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SUMMARY 

 The work in this dissertation comprises aeroservoelastic simulation development, 

two modal filter design case studies and theoretical improvement of the modal filter. The 

modal filter is made robust to sensor bias. Studies have shown that the states estimated by 

the modal filter can be integrated into active structural control. The integration of modal 

filters into aircraft structural control systems is explored. 

 Modal filters require distributed sensing to achieve accurate modal coordinate 

estimates. Distributed sensing technology has progressed to the point, where it is being 

tested on aircraft such as Ikhana and the upcoming X-56A. Previously, the modal filter 

was criticized for requiring too many sensors. It was never assessed for its potential 

benefits in aircraft control. Therefore it is of practical interest to reinvestigate the modal 

filter. 

 The first case study shows that under conditions of sensor normality, the modal 

filter is a Gaussian efficient estimator in an aeroservoelastic environment. This is a 

fundamental experiment considering the fact that the modal filter has never been tested in 

the airflow. 

 To perform this case study a linear aeroservoelastic code capable of modeling 

distributed sensing is developed and experimentally validated. From this code, a 

computational wing model is fitted with distributed sensing. A modal filtering design 

methodology is developed and applied.  

 With distributed sensing and modal filtering feedback control is achieved. This is 

also compared and contrasted with a controller using state-of-the-art accelerometers. In 
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addition, new methods of active shape control are introduced for warping an aeroelastic 

structure utilizing the modal filter and control surfaces.  

 The next case study takes place in a realistic setting for an aircraft. Flexible 

aircraft bring challenges to the active control community. Increased gust loads, 

possibility of flutter, and off-design drag may detrimentally affect performance and 

safety. Aeroservoelastic tailoring, gust load alleviation (GLA) and active flutter 

suppression (AFS) may be required on future flexible air vehicles. It is found that modal 

filters can theoretically support these systems. 

 The aircraft case study identifies additional steps required in the modal filtering 

design methodology. Distributed sensing, the modal filter and modal reference shape 

control are demonstrated on the X-56A flutter-unstable simulation model. It is shown that 

control of deformations at potentially millions of points on an aircraft vehicle can be 

achieved through control of a few modal coordinates.  

 Finally modal filter robustness is theoretically improved and computationally 

verified. State-of-the-art modal filters have high bias sensitivity. In fact, this is so critical 

that state-of-the-art modal filters may never be certified for aircraft implementation. This 

is especially true within a flight critical control system. The solution to this problem is 

found through derivation of the robust modal filter.  

The filter combines good properties of concentration algorithms with robust re-

descending M-estimation. A new trim criterion specific to the strain based modal sensing 

system is derived making the filter robust to asymmetric or leverage point outliers. 

Robust starts are introduced to improve convergence of the modal estimation system to 

the globally optimal solution in the presence of 100s of biased fiber optic sensors. 
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CHAPTER 1                                                                                                                            

 

 

 

INTRODUCTION 
 

 

 
 The dissertation begins with a background on modal structures, filtering and 

control. Modal filtering is a method of estimating modes through some form of 

estimation. Due to technological barriers modal filters have not been adequately 

represented on aircraft. It is shown by way of recent developments in distributed sensing 

that modal sensing is a technology which must be reassessed. This is especially true for 

more flexible aircraft.  

 A simple example is given first, to demonstrate the properties of modal 

coordinates. This is followed by a background review on historical modal filtering 

methods and aircraft modal control. Next a discussion is given on the current state of 

distributed sensing and shape sensing. This is followed by development of dissertation 

research questions and the organization of the dissertation.  

 

1.1 Background 

 

 

 The number of degrees of freedom (DOF) of an analytical structure is 

theoretically infinite. To approximate the continuous structure, the finite element is 

typically employed. This is done by discretizing the structure into elemental shapes of 

known mass and stiffness matrices. A buildup of local mass and stiffness matrices leads 



 2 

to global mass and stiffness matrices. The global mass and stiffness matrices can be used 

to analyze the original complex structural model generally with good accuracy. 

 Mathematically, this is the same as approximating the continuous structure as a 

lumped system. In a lumped system, continuous mass and stiffness properties are lumped 

at discrete locations resulting in   DOF. The size of   can be on the order of millions for 

large complex structures [1]. Due to finite element model size, a reduced set of 

coordinates known as generalized coordinates or modal coordinates are typically 

employed for analysis.  

 The modal model of the larger system assumes that the deflection at all points of a 

structure in forced or unforced conditions is equal to a linear combination of an infinite 

number of mode shapes. Thus the deformation can be approximated by a reduced set of 

modal coordinates and mode shapes which dominate the response as in Eq. (1.1), 

                               (1.1) 

where                     are modal coordinate scalars varying with time   and 

           are constant boundary satisfying shape functions with dimensions,    . 

 By casting the structural equations of motion into a modal form, the number of 

degrees of freedom,  , reduces to  , where generally      after modal truncation. 

Each mode shape corresponds to a particular natural frequency. The frequency and action 

location of environmental forces tend to determine what mode shapes will be excited. 

Thus, with careful consideration, certain mode shapes can be included in the modal 

modal and certain mode shapes can be ignored. The low frequency mode shapes tend to 

be excited more often and also dominate the response in most environments.  
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 A computational example taken from the author’s simulation model demonstrates 

this effect. Consider a model constructed of 100 finite elements with 300 DOF (assuming 

bending, torsion and vertical degrees of freedom (DOF) per node). Six mode shapes and 

corresponding modal coordinates are used to characterize the deflected shape of a 

cantilevered plate under a point load. Figure 1.1 shows the structure in its un-deformed 

shape at the beginning of the static force test.  

 

Figure 1.1: Plate Structure Model a) Undeformed Structure; and b) Modal 

Coordinates at Time 0. 

 

 Initially the structure is in static equilibrium with no external forces applied and 

thus, the modal coordinates start at zero at time 0. Any amplitude change in the modal 

coordinates represents a movement from the initial undeformed state of the structure.  

 The motion of the modal coordinates can be excited by an external force. This 

force can be represented through aerodynamic forces or other external loads. For 

demonstration of how the modal coordinates respond, a point force is applied to the 

corner of the structure.  

a) b) 
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 The application of the force to the corner of the plate causes it to initially twist 

and bend as would be expected. The response can be mostly characterized by two modal 

coordinates, as shown in Fig. 1.2.  

 

Figure 1.2: Deformed Structure a) Structural Deformation Initial Stage; and b) 

Modal Coordinates up to 2 s. 

 

 The two modal coordinates which moved substantially are: 1
st
 bending and 1

st
 

torsion. It is not unusual that these particular coordinates responded to the point load. 

Lower frequency modes tend to dominate the response of most structures when excited 

with low frequency applied forces. Indeed, the bending and torsional coordinates tend to 

resonate at low natural frequencies of 0.31 Hz and 1.59 Hz respectively.  

 Note that the natural frequency of the bending mode is lower than that of the 

torsional mode. It is also interesting that the bending mode moves more than the torsional 

mode. The point force was applied at points of maximum modal deflections, for both 

mode shapes. 

a) b) 
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 Therefore this demonstrates for this case how it is easier to move a lower 

frequency modal coordinate. The modes with higher frequencies move very little, 

showing only a small contribution to the deformation. 

 The modal coordinates also characterize the dynamics of a structure. They may be 

used to represent velocity and acceleration of a system. Therefore, they have a dynamic 

nature, which if controlled could be very useful in moving the shape of the structure.  

 Most structures have a certain amount of damping. In aircraft, this damping 

comes from natural structural damping as well as aerodynamic damping. For this 

cantilevered plate, ten percent damping is modeled in the system. When solving the 

equations of motion the surface develops a restoring force (also due to stiffness) and the 

structure moves back almost towards its starting point as shown in Fig. 1.3.   

 

Figure 1.3: Deformed Structure a) Structural Deformation Intermediate Stage; and 

b) Modal Coordinates up to 3.5 s. 

 

a) b) 
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Modal motion is often characterized by vibration or oscillations. As the oscillations damp 

out, the steady state response is revealed. If the movements are from an applied external 

force, the structure will likely achieve a new equilibrium displacement state.  

 For this example, the structure moves to a static equilibrium under the forcing 

static point load. The modal coordinates or modal displacements move into steady-state 

positions. This is significant, because if these modal displacements can be controlled, 

then the structure can be forced approximately into a unique shape.  

 The steady state response of the cantilevered plate is achieved from the point load 

and the final position is mostly characterized by a bending and torsion type shape as 

shown in Fig. 1.4.  

 

 

Figure 1.4: Deformed Structure a) Static Equilibrium of Structure Under Forced 

Condition; and b) Modal Coordinates up to 40 s. 

 

 The power of modal coordinates draws from the principle of superposition. This 

principle assumes that the contribution of each modal displacement to the system 

a) b) 
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response is strictly additive. With knowledge of only a few low frequency modal 

coordinates, a majority of the global response can be characterized. In a structure, the 

response can be associated with strain, loads etc. Thus with knowledge of modal 

coordinates, internal load and strain distributions can be approximated. 

 Aerodynamic forces and point load forces share a similar principle. They may be 

treated as external forces on the structure. Aircraft are essentially flying structures subject 

to most forces used to model any structure, but with external aerodynamic forces. It is 

true that aerodynamic forces change the modal frequencies and the mode shapes. But 

mathematically, these forces may be treated as external forces. Thus superposition of 

mode shapes must still characterize deformation even under aerodynamic forces. This is 

true only for small deformations, however. 

 In summary, modal coordinates allow for significant model reduction and 

improve analysis capabilities. As shown above, there were near to 300 DOF in the finite 

element model, but only two modal coordinates were required to characterize the motion 

of the system. If modal coordinates can approximate deformation, then commanding 

modal coordinates in flight control systems could be of interest.  

1.1.1 Modal Filtering 

 

 The above example describes the significance of the modal coordinate. Estimates 

of modal coordinates can capture the contribution of both static and dynamic deformation 

in a structure. The literature has shown the modal coordinates can be measured and used 

for purposes of control, analysis and structural monitoring etc. Accounts vary on how the 
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modal coordinates should be measured. But one thing is clear: they are important and 

their measurement facilitates several aspects of structural control. 

 Indeed, Sumali et al. [2] stated that modal sensing (also known as modal filtering) 

has gained so much importance in structural dynamics that it is now seen as its own field 

within the structural discipline. Several of these methods are briefly reviewed here, taking 

note of their limitations. They include frequency based, dynamic state estimation, spatial 

and continuous modal filters. The following section introduces frequency based modal 

filtering. 

 Frequency Based Methods 1.1.1.1

 

 For structures with distinct natural frequencies far apart, low and high pass filters 

may be used with single point sensors such as accelerometers to estimate local modal 

states [1]. The use of frequency based filtering has worked quite well in SISO and 

cascaded SISO type modal control configurations.  

 However, flexible structures may have interacting modes which need to be 

controlled. Furthermore, the frequencies of a structure tend to drift overtime and modal 

frequencies may appear close together in complex structures. It is also likely that 

production aircraft may experience variations which shift structural natural frequencies 

from one aircraft to the next and from one flight to the next [3].  

 S-plane filters also introduce additional dynamics into control designs. Indeed, in 

some instances, low pass filters at the output of a sensor induces dynamics into the plant 

and can lead to instability in feedback control systems [4]. Due to their limiting 
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application to SISO type control techniques for relatively rigid aircraft, frequency based 

methods are not reviewed further. 

 Dynamic State Estimators 1.1.1.2

 

 Various types of dynamic state observers have been employed to estimate modal 

states [5], such as the Kalman Filter (KF) which is the optimal estimator in the presence 

of plant and sensor noise. These filters are made possible through the modal state space 

representation and truncation. However, due to modal truncation the introduction of the 

KF can induce observation spillover into the system potentially resulting in instability 

[6].  

 Observation spillover is a case where truncated modes show up in the response 

and provide a misleading representation of the controlled modal states. Consider the 

composite system [7] described by controlled modes, error and residual modes 

          
 , where        ̂ .  The governing equation is as in Eq. (1.2). 

(

 ̇ 

 ̇ 
 ̇ 

)  (

            
             

           

)(

  

  
  

) (1.2) 

The spillover terms can be identified in this formulation to result from the      term 

(observation spillover) and the      term (control spillover). The sensor output is 

contaminated by the residual modes and feedback control excites the residual modes. 

 It is possible to reduce observation spillover to a minimum in the observer by 

appending truncated modal states to the estimator. But doing so has the property of 

increasing the size and complexity of the resulting estimator and/or controller depending 

on the control synthesis technique.  
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 One solution to this problem given by Sezak and Likins [8] was to design the KF 

with a modified measurement noise intensity matrix accounting for residual modes as in 

Eq. (1.3), 

        
  (1.3) 

where   is the standard measurement noise intensity matrix and    is the output 

measurement matrix for the residual modes and 

 [     ]     (1.4) 

This procedure tends to desensitize the reconstructed states to the residual modes, but the 

procedure works better if many sensors are available [7]. Many other methods and 

techniques have been given for both observation and control spillover, but are not 

reviewed here in detail.  

 Attention must also be given to the fact that a KF is only an optimal filter if the 

sensors are not significantly biased. Therefore if significant bias corrupts sensor 

measurements, the Kalman type filters will break down unless precautionary steps are 

taken. For practical modal filtering for an aircraft, a robust method is required. 

 Spatial Filtering 1.1.1.3

 

 Spatial modal filters take a step towards robustness, with their ability to compress 

thousands of sensor measurements into a modal estimate. Spatial modal filters were first 

proposed by Meirovitch and Baruh [9] as alternatives to observer techniques. Modal 

filters represent the quasi-static estimation technique, and at any instant of time, the 

modal coordinates may be determined from motion variable information measured at that 

same instant of time. Meirovitch and Baruh’s modal filter was derived strictly from the 

modal expansion theorem [10] as given as in Eq. (1.5), 
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 ̅    ∑      ̅    

 

   

 (1.5) 

where the time varying modal states   
    may be determined by Eq. (1.6). 

       ̅ 
 
  ̅    (1.6) 

Calculation of the modal coordinates requires knowledge of the system mass matrix 

      , the mass normalized eigenvectors  ̅      
 as well as deflections and 

rotations  ̅        
 at every point   in the structure in either a continuous or 

distributed FEM sense. The method is exact if all of the displacements of the structure are 

known in real time.  

 However, distributed data is not always available and thus approximations of the 

DOF at unmeasured locations were applied by Meirovich and Baruh by the use of 

interpolation functions. The interpolation functions include Lagrange and Chebyshev 

polynomials [11], splines [12], as well as those used in the finite element method [13], 

among others. Assuming Rayleigh-Ritz guidelines are employed using global admissible 

interpolation functions the modal states were calculated by Meirovich and Baruh as in 

Eq. (1.7), 

      ∫        
 

  ∑∑     

 

   

 

   

   [ (  )   (  )]   (1.7) 

where      is the mass distribution taken at point  ,        is a globally admissible 

interpolation function evaluated at  ,         [           ]  is the matrix of 

interpolation functions evaluated at sensor locations   ,   is the number of sensors points 

in the structure,    is the sensor point location,  (  ) represents zero-mean Gaussian, 
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independent, and uncorrelated stochastic noise, and   is the domain of the physical 

system and the eigenvectors of the system   .  

 Meirovitch and Baruh’s formulation depends upon having as many admissible 

interpolation functions as sensors, in order to take an inverse. Note that an admissible 

function is an arbitrary function satisfying all the geometric boundary conditions of the 

eigenvalue problem and are differentiable (to a specified order) over domain  .  

 Hence, this method only applies to simple structures where structural properties 

can be analytically defined, such as a simple plate/beam/truss etc. Meirovitch and Baruh 

also suggested the use of the finite element method to apply the method to more complex 

structures. In the finite element sense, the modal coordinates may be evaluated by 

breaking the domain   into smaller sub-domains          . This represents a slightly 

more practical approach for larger and more complex structures with varying geometry. 

  Modal coordinate calculation with the finite element method is analytically 

represented as in Eq. (1.8), 

      ∑∫        
  

    
 [  (  )    (  )]   

 

   

 (1.8) 

where    is a vector of interpolation functions for element   ,    (  ) is the 

measured deflections on the     element at sensor location   ,   (  ) is the zero-mean 

Gaussian, independent, and uncorrelated stochastic noise for the     element at sensor 

location    

 It is clear that the finite element build-up represents a more practical 

representation since it is not intuitive how to generalize global differentiable interpolation 

functions for a large complex structure such as an aircraft. However, the equation in this 
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form is not handy in its implementation, and would likely require quite a great deal of 

manual effort to set up.  

 Indeed, the continuous mass distribution is assumed to be known at every point on 

the structure and this may be uncertain in complex structures. This technique is also 

subject to errors such as that from: system parameter uncertainty, interpolation functions, 

eigenfunction error, and a finite number of sensors. In a study on the effect of these types 

of errors on independent mode control, it was shown that as the magnitude of modal filter 

errors increase, the stability of the closed loop vibration control system degrades [14]. 

 Some improvements to this technique can be found in the literature in the work of 

Zhang et al. [15] and Shelley et al. [16]. They introduce two experimental approaches to 

modal filtering, which includes the frequency response function (FRF) method and the 

pseudo-inverse method.  

 The FRF method begins with the calculation of the reciprocal modal vectors by 

calculating the weighted sum of a number of FRFs which most closely approach the FRF 

of a single degree of freedom (DOF) system, in a least squares manner. With knowledge 

of the input forces and the reciprocal modal vectors, the modal coordinate calculation 

may be expressed in the time invariant (stationary) form as in Eq. (1.9), 

      ∫        {  }
 {    }   {  }

 {  
 }∫   

      {  
 } {    }  

 

 

 

 

 (1.9) 

where { } represents the     reciprocal modal vector,    is the     complex eigenvalue 

corresponding to the     mode   ,      is the input forcing function vector, and     

indicates the complex conjugate. Shelley et al. tested this off-line modal filter technique 

on a five meter truss structure and achieved accurate modal acceleration results.  
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 However, the primary purpose of the technique as indicated by Freudinger [17] is 

to complete the modal model and check the orthogonality of the modal vectors given in 

Meirovitch’s work. Direct implementation of the method for modal sensing may be 

difficult without exact knowledge of the forcing functions in the system, and this 

application does not appear to be its sole purpose. 

 For real time mass and force independent modal filtering, Zhang et al. [15] 

proposed the pseudo-inverse technique given as in Eq. (1.10). 

 ̅            ̅ (1.10) 

This technique was tested upon the same 5 meter truss as in Shelley et al.’s work. In the 

tests, they chose to record 24 modes, and varied the number of accelerometer sensors for 

this task.  

 They found that the low frequency modes were estimated quite well but higher 

frequency modes were not. This was attributed to spatial aliasing, as the higher modes are 

not as spatially independent. Indeed, higher modes were also more coupled than lower 

order modes.  

 Rigid body modes were also not estimated accurately, due to errors in the modal 

matrix with respect to rigid body modes. They suggested that since the modal matrix   

may consist of several hundred rows, that this technique was not practical without sensor 

reduction.  

 Modal filtering has also extended into adaptive works. An adaptive modal 

filtering scheme for controlling the Big Darby Creek bridge in Ohio [18] and a 4.5 meter 

vertically hung truss [19], in which the control input forces were assumed to be known 

and measured. The system depended upon a Luenberger observer for estimation of the 

true modal coordinate, which was used to adapt the modal filter vector. Further 
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adaptation was accomplished with a Least Mean Square (LMS) algorithm, which 

estimated an optimum weighting vector by minimizing a least mean square error term.  

 In Slater and Shelley’s [20] health monitoring study, they proposed to use the 

adaptive filter in the presence of sensor faults. However the filter was only tested for a 

single sensor fault. It took nearly 5 seconds for the filter to adapt the system after the 

fault, which is too slow for critical control applications. 

 It has been shown that ordinary least squares (OLS) modal filter designs [16] 

require a large number of point sensors: typically at least two times the number of modes 

used to analyze the system. At a time when each sensor had its own hardware, cost and 

syncing issue it became paramount to minimize the number of sensors while achieving 

accurate modal coordinate estimates. Several sensor placement optimization strategies 

have been developed to support the modal filter implementation [21, 22, 23]. In any case, 

increasing the number of sensors has tended to improve modal filtering performance. In a 

test on a truss [16] the sensors were chosen for modal filtering from 8, 16 and 24 sensor 

locations. Each time they were selected from an optimal sensor placement technique. The 

modal filters with a higher number of sensors consistently outperformed the modal filters 

with fewer sensors. 

 However the modal filters to date have primarily relied on the assumption that the 

sensor errors are normal. The most robust modal filter relied on LMS. Both filters 

minimize an error function which increases without bound which increases without 

bound. Thus they will be highly sensitive to outlying sensor observations. Therefore OLS 

modal filters must be made robust for practical applications. 
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 Continuous Modal Filtering 1.1.1.4

  

 The modal filters, KFs and frequency based methods may all may be 

implemented with discrete sensor arrays, such as accelerometers, strain gauges, 

piezoelectric patches, etc. However, discrete sensor arrays have several shortcomings: 

firstly it complicates the hardware since each sensor requires its own electronics and 

secondly the discrete nature of the array can result in spatial aliasing [24].  

 Spatial aliasing [25] is the counterpart of the more well-known time aliasing and 

occurs: when the wave number   of one mode exceeds the number of sensors   regularly 

spaced in that direction, the sensor output appears as generated by a mode with a lower 

wave number       . Elka and Bucher show that the use of piezoelectric patches and 

linear combiner [2] results in spatial aliasing at higher frequencies.  

 Current research is addressing the shortcomings of discrete sensor arrays with 

continuous distributed sensors [26, 27, 28, 29, 30] such as piezoelectric films and optical 

fibers. These methods are not reviewed here, but it seems that the future of modal sensing 

will likely include continuous type distributed sensing techniques for high frequency 

applications [30].   

1.1.2 Modal Sensing Key Observations 

 

 A comparison of modal sensing techniques is summarized in Table 1.1. 

Continuous modal filtering and methods are not included as it is understood that 

continuous filters are used primarily to address the issue of spatial aliasing, which is not a 

major concern in aircraft modal control. The natural frequencies of aircraft modes are far 

below the frequencies where spatial aliasing could become a concern.  
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Table 1.1: Modal Sensing Table 
 

 Positive Negative 

Frequency-Based  

1) Simple to implement 1) Frequency dependent; frequencies 

shift over life of structure more 

than mode shapes 

2) Modal frequencies are 

known better initially 

2) Requires very distinct natural 

frequencies in structure 

3) Good for SISO type 

applications 

3) Difficult to implement in control 

system for MIMO systems with 

many states 

Dynamic state 
estimator 

 KF good for low signal to 

noise ratio feedback 

1) Sensitive to uncertainty 

 Error asymptotic stability 2) Observation spillover issues 

3) Integrating effects on the 

estimates 

3) Sampling rate dependent 

4) Good for MIMO 

applications 

4) Sensor bias may lead to overall 

erroneous results 

Modal Filters 

1) Eliminates observation 

spillover 

1) Large number of sensors required 

for accurate estimation 

2) Sampling rate does not 

affect accuracy of estimation 

2) Cross-coupling error leads to 

inaccurate estimates of modal 

coordinates 

3) Designed independently of 

controller 

3) Lacks integrating effects on the 

estimates 

4) Good for MIMO 

Applications 

4) Sensor bias may lead to overall 

erroneous results 
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 From Table 1.1, it is clear that frequency based techniques will only apply for 

SISO type applications of structures with distinct natural frequencies and thus, only state 

estimators and modal filters are considered. The modal filter techniques were proposed to 

eliminate observation spillover, but fell out of use due to the requirement for a large 

number of sensors and other issues listed in Table 1.1.  

 The modal filter is attractive because it relies directly upon the modal matrix. The 

same modal matrix can be used to design the state space equations for a structure. This 

includes the aircraft structure. The next section overviews some of the reasoning behind 

modal filtering and how it relates to control of structures. 

1.1.3 Modal Filtering for Structural Control 

 

 Many control strategies in the structures field have been developed for modal 

coordinate feedback [9, 16, 31, 25, 19, 32]. Performance of integrated systems applied to 

active vibration and noise control can be substantially improved by the use of high 

quality modal filters [33, 30]. Several techniques have emerged making use of discrete 

sensor arrays and include the modal filter [15] and the dynamic state estimator [34].   

 In the structures community, it was found that controllers relying on state 

observers such as the KF tend to introduce observation and control spillover into the 

problem with non-collocated actuators and sensors [25]. Likewise flight controllers can 

induce structural mode interaction (SMI) or control spillover in aerospace. Typically 

spillover is rejected through notching structural frequencies, but this leads to additional 

phase lag. 
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 Spillover can occur even though the margins of designing controllers with the 

LQG/LQR methods are substantial. According to Preumont [25], the margins provide 

good protection against delays and nonlinearities in the actuators. But he states that “they 

are not sufficient to guarantee against spillover instability, because the phase uncertainty 

associated with a residual mode often exceeds 60 degrees.” 

 To address this issue, spatial modal filters were developed to remove observation 

spillover [9] relying upon projection and the important property of orthogonality among 

the mode shapes. Several types of spatial modal filters were demonstrated on a few test 

articles, but fell out of interest. They were criticized for requiring too many sensors and 

also suffered from spatial aliasing.  

 To date, a spatial modal filter has not been utilized in an aircraft for modal 

control. Nevertheless, the structures community has continued research into modal filters 

since the early 90s. This has resulted in unique solutions to address effects of spatial 

aliasing with continuous distributed sensing, such as piezoelectric films and fiber optics 

[26, 27, 28, 29].  

 Enough background material and testing on modal filtering has been 

accomplished to make it a prime candidate for aircraft implementation. The question is 

where modal filtering fits into the aircraft control paradigm. This really depends on what 

the modal filter brings to the table. A brief review of aircraft modal control is given in the 

following section.  
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1.1.4 Aircraft Modal Control 

 

 Modal control of aircraft is not a new topic. That is not to say that a spatial modal 

filter has been used for control feedback in an aircraft. For the most part, output feedback 

and state feedback control has seen various experimental applications. Some of the 

aircraft which have been used for this purpose include the B-2, YF-17, F-4F, B-52 and 

Boeing SST [35, 36, 37, 38, 39, 40]. Historically, flexible motion suppression controllers 

have relied upon point sensors, frequency filters and/or estimators for control feedback 

[41, 42, 43]. But few of these methods have seen production level aircraft testing. 

 The experimental control techniques fall under various classes of classical, 

modern and adaptive methods. Classical approaches seemed to be taken early on, 

followed by a few MIMO methods. Estimators for MIMO control design have often 

taken the form of Kalman-Bucy Filters [44] and corresponding discrete Kalman Filters 

(KF), accompanied by significant control order reduction. Even less adaptive methods 

have been experimentally flown. Much of the analysis and control design relied primarily 

on the fact that the flexible aircraft may be cast into modal form. The major difference 

between a structure on the ground and one passing through the air is that the modes are 

coupled through aerodynamic forces for an aircraft [45]. 

 Modal sensing and modal control is still a very relevant topic today. NASA has 

announced their next X-plane [46], which turns out to be a flexible aircraft with 

aeroelastic instability within its flight envelope. The purpose of the program is to 

demonstrate robust flutter suppression using modern technologies. To this end, it will 

carry onboard distributed sensing capabilities and have multiple control surfaces 

dedicated to flutter suppression. NASA’s prototype flutter testing aircraft, the X-56A 
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inspires renewed interest in modal sensing for modal control applications. Primarily, this 

is because of the onboard distributed sensing systems. 

  Recall that modal filters fell out of favor due to the requirement of many 

(potentially 1,000s) of sensors. The need to reassess the modal filter’s utility becomes 

quite obvious as distributed sensing is actively being tested.  

 The next section gives the reason for why modal filtering must be reassessed for 

aircraft implementation. The link is drawn between modal filtering and dynamic shape 

estimation. A brief overview of the emerging field of dynamic shape estimation is given 

below.  

1.1.5 Dynamic Shape Estimation  

 

 With the advent of increased digital computing, distributed measurement systems 

such as fiber optic sensor (FOS) arrays have received flurried interest and work is 

ongoing. In particular, FOS multiplexed with FBGs may enable futuristic capabilities like 

intelligent vehicle highway systems and adaptive structures. The development of the FOS 

has been reported to be a major breakthrough in sensing technology [47].  

 Since the first demonstration of photosensitivity in fiber optic waveguides [48], 

fiber optics have seen many applications such as structural and material process control, 

adaptive structural positioning, chemical and biomedical processing and many other 

applications [31]. They have also been used to estimate loads [49].  

 The benefits of FOS over traditional strain gauges are many and include that they: 

have low electromagnetic sensitivity, have high signal to noise ratios, are lightweight and 

efficient, and cover a much larger sensing area than traditional sensors [50]. The 
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algorithms developed to process strains from wavelength changes are accurate and 

efficient. The process is based upon the strain to wavelength relationship as in Eq. (1.11), 

  

 
                     (1.11) 

where    is the change in wavelength at a fiber bragg grating,   is the flexural strain,    

is the change in temperature from the initial calibration,    is the change in pressure 

from the initial calibration,    is the effective photoelastic coefficient,   is the attenuation 

coefficient,   is the thermooptic coefficient, and   is the Young’s Modulus coefficient. 

 The strains processed from the fiber optic wavelength measurements may be 

further processed to achieve overall deflections (x,y,z) using simple mathematical 

techniques such as OLS [51] and Euler-bernoulli beam theory integration [52]. The FOS 

accurately predicts deformations on Ikhana aircraft’s wing, as shown in Fig. 1.5.  

 

Figure 1.5: Fiber Optic Sensors with Fiber Bragg Gratings Laid on Ikhana Wing
1
. 

                                                 

 

 
1
 Dr. Lance Richards, Allen R. Parker, Dr. William L. Ko, Anthony Piazza, Space Sensors and 

Measurements Techniques Workshop, Nashville, TN, August 5, 2008 
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 Strain and shape are very useful information now available for control related 

studies. But control systems may also benefit from distributed acceleration measurements 

as well. Distributed acceleration is reaching technology readiness levels (TRLs) where 

they may be used on an aircraft, without introducing the noise and weight of standard 

accelerometers.  

 Microacclerometers designed with piezoelectric thin films were theoretically 

demonstrated on a FEM beam structure with good results [53, 54]. Indeed, 

microelectromechanical systems (MEMS) accelerometers based on piezo films have been 

machined to be less than the size of a penny with a similar thickness [55]. They have 

analyzed modes of a structure up to 45 Hz, which means they are certainly applicable for 

aircraft modal sensing. MEMS accelerometers have also been utilized on Lockheed’s 

body freedom flutter vehicle for feedback in a flutter controller.  

 The Helios accident [56] is one inspiration for distributed sensing, as it could have 

been used to monitor the increasing wing dihedral leading up the accident. A common 

goal in the literature has been to determine the full dynamic deflection field of a structure 

in real time. This can serve multiple purposes and is most often linked with structural 

monitoring [57, 58, 59, 60].  

 A brief review of shape algorithms is given in the next section for comparison. 

These methods include the Euler-Bernoulli integration type, quasi-static strain-mode 

shape, and inverse-FEM. Primarily these methods are available to be used with 

distributed FOS data. Photogrammetry and the three-core fiber are also discussed. 
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 Integration Methods 1.1.5.1

 

 Several works have taken advantage of multiplexing capability of FOS with 

Bragg gratings. These works have utilized classical beam-bending theory to formulate 

displacement as a function of flexural strain [61, 52, 62]. Ko et al. [61] derives a form of 

the curvature-strain relationship for the non-uniform beam as in Eq. (1.12), 

      

   
 

    

    
 (1.12) 

where      represents the half depth the beam at location  ,      is the measured 

bending strain at the   location along the beam and      is the vertical displacement 

along the beam  

 The tapered beam half depth and the bending strain may be assumed to be linear 

functions of   between the     and       measurement stations. And the tapered beam 

may be divided into   sections with sectional length       . The following formulas 

result given in Eqs. (1.13) and (1.14). 

                   
      

  
            (1.13) 

                   
      

  
            (1.14) 

After substitution of Eqs. (1.13) and (1.14) into (1.12) and integrating twice with respect 

to   a formula for the deflection of the     sensor station may be derived as in Eq. (1.15). 
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(1.15) 

 For a cantilever beam, the deflection    and slope    at the built-in end are zero 

for all  . Forms of the bending angles at the     stations were also given but are not 

reviewed here. The cross-sectional torsion angle at any     station is given in Ko et al.’s 

as in Eq. (1.16). 

         
     

 

  
 (1.16) 

where   
  is the deflection measurement precisely forward or aft of the measurement    

and    is the chord-wise distance between the measurement stations. This method can be 

very useful for finding distributed rotations and deformations along high aspect ratio 

wings.  

 However, Ko’s displacement method makes the assumption that the sensor error 

of all sensors on the FOS is normal and unbiased. If large strain bias is injected at any 

point in the algorithm, all remaining shape data after the biased sensor point must also be 

biased.  

 Quasi-static strain displacement method 1.1.5.2

 

 Vibration mode shapes have been utilized in many works, to reconstruct the 

elastic deflection field [63, 64, 65, 66]. The strain/displacement mode shape matrices 

were used to form a quasi-static transformation matrix between strain and displacement. 

The primary assumption is the same used for modal transformations as in Eq. (1.17), 
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 (1.17) 

where           is the   dof strain vector,           is the   dof deformation 

displacement vector,         is the strain mode shape matrix with   strain modes, 

       is the displacement modal matrix with   displacement modes, and      

     is the vector of modal coordinates (equivalent for strain and displacement). 

 The deformations may be cast into the following form with a least squares 

approximation as in Eq. (1.18), 

     [          ]       (1.18) 

taking note that the rank of (   )
  

  
 cannot exceed the number of used strain sensors. 

Notice that the subscript   indicates measurements, so any rows in the modal matrices 

which are unrelated to the measurement DOF must be removed.  

 The displacement modal matrix may be calculated from the eigenvalue solution of 

the un-damped structural equations of motion in the usual way. In order to calculate 

strain mode shapes, the linear displacement equations of motion must first be cast into the 

strain generalized form through linear strain to displacement relationships [63, 67] before 

calculating the eigensolution. 

 One of the main disadvantages of the quasi-static strain-displacement method has 

been shown to be the noise and error components in the signal and structural model data. 

The modal matrices must include a large number of modes and many sensors are required 

for accurate solutions.  

 The Kalman Filter has been introduced to filter the modal measurement noise 

(derived from strain errors) in a recursive filtering step [68, 69]. However, the 

disadvantage of the KF in shape prediction is that it is highly sensitive to modeling errors, 
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as was shown by Treiber et al. [68] where a 1% thickness variation of the underlying 

mathematical model caused a tenfold increased deviation of estimation of the real shape. 

 As with integration methods, this method is also sensitive to strong bias in any 

single sensor. However, in this case, the estimates of “all” deformations will be biased. 

This is because OLS feature estimates are offset proportional to the maximum error bias 

in any sensor. The feature estimates in Eq. (1.18) are directly used to form estimates of 

all deformations.  

 Inverse FEM for full-field reconstruction 1.1.5.3

 

 Whereas some works utilize model/structurally dependent vibration mode shapes 

to determine deflection, other researchers try to use strain-displacement relations directly. 

It can be argued that this is a more robust method, since its accuracy is not subject to the 

number of mode shapes retained in the modal matrices.  

 Several researchers are employing the material independent inverse FEM for full-

field reconstruction [51, 70, 71]. In their original work, Tessler and Spangler constructed 

a Mindlin three-node, inverse-shell element with six conventional DOF at each node. 

They formed a least squares functional for the three-node element as in Eqs. (1.19)-

(1.22), 
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where      is the membrane strain measure of the element as a function of the kinematic 

variables  ,      are the bending curvatures of the element,      are the transverse shear 

strains of the element,   
    

    
  is the measured membrane, bending curvature, and 

transverse shear strains, respectively at   inside the element   is the measurement error 

and   is the number of sensors within the element boundaries. 

 The measurement strains are taken by putting the strain measurement sensors on 

the top and bottom of each shell element. The relationships of local coordinate 

derivatives between strain and displacement were formed for each type of strain as in Eq. 

(1.23). 

        

        
        

 (1.23) 

Shape functions were derived for a triangular element, assuming the out-of-plane bend 

displacement of the element is assumed to be interpolated with a quadratic polynomial in 

the local element coordinate system. The in-plane local coordinate displacement 

functions may also be derived from shape functions and included into matrix   as in Eq. 

(1.24). 
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      (  
  {               }        ) (1.24) 

 This approach is a standard one used to form the element strain-displacement 

matrix in most finite element books such as Understanding Finite Element Stress 

Analysis [13]. Substituting the local coordinate displacement relationships   into the 

strain-displacement relationships:     ,     , and     , and taking derivatives in the 

local coordinate directions, the element strain to displacement relationship is derived as 

in Eq. (1.25). 

        (1.25) 

 By assembling the element matrices and vectors in the typical finite element 

assembly operation, the global matrices and vectors may be formed into a least squares 

problem. The OLS solution of the displacements for measured strains can be readily 

found. Rows corresponding to unmeasured strains must be removed in order to proceed 

with the calculation. Once the displacements have been found, it is a simple matter to 

then find the smoothed strains as well as the stresses [49] assuming material relations are 

available.  

 As with modal and integration methods, the inverse FEM technique for shape 

estimation is also subject to problems if even one sensor becomes strongly biased. 

Clearly a pattern of sensitivity to sensor bias is emerging in all of the reviewed works 

thus far. 

 Photogrammetry 1.1.5.4

 

 Other methods of shape estimation are also being assessed in the aerospace 

community. Photogrammetry has been receiving interest recently for aircraft 
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implementation, due to their potential capability to estimate deflections from processed 

visual images. There are several camera setups available and one may use the single 

camera multi-view system, or single camera, single view, or multi-camera single view 

setups, etc. Each setup has its own pluses and potential drawbacks, but the single camera, 

single view seems to be winning out due to its simplifications of the collinearity 

equations.  

 Recently, the single camera, single view system was installed onto an F/A-18 for 

the purpose of measurement of deflections [72]. They demonstrated the capability to 

process the deflections of the aircraft for many frames of data, and also identified 

potential error sources. For improved observability during nonlinear LCO, NASA 

Langley decided to complement their accelerometer feedback in the Transonic Dynamics 

Wind Tunnel (TDT) with the intelligent videogrammetric measurement method [73].  

 The close range videogrammetric measurement method uses charged coupled 

device (CCD) cameras to calculate out of plane displacement at the reflective patches 

adhered to the surface of the wing [74]. The use of videogrammetry has also been applied 

to the measurement of flutter mode shapes [75]. They utilized the Modal Assurance 

Criterion (MAC) for comparisons between calculated and measured flutter mode shapes. 

 A photogrammetry procedure involves placing targets on the wing with known 

locations and solving the collinearity equations which map pixel coordinates (x,y) to 

three-dimensional vehicle coordinates in (X,Y,Z). A nonlinear least squares algorithm 

(linear for two cameras single view) may be used to solve for the Euler angles relating the 

different coordinate systems as well as the optimal camera location.  
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 After this initial setup process, the deformations may be found by taking the 

difference in deflections from a reference picture. The deformation angles may be found 

through arcsine approximations with chord-wise opposing target deformations or least 

squares as suggested in Farrell et al.’s [72] work. In order to identify the targets well, the 

targets must be distinct from their surrounding surface (black targets on white surface 

etc.). Then the target (x,y) coordinates are found by employing computationally intensive 

image analysis methods on the current picture such as the edge-finding method.  

 Unfortunately, the image processing step makes the photogrammetry system in 

general a near-real or next-day measurement time method. However, real time processing 

of video imaging has been utilized in some applications with advanced edge finding 

algorithms (running at 25 Hz) in the Automated Aerial Refueling (AAR) project [76], and 

has even been applied to missile detection which would require high frame rates. 

 Photogrammetry is sensitive to many other interacting factors such as the 

geometry of the object, the camera locations, the number of images and image resolution, 

the exposure and contrast of the targets, the camera and lens characteristics and how the 

equations are solved [77]. A cloudy day or the location of the sun has impacts on the 

accuracy of the results, as the sensitivity of the edge-finding algorithms plays a factor 

here.  

 As the wing bends or twists, a target may dip out of sight of the camera and 

become invisible, especially due to low camera inclination angles (10-15 deg.) required 

for out-of-window installations. The area of the targets also increases with increasing 

distance to the camera(s). Thus, this method may have some resolution issues for HALE 

class vehicles.  
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 Photogrammetry has been making headway in many aerospace implementations 

such as for 3d mode shape determination [78] and for deflection-load calculations 

developed by interpolating strain-load relations from ground load tests [79]. Another 

interesting technology which purely estimates shape is the three-core fiber introduced 

next. 

 Three-core Fiber 1.1.5.5

 

 Research is also progressing further into fiber optic sensor technology at NASA.  

Langley researchers: James Moore and Matthew Rogge [80], as well as Dryden 

researchers are working on the three-core FOS. It is a mounting with three fibers instead 

of the usual one, with the usual multiplexing of strain sensing. The use of three fibers 

allows the neutral axis to be calculated between the fibers themselves instead of the 

structure to which they are adhered to. Preliminary studies show that the three-core FOS 

is able to capture deformation (x,y,z) from its un-deflected position in real time with good 

accuracy, without any knowledge whatsoever of the structure to which it is adhered to. 

However, accuracy issues have arisen when the fiber twists significantly. The following 

section summarizes some of the observations made for dynamic shape estimation. 

1.1.6 Shape Sensing Key Observations 

 

 Shape sensing techniques are described in Table 1.2. Some are direct shape 

sensing methods and others rely on transformations. It was observed that shape sensing 

methods are categorically integration methods, strain-mode shape, inverse FEM and 

photogrammetry. Each method either relies upon or can support modal filtering.  
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Table 1.2: Distributed Shape Sensing Comparison. 

 Positive Negative 

Integration 
Methods  

1) FEM independent 

techniques available 

1) Shape calculation error grows 

towards end of fiber due to 

dependence of current shape 

estimate on all previous strain 

estimates along fiber 

2) Out-of-plane deflections 

calculated accurately over 

very long distances (ie. 

Global observer aircraft 

wing span) 

Biased sensors may cause 

estimates of deformation to 

become biased 

3) Possible to calculate all 

translational coordinate 

directions (x,y,z) for modal 

filter with tri-core fiber  

 

4) Noise filtered through shape 

calculation 

 

Strain-mode 
shape method 

1) Highly accurate shape 

estimation when enough 

modes are used 

1) Strain-displacement matrix must 

be experimentally verified  

2) Could be utilized to directly 

estimate modal deflections 

from strain 

Biased sensors may cause modal 

estimates to become biased 

Inverse-FEM 

1) Calculation of full-field 

deflection of a FEM model 

(6 DOF per node) 

1) Strain-displacement matrix must 

be experimentally verified 

2) Material independent (No 

mass/stiffness knowledge 

required) 

2) Potentially difficult to set up LS 

problem for complicated 

geometry, without toolbox 

3) No mapping to modal nodes 

required since DOF are 

directly calculated 

Biased sensors may cause shape 

estimates to become biased 

Photogrammetry 

1) Strain-independent 

translational DOF 

calculations 

1) Mostly out-of-window 

applications and generally low 

sampling rates 

 

2) Subject to a great deal of 

internal/external error sources in 

flight (a target might dip out of 

sight if camera incidence is low 

such as for out-of-window 

applications) 
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 Table 1.2 shows that there are at least four major types of shape prediction 

algorithms and technologies. Integration methods are suitable for beam-like structures. 

The strain mode and inverse-FEM techniques are general deformation prediction 

methods. Photogrammetry is of interest, but quite a lot of uncertainty exists from the 

possibility of visual interference.  

 Since most structures are cast into the modal form, the strain mode shape 

technique is the most compatible with aircraft controllers. By commanding these modes, 

it may be feasible to achieve desired shapes, as is predicted in Eq. (1.18). The strain 

based methods are for the most part subject to strong bias if even one sensor becomes 

biased.  

 Since these methods require many sensors, the chances for sensor failure could 

potentially increase. Indeed this will be an important subject to address. The following 

section summarizes what was learned from overviewing modal filtering and shape 

estimation. Specific research objectives to guide the work in this dissertation are 

identified. 

 

1.2 Research Objectives 

 

 

 Modal filtering is an exciting field but its potential has yet been realized. By 

controlling modal coordinates, one may control the shape of the vehicle.  
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 To date, spatial modal filters have not been applied in an aircraft setting. Some 

practical applications have been demonstrated on plates, beams and truss like structures. 

So any application of a spatial modal filter to an aircraft will represent a first application.  

 The modal filter has received criticism. In some studies, it has been suggested that 

modal filtering relies upon too many sensors for accurate estimation. So the thinking has 

been to reduce and optimize placement of the number of required sensors for modal 

estimation and control. Indeed many individual sensors may be subject to a large amount 

of sensor wiring and cost.  

  But FOS multiplexed with Bragg gratings do not require individual wires 

connected to each sensor. Photogrammetry only requires lightweight targets placed at 

sensor locations. Current technological advances in distributed sensing suggest major 

improvements in implementation.  

 For example, if a FOS system uses 2,000 sensors this will have the same weight 

penalty to the aircraft as if it only used 1 sensor. The cost will not be significantly 

different either. There is very little limitation on FOS placement over the aircraft wing 

skin or under it. With restrictions lifted on distributed sensing, modal filtering must be 

reinvestigated for aircraft structural control.  

 But before doing so, the modal filter must first be tested in a bench test 

aeroservoelastic setting, because it has never been done before. If this works, the modal 

filter must then be tested on an aircraft model.  

 Assuming both case study results are positive, this still does not guarantee that a 

modal filter is practical enough for aircraft applications. All modal filters in experimental 
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testing today have a significant shared weakness. That is, they have a high sensitivity to 

sensor bias. Therefore, something must be done to shore up this limitation.  

From the brief background and discussion, three research objectives are identified: 

 Investigate how modal filtering performs on an aeroservoelastic problem as a 

first application 

 Investigate distributed sensing and modal filtering in the control system of an 

aircraft 

 Improve upon the sensor bias limitations of modal filtering 

These objectives are broad, and will be used to formulate an overall research problem and 

research questions in the next Chapter. Before doing so, further work must be done in 

fleshing out aircraft aeroservoelasticity problems and how they have been addressed. This 

will help identify applications for the modal filter. 

 It is posited that research fields where modal filtering will have the most impact 

are active flutter suppression (AFS), aircraft performance improvement, and loads 

alleviation design. The next Chapter will address these issues in detail. The following 

section gives an overview of how this dissertation is organized. 

 

1.3 Dissertation Organization 

 

 

 The first Chapter, “Introduction” lays out the foundation for why modal filtering 

should be pursued in aerospace and why it has not up till now. The next Chapter titled 

“Literature Review” reviews how modal filtering fits into the aircraft control paradigm by 
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identifying the state-of-the-art in aeroservoelasticity. After this Chapter, design work is 

completed to make initial assessments of the modal filter in an aeroservoelastic 

environment.  

 To this end, an aeroservoelastic code is developed in the next Chapter titled, 

“Simulation Development.” From this simulation architecture, the design of the wing 

model modal filter based control system follows in the Chapter titled, “Wing Model.” 

Further design work is required to verify use of the modal filter and thus a modal filter is 

designed and implemented on an aircraft in the next Chapter titled, “X-56A.”  

 After applications of the modal filter are complete, it is determined that enough 

evidence has been gathered to support modal filtering in aircraft. But the modal filter is 

not robust, and must be made so for practical application.  

 From here, the dissertation moves into the theoretical and a survey of robust 

regression methods is completed in the Chapter titled, “Theoretical Foundation.” This 

Chapter includes a down-selection of the available robust methods. Variations of these 

methods are used to derive a robust modal filter in the Chapter titled, “Robust Modal 

Filtering.” This is followed by other applications of a robust modal filter in the Chapter 

titled, “Other Applications of Robust Modal Filtering.”   

 The research up to this point is guided by the research questions identified in the 

Literature Review. The answers to these questions are formally given as well as how the 

Hypotheses have changed are given in the Chapter titled, “Conclusions.” This Chapter 

also includes a summary of the accomplishments included in this dissertation as well as 

how someone picking up from where this research leaves off should proceed. A flowchart 

representing the detailed organization is given in Fig. 1.6.  
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Figure 1.6: Dissertation Overview. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 
 The Introduction hinted at a link between modal coordinates and aircraft 

aeroservoelastic models. The research objectives require investigation of this link. In this 

Chapter, the relationships are identified through a brief literature review and cited 

mathematical models.  

 In search of the modal filter’s niche problems in aeroservoelasticity are 

overviewed. Some of the major problem or improvement areas include flutter 

suppression, aircraft performance improvement and loads alleviation design. By 

reviewing these areas, benchmarks and gaps are identified. Using identified benchmarks 

and gaps and research objectives, the research problem, research questions and 

corresponding hypotheses are posed. The first section begins with an introduction to the 

most notorious aeroservoelastic problem, flutter. 

 

2.1 Flutter Suppression 

 

 

 Paramount issues surrounding a flying structure include: flutter, modal vibration, 

hazardous maneuver loads and gust loads, wing buffet and limit cycle oscillations [81]. 

Flutter is listed first because it is perhaps the most safety critical issue in aerospace. There 

is so much concern surrounding flutter, that control of flutter is only conducted within the 
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context of aircraft experimental control studies. To date, commercial or military aircraft 

simply do not fly past the flutter boundary in the flight envelope. It can be postulated, that 

this is because the methods of flutter control used today are not to be relied upon with 

100% confidence. Indeed this is why control of flutter is still an open problem. 

  The methods used to experimentally control flutter are reviewed in the following 

sections. Discussion is given on passive, single input single output (SISO) and multiple 

input multiple output (MIMO), and adaptive methods as well. Finally an introduction to 

aeroservoelastic modeling is given, as it characterizes the importance of the modal 

coordinates. The following section introduces the nature of flutter in aircraft. 

2.1.1 A Brief Introduction to Flutter 

 

 Flutter is notoriously hazardous due to its ability to cripple or destroy aircraft. 

Flutter tends to occur when two or more structural modes couple and begin an increasing 

two way energy transfer with the air stream. When the energy input into the structure is 

greater than that which can be dissipated by structural damping, flutter occurs [82]. This 

is often physically characterized by very dangerous structural oscillations which lead to 

structural failure. 

 In order to reduce the possibility of flutter, the flutter speed must be known so that 

pilots do not accidentally cross the flutter boundary. For a proper safety margin, the 

flutter speed must be 1.2 times the diving speed according to FAR 25.629 [83]. 

Regulation on not crossing the flutter speed may someday change, however, especially 

with increasing fuel efficiency requirements. The following explains this logic. 
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 Due to N+3 generation aircraft requirements new technologies and aircraft 

concepts are being introduced. NASA has proposed a 70% fuel burn reduction in future 

concept aircraft by 2025 [84]. From the suite of technologies available to meet this fuel 

burn objective, structure reduction or removal is of interest. This is related to removing 

structures in the wings and designing for strength instead of stiffness. However, by 

reducing stiffness, the modal frequencies will likely shift closer to rigid body frequencies. 

This can increase the possibility for flutter and cause it to appear at lower speeds. 

 Thus it appears that energy-efficient air transports, in order to realize the full 

benefits of weight savings technologies, may require active systems for flutter 

suppression [42]. This is not a new realization. Research into active control of flutter for 

weight savings has been a research priority for decades. But one must ask, “why are 

flutter suppression systems not available in almost every aircraft today?” The short 

answer is likely due to the lack of robustness of the controllers. There is a reason 

supporting this answer which will be elicited in the following sections. It is linked with 

what has historically been controlled, the point sensor not the true fluttering states. First a 

discussion is given on passive flutter suppression methods in the following section.   

2.1.2 Passive Flutter Suppression 

 

 Historically in relatively stiff aircraft, notch filtering has been relied upon to 

suppress marginally stable flexible modes from interference/coupling with the control 

system.  Unfortunately due to the variation of flexible modal frequencies in most aircraft 

from aging, maintenance, etc., notches were made excessively wide to consider modal 
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frequency uncertainty during operations. This had the effect of reducing phase margin, as 

well as a gain margin reduction to meet phase requirements.  

 This is a well-known and documented issue. Within fighter aircraft, 

improvements have been sought using phase advance filters and structural coupling/notch 

filters designs [85]. Reductions in the size of the notch filters have been made by some 

with adaptive notch filtering. [86].  

 For more flexible aircraft, notch filtering will become more difficult to implement 

due to increased performance degradation in the control system. Indeed, some researchers 

suggest that flexible modes should be controlled inside the flight control system of 

flexible aircraft and should no longer be suppressed with notch filters [87, 88].  This is 

absolutely true if the modes are unstable. 

 For unstable modes, flutter suppression may be achieved by adding mass ballast 

and structural stiffening [89]. However, these methods add weight, impacting 

performance. Trade studies performed by Boeing indicate that weight penalties as much 

as 2 to 4 % of total structural weight may be required to solve potential flutter problems 

[90].  Indeed, this spurred a steady amount of research into active flutter control in lieu of 

passive flutter methods on aircraft such as the SST, C-5A, 747, B-1, F-4, YF-16 and the 

Advanced Technology Transport [91]. 

2.1.3 SISO Flutter Suppression  

 

 Since the early 1970s, researchers have been developing algorithms to suppress 

flutter.  One of the first useful approaches seems to be that of Nissim, who utilized the 
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aerodynamic energy concept method [37, 92, 93]. The idea was to suppress flutter by 

removing energy from the air surrounding the structure.  

 Other works utilizing classical SISO control methods were implemented such as 

that by Abel et al. [94]. Around the same time, controllers utilizing modern control theory 

were being developed [95]. Some of these implementations are discussed in the following 

section. 

2.1.4 Modern Theory Flutter Suppression Methods 

 

 Many modal based controllers have been developed with various modern control 

techniques such as Linear Quadratic Gaussian (LQG) Theory [96], and Eigenspace 

methods [97]. Newsom’s numerical study [98] on a high-aspect-ratio cantilever wind-

tunnel wing model using full state linear feedback Linear Quadratic Regulation (LQR) 

showed that one could theoretically increase flutter dynamic pressure by at least 50%.  

 Recently, an LQG-based controller has been successfully tested on the Multi-

utility Aeroelastic Demonstrator (MAD) known as the Multi-Utility Technology Testbed 

(MUTT) [99, 82]. The body freedom flutter (BFF) vehicle representing the full scale 

SensorCraft  shown in Fig. 2.1 made use of its control system to suppress BFF using 

accelerometer feedback. 
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Figure 2.1: Multi-Utility Aeroelastic Demonstrator (Courtesy of Lockheed Martin). 

 

 The primary issues linked with state space methods is robustness. Most 

controllers are model based and therefore if the model is wrong, the controller may fail. If 

flutter occurs outside the predicted flutter speed region, the flutter suppression controller 

may not respond at all [100]. In fact, the variations in modal frequencies may lead to 

coupling of higher order modes [101] and flutter may appear at different speeds and with 

varying characteristics.  

 These problems are predicted to become more serious in production aircraft, 

which must undergo aging and maintenance. Presently, uncertainty is being addressed 

with advanced control techniques such as with    control [102] and adaptive methods. 

   control guarantees stability for specified disturbances making it a desirable solution 

for robustness. More advanced control such as  -optimal control also guarantees stability 

for structured uncertainties and disturbance criteria [103]. The next section discusses the 

importance of control order reduction. 
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2.1.5 Control Order Reduction 

 

 Because of the superposition assumption in MIMO systems, the model order may 

become quite large. In a comparative paper published in 1990, Nissim [93] suggested that 

the SISO aerodynamic energy method should be used as an alternative to modern control 

theory based aeroservoelastic controllers which have a plethora of states, high sensitivity 

to modeling errors, and may be inaccurate at different flight conditions.  

 Proponents of modern control theory have developed several techniques to 

support practical implementation. The improvements are primarily through control law 

reduction [104, 105, 106, 107, 95, 108].  

 Order reduction is typically a process of retaining only the most important DOF 

of a system design, designing the reduced order controller from the reduced state space 

and then testing it on the larger system. However these techniques assume a very good 

model is available.  

 Order reduction is often related to the amount of interaction in a system. A 

controller which is focused on controlling all of the modes will be significantly more 

coupled than one which controls only the important modes. Order reduction might be 

significantly improved by modal filtering. 

2.1.6 Adaptive Control 

 

 If one cannot guarantee robustness due to poor models, then adaptation may be 

the preferred route. Because flutter speeds change due to mass and stiffness variations, 

the academic community has been increasingly moving towards adaptive methods in 



 46 

flutter control. Indeed, artificial intelligence in flutter control seems to be making 

headway as it proliferates into engineering spheres [109].  

 Fiber optic sensors with fiber Bragg gratings and piezo actuators placed near the 

wing root have also been applied to flutter control via a neuro-adaptive algorithm on a 

swept 330 mm span swept wing model [110]. The system control architecture for this 

study shown in Fig. 2.2 may be beneficial for its applicability to a wide range of 

conditions possibly adapting to uncertainty. 

 

 

Figure 2.2: Neuro Adaptive Controller for Active Flutter Suppression. 

 

 The concept of this adaptive strategy is that it both learns changes in the plant and 

also adapts the controller to the varying plant. By adapting to both plant and controller, it 

is more likely to be applicable over the life of the vehicle. However, there are absolutely 

no guarentees on its robustness due to the use of the intractable neural network. There are 

many others pursuing these strategies however. 

 Active adaptive aeroelastic control has been approached by Scott and Pado [111] 

on the BACT model using a static NN. A nonlinear adaptive aeroelastic control synthesis 

technique [112] was proposed on a 2-d airfoil. Flutter control [113] has been achieved 
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with self-learning Recurrent Neural Networks (RNNs), which add feedback connections 

to classical NNs and use internal states that develop internal dynamics. A recent adaptive 

flutter suppression system based on the RNN was applied to a three-surface transport 

aircraft [114]. Model based reference adaptive control has also been applied using TE and 

LE control surfaces in a numerical simulation [115].  

 Many advanced adaptive techniques are being developed, but it will likely be 

difficult to certify them on future aircraft. This is primarily due to the harsh consequences 

of controller failure and a general distrust of adaptive concepts. Thus classical, modern 

and robust control concepts will likely remain an industry norm for some time. 

2.1.7 Aeroservoelastic Modeling 

 

 Aeroservoelastic modeling is an integral step in the development of most non-

adaptive modal based flutter controllers. It is expected that here, will be found the 

mathematical link to modal filters. This search begins with the aeroservoelastic equations 

of motion. 

 The formulation of the aeroservoelastic equations of motion has been addressed 

many times in literature [116, 117, 118, 119]. The unified formulation [120] developed 

by ZONA Inc. captures flexible vehicle rigid body interactions through the use of 

stability derivatives. Important platform specific choices must be made in dealing with 

rigid body and elastic interactions, as well as aerodynamic modeling. For mostly rigid 

aircraft, the mean axis equations [121] remove the inertial interactions of rigid body 

modes and elastic modes, so that only aerodynamic coupling is present.  
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 The mean axis constraints assume that the change in inertia due to elastic 

deflection is negligible and also require that the modes are orthogonal to the mass matrix 

and to each other. Another requirement is that the modal deflections remain small. This 

helps to maintain the assumption that the deflection may be formed from a linear 

combination of modal displacements [122]. An example of the state space formulation is 

given here by Pototzky [123] as in Eq. (2.1),  

 ̇  

{
 
 

 
 
 ̇ 

 ̇ 

 ̇ 

 
 ̇ }

 
 

 
 

 

[
 
 
 
 
 
 

     
  ̂  ( ̂  ̂       

       
  

 ̅
   

     

        
  

 ̅
 ]
 
 
 
 
 
 

{
 
 

 
 
  

  

  

 
  }

 
 

 
 

 

[
 
 
 
 

   
  ̂  ( ̂  ̂  ̂ )

     
   
     ]

 
 
 
 

{

  

 ̇ 

 ̈ 

} 

(2.1) 

where                 represents the modal displacement and velocity states 

respectively,                  are aerodynamic lag states,  ̂        ̂  

      ̂       are the generalized aero-influenced mass, damping and stiffness matrix 

respectively,           ̇        ̈       are actuator displacement, velocity and 

acceleration states respectively. Control feedback for this system may assume various 

forms of Eq. (2.2), 

     (2.2) 

where   represents a static or dynamic controller and   represents a set of measurements 

to feed back. For a flutter controller, the measurements would likely come from strain or 

accelerometer sensors. However, if a modal filter is present, the contributing modes 
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themselves could form the measurement. This would remove the possibility of 

observation spillover discussed previously and focus the control suppression energy. 

 Many of the methods used in practice make the assumption of the linear structure 

and linear aero (and rightly so for the most part). But many structures have local non-

linearities and must be handled more carefully. For local nonlinearities, Karpel’s 

fictitious mass method [124] may be employed, and local deformation modes may be 

obtained.  

 Other researchers are using geometrically exact formulations to capture 

aeroelastic properties of highly flexible vehicles, such as in Patil et al.’s [125] work, 

which are generally applicable to a wide range of flexibility.  

 The use of smart materials and structures is motivating many different 

formulations and modifications to state space equations. For example, the introduction of 

piezoelectric control modes in the aeroservoelastic equations of motion may be seen in 

Karpel and Moulin’s [126] work. Another fascinating topic is how the elastic 

aerodynamic information is captured. Aerodynamic states may be cast into modal form as 

well and they are introduced in the next section. 

2.1.8 Unsteady Aerodynamics and State Space Modeling 

 

 The size of the controller is highly dependent on how the aerodynamic forces are 

modeled as well as how many modes are controlled. Roger’s approximation [117] of the 

unsteady aerodynamic forces results in as many aero states equal to 1-4 times the number 

of modes included in the analysis. As an example, an aeroelastic model with 10 modal 

displacement states may include as many as 10-40 additional aero states.  
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 Higher order aerodynamics can be captured by including more states. The 

generalized aerodynamic forces (GAF) due to both rigid body perturbations and elastic 

modal states can be represented by a rational function approximation (RFA) as in Eq. 

(2.3) 
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, and  ̅ is the reference chord length.   is the Laplace variable, 

 ̅        is a vector of modal displacements,         are GAF coefficient matrices 

and   is the dynamic pressure. 

 To use the RFA, the GAFs are first calculated over a range of reduced 

frequencies, using the Doublet Lattice Method [127]. The complex GAF matrices are 

fitted with a least squares methodology to an s-plane polynomial containing pre-selected 

lag terms, resulting in matrix coefficients   .  

 The resulting aerodynamic damping, stiffness and lag matrices are then 

implemented in a state space format such as in Pototzky’s [123] work. This is an accurate 

methodology for all but transonic and hypersonic speeds and has been used by many 

researchers for developing control laws.  

 Notice that in Eq. (2.3), that the aero lag forces are a function of modal 

coordinates. This suggests that with knowledge of the modal coordinates in real time it 

may be possible to estimate both steady and unsteady aero forces due to elasticity. This is 

yet another potential advantage of modal filtering. 

 The size of the plant state space matrices is considered by many to be burdensome 

due to the large number of aerodynamic lag states. In general, up to four aero states may 
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exist for each included mode. Karpel developed the Minimum State (MS) Method [128] 

which reduced the number of aerodynamic states down to one per mode, and optimized 

further from here.  

 The MS formulation requires nonlinear optimization methods and is based off of 

the Modified Matrix-Pade formulation [129]. While the setup of the system is more 

complex, the reduction in states can be considerable, which is preferable for control 

synthesis. The state space equations are not given here explicitly, but their development 

may be reviewed through this technical report [128].  

 The state space matrices are almost always based upon the modal displacement, 

velocity and aero lag states. Thus measurement of these states will be very beneficial for 

state feedback/tracking controllers. It could be that the feedback of these modal states are 

what will make flutter controllers truly robust. However, this is only speculation for now. 

This concludes the discussion of flutter. Next, a discussion of aircraft performance 

improvement is given.  

2.2 Aircraft Performance Improvement 

 

 The following sections introduce the possibility of utilizing modal filtering for 

improving an aircraft’s performance. Fuel efficiency is a major motivating factor in 

aircraft today. Some discussion is given on how drag and therefore fuel efficiency is 

affected by more elastic aircraft.  

 A few computational studies predict potential improvements of controlling elastic 

effects. Finally, a survey of aircraft shape control methods is given. Fuel efficiency is 

discussed first in the following section. 
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2.2.1 Fuel Efficiency 

 

 Fuel efficiency is paramount and improvements to fuel efficiency continue to be 

discovered. Since the late 1950’s IPPC have shown that aircraft fuel burn per passenger 

decreased by 70%. From this, about 40% came from engine fuel efficiency improvements 

and 30% from airframe efficiency improvements [130]. Estimates suggest that the trend 

in fuel efficiency will continue its upward trend according to a 2010 International Civil 

Aviation Organization [131] report. 

 The primary source of improvement comes from the introduction of weight 

savings and drag reduction technologies. ICAO states that advanced alloys and composite 

materials will lead to significant weight reduction. Indeed, aircraft such as the Boeing 

787 and Airbus A350 are made of as much as 70% of advanced materials which includes 

composite wings.  

 Advanced future aircraft concepts will likely be more flexible than traditional 

aircraft due to structure reduction and lightweight structures. Therefore, their fuel 

efficiency will improve just due to the relationship with lift, drag and weight. These 

aircraft will be lighter and thus require less lift to achieve equilibrium. Therefore the trim 

angle of attack will be lower and they will produce less drag relative to a stiffer aircraft.  

 However, more flexible aircraft will also vary in shape more than a relatively stiff 

aircraft. Therefore at off-design conditions, their structure may drift further from the 

optimum more so than a relatively stiff aircraft. Heinze [132] suggests that off design 

performance will be further degraded due to the effects of flexibility.  

 It is postulated here that some flexible aircraft will require active drag control for 

improved fuel efficiency at off-design conditions. The drag of a vehicle has a relationship 
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to shape, which in turn has a relationship with modal coordinates. An interesting link may 

exist here. First a discussion on passive drag reduction methods is given in the next 

section. 

2.2.2 Passive Drag Reduction 

 

 Aircraft drag is inversely related to fuel savings and airline profit margins. 

Induced drag accounts for approximately 40% of the drag in cruise and 80-90% of the 

drag in climb [133]. Therefore drag reduction will continue to be of paramount 

importance for next generation aircraft. A 1996 estimate [134] states that a 1% fuel 

performance improvement for the United States fleet of wide-body transports would 

result in savings of approximately $100 million per year. An additional $20 million/yr for 

each $.10/gal increase in fuel price is also predicted in the same year. There are many 

ways to reduce drag. 

 Aircraft designers tailor local twist angles along the wing to produce a low-drag 

lift distribution [135]. A few example structural modifications include taper, twist and 

winglets. These are basic improvements, but the list goes on and becomes increasingly 

complex. What has intrigued many in academia and industry alike is the concept of 

controlling drag using active controls technology. This is discussed in the next section. 

2.2.3 Active Drag Reduction 

 

 It was realized early on that conventional control surfaces could be used to re-

optimize the vehicle at different flight conditions. Traditionally, control surface 

scheduling has been applied for relatively rigid aircraft in attempts to optimize the angle 



 54 

of attack at different flight conditions. Weisshaar pointed out the three main properties of 

roll control, and thus lift distribution and drag wake optimization [136]. They are 

repeated here:  

1) Aileron deflection: aileron deflection changes both wing lift and pitching 

moment so that the aileron effectiveness to roll the aircraft is reduced by increased 

dynamic pressure 

2) Leading edge surfaces: The leading edge slat lift curve coefficient is 

extremely small compared to a similar size aileron because the aileron easily deflects the 

airflow downward to produce a momentum change while the leading edge surface does 

not. However, slat displacement produces local nose-up wing twist large enough to 

increase lift substantially if the wing is “flexible” and can be twisted. 

3) Wing camber distortion (also called camber bending): This can be done by 

using either internal mechanical apparatus or active materials as an integral part of the 

wing structure to produce parabolic or higher order continuous camber bending 

distortion. The nose down torque is smaller than that produced by an aileron with a 

similar lift generation ability. The chordwise lift distribution also creates more evenly 

distributed loads. 

A substantial body of research has followed to show that mechanical actuation 

devices may be used to reconfigure the drag profile of aircraft. The literature contains 

analytical, experimental and intelligent methods for active drag reduction methods. 

In 1996, Gilyard used a drag minimization procedure on a test L-1011 at NASA’s 

Dryden Flight Research Center [134]. This procedure utilized in-flight measurements for 

feedback along to a real-time performance optimization system. More specifically, the 
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throttle was held fixed in flight and the aircraft velocity was used as a drag estimator. 

Gradients of the drag with respect to control surface movements were computed and used 

to reduce the cost function. Controls were implemented with symmetrical ailerons. 

During flight tests, they averaged a 1% reduction in fuel consumption.  

 Artificial intelligence has also been employed for drag optimization with post 

flight data by Lin et al. [137]. The neural network was trained with the flight data and 

identified the optimal symmetric aileron position based on flight conditions and aircraft 

states. The automatic flight control system used the signal to command the symmetric 

outboard ailerons accordingly. From the analysis, this resulted in a minimum drag aircraft 

control surface configuration for fuel savings.  

 Other studies to find control increments for drag reduction include that of Heinze 

on a 737 transport wind tunnel model [132] in which a generating set search optimization 

technique was used. The method was analogous to a compass search method [138]. 

Griffin et al. employed a time varying Kalman Filter method to find control gradients 

with respect to a performance function in order to optimize drag performance on the X-

48B [139]. These methods apply to any style of aircraft, whether it is flexible or not. The 

next section reviews methods of control of off-design drag for flexible aircraft. 

2.2.4 Control of off-design Drag due to Flexibility 

 

 Aeroservoelastic tailoring with active control is recently becoming of interest. In 

2006, Weisshaar and Duke extended their work on laminate tailoring [135, 136] to 

include active control surfaces in an effort to reduce drag to a minimum. They suggested 
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that an active wing shape control should be developed to tailor a flexible aircraft such 

that induced drag is minimized at off-design conditions.  

 They give a closed form solution of the required control surface deflections for a 

full span aileron to produce an elliptical lift distribution and thus minimum drag. They 

utilize the aerodynamic influence coefficient matrix and the wing structural flexibility 

matrix in the problem formulation. They also propose an optimization problem in lieu of 

the closed form solution for more practical applications. 

 Kumina et al. developed an objective function, where induced drag was related to 

circulation, through generalized coordinates of properly chosen modal shapes [140]. In a 

simulation model, control surface deflections were found which corresponded to minimal 

induced drag. They form the drag optimization problem as in Eq. (2.4), 

                     (2.4) 

    
               

             
 (2.5) 

where             is the drag coefficient as a function of generalized coordinates, 

            is the lift coefficient as a function of generalized coordinates,     is the 

reference lift coefficient and               is the pitching moment as a function of 

generalized coordinates. The drag objective function in modal coordinate form was given 

without explicit derivation as in Eq. (2.6), 

      ̃  (2.6) 

where    is a vector of control surface settings, and  ̃ is not given explicitly, but depends 

on the aerodynamic influence coefficient matrix (AICs) and is derived from Rodden et 

al.’s original work [141]. The elastic effects are wrapped into the  ̃ term which was not 

explicitly given.  
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 Equation (2.6) shows a direct correlation between elastic modal coordinates and 

induced drag. In Kuzmina’s [140] work, they did comparisons between a rigid and elastic 

transport aircraft and showed that structural deformations increased induced drag 

especially during maneuvers with high load factors.  

 Additionally, motivation for adaptive drag control was given in another paper 

discussing the utilization of adaptive wing tip control devices in lieu of trailing edge 

surfaces [142].  

 At off-design conditions, there seems to be some agreement in the literature that a 

more flexible aircraft will move further from its optimal wing shape. This indicates a 

need to address the problem directly. 

2.2.5 Aircraft Shape Control 

 

 Active shape control (ASC) may be applicable for reducing drag at off-design 

conditions. With ASC the aircraft structure may be moved closer to an optimal shape at 

off-design conditions. ASC has been pursued in the literature, primarily with smart 

structure technologies. In the literature, ASC is often referred to as “morphing”. This is 

often accomplished with technologies such as swing wings, Shape Memory Alloys 

(SMAs), piezoelectric or other distributed effectors.  

 Shape control for adaptive wings has been proposed by Austin et al. [143]. The 

purpose of their research was to reduce drag during transonic operations by varying the 

airfoil structure between the leading and trailing edges. They formulated an open loop 

control law for adaptive rib actuators assuming all forces (aerodynamic and stiffness 

forces) on the wing are known precisely. They form the closed loop control law which 



 58 

minimizes the difference between a desired shape and the current shape of the wing. In 

this work, the shape deformation was measured with internal LVDTs.   

 Recently developed smart sensor & control technology has prompted further work 

in ASC. Piezoelectrics [144, 145, 83] have been receiving increasing attention. They are 

considered to be a collocated control effector. Recall that a collocated effector is an 

effector which affects the same point which is sensed. These control effectors guarantee 

against spillover effects. Heeg gives a full derivation of the piezoelectric aeroservoelastic 

equations of motion and derives the state space and a controller.  

 Ehlers and Weisshaar conducted a comprehensive analytical study to discover 

how active control using piezoelectric patches could reshape the wing to improve 

aerodynamic performance and control static aeroelastic characteristics [146]. An 

extensive survey of the use of strain actuated control may be found in Chee et al.’s work 

[147]. A book based upon the finite element approach to piezo control by 

Bandyopadhyay et al. [148] is also very useful to understand the complex issues 

involved. Morphing-capable adaptive structures based on SMA technology has been 

applied to shape trailing edge surfaces of a UAV [149].  

 In 2005, scientists and engineers [150] exploited the aeroelasticity of a F/A-18 

wing using inboard and outboard leading edge flaps. A picture of this aircraft is given in 

Fig. 2.3. The Air Force program manager commented that, “With wing warping, the 

control surface deflections can be chosen to produce an aeroelastic shape that minimizes 

load on the structure and results in reduced structural weight. It also minimizes drag on 

aircraft, improves range and maximizes maneuver rates of aircraft”   
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Figure 2.3: NASA Active Aeroelastic Wing F/A-18 (Redesignated X-53) Technology 

Testbed Aircraft
2
. 

 

In 2010, Nguyen at NASA Ames proposed a control allocation scheme based 

modal suppression/drag reduction controller [151], relying on conformal trailing edge 

control surfaces. The model used to design the controller was designed retaining flexible 

modes, and the drag representation includes elements of flexibility.  

Nguyen’s research may be interpreted to suggest that modal sensing may be 

becoming increasingly important as aircraft shape control research progresses. The same 

author addresses the need for advanced sensing specifically in a NASA tech brief [152]:  

“New sensors should be able to measure both static and dynamic components of the 

wing deflection. The sensor bandwidth should be sufficiently fast to enable sensors to be 

used for providing data to an active wing shape control system” 

                                                 

 

 
2
 http://www.dfrc.nasa.gov/Gallery/Photo/AAW/HTML/EC03-0039-1.html 

http://www.dfrc.nasa.gov/Gallery/Photo/AAW/HTML/EC03-0039-1.html
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However, using active shape control to improve aerodynamic properties will 

likely remain difficult without local sensors which truly indicate the aerodynamic 

properties of the flow. Aerodynamic sensor packages such as the DASP toolbox [153] are 

being developed to address the sensor deficiencies.  

The previous sections may be used to deduce that modal filtering will benefit 

aircraft performance. By controlling the modal coordinates and thereby the shape, the 

aerodynamics of the aircraft can be adjusted. If this can be done actively and intelligently, 

aircraft inflight shape optimization may become a reality. The modal filter may benefit 

aircraft in other ways as well. The following section reviews loads alleviation and links 

modal coordinates to an aircraft load controls scheme. 

 

2.3 Modal Coordinates for Loads Calculation 

 

 

As aircraft are designed to be increasingly flexible in an effort to reduce weight, 

elastic frequencies may couple dangerously with gust frequencies. This may lead to 

resonance and structural cracks. 

Loads and gust load alleviation (GLA) have been important issues for decades. 

GLA studies began in the early 70s when cracks were discovered in the Lockheed C-5A 

Galaxy. An example of which is shown in Fig. 2.4. After initial investigation, active gust 

load alleviating ailerons was fitted to the re-winged Lockheed C-5As in the early 80s 

[154].  
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 Since then, various active gust load alleviation devices and techniques have been 

implemented on aircraft such as the Lockheed L-1011-500, Airbus 320, Boeing 787, and 

the B-2 [155, 156, 157, 158]. To address the gust load alleviation problem, lead sensors 

are generally required if using conventional control surfaces [159]. However, the same is 

not generally true for maneuver related loads alleviation [160], which is more of a steady 

state effect.  

 Modal coordinates have also been used for internal load calculations, through the 

use of the modal displacement (MD) method. The MD method recovers the loads directly 

from the modal displacements, and has been used for loads-alleviation control design 

[161]. When used carefully under fairly well-distributed loads such as in a gust case and 

with a sufficient number of modes taken into account, the MD method has been shown to 

calculate the actual loads quite well [162].   

 

Figure 2.4: A United States Air Force C-5A Galaxy in flight
3
. 

                                                 

 

 
3
 http://www.af.mil/shared/media/photodb/photos/021205-O-9999G-001.jpg 

http://www.af.mil/shared/media/photodb/photos/021205-O-9999G-001.jpg
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 The MD approach makes the modal superposition assumption, which is parallel to 

the modal displacement assumption. Each modal coordinate represents a specific load. 

Since the modes are orthogonal, the modal contributions to the load may be summed 

directly, as the interaction terms are assumed to be zero. Hence if enough modal 

coordinates are measured it may be possible to recover the net-load distributions.  

 The use of load modes may be employed along with the discrete coordinate 

stiffness matrix to calculate the net load on the structure such as in Eq. (2.7), 

       
        (2.7) 

where          is a matrix of load modes which is calculated apriori,        is the 

discrete coordinate stiffness matrix,        is the matrix of mode shapes and 

           is a vector of modal coordinates. With knowledge of the modal coordinates 

in real time, it may become possible to calculate the majority of the net loads contribution 

at a particular instant in time. By actively controlling net loads via modal coordinates in 

GLA systems, wings may be designed lighter and fuel efficiency may be improved. 

 

2.4 Summary of Application of Modal Filtering in Aircraft 

 

 

 From the previous sections it is possible to identify several motivating concepts as 

well as potential pitfalls. Due to increasing flexibility, next generation aircraft will be 

more susceptible to aeroelastic instability and gust loads. It will become more difficult to 

implement passive flutter suppression methods. This is especially true if flutter occurs is 
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in the flight envelope. AFS may become a requirement in more flexible aircraft. 

Furthermore, ASC and GLA may become requirements. 

2.4.1 Benchmark 

 

 Experimental vibration controllers have relied on modal information in one form 

or another. The benchmark today is in the use of single point sensors for control in 

aeroservoelasticity. For example, all experimental flutter methods propose control of 

flutter with only snapshots of the true aeroelastic states. These snapshots are taken with 

point sensors such as accelerometers. The true states are not measured and have never 

been used for AFS control feedback.  

 There are other problems with using single point sensors. Suppressing single 

sensor outputs may lead to observation and control spillover issues (SMI in aircraft). It is 

also common that single point sensors require additional dynamics such as low pass 

filters. This is problematic as modal frequencies tend to shift with time. Mode shapes 

change required by spatial modal filters change very little. 

 Modal filtering can estimate the true modal states of a structure. To date, 

benchmark spatial modal filters have been implemented in structural studies out of the 

airflow. It remains of interest to see if modal filters accurately capture the true modal 

states in the presence of aerodynamic forces. It is also of interest to see whether 

distributed sensing supports this objective.  

 The benchmark in modal filtering is the OLS type or LMS type modal filter. Both 

filters assume that the sensor error distribution is approximately normal. Therefore these 

filters are not practical for implementation in aircraft applications. This suggests a need to 
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make the modal filter robust. Several gaps can be identified given these benchmarks. 

They are presented in the next section. 

2.4.2 Gaps 

 

 It is postulated that there are gaps in the point sensor design methodology. 

Aeroelastic state space models typically represent structural states with modal 

displacements, modal velocities and modal aero lags [123]. By sensing and controlling 

linear combinations of these states, the overall objective may not be satisfactorily met.  

 Researchers in structures have suggested that spillover can occur in sensing and 

feedback control. In aircraft, flight controllers have induced SMI. To reduce this 

interaction, notch filters are typically employed, leading to increased phase lag. To meet 

phase requirements, the controller bandwidth is typically reduced. Here this gap may be 

filled, simply by controlling only that which needs to be controlled and leaving the rest 

alone.  

 Another gap is simply robustness. A controller which uses an exact estimate of a 

distributed state is more trustworthy than one which does not. A single sensor simply 

gives less information than 1,000s of sensors placed at many locations on a structure. It 

makes sense that AFS will likely be improved by modal sensing techniques, allowing 

control energy to be focused on the interacting modes. Otherwise, some energy is focused 

on modes which are not necessarily contributing. Furthermore, more accurate and reliable 

modal estimation may improve loads alleviation control design systems. 

 Another gap which has been postulated for flexible aircraft is the need for shape 

control to improve fuel economy. Active shape control may be required to maintain an 
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optimal wing shape or slightly perturb the shape in order to reduce drag in future flexible 

vehicles at off-design conditions. One of the methods of shape prediction relies heavily 

on accurate estimation of modal coordinates. Therefore improved modal sensing can 

support active shape control and drag reduction, in the future. 

 Another gap already identified is that modal filters require a large number of 

sensors for accurate modal coordinate estimation. This has prevented the spatial modal 

filter from being used in aircraft. Fast forward and today, experimental studies are being 

conducted with distributed sensing on aircraft with sampling rates up to 100 Hz. Indeed, 

high density distributed sensors will support modal filtering designs [20]. Thus it is 

postulated that this gap can be filled just by the utilization of modern distributed sensing 

technology. 

 Another gap follows from this immediately. A modal filter has not yet been tested 

in an aeroservoelastic environment. The modal frequencies and modal shapes change 

with air speed. Therefore it remains of interest to see whether a spatial modal filter is still 

applicable in an aeroservoelastic environment. Assuming this is possible, it is still not 

clear whether modal filtering can be of any use on an aircraft without experimentation. 

Much speculation is already seen in the previous sections, however. 

 Finally and perhaps most importantly a gap in modal filters is that they rely upon 

OLS for estimation. This requires that the sensor error distributions should always be 

normally distributed. However, practical applications are never perfect. Sensors fail and 

the unexpected happens. Therefore, modal filters must be improved to be robust under 

these circumstances. This becomes especially important if modal filtering is relied upon 

for feedback flutter control. To address these gaps, while supporting research objectives, 
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a specific research problem, research questions and hypotheses are formulated within the 

following section. 

 

2.5 Research Problem, Research Questions & Hypotheses 

 

 

 The previous section identified gaps which must be addressed in both modal 

filtering and flexible aircraft. Much of this has been brought about by new requirements 

from the Aeronautics Research Mission Directorate. The N+3 fuel efficiency objectives 

has generated interest in investigating all available technologies. Perhaps the most 

beneficial and potentially the most dangerous technology is light weight structures. Such 

aircraft with this technology may require ASC or AFS. 

 Suppression of structural vibration is the most common motivation, when 

considering structural control. A more active way of thinking would be to consider how 

to take advantage of the structure’s ease of movement. This dissertation will prepare the 

way for practical structural shape optimization in aircraft.  

 Aircraft aerodynamics are highly affected by the shape of the wing. More optimal 

shapes have been achieved through the usage of taper, aspect ratio, and twist. However, 

these shapes are often fixed and may not be optimal at some flight conditions. It is 

postulated that flexible structural control could be one method of improving performance 

characteristics of flexible aircraft. This could come about by controlling shape at off-

design conditions and through load control.  
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 Demonstrating global shape optimization of the aircraft is beyond the scope of 

this dissertation however. It would be more efficient to focus on how distributed sensing 

can be utilized to achieve inner loop control objectives first. It seems that reasonable near 

term objectives are to demonstrate AFS, GLA and ASC by way of the modal filter. In 

future work, an optimizer can be built around these inner loop control concepts.   

 But research suggests that modal filters are highly sensitive to sensor bias. This 

could raise substantial questions about their implementation and certification in 

commercial aircraft. Therefore, the thesis research problem is posed in a careful way 

which supports high level research objectives and addresses some of the identified gaps 

while accounting for the practical requirement of safety. 

 

Research Problem: 

How can high resolution distributed sensing and modal filtering be safely utilized for 

control feedback in flexible aircraft? 

 

In support of this research problem, the first research question is posed: 

 

Research Question 1. Is the OLS modal filter efficient for control feedback when it 

is utilized within an aeroservoelastic problem? 

 

A hypothesis is formulated in response to this question as follows: 
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Hypothesis 1. The OLS modal filter will perform the same as it would on a static 

structure out of wind flow. 

 

 The relationship of            holds true at all times. When considering the 

aeroservoelastic problem, the modal filter should not perform any differently. However, 

the modal filter has never been applied in an aeroservoelastic setting before. A wing 

model without rigid body modes should be sufficient to address this question fully. The 

next research question follows the proof of concept theme: 

 

Research Question 2. How should a modal filter be incorporated into the control 

system of a aircraft? 

 

A hypothesis is formulated in response to this question as follows: 

 

Hypothesis 2. The modal filter is a partial state filter in the aeroservoelastic 

problem. It can be placed in series with a traditional control system estimator. 

 

 The literature search revealed the typical aeroservoelastic state space model and 

its states. It was found that modal states are directly measured by the modal filter 

implemented by Shelley et al. Therefore, the series connection appears natural. 

Answering this question addresses several concerns about a modal filter’s utilization on a 

flying vehicle. Perhaps the most important one is whether the modal filter is still 

applicable when an aircraft’s modes become complex due to aerodynamic interaction. 
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 The OLS modal filter is one which is precariously used. The residuals strongly 

bias the estimates, and therefore it is not robust. Thus, the following research question is 

posed: 

 

Research Question 3. How can the OLS modal filter be improved to be robust to 

sensor bias?  

 

The following hypothesis is formulated in response to this question: 

 

Hypothesis 3. A robust regression technique will provide a real time estimator 

which proves to be efficient and resilient to faulty sensors 

 

 

 The modal matrix of a structure can be identified to be a data matrix   with 

explanatory data. The strain or shape measurements can be identified to be the output 

data, b in the relationship,     . So, a real time robust parameter estimation technique 

appears to be a natural solution. 

 Additional Research Questions are given next which do not have associated 

hypotheses. They are given under the assumption that the previous hypotheses are 

correct.  

 

Research Question 4. What methods of shape control may the modal filter be 

utilized for? 
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Research Question 5. Can a fully coupled rigid and flexible controller be designed 

with the modal filter?  

 

Research Question 6. Are there other uninvestigated uses for a robust modal filter? 
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CHAPTER 3 

 

 

 

SIMULATION DEVELOPMENT  

 

 

 
  The previous Chapter identified six research questions which must be addressed. 

In fact, the first must be answered in order to proceed with the next five. The next five 

depend on whether or not the modal filter can be used for control feedback in an 

aeroservoelastic environment. To formulate an answer to this question, it was necessary 

to code up a linear aeroservoelastic simulation environment. This was done, rather than 

using open source simulations, because most simulations do not have models of high 

density distributed sensing.  

  The simulation environment supports the development, control design and testing 

of the wing model in the next Chapter. It allows user inputs for varying numbers of 

control surfaces and structural layouts as well as mass and stiffness properties. Since the 

simulation environment is extensive, it has not yet been fully documented. An overview 

of the simulation is given instead, with salient features such as the state space modeling 

environment given for review. In future work, the simulation environment will be fully 

documented and published. The following section introduces some of the major steps 

taken in designing the simulation. A verification and validation study of the simulation is 

given at the end of this Chapter. 
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3.1 Summary of Wing Model Simulation Development 

 

 

 The steps taken to generate the wing model simulation environment are given and 

summarized briefly. A full recounting of the model development will be published at a 

future date. References are given, where important equations were derived. Any 

verification or validation steps taken are referenced to the source of verification material. 

The building blocks of the simulation include: 

1) Development of a FEM and linear solver in MATLAB with 2 node 6 DOF isotropic 

beam elements, 4 node 12 DOF isotropic plate elements and 2 node 6 DOF isotropic 

spring elements 

a. Modal frequencies of 12 DOF plate [163] model verified against ANSYS 

FEM software [164]. Deflection is verified with cantilever beam theory. 

b. 6 DOF beams verified with cantilever beam theory. 

c. Developed variable geometry representing rectangular wing with outer skin, 

linearly tapering spars/rips, and control surfaces using FEM elements 

2) Development of a 3d Vortex Lattice code and planar Doublet Lattice code in 

MATLAB 

a. VLM verified by matching parabolic lift distributions for rectangular wings, 

and comparing total lift with the standard lift equation for various aspect ratios 

b. DLM verified for the planar case [165] 

i. Quartic approximation of and verification of kernel [127] 

ii. Normalwash defined [166] 

iii. Chord-wise box layout improvements [167] 
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3) Generalized Force Coefficient build-up and rational function approximation in 

MATLAB 

a. Generalized forces calculated [168, 169] 

b. RFA utilizes Roger’s least squares approximation of the unsteady 

aerodynamics [117] 

c. RFA verified by matching the experimental flutter speed and frequency of 

rectangular plate [164] 

d. Visualization completed with V-g and V-f analysis [170] 

4) State space model for elastic modes modeled and simulated in MATLAB/Simulink  

a. State space [123] designed for Roger approximation of unsteady 

aerodynamics  

b. Verified instability of state space from positive real parts of complex 

eigenvalues at and beyond the predicted flutter speed from V-g analysis 

c. Gust loads modeling with sinusoidal gust columns [171] 

 Many of the steps just mentioned are not accounted for in detail within this paper; 

although these were the major steps taken by the author to design the simulation. 

Important steps, such as the aeroservoelastic state space model and verification and 

validation are discussed. The following section elucidates the simulation functions. 

3.2 Simulation Modules 

 

 

 The full functional capability of the aeroservoelastic analysis for the wing model 

is presented in Fig. 3.1.   
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Figure 3.1: Wing Model Design, Aeroservoelastic Analysis and Controller 

Development Tool. 
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 To start the FEM design, the user must input the geometry of the structure, such 

as the wing span and aspect ratio. The number of structural panels in the chord-wise and 

span-wise directions are variable giving the user some control of the structural layout.  

The spars are then assumed to lie along the ¼ chord and at control surface connections. 

Ribs are spaced every panel width. All properties including material type and thicknesses 

are user defined. 

 The aero module includes several components such as aero paneling, aero modes 

and gust modes, as well as GAF calculation and RFA design. The aero module is used to 

support state space design.  

 Direct simulation can also be achieved by inputting forces directly into the finite 

element model, or they can be done using the state space matrices themselves. A 

limitation of the simulation model is that it cannot simulate aerodynamic forces onto a 

node in a time simulation. The finite element aerodynamic force relationships have not 

yet been developed. This would require a wake model which is not currently 

implemented.  

 The following section details the aeroservoelastic state space model development 

which the simulation tool was designed to support. Actuators and gust modeling are also 

overviewed in the sections to follow. 

3.2.1 Aeroservoelastic State Space Model 

 

 The derivation of the plant, input influence matrix and sensor output matrices is 

given here, using similar notation found in [45]. The relevant displacement matrix 

equation of motion for structures is given as in Eq. (3.1), 
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  ̈    ̇      ̅           (3.1) 

where        is the inertia matrix,         is the damping matrix,        

is the stiffness matrix,   is the dynamic pressure,      is the aerodynamic influence 

coefficient matrix calculated calculated from for a given Mach number and a set of 

reduced frequency values   
  ̅

  
,  ̅ is the mean chord length,   is the circular frequency 

and   is the freestream velocity,        is the physical displacement vector of 

rotational and translational DOF, and       is the external forcing function.  

 The free vibration of the unforced system in equilibrium is given as in Eq. (3.2). 

  ̈       (3.2) 

The eigenvalue solution of the system produces the natural frequencies and eigenvectors 

(dry mode shapes) of the system. The following transformation may then be applied to 

Eq. (3.2) assuming mean axis constraints are satisfied, as shown in Eq. (3.3),  

     (3.3) 

where        is the matrix of eigenvectors corresponding to elastic, rigid and control 

modes. The transformation results in Eq. (3.4). 

   ̈     ̇                   (3.4) 

Pre-multiplying by   , the matrix equation of motion becomes as in Eq. (3.5). 

     ̈       ̇                         (3.5) 

This is typically rewritten in the following generalized form as in Eq. (3.6). 

 ̃ ̈   ̃ ̇   ̃          ̃    (3.6) 

From here, decisions must be made in how the generalized aerodynamic force (GAF) 

matrix will curve fitted.  
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 There are several ways of doing this including Roger’s RFA [117] and Karpel’s 

Minimum State method [172]. The RFA of the generalized unsteady aerodynamic forces 

in the Laplace domain may be written as in Eq. (3.7),  

 ̂        ̅    ̅    ∑
 ̅

 ̅    
  

 

   

 (3.7) 

where  ̅   
  ̅

  
 

  ̅

  
,  ̅ is the reference chord length, and   is the Laplace variable. 

The matrix coefficients    may be found through a least squares approximation of a set of 

GAF matrices each calculated at a specified reduced frequency. For slower speeds 

analysis the largest reduced frequency is chosen to be high and for faster speeds, the 

largest reduced frequency may be chosen lower due to the inverse relationship with 

freestream velocity.  

 The GAF matrices are calculated through a doublet lattice procedure with aero 

mode shapes and modal shape derivatives taken in the chord-wise direction. To improve 

the accuracy of the approximation for higher Mach numbers, Rodden’s quartic kernel 

approximation [127] is utilized. In addition, the number of aero panels for each 

generalized force matrix calculation are constrained in the streamwise direction to be at 

least      ̅⁄  , as Rodden et al. [167] recommends for improved accuracy. 

 Roger’s RFA is chosen for computing the RFA. To implement the RFA, the lag 

constants    are user defined but typically chosen from the lower range of the predefined 

set of reduced frequencies. For an accurate fit of the generalized force matrix, usually at 

least 2 lag states are required, although this number tends to vary from 1 to 4 in the 

literature.  
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 Inserting (3.7) into (3.6), the equations of motion are rewritten assuming simple 

harmonic motion as in Eq. (3.8), 

 ̃ ̈   ̃ ̇   ̃   [   
  ̅

  
   (

  ̅

  
)
 

              ] 

   

(3.8) 

where the lag states are given as in Eq. (3.9). 

   
  

  
  
 ̅   

         (3.9) 

Equation (3.9) may be rewritten in the form of matrix ODEs as in Eq. (3.10). 

 ̇  
  

 ̅
      ̇ (3.10) 

Like terms are grouped in (3.8) and the equation may be rewritten as in Eq. (3.11). 

( ̃     )  ( ̃   
 ̅

  
  )  ̇  ( ̃   (

 ̅

  
)
 

  )  ̈       

           

(3.11) 

Condensing variables results in Eq. (3.12). 

 ̂   ̂ ̇   ̂ ̈                  (3.12) 

Equations (3.10) and (3.12) represent a set of ordinary differential equations and may be 

converted to state space form in the usual way. Before doing so, it is important to 

understand that the modal coordinates may include control modes, rigid body modes, 

elastic modes and gust modes. The matrices are partitioned accordingly. Assuming only 

the presence of elastic modes, control modes and gust modes in the analysis, the state 

space equations are presented as in Eq. (3.13). 
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(3.13) 

The states    and    replace the modal state displacement and velocity vectors 

respectively. The remaining states make up the aerodynamic lag terms. The control 

surface states     ̇   ̈  may be replaced with actuator transfer function dynamics, in 

order to convert the input states into control command format. The gust velocity and 

acceleration are represented by    and  ̇  respectively. 

 The sensor output equation is typically modeled based on the position and type of 

sensors in the system.  Certainly, there are many ways to form the output sensor equation, 

and here one intuitive way is reviewed. Assuming that the measurements are linear 

combinations of the modal states Eq. (3.14) results,  

          
 ̇      ̇
 ̈      ̈

 (3.14) 

where   ,  ̇  and  ̈  represent the measured displacements, velocities and accelerations 

respectively on the wing,   is the modal matrix,   is a vector of modal coordinates, and 

   is an interpolation matrix used if the sensors are not exactly placed at the FEM node 
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locations. Accelerometers and rate sensors can be used in flutter control problems, the 

sensor matrices are related to the state vector derivative as in Eq. (3.15). 

{
 ̇ 

 ̈ 
}  {

   
   

} {
 ̇
 ̈
} 

 [
      
      

]  ̇ 

    ̇ 

(3.15) 

Notice that the sensors are related to the state space formulation matrices, which means 

that a direct feed-through matrix must be introduced. Pre-multiplying the state space form 

by    

   ̇            

         
(3.16) 

The output equation may then be formed as in Eq. (3.17). 

  {

  

 ̇ 

 ̈ 

}  [
  

  
]   [

 
  

]   (3.17) 

3.2.2 Actuators 

 

 For each control surface, a second order actuator is utilized. To prepare for 

actuator command time delay a 1
st
 order lag filter      ⁄  is multiplied with the 2

nd
 

order actuator transfer function. This also has an additional effect of removing direct 

feedthrough from the sensor output matrix, when accelerometers are used for feedback. 

Each 3
rd

 order actuator function from input command to output is shown as in Eq. (3.18), 

  

    
 

 

    
(

  

          
) (3.18) 

where   is a scalar time constant,   is the circular frequency,   is the damping ratio.  
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  For all results, the time constant is set to .02 sec;   was set to 74 rad/sec; and   

was set to 0.58. The actuator settings were chosen very close to those for an experimental 

fighter aircraft’s aileron actuators. This was not done for any particular reason, other than 

the convenience of having a similar model. A linear time invariant (LTI) transformation 

of the actuators may be used to augment the state space equations given in Eq. (4.4). The 

actuator bode and step is given in Fig. 3.2a) and 3.2b) respectively. 

 

 
 

Figure 3.2: Actuator a) Bode Comparison; and b) Step Comparison. 

 

The lag filter makes the actuator behave more like a first order filter. The time response is 

closer to what a transport control actuator looks like. The following section describes the 

gust model which is used in the simulation. 

3.2.3 Gust Model 

 

 Gust modes are important to test the models for their performance in GLA. The 

gust modes are found by modeling the phase lag between individual panels and the 

beginning of the gust [171]. For a coordinate system with origin at the trailing edge and 

increasing   in the leading edge direction, the gust mode is given as in Eq. (3.19), 

a) b) 
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          ( 
  

 ̅
(     ̅   ̅    )) (3.19) 

where     is the vector of stream-wise coordinates at the control points of each 

aerodynamic panel.  ̅     is the chord-wise distance between leading edge of the model 

and the start of the gust. Note that there is no phase lag, at the start of the gust. For this 

gust model, it is assumed that  ̅      . This means the gust starts to build at leading 

edge of the wing.  

 Here is presented the          gust model, which is used to drive the gust input 

matrix of the state space equations. The standard temporal variation gust model [170] is 

given as in Eq.  (3.20), 

      
    

 
(      (

  

 
 )) (3.20) 

where      is the design gust velocity,   is the aircraft speed,   is the gust gradient, or 

half the distance of the total gust span. For this wing test model it was desirable to design 

for a known maximum gust velocity and acceleration at the design operating condition. 

So the gust velocity was specified as in Eq. (3.21), 

      
      

 
(          ) (3.21) 

where   is a design constant and        is the maximum gust velocity. A derivative in 

time of Eq. (3.21) gives the gust acceleration model shown in Eq. (3.22). 

 ̇     
      

 
          (3.22) 

By inspection, it is clear that the maximum value occurs when          , and thus the 

constant   is chosen as in Eq. (3.23). 
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 ̇     

      
 (3.23) 

The period for the gust disturbance is therefore given as in Eq. (3.24).  

  
  

 
 (3.24) 

  For the simulation, the same gust model is used. A maximum velocity of 5 m/sec 

and an acceleration of 1g is used for all studies. The model utilized for gust disturbance 

simulation is given in Fig. 3.3. 

 

Figure 3.3:          Gust Model for Control Design and Simulation. 

 

The gust model used here represents a fairly large disturbance. However, the parameters 

are adjustable. More reasonable disturbances may be input for other flight conditions. 

The next section describes the verification and validation procedures followed before 

putting trust in the simulation. 
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3.3 Simulation Verification & Validation 

 

 

 The simulation requires verification and validation. Therefore, pertinent aspects 

of the aeroservoelastic tool are tested against published material or theoretical 

relationships. First, it is shown that the deflected finite element model of the beam 

matches cantilever beam deflection theory results. Second, the modal frequencies and 

flutter speed prediction modules are compared with that of an experimental model. First, 

the beam verification results are presented. 

3.3.1 Beam Verification 

 

 Here it is demonstrated that the finite element model force to displacement 

relations are satisfactorily matching cantilever beam theory results. Two beams are 

simulated under the same static loading conditions of {Fz=-100N, My=-100N-m} at beam 

tip where Fz is a force in the vertical direction and My is a torsion-like torque applied to 

the tip. The cubic dimensions of the beam are                         , with a 

built-in boundary condition at one end.  

 One beam is a simple continuous isotropic cantilever beam. The second is a finite 

element beam, used in the structures module. The beam was discretized length-wise into 

30 finite isotropic beam elements. The comparison shows that under the same forcing 

conditions, the FEM beam model deflection and torsion corresponds precisely to the 

cantilever beam deflection and torsion as is presented in Fig. 3.4. 
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Figure 3.4: Beam Model Verification,{Force, Moment} = {-100N, -100N-m} at Beam 

End. 

 

The nearly perfect overlay gives confidence that the beam properties of the structure are 

modeled correctly. This is very important in the generation of accurate mode shapes for 

the modal filtering process. It is also important when deriving aero mode shapes used to 

compute GAFs. The next section compares experimental data to the simulation results for 

modal frequencies and flutter speed and frequency prediction. 

3.3.2 Modal Frequencies and Flutter Validation 

 

 Validation is completed for a published theoretical/experimental modal analysis 

and flutter results for a clamped .3048m x .1524m x 0.001588m polybicarbonate plate. 

The experimental wind tunnel and modal frequency analysis was conducted at Duke 

University by Conyers et al. [164]. The simulation code modal frequency predictions are 

compared to that from both the ANSYS code (which they computed) and the 
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experimental measurements. The simulation code nearly matches the first 5 modal 

frequencies calculated from ANSYS software and comes very close to experimentally 

measured frequencies collected into Table 3.1. 

 

Table 3.1: Modal Frequency Code Comparisons and Experimental Results 

 ANSYS 
Frequencies, Hz 

Simulation FEM  
Frequencies, Hz 

Duke Univ.’s 
Experimental 

Frequencies, Hz 

Mode # 1 3.99 3.99 4.13 
Mode # 2 16.96 16.97 17.24 
Mode # 3 24.86 24.89 24.38 
Mode # 4 55.33 55.40 54.25 
Mode # 5 69.84 69.92 69.00 

 

 

 They also conducted experimental flutter testing and prediction with their in-

house code. The flutter speed and frequency comparisons are presented in Table 3.2. 

Table 3.2: Flutter Code Comparisons and Experimental Results 

 

Duke Univ.’s 
in-house 

Flutter Code 
 

Simulation 
Flutter Code 

Duke Univ.’s Wind 
Tunnel Experimental 

Results 

Flutter speed , m/sec 20.8 19.9 20.05 
Flutter frequency, Hz 10.3 10.9 11.50 

 

 

Table 3.2 shows that the theoretical flutter frequency and speed calculated from the 

simulation code are very close to Duke’s wind tunnel experimental results. In fact, they 

are closer than the theoretical results from Duke’s in-house aeroelastic flutter code. It is 

postulated that this is due to the increased aero paneling at higher reduced frequencies 

used in the Simulation code developed herein. These improvements were suggested by 

Rodden et al. [167]. 
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 Within Duke Univ.’s paper, 10 modes were modeled in the aeroelastic analysis to 

find the theoretical flutter speed and frequencies of the rectangular plate without a hole, 

but a V-g and V-f plot was not shown. V-g and V-f analyses are presented here in Fig. 

3.5 as they were plotted with the simulation flutter code.  

           
 

Figure 3.5: Flutter Analysis of Theoretical Plate Model a) V-g Plot; and  b) V-f Plot. 

 

 It is clear from the V-g analysis in Fig. 3.5(a) that the first two modes (1
st
 bending 

and 1
st
 torsion) interact. At 19.9 m/sec the 1

st
 torsion mode’s damping goes to zero and 

begins to theoretically flutter. The flutter frequency is found to be 10.9 Hz through 

inspection of the 1
st
 torsion mode in the V-f plot given in Fig. 3.5(b) at the flutter speed. 

The closeness of the simulation results with experimental results validates the simulation 

model for flutter analysis of rectangular wing structures.   

a) b) 
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CHAPTER 4 

 

 

 

WING MODEL 
 

 

 
  The simulation model developed previously is an excellent tool for testing the 

modal filter. The question to address is whether or not the modal filter is applicable in an 

aeroservoelastic setting. Therefore, this chapter directly addresses Research Question 1. 

  To this end, a methodology for how modal filtering is incorporated into the 

aeroservoelastic controller is given. To compare the modal controller, its results are given 

side by side with a controller designed using benchmark accelerometers.  

  A computational wing model is developed in this Chapter utilizing the simulation 

from the previous Chapter. The model is fitted with both accelerometers and fiber optic 

sensors. Two separate controllers are developed for each sensor type for a benchmark 

comparison. Their robustness to structured uncertainty is compared. This is done with a 

mu analysis [103]. The performance is analyzed by two simulations. The first simulation 

compares the controllers’ ability to reject gust disturbances and the second demonstrates 

their aptitude in suppressing flutter.  

 Both controllers perform almost equally well, which was somewhat unexpected. 

However, it turns out that modal controllers tended to be much lower order for this 

particular case study. This Chapter also specifically addresses Research Question 4 by 

formulating two methods of wing shape control. Shape control is a practical benefit of 

using a modal filter based controller. The first section introduces the modal filtering 

design methodology. 
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4.1 Modal Filtering Design Methodology 

 

 

 The methodology for incorporating the modal filter into the control design of an 

aeroservoelastic model is divided into three phases. These three phases include the 

Control Design Phase, Modal Filtering Design Phase and the Shape Reference Signal 

Design Phase. The phases are presented in the following flow chart in Fig. 4.1. 

 

Figure 4.1: Modal Filtering Design Methodology Flow Chart. 

 

The phases introduced in Fig. 4.1 are sequential, because each depends on results of the 

other. During control design, significant modes are identified and controlled. No 

structural sensors need to be in place, because the estimation and control design problems 
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are separate. After it is verified that control of these modal displacements is intelligent, 

the modal filter design phase ensues.  

 In the beginning of the modal filter design phase, the sensors are placed in an 

intuitive sense to measure the modal displacements. For example, if a 1
st
 Bending modal 

displacement is desired, then it would be intuitive to place FOS span-wise along the 

wing. If a 1
st
 Torsion modal displacement is required, it would be pertinent to have 

chord-wise sensor measurements at several different span-wise stations. Once sensors are 

placed appropriately and modal coordinates are estimated well, reference signal design 

phase ensues. 

 The reference signal design phase is necessary depending on what the 

requirements are for the control design. If suppression only is desired, then no modal 

reference shaping is required. If it is desired to command a shape, at many specific 

locations, then a modal transformation it required. That is, a transformation must be 

performed on the desired deformation references.  

 After these phases are complete, simulation of the overall system is needed to 

ensure that all components work together and meet design objectives. Otherwise, 

iteration on any or all design phases may be required. This concept is captured by the 

feedback arrows in Fig. 4.1. The following sections give some more details on a modal 

filter based control design, beginning with the control design phase. 

4.1.1 Control Design Phase 

 

  Control design can be approached in many ways, so only a general overview of 

the process is given here. The first step for modal filtering control design is to specify 
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performance and robustness requirements. For performance, this typically includes 

specifying targets or bounds for rise time, overshoots, settling time and the overall shape 

of the response. Robustness must also be achieved in a control design and is approached 

from varying points of view in the literature. A mu-analysis and Monte Carlo Simulation 

is recommended. 

 Identifying Significant Modal Coordinates 4.1.1.1

 

 With requirements set, identification of important modes for control feedback 

must be completed. Significant modes are defined as those modes which contribute 

strongly to the response and fall within actuator bandwidth. In a structure, the magnitude 

of the modal mass is often a proportional indicator of modal contribution to the response.  

 The percent of the total modal mass for the     mode may be calculated as shown 

in Eq. (4.1), 

     
 

  

         
    

                    
 (4.1) 

where    is the total mass of the structure, and    is an     reference vector of unit 

deflections and rotations. Modes with the highest percent modal mass must be selected 

for feedback, since they may contribute heavily to the response [7]. A good rule of thumb 

is to include modes which sum to approximately 90% of the total mass of the structure. 

  But things change when aerodynamic forces are present. In an aeroelastic setting, 

a flutter analysis (V-g or V-f plots) or convergence study must determine the importance 

of modal coordinates. Pak [173] shows how to expand the flutter mode as a linear 

combination of the natural modes and calculate the percent contribution of each mode to 

flutter. This is necessary due to the fact that modal contributions change with air speed. 
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So the modal contribution at one dynamic pressure can be completely different than the 

contribution at another dynamic pressure. 

  Once the design flight condition and modal displacement feedbacks are decided 

upon, then the state space models can be modified. This process is given in the following 

two sections, starting with a definition of the states of a typical aeroservoelastic state 

space model. 

 State Definition 4.1.1.2

 

 The aeroservoelastic wing model may be represented by a linear time-invariant 

(LTI) system of finite dimensions as in Eq. (6.9), 

 ̇               
                

               (4.2) 

with the initial state        . The  -dimensional vector      is referred to as a state 

vector and at any time during a simulation can be accessed to give the current “state” of 

the system about an equilibrium condition. The  -dimensional vector   is the system 

measurements. The  ,  ,   and   matrices are real constant matrices with    ,    , 

    and     dimensions.  

 According to Eq. (6.9), only the current state and the  -dimensional input   is 

required to know the state in the next time step. The state vector may be defined as in Eq. 

(4.3), 

     {        ̇                  }
  (4.3) 

 

where            is a vector of modal coordinate displacements,   ̇         is a 

vector of modal coordinate velocities,             is a vector of aerodynamic lag 
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states and              may be formed from a vector of actuator accelerations, 

velocities, and displacements. The modal filter may be used to sense some or all of the 

states in the       vector, as shown in Eq. (3.10). Any of these states (or combinations of 

these states) can be used to form the output matrix if the appropriate sensor is utilized. In 

turn, the output matrix is used during control design. 

 Modal Coordinate Sensor Output Matrix 4.1.1.3

  

  The output matrix   is a matrix of row vectors relating the output sensor to the 

state vector,  . Since the modal filter directly measures some or all of the    state, the 

output matrix may be cast into the form shown in Eq. (4.4), assuming all modal 

coordinates are measured. 

  [                ] (4.4) 

Directly measuring all modes is not required. Higher-order modes which do not 

significantly contribute to the overall modal deformation in the system may be ignored to 

reduce the row dimension of the output matrix. This is one of the strengths of the modal 

filter, to filter out modes which do not matter. 

 Model Reduction 4.1.1.4

 

 There is a multitude of literature on the topic of reducing the order of a controller; 

two references are given here [104, 107]. Some researchers reduce the plant and design 

the controller around the reduced order plant. Others reduce the controller after it has 

been designed around the full plant. It is typical to preserve the dominant eigenvalues in 

the reduced order model.  
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 A common method of order reduction is to first balance and then then reduce the 

plant based on the Hankel singular values [174]. This method was selected for the current 

model. The following discussion pertains to the balancing completed on the stable 

portion of the plant after partitioning of the plant into stable and unstable parts.  

 The Hankel singular values {   √              } are derived from the 

eigenvalues {        } of the square root of the product of the controllability 

Gramian,    ,and observability Gramian,   . The Gramians are found from a solution of 

algebraic equations known as Lyapunov equations, shown in Eq. (4.5). 

       
       

              
 (4.5) 

The Gramians give a degree of relative observability and controllability if the plant is 

internally balanced. To balance the plant a transformation on the states       may be 

found so that the controllability and observability Gramians are both diagonal and equal. 

The diagonality means that each state has its own independent measure of controllability 

and observability. The equality of the Gramians indicates that each balanced state is 

equally controllable and observable (is excited to the same degree to which it is sensed).  

  The transformation is found by decomposing the solutions of Eq. (4.5):    and 

   of the unbalanced system using a singular value decomposition (SVD). The left 

singular matrix,   , of    may be multiplied with left singular matrix,   ,of   , as in Eq. 

(4.6). 

     (4.6) 

Another SVD of   may be performed to arrive at       . The transformation matrix is 

presented as in Eq. (4.7). 



 95 

     
  

 ⁄  (4.7) 

The transformed state space matrices are given by the method as is shown in Eq. (4.8). 

        

       
     

 (4.8) 

To reduce the order of the system, states (rows or columns) of the balanced system may 

be removed which correspond to relatively low Hankel singular values. From the 

reduced-order model, the reduced-order controller and estimator are designed as it would 

be from the original plant matrices.  

 Control Design and Iteration 4.1.1.5

 

  Control design can proceed with any desired control methodology. For the wing 

model, the    Optimal design methodology is chosen. It is chosen because it can lead to 

very robust control designs.  

  The important step of any controller is to verify requirements are met for the 

controller on the full order plant model. Requirements must also be achieved on a 

nonlinear simulation model if it is available.  Often, to meet the requirements it is 

necessary to retain more states in the plant used for control design.  

  Sometimes the requirements are too stringent and must be changed, however. One 

output of the control design phase is to identify which modal displacements must be used 

for feedback. Once a controller is accepted, then the modal displacements are also 

accepted. The design of the modal filter is discussed in the next section. 
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4.1.2 Modal Filtering Design Phase 

 

 The means of estimating the modal coordinates is probably one of the most 

important aspects of the modal coordinate feedback controller design. The sensors could 

come in the form of piezoelectric materials [2], fiber optics [66], strain gauges [175], or, 

potentially, photogrammetry [78]. Each sensor type has different characteristics, which 

may make some sensors more appropriate for certain systems than others. 

 For the wing model, the modal matrix,   is composed of the natural mode shapes 

of the system. These mode shapes are mass normalized, making them orthogonal. The 

measurement of the modes proceed as in Eq. (4.9),  

 ̂                           (4.9) 

where   is the indexed locations of the modal matrix   where sensors are located,   is the 

Moore-Penrose pseudo-inverse and                are the measured deformations. For 

the wing model, it is assumed that the sensors measure deformations directly. This is 

certainly possible considering the shape algorithms available. The following section 

describes how the sensors are placed which will be used to compute      . 

 Sensor Placement 4.1.2.1

 

 One of the discussed gaps was that single point sensors only take snapshots of the 

true aeroelastic states. Another fact is that single point structural sensors must be 

optimally placed in order to confidently use them.  

 This strict rule can be relaxed, when distributed sensors such as the FOS are 

incorporated onto the structure. With so many sensors, the sensors can be placed in ad 
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hoc manners, using intuition, rather than complex optimization programs. That is the 

approach which is to be taken here. 

 After setting up the sensors to intuitively capture the modal displacements, the 

modal matrices can be computed. This is done by computing displacements at the sensor 

locations corresponding to the normal modes in the finite element model. These sensor 

modes shapes can then be collected into the modal matrix and used as in Eq. (4.9). 

 A rather important concept is how many modes must be included in the modal 

matrix. This depends on how many modes are interacting in the system. Enough residual 

modes must be accounted for or the pseudo-inverse solution of the controlled modal 

displacements will become biased. After estimation of all modal displacements, the 

required modal displacements to be controlled can be indexed. 

 In some cases, reference signal design can be important as was previously 

discussed. This is especially the case when modal displacements must be tracked. These 

issues are discussed in the next section. 

4.1.3 Reference Signal Design Phase 

 

 A modal tracking controller can be used for the purpose of shape control. By 

controlling modal displacements, the shape of the structure can be uniquely commanded. 

Deformations are linearly related to modal displacements, assuming small perturbations. 

A least squares optimal reference signal can be designed. This is achieved by converting 

the reference deformations at any or all points of the vehicle, into modal references. Only 

the modes to be controlled must be included in this transformation corresponding to 
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sensor locations defined in the reference deformation signal. This relationship is given as 

in Eq. (4.10), 

                             (4.10) 

where   is the Moore-Penrose pseudo-inverse operator, and   are indices corresponding to 

locations where deformations are desired to be controlled. 

  The problem of forming the vector               depends on application. If the 

desire is to control a specific point on the wing to stay at a specific point, then this vector 

will have only a few components. If the problem is to globally optimize the shape with 

some aerodynamic criterion involved, then the vector may have many components. The 

formation of the vector               remains an open problem to be explored. Here the 

vector is assumed to be known.  

  The presented design methodology is not easy to accept without an example. So a 

case study is presented next which follows the three phases which were introduced here. 

However, some liberties are taken where appropriate. 

 

4.2 Wing Model 

 

 

 The modal filtering design methodology presented previously, serves as a 

practical guide for the rest of the work in this Chapter. The work begins with the 

development of a computational test article for proof of concept of the application of 

modal filtering to the aeroservoelastic problem. This is also a requirement for answering 

Research Question 1. 
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 To this end, a notional elastic aluminum based rectangular wing clamped at one 

side is developed the first case study. The dimensions were selected such that the half-

span was several times longer than the chord, which would be typical of an aircraft wing. 

4.2.1 Geometry  

 

 The structure of the wing includes the fore and aft spars, ribs and wing skin, 

present in many aircraft. The ribs and spars are modeled with structurally equivalent 

beams. The wing’s purpose is to be able to simulate aeroelastic phenomena well and not 

to mimic any particular vehicle, so details such as shear webs and stringers etc. have been 

neglected. The geometry for the clamped wing model is presented in Fig. 4.2. 

 

Figure 4.2: Wing Model Geometry and Structural Specifications. 

 

 The wing half span was modeled as a 3.354m x .838 m aluminum rectangular 

plate clamped at the wing root, and made from 6061-T6 aluminum metal alloy 

traditionally utilized in aircraft flying today. Complete specifications of the structural 

aspects of the wing are given in Table 4.1.  

Built-in (Clamped) 

boundary condition

Freestream Velocity

  

Wing Root Rib (w,h)= 

(5.08cm, 5.08cm)^

Wing Tip Rib (w,h)= 

(2.54cm, 2.54cm)^

^Wing Rib Dim Increment (w,h)=(Wing Tip Rib(w,h) - Wing Root Rib(w,h))/# ribs=(-0.159cm, -0.159cm)

*Forward Wing Spar Dim Increment (w,h)=(Wing Tip Spar(w,h) - Wing Root Spar(w,h))/# ribs=(-0.159cm, -0.159cm)

Wing Tip Forward Spar 

(w,h)= (2.54cm, 2.54cm)*

Wing Tip Aft Spar (w,h)= 

(2.54cm, 2.54cm)@
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(w,h)= (5.08cm,5.08cm)

Wing Tip Aft Spar (w,h)= 

(3.81cm, 3.81cm)@

3.354m
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#Spring values for control modes (Mass(z,torsion,bending)=(1e-4kg,5kg-m^2,1e-4kg-m^2), Stiffness(z,t,b)=(3e8N/m,1N-m/rad,3e8N-m/rad)

# # # #

Skin Thickness (h) = 1.53 mm (x2 for both surfaces)

Material Alloy: Aluminum 6061-T6 {v=.33,G=26GPa, E=68.9GPa,P=2,700kg/m^3 }

0.419m

#Spring values for normal modes (Mass(z,torsion,bending)=(1e-4kg,1e-4kg-m^2,1e-4kg-m^2), Stiffness(z,t,b)=(3e8N/m,3e8N-m/rad,3e8N-m/rad)
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@Aft Wing Spar Dim Increment (w,h)=(Wing Tip Spar(w,h) - Wing Root Spar(w,h))/# ribs=(-0.079cm, -0.79cm)



 100 

 Aluminum ribs and spars were added to reinforce the structure giving it structural 

properties similar to an aircraft wing. The leading edge spar was made thicker than the 

trailing edge spar as it would likely carry more of the lift load. To simulate a more 

realistic wing where structure would be built up to carry more load near the root, the 

spars and rib dimensions were linearly tapered towards the wing tips. Control surface 

panels shown outlined in red dots were also stiffened with leading edge and trailing edge 

spars, as well as cross-wise ribs along the dotted lines. Each control surface was 

connected to the wing structure by two 6 DOF springs. The connection joined the wing 

and control surface at 1/3 and 2/3 of the control surface span.  
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Table 4.1: Example Geometry Specifications. 

 Specifications 

Wing Span  6.7m (22ft.) 
Wing Chord  0.84m (2.75ft) 

Aspect Ratio 8 

Control Surface (CS) Span
4
 0.63m (2.06ft) 

Control Surface Chord 0.25m (.83ft) 

Spar Length 3.35m (11ft.) 

Rib Length 
0.84m (2.75 ft.) 
In front of CS - 0.59m (1.94ft.) 

Wing Tip Forward Spar 2.54cm.x2.54cm. (1in.x1in.) 

Wing Root Forward Spar 5.08cm.x5.08cm. (2in.x2in.) 

Wing Tip Aft Spar 2.54cm.x2.54cm. (1in.x1in.) 

Wing Root Aft Spar 3.81cm.x3.81cm. (1.5in.x1.5in.) 

Wing Tip Rib 2.54cm.x2.54cm. (1in.x1in.) 

Wing Root Rib 5.08cm.x5.08cm. (2in.x2in.) 

Control Surface Upper Spar 2.54cm.x2.54cm. (1in.x1in.) 

Control Surface Lower Spar 2.54cm.x2.54cm. (1in.x1in.) 

Control Surface Rib 2.54cm.x2.54cm. (1in.x1in.) 

Skin Thickness 1.53mm. (0.06in.)  

Material Alloy 
Aluminum 6061-T6

5
 (ν=.33, 

G=26GPa,E=68.9GPa 
Ρ=2,700kg/m

3
) 

Wing Root Boundary Condition Built-in at centerline (3.35m) 

 

 

 

 

 

 

  

                                                 

 

 
4
 The four control surfaces have exactly the same geometrical specifications and actuators 

5
 http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061t6 
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4.2.2 Normal Modes 

 

The elastic modes are generated in a control fixed configuration, where the spring 

connecting the control surface to the wing is assumed to have a stiffness of several 

magnitudes higher than any component of the global stiffness matrix. The modal 

frequencies are given in Fig. 4.3. 
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Figure 4.3: Modal Representation of Wing Model: a) 1
st
 Bending (Mode 1); b) 1

st
 

Torsion (Mode 2); c) 2
nd

 Bending (Mode 3); d) 2
nd

 Torsion (Mode 4); e) Mode 5; f) 

Mode 6; g); Mode 7; h) Mode 8; i) Mode 9; and j) Mode 10. 

 

 

  

a) b) 

c) d) 

e) f) 

g) h) 

i) j) 
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The first 4 modes, in order of appearance and from visual inspection appear to be: 

1
st
 wing bending, 1

st
 wing torsion, 2

nd
 wing bending, and 2

nd
 wing torsion. The remaining 

modes could be considered higher order residual modes. The control modes (1 per control 

surface) are not shown here, but they are calculated by enforcing a 1 deg. rotation 

boundary condition on their respective actuators. The next section describes in detail the 

state space model developed for the wing model in the aero module (See Fig. 3.1). 

4.2.3 Aeroelastic Modal Analysis 

 

 The Velocity versus damping (V-g) and Velocity versus frequency (V-f) plots are 

the standard representation of the aero-structural interaction at a particular Mach number 

and altitude. These charts are essential in a flutter analysis. They can also be used to 

select design flight conditions.  

 The V-g plot shows the flight condition at which the structure requires positive 

damping, and the structure becomes unstable. The V-f plot may be utilized to identify the 

flutter frequency. To generate the plots, one must specify a reduced frequency range. The 

GAFs for the aero fit were calculated at reduced frequencies with intervals of 0.2 along 

 [     ] and Roger’s RFA [117] and least squares procedure was utilized to find the aero 

coefficients. For the following results, compressibility was simulated at a Mach number 

of 0.25. The altitude was set to 1,000ft standard atmosphere. Both plots are presented in 

Fig. 4.4.  
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Figure 4.4: Flutter Analysis of Wing Model a) Damping versus Velocity, V-g ; and 

b) Frequency versus Velocity, V-f. 

 

 Notice that the beginning frequency of each mode corresponds to its natural 

frequency. The frequency of the modes changes with speed as aerodynamic coupling 

increases. At flutter, two or more modes begin to oscillate at a common frequency. This 

frequency is determined by the mode which crosses the zero damping line. 

 From observation of the V-g analysis, the 1
st
 wing bending (mode 1) and 1

st
 wing 

torsion (mode 2) begin fluttering around 72 m/sec at a frequency of about 4.9Hz. The 

interaction of the two modes is typical, where the margin of instability of one mode 

substantially increases and the margin of stability of another mode also increases.  

  Because further work with modal filtering must also take place on a flutter 

sensitive flight vehicle, it was desired to select a flight condition for the model after 

flutter. Therefore, the flight condition was selected to be at 80 m/sec, which is about 8 

m/sec past the bending/torsion flutter boundary and at an altitude of 302 m or roughly 

1,000 ft. This also represents a feasible flight condition for a lightweight flexible small 

UAV type aircraft. The characteristics of the model at this flight condition is presented in 

the next section. 

a) b) 
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4.2.4 Open Loop Flutter 

  

  The aeroelastic wing model is in an open-loop flutter condition, based on the 

prediction made by the V-g analysis (See Fig. 4.4a) at the freestream velocity of 80 m/s 

and altitude of 305 m.  

  To observe the characteristics of the flutter instability, the model was perturbed 

from equilibrium at time 0 s by a unit deflection command to the control surfaces which 

lasted for 0.01 s. The time history of the modal coordinates is shown in Fig. 4.5. 

 

 
 

Figure 4.5: Wing Model in Open Loop Flutter. 
 

 

The first mode corresponds to 1
st
 wing bending. The second mode corresponds to 1

st
 

wing torsion. The modal amplitudes oscillate at 4.49 Hz, which was almost predicted by 

the V-f analysis (See Fig. 4.4[b]). The damping ratio for this mode (from a controls 

perspective) was -5.3%, which gives it a higher margin of instability than that which was 
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predicted in the V-g analysis (See Fig. 4.4[a]). The time to double amplitude is 0.46 s, 

meaning the flutter instability is relatively mild. The bending mode reaches higher 

amplitudes than the torsion mode, which is expected due to its lower natural frequency. 

The torsion mode is slightly out of phase with the bending mode. From the above results 

(See Figs. 4.4 and 4.5), it is apparent that active control is required. 

4.2.5 Comparative Control Study 

 

 A brief introduction is needed for the following sections. First, it is clear that 

active control is required for the model. It was decided that in order to properly answer 

Research Question 1, a comparative control study should be taken. By comparing a 

modal controller to the benchmark controller with accelerometers, it is easier to evaluate 

the modal filter based controller. This is preferable to the strategy of simulating the 

modal filter controller and stating that it is either working or is not working.  

 To this end, the simulation aeroservoelastic wing model is fitted with either 

accelerometers or a modal filter (with fiber optic inputs). Plants are designed for both 

systems with the same inputs. Both plants are different only in that one is using a modal 

filter and the other is using accelerometers for output. The plants are reduced in order and 

differences are noted for each.  

 Several objectives were defined to guide the controller designs so that the 

controllers could be qualitatively compared. The first objective was for each to stabilize 

the plant. Figure 4.5 predicts that the wing model undergoes strong open-loop flutter at 

the flight condition.  
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 The second objective was to reduce the controller order as far as possible. This 

has the effect of reducing the computational burden in the flight computer. It is also 

useful from numerical perspectives. 

 A third objective was for the controller to have good disturbance rejection 

properties, especially from low-frequency turbulence. Passenger comfort can be 

improved by actively rejecting gust disturbances [159].  

 The fourth objective of the controller design was that it must be robust to modeled 

uncertainty. A controller designed about a linearized model rarely performs the same way 

in practice as it does in the laboratory [103]. Below, the control design is described in 

detail, beginning with the sensor system design. 

4.2.6 Sensor System Design 

 

 Two regulators for the fluttering wing model must be developed. The regulators 

are given accelerometer inputs and modal coordinate inputs, respectively. The sensor 

placement strategy for each is described beginning with the accelerometer placement. 

 Accelerometer Placement 4.2.6.1

 

 The first controller was allowed input from two accelerometers. Two were 

thought to be enough to capture the torsional and bending motion contributing to the 

flutter mode of the wing model. 

 The accelerometers were placed using Kammer’s Effective Independence (EI) 

procedure [176]. The EI procedure begins by forming the sensor projection matrix, 

             from the modal matrices. Large diagonals,     of the projection 
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matrix   correspond to relatively important sensor locations   on the finite-element wing 

model. 

 The EI sensor reduction procedure begins by removing the row of the modal 

matrix,   corresponding to the smallest    . The reduced projection matrix is then 

recalculated and the row corresponding to the smallest     is again removed.  

 This reduction process can be iterated to the desired number of sensors, which are 

then used to form the index   used in Eq. (4.12). The EI procedure tends to select sensors 

that carry the highest amount of the desired modal information. The resulting sensor 

placements are shown in Fig. 4.6. 

 

 
 

Figure 4.6: Accelerometer placement on wing model. 

 

 By down-selecting the rows of the modal matrix to the wing tips, the EI procedure 

indicates that the wing tips (both leading edge and trailing edge) carry the most modal 

information. “The most modal information” in this case means that the
 
first wing bending 

and wing torsion modes had the highest deformation at these points (See Fig. 4.3[a-b]).   

TE Accel 

LE Accel 

Wing Root 
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 The EI procedure is only a first step and was used for its simplicity. The EI 

procedure contains flaws in that it does not attempt to optimize sensor layout for residual 

modes. It has been shown that residual modes tend to corrupt the sensor signal, leading to 

observation spillover [25]. Thus, optimization procedures, such as the modified EI 

procedure [177], have been developed to place sensors on a BWB-type aircraft while 

minimizing residual mode information.  

 The EI procedure is also sensitive to structure with many nodes, because nodes 

tend to be very close together and many good locations may fall in the same spot. The 

severity of this problem can be reduced by using correlation matrices to select sensor 

locations that maximize modal information without redundancy [174]. The next section 

demonstrates how accelerometers were modeled in the state space matrices. 

 Accelerometer Sensor Output Matrix 4.2.6.2

 

 The output matrix must be adjusted to account for accelerometer measurements. 

Rather than measuring directly any part of the state vector, accelerometers measure linear 

combinations of modal coordinate accelerations. The relationship between the 

accelerometers and the state of the system is often modeled as shown in Eq. (4.11). 

        ̇                    (4.11) 

The matrix         has as many rows as accelerometers,    and as many columns as 

the state space vector size. The matrix    is defined (See Ref. [45] ) as shown in Eq. 

(4.12), 

   [                     ] (4.12) 

where           is the displacement modal matrix row indexed by  . The next section 

reviews the development of the modal coordinate selection process for the controller. 
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 Modal Coordinate Selection 4.2.6.3

 

 The second controller is designed with modal coordinate feedback. The modes 

which dominate the deformation of the structure and can be easily controlled and 

observed should be selected for feedback. It is also important that the normal modes’ 

natural frequencies are within the actuator bandwidth. 

  For curiosity’s sake, the percent of the modal mass for each mode was calculated 

by Eq. (4.1) and is given in Fig. 4.7. 

 

 
 

Figure 4.7: Percent Modal Mass per Mode Shape. 

 

Recall that the modal mass is a strong indicator of a modes ability to be excited. The 

percent modal mass of the first bending mode is the highest at 85%, indicating that it will 

be a mode which both contributes significantly to the modal response and can likely be 

easily controlled and observed [170]. It is difficult to state an exact measure of 

observability and controllability of modes, as the measure of observability and 

controllability will be determined by the placement of the control effectors and sensors 
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(See Refs. [7] and [178]). It is also important to consider the interaction of aerodynamic 

forces and modal frequencies. 

  Recall that the airflow interacts with the structure (See Fig. 4.4) near flutter so 

that some modes tend to dominate the structural deformation more than others. The 

flutter analysis at the selected flight condition indicates that the torsion mode will also be 

highly mobile near flutter.  As such, based on the observation of the flutter interaction 

1
st
 wing bending and

 
1

st
 wing torsion modal coordinates were selected for feedback. 

 Fiber Optic Sensor Placement 4.2.6.4

 

 Since FOS has already been tested on aircraft (See Ref. [179]) this distributed 

sensor was selected for the true sensor feedback to the modal filter. The selected modes 

for feedback include strong bending and torsion effects. The fibers were placed 

intuitively so that this modal information could be estimated. The modeled layout on the 

wing model is shown in green in Fig. 4.8. 

  

 
 

Figure 4.8: Fiber Optic Sensor Placement on Wing Model. 

Three fibers with Bragg 

gratings spaced every ½ inch 

Wing Root 
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  To capture sufficient bending information, the sensors are placed span-wise along 

the entire wing. To capture torsional effects, three fibers are placed chord-wise. The 

spacing between each sensor location along each fiber was set at ½-inch intervals, which 

is the same spacing used on the NASA Ikhana Predator B unmanned aircraft [179].  

  The use of a strain-shape algorithm need not be required to use the FOS for modal 

coordinate estimation. Work by Kang et al. [66] has shown that FOS measurements can 

be utilized to estimate modal coordinates. But instead of a modal matrix,  , a strain mode 

matrix,   ,is formed, which can then be utilized as shown in Eq. (1.10). The strain mode 

matrix is simply the modal representation in units of strain.  

  For the wing model, it is assumed that deflections are directly measured at FOS 

locations. This was done because strain mode capabilities were not available in the 

developed finite element model. Assuming deflections are measured instead of strains is 

not a big assumption. Several methods described previously have been developed for the 

purpose of estimating deflection from strain. In fact, Eq. (1.18) shows precisely how 

strain can be used to estimate deflections at FOS locations. 

4.2.7 Controller Design 

 

 Up to this point the selection of accelerometer placements and FOS placements 

has been completed. The process of control design is discussed here. This is a little out of 

order than that which was given in the methodology. This is done in order to keep the 

discussion of the modal coordinate based controller and accelerometer based controllers 
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in the same areas. In fact, before placing the FOS, the controller design was already 

completed. 

 In any case results of reducing the order of the plant are discussed for each sensor 

type. The controller methodology used for each model is discussed. The robust stability is 

also analyzed for each closed loop system with two structured uncertainty cases. The 

following section discusses the results of model reduction for both plants. 

 Model Reduction 4.2.7.1

  

  Sensor selection is very important in control order reduction. The transformation 

matrix   [See Eq. (4.7)] is directly dependent on the SVD of   [See Eq. (4.6)]. The 

matrix   is, in turn, directly dependent on the SVD of   . Therefore, Eq. (4.5) gives a 

direct relationship between the output matrix   and   .  

  The use of either modal coordinates or accelerometers affects the form of the 

output matrix and thus will affect the relative Hankel singular values through the 

eigensolution. To illustrate this effect more clearly, the relative unit-normalized Hankel 

singular values of the balanced systems with accelerometer outputs and modal coordinate 

outputs are given in Fig. 4.9. 
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Figure 4.9: Comparison of Normalized Hankel Singular Values for Two plants. 

 

The first plant with accelerometer outputs has significant unit-normalized Hankel 

singular values out to state 14. The Hankel singular values for the second plant with 

modal coordinate outputs show a very steep drop-off after the 5
th

 state.  

 It is not precisely known why this occurs. The steep drop-off may be accounted 

for by the fact that no relationship in the output matrix is given for modes past the first 

two modal states. Since the higher modes are not as observable to the system, their input-

output contribution is less. 

 The presentation of the Hankel singular values in this form may indicate that the 

controller order could be reduced based only on the relative magnitude of the singular 

values. It was found, however, that proceeding thus blindly could lead to an unstable 

controller.  

 A more rigorous approach was taken, by reducing the order of the controller by 

removing states corresponding to the lowest Hankel singular values until the reduced-
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order controller performance diverged significantly from the performance of the original 

full controller (See Ref. [174]). The pole comparison of the two plants is given in Fig. 

4.10. 

 

 
 

Figure 4.10: Order reduction: a) Plant with Accelerometer Output; and b) Plant 

with Modal Coordinate Output. 

 

 The plant with accelerometer outputs was not reduced as far as was the plant with 

modal coordinate outputs. The final order of the plant with accelerometer outputs was 27. 

The final order of the plant with modal coordinate outputs was 5. The plant poles shown 

in Fig. 4.10 qualitatively compare well to many structures, in which lightly damped 

modes are very near the imaginary axis [7]. Sometimes these lightly-damped modes can 

become unstable due to interaction with a flight control system, described previously as 

SMI.  

 For the present case, aerodynamic coupling (See Fig. 4), is the cause of the pole 

migration to the right half-plane (RHP). Simulation results in Fig. 4.5 indicated that two 

   

a) 

   

b) 
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modes are unstable in the model. The poles in Fig. 4.10 which have moved into the RHP 

characterize this instability as a flutter instability. One of the primary objectives of the 

present work is to actively suppress this flutter mode. That process is described below. 

 H-Infinity Optimal Control 4.2.7.2

 

 Many choices for control design are available once a state space model has been 

defined as in Eq. (3.13). The    optimal controller [103] was chosen for this study 

because it has a wide range of applicability. One excellent feature is that it is not assumed 

that the disturbances are collocated with the control inputs. The locations of controlled 

outputs are not necessarily collocated with the location of system performance as they are 

in the LQG controller design [174].  

 The    Optimal controller was designed for both reduced-order plants shown in 

Fig. 4.10(a-b). The reduced order plants were cast into the state-space realization shown 

in Eq. (4.13), 

 ̇                          
                    
                    

 (4.13) 

where           is the reduced-order state matrix,          is the disturbance 

matrix,          is the control input matrix,          is the state-regulated goal 

matrix,          is the control-regulated goal matrix,          is the measurement 

matrix,          is the measurement noise matrix. The reduced-order states,       

      are driven by the disturbances,           and the control inputs,          .  

  The goal of the    optimal control methodology is to find the controller   which 

minimizes the    norm of the transfer function        from disturbance   to regulated 
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output  , over all possible controllers [174]. Recall that the    norm of a transfer 

function is defined as the supremum or least upper bound of the transfer function over all 

frequencies. So, more simply stated, the    synthesis routine results in a controller 

which best suppresses the peak of       , where   is the Laplace variable. 

  The suboptimal Ricatti solution of the    problem requires that two algebraic 

Ricatti equations must be solved in which the observer and the controller matrices are 

coupled by an inequality constraint on the spectral radius  . Another constraint is also 

included to assure that the Hamiltonian matrices do not have eigenvalues on the 

imaginary axis, which may cancel poles or zeros on the imaginary axis and lead to 

instability.  

  Typically, the objective function is minimized with a local optimization technique 

such as the bi-section method, which generally performs well since the objective function 

is convex [103]. The resulting    controller may then be represented as in Eq. (4.14), 

 ̇̂              
                ̂          
         ̂   

 (4.14) 

where          is the solution to the control algebraic Ricatti equation,    is the filter 

gain matrix, and  ̂          is the estimated state vector of the reduced-order plant. 

For more detail on the    problem formulations and solutions, refer to Refs. [103] and 

[174]. 

  For control design the two reduced-order plants were subjected to the same 

disturbance input matrix,   . The matrix was formed from a gust model and process 

noise weights. The gust model representing the interaction of a wind gust with the modal 

velocities was derived from a sinusoidal gust column [180]. The sinusoidal gust column 

is initialized from 0 m/s wind speed at the leading edge of the wing model building in 
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strength towards the trailing edge of the wing. The derived gust basis represents the 

physical effect of the gust in modal space and is used in the weighting scheme as well as 

for simulation later on.  

  The first column of disturbance weighting matrix    was represented as the 

velocity basis of the gust weighted with a sustained gust velocity,      ,of 5 m/s. The 

second column of    was represented by the acceleration basis of the gust weighted with 

a sustained gust acceleration,  ̇    , of 9.81 m/s
2 . This is chosen very large on purpose to 

improve the controller’s disturbance rejection. The weighting matrix    was also 

augmented with unit vectors characterizing the presence of process noise. 

  For control design on both reduced-order plants, the goal state matrix    was 

modified so that the first two modes would receive highest weights. The first two modes 

were weighted highest since Fig. 4.4 indicates that these two modes will have a flutter 

interaction. By giving the first two modes higher weightings, the optimization technique 

emphasizes the reduction of the peaks of the first two modes due to the gust disturbance 

across the frequency range of        as much as possible. The control-regulated goal 

matrix     was given equal weightings which penalized high control surface movement. 

  The measurement matrix    was set for each controller respectively to either Eq. 

(4.4) for the controller with modal coordinate input or Eq. (4.12) for the controller with 

accelerometer input. The controller’s sensitivity to measurement noise was also reduced 

by modifying the weighting matrix     with moderately high weights corresponding to 

each sensor. 
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 Robust Stability 4.2.7.3

 

  The    synthesis does not always result in a controller which meets performance 

specifications; thus the controller design process is an iterative one. To bound the design 

process, objectives were defined for both control designs. Assuming an initially-stable 

control design, two objectives for the controllers were that each should be robust to 

structured uncertainty and also have good disturbance rejection properties.  

  More specifically, the first goal for both controllers was that they be robust to at 

least 5% multiplicative uncertainty on the inputs or outputs of the plant at a low 

frequency of 1Hz. They should also be robust to at least 25% multiplicative uncertainty 

near the higher flutter frequency of 4.49 Hz. Secondly, each controller was designed to 

mitigate the modeled sinusoidal gust disturbance described in the section above. 

  A quantitative measure of the robust stability margin of both controllers is the 

structured singular values (SSV) or µ. The SSV is defined as shown in Eq. (4.15) [103], 

     
 

    {                                   ̅     }
 (4.15) 

where    is the stability margin defined as          ,   is the lower linear fractional 

transformation (LFT) of the generalized plant  ,   represents a structured uncertainty 

block, and the maximum singular value of   is defined by  ̅   . The value of     

occurs when there is a perturbation with  ̅     , which is just large enough to make 

     singular.  

  A larger value of   is undesirable, as it means that a smaller perturbation makes 

     singular. The “generalized small gain theorem” (See Ref. [103]) states the robust 

stability (RS) condition, as shown in Eq. (4.16). 
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    (   ̂  )         ̅(   ̂  )       (4.16) 

  To verify RS for both plants, both reduced-order plants were subjected to 

multiplicative input or output uncertainty. The class of all generalized plants for 

multiplicative input uncertainty is given as shown in Eq. (4.17). 

                (4.17) 

The class of all generalized plants for multiplicative output uncertainty is given as shown 

in Eq. (4.18). 

                (4.18) 

The structure of the input and output weights is defined to be diagonal; that is   

    {           }. For   , b is a scalar equal to the dimension of the inputs. For 

  ,   is set equal to the scalar dimension of the outputs. The uncertainty block   for both 

input and outputs is defined to be diagonal,       {        }, where   is set 

accordingly for inputs and outputs. The uncertainties on the diagonal    are also defined 

to be   , so that the RS condition shown in Eq. (4.16) always holds.  

  Generally, uncertainty is greater at higher frequencies, so the uncertainty is made 

to vary with frequency by weight functions, as shown in Eq. (4.19). 

      
     

(
 
  

)    
 (4.19) 

The constant    is the relative uncertainty magnitude at steady state; and     is 

approximately the frequency where the relative uncertainty reaches 100%. The constant 

   is the magnitude of the weight at higher frequencies. The constants were selected so 

that the uncertainty would be greater than 5% at 1 Hz and greater than 25% near the 

flutter frequency of 4.49 Hz. 
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  The plant with input multiplicative uncertainty is modeled as that given in Fig. 

4.11. 

 

 

 
 

Figure 4.11: Generalized Plant with Structured Input Uncertainty. 

 

For the inputs [    ]
 and the outputs [    ]

 , the generalized plant with multiplicative 

input uncertainty defined above may be shown to be as presented in Eq. (4.20). 

   [
   

    
] (4.20) 

The   structure may be formed from a lower LFT of    and   represented as         . 

By carrying out the matrix operations it can be shown that                 

     , where    is the input complementary function. The      for the    controllers 

with multiplicative control input uncertainty is given in Fig. 4.12.  
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Figure 4.12: Structured Singular Value Analysis with Input Multiplicative 

Uncertainty. 

 

 The stability boundary is defined to be 1 for   as is a requirement for RS from Eq. 

(4.16). The maximum   for the controller with modal coordinate inputs is approximately 

0.36 at 2.14 Hz. The maximum   for the controller with accelerometer inputs was 

approximately 0.35 at 2.23 Hz. The   for both controllers was bell-shaped across the 

frequency range. The    controller with accelerometer inputs resulted in a closed-loop 

system which was slightly more robust to input uncertainty.  

 The difference is not substantial, however. Both controllers seemed to experience 

a peak in   near 2.2 Hz. One might expect the peak to occur at the open-loop flutter 

frequency of 4.49 Hz; however, the frequencies correspond to the closed-loop pole 

locations. From this analysis, it was determined that both controllers meet and exceed 

expectations with respect to input multiplicative uncertainty. They also perform very 

similar. 
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 Output uncertainty is also of interest, since different measurement systems are 

being utilized. The plant with output multiplicative uncertainty is modeled as that given 

in Fig. 4.13. 

 
 

Figure 4.13: Generalized Plant with Multiplicative Output Uncertainty. 

 

 For inputs, [    ]
 and outputs [    ]

 , the generalized plant with multiplicative 

output uncertainty defined above may be shown to be as presented in Eq. (4.21). 

   [
    
    

] (4.21) 

The   structure may be formed from a lower LFT of    and   represented by         . 

By carrying out the matrix operations, it can be shown that                 

    , where   is the output complementary sensitivity function. The      calculated 

for both    controllers with multiplicative measurement output uncertainty is given in 

Fig. 4.14. 
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Figure 4.14: Structured Singular Value Analysis with Output Multiplicative 

Uncertainty. 

 

 The maximum   for the controller with modal coordinate inputs is approximately 

0.47 at 2.10 Hz. The    for the controller with modal coordinate inputs experienced a 

second peak near a frequency of 3.38 Hz. The maximum   for the controller with 

accelerometer inputs was approximately 0.46 at 2.08 Hz. The   for the controller with 

accelerometer inputs was nearly bell-shaped across most of the frequency range, and 

descended until a frequency of 3.54 Hz, at which point it climbed for a short time. 

Overall, the characteristics of the   for both controllers indicate that the    controller 

with accelerometers resulted in a closed-loop system which was slightly more robust to 

output uncertainty. However, the relative stability margin difference between the two 

controllers is negligible.  

 Both controllers meet and exceed expectations with respect to output 

multiplicative uncertainty. In fact, both controllers performed almost equally well. This 
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seems to indicate that no great benefit is obtained in the control architecture from using 

either sensor type.  

 It was observed that the modal filter based controller was lower order. The 

hypothesis is that the lower order is due to the modal filter’s focused suppression of the 

first two modes. Keeping in mind that no significant benefits or detriments are seen as yet 

by using either sensor, simulations can now be performed. 

 

4.3 Simulation 

 

 

 The time simulation of controllers is a reliable way to diagnose performance and 

make comparisons. It is also useful for determining if a controller must be redesigned or 

if the requirements must be moved.  

 Several case studies were selected to be performed with different objectives. The 

first two case studies pertain to GLA and AFS. The next two case studies focused on the 

use of modal filtering for virtual deformation estimation and tracking on the wing. The 

original plants designed at 80 m/s at an altitude of 302 m were upgraded with “integral of 

modal position” states and reduced.  

 New controllers were then derived using the same methodology presented for the 

regulators. The first controller tracks virtual deformations from a modal command; the 

second controller tracks the same virtual deformations with a virtual deformation modal 

approximation. These two methods of shape control were simulated in an effort to answer 

Research Question 4. First, the gust disturbance simulation results are presented. 
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4.3.1 Gust Disturbance 

 

 The regulators described above were tested in a simulation environment, with a 

gust disturbance input. The simulation structure that was used to model the gust 

disturbance for the controller with modal coordinate inputs is given in Fig. 4.15. 

 

 
 

Figure 4.15: Control Simulation with Modal Filter for Gust Modeling. 

 

The simulation structure for the accelerometer inputs is the same except that the 

connection after the gust inputs is input directly into the summing block with the 

reference input. The exogenous inputs to the system are [       ]
  corresponding to 

input multiplicative noise, gust disturbance states, and additive measurement noise. Zero 

mean multiplicative Gaussian noise,   , with a standard deviation of 0.1, is modeled on 

each control input for both control systems, making    in Fig. 4.15 the identity matrix of 

size  .  

  The standard           gust profile (See Ref. [180] and Fig. 3.3) is modeled to 

characterize the transient shape of the gust disturbance   {       ̇    }
 
 which lasts 

for 1.6 s. The gust velocity and acceleration at time 0 are both initialized to zero. The gust 
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is shaped to achieve a maximum velocity,       of 5 m/s and a maximum acceleration 

 ̇     of 9.81 m/s
2
. The signals,       and  ̇     are input to the LTI gust system       

which acts as a disturbance on the output of the plant,  .  

  For the controller with modal coordinate inputs, zero mean Gaussian noise    

with a standard deviation of 1 cm was added to the measurement signals. Deformations 

are used instead of strain because strain was not available directly in the model. When 

accelerometers were used in place of the deformation measurements, it was assumed that 

the additive noise had a standard deviation of 1.0 m/s
2
.  

  For the controller with modal coordinate inputs, the noise was added to the 

simulated deformations at locations shown in Fig. 4.8. Accelerometer measurements tend 

to be somewhat noisy, whereas fiber optic measurement systems are expected to produce 

measurements with a very high signal-to-noise ratio [181]. 

  This model being a simulation model, true displacement measurements were not 

available. The controller with modal coordinate inputs makes use of a deformation 

simulation, by multiplying the modal matrix   indexed at measurement index stations   

with the true modal coordinates,  .  

  The modeled displacement information and additive displacement noise is input 

into the least-squares modal filter introduced in Eq. (4.9). The estimated modal 

coordinates are then indexed (       {   }  to obtain   . This signal is then used to 

form the control signal input to the    controller,  .  

  Since GLA is the objective of the controller, the reference on each measurement 

is set to 0. The gust simulation results are presented in Fig. 4.16 for the controllers with 

acceleration inputs and modal coordinate inputs respectively.  
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Figure 4.16: Controller Performance in a Gust: a) Controller with Accelerometer 

Inputs, Modal Amplitude Time History; b) Controller with Accelerometer Inputs, 

Control Surface Time History; c) Controller with Modal Coordinate Inputs, Modal 

Amplitude Time History; and d) Controller with Modal Coordinate Inputs, Control 

Surface Time History. 

  

d) 

c) 

b) 

a) 
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  The modal response to the gust for the controller with accelerometer inputs (See 

Fig. 4.16[a]) indicates that the first two modes (first wing torsion and
 
first wing bending) 

responded most to the gust as expected. The peak amplitude of the bending mode was 

approximately -2.2, which corresponds to roughly a 44-cm-upward bending deflection at 

the wing tip. A negative bending modal coordinate corresponds to a positive wing tip 

deflection (See Fig. 4.3[a]). The twist mode moves to a maximum amplitude of 0.4, 

which corresponds to approximately 10 deg. of positive wing twist, leading-edge up.  

  Over the gust time history, the control surfaces move to counteract the effect of 

the gust (See Fig. 4.16[b]). As the wing experiences a lift increase, the control surfaces 

rotate upward to reduce the angle of attack of the wing and reduce lift. The rotation of the 

control surfaces stayed well within the bounds of reason for wing control surface 

rotations. 

  The gust disturbance rejection performance of the controller with modal 

coordinate inputs was comparable to that of the controller with accelerometer inputs, 

shown in Fig. 4.16(c); the peak amplitude of the bending mode was slightly higher at -

2.4. The torsion angle was nearly the same at approximately 10 deg. Little can be said as 

to which controller has better disturbance rejection. The differences were negligible. Both 

controllers rejected the specified gust disturbance adequately with little differences. The 

next section discussed the results of AFS simulations. 

4.3.2 Active Flutter Suppression 

 

 A major theme in this study has been to demonstrate that the controller with the 

modal coordinate inputs may be used for AFS. Figure 4.5 shows that the model is open-
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loop unstable, resulting in modal motions characteristic of flutter. This occurs at a flight 

condition of 80 m/s at an altitude of 302 m.  

 The same simulation structure (See Fig. 4.15) that was used for the gust 

disturbance modeling was used for flutter suppression with very small changes. The gust 

model inputs   were set to zero. A small control input at time 0 was introduced to 

perturb the wing model from its trim state. The modal amplitudes of the model are 

allowed to increase without control input until 3.5 s.  

 The controller was linearly phased-in from 3.5 s to 4.5 s. The controller was not 

turned on to full instantly at 3.5 s to avoid large oscillations due to the output magnitudes 

being far from the reference condition of zero. The simulation results are presented in 

Fig. 4.17 for the controllers with acceleration inputs and modal coordinate inputs 

respectively.  
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Figure 4.17: Controller Performance in a Flutter Suppression: a) Controller with 

Accelerometer Inputs, Modal Amplitude Time History; b) Controller with 

Accelerometer Inputs, Control Surface Time History; c) Controller with Modal 

Coordinate Inputs, Modal Amplitude Time History; and d) Controller with Modal 

Coordinate Inputs, Control Surface Time History. 

  

a) 

b) 

c) 

d) 
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 The time history for the controller with accelerometer inputs is examined first in 

Fig. 4.17(a). The modal amplitudes oscillate with a frequency of 4.49 Hz increasing in 

amplitude until approximately 4.2 s. At this time, the controller force begins to remove a 

sufficient amount of energy from the flutter mode to begin to reduce the amplitudes of 

the modes. The oscillations die out quickly at approximately 5 s. 

 The time history of the controller matches what would physically be required to 

reduce flutter in the wing. As the wing bends upward (See Fig. 4.17[a]) the control 

surfaces rotate upward (See Fig. 4.17[b]) to reduce the angle of attack of the wing and 

reduce lift. The net aerodynamic force has the effect of moving the wing downward. As 

the wing moves down, the control surfaces rotate downward to increase the lift on the 

wing. This counterbalancing effect performs work and removes energy from the flutter 

mode. The overall effect asymptotically stabilizes the structure. 

  After the flutter mode stabilizes, the control surface movements appear to 

oscillate at low frequency and the modal coordinates remain near zero. The movement 

from equilibrium is in response to the additive noise on the accelerometers. 

 The controller with modal coordinate inputs performed similarly to the controller 

with accelerometer inputs, as before with the gust inputs. Figure 4.17(c) shows that the 

modal coordinates begin to flutter up to 3.5 seconds and are slowly damped out once the 

controller is enabled.  

 As before, the control surface movements worked to extract energy from the 

flutter mode as seen in Fig. 4.17(d). The modal coordinates also stay near zero as 

expected. From time analyses it was clear that both controllers performed well in meeting 

the primary objective to suppress the flutter mode at the selected flight condition. 
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 So far, the actual modal coordinate time histories are presented in each plot, 

representing the motion of the model in either a gust or fluttering condition. To satisfy 

curiosity, the modal coordinates which were given to the controller for feedback during 

the flutter suppression,   , are presented in Fig. 4.18.  

 
Figure 4.18: Modal Coordinate Measurement Error. 

 

Recall that zero mean Gaussian noise with a standard deviation of 1 cm was added to all 

deflections that were used to estimate the modal coordinates. This means that the error 

can likely go up about 3 cm for the deformations some of the time, assuming that some 

data points will fall roughly 3 standard deviations away. All of the deflections with error 

were put through a least-squares modal filter [See Fig. 4.15 and Eq. (4.9)].  

 The measurement error of the modal coordinates indicates that a typical least-

squares smoothing has taken place, as the modal amplitudes measurement error tended to 

stay near 0.01. Although this smoothing is not substantial enough to raise eyebrows, it 

does show that the errors tend to average out when many sensors are utilized in forming 

the least squares estimates. It is also clear that the increasing amplitude of the modal 
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coordinates did not affect the modal coordinate estimation error, even during open-loop 

flutter.  

4.3.3 Virtual Deformation Control –Modal Reference Tracking 

  

 Until this point, much of the focus of this study has been to compare regulators 

with accelerometer inputs or modal coordinate inputs. It was observed that the controllers 

had similar performance during GLA and AFS. In this section, shape control is 

demonstrated. This is required in response to Research Question 4, which asks for 

various methods of shape control via modal filtering. Recall that shape control has been 

pursued in other works as well; two references are given here [143, 182]. 

  Further work using accelerometers is not continued. While the controller with 

accelerometers might be able to track deformations by double-integrating the 

accelerations, it is not a natural fit; the deformations predicted with accelerometers may 

start to drift and require deformation updates. Thus what follows is only the modal 

controller. 

  The modal controller may be a suitable match for shape control since modes are 

linearly-related to deflections [See Eq. (1.5)]. The first form of shape control is 

implemented through forming a modal reference. If a set of reference deflections      are 

known at specific locations,   , these deformations may be transformed to modal 

coordinate reference values,     .  

  By tracking modal references, deflections may be indirectly tracked, even if those 

deflections are not directly measured. These deflections are referred to as virtual 

deformations, and the control of these deformations as virtual deformation control. The 
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simulation for deformation control through modal reference tracking is presented in Fig. 

4.19. 

 

 
 

Figure 4.19: Control Simulation for Virtual Deformation Control: Modal Reference. 

 

 The modal tracker is designed to achieve zero steady-state tracking error by using 

integral states of the tracked modal coordinates. All modes are estimated by the modal 

filter and indexed (i.e.,        {   }) to give   . Recall that all contributing modes 

must be estimated before filtering in order to more accurately estimate the first two. This 

is done to reduce projection error.  

 The modal measurements are input to a differencing junction with the modal 

reference and sent through a single continuous-time integrator. To simulate a small 

torsion angle command,      {           } was set to  {          }   which 

represents a leading-edge-down rotation.  

 Since small deformations are used as references, the noise was adjusted 

accordingly, so that the standard deviation of the multiplicative control noise was set to 

0.001. The standard deviation on the deformation measurements was assumed to be 1 

mm. These noise settings allows one to better see what the controller is doing in the 

resulting plots; this was not done to simulate actual sensor noise characteristics. The 

simulation results are presented in Fig 4.20.  
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Figure 4.20: Virtual Deformation Control: Modal Reference- a) Modal amplitudes; 

b) Deformations and Predicted Deformations at Wing Tip; and c) Control Surface 

Rotations. 

c) 

b) 

a) 
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 Figure 4.20(a) shows that the first torsion modal coordinate overlays the reference 

torsion modal coordinate within 50 s. The bending modal coordinate reference is near 

zero and is also tracked within 50 s. The other eight modal coordinate time histories are 

also plotted so that the effects of residual modes may be observed. The
 
second bending 

mode becomes highly excited. The deformations achieved through modal tracking are 

presented in Fig. 4.20(b). The deflections achieve what would be a torsional angle with 

the leading edge down, but the net deformations of both are up approximately 2 mm.  

 There is significant error between the desired deformations of {1 mm, -1 mm} 

and what is achieved {3.6 mm, 2.2 mm}. The prominent
 

second bending modal 

coordinate is clearly to blame for this error. From desktop simulations it was observed 

that to reduce this error, the
 
second bending mode (See Fig. 4.3[c]) could be tracked if 

more actuators were available. Note that the deformations to be tracked were at the same 

locations as where the accelerometers were placed. They were not measured by the fiber 

optics themselves. The action of tracking a deformation which is not directly measured is 

observed here. 

 Figure 4.20(c) indicates that to achieve small deformations, very large control 

surface rotations were required, almost up to 40 deg. The large rotations are a result of 

either high stiffness in the wing or potentially low control surface steady-state 

effectiveness. For this reason, the deflection references were kept small to ensure the 

control surfaces rotated within reasonable limits. These results indicate that wings with 

low torsional modal mass (See Fig. 4.7) may be difficult to structurally morph using only 

trailing edge aerodynamic effectors.  
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4.3.4 Virtual Deformation Control – Predicted Deformation Reference 
Tracking 

 

 In the previous case study, the deformation command was transformed to a 

reduced modal command and the modes were tracked. Due to the effect of residual 

modes, the wing deformation reference command was tracked poorly. To reduce this 

effect, the modal filter can also be used to form a predicted estimate of the deformation of 

the structure at any point by including residual modes into the estimate. To prepare the 

controller, the output matrix in the state space may be defined to have the form shown in 

Eq. (4.22), 

  [                   ]  (4.22) 

where   is the number of deformations (or virtual deformations) desired to be tracked. 

This method of definition has the effect of making the outputs of the plant equivalent to 

the deformations. A similar transformation is used to model the accelerometers, where 

the sensors are assumed to measure linear combinations of the modal states.  

  The simulation for tracking deformations estimated by modal coordinates is 

similar to the modal tracking simulation presented above (See Fig. 4). The difference is 

that the estimated modal coordinates are used to estimate desired virtual displacements at 

location indices,   .  

 This method of tracking is named predicted deformation because all of the modes 

are used to form the deformation prediction. Therefore, Since all modes are utilized to 

estimate the virtual deflections,        . Alternatively it can be stated that,        

{                    }. Therefore predicted deformation tracking is the second answer to 
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Research Question 4. The simulation scheme used for virtual deformation tracking by 

way of predicted deformation tracking is presented in Fig. 4.21. 

 

 
 

Figure 4.21: Control Simulation for Virtual Deformation Tracking: Predicted 

Deformation Reference Control. 

 

For testing, the noise levels in the previous simulation are also used, as were used 

previously for modal reference tracking. The same reference values of {1mm,-1mm} 

were used for the deformation reference and the simulation results are presented in Fig 

4.22. 

  



 141 

 

 

 
 

Figure 4.22: Virtual Deformation Control: Predicted Deformation Reference- a) 

Modal Amplitudes; b) Deformations and Predicted Deformations at Wing Tip; c) 

Control Surface Rotations. 

  

   

a) 

   

b) 

   

c) 

c) 

b) 

a) 
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 The time history of the modal coordinates in Fig. 4.22(a) shows that the torsion 

modal coordinate moved comparative to the way it did previously (See Fig. 4.20[a]). The
 

second wing bending modal coordinate also moved positively; however, this time, the
 

first wing bending moves from zero to a large positive value, which has the effect of 

offsetting the
 
second wing-bending effects. The net effect was that the actual virtual 

deformations and reference virtual deformations were overlaid as seen in Fig. 4.22(b).  

 Figure 4.22(c) indicates that the control surface movements were lower than they 

were previously (See Fig. 4.20[c]). The outboard control surface moved to about 30 

degrees and the inboard surface moved to -25 deg.  

 The use of either the tracking strategy presented here or that presented in the 

previous section may depend on the application. If a multitude of points on the wing are 

required to be tracked or moved to a particular shape, then the strategy first presented 

may be more useful. The reduction of the reference signals to a few modal coordinates 

may alleviate the control design effort.  

 If only a few virtual deflections at a few points on the structure (i.e., 2-4) are 

required to be tracked, then the strategy presented in this section may be more applicable. 

The selection of the appropriate tracking strategy will be application dependent.  

 

4.4 Summary of Wing Model Design Work  

 

 

 It is clear that the modal filter shows promise in an aeroservoelastic environment, 

which satisfactorily answers Research Question 1. For the reduced plants,    optimal 
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regulators were designed for each plant with the objective of being robustly stable to 

input and output multiplicative uncertainty and having good disturbance rejection 

properties. The controllers were tuned, such that similar characteristics are achieved for 

each. No significant difference was noted, other that the order of the modal controller was 

significantly lower order than the controller with accelerometer inputs. 

 The proposed two shape control techniques also provide two answers to Research 

Question 4. It was observed that one of the two methods of shape control is more 

appropriate for an aircraft. For an aircraft, such as the X-56A, the modal displacement 

reference tracking strategy is the most appropriate. This method does not require the 

control of all modal displacements in the model. Tracking high frequency modes will 

lead to robustness issues. 

  The modal displacement reference tracking strategy requires only that the first 

few low frequency modes be controlled. It is also readily applicable to track potentially 

millions of displacements points using the modal reference transformation given in Eq. 

(4.10). The X-56A modal filtering control design is demonstrated next. 
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CHAPTER 5 

 

 

 

X-56A 
 

 

 
 The wing model introduced in the previous chapter is a model used to determine 

how the modal filter operates on a pure elastic model. However, a shortcoming of this 

model is its boundary conditions. There are no aircraft trim requirements for a clamped 

wing model. Only flexible modes are modeled and rigid body interactions remain 

unexplored. The wing model is also too structurally simple to verify use of the modal 

filter for aircraft. 

 The X-56A model was a platform chosen to test the modal filter on a complex 

aircraft. Simulations on this model are used to give answers to both Research Question 2 

and Research Question 5. The first question asks whether modal filtering supports aircraft 

control systems. The second asks for the properties of merging flexible (modal) and rigid 

body control.  

 The Chapter begins with a design methodology to incorporate modal filtering into 

an aircraft control system. The design of the controller follows and finally simulations are 

given demonstrating virtual deformation control and AFS on the vehicle.  
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5.1 Modal Filtering Design Methodology 

 

 

 It is slightly more challenging to implement a modal filter onto an aircraft than the 

wing model, but the principles are roughly the same. A methodology for incorporating a 

modal filter into a controller has been given in Tzafestas’s [183] book. However, it was 

not specific for an aircraft or for shape control. The presented design methodology is 

tailored for an aircraft analyzed with free-free modes. Free-free modes are computed such 

that rigid body and flexible modes are orthogonal to each other.  

 The modal reference simulation which the methodology is constructed for is 

given in Fig. 5.1. 

 
Figure 5.1: The Virtual Deformation Control Architecture for the X-56A Model. 

 

This architecture assumes that a virtual deformation control architecture with modal 

reference tracking is used. It was determined that this was the most practical method of 

shape control in the previous Chapter.  

 In many ways the phases of modal filtering design provided in the previous 

Chapter are the same (See Fig. 4.1). In the architecture provided in Fig. 5.1, there are 
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three important design phases. First, the controller,  , must be developed (Phase I). 

Second, the modal filter and simulated fiber optic sensors (SFOS) models must be 

constructed (Phase II); and third, the reference signal transformation must be computed 

(Phase III). The following sections describe these phases, from the perspective of aircraft 

modal filtering design. The first section begins with the control design phase. 

5.1.1 Control Design Phase 

 

 As before, the first step for modal filtering control design is to specify 

performance and robustness requirements. For performance, this typically includes 

specifying targets for rise time, overshoots, settling time and the overall shape of the 

response. Robustness must also be achieved in a control design and is approached from 

varying points of view in the literature. A mu-analysis and Monte Carlo Simulation is 

recommended. 

 Identifying Significant Modes 5.1.1.1

 

 Identification of significant modes in an aircraft structure is again similar for a 

wing model. Again, the V-g and V-f plots or equivalent are used to determine interacting 

modal coordinates. Modal coordinates must be selected for feedback which contribute to 

flutter, modal vibration and are within the actuator bandwidth.  

 Selection of these modes can be an iterative process due to the need to meet 

robustness requirements. If modal coordinates at high frequencies are fed back, the 

bandwidth of the controller may be required to be too high. Once feedback modes have 



 147 

been decided upon, the state space matrices must be updated. First the state space model 

development and airframe state definitions are discussed in the next section.  

 State Space Modeling  5.1.1.2

 

 Mathematically, the matrix equation of motion of the aeroelastic system in 

discrete coordinates is given as in Eq. (5.1). 

[   ]{ ̈}  [   ]{ ̇}  [   ]{ }  [   ]{ ̈}

   [       ]{ }    [       ]{ } 

(5.1) 

Analogous to Euler’s first law,      (or in this case     ), the left side of the 

aeroelastic system equation represents the structure’s mass properties and applied motion 

while the right side represents the aerodynamics forces.  

 The generation of aerodynamic transfer functions in the time domain by solving 

unsteady aerodynamics can be a very complicated procedure. For this reason, unsteady 

aerodynamic methods are often formulated in the frequency domain by assuming simple 

harmonic motion.  

 The doublet lattice method (DLM), the unsteady flow extension of the vortex 

lattice method (VLM), was developed by Albano and Rodden [184] and is traditionally 

used to determine the unsteady aerodynamic forces [141, 185, 186].  

 However, ZAERO uses ZONA6 as an unsteady-flow extension of Woodward’s 

Method, which is described as a similar but higher order singularity distribution than the 

vortex lattice method [187, 188, 189]. The aero model is presented in Fig. 5.2. 
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Figure 5.2: Aero Panel Model of X-56A. 

 

Points between the FE model and aero model are selected that accurately represents the 

force transferal from the aerodynamic control points to the structural grid points. This 

allows calculation of the GAFs from modal deformation at structural grid points. 

 It becomes necessary to convert the frequency-domain GAF to the Laplace 

domain. However, the Laplace-domain unsteady aerodynamics must be in a rational 

function form to be incorporated into the time-domain state-space equations of the 

aeroelastic system. Therefore, the unsteady aerodynamic forces are approximated through 

the following RFA as in Eq. (5.2). 

[ ̃     ]  [  ]  [  ]      [  ]     
 

 [ ] [   [ ]  
 

 
[ ]]

  

[ ]      

(5.2) 

From principles of analytic continuation, the unsteady aero modeled in terms of reduced 

frequencies can be expanded into the entire Laplace domain through the following 

substitution given in Eq. (5.3), 
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       (5.3) 

where   is the Laplace Variable and   is the non-dimensional damping. Aero lags are 

used to model the delayed force effects of the unsteady aerodynamics. The aero lags are 

modeled as zeros along the negative real axis of the Laplace domain since the aero force 

translation to the structure is not real time. By setting    , for the non-dimensional 

damping, the aerodynamic forces are now expressed in the Laplace domain as in Eq. 

(5.4). 

[ ̃   ]  [
   

   
]

 [  ]  
 

 
[  ]  

  

  
[  ] 

  [ ] [ [ ]  
 

 
[ ]]

  

[ ]  

(5.4) 

 The two most common methods to perform the RFA are Roger’s [117] method 

and the minimum state method by Karpel [172]. RFA is least squares fit technique that 

approximates the GAF matrices at several discrete reduced frequencies,  . In general, the 

least square fit procedure solves for [A0], [A1], [A2], [D], and [E]. Roger’s method was 

chosen to compute the RFA. 

 Constraints are applied at specific reduced frequencies (such as at zero) and 

aerodynamic derivatives are matched in ZAERO. In general, ZAERO’s theoretical 

manual recommends running open-loop ASE analysis in frequency domain first (normal 

flutter analysis) and compare with open-loop analysis in time domain (using state-space 

models) to ensure RFA is accurate. Otherwise, additional tweaking in the RFA process 

must be performed.  
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 The state space model description given in Eq. (4.2) is used for the X-56A with 

state vector defined as in Eq. (5.5), 

     {               ̇                   }
  (5.5) 

 

where              is a vector of airframe states,            is a vector of modal 

displacements,   ̇         is a vector of modal velocities,              is a vector 

of aerodynamic lag states and              is formed from a vector of actuator 

accelerations, velocities, and displacements. 

 Trim Conditions 5.1.1.3

 

 The trim conditions were applied to the nonlinear equations of motion to develop 

the state space models. The trim analysis ensures gravity is included into the model to 

provide more accurate flight responses for rigid body motion. Two trim conditions 

include: 

1) Applied 1G gravitational force 

2) Only free variable is angle of attack 

 These conditions lead to a trim angle of attack and a trimmed elastic solution. 

Therefore all the state space models’ states are considered to be perturbations about this 

point.  

 A limitation is identified here. ZAERO is not capable of trimming the aircraft in 

unstable conditions. Therefore all models past flutter are trimmed for a single flight 

condition which occurs before the flutter speed. This results in the aircraft model sinking 

due to an imbalance of lift with gravity. 



 151 

 Actuators 5.1.1.4

 

 The state space models must also model actuator dynamics. Actuator dynamics 

can drastically impact the elastic aircraft states. A third order transfer function of the 

actuators is formulated for each control surface to incorporate the actuator dynamics into 

the system. Indeed, ZAERO requires a 3
rd

 order actuator model to remove the direct-feed 

through from the sensor output matrix when accelerometers are used for feedback [190].  

 Unfortunately, a 4
th

  order (not 3
rd

 order) experimentally verified actuator model 

was provided by Lockheed Martin. So Matlab’s System ID toolbox was used to convert 

the 4
th

 order actuator model into a 3
rd

 order model with balanced truncation. The actuator 

transfer function is represented here as in Eq. (5.6). 

     

    
   

 
   

                 
 (5.6) 

The LTI transformation resolves the transfer function into actuator state space matrices of 

the following as in Eq. (5.7). 

{ ̇   }  [
   
   

            

] {    }  {
 
 
   

}     
 (5.7) 

These models are appended to the state space models for all ten control surfaces, 

increasing the state space order by the order of the actuator transfer function multiplied 

by ten. 

 Sensors 5.1.1.5

 

 Sensors which measure position, velocity, and acceleration can be defined in 

ZAERO. These sensors are used to determine translational or rotational motion which 



 152 

becomes the outputs of the state-space models. Accelerometer sensor and control surface 

locations used for the X-56A state-space model are shown in Fig. 5.3. Accelerometer 

locations are labeled in red, control surfaces are labeled in black.  

 

Figure 5.3: X-56A Control Surfaces and Sensor Locations. 

 

Currently, the X-56A has available to it six accelerometers. However these 

accelerometers are not utilized for control feedback in this study. The focus is instead on 

utilizing the modal displacement states,       for feedback. Further sensor layouts are 

given in the design section, specifically for the SFOS. With the state space models so 

developed, they can be modified to feedback modal coordinates as presented in the next 

section. 

 Modifying State Space Matrices 5.1.1.6

 

 The modification of the state space matrices for modal coordinate feedback is 

very similar to how the wing model state space matrices are modified. Consider the 

relationship of the strain-based modal filter (See Ref. [66]) to the modal displacement 

state vector        as in Eq. (5.8), 
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                                     (5.8) 

 

where   {                    } is a     strain matrix with   strain modes, 

                    is the measured strain and   is a normal error. This represents 

the modal filter in its pseudo-inverse form. Since the modal filter gives a partial state 

estimate of the full state vector,      as defined in Eq. (5.5) the form of the output matrix 

is simply identity for measured modes. 

  The sensor output matrix,  , is a matrix of row vectors relating the sensory 

information to the state vector,     . For the wing model methodology, the output matrix 

was developed for the case where rigid body motion was restrained. Here, the output 

matrix is adjusted for rigid body state feedback concurrent with modal deformation state 

feedback. It is assumed that   modes are retained for measurement. The output matrix is 

formed assuming all modal displacements,    , and airframe states,    , are measured, as 

shown in Eq. (5.9). 

  [
                           

                     
] (5.9) 

 

As with the wing model, there is no requirement to measure all flexible states (or rigid 

states) to adequately sense the vehicle state. Higher frequency modes generally do not 

significantly contribute strongly to the deformation [7, 183]. These modes may be 

cautiously ignored to reduce the size of the   matrix.  

 Model Reduction  5.1.1.7

 

 After selecting and modeling modal coordinates, the state space matrices can be 

reduced in order and used to design the control laws. The same model reduction 
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philosophy of partitioning the plant into stable and unstable parts and then using balanced 

truncation [174] is used as for the wing model. From here a control design methodology 

can be taken. 

 Control Design and Iteration 5.1.1.8

 

  As with the wing model, control design can proceed with any desired control 

methodology. For the wing model, the  -Optimal [103] design methodology was chosen. 

This methodology is very flexible and allows the designer to simultaneously satisfy many 

requirements at once.   

  As with the wing model, once a controller has been designed which meets 

requirements, the modal coordinates are also fixed. They can be used in the modal filter 

design phase which is discussed in the next section. 

5.1.2 Modal Filter Design Phase 

  

  Phase II requires the development of the modal filter. The difference between the 

modal filer for the wing model and that used on the X-56A, is that the former is in 

displacement units and the latter is in units of strain.  

  The wing model assumed deformations are computed from any shape algorithm at 

SFOS locations, while the X-56A assumes strain is measured directly. This is 

representative of what the FOS actually measure. To utilize the strain mode matrix for 

modal filtering, the strain modes must be computed. But it was not known how to 

compute strain modes directly from MSC NASTRAN. 
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  Instead an approximation for strain was made using the computed deformations 

for each mode shape at the sensor locations. The close proximity of the sensors (of 

approximately one-half-inch) along the SFOS gives a unique opportunity to calculate 

axial strain modes directly from the deformation at the sensor locations.  

  Recall the axial strain in a beam element [191], where    is along the length of the 

beam axis (as in a fictitious beam connecting two sensor locations), shown in Eq. (5.10): 

    
  

   
 (5.10) 

The FOS measure axial strain, so a fictitious beam is assumed to exist between sensor 

locations. Assuming beams between each sensors, 1,000s of fictitious beams must be 

modeled. This concept is best described using Fig. 5.4. This is presented as a visual aid 

for the breakdown of Eq. (5.10) into the conversion of deformation to strain discussed 

next. 

 

 
 

Figure 5.4: The Fiber Optic Sensor Locations Deformed for Notional Mode Shape. 
 

  Each dark dot in Fig. 5.4 represents sensors from the SFOS along the aircraft 

wing, which have been labeled for clarity. Each sensor has a line drawn between it, where 

a fictitious isotropic beam is assumed to exist. The deformed sensors shown as red dots 
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are connected with blue lines. The blue lines represent the beams in some deformed state 

due to the mode shape it corresponds to.  

  Linear algebra may be used to show that the strain in any fictitious beam element 

of the SFOS shown in Fig. 5.4 is calculated as shown in Eq. (5.11): 

    
     ⃑⃑    ⃑⃑ ⃑⃑  ⃑     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑    ̅̅ ̅̅

  ̅̅ ̅̅
 (5.11) 

where   ⃑⃑⃑⃑  ⃑ is a directed line segment from the un-deformed sensor location      to the 

un-deformed sensor location     , and     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  is a directed line segment from the 

deformed sensor location       to the deformed sensor location       and  ⃑  is the unit 

vector.  

  The projection (See Fig. 5.4) computes the final length of the beam section with 

respect to its original beam orientation. The difference between the original length and 

the deformed length, divided by the original beam length, gives the strain in the beam 

element.  

  The strain in one beam may differ from the strain in the beam next to it. Therefore 

the strain from modal deformation on the     sensor (or sensor location  ) may be 

defined to be the average of the strain computed on either side of it (See Fig. 5.4) as 

shown in Eq. (5.12), 
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(5.12) 

where    
  is the axial strain measured at a sensor using the left fictitious beam and    

  is 

the axial strain measured at the same sensor using the right connected fictitious beam 

(See Fig. 5.4). To compute the strain at point   with good precision, candidate sensor 

locations   
  and   

  must be selected close to the original sensor.  

  This operation can be carried out for each mode and at each sensor node, and 

sensor strain modes    may be formed by collecting component strains Eq. (5.12) for 

each sensor. The sensor strain modes are collected into the desired strain mode matrix 

defined at SFOS sensor locations, as shown in Eq. (5.13).  

     [           ] (5.13) 

With the strain mode matrix defined, the modal filter can be set up in the following way 

as in Eq. (5.14), 

         
                (5.14) 

where                is the measured strain at the sensor locations. The next section 

describes how the reference transformation must be defined. 

5.1.3 Shape Reference Signal Design Phase 

  

  A reference transformation is required in Phase III of the modal filtering design 

methodology. However the development of this transformation on an aircraft model is 
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not as straightforward because of free-free mode shapes. The normal mode shapes are 

infused with strong rigid body motion to satisfy mean axis constraints.  

  Therefore, the use of these modes to recreate the modal reference signal will lead 

to large displacement errors. The mode shapes required in Eq. (5.16) are calculated by an 

optimization procedure on the original mode shapes. The optimization procedure rotates 

and translates every node in the mode shape about the aircraft center of gravity (  ).  

  Recall that a mode shape corresponds to deformations at   grid points. At each 

grid point, the mode shape is defined for six DOF, so each mode shape technically has 

   DOF. The number of DOF are increased with global DOF parameters so the total 

DOF in each mode equate to      DOF. The global DOF are the only variables in the 

objective function defined for the     mode shape given by Eq. (5.15): 
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(5.15) 

where    ,     and     are the scalar coordinates of the    of the aircraft,      is a right-

hand-rotation matrix operator,   ,    and    are     coordinate vectors of the un-

deformed aircraft,   
 ,   

 , and   
  are     coordinate vectors of the     modal 

deformation vector,   . The six scalar variables in the optimization function include 

translational coordinates:    ,    , and     , and rotations about all three axes:    , 

   , and    .  
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 By minimizing the objective function [See Eq. (5.15)] for the     mode,with 

respect to these six scalar variables the relative distance between the un-deformed aircraft 

and the deformed aircraft is minimized. Since the squared Euclidean norm is a strictly 

convex function of its respective arguments, the objective function is also convex [138]; 

therefore, there are numerous discrete optimization methods available in the literature 

which can be used to solve it. For each mode  , the objective function is minimized with a 

locally convergent random search technique known as the compass method [138].  

 The transformed mode shapes defined at sensor locations are collected to form the 

modal matrix. These mode shapes are pure elastic and thus are used to form a proper 

modal reference transformation. The modal reference command is shown in Eq. (5.16): 

                                  (5.16) 

where                  is a vector of deformations from the un-deformed aircraft 

corresponding to the index vector,    , in the pure elastic deformation modal matrix,  .  

  Recall that each row of the modal matrix corresponds to a physical location on the 

aircraft, (         . The index of modes,    , corresponds to the index of modes within 

the modal matrix, which the controller is designed to track. The selection of    is a 

research topic within itself. However, here it is recommended to select points with high 

deformation in the commanded mode shapes identified in Phase I. This may reduce 

coupling with residual modes, although this concept must be fully investigated. 

 This completes the modal filter design methodology. The following sections put 

the presented modal filter design methodology into practice on the X-56A vehicle. The 

case study, which addresses both Research Question 2 and Research Question 5, begins 

with a brief history and description of the vehicle. 
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5.2 Design 

 

 

 The Air Force Research Laboratory’s (AFRL) Multi-utility Aeroelastic 

Demonstration (MAD) Program has developed the Multi Utility Technology Test-bed 

(MUTT) also known as the X-56A with Lockheed Martin being the prime contractor for 

design and development of the vehicle. The X-56A builds on previous work between 

Lockheed Martin and AFRL to design and develop new high altitude, subsonic, long 

endurance autonomous aircraft [99, 192].  

 The goal of this test vehicle is to perform flight research on active aeroelastic 

control technologies such as flutter suppression and gust load alleviation. The X-56A will 

be capable of a variety of configurations. This vehicle has a detailed FEM developed by 

Lockheed Martin and will provide a basis for future work in analyzing new structural 

configurations based on the initial X56A design. The initial design of the X-56A is 

shown in Fig. 5.5. 

 
 

Figure 5.5: Initial Configuration of the X-56A (Picture Courtesy of Lockheed 

Martin). 
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 The X56A is intentionally designed to encounter three flutter instabilities within 

its operating flight envelope: body freedom flutter (BFF), symmetric wing bending 

torsion flutter (SWBT), and antisymmetric wing bending torsion flutter (AWBT). BFF is 

a phenomenon where the rigid body mode of pitch and plunge couples with the elastic 

mode of first wing bending. The other two modes are traditional elastic flutter modes.  

 The vehicle is equipped with water tanks on its wings for mass variation 

simulation. Water in the wing makes control design more difficult because the controller 

will either need to adapt or be robust to the varying modal properties. This challenge may 

be compared to the wing stores AFS problem of the Northrop YF-17 airplane [41]. For 

simplicity, the simulation model used here assumes that the water tanks are empty.  

 The yaw model is also ignored. This is because the effects of pressure drag are not 

modeled. Since the aircraft has no rudder, its yaw control will be limited. To yaw, the 

control surfaces must move in opposing directions to generate more drag on one side of 

the vehicle. 

 Salient features of the modeling process are described in the following sections. 

This begins with the computation of the normal modes and a flutter analysis. These are 

also first steps in the modal filter design methodology.  

5.2.1 Normal Modes 

 

 The normal modes analysis was completed in MSC Nastran [193] (MSC Software 

Corporation, Santa Ana, California) on a detailed finite element model (FEM) provided 

by Lockheed Martin. The FEM corresponding to the water-empty full fuel case was 

utilized. The detailed FEM is shown in Fig. 5.6. 
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Figure 5.6: The Finite Element Model of the X-56A Aircraft.  

 

The FEM contains over 8,000 nodes. Although accurate, the FEM has not yet been 

updated through a ground vibration test. Therefore the X-56A model in this paper has 

aircraft characteristics, but does not represent completely the procured flight vehicle. The 

free-free modes are shown here amplified by a large amount (for visualization) in Fig. 

5.7.  

 
 

Figure 5.7: Normal Mode Shapes of the X-56A Model: a) SW1B;  b) AW1B; c) 

SW1T; and d) AW1T. 

 

c) 

b) 

d) 

a) 
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Only four modes are shown here, but 14 flexible modes were included in all of the X-

56A models. Fourteen were found to be sufficient to capture the salient flexible motion 

characteristics.  

 Visual inspection reveals that the first two mode shapes appear strongly coupled 

with rigid body motion. The coupling is pronounced in the symmetric wing first bending 

(SW1B) mode, where rigid body pitch and heave are observed. The antisymmetric wing 

first bending (AW1B) mode has a substantial rigid body roll component. The symmetric 

first wing torsion (SW1T) mode has a slight pitch coupling which is difficult to see. The 

antisymmetric wing first torsion (AW1T) is slightly coupled with roll. The next section 

introduces the flutter analysis. This is required for selecting an appropriate flight 

condition and modal coordinates for feedback.  

5.2.2 Flutter Analysis 

 

 As the modal frequencies shift due to coupling aerodynamic forces, they may 

move from stable to unstable regions. Therefore, it is important to determine where this 

occurs so that the flutter margins of the vehicle can be computed. To determine the 

theoretical flutter margins of the vehicle the eigensolution of the aeroelastic system 

equation [See Eq. (5.1)] was solved [172].  

 The accuracy of the solution is paramount for the development of a model based 

control system. Thus it is important to verify that the frequency and time domain 

aerodynamics match. Further validation can be done in wind tunnel and flight test 

environments, but these are not completed here. Both frequency and time domain modal 

aeroelastic solutions are presented in Fig. 5.8.  
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Figure 5.8: Flutter Analysis of X-56A Model: a) Frequency versus Velocity, V-f ; 

and b) Damping versus Velocity, V-g. 
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Figure 5.8 shows an overlay of the aerodynamic approximation for the state space models 

with the frequency domain aerodynamic solutions. This verifies that the RFA is good and 

analysis can continue with confidence. 

 Figure 5.8(b) reveals that three flutter modes exist. The first mode that goes 

unstable (that is, crosses 0 ) is BFF at a ratio of design speed,      , of approximately 

0.82. The BFF frequency is 2.7 Hz (16.9 rad/s). The viscous damping ratio for the BFF is 

-0.13. Recall that the   value is equal to the negative of twice the viscous damping [170]. 

Therefore, positive   corresponds to an unstable flight condition.  

 The SWBT mode appears at approximately 89 percent of design speed at a flutter 

frequency of 6.5Hz (41 rad/s). The viscous damping ratio of the SWBT is lower than the 

BFF at -0.06. The velocity versus frequency plot, V-f, indicates that unfavorable coupling 

occurs between the SW1B and SW1T normal modes, similar to what one might expect 

when performing a flutter analysis on a clamped plate [170]. Typically, the coupled 

modes’ frequencies shift down but do not coalesce.  

 The AWBT mode appears at 94 percent of design speed at a flutter frequency of 

4.9 Hz (30.7 rad/s). The damping ratio of the AWBT is -0.024. This represents another 

unfavorable coupling between the AW1B and AW1T normal modes.  

 The viscous damping of each mode decreases (margin of instability grows) very 

quickly, relative to velocity changes. This is especially true for the BFF. In practice, 

flutter predicted in this way is conservative, as structural damping is unaccounted for. 

However it is useful for picking a design speed to design a controller as it is. Further 

tweaking comes later. 
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  It is desired to pick a design speed which is subject to all three flutter instabilities. 

Therefore the design plant is chosen at a ratio of design speed of one. To verify that the 

flutter modes are present at the design speed, the X-56A state space model was perturbed 

with a unit-scaled control deflection command to the right-wing control surfaces (See 

Fig. 5.3), lasting 0.001 s. The pertinent state space variations are plotted in Fig. 5.9.  
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Figure 5.9: The X-56A Model in Open Loop Flutter at Design Speed: a) BFF; b) 

SWBT; and c) AWBT. 
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  The BFF mode in Fig. 5.9 (a) is demonstrated by the interaction of the scaled 

states, rigid body heave state,      , and modal displacement      . The flutter 

characteristics of the BFF mode are divergent oscillations of contributing modes at the 

same frequency, out of phase.  

  The SWBT mode also illustrates the unfavorable coupling of modal 

displacements:       and       (See Fig. 5.9[b]). The nature of the coupling is 

difficult to discern because it appears random in nature. This means that there is an 

interaction with another mode, likely the BFF mode.  

  The AWBT mode shows an in-phase interaction of modal displacements:       

and      . The scaled modal amplitudes are small but clearly grow in time, verifying 

that this flutter mode also exists at the design flight condition. Without control, the 

aircraft will experience strong flutter instability and will require AFS at this speed.  

  One important characteristic should be noted, other than flutter. Note that altitude 

is lost over time (See Fig. 5.9[a]). This could be due to the fact that the impulse energy is 

in one direction. It could also be due to trim conditions. The trim angle of attack was 

computed at a lower speed where the model is stable. However, this is not expected to 

dramatically affect the application of the modal filtering design methodology. 

  The flutter modes indicate that four flexible modal displacements should be used 

for control feedback, including      ,      ,       and      . However, the 

frequencies of the anti-symmetric modes are prohibitively high and close to the actuator 

bandwidth. Therefore only the symmetric 1
st
 bending and 1

st
 torsional modal 

displacements are selected for feedback. The requirements of the vehicle controller are 
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now overviewed, and a µ-optimal controller is designed, which can track both rigid body 

states and the first two modal displacements. 

5.2.3 Control Design  

  

 It is desired to suppress the flutter modes (See Figs. 5.8 and 5.9) and track the 

rigid-body commands of the X-56A aircraft. This is especially important in consideration 

of Research Question 5 which asks for if a full coupled modal and rigid body controller 

can be designed. 

  In addition, one of the primary objectives is to demonstrate virtual deformation 

control on a flight vehicle to satisfactorily confirm one answer to Research Question 4, 

which inquires as to what shape control methods the modal filter enables. With these 

concepts in mind the aircraft controller is designed. The following two sections provide 

an overview for how the control design phase is accomplished. The first step of Phase I is 

to define the robustness and performance requirements. 

  Since flutter is a potentially destructive phenomenon, the modal controller must 

be robust to uncertainty. This is especially important for a modal controller, since during 

a ground vibration test, mode shapes are typically not predicted exactly [7]. In fact, cross-

coupling is a primary argument against using a modal filter for control. Cross-coupling 

can occur when any one mode shape in the modal matrix is not accurate and propagates 

into other modal displacement estimates through projection [194].  

  To reduce these uncertainties, the following uncertainty requirements were 

defined: 10 percent multiplicative uncertainty on the inputs and outputs, and 10 percent 

additive uncertainty on the scaled plant. Since flutter speeds are hard to predict precisely 
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and structural damping is not modeled, the controller requirements must also be satisfied 

at off-design conditions.  

  A notional requirement is that the controller must be robust to a 3-percent speed 

variation. This requirement seems limited. However, it is practical considering the other 

uncertainties and considering the design speed is at flight condition with a high margin of 

instability (See Fig. 5.8). 

  Robustness to parameter uncertainty is highly desirable, but the controller must 

also meet performance specifications. The tracked measurements must respond to doublet 

inputs with low rise times and small overshoots. Quality performance must also be 

achievable in the aforementioned uncertainty conditions to demonstrate robust 

performance. The uncertain plant and required control system is summarized in Fig. 5.10. 

 

 
Figure 5.10: The Uncertain Plant and the Required Controller for the X-56A Model. 
 

  Considering the uncertainties in Fig. 5.10(a)  -Optimal [103] control approach 

was taken. The design approach uses a hybrid of performance weights and uncertainty 

weights. Robust stability (RS) is achieved if and only if a system is stable for all 

perturbed plants about the nominal model up to the worst-case uncertainty. The robust 

stability condition which must be met for the  -optimal controller is given as in Eq. 

(5.17). 
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     (    ̂  )       (5.17) 

The   is calculated over the frequency range with the relation shown in Eq. (5.18), 

 (    ̂  )

 
 

   {               ̂                         ̅     }
 

(5.18) 

where    is the stability margin,  ̅ is the maximum singular value, and   is the 

structured uncertainty. The transfer function matrix from the input of the uncertainty 

blocks to the outputs of them as shown in Fig. 5.10 is presented as in Eq. (5.19), 

   [

                 

                

              

]       (5.19) 

where    is a matrix of proper input weights,    is a matrix of proper additive weights, 

   is a matrix of proper output weights, and   is the controller. From this matrix, the 

salient sensitivity and complementary sensitivities from the    structure are identified 

which correspond to the requirements. The magnitude of the singular values predict the 

performance of the control system. These closed loop transfer functions are defined as in 

Eq. (5.20), 

             

             

           

           

             

 (5.20) 

where    is the input complementary sensitivity,    is the output sensitivity,    is the 

input sensitivity, and    is the output complementary sensivitiy. To improve rejection of 

control input uncertainty, the controller was designed around the plant as shown in Fig. 

5.11. 
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Figure 5.11: The Control Design Framework for the X-56A Model. 

 

The design plant,      , at the design speed,      , was of order 130. To improve 

controller synthesis      was scaled by the full range of actuator movement and expected 

sensor output changes. The translational states,     ,     , and     , and the velocity 

state were removed from the model.  

  With the resulting 126th-order model, balanced reduction [174] was performed to 

bring the model order to 90 states. The selected states to be tracked were:      and 

     modal displacements, pitch angle,  , and bank angle,  . The angle of attack  , 

angle of sideslip  , and yaw angle,   were also sensed but were chosen to be suppressed. 

 Traditional proper weights from a mixed    synthesis were utilized along with 

multiplicative uncertainty at the plant inputs. The input uncertainty weight,   , was 

adjusted to achieve maximum amplitude near the actuator break frequency. Sensitivity 

weight,   , was adjusted for integral tracking on tracking states and for suppression on 

suppression states.  

 It was found that the break frequencies of the modal displacement performance 

weights had to be increased 10 rad/s relative to the airframe state weight break 



 173 

frequencies of 1 rad/s. The break frequency of the control weight,   , was adjusted to 5 

rad/s for reduced control surface movement. The break frequency of the complementary 

sensitivity weight,   , was set to 30 rad/s to improve high frequency noise rejection. The 

uncertainty transfer function,    , was calculated (See Fig. 5.11) to be as shown in Eq. 

(5.21): 

   [

          

           

           

          

] (5.21) 

One may verify that all of the pertinent closed-loop transfer functions corresponding to 

those shown in Eq. (5.20) are present in Eq. (5.21). Thus, by reducing the    norm of 

  , the specified uncertainties (See Fig. 5.10) can be rejected.  

 For this control design architecture, the  -optimal controller was computed using 

MATLAB’s Robust Control Tool Box. To find the controller, DK-iteration (See Ref. 

[103]) was performed, which solves the iterative optimization problem shown in Eq. 

(5.22). 

   
 

(   
  

‖         
  ‖

 
) (5.22) 

The DK-iteration resulted in a 162th-order controller after some trial and error with the 

weights in Fig. 5.11. The controller was then internally balanced [174] and truncated to 

44 states without a substantial loss of robustness or performance. This resulted in an    

norm of 3.29.  

 It was difficult to meet both performance and robustness requirements with the 

scaled plant. Therefore, the desired    norm of 1 was not achieved. Rescaling may 
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improve the controller. The next section discusses the controller stability and 

performance. 

5.2.4 Controller Stability & Performance 

 

 Nominal stability (NS) was verified for the reduced order controller by verifying 

that eigenvalues of the closed-loop system had real negative parts. An analysis of the 

singular values of the loop gain as well as the closed loop sensitivity functions given in 

Eq. (5.20) are presented in Fig. 5.12. 

 

 
 

Figure 5.12: Maximum Singular Values of Open Loop (GK) and Closed Loop 

Sensitivity Functions. 

 

 At first glance, Fig. 5.12 reveals that most of the closed loop transfer functions 

stay at or beneath 10 dB, corresponding to a magnification of the inputs to these transfer 

functions of approximately 3.2. The controller bandwidth is 25 rad/s which is high but 
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below the actuator break frequency. After this frequency, the complementary sensitivities 

fall sharply at 60 dB/decade. Therefore, noise will be attenuated well past 25 rad/s. 

 Recall that it is desired that the controller be robust to uncertainty and, of course, 

disturbances. Robustness to input multiplicative uncertainty is strongly impacted by the 

maximum singular values of    [See Eq. (5.19)]. The maximum singular value of    

within the bandwidth of the controller has a magnitude of 10 dB. Therefore the controller 

will amplify input uncertainties at frequencies where flutter is most likely to occur. 

 Robustness to additive uncertainty or gust responses is strongly affected by the 

peak of the closed-loop transfer function,    . Over the entire bandwidth, the singular 

values of     are below 0 dB and, thus, gust-like disturbances will be attenuated. The 

magnitude of the singular values of     fall off quickly after 6 rad/s. This predicts that 

higher frequency turbulence will be rejected. 

 Robustness to sensor uncertainty is predominantly dependent on the peaks of    

and   . From 0.1 rad/s to 1 rad/s the singular values of    show that plant uncertainty is 

neither amplified nor reduced; however, near flutter frequencies the plant uncertainty is 

amplified. The singular values of    indicate that sensor noise or output uncertainty will 

not be strongly amplified past 25 rad/s.  

 Some aspects related to tracking may also be identified from Fig. 5.12. For best 

tracking accuracy,    must be equal to 0 dB over most of the controller bandwidth. 

Figure 5.12 shows that there are several peaks above 0 dB, which may lead to overshoots 

or poor performance. The tracking history can be investigated by inputting doublet 

reference inputs to the controller. The set of charts presented in Figs. 5.13-5.15 expands 

on the performance and robustness characteristics of the controller.  
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Figure 5.13: Performance Chart for Doublet Inputs to Tracked Variables on X-56A: 

a) Control Surfaces; b) Pitch Angle Tracking; c) Bank Angle Tracking; d) SW1B 

Modal Displacement Tracking; and e) SW1T Modal Displacement Tracking. 
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Figure 5.14: Mu Analysis over Speed Range: a)   Chart; and b) Corresponding 

Uncertainty Weightings. 
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Figure 5.15: Performance with Structured Uncertainty: a) Pitch Angle Tracking; b) 

Bank Angle Tracking; c) SW1B Modal Displacement Tracking; and d) SW1T 

Modal Displacement Tracking. 
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 It was desired that the responses of the system to a doublet have low rise time and 

small overshoots. This goal was for the most part achieved (See Figs. 5.13 and 5.15). All 

of the signals had low rise times of 0.25 s to 1.5 s. The change in pitch angle,   , had 

excellent tracking characteristics. The change in bank angle    showed a reasonable 

response. The tracked modal displacements were non-minimum phase. The modal 

displacement,       experienced a 25 percent overshoot, which was predicted by the 

singular values of   .  

 There was very little rigid body longitudinal and lateral coupling. It was 

interesting that the commanded rigid-body signals moved off their reference point when 

modes were commanded. The converse also happened; pitch angle commands tended to 

disturb the modal displacements. This indicates that a strong coupling between rigid body 

motion and flexible motion in the models exists, which cannot be easily avoided.  

 The normalized control movements for    and    tracking were reasonably 

small. In fact, the movement of the control surfaces for    tracking was almost 

unnoticeable. During modal displacement commands, the normalized control movements 

moved to a maximum amplitude of 0.4 on the body flaps. Since the outputs are scaled to 

half of the actuator limits, this is a relatively large control movement, but is not 

unreasonable. In Fig. 5.13(a) it is seen that control movement was significantly larger 

when commanding the modal displacements, than when commanding the flight variables.  

 Significant control authority is required to perturb the X-56A structure from 

equilibrium. However, improper scaling may be to blame. Based on this analysis, the 

nominal performance (NP) appears to be adequate, although it might be improved with 

better weights and plant scaling. 
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 Figure 5.12 indicates that some disturbances and uncertainties are amplified; 

however, the actual impact of these uncertainties on the stability must be checked with a 

  analysis as shown in Fig. 5.14. The   analysis calculates robustness of the modal 

controller across dimensions of speed and uncertainty. For a range of plants    additive, 

multiplicative input and output uncertainties with 10 percent weightings (See Fig. 

5.14[b]) was added.  

 The chosen shapes of the weightings were meant to replicate worst-case 

scenarios. Additive uncertainties may be more likely to occur in the 0.1 rad/s to 10 rad/s 

range due to gust disturbances. Multiplicative uncertainties may be more likely to occur 

at higher frequencies due to actuator dynamics and sensor uncertainties and noise. For the 

generalized plant with uncertainties,   were then calculated across the operational 

frequency range with one controller, as shown in Fig. 5.14(b). 

 Recall that RS is guaranteed if the condition given in Eq. (1.14) is met. Therefore, 

it is desirable that   be less than one for all structured uncertainties. The maximum   for 

all perturbed plants was 0.92. Therefore, RS is achieved. The variation of   across the 

frequency range shows that it tended to increase at closed loop flutter mode frequencies. 

The   tended to increase for speeds past the design speed. Conversely, the   decreased 

for plants below the design speed. This happens because as speed increases the margin of 

instability of the flutter modes increases (See Fig. 5.8[b]). The reverse happens when 

decreasing in speed.  

 Figure 5.14 indicates that the design requirement to be RS to a three percent 

variation in speed was met. Hence, it is shown here that the modal controller can be 
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designed to be a robust to modeled uncertainties. Performance at off design conditions 

must also be analyzed. 

 Robust performance (RP) is achieved if and only if the performance objectives are 

achieved for all possible plants about the nominal plant up to the worst-case uncertainty 

[103]. There were no hard performance requirements defined other than that the tracked 

signals have low rise times and small oscillations.  

 Figure 5.15 indicates that the responses from the perturbed plants was tight 

around the acceptable nominal plant responses shown in Fig. 5.13. The overshoots on the 

modal displacements for some perturbed plants did increase to 50 percent. But this 

overshoot increase is acceptable for the current study. Therefore, RP is achieved for these 

lenient performance requirements.  

 Since NP, RP, NS, and RS are adequately achieved, the modal controller is 

acceptable. It meets basic criteria necessary for utilization in an aircraft. This completes 

Phase I. The controller designed here is used for the virtual deformation control 

simulation of the X-56A. The performance and robustness results of the controller design 

indicate a strong positive response to Research Question 5.  

5.2.5 Fiber Optic Sensor Placement 

 

 The modal filter design phase (Phase II) begins with sensor placement. 

Traditionally, strain sensors or accelerometers used for active structural control are 

placed in an optimal sense. One of the benefits of using FOS is that optimal sensor 

placement (OSP) routines [21, 174] lose significance.  
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 The first few structural modes in bending and torsion are most significant to 

flutter, so the sensors are placed from root to wing tip to capture bending information. 

The sensors are laid from trailing edge to leading edge to capture torsional motion. The 

resulting sensor configuration looks like three claw marks across each wing. The 

resulting sensor configuration is given in Fig. 5.16. 

 

 

 
 

 

Figure 5.16: The Fiber Optic Sensor Layout on the X-56A Model. 

 

Three fibers were chosen instead of two, for robustness considerations. If one fiber on a 

wing fails it may still be possible to compute torsional information with two fibers. The 

next section introduces the sensor strain mode shapes at the sensor locations.  

5.2.6  X-56A Sensor Strain Mode Shapes 
  

  The strain and deformation modes defined at the SFOS locations are necessary to 

develop an operational modal filter. First the deformations at the sensor locations were 

RWTE 

RWLE 

LWLE 

LWTE 
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computed. This was done by laying a spline onto existing nodes of the X-56A FEM in 

MSC Nastran from root to tip. This was repeated for the number of fibers modeled.  

  The distance between each node on the spline was set at one-half-inch, which is 

the normal spacing between measurement gratings on the fiber [179]. At each node of the 

spline or sensor location a minute mass was added. The sensor nodes on the spline were 

then interpolated with RBE3 MSC Nastran cards. The modal analysis conducted in MSC 

Nastran gives sensor deformation mode shapes corresponding to each flexible mode.  

 The sensor deformations were used to compute sensor strain mode shapes. The 

conversion was implemented with Eq. (5.12). The sensor strain mode shapes were 

collected into the sensor strain mode matrix as in Eq. (5.13). The resulting strain modes 

appeared noisy. Thus, the strain was fit to a third order polynomial surface for each wing 

and an M-estimator [195] was utilized to trim outliers. The first four sensor strain modes 

used for the X-56A simulation studies are given in Fig. 5.17. 

 

 
 

Figure 5.17: Sensor Strain Mode Shapes of X-56A Model: a) SW1B; b) AW1B; c) 

SW1T; and d) AW1T. 
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 The SW1B mode has a strain distribution which starts out very high near the root 

of the wing (See Fig. 5.17) and goes to nearly zero at the wing tips. It is typical that in 

bending, strain is highest near the root of the beam [7]. The AW1B mode shows an 

antisymmetric strain distribution in bending. The SW1T mode shows a distribution of 

strain which has an inflection near zero close to the mid-span of the wing, indicating that 

for torsion modes where the wing is twisting, very little strain exists in the mid-span of 

the wing.  

 The AW1T mode, like the AW1B, mode has an antisymmetric strain distribution 

in torsion. The sensor modes are collected into the modal matrix defined in Eq. (5.13) 

and, together with Eq. (5.8), the modal displacement states of the aircraft can be 

measured.  

5.2.7 Verification of Sensor Strain Mode Shapes  

 

 A moment is taken here to computationally verify the strain mode conversion 

procedure. It is not clear if the conversion of modal shapes to strain shapes is correct 

without experimental validation or at least a real simulation of strain. At least one 

verification step is taken here and that is show that the transformation has characteristics 

which satisfy the condition that the total strain is a linear combination of the modal strain 

shapes.  

 This is analogous to the concept that the total deformation can be expanded as a 

linear combination of modal deformation shapes. To verify that this characteristic linear 

relationship is achieved during the transformation, the bending mode shape is strain 

transformed at three separate modal displacement amplitudes,       {     }. Results in 
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Fig. 5.18. indicate that at each point, the sensor strain amplitudes increase linearly with 

the modal displacement amplitudes.  

 
 

Figure 5.18: 1
st
 Bending Strain Mode Shapes Transformed at Different Amplitudes. 

 

 Hence, the overall relationship remains linear during the displacement to strain 

conversion as expected. This at least confirms that the conversion technique is consistent. 

However, more validation is needed to determine if the strain conversion is correct. Until 

future experiments are completed it is assumed the strain mode transformation is valid 

and the following relationship indeed holds for small amplitudes: 

5.2.8  Reference Signal Creation 
  

  With the strain mode matrix prepared, attention is turned to the reference signal, 

which is needed for virtual deformation control. For reference signal creation, the 

deformation free-free mode shapes shown in Fig. 5.7 are transformed according to Eq. 

(5.15). Four of the transformed mode shapes are given in Fig. 5.19. 
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Figure 5.19: Transformed Mode Shapes of X-56A Model a) SW1B; b) AW1B; c) 

SW1T; and d) AW1T. 

 

The mode shapes with rigid-body components removed (See Fig. 5.19) may be used with 

Eq. (5.16) to develop appropriate reference signals. Note that the flexible movement 

within each transformed mode shape appears amplified relative to its respective free-free 

mode shape presented in Fig. 5.7. Deformation commands can now be adequately 

transformed to achieve virtual deformation control. 

 Points on the aircraft must also be chosen for deformation commands. These 

points can be anywhere on the aircraft. A multitude of points could be chosen for total 

shape optimization. For proof of concept, four points were selected in this case study. 

 Kammer’s effective independence (EI) procedure [176], was utilized to locate the 

four points in Fig. 5.16.. This was done to find points with the highest deformation in the 

a) b) 

c) d) 
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commanded mode shapes. This might reduce the chances of the reference signal from 

exciting residual modes better, but it is not known for sure if this is true. 

 The located points are right-wing trailing edge (RWTE), right-wing leading edge 

(RWLE), left-wing trailing edge (LWTE), and left-wing leading edge (LWLE). Their 

index locations in the modal matrix are referred to as   . As in the wing model results 

indicate that the wing tips carry the most modal information. Note that the selected points 

do not have to be on sensor locations for the virtual deformation concept to be employed. 

 

5.3 Simulation 

 

 

 The modal controller derived in the previous sections adequately satisfies the 

robustness and performance objectives for the X-56A model. The simulation study 

presented here demonstrates the use of the modal filter for virtual deformation control via 

modal displacements of the aircraft. For demonstration, the controller designed in Phase I 

is put into a simulation with the modal filter designed in Phase II. The wing tips are 

commanded to a particular deformation using the reference signal derived in Phase III.  

5.3.1 Virtual Deformation Control – Modal Displacement Tracking 

 

  The simulation architecture introduced in Fig. 5.1 represents the inner loop design 

for the X-56A simulation model. The exogenous inputs to the controller are references, 

provided by a notional outer loop control system. The references in Fig. 5.1 are separated 

into rigid-body commands,    
   

, from the flight computer and vertical deformation 
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commands,     , at selected locations (See Fig. 5.16), namely, LWLE, LWTE, RWLE, 

and RWTE.  

  The reference vertical deformations were chosen to be 0.6 percent of the span of 

the vehicle, which corresponds to modal displacement commands of approximately twice 

the scaled value. This value was thought to be reasonably small, since the control 

movement for scaled modal displacement commands was less than 50 percent of the 

actuator range as shown in Fig. 5.13(a).  

  Since the reference deformations were equal, a bending-type motion for the 

aircraft wing shape results. Different deformation choices could lead to torsion-type 

motion instead. The deformation references can be verified to generate a bending motion 

when transformed with Eq. (5.16) into a modal reference.  For the following study, the 

airframe state references are set to 0.  

  The controller that was designed above (See Figs. 5.12-5.15) takes the difference 

of the references and the feedback signals to produce a control input signal. 

Multiplicative noise is added to the controller inputs, with a mean of 0 and standard 

deviation of 0.1. The plant takes the inputs via Eq. (5.8) and produces the state vector,   , 

in the output, which includes the measurements SW1B, SW1T, and the residual modes. 

The plant also outputs the rigid-body measurement vector,    .  

  The SFOS measurements are simulated by multiplying the sensor strain matrix, 

     , with the vector,   . Normal noise,    , with mean 0 and a standard deviation of 3 

   is then added to this strain vector. Since the rigid measurements are scaled, a normal 

distribution with mean 0 and standard deviation of .01 is added to the measurements to 

simulate noise. The results of the simulation to the reference are given in Fig. 5.20.  
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Figure 5.20: Virtual deformation tracking time history: a) deformation tracking at 

wing tips; b) tracked modal displacements; and c) scaled control surface 

movements. 

 

  

c) 

b) 

a) 
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 The change in deformation near the wing tips (See Fig. 5.20[a]) indicates that the 

actual deformations moved very close to the deformation set-points. The error is due to 

the modal displacements from residual modes (See Fig. 4.20). This is expected, since the 

trailing-edge actuators are not collocated with the structure’s sensors. Due to this fact and 

since the modes are coupled aerodynamically, independent modal control cannot be 

achieved [7].  

 The commanded modal displacements are shown in Fig. 5.20(b), and they are 

tracked well. Since the command is primarily due to bending, the SW1T modal reference 

is very small. The scaled SW1B modal displacement amplitude moves the greatest 

amount. Both modes had some overshoot and oscillations during the initial part of the 

command, which was predicted in Fig. 5.13. The steady state response has oscillations 

primarily due to the rather large multiplicative input noise modeled in the system. 

 During the shape-deformation maneuver, the aircraft experienced no enduring 

change of velocity or pitch angle. The angle of attack, however, achieved a steady-state 

change; the change in angle of attack should have also effected an enduring change in 

velocity. An angle-of-attack change generally leads to a drag increase or decrease, 

however, this was not observed, likely due to improper drag modeling. 

 If the results were taken as truth, it could be concluded from this analytical model 

that the effective lift over drag (L/D) ratio has changed. This observation could be a result 

of control surface movements, the bending and rotation of the wing, or both. The caveat 

here is that the results are achieved on a linearized plant model defined for small 

perturbations around the trim point. In flight, the aircraft achieves a new trim point from 

the angle-of-attack change, which may result in a lower or higher L/D ratio.  
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 Outer loop control requirements are also observed from Fig. 5.20. The results 

indicate that the flight-path angle has changed due to shape deformation commands. 

Therefore, the aircraft will require a heading angle hold outer loop controller to make 

virtual deformation control feasible. The outer loop controller could command the pitch 

angle to control the flight-path angle; or it could command engine throttle settings, which 

are not currently modeled. If the throttle is changed to achieve trim, fuel efficiency 

degradation or improvement may be realizable, depending on the command to the 

structure. 

5.3.2 Active Flutter Suppression 

 

 Previously, it was shown that the X-56A model experiences strong flutter at the 

design speed (See Fig. 5.9). Technically, the shape controller demonstrated above is 

capable of suppressing flutter. From the previous plots, this has not been shown 

explicitly.  

 To demonstrate AFS in a traditional sense, the aircraft is perturbed as before and 

the control system is turned on after a period of time of 1.6 s. To reduce control-induced 

oscillations, it was ramped in over a 1-s period, with all references set to 0. Within 2 s 

from the controller being turned on, the shape tracking controller achieves flutter 

suppression, as shown in Fig. 5.21.  
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Figure 5.21: Active flutter suppression time history: a) BFF suppression; b) SWBT 

suppression; and c) AWBT suppression. 
   

a) 

b) 

c) 
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During AFS there was an altitude change (See Fig. 5.21[a]) observed as was discussed 

previously for the open loop model. What was interesting is that by commanding the 

symmetric modal displacements to zero, the AWBT mode was suppressed. This was 

unexpected, and must have been a result of coupling.  

  However, achieving AFS was not totally unexpected since control was 

implemented on a linear plant model. Nonlinear effects have not been included. Only the 

poles must be considered in such a model. The poles of the closed loop system have real 

negative parts and the closed loop system is, thus, stable. The open loop poles and the 

closed loop poles are plotted together in Fig. 5.22. 

 
 

 
 

Figure 5.22: Open-loop versus closed-loop poles: a) open-loop poles; and b) closed-

loop poles. 

 

  The poles of the open loop system indicate the presence of the three flutter modes 

identified above (See Fig. 5.8). There are also poles from lightly-damped structural 

SWBT 

AWBT 

BFF 

Open-loop Poles Closed-loop Poles 

a) b) 
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modes near the vertical axis starting at 54 rad/s. When the loop is closed with the 

controller, the flutter poles migrate to the stable region in the left half plane.  

  The lightly damping structural mode poles remain unchanged, as they are outside 

the controller bandwidth. The controller introduces poles seen tightly grouped near the 

lower right-hand corner of Fig. 5.22(b). Integrator and estimator poles are present. The 

lowest damping of the closed loop system poles within the actuator bandwidth is 0.08. 

This represents a significant improvement over the open loop BFF damping of -0.13.  

 

5.4 Summary of X-56A Model Design Work 

  

 

  Recall that the original purpose of implementing a modal filter controller onto an 

aircraft. It was postulated that this would be a necessary verification step and the 

integration issues would be more complicated. This was found to be true.  

 Major differences were noted in how the modal filter was set up and how the 

reference transformation was designed. Each requires additional setup time and 

introduces risk into the design process. In any case, the simulation studies for the X-56A 

confirm the modal filtering methodology used to answer Research Question 2. 

  It was found that control of all three flutter modes could be completed by only 

feeding back two modal displacements. These modal displacements were selected 

intuitively and focused the control activity. This seems to be a better solution than trying 

to suppress all modal coordinates at once, as is required with accelerometer feedback.  



 195 

 Of further interest is the fact that shape control via modal filtering was handily 

demonstrated verified for aircraft (verifying a shape control method introduced for the 

Wing Model in answer to Research Question 4). The method is referred to as virtual 

deformation control. It was shown that the method controls displacements on an aircraft 

through modal referencing similar to the wing model. By using a bending command 

instead of a torsional command, less error was introduced by the residual modes and the 

shape command was accurately tracked. 

 A positive response to Research Question 5 was also verified. It was shown that a 

fully coupled rigid and flexible controller could be designing using the modal filter. 

However, the design was challenging. Finding the required plant scaling parameters for a 

modal coordinate is not intuitive. Separate break frequencies of weights may also be 

needed for rigid body and modal coordinate outputs. This makes the design more 

complex. 

  The remaining Chapters proceed with theoretical additions to the modal filter. 

This is required to make it robust to strong sensor bias. The development begins with the 

theoretical foundation, introduced in the next Chapter. 
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CHAPTER 6 

 

 

 

THEORETICAL FOUNDATION 
 

 

 
 The previous Chapters have focused primarily on design, showing how modal 

filtering fits into the state space based aeroservoelastic control paradigm. A modal 

filtering design methodology was introduced and simulations of the wing model and X-

56A were completed. It was found that the modal filter is applicable to aircraft control 

and enables two methods of shape control. The story continues by addressing the 

sensitivity of the modal filter to sensor bias.  

 Up till now the OLS type modal filter has been utilized. It was applied without 

consideration of its robustness to unexpected sensor bias. However, in order to answer 

Research Question 3 the modal filter must be made robust. This is the only way it can be 

applied to aircraft while satisfying safety concerns. It was hypothesized that a robust 

regression method would be necessary to shore up this limitation of the modal filter.  

 A review of robust regression methods is presented in this chapter. From the pool 

of available robust estimators, the concentration algorithms and M-estimation are 

postulated to be the key to deriving a robust modal filter. However these estimators may 

not be useful in their current forms for robust modal filtering without further 

manipulation.  

 The following sections begin with a very brief review of robust regression 

methods. The multivariate location and dispersion model (MLD) is introduced for a 

mathematical basis for the strain based modal matrix. Finally a detailed review of 
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concentration algorithms is presented. Concentration algorithms are reviewed in detail 

because they are much less well known than M-estimators. 

 

6.1 Robust Regression Overview 

 

 

 There have been many developments in robust regression, with techniques for 

case diagnostics and robust regression. A robust estimator attempts to find a reasonable 

fit for the bulk of data then uses this fit to find discrepant cases, while case diagnostics 

use a fit to the entire data set to find discrepant cases.  

 In general, large residuals from an OLS parameter estimate do not confidently 

indicate the presence of an outlier, since an outlier may drag the fit parameters far away 

from the majority of the data points, and thus the residuals are no longer adequately 

descriptive [196, 197, 198].  

 Many techniques such as Least Median of Squares (LMS) [199, 200], Least 

Trimmed Squares (LTS) [196], S-estimators [196, 201, 202], and τ-estimators [203], 

follow the principle set forth by Hampel [204]. He suggested that an estimator which 

minimizes a highly outlier-resistant scale measure of fitted residuals would be less 

sensitive to outliers.  

 A very common implementation of this principle is to apply a practical algorithm, 

which subsamples the underlying data to form parameter estimates. These parameter 

estimates are then used to form residuals of all of the data, from which some objective 
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function is employed and minimization of this objective function through many 

subsamples of the underlying data results in an optimal parameter estimate [205].  

 Unfortunately, many robust regression methods are overlapping or related and it 

is difficult to truly tell apriori for a given problem which is better than the other. For 

example, the LMS estimator is a special case of the Least Quantile of Squares (LQS) 

estimator [196]. The LTS and LMS are also special cases of an S-estimator. The least 

trimmed sum of absolute deviations (LTA) [206] is found by minimizing the sum of 

absolute residuals similar to the M-estimator [195, 207].   

 Researchers focus on trading robust regression techniques off against each other 

in terms of consistency, Gaussian efficiency, breakdown and computational complexity 

[208, 209, 205]. Monte Carlo testing is often employed with varying data set types and 

varying degrees of contamination.  

 Even so, there is no commonly accepted standard for robust regression [198], thus 

tradeoffs based on the application and computational environment must be made. It is 

desirable for the present application that a robust operator be determined which can be 

implemented in real time and be high breakdown for all data types.  

 The breakdown point was first introduced by Hampel [210, 211]. Huber used it as 

a functional analytical procedure [207]. A simplified version for finite samples was 

presented by Donoho [212]. The breakdown point is the percentage of contaminated data 

which can exist in a data set, for which the robust regression technique can still succeed. 

For a problem where many sensors could fail at once such as with the FOS, a method 

with high breakdown (HB) is desired.  
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 The highest theoretical breakdown point for any regression equivariant functional 

is 50% [196, 208], which includes estimators such as the LMS, LTS, Repeated Median 

(RM) [213], Minimum Volume Ellipsoid (MVE) [196], Minimum Covariance 

Determinant (MCD) [196, 214], Least Quartile Difference (LQD) [215] and S-estimators.  

 Other algorithms which are high breakdown but do not necessarily achieve 50% 

breakdown include the Theil-Sen Estimator [216], and Deepest Regression (DR) [217]. 

Low breakdown estimators include M-estimators [195, 207] assuming outliers are 

allowed to occur in the explanatory data. M-estimators are usually solved with an 

iteratively reweighted least squares (IRLS) iteration.  

 M-estimators have been shown to be useful, especially when small outliers exists, 

whereas LMS and LTS tend to classify good data points as outliers, if no gross outliers 

exist [209]. Hybrid M- and S-estimators known as Constrained M-estimators (CM) have 

combined the high breakdown point of the S-estimator and local robustness property of 

the M-estimator [218]. 

 In addition to the breakdown point of an estimator, it is usually important to 

determine the efficiency of the estimator [219]. A fully efficient estimator should deliver 

the same accuracy as the maximum likelihood based estimator (which is OLS when the 

noise is Gaussian) when the data set contains no outliers. This is referred to as Gaussian 

efficiency, and is usually given as a percentage, where a higher percentage indicates the 

robust estimator is closer to OLS when outliers are not present. Techniques such as LMS, 

LTS and LTA tend to be low efficiency.  

 Usually a two-step process is required for an estimator to be both high breakdown 

and efficient, such as the Robust and Efficient Weighted Least Squares (REWLS) [220] 
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technique. Generally, this process consists of beginning with an initially high breakdown 

estimator (like LMS or LTS) and using the robust estimate to rescale the weights on the 

data.  The second estimator usually retains its efficiency and inherits the breakdown point 

of the original estimator. 

 Data type impacts most robust regression techniques’ performance. The presence 

of masking, swamping and leverage points is critical to how well a robust operator 

performs.  

 Masking occurs when two outliers have the effect of canceling each other out, 

such that the robust regression technique does not identify them as outliers [221, 222]. 

Swamping has the opposite effect, and occurs when a good observation is considered to 

be bad due to its interaction with outliers.  

 Leverage points are points, in the explanatory data which lie particularly far away 

from the majority of the observations [196]. Leverage points have a strong influence in 

the regression and may be good or bad, depending on the data structure and algorithm 

used. In the literature, LMS and LTS tend to perform the best in terms of consistency and 

breakdown in the presence of leverage points [209].  

 The LTA has been shown to be an attractive alternative to LMS and LTS when 

leverage points are not included in the data set [206]. Note that LMS and LTS tend to be 

the benchmark in robust statistics, due to both being HB and consistent in the presence of 

various data structures. It is clear from the optimal sensor placement discussion that 

operation with existing leverage points will be critical to the operation of the modal filter. 

 Unfortunately, in the published literature, multiple linear regression (MLR) and 

multivariate location and dispersion (MLD) estimators have been shown to be high 
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breakdown and consistent but tend to have high computational complexity      , or 

higher where n is the sample size and p is the number of predictors [205]. Assuming the 

computer can perform     operations per second and      , then any one algorithm 

takes         seconds to complete. If the number of modal coordinates or fit parameters 

increases over a few, then many robust algorithms will not be implementable in real time.  

 Bernholt [223] suggests that the LMS, LQS, LTS, LTA, MCD, MVE, CM, 

projection depth [224] and Stahel-Donoho [225] estimators are hard to compute. In his 

unpublished manuscript Applied Robust Statistics [205], David Olive points out that fast 

algorithms for the above methods which produce good approximations are impractical 

except for tiny data sets. He also shows that the Generalized S-estimator (GS) [201], 

LQD, projection, RM and S-estimators are also impractical.  

 Two stage estimators that need an initial high breakdown estimator from the 

above list are even less practical to compute [205]. These estimators include the cross-

checking [226], MM [196, 227], one step Generalized M-estimation(GM) [228], one step 

Generalized Rank (GR) [229], REWLS, τ- and t-type estimators [230].  

 Typically the implementations of these estimators are not given, impractical to 

compute or result in a zero breakdown estimator that is often inconsistent. Indeed, in the 

book Robust Statistics, Maronna et al. [231] indicates that S, τ, projection based, CM, 

MM, and Stahel-Donoho estimators may have no reliable method for computation. 

 A number of computationally fast, high breakdown consistent estimators have 

been proposed. The Fast Minimum Covariance Determinant (FMCD) was proposed by 

Rousseeuw and Van Driessen [232] in an effort to utilize the high breakdown MCD 

technique on very large sets of data (ie.           data points, with 27 parameter 
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estimates). Other practical robust regression techniques include the Median Ball 

Algorithm (MBA) [233], FCH [234], Recursive FCH (RFCH) [234], Recursive MVN 

(RMVN) [234], OGK [235], and Median Ball (MB) [233].   

 A recent PhD dissertation publication [236] performs a very comprehensive 

comparison of the “fast” robust estimators and suggests that FCH, RFCH and RMVN 

outperform all other compared estimators with regards to consistency and speed. These 

three techniques are also at least 2 orders of magnitude faster than the FMCD method and 

are also consistent when       and     . Thus, if one was tracking 5 modal 

coordinates, at least 100 data points would be required for consistent performance.  

 Olive [205] points out that FMCD is only consistent for small data sets, mainly 

because the algorithm still relies upon random sampling, as many practical robust 

regression algorithms do. Furthermore, FMCD has been delegated as an outlier 

diagnostic method, rather than a robust estimator, until it can be shown to be consistent 

[237]. Olive and Hawkins [234] recommends the FCH estimator among all of the 

previously mentioned estimators, and it has been shown with Monte Carlo studies to be 

fast, consistent, applicable to large data sets and high breakdown.   

 Table 6.1 summarizes this very brief review of robust regression techniques, not 

accounting for all of the possible advances and nuances which exist. Indeed, some 

information was difficult to find referenced explicitly, such as the Gaussian efficiency 

and leverage point influence etc. So a notes section was created which draws attention to 

any comments made by authors in comparative studies. 
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Table 6.1: Comparison of Single Step Robust Regression Methods. 
Methods Breakdown  Computational 

Complexity 
Notes  

(GE- Gaussian Efficiency), convergence 
rate=1/consistency 

OLS 
1/n 

O(p
3
+p

2
n+pn) 

Zero breakdown as n ∞ 

M-estimator 1/(p+1) O(p
3
/3+p

2
n) 

sensitive to gross outliers in X-

direction and leverage points; 95% GE 

Theil-Sen 29.3% O(nlog(n)) 
Sensitive to leverage points; fast 

DGK Low <O(p
3
+p

2
n+pnlog(n)) 

n
1/2 

consistent, D. Olive suggests for 

application 

MB High <O(p
3
+p

2
n+pnlog(n)) 

small bias, D. Olive suggests for HB 

application 

MBA High O(p
3
+p

2
n+pnlog(n)) 

 

LMS High O(n
p+2

) 
Low convergence rate n

-1/3
, low GE 

LTS High O(n
p
) 

More stable than LMS, 50% GE 

S-estimator High O(n
p+2

) 
Not a reliable method 

LTA High O(n
p+1

) 
 

LQD High O(n
2p+4

) 
67.1 % GE 

MCD High O(n
1+p(p+3)/2

) 

Only possible for trivial examples, 

similar to MVE and LTS 

MVE High ~O(n
1+p(p+3)/2

) 
Only possible for trivial examples 

DR 33% O(n
2p-1

log(n)) 

Good for asymmetric errors; 

simplifications for speed may exist 

RM High O(n
p
log

p
(n)) 

Some simplifications may make O(n) 

FMCD High O(p
3
+p

2
n+pnlog(n)) 

Not consistent, relies on resampling 

OGK High O(p
3
+np

2
log(n)) 

 

FCH High O(p
3
+p

2
n+pnlog(n)) 

May be too slow (suggestion by email 

with D. Olive) 
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 Perhaps the most practical estimator listed in the above table is the M-estimator. It 

has low computational complexity and is applicable to many different data sets. In some 

cases, it can break down, especially if the outliers are in the explanatory data. For a 

sensor system, this will likely be the case as some sensors are more significant than 

others.  

 Proven computationally fast and high breakdown estimators include the 

concentration algorithm based estimators: FCH, MB and MBA. The weakness of 

concentration algorithms is that they are only applicable to data sets which are 

multivariate normal in nature. There are good aspects for both M and concentration type 

estimators. But both appear to be sensitive to leverage.  

 A review of the model to which these estimators apply is given next. It is also the 

model which is applicable to the strain mode matrix derived for the X-56A and of course, 

modal filters. 

 

6.2 Multivariate Location and Dispersion  

 

 

 The previous section indicates that most robust regression will involve a 

multivariate location and dispersion (MLD) model. Herein, this model is defined and its 

associated popular statistics. A MLD model is a joint distribution with parameters   and 

 , where   is a     population location vector and   is a     symmetric positive 

definite population dispersion (scatter) matrix [236].  
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 Estimating   and   forms the cornerstone of multivariate data analysis and 

estimators are widely used by many classical multivariate methods. Suppose the observed 

data is    for         with   data parameters collected into an     matrix   as in 

Eq. (6.1). 

  [

          

          

    
          

]  

[
 
 
 
  
 

  
 

 
  
 ]
 
 
 
 (6.1) 

The most commonly used estimators of multivariate location and dispersion are the 

classical estimator   ̅   , where  ̅ is the sample mean and   is the sample covariance-

variance matrix. It is the most common likely because many systems can be 

approximated to be multivariate normal (MVN).  

 For this distribution, the general location estimator of   is denoted as      and 

the general dispersion estimator as       . The classical mean estimator is given as in 

Eq. (6.2) 

      ̅  
 

 
∑  

 

   

 (6.2) 

and the corresponding classical sample variance-covariance estimator may be calculated 

as in Eq. (6.3). 

         
 

   
∑      

 

   

        (6.3) 

If   ,   , …,   are a random sample of size   from a MVN population, then ( ̅ 
   

 
 ) is 

the maximum likelihood estimator (MLE) of      , and thus  ̅ and   are sufficient 

statistics and  ̅ and   are independent. An important MLD model is the elliptically 
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contoured            distribution with a probability density function given as in Eq. 

(6.4), 

          
 
 
                   (6.4) 

where,   is some known function and    is some positive constant. 

A  -dimensional MVN         distribution has a probability density function given as 

in Eq. (6.5). 

     
 

    
 
    

 
 

                   (6.5) 

It is clear that         is a special case of           . Hotelling, a pioneer in 

multivariate analysis obtained that a            -dimensional prediction ellipsoid is 

given by all   satisfying Eq. (6.6). 

    ̅         ̅  
       

      
            (6.6) 

where        is the F distribution with parameters   and     and          

                . Hence, the above prediction region for a future observed value 

   is an ellipsoid that is centered at the initial sample mean  ̅, and its axes are determined 

by the eigenvectors of  . Before any new observations are taken, the probability that    

falls into the prediction ellipsoid is    . 

 A very important statistical measure in MLD was developed by Prasanta Chandra 

Mahalanobis [238]. The squared sample Mahalanobis distance is a scalar and for each 

observation    is given as in Eq. (6.7). 
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                           (6.7) 

For distributions which are non-spherical, for instance ellipsoidal, it is expected that the 

probability of a future point belonging to the set depends not only on the distance from 

the center of mass, but also on the direction.  

 The Mahalanobis distance is the distance from an observation to the center of 

mass divided by the width of the ellipsoid in the direction of the observation. Notice that 

the Euclidean distance of     from the center of the data      is  (       ). The 

Mahalanobis distance differs from Euclidean distance only in that it takes into account 

the correlations of a data set and is scale-invariant. The classical Mahalanobis distance 

uses         ̅   . The population squared Mahalanobis distance is given as in Eq. 

(6.8). 

                         (6.8) 

 A large class of robust regression methods makes use of the Mahalanobis distance 

for outlier detection and removal. From Table 6.1, it was clear that robust estimators 

which did not rely upon pure random subsampling are based on the principle of 

concentration. This method is preferable to a random subsampling algorithm in order to 

achieve consistent estimates. Concentration algorithms are reviewed in the next section. 

 

6.3 Concentration Algorithms 

 

 

 Concentration algorithms hold promise for robust modal filtering because they are 

fast and high breakdown. They work by iteratively approach the centroid of the 
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distribution through set trim percentages. Sensors used near this centroid are more likely 

to lead to efficient estimates of the true population estimates.  

 A concentration algorithm begins with an initial estimator of      , called a start, 

such as the classical estimator   ̅    of a random subset with     cases or of the 

classical estimator   ̅    computed from all   cases. For each start, the concentration 

algorithm generates a corresponding new estimator, called an attractor. The algorithm is 

described here. 

 Let (         ) be the     start, where      .  The Mahalanobis distances for 

all       observations of this start are first computed as follows 

  
 (         )  (          )

 
    

               (6.9) 

At the next iteration, the classical estimator (         ) is computed from    
 

 
 cases 

corresponding to the smallest Mahalanobis distances computed from Eq. (6.9). This 

iteration can be continued for   times for the     start, and a sequence of estimators can 

be calculated as (         ), (         ), …,(         ). The last estimator (         ) of 

this sequence is called the     attractor.  

 An empirical choice for   can range between 5-10, depending. Once all starts 

      have generated a set of attractors(         )     , the attractor which 

optimizes some criterion is then chosen as the final “robust estimator”. In other words, 

desired data parameter estimates       are calculated via a least squares operation or 

through some other high GE operation from the set of points    corresponding to the 

optimal attractor. These points are closest to the multivariate center of the data. 

 Concentration algorithms assume a multivariate normal distribution in most 

theoretical research. However, not all data distributions can be approximated as a 
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multivariate normal distribution. This may be especially the case for a structure, wherein 

some sensor locations are far more important than others. This concept becomes 

significant later on in the development of the robust modal filter. 

.  
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CHAPTER 7 

 

 

 

ROBUST MODAL FILTERING 

 

 

 
 The theoretical foundation developed in the previous chapter is a starting point for 

robust modal filter design. It laid out the many choices available for estimators and 

identified two types of estimators which form the basis of a robust modal filter. These 

algorithms are based on concentration and M-estimation. However, neither algorithm 

type is robust to leverage or asymmetry. Asymmetric data distributions are open 

challenges in robust statistics. 

 A methodology for robust modal filtering is presented in this chapter to directly 

answer Research Question 3. This is developed by merging M-estimation and 

concentration and addressing the data distribution’s particular asymmetry issues.  

 To begin with, a motivational example is given for why today’s current robust 

regression methods are not applicable. Then a new robust modal filter is derived within. 

A sensor failure model derived from experimental data is used to test the robust modal 

filter. The test is conducted for three differing structural strain scenarios using a worst 

case break in the fiber.  

 For comparison, the performance of the robust modal filter is run alongside state-

of-the-art robust regression M-estimators. The robust modal filter is found to outperform 

robust M-estimators significantly in the presence of high leverage outliers. The robust 

modal filter methodology is developed within the next sections. 
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7.1 Robust Modal Filtering Methodology 

 

 

 A robust modal filter must replace the OLS modal filtering method [66] in order 

to address Research Question 3. The robust modal filter is given a specific name. Here it 

is named as the concentrated modal estimator (CME). The name is descriptive. The 

modal coordinate estimate is formed from data which is iteratively concentrated around 

the statistical multivariate center of the data.  

 The CME is primarily a concentration algorithm with re-descending M-estimates 

used in place of OLS within the concentration steps. A major difference between the 

CME and other concentration operators is that it utilizes a fixed trim criterion and a more 

robust start. This trim criterion and new robust start is required to address asymmetry of 

the strain mode matrix data. The motivation to address asymmetry is reviewed in depth in 

the following section. 

7.1.1 Motivation from Asymmetry 

 

 For the X-56A sensor system fourteen modal displacement features are included 

in the strain mode matrix   corresponding to 1,530 sensor entries. Therefore, the 

problem is computationally burdensome and also multivariate. If the distribution is 

nominally multivariate normal, then the problem is relatively simple to solve. Most 

theory based robust statistics assume a nominal multivariate normal distribution. To 

determine if the robust strain mode estimation problem is trivial a test for normality of 

the sensor strain modal matrix [See Eq. (1.17)] is given. This test is completed by the Q-

Q plot.  
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 The Q-Q plot is a tool to verify if a distribution matches another distribution. If 

the distributions are similar, then the Q-Q plot will result in a line with a slope of 1. If the 

distributions are dissimilar the Q-Q plot will exhibit unusual behavior. Research confirms 

that the distribution of squared Mahalanobis distance [See Eq. (6.8)] of multivariate 

normal data assumes a chi-square distribution [239]. The squared Mahalanobis distance 

introduced in the previous chapter is computed for the strain mode matrix developed for 

the X-56A. A plot of squared Mahalanobis distance against the quantiles of a chi-square 

distribution is shown in Fig. 7.1: 

 

 
Figure 7.1: Squared Mahalanobis Distance versus Chi-square Quantiles for X-56A 

Model Sensor Strain Modal Matrix. 

 

The plot of squared Mahalanobis distance skews to the right and then curves strongly 

upwards. The skew of the squared Mahalanobis distance is an indicator that the sensor 

strain data matrix is not multivariate normal. The presence of strong leverage points is 

obvious, from the high count of    which exceeds 41.  
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 Indeed, Mardia’s skew and kurtosis estimates [240] indicate that the distribution 

is subject to large multivariate skew and kurtosis which is non-normal. This is also true 

when analyzing the multivariate skew and kurtosis corrected for small samples. 

 Since the measured strain is approximately a linear combination of the sensor 

strain data matrix, the measured strain must also be asymmetrically distributed. That is 

not to say the sensor noise is asymmetrically distributed. The noise for each sensor is 

assumed to be normal. 

 However, since loading will vary with aerodynamic condition, the underlying 

strain distribution is difficult to predict. Without a known distribution, application of 

most computationally efficient robust outlier detection methods is challenging. Olive 

suggests robust estimators can be used in place of the classical estimator for a 

concentration algorithm in some cases [233]. A rigorous demonstration that the strain 

mode filter problem can be solved using an M-estimator is introduced in the next section. 

7.1.2 M-step Derivation 

 

  The CME derived herein utilizes M-estimates instead of OLS within each 

concentration step. M-estimators are characteristically gradient descent algorithms [138]. 

They are computationally efficient, affine equivariant, robust to masking effects and tend 

to outperform OLS when applied to many data sets [231]. Maronna’s Robust M-estimator 

[241] and a concentration algorithm [242] have performed similarly well for 

contaminated data sets used in principal component analysis [243].  

  The asymmetric nature of the distribution (See Fig. 7.1) demands a more robust 

estimator such as the computationally efficient M-estimator. One could argue that the 
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breakdown point of an M-estimator is too low. The theoretical maximum breakdown 

point of         of the M-estimator [196] is inconsequential for two reasons.  

  The first is that it will be shown that only fixed outliers shall exist in the 

explanatory data or strain mode matrix. These outliers can be accounted for with a fixed 

trim criterion. The second is that a concentration operator does not require a robust 

estimator in the concentration steps to lead to a high breakdown estimator. Therefore the 

following modal filter derivation follows that for M-estimators.  

  The strain at measurement locations may be expanded as a summation of an 

infinite number of orthogonal strain mode shapes (See Eq. (7.1)). 

               ∑                 

 

   

 (7.1) 

To reduce model complexity, only a subset   of mode shapes which dominate the 

response are included in the strain modal matrix [122]. It is assumed that the subset of 

modes captures the contributing dynamics and the sensors are subject to random normal 

error. This introduces an error term into Eq. (7.1) which can be modeled as a normal 

distribution            . At any discrete time    , the quasi-static approximate 

reading of any sensor can be given as in Eq. (7.2), 

               ∑                    

 

   

 (7.2) 

where   is the number of mode shapes retained in the model. Consider the linear model 

for the     sensor measurement to be described by Eq. (7.3), 
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 ∑ ̂                                 ̂      

 

   

 
(7.3) 

where    is a finite residual (i.e. measurement error),                   is the     

row of the strain matrix.  ̂         is a vector of estimated modal displacements. 

From the sensors readings, the objective is to estimate  ̂   . This can be solved as a 

maximum likelihood estimation (MLE) problem (See Huber [195]) which is posed as 

minimization of an equally weighted summation of a function of the residuals (See Eq. 

(7.4)), 

∑      

 

   

∑ (                            ̂   )

 

   

 (7.4) 

where   is the set of strain sensors and      is an objective function with special 

properties. A reasonable      must be symmetric, zero when evaluated at zero, 

increasing for increasing arguments and differentiable.  

  Define the influence function            as the differential of the objective 

function     . The influence function characterizes the proportional impact of the 

residuals on the estimate. The impact of an OLS residual on the estimate is directly 

proportional to the size of the residual, which is why OLS is not robust. To find  ̂    the 

summation given in (7.4) is differentiated by  ̂    and is set equal to zero. By completing 

this, the following equality is achieved (See Eq. (7.5)). 

∑ (                            ̂   )              

 

   

 (7.5) 
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Let        
     

  
⁄  for any       then the weighted objective function can be 

rewritten as in Eq. (7.6), 

∑      (                            ̂   )              

 

   

 (7.6) 

which results in the weighted least squares problem [244]. Equation (7.6) can be solved 

as a system of equations. Under normal conditions an efficient estimate of  ̂    can be 

calculated. The weights        are affine equivariant and modeled as functions of the 

residuals   . The residuals are dependent upon the weights.  

  Therefore IRLS is required. This proceeds by solving for an initial least squares 

estimate  ̂    and computing the residuals and weights. Using the weighted observations 

a new feature estimate  ̂    is computed and the residuals and weights are recalculated. 

The features or modal displacements  ̂    of the hyperplane approximately satisfying for 

all sensors, Eq. (7.6) appear within a few iterations. 

7.1.3 M-step Operation Within a Concentration Step 

 

  The solution of Eq. (7.6) must be computed within each concentration step,   for 

the proposed concentrated estimator. To improve the convergence to the unbiased 

solution of  ̂    sensors which are most outlying are completely removed. For the new 

group of sensors, M-estimation is used to find improved feature estimates. Selection of 

the influence function is critical to the M-estimator’s performance.  

  Two commonly used influence functions in M-estimation are the Huber’s [195] 

function and Mosteller and Tukey’s [245] bisquare function. While robust and efficient in 

many cases, Huber’s influence function increases without bound as the residual departs 
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from 0. Therefore gross outliers still impact the feature estimates and in typical cases lead 

to efficiency losses of 10-20% [246]. 

  Tukey’s bisquare function belongs to a class of redescending functions [247] 

which account for gross outliers by gradually reducing the influence of the large 

residuals. Redescending M-estimators use      influence functions which are non-

decreasing near the origin, but decrease to 0 far from the origin at some minimum 

rejection point.  

  For its gross outlier rejection capability, Tukey’s bisquare function is chosen to 

compute the weights with the residuals of the data. The bisquare weighting function 

  
    

 ⁄  is defined for the     sensor as in Eq. (7.7), 
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 (7.7) 

where   
     

 is the median absolute deviation (MAD),    is a tuning constant,   is a 

concentration step, and   is an IRLS iteration count of the M-estimator. To achieve the 

maximum 95% asymptotic efficiency assuming residuals have a Gaussian distribution, it 

has been shown that a tuning constant of          is required [248].  

  The MAD for the     observation is calculated as in Eq. (7.8), 

  
     

 
   (|  

     
    (      )|)

     
⁄  (7.8) 

where the constant scaling        is required to achieve a 37% Gaussian efficient 

consistent estimator of the standard absolute deviation [249]. While relatively low 
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efficiency, the purpose of using MAD instead of using the true scale is to resist outliers. 

This it achieves remarkably well since the median is high breakdown. 

  However, The MAD is developed for symmetric distributions and does not 

address distribution skewness. This may be of concern since the explanatory data is 

multivariate skewed. Improvements of the MAD approximation for asymmetric long-

tailed distributions are available if necessary (See two alternatives given in Rousseeuw 

and Croux’s [249] work). Given the weights,   
     

 the linear system of equations is 

solved for  ̂         given sensors in subset   
  as in Eq. (7.9). 

∑  
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)(              

  
 

   

              ̂
        )               

(7.9) 

The weighted least squares problem for the     concentration step is solved in the same 

way as Eq. (7.6). Equations (7.7)-(7.9) are the primary feature estimator equations used 

within the concentration operator. They are iterated within any concentration step for a 

specified number of M-steps,    resulting in  ̂(    )   . The next section shows how this 

estimate is used to trim data through concentration before reapplying M-estimation.  

7.1.4 Concentration Operation 
  

  The purpose of concentration is to iteratively remove poor observations and 

asymptotically approach the true statistical center of the data distribution. Utilizing 

sensors nearest to this centroid are assumed to give the best feature estimates. A best 

estimate of this center is the multivariate location   and dispersion   of the data. 
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Redescending M-estimators have been proposed as robust estimators of multivariate 

location and dispersion for theoretical asymmetric distributions [250].  

  Sensors furthest from this centroid are downweighted in Eq. (7.9). However, it is 

proposed to not just down-weight sensors, but to completely remove some from 

consideration [242]. The redescending M-estimator does in fact equate weights to 0 for 

gross outliers.  

  To its detriment, it tends to put some initial trust in gross leverage outliers. This 

has the potential to cause the feature estimates to trend towards a local minimum. It is 

shown in the next chapter that converged feature estimates from a redescending M-

estimator may fall into local minimums due to leverage outliers. 

  The weighted sensor removal methodology to improve gross outlier rejection is 

developed here. Let the     sensor data vector be defined as in Eq. (7.10), 

   [                          ] (7.10) 

Defining the data vector in this way ensures that outliers which depend on sensor 

readings shall not occur in the explanatory data. Only fixed outliers can occur in the 

explanatory data, which are to be addressed with a fixed trim criterion. From any sample 

sensor set   
    a location vector (See Eq. (7.11))  

        
 

∑  

(    )
(∑  

(    )  

  
 

   

) (7.11) 

and dispersion matrix [See Eq. (7.12)]  
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        ∑  

(    )  
 

  
 

   

   (7.12) 

are estimated in the     concentration step. The weightings are the result of    iterative 

M-steps over the subset of sensors   
 . Weighted location and dispersion matrices have 

led to robust affine equivariant estimators with a high breakdown point for any dimension 

[251], such as the Stahel [252]and Donoho [212] estimator. It was shown that if the 

weights are affine equivariant, that the estimates of location and dispersion are also affine 

equivariant. It was also shown that if the true mean and dispersion of the model has an 

asymptotic breakdown of 0.5, then the asymptotic breakdown point of the location and 

dispersion estimates also have an asymptotic breakdown of 0.5.  

  For the estimated location and variance, the squared Mahalanobis distance (  ) 

(See Mahalanobis [238]) is computed for every sensor data point   as in Eq. (7.13).  

       (          )( (    ))
  

(    (    ))
 

 (7.13) 

This multivariate distance differs only from the Euclidean distance only in that it 

accounts for correlations between data points and is scale-invariant. If the population has 

a multivariate normal distribution, the    is asymptotically approximated by a chi-square 

distribution [239]. With this knowledge, statistical cutoff points from the inverse 

cumulative distribution can be determined.  

  However, since the strain data matrix has an unknown highly skewed distribution 

this data removal technique will not succeed [253]. Theory based concentration 

algorithms which trim percentage of observations with the highest    are strictly 

invalidated. Leverage points naturally have very large   . Therefore, trimming good 

leverage points drastically biases the feature estimates.  
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  The amplitude of    remains useful for finding outliers if the multivariate normal 

assumption is violated. However asymptotic theoretical cutoffs must not be relied upon. 

Without knowledge of the underlying theoretical distribution, an approximation is 

required to find the cutoff value of   .  

  The initial distribution of    may be computed from the fixed modal matrix and 

time varying set of strain data with Gaussian noise. The maximum of the computed    

may be used as a upper bound for removing gross outliers. This is very similar to the 

empirical cutoff approach for a fixed data set in [254]. Their approach was improved with 

an adaptive approach taken in [253].  

  A shortcoming of these two methods including the one presented herein is that 

small outliers may be missed if sensors are removed based on a maximum threshold of 

   or some derivative method. This is true because the initial distribution mean and 

covariance may be biased.  

  Iterative concentration steps are proposed herein to address this problem. During 

each concentration step gross outliers are removed and the location and dispersion are re-

estimated. The sample location and dispersion more closely resemble the population 

location and dispersion. Therefore the small outliers become more pronounced. As the 

       increases the sensor can be identified as an outlier and removed. Outliers missed 

by this trim procedure will more likely be down-weighted in the M-estimate [See Eq. 

(7.9)].  

  The proposed method for finding the upper bound    
  is time consuming to 

implement requiring 1,000s of simulations since the strain is time varying. Since most of 

the data is described by the constant strain data matrix, an approximation can be used for 
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the upper bound. It can be assumed that the distribution of              is equal to 

or greater than the distribution of   (            )       if the sensor data has a 

Gaussian error distribution.  

  With this assumption, the impact of an additional feature may be assumed to 

change the distribution of    by the additional DOF impact in a chi-square distribution. 

Recall that    is given in units of variance. This implies that the variance will increase 

with the additional DOF. Therefore it can be assumed that   (            )  

            ,      . Assuming the adjustment of       is due to the noise of the 

strain data the scalar upper bound is defined as in Eq. (7.14): 

   
       

   
  (            ) (7.14) 

where    is a tuning constant chosen to be slightly greater than 1. The tuning constant 

accounts for      . By removing a portion     sensors with       
  a new candidate 

group of sensors   
    is found for the next concentration step, and consecutive M-steps. 

Simulation studies given later verify this approximation of the upper bound,    
  to be 

good for the strain mode matrix and strain data. 

7.1.5 Robust Starts and Operations 

 

  Robustness for multi-stage estimators tends to come from good starts (initial 

feature estimates). A feature estimate from a high breakdown estimator is used to start the 

M-estimator for MM-estimates [227]. The robustness is inherited by the more least 

squares efficient M-estimator. However, this can be time consuming as most high 

breakdown estimators are computationally inefficient. This presents a problem for a 
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distributed sensor system which requires a high breakdown estimate, but must also be 

computationally efficient.  

  Other concentration operators use starts from estimates from all of the data or data 

closest in distance to the coordinate-wise median of the data. The median ball algorithm 

[233] uses feature estimates from sensors closest to the median as a robust start. This is a 

good start if the data can be assumed to be nominally multivariate normal and works 

reasonably well for nominally skewed distributions. 

  The first estimate of the system when   is 0, (i.e. when the sensor system is first 

operational), is calculated with a non-robust least squares estimate. Since the first 

estimate is assumed to come from a working sensor system it is a robust estimate. The 

initial robust feature estimate  ̂         is found by solving the least squares problem 

presented in Eq. (7.15), 

∑(                            ̂
        )               

  
 

   

 (7.15) 

where   
  is the set all of the available working sensors.   

  During operation, a robust start is paramount. A significant advantage of a time 

based sensor system is that previous close estimates are available. The most robust start 

will therefore be the estimate from the previous time step. This is because the strain 

change is assumed to be small between discrete time steps. Thus, the robust starts 

between discrete time steps are implemented as in Eq. (7.16), 

 ̂          ̂             (7.16) 

where    is the total number of M-steps chosen and    is the total number of 

concentration steps.  
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  The importance of starts carries over into the concentration steps themselves. In 

order to be high breakdown, each concentration step requires a robust start. Since the 

initial start  ̂         is robust the final estimates at the end of each of the concentration 

steps:  ̂           ̂            ̂             are robust [205].  

  This mean that the estimates of corresponding concentration steps are robust starts 

for respective next concentration steps:  ̂          ̂           ̂         . Therefore the 

following inheritance rule [See Eq. (7.17)] is used to generate robust starts between 

concentration steps: 

 ̂            ̂          (7.17) 

 

The full steps of the CME for any discrete time step are summarized in Algorithm 1 

assuming that an initial OLS feature estimate has already been computed with Eq. (7.15) 

at time 0. 

 

Algorithm 1: {                ̂
            }    ̂            

 

1) If c==0, compute  ̂         with Eq. (7.16). Else compute  ̂         with 

Eq. (7.17). 

2) For   =0:   , Iteratively compute weights,   

(    )
 with Eqs. (7.7)-(7.9) 

with  ̂      

3) Compute location   (See Eq. (7.11)) and dispersion   (See Eq. (7.12)) 

with computed   

(    )
 

4) Compute             , using Eq. (7.13) with computed   and   

5) Generate a new sensor set   
    by trimming sensors below cutoff    

  

described by Eq. (7.14). 
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6) If     , Go to Step 1. Else output  ̂          . 

For each time step, the M-step iteration count    may be initialized to be large, so that a 

robust redescending M-estimate initializes the CME. This improves the algorithm’s 

stability during the concentration steps. Afterwards, single M-steps where    is equal to 

1, may be utilized. This has the effect of improving computational efficiency. 

7.1.6 Analysis of CME 
 

  The CME given by Algorithm 1 can be justified as a robust estimator, although a 

rigorous proof of its theoretical breakdown point presents a challenge. It may in fact be 

higher than 0.5, due to the use of robust starts which are estimates from previous time 

steps.  

  The use of re-descending M-estimators has been shown to give high breakdown 

estimates of location and dispersion [250]. Re-descending M-estimators are affine 

equivariant, high breakdown and robust to masking effects [251]. The MAD computed by 

Eq. (7.8) is also a robust estimate of scale [249]. Therefore, the breakdown point of the 

re-descending M-estimate is not in question. For multivariate normal distributions, 

concentration algorithms with OLS have been proven to have a theoretical breakdown 

point of 0.5 [242]. 

  Robustness inheritance is utilized in multi-stage robust estimators [227, 233]. This 

implies that from the beginning of operation (i.e. sensor system turns on) till the end of 

operation (i.e. sensor system powers down), the CME is robust. This can be assumed to 

be true based on the following logic.  
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  By assuming that the initial estimate at time 0 occurs when the sensor system is 

operating normally, the OLS estimate at time 0 is robust. This robust estimate is used as a 

robust start to the next time step; the corresponding robust estimate is used for the start in 

the next time step and so on. Therefore robustness is guaranteed between time steps.  

  Robustness is also guaranteed between concentration steps. The robust estimate 

from previous concentration steps are passed as robust starts to respective next 

concentration steps. Therefore, iterative application of the robustness inheritance concept 

guarantees robustness through all concentration operations.  

7.1.7 Similarity of CME to Other Robust Estimators 

 

  The CME is noticeably similar to previously derived estimators. It uses 

concentration steps as proposed for the DGK estimator (See Olive [205]) and median ball 

algorithm proposed by Olive [233]. However, rather than removing a percentage of data 

at every concentration step, data is only trimmed if its    exceeds    
  (See Eq. (7.14) 

and step 5 of Algorithm 1). Therefore, the estimator follows the Hippocratic Oath, which 

may be paraphrased as “do no harm”. 

  Another difference includes robust start inheritance used between concentration 

steps [See Eq. (7.17)] and between time steps [See Eq. (7.16)]. The median ball algorithm 

uses two starts, including the median start and the classical start. It does this because 

access to close estimates of population parameters is not available. A previous close 

sample estimate will likely outperform a geometrically robust start, especially if the data 

is heavily skewed.  
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  The CME is a deterministic algorithm, and requires no random subsampling. 

Most robust estimators rely on random subsampling; an example is the popular LTS 

estimator [196]. However, it has been shown that estimators with random seeds are not 

consistent [205]. Instability may result if large (incorrect) changes in modal displacement 

estimates occur between time steps. The deterministic approach of the CME leads to 

stable estimates which do not vary by re-running the algorithm.  

  It is difficult to see how the deterministic concentration procedure or the start can 

negatively affect the high breakdown nature of the redescending M-estimate. With robust 

starts and high breakdown implications over time and over concentration steps, 

robustness will likely be achieved by the CME. Simulation studies presented later 

justifies the CME as a robust estimator for several worst case asymmetric data 

distributions. 

 

7.2 Concentrated Modal Estimator Simulations 

 

 

 The CME is demonstrated in static and dynamic simulation studies on the X-56A 

model. This is completed in efforts to verify the hypothesis for Research Question 3. The 

steps taken are as follows.  

 First, the sensor failure simulation is developed. An appropriate worse-case 

scenario failure point is determined. A failure in a fiber is induced in a critical location. 

Given different loading conditions this results in three different strain distribution 

scenarios. These scenarios include aeroservoelastic trim, torsional and bending structural 
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perturbations. The CME is applied to these cases for the purpose of estimating modal 

displacements. The MCS is used to gather error distribution estimates for the modal 

displacement approximation.  

 In an effort to compare the CME to a benchmark, the modal estimate errors are 

compared to the state-of-the-art robust M-estimator feature estimates. Computational 

time studies are completed to show that the CME has complexity similar to an M-

estimator.  

 Finally, in the presence of 100s of sensor failures, the CME and controller 

designed in the previous Chapter stabilizes the flutter-unstable X-56A model. These 

results are presented alongside a state-of-the-art robust estimator, which the CME 

outperforms. The next section describes how the fiber optic sensor failures are modeled. 

7.2.1 Fiber Optic Sensor Failures 

  

  Modeling the fiber optic failures is imperative for testing the robustness of the 

FOS based control system. Langley researchers investigated the nature of the strain data 

after a break in the fiber occurred [255]. A photocopy of data from the fiber break is 

represented in Fig 7.2. 
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Figure 7.2: Microstrain vs. FBG Location in cm of the FBG Array Attached to a 

Composite Wing after Break (Courtesy of NASA Langley). 

 

Visualization of the break near sensor 600 indicates that high bias occurs near the break. 

This is considered to be the first failure mode induced by a fiber break. After some 

discussion with subject matter experts, it was concluded that the bias can occur before or 

after the break in the fiber. The shape of this bias for this study is characterized by a 

normal distribution. However, that is not to say it will always be this way. It depends on 

how the fiber fractures. 

  Downstream of the break, the strain measurements appeared to be normally 

distributed with a mean of zero. This represents the second failure mode which results 

from one fiber break. The first failure model describing the bias added to the strain 

distribution is described here. 

  The sensor locations    
         upstream (closer to the wing root) from the fault 

location           are found, within a radius,    . The relative bias shape on the     

sensor upstream of the fault is modeled by a normal distribution as in Eq. (7.18). 
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Sensors nearest the fault are modeled to have the most bias. The sensors furthest from the 

fault are modeled to have the least bias. The bias is added to the sensor measurements 

with the following rule [See Eq. (7.19)], 

  
                 

               
  

  

   
     

{  
  

        }
  (7.19) 

where   is the maximum desired strain variation on sensors upstream of the fault in the 

fault radius.  

  The second failure mode is easier to model. Rather than a bias added to the 

existing measurement, the bias is modeled to take over the sensor measurement 

completely. This is modeled by replacing the sensor measurement with a sample from a 

normal distribution with a mean of 0 and a standard deviation of half the magnitude of   

as in Eq. (7.20).  

  
                   

 

 
  (7.20) 

The amplitude is divided by 2 to make the error variation tighter farther from the fault. 

Certainly this is not a perfect model of a fiber optic sensor fault. The characteristics may 

vary from fault to fault and sensor to sensor.  

 The bias added to the sensors with Eqs. (7.18) -(7.20) is appropriate for 

demonstrating outlier rejection in any case. To verify that the the CME can reject any 

failure in the FOS a worst case break point must be identified. This is pursued in the next 

section. 
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7.2.2 Selection of Most Critical Fiber Break Point 

  

  To demonstrate robustness of CME it must be tested in a worst case scenario. 

Therefore the worst break possible must be identified. The worst break is one which fails 

sensors which coincide with leverage points. The projection (hat) matrix values of the 

fixed modal strain matrix can mathematically determine the location of these leverage 

points. This also identifies which sensors are most critical to the modal estimate [176].  

  The hat values for each sensor locations are calculated from the diagonals of the 

hat matrix as in Eq.(7.21). 

           
      

      
  (7.21) 

The diagonals or hat values from Eq. (7.21) are plotted on top of their corresponding 

sensor measurement locations (See Fig. 5.16) in Fig. 7.3. 

 

 
Figure 7.3: Hat values for X-56A FOS 
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Figure 7.3 shows that high leverage is characteristic for sensors placed near the wing root 

and wing tips. The location of the highest leverage is on the trailing edge tip of the right 

wing. Therefore the worst possible fiber break is at the wing root on the right wing aft 

fiber optic sensor. Figure 7.3 shows in red the biased sensors after a SFOS break near the 

wing root.  

7.2.3 Concentrated Modal Estimator Simulation 

  

  For this break, three structural strain scenarios are analyzed. The first structural 

strain scenario is for aeroservoelastic trim strain at the design speed. This is a strain 

scenario the aircraft wing will spend the most time in. The second structural strain 

scenario is for a large wing tip leading edge down torsional displacement from 

aeroservoelastic trim. The third structural strain scenario is for a large amplitude bending 

displacement from aeroservoelastic trim.  

  It is expected that large displacements from aeroserovelastic trim may result from 

maneuvers, control or large disturbances. To simulate the expected failure bias during a 

break, the failure bias amplitude   is arbitrarily set to 30 times the standard deviation of 

the SFOS noise [See Eqs. (7.18)-(7.20)].  

  The SFOS normal error was assumed to be 3 microstrains (  ). This is because 

the FOS is expected to have a high signal to noise ratio. The radius     which is used to 

find biased sensors upstream of the fault is set to 3 inches. The radius selection is 

somewhat insignificant as the worst case failure location is on the wing root.  

  The nominal sensor measurements for all three scenarios superimposed with 

suitable sensor bias for the fiber break are presented on the next page in Fig. 7.4.   
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Figure 7.4: SFOS Strain with Fault + Noise: a) Trim Strain; b) Trim + Torsional 

Strain; and c) Trim + Bending Strain 
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The biased strain in Fig. 7.4(a) represents a case of small outliers. The biased strain in 

Fig. 7.4b represents a case of small to medium outliers. The biased strain in Fig. 7.4(c) 

represents a case with gross outliers. The strongly biased strain measurement data (See 

Fig. 7.4) presents unique challenges for a robust modal filter.  

  For each structural strain scenario, Algorithm 1 of section 7.1.5 representing the 

CME is computed for 10 concentration steps. The CME requires a robust start from a 

previous time step. In this case this was not available. Therefore the robust start is 

modeled by the true modal displacements offset by 10% of a multiplicative normal error. 

The relatively large offset simulates the modal displacement variation between discrete 

time steps  . Recall that modal displacement estimates current discrete time steps are 

used as robust starts for future time steps in the CME.  

  The number of M-steps in    is initially set to 10 to achieve a converged Tukey 

bisquare M-estimate and then set to 1 for all remaining concentration steps to improve 

computational efficiency. The tuning constant    for the    
  required for each 

concentration step is set to 1.1. The    
  works out to be 68 using Eq. (7.14). For each 

scenario an MCS is run and data is collected for 300 random seeds.  

  For the scenarios, the distribution of the relative error of the modal displacement 

estimates for each concentration step is recorded and plotted in Fig. 7.5. 
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Figure 7.5: Simulation of CME on Faults: a) Trim Strain; b) Trim + Torsional 

Strain; and c) Trim + Bending Strain. 
  

a) 

b) 

c) 
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The first scenario is one in which the CME must perform well; the aircraft will operate 

normally in aeroservoelastic trim. The initial start    is a converged Tukey M-estimate. 

Therefore the first concentration step estimate is regarded as the state-of-the-art. Any 

further reduction of the error and error deviation is due to the trimming concentration 

procedure in the CME.  

  The start of the first scenario (See. Fig. 7.5[a]) indicates that distribution of the 

SW1B modal displacement estimate is skewed with positive 1
st
 standard deviation up to 

12.5%. The SW1T modal displacement is centered near 0% but deviates to -18% error. 

After four concentration steps, the error distribution of both modal displacement 

estimates is centered at 0%. The error deviates up to 5% for the SW1B modal 

displacement and up to 10% for the SW1T modal displacement estimate. This represents 

a significant reduction in the error distribution from the state-of-the-art. 

  The second scenario (See. Fig. 7.5[b]) represents a particularly interesting one in 

which the aircraft wings have twisted leading edge down. The initial start indicates that 

the SW1B modal displacement error distribution is skewed as before, and the error 

deviates up to 13%. The SW1T modal displacement error distribution is symmetrical but 

is centered -4% and varies down to -18% error. After four concentration steps, the error 

distribution of both modal displacement estimates appears symmetrical and centers at 

0%. The deviation of error of the SW1B modal displacement estimate drops to 8%. The 

error deviation of the SW1T modal displacement drops to 4%. This is a slightly higher 

reduction in error than that achieved for the aeroservoelastic trim case.  

  The third bending strain scenario (See. Fig. 7.5[c]) is decisively important as it 

clearly shows the effect of gross outliers stationed at leverage points. The initial state-of-
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the-art estimates at    show an error distribution of the SW1B modal displacement 

estimate which is symmetrical and centered at 2% and deviates up to 52%. The error 

distribution of the SW1T modal displacement estimate is symmetrical and centered at 

54% and deviates up to 110%. Therefore, the state-of-the-art produces alarmingly bad 

estimates of the modal displacements in this case. After concentration up to only four 

steps, the error distribution of the SW1B modal displacement is symmetrically centered 

at 0% with insignificant error deviation. The SW1T modal displacement error distribution 

is symmetrically centered at 0% with error deviation up to 15%. The improvement is 

resounding and demonstrates the impact of concentration. 

  The analysis of Fig. 7.5 is useful to show the impact of concentration in the CME. 

However, a more visually descriptive way of comparing CME to the state-of-the-art is 

required. Therefore the CME final estimate is compared to the final estimates from M-

estimates with Huber and Tukey bisquare weightings.  

  Huber’s function is utilized because it down-weights but does not completely 

remove the presence of gross outliers. Its performance is comparable to that of OLS used 

by Kang et al. [66]. However it will be much more robust to outliers.  

  The M-estimators are given the same robust start as the CME: the true modal 

solution offset by 10% multiplicative normal noise. Recall that the additional noise 

simulates the difference in modal estimates between time steps. Each M-estimator is 

iterated to convergence. 

  Since control systems require high sampling rates, the CME must have low 

computational complexity. The computational processing time used for all estimators is 

recorded with MATLAB’s profiler. The profiler estimates the total CPU time required by 
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processors to run functions and sub-functions. For each scenario a 2.6 GHz processor is 

used to compute CPU time.  

  Since the noise and fault conditions are characterized by normal distributions, a 

Monte Carlo Simulation (MCS) is run. The MCS is generated from 300 random seeds. 

Results are presented for percent relative error and deviation for modal bending and 

torsion displacement estimates. The simulation modal displacement is considered the true 

model of modal displacement in the system. The results of the MCS simulations for the 

aeroservoelastic trim case and the structurally perturbed cases are presented in Fig. 7.6.  
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Figure 7.6: Modal Estimates during Fault: {relative error a) Trim Strain; b) Trim + 

Torsional Strain; and c) Trim + Bending Strain};{CPU time d) Trim Strain; e) Trim 

+ Torsional Strain; and f) Trim + Bending Strain}. 

  

a) 

b) 

c) 

d) 

f) 

e) 
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 The significance of Fig. 7.6 is primarily in the relative error comparisons. For the 

first scenario in Fig. 7.6(a), the relative error distribution of the SW1B modal 

displacement estimated with Huber weights is symmetrical and centered at -7%. The 1
st
 

standard deviation moves the overall maximum error to -15%. The SW1T modal 

displacement relative error distribution is skewed negatively and centered at -3%. The 

maximum deviation of the error moves the error to -22%.  

 The Tukey estimates in Fig. 7.6(a) fared better, but only slightly. The SW1B 

modal displacement error distribution estimated with Tukey functions is symmetrical and 

centered at 0%. The error deviation is up to 10%. The SW1T modal displacement error 

distribution is symmetrical and centered at 2%. The maximum deviation of the estimate 

goes up to 18%. Reduced mean errors are expected for Tukey function estimates due to 

the reduction of the influence of gross outliers with bounded influence functions. The 

error bars were nearly the same size for both estimators.  

 The CME estimates the SW1B modal displacement with an error distribution for 

both SW1B and SW1T modal displacements symmetrically centered at 0.5% in Fig. 

7.6(a). The deviation of the error for the SW1B modal displacement was at a maximum 

of 5%. The deviation of the error for the SW1T modal displacement achieved a 

maximum of 10%.  

 When compared to state-of-the-art estimates, CME outperforms them with respect 

to relative error for the aeroservoelastic trim case. Figure 7.6(d) indicates that the CME is 

computationally comparable to the state-of-the-art estimators. The means of the CPU 

time for the CME was at 25 ms. The CPU time varied 18 ms from the mean. 
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 Fig. 7.6(b) shows the relative error comparisons for the 2
nd

 scenario, in which the 

wing is elastically twisted leading edge down by 3 degrees. With higher displacements 

from trim, the estimators are expected to perform worse, due to the growth of outliers. In 

fact this is the case.  

 The Huber SW1B modal displacement error distribution in Fig. 7.6(b) is skewed 

positively and centered at 7%. The maximum deviation of the error moves the relative 

error up to 14%. The SW1T modal displacement error distribution is skewed negatively 

and centered at -28%. The error variation takes the maximum error to -47%.  

 Tukey’s estimate in 7.6(b) is better than Huber’s but worse than for the 

aeroservoelastic trim scenario. The SW1B modal displacement error distribution is 

skewed negatively and centered at 3%. The maximum relative error is down to -10%. The 

SW1T modal displacement error distribution is symmetrical and centered at -7%. The 

error variation takes the error distribution to -20%.  

 The CME estimates for the torsional scenario (See Fig. 7.6[b]) are comparable to 

the aeroservoelastic trim case. The means of both modal estimates are symmetrical and 

centered near 0%. The SW1B modal displacement estimate varies up to 4% in either 

direction. The SW1T modal displacement distribution varies up to 8%.  

 The CME outperforms both the Tukey and Huber estimates. The CPU time for the 

three estimators shown in Fig. 7.6(e) is nearly the same as for the aeroservoelastic trim 

case. However, the CME CPU time distribution increased to 31 ms with a 17 ms 

variation. 

 In the final scenario (See Fig. 7.6[c]) the biggest improvement is seen when using 

the CME compared to the Huber and Tukey estimates. Huber’s estimate is strongly 
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biased. The SW1B modal displacement error distribution is nearly a point and centered at 

7%. The SW1T modal displacement error distribution is symmetrical and centered at 

145%. The error varies up to 190%. The torsional modal displacement estimate is 

shockingly poor.  

 This holds true for the Tukey estimate as well in Fig. 7.6(b). The SW1T modal 

displacement distribution is symmetrical and centered at 20%. The error variation of the 

estimate is up to 48%. The CME estimate shows almost no error bias in the SW1B modal 

displacement. The SW1T modal displacement error distribution has longer tails than from 

previous scenarios, however the mean is near to 0 again. The variation is up to 20%.  

 The clear advantage of the CME is seen in the third scenario (See Fig. 7.6[c]). 

The CME easily rejects gross outliers at leverage points, dominating other robust 

estimators. Neither the redescending M-estimator based on Tukey’s bisquare function nor 

the M-estimator with Huber weights considered significant removal of these leverage 

outliers. 

7.2.4 Analysis of Concentration Steps 

  

  The previous results are telling of how the CME will outperform the state-of-the-

art estimators for the asymmetrical multivariate estimation problem. The CME process of 

concentration is not completely intuitive without analysis of the squared Mahalanobis 

distance    at each concentration step. For the aeroservoelastic trim strain scenario, the 

initial distribution of    is given, along with the measured    and weighted    for four 

concentration steps is given in Fig. 7.7. 
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Figure 7.7: Squared Mahalanobis Distance Distribution at X-56A Model Fiber 

Optic Sensor Locations after each Concentration Step in Aeroservoelastic Trim 

Case: a) C0; b)C1; c)C2; d)C3; and e)C4. 
  

a) 

b) 

c) 

d) 
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  The initial distribution is based on   (            )      , where the 

Mahalanobis distance is computed only for the fixed strain mode matrix. The measured 

   includes the strain mode matrix and measured strain in the computation of the 

Mahalanobis distance. The weighted    is computed by multiplying the measured    by 

the final weights   

(    )
 from the CME for each sensor.  

  Figure 7.7 gives several indicators that the CME is operating as predicted during 

its derivation. The first is that the measured and weighted    tends to decrease through 

further concentration. At the beginning of the concentration procedure (See Fig. 7.7[a]) , 

the measured    is very large, up to 6,600. It is largest where the sensors have initially 

failed. The 2
nd

 concentration step in Fig. 8b shows that the magnitude of the weighted 

and measured    has reduced to a maximum of 250. In the final step (See Fig. 7.7[e]), 

the        of each sensor is below the    
  of 68.  

  The reason why all of the sensors cannot be detected and trimmed in the first step 

is because the mean and co-variance estimates are still biased. As the more biased sensors 

are removed, estimates of the multivariate center move closer to the true population mean 

and covariance. As the true population mean and covariance is approached, sensors with 

smaller bias begin to look more like outliers and cross the    
  threshold. These sensors 

are detected and removed, thus further improving the estimate of the mean and 

covariance of the distribution. This is an iterative adaptive convergent process. 

   Notice from Fig. 7.7 that not all of the sensors can be removed with trimming, as 

outliers at off-leverage points are likely to reside below the    
  threshold. The effects of 

these outliers are downweighted by the M-step reweighting procedure. Since the 

weighted    is below that of the good leverage points the effects of these outliers have a 
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minimal impact on the estimate. Therefore the optimal feature estimates are pulled 

towards the true global optimum. 

  Some computational observations of theoretical predictions can be made. Note 

that the measured    is lower bounded by the initial   . This supports the assumption 

that the addition of another feature and sensor noise to the initial    increases the 

maximum   . 

  Therefore the utilization of Eq. (7.14) to approximate    
  is justified. This is best 

depicted in the last concentration step (See Fig. 7.7[e]), where the resolution is more 

pronounced. Another observation can be made about the effect of the weights on the 

noise.  

  It is clear that the CME has a side effect of down-weighting noisy sensors; the 

weighted    appears smoother than the measured   . For sensors which were 

particularly impacted by noise, their weighted    was even lower than the initial   . 

Thus, sensors with more noisy measurements than others can be identified and down-

weighted within a single time step. The following section describes how the CME works 

in a dynamic shape control simulation with time-varying fiber optic sensor failures. 

7.2.5 Dynamic Simulation – Automatic Sensor Failure Rejection 

  

 The previous static analyses show that the CME can perform adequately in the 

presence of unbiased and biased sensor data. But performance in a control system is a 

critical requirement of the CME. This is necessary to verify that a robust regression 

technique can satisfactorily be used to derive a robust modal filter. This would also 

confirm an answer to Research Question 3 and agree with the hypothesis.  
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 Therefore the CME is tested in a dynamic simulation to verify that the estimator’s 

interaction with the control system will not lead to instability. For this verification test, 

the following virtual deformation simulation control architecture is used (See Fig. 7.8). 

 

 
 

Figure 7.8: Virtual Deformation Control with Robust Modal Filter for the X-56A 

 

  Recall that virtual deformation control is the concept of controlling deformation, 

through modal commands. The virtual deformation control architecture represents the 

inner loop control system for the simulated X-56A model, where the inputs are assumed 

to originate from an outer loop control system.  

  The commands are split into deformation and airframe type and the entire 

simulation & controller is run at 100 Hz. This sampling rate is faster than the CME’s 

predicted performance, but the algorithm has not yet been optimized computationally and 

put into hardware. 

 The simulated virtual deformation control system is thoroughly described in 

Section 5.3.1. For the present simulation, rigid body pitch   and bank   are tracked in the 

flight controller. Yaw axis commands are not given, because the current models do not 
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accurately reflect yaw dynamics. Commands of 0 deg. are given to both rigid body 

variables.  

 Points at the wing tips (See Fig. 5.16) are given opposing deformation commands. 

The opposing deformations correspond to a positive 3 deg. change in wing tip incidence 

(as in Fig. 7.4[b]). The points are tracked by commanding the first bending and torsion 

modal displacements.  

 The deformation command used previously (See Fig. 5.20) was a bending 

command which was nearly perfectly tracked. It becomes of interest to see if the 

performance in tracking torsion was characteristically similar to the performance results 

for a simulated clamped wing (See Fig. 4.20). 

  Previously the simulation in Fig. 5.1 incorporated airframe noise     to the rigid 

body sensors. Only SFOS noise    is modeled now, so that the effect of the fault is 

isolated. For the current simulation, the SFOS failure bias    is added to faulty sensors 

using the same failure shown in Fig. 7.4(b). At any time after 10 seconds the sensor bias 

   impacts the sensor system.  

  The CME is allowed 4 concentration steps as this was the number required for 

convergence (See Fig. 7.5). As before, the CME is allowed 10 M-steps in the initial 

concentration step,   . A single M-step is utilized in later concentration steps up to 4 

concentration steps. The    
  is again calculated to be 68, with     set to 1.1 in Eq. (7.14). 

  For comparison, simulation results for state-of-the-art M-estimator with Tukey 

bisquare weights was utilized in lieu of that by Kang et al. [66]. Clearly an OLS is an 

unfair comparison in the presence of such large sensor bias.  
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  During each simulation the estimators pass their respective modal displacement 

estimates to the   optimal controller. The controller achieves robust stability and 

performance for modeled feature and speed variations. However, it has some nominal 

overshoot performance issues, which may be corrected with improved weightings. It is 

not expected that nominal performance issues will create problems. Therefore, if 

instability occurs during the fault, it is not a result of an improperly designed control 

system. All good or bad performance is due to the estimators only. The comparative 

results of the dynamic simulation studies are presented in Fig. 7.9. 
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Figure 7.9: Dynamic Simulation Comparing Robust Estimators during a Simulated 

Fiber Optic Sensor Failure on X-56A Model: {M-estimate a) deformation tracking; 

and b) airframe state tracking}; {CME c) deformation tracking; and d) airframe 

state tracking}. 
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 Striking differences are noted from the side by side comparison of Tukey’s M-

estimator (See Fig 7.9[a-b]) and CME (See Fig. 7.9[c-d]) performance. After 10 seconds, 

the control system with the state-of-the-art M-estimator experiences strong divergent 

oscillations (See Fig. 7.9[a-b]).  

 The oscillations appear to reduce in amplitude up to 12.5 seconds. After 12.5 

seconds, the aircraft is commanded back to aeroservoelastic trim. This is when the system 

goes unstable. It is evident that the bias modeled by Eqs. (7.18)-(7.20), appears to either 

lead to control-induced instability or flutter amplification. This exposes the danger which 

may result from using a failed FOS system with an estimator which is not robust to 

leverage outliers. The situation is more terrifying if the OLS estimator used by Kang et 

al. [66] is utilized.  

 The time histories of the data (See Fig. 7.9[c-d]) in the CME supported control 

system show no signs of growing oscillations after the fault. However, there is an 

increased noise distribution on the displacements after 10 seconds. When the structure is 

perturbed, the noise distribution does not appear to change. This was expected due to the 

static simulation performances of the CME (See Fig. 7.5). It is noted that the effect of the 

sensor failures only slightly spill over into the rigid body variables for this case.  

 The dynamic performance of the CME is adequate when considering that 230 

sensors have become strongly biased (See Fig. 7.4[b]). The dynamic simulation 

demonstrates that the robust start between discrete time steps [See Eq. (7.16)] is justified 

in Algorithm 1. That is, that the use of the previous modal displacement estimate can be 

satisfactorily used as a robust start for the CME.  
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 More conclusions can be drawn, not just from the performance of the CME or 

Tukey’s M-estimator. It is evident that the system has some non-minimum phase zeros in 

the bending and torsional modal displacement channels. The residual modes are also 

excited by the abrupt commands which lead to more non-minimum phase behavior. This 

is a property of the controller, however, and not the CME. A simple fix for this is to ramp 

the commands in.  

 Another observation is that the desired displacements for torsional control were 

not achieved. A roughly 1.5 deg change in wing tip incidence occurred instead of 3 deg. 

The wing was also corrupted by bending motion, which was not commanded. The exact 

nature of performance was predicted in previous research on a clamped plate model (See 

Fig. 4.20). and is primarily due to residual modes.  

 This is suggestive, since the results of that study are replicated on the aircraft. 

This indicates a need for improved effectors other than the present aerodynamic trailing 

edge control surfaces. Local effectors such as piezoelectric patches may be required to 

achieve improved virtual deformation control in aircraft, as non-collocated effectors tend 

to excite residual modes [7].  

 

7.4 Summary of Robust Modal Filter Development 

 

 

 Caution demands a robust modal filter, which relies upon possibly 1,000s of 

sensor measurements. Indeed, if the FOS are utilized, a break of the fiber could be 

devastating to an aircraft control system as hundreds of sensors become biased. The 
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hypothesis for Research Question 3 was confirmed by developing the CME through the 

use of robust regression. 

 However, instead of using a single estimator, a hybrid estimator was required. 

This was developed from two existing robust estimators. When combined and an 

improved estimator resulted. The redescending M-estimators were used to make a 

concentration algorithm more robust to asymmetry. Robustness was further improved by 

introducing a fixed trim criterion and more robust starts.  

 The CME was tested in static and dynamic simulations and it was shown that it 

outperforms robust M-estimators. The most impressive performance was for the gross 

leverage outliers case. The CME experienced only small errors in the modal displacement 

errors when compared to other robust estimators.  

 The CME provides the stepping stone needed for a practical application of modal 

filtering in aerospace. Its applications may be broader than that which it is tested for here. 

Several applications of the CME are discussed in the next Chapter. 
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CHAPTER 8 

 

 

 

OTHER APPLICATIONS OF ROBUST MODAL FILTERING 

 

 

 
 The previous Chapter produced the CME and showed that it is an improvement 

over the state-of-the-art robust estimators in the presence of strong sensor bias. It is 

shown in this Chapter that the CME lends itself to other applications. That is, the robust 

modal filter is not just derived for making a modal filter robust to sensor bias.  

 It is shown that the robust modal estimates recovered by the CME can also be 

used to estimate strain in locations of spurious measurements. This confirms a first 

answer to Research Question 6 which asks for further applications of the robust modal 

filter. A static simulation demonstrates the virtual strain reconstruction for the three strain 

scenarios defined in the previous chapter. 

 A methodology is given for identifying biased sensor locations or wing damage 

using residuals of the robust estimates. This is followed by a static simulation 

demonstrating biased sensor identification or health monitoring.  This provides a second 

answer to Research Question 6. The methodology for virtual strain reconstruction is 

presented first in the next section. 
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8.1 Virtual Strain Reconstruction Methodology 

 

 

  There could be several reasons why estimating strain at biased sensor locations 

could be convenient or required. Virtual strain reconstruction could be required if the 

FOS fail while the wing is approaching a critical structural load limit. This may reduce 

the possibility of exceeding structural load limits in this unlikely scenario.  

  Virtual strain reconstruction may also be useful if the FOS is embedded in the 

wing structure and undergoes an age-related failure. Yet another unlikely scenario, but 

preparation for such events is beneficial. Indeed a strain prediction model may be 

required until the faulty wing sensors are serviced.  

  The robustly estimated modal displacements may be utilized to form a robust 

prediction of the true strain state at the biased sensor locations. Using the underlying data 

matrix or strain modal matrix, a robust estimate of the axial strain at the     sensor at any 

discrete time step is given as in Eq. (8.1). 

 ̂                 ̂
           (8.1) 

Application of Eq. (8.1) to estimate strain can be considered virtual strain, which is akin 

to virtual deformation. The following section demonstrates this application for the three 

strain scenarios. 

8.2 Virtual Strain Reconstruction Simulation 

  

 

  For all three structural strain scenarios, the virtual strain, true structural strain and 

measured strain are plotted together in Fig. 8.1.  
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Figure 8.1: Virtual Strain Reconstruction. a) Trim Strain; b) Trim + Torsional 

Strain; and c) Trim + Bending Strain. 
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 Figure 8.1 shows an overlay of the robustly estimated strain on the true structural 

strain in the system for each of the three scenarios. The biased strain measurements are 

very far away from the robustly estimated strain in most cases. Small bias is removed 

from the robust strain estimates.  

 Another conclusion can be drawn here. If the virtual strain estimated by Eq. (8.1) 

overlays the true structural strain, this is further confirmation that the CME is a suitable 

estimator. This is because the strain is modeled as a linear combination of the modal 

displacements. Therefore to achieve accurate strain estimates, even residual modes must 

be estimated well. 

 This excellent prediction of strain further confirms the capability of the CME to 

accurately predict both commanded and residual modal displacements with over 230 

faulty sensors. This also further confirms the CME’s operational capability in the 

presence of gross outliers at critical leverage points. The next section introduces another 

capability provided by the CME. 

 

8.3 Sensor Fault Identification and Health Monitoring Methodology 

  

 

 There is at least one more answer to Research Question 6, which asks for further 

capabilities of the robust modal filter. This time instead of using the robustly estimated 

modal displacements, the robust residuals become important. A robust residual is the 

difference between the measurements and the estimate of the measurements computed 

from robust feature estimates. A large robust residual is strongly indicative of an outlier 
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[196]. Therefore, large robust residuals from the CME may indicate structural problems 

on the aircraft.  

  Unfortunately, these large residuals can be the result of several events. The 

residuals could result from poorly predicted mode shapes which no longer predict the 

motion of the aircraft, structural nonlinearities, and potentially damage or sensor failure. 

The locations of the identified outliers must be inspected by technicians to determine the 

cause. A description of how to find these critical locations is determined next. 

  The last concentration step of the CME, results in a set of “good” sensors   
   

 . Thus, the candidates for biased sensors or wing damage     are defined to be the 

remaining sensors not in the set of sensors  . If the last pool of sensors only contains 

unbiased sensors, and the estimate is robust, then the residuals will likely assume a 

normal distribution of error.  

  It is possible that some sensors in the pool of “good” sensors remain biased, if 

they reside below the    
  threshold. Therefore the final weights are used to down-weight 

these observations. Let the weighted average of the residuals of the good sensor 

candidates be defined as in Eq. (8.2), 

   
 

∑  

(     )
∑  

         
       

  
  

   

 (8.2) 

and the weighted standard deviation of the residuals of the good sensor candidates is 

defined as in Eq. (8.3). 
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∑  

(     )
∑[      

         
         ]

  
  

   

 (8.3) 

The number of weighted standard deviations the remaining data is away from the 

weighted mean can be defined for the     sensor as in Eq. (8.4), 

   
|     |

  
 (8.4) 

where the robust residual for the     sensor is computed as in Eq. (8.5). 

  
                          ̂

(     )    (8.5) 

By selecting a cutoff of    weighted standard deviations away from the mean of the 

residuals of the good data, outliers may be identified. The following binary logic 

operation [See Eq. (8.6)] is given to determine if a sensor at the     location is biased as 

in Eq. (8.6). 

  
 
 {

      

     
}  (8.6) 

The sensors in the subset of candidate faulty sensors   may be good or bad. During 

nominal conditions Eqs. (8.2)-(8.6) guarantees that healthy sensors will not be identified 

to be biased if    is chosen intelligently. If the sensor error is normally distributed, 95% 

of the data will statistically fall within 2 weighted standard deviations. It is very likely 

that most of the data will fall within 5 weighted standard deviations from the weighted 

mean. 

 The advantage of this technique is that it provides an automated identification 

procedure which will improve structural diagnostics. It may also be used to permanently 
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remove sensors from consideration for the remainder of the flight. The simulation study 

demonstrating this concept is performed in the next section.  

 

8.4 Sensor Failure Identification or Wing Damage Detection Simulation 

 

 

 The procedure to identify faulty sensors or wing damage defined in Eqs. (8.2)-

(8.6) is tested next. For this method to work properly, a proper threshold number of 

deviations must be selected for biased sensor identification. Since the majority of the data 

will fall within five deviations of error, the number of deviations    in Eq. (8.6) was set 

to 5. The number of weighted error standard deviations away from the weighted mean of 

the residuals of all data is given for each sensor in Fig. 8.2.  
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Figure 8.2: Sensor Fault or Wing Failure Detection with CME: a) Trim Strain; b) 

Trim + Torsional Strain; and c) Trim + Bending Strain. 
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 Figure 8.2 shows suspicious sensors in red. Not all of the biased sensors were 

flagged for the three scenarios. The reason some sensors were not flagged is primarily 

due to the presence of small outliers [See Eq.(7.20)]. Small outliers are significantly 

harder to reject, as they may be mistaken for noise. This is especially true for Fig. 8.2(a), 

where the least biased sensors were identified.  

 It is clear that the sensors which most bias the estimate (      were identified 

in Fig. 8.2. These sensors and wing locations with very high weighted residuals are good 

candidates for inspection and possibly maintenance. This concludes the computational 

results of this dissertation. The next Chapter summarizes concepts and draws 

conclusions. 
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CHAPTER 9 

 

 

 

CONCLUSIONS 

 

 

 
 To guide the research, six research questions were posed under the umbrella 

research problem. The research problem summarized much of the research objectives. 

This dissertation concludes by answering research questions and discussing hypotheses. 

The research problem is discussed and how research objectives were met. 

 As a result of the research activities, gaps identified previously are addressed and 

conclusions are drawn as to how they are filled by the modal filter. The predicted impact 

of the robust modal filter in aerospace is then discussed. This is followed by conclusions 

on the potential improvements to and follow-on activities for this dissertation. The next 

section proceeds with a discussion of the original research questions and hypotheses. 

 

9.1 Research Questions and Hypotheses 

 

 

In Chapter II, research questions were introduced to guide the development of this 

dissertation and addressed specific gaps of knowledge in the literature. Within the body 

of the text, these questions were answered through computational results and discussion. 

Here, they are given the spotlight. The research questions and their original hypotheses 

(if any) are represented sequentially in the following sections. Discussion is given on how 

the hypotheses must be modified based on all of the completed work. 
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1. Research Question and Hypothesis 1 

Research Question 1.  Is the OLS modal filter efficient for control feedback 

when it is utilized within an aeroservoelastic problem? 

 

Hypothesis 1.  The OLS modal filter will perform the same as it would on a 

static structure out of wind flow. 

 

 The original hypothesis suggests that aerodynamics have little influence on the 

performance of a modal filter. Mathematically, this must be true, considering the 

assumption upon which the state space matrices are based. This assumption is that the 

deformation, velocity and accelerations of all points on the structure can be approximated 

as a linear combination of a set of mode shapes. So, early on, this hypothesis was 

mathematically based.  

 The testing and verification of this hypothesis was answered primarily with the 

wing model. It was found that a modal filtering design methodology specific to this wing 

model was required to answer the research question. Using this three phase methodology, 

competent aeroservoelastic controllers were developed using the modal filter. To explore 

the hypothesis further, two controllers with either modal coordinate or accelerometer 

feedback were designed. 

  The modal filter based controller had no observable defects when compared to 

the state-of-the-art controller using accelerometers for feedback. Robustness and 

performance were both similar in the resulting controllers. The primary difference was 

the order of the controllers. For the case of the wing model, the modal filter controller 

had a much reduced order. The significance of this is telling, indicating the potential of 

the modal filter to isolate modes of importance.  
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2. Research Question and Hypothesis 2 

Research Question 2. How should a modal filter be incorporated into the 

control system of a aircraft? 

 

Hypothesis 2. The modal filter is a partial state filter in the aeroservoelastic 

problem. It can be placed in series with a traditional control system estimator. 

 

 The original hypothesis was mathematically based. Indeed, the relationship 

between the coordinates estimated by the modal filter and the states used in the aircraft 

state space model are the same. So the equivalence was identified early on during the 

Literature Review.  

 However, during testing of the hypothesis, it was found that the original 

hypothesis was too simple. While the mathematical soundness of the hypothesis holds, 

the application of the modal filter into the aircraft control design process is more 

complicated. A three phase modal filter methodology specific to an aircraft showed that 

several complicated steps must be taken to integrate a modal filter into an aircraft 

controller.  

 There are bandwidth limitations to be considered when choosing modal 

coordinates to feed back. The correct number of modes must also be chosen in order to 

command the structure’s shape accurately. It was noted in the computational results that 

residual modes reduced the accuracy of the shape controller.  

 The methodology also addressed the complications in generating the required 

strain mode matrix. Experimental validation will be required for strain mode 

computations. Some work on this is already being considered in the literature.  

 The reference transformation is also of a complicated nature for an aircraft. The 

shape commands can be completely biased if the methodology introduced herein is not 
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followed. The free-free modes of the aircraft must be transformed to remove all rigid 

body rotation and translation, relative to the undeformed aircraft. 

 

3. Research Question and Hypothesis 3 

Research Question 3. How can the OLS modal filter be improved to be 

robust to sensor bias? 

 

Hypothesis 3. A robust regression technique will provide a real time 

estimator which proves to be efficient and resilient to faulty sensors. 

 

 The original hypothesis was correct, and robust regression was found useful in 

designing a robust modal filter. This is mathematically sound considering that the modal 

filter uses OLS to compute modal coordinates. Robust regression is a natural solution, 

when considering large sensor bias.  

 While the original hypothesis is correct, it is not stated precisely enough. Rather it 

should state that a hybrid robust regression technique is applicable to this problem. In the 

robust modal filter development, a hybridized approach was determined to be the best 

solution. This was motivated by several concepts such as the discovery that most robust 

and efficient algorithms have two stages. The first stage is high breakdown and the 

second is typically Gaussian efficient. In addition, the algorithm should be consistent. 

 A motivation for the ingenuity introduced in this work is that the nominal 

multivariate data of the sensor strain modal matrix is filled with leverage points. Thus 

robust statistics are hard to define and theoretical robust techniques violates proof of their 

robustness. Randomly subsampled techniques are also strictly invalidated for the sensor 

strain modal filter due to the presence of leverage.  
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 From the literature, it was found that the redescending M-estimator is both 

computationally simple and resistant to leverage points. However, the computational 

results presented here suggest that even redescending M-estimators experience too much 

bias from an asymmetric outlier. 

 To improve robustness to leverage outliers, a trim criterion had to be introduced, 

specific to the outliers in the explanatory data. It is discussed in the literature that robust 

starts are needed to improve convergence of M-estimators to the globally optimal 

solution. These are often geometrically based and based on the median. A better robust 

start is available for a time sampled system. The CME, utilizes previously computed 

feature estimates as robust starts throughout the operation of the sensor system. This type 

of start is expected to outperform statistically good starts. 

 It was also shown that the CME is a real time estimator as its computational 

complexity is comparable to that of an M-estimator. Utilizing the CME in a dynamic 

simulation, it was found that the CME could adequately reject over 230 faulty sensors. 

This confirms at least one new way to improve the modal filter to be robust against 

biased sensors caused by a fiber break.  

 

4. Research Question 4 

What methods of shape control may the modal filter be utilized for? 

 

 No original hypothesis was stated for this question. Instead, two techniques were 

introduced for aircraft shape control, utilizing modal coordinates. The techniques are both 

forms of what we call virtual deformation control. That is, the control of shape via modal 

coordinate tracking.  
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 The first technique made the assumption that all of the modes were available for 

sensing. In this situation, the controller was designed to track these deflection points. 

These points are modeled by full rows in the output matrix relating to the modal matrix. 

It is limited in the number of points which can be tracked, although they can be tracked 

accurately using this method. The problem with this technique is that it may lead to 

bandwidth issues. The second technique is viewed as more practical. 

 The second method requires tracking of the modal coordinates, through a 

reference transformation. The transformation converts the desired displacements to modal 

references. The controller then tracks the modal references in an attempt to reduce 

displacement tracking error. It was found that the second method makes more sense for 

aircraft shape control. Primarily this is because possibly millions of points will be 

required to be tracked for shape optimization. It would be highly desirable from a 

computational and robustness standpoint to track a few modal coordinates instead. 

 

5. Research Question 5 

Can a fully coupled rigid and flexible controller be designed with the 

modal filter? 

 

 No original hypothesis was given for this question. The original reason for posing 

this question was to address the growing concept that flexible aircraft must 

simultaneously control both flexible and rigid variables. The issue is becoming 

increasingly important as modal frequencies shift towards rigid body frequencies. 

 This question was answered by designing a fully coupled rigid and elastic 

controller. It was found that excellent tracking characteristics could be achieved in the 
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airframe states. However, the presence of overshoots was observed in the modal 

displacement states, which were meant to be tracked. This is hypothesized to be coming 

from the closeness of the elastic frequencies and rigid body frequencies. To counteract 

this problem, one could simply ramp into the modal displacement commands.  

 Robustness appears to be degraded by designing the fully coupled tracking 

controller. It is hypothesized that this is because the controller bandwidth is unfavorably 

increased due to the requirement to track modal coordinates. However, this conclusion is 

shaky at best due to subjective weight design and plant scaling choices. Further weights 

and plant scaling design could have improved the results given here. 

 

6. Research Question 6 

Are there other uninvestigated uses for a robust modal filter? 

 

 This question was posed open ended with no original hypotheses. Two techniques 

were explored in answer to this research question. They both make use of robustly 

estimated modal coordinates.  

 The first technique was inspired by the concept of recreating strain at biased 

sensor locations. Virtual strain reconstruction was enabled by using the robustly 

estimated modal coordinates to recreate strain states at biased sensor locations. This was 

found to not only be accurate, but to confirm the CME as a robust estimator of the 

parameter distribution.  

 The second technique uses the robust modal coordinates to create robust residuals. 

In the literature, it is posed that a large robust residual indicates an outlier. On an aircraft 
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structure such an outlier could represent wing damage or a biased sensor or both. 

Therefore a link with health monitoring was identified and tested herein.  

 

9.2 Findings on Research Problem 

 

 

 The research problem was originally posed to address gaps in the literature as 

well as the research objectives identified early on. The research problem is restated here: 

 

How can high resolution distributed sensing and modal filtering be safely utilized for 

control feedback in flexible aircraft? 

 

 This problem was primarily supported by the research questions and hypotheses 

and testing discussed in the previous section. The research problem is now discussed in 

the context of the research objectives it supported. 

  By showing that the modal filter and distributed sensing could be utilized on an 

aeroservoelastic wing model, feasibility was demonstrated. This feasibility addresses the 

first research objective, which is restated here: 

 

 Investigate how modal filtering performs on an aeroservoelastic problem as a 

first application 

 Application of a modal filter to control a wing model is too simple. It was 

necessary to incorporate the modal filter into an aircraft controller. This was done by 
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investigating similar modal controller designs on the X-56A model. This confirmed the 

modal filter was applicable to a flying aircraft. It showed the differences and what must 

be prepared for. It also opened up new ways of performing shape control on an aircraft. 

This more than met the second research objective restated here: 

 

 Investigate distributed sensing and modal filtering in the control system of an 

aircraft 

 

  The next step was to design a robust modal filter, known as the CME, which is 

robust to out sensor failure model. Two ways were discovered to utilize the robust 

residuals to both recreate virtual strain and perform health monitoring. These steps 

satisfactorily addressed the thirst major research objective restated here: 

 Improve upon the sensor bias limitations of modal filtering 

The gaps are also addressed under this umbrella research problem. How the gaps were 

filled is outlined in the next section. 

 

9.3 Filling Gaps 

 

 

 Several gaps were identified in the Literature Review. These gaps were filled by 

the modal filter and the design methodologies and improvements to the modal filter 

developed herein. The first gap in aeroservoelasticity stems from the use of point sensors 

to control the “distributed by nature” aeroservoelastic states.  
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It was shown with a comparative study, that this can be done equally well with modal 

filtering and distributed sensing. Modal filtering also improves the order reduction of 

aeroservoelastic controllers due to modal isolation. 

 A gap identified previously is that flexible aircraft will require active shape 

control in aeroservoelastic tailoring schemes at off-design conditions. Two methods of 

shape control were introduced all made feasible through the modal filter.  

 One gap which was not directly addressed in this research is how the modal filter 

estimates are improved with increasing numbers of sensors. This could be addressed by 

varying the number of sensors and computing the modal coordinates. The errors should 

decrease with increasing numbers of sensors. Mathematically, this is sound and bench 

experiments have already been conducted to show this is true. It should not be any 

different in an aircraft. 

 An important gap to fill was the knowledge of whether the modal filter is 

applicable in an aeroservoelastic environment. The many computational experiments 

completed here on the wing model and X-56A model confirm its rightful application in 

an aerodynamic environment.  

 There was also a practical gap in the modal filter itself. State-of-the-art modal 

filters assume the sensor error distribution can always be approximated to be normal. 

Therefore they are sensitive to high sensor bias. To fill this gap the robust modal filter 

was derived and verified in static and dynamic simulation tests. It was shown to be 

capable of supporting an active shape controller on the flutter-unstable X-56A model in 

the presence of over 230 faulty sensors.  
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9.4 Concluding Remarks and Follow-on Research 

  

 

Three broad research activities were identified and pursued.  The first activity 

dealt with verifying whether or not a modal filter is applicable to a structure subject to 

wind forces. The second activity dealt with whether the modal filter could be applied to 

aircraft controllers. These two activities required the development of separate modal 

filter design methodologies. The third activity centered on determining how to design a 

modal filter to be robust to strong sensor bias. This final activity was a practical 

requirement as well as a theoretical challenge. 

 In the third activity a robust modal filter was derived and it was demonstrated on 

a simulated flight vehicle together with simulated distributed sensing for the first time. Its 

purpose was to estimate aircraft flexible states under sensor fault conditions. Controllers 

were developed using these states for feedback. It is postulated that controllers using 

these states may be more trustworthy than controllers which suppress point sensors.  

 The modal coordinate states were used to control the shape of the vehicle in the 

linear simulation. Whether the control of deformation is for controlling outboard 

scientific instrument locations, reducing loads/gust loads or just aerodynamically 

optimizing shapes will be up to the designer and application. Perhaps a great follow-up 

research question to ask is, “What aircraft deformation shapes are best?”   

 Research into static aeroservoelastic trim optimization has been ongoing for 

decades usually linked with CFD studies. Generally aircraft wing shapes are made 

optimal for a specific flight condition. But now, dynamic shape optimization becomes 
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interesting as differing flight trim variables may be associated with differing optimal 

deformation shapes of the flexible flight vehicle. 

 It is likely (if not already known) that there is a mathematically tractable or at 

least learnable relationship to be found with local aerodynamic sensors and the locally 

deformed shape of the vehicle. This relationship could be utilized in a locally optimal 

shape tracking framework.  

 The robust modal filter will likely realize practical fast converging locally optimal 

intelligent control for performance. This method of optimization might be preferable over 

the somewhat slowly converging globally optimal intelligent control for performance 

studies which utilize a fuel sensor or engine thrust for feedback. 

 The work in this thesis is not finished. What remains is experimental testing on a 

flight vehicle. There are also computational avenues of research which could further 

support the computational work which was completed in this dissertation. 

  

9.5 Discussion on Potential Improvements  

  

 

 There is more to be done, as a result of this work. However, due to time 

constraints, these improvements could not be made in the allotted time to finish this 

dissertation. Some of the improvements identified are given here, which appear to be the 

most outstanding. Perhaps these improvements could be addressed in future research 

activities: 
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1) The analysis could be further substantiated by utilizing a nonlinear flight 

simulation or experimental flight data to demonstrate the modal filter performance. 

Unfortunately, a nonlinear flight simulation was not available for either model during the 

case study simulation efforts. Linear models were relied upon for the results. Actual fiber 

optic failure data from a real flight experiment would also have proved very useful for 

validating the CME. 

2) It was observed from the case studies that error in achieved deformation, 

during modal tracking was high in the case of commanding torsional movements. Several 

improvements are suggested which could lead to improved accuracy. First, the control 

inputs may be shaped to not excite residual modes. Another fix could be to include more 

modes in the reference controllers, although this is limited by controller bandwidth. 

Another technique would be to replace aerodynamic effectors with local collocated 

control effectors such as piezoelectric or piezoceramic materials. A computational fix 

could also be to use a learning algorithm for reference shaping.  

3) Validation of shape tracking would be very useful. Demonstration of 

deformation tracking on a full aircraft FEM/CFD model with actual force-node 

conversions would identify gaps in the methodology. The FOS simulations presented in 

this work make the assumption that all deformations or strains are linear combinations of 

the deformation or strain shapes respectively. In practice, this is true but only for small 

deflections. A full simulation could find where linearity breaks down.  

4) In this work, the strain mode conversion technique was not experimentally 

verified. This could have been completed on a simple cantilevered test article with fiber 

optic sensors attached. The strain predicted by the strain mode matrix could have been 



 275 

compared to actual strain gauges readings. This in fact may be required before any true 

implementation work. 

 These identified problems are not the only issues. More will be found, especially 

as the robust modal filtering methodology makes its way into experimental flight testing 

on the X-56A. The following section concludes this dissertation work with the 

accomplishments made by the author and contributors. 

 

9.6 Summarized Accomplishments and Credits 

 

 

Several accomplishments were made in this thesis contributing to the field of 

aeroservoelasticity. Not all of the work was done by the author and credit must be 

given where it is due.  Places where assistance with model development was received 

are noted in the following list. The rest of the work is the sole work of the author.  

a) Developed linear finite element modeling software and aeroservoelastic 

code and verified both with GVT and wind tunnel experimental data (completed by 

author) 

b) Developed and used methodology for integration of a modal filter into a 

flutter-unstable wing model aeroservoelastic control system (completed by author) 

c) Developed and used methodology for integration of a modal filter into the 

shape control system of the body-freedom-flutter-unstable X-56A model (Methodology 

and computational studies by author, state space model development by Dr. Chan-gi Pak 

and Mr. Alexander Chin) 
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d) Demonstrated in simulation two new methods for aeroservoelastic shape 

control utilizing modal filtering (completed by author) 

e) Devised a new way of gathering strain mode shapes from fiber optic 

sensor deformation mode shapes utilizing a moving particle frame. This resulted in easier 

implementation of the strain based modal filter (methodology and PATRAN work by 

author, assistance with PATRAN work by Mr. Alexander Chin) 

f) Derived a fiber optic sensor failure model from experimental data 

published from work done at NASA Langley (completed by author, based on published 

work of others) 

g) Derived a new multivariate location and dispersion type robust modal 

estimator, referred to as the CME, which is real time and robust to high leverage points 

(Trim criterion and robust starts derived by author, assistance in some theoretical 

understanding from emailed discussions on concentration operators with Dr. Olive) 

h) Discovered a new loads monitoring technique under conditions of sensor 

abnormality (completed by author) 

i) Discovered a new health monitoring solution utilizing robust residuals 

computed by our new robust estimator (completed by author) 
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