid body system 
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models for determining conservative maneuver limit estimates. Within this analysis 

framework, both time and maximum acceleration are specified as inputs.  The feasibility 

of a maneuver is determined by whether a set design completes the entirety of the 

maneuver. If at any point during the maneuver, the system cannot follow the prescribed 

path due to system limits, the simulation is terminated. A failed run during simulation 

versus during trim calculation are very different and are tracked separately.  

The experimentation is divided into four subparts. First, the maneuver success 

criterion is examined. This set of experiments are investigated to show that the 

established process is capable of determining the design and maneuver combinations that 

are feasible. This is essential in order to prune the design space for analysis of only the 

feasible simulations. Second, the energy-based filters are applied to the feasible design 

space and the impact on both the trim space and the maneuver space are investigated. 

Third, the rigid body filter is applied to the maneuver space to show that improved 

maneuverability estimates are achieved through application of the parametric rigid body 

equations into the maneuverability analysis framework. Finally, the pop-up maneuver is 

examined and the filtering process is applied to determine the minimum time maneuver. 

Further analysis is shown that relates the design and maneuver performance to the 

applied constraints to enable robust design down selection. Through completing the series 

of experiments, the hypothesis is substantiated. 

2.4 Implementation 

The proposed process consists of four major steps, which are presented with 

regards to the rotorcraft problem in this section. The first step of the process is the 



61 

 

gathering of the design information, which includes the baseline vehicle and maneuver. 

The model development is presented second, which includes the technical derivation of 

two different fidelity system models for conceptual design. The first model is based on 

the energy approach, while the second utilizes the rigid body equations of motion. The 

integration of the parametric rigid body six degree-of-freedom helicopter model into a 

design and maneuverability analysis framework is a contribution of this work. In addition 

to helicopter model development, the maneuver model is established for a common 

helicopter maneuver that is validated against literature and flight test data. Following the 

maneuver selection, an argument for mathematical formulation is discussed. The 

maneuver proposed in this work simplifies the maneuver definition such that it can be 

easily integrated into the design process, this is the second original development shown in 

this contribution. Third, important criteria regarding solver algorithm and constraint 

variables selection for the inverse simulation technique are presented. Differences in the 

trim algorithm and the dynamic simulation methods are discussed. Verification and 

validation of the algorithms is then provided.  Finally, the FMC technique is introduced, 

which enables the designer to apply various constraints on the design space and view the 

impact of requirements on both input and output parameters real-time.  

2.4.1 Problem Formulation 

As stated by Chipperfield [23], “design problems seldom start completely from 

scratch” and many times the new design starts from the previous design exercise. Using 

this information, thirteen input parameters associated with the AH-1 helicopter, originally 

investigated in Kim [20], were selected for investigation within the helicopter modeling 
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framework, which are described in detail in Prouty [49, 160, 161]. One of the parameters 

that is defined in Kim’s analysis was directly related to power available. This variable is 

removed from the analysis in this work by dynamically applying it as a constraint during 

post processing. The resulting twelve parameters of interest are presented in Table 2.1 

with the ranges selected to represent the various AH-1 configurations. These ranges can 

be narrowed through the use of dynamic constraints as configurations are removed from 

the design space. 

Table 2.1: Input Parameters and Ranges for Screening 

 

Often times in design many variables are included in the analysis, all of which are 

not essential to capturing the variability of the response. A common technique for 

pruning the design space to a few of the most important variables is through the 

implementation of a screening test. A screening test is a procedure in which a minimal set 

of experiments are defined using the ranges of the input variables [162]. In Kim [20] the 

results are run through the simulation environment and then analyzed through the use of 

Variable Name Unit Baseline Lower Upper

Main Rotor Diameter ft 48 46 52

Main Rotor Chord ft 2.75 2.4 2.8

Main Rotor Tip Speed ft/s 780 770 790

Tail Rotor Diameter ft 9.5 8.5 10.5

Tail Rotor Chord ft 1 0.8 1.2

Tail Rotor Tip Speed ft/s 740 730 750

Vertical Fin Area ft2 18.5 16.5 20.5

Horizontal Tail Area ft2 11 11 15

Vehicle Mass lb 10000 10000 15000

Tail Rotor Moment Arm ft 45.8 45 46.7

Main Rotor Hinge Offset %R 0 0 0.1

Center of Gravity ft 16.25 15 16.7
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Paerto Analysis to determine the parameters that contribute the most variability to the 

response.  

A summary of the results presented by Kim [20] are shown in Figure 2.9, which 

represents the variability impact of the input parameters on the dynamic response for the 

pop-up maneuver. The variable names are listed on the left of the plot and the bars 

represent the percent of the variability in response that results from each parameter. The 

variables are listed in terms of importance, with main rotor diameter being the most 

important parameter and accounting for over 20% of the variability. The top six 

parameters incorporate close to 90% of the variability in the performance. Common 

procedure is to select the parameters that account for close to 80% of the variability; 

however, since there is a clear cut-off at the top six parameters, 90% was used. 

 

Figure 2.9: Summary of Paerto Analysis 

The most important parameters determined through the implementation in Kim 

[20] are utilized in this work.   The six design parameters that are important to capturing 
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the variability in maneuver performance are: main rotor diameter, main rotor chord, main 

rotor tip velocity, vehicle mass, and area of the horizontal tail. In addition to these 

parameters, this analysis also includes Center of Gravity (CG) location, which was not 

captured in the previous analysis effort by Kim but is known to be important to the 

response. The inputs and ranges selected are displayed in Table 2.2.  One additional note 

is that the CG location and the tail rotor moment arm are specified in distance from the 

nose. Traditionally, the distance would be specified relative to the CG but since it is a 

variable in this analysis, this definition was more easily implemented. 

Table 2.2: Design Parameters and Ranges 

 

2.4.2 Mathematical Model Development 

Only two mathematical models are required in order to address the research 

objective: a vehicle model and a maneuver model. However, the model development 

stage consists of three separate tasks for this analysis. The first task is the development of 

the energy-based system model. This formulation is included to show that it does not 

provide the adequate fidelity to apply the necessary constraints; hence, requiring the rigid 

body formulation. After the energy-based model is derived, the rigid body formulation is 

Variable Name Symbol Unit Baseline Lower Upper

Main Rotor Diameter DMR ft 48 46 52

Main Rotor Chord C ft 2.75 2.4 2.8

Main Rotor Tip Speed VT ft/s 780 770 790

Vehicle Mass MASS lb 10000 10000 15000

Horizontal Tail Area ST ft2 11 11 15

Tail Rotor Moment Arm TRSTA ft 45.8 45 46.7

Center of Gravity CG ft 16.25 15 16.7
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presented. The rigid body formulation includes all of the energy-based equations in 

addition to the equations of motion, which include the necessary states and controls. It is 

shown that although the rigid body model is considered a relatively simple model, the 

helicopter EoM are complex and require multiple optimization loops within the 

formulation. The assumptions are documented throughout derivation of the rigid body 

equations. Finally, the maneuver model is discussed, which includes a discussion on the 

selection of a maneuver that is validated using literature and flight test data. Derivation of 

the mathematical representation of this maneuver is presented and the velocity and path 

descriptions are shown. 

2.4.2.1 Energy-Based Formulation 

The energy-based model for the system is derived from the point mass 

assumption, which greatly reduces the complexity of the helicopter model. Because of 

this assumption, the problem reduces to an excess power calculation for each maneuver 

under consideration. The excess power is the difference between power available, which 

is based on the engine properties, and the power required, which is based on the 

helicopter drag properties. In the formulation applied in this work, the power required is 

decomposed into three major contributors: profile, induced, and parasitic. These powers 

correspond to different aerodynamic and geometric properties of the design, each of 

which is explained through decomposition of the variables within the mathematical 

approximation. Profile power includes the losses associated with the rotor properties and 

the theoretical relationship is developed from blade element theory by Glauert and 
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Bennett.  The profile power coefficient with a uniform blade chord is expressed in 

Equation 2.2.  

Equation 2.2: Profile Power Coefficient Equation 

     
    

  
   

 

  
 
 

     

 

 

  

 

 

The U represents the resultant velocity at the discrete element. The remaining 

parameters are properties of the rotor blade system where σ is the rotor solidity, Cd0 is 

the profile drag coefficient of the airfoil, R is the radius of the rotor blade, and Ω is the 

rotational speed of the rotor blade.  Through neglecting the radial component of velocity 

and integrating the expression, Equation 2.3 is derived. The variable K varies depending 

on the model assumptions and approximations; while a fixed value of 3 is a valid 

approximation for this analysis [44]. 

Equation 2.3: Profile Power Coefficient Approximation 

     
    

 
        

The profile power can then be determined from the profile power coefficient by 

re-dimensionalizing the problem. The formulation used for profile power in this work is 

presented in Equation 2.4, where ρ is the density of air, VT is the rotor tip velocity, A is 

the rotor disk area, and μ represents the inflow velocity. Inflow velocity is a function of 

rotor tip velocity and freestream velocity. 
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Equation 2.4: Profile Power  

          
    

 
            

   

 The second power developed in this formulation is induced power. Induced 

power is derived from simple 1-D momentum theory and can be approximated using 

Equation 2.5. The variable κ is an empirical correction for tip losses and nonuniform 

inflow and it ranges in values from 1.15 to 1.25. The induced power is also a function of 

thrust, T, and induced velocity, vi. 

Equation 2.5: Induced Power  

               

The third and final power component within the power required breakdown is 

parasitic power, which results from viscous shear effects and flow separation on the 

fuselage and rotor hub. The parasitic power is approximated by specifying the 

combination of rotor and airframe drags as a reference area, Sref, and a corresponding 

drag coefficient, Cdf. The equation for parasitic power is represented in Equation 2.6. 

Equation 2.6: Parasitic Power  

             
 

 
                 

Power available is the result of engine properties at speed and altitude and 

sometimes includes a component of lift depending on the configuration. The lift 

component is ignored in most conventional helicopter conceptual and preliminary 
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analyses. Power available is relatively constant with altitude for conventional rotorcraft 

systems.  

An example application of the energy-based method equations is shown by 

analyzing the rate of climb calculation. When the simulation is run, a corresponding 

acceleration is required at each time step in order to complete the specified maneuver. 

The ability of the system to accelerate is calculated in Equation 2.7, which uses the power 

required equations previously developed to determine the rate of climb. It may be 

observed that if either the power required or the weight is too large, then the power 

available will not permit acceleration and the maneuver cannot be completed. Due to the 

mass assumption, variables related to the controllability of the vehicle do not appear in 

the expression. 

Equation 2.7: Rate of Climb Calculation 

                

                      

 
 

2.4.2.2 Rigid Body Formulation 

The rigid body formulation includes all of the previous power decomposition 

equations in addition to the helicopter EoM. The rigid body EoM are first order 

differential such that the state derivatives may be determined by the current state and 

control settings. The state vector is the minimum set of variables required to uniquely 

define the system motion throughout time. The number of states of the system can vary 

depending on the model fidelity, simplifying assumptions, and the number of subsystems 
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included in the analysis. Unlike the energy-based approach, the rigid body formulation 

includes the necessary control actuation information [163]. The EoM are derived in body 

frame coordinates in this work; however, conversion to a Newtonian frame is required in 

order to apply the laws of motion. 

Although more complex than the energy-based approach, some assumptions, 

which are discussed during derivation of the EoM, are required in order to make the rigid 

body formulation tractable for conceptual design. Derivation of the rigid body EoM for 

the helicopter starts with Euler’s equations; however, the buildup progresses more 

smoothly if the forces and moments corresponding to the various helicopter components 

is presented first. The formulation progresses by separating the helicopter into four 

components: main rotor, tail rotor, fuselage, and wing and tail. The main rotor is the 

primary force and moment generating component of the helicopter and is also the most 

complicated mathematically. The tail rotor equations follow which use similar techniques 

as the main rotor derivation. Third, the fuselage components are modeled and 

simplifications are provided. Finally, the wing and tail components contribution to forces 

and moments are presented. The wing and tail are lumped into one derivation since the 

forces and moments are calculated using the same procedures. 

2.4.2.2.1 Main Rotor  

An optimization needs to be performed in order to determine the forces and 

moments generated by the main rotor because of the coupling effects. This optimization 

loop generally starts with either an initial guess of thrust coefficient, CT, or tip-path plane 
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inflow ratio, λ. Inflow velocity ratio is defined as the ratio of induced velocity to rotor tip 

velocity. The specification of λ rather than  T was found to be more stable and offer 

faster convergence properties for the equations applied. Within the iteration loop, the 

inflow velocity is iterated upon in order to find a CT value for the main rotor. Equation 

2.8 displays the relationship between inflow ratio and thrust coefficient. All of the rotor 

equations were developed by Hennis and McCormick [164] and are re-presented here for 

completeness. These equations have been used in several literature references and are 

commonly implemented in software packages for analyzing maneuverability for a fixed 

helicopter design. 

Equation 2.8: Thrust Coefficient 

    
      

 
                           

The T1, T2, and T4 coefficients in Equation 2.8 are based on rotor properties, 

which are a function of freestream and rotor tip velocity. The other rotor variables are 

a0inc, which is rotor lift curve slope at zero incidence, and rotor solidity, σ. The value of 

rotor solidity is dependent upon the number of rotor blades, the blade chord, and the rotor 

radius. The two control variables appear in this formulation of the CT equation: main 

rotor collective, Ɵ0, and longitudinal cyclic, Ɵ2.  The lateral flapping, B1, comes into the 

equation through multiplication of Kβ, which is a term that indicates the measure of 

coupling between the longitudinal and lateral modes.  After a value for CT is obtained, a 

subsequent tip-path plane inflow velocity is calculated using Equation 2.9. At low speed 
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the tip-path plane inflow ratio is mainly due to induced velocity, while at higher speeds it 

is dominated by the helicopter parasitic drag. 

Equation 2.9: Tip-Path Plane Inflow Ratio 

     
  

          
 

      

   
 

This iteration loop continues until λnew is equal to λold. As mentioned previously, 

helicopters have a high degree of cross coupling due to rotor dynamics. Hence, it is not 

practical to simulate the longitudinal and lateral rigid body dynamics separately, but 

some of the higher order effects may be ignored [165]. For instance, the inertial coupling 

between the rotor and fuselage is very complicated. Fortunately, ignoring this coupling 

by assuming a first order-path-plane dynamic model that incorporates the first order 

longitudinal and lateral flapping coefficient dynamics with a quasi-steady inflow model 

has been shown to provide satisfactory results [166]. This limits the model’s ability to 

capture aerodynamic properties associated with Mach number variation, three-

dimensional blade tip effects, or retreating blade stall. Rutherford [167] states that 

although these assumptions are applied “this model has provided useful and valid results 

[168] for a wide range of applications.” This formulation is applied by  eli [57], who 

indicates that “this is an acceptable assumption as firstly, blade flap motion is much more 

influential in terms of predicting blade loads and the blade dynamics are much faster than 

those of the body modes.”  
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The physics of bladed flapping are relatively basic; however, when all the 

harmonics are combined, the resulting motion can be highly complex. Commonly, the 

blade motion is explained via decomposition into the major contributing analyses 

presented by Gessow and Myers [44]. In addition to the thrust coefficient and inflow ratio 

equations, the longitudinal flapping, lateral flapping, and coning angle equations are also 

included in the optimization loop due to the coupling. Equations 10-12 represent these 

calculations where again the A, F, and B variables are based on uniform inflow and 

linearly twisted blade assumptions.  It can be observed that all of the equations are highly 

dependent upon one another, thus, making convergence to a solution a non-trivial 

exercise. 

Equation 2.10: Rotor Coning Angle 

                                             

The coning angle represents the average part of the flapping motion that is 

independent of time and blade azimuth angle. The coning angle equation results from the 

moment balance about the flapping hinge from a combination of aerodynamic and inertial 

forces. The centrifugal loads on the blade remain constant for a fixed rotor speed, while 

the aerodynamic relationship is much more complex and varies with lift distribution. The 

coning angle is proportional to the induced velocity, which is a function of forward 

velocity. The variable B1 represents the lateral flapping and τ represents the blade mass 

impact on the centrifugal force due to the rotating system. Lock number, γ represents the 

ratio of aerodynamic to inertial forces of the rotor system. 
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Equation 2.11: Longitudinal Flapping 

                                          

The longitudinal flapping equation, Equation 2.11, represents the amplitude of the 

pure cosine flapping motion, which may be viewed as the fore aft tilt of the rotor tip-path 

plane. Dissymmetry in the lift produced between the advancing and the retreating sides of 

the rotor disk are created during forward flight because the advancing blade confronts a 

larger dynamic pressure. The dynamic pressure on the retreating side of the blade causes 

the blade to flap downward, which increases the effective angle of attack that results in 

increased lift. Figure 2.10 [44] displays the effect on tip-path plane due to longitudinal tilt 

and coning together.  

 

Figure 2.10: Longitudinal Flapping  

The fourth equation within the optimization loop is the lateral flapping, which 

represents the amplitude of the pure sine motion. The resulting amplitude variation 

results in left-right tilt of the tip-path plane. During forward flight, the dynamics 

influence a tendency for the blade to tilt to the right when viewed from behind. With 

calculation of Equation 2.12 one loop through the optimization is complete. 
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Equation 2.12: Lateral Flapping 

                       

When the optimization loop is converged, the values obtained can be used to 

calculate the total rotor thrust using Equation 2.13. The components of thrust in the 

various axis of the system can be determined by using the control setting and flapping 

results. Hence, the main rotor has force and moment contributions in all three axis of the 

body.  

Equation 2.13: Rotor Thrust 

   
 

 
          

Some helicopter model formulations have applied assumptions that limit rotor 

maximum lift coefficient; however, as noted by Celi [41] “for typical current helicopter, 

actuator displacement and rate limits will be reached before the rotor max lift coefficient 

becomes the limiting factor.” At the other extreme, including detail related with some of 

the actuator dynamics may be ignored for many flight mechanics applications. This is 

because the actuator time scale is much faster than the vehicle dynamics. This assumption 

results in the linear rotation of the control hinge being captured rather than the detailed 

electrical input to the valves/solenoid. This simplification is crucial since the fine scales 

of the actuator dynamics are not required at the early design stage, which results in great 

computational savings [37].  These assumptions can be viewed in the rotor flapping 

equations since the control rotational inputs are provided as inputs to the equations. 

Additionally, the rotor downwash can be calculated using the inflow ratio along with 
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geometric parameters that relate the location of the wing, fuselage, and tail relative to the 

rotor. The equations for these approximations may be viewed in Johnson [42]. 

2.4.2.2.2 Tail Rotor 

The second component forces and moments that are derived are those relating to 

the tail rotor. Fortunately, all of the assumptions that applied to the main rotor 

calculations can be carried over into tail rotor analysis. In addition to following the same 

optimization process, the tail rotor flapping and coning can be ignored. Hence, the tail 

rotor thrust coefficient and inflow ratio are found by applying an optimization routine to 

Equation 2.14 and Equation 2.15. The forward velocity component of Equation 2.9 has 

been removed when applied to tail rotor analysis in Equation 2.15. The tail rotor thrust 

can then be calculated by using Equation 2.13, but replacing the rotor variables in the 

expression with the tail rotor properties. 

Equation 2.14: Tail Rotor Thrust Coefficient 

     
           

 
                

Equation 2.15: Tail Rotor Inflow Ratio 

      
   

      
    

  

 

The tail thrust effects the forces and moments on the system through a couple 

methods due to its position relative to the center of gravity. The first and most straight 

forward effect of the tail thrust is a component of force in the y-axis of the body 
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coordinate system. In addition to this force, the tail is located a distance higher than the 

center of gravity location, which contributes to a rolling moment. Finally, the major 

contribution of the tail is the counter torque moment about the z-axis of the body that 

results due to being located a far distance aft of the CG location, which may be viewed in 

Figure 2.11 [169]. The engine torque is calculated using the power required equations 

and converting power to torque using the rotational rate of the main rotor. 

 

Figure 2.11: Tail Rotor Moment Contribution 

2.4.2.2.3 Fuselage 

The third component in the rigid body model development is the fuselage. It can 

be assumed that the only contribution of the fuselage is parasitic drag for conventional 

helicopter configurations. The other aerodynamic forces and moments are considered 

negligible due to the small magnitude in relation to other contributors. The fuselage drag 

equation is presented in Equation 2.16, where Q represents the dynamic pressure. Unlike 
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the energy-based formulation, the rigid body formulation requires this drag to be 

converted into vector quantities. This is done using state variables that are stored during 

each time step of the simulation. The transformation from the wind frame to the body 

frame is discussed in Etkin [163]. 

Equation 2.16: Fuselage Drag 

                    

2.4.2.2.4 Wing and Tail 

The final components in the derivation of the EoM are the wing/tail forces and 

moments. Fortunately, the aerodynamic equations are simpler for non-rotating 

components, especially, for the flight maneuvers that are typically performed by 

helicopters. The tail lift and drag forces are assumed negligible compared to the forces 

produced by the fuselage and the rotor components. Therefore, the only contributions to 

the EoM from the tail are the moments resulting from the lift component of the tail, 

which produces a stabilizing moment in the pitch and the yaw axis because of the 

distance from the center of gravity. Equation 2.17 represents the formulation for 

calculating the lift and drag forces, while Equation 2.18 displays the moment equation. 

The moment equation is the equal to the force representation multiplied by the moment 

arm. 

Equation 2.17: Wing and Tail Forces 
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Equation 2.18: Wing and Tail Moments 

                    

Figure 2.12 displays the method for converting the aerodynamic forces on the 

wing and tail surfaces from the wind reference frame into the body reference frame. A 

similar method is applied to convert the fuselage forces. It may be observed that the angle 

of attack, α, is the only variable that is required for this conversion in the longitudinal, 

while side slip, β, is required in the lateral forces and moments conversion.  

 

Figure 2.12: Wing and Tail Resultant 

2.4.2.2.5 Integrated Components 

The equations derived in this section are combined to form the EoM of the 

conventional helicopter. The resulting states of the system are position, linear velocity, 

angular velocity, and orientation. The controls are collective, longitudinal cyclic, lateral 
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cyclic, and tail collective. The equations derived are used to calculate the resulting 

accelerations of the system for given state and control combinations. By combining this 

model with an integration routine, the resulting motion can be calculated and observed, 

while the power information is also calculated during each time step. Hence, the energy-

based approach results are included in the rigid body formulation. 

The focus of this work is to develop a process that enables integration of 

maneuverability assessment with conceptual design. As a result, the elements of the 

process have been selected for conceptual design studies when higher fidelity modeling is 

sacrificed for design space exploration capabilities. The assumptions involved in the 

derivation of the simple rigid body helicopter limit maneuverability analysis to specific 

types of maneuvers. For example, the quasi-steady inflow assumption only applies to 

smooth maneuvers; hence, analysis breaks down when applied to aggressive maneuvers 

such as barrel rolls and transient maneuvers such as quick hops. Additionally, many of 

the characteristics associated with agility cannot be analyzed with the simple rigid body 

model. The various assumptions associated with the power equations provide further 

limitations regarding detailed lift distribution effects on the rotor blades, which hinders 

the model’s ability in predicting loads resulting from Mach number and three 

dimensional effects. The elements of the process may be replaced with higher fidelity 

analysis techniques that enable analysis of both high speed and low speed transient 

maneuvers as computational capabilities increase or the design progresses into the later 

design stages. 
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2.4.2.3 Maneuver Model Formulation 

Future autonomous vehicle operations in urban and battlefield environments will 

require extremely agile airborne platforms to perform their missions. Many authors 

consider model-based approaches for evaluating maneuvering performance [45, 170-

172].  Remarkably, even for aggressive maneuvers such as barrel rolls, Piedmonte [173] 

shows that consistent paths are followed during piloted operation, hence mathematical 

modeling of NOE flight is a valid approach. In recent years an attempt has been made in 

developing a set of maneuver development and evaluation criteria that resulted in the 

Aeronautical Design Standards (ADS). The ADS-33 maneuver definitions are stated as a 

set of criteria that the helicopter must satisfy rather than a precise trajectory that the 

helicopter must follow [41]. The goal of the ADS-33 requirements is “to provide an 

overall assessment of the rotorcraft’s ability to perform certain critical tasks [21].” One 

major concern for integration of the conceptual design is the manner in which the 

maneuvers are defined, as a result, multiple optimum solutions may exist for a single 

prescribed maneuver [24].  

One of the major focuses of this research is to develop a relationship between 

design parameters and maneuver performance. As a method of controlling the size of the 

design space and removing some of the variability in the optimum solution path, the path 

must be defined directly rather than through constraints [36]. Cao [174, 175] was able to 

express the helicopter maneuver space by specifying flight motion conditions 

mathematically through a polynomial fit. It turns out that at least a fourth order 

polynomial is required to insure smoothness when defining the position. This means that 
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at least 5 parameters are required to define the path; furthermore, it is difficult to 

visualize the resulting path by seeing the coefficients alone. An example of a pop-up 

maneuver expressed through a fifth order polynomial is presented by Cao [33] and is 

shown in Equation 2.19. 

Equation 2.19: Polynomial Maneuver Model 

                                                         

 

Figure 2.13: Resulting Polynomial Path 

The polynomial function presented in Equation 2.19 is defined on the time 

interval from 0 seconds to 7.7472 seconds. The coefficients are selected such that the 

path is a smooth pop-up maneuver with an increase of 30 feet in altitude. The path may 

be observed as the smooth solid line in Figure 2.13. One difficulty in defining the 

maneuver using the polynomial representation is that the resulting path is very difficult to 

visualize by only viewing the coefficients. Additionally, beyond the final time of 7.7472 
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seconds the function doesn’t have a well behaved form as indicated by the dashed line. 

This may create problems when attempting to stitch maneuvers together or when 

changing the total time for the maneuver. 

 

Figure 2.14: Polynomial Path Sensitivity 

Another major issue when defining the maneuver through a polynomial 

representation is that the polynomial shape is very sensitive to the coefficients; thus, the 

resulting path can change significantly through small changes to the coefficients. Figure 

2.14 presents these findings by showing the baseline maneuver compared to two other 

drastically different maneuvers that are defined by small changes from the baseline. 

Changing the A4 coefficient from -0.1249 to -0.13 maintains the appropriate pop-up path 

shape over the timeframe from 0 to 5.8 seconds. However, the maneuver shape 

drastically changes when the A5 coefficient is adjusted from 0.0064 to 0.007.  This 

demonstrates the large sensitivity of the path characteristics through minor variations in 
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the definition, which is not a desired quality. Furthermore, using this formulation to 

describe a general pop-up maneuver description is extremely difficult. 

Cao [33] developed a trigonometric function that is much easier to understand and 

provides the same level of smoothness that is required to eliminate numerical error 

associated with the zero order dynamics. This description uses the combination of two 

different cosine functions to describe the path. Two concerns are determined through 

analyzing this definition. By defining the maneuver by position rather than velocity a 

greater amount of numeric instability is introduced because an additional stage of 

differentiation is required. Also, the body frame velocities can change at the rate of the 

faster rotational dynamics; hence, much benefit is achieved by using navigation frame 

coordinate system for maneuver definition. 

With the previous observations and assumptions a new maneuver model 

formulation is required for conceptual design and maneuver analysis. The maneuver 

model derived in this work is defined via a single trigonometric function of linear 

velocities in the navigation frame along with a yaw rate constraint. For more information 

on the navigational reference frame see Etkin [163]. An example mathematical maneuver 

for a pop-up is shown in Equation 2.20.  The vertical velocity is defined as a function of 

current time, final time, and maximum velocity. As opposed to the polynomial 

representation that requires at least 5 input variables, this representation only requires two 

inputs: maximum velocity and final time. The pop-up maneuver is selected to show the 

usefulness of the proposed technique, while additional maneuvers are addressed in 

Chapter 4 of this dissertation. 
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Equation 2.20: Mathematical Model Representation 

                 
    

  
   

    

 
 

The mathematical model representation using a single trigonometric function is 

presented in Equation 2.20, where the output velocity is in the vertical direction of the 

navigational frame. This is because the pop-up maneuver only requires a change in 

vertical velocity, while the lateral and forward velocities remain constant. Additionally, 

yaw rate is constrained to a zero value so that the helicopter is not rotating about the 

vertical axis while performing the maneuver. The velocity profile produced by Equation 

2.20 is shown in Figure 2.15. The benefit of this functional representation is that the 

maximum velocity can be easily specified and the resulting motion is straightforward. 

For this example, the maximum velocity of the maneuver was specified to be 20 ft/s, 

which can be observed in Figure 2.15. Additionally, the simulation total time is specified 

as 10 seconds. Using this knowledge, it can be determined that the total altitude change 

of this pop-up will be 100 ft.  

Figure 2.16 verifies these findings by displaying the resulting path of the defined 

maneuver. This model definition overcomes the detriments of the polynomial expression 

and requires fewer inputs than the trigonometric definition in Cao [33]. This novel 

maneuver function is derived because the curse of dimensionality is always a concern 

with aerospace design problems, especially with the integration of dynamic 

maneuverability assessment. The benefit of requiring fewer inputs is essential in 
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integrating the maneuverability analysis into a design framework since multiple designs 

and paths are analyzed during conceptual design space exploration. 

 

Figure 2.15: Velocity Profile 

 

Figure 2.16: Pop-Up Maneuver Path 
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 Figure 2.17 depicts the maneuver formulation’s ability to easily model changes in 

velocity, which is accomplished by only changing Vmax within Equation 2.20. In addition 

to the baseline maneuver, both a 15 ft/s and a 25 ft/s maneuver are shown. An additional 

benefit from this formulation is that the maximum velocity is defined independent from 

the maneuver time. Hence, Vmax can be increased until the simulation fails for a given 

design and this velocity represents the maximum velocity maneuver that a design is 

capable of completing.  

 

Figure 2.17: Trigonometric Definition – Velocity Variation 

Conversely, the total time of the maneuver can be altered independently from the 

maximum velocity. Figure 2.18 displays the velocity function as the time is changed from 

10 seconds to 12 seconds. It may be observed that the peak velocity of the maneuver is 

unchanged through this adjustment. This means that both final time and maximum 

velocity can be adjusted independently to easily define the maneuver that is required for 
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simulation. Determining the polynomial coefficients for previous maneuver definition 

techniques required more computational effort and expertise. 

 

Figure 2.18: Trigonometric Definition - Time Variation 

The combination of the maximum velocity and final time variables allow for the 

entire design space of pop-up maneuvers to be defined. For a fixed velocity and altitude, 

Figure 2.19 displays thirteen various pop-up maneuvers that can result by only varying 

the maximum velocity and the final time. With the variation in altitude and initial 

horizontal velocity, the entire pop-up maneuver space is captured, which was not possible 

with previous maneuver definitions. 
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Figure 2.19: Pop-up Maneuver Space 

2.4.3 Simulation 

The setup of the simulation environment consists of two major tasks since 

integration based inverse simulation was selected as the appropriate method. The 

considerations stem directly from the process employed in basic flight mechanics 

formulations. First the trim analysis is conducted for the initial flight conditions, then 

inverse methods are applied to simulate the maneuver. Both of these steps require an 

optimization algorithm for solving for the states and controls required to either trim or 

follow the defined path, respectively. For this reason, the selection of the optimization 

algorithm is first discussed, which is followed by a detailed description of how the trim 

and maneuver analyses are conducted. 
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2.4.3.1 Optimization Algorithm Selection 

As stated by Cox [176], “much research has been done to find computationally 

efficient methods to determine solutions within high dimensional, nonconvex design 

spaces.” Both the trim solution problem and the path following problem are determining 

state and control combinations that result in a zero solution. In the trim case, the zero 

acceleration solution is determined, while the error in path is zeroed during path 

following. Deterministic optimization algorithms can be separated into two major 

categories when determining the zeros of a function: zero-order and first-order methods. 

Zero-order methods require only function evaluation knowledge and have a long history 

of successful application. Vanderplaats [177] states that “these methods are usually 

reliable and easy to program, often can deal effectively with nonconvex and 

discontinuous functions, and in many cases can work with discrete values of the design 

variables.”   

First-order methods require gradient information to be supplied, either by finite-

difference computations or analytically, hence, first-order methods are termed gradient-

based algorithms [177]. Aircraft trimming is often performed by gradient-based 

numerical algorithms originating from the field of nonlinear constrained optimization. 

Drawbacks to gradient-based methods result from the dependence on the function 

derivative calculation. As the number of variables and nonconvexity of the solution space 

increases, the computational expense of the derivative evaluations grows exponentially. 

Furthermore, local extrema points mitigate the algorithms’ ability to find global optima. 

For this reason, multiple starting points are utilized; however, this does not guarantee that 
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the solution is found [68, 178]. Gradient-based algorithms have been applied to global 

optimization problems by utilizing various starting points [69]. Various journal articles 

have compared efficiencies for numerous multi-start global optimization algorithms 

[179].  

 The constraint oscillations that occurred during previous inverse simulation 

efforts were caused by the dynamic properties of the internal system and result from the 

optimizer jumping between solutions for each time step. Hence, both convergence 

tolerance and time step can have a large impact on the simulation results. Various 

techniques have been used in literature to mitigate these affects.  Lu [180] uses the 

derivative-free Nelder-Mead optimization method to eliminate discontinuities associated 

with derivative-based methods. The author also suggests using sensitivity equation 

techniques [181] to remove singularities associated with the Jacobian matrix. De Matteis 

[137] uses a local optimization based on Sequential Quadratic Programming in 

combination with a global newton-raphson approach and Lee [182] applies equality 

constraints to optimization process. Celi [21] specifies a scalar minimization function and 

optimizes using the BFGS algorithm, while Cao [33] solves the path planning problem 

using nonlinear least squares optimization method.  

The Nelder-Mead (NM) method, which is shown to be useful in inverse dynamics 

problems [183-185], and the nonlinear least squares (LSQ) method presented by Cao 

[33], which does not require a scalar minimization function, appear in research in recent 

years as the most effective optimization methods for determining trim solutions. The NM 

algorithm represents derivative free methods, while nonlinear LSQ represents derivative-
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based optimizers. The effectiveness as applied to the helicopter simulation environment is 

tested in this section for both of these optimization algorithms.  

The input variables and ranges in Table 2.2 are used to investigate each method’s 

ability in determining trim solutions. The convergence criteria for each of the methods 

are slightly different because of the manner in which each optimizer operates; however, 

they have been selected to make the results comparable. Nelder-Mead optimization was 

set to exit the algorithm loop after reaching a maximum of 500 function evaluations or a 

function/input tolerance of 1e-17. On the other hand, the nonlinear LSQ method was set 

to exit when a maximum of 30 iterations or a function/input tolerance of 1e-17 was 

reached. Hence, both methods applied the same tolerance on function and input 

parameters. Because of the number of variables and the finite difference method used in 

the nonlinear LSQ algorithm, this resulted in a maximum of 500 function evaluations if 

all 30 iterations were performed. Each trim experiment was conducted for 200 different 

experimental design and pop-up maneuver combinations. Additionally, this was 

performed using an initial guess close to the solution and with only one starting point 

guess.  

The nonlinear LSQ determined 199 trim solutions for the 200 runs meaning that 

the algorithm did not find the solution for only one case. The one non-converged run was 

rerun using multiple restarts and the trim solution was determined. The NM formulation 

did not determine any of the trim points within the optimizer option selected, although all 

points were converging to solution. The method is able to determine the trim solutions if 

this value is increased by approximately a multiple of five; however, the amount of time 
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for convergence is on the order of 1000 times slower than nonlinear LSQ method. 

Therefore, the nonlinear LSQ method was chosen as the optimizer in this work. 

2.4.3.2 Trim Solution versus Path Simulation 

Prior to performing inverse simulation, the initial trim conditions first need to be 

determined. Much work has been conducted in the area of developing general 

formulations for computing numerical trim values for a six-degree of freedom nonlinear 

models.  Through analysis of the dynamic performance problem,  a general approach to 

trim through minimization of a cost function as presented by DeMarco [186] is selected 

for this work. This method allows for integration of multiple models and provides the 

ability to both trim the vehicle in steady-state flight and calculate control settings to 

follow a prescribed path.  

The process for determining the trim conditions for the simulation is shown in 

Figure 2.20. After the helicopter model parameters and the maneuver parameters are fully 

defined, the first step of the trim process is an initial guess for system states. Only nine 

states are included in this estimate, while the rotational rates (P, Q, R) and the heading 

(Ψ) are forced to be zero. The states relating to velocity components are provided in the 

body reference frame, while the maneuver definition specifies velocities in the 

navigational frame; therefore, these velocities are not the exactly the same and require a 

transformation. The transformation of the body frame velocities to navigation frame 

velocities is accomplished through knowledge of the orientation of the system.  
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Two variables from the maneuver model are used during the trim process: the 

altitude and the initial forward velocity in the navigation frame. The maneuver based 

parameters of final time and maximum velocity are ignored during trim. The states and 

controls are feed into the helicopter equations of motion, which calculates all 12 state 

derivatives. An optimization algorithm uses the state derivative information to iteratively 

change the state and control variables that drive the state derivatives to a zero value. The 

helicopter model contains two optimization loops within the EoM block, hence, as noted 

by Kato [187], “the solutions obtained from inverse simulation of the nonlinear EoM are 

not simple” [187]. Elgersma [188] comments on trimming the aircraft EoM: “When 

computing numerical trim solutions, it is difficult to know if all possible trim solutions 

have been found [188].” Additionally, the existence and number of trim solutions within 

the function space is not known a priori [186, 189].  

The same process is applied during maneuver path following with two extensions, 

which are shown in Figure 2.21. The first extension is the inclusion of an integration 

routine within the analysis in order to track motion throughout time. The second issue 

that arises is due to the velocity information from the maneuver definition changing with 

time. The optimization algorithm depends on the function value for convergence, thus, 

the function value calculation must be updated as the maneuver progresses in time. The 

optimization algorithm no longer adjusts state information during path simulation and 

only has access to control changes. Additionally, the lesser number of degrees of freedom 

decreases the number of constraints that can be applied to only the three linear velocities 

and the yaw rate. 
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Figure 2.20: Trim Process Diagram 
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Figure 2.21: Path Following Process Diagram 
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2.4.3.3 Algorithm Additional Concerns 

Another consideration within the environment is selecting the appropriate time 

step for simulation.  Gao [24] observed the skipping of dynamics by having too large of 

time step. Lee [182] was able to remove the oscillations by decreasing the time step, 

while on the other hand, Isakov [190] documents the problems with specifying too small 

of time step.  A time step of one-tenth of a second is chosen for this analysis because it 

provides the desired convergence properties, while remaining large enough to make the 

simulation time feasible. If the time step is made smaller, the convergence of the 

optimizer does not need to be specified as small; however, computational time is greatly 

increased for no informational benefit. 

2.4.3.4 Algorithm Verification 

While determining the trim conditions, it is understood that the trim space should 

be continuous and display trends with velocity as design parameters vary. The following 

discussion summarizes some of the trends within the design space and displays the 

algorithm’s ability to determine the trim points for a wide range of inputs. The trends are 

not tight curves because of the variability in the design parameters required to model the 

numerous configurations. First, the x and z body velocities and pitch attitude are 

discussed. This is followed by an analysis of the trim orientation of the vehicle through a 

discussion of the attitude using the pitch, roll, and yaw angles. Finally, the impact of 

control settings for changing design parameters is discussed. All of these results are 
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shown for 9000 runs over the design space using a space filling Design of Experiments 

with the same variables and ranges as used in the trim algorithm selection experiment. 

Traditionally the static flight conditions in design are evaluated prior to analyzing 

the maneuver performance. Hence, a thorough analysis of how the trim condition is 

impacted from design parameter variation is important to investigate at this stage of the 

analysis. The first step in the trim procedure is to view all of the simulations that did not 

converge to a steady-state solution. Once these runs are determined, the designer must 

determine why each of the failed simulations did not converge. Rerunning of the failed 

trim cases using a multi-start algorithm is sometimes necessary in order to show that a 

solution exists. Verification that the simulation achieved a trim solution is completed by 

viewing the minimum function value obtained from each simulation. The value was 

below 1e-8 for all of the 9000 simulation runs, which means that all of the runs achieved 

a trim solution.  

The second step is to verify that the trends in the trim solutions are valid by 

analyzing all of the trim solutions together in a holistic manner. This is completed by 

viewing the various trim state and control variables versus velocity. The trim condition 

corresponds to five states of interest and four controls. The states consist of three linear 

velocity components, pitch angle, and roll angle. The angular rates and yaw angle are 

forced to be zero through the trim constraints so they are not included in the trim 

analysis.  
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Since the pop-up maneuver involves only longitudinal motion, the important 

states are those in the xz-plane. The top portion of Figure 2.22 shows that the vehicle 

velocity in the x-axis of the body frame is closely matching the defined velocity in the 

navigational frame. The experiment designs consist of specifying velocity and altitude of 

the maneuver in addition to the design parameters of interest. The relationship of body 

velocity components to the defined velocity is through the 2-norm. The magnitude of the 

combination of the body velocity components must form the defined velocity. The y-axis 

and z-axis velocities are adjusted in order to drive the accelerations to zero for trim. The 

pitch angle is necessary in producing the forward component of thrust necessary to 

achieve faster forward velocities. As a result, the magnitude of the pitch angle grows as 

the defined maneuver velocity increases. The pitch of the vehicle is defined as negative 

clockwise when viewed from the right side of the vehicle; hence, a negative pitch 

represents a forward tilt.  

As the helicopter travels faster, the z-axis component of the body velocity 

increases in the negative direction. The vertical component of the velocity becomes more 

negative with forward flight because the vehicle must pitch the rotor toward the direction 

of flight and the positive z-axis is defined downward. The spread in the data results due 

to variability in the design parameters. For example, at hover condition (zero velocity), 

the pitch of the vehicle can either be positive or negative depending on whether the CG is 

fore or aft of the main rotor location.  
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Figure 2.22: Longitudinal Velocity Decomposition 

In addition to the longitudinal velocities, the vehicle attitude in trim is also 

important and highly impacted by design decisions. This is to ensure that the vehicle 

orientation relative to trim conditions is making logical sense. The yaw angle is 

constrained to be zero during trim calculation, which may be observed in Figure 2.23. 

The only remaining angle to fully define the vehicle attitude is the roll angle, which is a 

function of the amount of tail and lateral cyclic required to counteract the forces and 

moments caused by the main rotor. Hence, the magnitude of the roll angle is smallest 

when the required power is minimum, which appears in Figure 2.23 to occur between 150 

and 175 ft/s. The best way to verify this observation is through analyzing the power 
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requirements for the various trim settings and checking to see if the minimum power 

occurs in this range.  

 

Figure 2.23: Attitude at Trim 

Throughout this analysis a common theme is the importance of the control 

deflection predictions with changes in design parameters. The idea is to capture the 

changes in performance capabilities via variations in the design parameters and 

constraints. Therefore, it is important to be able to analyze the control deflections 

necessary for trim for the range of design variables. This is summarized in Figure 2.24, 

where it may be observed that the main rotor collective (T0) increases with velocity as 

expected. The design parameters create a spread in the data that reaches a maximum of 
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12 degrees in main rotor collective at trim for many designs between velocities of 150 to 

250 ft/s. The tail collective (Tt) is used to counter the torque created by the main rotor; 

hence, the tail rotor collective increases with main rotor collective. The most variation 

occurs near hover and stems from the main rotor rotational rate and tail rotor moment 

arm design parameters. As velocity increases, other vehicle parameters start to impact the 

EoM in the form of aerodynamic forces and moments, as a result this variation reduces. 

Additionally, the lateral cyclic (Tlat) changes to account for the side force generated from 

an increase in the tail rotor collective. Finally, the longitudinal cyclic (Tlong) continues 

to provide forward tilt of the TPP as velocity increases.  

 

Figure 2.24: Control Deflections at Trim 
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By viewing the figure, it is observed that the longitudinal cyclic reaches a 

deflection of approximately -15 degrees at 300 ft/s (177 kts) for a few of the designs, 

which means that this velocity is not possible if a constraint of 12 degree kinematic 

deflection limit is imposed. In keeping with the same definition of positive and negative 

rotations, the longitudinal cyclic is defined as negative clockwise when viewed from the 

right of the vehicle, while lateral cyclic is defined as negative clockwise when viewing 

the vehicle from the front. At hover the value of longitudinal cyclic can be either positive 

or negative depending on several of the design parameters such as the CG location. 

 

Figure 2.25: Trim Power Required - All Designs 
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The final set of outputs to discuss from the trim analysis is the power 

requirements. The power required is decomposed into induced, profile, and parasitic. The 

following is a summary of the power decomposition found from looking at all 9000 runs 

within the environment. It must be kept in mind is that this is a combination of all 

simulations so the power can vary drastically between run. The main point of Figure 2.26 

is to show that for the range of all the design variables and maneuver ranges, the trends 

are correct for the trim power required as compared to Lieshman [44]. The minimum 

power occurs between 150 and 175 ft/s as expected from analyzing the roll angle. 

 

Figure 2.26: Trim Power Required - Trends 
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2.4.3.5 Algorithm Validation 

The validation procedure achieves two tasks, verification that the rigid body 

model and inverse simulation procedure match previous research efforts and that the 

simulation results are consistent with actual flight test data. The pop-up maneuver 

defined by Hess and Gao [25] was chosen as a validation maneuver because of the large 

amount of previous literature on the maneuver. Even for a fixed time simulation, multiple 

pop-up paths exist. The pop-up consists of z-axis acceleration in the navigation frame as 

exhibited in Figure 2.27. Each of the eight paths shown in the figure represents a different 

maximum acceleration for a fixed initial altitude, velocity, and time. Although the broad 

spectrum of pop-up maneuvers is simulated in this work, it is important to select a single 

pop-up within this set for validation.  

 

Figure 2.27: Multiple Pop-Up Trajectories 

The pop-up maneuver chosen consists of a vertical displacement of 185 ft at 

approximately hovering conditions over a 10.6 second time frame, which is slightly 
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different than presented in Hess [25]. The reason for this is that all of the various 

references used different maneuver definitions so the maneuver model parameters were 

chosen such that the results in this work could be compared to multiple references. In 

addition to the vertical velocity constraint required to perform the pop-up maneuver, the 

zero heading, zero horizontal velocity change, and lateral position constraints are applied. 

This maneuver may be observed in Figure 2.28 through displaying time histories of 

vertical position, velocity, and acceleration.  

 

Figure 2.28: Simulated Pop-Up Maneuver 

The maneuver is easily modeled through definition of the vertical velocity profile 

using the trigonometric representation derived earlier, which is slightly different than the 
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manner in which the maneuver is defined in other references. The maneuver starts at an 

altitude of 950 ft and through 10.6 seconds of simulation the helicopter reaches a height 

of 1135 ft via a smooth path. The positive z-axis is defined downward in the inertial 

reference frame; hence, larger negative values represent higher altitudes. The vertical 

velocity and vertical linear acceleration over the simulation are also displayed in the 

figure; however, these parameters are presented in the body frame of reference, while the 

maneuver is defined in the navigational frame. The maximum vertical velocity of 30 ft/s 

occurs 5.3 seconds into the simulation and gradually tapers off to a zero value according 

to the mathematical representation derived earlier in this work. The smooth velocity 

profile is provided in the maneuver definition, which results in the position and 

acceleration profiles remaining smooth throughout the simulation. 

 

Figure 2.29: Vertical Position and Velocity 

Validation consists of analyzing various state and control time histories from 

previous research efforts and comparing trends. The vertical position and velocity 

profiles from Hess [25] are displayed in Figure 2.29. A maximum velocity occurs half 

way into the maneuver with a magnitude of approximately 7.25 m/s or 24 ft/s. The shape 

of the velocity and the position are very similar despite the difference in time frame and 
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units. Because the time frame of this maneuver is only 5 seconds the final vertical 

displacement is about 50 ft. 

Since the controls are calculated during inverse simulation, an important aspect 

for validation is comparison of the magnitude and the trends in control deflections. The 

control time histories corresponding to the velocity defined in Figure 2.29 are shown in 

Figure 2.30. The control deflections are shown relative to displacement from trim setting, 

hence, at time zero all of the controls are zero. Other references did not use this technique 

and displayed the actual displacement rather than the relative displacement. This is more 

informative so the actual displacement is used when presenting results from this work.  

The main rotor collective is displayed in the upper left corner of the figure and 

increases during the initial period of the pop-up to provide the increase in lift necessary, 

while the collective decreases during the second half of the maneuver to allow the 

helicopter to decelerate to hover at the new altitude. The tail rotor collective (pedal) is 

displayed in the bottom right portion of Figure 2.30 where the pedal increases to account 

for the increase in torque that is generated due to main rotor collective increasing. The 

pedal value is negative because of the reference frame definition.  The lateral cyclic is 

used during this maneuver to negate the side force created due to the increase in tail 

collective; therefore, the trend is similar to that of the pedal. This may be viewed in the 

bottom-left portion of Figure 2.30. The longitudinal cyclic may be observed in the top-

right portion of the figure and follows the same general trend with slightly more 

deflection and time spent on one side of the zero line. The sign in deflection is dependent 

on the center of gravity and the main rotor position, as well as, the reference frame 
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definition. Through further analysis of Whalley [136] and Thomson [144] , it is observed 

that the longitudinal cyclic time history varies depending on the design parameters. 

 

Figure 2.30: Control Time Histories 

The vertical state and state derivatives for the pop-up maneuver have already been 

discussed and presented in Figure 2.28. The next step of the validation is to analyze the 

control deflection time histories and compare to the results from previous literature, 

which were verified through comparison to actual flight test data. The control deflection 

time histories are displayed in Figure 2.31. The trends for main rotor collective are very 

similar to those discussed previously. During the first half of the simulation the collective 

increases in order to increase acceleration in the vertical direction, while the collective 

decreases below the trim setting in the second half of the simulation to allow the 

helicopter to decelerate to hover.  
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Figure 2.31: Control Deflection Time Histories 

The tail rotor collective is used to balance out the torque produced by the main 

rotor, hence, the curve follows the same trend. As tail rotor force increases, lateral cyclic 

is required to balance this side force, which is observed in the control deflection time 

history in Figure 2.31. Finally, the longitudinal cyclic behaves similarly to the results 

from literature; however, the sign and magnitude change slightly depending on the center 

of gravity positioning. 

A few more figures are discussed for completeness in order to show that the 

simulation environment is producing valid trends. An important constraint during this 

pop-up maneuver is that the vehicle heading does not change. Figure 2.32 displays the 
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vehicle attitude time histories for the pop-up simulation. The heading of the vehicle is 

shown in the bottom of the figure and is maintained at zero throughout the maneuver.  

The other two attitude angles are pitch and roll. The pitch attitude corresponds directly to 

the longitudinal cyclic control with time. The negative longitudinal cyclic angle indicates 

a tipping forward of the tip-path plane, which creates a forward velocity component in 

the body reference frame. Since the maneuver is specified as acceleration in the z-axis of 

the navigation frame, the pitch of the vehicle has to adjust to move the forward 

acceleration into a vertical component; hence, the vehicle pitches backward. Finally, the 

roll angle is a function of the tail collective and the lateral cyclic setting combination. 

 

Figure 2.32: Vehicle Attitude Time Histories 
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The next series of examinations involves the relationship of forces and moments 

to the maneuver definition. The longitudinal forces and moments are displayed in body 

coordinates in Figure 2.33. The main idea of the pop-up maneuver is a vertical 

acceleration in the z-axis of the navigation frame. This requires a vertical force 

component, which may be viewed in the middle section of Figure 2.33. An important 

observation is that this force is in the body coordinate system, which is almost aligned 

with the navigation frame during hover. This is viewed by seeing that the pitch angle 

during hover is close to zero degrees.  

However, the helicopter equations of motion have large coupling terms, which 

results in accelerations in other axes of the vehicle. A major effect of this coupling may 

be viewed in the pitch moment, which is displayed in the bottom portion of Figure 2.33. 

The main rotor is offset from the center of gravity of the vehicle. As a result, as the 

collective is increased, the moment changes drastically, which results in a pitch rate. This 

pitch then forces the body coordinate system out of line with the navigational system. 

This pitch means that a component of the force required to accelerate must be 

incorporated into the x-axis of the body frame. The forces and moments are highly 

dependent upon one another. Additionally, it may be observed that the moment is 

increasing throughout the maneuver. After the motion is completed, this oscillation 

damps back to steady-state. The speed at which this damping occurs is dependent on the 

design parameters of the system. 
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Figure 2.33: Longitudinal Forces and Moments 

Another important set of outputs from the simulation that are essential in showing 

that the energy-based formulation is not capable of capturing the necessary outputs is the 

power decomposition. As presented previously, power required is decomposed into 

induced, profile, and parasitic in this analysis. Additionally, the power available is not set 

as a design variable but is allowed to vary as a requirement during post processing. When 

viewing Equations 4, 5, and 6 it can be seen which variables are impacting each power 

directly. For example, the induced power is a function of lift of the main rotor; hence, 

during the initial portion of the pop-up maneuver, the induced power spikes to provide 

the lift necessary to accelerate. While in the second portion of the maneuver the induced 

power drops. This may be viewed in the top portion of Figure 2.34.  
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Profile power is a linear function of velocity and density, which means that there 

is initially a slight increase as velocity during the maneuver. A drop in the profile power 

at the end of the simulation results because of the altitude increase impacting the density 

of air. Profile power remains close to constant throughout the maneuver because the 

overall changes in velocity and altitude are small. Parasitic power is a cubic function of 

velocity such that it peaks in the middle of the pop-up when velocity is highest and tapers 

back to zero during hover.  

 

Figure 2.34: Power Required 
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2.4.4 Post Processing/Data Filtering 

The post processing component of the process consists of the Filtered Monte 

Carlo approach, which stores all of the pop-up simulations in data tables such that all of 

the trades can be conducted real-time. The capabilities are best shown through example. 

First, the static power requirements are analyzed by looking at the power required in trim. 

An example is presented that shows the filtering of the power required design space. 

Second, similar filters are applied to rigid body characteristics to show that the data may 

be viewed instantly for various states and controls. 

 

Figure 2.35: Design Space of Velocity versus Mass 

Two variables that contribute largely to the variation of power required in 

trimmed flight are flight velocity and vehicle mass. All successful maneuvers are 
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displayed in Figure 2.35, which indicates that maneuvering flight is possible for the entire 

range of mass and velocities examined. Each point within the figure represents a different 

design and maneuver combination. Additionally, the data analysis environment is 

dynamic in nature such that at any time during the analysis the designer may select a 

single or a few points to compare the attributes as indicated in Figure 2.36. This can be 

used within any figure using FMC because all of the data is stored in the background. 

 

Figure 2.36: Real-Time Data Point Comparison 

Through additional filtering of the data, valid insight into relationships between 

these variables and trim power required is uncovered, which may be observed in Figure 

2.37. Using the data filter on the discrete set of designs, the points may be color coded 

according to the trim power requirements. The color coding legend is displayed to the 

right of the figure. This type of diagram becomes helpful when selecting the engine of the 
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helicopter because the power required dictates the amount of power that must be supplied 

to achieve the trim condition. For example, if power available is selected to be 1150 hp, 

then no design and maneuver combinations that are colored purple or orange will be able 

to trim, let alone perform a pop-up maneuver. Additionally, power available must be at 

least 1300 hp in order for some of the designs near 10k lb to hover (zero velocity) as 

indicated by the purple points. This is just one example of how the data filtering can 

provide valuable design information real-time, which leads to greater tradeoff capabilities 

and more thorough understanding of the problem. 

 

Figure 2.37: Power Required Relation to Design Parameters 

Kinematic control limits resulting from the inclusion of the rigid body EoM can 

be used in the filtering process to aid in feasible design selection. Data filters are used to 

color code particular ranges of controller deflection within the design space. It is 
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understood that the minimum longitudinal cyclic during a maneuver is greatly impacted 

by the CG location. For example, in aircraft dynamics design, the CG location of aircraft 

is moved aft to provide greater maneuverability, while at the same time sacrificing 

stability characteristics. Additionally, forward flight velocity is also known to be a major 

contributor. Figure 2.38 depicts the trim longitudinal cyclic as a function of velocity and 

CG location for the successful maneuvers. The data filter is used to cluster the results 

according to longitudinal cyclic deflection, which is viewed to the right of the figure. For 

all of the successful maneuvers, the minimum longitudinal cyclic has a range of -11 

degrees to almost 4.5 degrees. Using this information the designer may apply control 

deflection constraints to narrow the design parameter space, which are enabled through 

the rigid body formulation.  

 

Figure 2.38: Trim Longitudinal Cyclic Design Space Clustering 
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2.5 Experimentation and Results 

Although much insight about the problem is gained through analysis of individual 

simulations within the environment, it is not efficient to view each maneuver in order to 

make design decisions or to view the impact from changes in design parameters. Well 

structured data analysis is required to enable the designer to view all the designs 

simultaneously in multiple dimensions. As stated previously, 9000 runs were completed 

using the environment for the design variable ranges in Table 2.2. In addition to the 

design variables, sweeps of the pop-up maneuver definition were completed, which 

included variations in velocity, altitude, time, and maximum vertical acceleration. The 

data analysis section is divided into subsections in order to present the large quantity of 

information in a clear and traceable manner. This section is divided into maneuver 

success determination, energy-based filtering, and rigid body filtering, and minimum 

time maneuver selection. It is shown through data analysis that the rigid body formulation 

constraints are required in order to provide more conservative maneuverability estimates, 

while the parametric properties of the formulation allow for defining the entire 

configuration design space. Through conducting quantitative performance design trades, 

it is demonstrated that the energy-based method fails to exclude some kinematically 

infeasible designs. 

2.5.1 Maneuver Success Determination 

The main point of the maneuver success determination section is to analyze the 

data and determine which runs out of the 9000 were unable to complete the defined 
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maneuver. During simulation, the optimization algorithm calculates the control 

deflections necessary to follow the prescribed path. The ability to follow the path is 

returned in the form of a function value during each time step. The path is feasible if the 

function value is near zero. Conversely, the function value grows as the actual path 

diverges from the defined path.  

 

Figure 2.39: Maneuver Defined Time versus Simulation End Time 

One manner in which to check for maneuver completion is to observe the final 

time in the maneuver definition versus the actual time at the end of the simulation.  

Figure 2.39 depicts this relation with the defined final time on the x-axis and the 

simulation end time displayed on the y-axis. The points that fall on the 45 degree line are 

the design and maneuver combinations that were successful in completing the entire 

maneuver, while the other points indicate failure to follow the defined path due to rigid 

body limits. Of the 9000 total runs, 6200 simulations completed the entire maneuver 
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successfully and are colored green in the figure. The failed points follow two different 

but very distinct trends and have been colored differently in order to see the relationship 

in other dimensions within the design space. It turns out that one failure mode occurs 

during increases in altitude resulting from a negative acceleration parameter, while the 

other corresponds to decrease in altitude.  

Another way to view maneuver success is to plot the maximum function value 

that occurs within the time frame of the simulation. The function value corresponds 

directly to the difference in defined path versus current path. Hence, a large function 

value indicates divergence from the path. If the function value stays below 1e-8 

throughout the simulation, then the maneuver is defined as successful. Otherwise, the 

maneuver is categorized as failed. The failure criterion is parametric and can be adjusted 

real-time according to the preferences of the designer. The failed cases are largely a 

function of the maneuver acceleration, which is shown as the x-axis in Figure 2.40. 

Observation of the figure shows that maneuvers with accelerations between +/-20 ft/s are 

achieved for all of the designs that are tested; however, above these accelerations only a 

few designs achieve the maneuver. Through comparison of Figure 2.39 and Figure 2.40, 

it is observed that both methods produce similar results. The coloring scheme applied 

through filtering is used in both figures such that the clustering of the failed cases may be 

seen. The negative accelerations indicate increases in altitude, while the positive 

accelerations result in a decrease in altitude. This results due to the manner in which the 

reference frames are defined.  
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Figure 2.40: Maximum Function Value for Each Simulation 

In the previous figure, it was observed that the failed cases have direct correlation 

to the defined maneuver acceleration. At this point it may be interesting to see if any of 

the other maneuver parameters have a major impact on the failure of the maneuver. A 

multivariate plot of the four maneuver parameters is displayed in Figure 2.41, with the 

green points indicating successful simulation runs.  

The multivariate plot displays all four maneuver parameters simultaneously in one 

figure. Each block displays all 9000 simulations, which represents the interrelations of 

the various input parameters. As expected, acceleration appears to drive the success of 

the maneuver, where the orange points are descent operations and the pink are climbing 

maneuvers that failed. Additionally, more failed runs occur at very low and very high 

velocities, which is also an expected trend because the forces and moments become 

greater in these regions of flight. The last trend to discuss is the coupling of the velocity 
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and acceleration, which may be viewed in the upper right subplot of the figure. There is 

an interesting trend that causes failure in path execution at low velocities and high 

accelerations. As the velocity increases, the maneuvers again become feasible, while at 

the highest velocities the failures again gradually appear. The trend appears because of 

the velocity and power required relationship. 

 

Figure 2.41: Multivariate Plot of Maneuver Parameters 
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2.5.2 Energy-Based Filtering 

The energy-based method makes all design decisions based on the power results 

and by using the power decomposition alone, it is hypothesized that the necessary 

information for design selection is not captured. The trim power required design space is 

displayed in Figure 2.42 where the inputs are shown on the x-axis and the y-axis displays 

the trim power required value. The first four inputs on from the left are the maneuver 

inputs and the remaining inputs are design parameters of the vehicle. All successful runs 

are displayed as individual points in each block of the figure. Applying the power 

available is an extension in this work through the integration of FMC into the 

maneuverability and design process. By viewing the data in this manner one may observe 

the relationship between power required and every input at the same time. The following 

examples demonstrate the benefits and flexibility of the process. First, the trim power 

required is analyzed subject to the power available constraint. Next, the maximum 

maneuver power is analyzed through applying the same power available constraint. This 

example shows that dynamic maneuver analysis provides more conservative estimates 

and greater traceability than using steady-state analysis alone. 

As discussed previously, the power available to the helicopter is supplied by the 

engine. Previous research efforts would fix this number during simulation to view the 

capabilities of a single rotorcraft design; this variable is left as a constraint during post 

processing of the data in this approach.  Hence, the impact of the engine selection may be 

observed real-time. When viewing Figure 2.42 it is observed that the trim power required 

ranges from 748.5 to 2502.5 hp for the ranges of maneuver and vehicle parameters tested. 
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Figure 2.42: Trim Power Required versus Model Inputs 

Using the data filtering approach the designer can dynamically change the power 

available and view the impact on all the dimensions of the space. Assume that an engine 

with 2200 hp maximum output is being considered for this design. This constraint means 

that any simulation point that has a power required value greater than 2200 hp is no 

longer feasible due to this design decision. This data filter is shown in Figure 2.43 were 

the left portion of the figure shows the power required range for all 9000 runs. The right 

portion of the figure shows the number of designs when the 2200 hp requirement is 

applied. It is observed that 83 out of the 9000 runs violate this constraint. 

 

Figure 2.43: Power Available Constraint – 2200 hp 

Knowing that 83 points violate the power available requirement is information 

that is relayed to the designer real-time. Using the power requirement figure presented 

earlier, the location of the infeasible points can be viewed with respect to all of the input 

parameters. This is shown in Figure 2.44, where the top portion of the figure shows the 

design space before the constraint and the bottom portion of the figure shows the points 
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that violate the 2200 hp constraint highlighted in purple. The figure indicates that most of 

the failures occur when the mass is large and the vehicle is attempting to hover. 

Additionally, more failed points occur for small diameter rotors and at high altitude. At 

this point, the designer may wish to relax this constraint because these results are only 

showing static power. It is expected that dynamic power will be more constraining. 

Additionally, the designer can select any point and instantly view the maneuver time 

history data. 

 

Figure 2.44: Trim Power Required Constraint – 2200 hp 

For this reason, the designer may wish to view the impact of a few power required 

constraints. Figure 2.45 shows a constraint of 2500 hp applied to the design space, which 

is represented by a single purple point in the bottom subplot. Hence, with the 2500 hp 

constraint only one design is infeasible. By viewing the various subplots of the figure it is 

observed that this run is at the highest altitude and mass range settings, while the steady-

state condition is defined close to hover. As the constraint is changed, the impact on all of 

the design inputs may be observed real-time rather than requiring a new set of 

simulations to be run, which provides the designer with greater tradeoff capabilities. 
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Figure 2.45: Power Available Constraint Applied 

 

 

Figure 2.46: Time History of Failed Maneuver 
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Further emphasizing the traceability of the process, the failed design and 

maneuver combination time histories may be viewed instantly. The previous power 

available filter of 2500 hp resulted in a single failed run. The failure to complete the 

maneuver results because the power required is greater than the power available, which 

can be observed in the power breakdown in Figure 2.46. Using the time history 

information, the designer can instantly and systematically determine why particular 

design and maneuver combinations are infeasible. Only the power required information is 

presented here; however, the FMC approach provides the capability to view any of the 

state, control, or auxiliary maneuver information instantly. 

A similar process can be applied to other design requirements and constraints as 

desired. The other form of constraint placement is on input parameters. As information 

about the system becomes available, the variability in each of the design inputs may 

decrease. Assume that through a detailed weight breakdown a better idea of the overall 

mass is determined. An example of decreasing the ranges on mass is shown in the bottom 

subplot of Figure 2.47. The mass of the vehicle is further constrained to be between 

13000 and 15000 lbs. The infeasible points are colored gray in the figure, while the 

feasible points remain green. In this example, the strength of adding dynamic constraints 

to input variables is shown. The top portion of the figure shows the design space with no 

constraints; while the bottom portion shows the feasible points once the low mass designs 

are removed from the analysis. At any point in the analysis, this mass constraint can be 

removed or adjusted real-time. Additionally, constraints can be applied to any number of 
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the inputs and outputs simultaneously. This enables the designer to instantly view if a 

feasible region of the design space exists as requirements change. 

 

Figure 2.47: Power Required Input Range Filtering 

The strength of the energy-based formulation over static power analysis is the 

ability to look at power requirements during the maneuver rather than at only steady-state 

conditions. The top portion of Figure 2.48 displays the maximum maneuver power 

required for all 9000 maneuver simulations. The y-axis now corresponds to maximum 

power required during each simulation rather than trim power required. The first 

observation is that the maximum maneuver power is much higher than the trim power 

required. The trim power required maximum value is just over 2500 hp, while the 

maximum maneuver power is just over 5000 hp.   Another interesting investigation is to 

view where in the maximum power range that the failed trim power occurs. This is best 

shown by highlighting the failed run as shown in the middle portion of Figure 2.48. 

In order to show that dynamic simulation is needed over static analysis. The 

engine power constraint of 2500 hp is applied to the maximum maneuver power, which 

may be viewed in the bottom portion of Figure 2.48. The purple points in the figure 
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represent the infeasible design and maneuver combinations. Hence, it is observed that this 

constraint is much more limiting than the static power requirement. This observation 

shows the importance of including dynamic maneuvers in the design space rather than 

only steady-state analysis procedures. If only the static power is used many of the 

unsuccessful designs and maneuvers would not be captured leading to increase in design 

cycle time and cost due to rework in the later stages of design. The benefits of real-time 

energy-based constraint analysis are demonstrated through this set of experiments, which 

analyzed the entire pop-up maneuver space. Additionally, the process was shown to 

enable systematic and traceable design and constraint trades, which provides improved 

tradeoff capabilities over traditional analyses. 

 

Figure 2.48: Maneuver versus Trim Power Required 
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2.5.3 Rigid Body Filtering 

The rigid body formulation includes all of the capabilities to filter the power 

results as the energy-based method in addition to the rigid body constraints. In this 

section, the impact of rigid body constraints associated with kinematic control limits are 

analyzed. The control deflection constraint is applied and several designs that were 

deemed feasible by the energy-based method are determined infeasible through the rigid 

body analysis, thus, showing the importance of this analysis. The experiment will show 

the importance of integrating the rigid body model into the design process for 

maneuverability analysis. 

The previous section viewed the maximum maneuver power on the y-axis with all 

of the inputs on the x-axis. In addition to the maximum maneuver performance constraint 

of 2500 hp, the kinematic control limit constraints are also applied. The feasible (green) 

and infeasible (purple) designs found through the energy-based filtering are shown in the 

top portion of Figure 2.49. The bottom portion of Figure 2.49 displays the advantages of 

using the rigid body formulation over the energy-based approach. The orange points 

indicate all of the designs that exceed the control deflection kinematic limit of +/- 13.5 

degrees. The kinematic limit constraints eliminate most of the points that are filtered due 

to maximum maneuver power; however, only the points that the energy-based method 

missed are displayed (orange). The energy-based approach is not capable of removing 

these solutions from the design space and the designer may select a design that is later in 

the process deemed infeasible. This example shows that the rigid body formulation is 

required over the energy-based method to provide more conservative design estimates, 
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which prevent rework.  Additionally, through filtering of the data, it is determined that 

both the energy-based information and the rigid body information are necessary to fully 

constrain the space to obtain the most conservative results. The control deflection limit is 

just one of the many rigid body constraints that can be applied and adjusted real-time. 

More conservative estimates of maneuverability characteristics result as additional rigid 

body constraints are applied. 

 

Figure 2.49: Filtering Control Deflection Limits 

2.5.4 Minimum Time Maneuver Selection 

In addition to allowing for constraint placement through real-time data filtering, 

the method enables traceable minimum time maneuver and design down selection. A 

broad range of pop-up maneuvers were simulated and in order to select the minimum 

time maneuver, the results must first be filtered according to final vertical displacement. 

This allows the designer to only compare maneuvers that offer similar vertical 

displacements, which can vary drastically depending on acceleration and time. The final 

vertical displacement for all 9000 simulations is shown in Figure 2.50 as a function of 

time and acceleration. The vertical displacement can range between +/- 1500 ft, with a 
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negative displacement resulting in an altitude increase since z-axis is defined downward. 

This figure provides the designer with a visual tool for selecting a pop-up maneuver to 

analyze by showing what combinations of time and acceleration provide the desired end 

state. Although, useful in a general case for understanding the motion space, data filtering 

is required to truly down select to the desired maneuver. 

A pop-up maneuver resulting in an altitude increase of between 150 and 250 ft is 

selected for this exercise, which includes much of the red colored region in Figure 2.50. 

All the other points were removed for this exercise, which leaves approximately 400 

points out of the original 9000. The resulting points may be observed in Figure 2.51. This 

maneuver is selected because it fits well into the AHS 2012 design competition mission 

scenario, which specifies a pop-up maneuver of approximately 200 ft.  

 

Figure 2.50: Final Vertical Displacement 
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Figure 2.51: Feasible Design Space for Defined Pop-Up 

Now that the data set has been filtered to a few maneuvers that result in a similar 

vertical displacement, further analysis must be conducted to constrain the design space to 

a feasible set. The two constraints from the energy-based and rigid body examples 

applied in earlier experiments are used in this experiment. The constraints are maximum 

maneuver power and maximum control displacements. This filtering approach to the 

design problem allows particular designs and mission scenarios to be filtered real-time, 

which provides a systematic framework for viewing the impact of requirements on the 

design space. It is also shown through this filtering exercise that using the power 

information alone is not adequate and the rigid body constraints provide improved 

tradeoff capabilities through more conservative maneuverability estimates. 

The 400 points that meet the vertical displacement requirement are shown in 

Figure 2.52 with the color indicating the power required for the design and maneuver 
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combination. The maximum power required ranges from 930 to 4850 hp. It was noted 

earlier that the engine is selected to only provide 2500 hp. As a result, many of the points 

within this space are in violation of the power available constraint. The points that are in 

violation are displayed in orange and many of these scenarios correspond to minimum 

time maneuvers. Through analysis of the maximum power the highest seven acceleration 

defined maneuvers are shown to be infeasible cases. 

 

Figure 2.52: Maximum Power Constraint 

Figure 2.52 shows many maneuvers within the design space fail to execute the 

maneuver due to power available requirements through the energy-based equations. 

Moreover, the impact of considering the rigid body equations into the formulation must 

also be shown. The requirements imposed are in the form of control deflection limits, 

where any of the four controls can reach a minimum or maximum limit. However, other 
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rigid body constraints may also be applied. To make this example simpler, all of the 

control deflections are compared at each time step and only the maximum magnitude 

control deflection is recorded. This step allows for the data to be filtered with one 

requirement rather than eight separate deflection requirements. The results from this 

filtering is observed in Figure 2.53, where the maximum deflection ranges from 3 to 30 

degrees.  

 

Figure 2.53: Maximum Magnitude Deflection Constraint 

At this point the designer may select the maximum deflection limit real-time, 

which is selected as 13.5 degrees in this example. With this selection, the orange points in 

the figure correspond to design and maneuver combinations that violate the maximum 

deflection constraint, which produces many more failed cases than the maximum power 

available constraint. However, some designs that do not violate the maximum deflection 
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constraint are shown to violate the maximum power constraint. As a result, these two 

constraints must be applied together in order to determine the most conservative set of 

feasible designs. 

 

Figure 2.54: Both Power and Deflection Constraints 

Both constraints are applied in unison and the resulting data set is displayed in 

Figure 2.54. The results are presented together to show the importance of including both 

types of constraints in the analysis. The green points represent feasible maneuver and 

design combinations, while the orange and purple points represent infeasible design 

scenarios due to the max deflection and the max power constraints, respectively. The 

maximum power constraint is first applied, which is indicated by the purple points. 

Second, the maximum deflection constraint is applied. The red points are representative 
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of the design and mission combinations that violate both the power and deflection 

constraints.  

The data filtering process provides additional benefit by offering the ability to 

view the data in any number of dimensions and as the requirements change, the filter can 

be adjusted real-time and the resulting process provides traceability. An additional filter 

can be placed on the data set to only maintain the designs that complete the maneuver in 

less than a particular threshold, which in this example is set to be 8 seconds. The results 

are viewed in Figure 2.55 and the feasible design and maneuver combinations are 

displayed as blue triangles. The top performing design achieves a time of 6.75 seconds.  

 

Figure 2.55: Top Designs for Minimum Time Maneuver 
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The attributes of the top performing scenario can be instantly viewed because 

each point is stored in a database when using the data filtering method. Additionally, it is 

common among the design community to have interest in multiple designs that provide 

the solution rather than a single point. Any number of the top performing designs can be 

analyzed simultaneously; however, only the top three designs are shown. The design 

parameter settings of the top performing designs can be shown through numerous 

methods. First the data is shown in tabular form, which may be observed in Table 2.3. 

The description is separated into three major categories. The first of which specifies an 

individual color to each of the three designs. The second and third categories present the 

input parameters for the maneuver model and the helicopter model, respectively. Prior to 

fully explaining these observations, the second type of viewing method is also shown. A 

parallel plot is shown in Figure 2.56, which enables a more visual and holistic approach 

when comparing the information.  

Table 2.3: Top Performing Designs 

 

Variable Name Unit 1 2 3

Color - Orange Purple Green 

Velocity ft/s 98 140 98

Altitude ft -2320 -4780 -489

Time s 6.75 6.8 6.77

Acceleration ft/s^2 -27.1 -26.6 -27.3

Vehicle Mass lb 10250 10750 11272

Diameter Main Rotor ft 51.1 51.7 50.46

Center of Gravity ft 15.96 16.1 15.93

Main Rotor Chord ft 2.68 2.77 2.54

Main Rotor Tip Velocity ft/s 786 780 773

Tail Rotor Moment Arm ft 46.2 46.1 46.2

Horizontal Tail Area ft^2 12 11.3 12.8

Design
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Figure 2.56: Parameter Breakdown of Top Performing Designs 

The parallel plot enables all of the design parameters to be viewed simultaneously 

for all three top performing designs. The red lines provide the upper and lower bounds of 

the figure, which represent the range limits on the input parameters. Each of the three 

designs is shown as a separate color and corresponds to the colors column in Table 2.3. 

The designer can now investigate the various inputs and find commonalities between the 

various designs. For example, both the orange (1) and the green (3) perform the mission 

in a similar amount of time with the same velocity and vertical acceleration; however, the 

altitudes are different at 2320 and 489, respectively. This means that within this range, 

altitude is not a major factor in completion of the maneuver. Additionally, it may be 

observed by comparing the orange and the green lines in Figure 2.56 that the designs only 

vary substantially in rotor chord and rotor tip velocity.  

These same trends in vehicle design parameter values are true for the purple (2) 

maneuver as well, which requires a different velocity for completion. The important fact 

about this observation is that specific design parameter selections allow for completion of 

the maneuver in minimum time in multiple paths.  As long as the mass, CG, main rotor 

diameter, tail rotor moment arm, and tail area are within the ranges of the first three 

design points, the vehicle can perform the defined pop-up via two different maneuver 
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definitions. The maneuver can be either completed at around 98 ft/s or around 140 ft/s. 

Additionally, the green design is close to reaching the maximum power limit and the 

purple design is approaching the longitudinal cyclic limit, which may be viewed in Figure 

2.57. Hence, the design parameters associated with the orange path provide the less risky 

design selection option and the most robust to the applied constraints. This observation 

can be further explored using the data filtering process.  

 

Figure 2.57: Kinematic Control and Maximum Power Constraints 

Running a few more simulations in the area of interest for each of the three 

designs is conducted. The mission is fixed to the parameters defined by the top 

performing maneuver definition, while the design parameters are allowed to vary by +/- 

5% of each of the designs in Table 2.3. This analysis provides the designer with an idea 

of the relationship of design parameters to the applied constraints subject to design 

variability. Additionally, this step displays the flexibility of the method and that the 

appropriate hooks are in place for future uncertainty analysis strategies. The results are 

most easily observed by viewing the design parameter ranges for each of the three 

designs similar to the process employed earlier using the parallel plot. The results are 

shown in Figure 2.58, where the colors correspond to the same designs described earlier 

with +/- 5% variation. As before, the first three designs display similar mass, rotor 
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diameter, cg, tail rotor moment arm, and tail area values; however, the tip velocity and 

main rotor chord vary substantially.  

 

Figure 2.58: Design Variability for Minimum Time Maneuver 

The constraints of the corresponding designs are shown in Figure 2.59, where the 

distributions for each of the power and deflection limits are shown for the range of design 

parameters. These results show that the control deflection limits are almost always 

maintained for the design variability ranges. At this point, other maneuvers with mission 

definition may aid in further down selection of the rotor tip velocity and main rotor 

chord, which are the only differences between the top three designs. 

 

Figure 2.59: Constraint – Design Relationship for Variability 

 



142 

 

2.6 Summary of Contribution 

The key components of the hypothesized method allow for the established need to 

be fully addressed. First, the combination of a parametric rotorcraft model and inverse 

simulation technique were shown to provide the essential framework to conduct 

quantitative maneuverability analyses of helicopters independent of control design. The 

results using the framework were compared to previous research efforts that employed 

inverse simulation, as well as, actual flight test data. The rigid body formulation was 

shown to offer significant advantages over the energy-based approach and was deemed 

essential in capturing more conservative maneuverability estimates. Additionally, by 

expanding on the work from previous research efforts by integrating a parametric 

rotorcraft model, the design variables can be specified as ranges rather than point 

solutions. This allows the designer to view the design space in a holistic manner and view 

multiple dimensions simultaneously. Secondly, the important design parameters were 

chosen from a source in literature that used an established screening method. The ranges 

on these inputs can change as knowledge about the design is gained; hence, a data 

filtering technique was integrated that allowed the design ranges to be restricted 

dynamically as knowledge about the design increases. Finally, in addition to filtering the 

input parameters, the data filtering technique permitted constraints and requirements to be 

added and removed from the trade studies in a dynamic manner. Through combination of 

these components and a helicopter example using a pop-up maneuver, the first 

contribution of this thesis work was presented and the relationship of design parameters 

to maneuverability was assessed. The design parameter variability impacts on maneuver 
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performance of the minimum time maneuver designs were investigated and important 

relationships were discussed. 

Contribution 1: A six degree-of-freedom rigid body parametric rotorcraft 

inverse simulation model in combination with Filtered Monte Carlo that provides 

improved quantitative maneuverability tradeoff capabilities over traditional design 

methods.  
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CHAPTER  3 

CAPTURING CONTROLLABILITY CONCERNS 

3.1 Introduction 

Although the maneuverability must be assessed independent of the control 

maneuverability degradations in order to capture the true limits of the vehicle, some 

measure of controller characteristics must be included.  The inverse simulation approach 

assumes perfect control knowledge and does not include any measures associated with 

control system design characteristics. The problem is that the control system design 

decisions have a major impact on the feasibility of a maneuver, which may substantially 

degrade from the performance of the ideally controlled system. These degradations 

decrease the maneuver capabilities of a design, while at the same time cause errors that 

result in divergence from the desired path. In order to better understand the direction of 

this chapter, the overall research objective is re-presented.  

Overall Research Objective: Develop a methodology that enables real-time 

and traceable assessment of: 

 Design parameter impacts on maneuverability characteristics 

 Maneuverability degradations due to control system characteristics 

 Entire helicopter operational envelope maneuverability 

 

The focus of Chapter 3 is addressing the second aspect of the overall research 

objective, which is capturing maneuverability degradations due to control system 

integration characteristics. The degradation of maneuverability is summarized by Figure 
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3.1, where the blue curve indicates the time required to perform the mission with an ideal 

controller. The horizontal axis displays the individual maneuvers and the combination of 

the maneuver times form the entire mission time. The other two curves in the figure 

represent two different types of control architectures applied to the vehicle and the 

resulting maneuverability limits. The decrease in maneuverability from the ideal case is 

measured by an increase in time for each maneuver. It is observed that the control 

decisions have an impact on the maneuverability limits with varying amounts of 

degradation occurring for different maneuver definitions. Each maneuver is affected 

differently by the control design decisions, but no matter the case, the controller 

integrated design can never outperform the ideally controlled design. 

 

Figure 3.1: Performance Degradation Due to Control Decisions 

Thus far the control system design has been only separated by a simple 

delineation of linear controller versus nonlinear controller. However, this is just a simple 

notional case. The performance degradations between the various curves in Figure 3.1 

can also be calculated and shown for the same linear controller with two different types 

of actuators or different sensor placement schemes, which represent just two decisions 

among others. At this stage in the design process, gaining a general understanding of the 
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control system design requirements is important because detailed controller development 

is limited by the combinatorial nature and the lack of detailed knowledge required, thus, 

cannot be completed. If no control integration measures are included in the process, the 

design may progress to the next stages only to find out that the design is not feasible due 

to controllability limitations. For example, assume that the “optimum” design requires 

control actuator rates of 300 degrees/sec in order to perform the maneuver. The control 

designer may see this requirement on actuator rates and realize early in the process that 

this is not feasible, thus, mitigating design time, risk, and cost. Moreover, control design 

is a human-driven iterative process that requires detailed knowledge of the system that is 

not available at the conceptual design stage. For this reason the focus of this chapter is in 

addressing control integration characteristics rather than fully designing the controller. In 

order to address this problem, the control integration process must be investigated. 

3.2 Literature Review 

In order to fully understand the control design and maneuverability analysis 

problem, literature is reviewed with the focus of understanding the relationship of key 

control integration characteristics to maneuverability characteristics. A general set of 

control related characteristics that can be integrated into maneuverability analysis for 

conceptual design are investigated. The selection of these measures requires careful 

balance between gaining enough information about the control system quantitative 

requirements, while at the same time remaining in the conceptual design level. 

Additionally, due to the curse of dimensionality during design this number must be kept 

to a minimum set.  
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3.2.1 Controller Integration Characteristics 

The control characteristics can be captured in a number of ways; however, 

through literature review of motion planning problems and control design, a few facets of 

information are determined important. Chipperfield [22] states, “these include, but are not 

limited to, the type and location of sensor and actuator devices, the sensed parameters 

used to close control loops, the form of control to be employed and the size of design 

margins for stability, robustness, and degradation.”  Measures must be integrated into the 

early design process in order to develop requirements related to these control integration 

considerations; however, there are major hurdles that must be overcome. 

The first problem is that control design is very human-driven process and requires 

more detailed information not available in early design stages. Some approaches have 

been made to remove the human from the control design loop; these include the weighted 

sum and goal attainment methods [191]. However, such expressions require precise 

expression of a usually not well understood set of weights and goals, which result in less 

than optimal solutions. Additionally, Perez [8] notes that flight dynamics and control 

“does not have an obvious figure of merit that can be used for design optimization”, 

hence, the process requires human interactions. Through these observations, it is 

demonstrated that the decision maker must aid in determining the localization of the 

search performed rather than obtaining the entire solution from an optimization algorithm 

[103].  
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It is important to capture performance impacts due to controller integration, both 

hardware and software, during early design; however, additional difficulties arise because 

of the quantity and quality of data required for these types of trades. For example, in 

order to differentiate the impacts from the sensors and the actuators, the modeling 

environment must contain detailed information for both of these subsystems. Another 

example is the impact of control architecture choice. As soon as the control architecture 

is chosen for the system, a large number of controller specific tuning parameters are 

introduced. The curse of dimensionality prevents the addition of all the parameters 

required for comparing multiple architectures with detailed actuator and sensor 

information. Chipperfield [22] states that “the task of selecting a suitable control 

configuration is thus further complicated by the number of possible, but perhaps 

undesirable, configurations.”  Hence, there must be a tradeoff in the amount of control 

information in the design process and the capability to make quantitative trades that aid in 

controller development.  

The remaining hurdles are addressed by reviewing the control integration and 

design process, which is displayed in Figure 3.2. Commonly, the control system design 

problem consists of the specification of a plant and a few operating points of interest, and 

the control designer is required to meet some performance criteria [23]. This process 

involves a compromise in order to meet the performance requirements at the various 

points within the envelope. As determined through literature review, the link between the 

control design and the maneuverability appears through the control system 

characteristics.  
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Figure 3.2: Control Integrated Maneuverability Evaluation 

The objective is to address the degradations due to controller choices; however, 

the controller cannot be developed during conceptual design because the detailed 

information is unknown. The second step of the control integrated maneuverability 

assessment process is to gather general characteristics and requirements stemming from 

the control system design decisions. These control system characteristics are then 

employed to conduct the maneuverability degradations. The focus is to relate the impact 

on quantitative maneuverability limits to control system requirements, which can be used 

as control system requirements during control development. This information enables the 

control designer to develop an overall system, hardware and software combination, to a 

set of requirements such that the integrated system produces the desired performance 

thresholds.  
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Three control characteristics, which include kinematic limits [22, 23], dynamic 

limits [192], and error propagation [193-195], are provided for the conceptual design 

phase. The kinematic control limit is already included through the rigid body constraints 

in the form of control deflection constraints; however, the remaining two control 

characteristics require further elaboration.  

 

Figure 3.3: Control Deflection Rate Real-Time Constraint Placement 

The dynamic limits include both state and control variables within the rigid body 

formulation. One example of a dynamic limit is control deflection rate constraint, which 

when provided at the conceptual design phase can be used to capture the dynamic rates of 

multiple control system components. For example, the control deflection limit can 

capture the impact from actuator, sensor, and processer properties. Figure 3.3 displays a 

notional representation of applying control characteristics to the maneuverability analysis 

through the control deflection rate constraint. The implications of choosing an actuator 

that provides control deflection rate of 5 degrees/sec versus an actuator that provides 10 

degrees/sec are shown in the figure via the purple and red curves, respectively. The x-axis 

displays four different mission maneuvers. The performance for the mission is indicated 

by the summation of the maneuver times. As constraints become more limiting, the 
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performance limits degrade which leads to a greater mission time. This analysis shows 

what the corresponding controller constraints must be to achieve a desired performance, 

which leads to development of control system design requirements.  

The second control characteristic provided through literature review is control 

error propagation information, which includes errors associated with multiple 

components such as sensors, actuators, and feedback loop properties. For example, Celi 

[21] showed divergence from the desired path due to errors introduced through the pilot. 

Furthering the research in this area, Serr [196] established a method for parametrically 

modeling the pilot error and displayed the cumulative divergence from the intended path. 

The effect of pilot error such as reaction times, overreaction or the repeatability of actions 

is investigated in order to assess safety margins in flight trajectory [196]. This knowledge 

requires sensing rates of the system to be defined in addition to how the controller will 

account for the error. Since this information is not known at this stage in the design, some 

alterations are necessary to integrate these error measures into conceptual design. 

The error in trajectory that results due to error in commanded deflection is a 

valuable measure that, if specified correctly, provides general control system requirement 

information. Figure 3.4 demonstrates the divergence from the intended path due to 

commanded control errors. In this example, the divergence in performance capabilities 

due to commanded error is being used to generate requirements on the control properties. 

The defined pop-up maneuver is shown as the orange curve in the figure, which was 

discussed in detail in Chapter 2 analysis. The blue and green error bars represent 

divergence in path due to commanded control error of 1 and 5 percent, respectively. The 
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bars indicate the divergence bounds from the desired trajectory resulting over each 

individual time step. Using this information the designer can specify a maximum 

divergence from the path over the specified time step that is acceptable, which leads to a 

control system design requirement associated with acceptable commanded control error.  

 

Figure 3.4: Trajectory Divergence due to Commanded Control Error 

This type of information deals with error in a general sense, while at the same 

time does not require information on sensor and actuator placement and rates. The control 

designer can relate the control system design to these quantitative divergence 

requirements when making important control integration decisions. Additionally, 

incorrect control deflection setting can result from a multitude of sensor errors across the 

entire vehicle and an understanding of how this error propagates to maneuver completion 

is required. Murray-Smith [48] acknowledges that “the inverse approach can show very 
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clearly when a particular task is likely to be beyond the capabilities of a human due to 

dynamic limitations such as reaction time and neuromuscular lags.” This type of analysis 

can also be applied to determine limits of the actuation rates of the control system.  

3.3 Approach 

The approach to integrating control design characteristics into the 

maneuverability assessment framework is addressed in four parts. First, a research 

question is formulated based on the needs that are provided by assessing the control 

integration shortfalls of the process developed in Chapter 2. Secondly, it is shown that 

through modification of the process developed in Contribution 1 of this thesis, the 

controllability concerns of the problem may be addressed. A hypothesis is then presented 

based on literature review in an attempt to address the needs defined in the objective. 

Finally, a test plan is presented that details the experiments that are to be simulated and 

how the data is to be analyzed. 

3.3.1 Research Question 

The need to capture control integration characteristics in a design-focused inverse 

simulation framework in order to provide valuable information to the designer regarding 

control system requirements is investigated. In order to accomplish this task, two key 

measures associated with controller integration degradation on maneuverability are 

integrated. The investigation results in two modifications of the systematic process 

developed in Chapter 2, which are applied to the rotorcraft pop-up problem. A large 

amount of information could be integrated into the process for design of the control 
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system; however, the idea here is to integrate as few measures as possible that provide the 

most information to the control designer during conceptual design. Both fidelity of the 

model required for maneuverability analysis and dimensionality concerns stemming from 

the control design process are forcing this requirement. As a result, control system design 

is not feasible at this stage; however, the controllability concerns must be included. 

Research Question 2: How can the quantitative impact of control integration 

decisions on maneuver performance be used to develop control system requirements 

independent of control design? 

The integration of control characteristics impact on maneuverability is applied in 

early design because detailed control design is not feasible. The main objective of this 

research question is to offer quantitative trades to drive overarching design decisions and 

provide key problem areas to track during the design process for the control system 

designer. The first need posed by the research question is that the control system 

integration measures must be determined and included into the quantitative dynamic 

performance design framework. More importantly, these measures must be independent 

of control design because little information is known about the control hardware or 

software at this point in the design. These characteristics must be assessed real-time in 

order for the designer to understand how the maneuverability of the vehicle is impacted, 

thus leading to development of control system design requirements.  
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3.3.2 The Modified Process 

The process discussed in Chapter 2 of this thesis captures the impact in 

maneuverability limits due to design variability for a single mission maneuver. Prior data 

analysis techniques did not apply a real-time data filtering approach to the 

maneuverability problem and design approaches did not employ the rigid body 

formulation. The process uses an inverse simulation algorithm in order to determine the 

maximum performance for the system independent of the control system. However, in 

conducting the analysis in this manner, measures on control design and integration 

requirements leading to cost and risk decisions are not captured. The inverse simulation 

technique assumes perfect control and control knowledge. For this reason, the second 

contribution is included such that maneuverability degradations due to non-perfect 

control characteristics can be assessed. This is accomplished through modifying the 

control integrated maneuverability assessment process, which is shown in Figure 3.5. 

Rather than completing the control system design, which is not feasible in conceptual 

design, the process starts by determining control system characteristics. These 

characteristics are a function of the control system design and are based on the design 

stage and detailed level of the model. 

The second contribution of this work extends the capabilities of this systematic 

and traceable process to include two measures, which are highlighted red in Figure 3.6. 

These improvements are essential in capturing the relationship of control integration 

degradations on maneuverability in a quantitative manner in the early stages of design. 

As the design progresses into the later design stages, these measures can be adjusted to 
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include more detail. The first control characteristic is the inclusion of the control 

deflection rate limits, which allows for the designer to analyze the maneuverability limits 

subject to dynamic control constraints. This characteristic is included in the post 

processing step of the overall methodology.  

 

Figure 3.5: Control Requirements Definition Extension 

The second control characteristic is the trajectory divergence measure, which 

provides quantitative trajectory divergence rate information that enables the designer to 

visualize how fast the given design and maneuver combination will diverge from the 

desired path as error is introduced into the control loop. Both of these extensions are 

integrated in order to capture the control characteristic impact on maneuverability and are 
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discussed in more detail in the implementation section. The maneuverability impact from 

these characteristics is utilized to form control system design requirements. These 

requirements provide the control designer with a set of characteristics that the control 

design must achieve in order to achieve the desired maneuverability. This process of 

using the control characteristics in combination with a parametric inverse simulation 

framework to provide quantitative control design requirements is the extension in this 

work. The two control characteristics are just two measures used to show the benefits of 

the extension, which are demonstrated through a detailed rotorcraft example during 

Experimentation. 
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Figure 3.6: Modified Process  
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3.3.3 Hypothesis 

By including the deflection rate limit, the ability to analyze more conservative 

performance estimates is realized. Additionally, the control rates for the four controls can 

be analyzed independently if desired using this process. The data filtering is conducted 

post processing, thus, the impact of changing control rate requirements on the design can 

be viewed in real-time, which enables important control design decisions. The control 

deflection information is stored during each time step of the simulation as a result of the 

approach presented in Chapter 2 for the range of design variables provided. The 

information related to control deflection rate is determined directly from the control 

deflection time history data set because the time step of the simulation is known. This 

process would be difficult with a variable step integration routine. Fortunately RK4 is 

employed in this work, which assumes a fixed time step. As a result, a data filtering 

technique can be used to determine the minimum time maneuver with the deflection, 

power, and deflection rate limits all imposed simultaneously.  

The second component is a technique for bounding the maneuver divergence due 

to commanded control error. Through specifying maximum error deflections from the 

ideal solution, the bounds on the divergence can be assessed. Moreover, these maximum 

error deflections are specified in a parametric manner enabling the designer to relate error 

in control deflection directly to divergence in system states. As a result, the amount of 

error that can be tolerated within the various control system components can be 

determined and various options can be compared and contrasted. For this analysis, the 

control deflection error is included. This error can be directly correlated to error from 
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various components of the system including control deflection tolerances and 

inertial/position sensor errors. The optimization algorithm used for trim analysis in the 

simulation environment in Chapter 2 was shown to be accurate and robust. The routine 

can be easily adjusted to provide the maximum of the function rather than the minimum. 

This relates directly to the maximum divergence problem when provided a range of 

possible commanded control error. It is shown in the following sections through example 

that the attributes of the hypothesized method solve the stated research question, which in 

turn accomplishes the research objective.  

Hypothesis 2: The real-time analysis of control system characteristics impact 

on the maneuverability limits provide improved estimates and traceability for 

development of control system design requirements. 

3.3.4 Test Plan 

The modifications to the process are previously discussed; however, the new 

information that is to be gathered from the simulation requires addressing. The inputs still 

consist of both the system and the maneuver model parameters, while the outputs are 

maneuver performance and time-based system properties. The system modeling 

parameters remain the same as determined through the process in Chapter 2, except for 

the addition of a max deflection error variable. The max deflection error variable 

indicates the maximum plus and minus change in deflection from the converged solution 

at each time step within the simulation.  The maneuver definition is unchanged in this 

portion of the analysis.  
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The process modifications greatly impact the number of input and output 

variables that are parsed for post processing. The control deflection rate for each of the 

four controls is now extracted during each time step. In addition to introducing the 

maximum error deflection variable, all of the maximum state and auxiliary variable errors 

are extracted as a measure of divergence from the desired states. This information allows 

the designer to see the maximum divergence in desired state resulting from commanded 

control error, as well as, which controls are driving the error bounds. As stipulated in the 

original process, all the states, controls, and auxiliary variables are outputs from each 

simulation.  The feasibility of a maneuver, which is determined by whether a set design 

completes the entirety of the maneuver, is also captured as before. With this information, 

the performance limit degradations due to control deflection rate limits and the 

divergence in the desired trajectory due to commanded control error are captured.  

The post processing of these pieces of information is conducted on two levels. 

The control deflection rate analysis is analyzed in a holistic sense and applied when 

viewing the entire design space. The divergence in desired state is conducted on a single 

maneuver basis, which occurs after down selection using the entire data set and the 

constraints imposed in Chapter 2 analysis. Through this series of experiments, 

quantitative control system requirements are formed in a systematic and traceable 

manner. It is also shown that the improved conservative nature of the added constraints 

provides improvements in maneuverability estimates. 
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3.4 Implementation 

The modifications to the proposed process are presented in Figure 3.8, where the 

newly integrated controllability elements are highlighted in yellow. The control 

integration characteristics and corresponding process extensions are discussed in detail. 

The extension in this work is the manner by which control characteristics impact on 

maneuverability is used to develop real-time and traceable quantitative control system 

requirements. The first control characteristic includes a dynamic limit measure, in the 

form of control deflection rates, in addition the control kinematic measures introduced 

earlier. The second characteristic requires integration of an additional module that 

enables trajectory error to be determined based on commanded control errors. An 

example is presented to show how the error information may be systematically traced 

from the entire design space analysis down to a single maneuver. Additionally, how this 

information can be used for real-time development of quantitative control design 

requirements is addressed.  

As shown through literature review, inverse simulation approaches historically 

have not included capabilities for simultaneous design and maneuver analysis, let alone 

quantify control design characteristics impact on maneuverability. The control 

characteristics include two measures in this work; however, these measures can be 

expanded in future analyses. The first characteristic is included to allow for selection of 

feasible design alternatives through application of control deflection rate requirements. 

This maximum limit in control deflection rate is then passed on to the control designer as 

a requirement for control system design. The second characteristic includes system 
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attributes associated with trajectory divergence from error propagation. This means that 

the designer must select appropriate hardware and software combinations that provide 

particular control characteristics. If these characteristics are achieved then the 

maneuverability goals are obtained. 

 

Figure 3.7: Control System Requirements Extension 

This extension is displayed in Figure 3.7, where the output of this process are 

control system design requirements. Additionally, the method is made parametric such 

that the control characteristics can be adjusted real-time during post processing. If during 

control design it is determined that due to cost reasons the actuator performance must be 

lowered, then the designer can instantly view the impact on helicopter maneuver 

capabilities due to the actuator changes. Thus, the iterative nature of design can be 

conducted real-time and provides repeatability and traceability in the decision making. 
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Figure 3.8: Modified Dynamic Simulation 
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3.4.1 Control Dynamic Limits  

In order to include the ability to capture control deflection rate limits for the 

entirety of the maneuver, the process developed in Chapter 2 must be altered. The control 

deflections are recorded at each time step during the simulation as shown in Chapter 2 

analyses. The resulting time history for the main rotor collective deflection is shown in 

the top portion of Figure 3.9. Initially the main rotor collective deflection is set at 2.2 

degrees, which is the setting calculated in the trim analysis portion of simulation. Once 

trim is determined, the dynamic portion of the simulation begins. Through the first 3 

seconds of simulation the setting changes from 2.2 degrees to approximately 4.2 degrees. 

This increase results from the need to increase thrust when performing the pop-up 

maneuver. During the second half of the simulation, the opposite occurs in order to 

decelerate the vehicle back to steady-level flight. 

The control deflection rates can be determined by using the control deflection 

angles for each time step. By calculating the difference in the change in deflection over 

the time step, the control rate is calculated. The time step of the simulation is set to 0.1 

seconds and from 0 to 0.1 seconds the controller changes from 2.27 degrees to 2.27001 

degrees. Hence the rate near zero occurs over the first time step. This process is repeated 

until the end time is reached. This rate is shown as a function of time within the 

simulation as displayed in the bottom portion of Figure 3.9.  The control deflection and 

corresponding deflection rates show that the rate is clearly the derivative of the deflection 

angle.  
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Figure 3.9: Main Rotor Collective Deflection and Deflection Rate 

The important observation from this figure is that the maximum rate of 

approximately 1.2 deg/sec occurs at 1.5 seconds. If the control system does not offer this 

level of performance when integrated with the system, then this maneuver becomes 

infeasible. Although, the deflection rate is not large in this example, it is expected that the 

new rate constraint will provide more conservative maneuverability estimates. This 

process is applied to all four control surfaces such that they can be analyzed individually 

if desired and the deflection rates are shown in Figure 3.10. 

Similar to other constraints, such as maximum power and control deflection 

angle, the maximum and minimum control deflection rate can be extracted for each 

simulation. This information can be used during data filtering to view the impact of 
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control rate limit on maneuver success or to remove points that exceed a maximum rate 

limit threshold, which enables real-time quantitative control requirements development. 

 

Figure 3.10: Control Deflection Rate Time Histories 

3.4.2 Commanded Control Error 

The inverse simulation method assumes perfect control and sensor knowledge, 

which in theory provides the best performance possible for a provided maneuver 

definition. The maximum performance knowledge is an important measure for design 

trades; however, the inability to follow a maneuver due to control degradations should 

also be included in the analysis. The second characteristic of control degradation requires 
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inclusion of an additional loop within each time step of the simulation in order to 

measure effects of control error on the maneuver divergence. The measure associated 

with control degradation is selected such to capture all of the errors within the sensor and 

control system, rather than focus on a single source of the error. Through consideration of 

this constraint, one new variable is added to the input set. This variable represents the 

maximum control deflection error resulting from incorrect information. The error in 

information can result due to sensor placement and fidelity characteristics, which may 

result in the wrong control deflection sent to the control algorithm. On the other hand, the 

poor information can result due to actuator errors and calibration errors. Hence, this 

variable is a catch all that can later be related to individual design characteristics in 

control system design. 

With the integration of the new input variable, the calculation of the trajectory 

error resulting from the control deflection errors can be evaluated through modification of 

the process. Figure 3.11 summarizes this additional step where the dynamic simulation 

environment is provided control design constraints and the outputs from this step are feed 

into the trajectory divergence block. Hence, the divergence calculation must be done 

during each time step of the simulation after the dynamic simulation component is run. 

Outputs from the dynamic simulation environment are used in the divergence calculation, 

which leads to trajectory error bounds that can be used to generate control design 

requirements.  
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Figure 3.11: Trajectory Divergence 
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The outputs from the dynamic simulation portion of the analysis that are feed into 

the motion error calculation algorithm consist of the current system controls along with 

the resulting system state from the current settings. Two inputs are also included in the 

passing of information: the current system state, which is needed for motion simulation 

and the maximum control deflection error, which provides the bounds on error of the 

control in maximum divergence calculation. The inputs are shown in Figure 3.11 along 

with the entire trajectory error calculation process. The control deflection error feeds 

directly into an intermediate calculation block that uses the current control settings in 

addition to control deflection error to calculate bounds for the optimizer. These bounds 

also permit an initial guess for the controls that provide the maximum trajectory error. 

Once the initial guess for the controls is established and the current state is 

supplied to the EoM, time integration is used to determine the end state for the current 

time step with the provided control settings. The output of this integration routine is then 

compared to the desired states, which is an output from the dynamic simulation step. The 

objective of this algorithm is to determine the maximum error in state. The maximum 

error in the current state when compared to the desired state provides the bounds on the 

maneuver divergence. The controls are adjusted throughout each loop through the 

maximum trajectory error algorithm using an optimizer until the maximum error control 

settings are determined. The algorithm outputs include the states that contain the most 

error due to the control deflection error ranges and the control deflection settings that 

cause this maximum error. 
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This concept is best explained through an example, which is chosen to be the pop-

up maneuver used throughout this work. The first step of the process is to determine the 

trim conditions through adjustment of the state and controls of the system. The control 

settings necessary for trim are displayed in Figure 3.12, which correspond to the 

deflections at time zero. For this example, the main rotor collective is approximately 2.2 

degrees. The longitudinal cyclic, lateral cyclic, and tail rotor collective are approximately 

-0.2, 2.9, and 0 degrees, respectively. 

 

Figure 3.12: Control Settings at Trim 
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The process employed in Chapter 2 would continue onto calculating the necessary 

controls for the maneuver at the following time; however, with the inclusion of the 

trajectory divergence loop, the maximum divergence control settings for the current time 

must be determined before moving onto the next step. The maximum divergence control 

settings correspond to the set of controls that leads to the maximum divergence from the 

desired maneuver for each time step. The commanded control settings that create this 

divergence are limited by the maximum deflection error input. For this experimental run, 

the maximum deflection error is set to be 1 degree. This means that the commanded 

control can deviate from the desired control by +/- 1 degree in order to create the 

maximum maneuver divergence.  The upper and lower bounds on the commanded 

control error are shown in Figure 3.13. The desired control is shown as the solid line, 

while the upper and lower bounds on the control settings are shown by the dashed lines. 

The trajectory divergence loop uses these bounds directly in calculating the 

commanded control settings necessary to create the maximum divergence from the 

desired path. This process is employed in order to capture the most constraining case. The 

trajectory divergence algorithm is run and the resulting commanded control settings are 

calculated for this time step. The commanded control setting for the first time step is 

displayed in Figure 3.14 as the orange point.  
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Figure 3.13: Commanded Control Error Bounds 

The trim condition for the main rotor control deflection angle is around 2.2 

degrees, which may be viewed in Figure 3.14. The deflection error variable is specified 

as +/1 degree in this example, which means that the optimization routine can select the 

main rotor collective between 3.2 and 4.2 degrees that provides the greatest error in 

trajectory. The only control setting that occurs somewhere between the bounds is the 

main rotor collective setting, which occurs slightly below the desired main rotor 

collective setting. Both the longitudinal and lateral cyclic control settings leading to 

maximum divergence occur at the lowest bound setting, while the tail rotor collective 

setting occurs at the upper bound.  
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Figure 3.14: Trim Conditions with Control Error Bounds 

The commanded control is always selected for the current time step independent 

of previous commanded control results. As a result, the divergence is a maximum 

divergence during each time step rather than the maximum divergence over the entire 

maneuver. The calculations are conducted in this manner because the feedback and the 

rate at which these errors are corrected are a function of control system design 

characteristics within hardware and software, which are not know at this time.  
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Figure 3.15: Commanded Control Setting for Maximum Divergence 

Analyzing the commanded control for the entire maneuver in Figure 3.15, it is 

observed that the longitudinal cyclic remains at the lowest bound throughout the 

simulation. This should directly impact errors associated with x-axis and z-axis velocity 

divergence. The lateral cyclic remains at the lowest bound for most of the simulation; 

however, sometimes the upper bound of error enables a larger magnitude of divergence. 

The tail rotor collective commanded control follows mainly the upper bound limit for the 

first half of the simulation and the lower bound for the second half of the simulation. This 

results because of the acceleration changing signs at the half point. The main rotor 

collective almost always remains below the desired collective setting, but it usually is 

somewhere between both the lower and upper bounds. It is important that an optimizer is 
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needed to determine the maximum deflection control settings rather than just using the 

bounds of error to specify the limits. If the bounds were used, the most constraining case 

would not be captured, hence, the trajectory divergence loop is necessary. 

 

Figure 3.16: Control Time Histories with Commanded Control Error 

In Figure 3.15, orange solid lines are shown along with the desired path and the 

deflection bounds. The commanded control settings, as stated previously, are a function 

of the current time step and do not take into account previous control settings. The 

desired control settings are shown as the solid line in Figure 3.16, while the commanded 

control resulting in the maximum divergence is shown as the points. The control bounds 

are removed from the figure to provide greater clarity of the trends. Since the 
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commanded control is calculating the maximum error of the current time independent of 

previous times, the commanded control time history is not going to be smooth or 

continuous. 

The commanded control settings drive the maximum divergence from the defined 

maneuver. It is necessary to view this divergence in the various state dimensions. As in 

previous validation exercises, the divergence from the defined maneuver path is 

displayed through a series of figures representing the various states of the system. The 

first states to discuss are the differences in the desired velocity against the actual velocity 

when the control deflection error is introduced. The results are not shown in a cumulative 

nature but are displayed for each time step calculation. The three linear body velocities 

and the corresponding divergence due to incorrect controls are presented in top portion of 

Figure 3.17. The velocities are shown rather than position because the maneuver is 

defined by the three linear velocities and a yaw rate constraint. The solid line indicates 

the desired maneuver and the points show the divergence from the path. The diverged 

points are close to the desired maneuver path since the divergence is occurring over a 0.1 

second interval and the maximum control error is set to be +/- 1 degree. For this range of 

time and error, the velocity does not diverge substantially from the desired velocity, 

which provides the designer with knowledge regarding sensing rate and deflection error 

propagation. Similarly, the attitude can be analyzed with regards to divergence during 

each time step due to commanded control error.  These time histories are shown in the 

bottom portion of Figure 3.17 where the desired attitude is indicated by the solid line and 
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the divergence is shown as points. Again, for the 0.1 second correction rate and the small 

deflection error, the divergence is minimal. 

In addition to the divergence in velocity and attitude, the vehicle trajectory may 

also be investigated, which is shown in the top portion of Figure 3.18. The velocities and 

attitudes are impacted much more in magnitude than the position because of the direct 

relationship to accelerations in the body frame. For this reason, viewing the trajectory 

error in a time step fashion shows that the desired trajectory and the divergence trajectory 

are almost identical. In order to overcome this challenge in analysis, previous research 

efforts have displayed the data as the cumulative impact of the error if no corrections are 

made. This is shown in the bottom portion of Figure 3.18, where both the x and z 

components of the position vary drastically from the desired trajectory. This divergence 

path offers a bound of the worst case scenario and assumes that no corrections are made 

to the path throughout the entire simulation. This analysis is overly conservative and not 

realistic since the controller would update and attempt to fix the error at some point 

during the divergence.  
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Figure 3.17: Linear Velocity and Attitude Divergence 
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Figure 3.18: Trajectory Divergence 
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3.5 Experimentation and Results 

The simulations are run and the data is analyzed using the dynamic constraint 

environment, which enables the designer to apply various constraints on the maneuver 

inputs, which in effect, provides the ability to quickly view maneuverability results for 

any state, control, or auxiliary variable constraint. The control system characteristics and 

maneuverability relationships are captured through conducting real-time trades. A single 

pop-up maneuver is used to demonstrate the effectiveness of the adjustments to the 

process regarding Contribution 2. As stated previously, 9000 runs are completed using 

the environment for the design variable ranges in Table 2.2, which also included 

variations in velocity, altitude, time, and maximum acceleration. The data analysis 

section is divided into subsections in order to present the two control characteristics 

integrated into the process. First, the control deflection rate constraint filtering is 

presented, which demonstrates that improved maneuverability estimates are obtained 

real-time to enable quantitative control requirements development. Second, the 

commanded control error filtering exercise is investigated. This involves analyzing the 

entire pop-up maneuver space and selecting the minimum time maneuver for time-series 

analysis. The systematic and traceable nature of the process is demonstrated through this 

example. 

3.5.1 Control Deflection Rate Filtering 

The pop-up example presented in Chapter 2 consisted of an altitude increase 

between 150 and 250 ft. During previous experiments, this space was constrained by 
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maximum maneuver power and the maximum deflection angle constraints. The first 

stemming from the energy formulation, while the later arising because of the inclusion of 

the rigid body kinematics into the design environment. The resulting feasible design 

space from Chapter 2 analysis is summarized in Figure 3.19, where the blue triangles 

represent the top performing designs below the 8 second threshold. 

 

Figure 3.19: Top Performing Designs from Original Process 

The first control characteristic is the maximum control deflection rate constraint, 

which is similar to the rigid body constraints applied earlier. The real-time data filtering 

approach is applied to the feasible design space determined earlier to understand the 

range of deflection rates required to perform the various maneuvers. The design and 

maneuver space impacts from control deflection rate filter can be viewed in Figure 3.20, 

which ranges from almost 0 degree/sec to 20.5 degree/sec. The control dynamic rates are 
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directly proportional to the maximum acceleration during the maneuver. The top 

performing design and maneuver combinations correspond to faster control rates as 

expected; however, this analysis provides quantitative relationship that could not be 

captured without the extensions to the process. 

 

Figure 3.20: Data Filtering According to Maximum Control Deflection Rate 

Similar to the steps applied in previous research steps, the designer may adjust the 

control deflection rate constraint real-time and view the impact on the feasible space. In 

this example a deflection rate limit of 10 degree/sec is chosen; however, this is only 

representative of one of the many trades that can be conducted. The deflection rate 

constraint is applied and the design and maneuver combinations that are feasible with the 

original process but fail to meet the new rate limit are colored red. This limit only 

removes 16 data points from the feasible space, which seems minor when we have over 
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255 points that are feasible. The major point here is that 11 points out of the 16 are 

among the top performing designs, which is shown in Figure 3.21. 

 

Figure 3.21: Infeasibility of Top Designs – 10 deg/s 

It is observed that all three of the top performing designs are removed from the 

feasible solution set with a constraint of 10 degree/sec on the control rate. The minimum 

time maneuver increased from 6.75 to 7.75 seconds. At this point, the designer can adjust 

this limit real-time and view the impact of these design decisions that are in effect driving 

control requirements. The control deflection limit of 12 degree/sec is shown in Figure 

3.22, which shows that small changes in this constraint provide a significant 

maneuverability increase. Two of the top three performing designs are again feasible and 

the minimum time is 6.75 seconds. Although, this constraint imposes more constraining 

requirements on the control designer through enforcing faster control rates, much 
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improved maneuverability characteristics are achieved. This constraint will impact 

control design risk and cost, while at the same time offering a jump in performance for 

this maneuver. Hence, a cost benefit trade exists and using the systematic process 

outlined in this work, important decisions become iterative and traceable. Using the 

parametric nature of the analysis technique, the deflection rate necessary for inclusion of 

all top three designs into the feasible set is 18 deg/s, which is almost double of the 

originally imposed 10 deg/s requirement. 

 

Figure 3.22: Infeasibility of Top Designs – 12 deg/s 

The top two designs with +/- 5% variability in the design definition are shown for 

the control deflection constraint with the kinematic deflection and dynamic performance 

limits in Figure 3.23. These results are summarized from the Chapter 2 data analysis in 

order to further build on the analysis using the deflection rate constraints in a similar 
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manner. The variability of the top designs with regards to the newly added control 

deflection constraint of 12 degrees/sec is necessary. In order to fully understand the 

design variability impacts on the maneuverability, the relationship of each design to 

deflection rate constraints must be investigated. 

 

Figure 3.23: Variability in Design Definition Impact on Deflection and Power 

The deflection rate constraints of 12 deg/sec are shown as the red lines bounding 

the responses from both designs with 5% variability in Figure 3.24. It is shown that the 

green design closely approaches the maximum power limit, while the orange closely 

approaches the lateral cyclic rate limit when comparing the results from Figure 3.23 and 

Figure 3.24. This observation results in a design trade between the various design 

parameters and is driven by whether the rate limit or the power constraint is more of a 
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concern. Together all three types of constraints restrict the design space to a much 

smaller feasible set than any one constraint alone, which shows the need to include all 

constraints. Additionally, the tradeoff between the various designs is shown to require an 

iterative process because each design has different constraints driving the success. The 

nature of these requirements changing enforces the benefits of the capabilities of the data 

filtering method. The best performance maneuver would be approximately 7.75 seconds 

if the optimization was originally fixed to a deflection rate limit of 10 deg/sec.  

 

Figure 3.24: Variability in Design Definition Impact on Deflection Rate 

However, the real-time data filtering method that is enabled by the parametric 

nature of the process allows the designer to see that by increasing this limit to 11 deg/sec, 

one of the original top three performing designs can perform the maneuver in 6.75 

seconds. Furthermore, if the constraint is moved to 12 deg/sec, two designs are able to 

complete the maneuver in 6.75 seconds, which is substantially faster than the 7.75 

seconds originally found, especially when the entire mission is considered later in this 

work. These trades demonstrate that the control characteristics impact on maneuverability 
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can be systematically analyzed, which enables traceable and improved quantitative 

control design requirements development. 

3.5.2 Commanded Control Error Filtering 

The results from the second control characteristic are discussed in this section 

through further analyzing trends in the entire maneuver space and then revisiting the pop-

up maneuver example. The importance of including trajectory divergence into the 

analysis for control design considerations is first emphasized by viewing the entire pop-

up maneuver space. The velocity errors are captured through an iterative calculation loop 

requiring time integration that determines the maximum divergence from the desired path 

due to errors introduced through the control system integration. The errors are calculated 

at each time step, which is set to 0.1 seconds for all 9000 simulation runs. The short time 

scale makes comparisons of velocities rather than position a better choice since the error 

in position resulting from 0.1 seconds in runtime is minimal. Additionally, the maneuvers 

are defined by three linear velocities and a yaw rate constraint, which makes velocity a 

better divergence measure. 

The entire pop-up maneuver space is shown in Figure 3.25, where the points are 

colored to indicate various ranges in velocity divergence rate. Velocity divergence rate is 

the maximum change in velocity that occurs over each of the 0.1 second time steps. The 

divergence cannot be viewed in a cumulative sense because this would require 

knowledge of the sensing rate, update rates, and controller software algorithm for 

correcting the path error. Therefore, the velocity divergence over each time step is 
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calculated independent of the previous time step. The maximum velocity divergence over 

the entire maneuver is parsed from the time series results and is converted into an 

acceleration value by dividing by the time step.  

 

Figure 3.25: Velocity Divergence Rate 

It is observed in Figure 3.25 that velocity divergence rate is largely a function of 

acceleration and time, with the minimum divergence rates corresponding to maneuvers 

with low accelerations. Additionally, maneuvers that occur over a shorter period of time 

result in higher divergence rates. Using this information the designer may decide the limit 

on divergence rate. This limit depends heavily on delays and errors in control and sensing 

for the given design. For, example, the orange points in the figure that correspond to 

divergence rates between 2.4 and 15 ft/s
2
 may require more sophisticated sensors and 
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control algorithms to guarantee safety. This analysis provides the control designer with 

valuable information when determining key control system attributes. 

 

Figure 3.26: Designs for Power, Control Kinematic and Dynamic Limits 

Now that the concept of divergence rate is introduced, the measure can now be 

applied to the pop-up maneuver example. Figure 3.26 displays the feasible design and 

maneuver combinations for a 150 to 250 ft pop-up maneuver. The maximum maneuver 

power required, kinematic control limits, and dynamic control constraints are all applied. 

Only two designs out of the approximately 250 points produce a pop-up maneuver in 

under 7 seconds, with the next closest performers around 8 seconds in time. These 

designs are very similar except for some variation in main rotor chord and rotor tip 

velocity. The next filtering exercise provides an understanding of the velocity divergence 

of these designs when compared with the other combinations in the design space. 
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Figure 3.27: Maximum Velocity Divergence Rate 

The data filtering process is applied to the remaining feasible designs to 

categorize the individual points in relation to the maximum velocity divergence during 

the maneuver. The results are shown in Figure 3.27, where the orange points include a 

maximum divergence rate ranging from 1.2 to 3.5 ft/s
2
. These values represent the rate at 

which the design will diverge from the desired velocity.  The divergence accelerations for 

the top two designs are approximately the same with a value of 3.5 ft/s
2
. In order to move 

forward with the top designs, the control designer must be able to develop a control 

system that is able to stabilize the vehicle, while at the same time correct for velocity 

divergence of this magnitude. The maximum deflection error variable is set at around 1.5 

degrees for both of these designs.  
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A divergence rate of 3.5 ft/s
2
 is difficult to visualize. Fortunately, the data filtering 

method applied in this work contains the time history data from each individual run. Now 

that the design space has been filtered down to a few designs, each of the maneuver and 

design combinations can be analyzed in the time domain. Since the top two designs in 

this example have the same maneuver definition and almost identical design parameter 

settings. It is sufficient to just view one of the designs in a time history manner. The top 

performing design is chosen for this analysis, although, the 0.01 time second difference is 

negligible between the top two designs. An additional concern that needs to be 

investigated is the impact of the maximum control deflection error variable on the 

divergence characteristics for this design combination. For this reason, three additional 

runs were completed with design and mission definition held constant and only the max 

deflection error variable changing. The variable is shown for three different levels tested, 

0.2 , 1, and 2 degrees deflection error with the perfect control setting in Figure 3.28. The 

solid line indicates the desired main rotor collective setting throughout the 6.75 second 

pop-up maneuver. The three different commanded control error settings are displayed as 

point series data of different colors. The orange points indicate the main rotor collective 

settings with error deflection bounds of 0.2 degrees. The purple and green show similar 

information for the 1 and 2 degree bounds, respectively.  
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Figure 3.28: Varying Levels of Commanded Control Error 

It is observed in the figure that the maximum error in trajectory does not always 

occur at the maximum deflection bounds. In reality, sometimes the green points (2 degree 

max) lie inside the purple points (1 degree max). The reason for this is that all of the 

controls are allowed to vary over the max deflection range so one or more of the other 

control settings are driving the error higher during those time steps. This assumption is 

verified by viewing all four of the controls simultaneously and comparing the 

commanded control errors resulting in max divergence.  
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Figure 3.29: All Controls Commanded Control Error 

All four controls are shown in Figure 3.29 with the same coloring scheme 

presented for Figure 3.28. At multiple times throughout the simulation the main rotor 

collective commanded control is not at the maximum error bounds. Further analysis 

shows that during these times, both the lateral cyclic and the longitudinal cyclic are at the 

maximum settings for the error bounds specified. This demonstrates that the different 

control settings are driving the maximum divergence at different points during the 
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simulation. Additionally, the type of divergence changes as the control that is 

contributing most to the error response varies. This is most easily viewed in the velocity 

and attitude space in Figure 3.30. The top portion of the figure displays the velocity error 

bounds due to the commanded control errors, while the bottom portion of the figure 

shows the vehicle attitude time histories.  The green line represents the velocity 

divergence due to the 2 degree max control error constraint. This error constraint mostly 

impacts the x-axis velocity and the vehicle pitch, both of which are in the top of their 

corresponding sections. The 1 degree error (purple) and the 2 degree error (green) diverge 

in different directions from the desired trajectory (blue). The green x-axis velocity 

divergence is almost always a positive direction divergence from the desired, while the 

purple x-axis velocity is in the negative direction. This results because the main rotor 

collective error is driving the divergence in the 1 degree error case, while the longitudinal 

cyclic is driving the error on the 2 degree error case.  

The divergence in the attitude of the vehicle is similar because of the relationship 

of the body velocities to the navigational frame velocities. The z-axis velocity is also 

impacted by the error in control; however, the magnitude is much larger so this variation 

becomes more difficult to observe. All of the other velocities and attitude angles are not 

greatly impacted by the magnitude of the commanded control error. This example 

provides a visual representation of the divergence rate constraint in the time domain, 

which in turn aids the designer and the control engineer with additional quantitative data 

to make key constraint and requirement decisions that drive the design selection and 

enable more conservative maneuverability estimates. 
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Figure 3.30: Velocity and Attitude Divergence for Commanded Control Error 
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3.6 Summary of Contribution 

The maneuver performance is obtained through a combination of a mathematical 

rotorcraft model, a maneuver model, and inverse simulation techniques. Additionally, by 

using parametric models, the input variables can be easily adjusted such that the impact 

on maneuverability due to changing design or mission can be captured. As stated 

previously, inverse simulation allows the maneuver performance to be quantitatively 

calculated independent of control design. The control system is removed from the 

analysis loop when determining the maximum performance of the system, which results 

in the motivation for the second research objective. The key components of the second 

contribution of this work are summarized to show that the need of including control 

system measures into the design for maneuverability is being addressed. Literature shows 

that including the control development into the early design process is a difficult task. 

Additionally, it is established that control design requires detailed system knowledge, 

which is not feasible in early design. Hence, the control characteristics are forced to be at 

a general level rather than including specific control parameter settings and architecture 

choices.  

This problem is addressed by the integration of two control characteristics, which 

allow the designer to perform design trades on the feasible space, while at the same time 

determine control requirements to be passed downstream to the control designer. The first 

measure, a control deflection rate constraint, addresses the need presented in the path 

planning communities, which deals with capturing the dynamic constraints of the control 

system in the assessment of maneuvering performance. This variable is quantitative 
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measure of control system performance, while at the same time is not linked directly to 

one control component but is a measure of performance of the hardware and software 

combination. The second measure required the integration of a trajectory divergence loop 

such that the maximum trajectory divergence rate could be calculated for each run. This 

measure indicates the maximum rate that a given design can deviate from the desired 

velocity. Velocity is used because it defines the maneuver path. The trajectory divergence 

rate is calculated independent of other time steps such that particular control system 

attributes are not included in the analysis, such as sensor sampling rate. These 

quantitative control performance measures were used along with the process developed to 

perform design trades that were not possible with traditional formulations. The data 

analysis portion demonstrated that with the inclusion of these measures, the design risk is 

mitigated because a more conservative design is determined. The second contribution of 

this thesis work is established through solving this need in rotorcraft literature. 

Contribution 2: Real-time maneuver analysis capabilities that include control 

characteristic constraints, which provide improved estimates and traceability for 

development of control system requirements. 
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CHAPTER  4 

DEFINING THE MISSION MANEUVERS 

4.1 Introduction 

In capturing the dynamic performance capabilities of rotorcraft designs,  the AHS 

2012 design competition [6] specified multiple maneuvers that cover a wide range of the 

helicopter operational envelope. The importance of mission definition in design is shown 

in the 2011 AHS design competition that focused on analyzing a rotorcraft design under 

mission maneuver uncertainties by specifying three mission definitions, which are shown 

in Figure 4.1.  

The missions represent fundamental helicopter missions that span the military 

helicopter capability needs. Although expressed separately, the combination of the two 

requests represents a need within the rotorcraft design and analysis community [197]. 

Assume that an optimum design is determined using the mission maneuvers as stated in 

the 2012 RFP. What is the impact of changes in the mission maneuvers on the 

performance of the chosen design? For example, assume that the competition is moved 

from sea level to somewhere in the mountains such that the impacts of altitude are drastic 

or that the maneuvers are combined in a different order to define the mission. 

Consequently, the detailed level requirements of each of the maneuvers can change as 

well. These examples demonstrate the need to capture the impacts from the overall 

mission, while at the same time allowing for detailed maneuver level adjustments. 
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Figure 4.1: 2011 AHS Design Competition Mission Definition 

An important contribution to rotorcraft literature, as visualized through these 

competitions, is the ability to capture the maneuverability characteristics for the entire 

operational envelope. Additionally, the required mission maneuvers are constantly being 

adjusted and redefined throughout the design process, as a result, the benefits of 

capturing these changes in a traceable real-time manner is evident. The number and types 

of maneuvers within the mission definition can change drastically. Thus, a technique is 

needed that is capable of formulating any maneuver within the helicopter operational 

envelope, while at the same time the method must mitigate the combinatorial concerns 

plaguing the design for maneuverability problem.  

Traditionally, mission requirements and constraints are stipulated using fixed 

maneuver definitions within the mission. Recently the importance of including maneuver 

variation within the design process has been presented in literature. One reason for this 
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need is that fixed maneuver definitions alone do not capture the necessary performance 

thresholds associated with most rotorcraft missions. Additional difficulties arise because 

of the need to analyze dynamic maneuvers, such as pop-ups and slaloms, which are more 

computationally demanding than steady-state operation. The historical problem 

formulations require the mission maneuvers to be defined precisely in order to determine 

the maneuverability characteristics. Variability in the maneuver definition is not 

traditionally included in the design process because of the maneuver formulation 

requirement and computational concerns.  

The helicopter mission performance, which is time in this analysis, depends on 

the contributions from the various individual maneuvers. This concept is summarized by 

Figure 4.2 where the mission is decomposed into 7 maneuvers. The maneuvers may or 

may not be dependent upon one another and each maneuver has a different magnitude 

contribution to the performance. The y-axis is the maneuverability measure, which is 

time for this example. The axis is normalized from 0 to the maximum maneuver time. 

 

Figure 4.2: Mission Minimum Time 
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Various maneuvers are shown on the x-axis. The orange maneuverability curve 

shifts upwards in that maneuver dimension as the time to complete the maneuver 

increases. During the early stages of design, the contribution of the individual maneuvers 

in relation to the overall mission is often overlooked because only the entire mission time 

is analyzed. The maneuverability characteristics may drastically change with slight 

changes in the maneuver definition, and as a result, the selected design may no longer be 

the optimum. On the other hand, small changes may impact a single maneuver, while 

leaving the other maneuvers unaffected by the change. In this situation it is best to select 

the design that is most robust to changes in maneuver definition, while still meeting the 

dynamic maneuver requirements. Moreover, each maneuver may be dependent upon the 

maneuver that comes previous or post the current maneuver, which creates additional 

difficulties during mission maneuverability analysis. As a result, the trade space grows 

exponentially and selecting the ‘optimum’ becomes more difficult as multiple maneuvers 

are combined to form the overall mission. This is demonstrated in Figure 4.3 where two 

different optimization schemes are used to select the optimum design and maneuver 

combination. The orange curve represents the minimum time maneuver for the maximum 

mass design, while the green curve represents the minimum time maneuver for the 

minimum rotor diameter design. The ability to adjust the optimization scheme real-time 

is essential to provide traceability and improved quantitative maneuverability tradeoffs to 

the design process. 
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Figure 4.3: Various Optimization Strategies 

The numerous maneuvers within the helicopter operational envelope create for a 

difficult problem. In order to capture the entire mission space, the formulation must 

capture all of these maneuvers, while at the same time the number of parameters must be 

minimized due the combinatorial nature of the problem. Through literature review, a set 

of the necessary helicopter dynamic maneuvers that encompass the entire operational 

envelope must first be determined. The difficulty in expressing the entire flight envelope 

in a finite set of maneuvers that span the entire operational envelope remains an open 

research problem for conceptual design. As a result, the focus of the final area is to 

develop a method that allows quantitative assessment of all the dynamic maneuvers that 

form the operational envelope. 

Overall Research Objective: Develop a methodology that enables real-time 

and traceable assessment of: 

 Design parameter impacts on maneuverability characteristics 

 Maneuverability degradations due to control system characteristics 

 Entire helicopter operational envelope maneuverability 
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4.2 Literature Review 

The literature review required to fully address the third area of the overall 

research objective is separated into two major tasks. First, a set of helicopter maneuvers 

must be determined that encompass the entire helicopter operational space. This requires 

analyzing previous research efforts and maneuver path modeling techniques. Once a set 

of maneuvers is defined, the second portion of the literature review determines a method 

to mitigate the combinatorial issues such that the envelope of maneuvers may be 

analyzed in conceptual design. The following section is divided into helicopter maneuver 

envelope determination and maneuver taxonomy development. 

4.2.1 Helicopter Maneuver Envelope 

The determination of the set of maneuvers that enclose the entire envelope for 

helicopter maneuvering flight must be determined in order to analyze design implications 

on maneuverability characteristics for the overall mission. Historical evidence shows that 

critical flight regimes are often missed during conceptual design efforts [106]. As a 

result, several methods have been developed in order to systematically capture this space. 

For example, Thomson [134] defined a set of standard maneuvers as part of 

demonstrating compliance with US handling qualities for military rotorcraft [198]. 

Thomson [199] further elaborates by saying that “helicopter performance and handling 

qualities are now routinely assessed in relation to specific maneuvers.” The problem is 

that this analysis is occurring much later in the design process for a fixed design. The 

Aeronautical Design Standard 33 [198] specifies handling qualities for military rotorcraft 
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design where the maneuver is not defined precisely but is fulfilled by a list of constraints. 

This poses computational concerns when integrating with the design process; 

additionally, the handling qualities should be assessed in conjunction with controller 

design. Therefore, this type of maneuver definition is not appropriate for this work. 

Another approach that has been applied to the fixed-wing problem is Design 

Constraining Flight Conditions (DCFC). DCFCs are the minimum set of flight conditions 

with an overall governing effect on aircraft hardware sizing. Chuboda [200] has applied 

the technique for stability and control purposes and presents a method for the 

identification and formulation of a generic set of DCFCs as applied to control effector 

sizing. Several papers have been presented that develop the expressions for various 

regions of flight [201-203]. One major problem with the  process is that defining DCFCs 

requires an understanding of the design evolution of all types of aircraft configurations, 

knowledge of certification requirements, and familiarity with flight test processes [204].  

Consequently, this method attempts to develop all constraining flight conditions in order 

to bound the operational flight envelope; however, these constraints are problem specific 

and subject to variability. The absolute bounds can only be determined if the entire 

maneuver envelope is examined. 

Another analysis tool that has been proposed in recent years uses the concept of 

equilibrium sets. When analyzing nonlinear systems, equilibrium points may only be 

locally asymptotically stable. Because of this, it is important to analyze the points around 

the operational conditions of interest [205]. At dynamically unstable flight regimes, 

aircraft motion is often represented by linear time invariant system with unstable 
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eigenvalues [206]. However, as stated by Goman [206], “the unstable linear system with 

constrained control inputs has a bounded controllability region, which means that the 

stabilization problem under the restriction on control input can be solved only for a 

limited number of initial states of the system.”  

The method of attainable equilibrium sets computed on a grid of points for two 

selected parameters provides much insight into a broader flight envelope. In order to 

specify a particular steady maneuver, additional kinematic constraints are required. This 

involves augmenting the equations of motion with auxiliary equations that specify 

maneuver kinematics and parameters [207]. The stability characteristics of the 

equilibrium points determined in this 2-dimensional grid are then evaluated using 

eigenvalue analysis of the linearized system [208]. The analysis produces local stability 

maps that provide a qualitative understanding of equilibrium and stability for two of the 

state variables. The attainable equilibrium states belong to a wide class of aircraft steady 

helical trajectories that are bounded by control effector size and max deflection angles.  

The end result is a 2-dimensional depiction of the equilibrium and stability space, 

which may be viewed in Figure 4.4 [207]. This diagram shows the equilibrium space for 

angle of attack and sideslip combinations with all other state variables held constant. The 

controls are adjusted to trim the vehicle and are limited by deflection rate and maximum 

deflection angle. The dark points indicate dynamically stable equilibrium points, while 

the lighter points show unstable regions. A similar diagram would be required to analyze 

each operational scenario and each subset of states of interest, which would culminate 
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into a large number of equilibrium set studies making this method infeasible for 

conceptual design. 

 

Figure 4.4: Attainable Equilibrium Sets 

Flight Systems, Inc in partnership with the U.S. Army Aviation Research and 

Development Command conducted a thorough analysis on the topic and generated a set 

of missions that encompass the entire operational region for military helicopters [19]. The 

research focus is analyzing helicopter operations with intent of identifying key 

parameters and understanding the importance of various maneuvers through 

quantification of agility. The agility is defined as a requirement to rapidly maneuver from 

point-to-point, thus, time to execute is the defining measure of performance. The 

researchers note that in order to have greater performance than an opponent, the vehicle 

must perform the mission in less time. The missions are defined by a combination of 

various maneuvers with each maneuver weighted according to importance within the 

overall mission. In order to make analysis more systematic, the operational envelope is 
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separated into three flight senarios, each of which having particular maneuvers within. 

The mission segments are defined as: initial vectoring, pre-attack, and close-air combat. 

Each of the three segments is composed of a subset of maneuvers, which are stitched 

together to form the entire mission phase. The maneuver definitions are selected by 

subject matter experts in a rigourous study for conventional military helicopter 

configurations and only energy-based analysis is conducted. In total, the three phases of 

the mission include 29 different maneuver segments, which are stated to cover the entire 

operational envelope of the helicopter. This method has been systematically developed by 

experts in the field of helicopter maneuverability and is the most thorough of the 

operational envelope definition methods. Additionally, this formulation has been used in 

previous rotorcraft maneuverability design studies. 

4.2.2 Maneuver Taxonomy 

The 2011 AHS design competition states three separate missions, while the 2012 

competition required multiple dynamic maneuvers within a single mission. Combining 

these observations shows that the helicopter maneuver space is immense and in order to 

capture the dynamic performance relationship to design parameters, a taxonomy of 

maneuvers is required. These maneuvers must be chosen such to encompass the entire 

helicopter operational space, while at the same time remaining low in dimension for 

computational reasons resulting from integrating maneuver performance into design. As 

stated by Frazzoli [209], “the state space of nontrivial systems is typically very large, and 

the curse of dimensionality makes the solution” in such large-dimension spaces 

computationally intractable.  
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There exists an immense space of possible motions that need to be included and 

analyzed in order for completion of a mission. Mission analysis through the use of 

decomposition methods have been employed since the 1970s in spacecraft trajectory 

optimization problems. The method developed by Petersen [210], splits the overall 

mission into segments and applies the analysis to the low-level maneuvers. An additional, 

routine is applied to ensure smoothness when transitioning from one maneuver to the 

next.  Thomson [134] states that “given a generic math model it is possible to study the 

effect of varying key configuration parameters on the performance of the vehicle while 

performing a maneuver.” Rahn [211] applies this concept to the simultaneous 

optimization of the trajectory and design for a space transportation system. Extending the 

literature, Braun [212-214] applies the Collaborative Optimization architecture to the 

design of a launch vehicle, which included design using multiple disciplines along with a 

trajectory optimizer.  

The motion-planning literature approaches the problem in a similar manner, 

which involves generating motion primitives and using a discrete optimization algorithm 

to form the overall path [215]. These primitives are generated based on kinematic 

constraints imposed on the EoM of the system, which results in a subset of maneuvers 

that can be combined to fully define the maneuver space of the vehicle [38]. The motion 

primitive path-planning approach is best summarized by Frazzoli [45], “without 

sacrificing too much of the vehicle capabilities, we restrict the class of nominal 

trajectories to the family of trajectories that can be generated by the interconnection of 

appropriately defined primitives.” One downfall is that  most path-planning methods are 
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only at the kinematic level and do not account for dynamic characteristics of the vehicle 

or the controller [216]. As a result, the feasibility of the path is not guaranteed because it 

is possible that no control setting exists that allows the aircraft to follow the proposed 

motion primitive without violating the control or state constraints. Likhachev [217] 

analyzes the set of actions and calculates whether any single action can be approximately 

recomposed out of a combination of other, shorter actions. If so, these longer actions are 

removed from the fundamental maneuver set. Likhachev [217] further elaborates the 

problem by stating that “there exists a wide spectrum of smooth, dynamically-feasible 

paths between the vehicle and goal configurations and it is waste of time and memory to 

explore all of them.”  

Frazzoli [40] presents a Maneuver Automation (MA) strategy, which is a method 

of determining the minimal set of maneuvers that includes all the primitives that are 

defined by the start and end steady-states of the maneuver. The methodology essentially 

represents a transfer function that relates the state before a maneuver to the states after 

the maneuver. The results of this analysis are summarized in a diagraph, which is shown 

in Figure 4.5. The vertices of the digraph represent steady-state operation and are 

represented via Greek letters in the figure. The edges of the digraph represent the 

fundamental maneuvers necessary to transition from one steady-state to another. Any 

steady-state in the envelope can be modeled in this sense and the maneuvers required to 

enter and exit the trim primitive are required to enable path planning of trajectories. The 

major benefit of this approach is that the velocities can be discretized and combined 

through the maneuver definitions to enable smooth path generation in position, velocity, 
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and acceleration. The structured digraph approach is applied in this work because it offers 

a systematic and traceable process, unlike any of the other literature reviewed. In 

combination with a complete definition of the helicopter operational envelope, the MA 

method may provide benefit in the design domain if appropriate adjustments are 

implemented. 

 

Figure 4.5: Motion Primitive Digraph 

4.3 Approach 

The approach to the immense envelope problem through a taxonomy development 

technique is presented in four parts. First, a research question is formulated based on the 

needs that are provided in the AHS design competitions and helicopter literature. It turns 

out that through modification of the process developed in Contribution 1 and 2 of this 

thesis, the final characteristic of the problem may be addressed. Third, a hypothesis is 

presented in an attempt to address the remaining mission and maneuver related needs. By 

fulfilling the needs introduced through the hypothesis; the final contribution of this work 

is realized. This contribution is the final component necessary to fully address the 
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motivating problem, which culminates into a traceable, systematic, and cohesive process 

that addresses all the needs of the problem simultaneously. Finally, a test plan that details 

the experiments that are to be simulated and what data is to be analyzed is presented.  

4.3.1 Research Question 

The third research question results in one final modification of the systematic 

process that has been developed and expanded upon in this work. The research question 

is formulated based on extensive review of the helicopter maneuver envelope and 

maneuver definition strategies. The remaining question regarding maneuver variability 

and envelope inclusion is first presented, which is followed by a discussion that details 

attributes of the problem and the corresponding needs.  

Research Question 3: Given that the maneuver space is combinatorial, how 

can the maneuverability characteristics be captured for the entire helicopter 

operational envelope, thus, enabling analysis of complete missions? 

The third research question has several key considerations, which are discussed 

more fully in the following section. The first need posed by the research question is that 

the solution must encompass the overall mission performance, while at the same time 

allowing for the effects of the individual maneuvers to be distinguished. Inclusion of all 

of the various types of rotorcraft mission maneuvers into the design framework presents 

computational considerations due to the large helicopter maneuver envelope. Moreover, 

the hypothesized process must be robust such that it can capture the variability in 

maneuverability limits resulting from changes in the mission definition. Additionally, 
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fully defining the maneuvers using performance results will aid in developing a clear 

mission definition if the mission requirements are not well defined initially. The fourth 

requirement of the hypothesized method is that the analysis methodology must provide 

quantitative results that are independent of vehicle controller. Finally, the decision 

making framework must allow for easy manipulation of design constraints because 

variability causes changes in mission maneuver definition throughout the design process. 

In combination, these attributes create a very difficult problem that requires a well 

structured, traceable, and systematic process that expands upon the method developed 

through the first two contributions of this work.  

4.3.2 The Final Process 

The process discussed in Chapter 2 of this thesis captured the variability in 

maneuver performance limits due to design variability for a single mission maneuver. 

The maneuver was selected because of the amount of literature available for validation 

purposes. The second contribution extended the capabilities of this systematic and 

traceable process to include control characteristics, which enabled control system 

requirements development.  The final adjustment is made to the process in this chapter 

such that multiple maneuvers can be simulated in order to assess the maneuverability 

characteristics over the entire helicopter operational envelope.  The modified process is 

displayed in Figure 4.6 with the changes required for the third contribution highlighted in 

red.  
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Figure 4.6: Modified Process for Maneuver Variability 
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Contribution 1 assumed fixed type of maneuver; however, this assumption is not 

valid and as a result it is necessary that the methodology be expanded to capture the 

entire operational envelope of the helicopter. This is accomplished by the final 

modification to the process, which requires the addition of the maneuver taxonomy block. 

As before, the process consists of four major elements: Problem Formulation, 

Mathematical Model Development, Simulation, and Post Processing/Data Filtering. 

4.3.3 Hypothesis 

In order to define the operational envelope, the maneuvers that are encompassed 

within this space must be defined. This requirement takes the form of a taxonomy 

development approach that is based on helicopter operational procedures and maneuvers. 

This taxonomy is added at this step in the process such that each design and maneuver 

combination may be evaluated for each fundamental maneuver within the taxonomy. 

Additionally, it must be shown that the taxonomy spans the entire operational space of 

interest and the individual maneuver types must be verified to show that the time histories 

are valid. The maneuver space is determined through a combination of literature review 

and a structured decomposition process that is based on techniques used in motion 

primitive development. The primitive development process decomposes missions into 

sub maneuvers until the most fundamental motions are found. This set of the most 

fundamental operations is termed primitive motions and can be combined to form any 

maneuver within the operational space. 
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The key components of the hypothesized method are discussed here briefly to 

show that the need is being addressed. The first characteristic is fulfilled by the 

development of a taxonomy approach to analyzing the helicopter maneuvers, which 

allows the designer to capture the performance measures for the individual maneuvers. 

These individual quantitative performance results can then be looked at together to form 

the performance for an entire mission. The dynamic performance is obtained through a 

combination of a mathematical rotorcraft model, a maneuver model, and inverse 

simulation techniques. Additionally, by using parametric models, the input variables can 

be easily adjusted such that the impact on maneuver performance due to variability in 

maneuver definition can be captured. As stated previously, inverse simulation allows the 

maneuverability to be quantitatively calculated independent of control design. Finally, the 

impact of changing mission definitions can be assessed real-time using a filtered data 

approach over the operational space for the range of inputs selected.  The final 

contribution of this thesis work is established through analyzing and testing Hypothesis 3. 

Hypothesis 3: Analyzing the maneuverability characteristics by decomposing 

into a set of fundamental parametric maneuvers enables quantitative design 

comparison for the entire mission. 

4.3.4 Test Plan 

The modifications to the process are previously discussed; however, the new 

information that is to be gathered from the simulation requires addressing. The inputs 

consist of both the system and the maneuver model parameters, while the outputs are 
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dynamic performance and time-based system properties. The system modeling 

parameters remain the same as determined through the process expanded upon in Chapter 

3, except for the addition of a maneuver type variable. The maneuver definition now 

consists of the five maneuver parameters: altitude, velocity, time, and acceleration plus a 

variable to indicate which of the fundamental maneuvers from the taxonomy to simulate. 

All of the maneuvers are simulated independent of one another and can be combined in 

numerous ways to perform design trades.  

The third contribution greatly impacts the number of simulations that are required 

because each type of maneuver introduced through the taxonomy. As stipulated in the 

original process, all the states, controls, and auxiliary variables are outputs from each 

simulation.  The feasibility of a maneuver, which is determined by whether a set design 

completes the entirety of the maneuver, is also captured as before. With this information, 

the performance limits due to maneuver variability can be analyzed for the various 

maneuvers defined in the taxonomy. This is demonstrated through a series of three 

experiments. The first step of the analysis discusses the decomposition of the AHS 

competition mission into a series of maneuvers for analysis. Second, the first maneuver 

of the mission is analyzed to show the process required for constraining individual 

maneuvers within the mission. Third, the interdependencies of the maneuvers are 

discussed and the capability to analyze multiple maneuvers simultaneously is 

demonstrated. Finally, two different optimization schemes are applied and the maneuver 

capabilities are compared for the overall mission using the individual maneuvers. 
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4.4 Implementation 

The modifications to the proposed process are presented with regards to the 

rotorcraft problem in this section. First, the extensions to the maneuver model 

development are presented, which includes the decomposition of the maneuver space 

using motion primitive generation techniques. A set of maneuvers developed based on 

helicopter experts is used as the base operational space for this exercise. The usefulness 

and validity of the parametric motion primitives are shown through example.  

4.4.1 Taxonomy Development 

The work on the helicopter operational envelope presented by Flight Systems, Inc 

[19] is the most thorough of all the literature reviewed, while at the same time offering 

complete maneuver definitions rather than a series of constraints. Additionally, these 

definitions have been used in previous rotorcraft studies for analyzing dynamic 

performance capabilities in design. The complete maneuver definitions are important 

because the design space dimensionality concerns arise whenever the maneuver is 

provided greater degrees of freedom. The mission and the corresponding maneuver 

definitions are separated into three subcomponents: high speed flight to combat area, 

aggressive concealed movement, and combat phase. Each of which is detailed in this 

section for clarity. No mission will follow all the maneuvers specified in the exact order.  

The intent is that the mission reflects the spectrum of maneuvers that would be conducted 

and encompass the entire helicopter operational envelope.  
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The initial vectoring phase may be viewed in Figure 4.7 and consists of eight 

defined maneuvers. The first maneuver is acceleration from hover to a maximum 

velocity. The concept of this maneuver is that hover performance, acceleration 

capabilities, and maximum speed level flight are all captured through this maneuver. The 

second series of maneuvers in this phase definition consist of climbs and descends at 

various angles. These maneuvers make up two through seven in the intial vectoring flight 

stage. The final maneuver in this mission phase is a terrain following maneuver that is 

very similar to a pop-up maneuver or a Nap-of-the-Earth operational procedure. In 

combination, the intial vectoring stage represents the performance of a design in traveling 

to a combat area. This segment only consists on longitudinal operation with a fixed 

altitude change for every maneuver within the phase. Hence, it is noted that the change in 

atltitude for every maneuver should not be constrained to a fixed number in this research 

effort. 

 

Figure 4.7: Initial Vectoring Phase 

The second phase defined by the authors is the pre-attack phase. The first segment 

of this phase is a set of pop-up maneuvers from hovering at sea level to hovering at 50 ft 

altitude. The document specifies a certain number of pop-ups to perform in this segment. 
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These maneuvers are very similar to the terrain following maneuver in the initial 

vectoring phase. The second segment is a set of vertical axis turns both clockwise and 

counter-clockwise. The performance differences between the two turns may not be 

captured if only power required information is utilized. However, if the individual forces 

and moments from the various components are included in the analysis then the 

performance will be different between the two directions [218, 219]. Similar to the initial 

vectoring phase, the pre-attack phase also includes an acceleration segment; however, 

this time the linear acceleration is coupled with a deceleration to stop. This occurs in the 

third and fourth segments of the mission and provides an indication of the horizontal 

acceleration properties of the helicopter. The remaining segments all incorporate a set of 

turns to assess the turning performance of the helicopter. Segments 5, 6, and 7 analyze 

constant radius turns of different radii, while 8, 9, and 10 include a transient acceleration 

and deceleration in the turns. 

 

Figure 4.8: Pre-Attack Phase 

The third and final phase is the combat phase, which attempts to include all of the 

necessary maneuvers required during air combat with enemy aircraft. Eleven maneuvers 

are included in this scenario, which encompasses accelerations in all the helicopter axes. 
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The first maneuver involves an acceleration to a specified velocity, which is followed by 

a maximum velocity that can be completed at the velocity defined in the first maneuver. 

The following six maneuvers are paired into an acceleration segment followed by a turn 

segment. Each turn is specified to various degree, thus, a different max velocity exists for 

each grouping. Finally, the phase ends with a climb and a descend segment. In total, the 

three phases of the mission include 29 different maneuver segments, which are stated to 

cover the entire operational envelope of the helicopter.  

 

Figure 4.9: Combat Phase 

All three mission phases together have a total of 29 maneuvers, which are 

presented together in Table 4.1. Beside each maneuver in the table is a column titled 

“Acceleration.” This column is included in order to show which axis of the navigational 

frame is experiencing acceleration during the maneuver. For example, the first maneuver 

is an acceleration from hover to a final velocity with constant altitude. This involves an 

acceleration in the x-axis of the navigational frame; hence, an “X” is placed in the 

“Acceleration” column. The same process is completed for all of the defined maneuvers. 

This process is key in determining the fundamental maneuvers required to form the 

maneuver taxonomy. It is observed by viewing the “Acceleration” column in Table 4.1 
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that all of the maneuvers can be described by four different accelerations. The first three 

correspond to linear acceleration in all three axes of the navigational frame. The X 

acceleration allows the vehicle to speed or slowdown in x direction of the horizontal 

plane. The Y acceleration allows the vehicle to side step, creating the ability to perform 

lane change and slalom maneuvers that are required of the 2012 AHS problem 

description. The Z acceleration permits altitude increases independent of the forward 

velocity X. This allows for all types of climbs and pop-up maneuvers. This type of 

acceleration was discussed in detail in Chapter 2. The fourth acceleration is about the 

yaw (heading) axis, which allows for turning performance to be evaluated. The four 

accelerations are defined independent of each other allowing for a multitude of helicopter 

maneuvers. The only maneuvers that are not possible with this formulation are 

maneuvers involving purely pitch and roll; however, these are not included in 

requirements definition independent of other actions. The pitch and roll are usually 

included through post processing as maximum limits for human safety, aerodynamic, or 

structural reasons. 

The control community requires that the maneuvers start and end at steady-state 

conditions for controller development purposes; however, selecting which steady-state 

conditions must still be determined. For example, it is possible to model a z-axis 

acceleration maneuver that starts at steady-level flight and ends with a steady-state climb. 

Conversely, the maneuver can start at steady-level flight and end at steady-level flight at 

a different altitude. Both specification techniques adhere to the steady-state requirement. 

The impact of this decision affects the number of basic maneuvers that form the 
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taxonomy.  Additionally, the ability of these maneuvers to be combined to form the entire 

design space must still be verified.  

Table 4.1: All 29 Mission Maneuvers 

 

The taxonomy development process continues with the modified Maneuver 

Automation technique presented by Frazzoli [40], which uses what is referred to as a 

digraph. The digraph is a method for displaying the various steady-states of the system 

and the manner in which each state transitions to the other steady-states.  In order to 

progress from a current state to a desired end state, the operation may require traveling 

through multiple steady-states since not all steady-states have direct connection. An 

example digraph is presented in Figure 4.10 that represents the horizontal acceleration 

from hover to a forward flight of 40 ft/s. The vertices represent steady-states of the 

system, which in this context are steady-level flight. The edges represent maneuvers 

required to progress from one steady-state to the next, which is an x-axis acceleration. 

# Maneuver Name Acceleration # Maneuver Name Acceleration

1 Accelerate to max velocity X 16 Transient turn of 80 ft Ψ,X,Y

2 Climb 30 degree hill Z 17 Transient turn of 150 ft Ψ,X,Y

3 Descend 30 degree hill Z 18 Transient turn of 400 ft Ψ,X,Y

4 Climb 20 degree hill Z 19 Accelerate to 40 kts X

5 Descend 20 degree hill Z 20 Minimum radius turn at 40 kts Ψ

6 Climb 10 degree hill Z 21 Accelerate to 180 kts X

7 Descend 10 degree hill Z 22 Max velocity turn 80 degrees Ψ

8 Terrain following of 600 ft Z 23 Accelerate to 100 kts X

9 Pop-ups of 50 ft Z 24 Max velocity turn 120 degrees Ψ

10 Vertical axis turns Ψ 25 Accelerate to 160 kts X

11 Accelerate and stop X 26 Max velocity turn 180 degrees Ψ

12 Accelerate and level stop X 27 Accelerate to 100 kts X

13 Constant radius turn of 100 ft Ψ 28 Climb 1000 ft Z

14 Constant radius turn of 400 ft Ψ 29 Descend 1000 ft Z

15 Constant radius turn of 2000 ft Ψ
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The number of steady-states dictates the number of maneuvers since it is necessary to be 

able to transition both into and out of each steady-state. The forward velocity is 

decomposed into 20 ft/s increments in this exercise; however, this number is only chosen 

for the purposes of this example. 

 

Figure 4.10: X-Acceleration Digraph 

Figure 4.10 demonstrates that in order to accelerate from hover to a flight velocity 

of 40 ft/s requires two separate maneuvers. The first maneuver accelerates the vehicle 

from hover to 20 ft/s, while the second accelerates from 20 ft/s to the desired 40 ft/s. This 

is an example to show how the digraph representation applies to one of the accelerations 

within the maneuver taxonomy.  For path planning purposes, the maneuvers must be 

decomposed into a smaller set like that shown in Figure 4.10, which uses a 20 ft/s 

discretization. However, since the maneuver model developed in this work defines each 

type of maneuver in a parametric sense, this discretization is not needed. The resulting 

digraph for horizontal velocity change takes the form shown in Figure 4.11. This 

representation covers all types of horizontal forward velocity changes. 
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Figure 4.11: Horizontal Velocity Change Digraph 

An example showing the resulting trajectory of the velocity based digraph from 

lower forward velocity block to the higher forward velocity block is displayed in Figure 

4.12. The vehicle starts at a lower forward velocity steady-state, progresses through 

acceleration in the x-axis, which is shown as the top path in Figure 4.11 and ends at a 

higher forward velocity. At time zero the helicopter is traveling at 20 ft/s which can be 

viewed by the small amount of pitch forward required. This steady-state is maintained for 

10 seconds. At 10.1 seconds the vehicle accelerates in the x-axis to the end velocity. By 

the end time of the maneuver the vehicle has reached a new higher steady-level velocity 

that requires more forward pitch of the vehicle.  

 

Figure 4.12: Increase in Forward Velocity 
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In order to formulate a digraph representation of the entire design maneuver 

space, all four of the acceleration maneuvers must be described and included. Figure 4.13 

demonstrates all of the eight basic motions that can occur from a steady-level flight 

scenario of the helicopter platform. The x-axis acceleration maneuver that was just 

discussed is composed of the accelerate block. The deceleration of the x-axis maneuver is 

described by the decelerate block. The z-axis accelerations, which are used for pop-up 

maneuvers, are formed by the increase and decrease in altitude blocks. The y-axis 

accelerations include a sidestep left and right blocks, while the yaw axis acceleration is 

defined by the positive and negative rotations. 

 

Figure 4.13: Possible Motions from Steady-Level Flight 

The resulting digraph from decomposing the four needed accelerations is 

presented in Figure 4.14. It should be noted that only the positive change in all four 
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accelerations is presented for clarity reasons. If a negative acceleration is desired then the 

arrows of the figure are reversed. Hence, there are eight possible steady-states that can be 

reached from the current steady-state with the four accelerations determined through the 

literature review.  

 

Figure 4.14: Digraph Representation of the Maneuver Space 

For path planning purposes, each of the maneuvers in Figure 4.14, which are 

represented by the arrows, must be defined separately. In reality there are an infinite 

number of steady-states in the design space because the maneuvers from steady-state to 

steady-state are described in a parametric manner for design purposes. Hence, the steady-

states in Figure 4.14 represent a class of steady-states rather than a particular point when 
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applied to the design problem. This extension in this work enables a parametric maneuver 

model to define the entire operational envelope. For example, the higher vertical velocity 

block represents all steady-state operations were a constant rate of climb is specified. 

Additionally, each positive acceleration maneuver has a corresponding negative 

acceleration maneuver. Using this observation in combination with the manner in which 

the maneuvers are defined in this work, the subset of eight maneuvers can be 

decomposed into four maneuvers. This is beneficial for two reasons. The first reason is 

that by simulating each maneuver as the combination of the acceleration and the 

deceleration, the opposite maneuvers are obtained with a single simulation. Secondly, it 

reduces the combinatorial maneuver space from eight discrete maneuver types to four 

discrete maneuver types, which further mitigates the dimensionality concerns that are 

problematic during design. 

The four maneuvers that form the maneuver taxonomy are shown in Figure 4.15. 

The Z acceleration is displayed as a pop-up maneuver within the figure where the final 

condition is specified as a change in altitude to maneuver over an obstacle. The X 

acceleration is displayed second in the figure and is representative of horizontal 

accelerations and decelerations. The Y acceleration is shown third, which allows for side 

step maneuvers to be simulated. Finally, the Yaw acceleration allows for turning flight 

simulations. By including all four maneuvers in the simulation simultaneously and 

independently, any maneuver within the helicopter maneuvering envelope can be 

simulated. For example, by combining z-axis deceleration and a yaw rate, various helical 

descent trajectories can be analyzed. One instance of these settings is demonstrated in 
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Figure 4.16. The 29 maneuvers that were selected to represent the helicopter operational 

envelope have been decomposed into four parametric maneuvers through modification of 

the Maneuver Automation technique. The capability to model all of the maneuvers that 

form the AHS design competition mission can be analyzed by appropriate filtering and 

constraint placement. 

 

Figure 4.15: Maneuver Taxonomy 
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Figure 4.16: Helical Descent 

4.5 Experimentation and Results 

Finally, the simulations are run and the data is analyzed through application of 

various constraints on the maneuver inputs, which in effect, provides the ability to 

quickly analyze any maneuver within the envelope. Furthermore, this mission can be 

quickly adjusted to perform analysis for multiple missions. Through combining the three 

major contributions developed in this work, the motivating problem can now be analyzed. 

The previous chapters only applied analysis to a single pop-up maneuver to show the 

value in the proposed method over traditional approaches for maneuverability assessment 

during design. The development of the third contribution now allows for the analysis to 
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be completed for the entire range of mission maneuvers within NOE flight operations. 

The benefits are twofold: first, as the maneuver definition is changed during the design 

process, the data filtering method allows the mission to be adjusted and a new solution is 

determined real-time. Secondly, the various categories of helicopter maneuvers can now 

be simulated. 

The series of experiments presented in this chapter demonstrate the taxonomy’s 

capabilities for systematically analyzing the entire mission through investigation of the 

individual maneuvers. Three sections are required to fully present the benefits of the final 

process through application to the AHS design problem. The first section discusses the 

necessary decomposition of the overall mission into a series of maneuvers that can be 

assessed using the developed taxonomy. Second, the maneuverability analysis is shown 

for a single horizontal acceleration maneuver and the various constraints developed 

through Contributions 1 and 2 of this dissertation are applied. Third, the 

interdependencies of the maneuvers along with the most important and constraining 

maneuvers within the mission are discussed. Finally, the feasible design and maneuver 

space is summarized for the first four maneuvers of the mission and two different 

optimization schemes are displayed. 

4.5.1 Mission Decomposition 

A taxonomy of fundamental maneuvers is established in the previous section 

through a systematic and traceable process that is derived in this work from strategies 

employed in discrete path planning and space vehicle design literature. The maneuvers 
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can be combined to form any motion within the helicopter flight envelope. To show 

application of this strategy, the 2012 AHS design competition is addressed. In order to 

address the entire mission, it is necessary to decompose the mission into a series of 

fundamental maneuvers. This breakdown can be accomplished in as much detail as 

desired; however, for example purposes some simplifying assumptions are used.   

First, although not required due to the formulation of the taxonomy, it is assumed 

that each decomposed maneuver within the AHS mission is only composed of one 

fundamental maneuver. For example, for a straight section of the path in which forward 

acceleration is required, it is assumed that x-axis acceleration is the only acceleration of 

the system, hence, altitude is maintained. The only exception being the pirouette, which 

requires accelerations in X, Y, and Psi simultaneously in order to form this complicated 

motion. An additional assumption that is applied is that the halfway time of the forward 

acceleration maneuver can be analyzed separately from the deceleration half of the 

maneuver. By separating this information in this manner, the maneuver can start at a 170 

ft/s velocity and end at 100 ft/s velocity if desired.  

Using these assumptions and constraints, the AHS design competition is 

decomposed into 31 maneuvers that when combined in series result in the complete 

mission definition.  These 31 maneuvers are displayed in Figure 4.17 by marking the 

beginning and end of each maneuver with a pink point. Although, this is the easiest 

method for breaking down the maneuver, it is not the best for keeping track of the 

maneuver constraints for conducting the analysis. Hence, in combination to Figure 4.17, 

the corresponding maneuver breakdown is also presented in Table 4.2. 
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Figure 4.17: Mission Definition Decomposition 

The first column of the table is a maneuver indicator, which corresponds to the 

pink points in the corresponding figure. The next five columns of the table display the 

position and heading of the vehicle at the end of each of the 31 maneuvers along with the 

acceleration that is required. As more information about the individual maneuvers is 

determined through analysis, further decomposition may be required. For example, 

maneuver 12 involves a 270 degree turn, which may need to be decomposed into a series 

of smaller turn maneuvers when analyzed. Another example of this further decomposition 

is demonstrated by the first two maneuvers of the mission. Originally, it is thought that 

the mission path prior to the first slalom maneuver only consists of an acceleration 

maneuver; however, once the slalom maneuver is investigated, it is determined that an 

acceleration followed by a deceleration is required in order to obtain the minimum time. 

This results because the slalom maneuver must be completed at a slower velocity than 
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that achieved by the end of the first acceleration portion. Each subsequent maneuver is 

dependent upon the maneuver that is performed prior; hence, each maneuver can be 

analyzed individually but the constraints must reflect the overall mission. 

Table 4.2: AHS Design Competition Maneuver Breakdown 

 

Maneuver Xf Yf Zf Psi Acceleration

1 500 ft - - - X

2 500 ft - - - X

3 1000 ft 300ft - - Y

4 1000 ft -300 ft - - Y

5 800 ft - - - X

6 800 ft - - - X

7 250 ft 250 ft - 90 deg Psi

8 250 ft 250 ft 90 deg Psi

9 1650 ft - - - X

10 1650 ft - - - X

11 1650 ft - - - X

12 - - - 270 deg X,Psi

13 900 ft 900 ft - 90 deg Psi

14 500 ft - - - X

15 500 ft - - - X

16 800 ft 200 ft - - Y

17 800 ft -200 ft - - Y

18 625 ft - - - X

19 625 ft - - - X

20 400 ft 550 ft 90 deg Psi

21 400 ft 550 ft - 90 deg Psi

22 625 ft - - - X

23 625 ft - - - X

24 - - - - Z

25 - - - 360 deg X, Y, Psi

26 - - 200 ft - Z

27 - - 200 ft - Z

28 625 ft - - - X

29 625 ft - - - X

30 1500 ft - - - X

31 1000 ft - - - X
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In order to show application of the process to the AHS design competition, it is 

decided to only show the analysis involved of the first four maneuvers. The reasoning is 

that if all 31 maneuvers are included in the analysis, the problem would become 

overwhelming as an example for application and understanding to the reader. 

Additionally, documenting the entire process would become immense, without providing 

further understanding of the process or the problem. The first four maneuvers consist of 

an acceleration phase, a deceleration phase, a left sidestep, and a right sidestep maneuver. 

The desired end states for each of the maneuvers is displayed in Table 4.3, while a 

graphical depiction of the first four maneuvers is shown in Figure 4.18. 

Table 4.3: First Four Mission Maneuvers 

 

 

Figure 4.18: First Four Mission Maneuvers 

4.5.2 Individual Maneuver Filtering 

The data analysis starts with the 9000 runs conducted for each of the four 

fundamental maneuvers. The base set of data is exactly the same for both x-axis 

Maneuver Xf Yf Acceleration

1 500 ft - X

2 500 ft - X

3 1000 ft 300ft Y

4 1000 ft -300 ft Y

1

X Acceleration X Deceleration

2 Lateral Left
Acceleration

X

3

Lateral Right 
Acceleration

4

X
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maneuvers, while the similarly the y-axis maneuver data sets are identical. This is 

because only four maneuvers are in the taxonomy.  The first maneuver of the mission 

consists of a horizontal acceleration, which is notionally represented in Figure 4.18.  

 

Figure 4.19: Horizontal Acceleration Maneuver Space 

The entire horizontal acceleration and deceleration maneuver space is shown in 

Figure 4.19. Similar to previous maneuver analyses, the y-axis of the figure represents the 

time required to perform the maneuver.  The horizontal axis now depicts horizontal 

velocity rather than acceleration, which was shown in previous filtering exercises. The 

reason for this change is that the forward velocity has a larger influence on the maneuver 

final distance than the acceleration variable. However, acceleration still has an influence; 

thus, the points are color coded according to horizontal acceleration. The color coding 
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legend may be observed to the right of the figure, where the horizontal acceleration 

ranges from -40 to 40 ft/s
2
. 

 

Figure 4.20: Feasible X-Acceleration Maneuver 

All 9000 design and maneuver combinations are shown in Figure 4.19 and the 

next series of filters gradually prune the space to only successful maneuvers of interest. 

The filtering process starts with the addition of the maneuver success constraint, which is 

an indicator of maneuver feasibility. The value of 1e-08 was chosen as the function error 

cut-off, although, this number can be adjusted real-time.  The second step of the filtering 

process involves applying the mission maneuver constraints as specified in the AHS 

design competition. The mission dictates a horizontal acceleration maneuver of between 

400 and 600 ft. The resulting feasible design and maneuver combinations are shown in 
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Figure 4.20. With some of the points removed from the space, the trends with 

acceleration are now observed.  

 

Figure 4.21: Feasible X-Acceleration Maneuver – Constraints Applied 

Next, the maximum maneuver power, control deflection angle, and control 

deflection rate limits are applied. These steps remove any infeasible designs from the 

design space of alternatives. The constraints can be adjusted real-time; however, these 

capabilities were presented in previous experiments so only fixed constraint values are 

applied in this example. All of the constraint values used in Chapters 2 and 3 are 

reapplied, which correspond to a maximum power of 2500 hp, a maximum deflection 

angle of 13.5 deg, and a maximum deflection rate of 12 deg/s. The resulting feasible 

design and maneuver combinations are shown in Figure 4.21. The first maneuver within 

the mission involves a horizontal acceleration; however, it is observed that the feasible 
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space still contains deceleration maneuvers when viewing the legend to the right of the 

figure. 

 

Figure 4.22: Acceleration and Initial Velocity Constraints Applied 

Hence, another filter is applied that removes any maneuvers that involve a 

deceleration. Finally, the helicopter must enter the course no faster than 170 ft/s as stated 

in the 2012 AHS design competition requirements. Figure 4.22 displays the resulting 

implications on the feasible design and maneuver space. Through observing the figure, 

the acceleration for all of the remaining points is positive and the initial velocities do not 

exceed the 170 ft/s limit. The objective of the analysis is to determine the minimum time 

maneuver and design combination. This consists of the circled region in Figure 4.22 

around the 6 second time. The solution space consists of approximately eight different 

design and maneuver combinations that result in the minimum time. 
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Figure 4.23: Two Optimization Schemes Applied 

The top performing design and maneuver combination would be selected if an 

optimization algorithm was implemented to determine the minimum time design and the 

designer would not be aware of the other seven feasible solutions that are very similar in 

maneuverability performance. This example demonstrates the importance of real-time 

human-driven trades. Since this information is now known, the designer may analyze 

each of the eight points in detail using the time-series information. Additionally, the 

constraints and design space can be used to select the most robust solution to the applied 

constraints. The constraints may be adjusted real-time to view the sensitivities of the 

solution space to the various constraints. 

Figure 4.23 displays the feasible design space for the first maneuver of the 

mission with the top solutions for two different optimization schemes applied. The 
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orange point represents the maximum mass design, while the blue point represents the 

solution for the minimum rotor diameter. The human-driven real-time capabilities enable 

improved understanding of the solution space and greater traceability in design and 

maneuver down selection. Numerous optimization schemes may be applied at this stage; 

however, the two methods discussed earlier are used throughout the remaining example. 

Figure 4.24 displays the maneuverability comparison for the two different design 

optimizations for the first maneuver of the mission. The maneuver times are half of the 

value shown in Figure 4.23 because only the acceleration phase of the fundamental 

maneuver is used in this portion of the analysis due to assumptions. The same analysis 

steps must now be conducted for the rest of the maneuvers in order to compare mission 

maneuver performance, which are discussed in more detail in the next section. 

 

Figure 4.24: Accelerate Maneuver – Maneuverability Comparison 
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4.5.3 Maneuver Importance and Interdependencies 

At this point, the designer is now ready to start taking into consideration the 

dependency due to the sequential mission definition. The maneuver position change 

constraints that are listed in Table 4.3 are applied to each of the four maneuvers in Figure 

4.18. The maneuvers within the data set are defined as both the acceleration and the 

deceleration portion for each maneuver; hence, for the first two maneuvers of the AHS 

mission only the first half of each maneuver is desired. The third and fourth maneuvers 

are specified by a lateral distance change at constant velocity so the entire maneuver is 

used in these analyses. Because only half the x-axis maneuver is used in the first two 

mission segments, the final distance of the maneuvers are set to double of the 

requirement. Additionally, the filtering process allows for the designer to specify the end 

point as a range rather than an exact point which accounts for variability in the maneuver 

definition, thus, providing greater flexibility. Once the maneuver definitions are applied 

to the filtering process, only a small subset of the original 9000 runs are applicable for 

each maneuver. Moreover, maneuvers 3 and 4 are more constraining than maneuvers 1 

and 2, with only 8 and 10 points remaining out of the 9000, respectively. The remaining 

feasible design space for maneuvers 3 and 4 is depicted in Figure 4.25.  
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Figure 4.25: Maneuver 3 and 4 Feasible Design Space 
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The information within these small number of feasible points may aid in further 

filtering of maneuvers 1 and 2 because of dependencies. For, example, if the maximum 

velocity of maneuver 3 is around 100 ft/s then designs exceeding this velocity from 

maneuver 2 can be removed. As a result, some designs in maneuver 1 may no longer be 

compatible with maneuver 2. This demonstration of how small constraints propagate 

throughout the entire mission shows the difficult nature of applying an optimizer to this 

information. With an optimizer, the source of removal of solutions is not understood. In 

addition to providing more information about the process, the method also allows for 

these trades to be conducted real-time, which permits rationale for changing system 

constraints. 

The data filter also keeps track of the remaining points in the feasible design 

space through each constraint that is applied. One final constraint is applied before 

analyzing the design parameters of the feasible solution set. The performance measure in 

this analysis is time to complete maneuver; hence, some upper limit can be placed on the 

time for each maneuver. Using knowledge of the design space and the mission, the 

designer can constrain the feasible set according to maneuver execution time. For this 

example, the constraint of 12 seconds is placed as an upper limit of execution time. 

Additionally, if more than 10 feasible points remain in the feasible space, this time is 

reduced until only 10 feasible points remain. It turns out that the 12 second limit is 

constraining enough to eliminate maneuvers 2, 3, and 4 down to 10, 5, and 4, feasible 

design points, respectively. Maneuver 1 design space still contains 30 feasible points after 
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the 12 second limit is applied so this limit is reduced to 7 seconds until only 11 designs 

remain.  

The resulting feasible maneuver space for inclusion of mission dependencies is 

shown in Figure 4.26 and Figure 4.27 with each maneuver displayed as a separate 

subplot. The top portion of the Figure 4.26 displays the feasible maneuver space for the 

first maneuver in the mission with the top performing time around 5.85 seconds, while 

the second maneuver has a minimum maneuver time of 8.4 seconds. Recall that for both 

of the first 2 maneuvers, only the first half of the simulation is used; therefore, the times 

are actually around 3 and 4.2 seconds, respectively. Maneuvers 3 and 4 share similar 

performance limits around 9.75 seconds, which is viewed in Figure 4.27. The top portion 

of the figure displays the five remaining feasible points for the third maneuver within the 

mission, while the bottom portion of the figure shows the four remaining design 

combinations for the fourth maneuver. The points are colored according to velocity over 

the maneuver. The range of velocities are displayed to the right of each subplot. The 

velocities vary between 70 ft/s and 90 ft/s for each maneuver; hence, providing an 

additional constraint for maneuver 2 since the vehicle cannot enter maneuver 3 above the 

limit.  
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Figure 4.26: Feasible Design Space Maneuvers 1 and 2 
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Figure 4.27: Feasible Design Space Maneuvers 3 and 4 
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The limit of 100 ft/s maximum velocity in the exit of maneuver 2 is applied. The 

propagation of this constraint also impacts the first maneuver within the envelope 

because maneuver 2 must decelerate to 100 ft/s from whatever velocity is provided by the 

end time of maneuver 1. The capability to decelerate limits the maximum velocity that is 

reached in maneuver 1. Additionally, the competition states that the mission may not be 

started at a velocity above 170 ft/s. Hence, the objective of the first maneuver is to 

accelerate above this velocity in order to provide a faster time over the first straight 

segment of the course, while at the same time not exceeding the maximum deceleration 

velocity needed by maneuver 2.  

Viewing the data in this manner is great for filtering the feasible design space and 

viewing the corresponding effect on maneuverability limits; however, it does not provide 

any knowledge of the design parameter combinations that are required to obtain this 

performance. Similar to early analyses, the parallel plots are used in addition to the 

feasible design space plots to provide a greater amount of knowledge about the individual 

design combinations that result in the maximum performance. Prior chapters only viewed 

the mission and design parameters for a single type of maneuver. In order to account for 

multiple maneuvers, an additional maneuver number variable is added to the x-axis of the 

figure, which is shown in Figure 4.28. 

Each of the four different maneuvers corresponds to a different color. The blue 

curves represent the mission and design parameters of the first maneuver. Orange lines 

show the mission and design parameters for the horizontal deceleration maneuver and 

purple and green demonstrate the inputs for the left and right sidestep maneuvers, 
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respectively. Observation of the figure shows that the CG location must fall towards the 

aft of the vehicle for all four of the maneuvers. Additionally, different design parameters 

and constraints impact different maneuvers by various magnitudes. For example, the left 

sidestep maneuver (purple) requires the highest settings for tail rotor moment arm and tail 

area, while right sidestep (green) requires smaller values for the ranges provided. This 

relationship deals with the direction of rotation of the main rotor and how the tail rotor 

must supply counter-torque. 

 

Figure 4.28: Design Parameter Space of Top Designs 

The end goal of the analysis is to determine the total mission maneuverability. 

Similar to previous steps, two different optimization schemes are selected from all four 

maneuvers. The minimum time maneuver for the two different optimization schemes is 

summarized in Figure 4.29. The blue design corresponds to minimum rotor diameter 

optimization strategy, while the orange point represents the maximum mass design. Both 

designs complete the first four maneuvers in similar time, with the maximum mass design 

slightly outperforming the minimum rotor diameter design. The systematic and 
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traceability of the process provides further benefit in this situation because in addition to 

mission analysis, the taxonomy decomposition enables analysis of the individual 

maneuver contributions.  

 

Figure 4.29: Mission Maneuver Time 

This capability enables the designer to view the most constraining maneuvers 

within the mission, which provides the designer with traceability in selecting the 

appropriate design. This information allows for the designer to focus on designing for 

maximum maneuverability of the most important or constraining maneuvers, while at the 

same time viewing the impact on the other maneuvers within the mission. The mission 

maneuver breakdown is shown in Figure 4.30 for the two different optimization schemes. 
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Figure 4.30: Mission Maneuver Decomposition 

4.6 Summary of Contribution 

The key components of the hypothesized method are discussed here briefly to 

show that the need is addressed. The first characteristic is fulfilled by the development of 

a taxonomy approach to analyzing the helicopter maneuvers, which allows the designer 

to capture the performance measures for the individual maneuvers. These individual 

quantitative performance measures can then be looked at together to form the 

performance for an entire mission. Additionally, the maneuvers can be analyzed 

independent of other maneuvers, if desired. The maneuver performance is obtained 

through a combination of a mathematical rotorcraft model, a maneuver model, and 

inverse simulation techniques. Additionally, by using parametric models, the input 

variables can be easily adjusted such that the impact on dynamic performance due to 

variability in maneuver definition can be captured. As stated previously, inverse 

simulation allows the maneuverability to be quantitatively calculated independent of 

control design. Finally, the impact of changing mission definitions can be assessed real-

time using a filtered data approach over the operational space for the range of inputs 
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selected.  The final contribution of this thesis work is established through solving this 

need in rotorcraft literature and addressing the motivating problem. 

Contribution 3:  Technique for developing the fundamental parametric 

maneuvers for quantitative assessment of maneuverability characteristics over the 

entire operational envelope. 
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CHAPTER  5 

CONCLUSION AND FUTURE WORK 

Expansion of design analysis capabilities is essential in meeting the requirements 

for successful design of complex systems such as helicopters. Furthermore, conceptual 

design is perhaps the most crucial task in engineering product design and development; 

hence, the focus of this dissertation is in the early stages of design. Traditionally, the 

early stages of design have not included analyses related to smooth dynamic maneuvers 

corresponding to Nap-of-the-Earth (NOE) flight. Military helicopter operations require 

precise maneuverability characteristics for successful NOE flight. NOE flight consists of 

precise maneuvering in and around obstacles, which make helicopter missions unique 

from other air vehicles. Many military helicopter NOE flight scenarios and problems are 

classified; therefore, literature was examined to find an unclassified canonical example 

that could be used as a surrogate for formulating the problem. The military helicopter 

problems are indirectly assessed through solving the 2012 AHS design competition, 

which is summarized in Figure 5.1.  The AHS design problem is an unclassified example 

of NOE flight operations that must be addressed by the helicopter design community. 

Several contributions to literature are presented in this work as a result of addressing the 

needs of the motivating problem, which is followed by a discussion of potential areas for 

future work. 
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5.1 Conclusion 

This dissertation addresses specific issues associated with integrating 

maneuverability assessment into the early stages of design. Although, the focus is in the 

early stages, much of this work can be utilized in the later stages of design with the 

inclusion of higher fidelity models. In order to provide the most traceability and 

understanding, the problem is decomposed into three major areas: designing for 

maximum maneuverability, capturing controllability concerns, and defining the mission 

maneuvers. This decomposition is represented in Figure 5.2.   

 

Figure 5.1: 2012 AHS Design Competition 

These three research areas relate directly to NOE flight requirements. The first 

area, which is designing for maximum maneuverability, is important for both military 

NOE operations and the AHS design competition because the design that can outperform 

the other helicopter designs will win in NOE combat scenarios. The ‘maximum 
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maneuverability’ is defined by the minimum mission time although other measures, such 

as blade loading, could be considered simultaneously. The second research area specifies 

the need to capture the controllability concerns. This requirement is stated because during 

NOE flight operations a precise maneuver path must be followed. Any divergence from 

the path can be catastrophic because the helicopter is flying in and around obstacles. 

Similarly, the AHS design competition requires the helicopter to follow a specific 

mission path, while considering the implications of traveling into a pylon or the 

spectators. The third research area deals with the mission maneuver specifications since 

there are an immense number of NOE flight operations that must be analyzed. 

Additionally, the maneuver specifications are dynamic in nature and cannot be analyzed 

with only steady-state analysis techniques. These problem areas require a shift in design 

and maneuver analysis capabilities [13-15] to enable successful design for helicopter 

NOE flight. 

Overall Research Objective: Develop a methodology that enables real-time 

and traceable assessment of: 

 Design parameter impacts on maneuverability characteristics 

 Maneuverability degradations due to control system characteristics 

 Entire helicopter operational envelope maneuverability 

 

Through addressing the three major areas, a methodology is developed that 

enables the impact of design choices on maneuverability to be assessed for the entire 

helicopter flight envelope, while enabling constraints from control system design to be 

assessed real-time. Each of the three areas was addressed separately in this work. 
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However, careful consideration was made during development of each contribution such 

that when integrated to form the final process, the overall method addresses all of the 

issues simultaneously. The validity of each of the components was addressed through 

quantitative rotorcraft examples related to subsets of the needs posed in the 2012 AHS 

design competition. These examples showed numerous benefits over the traditional 

approaches presented in literature and possessed all of the necessary attributes uncovered 

during literature review. The final methodology that is presented in Figure 5.3 is 

discussed, which is followed by a summary of the contributions of this work.  

5.1.1 The Final Process 

The combination of these techniques offers unique attributes and capabilities not 

possible using previously developed approaches. Five major elements are integrated in 

order to fulfill the needs when provided with the initial design information from the 

problem description. The first element is the parametric rigid body rotorcraft model along 

with a novel parametric maneuver model that enable design integrated maneuver 

analysis. Secondly, inverse simulation techniques are included in the process to enable 

trajectory analysis for NOE flight maneuvers independent of control design. Third, 

control integration considerations are integrated through a modified control characteristic 

tradeoff and evaluation framework. Fourth, a novel maneuver mathematical model and a 

parametric taxonomy combination allow for simulation of any maneuver within the 

helicopter NOE flight envelope. Finally, a filtered data technique is included in the post 

processing to provide systematic, traceable, and real-time design trade analysis 

capabilities. These elements are combined to form a four step process which consists of 



257 

 

the problem formulation, mathematical model development, simulation, and post 

processing/data filtering. 

 

Figure 5.2: Research Contribution Decomposition 
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Figure 5.3: Final Methodology 
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The design information consists of the baseline design specification, upper and 

lower bounds on the variability of the design definition, and a baseline maneuver. All of 

which are assumed to be provided in order to begin the process. The mission definition is 

usually provided in the initial problem definition, while the baseline design may consist 

of a set of various designs that are being considered as potential solutions to the problem. 

Each design and maneuver combination needs to be executed through the process 

separately. 

The second step of the process is to take the information provided and develop 

mathematical models of the system and the maneuver to be performed. The mathematical 

model of the system must be parametric such that design variations can be analyzed. 

Additionally, the system parameters must be maintained to a reasonable number to 

mitigate combinatorial issues, while at the same time offering the appropriate fidelity to 

include necessary constraints. The mathematical models must be structured for inclusion 

into the simulation environment, which requires careful selection of states and controls 

for the system definition. The system model development requires the second order 

ordinary differential equations of the system, which are the EoM of a helicopter in this 

analysis, to be described in a manner in which integration provides the next state when 

given the current state and control settings. The maneuver must also be modeled 

mathematically. Multiple maneuvers must be simulated in order to assess the 

maneuverability characteristics over the entire helicopter operational envelope, which is 

accomplished by the addition of the maneuver taxonomy technique. 
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Once the models are generated and the inputs defined, the simulation environment 

is used to determine the trim solution. This portion of the analysis does not require the 

entire maneuver definition, only the initial steady-state conditions. The second step of the 

simulation environment performs dynamic analysis of the system attempting to perform 

the defined maneuver. The important technique enabling NOE maneuver analysis 

independent of control design is inverse simulation. The simulation captures the change 

in maneuverability characteristics resulting from the variation in design parameters. 

Inverse simulation requires constraints for satisfactory optimization of the solution. 

Depending on the application, the designer may wish to constrain any combination of 

position, velocity, acceleration, or orientation. These constraints can be placed on any 

state or control variables. 

The measures on control design and integration requirements leading to cost and 

risk decisions are not captured when using inverse simulation because the technique 

assumes perfect control and control knowledge. For this reason, the maneuverability 

degradations due to non-perfect control characteristics must be assessed. This is 

accomplished through developing and analyzing control system characteristics impact on 

maneuver performance. These characteristics are a function of the control system design 

and are based on the design stage and detailed level of the model. These improvements 

are essential in capturing the relationship of control integration degradations on 

maneuverability in a quantitative manner in the early stages of design. As the design 

progresses into the later design stages, these measures can be adjusted to include more 
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detail. These requirements provide the control designer with a set of characteristics that 

the control design must achieve in order to achieve the desired maneuverability.  

The final element of the process is based on a Monte Carlo data filtering 

technique that permits real-time and traceable design space exploration with changing 

constraints and requirements. The Filtered Monte Carlo (FMC) method uses a database of 

previously computed maneuverability information. All prior rotorcraft dynamic analysis 

techniques applied constraints into the mathematical definition of the vehicle; however, 

this formulation allows constraints to be dynamically placed on design variables and 

performance measures. As a result, the designer can view the impact of these constraints 

real-time rather than being required to run an entirely new set of optimizations. Filtered 

data techniques allow for visual verification of trends in the data that can be helpful with 

validation purposes and provides traceability for developing understanding of the 

problem. Furthermore, FMC is robust and enables integration of the complex helicopter 

EoMs. The final process that corresponds to the integration of the necessary elements for 

NOE design and analysis is coined GT-RISE, which stands for Georgia Tech Rotorcraft 

Inverse Simulation Environment. 

5.1.2 Summary of Contributions 

The first research objective focused mainly on the mathematical model 

development and the simulation steps of the process. These steps of the process are 

relatively generic until the appropriate components are chosen to address all of the needs 
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posed by the motivating problem. The objective of the first section of research is 

summarized along with the corresponding contribution. 

Research Question 1: How can the impact of design parameter variability on 

rotorcraft maneuverability limits be quantitatively captured independent of control 

design for changing requirements? 

Contribution 1: A six degree-of-freedom rigid body parametric rotorcraft 

inverse simulation model in combination with Filtered Monte Carlo that provides 

improved quantitative maneuverability tradeoff capabilities over traditional design 

methods.  

One characteristic of this work over previous research conducted in the area is the 

integration of rigid body helicopter model into the design environment. Previous efforts 

during early design commonly use only the energy-based formulation, which is shown to 

miss important constraints in Chapter 2 of this dissertation. The second alteration to 

previous research efforts is the integration of inverse simulation approaches into a design 

framework, which enables analysis of Nap-of-the-Earth maneuvers. Previous efforts only 

analyzed fixed helicopter designs using this simulation technique. The final advancement 

presented through the first contribution is integration of the filtered data analysis 

approach to design space exploration for maneuver performance related design trades. 

This tool is used throughout all three of the contributions and the benefits are shown in 

Chapters 2, 3, and 4. In combination, the integration of these advancements allows for 
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design impacts on maneuverability limits to be assessed quantitatively and design space 

trades to be conducted real-time. 

The second research question required analysis of techniques for including 

controllability measures into a control independent simulation and design. The 

motivation for this research is that maneuvers that are deemed feasible with energy-based 

formulations are often found to be infeasible when rigid body constraints are later 

analyzed. This required a literature search in multiple areas including: helicopter design, 

spacecraft design and optimization, and path-planning strategies. Difficulties arose 

because these measures must account for a multitude of control design decisions, while 

remaining at the appropriate level of detail for conceptual design. 

Research Question 2: How can the quantitative impact of control integration 

decisions on maneuver performance be used to develop control system requirements 

independent of control design? 

Contribution 2: Real-time maneuver analysis capabilities that include control 

characteristic constraints, which provide improved estimates and traceability for 

development of control system requirements. 

The second contribution, which is presented in Chapter 3, introduced control 

integration measures into the process. Although the control system design is not directly 

integrated into the conceptual design process, it is important to capture control constraint 

and requirement information as early as possible. Two measures were integrated in this 

work, which included control deflection rate and trajectory divergence rate. This 
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integration allowed for the maneuver feasibility to be constrained by dynamic control 

limits, which was noted to be of high importance by the discrete path planning 

communities, since often times infeasible paths are deemed feasible unless dynamic 

measures are included. This new constraint offers a more conservative and robust 

solution. The second control characteristic provided quantitative measure of divergence 

from the ideal trajectory due to errors in the sensors and controllers. This measure is 

general enough to be applied to any control architecture at the early stages of design, 

while at the same time providing quantitative measure to be used as a requirement during 

control system design. Similarly, the process enables these trades to be conducted in real-

time. These control characteristics are formulated for conceptual design; however, they 

can be easily decomposed into more detailed measures as more detailed models or 

information become available. 

The final research question and corresponding contribution deals with mitigation 

of the dimensionality concerns stemming from the immense helicopter operational 

envelope. The previous contributions enabled the design parameter effects on 

maneuverability limits to be captured and assessed quantitatively; however, this analysis 

could only be performed on a small number of maneuvers. Hence, the third research 

objective determines a manner in which to handle the immense maneuver space, while 

simultaneously enabling specific missions to be analyzed quantitatively for design trades. 

Research Question 3: Given that the maneuver space is combinatorial, how 

can the maneuverability characteristics be captured for the entire helicopter 

operational envelope, thus, enabling analysis of complete missions? 
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Contribution 3:  Technique for developing the fundamental parametric 

maneuvers for quantitative assessment of maneuverability characteristics over the 

entire operational envelope. 

The third contribution was presented in Chapter 4 of this dissertation and 

addressed the final research question associated with integrating the entire 

maneuverability envelope into early design. A systematic and traceable process was 

presented for developing a maneuver taxonomy. The taxonomy was developed using 

helicopter literature, which enables analysis of any maneuver within the operational 

envelope. However, the complexity of the maneuver mathematical formulation presented 

further difficulties when integrating into a design framework. Therefore, the maneuver 

mathematical formulation was modified to reduce the number of variables required, while 

still enabling the operational envelope to be described. The combination of the maneuver 

model and the taxonomy enabled for the performance of individual maneuvers to be 

analyzed such that the impact of design constraints or changes in the maneuver definition 

can be fully explored real-time.  

 The benefits of the contributions were shown by applying the final process to the 

2012 AHS design competition, which was the motivation for this work. The entire 

mission in the competition consists of at least 31 maneuvers. For clarity purposes, 

analysis of only four maneuvers was shown. However, the analysis can be easily 

expanded to all of the maneuvers using the process developed. Consequently, this 

example showed that the combination of all three contributions presented in this 

dissertation enable the motivating problem to be addressed. Furthermore, this systematic 
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and traceable methodology can be easily adjusted to include many different types of 

systems and at all stages of the design process such that any NOE flight design can be 

completed. 

5.2 Future Work 

As with any complex problem, there are always additional contributions that can 

offer improvement.  Four areas of further research are offered in this section to further 

expand the process developed: integration of a design module, higher fidelity helicopter 

modeling, inclusion of more controllability measures, and incorporation of a mission 

optimization routine. 

5.2.1 Integration of Design Module 

The process could benefit through integration of a design module that allows for 

mission sizing prior to the dynamic analysis loop. Additionally, this process should allow 

for iterations such that the maneuverability characteristics can aid in selection of an 

appropriate sizing mission and performance combination. All of the inputs to the 

helicopter model derived in this work correspond to the helicopter sizing code GTPDP 

developed at Georgia Institute of Technology. This sizing code would need to be 

integrated into the process and an iteration routine applied to enable the performance 

analysis to drive the sizing mission definition. 
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5.2.2 Higher Fidelity Helicopter Modeling 

Simpler rotor models that are based on momentum theory or dynamic inflow are 

useful for predicting net rotor performance, especially for flight mechanics work where 

there is an emphasis on computational brevity. However, capturing the main rotor wake 

rotor flapping response during maneuvers is important for analyzing transient maneuvers 

and predicting cross-coupling effects [220-222]. As stated by Hennes [223], “a transient 

maneuver is a short-time event, typically initiated through pilot control, which 

significantly perturbs the rotor system from its steady-state operating condition”. The 

blade motion and aerodynamic loading are aperiodic during a transient maneuver, which 

makes computation difficult. Additionally, Krothapalli [224] notes that “for many years, 

helicopter simulations have predicted off-axis response in hover and low speed forward 

flight that is opposite in sign to the corresponding flight test data.” Several authors have 

investigated methodologies for integrating time-accurate free wake models into flight 

dynamics simulation. Ribera [225] found that “sophisticated aerodynamic models are 

needed for accurate predictions in a variety of practical problems of helicopter flight 

dynamics, such as the response to pilot inputs in moderate and large amplitude unsteady 

maneuvers, trim in turning flight, trim and response in descents, including near and 

through the vortex ring state, and the off-axis response to pilot inputs.” Bottasso [226] 

and Ribera [227] recommend  hierarchical approaches of increasing modeling complexity 

using a time accurate free wake model coupled with a comprehensive flight dynamics 

simulation model. One approach using hierarchical strategy in combination with inverse 

simulation techniques is presented by Cao [228], where the rotor control settings and 
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helicopter flight attitudes are first obtained using inverse solution technique, and then 

“the unsteady rotor forces are numerically simulated by synthetically applying the vortex 

theory, dynamic inflow theory and unsteady airfoil aerodynamic models.” Higher fidelity 

rotor models should be included in order to analyze a greater number of NOE maneuvers. 

5.2.3 Inclusion of Additional Controllability Measures 

In Chapter 3 several controllability measures were introduced in order to 

quantitatively constrain the design space and aid in formulation of control system design 

requirements. These measures can be expanded to include more information to the 

control design engineer. At this point, the control engineer can provide the designer with 

additional measures that can provide more information to enable mitigation of control 

integration concerns. Additionally, some additional measures for stability and handling 

qualities can be incorporated. 

5.2.4 Mission Optimization Integration 

The fourth area for future work is the incorporation of an optimization algorithm 

for forming the optimum path mission. Currently, the process is setup such that the trades 

are conducted real-time by the designer. The reason is that much information is gained 

through conducting the optimization in this manner. However, added benefit can be 

gained through integration of an algorithm to conduct this analysis. In this manner, the 

designer can step through the results obtained by the optimizer and can adjust constraints 

accordingly. One manner to progress is integrating path planning strategies into the 
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analysis framework. Gillula [229] states that “the control of a complex system can be 

made easier by modeling the system as a collection of simplified hybrid modes, each 

representing a particular operating regime.” Another important aspect to consider is the 

switching of dynamics between maneuvers such that the aircraft completing one 

maneuver is able to begin the next maneuver without being an infeasible configuration 

[230]. A final adjustment is the performance measure. The performance measure used 

throughout this work was minimum time; however, a multitude of measures are possible 

such as minimum power or minimum fuel burn. These measures can be added to the 

process to enable a greater number of problems to be addressed.   
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APPENDIX A  

Maneuver Model Time Histories 

A taxonomy that consists of four fundamental maneuvers is laid out in the 

previous section and consists of motions in the X, Y, Z, and Heading axis of the 

navigation frame. The mathematical representation and validation is shown for each type 

of maneuver in this section for completeness. A maneuver is modeled using each of the 

remaining 3 fundamental maneuver types. The longitudinal maneuver involving Z-axis 

motion, aka pop-up, was discussed in detail in Chapter 2 so it is not readdressed. Once all 

of the maneuvers are validated, the ability to model complex maneuvers through 

combinations of the various fundamental maneuvers is discussed; however, incorporation 

into the design framework is left for future work. The remaining 3 maneuvers in the 

taxonomy are Lateral Maneuvers (Y axis), Longitudinal Maneuvers (X axis), and 

Heading changes (Psi). 

Lateral Maneuvers – Y Axis Motion 

The lateral maneuver grouping of the taxonomy contains helicopter motions that 

involve accelerations in the y axis of the navigation frame. This acceleration results in 

side step and lane change trajectories, which are commonly referred to in rotorcraft 

literature as lateral jinks. A simple example of three different lateral jinks are shown in 

Figure A.1, which were generated using the models and methods derived in this work. 

This example is simplified as compared to the DoE used for simulation in the data 

analysis section in that the time, altitude, and initial velocity are all fixed. These 
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constraints are applied here only for figure generation and understanding. Each of the 

three maneuvers within the figure represents a different y-axis acceleration as specified 

through the DoE. The pink trajectory in the middle of the paths represents the case of 

zero acceleration.  

 

Figure A.1: Multiple Lateral Trajectories 

A single maneuver within the maneuver design space must be selected for 

validation. Hence, a maneuver trajectory is shown in Figure A.2 where a constant 

forward velocity of 8.5 ft/s is maintained throughout the maneuver, which lasts for 10 

seconds. The y component of the velocity starts at a value of zero because the helicopter 

is initially in trimmed level flight. Throughout the maneuver, the y velocity changes from 

zero to a negative maximum value at 5 seconds and finally returns to a value of zero at 

the end of the maneuver. This velocity profile results in the lane change maneuver shown 

in Figure A.2. 
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Figure A.2: Y-Axis Maneuver 

The key trends to investigate for this maneuver are the y axis velocities and 

accelerations relationships to the lateral displacement, which are summarized in Figure 

A.3. The top portion displays the y axis displacement with time, which results from the 

velocity profile that is specified as the constraint. The velocity profile may be viewed in 

the middle of the figure. The profile is specified to start and end at a value of zero 

velocity with a smooth curve to a maximum velocity of approximately 32 ft/s occurring 5 

seconds into the simulation. The acceleration profile is a byproduct of the manner in 

which the velocity is defined. It is observed that the lateral displacement and acceleration 

are indeed correct for the defined velocity profile. 
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Figure A.3: Lateral States and Derivatives 

The velocity profile and corresponding displacement and acceleration time 

histories are very similar to those presented in [25, 136, 144]. Additionally, the control 

time histories for the lateral side step maneuver must be examined to ensure that the 

results through dynamic simulation are representative of actual helicopter motion and 

control. Figure A.4 displays the time histories of the four helicopter controls for the 

simulated lateral maneuver. The main rotor collective appears at the top portion. As 

expected, the collective must increase during the maneuver in order to maintain the 

forward velocity and accelerate the vehicle laterally, while balancing out the weight 

component in the z axis. The collective reaches a maximum deflection when the 

acceleration is maximum and tapers off slightly; however, it does not decrease much 
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because the velocity is still increasing in the lateral direction which requires more 

collective to balance the drag components that are introduced. The collective again 

reaches maximum deflection when acceleration is a minimum value. At the end of the 

maneuver, the collective is again at the trim value that was observed at the beginning of 

the maneuver.  

The longitudinal cyclic is the second subplot in Figure A.4. The key function of 

the longitudinal cyclic is to maintain the forward velocity throughout the maneuver; 

hence, as main rotor thrust is being diverted to produced lateral accelerations and the 

corresponding drag forces increase, the longitudinal cyclic must increase in magnitude to 

maintain the constant forward velocity. The lateral cyclic and tail collective are displayed 

in the final two portions of the figure. These controls are used to provide the lateral forces 

necessary to accelerate, while at the same time balancing the moments to prevent rotation 

of the vehicle about the yaw axis. The tail collective is maximum deflection when 

acceleration is maximum as expected, while the lateral cyclic follows a sinusoidal 

function of time as shown in Hess [25]. 

As in keeping with previous verification and validation efforts, the attitude of the 

vehicle throughout the simulation is also presented. The pitch angle of the vehicle 

changes because of coupling of forces and moments within the EoM of the helicopter 

model. Additionally, the pitch should follow a similar trend to that already discussed of 

the longitudinal cyclic. Through comparison of Figure A.4 and Figure A.5 it can be 

observed that this trend is correct. As the longitudinal cyclic decreases, the pitch of the 

vehicle increases to balance out the effects. Additionally, Figure A.5 indicates that the 
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constraint of zero heading change is enforced throughout the entire maneuver. The final 

angle to discuss is the roll angle, which appears in the middle portion. As expected the 

helicopter must roll in order to complete the lane change maneuver and the maximum roll 

angle occurs during maximum lateral acceleration. Finally, the roll angle returns to trim 

conditions at the end of the maneuver. 

 

Figure A.4: Lateral Motion Control Histories 
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Figure A.5: Helicopter Attitude during Lateral Maneuver 

As previously mentioned, the tail collective is used to counteract the torque 

generated by the main rotor. This torque is related to the power required and the rotor tip 

speed. This observation indicates that there must be a direct relationship of the tail rotor 

collective to the power decomposition. The power decomposition for the lateral 

maneuver is shown in Figure A.6 where the induced power time history corresponds 

directly to the time history of the tail rotor collective that was discussed in Figure A.4. 

Moreover, the profile power and parasitic power both are a function of induced velocity 

and freestream velocity, which increases during the maneuver. As a result, both powers 

increase as shown in the bottom two portions of Figure A.6. 
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Figure A.6: Power Decomposition for Lateral Maneuver 

Accelerate Maneuvers – X Axis Motion 

The trajectory of the acceleration maneuvers is not as easily visualized as the 

other fundamental maneuvers within the taxonomy. In order to better view what is taking 

place during the maneuver, power required is added to the trajectory shown in Figure 

A.7. The acceleration maneuver consists of an increase in the forward velocity until a 

maximum is reached halfway through the maneuver. At which time the velocity then 

decreases back to the initial velocity by the end of the maneuver. The only position 

variable that changes is the x-axis location. Because of the trajectory profile and the 

relationship of velocity to power required, the maximum power required occurs  at the 
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start and end of the maneuver. The velocity at the start of the maneuver is defined to be 

52 ft/s and reach a maximum of 95 ft/s at the halfway point.  

 

Figure A.7: X-Acceleration Maneuver Trajectory 

The velocity decomposition may be observed in Figure A.8, where the x-axis 

body velocity closely approximates the maneuver defined velocity initially. During the 

maneuver, the helicopter must pitch forward to accelerate, which causes an increase in 

the z-component of the velocity as shown in the bottom of the figure. Moreover, during 

the second portion of the maneuver the helicopter must decelerate, which requires a 

positive pitch angle resulting in a positive z-component of velocity. The y-component 

velocity remains close to a zero value throughout the simulation but changes slightly due 

to coupling effects within the EoM. This is viewed in the middle subplot of Figure A.8. 
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Figure A.8: X-Acceleration Velocity Decomposition 

The pitch angle was previously mentioned with regards to the z-component 

velocity value. The attitude of the vehicle throughout the simulation, including the pitch 

angle, is shown in Figure A.9 to verify that the correct body rotations are present. The x-

axis acceleration maneuver requires the helicopter to increase in horizontal velocity. This 

requires that the vehicle initially pitch forward to accelerate to a faster velocity and then 

decelerate back to the initial velocity. For the maneuver tested, this pitch corresponds to a 

maximum magnitude of 23 degrees, while at the initial velocity only a -5 degree pitch 

angle is required. Throughout the maneuver, the pitch angle follows the trends as 

expected and returns back to the equilibrium value at the end of the maneuver. Heading 

may be viewed in the bottom of Figure A.9 and maintains the constrained zero value 
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during the entire duration of the maneuver. As in past verification efforts, the roll angle 

directly correlates with the power required and since the power required is a minimum at 

the midpoint of the maneuver, the roll angle is smallest at this time. The roll angle is 

shown in the center segment of the figure. It should be noted that all the angles remain 

smooth throughout, which is essential to simulating actual flight scenarios. 

 

Figure A.9: X-Acceleration – Attitude 

The states are shown to follow the correct trends and magnitudes throughout the 

maneuver. Next, the control deflections must also be presented and discussed. When the 

pitch of the vehicle changes in order to tilt a component of the thrust vector toward the 

required acceleration vector, the balance in weight and thrust in the z-axis of the 

navigational frame is lost. Without any adjustment in the main rotor collective, the 
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helicopter would loss altitude. Since the dynamic constraint is applied such to maintain 

altitude, the main rotor collective must increase for the duration of the maneuver because 

during both acceleration and deceleration in the x-axis the vehicle must pitch. This is 

viewed in the top portion of Figure A.10.  

 

Figure A.10: X-Acceleration - Control Settings 

As in previous verification studies, the tail collective, shown in the bottom 

subplot, must increase in order to counter the torque generated from the increase in main 

rotor collective. Similarly, the lateral cyclic is increased to cancel out the additional side 

force and corresponding rolling moment that is generated at the tail. The longitudinal 

cyclic response is the most complicated of all the controls. This is because it is required 

to tilt the tip-path plane, while at the same time balancing the longitudinal forces and the 
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pitching moment. Analyzing Figure A.10 it is observed that the longitudinal cyclic 

degreases in the acceleration phase of flight meaning the TPP is tilting forward. The 

oscillation is caused by the balancing of the pitching moment but a steady-state is reached 

by the midpoint of the simulation. At this point the vehicle is required to decelerate, 

which requires the TPP to tilt aft. This action again causes stable oscillations that subside 

at the end of the simulation. 

 

Figure A.11: X-Acceleration – Power Decomposition 

The power decomposition corresponds directly to the freestream and induced 

velocity components. The vehicle velocity increases as the system accelerates, which 

results in a decrease in the induced power. The induced power time history is shown in 

the top portion of Figure A.11 and is inversely related to the velocity profile. On the other 
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hand, the profile and parasitic powers increase with velocity and the time histories are 

shown in the bottom two subplots of Figure A.11. Because the velocity increases and 

decreases with no change in heading or altitude, all three powers return to the initial 

power settings. 

Heading Maneuvers – Psi Changes 

The fourth and final maneuver within the taxonomy is the heading change 

maneuver. This maneuver is essential in changing the heading of the system within the 

flight envelope. All of the other maneuvers previously discussed enforced a constraint 

that required that heading maintain a zero value throughout simulation. The helicopter is 

not symmetric since the tail rotor is providing a force in the y-axis of the system and the 

main rotor is rotating the same direction for all maneuvers. As a result, a clockwise turn 

has different performance limits than a counter-clock wise turn. This concept is displayed 

in Figure A.12 where tighter clockwise turns are possible because of tail rotor force 

direction. Each maneuver within the figure represents a different maximum yaw 

acceleration with one of the maneuvers maintaining zero heading change. With this 

fundamental maneuver, turning performance can be assessed. 

A single clockwise maneuver is discussed in the following paragraphs to verify 

that the final maneuver within the taxonomy contains the correct trends. The trajectory of 

the 165 degree turn that occurred over a 14 second interval is shown in Figure A.13. The 

forward velocity of the specified maneuver is 8 ft/s. The path starts in the upper left 

corner of the figure with a zero displacement in both the x and y axes. A maximum 
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displacement of 35 ft in the x-axis of the inertial frame is reached about halfway through 

the simulation, while the final y-axis displacement of 37 ft occurs at the end of the 

simulation. If the heading acceleration rate was increased slightly, the vehicle would 

complete an entire 180 degree turn rather than only 165 degree. 

 

Figure A.12: Multiple Turning Maneuvers 

 

Figure A.13: Turning Maneuver Trajectory 
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A forward velocity of 8 ft/s is constrained throughout the simulation through the 

maneuver definition. Additionally, the lateral and vertical velocities are constrained to 

zero values. All of these constraints are met during simulation and are viewed in Figure 

A.14. The top portion of the figure displays the x-axis velocity of 8 ft/s throughout the 

simulation time, while the bottom two portions show that the other components of 

velocity remain near zero. There are minor deviations in the other two velocities because 

keep in mind that the navigational frame velocities are constrained while the body 

velocities are displayed. 

 

Figure A.14: Heading Acceleration - Velocity Decomposition 
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Unlike the other maneuvers within the taxonomy, the heading acceleration 

maneuver imposes a change in heading constraint. It must be viewed that this constraint 

is smooth and that the impact on other vehicle angles results in smooth time history 

profiles. The heading change as a function of time may be observed in the bottom section 

of Figure A.15. The heading starts at the initial value of zero and ends at a heading of 165 

degrees as stipulated in the maneuver definition. The value is negative because the 

clockwise rotation is defined as negative when comparing the navigational frame to the 

inertial coordinate system. The pitch of the vehicle, which is shown in the top portion of 

the figure, remains around the initial angle but diverges slightly as expected from viewing 

the velocity components in Figure A.14. The roll angle of the helicopter is displayed in 

the middle subplot of Figure A.15. The sign of the roll angle is opposite because of the 

heading transformation from the navigational frame to the inertial frame. Hence, the roll 

angle is actually the opposite direction to that shown in the figure. As a result, the 

helicopter is now viewed as rolling into the turn as expected with a maximum roll value 

occurring at maximum roll rate. 

The only controls that require discussion are the lateral cyclic and the tail rotor 

collective settings. The main rotor collective and the longitudinal cyclic remain almost 

constant throughout the simulation because the forward velocity and altitude are 

maintained. The control time histories for the turning maneuver may be viewed in Figure 

A.16, with the lateral cyclic and tail rotor collective displayed in the bottom two subplots, 

respectively. 
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Figure A.15: Vehicle Attitude – Heading Acceleration 

In order to perform the turn, the lateral cyclic must be increased in order to 

provide the necessary rolling moment and the side force to enter the turn. The lateral 

cyclic reaches the maximum value in mid-maneuver and returns to initial conditions at 

the end of the simulation. Additionally, the tail collective must increase to balance out the 

side force generated by the lateral cyclic such that the constant radius turn can be 

performed. Otherwise, there would be a change in the lateral velocity component leading 

to constraint violation. Both lateral controls correspond directly to the heading profile 

change with time as necessary. 
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Figure A.16: Control Settings – Yaw Acceleration 

Through analyzing the velocity decomposition, it was shown that the velocity is 

maintained constant throughout the maneuver. As a result, the profile and parasitic drags 

remain constant through the simulation as viewed in Figure A.17.  The induced power 

increases slightly with an increase in main rotor collective and thrust setting. The induced 

power time history is shown in the top portion of the figure with a maximum power 

requirement of 1100 hp in the middle of the maneuver when the yaw rate is a maximum 

value. 
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Figure A.17: Power Decomposition – Yaw Acceleration 
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APPENDIX B  

Multivariate Analysis of Trim Algorithm 

The trim condition corresponds to five states of interest and four controls. The 

states consist of three linear velocity components, pitch angle, and roll angle. The angular 

rates and yaw angle are forced to be zero through the trim constraints so they are not 

included in the trim analysis. The relationship between all of the states and controls may 

be observed in a multivariate manner in Figure B.1. This figure is an excellent resource 

for verifying that the trends in the data are accurate. The multivariate plot shows all nine 

variables of interest such that the relationship between any two variables can be easily 

observed. For example, as the velocity increases, the horizontal velocity (Vx) and the 

pitch angle (theta) must increase, which results in an increase in the magnitude of the 

vertical velocity (Vz) component. The other trends can be verified through similar 

structured reasoning.  
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Figure B.1: Multivariate Plot of Trim States and Controls 

 



292 

 

APPENDIX C  

Various Design Optimization Strategies 

Since this ability was already demonstrated in Chapter 2, another trade within the 

multiple maneuver space is conducted to demonstrate the power of the filtered data 

method. It is common during design that the weight of a given design increases as it 

progresses through the design stages; as a result, the designer may wish to select the 

maximum weight vehicle earlier in the design stages that is capable of performing all of 

the missions within the performance threshold. In order to conduct this trade using the 

approach applied in this work, a data filter is placed on the vehicle mass. This filter is 

adjusted real-time until a design is achieved that can perform all four of the mission 

maneuvers. This filter is applied and a vehicle mass of 13700 lbs is determined and the 

resulting design parameter settings for this scenario are displayed in Figure . Observation 

of the figure shows that for a similar mass vehicle of approximately 13700 lbs, the 

diameter of the main rotor must be within the upper-middle region of the ranges set. 

Additionally, the maximum mass constraint also dictates design variable ranges for CG, 

Chord, Tail Rotor Moment Arm, and Tail Area. 
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Figure C.1: Maximum Mass Vehicle for Mission Success 

Assume that the designer finds out after this analysis that minimizing the main 

rotor diameter is actually the driving requirement due to the pylon width constraints. 

Fortunately, the filtered data approach allows for real-time adjustment of the constraints. 

The design parameter ranges for the minimum rotor design are shown in Figure . Using 

this method, the minimum rotor diameter for success is determined to be around 48 ft. 

This requirement substantially reduces the maximum weight of the vehicle as compared 

to the previous exercise. Additionally, the Chord, Tail Rotor Moment Arm, and Tail Area 

all decrease as expected; however, without the simulation environment, this value could 

not be quantified. 

Although only the first 4 maneuvers of the mission are analyzed, the overall 

process is fully demonstrated with the above example. In order to include all of the 

maneuvers requires multiple trades similar to those conducted in this section; however, 

these trades are just an extension of the data analysis that is shown. Therefore, the 

approach proposed in this work for analyzing the entire AHS 2012 Design Competition is 

verified. Additionally, the ability to conduct real-time trades is shown through the two 
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different approaches of maximum mass solution and minimum rotor diameter footprint 

examples. 

 

Figure C.2: Minimum Rotor Diameter for Mission Success 
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