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Compressed Sensing concerns a new class of linear data acquisition protocols that

are more efficient than the classical Shannon sampling theorem when targeting at signals

with sparse structures.

In this thesis, we study the stability of a Statistical Restricted Isometry Property

and show how this property can be further relaxed while maintaining its sufficiency for

the Basis Pursuit algorithm to recover sparse signals. We then look at the dictionary ex-
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reconstruction is achieved by the `1 synthesis method. By establishing a necessary and

sufficient condition for the stability of `1 synthesis, we are able to predict this algorithm’s

performances under different dictionaries. Last, we construct a class of deterministic

sensing matrix for the Dirac-Fourier joint dictionary.
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Chapter 1

Introduction

1.1 Background of Compressed Sensing

Compressed Sensing (CS) concerns the problem of simultaneously sensing and

compressing signals that possess special sparse structures. The space of sparse signals

affords a succinct representation because it represents a finite union of low-dimensional

manifolds all of which are known to be compressible by linear operators. Therefore we

are more interested in the following question: for a given sparsity level, to what extent

can we compress the sparse signals, or equivalently, at least how many measurements are

needed to measure these signal losslessly in the sense that the original signal can be fully

recovered from the measurements.

Mathematically, all measurements are stored as rows of a matrix Φ called sensing matrix,

and each data point is obtained by projecting the sparse signal x ∈ RN on to a row of Φ.

Let y be the vector storing all these data points, then it can be written as y = Φx, with

y ∈ Rm and m < N .

The compressed signal y brings efficacy in data transmission and storage, while at some

later point, it needs to be transformed back to the original signal x. Solving an underde-

termined system is known to be impossible in general but it is no longer ture if we know

that x is sparse. The following `0 minimization algorithm is a straight forward way to
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exploit sparsity.

min ‖x‖0 subject to y = Φx. (P0)

(P0) can recover all sparse signals exactly provided the sensing matrix satisfies some

weak condition. However, the algorithm is intractable and has a complexity that grows

exponentially in dimension.

It was Candès and Tao [23] who first showed that the following `1 minimization procedure

(also know as Basis Pursuit) can be used as a tractable substitution to (P0) when Φ is

properly chosen.

min ‖x‖1 subject to y = Φx. (P1)

Specifically, they proved that as long as Φ satisfies the so called (k, δ)-Restricted Isometry

Property (RIP) with δ2k <
√

2 − 1, (P1) is equivalent to (P0) when recovering k-sparse

signals (signals that have at most k nonzero components).

Definition 1. We say a matrix Φ has the Restricted isometry property (RIP) with order k

if

(1− δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2 (1.1)

The nice part about RIP is that it not only guarantees the exact recovery of (P1), but

also its stability [22, 29, 21]. To be more explicit, suppose the measurements are noisy,

then the measurements vector becomes y = Φx + w with a noise vector w of a known

energy level ‖w‖2 ≤ ε. In this case, either (P1) or the following denoised version of (P1)

can be used for recovery.

min ‖x‖1 subject to ‖y − Φx‖ < ε. (P2)
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It has been proved in [21] that, as long as Φ satisfies RIP, small reconstruction error is

guaranteed for both (P1) and (P2):

‖x̂− x‖2 ≤ C1σk(x) + C2ε, (1.2)

where x̂ is the solution to either (P1) or (P2), C1, C2 are constants depending on k and δ,

and σk(x) := min
xk is k-sparse

‖x − xk‖1 denotes the `1 residue of the best k-term approxima-

tion to x.

A natural question is that why the Basis Pursuit algorithm is chosen for recovery? In fact,

since BP is a superlinear algorithm that is barely acceptable in practice, many other al-

gorithms have also been proposed in the literature, such as Orthogonal Matching Pursuit

(OMP) [12], CoSaMP [44], One Step Thresholding (OST) [6], Approximate Message

Passing Algorithm (AMP) [41], Bregman Iteration [37], etc.. Even though many of these

methods are dramatically faster, BP still has its special scientific interest. The most im-

portant advantage of BP is perhaps its low requirement for success. In fact, sparsity is the

only prior that is required in BP, while in other algorithms this is not true. For example

in OST, an additional a priori requirement is that all the nonzero magnitudes x should

be comparable to each other; and in AMP, strict analysis is only carried out for certain

random matrices combined with Gaussian type of noise.

A necessary and sufficient condition for stable recovery of Basis Pursuit that has brought

quite an attention in this community is the Null Space Property. It is formulated as an `1

condition on the kernel of the sensing matrix.

Definition 2. A matrix Φ is said to have the Null space property of order k (k-NSP) if for
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all v ∈ ker Φ\{0} and all index set T with cardinality at most k, we have

∀v ∈ ker Φ\{0}, ∀|T | ≤ k, ‖vT‖1 < ‖vT c‖1. (1.3)

Despite its equivalence to (P1), NSP is not as widely used as RIP mainly for two

reasons. First RIP is an l2 criterion and therefore easier for theoretical verification; sec-

ondly, since (1.3) has no additivity, examining NSP of a given matrix requires verifying

(1.3) for every vector in the kernel of Φ which is more time consuming than examining Φ

directly.

In contrast to NSP, RIP is only a sufficient ( but not necessary) condition for the success of

(P1) and (P2). However, this stringency automatically leads to a stronger stability result.

In fact, both conditions are equipped with an error guarantee in the form of (1.2), but the

C2 in the error of RIP is smaller than that of NSP by a factor of
√
N .

1.2 Sensing Matrix Analysis

For fixed signal dimensionality N and sparsity level k, among all matrices that

satisfies (k, δk)-RIP, we are particularly interested in those matrices that have the small-

est number of rows, because fewer rows means higher compression rates. It is shown

using a Gelfand width based argument that the smallest possible row number is m =

O(k log(N/k)). It is also proved [23] that this number is achieved with overwhelming

probability if the matrix is random with i.i.d. entries drawn from the standard Gaussian

distribution. The possible failure of random matrices and the fact that there is no way to

detect them, makes the problem fatal in practice. Therefore certain deterministic matrices

have been built and have demonstrated good performances in simulation. Yet so far, none
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of them has been proved to achieve the optimal compression rate as Gaussian matrices

do. The main difficulty lies in the question of how to pass the RIP condition to other

global conditions of a matrix that are easier to verify, such as the mutual coherence or

the spectral norm. A standard argument to pass RIP to mutual coherence is based on the

Gershgorin Circle theorem, but it inevitably leads to a sub-optimal relation k ≤ O(
√
m),

where the square root on m that preventing the order from achieving optimal is known

as the square root bottleneck. In the literature, only one matrix constructed by Bourgain

et al. [11] has successfully broken this bottleneck. The technique that was used involves

the definition of a so-called flat orthogonality constant, which is easier to be verified and

yet sufficient for exact recovery. Although the result is significant better than all previous

ones, it is still far from satisfactory in the sense that the order on m is only raised from

1/2 to something slightly larger: k ≤ O(m1/2+ε).

1.3 Compressed sensing in dictionary

A recent direction in CS considers signals that have sparse representation under a

redundant dictionary, where the incoming signal x can be expressed as x = Dz with z

being sparse and D being a fat matrix with more columns than rows. Dictionaries are

in general more flexible and representative than orthonormal bases by including more

columns (called atoms) into it. Moreover, this model is useful when signals do not natu-

rally have sparse decompositions under orthonormal bases, such as images that are only

sparse in curvelet frames (see the numerical experiments in Chapter 4 for what happens

if one wrongly assumed such images to be sparse under an orthonormal basis).

5



Despite all these benefits in using dictionaries, there are surprisingly few results along

this direction, especially results related to a well known recovery method called the `1

synthesis method.

If we denote the measurements by y as before then now it has the representation y =

Φx = ΦDz. The `1 synthesis method recovers x from y by solving

ẑ = min ‖z̃‖, ‖ΦDz̃ − y‖2 ≤ ε,

x̂ = Dẑ. (P3)

The only universal condition that is known for (P3) to converge is that ΦD satisfies NSP,

which then requires D to be incoherent. However, the incoherence is sometimes unnec-

essary if we only care about recovering x but z. Therefore, finding a looser condition for

the success of (P3) is considered a major task along this direction.

1.4 Contributions

In Chapter 2, we study a statistical version of RIP that are sufficient for (P1) to

recover nearly all sparse signals except for an ε proportion with small ε. Moreover, we

show how these conditions can be implied by two simpler coherence conditions of a

matrix. In this way, we are able to extend the existing theory of deterministic sensing

matrices that have near optimal average performances.

In Chapter 3, we study the `1 synthesis method for the dictionary setting, and prove that

ΦD being NSP is indeed necessary when D has full spark. Moreover, we generalize the

usual NSP to a dictionary adapted NSP and use it to prove a stability result of the `1

synthesis method.
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1.5 Model Setting

Let x be an N -dimensional real signal that has a sparse representation in a suitably

chosen basis. x is said to be k-sparse if it has at most k nonzero coordinates and is said to

be approximately k-sparse if it has at most k significant coordinates, i.e., entries of large

magnitude compared to the other entries. The observation vector y is formed as a linear

transformation of x, i.e.,

y = Φx + w,

where Φ is an m × N real matrix, m � N, and w is a noise vector. We assume that w

has bounded energy (i.e., ‖w‖2 < ε).

For the m × N complex matrix Φ, let φ1, . . . , φN be its columns. Let [N ] =

{1, 2, . . . , N} and let I = {i1, . . . , ik} ⊂ [N ] be a k-subset of the set of coordinates.

By Pk(N) we denote the set of all k-subsets of [N ]. Below we write ΦI to refer to the

m× k submatrix of Φ formed of the columns with indices in I . Given a vector x ∈ RN ,

we denote by xI a k-dimensional vector given by the projection of the vector x on the

coordinates in I .

The objective of an estimator is to find a good approximation of the signal x after observ-

ing y. This is obviously impossible for general signals x but becomes tractable if we seek

a sparse approximation x̂ which satisfies

‖x− x̂‖p ≤ C1 min
x′ is k-sparse

‖x− x′‖q + C2ε (1.4)

for some p, q ≥ 1 and constants C1, C2. Note that if x itself is k-sparse, then (1.4) implies

that the recovery error ‖x̂−x‖ is at most proportional to the norm of the noise. Moreover

it implies that the recovery is stable in the sense that if x is approximately k-sparse then
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the recovery error is small. If the estimate satisfies an inequality of the type (1.4), we say

that the recovery procedure satisfies a (p, q) error guarantee.

The Basis Pursuit algorithm (P1) we dicussed in the previous section is known to

provide both (`1, `1) and (`2, `1) error guarantees under the condition that Φ satisfies NSP

(or RIP).

Another popular estimator for which the recovery guarantees are proved using co-

herence properties of the sampling matrix Φ is Lasso [50, 24]. Assume the vector w

is independent of the signal and formed of independent identically distributed Gaussian

random variables with zero mean and variance σ2. Lasso is a regularization of the `1

minimization problem written as follows:

x̂ = arg min
x̃∈RN

1

2
‖Φx̃− y‖2

2 + λNσ
2‖x̃‖1. (1.5)

Here λN is a regularization parameter which controls the complexity (sparsity) of the

optimizer.

We say that Φ satisfies the coherence property if the inner product |〈φ1, φj〉| is uni-

formly small, and call µ = maxi 6=j |〈φi, φj〉| the coherence parameter of the matrix. The

importance of incoherent dictionaries has been recognized in a large number of papers on

compressed sensing, among them [51, 54, 31, 20, 18, 19, 13]. The coherence condition

plays an essential role in proofs of recovery guarantees in these and many other studies.
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Chapter 2

A Statistical Restricted Isometry Property and Its Application on

Studying Deterministic Sensing Matrices

2.1 Introduction

One of the fundamental problems in compressive sensing concerns constructing

efficient deterministic sensing matrices that can universally compress and recover the

class of sparse and nearly sparse signals. A sufficient condition for such matrices is

given by the restricted isometry property (RIP). It has been shown that sparse signals

compressed by an RIP map can be reconstructed using `1 minimization procedures such

as Basis Pursuit and Lasso [22, 21, 17, 13].

While many other conditions such as the Null Space Property (NSP) [30]) and the Sparse

Approximation Property (SAP) [49] have also been established, RIP still remains to be

the only useful tool in the deterministic setting. However, verifying RIP for a given matrix

is by no means an easy task. In fact, direct theoretical verifications have only appeared

in the analysis of random sensing matrix, and numerical verification is proved to be NP

hard. A usual approach to overcome this difficulty is applying the Gershgorin theorem to

reduce the RIP condition to another condition on mutual coherence. Even though the new

condition is more convenient to verify, it becomes less effective. For instance, numerical

experiments in [6] have shown that the mutual coherence based performance analysis
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is often too conservative in predicting the sparse recovery results. For these reasons,

researchers have started to look for other possible ways of relaxing RIP [54][14].

In this chapter, we shall establish a new useful relaxation of the RIP, prove its sufficiency

for stable reconstruction, explore its connection with the matrix coherence properties, and

finally use it to study deterministic sensing matrices.

2.1.1 The RIP property

As defined in Chapter 1, a matrix Φ is said to have a (k, δ)-RIP if

(1− δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2

holds for all k-sparse vectors x, where δ ∈ (0, 1) is a parameter. Equivalently, Φ is (k, δ)-

RIP if ‖ΦT
I ΦI−Id‖ ≤ δ holds for all I ∈ [N ], |I| = k, where ‖·‖ is the spectral norm and

Id is the identity matrix. The RIP property provides a sufficient condition for the solution

of (P2) to satisfy the error guarantees of Basis Pursuit [22, 21, 17, 13]. In particular, by

[17], (2k,
√

2 − 1)-RIP suffices for both (`1, `1) and (`2, `1) error estimates, while [13]

improves this to (1.75k,
√

2− 1)-RIP.

As is well known (see [51] [28]), coherence and RIP are related: a matrix with

coherence parameter µ is (k, (k − 1)µ)-RIP. This connection has served as the starting

point in a number of studies on constructing RIP matrices from incoherent dictionaries.

To implement this idea one starts with a set of unit vectors φ1, . . . , φN with maximum co-

herence µ. In other words, we seek a well-separated collection of lines through the origin

in Rm, or reformulating again, a good packing of the real projective space RPm−1. One

way of constructing such packings begins with taking a set C of binary m-dimensional
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vectors whose pairwise Hamming distances are concentrated around m/2. Call the maxi-

mum deviation fromm/2 the widthw of the set C.An incoherent dictionary is obtained by

mapping the bits of a small-width code to bipolar signals and normalizing. The resulting

coherence and width are related by w(C) = µm/2.

One of the first papers to put forward the idea of constructing RIP matrices from

binary vectors was the work by DeVore [27]. While [27] did not make a connection to

error-correcting codes, a number of later papers pursued both its algorithmic and con-

structive aspects [8, 14, 15, 26]. Examples of codes with small width are given in [4],

where they are studied under the name of small-bias probability spaces. RIP matrices ob-

tained from the constructions in [4] satisfy m = O( k logN
log(log kN)

)2. Ben-Aroya and Ta-Shma

[10] recently improved this tom = O(k logN
log k

)5/4 for (logN)−3/2 ≤ µ ≤ (logN)−1/2. The

advantage of obtaining RIP matrices from binary or spherical codes is low construction

complexity: in many instances it is possible to define the matrix using only O(logN)

columns while the remaining columns can be computed as their linear combinations. We

also note a result by Bourgain et al. [11] who gave the first (and the only known) con-

struction of RIP matrices with k on the order of m
1
2

+ε (i.e., greater than O(
√
m)). An

overview of the state of the art in the construction of RIP matrices is given in a recent

paper [7].

At the same time, in practical problems we still need to write out the entire matrix;

so constructions of complexity O(N) are an acceptable choice. Under these assumptions,

the best tradeoff between m, k and N for RIP-matrices based on codes and coherence

is obtained from Gilbert-Varshamov type code constructions: namely, it is possible to

construct (k, δ)-RIP matrices with m = 4(k/δ)2 logN . At the same time, already [4]
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observes that the sketch dimension in RIP matrices constructed from binary codes is at

least m = Θ((k2 logN)/ log k).

2.1.2 Statistical incoherence properties

The limitations on incoherent dictionaries discussed in the previous section suggest

relaxing the RIP condition. An intuitively appealing idea is to require that condition

(1.1) hold for almost all rather than all k-subsets I, replacing RIP with a version of it, in

which the near-isometry property holds with high probability with respect to the choice of

I ∈ Pk(N). The statistical RIP (StRIP) of a matrix is easier to be satisfied, so they have a

potential of supporting provable recovery guarantees from shorter sketches compared to

the known constructive schemes relying on RIP.

Without loss of generality, we assume all sensing matrices Φ considered in this

chapter have unit column norm. Before proceeding to the results, let us introduce a few

more notations. Let [N ] := {1, 2, . . . , N} and let Pk(N) denote the set of k-subsets of

[N ]. The usual notation for probability Pr is used to refer a probability measure when

there is no ambiguity. At the same time, we use separate notation for some frequently

encountered probability spaces. In particular, we use Pk to denote the uniform probability

distribution on Pk(N). If we need to choose a random k-subset I and a random index in

[N ]\I, we use the notation Pk+1. We use PRk to denote any probability measure on Rk

which assigns equal probability to each of the 2k orthants (i.e., with uniformly distributed

signs).

The following definition is essentially due to Tropp [54, 53], where it is called
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conditioning of random subdictionaries.

Definition 3. An m×N matrix Φ satisfies the statistical RIP property (is (k, δ, ε)-StRIP)

if

Pk({I ∈ Pk(N) : ‖ΦT
I ΦI − Id‖ ≤ δ}) ≥ 1− ε.

In other words, the inequality

(1− δ)‖x‖2
2 ≤ ‖ΦIx‖2 ≤ (1 + δ)‖x‖2

2 (2.1)

holds for at least a (1− ε) proportion of all k-subsets of [N ] and for all x ∈ Rk.

A related but different definition was given later in several papers such as [14, 5, 31]

as well as some others. In these works, a matrix is called (k, δ, ε)-StRIP if inequality (2.1)

holds for at least (1 − ε) proportion of k-sparse unit vectors z ∈ RN . While several

well-known classes of matrices were shown to have this property, it is not sufficient for

sparse recovery procedures. Several additional properties as well as specialized recovery

procedures that make signal reconstruction possible were investigated in [14].

In this chapter we focus on the statistical isometry property as given by Def. 3 and

mean this definition whenever we mention StRIP matrices. We note that condition (2.1)

is scalable, so the restriction to unit vectors is not essential.

Definition 4. Anm×N matrix Φ satisfies a statistical incoherence condition (is (k, α, ε)-

SINC) if

Pk({I ∈ Pk(N) : maxi 6∈I ‖ΦT
I φi‖2

2 ≤ α}) ≥ 1− ε. (2.2)

This condition appeared implicitly in [52] and [18]. It has been shown that StRIP

and SINC together imply exact recovery of strictly sparse signals. For completeness, we
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prove in Section 2.2.1 a stability result that may be known but not explicitely established.

Moreover, we note that the SINC property can be further relaxed. In (2.2), we allow

a small probability of failure for the random choice of I , but for a fixed I , the coherence

between ΦI and all outside columns should be uniformly small. The condition can thus

be relaxed if we can change this uniformity to with large probability (this probability is

with respect to i). In other words, we want to build a condition of ‖ΦT
I φi‖2 that allows

a small probability of failure with respect to the random choice of both I ∈ Pk(N) and

i ∈ Ic.

We let

B(Φ) = {‖ΦT
I φi‖2 : I ∈ Pk(N), i ∈ Ic}

be the set of values of coherences between a collection of columns of Φ and another

column outside this collection. Let us introduce the following definition.

Definition 5. Anm×N matrix Φ is said to satisfy a weak statistical incoherence condition

(to be a (k, δ, α, ε)-WSINC) if

∑
t∈B(Φ)

Pk+1({(I, i), I ∈ Aα(Φ), i ∈ Ic such that ‖ΦT
I φi‖2 = t})g(δ, t) ≤ ε

N − k
, (2.3)

where g(δ, t) is a positive increasing function of t and

Aα(Φ) = {I ∈ Pk(N) : ∃i ∈ Ic such that ‖ΦT
I φi‖2

2 > α}.

We note that this definition is informative if g(δ, t) is small; otherwise, we will

just use the usual SINC condition. Below we use g(δ, t) = exp(−(1 − δ)2/(8t2)). This

definition takes account of the distribution of values of the quantity ‖ΦT
I φi‖ and therefore

allows the existence of very coherent columns. We will show in Section 2.2.2 that WSINC

is enough for BP to find the correct support of x.
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Definition 6. We say that a signal x ∈ RN is drawn from a generic random signal model

Sk if

1) The locations of the k coordinates of x with largest magnitudes are chosen

among all k-subsets I ⊂ [N ] with a uniform distribution;

2) Conditional on I , the signs of the coordinates xi, i ∈ I are i.i.d. uniform

Bernoulli random variables taking values in the set {1,−1}.

2.2 Statistical Incoherence Properties and Basis Pursuit

In this section we prove approximation error bounds for recovery by Basis Pur-

suit from linear sketches obtained using deterministic matrices with the StRIP and SINC

properties.

2.2.1 StRIP Matrices with incoherence property

It was proved in [54] that random sparse signals sampled using matrices with the

StRIP property can be recovered with high probability from low-dimensional sketches

using linear programming. In this section we prove a similar result that in addition incor-

porates stability analysis.

Theorem 2.2.1. Suppose that x is a generic random signal from the model Sk. Let y =

Φx and let x̂ be the approximation of x by the Basis Pursuit algorithm. Let I be the set

of k largest coordinates of x. If

1. Φ is (k, δ, ε)-StRIP;

15



2. Φ is (k, (1−δ)2

8 log(2N/ε)
, ε)-SINC,

then with probability at least 1− 3ε

‖xI − x̂I‖2 ≤
1

2
√

2 log(2N/ε)
min

x′is k -sparse
‖x− x′‖1

and

‖xIc − x̂Ic‖1 ≤ 4 min
x′is k -sparse

‖x− x′‖1.

This theorem implies that if the signal x itself is k-sparse then the Basis Pursuit

algorithm will recover it exactly. Otherwise, its output x̂ will be a tight sparse approxi-

mation of x.

Theorem 2.2.1 will follow from the next three lemmas. Some of the ideas involved

in their proofs are close to the techniques used in [23]. Let h = x − x̂ be the error in

recovery of Basis Pursuit. In the following I ⊂ [N ] refers to the support of the k largest

coordinates of x.

Lemma 2.2.2. Let s = 8 log(2N/ε). Suppose that ‖(ΦT
I ΦI)

−1‖ ≤ 1
1−δ and

‖ΦT
I φi‖2

2 ≤ s−1(1− δ)2 for all i ∈ Ic := [N ] \ I.

Then

‖hI‖2 ≤ s−
1/2 ‖hIc‖1.

Proof. Clearly, Φh = Φx̂− Φx = 0, so ΦIhI = −ΦIchIc and

hI = −(ΦT
I ΦI)

−1ΦT
I ΦIchIc .
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We obtain

‖hI‖2 ≤ ‖(ΦT
I ΦI)

−1‖‖ΦT
I ΦIchIc‖2 ≤

1

1− δ
∑
i∈Ic
‖ΦT

I φi‖2|hi|

≤ s−
1/2 ‖hIc‖1,

as required.

Next we show that the error outside I cannot be large. Below sgn(u) is a±1-vector

of signs of the argument vector u.

Lemma 2.2.3. Suppose that there exists a vector v ∈ RN such that

(i) v is contained in the row space of Φ, say v = ΦTw;

(ii) vI = sgn(xI);

(iii) ‖vIc‖`∞ ≤ 1/2.

Then

‖hIc‖1 ≤ 4‖xIc‖1. (2.4)

Proof. By (P2) we have

‖x‖1 ≥ ‖x̂‖1 = ‖x + h‖1 = ‖xI + hI‖1 + ‖xIc + hIc‖1

≥ ‖xI‖1 + 〈sgn(xI),hI〉+ ‖hIc‖1 − ‖xIc‖1.

Here we have used the inequality ‖a+b‖1 ≥ ‖a‖1+〈sgn(a), b〉 valid for any two vectors

a, b ∈ RN and the triangle inequality. From this we obtain

‖hIc‖1 ≤ |〈sgn(xI),hI〉|+ 2‖xIc‖1.

17



Further, using the properties of v, we have

|〈sgn(xI),hI〉| = |〈vI ,hI〉|

= |〈v,h〉 − 〈vIc ,hIc〉|

≤ |〈ΦTw,h〉|+ |〈vIc ,hIc〉|

≤ |〈w,Φh〉|+ ‖vIc‖`∞‖hIc‖1

≤ 1

2
‖hIc‖1.

The statement of the lemma is now evident.

Now we prove that such a vector v as defined in the last lemma indeed exists.

Lemma 2.2.4. Let x be a generic random signal from the model Sk. Suppose that the

support I of the k largest coordinates of x is fixed. Under the assumptions of Lemma

2.2.2 the vector

v = ΦTΦI(Φ
T
I ΦI)

−1 sgn(xI)

satisfies (i)-(iii) of Lemma 2.2.3 with probability at least 1− ε.

Proof. From the definition of v it is clear that it belongs to the row-space of Φ and vI =

sgn(xI). We have vi = φTi ΦI(Φ
T
I ΦI)

−1 sgn(xI) = 〈si, sgn(xI)〉, where

si = (ΦT
I ΦI)

−1ΦT
I φi ∈ Rk.

We will show that |vi| ≤ 1
2

for all i ∈ Ic with probability 1− ε.

Since the coordinates of sgn(xI) are i.i.d. uniform random variables taking values

in the set {±1}, we can use Hoeffding’s inequality to claim that

PRk(|vi| > 1/2) ≤ 2 exp
(
− 1

8‖s‖2
2

)
. (2.5)
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On the other hand, for all i ∈ Ic,

‖si‖2 = ‖(ΦT
I ΦI)

−1ΦT
I φi‖2

≤ ‖(ΦT
I ΦI)

−1‖‖ΦT
I φi‖2

≤ 1

1− δ
1− δ√

8 log(2N/ε)

=
1√

8 log(2N/ε)
. (2.6)

Equations (2.5) and (2.6) together imply for any i ∈ Ic,

PRk
(
|vi| >

1

2

)
≤ 2 exp

(
− 1

8(1/
√

8 log(2N/ε))2

)
=

ε

N
.

Using the union bound, we now obtain the following relation:

PRk
(
‖vIc‖∞ > 1/2

)
≤ ε. (2.7)

Hence |vi| ≤ 1
2

for all i ∈ Ic with probability at least 1− ε.

Now we are ready to prove Theorem 2.2.1.

Proof of Theorem 2.2.1. The matrix Φ is (k, δ, ε)-SRIP. Hence, with probability at least

1 − ε, ‖(ΦT
I ΦI)

−1‖ ≤ 1
1−δ . At the same time, from the SINC assumption we have, with

probability at least 1− ε over the choice of I ,

‖ΦT
I φi‖2

2 ≤
(1− δ)2

8 log(2N/ε)
,

for all i ∈ Ic. Thus, ΦI will have these two properties with probability at least 1 − 2ε.

Then from Lemma 2.2.2 we obtain that

‖hI‖2 ≤
1√

8 log(2N/ε)
‖hIc‖1,
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with probability ≥ 1− 2ε. Furthermore, from Lemmas 2.2.3, 2.2.4

‖hIc‖1 ≤ 4‖xIc‖1,

with probability 1− ε. This completes the proof.

2.2.2 StRIP Matrices with weak incoherence property

In this section we establish a recovery guarantee of Basis Pursuit under the weak

SINC condition defined earlier in this chapter.

Theorem 2.2.5. Suppose that the sampling matrix Φ is (k, δ, ε)-StRIP and
(
k, δ, α, ε2

)
-

WSINC, where α = (1− δ)2/8 log(2N/ε) and gδ(t) = exp(−(1− δ)2/8t2). Suppose that

the signal x is chosen from the generic random signal model and let x̂ be the approxima-

tion of x found by Basis Pursuit. Then with probability at least 1− 4ε we have

‖xIc − x̂Ic‖1 ≤ 4 min
x′is k-sparse

‖x− x′‖1.

If x is k-sparse and satisfies the condition y = Φx, then this theorem asserts that

Basis Pursuit will find the support of x. If in addition x is the only k-sparse solution to

y = Φx, then we have x̂ = x. Note that the WSINC property is not sufficient for the

(`2, `1) error guarantee. However, once the corrected support is detected, the signal x can

be found by solving the overcomplete system y = ΦIx.

To prove Theorem 2.2.5, we refine the ideas used to establish Lemma 2.2.4.

Lemma 2.2.6. Suppose that the sampling matrix Φ satisfies the conditions of Theorem

2.2.5. For any x ∈ Rk and I ⊂ [N ] define v(x, I) = ΦTΦI(Φ
T
I ΦI)

−1 sgn(x). Let

p(I) = PRk(‖vIc(x, I)‖∞ > 1/2),
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Then

Pk({I : p(I) > ε}) < 3ε.

Proof. As in the proof of Lemma 2.2.4, we define the vector

si(I) = (ΦT
I ΦI)

−1ΦT
I φi ∈ Rk,

and let vi(x, I) be the ith coordinate of the vector v(x, I). From now on we write simply

vi, si, omitting the dependence on I and x. LetM = M(Φ) := {I ∈ Pk(N) : ‖ΦT
I ΦI‖ ≥

1− δ}, then the StRIP property of Φ implies that

Pk(M) ≥ 1− ε.

By definition, for any I ∈M

‖si‖2 = ‖(ΦT
I ΦI)

−1ΦT
I φi‖2 ≤

1

1− δ
‖ΦT

I φi‖2.

Now we split the target probability into three parts:

Pk({I : p(I) > ε}) = Pk({I ∈M ∩ A : p(I) > ε}) + Pk({I ∈M ∩ Ac : p(I) > ε})

+ Pk({I ∈M c : p(I) > ε}),

where A = Aα(Φ) = {I : ‖ΦT
I φi‖2

2 > α for some i ∈ Ic} is the set of supports appearing

in the definition of the WSINC property. If I ∈ M ∩ A, i.e., it supports both StRIP and

SINC properties, then (2.7) implies that p(I) ≤ ε, so the first term on the right-hand side

equals 0. The third term refers to supports with no SINC property, whose total probability

is ≤ ε. Estimating the second term by the Markov inequality, we have

Pk({I ∈M ∩ Ac : p(I) > ε}) ≤ Ek[p(I),1(I ∈M ∩ Ac)]
ε

, (2.8)
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where 1(·) denotes the indicator random variable. We have

Ek[p(I), I ∈M ∩ Ac] = Ek[p(I)1(I ∈M ∩ Ac)] =
∑

I∈M∩Ac

1(
N
k

)p(I), (2.9)

Let us first estimate p(I) for I ∈M ∩Ac by invoking Hoeffding’s inequality (2.5):

p(I) = PRk(∃i ∈ Ic, |vi| > 1/2) ≤
∑
i∈Ic

PRk(|vi| > 1/2)

≤
∑
i∈Ic

2 exp
(
− 1

8‖si‖2
2

)
(2.6)
≤
∑
i∈Ic

2 exp
(
− (1− δ)2

8‖ΦT
I φi‖2

2

)
= 2(N − k)

∑
t∈B(Φ)

exp
(
− (1− δ)2

8t2

)
PR′k(‖Φ

T
I φi‖2 = t | I).

Substituting this result into (2.9), we obtain

Ek[p(I), {I ∈M ∩ Ac}] ≤ 2(N − k)
∑
t∈B(Φ)

exp
(
− (1− δ)2

8t2

) ∑
I∈M∩Ac

1(
N
k

)PR′k(‖ΦT
I φi‖ = t | I)

≤2(N − k)
∑
t∈B(Φ)

exp
(
− (1− δ)2

8t2

)
PR′k(I ∈ A

c, ‖ΦT
I φ‖2 = t)

≤ 2ε2,

where the last step is on account of (2.8) and the WSINC assumption.

Proof of Theorem 2.2.5: Define the set B by

B = {I ∈ Rk : PRk(‖vIc‖∞ > 1/2 | I) > ε}.

Recall that Theorem 2.2.5 is stated with respect to the random signal x. Therefore, let us
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estimate the probability

PRk×Rk({(I,x) : ‖vIc‖∞ > 1/2})

=
∑

I∈Pk(N)

PRk×Rk({x : ‖vIc‖∞ > 1/2} | I)PRk×Rk(I)

=
∑
I∈Bc

PRk({x : ‖vIc‖∞ > 1/2} | I)Pk(I) +
∑
I∈B

PRk({x : ‖vIc‖∞ > 1/2} | I)Pk(I).

We have PRk({x : ‖vIc‖∞ > 1/2} | I) < ε from Lemma 2.2.4 and Pk(B) ≤ 3ε from

Lemma 2.2.6, so

PRk×Rk({(I,x) : ‖vIc‖∞ > 1/2}) < ε(1 + 3ε) < 4ε.

This implies that with probability 1 − 4ε the signal x chosen from the generic random

signal model satisfies the conditions of Lemma 2.2.3, i.e.,

‖xIc − x̂Ic‖1 ≤ 4‖xIc‖1.

This completes the proof.

2.3 Incoherence Properties and Lasso

In this section we prove that sparse signals can be approximately recovered from

low-dimensional observations using Lasso if the sampling matrices have statistical inco-

herence properties. The result is a modification of the methods developed in [18, 54] in

that we prove that the conditions used there to bound the error of the Lasso estimate hold

with high probability if Φ is has both StRIP and SINC properties. The precise claim is

given in the following statement.
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Theorem 2.3.1. Let x be a random k-sparse signal whose support satisfies the two prop-

erties of the generic random signal model Sk. Denote by x̂ its estimate from y = Φx+ z

via Lasso (1.5), where z is a i.i.d. Gaussian vector with zero mean and variance σ2 and

where λ = 2
√

2 logN. Suppose that k ≤ c0N
‖Φ‖2 logN

, where c0 is a positive constant, and

that the matrix Φ satisfies the following two properties:

1. Φ is (k, 1
2
, ε)-StRIP.

2. Φ is (k, 1
128 log(N/2ε)

, ε)-SINC.

Then we have

‖Φx− Φx̂‖2
2 ≤ C0k logNσ2,

with probability at least 1−3ε− 1
N
√

2π logN
−N−a, where C0 > 0 is an absolute constant

and a = 0.15 log(2N/ε)− 1.

The following theorem is implicit in [18], see Theorem 1.2 and Sect 3.2 in that

paper.

Theorem 2.3.2. (Candès and Plan) Suppose that x is a k-sparse signal drawn from the

model Sk, y, z are the same as in Theorem 2.3.1 and

k ≤ c0N

‖Φ‖2 logN
,

where c0 > 0 is a constant. Let I ⊂ [N ] be the support of x and suppose the following

three conditions are satisfied:

1. ‖(ΦT
I ΦI)

−1‖ ≤ 2.

2. ‖ΦTz‖`∞ ≤ 2
√

logN.
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3. ‖ΦT
IcΦI(Φ

T
I ΦI)

−1ΦT
I z‖`∞+

√
8 logN‖ΦT

IcΦI(Φ
T
I ΦI)

−1 sgn(xI)‖`∞ ≤ (2−
√

2)
√

2 logN.

Then

‖Φx− Φx̂‖2
2 ≤ C0k(logN)σ2,

where C0 is an absolute constant.

Our aim will be to prove that conditions (1)-(3) of this theorem hold with large

probability under the assumptions of Theorem 2.3.1.

First, it is clear that ‖ΦTz‖∞ ≤ 2
√

logN with probability at least 1−(N
√

2π logN)−1.

This follows simply because z is an independent Gaussian vector, and has been discussed

in [18] (this is also the reason for selecting the particular value of λN ). The main part of

the argument is contained in the following lemma whose proof uses some ideas of [18].

Lemma 2.3.3. Suppose that 1/2 ≤ ‖ΦT
I ΦI − Id‖ ≤ 3/2 and that for all i ∈ Ic,

‖ΦT
I φi‖2

2 ≤ (128 log(2N/ε))−1.

Then Condition (3) of Theorem 2.3.2 holds with probability at least 1 − ε − N−a for

a = 0.15 log(2N/ε)− 1.

Proof. Let i ∈ Ic. Define Z0,i = 〈wi, sgn(xI)〉 and Z1,i = 〈w′i, z〉, where

wi = (ΦT
I ΦI)

−1ΦT
I φi,

w′i = ΦI(Φ
T
I ΦI)

−1ΦT
I φi.

Let Z0 = maxi∈Ic |Z0,i| and Z1 = maxi∈Ic |Z1,i|. We will show that with high probability
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Z0 ≤ 1/4 and Z1 ≤ (1.5−
√

2)
√

2 logN which will imply the lemma. We compute

‖wi‖2 ≤ ‖(ΦT
I ΦI)

−1‖‖ΦT
I φi‖2 ≤ 2

1

8
√

2 log(2N/ε)

=
1

4
√

2 log(2N/ε)
,

and

‖w′i‖2 ≤ ‖ΦI‖‖(ΦT
I ΦI)

−1‖‖ΦT
I φi‖2 ≤

√
3

2

2

8
√

2 log(2N/ε)

=

√
3

8
√

log(2N/ε)
,

for all i ∈ Ic. Let a1 = 1.5−
√

2. Since Z1,i ∼ N (0, ‖w′i‖2
2), we have

Pr(Z1 > a1

√
2 logN) ≤ (N − k) Pr

(
|Z1,i| > a1

√
2 logN

)
≤ 2(N − k)‖w′i‖2

a1

√
2π(2 logN)

e−
64
3
a2

1 logN log(2N/ε)

≤ 2.1√
(2 logN) log(2N/ε)

N−0.15 log(2N/ε)+1

≤ N−a.

(the multiplier in front of the exponent is less than 1 for all N > 4 and ε < 1). Further,

since the signs sgn(xi), i ∈ I are uniform i.i.d. random variables, we have

Pr(Z0 > 1/4) ≤ (N − k) Pr(|〈wi, sgn(xI)〉| > 1/4)

≤ 2(N − k)e−1/(32‖wi‖22)

< ε.

The proof is complete.

26



Theorem 2.3.1 is now easily established. Indeed, the assumptions of Lemma 2.3.3

are satisfied with probability at least 1 − 2ε. The claim of the theorem follows from the

above arguments.

2.4 Sufficient conditions for statistical incoherence properties

In this section, we discuss how the StRIP and SINC properties can be controlled

by matrix coherence. Upon the completion of this project, we realized another result of

Tropp [53] which is better in many cases. However, I feel that this effort is still worth

mentioning since it utilizes a different technique and is better than previous results in

many special cases.

Specifically, we show in Theorem 2.4.7 that for Φ to satisfies (k, δ)-StRIP, we need

its coherence to satisfy µ ≤ O(k−1/4). Comparing to Tropp’s result which essentially

needs µ ≤ O(log−1N), it is better when k < log4 n. We comment that log4 n is usually

not a small number due to the fourth power, so it is quite possible that the sparsity level of

the incoming signal falls below this level. For examples of various explicit deterministic

constructions on which our theories may apply, we refer the reader to the table in [9].

Let Φ be an m × N sampling matrix with columns φi, i = 1, . . . , N. As above, let

µij = |〈φi, φj〉|. We also define the mean square coherence and the maximum average

square coherence of the dictionary:

µ̄2 =
1

N(N − 1)

n∑
i,j=1
i 6=j

µ2
ij, µ̄2

max = max
1≤j≤N

1

N − 1

n∑
i=1
i 6=j

µ2
ij.

Of course, µ̄2 ≤ µ̄2
max with equality if and only if for every j the sum in µ̄2

max takes the
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same value. Dictionaries that satisfy this property will be called coherence-invariant. It

turns out that a large group of known constructions satisfy the invariance property; see

in particular [9]. Our arguments change slightly if the matrix is not coherence-invariant.

To deal simultaneously with both cases, define the parameter θ = θ(Φ) as θ = µ̄2 if Φ is

coherence-invariant and θ = µ̄2
max otherwise.

The next theorem gives sufficient conditions for the SINC property in terms of

coherence parameters of Φ.

Theorem 2.4.1. Let Φ be an m × N matrix with unit-norm columns, coherence µ and

square coherence θ. Suppose that,

µ4 ≤ (1− a)2β2

32k(log 2N/ε)3
and θ ≤ aβ

k log(2N/ε)
, (2.10)

where β > 0 and 0 < a < 1 are any constants. Then Φ has the (k, α, ε)-SINC property

with α = β/ log(2N/ε).

Before proving this theorem we will introduce some notation. Fix j ∈ [N ] and let

Ij = {i1, i2, . . . , ik} be a random k-subset such that j 6∈ Ij. The subsets Ij are chosen

from the set [N − 1] with uniform distribution. Define random variables Yj,l = µ2
j,il
, l =

1, . . . , k. Next define a sequence of random variables Zj,t, t = 0, 1, . . . , k, where

Zj,0 = EIj

k∑
l=1

Yj,l, Zj,t = EIj

( k∑
l=1

Yj,l | Yj,1, Yj,2, . . . , Yj,t
)
, t = 1, 2, . . . , k.

From the assumption of coherence invariance, the variablesZj,t for different j are stochas-

tically equivalent. Let

Zt = EjZj,t = ER′k

( k∑
l=1

Yj,l | Yj,1, Yj,2, . . . , Yj,t
)
, t = 1, . . . , k.
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The random variables Zt are defined on the set of (k + 1)-subsets of [N ] with probability

distribution Pk+1. We will show that they form a Doob martingale. Begin with defining

a sequence of σ-algebras Ft, t = 0, 1, . . . , k, where F0 = {∅, [N ]} and Ft, t ≥ 1 is the

smallest σ-algebra with respect to which the variables Yj,1, . . . , Yj,t are measurable (thus,

Ft is formed of all subsets of [N ] of size ≤ t+ 1). Clearly, F0 ⊂ F1 ⊂ · · · ⊂ Fk, and for

each t, Zt is a bounded random variable that is measurable with respect to Ft. Observe

that

Z0 = EjZj,0 = ER′k

k∑
l=1

µ2
j,il

=
k∑
l=1

ER′k
µ2
j,il

= kµ̄2 (2.11)

≤ kµ̄2
max, (2.12)

where (2.11) assumes coherence invariance, and (2.12) is valid independently of that

assumption.

Lemma 2.4.2. The sequence (Zt,Ft)t=0,1,...,k forms a bounded-differences martingale,

namely ER′k
(Zt | Z0, Z1, . . . , Zt−1) = Zt−1 and

|Zt − Zt−1| ≤ 2µ2
(

1 +
k

N − k − 2

)
, t = 1, . . . , k.

Proof. In the proof we write E instead of ER′k
. We have

Zt = E
( k∑
l=1

Yj,l | Ft
)

=
t∑
l=1

Yj,l + E
( k∑
l=t+1

Yj,l | Ft
)

= Zt−1 + Yj,t + E
( k∑
l=t+1

Yj,l | Ft
)
− E

( k∑
l=t

Yj,l | Ft−1

)
.

Next,

E(Zt | Z0, Z1, . . . , Zt−1) = Zt−1 + E(Yj,t | Z0, Z1, . . . , Zt−1)
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+ E
(

E
( k∑
l=t+1

Yj,l | Ft
)
| Z0, . . . , Zt−1

)
− E

(
E
( k∑

l=t

Yj,l | Ft−1

)
| Z0, . . . , Zt−1

)
= Zt−1 + E

(
Yj,t | Z0, . . . , Zt−1

)
+ E

( k∑
l=t+1

Yj,l | Z0, . . . , Zt−1

)
− E

( k∑
l=t

Yj,l | Z0, . . . , Zt−1

)
= Zt−1,

which is what we claimed.

Next we prove a bound on the random variable |Zt − Zt−1|. We have

|Zt − Zt−1| =
∣∣∣E( k∑

l=1

Yj,l | Ft
)
− E

( k∑
l=1

Yj,l | Ft−1

)∣∣∣
≤ max

a,b

∣∣∣E( k∑
l=1

Yj,l | Ft−1, Yt,l = a
)
− E

( k∑
l=1

Yj,l | Ft−1, Yt,l = b
)∣∣∣

= max
a,b

∣∣∣ k∑
l=1

(
E
(
Yj,l | Ft−1, Yt,l = a

)
− E

(
Yj,l | Ft−1, Yt,l = b

))∣∣∣
= max

a,b

∣∣∣a− b+
k∑

l=t+1

(
E
(
Yj,l | Ft−1, Yt,l = a

)
− E

(
Yj,l | Ft−1, Yt,l = b

))∣∣∣
≤
∣∣∣2µ2 +

k∑
l=t+1

2µ2

N − l − 2

∣∣∣
= 2µ2 N − 2

N − k − 2
.

To prove Theorem 2.4.1 we use the Azuma-Hoeffding inequality (see, e.g., [43]).

Proposition 2.4.3. (Azuma-Hoeffding) Let X0, . . . , Xk−1 be a martingale with |Xi −
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Xi−1| ≤ ai for each i, for suitable constants ai. Then for any ν > 0,

Pr
(∣∣∣ k−1∑

t=1

(Xi −Xi−1)
∣∣∣ ≥ ν

)
≤ 2 exp

−ν2

2
∑
a2
i

.

Proof of Theorem 2.4.1: Bounding large deviations for the sum |
∑k

t=1(Zt−Zt−1)| =

|Zk − Z0|, we obtain

Pr(|Zk − Z0| > ν) ≤ 2 exp
(
− ν2

8µ4k( N−2
N−k−2

)2

)
, (2.13)

where the probability is computed with respect to the choice of ordered (k + 1)-tuples

in [N ] and ν > 0 is any constant. Assume coherence invariance. Using (2.11) and the

inequality (N − 2)/(N − k − 2) < 2 valid for all k < N
2
− 1, we obtain

Pr(Zk ≥ ν + kµ̄2) ≤ Pr(|Zk − kµ̄2| ≥ ν) ≤ 2 exp
(
− ν2

32µ2k

)
.

Now take β > 0 and ν = β
log(2N/ε)

− kµ̄2. Suppose that for some a ∈ (0, 1)

kµ4 ≤ ((1− a)β)2

32

(
log

2N

ε

)−3

, kµ̄2 ≤ aβ

log(2N/ε)
, (2.14)

then we obtain

Pr
(
‖ΦT

Ij
φj‖2

2 ≥
β

log(2N/ε)

)
≤ 2 exp

(
− ν4

32µ4k

)
≤ ε

N
. (2.15)

Now the first claim of Theorem 2.4.1 follows by the union bound with respect to the

choice of the index j.

Assume that Φ does not satisfy the invariance condition. Then we rely on (2.12)

and repeat the above argument with respect to µ̄2
max.

The above proof contains the following statement.
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Corollary 2.4.4. Let Φ be an m × N matrix with coherence µ and θ = µ̄2 or µ̄2
max, as

appropriate. Let a ∈ (0, 1) and β > 0 be any constants. Suppose that for α < β log2 e,

µ4 ≤ (1− a)2α3

32βk
, kθ ≤ aα.

Then Pk+1(
∑k

l=1 µ
2
il,j
≥ α) ≤ 2e−β/α.

Proof. Denote α = β/(log(2N/ε)), then ε/N = 2e−β/α. The claim is obtained by sub-

stituting α in (2.14)-(2.15).

We note that this corollary follows directly from the SINC property under our as-

sumptions on coherence and mean square coherence. We observe that the SINC property

naturally implies some StRIP condition as given in the following theorem.

Theorem 2.4.5. Let Φ be an m × N matrix. Let I ⊂ [N ] be a random ordered k-subset

and suppose that for all j ∈ I , Pr(
∑k−1

m=1 µ
2
j,im > δ2/k) < ε1/k. Then Φ is a (k, δ, ε1)-

StRIP matrix.

Proof. Given I let H(I) = ΦT
I ΦI − Id be the “hollow Gram matrix”. Let B = {I :

‖H(I)‖ > δ} ⊂ Pk(N). We need to prove that Pk(B) ≤ ε. Let (e1, . . . , ek) be the

standard basis of Rk. Define a subset C ⊂ Pk(N) as follows:

C = {I : ∃i ∈ I s.t. ‖H(I)ei‖2 ≥ δ/
√
k}.

Let us show that B ⊆ C by proving Cc ⊆ Bc. Indeed, if I ∈ Cc, then we have

‖H(I)‖ = max
|x‖2=1

‖H(I)x‖2 = max
|x‖2=1

‖H(I)(x1e1 + x2e2 + · · ·+ xkek)‖

≤ max
|x‖2=1

∑
l

|xl| ‖H(I)el‖2
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≤ max
|x‖2=1

‖x‖1 max
1≤l≤k

‖H(I)el‖2

≤
√
k max

1≤l≤k
‖H(I)el‖2.

≤ δ,

which implies I ∈ Bc. Now since B ⊆ C, we only need to show that Pk(C) ≤ ε.

Careful readers may have already noticed that the target quantity Pk(C) uses a

different probability measure from that in theorem’s assumption. We note that a change

of measure is actually inevitable since the probability measure in Azuma-Hoeffding’s

inequality we used in Proposition 2.4.3 is with respect to ordered k-tuples while that in

the definition of StRIP is with respect to unordered ones. In the following, we provide a

rigorous calculation that supports this measure transformation.

For any I ∈ C, by definition, there exists at least one l ∈ I such that ‖HIel‖ ≥

δ/
√
k. Among such l, let i(I) be the smallest one i(I) = min{l ∈ I : ‖HIel‖2 ≥ δ/

√
k}.

Now we define a map from an unordered k-tuple I ∈ C ⊆ Pk(N) to a set of ordered k-

tuples Q(I) = {(i1, . . . , ik−1, i(I)) : (i1, . . . , ik−1) = σ(I\i(I)), σ ∈ Sk−1}, where Sk−1

denotes the set of all permutations of k−1 elements. Obviously, |Q(I)| = (k−1)! for all

I , and Q(I1) ∩ Q(I2) = ∅ for distinct k-subsets I1, I2. Moreover, if (i1, . . . , ik) ∈ Q(I),

then ‖H(I)ek‖2 ≥ δ/
√
k or

∑k−1
l=1 µ

2
il,ik

> δ2/k. Therefore

⋃
I∈C

Q(I) ⊆
{

(i1, . . . , ik) ⊂ [N ] :
k−1∑
l=1

µ2
il,ik

> δ2/k
}
.

Now compute

Pk(B) =
|B|(
N
k

) ≤ |C|(k − 1)!(
N
k

)
(k − 1)!

=

∑
I∈C |Q(I)|(
N
k

)
(k − 1)!

=

∣∣⋃
I∈C Q(I)

∣∣(
N
k

)
(k − 1)!
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≤ k

k!
(
N
k

)∣∣∣{(i1, . . . , ik) ⊂ [N ] :
k−1∑
l=1

µ2
il,ik

> δ2/k
}∣∣∣

= k Pr(
k−1∑
m=1

µ2
j,im > δ2/k).

By the assumption of the theorem the last expression is at most ε which proves our claim.

Theorem 2.4.12 implies the following

Corollary 2.4.6. Let Φ be an m×N matrix. If

θ ≤ aδ2

k2
, and µ4 ≤ (1− a)2δ4

32k3 log(2k/ε1)
,

where 0 < a < 1, then Φ is (k, δ, ε1)-StRIP.

Proof. Take ε1 = 2ke−β/α, then β = δ2

k
log(2k/ε1). The claim is obtained by substituting

this value into the conditions of Corollary 2.4.4.

Observe that the sufficient condition for the (k, δ)-RIP property from the Gersh-

gorin theorem is µ < δ/k, so the result of Corollary 2.4.6 gives a better result, namely

µ = O(k−3/4). At the same time, Tropp’s result in [54, Thm. B] implies that the matrix

Φ is (k, δ, ε)-StRIP under a weaker (i.e., more inclusive) condition. Below we improve

upon these results by analyzing the StRIP property directly rather than relying on the

SINC condition.

Theorem 2.4.7. Let Φ by an m × N matrix and let θ = µ̄2 or θ = µ̄2
max, depending on

whether Φ is coherence-invariant or not. Let ε < min{1/k, e1−1/ log 2} and suppose that

Φ satisfies

kµ4 ≤ 1

log2(1/ε)
min

( (1− a)2b2

32 log(2k) log(e/ε)
, c2
)

and kθ ≤ ab

log(1/ε)
, (2.16)
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where a, b, c ∈ (0, 1) are constants such that

√
b+
√

2ab+
√
c+

2k

N
‖Φ‖2 ≤ e−1/4δ/6

√
2. (2.17)

Then Φ is (k, δ, ε)-StRIP.

The proof relies on several results from [54]. The following theorem is a modifi-

cation of Theorem 25 in that paper. Below R denotes a linear operator that performs a

restriction to k coordinates chosen according to some rule (e.g., randomly). Its domain

is determined by the context. Its adjoint R∗ acts on Rk by padding the k-vector with the

appropriate number of zeros.

Theorem 2.4.8. (Decoupling of the spectral norm) LetA be a 2N×2N symmetric matrix

with zero diagonal. Let η ∈ {0, 1}2N be a random vector with N components equal to

one. Define the index sets T1(η) = {i : ηi = 0}, T2(η) = {i : ηi = 1}. Let R be a random

restriction to k coordinates. For any q ≥ 1 we have

(E‖RAR∗‖q)1/q ≤ 2 max
k1+k2=k

Eη(E‖R1AT1(η)×T2(η)R
∗
2‖q)1/q, (2.18)

where AT1(η)×T2(η) denotes the submatrix of A indexed by T1(η)×T2(η) and the matrices

Ri are independent restrictions to ki coordinates from Ti, i = 1, 2.

WhenA has order (2N+1)×(2N+1), then an analogous result holds for partitions

into blocks of size N and N + 1.

Inequality (2.18) is implicitly proved in the proof of the decoupling theorem (The-

orem 9) [54]. The ideas behind it are due to [38].

The next lemma is due to Tropp [53] and Rudelson and Vershinin [48].
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Lemma 2.4.9. Suppose that A is a matrix with N columns and let R be a random restric-

tion to k coordinates. Let q ≥ 2, p = max(2, 2 log(rkAR∗), q/2). Then

(E‖AR∗‖q)1/q ≤ 3
√
p(E‖AR∗‖q1→2)1/q +

√
k

N
‖A‖,

where ‖ · ‖1→2 is the maximum column norm.

The following lemma is a simple application of Markov’s inequality, a similar result

can be found in [38], Lemma 4.10; see also [54].

Lemma 2.4.10. Let q, λ > 0 and let ξq be a positive function of q. Suppose that Z is a

positive random variable whose qth moment satisfies the bound

(EZq)1/q ≤ ξq
√
q + λ.

Then

P (Z ≥ e1/4(ξq
√
q + λ)) ≤ e−q/4.

Proof: By the Markov inequality,

P
(
Z ≥ e1/4(ξq

√
q + λ)

)
≤ EZq

(e1/4(ξq
√
q + λ))q

≤
(

ξq
√
q + λ

e1/4(ξq
√
q + λ)

)q
= e−q/4.

The main part of the proof of Theorem 2.4.7 is contained in the following lemma.

Lemma 2.4.11. Let Φ be an m×N matrix with coherence parameter µ. Suppose that for

some 0 < ε1, ε2 < 1

Pk+1({(I, i) : ‖ΦT
I φi‖2 ≥ ε1} | i) ≤ ε2. (2.19)

Let R be a random restriction to k coordinates and H = ΦTΦ − Id. For any q ≥ 2, p =

max(2, 2 log(rkRHR∗), q/2) we have

(E‖RHR∗‖q)1/q ≤ 6
√
p(
√
ε1 + (kε2)1/qµ

√
k +
√

2kθ ) +
2k

N
‖Φ‖2. (2.20)
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Proof. We begin with setting the stage to apply Theorem 2.4.8. Let η ∈ {0, 1}N be a

random vector with N/2 ones and let R1, R2 be random restrictions to ki coordinates in

the sets Ti(η), i = 1, 2, respectively. Denote by supp(Ri), i = 1, 2 the set of indices

selected by Ri and let H(η) := HT1(η)×T2(η). Let q ≥ 1 and let us bound the term

Eη(E‖R1H(η)R2‖q)1/q that appears on the right side of (2.18). The expectation in the

q-norm is computed for two random restrictions R1 and R2 that are conditionally inde-

pendent given η. Let Ei be the expectation with respect to Ri, i = 1, 2. Given η we can

evaluate these expectations in succession and apply Lemma 2.4.9 to E2 :

Eη(E‖R1H(η)R∗2‖q)1/q = Eη

[
E1(E2‖R1H(η)R∗2‖q)q/q

]1/q

≤ Eη

{
E1

[
3
√
p (E2‖R1H(η)R∗2‖

q
1→2)1/q +

√
2k2

N
‖R1H(η)‖

]q}1/q

≤ Eη

{
3
√
p
[
E1

(
E2‖R1H(η)R∗2‖

q
1→2)

]1/q

+

√
2k2

N

[
E1‖R1H(η)‖q

]1/q}
,

where on the last line we used the Minkowski inequality (recall that the random variables

involved are finite). Now use Lemma 2.4.9 again to obtain

Eη(E‖R1H(η)R∗2‖q)1/q ≤ 3
√
pEη

[
E1E2‖R1H(η)R∗2‖

q
1→2

]1/q

+ 3

√
2k2p

N
Eη

(
E1‖H(η)∗R∗1‖

q
1→2

)1/q

(2.21)

+

√
4k1k2

N2
Eη‖H(η)∗‖.

Let us examine the three terms on the right-hand side of the last expression. Let η(R2)

be the random vector conditional on the choice of k2 coordinates. The sample space for

η(R2) is formed of all the vectors η ∈ {0, 1}N such that supp(R2) ⊂ T2(η). In other

words, this is a subset of the sample space {0, 1}N that is compatible with a given R2.

The random restriction R1 is still chosen out of T1(η) independently of R2. Denote by
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R̃ a random restriction to k1 indices in the set (supp(R2))c and let Ẽ be the expectation

computed with respect to it. We can write

Eη(E1E2‖R1H(η)R∗2‖
q
1→2)1/q ≤ (EηE1E2‖R1H(η)R∗2‖

q
1→2)1/q

= (E2Ẽ‖R̃H(η)R∗2‖
q
1→2)1/q.

Recall that Hij = µij1{i 6=j} and that R̃ and R2 are 0-1 matrices. Using this in the last

equation, we obtain

E2Ẽ‖R̃H(η)R∗2‖
q
1→2 ≤ E2Ẽ max

j∈supp(R2)

(∑
i∈supp(R̃) µ

2
ij

)q/2
. (2.22)

Now let us invoke assumption (2.19). Recalling that k1 < k, we have

PR2,R̃

(
max

j∈supp(R2)

∑
i∈supp(R̃) µ

2
ij ≥ ε1

)
≤ k2ε2.

Thus with probability 1 − k2ε2 the sum in (2.22) is bounded above by ε1. For the other

instances we use the trivial bound k1µ
2. We obtain

3
√
pEηE1(E2‖R1H(η)R∗2‖

q
1→2)1/q ≤ 3

√
p((1− k2ε2)ε

q/2
1 + k2ε2(k1µ

2)q/2)1/q

≤ 3
√
p(ε

q/2
1 + k2ε2(k1µ

2)q/2)1/q

≤ 3
√
p(
√
ε1 + (kε2)1/q

√
k1µ2),

where in the last step we used the inequality aq + bq ≤ (a + b)q valid for all q ≥ 1 and

positive a, b. Let us turn to the second term on the right-hand side of (2.21). Assuming

coherence invariance, we observe that

‖H(η)∗R∗1‖1→2 = max
j∈T1(η)

‖Hj,T2(η)‖2 ≤ max
j∈[N ]
‖Hj,·‖2 =

√
Nµ̄2,

where Hj,· denotes the jth row of H and Hj,T2(η) is a restriction of the jth row to the

indices in T2(η). At the same time, if the dictionary is not coherence-invariant, then in the
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last step we estimate the maximum norm from above by
√
Nµ̄2

max, so overall the second

term is not greater than
√
Nθ,

Finally, the third term in (2.21) can be bounded as follows:√
4k1k2

N2
Eη‖H(η)‖ ≤

√
(k1 + k2)2

N2
‖H‖ =

k

N
‖ΦTΦ− IN‖

≤ k

N
max(1, ‖Φ‖2 − 1) ≤ k

N
‖Φ‖2,

where the last step uses the fact that the columns of Φ have unit norm, and so Φ2 ≥

N/m > 1.

Combining all the information accumulated up to this point in (2.21), we obtain

Eη(E‖R1H(η)R∗2‖q)1/q ≤ 3
√
p(
√
ε1 + (kε2)1/qµ

√
k +

√
2k2θ ) +

k

N
‖Φ‖2.

Finally, use this estimate in (2.18) to obtain the claim of the lemma.

Proof of Theorem 2.4.7:

Proof. The strategy is to fix a triple a, b, c ∈ (0, 1) that satisfies (2.17) and to prove that

(2.16) implies (k, δ, ε)-StRIP. Let ε1 = b
log 1/ε

and ε2 = k−1+log ε. In Corollary 2.4.4 set

α = ε1 and β = α log(2/ε2). Under the assumptions in (2.16) this corollary implies that

PR′
( k∑
m=1

µ2
im,j > ε1

)
< ε2.

Invoking Lemma 2.4.11, we conclude that (2.20) holds with the current values of ε1, ε2.

For any q ≥ 4 log k we have p = q/2, and thus (2.20) becomes

(E‖RHR∗‖q)1/q ≤ 3
√

2q(
√
ε1 + (kε2)1/qµ

√
k +
√

2kθ) + 2
k

N
‖Φ‖2. (2.23)

Introduce the following quantities:

ξq = 3
√

2(
√
ε1 + (kε2)1/qµ

√
k +
√

2kθ) and λ =
2k

N
‖Φ‖2.
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Now (2.23) matches the assumption of Lemma 2.4.10, and we obtain

Pk(‖RHR∗‖ ≥ e1/4(ξq
√
q + λ)) ≤ e−q/4. (2.24)

Choose q = 4 log(1/ε), which is consistent with our earlier assumptions on k, q, and ε.

With this, we obtain

Pk
(
‖RHR∗‖ ≥ e1/4(ξq

√
q + λ)

)
≤ ε. (2.25)

Now observe that ‖RHR∗‖ ≤ δ is precisely the RIP property for the support identified

by the matrix R. Let us verify that the inequality

6
√

2
(√

ε1 + (kε2)1/q
√
kµ2 +

√
2kθ
)√

log(1/ε) +
2k

N
‖Φ‖2 < e−1/4δ

is equivalent to (2.17). This is shown by substituting ε1 and ε2 with their definitions, and

µ and θ with their bounds in statement of the theorem. Thus, Pk(‖RHR∗‖ ≥ δ) ≤ ε,

which establishes the StRIP property of Φ.

Let f(k, ε) be the (1− ε)’th percentile of the random variable ‖RHR∗‖ at sparsity

level k ( recall that R is a function of k). Then equation (2.25) essentially says that the

quantity e1/4(ξq
√
q + λ), as a function of k and ε, is an upper bound on f . We denote

this quantity by g, i.e., g(k, ε) = e1/4(ξq
√
q + λ). In fact, other upper bounds of f can be

similarly constructed by modifying the assignment to ε2 (see e.g. Theorem 2.4.12). In the

above proof, the particular upper bound is chosen because of the specific purpose of that

Theorem. To be clearer, recall that the goal of Theorem 2.4.7 is finding the largest k such

that the (k, δ, ε)-StRIP of a given matrix holds; and the larger the k is, the more likely

StRIP is to fail. Therefore, if we are not able to find an upper bound that is uniformly
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tight for every k, we should at least require it to be tight for large ks, which is exactly the

way the above g is defined.

In the following theorem, we derive another upper bound on f which is required to be

tight for small ks. This upper bound, though not quantitatively optimal due to the large

constants which could arise as an artifact of our technique, is useful for qualitative analy-

sis, such as predicting the order of growth of f as a function of k.

Theorem 2.4.12. Let Φ, µ and θ be defined as in the assumption of Theorem 2.4.7. Let

ε < min{1/k, e1−1/ log 2} and suppose that Φ satisfies

kµ4 ≤ (1− a)2b2

32 log2(1/ε)
(

log(2k) log(e/ε) + 4 log(ε) log(c)
) and kθ ≤ ab

log(1/ε)
,

(2.26)

where a, b, c ∈ (0, 1) are constants such that

√
b+
√

2ab+ cµ+
2k

N
‖Φ‖2 ≤ e−1/4δ/6

√
2.

Let R and H be the same as those in the proof of Lemma 2.4.11, then with probability

exceeding 1− ε, we have

‖RHR∗‖ ≤ 6
√

2e1/4
(
− log ε

√
kθ +

√
b− cµ log ε

)
+

2k

N
‖Φ‖2. (2.27)

In particular, when Φ is a tight frame and let f(k, ε) be the (1 − ε)’th percentile of the

random variable ‖RHR∗‖ , then (2.27) becomes

f(k, ε) ≤ 6
√

2e1/4
(
− log ε

√
kθ +

√
b− cµ log ε

)
+

2k

m
. (2.28)

Proof. In the proof of Theorem 2.4.7, change the assignment of ε2 to ε2 = c−1/(4 log ε)k−1+2 log ε

and keep everything else the same.

41



Remark: The upper bound in equation (2.28) grows in the order of k1/2 when k is

small enough to satisfy (2.26). If this upper bound is tight, it is reasonable to expect the

left hand side of (2.28) to have the same order of growth. This conjecture is supported by

our numerical experiment in the next section.

2.4.1 StRIP matrices from orthogonal arrays

Let us briefly consider another way of constructing StRIP matrices based on el-

ementary arguments. Let C = {φ1, . . . , φN} be a collection of binary m-vectors. We

assume that the entries of the vectors are of the form ±1/
√
m and denote the correlation

of φi and φj by µij = |〈φi, φj〉|.

The set C is called an orthogonal array of strength t if every subset of r ≤ t coordi-

nates of the vectors of C supports a uniformly random binary r-vector. A good reference

for orthogonal arrays is the book by Hedayat et al. [33]. An orthogonal array has the

property that any t coordinates of a randomly chosen vector behave as independent ran-

dom variables (therefore, of course, t is much smaller than m). In particular, the first

t moments of the distance distribution of C are equal to the moments of the binomial

distribution. Let dij = m
2

(1− φTi φj) be the Hamming distance between φi and φj.

Lemma 2.4.13. (Pless identities, e.g. [40, p.132]) Let C be an orthogonal array of

strength t. Let Bw = (1/N)|{(φi, φj) ∈ C2 | dij = w}| be the number of pairs vec-

tors in C at distance w. For all l = 1, 2, . . . , t

m∑
w=0

Bw

N

(
w − m

2

)l
=

1

2m

m∑
w=0

(
m

w

)(
w − m

2

)l
. (2.29)
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We will need a manageable estimate of the right-hand side of (2.29). We quote from

[40, p.288]: let l ≥ 2 be even, then

1

2m

m∑
w=0

(
m

w

)(
w − m

2

)l
≤
(ml

4e

)l/2√
l e1/6. (2.30)

The main result of this section is given by the following theorem.

Theorem 2.4.14. Let C be an orthogonal array of strength t and cardinality N and let

l ≤ t be even. If m ≥ (3/4) l(k/δ)2(k/ε)2/l then Φ is (k, δ, ε)-StRIP.

Proof. Let I ⊂ [N ] be a uniformly random k-subset. We clearly have

λmin(ΦT
I ΦI)‖x‖2

2 ≤ ‖ΦIx‖2
2 ≤ λmax(ΦT

I ΦI)‖x‖2
2,

where λmin(·) and λmax(·) are the minimum and maximum eigenvalues of the argument.

By the Gershgorin theorem, any eigenvalue λ of the Gram matrix ΦT
I Φ satisfies

|λ− 1| ≤
∑
j∈Ii

µij,

for some i ∈ [N ], where we used the notation Ii := I\{i}. Now consider the probability

that for some i ∈ I the sum
∑

j∈Ii µij > δ. The proof will be finished if we show that this

probability is less than ε. Let I = {i1, . . . , ik}. We have

Pk

(
∃i ∈ I :

∑
j∈Ii

µij > δ
)
≤ kPk

(∑
j∈Ii1

µi1,j > δ
)
≤ k

1

δl
Ek

(∑
j∈Ii1

µi1,j

)l
= k

(k − 1)l

δl
Ek

( 1

k − 1

∑
j∈Ii1

µi1,j

)l
≤ k(k − 1)l−1

δl
Ek

∑
j∈Ii1

µli1,j,

where the last step uses convexity of the function z 7→ zl. The trick is to show that the

expectation on the last line, presently computed over the choice of I , can be also found
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with respect to a pair of random uniform elements of C chosen without replacement. This

is established in the next calculation:

Ek

∑
j∈Ii1

µli1,j =
∑

i1<i2<···<ik

1(
N
k

) k∑
j=2

µli1,ij =
1

k!
(
N
k

) ∑
i1 6=i2 6=···6=ik

k∑
j=2

µli1,ij

=
1

N(N − 1)

k∑
j=2

N∑
i1=1

∑
ij 6=i1

µli1,ij

= (k − 1)Eµlij, (2.31)

where the expectation on the last line (and below in the proof) is computed with respect

to a pair of uniformly chosen distinct random vectors from C. Next using (2.29) and

switching to the variable w = (m/2)(1− µ), we obtain

Eµlij =
( 2

m

)l m∑
w=1

Bw

N − 1

(
w − m

2

)l
=
( 2

m

)l N

N − 1

[ m∑
w=0

Bw

N

(
w − m

2

)l
− 1

N

(m
2

)l]
=
( 2

m

)l N

N − 1

[ 1

2m

m∑
w=0

(
m

w

)(
w − m

2

)l
− 1

N

(m
2

)l]
,

Now we can use (2.30) and l < m to write

Eµlij ≤
( l

em

)l/2 N

N − 1

√
le1/3 − 1

N − 1
≤ e1/6l(l+1)/2(em)−l/2.

Conclude using the condition on m :

Pk

(
∃i ∈ I :

∑
j∈Ii

µij > δ
)
≤ kl+1δ−le1/6l(l+1)/2(em)−l/2 < ε.

Observe that the condition of this theorem is nonasymptotic, and is satisfied by a

number of known constructions of orthogonal arrays.

Example: Consider sampling matrices obtained from the binary Delsarte-Goethals
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codes already mentioned above; see Eq.(??). It is known that the underlying code forms

an orthogonal array of strength t = 7, so taking l = 6 we obtain a family of (k, δ, ε)-StRIP

matrices of dimensions m×N for sparsity

k ≤ 0.52 (δ6εm3)1/7 = 0.52(δ6ε)1/7(2rN)3/(7(r+2)).

The case r = 0 was considered in [15] where these matrices were analyzed based on the

detailed properties of this particular case of the construction. Our computation, while

somewhat crude, permits a uniform estimate for the entire family of matrices. The

estimate can be improved if the expectation Eµlij can be computed explicitly from the

known distribution of correlations. For instance, taking r = 1 and using the distribution

given in [40, p.477] we obtain that Eµ6 ≈ (4/3)m−3. With this, the condition on sparsity

that emerges has the form k < 0.95(δ6εm3)1/7, with a better constant compared to the

general estimate. For instance, we obtain m × (m3/2) matrices with the (k, δ, 0.001)

StRIP property for all k ≤ 0.35δ6/7m3/7.

Another similar possibility arises if C is taken to be a binary dual BCH code with

m = 2s − 1, N = mr, µ = 2(r − 1)m−1/2, r = 1, 2, 3, . . . . Many more such construc-

tions can be obtained from other algebraic codes such as the Kerdock codes, Gold codes,

etc. [34]. This lends further support to earlier studies of sampling matrices constructed

from the BCH codes [1], Delsarte-Goethals codes, and other binary codes related to the

second-order Reed-Muller codes [14, 15].

It would be desirable to show that orthogonal arrays also suffice for the SINC prop-

erty; however, the technique introduced above results in parameters that contradict the

Rao bound on the number of rows in an array [33]. Thus, we are unable to show that this

45



construction results in matrices that are good for linear estimators.

2.4.2 Further constructions from binary codes

We remark that it is easy to show existence of matrices with low coherence. The

following observation is a rephrasing of the result known in coding theory as the Gilbert-

Varshamov existence bound for binary linear codes.

Proposition 2.4.15. Let l = log2N, l < m and let G = (g1, . . . , gl) be an m × l binary

matrix whose rows are chosen independently and uniformly from Fl2. Letm = 4 logN/µ2,

where 0 < µ < 1. Form the matrix Φ by constructing an F2-linear span of the columns

of G and using the map {0, 1} → { 1√
m
, −1√

m
}. Then Φ has coherence µ with probability

at least 1 − 2/N and mean square coherence µ̄2 < 1/m with probability at least (1 −

(m/N))m.

Proof. Note that the Hamming distance d between any two columns of a matrix with

coherence µ satisfies µ ≥ |1 − 2d/m|. The set of columns of C forms a linear space,

so it suffices to argue about Hamming weights rather than pairwise correlations. Let

u ∈ {0, 1}l be a nonzero vector, then the probability that the vector v = Gu has weight w

equals
(
m
w

)
2−m. LetX be the random number of columns with weight |w−m/2| ≥ mµ/2.

We have

EX ≤ 2
N − 1

2m

m( 1
2
−µ

2
)∑

w=0

(
m

w

)
≤ N21−m(1−h( 1

2
−µ

2
)), (2.32)

where h(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function. Using the

inequality

1− h(1/2− x) ≥ 2x2/ log 2, 0 ≤ x < 1/2
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and the condition for µ, we obtain EX ≤ 2/N. Since P (X > 0) ≤ EX, this implies

the first claim. The second part follows because there are
∏m

i=1(N − i) matrices G with

distinct nonzero rows.

The derandomizing of Gilbert-Varshamov codes was recently addressed by Porat

and Rothschild [45]. They presented a O(mN) deterministic algorithm that constructs

codes with large minimum distance. To construct incoherent dictionaries, we need a bit

more, namely that all the pairwise distances are in a narrow segment around m/2. The

algorithm in [45] can be easily tailored to do this. A simplified version of this procedure

which results in the algorithm of complexity O(mN2) (i.e., not as good as in [45]), was

given in [42]. In a nutshell it is as follows. Instead of constructing the m × N matrix,

N = 2l, we aim at constructing a basis of the space of columns, i.e., an m × l matrix

G. The rows of G are selected recursively. Before any rows are selected, the expected

number of codewords of weight far from m/2 is given by (2.32). The algorithm selects

rows one by one so that the expectation of the number of outlying vectors conditional on

the rows already chosen is the smallest possible.

We note that in the context of sparse recovery, the dependence between N and m is

likely to be polynomial. In this range of parameters the above complexity is acceptable

and is in fact comparable with the size of the matrix Φ which needs to be stored for

sampling and processing.
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Chapter 3

Compressive sensing with dictionary

3.1 Introduction

A recent direction of interest in compressed sensing concerns problems where sig-

nals are sparse in an overcomplete dictionary D instead of a basis, see [16, 47, 30, 39, 2].

This is motivated by the widespread use of overcomplete dictionaries in signal process-

ing and data analysis. Many signals naturally possess sparse frame coefficients, such as

images consisted of curves (curvelet frame). In addition, the greater flexibility and sta-

bility of frames make them preferable for practical purposes in order to compensate the

imperfectness of measurements.

In this setting, the signal x ∈ Cd can be represented as x = Dz, where z is k-

sparse and D is a N × d matrix with d ≥ N . The columns of D may be thought of as

an overcomplete frame or dictionary for CN . The linear measurements are y = Φz, with

Φ ∈ Cm,N .

A natural way to recover x from y is first solving

ẑ = arg min
z∈Rd
‖z‖1, subject to y = ΦDz. (3.1)

for the sparse coefficients ẑ, then synthesizing it to obtain x̂, i.e., x̂ = Dẑ. The resulting

method is therefore called `1-synthesis or synthesis based method [39, 47]. In the case
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when the measurements are perturbed, we naturally solve the following problem:

ẑ = arg min
z∈Rd
‖z‖1, subject to ‖y − ΦDz‖ ≤ ε. (3.2)

The work in [47] established conditions on Φ and D to make the compound ΦD

satisfy RIP. However, as pointed in [16, 39], forcing ΦD to satisfy RIP or even the weaker

NSP (defined in Section 1.1) implies exact recovery of both z and x, which is unnecessary

if we only care about obtaining a good estimate of x. In particular, it is argued in [16, 39]

that ifD is perfectly correlated (has two identical columns), then there are infinitely many

minimizers of (3.1) that may be assigned to ẑ, but all of them lead to the true signal x. It

seems reasonable to expect that a similar result may hold in the case of highly correlated

dictionaries, since they are only a small perturbation away from the perfectly correlated

ones.

3.2 Overview and main results

In the following, we will generalize the ordinary NSP to the dictionary case (D-

NSP), and prove (in Theorem 3.3.1) that this new condition is equivalent to the successful

recovery of signals in DΣk via `1-synthesis, where DΣk = {x : ∃ z, such that x =

Dz, ‖z‖0 ≤ k} is the set of signals that have k-sparse representations in D. Moreover,

a stability result is given in Theorem 3.4.2. To the best of our knowledge, these results

are the first characterization of compressed sensing with dictionaries via `1-synthesis ap-

proach.

Section 3.5 studies further properties of D-NSPand shows that the condition Φ be-

ing D-NSP is equivalent to ΦD being NSP as long as D is “full spark” (every d columns
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of D are linearly independent). As a consequence, under the full spark assumption, the

`1-synthesis method cannot accurately recover the signals without accurate recoveries of

their sparse representations, therefore an incoherent dictionary is needed under these cir-

cumstances. Further analysis on D-NSP can be found in [25].

3.3 A sufficient and necessary condition for noiseless sparse recovery

In this section, we develop a necessary and sufficient condition for the `1-synthesis

method (3.1) to achieve accurate reconstruction of sparse signals with noiseless measure-

ments. We say the `1-synthesis method (3.1) is successful in recovering x when every

minimizer ẑ of (3.1) satisfies Dẑ = x. We show that the following property on Φ is a

necessary and sufficient condition for successfully recovering all signals inDΣs via (3.1).

Definition 7 (Null Space Property of the dictionary D (D-NSP)). Fix a dictionary D ∈

CN,d, a matrix Φ ∈ Cm,N is said to satisfy the D-NSP of order k (k-D-NSP) if for any

index set T with |T | ≤ k, and any v ∈ D−1(ker Φ\{0}), there exists u ∈ kerD, such that

‖vT + u‖1 < ‖vT c‖1. (3.3)

Theorem 3.3.1. D-NSP is a necessary and sufficient condition for the success of `1-

synthesis for all signals in the set DΣk.

Proof. Suppose that `1-synthesis is successful for all the signals inDΣk. Take any support

T and v ∈ D−1(ker Φ/{0}), Let x = DvT be the signal that we are trying to recover,

then by assumption, the minimizer must be vT + u with some u ∈ kerD.
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vT − v is another feasible representation, however, it cannot be a minimizer since

D(vT − v) 6= DvT , therefore

‖vT + u‖1 < ‖vT − v‖1 = ‖vT c‖1.

On the other hand, assuming that D-NSP is satisfied, suppose that Dẑ 6= Dz0,

then v = z0 − ẑ ∈ D−1(ker Φ/{0}), Let T be the support of z0, therefore there exists

u ∈ kerD, ‖vT + u‖1 < ‖vT c‖1, i.e. ‖z0 − ẑT + u‖1 < ‖ẑT c‖1, so

‖z0 + u‖1 ≤ ‖z0 − ẑT + u‖1 + ‖ẑT‖1 < ‖ẑT c‖1 + ‖ẑT‖1 = ‖ẑ‖1.

Since ẑ is the minimizer, this is a contradiction.

Notice that when D is the canonical basis of Cd, D-NSP is reduced to the normal

NSP with the same order. In other words, D-NSP is a generalization of NSP for the

dictionary case.

The intuition forD-NSP rises from the fact that we are only interested in recovering

x instead of the representation z0. As long as the minimizer ẑ lies in the affine plane

z0 + kerD, our reconstruction is a success.

3.4 D-NSP based stability analysis

It is known that NSP is a necessary and sufficient condition not only for the sparse

and noiseless recovery, but also for compressible signals with noisy measurement [2,

49]. However, the stability analysis of NSP [2] cannot be easily generalized to our case

because essentially we need the function f(v) = (‖vT c‖1 − ‖vT + u‖1)/‖Dv‖2 to be

bounded away from zero. In the basis case, we have knowledge of f(v) on a compact
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set, and consequently the extreme value theorem can be applied to prove the exisitence

of a positive lower bound. In our case we do not have a compact set, therefore another

approach to overcome this difficulty is necessary.

Definition 8 (Strong Null Space Property of the dictionary D (D-SNSP)). A sensing

matrix Φ is said to have the strong null space property with respect to D of order k (k-D-

SNSP) if for any index set T with |T | ≤ k, and any v ∈ ker(ΦD), there exists u ∈ kerD

such that

‖vT c‖1 − ‖vT + u‖1 ≥ c‖Dv‖2. (3.4)

D-SNSP seems to be a stronger assumption than D-NSP by definition. However,

in the real case, we are able to show that it is actually equivalent to the D-NSP.

Theorem 3.4.1. If D ∈ RN,d and Φ ∈ Rm,N , then D-NSP is equivalent to D-SNSP.

Since the proof is tedious, we postpone it to Section 3.7. First we prove under D-

SNSP, the `1-synthesis recovery is stable with respect to perturbations of the measurement

vector y.

Theorem 3.4.2. If Φ is k-D-NSP, then any solution ẑ of problem (3.2) satisfies

‖Dẑ − x‖2 ≤ C1σk(x) + C2ε,

where σk(x) denotes the `1 residue of the best k-term approximation to x, C1, C2 are

constant dependent on n, the c in (3.4), the minimum singular values of Φ and D, but not

on x.

Proof. Let x = Dz0 be the true sparse representation. Let h = D(ẑ − z0), and we can

decompose h as h = Dw+η whereDw ∈ ker Φ, η ∈ ker Φ⊥, and ‖η‖2 ≤ 1
νΦ
‖Φh‖2 ≤ 2ε

νΦ
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with νΦ being the smallest singular value of Φ.

Let ξ = DT (DDT )−1η, then η = Dξ, and

‖ξ‖2 ≤
1

νD
‖η‖2 ≤

2

νΦνD
ε. (3.5)

SinceD(ẑ−z0) = h = D(w+ξ), then ẑ−z0 = w+ξ+u1 with some u1 ∈ kerD.

Let v = w + u1, then we have Dv ∈ ker Φ and ẑ − z0 = v + ξ.

So there exists u ∈ kerD such that (3.4) holds, therefore

‖v + z0,T‖1 − ‖ − u+ z0,T‖1

≥‖vT c‖1 + ‖vT + z0,T‖1 − ‖ − uT + z0,T‖1 − ‖uT c‖1

≥‖vT c‖1 − ‖vT + uT‖ − ‖uT c‖1

=‖vT c‖1 − ‖vT + u‖1 ≥ c‖Dv‖2. (3.6)

On the other hand, from the fact that ẑ is a minimizer, we get

‖ − u+ z0,T‖1 + ‖z0,T c‖1 ≥ ‖ − u+ z0‖1 ≥ ‖v + z0 + ξ‖1

≥ ‖v + z0‖1 − ‖ξ‖1 ≥ ‖v + z0,T‖1 − ‖z0,T c‖1 − ‖ξ‖1.

It follows that

‖v + z0,T‖1 − ‖ − u+ z0,T‖1 ≤ 2‖z0,T c‖1 + ‖ξ‖1. (3.7)

Combining (3.6) and (3.7), we get

‖Dv‖2 ≤
2

c
‖z0,T c‖1 +

1

c
‖ξ‖1 ≤

2

c
‖z0,T c‖1 +

√
n

c
‖ξ‖2. (3.8)
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In the end, using (3.8) and (3.5),

‖h‖2 = ‖Dv +Dξ‖2 = ‖Dv + η‖2 ≤ ‖Dv‖2 + ‖η‖2

≤ 2

c
‖z0,T c‖1 +

√
n

c
‖ξ‖2 +

1

νΦ

2ε

≤ 2

c
‖z0,T c‖1 +

2
√
n

cνΦνD
ε+

1

νΦ

2ε.

It is natural to ask how much stronger this new assumption is than D-NSP. We

address this question partially in the next section.

3.5 A further study of D-NSP and admissible dictionaries

This section further explores the two assumptions D-NSP and D-SNSP for the

purpose of answering the following important questions: What kind of dictionaries allow

sensing matrices Φ with few measurements to satisfy D-NSP? How to find those sensing

matrices given a dictionary?

We call an N × d dictionary D k-admissible if there exists a measurement matrix

Φ ∈ Cm,N with m < N such that Φ is k-D-NSP. We call D inadmissible if D is not

k-admissible for any k ≥ 2.

The following proposition shows that adding repeated columns to the dictionary D

will not affect admissibility. This is quite intuitive since we do not change the set DΣk

during this procedure, and we only care about recovering the signal x rather than the

representation z0.

Proposition 3.5.1. Let D ∈ CN,d, and let I be any index set I ⊂ {1, ..., n}. Define
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D̃ = [D,DI ], then for any sensing matrix Φ ∈ Cm,N , we have Φ is D-NSP if and only if

Φ is D̃-NSP.

Proposition 3.5.1 states that a perfectly correlated dictionary D does not preclude

the reconstruction of signals. It is natural to ask whether this is still the case for a highly

coherent dictionary. We answer this question partially by showing that a class of highly

correlated dictionaries is inadmissible. Moreover, easily verifiable conditions that are

equivalent to D-NSP are given in Section 3.6 under the assumption that D is full spark.

3.5.1 A Class of inadmissible matrices

The following theorem constructs a class of inadmissible matrices with a dimension

1 kernel.

Theorem 3.5.2. Given an orthonormal basis Φ = [φ1, ..., φN ]. LetH =
⋃

Ii={1,...,N}\i
span(ΦIi)

be a union of hyperplanes spanned by every combination of N − 1 columns of Φ. Then

there exists a small constant r0 such that for every v ∈ B(φ1, r0)\H , D = [Φ, v] ∈

CN,N+1 is not admissible.

We need the following lemma for the proof of this Theorem.

Lemma 3.5.3. Suppose D is a N × (N + 1) dictionary. If there exists T ⊂ {1, ..., N + 1}

with |T | ≥ 2 such that the normalized vector u ∈ kerD satisfies

1. ‖uT‖1 > ‖uT c‖1, and

2. T c ⊂ supp(u).

Then D cannot be |T |-admissible.
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Proof. Assume that D is a dictionary which satisfies the assumptions of Lemma 3.5.3

and is |T |-admissible at the same time. We shall prove this leads to a contradiction.

For a vector w ∈ CN , we define ‖w‖min = min{|wi|, i = 1, ..., N} to be the

minimum magnitude in w. Assumption 2 then implies ‖u‖min > 0. Suppose Φ is D-

NSP and fix a v0 ∈ D−1(ker(Φ)\{0}). We define α = 2‖v0‖∞/‖u‖min. Now that

v0 + αu,−v0 + αu ∈ D−1(ker(Φ)\{0}), we can use the definition of D-NSP to derive:

there exist c1, c2 ∈ C such that

‖vT + αuT − c1u‖1 < ‖vT c + αuT c‖1,

and

‖ − vT + αuT − c2u‖1 < ‖ − vT c + αuT c‖1,

Adding up the two equations, we get

‖vT + αuT − c1u‖1 + ‖ − vT + αuT − c2u‖1

< ‖vT c + αuT c‖1 + ‖ − vT c + αuT c‖1

= 2α‖uT c‖1. (3.9)

The equality in (3.9) follows from our definition of α. On the other hand,

‖vT + αuT − c1u‖1 + ‖ − vT + αuT − c2u‖1

= ‖vT + (α− c1)uT‖1 + |c1|‖uT c‖1

+ ‖ − vT + (α− c2)uT‖1 + |c2|‖uT c‖1

≥ |2α− c1 − c2|‖uT‖1 + (|c1|+ |c2|)‖uT c‖1. (3.10)

Equations (3.9) and (3.10) together imply

|2α− c1 − c2|‖uT‖1 + (|c1|+ |c2|)‖uT c‖1 < 2α‖uT c‖1,
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which can be simplified to

‖uT‖1 < ‖uT c‖1.

This is a contradiction to Assumption 1 of Lemma 3.5.3.

Proof of Theorem 3.5.2: Notice that ker(D) is one dimensional and set its basis to

be u = (aT ,−1). Pick an index set T with |T | ≥ 2 such that {1, N + 1} ∈ T . First

if v 6∈ H , then 〈v, φi〉 6= 0 for i = 1, ..., N . This means that all coordinates of u are

nonzero. Second, we can pick r0 small enough such that whenever v ∈ B(φ1, r), we have

‖uT‖1 > ‖uT c‖1.

Therefore picking v ∈ B(φ1, r0)\H fulfills the two assumptions of Lemma 3.5.3.

This completes the proof.

Proposition 3.5.4. If D = [B, v] where B is a full rank N × (d− 1) matrix and v = Bα

with ‖α‖1 ≤ 1, then Φ has D-NSP implies that Φ has B-NSP with the same order k.

With this proposition, we can add more columns to the inadmissible dictionaries

constructed in Theorem 3.5.2 to obtain inadmissible dictionaries with arbitrary dimen-

sion.

3.6 Relation between D-NSP and NSP

It is obvious that ΦD being NSP implies Φ being D-NSP, which explains why im-

posing RIP or incoherence conditions on ΦD could be too strong and unnecessary. Quan-

tifying the gap between these two conditions can possibly answer the question whether

we can allow highly coherent dictionaries or not, since ΦD being NSP will inevitably lead
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to the incoherence of D. Surprisingly enough, we show that whenever D is full spark,

these two conditions are equivalent.

Theorem 3.6.1. The following conditions are equivalent under the assumption that D is

full spark,

• Φ is k-D-NSP;

• ΦD is k-NSP;

• Φ is k-D-SNSP;

• For any v ∈ ker ΦD, there exists a u such that

‖vT + u‖1 < ‖vT c‖1.

Remark 3.6.1. Theorem 3.6.1 implies that for a given full spark dictionaryD and a given

sensing matrix Φ, if Φ satisfiesD-NSP, then all signals xwill be recovered by synthesizing

the already correctly recovered representations z. If Φ does not satisfy D-NSP, although

certain signals cannot be recovered accurately, there might be signals that are recovered

from a “wrong” representation.

In the beginning of Section 3.4, we mentioned the difficulty of proving stability

result for D-NSP is due to the non-compactness of the set D−1(ker Φ\{0}). However, in

the full spark case, Theorem 3.6.1 guarantees that we can extend this set to its closure,

and then the result of Theorem 3.4.2 will trivially hold under the necessary assumption Φ

being D-NSP.

We remark that full spark is not a restrictive assumption on matrices. In fact, full

spark matrices are dense in the space of matrices, and a large class of full spark Harmonic
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frames are constructed in [3]. This means that for “most” dictionaries, we need to study

the composite ΦD, and ΦD being NSP is the equivalent condition for successful recovery

of x ∈ DΣk. Hence for “most” dictionaries, D is not allowed to be very coherent, which

is somewhat unexpected.

Remark 3.6.2. Given an admissible dictionary D that is perfectly correlated, we can

always find a full spark and highly coherent dictionary D′ that is arbitrarily close to

D, therefore we cannot find a sensing matrix Φ such that ΦD′ satisfies k-NSP for any

k ≥ 2. By Theorem 3.6.1, D′ is inadmissible, indicating that a small perturbation on the

dictionary cannot preserve admissibility.

3.7 Proofs of the main theorems

Lemma 3.7.1. Assume Φ satisfies D-NSP. If in addition, for any u ∈ kerD, there exists a

ũ ∈ kerD, such that

‖uT + ũ‖1 < ‖uT c‖1, (3.11)

then ΦD satisfies NSP.

Proof. Let

f(u) = min
ũ∈kerD

‖uT c‖1 − ‖uT + ũ‖1

‖u‖2

.

Continuity of f(u) together with (3.11) implies that it attains minimum on the closed set

{u : u ∈ kerD), ‖u‖2 = 1}, i.e. f(u) ≥ c > 0. Then we have for any u ∈ kerD, there

exists a ũ such that

‖u‖2 ≤
1

c
(‖uT c‖1 − ‖uT + ũ‖1). (3.12)
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Now suppose that x is a signal that has sparse representation under D, i.e.x = Dz for

some z ∈ Σk and ẑ the solution to (3.2). Since Φ is assumed to be D-NSP, we must have

Dẑ = Dz, which implies h := ẑ − z ∈ kerD. Hence there exists a ũ such that (3.12)

holds for h. Since ẑ is the minimizer, we have,

0 ≥ ‖h+ z‖1 − ‖z − ũ‖

≥ ‖hT c‖1 + ‖hT + z‖1 − ‖z − ũT‖1 − ‖ũT c‖1

≥ ‖hT c‖1 − ‖hT + ũT‖1 − ‖ũT c‖1

= ‖hT c 1− ‖hT + ũ‖1

≥ c‖h‖2,

which implies ẑ = z, the sparse coefficients are accurately recovered. Since our choice

of z is arbitrary, and for all sparse coefficient to be recovered universally, ΦD must satisfy

NSP.

Proof of of Theorem 3.6.1 . Here we only prove Φ is D-NSP implies ΦD is NSP. Other

equivalences are either trivial or similar to this proof.

To rule out the trivial case, suppose that ker Φ 6= ∅. According to Lemma 3.7.1, we only

need to show that (3.11) holds.

Step 1. Fix a T with |T | < N , we will show that for any u ∈ kerD, there exists

v ∈ D−1(ker Φ\{0}), such that suppuT c ⊂ supp vT c .

Since spark(D) = N + 1 and u ∈ kerD, then we have | suppu| ≥ N + 1, and thus

| suppuT c | ≥ N + 1 − |T |. Therefore there exists a G ∈ suppuT c with |G| = N − |T |

and |G ∪ T | = N . On the other hand, ker Φ 6= ∅ implies D−1(ker Φ\{0}) 6= ∅. Assume
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v0 is an element in this nonempty set. Let DG∪T be the submatrix of D corresponding

to the index set G ∪ T . Then DG∪T is full rank by assumption. Let v be the vector

defined by v(G∪T )c = 0 and vG∪T = D−1
G∪TDv0. Then obviously we have Dv = Dv0,

supp vT c ⊂ suppuT c and v ∈ D−1(ker Φ\{0}. This finishes Step 1.

Step 2: Consider the same T as in Step 1. Given a u ∈ kerD, find the vector v with

supp vT c ∈ suppuT c using Step 1. Choose α large enough such that α‖u‖min > ‖v‖∞.

Then by the assumption that Φ is D-NSP, there exist u1, u2 ∈ kerD, such that

‖(v + αu)T + u1‖1 < ‖(v + αu)T c‖1

and

‖(−v + αu)T + u2‖1 < ‖(−v + αu)T c‖1

hold. Adding the above two equations, and using convexity of the l1 norm, we get

‖2αuT + (u1 + u2)‖1 < 2α‖uT c‖1.

The proof is completed by recalling that T is arbitrary and by invoking Lemma 3.7.1.

In order to prove Theorem 3.4.1, we need the following two lemmas.

Lemma 3.7.2. Define

h(w) = sup
ũ∈kerD

‖wT c‖1 − ‖wT + ũ‖1

‖Dw‖
,

then h(w) is positive and bounded away from zeros. SetW = {w : w ∈ D−1(ker Φ\{0}), C1 ≤

‖w‖ ≤ C2‖Dw‖}. In addition, this bound is independent of C1.

Proof. First, h(w) > 0, and it is a continuous function because

sup
ũ∈kerD

−‖wT + ũ‖1 = − inf
ũ∈kerD

‖wT + ũ‖1 = dist(wT , kerD)
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is continuous.

Secondly, W ∩B(0, C1) = ker(ΦD)∩B(0, C1)∩{‖w‖ ≤ C2‖Dw‖} is a compact

set, so there exists a C3 > 0 such that h(w) ≥ C3 on W ∩B(0, 1).

Thirdly, take any w ∈ W in general, since h(C1w/‖w‖) ≥ C3, there exists ũ ∈

kerD such that ‖C1wTC /‖w‖2‖1−‖C1wT /‖w‖2+ũ‖1
‖C1Dw‖2/‖w‖2 > C3/2, i.e. ‖w

TC
‖1−‖wT+ũ·‖w‖2/C1‖1

‖Dw‖2 >

C3/2, which implies h(w) > C3/2.

Fix a support T and a vector v ∈ D−1(ker Φ\{0}) and define for all u ∈ kerD, and

all t > 0 the functions

gv(u, t) = sup
ũ∈kerD

‖(tv + u)T c‖1 − ‖(tv + u)T + ũ‖1, and fv(u, t) = gv(u, t)/t.

The D-NSP then implies that gv(u, t) > 0, fv(u, t) > 0.

Lemma 3.7.3. For any fixed v, infu∈kerD,t>0 fv(u, t) > 0.

Proof. Step 1. It is sufficient to prove inf‖u‖=1,u∈kerD,t>0 fv(u, t) > 0. This is due to the

fact that when u 6= 0, fv(u, t) = fv(
u
‖u‖ ,

t
‖u‖); when u = 0, fv(0, t) = fv(0, 1) > 0, so

inf
u∈kerD,t>0

fv(u, t) = min{ inf
‖u‖=1,u∈kerD,t>0

fv(u, t), fv(0, 1)}.

Suppose inf‖u‖=1,u∈kerD,t>0 fv(u, t) = 0, then there exists (ui, ti) such that

limi→∞ fv(ui, ti) = 0.

Step 2. Here we prove that {ti} has a subsequence converging to 0. Otherwise,

ti ≥ t0 > 0, which result tiv + ui ∈ W with W = {w : w ∈ D−1(ker Φ\{0}), C1 ≤

‖w‖ ≤ C2‖Dw‖} some constants C1, C2 (depending on v). Indeed,

‖tiv + ui‖ ≥ ‖PkerD⊥(tiv + ui)‖ = ‖PkerD⊥(tiv)‖ ≥ t0‖PkerD⊥(v)‖ 6= 0, and
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‖tiv + ui‖ ≤ ‖tiv‖+ 1 ≤


‖v‖+ 1 ≤ ‖v‖+1

t0‖Dv‖‖D(tiv + ui)‖, if ti ≤ 1

ti(‖v‖+ 1) = ‖v‖+1
‖Dv‖ ‖D(tiv + ui)‖, if ti > 1

.

Therefore by Lemma 3.7.2, fv(ui, ti) = h(tiv + ui)‖Dv‖ ≥ C3‖Dv‖ which is a

contradiction.

Now we assume (ui, ti) → (u0, 0). There must be infinitely many of {ui − u0}

falling into one orthant (closed) of Rd, say O. Without loss of generality, we assume

xi := ui − u0 ∈ O.

Let {wj}mj=1 be the unit vectors on each extremal ray of the polyhedral cone kerD∩

O, i.e., any vector in kerD ∩ O can be expressed as a nonnegative linear combination of

{wj}mj=1.

We write xi = ui − u0 =
∑m

j=1 βi(j)wj , where βi(j) ≥ 0. Again, without loss

of generality, we assume βi(j)
ti

has a limit for every j as i → ∞. There are only three

possibilities of the limits: 0, constants,∞.

Step 3. We can assume βi(j)
ti
→∞ for every j.

If βi(j0)
ti
→ 0, for some j0, then

gv(ui, ti) ≤ o(ti) + gv(ui − βi(j0)wj0 , ti) ≤ o(ti) + gv(ui, ti).

Divide all sides by ti and take the limit, to get

lim
i→∞

fv(ui − βi(j0)wj0 , ti) = lim
i→∞

fv(ui, ti) = 0.

If βi(j0)
ti
→ aj0 6= 0, for some j0, then similarly,

gv(ui, ti) = sup
ũ∈kerD

‖(tiv + aj0tiwj0 +
∑
j 6=j0

βi(j)wj + u0 + (βi(j0)− aj0ti)wj0)T c‖1

− ‖(tiv + aj0tiwj0 +
∑
j 6=j0

βi(j)wj + u0 + (βi(j0)− aj0ti)wj0)T + ũ‖1
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≤ o(ti) + gv+aj0wj0
(ui − βi(j0)wj0 , ti)

≤ o(ti) + gv(ui, ti),

which leads to

lim
i→∞

fv+aj0wj0
(ui − βi(j0)wj0 , ti) = lim

i→∞
fv(ui, ti) = 0.

In summary, take J1 = {j : βi(j)
ti
→ 0}, J2 = {j : βi(j)

ti
→ aj 6= 0}, we get

lim
i→0

fv′(u
′
i, ti) = 0,

where v′ = v +
∑

j∈J2
ajwj, u

′
i = ui −

∑
j∈J1∪J2

βi(j)wj .

Notice that the coefficients βi of u′i − u0 in the expansion of wj will all have the

property that βi(j)
ti
→∞.

Step 4. Final contradiction.

Choose K large enough (the choice of K will be specified later)

Let xi − ti
tK
xK =

∑
ci(j)wj , so we can find an I0 such that for all i > I0, we have

ci(j) = βi(j)−
ti
tK
βK(j) > 0.

Consider

∑
ci(j)gv(wj + u0, 0) +

ti
tK
gv(uK , tK) + (1−

∑
ci(j) +

ti
tK

)gu0(0)

≤
∑

ci(j) [‖(wj + u0)T c‖1 − ‖(wj + u0)T + ũ1‖1] + ε

+
ti
tK

[‖(tKv + xK + u0)T c‖1 − ‖(tK + xK + u0)T + ũ2‖1] + ε

+ (1−
∑

ci(j) +
ti
tK

)[‖(u0)T c‖1 − ‖(u0)T + ũ3‖1] + ε
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=‖[
∑

ci(j)(wj + u0) +
ti
tK

(tKv + xK + u0) + (1−
∑

ci(j) +
ti
tK

)u0]T c‖1 + 3ε

(3.13)

−
∑

ci(j)‖(wj + u0)T + ũ1‖1 −
ti
tK
‖(tK + xK + u0)T + ũ2‖1 − ‖(u0)T

+ (1−
∑

ci(j) +
ti
tK

)ũ3‖1

≤gv(ui, ti) + 3ε. (3.14)

In order for (3.13) to hold, due to the fact that ci(j) > 0, ti
tK
> 0, and 1−

∑
ci(j) +

ti
tK

> 0 (if i > I0), a sufficient condition is that for each k ∈ T c, the sign of wj(k) +

u0(k), tKv(k) + xK(k) + u0(k), and u0(k) are all the same. This indeed holds because

we can choose K such that

βK(j)

tK
>

|v(k)|
maxj |wj(k)|

, for all index k ∈ T c.

With such choice of K, we get |v(k)| <
∑m

j=1 |wj(k)|βK(j)
tK

= |
∑m

j=1wj(k)βK(j)
tK
|

(equality holds since all wj are in the same orthant), hence

sgn(tKv(k) +
m∑
j=1

βK(j)wj(k)) = sgn(
m∑
j=1

βK(j)wj(k)) = sgn(wj(k)).

So if u0(k) = 0, we have sgn(wj(k) + u0(k)) = sgn(wj(k)) and

sgn(tKv(k)+xK(k)+u0(k)) = sgn(tKv(k)+
∑m

j=1 βK(j)wj(k)) = sgn(wj(k)).

If u0(k) 6= 0, we have sgn(wj(k) + u0(k)) = sgn(u0(k)) and

sgn(tKv(k) + xK(k) + u0(k)) = sgn(u0(k)) with a big enough choice of K since

ti → 0, xi → 0.

Now that (3.13) is justified, let ε→ 0 in (3.14), we get

gv(ui, ti) ≥
ti
tK
gv(uK , tK)⇒ fv(ui, ti) ≥ fv(uK , tK),
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which is a contradiction.

Proof of Theorem 3.4.1. Suppose Φ has D-NSP, we need to show the function

F (w) = sup
ũ∈kerD

‖wT c‖1 − ‖wT + ũ‖1

‖Dw‖2

has a positive lower bound on D−1(ker \{0}).

Decompose w as w = tv + u where u = PkerDw, tv = PkerD⊥w, ‖v‖ = 1, and

t > 0. Therefore

inf
w∈D−1(ker \{0})

F (w) = inf
v∈kerD⊥,‖v‖=1

inf
u∈kerD,t>0

fv(u, t)/‖Dv‖. (3.15)

By Lemma 3.7.3, the function infu∈kerD,t>0 fv(u, t) is always positive. Since the set

kerD⊥∩B(0, 1) is compact, it is sufficient to prove that the function infu∈kerD,t>0 fv(u, t)

is lower-semicontinuous with respect to v.

fv+e(u, t) = sup
ũ∈kerD

‖(tv + te+ u)T c‖1 − ‖(tv + te+ u)T + ũ‖1

t

≥ sup
ũ∈kerD

‖(tv + u)T c‖1 − ‖(tv + u)T + ũ‖1 − ‖te‖1

t
.

Taking the infimum over u, t on both sides, we obtain

inf
u∈kerD,t>0

fv+e(u, t) ≥ inf
u∈kerD,t>0

fv(u, t)− ‖e‖1,

which shows this function is lower-semicontinuous.
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Chapter 4

Deterministic Sensing Matrices for Dictionaries

A natural question arising from Theorem 3.6.1 is as follows: given a full spark

dictionary D, how to actually construct a sensing matrix Φ such that the composition ΦD

is NSP. Note that D itself should satisfy NSP for this question to be well-posed. This

problem was addressed by Rauhut et al. in [47], but only random sensing matrices were

considered. In particular, they proved ifD has a small restricted isometry constant δD and

the random m×N sensing matrix Φ satisfies the concentration inequality

P
(
|‖Φv‖ − ‖v‖| ≥ ε‖v‖

)
≤ 2e−cmε

2/2, ε ∈ (0, 1/3),

for all v and some constant c, then with large probablity, the restricted isometry constant

of ΦD is small and linearly depends on δD. It has been shown that many usual random

families satisfy the above concentration inequality. Among them are the Gaussian and

Bernoulli ensembles as well as the so-called isotropic subgaussian ensembles, which are

constructed by stacking independent copies of a random vector Y as rows of Φ, where Y

is such that E|〈Y, v〉|2 = ‖v‖2 for all v ∈ Rn.

If we want Φ to be deterministic, then it can no longer be universal in the sense that

no single Φ can make ΦD to be RIP (or NSP) for all D. In the following subsections,

we construct two classes of deterministic sensing matrices that are compatible with the

Dirac-Fourier dictionary D = [I, F ], where I is the identity matrix and F the discrete

Fourier matrix. While the second class might not be as useful as the first one, it has a very
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interesting mathematical structure.

4.1 A Class of Deterministic Matrices For the Dirac-Fourier Joint Dic-

tionary

In this section, we construct a class of matrices that are compatible with the Dirac-

Fourier joint dictionary. To the best of our knowledge, this is the first class of deterministic

sensing matrices for dictionaries constructed in the literature. The matrices are formed by

stacking shifted versions of a single chirp sequence, and thus are constant magnitude and

quasi-circulant. Verifying why the resulting composition of the sensing matrix and the

dictionary satisfies RIP is essentially the same as why the matrix itself is RIP, which is

quite straightforward as soon as we know the property of a very similar construction in

[32] and our result in Chapter 2. The next three theorems include both the construction of

the matrices and the charaterizations of their RIP properties.

Theorem 4.1.1. Let p > 2 be a prime and A be a chirp matrix defined by

Aj,k = e2πi
(j+k)2

p .

Let f(n) be a polynomial of degree d ≥ 2 with integer coefficients. Choose m to be an

integer satisfying

p1/d ≤ m ≤ p.

Let Ω = {f(n) mod p : n = 1, 2, ...,m} and fix any η > 0. Then for any δs ∈ (0, 1), the

matrixm−1/2AΩ satisfies RIP(k, δk) whenever the following conditions on k are satisfied:
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k ≤ c1m

21−d−η, if p1/(d−1) ≤ m ≤ p,

k ≤ c2m
( ln p

lnm
−d)21−d−η, if p1/d ≤ m ≤ p1/(d−1).

(4.1)

where c1 c2 are constants that only depend on d and η, and δk.

As made clear earlier, any matrix will satisfy an equal or higher order of StRIP than

RIP.

Theorem 4.1.2. Fix any η > 0, and suppose p, m, Ω, and AΩ are the same as those in

Theorem 4.1.1, then the matrix m−1/2AΩ satisfies the (k, δk, ε)-StRIP if
k ≤ max

{
α1m,α2m

23−d−4η
}
, if p1/(d−1) ≤ m ≤ p,

k ≤ max
{
α1m,α3m

d23−d(ln p/ lnm−1)−4η
}
, if p1/d ≤ m ≤ p1/(d−1).

(4.2)

where α1 − α3 only depend on d, δk, η and ε.

Remark 4.1.1. The required relations between k, m, and p for the matrix to satisfy SINC

are essentially the same up to some logarithmic factor. Since the proof is also similar, we

omit it here.

Theorem 4.1.3. Suppose p, m, Ω, and AΩ are the same as those in Theorem 4.1.1. Let

F be the p × p DFT matrix and D = [I, F ], then m−1/2AΩF has the same order of RIP

and StRIP as those in Theorem 4.1.1 and Theorem 4.1.2. In addition, m−1/2AΩD satisfies

RIP if 
k ≤ c1m

21−2d−η, if p1/(d−1) ≤ m ≤ p,

k ≤ c2m
( ln p

lnm
−2d)21−2d−η, if p1/d ≤ m ≤ p1/(d−1),

and satisfies the (k, δk, ε)-StRIP if
k ≤ max

{
α1m,α2m

24−2d−4η
}
, if p1/(d−1) ≤ m ≤ p,

k ≤ max
{
α1m,α3m

d24−2d(ln p/ lnm−1)−4η
}
, if p1/d ≤ m ≤ p1/(d−1).
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Proofs of these results essentially rely on the following theorem of Weil and Theo-

rem 2.4.7.

Theorem 4.1.4. ([55]). Let m, a, q be integers such that (a, q) = 1 and q > 0. If f is a

real polynomial of degree k ≥ 1 with leading coefficient α such that |α − a
q
| ≤ tq−2 for

some t ≤ 1 then for any η > 0 we have

m∑
x=1

e2πif(x) = O

(
m1+η

(
t

q
+

1

m
+

t

mk−1
+

q

mk

)21−k)
.

Proof of Theorem 4.1.1. For the matrixm−1/2AΩ defined in the theorem, we can calculate

its mutual coherence,

µj,l = m−1

∣∣∣∣∣
m∑
x=1

e2πi j−l
p
f(x)

∣∣∣∣∣ , ∀j ∈ [p], l ∈ [p]\j (4.3)

Let g(x) = j−l
p
f(x), then g satisfies the assumption in Theorem 4.1.4. Hence we have∣∣∣∣∣

m∑
x=1

e2πig(x)

∣∣∣∣∣ ≤ cm1+η(
1

m
+

p

md
)21−d

,

where c is some constant. By the definition of mutual coherence, we have

µ ≤ cmη

(
1

m
+

p

md

)21−d

. (4.4)

Applying the Gershgorin Theorem, we obtain the following condition on k for the matrix

m−1/2AΩ to satisfy RIP,

k < cδkm
−η
(

1

m
+

p

md

)−21−d

.

When p1/(d−1) ≤ m ≤ p, 1
m

is the leading term in the above parentheses, thus we can use

2
m

to bound the whole brackets. Rearranging the inequality, we get the first constraint in

(3). Similarly, when p1/(d) ≤ m ≤ p1/(d−1), we obtain the second.
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Proof of Theorem 4.1.2. In order to apply Theorem 2.4.7, let us first calculate the quantity

µ̄2(m−1/2AΩ).

Ej,l:j 6=l(µ
2
j,l) =

1

p(p− 1)

∑
j

∑
l:l 6=j

1

m2

∣∣∣∣∣
m∑
x=1

e2πi j−l
p
f(x)

∣∣∣∣∣
2

.

Expanding the square and interchanging the summations, we obtain

Ej,l:j 6=l(µ
2
j,l) =

1

p(p− 1)m2

∑
j

∑
l:l 6=j

∑
x1,x2

e2πi j−l
p

(
f(x1)−f(x2)

)
=

1

p(p− 1)m2

∑
x1,x2

∑
j

∑
l:l 6=j

e2πi j−l
p

(
f(x1)−f(x2)

)
. (4.5)

Since the sum of roots of unity is 1, the value that comes out of the first summation will

be−1 if f(x1)− f(x2) 6= 0, and p− 1 otherwise. This observation implies the right hand

side of 4.5 has the following equivalent form:

1

p(p− 1)m2

∑
x1,x2

∑
j

[−(1− δ(f(x1)− f(x2)) + (p− 1)δ(f(x1)− f(x2))]

=
1

p(p− 1)m2

∑
x1,x2

[−p(1− δ(f(x1)− f(x2)) + (p− 1)pδ(f(x1)− f(x2))]

=
1

p(p− 1)m2

[
−p
(
m2 − |{(x1, x2) : f(x1) = f(x2)}|

)
+ (p− 1)p |{(x1, x2) : f(x1) = f(x2)}| ,

]
If there exist x1 6= x2 but f(x1) = f(x2), then we must have chosen two identical rows,

which contradicts our definition of AΩ. Therefore |{(x1, x2) : f(x1) = f(x2)}| = m,

which, together with the previous equation leads to

µ̄2 <
1

m
. (4.6)

Plugging (4.1) and (4.6) into Theorem 2.4.7 completes the proof.

Proof of Theorem 4.1.3. By direct calculation, we obtain AΩF = FΩΛ where Λ is a di-

agonal matrix whose diagonal vector λ is given by λ = FAT1,· with A1,· being the first
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row of A. A well known property of the chirp sequences are that both they and their

Fourier transforms belong to the class of constant magnitude and zero auto-correlation

sequences. Therefore, λ has constant magnitude 1, implying µ(FΩΛ) = µ(FΩ) and

µ̄2(FΩΛ) = µ̄2(FΩ). The following calculations are the same as those in Theorem 4.1.1

and Theorem 4.1.2.

Since AΩD = [AΩ, FΩΛ], then µ(AΩD) = max{µ(AΩ), µ(FΩ), µ(AΩ, FΩ)}, where

µ(Φ,Ψ) := max
j,l
|〈φj, ψl〉| denotes the maximum coherence between dictionaries Φ and

Ψ. Let µj,l denote the magnitude of the inner product of the j’th column of AΩ and the

l’th column of FΩ. Then

µj,l = m−1
∣∣ m∑
x=1

e2πi
(f(x)+j)2−lf(x)

p

∣∣ = m−1
∣∣ m∑
x=1

e2πi
gj,l(x)

p

∣∣,
where gj,l(x) = (f(x) + j)2 − lf(x). By definition gj,l(x) is a 2d’th order polynomial

that satisfies the condition in Theorem 4.1.4 with k = 2d. Calculations stating from here

are all the same as in the previous two theorems.

4.2 Another Statistical Restricted Isometry Property

The next class of matrices that we construct does not satisfy the strict RIP nor the

previously defined StRIP, but it satisfies another Statistical RIP proposed by Calderbank

et al. ([14]) as a guarantee for the Quadratic Reconstruction Algorithm they established

in an earlier paper [35].

Definition 4.2.1. (Statistical Restricted Isometry Property STRIP) An m × N sensing

matrix Φ is said to be a (k, ε, δk)-Statistical Restricted Isometry Property matrix if, for
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any k-sparse vectors x ∈ Rn, the inequalities

(1− δk)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δk)‖x‖2
2 (4.7)

hold with probability exceeding 1− ε (with respect to a uniform distribution of the vector

x among all k-sparse vectors in Rn with fixed magnitudes).

Unlike the StRIP defined in Chapter 2 which depends only on the distribution of

active locations, this definition relies on both the locations and the magnitudes of active

components of x, and therefore is a weaker condition. Again, STRIP does not automat-

ically imply unique reconstruction itself, which brings about the definition of a second

property called Uniqueness-guaranteed Statistical RIP.

Definition 4.2.2. (Uniqueness-guaranteed Statistical RIP) ((k, ε, δk)-UStRIP Matrix): An

m × N sensing matrix Φ is said to be a (k, ε, δk)-Uniqueness-guaranteed Statistical Re-

stricted Isometry Property matrix if Φ is a (k, ε, δk)-StRIP matrix, and

{y ∈ RN , y is k − sparse; Φx = Φy} = {x} (4.8)

with probability exceeding 1 − ε (with respect to a uniform distribution of the vector x

among all k-sparse vectors in RN )

4.3 Another Class of Deterministic Sensing Matrix for Dictionaries

In this section, we construct a class of matrices that satisfy the STRIP and UStRIP

defined in the previous section. These matrices are structured as a repetitive stack of a

group of smaller orthogonal matrices in the most redundant way, in the sense that further
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repetition of the small matrices will lead to the apperance of identical columns. Because

of this redundancy, the matrix is computationally efficient.

Definition 4.3.1. Let Φ be a N × N chirp matrix (i.e.,Φk,j = e2πi
(k+j)2

N ) with N =

p1 × p2 × ...× pr is a product of prime numbers and r = pα1 with 0 < α < 1. We modify

this matrix as follows:

• If k 6= N and kpj | N for some j, multiply the kth row by
√

ln(pj)

pj ln(N)
;

• If kpj - N for all j=1,..,r, remove this row from Φ;

• Multiply the last row by
√∑r

j=1
ln(pj)

pj ln(N)
.

Theorem 4.3.1. The matrix Φ defined above obeys the (k, ε, δk) statistical RIP, for all

δk < 1 and k < max{ δk(1−α) ln(N)
ln(2k/ε)

,
√

εp1

r
}.

Theorem 4.3.2. The matrix Φ satisfies the (k, ε, δk)-UStRIP whenever it satisfies the

(k, ε,min{δk, 1/3}) StRIP.

Theorem 4.3.3. Let F be the DFT matrix, then ΦF satisfies the same order of StRIP and

UStRIP.

Example: Let r = 2, p1 = 2, p2 = 3, the matrix is structurally similar to that in

Figure 4.1 except for some extra rotation and scaling of the sub matrices. This special

structure will make the matrix-vector multiplication operation (which is the most time

consuming step in nearly all reconstruction algorithms) more efficient.

Proposition 4.3.1. The matrix-vector multiplication cost of this matrix is rN+
r∑
i=1

pi log(pi).
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Figure 4.1: Structure of the matrix

Proof. By construction, the first p1 rows are simply N
p1

repetitions of the p × p DFT

matrix with some scaling. The matrix-vector multiplication is then equivalent to taking

N
p1

Fourier transforms and then adding them together. Instead, we add the vectors first and

do the Fourier transform only once. The total number of addition operations is N and that

of the Fast Fourier transform of a prime order matrix is pi log(pi). Applying this analysis

r times results in the quantity in the statement of the proposition.

Remark 4.3.1. If r is fixed and we let pi go to infinity, the cost is only O(N).

Remark 4.3.2. We note that if we take only the first few columns of Φ, then we get a

deterministic RIP matrix which has the same property as the matrix constructed in [36].

Before proceeding to the proof of Theorem 3.6, we first introduce some special

notation.

• Let Φj be the submatrix of Φ containing only the rows with magnitude
√

log(pj)

pj ln(N)
.

Thus Φ = [Φ1; Φ2; ...; Φr].

• Let φl denote the lth column of Φ and φjl the lth column of Φj .
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• Use (p) to denote the set {1, 2, ..., p} and [x] to denote the largest integer less than

or equal to x.

• Use xn = (x1, x2, .., xn), with xi ∈ {0, 1} to denote the binary code of length n,

i.e. xn ∈ Fn2 .

• d(xn − yn) denotes the hamming distance between two binary codes. And thus

d(xn) ≡ d(xn − (0, 0, ..., 0)) is the number of 1s in xn.

• We say xn ≤ yn if xi ≤ yi for every i. And xn < yn if xn ≤ yn and xn 6= yn.

4.3.0.1 Proof of the Theorem 4.3.1

Lemma 4.3.2. For fixed l1, l2 with l1 6= l2, |〈φl1 , φl2〉| = 1
logN

r∑
j=1

log(pj)xj , where xj = 1

if pj|(l1 − l2) and 0 otherwise.

Proof.

〈φl1 , φl2〉 =
r∑
j=1

(φjl1)T (φjl2)

=
r∑
j=1

pj∑
m=1

log(pj)

pj log(N)
e−2πi

(mNpj
+l1)2

N · e2πi
(mNpj

+l2)2

N

= e2πi
l22−l

2
1

N

r∑
j=1

log(pj)

pj log(N)

pj∑
m=1

e
4πi

m(l2−l1)
pj

= e2πi
l22−l

2
1

N

r∑
j=1

log(pj)

pj log(N)
xjpj

= e2πi
l22−l

2
1

N

r∑
j=1

log(pj)xj

log(N)
.
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Lemma 4.3.3. P (|〈φl1 , φl2〉| > ε) < max{ log(N)
log(p1)

N−ε(1−α), 1− r
p1
}, where the probability

is with respect to the random choices of l1 and l2.

Proof. WLOG, assume l1 = 1. We discuss the cases ε < log p1

logN
and ε ≥ log p1

logN
separately.

Case I (ε < log p1

logN
). In this case, we can assert that

P (|〈φl1 , φl2〉| > ε) = P (|〈φl1 , φl2〉| > 0). (4.9)

This is because the set {|〈φl1 , φl2〉| : l1 6= l2} is finite, and the smallest positive value

in this set is log p1

logN
. Since we assumed ε to be less than this value, it has to equal 0. We

proceed to calculate the probability on the right hand side of 4.9 using union bound:

P (|〈φl1 , φl2〉| > 0) = 1− P (|〈φl1 , φl2〉| = 0) ≤ 1− 1

p1

− 1

p2

, ...,
1

pr
≤ 1− r

p1

.

Case II (ε > log p1

logN
). Define

Aε =

{
xr :

1

logN

r∑
j=1

log(pj)xj > ε

}
,

Bxr =

{
l : |〈φ1, φl〉| =

1

logN

r∑
j=1

log(pj)xj

}
,

Ãε =
{
xr : xr ∈ Aε and yr /∈ Aε, for all yr < xr

}
,

B̃xr =
{
k : k ∈ Byr for some y

r ≥ xr
}
.

We will prove later in Lemma 4.3.4 and Lemma 4.3.5 that |B̃xr | = N
r∏
j=1

p
xj
j

and |Ãε| ≤

log(N)
log(p1)

Nαε. Here we first use these results to prove the current lemma. By Lemma 4.3.2:

P (|〈φl1 , φl2〉| > ε) = P


r∑
j=1

log(pj)xj

log(N)
> ε

 ≤∑
x∈Ã

|B̃xr |
N
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=
∑
x∈Ã

1
r∏
j=1

p
xj
j

=
∑
x∈Ã

1

e
log(

r∏
j=1

p
xj
j )

=
∑
x∈Ã

1

e

r∑
j=1

log(pj)xj

≤
∑
x∈Ã

1

eε log(N)

=
∑
x∈Ã

N−ε = |Ã|N−ε =
log(N)

log(p1)
N−(1−α)ε,

where the second to last inequality made use of the fact that xr ∈ Ã ⊆ A.

Lemma 4.3.4. |B̃xr | = N
r∏
j=1

p
xj
j

.

Proof. From the definition of xj in Lemma 4.3.2, if l ∈ B̃, then pxjj | (l − 1) . Since this

is true for all j and the pjs are relatively prime, we get (
r∏
j=1

p
xj
j )|(l− 1) meaning l− 1 is a

multiple of
r∏
j=1

p
xj
j . The number of such multiples is N

r∏
j=1

p
xj
j

, and so is |B̃xr |.

Lemma 4.3.5. |Ãε| ≤ N2αε.

Proof. For any xr ∈ Ã, let yr be the element obtained by changing a “1” element in xr

to “0” and keeping other elements the same. So we have d(yr) = d(xr) − 1. By the

definition of Ã, if yr < xr, then yr /∈ A and

r∑
j=1

log(pj)yj

log(N)
< ε. We use this inequality to

obtain an upper bound on d(yr):

ε >

r∑
j=1

log(pj)yj

log(N)
>
d(yr) log(p1)

log(N)
.

Therefore,

d(xr) = d(yr) + 1 <
log(N)

log(p1)
ε+ 1.
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We use this result to estimate the cardinality of Ã as follows,

|Ã| ≤
∣∣∣∣{xr : d(xr) = [ε

log(N)

log(p1)
+ 1]}

∣∣∣∣
=

(
r

[ε log(N)
log(p1)

+ 1]

)
≤ r

ε
log(N)
log(p1)

+1

≤ log(N)

log(p1)
r

log(N)
log(p1)

ε

=
log(N)

log(p1)
N

log(r)
log(p1)

ε

=
log(N)

log(p1)
Nαε.

Proof of Theorem 4.3.1. Recall we use δk to denote the RIP constant of order k, and Ω to

denote the index of the nonzero components of a k-sparse vector x. First we define a set

C as follows,

C = {Ω| |〈φi, φj〉| <
δk

k − 1
, for all i, j ∈ Ω, and j 6= i}. (4.10)

Then by the Gershgorin Circle Theorem, for any Ω ∈ C, we have

|1− λ(ΦT
ΩΦΩ)| ≤ max

i∈Ω

∑
j∈Ω,j 6=i

| < φj, φi > |

≤ (k − 1) max
j 6=i
| < φi, φj > |

≤ δk.

Thus the set C is where the (k, δk)-RIP holds. We are about to bound the probability of
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the complement of C:

1− P (C) = P

(
|〈φli , φlj〉| >

δk
k − 1

, for some i ∈ [k], j ∈ [k], i 6= j

)
≤ k(k − 1)P

(
|〈φl1 , φl2〉| >

δk
k − 1

)
≤ k(k − 1) max

{
r

p1

,
log(N)

log(p1)
N−

δk
k−1

(1−α)

}
.

For the matrix to satisfy the (k, ε, δk)-StRIP, we only need to impose the above probability

to be bounded by ε, i.e.

k(k − 1) max{ r
p1

,
log(N)

log(p1)
N−

δk
k−1

(1−α)} < ε.

Solving this inequality gives us the condition on k in the statement of the theorem.

4.3.0.2 Proof of Theorem 4.3.2

To prove this Theorem, we need to prove the following lemma.

Lemma 4.3.6. Φ satisfies the unique recovery property (i.e. P (x : @ k-sparse y, st Φx =

Φy) > 1− ε) if and only if

P (Ω : ∃ Ω′, with|Ω′| = k and span(ΦΩ) = span(ΦΩ′)) < ε.

Here the first probability is with respect to the uniform distribution of all k-sparse vectors

and the second is with respect to the uniform distribution of all sets Ω with cardinality k.

Proof. For a fixed index set Ω (|Ω| = k), the following two statements are equivalent:

1. There is no Ω′ with |Ω′| = k, which is different from Ω but have the same span:

span(Ω′) = span(Ω).
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2. P (x ∈ Rk : ∃y ∈ Rk, st. ΦΩx = ΦΩ′y) = 0.

We use R to denotes the set of Ωs which satisfies 1 and 2. Now we can calculate the

probability in the definition of UStRIP:

P (x ∈ RN : x is k − sparse, @ k − sparse y, st Φx = Φy)

= 1− P (x ∈ RN : supp(x) ∈ R)

≥ 1− ε.

Proof of Theorem 4.3.2. Proof by contradiction. For any Ω ∈ C, assume there exists an

Ω′ such that |Ω′| = k and span(ΦΩ) = span(ΦΩ′). Then any column φω′ of ΦΩ′ can

be expressed as a linear combination of the vectors in ΦΩ: φω′ =
k∑
i=1

akφωi (recall we

assumed that the coefficients are all real). Since Ω ∈ C, we have 〈φωi , φωj〉 < δk
k

, ∀ i 6= j.

We define xli,j and xlj as follows:

|〈φωi , φωj〉| =

r∑
l=1

xli,j log(pl)

log(N)
, |〈φω′ , φωj〉| =

r∑
l=1

xlj log(pl)

log(N)
.

So xli,j denotes whether the lth block of φωi and φωj are collinear or orthogonal, respec-

tively. If they are collinear, then xli,j = 1, orthogonal xli,j = 0. The same explanation

holds for xlj . Fix an i such that ai 6= 0 and sum the magnitude of the inner product over

all the indices j 6= i, we obtain

δk ≥
∑
j,j 6=i

|〈φωi , φωj〉|

=
∑
j,j 6=i

r∑
l=1

xli,j log(pl)

log(N)
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=
r∑
l=1

(
∑
j,j 6=i

xli,j) log(pl)

log(N)

≥
r∑
l=1

(max
j,j 6=i

xli,j) log(pl)

log(N)
. (4.11)

Let yli = 1−max
j,j 6=i

(xli,j), and insert it into 4.11 to have

δk ≥
r∑
l=1

(1− yli) log(pl)

log(N)
= 1−

r∑
l=1

yli log(pl)

log(N)

⇒
r∑
l=1

yli log(pl)

log(N)
≥ 1− δk.

Note that yli = 1 means max
j,j 6=i

xli,j = 0, which indicates all the φj are orthogonal to φi at

the lth block. For all the l such that yli = 1, we have

〈φlω′ , φlωi〉 =<
k∑
j=1

ajφ
l
ωj
, φlωi >=

ai log(pl)

log(N)
6= 0. (4.12)

Since the lth blocks of two columns of Φ are either collinear or orthogonal, 4.12 implies

that φlω′ is collinear with φlωi so it must be orthogonal to other φlωj for j 6= i. This leads to

φlω′ = aiφ
l
ωi
.

Moreover, since φlω′ and φlωi have the same magnitude log pl
logN

, thus |ai| = 1. Now for any

i ∈ {1, ..., k}, we have

|〈φωi , φω′〉| = |〈φωi ,
k∑
j=1

ajφωj〉|

≥
∑
l:yli 6=0

|〈φlωi ,
k∑
j=1

ajφ
l
ωj
〉|

=
∑
l:yli 6=0

|〈φlωi , φ
l
ωi
〉|

=
r∑
l=1

yli log(pl)

log(N)
≥ 1− δk. (4.13)
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On the other hand,

k∑
i=1

|〈φω′ , φωi〉| =
k∑
i=1

r∑
l=1

xli log pl

logN

=
1

logN

r∑
l=1

(
k∑
i=1

xli log pl). (4.14)

Let il ∈ {1, ..., k} be an index such that xlil = 1. The existence of such indices is

guaranteed by the linearly dependence of φω′ on φωi , i = 1, ..., k. Then

1

logN

r∑
l=1

(
k∑
i=1

xli log pl) =
1

logN

r∑
l=1

(xlil +
∑
i:i 6=il

xli) log pl

=
1

logN

r∑
l=1

(1 +
∑
i 6=il

xli,il) log pl

= 1 +
1

logN

r∑
l=1

∑
i 6=il

xli,il log pl

≤ 1 +
1

logN

r∑
l=1

∑
i,j:i 6=j

xli,j log pl

= 1 +
∑
i,j

r∑
l=1

log pl
logN

= 1 +
∑
i,j:i 6=j

|〈φωi , φωj〉|

≤ 1 + kδk. (4.15)

Combine 4.13-4.15, to get

1 + kδk ≥
k∑
i=1

| < φω′ , φωi > | ≥ k(1− δk),

which implies

δk ≥
k − 1

2k
≥ 1

3
.

This contradicts the assumption that δk < 1/3.
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Proof of Theorem 4.3.3. The Fourier transform of this matrix is equivalent to applying

the truncating and rescaling operations in Definition 4.1.1 on another chirp matrix given

by:

Φ̃j,k = e2πi 2bj−b2
N .

with b ≡ 2k mod(N). Therefore the same arguments follow.

4.4 Numerical Results

Experiment 1 (Standard RIP): In this experiment, we compare the matrix A con-

structed in Section 4.1 to a Guassian matrix N with the same dimension in their perfor-

mances of sparse recoveries by basis pursuit. In particular, we set m = 100, N = 1031,

and let k vary. Signals are generated by first choosing the k nonzero locations uniformly

at random, and then assigning values to these locations from the standard normal distribu-

tion. A recovery x̂ is deemed as successful if ‖x − x̂‖l2/‖x‖l2 ≤ 0.01, where x denotes

the original signals as before. Figure 4.2 plots the average success rate taken over 100

independent draws of x. The result shows that on average, the two matrices act very sim-

ilarly to each other.

Experiment 2 (RIP in the joint dictionary): We take the same matrices as in the previ-

ous experiment, but test their performances on signals that are sparse under the Dirac-

Fourier joint dictionary D = [I, F ]. In particular, let x be such that x = Dz for some

z ∈ Σk, and let yA = Ax and yN = Nx be the measurements taken from the two sensing

schemes. If the reconstruction from the `1 synthesis approach is recorded in x̂, then we

84



Figure 4.2: Success rate of sparse signal sensed by Chirp matrix vs Gaussian matrix

deem the recovery to be successful if ‖x − x̂‖l2/‖x‖l2 ≤ 0.01. Figure 4.3(a) plots the

average success rate taken over 100 independent draws of x. Figure 4.3(b) shows similar

result but for the Dirac-Haar joint dictionary. Again, the performances of these two ma-

trices are nearly indistinguishable.

Experiment 3: In this experiment we compare reconstructions of real scene images based

on difference sparsity assumptions, that is either assuming images being sparse in canon-

ical basis I , or in the Dirac-Fourier joint dictionary D1 = [I, F ] , or the Dirac-Haar joint

dictionary D2 = [I,H].

For a given vectorized image X , let ∇xX , ∇yX be the horizontal and vertical (both are

directions in the original image) gradients of X . Then there exist finite difference ma-

trices P1 and P2 independent of X such that ∇xX = P1X , ∇yX = P2X . Suppose A

is the same matrix as in previous experiments, and the measurements Y = [Y 1;Y 2] are

obtained from projections Yi = APiX for i = 1, 2. Notice that now the composition

[AP1;AP2] is the actual underlying sensing matrix. First assuming both gradients are
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(a) Success recovery rate for signals which are sparse under the Dirac-Fourier

joint dictionary

(b) Success recovery rate for signals which are sparse under the Dirac-Haar

joint dictionary

Figure 4.3: Success recovery rate of sparse signals under different dictionaries

sparse, we reconstruct∇xX and ∇yX from Y by solving

arg min ‖Zi‖l1 subject to Yi = AZi, i = 1, 2. (4.16)

As soon as ∇̂xX and ∇̂yX are obtained as solutions to (4.16), they can be used to con-

struct X̂ by applying the Frankot-Chellappa algorithm [46].

We test the above method using a 256 × 363 photo of the monument. In order to speed
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(a) Original Image (b) Reconstructed image if assuming the

gradients are sparse under the Dirac-Fourier

joint dictionary

(c) Reconstructed image if assuming the

gradients are sparse

(d) Reconstructed image if assuming the

gradients are sparse under the Dirac-Haar

joint dictionary

Figure 4.4: Reconstruction under various dictionaries using 25% measurements

up the reconstruction, the image is broken into subimages each containing four columns

of the original image. The subimages are compressed and reconstructed separately and

then pieced together. Reconstruction result using 25% of the total measurements is shown

in Figure 4.4(c). Secondly we assume the image is sparse under D1. Since the sensing

technique should be universal, we keep Y1 and Y2 the same as above, and only change the
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Figure 4.5: Compression rate 10:1, subfigures’ order: (a) original image (b) Dirac-Fourier

dictionary (c) orthonormal basis (d) Dirac-Haar dictionary

recovery algorithm to the `1 synthesis algorithm

arg min ‖Zi‖l1 subject to Yi = AD1Zi, i = 1, 2,

and ∇̂xX = D1Z1, ∇̂yX = D1Z2. Exactly the same procedure is used to reconstruct

image based on the Dirac-Haar dictioinary D2. Results on different images are shown in

Figure 4.4-4.7. As expected, when an image does have sparse gradients, the joint dictio-

naries seems to work similar to orthonormal bases, otherwise the increased redundancy

in dictionaries guarantees a more stable recovery in general.
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Figure 4.6: Compression rate 2:1, subfigures’ order: (a) original image (b) Dirac-Fourier

dictionary (c) orthonormal basis (d) Dirac-Haar dictionary
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Figure 4.7: Compression rate 2:1, subfigures’ order: (a) original image(b) Dirac-Fourier

dictionary (c) orthonormal basis (d) Dirac-Haar dictionary

90



Bibliography

[1] N. Ailon and E. Liberty. Fast dimension reduction using Rademacher series on dual
BCH codes. Discrete Comput. Geom., 42(4):615–630, 2009.

[2] A. Aldroubi, X Chen, and A. M. Powell. Perturbations of measurement matrices and
dictionaries in compressed sensing. Appl. Comput. Harmon. Anal., 33(2):282–291,
2012.

[3] B. Alexeev, J Cahill, and D. G. Mixon. Full Spark Frames. J. Fourier Anal. Appl.,
18(6):1167–1194, 2012.

[4] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures and Algorithms, 3:289–
304, 1992.

[5] W. U. Bajwa, R. Calderbank, and S. Jafarpour. Why Gabor frames? Two fundamen-
tal measures of coherence and their role in model selection. J. Commun. Networks,
12:289–307, 2010.

[6] W. U. Bajwa, R. Calderbank, and D. G. Mixon. Two are better than one: funda-
mental parameters of frame coherence. Appl. Comput. Harmon. Anal., 33(1):58–78,
2012.

[7] A. S. Bandeira, M. Fickus, D. G. Mixon, and P. Wong. The road to deterministic
matrices with the restricted isometry property. arXiv:1202.1234.

[8] A. Barg and A. Mazumdar. Small ensembles of sampling matrices constructed from
coding theory. In Proc. IEEE International Symposium on Information Theory,
Austin, TX, June 2010, pages 1963–1967.

[9] A. Barg, A. Mazumdar, and R. Wang. Random subdictionaries and coherence con-
ditions for sparse signal recovery. In http://arxiv.org/pdf/1303.1847.pdf.

[10] A. Ben-Aroya and A. Ta-Shma. Constructing small-bias sets from algebraic-
geometric codes. In 2009 50th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2009), pages 191–197. IEEE Computer Soc., Los Alamitos,
CA, 2009.

[11] J. Bourgain, S. J. Dilworth, K. Ford, S. Konyagin, and D. Kutzarova. Explicit con-
strcuctions of RIP matrices and related problems. arXiv:1008:4535.

[12] T. Cai and L. Wang. IEEE Trans Infrom Theory, (7).

[13] T. T. Cai, G. Xu, and J. Zhang. On recovery of sparse signals via `1 minimization.
IEEE Trans. Inform. Theory, 55(1):3388–3397, 2009.

91



[14] R. Calderbank, S. Howard, and S. Jafarpour. Construction of a large class of deter-
ministic sensing matrices that satisfy a statistical restricted isometry property. IEEE
J. Selected Topics Signal Proc., 4(2):358–374, 2010.

[15] R. Calderbank and S. Jafarpour. Reed-Muller sensing matrices and the LASSO. In
C. Carlet and A. Pott, editors, Sequences and Their Applications (SETA2010), Lect.
Notes Comput. Science, vol. 6338, pages 442–463, 2010.

[16] E. Candes, Y. C. Eldar, D. Needell, and P. Randall. Compressed sensing with co-
herent and redundant dictionaries. Applied and Computational Harmonic Analysis,
31(1):59–73, 2010.

[17] E. J. Candès. The restricted isometry property and its implications for compressed
sensing. C. R. Math. Acad. Sci. Paris, 346(9-10):589–592, 2008.

[18] E. J. Candès and Y. Plan. Near-ideal model selection by `1 minimization. Ann.
Statist., 37(5A):2145–2177, 2009.

[19] E. J. Candes and Y. Plan. A probabilistic and RIPless theory of compressed sensing.
IEEE Trans. Inform. Theory, 57(11):7235–7254, 2011.

[20] E. J. Candès and J. Romberg. Sparsity and incoherence in compressive sampling.
Inverse Problems, 23:969–985, 2007.

[21] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inform.
Theory, 52(2):489–509, 2006.

[22] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans. Inform.
Theory, 51(12):4203–4215, 2005.

[23] E. J. Candès and T. Tao. Near-optimal signal recovery from random projections:
universal encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425,
2006.

[24] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursiut. SIAM J. Sci. Comput., 20(1):33–61, 1998.

[25] X. Chen, H. Wang, and R. Wang. Compressed sensing in dictionaries with null
space property. in preperation, 2013.

[26] W. Dai and O. Milenkovic. Weighted superimposed codes and constrained integer
compressed sensing. IEEE Trans. Inform. Theory, 55(5):2215–2229, 2009.

[27] R. A. DeVore. Deterministic constructions of compressed sensing matrices. J. Com-
plexity, 23(4-6):918–925, 2007.

[28] D. L. Donoho and M. Elad. Optimally sparse representations in general (nonorthog-
onal) dictionaries via `1 minimization. Proc. Natl. Acad. Sci., 100:2197–2202, 2003.

92



[29] S. Foucart and M. Lai. Sparsest solutions of underdetermined linear systems via
lq-minimization for 0 < q ≤ 1. Applied and Computational Harmonic Analysis,
26(3):395–407, 2009.

[30] R. Gribonval and M. Nielsen. Highly sparse representations from dictionaries are
unique and independent of the sparseness measure. Applied and Computational
Harmonic Analysis, 22(3):335–355, May 2007.

[31] A. Gurevich and R. Hadani. Statistical RIP and semi-circle distribution of incoherent
dictionaries, 2009. arXiv:0903.3627.

[32] J. Haupt, L. Applebaum, and R. Nowak. On the restricted isometry of deterministi-
cally subsampled Fourier matrices. In Proc. 44th Annual Conf. Information Sciences
and Systems (CISS), pages 1–6, 2010.

[33] A. S. Hedayat, N. J. A. Sloane, and J. Stufken. Orthogonal arrays. Springer-Verlag,
New York, 1999.

[34] T. Helleseth and P. V. Kumar. Sequences with low correlation. In V. S. Pless and
W. C. Huffman, editors, Handbook of Coding Theory, volume II, pages 1768–1853.
Elsevier Science, 1998.

[35] Calderbank R. Howard, S and S. Searle. A fast reconstruction algorithm for deter-
ministic compressive sensing using second order reed- muller codes. Proc. Conf.
Inf. Sci. Syst. (CISS), pages 11–15, 2008.

[36] M. A. Iwen. Simple deterministically constructible rip matrices with sublinear
fourier sampling requirements,. In Proc. CISS, pages 870 – 875, 2008.

[37] S. Osher J. Cai and Z. Shen. Linearied gregman iterations for compressed sensing.
2008.

[38] M. Ledoux and M. Talagrand. Probability in Banach spaces: Isoperimetry and
Processes. Springer, 1991.

[39] Shidong Li, Tiebin Mi, and Yulong Liu. Performance analysis of `1-synthesis with
coherent frames. http://arxiv.org/abs/1202.2223, 2012.

[40] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. North-
Holland, Amsterdam, 1991.

[41] A. Maleki and A. Montanari. Analysis of approximate message passing algorithm.
2010.

[42] A. Mazumdar. Combinatorial methods in coding theory. PhD thesis, University of
Maryland, 2011. http://hdl.handle.net/1903/11547.

[43] C. McDiarmid. On the method of bounded differences. In Surveys in combinatorics,
1989 (Norwich, 1989), volume 141 of London Math. Soc. Lecture Note Ser., pages
148–188. Cambridge Univ. Press, Cambridge, 1989.

93



[44] D. Needell and J. A. Tropp. Cosamp: Iterative signal recovery from incomplete and
inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–
321.

[45] E. Porat and A. Rothschild. Explicit non-adaptive combinatorial group testing
schemes. In Automata, languages and programming. Part I, volume 5125 of Lecture
Notes in Comput. Sci., pages 748–759. Springer, Berlin, 2008.

[46] R. Chellappa R. T. Frandkot. A method for enforcing integrability in shape from
shading algorithms. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 10(4):439–351, July 1988.

[47] H. Rauhut, K. Schnass, and P. Vandergheynst. Compressed sensing and redundant
dictionaries. IEEE Transactions on Information Theory, 54(5):2210–2219, 2008.

[48] M. Rudelson and R. Vershynin. Sampling from large matrices: An approach through
geometric functional analysis. J. Assoc. Comput. Mach., 54(4):1–19, 2007.

[49] Q. Sun. Sparse approximation property and stable recovery of sparse signals from
noisy measurements. IEEE Trans. Signal Process., 59(10):5086–5090, 2011.

[50] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc.
Ser. B, 58:267–288, 1996.

[51] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE
Trans. Inform. Theory, 50(10):2231–2242, 2004.

[52] J. A. Tropp. Recovery of short, complex linear combinations via l1 minimization.
IEEE Trans. Inform. Theory, 51(4):1568–1570, 2005.

[53] J. A. Tropp. Norms of random submatrices and sparse approximation. C.R. Acad.
Sci. Paris, Ser. I, 346:1271–1274, 2008.

[54] J. A. Tropp. On the conditioning of random subdictionaries. Appl. Comput. Harmon.
Anal., 25(1):1–24, 2008.

[55] A. Weil. On some exponential sums. Proc. Nat. Acad. Sci. U.S.A, 34:204–207,
1948.

94


	List of Figures
	List of Abbreviations
	Introduction
	Background of Compressed Sensing
	Sensing Matrix Analysis
	Compressed sensing in dictionary
	Contributions
	Model Setting

	A Statistical Restricted Isometry Property and Its Application on Studying Deterministic Sensing Matrices
	Introduction
	The RIP property
	Statistical incoherence properties

	Statistical Incoherence Properties and Basis Pursuit
	StRIP Matrices with incoherence property
	StRIP Matrices with weak incoherence property

	Incoherence Properties and Lasso
	Sufficient conditions for statistical incoherence properties
	StRIP matrices from orthogonal arrays
	Further constructions from binary codes


	Compressive sensing with dictionary
	Introduction
	Overview and main results
	A sufficient and necessary condition for noiseless sparse recovery
	D-NSP based stability analysis
	A further study of D-NSP and admissible dictionaries
	A Class of inadmissible matrices

	Relation between D-NSP and NSP
	Proofs of the main theorems

	Deterministic Sensing Matrices for Dictionaries
	A Class of Deterministic Matrices For the Dirac-Fourier Joint Dictionary
	Another Statistical Restricted Isometry Property
	Another Class of Deterministic Sensing Matrix for Dictionaries
	Numerical Results

	Bibliography

