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In machine learning, the standard goal of is to find an appropriate statistical

model from a model space based on the training data from a data space; while in data

mining, the goal is to find interesting patterns in the data from a data space. In both

fields, these spaces carry geometric structures that can be exploited using methods

that make use of these geometric structures (we shall call them geometric methods),

or the problems themselves can be formulated in a way that naturally appeal to these

methods. In such cases, studying these geometric structures and then using appropriate

geometric methods not only gives insight into existing algorithms, but also helps build

new and better algorithms. In my research, I develop methods that exploit geometric

structure of problems for a variety of machine learning and data mining problems, and

provide strong theoretical and empirical evidence in favor of using them.

My dissertation is divided into two parts. In the first part, I develop algorithms

to solve a well known problem in data mining i.e. distance embedding problem. In

particular, I use tools from computational geometry to build a unified framework for

solving a distance embedding problem known as multidimensional scaling (MDS). This



geometry-inspired framework results in algorithms that can solve different variants

of MDS better than previous state-of-the-art methods. In addition, these algorithms

come with many other attractive properties: they are simple, intuitive, easily paral-

lelizable, scalable, and can handle missing data. Furthermore, I extend my unified

MDS framework to build scalable algorithms for dimensionality reduction, and also to

solve a sensor network localization problem for mobile sensors. Experimental results

show the effectiveness of this framework across all problems.

In the second part of my dissertation, I turn to problems in machine learning,

in particular, use geometry to reason about conjugate priors, develop a model that

hybridizes between discriminative and generative frameworks, and build a new set

of generative-process-driven kernels. More specifically, this part of my dissertation is

devoted to the study of the geometry of the space of probabilistic models associated

with statistical generative processes. This study — based on the theory well grounded

in information geometry — allows me to reason about the appropriateness of conjugate

priors from a geometric perspective, and hence gain insight into the large number of

existing models that rely on these priors. Furthermore, I use this study to build hybrid

models more naturally i.e., by combining discriminative and generative methods using

the geometry underlying them, and also to build a family of kernels called generative

kernels that can be used as off-the-shelf tool in any kernel learning method such as

support vector machines. My experiments of generative kernels demonstrate their

effectiveness providing further evidence in favor of using geometric methods.
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Chapter 1

Introduction

Machine learning and geometry have mostly been two separate fields with

little interdisciplinary research between them. In this dissertation, my goal is

to demonstrate that the methods based on geometry can be used to gain insight

into existing learning algorithms, and to design new and better algorithms.

In machine learning, a learning problem takes a set of training points {x i}ni=1

as an input which are assumed to come from some space X, the data space. Given

a such set of training points, the objective of a learning problem is to find a model

from a space Θ, the model space, that explains the data well and generalizes to the

future data. The space Θ can either be a constrained set of parameters i.e. parametric

space or an unconstrained set of parameters i.e. space of all possible models. When

finding an appropriate model for the given training data, a learning problem often

makes certain assumptions about the geometries of the data space and the model

space, either explicitly or implicitly, which have significant impact on both the solution,

and the algorithm to find that solution.

To understand geometric structure in data space, consider an example of a

spherical distance embedding problem. In this problem, we are given a set of n× n

pairwise distances and a target space Sk that is a spherical space of a given dimension

k, i.e., Sk := {x ∈ Rk+1 : ‖x‖ = 1}. The objective of the problem is to find a set of n
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points in the spherical space such that the distances are best preserved. Now note

that this spherical distance embedding problem carries a geometric structure inherent

to the target space (target space is spherical) which can be exploited to build better

algorithms. This spherical distance embedding problem and such other problems that

have geometric structures inherent to them can be better solved using methods that

make use of underlying geometry. This is an example of the problem where data space

carries a geometric structure.

Now consider another problem where geometric structure is found in model

space. Consider the problem of text classification i.e., classify given text documents

into predefined categories. In the learning problem of text classification, it is common

to assume that the text documents are bag-of-words and are generated by some multi-

nomial distribution; and the goal of the learning problem is to find an appropriate

model from the space of multinomial distributions that classify future text documents

into their correct categories. It is well known [Amari, 1990; Amari and Nagaoka, 2001;

Kass and Vos, 1997] that the space of multinomial distributions forms a statistical

manifold which is nothing but a special case of Riemannian manifold. Riemannian

manifolds (and therefore statistical manifolds) are known to have a natural geometric

structure associated with them. So when finding an appropriate model for a text classi-

fication problem, it is important that one makes use of the geometric structure induced

by the statistical manifold. Such consideration of underlying geometric structure can

change the algorithms (and their outputs) significantly, and has been shown to be

useful in building algorithms that outperform state-of-the-art algorithms that do not

consider the underlying geometry [Lebanon and Lafferty, 2004]. This geometric struc-
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ture underlying the statistical manifold associated with multinomial distributions is

not specific to multinomial distributions, but in fact, all statistical manifolds associated

with distributions belonging to exponential family are Riemannian manifold and carry

geometric structure.

In order to show how consideration of underlying geometry can find a better

quality solution, consider the example of the text classification problem again. In-

formation geometry is a field that studies the geometry associated with statistical

manifolds. In information geometry, it is widely believed [Amari, 1990; Amari and

Nagaoka, 2001] that a natural notion of distance for statistical manifolds is the in-

formation distance1, mainly because, it is computed using Fisher information metric

which is invariant under re parametrization of the statistical manifold. For the text

documents that are bag of words and are generated by a multinomial distribution,

this information distance has been shown to be equivalent to the geodesic distance on

the sphere [Kass and Vos, 1997; Lebanon and Lafferty, 2004], assuming that the text

documents are represented by normalized frequency counts of the words. Specifically,

if x i and x j are two vectors representing normalized frequency counts of words in

respective documents, then the information distance between two documents based

on the multinomial generative model is given by:

dg(x i, x j) = cos−1(〈x i, x j〉)

where 〈x i, x j〉 is the inner product between vectors x i and x j. Note that the considera-

1Information distance is the geodesic distance on the statistical manifold represented by the underly-
ing probability distribution
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tion of underlying geometry changes the distance function along with the structure

(now all data points i.e. text documents lie on sphere) and hence the solution.

Although relatively easy for multinomial generative model, the analysis and the

consideration of inherent geometry is not so easy for other complex generative models,

and becomes increasingly difficult as the complexity of models grow. For example,

in complex models such as unsupervised or semi-supervised hidden Markov models,

this analysis is not so apparent as in simple generative models such as multinomial

generative model. For complex generative models, difficulty arises because one cannot

get a closed form expression for the distance function. Fortunately, in machine learning,

most of the popular models that we deal with directly or indirectly belong to a special

class of distributions known as exponential family distributions [Nielsen, 1978; Brown,

1986] which has been extensively studied by several authors (see [Amari, 1990]

and references therein). For such models, it is possible to identify the underlying

distance function and hence the geometry. However when a model does not belong to

exponential family, identifying the underlying distance function becomes challenging.

In my dissertation I deal with probabilistic models that belong to exponential family,

and solve a number of problems using methods that are based on the underlying

distance function and hence based on the geometry defined by that distance function.

These methods driven by geometry not only result in simple and effective algorithms,

but also provide insight into existing algorithms.

In my dissertation, I use geometric methods to solve a variety of problems, both

in machine learning and data mining. Here “geometric methods" refers to methods

that make use of geometric structure underlying the data space and the model space

4



to solve a problem. Geometric methods make use of these structures in many ways

– they can use these geometric structures explicitly by using the distances induced

by these geometries, or use them implicitly by developing algorithms that rely on

the operations that are based on underlying geometries. In the former, geometric

methods involve deriving the appropriate distance function that is associated with the

underlying geometry and then use that distance function in the algorithm explicitly,

while in the latter, geometric methods rely on geometric operations – since these

operations take place in a space, they must respect the geometry of that space. In

this latter case, geometric methods treat data points as vectors, and perform geometric

operations on them – respecting the geometry of the space. Examples of such operations

include transformations, moving points, the construction of geometric objects such as

lines, triangles, or circles, and performing geometric operations on these objects such

as intersection computation. It is important to understand here that the geometric

methods (or algorithms) rely on geometric operations in the operating space. For

example, if a space has a spherical geometry, all operations (e.g. moving points) must

be carried out in the spherical space. The strength of geometric methods lie in the

fact that they help us visualize the problem, thus providing additional insight into

problems and existing algorithms, and often leading to the development of simpler

and improved algorithms.

In order to solve a problem using geometric methods, I first study the geometric

structure associated with the space of that problem, and then apply appropriate

geometric tools to solve it. These geometric methods are based on the concepts of

information geometry [Spivak, 1999; Amari and Nagaoka, 2001] when dealing with
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the problems with geometric structure underlying the model space Θ; and the concepts

based on computational geometry Preparata and Shamos [1985] when dealing with

the problems with geometric structure underlying the data space X. In addition to

providing intuitive and stronger algorithms to solve different problems, these methods

bridge two separate fields "geometry" and "machine learning", and show the advantages

of studying these fields together.

In my dissertation, I develop geometric methods for three problems: distance

embedding problem (and related problems), building hybrid models by combining

generative and discriminative models, and building generative kernels. In the next

section, I provide a brief introduction of each of these problems and the summary of

my approaches to solving them. The detailed discussion on the motivation, related

work and the approaches to solve them will be presented in their respective chapters.

1.1 Geometric Methods in Data Mining

Many problems in data mining rely on a distance function and on the geometry

induced by that distance function. For example, the clustering algorithm k-means

depends on the underlying distance function to find clusters, k-nearest neighbors

(k-NN) classification or search problem depends on finding nearest neighbors where

“nearness" is determined by the underlying distance function. The k-means algorithm

with Euclidean distance is widely popular, however there are also instances when

the distance and therefore the underlying geometry is not Euclidean e.g. spherical

k-means [Dhillon and Modha, 2001; Dhillon et al., 2001; Zhong, 2005]. Similarly,
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k-NN problem has also been studied when the underlying space is not Euclidean

but a spherical space [Lunga and Ersoy, 2011] or a general metric space [Yianilos,

1993]. Both k-means and k-NN are examples of the problems that have geometric

structure associated with the data space, and therefore, can be better solved by

methods that make use of these geometric structures. In this dissertation, I solve a

distance embedding problem, in which, one is given a set of pairwise distances, and

the objective is to find a set of points such that these distances are best preserved.

Similar to k-means and k-NN, this distance embedding problem takes the distances

as input and hence naturally appeal to the methods based on distance geometry. In

my dissertation, I use geometric methods to solve the distance embedding problem

and its variants. This distance embedding problem comes in many flavors and has

wide applications in dimensionality reduction, data visualization, sensor network

localization, graph embedding, molecular conformation etc.

1.1.1 Distance Embedding

Distance embedding is the problem of finding a set of points that respect the set of

given distances [Blumenthal, 1953; Gower, 1982; Liberti et al., 2012]. Formally, given

a set of pairwise distances di j for (i, j) ∈ E, the objective of the distance embedding

problem is to find a set of points {x1, x2, . . . , xn} ⊂ X in some target space T = (X, f )

such that di j best approximates the distances in the target space i.e. f (x i, x j). Here f

is the distance function defined on the set of points in X. This distance embedding

problem is a generic problem and can be instantiated to take various forms depending
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on specific inputs. For example, one can get a different variant of the problem by

changing the underlying target space i.e., by varying the distance function f , or the

set of points X, or both. Other variations can be obtained by varying the set of given

distances E (if E is set of all pairs or only few pairs), or how the approximation between

the given distance di j and the target distances f (x i, x j) is measured, etc. A taxonomy

of different distance embedding problems can be found in [Liberti et al., 2012].

In the first part of my dissertation, I solve the distance embedding problem using

tools from computation geometry. I assume that the data space is a geometric space

i.e. the space is endowed with some geometric structure, and points in this space

are entities that are allowed to move, construct objects, and participate in geometric

operations. In machine learning, it is a standard practice to treat data points as vectors,

however it is only in very few cases that these points actually participate in geometric

operations leading to the development of new algorithms. Often in machine learning,

a learning problem is cast as an optimization problem, and the solution is sought

by directly solving the optimization problem using standard optimization methods.

Although this approach to solving a learning problem is often successful, it is not the

best solution for all problems. Many times, a better quality solution can be found

by attacking the problem indirectly – by studying the geometry associated with the

problem, and then using the appropriate geometric tools. For example, in my work, I

solve a well known distance embedding problem called multidimensional scaling (MDS)

by giving it a geometric treatment. Earlier methods solve this problem by minimizing

the cost function directly using the optimization methods, while I, on the other hand,

use geometric operations to solve it. By using these geometric operations, I am able to
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transform the original problem into a subproblem that is well studied in computational

geometry. This geometric treatment of the problem results in a generalized framework

that not only solves the original MDS problem in Euclidean space more effectively than

state-of-the-art methods, but also generalizes to other spaces i.e., spherical space; and

has many desirable properties. In addition to the formal guarantees of convergence,

the algorithms derived from this framework are accurate; in most cases, they converge

to better quality solutions than existing methods in comparable time. Moreover, they

have a small memory footprint and scale effectively for data sets larger than what has

previously been reported.

1.1.2 Distance Embedding on Sphere

Distance embedding on a sphere (spherical embedding) is the problem of em-

bedding the given distances under the assumption that the target space is a sphere.

Mathematically, in target space T = (X, f ), X is the set of all points on a sphere of given

dimension k i.e. X := {x ∈ Rk+1 : ‖x‖= 1}, while function f is the distance function

that computes geodesic distance between two points measured along the surface of

the sphere. This problem of spherical embedding was first introduced by Cox and Cox

[2000], and later followed by [Bronstein et al., 2006, 2008]. Spherical embedding has

various applications into texture mapping and image analysis [Bronstein et al., 2008],

and is a generalization of the spherical dimensionality reduction problem, where the

goal is to map points from a high dimensional sphere onto a low-dimensional sphere,

with the latter problem being closely related to dimensionality reduction for finite
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dimensional distributions. A well-known isometric embedding takes a distribution

represented as a point on the d-dimensional simplex to the d-dimensional sphere

while preserving the Hellinger distance between distributions [Kass and Vos, 1997].

A spherical dimensionality reduction result is an important step to representing high

dimensional distributions in a lower-dimensional space of distributions, and will have

considerable impact in domains that represent data natively as histograms or distribu-

tions, such as in document processing [Pereira et al., 1993; Joachims, 2002; Blei et al.,

2003; Lebanon and Lafferty, 2004], image analysis [Lowe, 2004; Dalal and Triggs,

2005] and speech recognition [Gray et al., 1980].

In this dissertation, I use my generalized MDS framework to solve the spherical

embedding problem. In hindsight, one strength of using geometric methods to solve

the distance embedding problem is that it naturally extends to the spherical case,

with the only difference being is that all geometric operations i.e. move, intersection,

geometric mean are now performed on the surface of the sphere (spherical space)

instead of in the Euclidean space as in Euclidean MDS. This approach to solving the

spherical embedding problem can be extended to include other generalized distance

embedding problems as well, for example, one can generalize this embedding to an

arbitrary space where the target space is an arbitrary manifold and the distances are

geodesic distances measured along the surface of the manifold.
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1.1.3 Large Scale Streaming Distance Embedding/DR

In the distance embedding problem, one is given the pairwise distances among

all pairs which makes the time and space complexity of any algorithm at least O(n2)

making it infeasible for large data. In my dissertation, I extend the generalized MDS

framework for large scale data using adaptive sampling. In addition to providing a

linear time, and a constant memory algorithm for distance embedding, a byproduct of

my approach is that it gives user the freedom to choose the number of passes, making

it suitable for streaming data (when the number of passes is chosen to be one).

1.1.4 Applications of Distance Embedding: SNL

The standard distance embedding problem takes as input pairwise distances

among all pairs, and can be thought of as a specialized case of a more general problem

i.e. sensor network localization (SNL) problem. In SNL problem, one is given a network

of sensors that can communicate with each other using communication methods such as

radio-signals, infrared-signals etc; and since it is possible (in fact a standard practice) to

transform these signals into distances, the SNL problem becomes a distance embedding

problem. In the SNL problem, given a set of pairwise distances (or rather obtained by

transforming the corresponding communication signals to distances), the objective is

to find the locations of the sensors. Since a sensor’s communication is only limited to

its nearby sensors because of the limited communication radius of sensors, the SNL

problem only has access to the distances among nearby pairs making it a more general

problem than the standard distance embedding problem. In the SNL problem, in
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addition to the nearby pairwise distances, one is also given the locations of few sensors,

known as “anchors". Although only slightly different from the standard Euclidean

distance embedding problem, SNL is a significantly difficult problem primarily because

of two reasons. First, we are only given distances among few pairs, and second,

these distances are computed by transforming signals and therefore are noisy. In this

dissertation, I extend my generalized framework to solve the SNL problem, especially

for the case when senors are mobile. Although one can use the proposed framework

for static SNL problem as well, our experimental study shows that it is more effective

for mobile senors.

1.2 Geometric Methods in Machine Learning

In machine learning, a learning problem selects an appropriate model from a

model space Θ based on some training data from a data space X. In this dissertation, I

focus on solving two machine learning problems using geometry underlying the model

space. First, where geometric structure underlying exponential family distributions

is used to reason about the appropriateness of conjugate priors, and consequently

used to build a semi-supervised hybrid model – a combination of discriminative and

generative models, and second, where geometric structure is used to build a new set

of generative-process-driven kernels called “generative kernels”
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1.2.1 Explaining Conjugate Priors

I study probabilistic models from a geometric perspective by treating the space

of parameters Θ as a geometric space and a parameter vector θ ∈Θ as a point in that

space. In machine learning, it is common to assume that data is generated from an

exponential family distribution parametrized by θ ∈ Θ, which has a geometric structure

associated with it, given by a natural metric i.e., Fisher information metric and an affine

connection. In this work, I study this geometric structure, and use it to reason about

the appropriateness of conjugate priors. Specifically, I formulate conjugate prior in the

form of Bregman divergence and show that it is the inherent geometry of conjugate

priors that makes them appropriate and intuitive. This geometric interpretation allows

one to view the hyperparameters of conjugate priors as the effective sample points, and

to reason about the use of conjugate prior as a coupling prior in hybrid models (see

next section).

1.2.2 Combining Discriminative and Generative Models

In machine learning, models of classification have been divided into two cate-

gories: discriminative models and generative models; both of which have complimen-

tary properties. In the past few years, there have been many attempts to combine these

two types of models and build a hybrid model that performs better than any individual

model. One such attempt is to combine these two models using a coupling prior. In my

work, first, I empirically show that combining these two models using conjugate prior

as a coupling prior is better than combining them using a non-conjugate prior. And
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then I use geometric understanding of conjugate priors to show that the coupling of

these two models using a conjugate prior is nothing but interpolating them using the

distance function that is natural to the models under consideration. This geometric

interpretation of the hybrid model not only gives us insight into the model but also

corroborates our empirical results.

1.2.3 Building Generative Kernels

The above geometric understanding of exponential family models is extended

further to build a new set of kernels called generative kernels. These kernels are called

generative kernels because they take into account the generative process of data. My

proposed method considers geometry of the space of the statistical model associated

with the distribution that generated the data, to build a set of efficient closed-form

kernels best suited for that distribution. Since these kernels are built considering the

geometry associated with the generative model and are used in discriminative models

as in SVM, and therefore, they naturally combine the power of both discriminative

and generative models and exhibit hybrid behavior. My experiments demonstrate this

hybrid behavior, that is, the performance of an SVM using generative kernels is better

that an SVN using other kernels, and also better than a pure generative model.

1.3 Contributions

In this dissertation, I claim that the geometric methods are useful not only to gain

insight into existing algorithms, but also to develop new algorithms. In order to support
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my claim, I take a variety of problems and show that the geometric methods are indeed

useful, by either getting a better understanding of a problem or by developing better

algorithms to solve it. In this work, I specifically take three problems which cover a

wide range of problems in both in machine learning and data mining on many fronts.

For example, these problems (or the proposed solutions) involve using geometry from

both spaces, data space and model space; these problems cover different learning

categories e.g., supervised, semi-supervised, and unsupervised; they cover both kind

of problems - analysis problems where geometric methods are used only to get a

better understanding of a problem without resulting into any new algorithm, and the

problems where geometric methods are used not only to get a better understanding of

a problem, but also to develop new and better algorithms. The contribution of this

dissertation can be summarized as follows:

1. I build a generalized distance embedding framework that is suitable for a variety

of distance embedding problems with different spaces and cost functions. This

framework is extended to handle large scale data, and applied to a more general

distance embedding problem i.e. sensor network localization problem. Experi-

mental results demonstrate improved performance of the proposed framework

compared to state-of-the-art algorithms across all problems: generalized multidi-

mensional scaling problem, large scale dimensionality reduction problem and

the sensor network localization problem for mobile sensors.

2. I study the geometry underlying exponential family distributions and use it to

reason about the appropriateness of conjugate priors. This geometric under-
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standing of conjugate priors allows us not only to explain the effectiveness of

these priors in semi-supervised hybrid model, but also to build this hybrid model

more naturally using the geometry underlying discriminative/generative models

under consideration.

3. Finally, I extend the geometric understanding of exponential family distributions

to build a new set of kernels called generative kernels, which are based on

the geometry of the generative process of data (training and test data of a

problem). Experimental results show the effectiveness of these kernels i.e.,

when used in discriminative methods such as in SVM, these kernels bring in

the generative power into discriminative methods and outperform a purely

generative or discriminative method.

1.4 Dissertation Outline

In order to show the utility of geometric methods, I take a variety of problems,

which as discussed above, cover a wide range of learning problems – from unsupervised

to semi-supervised to supervised. Under the unsupervised category, I use geometric

methods to develop new algorithms for solving a generalized distance embedding

problem (Chapters 2, 3, and 4), and apply it to sensor network localization problem 5.

Under the semi-supervised category, I first build a hybrid model suitable for semi-

supervised learning using coupling prior (Chapter 6), and then show, how a geometric

understanding of the underlying distributions can be used not only to gain insight

into this hybrid model but also to build it naturally (Chapter7). In Chapter 8, I use
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geometric methods to build a family of kernels called generative kernels that are then

later used in supervised learning. This dissertation is organized as follows:

Part I: Data Mining

Chapters 2 shows the utility of geometric methods by building a unified algorithmic

framework for solving many known variants of MDS. In addition to formal

convergence proof, in this chapter I experiment on a variety of problems with

different cost functions, and show the effectiveness of the algorithms derived

from this framework compared to state-of-the-art algorithms.

Chapter 3 shows the application of the unified MDS framework to the spherical

embedding problem. Experimental results indicate that the proposed framework

solves the spherical embedding problem better than existing algorithms.

Chapter 4 extends the unified MDS framework for large scale data. In this chapter.

I propose an approximate version of the unified MDS framework which takes

linear time and constant memory, as opposed to the exact version that takes

square time and linear memory. An empirical study of the proposed approximate

algorithm across different data sets shows improved performance over state-of-

the-art algorithms.

Chapter 5 modifies the unified MDS framework to solve the sensor network localiza-

tion (SNL) problem. Experimental results show that my algorithm outperforms

existing algorithms across a variety of networks, especially when sensors are

moving (mobile sensors).
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Part II: Machine Learning

Chapter 7 describes building of a hybrid semi-supervised learning model by combin-

ing discriminative and generative models. This hybrid model is based on the

principle of coupling prior, more specifically, it uses conjugate prior to couple

these two types of models, unlike the previous work where a Gaussian prior is

used to couple them. Empirical results show the effectiveness of using conjugate

prior as coupling prior over non-conjugate prior.

Chapter 7 is devoted to understanding how geometric methods can be used to gain

insight into existing algorithms by studying conjugate priors from a geometric

perspective, and justifying their use in hybrid generative/discriminative model.

Chapter 8 uses geometric methods to build generative kernels, a family of kernels that

can be used as off-the-shelf tool in any kernel method such as SVM. Experimental

results show that these generative kernels when used in SVM not only outperform

other kernels based on same principle, but also outperforms a purely generative

or a purely discriminative model.

Part III: Conclusion and Future Work

Chapter 9 summarizes the findings of this dissertation and presents directions for

future work.
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Part I

Data Mining

The first part of this dissertation is devoted to solving a generalized distance

embedding problem for different spaces and cost functions, developing scalable algo-

rithms for it, and applying it to sensor network localization task. In particular:

In Chapter 2, I use tools from computational geometry to build an algorithmic

framework to solve a distance embedding problem or more specifically a multidimen-

sional scaling problem. I call this algorithmic framework PLACECENTER which is based

on simple geometric operations such as moving points in space and finding centroid.

The proposed framework is simple, scalable, and can handle a variety of spaces and

cost functions. Experimental results show the efficacy of the algorithms derived from

this framework over the existing state-of-the-art methods.

In Chapter 3, I apply PLACECENTER to perform distance embedding on spheres.

Experimental results indicate that PLACECENTER not only outperforms state-of-the-

art methods but is also free of any hyperparameters, unlike other methods to solve

spherical embedding problem.

In Chapter 4, I extend PLACECENTER for large scale datasets. Although PLACECENTER

can already handle larger amount of data than existing methods because of its lin-

ear memory requirement, I extend it to handle even larger dataset using landmarks

(sampling). This landmark based PLACECENTER—called PLACE-RANDOM— uses adap-
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tive sampling, and is shown to outperform other similar sampling-based distance

embedding methods.

In Chapter 5, I show an application of PLACECENTER on a sensor network lo-

calization (SNL) problem for mobile sensors. SNL problem is similar to a distance

embedding problem with two main differences. First, unlike the standard distance

embedding problem, SNL only have access to partial but noisy distance matrix; and

second, in addition to the distance matrix, it also has access to the locations of some

of the sensors. This chapter describes how PLACECENTER can be extended to solve SNL

problem efficiently and effectively especially when sensors are mobile.
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Chapter 2

Universal Multidimensional Scaling

This chapter demonstrates the power of geometric methods by building a uni-

fied algorithmic framework to solve the generalized multidimensional scaling (MDS)

problem. By using simple tools from computational geometry, I am able to build a

framework that performs comparable to or better than the state-of-the-art methods

for many known variants of MDS, and, at the same time, provides algorithms for the

variants that have not yet been studied. In additional to superior performance, the

algorithms derived from this geometry-driven framework have many attractive proper-

ties i.e. they are simple, intuitive, easily parallelizable, and scale well to large data.

This framework easily generalizes to spaces other than Euclidean space because it is

based on simple geometric operations such as moving points in the space, intersection

of line with surfaces etc., and a well known min-sum or centroid problem [Karcher,

1977; Buss and Fillmore, 2001], which is closely related to the facility location prob-

lem [Hochbaum, 1982; Bajaj, 1986]— a problem well studied problem in theoretical

computer science and computational geometry.

2.1 Motivation

Multidimensional scaling (MDS) [Kruskal and Wish, 1978; Cox and Cox, 2000;

Borg and Groenen, 2005] is a widely used method for embedding a general distance
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matrix into a low dimensional Euclidean space, used both as a preprocessing step for

many problems, as well as a visualization tool in its own right. MDS has been studied

and used in psychology since the 1930s [Young and Householder, 1938; Torgerson,

1952; Kruskal, 1964] to help visualize and analyze data sets where the only input is a

distance matrix. More recently MDS has become a standard dimensionality reduction

and embedding technique to deal with the challenges associated with high dimensional

data sets [Cayton and Dasgupta, 2006; Chen and Buja, 2009; Pless and Simon, 2002;

Bronstein et al., 2008].

In general, the problem of embedding an arbitrary distance matrix into a fixed

dimensional Euclidean space with minimum error is nonconvex. Thus, in addition

to the standard formulation [de Leeuw, 1977], many variants of MDS have been

proposed, based on changing the underlying error function [Young and Householder,

1938; Cayton and Dasgupta, 2006] – function that measures the error between given

distances and the embedded distances. There are also applications where the target

space, rather than being a Euclidean space, is a manifold (e.g. a low dimensional

sphere), and various methods for MDS in this setting have also been proposed [de

Leeuw and Mair, 2009; Bronstein et al., 2008].

Each such variant is typically addressed by a different method, including ma-

jorization [de Leeuw and Mair, 2009], singular value decomposition [Torgerson, 1952],

semidefinite programming [Cayton and Dasgupta, 2006], subgradient methods [Cay-

ton and Dasgupta, 2006], and standard Lagrange-multiplier-based methods (in both

primal and dual settings) [de Leeuw and Mair, 2009]. Some of these methods are

efficient (in terms of time), and others are not; in general, every new variant of MDS
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seems to require different ideas.

In this chapter, I build a unified algorithmic framework called UMDS for solving

many variants of MDS. My approach is based on an iterative local improvement method,

and can be summarized as follows: “Pick a point (among the points from the previous

iteration) and move it so that the cost function is locally optimal. Repeat this process

until convergence.” The improvement step reduces to a well-studied and efficient

family of iterative minimization techniques, where the specific algorithm depends on

the variant of MDS. This proposed method does not solve the optimization problem

associated with MDS directly, rather it breaks the problem into smaller subproblems

where each subproblem can be solved by using well known geometric tools. The

resulting algorithm is generic, efficient, and simple. The high level framework can be

written in 10-12 lines of MATLAB code, with individual function-specific subroutines

needing only a few more lines each. A useful feature of this framework is that it is

parameter-free, requiring no tuning parameters or Lagrange multipliers in order to

perform at its best. Further, this approach compares well with the best methods for all

the variants of MDS, and scales to large data sets (because of small memory footprint).

Summary of contributions. The main contributions of this chapter can be summa-

rized as follows:

• In Section 4.2 I present an iterative framework, illustrate how it is applied to

specific MDS variants and prove a convergence result.

• In Section 4.3 I present a comprehensive experimental study that compares

my approach to the prior best known methods for different MDS variants. In
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addition, I also show how the proposed framework can handle the data of a

scale bigger than the existing methods.

2.2 Definitions

Let D be a n× n distance matrix representing the pairwise distances among a set

of n points P = {p1, . . . pn} 1, and T = (X, f ) be a target space where X is the set of

all points in the target space, and f : X×X→ R+ is the distance function that given

two points in the target space, computes the distance between them. I assume that

f (x , x) = 0 for any x ∈ X. One example of such a target space is when X= Rk, and

f is the Euclidean distance f (x i, x j) = ‖x i − x j‖2
. In general, it is assumed that D is

symmetric (i.e di j = d ji), although my method does not formally require this. Also

when D is not given but one has access to the point set P and a distance function h, D

can be computed using h that is h(pi, p j) = di j.

The multidimensional scaling problem takes as input D, target space T , and k,

and asks for a mapping π : D → X = {x1, x2, . . . , xn} ⊂ X, from D to a set of points

X in a k-dimensional target space T such that the difference between the original

and resulting distances is minimized. There are many different ways to measure

the difference between the sets of distances, and one popular way to do to use the

following function, known as generalized stress function:

C(X , D) =
∑

i

∑

j

Err( f (x i, x j)− di j), (2.1)

1The point set P is mentioned only for the illustrative purpose. The MDS problem only needs a set of
n2 pairwise distances as input.
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where Err measures the discrepancy between the source and target distances,

and f denotes the function that measures distance in the target space. Below are some

instances of the above generalized MDS formulation for specific choice of target space

T , distance function f , and discrepancy measure Err.

• T = Rk, Err(δ) = δ2, f (x , x ′) = ‖x − x ′‖2: This is a general form of the MDS

problem, which I refer to as fMDS.

• T = Rk, Err(δ) = |δ|, f (x , x ′) = ‖x− x ′‖2: This is a robust variant of MDS called

rMDS, first suggested by Cayton and Dasgupta [Cayton and Dasgupta, 2006].

• T = Sk, a k-dimensional sphere; Err(δ) = |δ| or δ2, f (x , x ′) is either chordal(c)

or geodesic distance (g)2 on Sk. I refer to this family of problems as {c,g}-{1,2}-

sMDS (see Chapter 3).

It will be convenient to split the expression into individual component terms. I

define

Ci(X , D, x) =
∑

j

Err( f (x , x j)− di j) (2.2)

which allows us to write

C(X , D) =
∑

i

Ci(X , D, x i).

2For two points x i and x j , chordal distance is nothing but the Euclidean distance between them,
while geodesic distance is the length of the shortest path from x i and x j measured along the great circle
passing through x i and x j .
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Remarks:

• The actual measure studied by Cayton and Dasgupta [2006] is not rMDS. It is a

variant which takes the absolute difference of the squared distance matrices. I

call this measure r2MDS.

• One can also have a weighted version of the above MDS formulation (2.1),

defined as:

C(X , D, W ) =
∑

i

∑

j

wi j Err( f (x i, x j)− di j), (2.3)

where weights W = [wi j] are the importance given to the individual distances.

This weighted variant can also handle missing distances (i.e., some of the

distances in the distance matrix are not known) by setting the corresponding

weights to be 0. Note that not all existing methods (e.g. classical MDS) to solving

MDS can handle the weighted variant. We will see that my method naturally

handle the weighted version without requiring any additional complexity.

• I assume that the target space comes with a distance function such that f (x i, x j) =

0. I also assume di j = 0 for the ease of notations, however it is not required.

2.3 Background and Existing Methods

Multidimensional scaling is a family of problems for embedding a distance matrix

into a fixed dimensional space (Euclidean or an arbitrary but given manifold e.g.

sphere). There is a general taxonomy of MDS problems [Cox and Cox, 2000], however,
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in this dissertation, I will focus on the generalized MDS problem with the error function

being the stress function (see (2.1)).

The traditional formulation of MDS [Kruskal and Wish, 1978] assumes that a

given distance matrix D comes from points in some k-dimensional Euclidean space.

Under this assumption, a simple transformation takes the distance matrix D = [di j]3

with the n2 distances to preserve to a matrix of similarities S = [si j], where si j =

〈x i, x j〉. More specifically, under this transformation, the Euclidean distance matrix

D is centered to D̄ so the mean of all points X = {x1, x2 . . . xn} is 0. Denote the ith

column vector of D̄ as the point x i. Then D̄ is converted to a similarities matrix S

where Si, j = 〈x i, x j〉 or S = X X T . The MDS problem (2.1) then reduces to finding a

set of points X = {x1, . . . xn} in k-dimensional space such that X X T approximates S

in terms of squared error (Err(δ) = δ2). This can be done optimally using the top-k

singular values and vectors from the singular value decomposition of S. While the

prime objective of MDS is to preserve the distances, the most popular method to

MDS [Torgerson, 1952; Cox and Cox, 2000] takes the above described alternative

route i.e., preserve the similarities, and is often referred to as classical MDS.

A more direct approach called SMACOF that drops the k-dimensional Euclidean

space assumption uses a technique known as stress majorization [Marshall and Olkin,

1979; de Leeuw, 1977; de Leeuw and Mair, 2009]. SMACOF has been adapted to

many other MDS variants e.g., variants where distances are assumed to come from

points that lie on quadratic surfaces and spheres [de Leeuw and Mair, 2009].
3When one is not given the distance matrix D, but has access to a set of points P = {p1, p2, . . . pn}

in some higher d-dimensional space (d > k), and the distance function h, di j can be computed as
di j = h(pi , p j).
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The above algorithms preserve distances by minimizing the squared error be-

tween the original distances and the distances computed from embedded points, and

since the squared error metric is sensitive to outliers, Cayton and Dasgupta [2006]

proposed a robust variant based on an `1 error metric. They relax the optimization

problem by removing the rank constraint, and solve it using either semidefinite pro-

gramming or a subgradient heuristic, followed by a singular value decomposition to

enforce the rank constraints.

Embeddings that guarantee bounded error. A complementary line of work

in dimensionality reduction fixes an error bound for every pair of distances (rather

than computing an average error), and asks for the minimum dimension a data

set can be embedded in while maintaining this error. The Johnson-Lindenstrauss

Lemma [Johnson and Lindenstrauss, 1984] states that any collection of distances

that come from n points in a d-dimensional Euclidean space can be embedded in a

k = O((1/ε2)log n) dimensional Euclidean space that preserves all distances within

a relative error of ε. If the points instead lie in an abstract metric space, then the

best possible result is an embedding into O(log n)-dimensional Euclidean space that

preserves distances up to a factor of O(log n). An exhaustive survey of the different

methods for dimensionality reduction is beyond the scope of this thesis - the reader

is directed to the survey by Indyk and Matousek for more information [Indyk and

Matousek, 2004].
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2.4 My Algorithm

I now present the proposed algorithmic framework PLACECENTER (Algorithm 1)

that finds a mapping D→ X minimizing C(X , D). For now it is assumed that we are

given an initial embedding X0 ∈ Rk to seed the algorithm. The experimental results

(see Section 4.3 )indicate the SVD-based approach [Young and Householder, 1938] is

almost always the best way to seed the algorithm, and I will use it unless specifically

indicated otherwise.

Algorithm 1 PLACECENTER (D,εd ,εa)
Choose an initial embedding X0.
X ← X0

repeat
er r ← C(X , D).
for i = 1 to n do

x i ← PLACEi(X , D, x i,εa). {this updates x i ∈ X }
end for

until (er r − C(X , D)< εd) {for a fixed threshold εd}
Return X .

The algorithm operates by employing a technique from the block-relaxation

class of heuristics [De Leeuw and Michailidis, 1994, and references therein]. The

cost function (2.1) can be expressed as a sum of costs for each point x i (2.2), and

so in each step of the inner loop it finds the best placement for x i while keeping all

other points fixed, using the algorithm PLACEi(X , D, x i,εa). A key insight driving this

approach is that PLACEi(X , D, x i,εa) can be implemented either iteratively or exactly

for a wide class of distance functions with provable convergence guarantees. The

process terminates when over all i, invoking PLACEi(X , D, x i,εa) does not reduce the

cost C(X , D) by more than a threshold εd . The algorithm takes O(n2) for each iteration,
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Figure 2.1: A geometric interpretation of the error term.

since PLACEi(X , D, x i,εa) will take O(n) time and computing C(X , D) takes O(n2) time.

A Geometric perspective on Placei(X , D, x i,εa). The routine PLACEi(X , D, x i,εa)

is the heart of the proposed algorithm. This routine finds the optimal placement of a

fixed point x i with respect to the cost function Ci(X , D, x i) =
∑

j Err( f (x i, x j)− di j).

Set r j = di j. Then the optimal placement of x i is given by the point x∗ minimizing the

function

gi(x) =
∑

j

Err( f (x , x j)− r j).

Note that the terms f (x , x i) and ri = dii are zero, so we can ignore their presence in

the summation for ease of notation. As mentioned earlier, dii does not necessarily have

to be zero,but even when dii 6= 0, it can be ignored simply because it only adds the

constant (term independent of x) to gi(x) and adding or keeping it will not change

the solution x∗. Also note that Ci(X , D, x) and gi(x) are the same functions, with latter

used only for the ease of notations.

Now I give a geometric interpretation of gi(x) which is illustrated in Figure 3.1.
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Consider a sphere around the point x j of radius r j. Let x̂ j be the point on this sphere

that intersects the ray from x j towards x . Then the distance f (x , x̂ j) = | f (x , x j)− r j|.

Thus, gi(x) can be rewritten as

gi(x) =
∑

j

Err( f (x , x̂ j)).

Here computation of x̂ j depends on the underlying target space – for the Euclidean

space, it can be computed as follows(for the spherical case, see Chapter 3):

x̂ j = x j −
r j

‖x i − x j‖2
(x j − x i).

This function gi(x) is well-known in combinatorial optimization as the min-

sum problem. For Err(δ) = δ2, gi(x) finds the point minimizing the sum-of-squared

distances from a collection of fixed points (the 1-mean), which is the centroid x∗ =

1
n

∑

j x̂ j. For Err(δ) = |δ|, gi(x) finds the 1-median: the point minimizing the sum

of distances from a collection of fixed points. Although there is no closed form

expression for the 1-median, there are numerous algorithms for solving this problem

both exactly [Weiszfeld, 1937] and approximately [Bose et al., 2003]. Methods that

converge to the global optimum exist for any Err(δ) = |δ|p, p ≤ 2; it is known that if p

is sufficiently larger than 2, then convergent methods may not exist [Brimberg and

Love, 1993].

While gi(x) can be minimized optimally for error functions Err of interest, the

location of the points x̂ j depends on the location of the solution x∗, which is itself
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unknown! This motivates an alternating optimization procedure, where the current

iterate x is used to compute x̂ j, and then these x̂ j are used as input to the min-sum

problem to solve for the next value of x . The alternating optimization procedure is

presented in Algorithm 2.

Algorithm 2 PLACEi(X , D, x i,εa)
repeat
ε← gi(x i)
for j = 1 to n do

x̂ j ← intersection of sphere of radius r j around x j with ray from x j towards x i.
end for
x i ← RECENTER({ x̂1, x̂2, . . . , x̂n}).

until (ε− gi(x i)< εa) {for a fixed threshold εa}
Return x i.

2.4.1 Implementing RECENTER

Up to this point, the description of PLACECENTER and PLACE has been generic,

requiring no specification of Err and f . In fact, all the domain-specificity of the method

appears in RECENTER, which solves the min-sum problem. We now demonstrate how

different implementations of RECENTER allow us to solve the different variants of MDS

discussed above.

2.4.1.1 The original MDS: fMDS

Recall from Section 2.2 that the fMDS problem is defined by Err(δ) = δ2 and

f (x , x ′) = ‖x − x ′‖2. Thus, gi(x) =
∑

j ‖x − x̂ j‖2. As mentioned earlier, the minimum

of this function is attained at x∗ = (1/n)
∑

j x̂ j. Thus, RECENTER({ x̂1, x̂2, . . . , x̂n})

merely outputs (1/n)
∑

j x̂ j, and takes O(n) time per invocation.
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2.4.1.2 Robust MDS: rMDS

The robust MDS problem rMDS is defined by Err(δ) = |δ| and f (x , x ′) =

‖x − x ′‖2. Minimizing the resulting function gi(x) yields the famous Fermat-Weber

problem, or the 1-median problem as it is commonly known. An exact iterative

algorithm for solving this problem was given by Weiszfeld [1937], and works as

follows. In each iteration of the algorithm, the value x i is updated by

x i ←
∑

j

x̂ j

‖x i − x̂ j‖

,

∑

j

1

‖x i − x̂ j‖
.

This algorithm is guaranteed to converge to the optimal solution [Kuhn, 1973; Ostresh,

1978], and in most settings converges quadratically [Katz, 1974].

Other norms and distances. If Err(δ) = |δ|p, 1 < p < 2, then an iterative algo-

rithm along the same lines as the Weiszfeld algorithm can be used to minimize gi(x)

optimally [Brimberg and Love, 1993]. In practice, this is the most interesting range of

values for p. It is also known that for p sufficiently larger than 2, this iterative scheme

may not converge.

We also can tune PLACECENTER to the r2MDS problem (using squared distances)

by setting r j = d2
i j. Although the convergence proofs (below) do not hold in this case,

the algorithm does converge in practice (see results in Section 2.5.3).
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2.4.2 Convergence Proofs

Here we prove that each step of PLACECENTER converges as long as the recursively

called procedures reduce the relevant cost functions. Convergence is defined with

respect to a cost function κ, so that an algorithm converges if at each step κ decreases

until the algorithm terminates.

Theorem 1. If each call to x̃ i ← PLACEi(X , D, x i,εa) decreases the cost Ci(X , D, x i), then

PLACECENTER(D,εd ,εa) converges with respect to C(·, D).

Proof. Let X̃ ← PLACEi(X , D, x i,εa) result from running an iteration of PLACEi(X , D, x i,εa).

Let X̃ = {x1, . . . , x i−1, x̃ i, x i+1, . . . , xn}. Then we can argue

C(X , D)− C(X̃ , D)

= 2
∑

j=1

Err( f (x i, x j)− di, j)− 2
∑

j=1

Err( f ( x̃ i, x j)− di, j)

= 2Ci(X , D, x i)− 2Ci(X̃ , D, x̃ i)> 0.

The last line follows because X and X̃ only differ at x i versus x̃ i, and by assumption

on PLACEi(X , D, x i,εa), this sub-cost function must otherwise decrease.

Theorem 2. If each call x i ← RECENTER(X̂ ) reduces
∑n

j=1 f (x i, x̂ j)p, then PLACEi(X , D, x i,εa)

converges with respect to Ci(X , D, ·).

Proof. First we can rewrite

Ci(X , D, x i) =
n
∑

j=1

Err( f (x i, x j)− di, j)
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=
n
∑

j=1

Err(( f (x i, x̂ j) + di, j)− di, j)

=
n
∑

j=1

Err( f (x i, x̂ j)).

Since Err( f (x i, x̂ j)) measures the distance to the sphere ◦ j ( x̂ j is the closest point to x i

on ◦ j). Then choosing x ′i to minimize (or decrease)
∑n

j=1 Err( f (x ′i , x̂ j)), must decrease

the sum of distances to each point x̂ j on each sphere ◦ j. Now let x̂ ′j be the closest point

to x ′i on ◦ j. Hence Err( f (x ′i , x̂ ′j))≤ Err( f (x ′i , x̂ j)) and thus

Ci(X , D, x ′i) =
n
∑

j=1

Err( f (x ′i , x̂ ′j))≤
n
∑

j=1

Err( f (x ′i , x̂ j))

≤
n
∑

j=1

Err( f (x i, x̂ j)) = Ci(X , D, x i)

where equality only holds if x i = x ′i , in which case the algorithm terminates.

2.4.3 Relationship with Gradient Descent

I now show that PLACEi with the Euclidean space as the target space (fMDS) is

nothing but a gradient descent algorithm with learning rate λ= 1/2n. Recall that the

cost function is for the point x i is:

Ci(X , D, x i) =
n
∑

j=1

�

‖x i − x j‖− di, j

�2
.
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Taking the gradient with respect to x i

∂ Ci(X , D, x i)
∂ x i

=
n
∑

j=1

2
�

‖x i − x j‖− di, j

� ∂ ‖x i − x j‖
∂ x i

=
n
∑

j=1

2
�

‖x i − x j‖− di, j

� (x i − x j)

‖x i − x j‖

=
n
∑

j=1

2

�

1−
di, j

‖x i − x j‖

�

(x i − x j).

Now the new point can be computed iteratively using the gradient update procedure

(using learning rate λ= 1
2n

):

x∗i = x i −λ
∂ Ci(X , D, x i)

∂ x i

= x i −
1

2n

n
∑

j=1

2

�

1−
di, j

‖x i − x j‖

�

(x i − x j)

= x i −
1

n

n
∑

j=1

(x i − x j) +
1

n

∑

j

�

di, j

‖x i − x j‖

�

(x i − x j)

=
1

n

n
∑

j=1

�

x j + (x i − x j)
di, j

‖x i − x j‖

�

=
1

n

n
∑

j=1

x̂ j.

These x̂ j = x j + (x i − x j)
di, j

‖x i−x j‖
are interpolated points between x j and x i at the

fractional distance q =
di, j

‖x i−x j‖
. Although this algorithm is simply the gradient descent

algorithm with learning rate 1/2n, it is to be noted that algorithm always monotonically

reduces the cost, which is not true for general gradient descent algorithms
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2.4.4 Working Space Usage

PLACECENTER(D,εd ,εa) takes an n× n distance matrix as input, but each invoca-

tion of PLACEi(X , D, x i,εa) only operates on a single point. This means that although

the input complexity is O(n2), the working memory footprint of the algorithm is only

O(n). This is a significant advantage of PLACECENTER(D,εd ,εa) over many existing

MDS methods that require the entire matrix D to be stored in memory. In Section 4.3

we will see that this small memory footprint enables us to run PLACECENTER(D,εd ,εa)

for values of n well beyond the point where other methods start to fail.

2.5 Experiments

In this section I evaluate the performance of PLACECENTER (PC). Since PLACECENTER

generalizes to many different cost functions, I compare it with the best known algo-

rithm for each cost function, if one exists. For the fMDS problem the leading algorithm

is SMACOF [de Leeuw and Mair, 2009]; for the r2MDS problem the leading algorithm

is by Cayton and Dasgupta (CD) [Cayton and Dasgupta, 2006]. I know of no previous

scalable algorithm designed for rMDS. I note that the Cayton-Dasgupta algorithm REE

does not exactly solve the r2MDS problem. Instead, it takes a non-Euclidean distance

matrix and finds a Euclidean distance matrix that minimizes the error without any

rank restrictions. Thus, as suggested by the authors [Cayton and Dasgupta, 2006], to

properly compare the algorithms, I let CD refer to running REE and then projecting the

result to a k-dimensional subspace using the SVD technique [Young and Householder,
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1938] (our plots show this projection after each step). With regards to each of these

Euclidean measures I compare our algorithm with SMACOF and CD. I also compare

with the popular SVD-based method [Young and Householder, 1938], which solves the

related cMDS problem based on similarities, by seeding all three iterative techniques

with the results of the closed-form SVD-based solution.

The subsections that follow focus on individual cost measures. I then discuss the

overall behavior of our algorithm in Section 2.5.5.

Data sets, code, and setup. Test inputs for the algorithms are generated as

follows. I start with input consisting of a random point set with n = 300 points

in Rd for d = 200, with the target space T = Rk with k = 10. Many data sets in

practice have much larger parameters n and d, but I limit myself to this range for

most of the experiments because for larger values CD becomes prohibitively slow,

and both SMACOF and CD run into memory problems. In Section 2.5.4 I explore

the performance of our algorithm on larger data sets (up to 50,000 points). The

data is generated to first lie on a k-dimensional subspace, and then (full-dimensional)

Gaussian noise is applied to all points up to a magnitude of 30% of the variation in all

dimensions. Finally, I construct the Euclidean distance matrix D which is provided as

input to the algorithms.

These data sets are Euclidean, but “close” to k-dimensional. To examine the

behavior of the algorithms on distance matrices that are non-Euclidean, I generate

data as before in a k-dimensional subspace and generate the resulting distance matrix

D. Then I perturb a fraction of the elements of D (rather than perturbing the points)
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with Gaussian noise. The fraction perturbed varies in the set (2%, 10%,30%, 90%).

All algorithms were implemented in MATLAB. For SMACOF, I used the imple-

mentation provided by Bronstein4, while for all other algorithms, I used our own

implementation5. In all cases, I compare performance in terms of the error function

C(X , D) as a function of clock time.

2.5.1 The rMDS Problem

Figure 2.2 shows the cost function C(X , D) associated with rMDS plotted with

respect to runtime. PLACECENTER always reaches the best local minimum, partially

because only PLACECENTER can be adjusted for the rMDS problem. It also observed

that the runtime is comparable to SMACOF and much faster than CD in order to get

to the same C(X , D) value. Although SMACOF initially reaches a smaller cost that

PLACECENTER, it later converges to a larger cost because it optimizes a different cost

function (fMDS).

I repeat this experiment in Figure 2.3 for different values of k (equal to {2, 20, 50, 150})

to analyze the performance as a function of k. Note that PLACECENTER performs even

better for lower k in relation to CD. This is likely as a result of CD’s reliance on the SVD

technique to reduce the dimension. At smaller k, the SVD technique has a tougher job

to do, and optimizes the wrong metric. Also for k = 150 note that CD oscillates in its

cost; this is again because the REE part finds a nearby Euclidean distance matrix which

may be inherently very high dimensional and the SVD projection is very susceptible to

4Accelerated MDS, http://tosca.cs.technion.ac.il/book/resources_sw.html
5All of the code may be found at http://www.cs.utah.edu/~suresh/papers/smds/smds.

html.
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Figure 2.2: rMDS: A typical behavior of the PC, CD and SMACOF for rMDS problem.

changes in this matrix for such large k. I observe that SMACOF is the fastest method

to reach a low cost, but does not converge to the lowest cost value. The reason it

achieves a cost close to that of PLACECENTER is that for this type of data the rMDS and

fMDS cost functions are fairly similar.

In Figure 2.4 I evaluate the effect of changing the amount of noise added to

the input distance matrix D, as described above. I consider two variants of the CD

algorithm, one where it is seeded with an SVD-based seed (marked CD+SVD) and

one where it is seeded with a random projection to a k-dimensional subspace (marked

CD+rand). In both cases the plots show the results of the REE algorithm after SVD-type

projections back to a k-dimensional space.

The CD+SVD technique consistently behaves poorly and does not improve with
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Figure 2.3: rMDS: Variation with k = 2,20, 50,150.
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Figure 2.4: rMDS: Variation with noise= 2, 10,30, 90.

further iterations. This probably is because the REE component finds the closest

Euclidean distance matrix which may correspond to points in a much high dimensional

space, after which it is difficult for the SVD to help. The CD+rand approach does much

better, likely because the random projection initializes the procedure in a reasonably

low dimensional space so REE can find a relatively low dimension Euclidean distance

matrix that is nearby. SMACOF is again the fastest algorithm, but with more noise,

the difference between fMDS and rMDS is larger, and thus SMACOF converges to a

configuration with much higher cost than PLACECENTER. I reiterate that PLACECENTER

consistently converges to the lowest cost solution among the different methods, and
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consistently is either the fastest or is comparable to the fastest algorithm. I will see

this trend repeated with other cost measures as well.

2.5.2 The fMDS Problem

I next evaluate the algorithms PLACECENTER, SMACOF, and CD under the fMDS

distance measure. The results are very similar to the rMDS case except now both

SMACOF and PLACECENTER optimizing the correct distance measure and converge to

the same local minimum. SMACOF is still slightly faster that PLACECENTER, but since

they both run very fast, the difference is of the order of less than a second even in

the very worst part of the cost/time tradeoff curve shown in Figure 2.5. Note that CD

performs poorly under this cost function here except when k = 50. For smaller values

of k, the SVD step does not optimize the correct distance and for larger k the REE

part is likely finding an inherently very high dimensional Euclidean distance matrix,

making the SVD projection very noisy.

For the fMDS measure, SMACOF and PLACECENTER perform very similarly under

different levels of noise, both converging to similar cost functions with SMACOF

running a bit faster, as seen in Figure 2.6. CD consistently runs slower and converges

to a higher cost solution.

2.5.3 The r2MDS Problem

In this setting I would expect CD to perform consistently as well as PLACECENTER

because both minimize the same cost function. However, this is not always the case
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Figure 2.5: fMDS: Variation with k = 2, 20,50, 150

because CD requires the SVD step to generate a point set in Rk. As seen in Figure 2.7

this becomes a problem when k is small (k = 2,10). For medium values of k, CD

converges slightly faster than PLACECENTER and sometimes to a slightly lower cost

solution, but again for large k (= 150), the REE part has trouble handling the amount

of error and the solution cost oscillates. SMACOF is again consistently the fastest to

converge, but unless k is very large (i.e. k = 150) then it converges to a significantly

worse solution because the fMDS and r2MDS error functions are different.
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Figure 2.6: fMDS: Variation with noise= 2, 10,30, 90.

2.5.4 Processing Large Data Sets

As mentioned in Section 4.2, the memory footprint of PLACECENTER is linear in

the number of points. I ran PLACECENTER for fMDS and compared it to SMACOF and

CD (Figure 2.8). Both SMACOF and CD fail to run after n = 5000 because they run out

of memory, while the performance of PLACECENTER scales fairly smoothly even up to

50,000 points. Before n= 5000, SMACOF performs quite well, but the performance

of CD starts deteriorating rapidly.

I avoid storing the full O(n2)-sized distance matrix D, by recomputing each
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Figure 2.7: r2MDS: Variation with k = 2, 20,50, 150

distance di, j as needed. Thus I only store the original point set, which has size O(nd).

This approach works for any data set where distances di, j can be quickly recomputed,

not just Euclidean data in Rd for moderate d. Alternatively, we could have read

distances from disk for the point currently being processed instead of recomputing

them on the fly. Note, I also seed all algorithms with a random projection instead of

cMDS since cMDS also has a memory bottleneck of around n= 5000.

These results indicate that my method can be effective on larger data sets. In

Chapter 4, I will extend the PLACECENTER for large scale data by using sampling, and

compare it other scalable MDS methods like FastMap[Faloutsos and Lin, 1995], Metric
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Figure 2.8: The behavior of PC, SMACOF and CD for large values of n. The curves for
CD and SMACOF terminate around n= 5000 because of memory limitations.

Map[Wang et al., 1999], Landmark MDS[Silva and Tenenbaum, 2003] and Pivot-

MDS[Brandes and Pich, 2007] that sacrifice quality (by reducing the number of “pivot”

or “landmark” points supplied to the MDS routine) for speed.

2.5.5 Summary of Results

In summary, here are the main conclusions that can be drawn from this experi-

mental study. Firstly, PLACECENTER is consistently among the top performing methods,

regardless of the choice of cost function, the nature of the input, or the level of noise

in the problem. Occasionally, other methods will converge faster, but will not in
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general return a better quality answer, and different methods have much more variable

behavior with changing inputs and noise levels.
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Chapter 3

Spherical Multidimensional Scaling

In this chapter, I solve an important variant of MDS called spherical MDS, using

the generalized MDS framework PLACECENTER presented in the previous chapter.

Spherical MDS is the problem of embedding a matrix of distances onto a k-dimensional

sphere for a given k. Spherical MDS has applications in texture mapping and image

analysis [Bronstein et al., 2008], and is a generalization of the spherical dimensionality

reduction problem, where the goal is to map points from a high dimensional sphere

onto a low-dimensional sphere.

Many techniques have been proposed for performing spherical MDS. Among

them are majorization methods [Pietersz and Groenen, 2004] and SMACOF-Q [de

Leeuw and Mair, 2009]), a multiresolution approach due to Elad, Keller and Kim-

mel [Elad et al., 2005] and an approach based on computing the classical MDS and

re-normalizing [Pless and Simon, 2002]. My generalized MDS framework presented in

the previous chapter applies directly to this setting, where for the local improvement

step I adapt a technique first developed by Karcher for finding geodesic means on a

manifold [Karcher, 1977].

The spherical MDS problem is closely related to dimensionality reduction for

finite dimensional distributions. A well-known isometric embedding takes a distri-

bution represented as a point on the d-dimensional simplex to the d-dimensional
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sphere while preserving the Hellinger distance between distributions [Kass and Vos,

1997]. A spherical dimensionality reduction result is an important step to representing

high dimensional distributions in a lower-dimensional space of distributions, and will

have considerable impact in domains that represent data natively as histograms or

distributions, such as in document processing [Pereira et al., 1993; Joachims, 2002;

Blei et al., 2003; Lebanon and Lafferty, 2004], image analysis [Lowe, 2004; Dalal and

Triggs, 2005] and speech recognition [Gray et al., 1980].

Spherical embeddings that guarantee bounded error. The Johnson-Lindenstrauss

lemma (discussed in the previous chapter (Chapter 2)) can be extended to data lying

on manifolds. Any manifold M with “linearization dimension” k (a measure of its

complexity) can be embedded into a O((1/ε2)klog (kn)) dimensional space so that all

pairwise Euclidean distances between points on M are distorted by at most a relative

(1+ ε)-factor [Agarwal et al., 2007; Sarlós, 2006; Magen, 2002]. A k-dimensional

sphere has linearization dimension O(k), so this bound applies directly for preserving

the chordal (i.e Euclidean) distance between points on a sphere, however it does

not directly apply to geodesic distances. The geodesic distance between points on a

sphere can be interpreted as the angle between the points in radians, and a result

by Magen [2002] show that O((1/ε2)log n) dimensions preserve angles to within a

relative factor of 1+ ε. In this work, we prove a Johnson-Lindenstrauss-type result for

the sphere; namely, that n points lying on a d-dimensional sphere can be embedded

on a O((1/ε2)log n)-dimensional sphere while approximately preserving the geodesic

distances between pairs of points, that is, no distance changes by more than a relative
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Figure 3.1: A pictorial representation of how to compute the point intersecting with
the geodesic ray on the sphere.

(1+ ε)-factor. This latter result is stronger than the results of Magen [2002], and can

be seen as complementary to the local improvement scheme; the formal embedding

result guarantees the error while being forced to use log n dimensions, while the local

improvement strategy generates a mapping into any k dimensional hypersphere but

provides no formal guarantees on the error.

3.1 Algorithm

I use the generalized MDS framework from Chapter 2 to solve the spherical

MDS problem with the specific implementations of PLACE and RECENTER. Recall that in

generalized MDS framework, PLACE determines how to move points, while RECENTER

computes the mean of points obtained from the PLACE step which is equivalent to

solving the min-sum problem. For spherical MDS, implementation of PLACE is easy.

Rather than drawing spheres around each x j, we draw geodesic spheres, which are the

set of points at a fixed geodesic distance from x j. On the sphere, this set of points can
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be easily described as the intersection of an appropriately chosen halfplane with the

sphere. Next, instead of computing the intersection of this geodesic sphere with the ray

from x j towards the current estimate of x i, we compute the intersection with a geodesic

ray from x j towards x i. This intersection can be found using simple trigonometric

operations. Let x̂ j be the intersecting point of geodesic ray connecting x j and x i with

the sphere of radius of r j around x j then x̂ j is given by (refer Figure 3.1):

x̂ j =
ζ x̂ o

j

‖ x̂ o
j ‖

where,

x̂ o
j = x j −η(x j − x i).

Here is ζ is the radius of the sphere1 . Note that η is just the interpolation parameter

interpolating between two extreme points x j and x i such as for η= 0, x̂ j = x j while

for η= 1, x̂ j = x i.

In Figure 3.1, from triangle 4x jox̂ o
j , we know:

‖x j − x̂ o
j ‖2

sinα
=

ζ

sinβ
,

and

η=
‖x j − x̂ o

j ‖2

‖x i − x j‖2

1This is the target sphere where all the points are being embedded, and not to be confused with the
sphere around x j .
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=
ζ

‖x i − x j‖2

sinα

sinβ

=
ζ

‖x i − x j‖2

sinα

cos
�

α− θ

2

�

where α and θ are defined in the Figure 3.1.

The above closed form expression of x̂ j gives us an easy implementation of

PLACE, leaving us to implement RECENTER which is not as easy for the spherical space

as it is for the Euclidean space and poses some challenges. Consider the case where

Err(δ) = δ2, and f (x , x ′) is given by geodesic distance on the sphere. Now unlike

in the case of Rk, simply computing the centroid of the given points will not work

here because this centroid will not in general lie on the sphere, however one can

force it to lie on the sphere by projecting it. In my experiments, I use this approach

– centroid followed by the projection – for the simplicity. Note that this approach no

longer guarantees the optimality, and for the optimality, one will have to resort to

more principled way of computing this mean e.g., [Karcher, 1977].

For the robust case (Err(δ) = |δ|), the Karcher scheme no longer works. For this

case, I make similar adaptation but to the Weiszfeld approach i.e., Weiszfeld algorithm

followed by the projection on the sphere. Similar to Err(δ) = δ2, such adaptation no

longer guarantees convergence but it seems to work well in practice (see experimental

results in next section). A more principled approach in this case is [Fletcher et al.,

2009].
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3.2 Experiments

In this section, I take the spherical MDS problems {c,g}-{1,2}-sMDS, and compare

the proposed algorithms for both of these problems against SMACOF-Q, an adaptation

of SMACOF to restrict data points to a low-dimensional sphere, and a technique of

Elad, Keller and Kimmel [Elad et al., 2005]. It turns out that the Elad et.al. approach

consistently performs very poorly compared to both other techniques, and so I do not

display it in the graphs. SMACOF-Q has a tunable parameter κ, a larger κ implying a

stronger emphasis on satisfying spherical constraint, while small value emphasizing on

optimizing the cost. Since the solution produced via this procedure may not lie on the

sphere, I normalize all points to the sphere after each step for a fair comparison.

Figure 3.2 and Figure 3.3 compares the performance of PLACECENTER (PC)

against SMACOF-Q for the g-1-SMDS and the c-2-SMDS problems respectively. For

g-1-SMDS, PLACECENTER does not converge as quickly as SMACOF-Q with small κ,

but it reaches a better cost value. However, when SMACOF-Q is run with a larger κ,

then PLACECENTER runs faster and reaches nearly the same cost value. For my input

data, the solution has similar g-1-MDS and c-1-MDS cost. When I compare SMACOF-Q

with PLACECENTER under c-2-MDS (Figure 3.3) then for an optimal choice of κ in

SMACOF-Q, both PLACECENTER and SMACOF-Q perform very similarly, converging

to the same cost function and in about the same time. But for larger choices of κ

SMACOF-Q does much worse than PLACECENTER.

In both cases, it is possible to find a value of κ that allows SMACOF-Q to match

PLACECENTER. However, this value is different for different settings, and varies from
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Figure 3.2: Comparing PLACECENTER (PC) with SMACOF-Q for different values of
penalty parameter κ for g-1-SMDS

input to input. The key observation here is that since PLACECENTER is parameter-free

(no hyperparameter except for the convergence criterion ε which is needed for both

algorithms), it can be run regardless of the choice of input or cost function, and

consistently performs well.

3.3 A JL Lemma for Spherical Data

In this section I present a Johnson-Lindenstrauss-style bound for mapping data

from a high dimensional sphere to a low-dimensional sphere while preserving the

distances to within a multiplicative error of (1+ ε).

Consider a set Y ⊂ Sd ⊂ Rd+1 of n points, defining a distance matrix D where
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Figure 3.3: Comparing PLACECENTER (PC) with SMACOF-Q for different values of
penalty parameter κ for for c-2-SMDS

the element di, j represents the geodesic distance between yi and y j on Sk. I seek an

embedding of Y into Sd that preserves pairwise distances as much as possible. For a

set Y ∈ Sd and a projection π(Y ) = X ⊂ Sk I say the X has γ-distortion from Y if these

exists a constant c such that for all x i, x j ∈ X

(1− γ) f (yi, y j)≤ c f (x i, x j)≤ (1+ γ) f (yi, y j).

For a subspace H = Rk, let πH(Y ) be the projection of Y ∈ Rd onto H and then

scaled by d/k. For X ∈ Rk, let S(X ) be the projection to Sk−1, that is for all x ∈ X , the

corresponding point in S(X ) is x/||x ||.
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When f (yi, y j) = ||yi − y j||, and Y ∈ Rd , then the Johnson-Lindenstrauss

(JL) Lemma [Johnson and Lindenstrauss, 1984] says that if H ⊂ Rd is a random

k-dimensional linear subspace with k = O((1/ε2)log (n/δ)), then X = πH(Y ) has

ε-distortion from Y with probability at least 1−δ.

I now present the main result of this section. Note that recent results [Agarwal

et al., 2007] have shown similar results for point on a variety of manifolds (including

spheres) where projections preserve Euclidean distances. I reiterate that my results

extend this to geodesic distances on spheres which can be seen as angle ∠x ,y between

the vectors to points x , y ∈ Sk. Another recent result [Magen, 2002] shows that

k = O((1/ε2)log (n/δ)) dimensions preserves
p
ε-distortion in angles, which is weaker

than the following result.

Theorem 3. Let Y ⊂ Sd ⊂ Rd+1, and let H = Rk+1 be a random subspace of Rd with

k = O((1/ε2)log (n/δ)) with ε ∈ (0,1/4]. Let f (yi, y j) measure the geodesic distance

on Sd (or Sk as appropriate). Then S(πH(Y )) has ε-distortion from Y with probability at

least 1−δ.

This implies that if we project n data points that lie on any high-dimensional

sphere to a low-dimensional sphere Sk with k ∼ log n, then the pairwise distances are

each individually preserved. The proof of the above theorem is given in Appendix B.

3.4 Conclusion

In this chapter, I have shown how PLACECENTER— algorithm developed in the

previous chapter — can be used to do the embedding on a sphere. Experimental results
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show that the PLACECENTER is efficient and effective than the existing algorithms. In

addition, I have also proved a formal dimensionality reduction result that embeds a set

of n points on a high-dimensional sphere into a sphere of dimension O((1/ε2)log n)

while preserving all distances to within relative error of (1+ ε) for any ε > 0.
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Chapter 4

Large Scale Distance Embedding

In this chapter, we1 extend MDS framework proposed in previous chapter for

large scale data sets. Recall that MDS is a dimensionality reduction formulation,

particularly relevant when the target dimension is small and fixed. In its most general

form, the input is given as a set of n2 distances, and the goal is to embed n associated

points into a fixed space (usually Rk) where the average distortion on those distances

is small. This problem has been studied [Young and Householder, 1938; Torgerson,

1952; Kruskal, 1964; de Leeuw, 1977; Cox and Cox, 2000; Bronstein et al., 2008;

Kruskal and Wish, 1978]; and efficient solutions have been developed [Borg and

Groenen, 2005; de Leeuw and Mair, 2009; Agarwal et al., 2010a] for data sets where

all n2 distances fit in memory.

However, as datasets have grown, this assumption that n2 distances fit in memory

is no longer valid; and in fact, in many cases the assumption that n points fit in memory

has been violated as well, making many existing MDS algorithms infeasible. This

second observation often co-occurs with these n2 distances not being available directly

on input, but rather being represented implicitly by some function on a set of n points

P. The most common setting is where each point p ∈ P ⊂ Rb is a d-dimensional

feature vector (e.g. SIFT features of images, profile data on customers, attributes of

products), and the distance between p, q ∈ P is defined as ‖p− q‖2; thus the input

1Part of this work was done in collaboration with another student Chad Brubaker.
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can be stored in O(nd) space and each distance can be calculated in O(d) time. A host

of other feature distances can be used, and other similar “implicit" problems arise on

sparse graphs [Davis and Hu, pear; Buja et al., 2008; Chen and Buja, 2009] using the

shortest-path graph distance.

To deal with these large-data2 versions of the MDS problem two general schemes

have arisen – first, landmark-based methods which include Nyström methods such as

LMDS [de Silva and Tenenbaum, 2004], MetricMap [Wang et al., 1999], FastMap

[Faloutsos and Lin, 1995] and PMDS [Brandes and Pich, 2007] and second greedy

methods such as Iterative PCA [Artač et al., 2002]. The Nyström methods select

a subset of ` � n landmarks thus reducing the number of rows and columns in a

sub-matrix which is used to determine the projection. Second, greedy methods such

as Iterative PCA [Artač et al., 2002] (iPCA), inside classical MDS, maintain the best

estimate of the top k components of the decomposition, but may suffer from early

pruning decisions. By restricting ` or k to be constant, these approaches are scalable

because they require space that is independent of n, and time that is linear with

respect to the data size n; however, as we will reaffirm in experiments of our own, for

small values of k and `, these methods are unstable and allow too much error. This

inaccuracy comes from two restrictions. First, all of these methods are based on the

principal of ”classical MDS“ (spectral methods), that is, they preserve similarities not

the distances (hence they solve a different problem). It is well known that classical

MDS gives a perfect embedding when distances actually come from a k-dimensional

2Here by large data we mean the size of the distance matrix for large n. If this distance matrix
is assumed to come from points in some high d-dimensional space, we assume that d is fixed and is
relatively small, hence solution is often constrained by n not by d.
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Euclidean space, but when they do not, classical MDS or any method based on the same

principal performs poorly. This performance degradation increases as one deviates

from the k-dimensional Euclidean space i.e. as the difference between the dimension

of the source space and the target space increases. In addition to preserving similarities,

like classical MDS, these methods perform linear projections and thus cannot harness

the improved accuracy by allowing non-linear projections. Second limitation of the

landmark-based methods is that they suffer from potentially poor early decisions (a

fixed sample for LMDS, and a initial guess of principal components for iPCA).

Our proposed method (called PLACE-RANDOM) handles large-data MDS while

overcoming these restrictions by extending PLACECENTER to work with an adaptive

sample, unlike a fixed sample as in LMDS. Our proposed method PLACE-RANDOM not

only allows for non-linear projections and inherit all generalizations of PLACECENTER

(e.g. for robust MDS [Cayton and Dasgupta, 2006]), but it can refine a fixed size sample

over multiple passes of the data, iteratively improving the embedding. Furthermore,

the proposed iterative coordinate descent approach of PLACECENTER scales better than

iPCA (in terms of d) and FastMap (in terms of k), while all algorithms scale linearly

in n. We also demonstrate that PLACE-RANDOM empirically outperforms iPCA and

FastMap which will be our two main baselines, in terms of runtime and accuracy on a

thorough suite of experiments. These experiments also investigate the effect of noise

in the data and the choice of ` on the error; notably, the effect of ` on the error is

independent of n.
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4.1 Background And Related Work

Now we give formal definition of the large scale MDS problem, and explore the

existing methods used to solve it.

4.1.1 Problem Formulation

Recall that the core MDS problem takes as input an n × n distance matrix

D representing the pairwise distances among a set of n points, and a target space

T = (X, f ); and finds a set of n points X = {x1 . . . xn} ∈ X such that distances are best

preserved. Specifically, the goal is to find X that minimizes the cost:

C(X , D) =
n
∑

i=1

n
∑

j=1

Err
�

f (x i, x j − di j)
�

. (4.1)

di j is the (i, j) element of the distance matrix D, and Err(δ) is a loss function, which

typically is (δ)2 or |δ| (robust case).

For large-scale data the input is generally presented as a point set P ⊂ Rd of size

n, a distance function h : Rd ×Rd → R+, and a target space T = (X, f ). In most of

the cases, f and h are same, but they do not have to be. The goal is to find a mapping

µ : P → X⊂ Rk to preserve the distances h(pi, p j) ∀i, i = 1 . . . n as best possible, where

typically k� d. Specifically, the goal is to find a mapping µ : P → X that minimizes

the cost

C(P,µ(P)) =
∑

pi∈P

∑

p j∈P

Err
�

f (µ(pi),µ(p j))− h(pi, p j)
�

. (4.2)
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Here the notation C has been overloaded for the brevity, specific meaning of which

should be clear from the context. Similar to the Equation (2.2), we split the cost in

(4.2) for individual point:

Ci(P,µ(P),µ(pi), pi) =
∑

p j∈P

Err
�

f (µ(pi),µ(p j))− h(pi, p j)
�

. (4.3)

These formulations captures several common instances.

• In Euclidean MDS, f and h are just the Euclidean distance functions, with

X= Rk, and P ⊂ Rd .

• In Spherical MDS [Elad et al., 2005], X = Sk, P ⊂ Sd where Sk and Sd denote

the d-dimensional and k-dimensional spheres, respectively. f and h are the

(geodesic) distance functions on the sphere, giving the distance along the great

circle between two points on the sphere. This generalizes to other explicitly

defined non-Euclidean spaces.

• In the robust setting [Cayton and Dasgupta, 2006], the spaces and distances are

the same, that is Euclidean space and Euclidean distance, but error is measured

as Err(δ) = |δ|.

• The input can also be a sparse graph [Davis and Hu, pear; Buja et al., 2008;

Chen and Buja, 2009] and the goal is to use one of the above target spaces and

errors to embed the shortest-path graph distance between vertices. This distance

can be very expensive to compute (often done with Djikstra’s algorithm) and

should be avoided when possible.
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4.1.2 Related Work

In Section 2.3, I described various methods to solve MDS. These methods are

efficient and give accurate embedding when n is small i.e. when all n2 distances can

fit in memory, but for large n these methods are not suitable. Among these methods,

spectral methods such as classical MDS are admissible and give accurate answer when

distances come from a k-dimensional Euclidean space, but when distances do not

come from a k-dimensional Euclidean space, SMACOF [Marshall and Olkin, 1979; de

Leeuw, 1977; de Leeuw and Mair, 2009] and PLACECENTER—the method proposed in

Chapter 4— give fast and accurate embedding. While SMACOF does not assume that

the distances come from a k-dimensional Euclidean space but requires n2 memory to

store the distances; PLACECENTER, not only does not make the k-dimensional Euclidean

space assumption but takes linear memory as well.

When the size of the dataset is so large that one cannot even afford to have a

memory requirement that is linear in the size of the data, other methods have been

proposed. All known approaches to scaling MDS to large data sets fall into the category

of spectral methods — methods based on eigenvalue decomposition, hence they focus

on the computational bottleneck of the matrix decomposition step (both in space and

time). Incremental PCA (or iPCA) [Artač et al., 2002] maintains the top k principal

components incrementally as points are processed one at a time. This procedure has

the short-coming that if a key component of the data is not captured early in the

process, that component may not be recognized as data is updated.

A more general approach is based on the use of the Nyström approximation
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technique [Platt, 2005; Zhang et al., 2008]. Here, the idea is to identify (via sampling)

rows and columns of the given distance matrix3 that can be used to define a sub-matrix.

This sub-matrix can be decomposed efficiently, and the resulting projection can be

extended to apply to the entire data set. Platt [2005] shows that a number of methods

for scaling MDS such as LMDS [de Silva and Tenenbaum, 2004], MetricMap [Wang

et al., 1999], FastMap [Faloutsos and Lin, 1995] fall into this general framework.

In LMDS, a small set of ` landmark points L is chosen from the data set. Given

this subset L ⊂ P, the full data set can be embedded with respect to a mapping µL

that is optimized with respect to L. de Silva and Tanenbaum [2004] propose two

ways to choose the landmarks: (1) letting L be a fixed random subset of P, and (2)

first running an online furthest-point heuristic [Gonzalez, 1995] to choose the set

of points L which maximize the minimum pair-wise distance. Zhang et al. [2008]

recently proposed a third heuristic: (3) run Lloyd’s algorithm minimizing the `-mean

objective function for 10 rounds and use the ` centers as landmarks.

Another Nyström approximation method MetricMap is a modified version of

LMDS with the difference that it only uses k (the dimension of the target space)

landmarks (instead of `), and these k landmarks are selected by embedding a 2k× 2k

distance sub-matrix of the original distance matrix D. The resulting projection from

these k landmarks is then applied to embed the rest of points as in LMDS.

FastMap is based on the principal of LMDS but unlike LMDS which finds all of

the eigenvectors (or the projection space) by embedding `× ` submatrix, FastMap
3In case when the input is a set of points, this is equivalent to subsampling a set of points and

computing the distance among those subset of points.
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works in a sequential manner and finds one eigenvector at a time. Specifically, it uses

two landmarks (as opposed to `) to project all n points in one dimension k = 1, which

is equivalent to the projecting along the first eigenvector. In the second round, it

computes the residual distances, and finds the second eigenvector by embedding the

residual distances using two new landmarks. This process is repeated for k times.

There is another method to deal with large-scale MDS PMDS [Brandes and

Pich, 2007] which is also based on landmarks; but unlike the above landmarks based

methods, eigen-decomposition step in this method uses the distances from landmark

points to all other n points, instead of the pairwise distances just among the landmark

points as in LMDS.

Note that all of the existing methods to scaling MDS to large data are spectral

methods which means that they perform spectral decomposition which is equivalent

to linear projection of the similarity matrix to do the embedding. This projection is

contractive (all pair-wise distances can only become shorter, not longer), but is often

quite useful as an initial state of µ for the optimization techniques for solving (4.2),

at least on small scale problems. This method is especially useful when there is no

embedding error i.e. given data can be perfectly embedded into k-dimensional space,

because in the absence of noise preserving similarities also preserves distances, as it

recovers exact embedding. As we will show in experiments later that these methods

based on preserving similarities become less desirable when there is noise in the data,

since approximately preserving similarities does not guarantee any approximation on

the preservation of distances; the embedding error can be arbitrarily bad.

In our experiments, we will compare the proposed method PLACE-RANDOM with
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the above methods however FastMap and iPCA will be the two main baselines for the

reasons explained later. In our experiments, we do not include MetricMap because

both LMDS and FastMap have been shown to outperform MetricMap [Platt, 2005],

which we include in our baselines.

Manifold learning. The nonlinear nature of the embedding we describe brings

to mind the class of methods known as manifold learning that try to identify a k-

dimensional manifold containing (or nearly containing) a set of points in Rd and then

map this data to Rk to preserve the manifold-based geodesic distance. IsoMap [Tenen-

baum et al., 2000] attempts to preserve the global distances by approximating them

using the graph distance on the t nearest neighbor graph. Both LLE [Roweis and Saul,

2000] and Laplacian Eigenmaps [Belkin and Niyogi, 2002] attempt to preserve the

local manifold structure, in the former case assuming the manifold is locally linear. In

all of these approaches, landmark-based methods inspired by the Nyström approach

have been used to enable scaling [Silva and Tenenbaum, 2003; Bengio et al., 2004].

A key difference between the problem we solve and these methods is that they

attempt to find a mapping to capture the non-linearity in the data, often using local

distance information only. This local non-linear behavior in the data is captured either

explicitly as in LLE and Laplacian Eigenmaps, or implicitly as in ISOMAP by embedding

geodesics (geodesics are based on the nearest neighbor graphs). In contrast, MDS in

general attempts to preserve global distance structure without assumptions on the

underlying structure of the data4.

4Another view: MDS assumes that “straight-line” distance correctly captures the relationship between
points, while manifold learning methods preserve a non-Euclidean distance that is approximated using
locally-linear assumptions.
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Further, a general method for solving MDS actually acts as a subroutines for

ISOMAP (c.f. [de Silva and Tenenbaum, 2004]). Thus, the proposed method could be

used as a subroutine as part of a larger manifold dimensionality reduction method.

4.2 The Algorithm

We start by introducing some notation. Let X = µ(P) denote the current set of

embedded points, and let x i = µ(pi). We maintain a set Y ⊂ X of ` landmark points

that has preimage L (L is the subset of P such that µ(L) = Y ). At every step, the

algorithm attempts to minimize C(L, Y ), or more specifically Ci(L, Y, x , pi) for some

x ∈ X, as defined in (4.2) and (4.3), respectively.

Algorithm 3 place-random(P, T,εa)

Randomly project P to X ⊂ Rk

Set Y to be the first ` points of X
for t = 1 to T do

for i = 1 to |X | do
x i ← PLACE2(Y, x i, L, pi,εa) as argminx g̃i(x)
Possibly replace some y ∈ Y with x i (see Section 4.2.2)

end for
end for
Return X

Algorithm 4 PLACE2(Y, x i, L, pi,εa)
repeat
ε← g̃i(x i)
for x j ∈ Y and p j ∈ L do

r j = h(pi, p j)
x̂ j ← intersection of sphere of radius r j around x j with ray from x j towards x i.

end for
x i ← RECENTER({ x̂1, x̂2, . . . , x̂n}).

until (ε− g̃i(x i)< εa) {for a fixed threshold εa}
Return x i.
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4.2.1 The Basic Algorithm

The algorithm is based on MDS framework PLACECENTER (from Chapter 2) and

is presented in Algorithm 3. It starts with an initial embedding of P ⊂ Rd to X ⊂ Rk

and an initial subsets of ` landmarks L ⊂ P usually chosen arbitrarily as the first `

points in P, along with their corresponding images in X i.e. Y = µ(L). The body

of the algorithm consists of two nested loops. The first loop repeats T times (in our

experiments, we find a small constant, such as T = 2, works well), indicating the

number of passes made over the full dataset. Each run of the second loop is a pass on

the full dataset P that processes each x i ∈ X . Each step of this second loop, assigns a

new position to x i ∈ X using just the embedded landmark points Y , and then decides

whether or not to keep x i as a landmark (replacing one of the current landmark points

if so; see Section 4.2.2). The assignment of x i to a new position is done using PLACE2

function (Algorithm 4) which converges towards the optimal position of x i with respect

to just the landmarks L and Y and takes O(`d) time. Note that unlike in PLACE where

gi(x) is defined with respect to all n points, g̃i(x) in PLACE2 is defined with respect to

only landmarks:

g̃i(x) =
∑

x j∈Y
p j∈L

Err
�

f (x , x j)− h(pi, p j)
�

Remarks:

• The algorithm is time and IO efficient. It makes only a constant T passes over

the entire dataset avoiding random disk access, and each point only needs to

69



interact with ` other points which fit in memory (space is O(`)). Section 4.3.3

demonstrates that ` can be chosen independent of n.

• It is quite general. It can optimize any cost function for which a PLACE2 sub-

routine exists to place a single point; this includes those in Chapters 2 and 3, or

any other routine which optimizes the location of a single point with respect to a

landmark set. Furthermore, it can incorporate several strategies to maintain a

set of landmark points L (options discussed below in Section 4.2.2).

4.2.2 Constructing Landmark Points

We consider three ways of choosing and maintaining landmark points L. For

all variations, we seed the landmark set based on an arbitrary ordering of the points

P = p1, p2, . . . , pn; we always choose the first ` points p1, p2, . . . , p` as the initial set

L. Two variations presented here are based directly on the original Landmark MDS

paper [de Silva and Tenenbaum, 2004] with the key difference being that the landmark

set is allowed to change. For completeness, we also consider the k-means variant of

Zhang et al. [2008].

Random: We use reservoir sampling [Vitter, 1985] to maintain a random sample of

points. Each new point x i is kept with probability 1/i and replaces a point from

Y chosen uniformly at random. This guarantees that the landmark set Y is a

random sample over the points seen so far.

MaxMin: We use a variation of Gonzalez’s algorithm [Gonzalez, 1995] to maintain

a set of points spread as far apart as possible. We maintain the
�`

2

�

inter-
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point distances in Y in a priority-queue. After embedding x i we calculate

δ = miny∈Y ‖x i − y‖, and if δ is greater that the minimum distance ‖y − y ′‖

in the priority queue, we replace one of the points (y or y ′) in Y with x i; this

process takes O(`log `) time per point processed.

k-Means: Without projecting any points, we run 10 passes of Lloyd’s algorithm [Lloyd,

1982] to solve an `-means problem. This can be done using only O(`d) space on

each pass and with O(`d) time for each point processed. We use these ` points

as a fixed set of landmarks (as in [Zhang et al., 2008]). This method requires

an extra 10 passes on the data initially, and then we find it behaves similarly to

MinMax but without the extra priority queue.

4.2.3 Multiple passes

The main challenge in scaling MDS is dealing with the internal memory space

needed to store the data; our algorithm deals with this by enforcing a streaming

paradigm [Muthukrishnan, 2005]. Each pass IO-efficiently reads each block of data

once, and the only other internal memory space used is for the landmarks, whose

size is independent of the full data set’s size. However, this streaming restriction can

increase error. Consider the situation when we make only one pass over the data. It

is possible that the initial choice of landmarks is not representative of the entire data

set. In this case, trying to embed points based solely on these landmarks will incur

large error. While the proposed adaptive approach mitigates this problem by placing

landmarks with respect to the current embedding based on all data seen, it cannot
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change the (bad) embedding for points seen early on in the stream.

Thus, we allow the algorithm to make multiple passes over the data, while letting

the landmark set persist across passes. This is important, because then the passes are

not independent of each other, and the landmark set acts as a succinct representation

of all the processing in the previous passes. Note that in the Random framework for

generating landmarks, the t th pass retains new points with probability 1/((t − 1)n+ i)

to correspond with the point being the ((t − 1)n+ i)th point processed.

We shall see in Section 4.3 that two passes (T = 2) suffices to generate most of

the improvement obtained from a multi-pass scheme and so the overhead for multiple

passes is small.

We shall also see that our approach does considerably better than the baselines

even when one restricts to two passes. If one cares about the minimal embedding

error, then it can further be reduced by increasing the number of passes, something

that is not possible with other scalable approaches e.g. iPCA and FastMap. Note that

the algorithm is only linear in the number of passes, and more passes does not require

any more space, so it provides an easy control for the accuracy/time tradeoff.

It is worth mentioning here that one of our main baselines FastMap require the

k number of the passes over the data since. This method can therefore be undesirable

for large k or when there is constraint on IO.

‡The memory requirement heavily depends on the implementation. We assume that one at least
needs to store the 2 landmark points to compute the distances from all other n points.
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Table 4.1: Time and space (internal memory) complexities on n points in Rd to Rk

using ` landmarks. In all algorithms, we consider the time to compute distances. As
implemented, the number of passes T is constant.

Algorithm Space Time Preserved
Property

Classical MDS [Torgerson, 1952] O(n2) O(n3+ n2d) Similarities
SMACOF [de Leeuw and Mair,
2009]

O(n2) O(n2d) Distances

PLACECENTER [Agarwal et al.,
2010a]

O(nd) O(n2d) Distances

iPCA [Artač et al., 2002] O(kd) O(nkd2) Similarities
LMDS [de Silva and Tenenbaum,
2004]

O(`2+ `k) O(n`k+ nd`) Similarities

PMDS [Brandes and Pich, 2007] O(`2+ `k) O(n`k+ nd`) Similarities
FastMap [Faloutsos and Lin,
1995]

O(d) ‡ O(ndk) Similarities

MetricMap [Wang et al., 1999] O(k2) O(nk2+ ndk) Similarities
PLACE-RANDOM with Random or k-
Means landmarks

O(d`) O(nd`) Distances

PLACE-RANDOM with MaxMin land-
marks

O(d`+ `2) O(n(d`+ `log `)) Distances

4.2.4 Complexity Analysis

We now provide a runtime analysis for a problem with n points in a d-dimensional

space being projected to a k dimensional space. We run Algorithm 3 for T passes (a

user specified constant) using a landmark set of size `. Each of the schemes will spend

time T n on the outer two loops, with the only difference being in the complexity of the

inner loop. Each call of PLACE2 runs for a constant number of steps in time O(d`), so

the inner loop for the Random and k-Means schemes is O(d`). The MinMax approach

takes `log ` time in addition because of the queue manipulations needed to decide

whether to retain the current point as a landmark.

We can analyze internal memory space complexity similarly. Random and k-
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Means use O(d`) space, while MinMax needs O(`2) extra units of space to maintain

the priority queue on
�`

2

�

distances. Thus, the space is limited solely by the number

of landmarks, and not by the input size n. We demonstrate in Section 4.3.3 that the

choice of ` should depend only on the error one wishes to achieve, regardless of the

size of the data set n. The time and space complexities of other algorithms including

that of PLACE-RANDOM is presented in Table 4.1.

4.3 Experiments

In this section, we perform experiments on both artificial and real data sets, and

compare our algorithm to various state-of-the-art algorithms.

4.3.1 Experimental Setup

Data sources. We consider both real and artificial data sets to evaluate the perfor-

mance of the algorithm. Artificial data sets are generated in the following manner.

Choose k random basis vectors in d dimensions in order to generate a k-dimensional

subspace. Points are then generated in this subspace by selecting k values in the

range [−1,1] and multiplying those by the basis. We then add spherical zero-

mean full-dimensional Gaussian noise with standard deviation σ. The algorithm

is then run on the generated data with a target dimension of k. Unless otherwise

specified, we will use the following values of different data generation parameters

n= 5,000, d = 500, k = 30,σ = 0.1

We also consider two real datasets, both of which have been used by Platt [2005]
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for the distance embedding problem for a relative study of FastMap, MetricMap and

LMDS. These two datasets are:

Text dataset (REUTERS). This data set [Frank and Asuncion, 2010] is collection of

Reuters new articles, consisting of a total of 9,117 documents, each document is a

19, 955 dimensional feature vector. The feature vector is obtained by preprocessing the

document - treating a document as a bag of words, removing stop words, stemming

and turning the remaining words into their lower case. Each document is represented

by tf-idf vector representation. For this data set, we use the following distance function

di j = h(pi, p j) = cos−1(〈pi, p j〉)

Corel dataset. This data set [Porkaew et al., 1999; Platt, 2005; Frank and Asuncion,

2010] is a collection of images, each image consists of four types of feature: Color

Histogram, Color Layout, Color Moments, and Co-occurrence Matrix Texture. This

dataset has been used in the image retrieval and is suitable for the distance embedding

(or dimensionality reduction task). The dataset contains 68, 040 images, each image

has a total of 89 features: 32 color histogram, 32 color layout histogram, 9 color

moments and 16 texture features. Each of these features is continuous. We exclude the

images with missing features which leaves us a total of 66, 615 images. Following [Platt,

2005], we computed the distance between two images by first computing the distance

between each set of features. For the color histogram and color layout histogram, we

used the chi-squared distance defined as:
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d chi
i j =

∑

m

2(pim− p jm)2

pim+ p jm

where pim is the mth histogram bin of the ith image.

For the other two set of features, color moments and texture features, we used

the standard euclidean distance:

d e
i j =

È

∑

m

�

pim− p jm

�2

Now the total distances between two images can be computed using a weighted

average of the above four distance where the weights are computed so that average of

each of the four distances is unity across the database.

di j =
d colorHist

i j

2.457
+

d la yout
i j

2.006
+

dmoments
i j

4.295
+

d tex ture
i j

7.212

Baseline algorithms. In our experiments, we considered the following algorithms

for the comparison, however, only two of them were considered throughout all experi-

ments while others were discarded for various reasons explained below. Following are

the reason for including (or not) the baselines.

LMDS [de Silva and Tenenbaum, 2004] This algorithm was discarded because of

its poor embedding error. Although LMDS finds an embedding mostly faster

than PLACE-RANDOM, such an embedding is meaningless because this embedding

turns out to be worse than the random — an random set of points in Rk.
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PMDS [Brandes and Pich, 2007] This algorithm was also discarded for the same

reason as LMDS.

iPCA [Artač et al., 2002] This algorithm is included. Although we include this in

our experiments, time complexity of this algorithm is square in the number of

dimensions O(d2) which makes it infeasible for the datasets with high d, as will

be see later in the experiments that because of higher d, this algorithm could

not be run on the text data.

Fast Map [Faloutsos and Lin, 1995] we include this in our experiments and is main

baseline across all experiments.

Metric Map [Wang et al., 1999] we do not include this in our experiments because

this has been shown to perform worse than FastMap and LMDS [Platt, 2005]

Implementation details. While MATLAB is a standard implementation platform

for many of the methods we examine, it does not handle larger data sets (or larger

memory requirement) very well. Therefore, we used the NumPy5 Python platform for

scientific computing. NumPy has highly optimized inline C/C++ and Fortran routines

for the matrix manipulations that the methods we compare against use. For iPCA,

we used Micha Kaflon’s Python implementation [Kalfon, 2010]. We implemented

PLACE2 using inline C, and used a Python wrapper around it to drive the sampling

strategies and multi-pass method. The Python code interfaces with the inline C code

using the weave6 sub-package of SciPy7 (the generic scientific computing framework
5http://numpy.scipy.org/
6http://scipy.org/Weave
7http://www.scipy.org/SciPy
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for Python). While it would have been possible to implement our algorithm in “pure”

Python (and we tried it), the initial experiments showed that this was at least two

orders of magnitude slower than using inline C. Similarly, for PMDS and LMDS as

well, we used our own python implementation with inline C using weave wherever

possible. For FastMap, we used Gunnar Aastrand Grimnes’s python implementation 8.

Evaluation criteria and parameter choices. We measure error as the average

scaled error in distance over all pairs of points:

er ror =
1

n

Ç

�

di j − s f (x i, x j)
�2

where s is the scaling factor that minimizes the above distortion measure, and can be

computed as:

s =

∑n
i, j=1 f (x i, x j)/di j

∑n
i, j=1 f (x i, x j)2/d2

i j

Note that computing C(P,µ(P)) often takes significantly longer than the actual

run of our MDS algorithm, therefore we approximate it by computing it over a small

sample of n data points (usually 1,000). We compute this error 5 times and report

the average. Time is measured in wall clock time and does not include the time to

compute the error. Note that all methods are implemented using the same Python

framework, so the timing comparisons are meaningful.

The algorithm (referred to as PLACE-RANDOM) behavior is controlled by a few

8http://gromgull.net/2009/08/fastmap.py
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Figure 4.1: A typical behavior of PLACE-RANDOM and other large scale dimensionality
reduction baselines
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key parameters: the number of landmarks (default ` = 500), the number of passes

(default T = 2), and the strategy for landmarks (default Random).

A typical behavior of different algorithms is shown in Figure 4.1(b) (Error) and

Figure 4.1(a) (Time). From these plots, we notice the poor performance of LMDS and

PMDS in terms of embedding error hence both of these are excluded from any further

consideration. Note that these results are even worse than the random – when one

chooses a set of points randomly in a k-dimensional space. Although both PMDS and

LMDS are faster than PLACE-RANDOM, but such timing results are meaningless because

of their bad embedding. During our experiments, we found that both of these methods

perform well when number of landmarks is close to n, and there is no embedding error

(data is assumed to come from a Euclidean space), an expected behavior of spectral

methods.

4.3.2 Overall Performance

We start our experimental suite with a head-to-head comparison of our algorithm

with prior work i.e. with FastMap and iPCA.

Efficiency. If space and time are not a constraint, the best approaches for performing

MDS are UMDS9 and SMACOF. However, SMACOF has severe memory limitations and

cannot run beyond n = 5000. UMDS runs beyond n = 50, 000 (see Figure 2.8), but its

running time is much larger than the methods seen here.

As discussed in Section 4.3.1 and seen in Figure 4.1(b), the best in class large-

9We use UMDS and PLACECENTER interchangeable; both refer to the algorithmic framework pre-
sented in Chapter 2.
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Figure 4.2: Runtimes for iPCA, FastMap and PLACE-RANDOM from Rd (for various
values of n) to Rk using `= k = 30 and `= 10k = 300.
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Figure 4.3: Runtimes for iPCA, FastMap and PLACE-RANDOM from Rd (for various
values of d) to Rk using `= 10k = 300. `= k = 30 gave the similar results and hence
excluded from the figure for clarity.

scale methods are represented by iPCA [Artač et al., 2002] and FastMap [Faloutsos

and Lin, 1995]. However a direct head-to-head comparison is complicated by the fact
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that PLACE-RANDOM takes a parameter ` (the number of landmarks) that controls the

space usage (and therefore the error) whereas iPCA only stores k eigenvectors when

embedding into k dimensions. FastMap does not store any data point, it rather makes

k passes over the data. In order to present a clear time comparison between the three

methods, Figure 4.2 presents results for data generated with up to n = 100, 000 points,

with k = 30, and using `= {30, 300} while iPCA uses 30 eigenvalues. As will be seen

in our experiments later, ` = 10k is usually a good value for `. From this figure, we

observe that all three algorithms scale linearly with n, but PLACE-RANDOM runs faster

than both FastMap and iPCA.

For large d, PLACE-RANDOM clearly outperforms both iPCA because of its squared

complexity in d, and also FastMap, as shown in Figure 4.3.

Accuracy. Figure 4.4 shows the average error as sample size varies for PLACE-RANDOM,

FastMap and iPCA (note that both iPCA and FastMap do not have a sample size

parameter and is depicted by an almost straight line 10). The figure shows that the error

profile for PLACE-RANDOM is quite superior to the other methods for small k = 10,30

while for large k iPCA outperforms PLACE-RANDOM and FastMap. This change in the

behavior with respect to the target dimension is expected.

In our data sets, the data is intrinsically k dimensional and the added noise is d

dimensional. As we decrease the target dimension, the influence of the noise compo-

nents can potentially increase, causing the dimensionality reduction to deteriorate in

quality. In fact, we see this effect in all three algorithms, where as k decreases, the av-

10The line deviates from the straight line because of randomness. Every time we choose a different
set of random n points, and error is also measured on a random subset of n points.
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erage error increases. Cayton and Dasgupta [2006] made the point that since spectral

methods like iPCA preserve similarities and not distances, the two being the same only

for a noiseless embedding. When there is no noise in the data i.e. d = k), �full spectral

methods such as iPCA, “classical MDS” (the ones not based on landmarks) will give a

zero embedding error while it cannot be expected from any landmark based method

to give zero error because of the approximation. This figure bears this observation

that as the amount of noise reduces or as k goes closer to d, full spectral methods

such as iPCA start to outperform the distance based method especially the ones based

on landmarks such as PLACE-RANDOM. However this does not discourage one from

using PLACE-RANDOM because although for large k, iPCA outperforms PLACE-RANDOM,

it would be infeasible to run iPCA if d is large (as will be seen in one of the real data

set experiments).

These results indicate that PLACE-RANDOM dominates both FastMap and iPCA

from a quality/time stand-point especially for small k.

4.3.3 Exploring the Space of Parameters

Error vs sample size. We first consider how the error changes as we adjust the

number of landmarks `. Figure 4.5 shows that as ` increases, the error decreases with

an inverse relationship; following the approximate pattern 0.01+ 1/`. Remarkably,

this rate seems to have no dependence on the size of the dataset n, as the curves for

n= {10K , 30K , 50K , 90K} are indistinguishable.

We notice that even for ` = 1000, the error never really vanishes. This can be
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Figure 4.4: Error comparison of PLACE-RANDOM with FastMap and iPCA for various
values of landmarks ` and for different k.

explained by the σ = 0.1 full dimensional noise added to the synthetic data. Figure 4.6

shows that as σ is decreased, this error approaches 0. This baseline error seems to

follow a rate of roughly σ2 for PLACE-RANDOM (of course with more error with smaller

values of `) and 1
3
σ2 for PLACE2. As such, we use ` = 500 for the remainder of the

experiments unless otherwise noted since we seem to get diminishing returns at that

point. At this size, the error from ` (about 1/500 = 0.002) is significantly less than

the expected error due to σ (about (.1)2 = 0.01). As we will see next, the specific

constants are not important, but the rates at which these parameters affects the error
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`

Figure 4.5: Error as ` varies from d = 100 to k = 30. Relationship is unchanged for
various n. Vertical blue line shows `= k.

is informative.

The above experiments always projected from d = 100 dimensions to k = 30

dimensions. So, finally, in Figure 4.7, we consider varying k and d and plot as a

function of ` for a fixed n = 5000 and σ = .1. Two observations are apparent: As d

shrinks, so does the error; this intuitively is due to the full-dimensional noise added

has less room relative to the “true” k-dimensional subspace to distort the distances.

Also, as k increases, the error also decreases for the same reason; full-dimensional

noise affects the projected distance error more as the difference between d and k

increases.
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�

Figure 4.6: Error as σ varies on n= 10000 points from d = 100 to k = 30.

`

Figure 4.7: Error versus sample size on n= 5000 points from Rd to Rk, for various d

and k.
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Penalty for sampling. To calibrate the error incurred as a result of sampling, we

compare our approach to the original UMDS (PLACECENTER) method that effectively

uses the entire point set as landmarks, and runs for many more passes (typically, it

converges in 50 “passes” over the input). As Figure 4.6 indicates our algorithm is

worse by about a factor 3 in error. But we note (see Table 4.1) that in both space

and time, PLACE-RANDOM is better than UMDS by a factor of n/`, a factor that scales

linearly as data increase (in addition to a 25 factor more passes). Thus this error

penalty for sampling, which is about on the order of the noise, is not too severe.

Number of passes. Running the algorithm over multiple passes helps “improve” bad

initial choices of landmarks. Figure 4.8 illustrates this behavior. We note that while

there is steady improvement in error as the number of passes increases, at least half

of the improvement is obtained just by running a second pass. This effect is more

pronounced as the target dimension increases; notice that at k = 5, the improvement

is more consistent across passes in comparison to k = 30, which shows a steep drop on

the second pass. The choice of only T = 2 passes in PLACE-RANDOM seems to account

for most of the 3-factor difference in error between PLACE-RANDOM and UMDS in

Figure 4.6. Hence, if one desires a higher accuracy/speed trade-off, running a few

more passes is a useful option.

Seeding strategy. We use different seeding strategies to build and maintain the

set of landmarks, and a key difference between our strategy and the one adopted by

LMDS is the adaptivity in our approach. We change the set of landmarks on the fly as

new data comes in, depending on either random choice or distance calculations. In
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Figure 4.8: Average error versus number of passes for n = 5000 points in d = 100
dimensions. k is the target dimension, and the sample size `= 500.

Figure 4.9(a) we examine the error profile generated by different strategies.

Several observations can be gleaned from the figure. First, the difference between

the two adaptive seeding strategies (Random and MinMax) is not significant, although

the MinMax strategy yields slightly less error. Second, the “adaptivity bonus” is marked;

letting the landmarks set change in response to the data improves the error compared

to maintaining a fixed landmark set, as LMDS must. Notice on just random samples

that we get about the same error (0.02) with ` = 100 for an adaptive sample as we do

for ` = 200 with a fixed sample. Furthermore, the k-Means approach (which is not

adaptive) is significantly worse than the fixed random sample in this setting.

For another comparison, Figure 4.9(b) shows the effects of the three fixed
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`
(a) Error vs sample/landmarks size for different seeding strategies with n= 5000.

`
(b) Error vs sample/landmarks size for different seeding strategies on LMDS with
n= 5000.

Figure 4.9: Seeding strategies

sampling strategies on the same set-up but running LMDS. Note that the error is 2

orders of magnitude larger than for PLACE-RANDOM and here the error caused by a

non-adaptive is more pronounced compared to the clustering based strategies: MinMax

and k-Means.
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4.3.4 Real Datasets

Text data. Results for the text data are shown in Figure 4.10 (time) and Figure 4.11

(error). From Figure 4.10, we see that time for PLACE-RANDOM increases linearly in

both k and `. Although FastMap runs faster than the PLACE-RANDOM for higher ` one

does not need that many landmarks for PLACE-RANDOM to perform better. In fact, it is

seen in Figure 4.11 that PLACE-RANDOM does not benefit from increasing the number

of landmarks beyond ` = 100, and for ` = 100, PLACE-RANDOM runs faster than

FastMap especially for k = 10. For other values of k as well, time taken by FastMap

is significantly higher than PLACE-RANDOM. Note that we exclude iPCA results from

these plots because iPCA takes O(d2) times to run which was not feasible for text data

because of its high dimensionality (d = 19,955).

Corel data. In corel data, we obtain similar results. From the error plot Figure 4.13,

we see that PLACE-RANDOM is better than both iPCA and FastMap for all values of k,

while for time (Figure 4.12), PLACE-RANDOM runs almost as fast as FastMap (faster for

the smaller ` which is sufficient to give a good embedding), while significantly faster

than iPCA.

4.4 Discussion

In this chapter, we have presented a new approach for scalable MDS that exhibits

a small memory footprint and quickly returns an accurate embedding of the data.

Our approach combines adaptive sampling and multi-pass algorithms, built on the
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Figure 4.10: Runtimes versus ` for PLACE-RANDOM and FastMap for different values of
k on the text data

PLACECENTER algorithm presented in Chapter 2 which avoids expensive eigenvalue

computations and uses a non-linear projection. The approach generalizes to other

distance measures and cost metrics, and can run MDS efficiently at data sizes well

beyond what has previously been demonstrated for the same accuracy.
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Figure 4.11: Error versus ` for PLACE-RANDOM and FastMap for different values of k
on the text data
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Chapter 5

Sensor Network Localization for Mobile Sensors

In this chapter, I modify the proposed MDS framework PLACECENTER to solve a

sensor networks localization problem.

With the advancement of computer and wireless technology, wireless sensors

are becoming smaller, more computationally capable, and more inexpensive causing

wireless sensor networks to be commonplace. Wireless sensors can be effectively used

to measure temperature, vibrations, sound, pressure, etc, and has been applied in

applications in many areas such as military applications, environment or industrial

control and monitoring, wildlife monitoring, and security monitoring; however, in

most applications, if the networks are to achieve their purpose, locations of the sensors

must be known. Yet, in many networks, locations are given for a few of the sensors

(called anchors), and the locations of the remaining sensors must be determined.

Although Global Positioning System (GPS) can be used to determine the locations,

GPS systems are bulky, consume too much power, are expensive compared to the

sensors, and can only be used outdoors. In such scenarios when GPS cannot be used

to find the locations, finding locations by other means become important. One way to

find the locations of these sensors is to use the intercommunication distances (sensor-

sensor and sensor-anchor), and treat the localization problem as a distance embedding

problem. Distances between sensors are usually measured by communicating with only
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nearby sensors, since further communication is limited by sensor power. Such distance

measurements provide a sparse distance matrix. Sensor network localization (SNL)

[Biswas and Ye, 2004; Biswas et al., 2006; Carter et al., 2006; Tseng, 2007; Pong and

Tseng, 2009; Kim et al., 2009; Krislock, 2010] is the problem of determining sensor

locations using known anchor locations and (usually noisy) distance measurements (i.e.

sparse noisy distance matrix). This is a large, non-convex, constrained optimization

problem. Large networks contain many thousands of sensors, whose locations need to

be determined accurately and quickly.

In this chapter, I also consider a special case of the SNL problem, when sensors

are moving. This moving sensors scenario occurs in many applications e.g., wildlife

tracking (animal networks), vehicle tracking etc. In animal networks, sensors are

installed on animals to help them track. Although any algorithm that can be used

for stationary SNL problem can also be used for moving case, one can do better if it

takes into account the movement of the sensors, and is able to exploit the information

available along the movement trail. In this work, I present an algorithm that is

especially suitable for moving sensors. Although the focus is on moving sensors, there

is no reason why one cannot apply the proposed algorithm for stationary case, however

in my experiments, I found this algorithm to be more effective for the moving case.

My proposed algorithm is based on the MDS framework PLACECENTER proposed

in Chapter 2. Recall that PLACECENTER was proposed to solve a distance embedding

problem where all pairwise (sensor-sensor and sensor-anchor pairs) distances are

available and there are no anchors. In this chapter, I modify PLACECENTER to exploit

the available anchors to position the remaining sensors more accurately, and to handle
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the sparse and noisy distance measurements. I experiment with the moving scenario

for a variety of networks, and show that the proposed algorithm outperforms the

existing state-of-art SNL algorithms across almost all experiments. My algorithm

comes with many attractive properties:

1. This is a scalable algorithm: it can handle large number of sensors. This is

the first ever algorithm that has been tested with number of sensors more than

100, 000 with noisy distance measurements. My algorithm can localize 120, 000

sensors in less than 20 minutes.

2. This is a decentralized algorithm, which means that the computation can be

carried out in the sensor itself needing only the locations of its neighbors.

3. The proposed algorithm consists of two stages, in which the second is guaranteed

to converge, that is, in each iteration, the objective function associated with

the corresponding distance embedding problem (see (5.1)) is guaranteed to

monotonically decrease. The first stage is a heuristic stage developed to get

faster estimation of locations for dense networks.

4. Since this (excluding the heuristic stage) is an iterative algorithm, and always

decreases the cost function, it can be used as a post-processing (refinement) step

for any solution output by other algorithm.

5. The proposed algorithm is found to be very effective for real-time tracking since

it takes only a fraction of second for a tracking problem with 1000 sensors (See

results in Section 5.4.5).
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6. This algorithm preserves all the properties of the original algorithm PLACECENTER,

that is, it can work for different spaces and different cost functions.

5.1 Related Work

In the last decade, there has been a considerable amount of work in stationary

SNL, however not much has done for the moving sensors. In this section I discuss some

of the recent work for SNL problem, especially for the large scale noisy problems. A

more comprehensive discussion on the related work can be found in [Dalal and Triggs,

2005; Krislock, 2010].

The literature on solving SNL problems can fit in two broad categories: ones

that performs convex relaxation on the cost function (see equation (5.1) below) using

semi-definite programming (SDP); and ones that directly minimizes the non-convex

cost function using multi-dimensional scaling (MDS)-style algorithms.

In the SDP-type algorithms, one of the most notable works is of Biswas Ye [2004].

They propose a semi-definite relaxation of the SNL problem, now called Biswas-Ye

relaxation. Although effective, this relaxation can only be used for small problems

with exact distance measurements. Authors later extended this work for larger scale

[Biswas and Ye, 2006; Biswas et al., 2008] and noisy problems [Biswas et al., 2006].

This was further extended by Carter et al. [2006] to solve the even larger problems by

breaking large problems into a series of small sub-problems, each solved using an SDP.

To handle even larger problem using SDP relaxation, Wang et al. [2008] proposed

further relaxation of SNL problem, where unlike the Biswas-Ye relaxation, one does not
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require the entire distance matrix to be positive semi-definite. Instead, the problem is

broken into smaller subproblems, and the semideifinite constraint is enforced only on

the subproblems. They proposed two such relaxations edge-based and node-based; the

edge-based (ESDP) appears more successful. Although considerably faster than the

original Biswas-Ye relaxation, it still takes significant time compared to the other more

recent approaches. For n = 4,000 sensors (and with noise σ = 0.01, neighborhood

radius R= 0.035 in a unit cube) it took more than 10 minutes, which is slower than

the some of the recent approaches [Pong and Tseng, 2009; Kim et al., 2009] but better

than the SOCP approach of [Tseng, 2007] and Carter et al. [2006]. A noise-aware

version of ESDP called ρ-ESDP was proposed by Pong and Tseng [2009] in which they

use the Log-barrier Penalty Coordinate Gradient Descent (LPCGD) method to solve the

SDP relaxation problem. In my experiments, I have found this to be the best baseline

among all competing algorithms both in terms of speed and accuracy. Since the SNL

problem typically has sparse input, a sparse version of the Biswas-Ye relaxation is

proposed by [Kim et al., 2009] called SFSDP. This allows one to handle the sparse

noisy SNL problem efficiently. In their work Kim et al. could handle the problem up to

18,000 sensors and 2000 anchors in less than 10 minutes. Some of the more recent

work in SNL is done by Krislock [2010] where smaller SDPs are solved to embed the

sensors in a successive manner. This algorithms can handle enormous numbers of

sensors (experiments were performed on sensor sets of size up to 100,000), and is

remarkably fast and accurate for the exact distance measurements, but when there is a

noise in the measurement, algorithms performs very poorly, both in terms of time and

accuracy (see results in Section 5.4.3).
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In the second category (MDS-style), the work that is most related to this work

is by Costa et al. [2006]. They present a distributed algorithm dwMDS which uses

iterative refinement, and finds a minimum of the cost function using a majorization

algorithm. Although similar to my algorithm, its biggest limitation is that it does not

make smart use of available anchors, and thus is not suitable when there are lots of

anchors and distance measurements are noisy. Another related work in the MDS-style

approaches is done by Moore et al. [2004] which is based on trilateralization. This

requires each node to have a degree or 10 or more between any pair of neighbors, or

more if the distance measurements are noisy.

5.2 My Approach

Problem 1 (Sensor Network Localization (SNL)). Consider a graph G = (V, E, D) with

vertex set of size |V |= n, where Di j is the estimated distance for each edge (i, j) ∈ E, and

where there are m anchor vertices (vn−m+1, . . . , vn) with known and fixed locations. The

SNL problem seeks a mapping µ : V → Rd to minimize

∑

(i, j)∈E

�

‖µ(vi)−µ(v j)‖2− Di j

�2
(5.1)

over all choices of µ that restricts anchor vertices to their known locations (xn−m+1, . . . , xn).

For notation, we label X = {x i = µ(vi)} for all vertices.

I solve SNL problem directly without converting it into a related problem and with-

out relaxing any constraints. I propose an algorithm based on PLACECENTER, and call it
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Algorithm 5 PLACEMENT(D, X0,εx ,εd ,σ, Na, Nr)
X ← FINDMOREANCHORS(D, X0,εx ,εd ,σ, Na)
for t = 1 to Nr do

for i = 1 to |X | do
Y = {x j : (i, j) ∈ E}
S = {di j : x j ∈ Y }
x i ← PLACE3(Y, S, x i, t,εx)

end for
end for
Return X

PLAce CEnter with Missing ENTries (PLACEMENT). Let X = {x1, x2 . . . xm−n+1, . . . xn}

be a k× n matrix such that the last m columns of this matrix are anchors. Let X0 be

another k× n matrix that will be used to initialize X . Let εx and εd be terminating

parameters of the algorithm, and Nin, Nout be the number of iterations. Let

Ci(x i, Y, S) =
∑

(i, j)∈E

�

‖x −µ(v j)‖2− Di j

�2

be the embedding cost of one point vi at location x where Y ⊂ V is the set of

neighboring of x and S ⊂ D are the corresponding distances of x to its neighbors U .

Ci(Y, S, x i) is nothing but the cost defined in (2.2) with Err function replaced with the

squared cost, and the distances function f replaced with the Euclidean distance, which

can be written as:

Ci(Y, S, x i) =
∑

x j∈Y
di j∈S

�

‖x i − x j‖2− di j

�2
. (5.2)

The main algorithm is presented in Algorithm 5. This algorithm consists of
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Algorithm 6 FINDMOREANCHORS(D, X0,εx ,εd ,σ, Na)
X ← X0

isAnchor := |X0| × 1 vector denoting if x i is an anchor or not.
Order Id x := ordering of points based on the number of anchors
for t = 1 to Na do

for u= 1 to n do
i = order Id x[u]
if isAnchor[i] = f alse then

Y = {x j : (i, j) ∈ E, and isAnchor[ j] = t rue}
if |Y | ≥ k+ 2 then

S = {di j : x j ∈ Y }
nini t = 0
while isAnchor[i] 6= t rue & nini t < 30 do

nini t = nini t + 1
x i ← PLACE3(Y, S, x i, t,εx)
if Ci(Y, S, x i)<max(σ,εd) then

isAnchor[i]← t rue
else

Reinitialize x i

end if
end while

end if
end if

end for
end for
Return X

Algorithm 7 PLACE3(Y, S, x i, t,εx)
for i ter = 1 to 10

p
t do

xold ← x i

for j = 1 to |Y | do
x ′j ← move x j ∈ Y towards x i by S j

end for
x i ← RECENTER({x ′1, x ′2 . . . x ′|Y |})
if ‖x i − xold‖2 < εx then

Return x i

end if
end for
Return x i

101



two stages. In the first stage, it uses the existing anchors to find more anchors using

Algorithm 6. When it can no longer add anchors, it invokes the second stage to

embed the remaining points and to refine their location. The significant difference

between this algorithm and that of PLACECENTER is the FINDMOREANCHORS step. In

my experiment I have found that for sparse networks, it is not advisable to use the

PLACECENTER directly since is very susceptible to local minima. This problem of local

minima is alleviated using the FINDMOREANCHORS subroutine and a good initialization.

This FINDMOREANCHORS subroutine is also critical to give a faster embedding when

the number of anchors is large. Consider a case when 90% of the total sensors are

anchors, in such a case, algorithm would most likely not enter the second step as

all remaining sensors would be found in the FINDMOREANCHORS step. The part after

FINDMOREANCHORS is same as the one presented in Chapter 2 (Algorithm 2) with the

difference that I now minimize the distances with respect to the point in Y and the

corresponding distances in S.

I now describe the FINDMOREANCHORS algorithm (Algorithm 6). It first considers

points connected to at least k+ 2 anchors. Since we know the location of the anchors,

localizing a point with respect to anchors is a relatively easy problem, and only

minimizing the distance with respect to the anchors should lead to a better solution.

In FINDMOREANCHORS, all such points that are connected to at least k + 2 anchors

are localized using PLACE3 by only considering the distances from anchors; and when

these points are localized up to a user-defined tolerance (max(σ,εd)), they are added

to the set of the anchors. The process is repeated for Nin iterations.
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5.3 Connection with Other Problems

The SNL problem is closely related to many other problems (See section 2.6 of

Krislock’s [Krislock, 2010] thesis and the survey by Liberti et al. [2012]). My algorithm

can be easily extended to solve these related problems. Two related problems are:

Problem 2 (Euclidean Distance Matrix Completion). Find a complete EDM (Euclidean

Distance Matrix) D̄ such that d̄i j = di j,∀(i, j) ∈ E.

EDM is a distance matrix such that each entry d̄i j of the matrix D̄ is an Euclidean

distance from a set of points in some but not necessarily known Euclidean space.

Problem 3 (EDM with rank constraint(EDM-k)). It is the same problem as Problem 2,

with the difference that the distances d̄i j need to be from a fixed k-dimensional space.

Formally, find a set of points x1, x2 . . . xn ∈ Rk such that ‖x i − x j‖2 = di j,∀(i, j) ∈ E.

Note that EDM with rank constrain problem is nothing but SNL problem with

number of anchors m= 0, while EDM problem without rank constraint can easily be

reduced to the one with rank constraint by setting k = n, since n is the maximum

possible rank of n points in any arbitrarily high dimensional space. Now note that

my approach can easily handle both related problems: EDM with rank constraint

and without rank constraint naturally, since it does not require any anchors 1. It

only requires the dimension of the embedding space, which for EDM without rank

constraint can just be n

1Having more number of anchors makes the problem easy, but it is not a requirement
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Table 5.1: Comparing PLACEMENT with Pong and Tseng (2009) and Krislock et al.
(2010) for different values of σ and η for n= 1000, m= 20, R= 0.06

σ η PLACEMENT Ting(2010) Krislock et al. (2010)

RMSE MaxErr Time RMSE MaxErr Time RMSE MaxErr Time

0 0.01 2.29e-3 1.80e-2 0.54 7.67e-2 3.62e-1 12.75 8.44e-14 67e-13 0.87

0 0.1 2.75e-2 1.39e-1 1.40 8.25e-2 3.73e-1 12.14 2.52e-13 4.20e-12 0.83

0 0.2 4.10e-2 2.07e-1 1.49 7.18e-2 3.67e-1 10.44 1.66e-13 3.23e-12 0.87

0.1 0.01 5.65e-3 3.60e-2 0.73 7.27e-2 3.49e-1 5.62 5.54e+1 1.08e+3 0.92

0.1 0.1 3.09e-2 1.36e-1 1.93 8.63e-2 4.13e-1 6.07 7.95e+2 2.0e+4 1.10

0.1 0.2 3.82e-2 1.59e-1 3.47 7.24e-2 3.42e-1 5.30 7.64e+3 9.5e+4 0.84

0.3 0.01 1.85e-2 9.35e-2 1.80 7.86e-2 3.24e-1 4.40 7.29e+1 1.72e+3 1.44

0.3 0.1 3.38e-2 1.39e-1 1.11 8.56e-2 3.35e-1 4.49 1.16e+2 1.66e+3 1.78

0.3 0.2 4.58e-2 1.92e-1 2.54 7.20e-2 3.17e-1 4.24 9.05 1.18e+2 1.52

Table 5.2: Comparing PLACEMENT with Pong and Tseng (2009) and Krislock et al.
(2010) for different values of σ and η for n= 2000, m= 20, R= 0.05

σ η PLACEMENT Ting(2010) Krislock et al. (2010))

RMSE MaxErr Time RMSE MaxErr Time RMSE MaxErr Time

0 0.01 3.78e-3 2.49e-2 1.59 6.21e-2 3.07e-1 37.69 5.53e-14 4.31e-13 1.30

0 0.1 2.05e-2 1.28e-1 4.35 7.84e-2 3.96e-1 43.14 1.33e-13 8.39e-13 1.14

0 0.2 4.04e-2 2.21e-1 4.24 5.98e-2 3.08e-1 41.67 6.65e-14 5.98e-13 1.13

0.1 0.01 6.28e-3 3.98e-2 2.09 5.79e-2 3.48e-1 20.90 1.08e+2 1.28e+3 1.28

0.1 0.1 2.12e-2 1.19e-1 6.73 6.40e-2 3.20e-1 18.88 6.78e+1 1.15e+3 1.21

0.1 0.2 3.02e-2 1.44e-1 10.08 8.96e-2 3.90e-1 22.27 6.17e+1 1.05e+3 1.20

0.3 0.01 7.49e-3 4.00e-2 0.39 7.42e-2 3.20e-1 15.87 4.12e+3 9.68e+4 1.86

0.3 0.1 2.52e-2 1.28e-1 7.01 6.89e-2 3.13e-1 16.09 9.69e+1 2.87e+3 3.21

0.3 0.2 3.33e-2 1.60e-1 9.40 7.83e-2 3.52e-1 15.93 1.53e+2 3.42e+3 1.27

5.4 Experiments

I now conduct an experimental study comparing PLACEMENT with the prior

work. I experiment with a variety of sensor networks and show the behavior of

PLACEMENT compared to the other algorithms. Since the behavior of an algorithm
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Table 5.3: Comparing PLACEMENT with Pong and Tseng (2009) and Krislock et al.
(2010) for different values of σ and η for n= 4000, m= 20, R= 0.035

σ η PLACEMENT Ting(2010) Krislock et al. (2010))

RMSE MaxErr Time RMSE MaxErr Time RMSE MaxErr Time

0 0.01 1.90e-3 3.10e-2 2.31 5.5e-2 3.05e-2 133.09 1.98e-13 1.92e-12 3.27

0 0.1 1.77e-2 9.63e-2 8.36 5.94e-2 3.17e-2 138.59 1.45e-13 9.7e-13 3.26

0 0.2 2.96e-2 1.48e-1 8.19 7.51e-1 3.73e-1 153.85 1.47e-13 9.91e-13 3.16

0.1 0.01 2.69e-3 2.24e-2 1.78 7.11e-2 3.68e-1 96.96 2.64e+1 8.54e+2 8.84

0.1 0.1 1.75e-2 8.99e-2 15.89 5.9e-2 3.18e-2 85.31 5.88e+3 6.57e+4 6.50

0.1 0.2 2.44e-2 1.24e-1 21.11 7.26e-2 3.45e-1 88.08 1.76e+1 3.12e+2 10.70

0.3 0.01 5.50e-3 3.07e-2 0.82 7.23e-2 3.45e-1 60.62 2.90e+1 4.37e+2 10.79

0.3 0.1 1.69e-2 1.05e-2 12.51 7.64e-2 3.46e-2 62.90 1.02e+2 2.25e+3 19.14

0.3 0.2 2.62e-2 1.36e-1 21.12 9.28e-2 3.96e-1 64.24 1.28e+2 2.72e+3 33.18

depends on the underlying network, I take different networks to cover a wide span of

problems.

I initially chose to compare PLACEMENT with following 6 algorithms, but later,

I discarded 4 of them for the following reasons. First three of these six algorithms are

based on solving SDP, and were found to be relatively very slow even for n = 1000;

while the fourth algorithm was only suitable for non-anchor case. This leaves us with

just two other algorithms i.e., Krislock [2010] and [Pong and Tseng, 2009].

Below is a brief description of all baselines, and reasons why I decided (or not)

to choose them.

• Biswas et al. (2006) [Biswas et al., 2006]- This algorithm was found to be very

slow.

• Kim et. al (2009) [Kim et al., 2009]- Although this algorithm is shown to

perform better than the ESDP algorithm of Wang et al. (2008) and the original
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Biswas-Ye relaxation, it is considerably slower than Pong and Tseng (2009) which

I include in the baselines.

• Wang et al. (2008) [Wang et al., 2008] - This was discarded because it has

been shown to be inferior than Kim et al. [Kim et al., 2009].

• Fang and Oleary [Fang and O’Leary, 2011] - Algorithm is only suitable for the

non-anchor case.

• Pong and Tseng (2009) [Pong and Tseng, 2009] - This is the best baseline

among all baselines, especially for noisy measurements, and therefore, it would

be my main baseline across different experiments.

• Krislock (2010) [Krislock, 2010] - This algorithm is scalable, and have been

shown to embed 100,000 points in few minutes, but only when there is no

noise in distance measurement. But when there is a noise in the measurements,

algorithm performs very poorly, as will be seen later in the experiments.

For all of the baselines (reported or not reported), I asked authors to provide

their code or downloaded publicly available code. I implemented my own algorithm

in C. All runtimes reported in experiments are wall clock times and are in seconds. For

baselines, all the parameters were taken to be either at the default values or whatever

suggested by authors. For my algorithm, I chose the following values of the parameters.

εx = 1e−7,εd = 1e−5; Nr = 20, Na = 10 for σ = 0, otherwise Nr = 40, Na = 5.
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5.4.1 Data Generation

Following the previous work [Wang et al., 2008; Krislock, 2010; Pong and

Tseng, 2009; Kim et al., 2009], artificial data is generated by first generating n

points uniformly at random in [0,1]2 box, and then selecting m points uniformly

at random as anchors. Call these set of points as X0. Here 0 denotes the time. To

model moving points, I have them move in a random walk described by a Gaussian

distribution on each step. Specifically, in each step I generate the set X t from X t−1 by

X t = X t−1+ηN(0, 1)), where η is the perturbation factor and N(0, 1) is the Gaussian

random variable with 0 mean and unit variance. Only sensors move, anchors locations

remain fixed. For each set of points except X0 which is used for initialization; edges

are generated based on the radio-distance R. Two nodes are connected if their distance

is less than radio-distance

D′i j =







‖x i − x j‖2, (i, j) ∈ E if ‖x i − x j‖2 ≤ R

unspecified otherwise.

Then we add Gaussian noise to each specified distance. For all (i, j) ∈ E we set

Di j = D′i, j (1+σN(0, 1)), where σ is the noise factor. In the moving case, this σ-error

is added to the measurement after each time step.

5.4.2 Evaluation

I evaluate the algorithms based on their ability to position sensors at their actual

locations, (not based on the cost function). We measure two quantities, RMSE (Root
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Mean Square Error) and MAXERR (Maximum Error) defined as:

RMSE=

s

1

n−m

n−m
∑

i=1

‖x i − x t rue
i ‖2

MAXERR =max
i
‖x i − x t rue

i ‖

I perform two types of experiments. First, I consider only one time step, where

data is initialized at X0, and after one step, I solve the SNL on X1 (each sensor moves

with ηN(0,1)). Second, I consider the problem over multiple time steps, e.g. at

t = 1, 2, . . . , 20, and analyze how error propagates.

5.4.3 Results

In reporting results, there are five free parameters to generate a problem i.e., n,

m, R, σ and η. I vary all five parameters, and for each set of parameters we generate

six random problems, and present the mean. All of the above parameters control

different properties of the network. n and m and R control the sparseness/density

of the network. A higher value of R means more edges and hence a dense graph. σ

controls the amount of noise in the distances while η controls the movement of sensors

(only speed). All times are reported in seconds unless otherwise noted.

First set of results is reported in Tables 5.1, 5.2, and 5.3. In this set of results,

I fix the network structure i.e., value of m and R, but change the amount of noise σ

and the amount of perturbation η. I repeat these experiments for different values of

n = 1000, 2000 and 4000. From these tables, first observation I make is that Krislock et
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Table 5.4: Comparison of PLACEMENT with Pong and Tseng (2009) for different
networks e.g. for different m and R but for fixed σ = η= 0.1 and n= 1000

n m R PLACEMENT Ting(2010)

RMSE MaxErr Time RMSE MaxErr Time

1000 5 0.02 1.18e-1 3.51e-1 0.03 1.12e-1 3.39e-1 0.50

1000 5 0.06 2.77e-2 1.55e-1 1.55 1.96e-1 5.45e-1 17.69

1000 5 0.1 1.40e-2 1.41e-1 4.46 2.22e-1 7.36e-1 9.09

1000 5 0.15 6.04e-3 1.55-2 18.59 1.26e-1 5.86e-1 9.43

1000 20 0.02 1.17e-1 3.56e-1 0.03 1.11e-1 3.67e-1 0.64

1000 20 0.06 3.39e-2 1.36e-1 2.50 8.20e-2 3.49e-1 5.79

1000 20 0.1 7.69e-2 2.18e-1 10.68 3.33e-1 3.23e-1 3.41

1000 20 0.15 1.74e-2 1.32e-1 12.74 5.60e-1 3.00e-1 1.93

1000 50 0.02 1.15e-2 3.47e-1 0.04 1.09e-2 3.00e-1 1.93

1000 50 0.06 2.94e-2 1.44e-1 3.03 3.26e-1 2.39e-1 1.9

1000 50 0.1 2.06e-2 1.23e-1 5.98 2.55e-2 1.97e-1 1.24

1000 50 0.15 3.48e-3 1.18e-2 7.80 1.49e-2 1.18e-1 1.21

1000 200 0.02 1.09e-1 3.45e-1 0.05 1.03e-1 3.45e-1 0.35

1000 200 0.06 1.45e-2 9.24e-2 1.32 1.43e-2 1.26e-1 0.56

1000 200 0.1 9.79e-3 1.37e-1 0.66 2.96e-3 9.99e-3 0.73

1000 200 0.15 2.91e-3 1.03e-2 0.52 2.89e-3 1.00e-2 1.05
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Table 5.5: Comparison of PLACEMENT with Pong and Tseng (2009) for different
networks e.g. for different m and R but for fixed σ = η= 0.1 and n= 4000

n m R PLACEMENT Ting(2010)

RMSE MaxErr Time RMSE MaxErr Time

4000 5 0.02 4.28e-2 2.74e-1 3.38 2.61e-1 6.23e-1 286.11

4000 5 0.1 4.94e-4 1.31e-2 64.55 1.23e-1 5.03e-1 267.35

4000 20 0.02 4.19e-2 2.85e-1 3.85 1.12e-1 3.52e-1 78.08

4000 20 0.1 7.20e-2 2.45e-1 175.18 2.36e-2 2.64e-1 48.99

4000 50 0.02 4.09e-2 2.58e-1 4.26 8.60e-2 3.39e-1 52.04

4000 50 0.1 7.59e-3 1.04e-1 100.69 1.51e-3 5.55e-3 16.11

4000 200 0.02 3.70e-2 2.89e-1 4.03 4.12e-2 2.89e-1 12.27

4000 200 0.1 1.66e-3 7.41e-3 12.43 1.41e-3 5.98e-3 9.69

al. (2010) performs poorly when there is noise in the data. This algorithm is extremely

good for non-noisy data, and can give almost perfect position for sensors, however

if one only cares for the near-perfect position (of the order of 1e−3), performance of

PLACEMENT is very close to that of Krislock et al. Since Krislock et al. (2010) does not

perform so well for the noisy data which is the main focus of this work, I will though

include it in further results, Pong and Tseng (2009) would be my main baseline, and

the discussion will revolve around that.

On comparing Pong and Tseng (2009) with PLACEMENT, I observe that

PLACEMENT outperforms Pong and Tseng (2009) in all cases both in terms speed and

accuracy. In some cases (e.g., non-noisy cases) the difference in time is significant.

Note that time taken by Pong and Tseng (2009) for n = 4000 even with η = 0.2

perturbation is 153 seconds while PLACEMENT can find a better embedding in only

8 seconds. This time difference between Pong and Tseng (2009) and PLACEMENT is
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consistent for other cases as well. I emphasize here that both algorithms PLACEMENT

and Pong and Tseng (2009) require an initial estimation of the locations but Pong and

Tseng (2009) is not able to exploit the good estimate of the initial locations as much

as PLACEMENT. Notice that when there is small perturbation η= 0.01, PLACEMENT

is significantly faster than Pong and Tseng (2009)—for n = 4000, σ = 0, η = 0.01

Pong and Tseng (2009) takes 133 seconds while PLACEMENT only takes 2.31 seconds,

while providing the better embedding both in terms of RMSE and MAXERR.

In the second set of results, I study the behavior of different algorithms as the

network properties are varied, specifically the number of anchors m and the radio

distance R. I fix the noise level σ at 0.1 and perturbation η at 0.1, so as not to bias

any algorithm. Note from the previous tables that my algorithm will perform very well

for small perturbation η = 0.01 and for small noise, hence I do not keep σ and η to be

too small to favor PLACEMENT. The results of this set of experiments are reported in

Tables 5.4 and 5.5. Due to the poor performance of Krislock et al. (2010) on noisy data,

I exclude it from the table. From this set of experiments, I observe that PLACEMENT

has a better performance than Pong and Tseng (2009) when the network is sparse,

i.e., when R and m both are small. As I increase R, the performance of PLACEMENT

still remains better as long as m is small but when I increase both, Pong and Tseng

(2009) starts to catch up. This is mainly because of the relatively poor performance

of Pong and Tseng (2009) for small m. Note that all the experiments reported in

Pong and Tseng [2009] considered m at 10% of n. Here I keep m to be much smaller,

we believe this to be a more practical scenario. When both m and R are large (e.g.

m = 200, R = 0.15), there is not much difference in the performance of Pong and
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Table 5.6: Comparing PLACEMENT with Pong and Tseng (2009) and Krislock et al.
(2010) on large scale noisy data for n = 10000, m = 20, R = 0.02. “-” indicates that
job did not complete within 24 hours.

σ η PLACEMENT Ting(2010) Krislock et al. (2010))

RMSE MaxErr Time RMSE MaxErr Time RMSE MaxErr Time

0.02 0.01 2.6e-3 2.9e-2 5 6.0e-2 2.6e-1 598 1.1e+2 1.9e+3 39

0.02 0.1 1.5e-2 8.1e-2 31 6.7e-2 3.0e-1 582 2.5e+3 1.8e+5 33

0.1 0.01 2.9e-3 3.0e-2 5 7.1e-2 3.0e-1 592 3.6e+2 2.2e+4 126

0.1 0.1 1.5e-2 8.4e-2 28 6.4e-2 2.6e-1 858 - - -

Tseng (2009) and PLACEMENT because, for large m, subroutine FINDMOREANCHORS

finds more anchors making the problem simpler, and thus PLACEMENT runs faster.

In certain instances, it is not clear which algorithm performs best, mainly because

my algorithm is an iterative algorithm, and one can increase/decrease the time by

running it for more/less iterations. For example, n = 1000, m = 50, R = 0.15 or

n = 1000, m = 5, R = 0.15, although PLACEMENT takes more time, but it also gives

better accuracy. One can reduce the time by compromising on the accuracy.

5.4.4 Large Scale Experiments

I also perform experiments on much larger problems in the noisy setting. To the

best of our knowledge, there has not been any work on this type of problem at this

scale for noisy data. So for the large scale, there is no baseline algorithm. But still to

see the behavior of both baselines for noisy sparse problem, I run them for n = 10, 000

and results are reported in Table 5.6. From this table, it is clear that PLACEMENT

not only runs significantly faster than both Pong and Tseng (2009) and Krislock et al.

(2010) but also gives better accuracy for both RMSE and MaxErr. Results for even
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Table 5.7: Performance of PLACEMENT on large scale noisy data

n m R σ η PLACEMENT

RMSE MaxErr Time

20000 20 0.018 0.02 0.01 1.5e-3 2.1e-2 14

20000 20 0.018 0.02 0.1 1.1e-2 6.9e-2 79

20000 20 0.018 0.1 0.01 1.8e-3 2.4e-2 13

20000 20 0.018 0.1 0.1 1.1e-2 6.4e-2 87

40000 20 0.015 0.02 0.01 1.2e-3 1.7e-2 46

40000 20 0.015 0.02 0.1 8.6e-3 5.6e-2 316

40000 20 0.015 0.1 0.01 1.3e-3 1.8e-3 50

40000 20 0.015 0.1 0.1 8.4e-3 5.1e-2 305

80000 20 0.010 0.02 0.01 1.4e-3 1.6e-2 123

80000 20 0.010 0.02 0.1 8.2e-3 4.7e-2 699

80000 20 0.010 0.1 0.01 1.4e-3 1.6e-2 125

80000 20 0.010 0.1 0.1 8.3e-3 4.4e-2 729

120000 20 0.008 0.02 0.01 1.4e-3 1.5e-2 197

120000 20 0.008 0.02 0.1 8.0e-3 4.8e-2 1043

120000 20 0.008 0.1 0.01 1.4e-3 1.3e-3 202

120000 20 0.008 0.1 0.1 8.0e-3 4.3e-2 1085
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larger problems, n= 20, 000 to n= 120, 000 are presented in Table 5.7. Note that my

algorithm can handle the sensors up to n= 120,000 in less than 20 minutes, with a

good accuracy.

5.4.5 Moving Problem

We now consider experiments on moving data over several (up to t = 20) time

steps. For the moving problem, the dataset is generated as previously. At every time

step, I perturb the points from the previous time step by a small amount η and measure

the distances (by adding σ noise). Note that both algorithms only take the initial

position X0 as input, and in the successive steps, the initial position is the position

returned from the previous step (estimated locations from ((t − 1) step).

So far I have only considered the speed of the movement η not the pattern.

When sensors are moving, there can be many moving patterns e.g., moving in a herd,

moving in only one direction, disperse moving etc., and an algorithm’s behavior might

change according to the pattern. In this work, I experiment with following two moving

patterns:

Moving-within-boundary in this pattern, sensors move from their initial location by a

small amount η, but at any given time all sensors remain inside a fixed boundary. This

pattern would imitate if animals are left in a big fenced in ranch (note that animals are

randomly distributed in the ranch), and then they start moving. They are not allowed

to go out of the ranch.

114



Moving-without-boundary this pattern is same as above except, now that there is

no notion of boundary and animals are allowed to move freely. Since the size of the

area sensors are located in is increasing with the time (and so are the distances), error

would also increase (as seen in Figures 5.1 and 5.2) .

Results for the pattern moving-without-boundary is shown in Figures 5.1 and 5.2.

For these experiments, I fix n= 1000, but change other parameters m,σ and η. Each

subfigure in these figures is captioned with the average time taken in all 20 time steps,

in the order of Pong and Tseng (2009) (η = 0.01), PLACEMENT (η = 0.01), Pong and

Tseng (2009) (η = 0.05), PLACEMENT (η = 0.05). Each subfigure has four RMSE

plots, two for η = 0.01 (red lines) and two for η = 0.05 (blue lines). From both figures,

it is clear that PLACEMENT outperforms Pong and Tseng (2009) in terms of both speed

and accuracy in all cases. This improvement is even more significant if one considers

the time taken by both algorithms. As mentioned above, since we are dealing with the

ground with no boundary, as we advance in time, inter-sensor distances increase and

so the embedding error, but the relative improvement of PLACEMENT over Pong and

Tseng (2009) remains consistent. Note that when R= 0.06,σ = 0.01,η= 0.05, m= 5

(Figure 5.2(c)), Pong and Tseng (2009) takes 19.1 seconds while PLACEMENT only

takes 0.2 seconds. I remind readers that such faster response time is important if one

were to do a real-time tracking.

Results for the pattern moving-within-boundary is shown in Figures 5.3 and 5.4.

In these cases as well, PLACEMENT consistently outperforms Pong and Tseng (2009)

both in terms of speed and accuracy. Once again, compare the time for the case

m = 5, R = 0.06,η = 0.05,σ = 0.01 (Figure 5.4(c)), Pong and Tseng (2009) takes
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25.6 seconds while PLACEMENT only takes 0.9 seconds.

5.5 Conclusion

I have presented an iterative scalable MDS-based algorithm for sensor network

localization that can handle the noisy data more effectively than the previous scalable

algorithms, and is guaranteed to reduce the cost function in every iteration. It can

embed sensors up to 120,000 in less than 20 minutes. The proposed algorithm

requires an initial estimate of the sensor locations, and is able to exploit them i.e.,

a good initial estimate gives a very good performance both in terms of speed and

accuracy compared to other algorithms, making this algorithm effective for mobile

sensor network problems. Furthermore, my algorithm is naturally distributed (i.e.

decentralized computation possible) thus avoiding any centralized computation and

hence the communication overhead.
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(b) 7.8,0.7, 8.6,1.3
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(c) 8.3,0.3, 5.6,0.4
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(d) 4.0,0.8, 4.0,2.2
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(e) 4.9,0.2, 3.8,0.3
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Figure 5.1: RMSE versus time steps for m= 20 for moving pattern moving-without-
boundary. Here Ting corresponds to Pong and Tseng (2009) and PR corresponds to my
algorithm.
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(b) 19.84,0.71, 19.95,2.32
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(c) 26.1, 0.3,19.1, 0.2
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(d) 13.6,0.7, 18.7,2.7
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(e) 18.0,0.2, 10.6,0.2
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(f) 10.6,0.4, 9.1,2.9

Figure 5.2: RMSE versus time steps for m = 5 for moving pattern moving-without-
boundary. Here Ting corresponds to Pong and Tseng (2009) and PR corresponds to my
algorithm.
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(a) 10.3, 0.4,10.0, 1.2
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(b) 7.5,0.6, 8.6,1.5
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(c) 8.8,0.4, 8.1,1.6
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(d) 4.3,1.0, 3.7,6.4
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(e) 5.1,0.2, 5.2,1.4
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(f) 2.8, 2.6,2.8, 7.4

Figure 5.3: RMSE versus time steps for m = 20 for moving pattern moving-within-
boundary. Here Ting corresponds to Pong and Tseng (2009) and PR corresponds to my
algorithm.
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(a) 31.9, 0.4,23.1, 0.7
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(b) 19.3, 0.7,20.9, 3.6
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(c) 26.5, 0.4,25.6, 0.9
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(d) 14.3,0.7, 19.4,5.8
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(e) 18.8,0.2, 13.8,0.7
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(f) 11.1,0.4, 9.9,6.0

Figure 5.4: RMSE versus time steps for m = 5 for moving pattern moving-within-
boundary. Here Ting corresponds to Pong and Tseng (2009) and PR corresponds to my
algorithm.
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Part II

Machine Learning

In the first part of my dissertation we have seen how geometric methods can be

used to build powerful algorithms by solving a distance embedding problem and its

variants. In this part of my dissertation, I consider problems in machine learning and

develop geometric methods for them that exploit the geometry underlying probabilistic

models. In particular,

In Chapter 6, I build a hybrid model — a combination of discriminative and

generative models — using a prior called coupling prior. Unlike previous work, in

this work, I combine these two types of models using a conjugate prior, and show the

effectiveness of using conjugate prior over non-conjugate prior.

In Chapter 7, I use the geometry underlying probabilistic models to give rea-

soning about the appropriateness of conjugate priors. In addition, I show how this

understanding of conjugate prior can be used to build a hybrid model more naturally.

More specifically, I show that there is a natural way to combine discriminative and

generative models that is based on the geometry underlying these models.

In Chapter 8, I extend the geometric understanding of probabilistic models to

build a family of kernels called generative kernels. These kernels when used in a

discriminative method like support vector machine, bring in the generative power,

and result in a model that performs better than a pure generative and discriminative
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models. One can think of generative kernels as another way of building hybrid models.

In order to understand the material presented in next few chapters, readers

would require a background in Legendre duality, Bregman divergence, and information

geometry. A brief introduction to these topics is provided in Appendix A
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Chapter 6

A Hybrid Semi-Supervised Learning Model

In this chapter, I present an approach to semi-supervised learning that is based

on building a hybrid model — a combination of discriminative and generative models

— using a conjugate prior as a coupling prior. This approach generalizes the previous

work on coupled priors for hybrid generative/discriminative models. This chapter will

also act as a background to the next chapter (Chapter 7) where I will use the geometry

underlying the exponential family models to build this hybrid model geometrically.

6.1 Motivation

Labeled data on which to train machine learning algorithms is often scarce or

expensive. This has led to significant interest in semi-supervised learning methods that

can take advantage of unlabeled data [Cozman et al., 2003; Zhu, 2005]. While it is

straightforward to integrate unlabeled data in a generative learning framework [Nigam

et al., 2000], it is not so in a discriminative framework. Unfortunately, it is well-

known both empirically and theoretically [Ng and Jordan, 2002] that discriminative

approaches tend to outperform generative approaches when there is enough labeled

data. This has led to many recent developments in hybrid generative/discriminative

models that are able to leverage the power of both frameworks (see Section 6.4). One

particular such example is the work of Lasserre et al. [2006], who describe a hybrid
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framework (“PCP”) in which a generative model and discriminative model are jointly

estimated, using a prior that encourages them to have similar parameters.

In this chapter, I generalize the parameter coupling prior1 (PCP) method [Lasserre

et al., 2006] to arbitrary distributions belonging to the exponential family. Unlike

the PCP method, I do not restrict to the Gaussian prior, but instead choose a prior

that is natural to the model. Other authors [Bouchard, 2007] have also noted the

inappropriateness of the Gaussian prior to couple the generative and discriminative

models. My resulting approach for hybridizing discriminative and generative models

has the following properties.

1. It is not restricted to a particular class of the models.

2. It is more flexible in choosing the way these two models can be combined.

3. It enables us to achieve a closed form solution for the generative parameters,

unlike PCP method, where one has to resort to the numerical optimization

I demonstrate the proposed approach on using a Beta/Binomial conjugate pair on the

text categorization problems addressed by Druck et al. [2007].

6.2 Background

In general, machine learning approaches to classification can be divided into two

categories: generative approaches and discriminative approaches. Generative approaches

assume that the data is generated though an underlying process. One simple example
1Terms parameter coupling prior and coupled prior were introduced in [Druck et al., 2007] and do

not appear in [Lasserre et al., 2006] though they refer to the framework introduced in [Lasserre et al.,
2006].
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is document categorization: for each example (x, y), generative process is as follows:

first choose a category y , and then produce a document x conditioned on the category

y. The goal in generative modeling is to approximate the joint distribution p(x, y)

that represents this process. On the other hand, discriminative approaches do not

assume any underlying process and directly model the probability of category given

the document p(y|x). Ng and Jordan [2002] compare these two approaches and show

that while discriminative models are asymptotically better than generative models,

generative models need less data to train.

In semi-supervised settings, one has access to lots of unlabeled data but only a

small amount of labeled data. It is easy to see that unlabeled data is not directly useful

in a discriminative setting but can be easily used in generative setting. However, since

discriminative methods asymptotically tend to outperform generative methods [Ng and

Jordan, 2002], this naturally leads to combining these two approaches and building a

hybrid model that does better than the individual models. Earlier work [Bouchard and

Triggs, 2004; Lasserre et al., 2006; Druck et al., 2007] has shown the efficacy of the

hybrid approach.

6.2.1 Hybrid Model with Coupled Prior

I first define the problem and some of the notations that I will use through-out

the paper. My task is to learn a model that predicts a label y given an example x. I am

given the data D = DL ∪ DU where DL represents the labeled data and DU represents

the unlabeled data. Each instance of the labeled data consists of a pair (x, y) where
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x is feature vector and y is the corresponding label. Each instance of unlabeled data

consists of only feature vector x. The xs are M -dimensional feature vectors, and xd

denotes the d th feature.

I now give a brief overview of the hybrid model presented by Lasserre et al.

[2006]. The hybrid model is a mixture of discriminative and generative components,

both of which have separate sets of parameters. These two sets of parameters (hence

two models) are combined using a prior called coupled prior. Considering only one

data point (the extension to multiple data points is straightforward and presented

later), the model is defined as follows:

p(x, y,θd ,θg) = p(θg ,θd)p(y|x,θd)p(x|θg)

= p(θg ,θd)p(y|x,θd)
∑

y ′
p(x, y ′|θg)

Here θd is a set of discriminative parameters, θg a set of generative parameters,

and p(θg ,θd) provides the natural coupling between these two sets of parameters.

p(y|x,θd) is the discriminative component; p(x|θg) =
∑

y ′ p(x, y ′|θg) is the generative

component.

The most important aspect of this model is the coupled prior p(θg ,θd), which

interpolates the hybrid model between two extremes; generative model when θd = θg

and discriminative when θd is independent of θg . In other cases, the goal of the

coupled prior is to encourage the generative model and the discriminative model to

have similar parameters. In earlier work [Lasserre et al., 2006; Druck et al., 2007], a
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Gaussian prior was used as the coupled prior:

p(θg ,θd)∝ exp
h

−λ
�

�

�

�θg − θd

�

�

�

�

2
i

Unfortunately, the Gaussian prior is not always appropriate [Bouchard, 2007].

6.3 Exponential Family Hybrid Model

In this section, I provide a more general prior for the hybrid model that is not

only mathematically convenient but also allows choosing a problem specific prior.

6.3.1 Exponential Family Generalization

First, I generalize the hybrid model defined in Section 6.2.1 for the distributions

that come from the exponential family. In other words, all of the distributions (genera-

tive, discriminative and coupled prior) of the generalized hybrid model belong to the

exponential family. Below are the definitions of discriminative and generative models

in terms of exponential family.

Generative model:

p(x, y|θg) = h(x, y)exp(〈θg , T (x, y)〉 − G(θg)) (6.1)
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Discriminative model:

p(y|x,θd) = g(y)exp(〈θd , T (x, y)〉 −M(θd ,x)) (6.2)

Next, I break the coupled prior p(θg ,θd) into two parts; an independent prior on

the discriminative parameters p(θd) and a prior on the generative parameters given

discriminative parameters p(θg |θd). This formulation lets us model the dependency of

the generative component over the discriminative component. The new hybrid model

can now be written as:

p(x, y,θd ,θg) =
h

p(θd)p(y|x,θd)
i

p(θg |θd)
h
∑

y ′
p(x, y ′|θg)

i

(6.3)

For convenience and interpretability (later I will show that it also improves the

performance), I choose the coupled prior p(θg |θd) to be conjugate with the generative

model.

Conjugate prior:

p(θg |θd) = m(θd) exp(〈θg ,α(θd)〉 − β(θd)G(θg)) (6.4)

Here, α(·) and β(·) are user-defined functions that map the discriminative parameters

θd into hyperparameters for the conjugate prior. I discuss suitable choices of these

functions in Section 6.3.4.

Substituting the exponential definitions of generative model Eq (6.1), discrim-

inative model Eq (6.2), and coupled prior Eq (6.4) in Eq (6.3), and taking a log, I
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obtain a log joint probability of data and parameters:

L = log p(x, y,θd ,θg) = (6.5)

log p(θd) +

log m(θd) + 〈θgα(θd)〉 − β(θd)G(θg) +

log g(y) +
∑

(x,y)∈DL

h

〈θ , T (x, y)〉 −M(θd ,x)
i

+

∑

x∈D

log
∑

y ′

h

h(x, y ′)exp(〈θg , T (x, y ′)〉 − G(θg))
i

Note that here discriminative part is defined only for labeled data while generative

part is defined for both labeled and unlabeled data.

6.3.2 Parameter Optimization

The parameter optimization of the above expression (6.5) is performed by a coor-

dinate descent method, alternating between optimizing the discriminative parameters

θd and optimizing the generative parameters θg .

For the generative parameters, I take the partial derivative of the log probability

in Eq (6.5) with respect to θg:

∂ L

∂ θg
= α(θd)− β(θd)G

′(θg) +

∑

x∈D

∑

y ′
p(y ′|x,θg)(T (x, y ′)− G′(θg)).

Here, p(y ′|x,θg) is the probability based on the parameters estimated in the last
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iteration p(y ′|x,θg old). Substituting this in the above equation and setting it equal to

zero, gives:

G′(θg) =

∑

x∈D

∑

y ′ p(y
′|x,θg old)T (x, y ′) +α(θd)

N + β(θd)

=
Êx∼DEy∼θg old

(T (x, y ′)) +α(θd)

N + β(θd)
. (6.6)

Here G′(θg) denotes the partial derivative of G(θg) with respect to θg . As discussed

in Section 6.1, choosing a conjugate prior gives us a closed form solution for G′(θg).

From Eq (A.7), we know that G′(θg) is equivalent to the expected sufficient statistics

of the generative model.

Having solved for the generative parameters θg , I now solve the hybrid model

for discriminative parameters θd .

∂ L

∂ θd
=

∂ log p(θd)
∂ θd

+
∂ log m(θd)
∂ θd

+ θgα
′(θd)−

β ′(θd)G(θg) +
∑

(x,y)∈DL

(T (y,x)−M ′(θd ,x)) (6.7)

There is no closed form solution to the above expression therefore I solve it using

numerical methods. In my implementation, I use stochastic gradient descent.

6.3.3 Hybrid Model: Naive Bayes and Logistic Regression

In this section, I demonstrate how this hybrid model can be applied in practice. I

first choose a generative model that is suitable to my application, and then choose the

coupled prior conjugate to the generative model. Since later on, I intend to use the
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hybrid model for the document classification task, I use a naive Bayes2 (NB) model for

the generative part and logistic regression for the discriminative part, akin to the study

of Ng and Jordan [2002]. The generative part of my model (naive Bayes) is given by:

p(y,x|π, v) = p(y|π)p(x|y, v)

=
∏

k

π
1{y=k}
k

∏

d

vxd
yd(1− vyd)

1−xd , (6.8)

where
∑

y ′ πy ′ = 1 and 0≤ vyd ≤ 1. 1{y=k} is an indicator function that takes value 1

if y = k and 0 otherwise. This generative model can be written in the canonical form

of the exponential family (see Appendix A).The discriminative part is:

p(y|x, w, b) =
1

Zx
exp
�

by +
∑

d

xd w yd

�

, (6.9)

where Zx =
∑

y ′ exp
�

by ′ +
∑

d xd w y ′d
�

is a normalization constant. Note here that

since these models form generative/discriminative pair, number of parameters is same

in both models. It is easy to see that there is one-to-one relationship between these

two sets of parameters. by in the discriminative model behaves similar to πy in

the generative model, and w yd behaves similar to vyd . Since w yd and vyd are the

parameters that capture most of the information, I use coupled prior to couple these

sets of parameters and do not couple by and πy . It is important to note the difference

between the canonical parameters of the exponential family representation of the

model and the mean parameters. In the generative(or discriminative) model, θg yd
(or

2It should be noted that “naive Bayes” classifiers come into (at least) two different versions: the
“multivariate Bernoulli version” and the “multinomial version” [Mccallum and Nigam, 1998]. Because
of its generality, in my implementation, I use multivariate Bernoulli.
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θdyd
) denote the canonical parameters while vyd (or w yd) denote the mean parameters.

Having defined the appropriate discriminative and generative models, now

I can get equivalent exponential family forms of these models. First I show the

exponential form of the generative model. The generative model in Eq (6.8) can be

broken into two parts: one is class probability p(y|π) and other class conditional

probability p(x|y, v). Since the parameters of these distributions are independent, one

can get their exponential representations separately. Considering the class conditional

probability for one feature, Eq (6.8) can be written in the following form:

p(xd |y, vyd) = exp

�

xd log
vyd

1− vyd
+ log (1− vyd)

�

Comparing this with Eq (6.1) gives θg yd
= log

vyd

1−vyd
; G(θg yd

) = log (1+ eθg yd ) and

T (y,x) = xd . Substituting these along with the appropriate conjugate prior in Eq (6.6)

gives us a closed form solution for G′(θg yd
), which, in the naive Bayes model is equal

to vyd .

G′(θg yd
) = vyd =

∑

x∈D p(y|x,θg old)xd +α(θd)

N + β(θd)
(6.10)

In other words, vyd is the normalized expected count of the dth feature in class y ,

with smoothing parameters that are controlled by the coupled prior hyperparameters

α(θd) and β(θd).

Next I solve for πy by directly optimizing the objective function Eq (6.8) with

respect to πy with the given constraints. This gives us πy =
∑

x∈D p(y|x,θg old )

N
which is the
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normalized expected number of examples in class y .

Having solved for generative parameters, I now solve for the discriminative pa-

rameters. Ideally, we would like to first get an equivalent exponential form of Eq (6.9)

and then solve it using Eq (6.7). Since Eq (6.7) is only defined for discriminative

parameters that are coupled (w), we can not use Eq (6.7) unless we break Eq (6.9)

into two exponential forms separate for w and b and, it is not clear how to do so.

Therefore, I solve for discriminative parameters directly, without converting Eq (6.9)

into exponential form. It is important to note here that mean parameters w in Eq (6.9)

is equal to the canonical parameters θdyd
. I place Gaussian prior p(θd) = N(θd |0,σ2)

on w = θd and an improper uniform prior on b. Taking derivatives, I obtain:

∂ L

∂ w yd
=−

w

σ2 +
∂ log m(w yd)

∂ w yd
+ 〈θg yd

α′(w yd)〉 − β ′(w yd)G(θg yd
)

+
∑

(x,y ′)∈DL

n

1{xd=1}−
1

Zx
exp(by ′ +

∑

d

xd w y ′d)1{xd=1}

o

∂ L

∂ by
=

∑

(x,y ′)∈DL

n

1{y=y ′}−
1

Zx
exp(by +

∑

d

xd w yd)
o

6.3.4 Conjugate Beta Prior

Recall that the conjugate prior crucially depends on two functions: α(θd) and

β(θd) that “convert” the discriminative parameters θd into a prior on the generative

parameters p(θg |θd). In the case of the binomial likelihood, the conjugate prior is Beta.
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Exponential form of Beta prior is defined as:

p(θg yd
|θdyd
) = m(θdyd

)exp(θg yd
α(θdyd

)− β(θdyd
)G(θg yd

)),

where m(θdyd
) =

Γ(β(θg yd
)+2)

Γ(α(θg yd
)+1)Γ(β(θdyd

)−α(θdyd
)+1)

and G(θg yd
= log (1+ eθg yd ).

I select the function α(θdyd
) and β(θdyd

) to be such that: (1) the mode of the

conjugate prior is θdyd
and (2) the variance of the conjugate prior is controllable by

the hyperparameter γ. As noted from Figure 6.1, as γ goes to∞, variance goes to 0

and prior forces generative parameters to be equal to the discriminative parameters

(pure generative model) and as γ goes to 0, variance goes to ∞ which implies the

independence between generative and discriminative parameters (pure discriminative

model). Other values of γ interpolate between these two extremes. Thus, I choose

α(θdyd
) = γ/(1+ e−θdyd ) and β(θdyd

) = γ. This gives mode of p(θg yd
|θdyd
) at θdyd

with

the variance that decreases in γ, as desired.

It is important to note that my choice of hyperparameters for the conjugate

prior is not specific to this example, but holds true in general. In the general case,

let G be the log-partition function associated with the generative model, then, the

conjugate prior hyperparameters should be α(θd) = γG′(θd) and β(θd) = γ. This gives

us the mode of conjugate prior at θd with the variance that decreases in γ. In the

beta/binomial hybrid model, G′(θd) = G′(w) = 1/(1+ e−w). Also note that in the

beta/binomial example, G′(θd) is also the transformation function T that transforms

the discriminative mean parameters w to the generative mean parameters v.

In Figure 6.1, I also compare the Beta prior (solid blue curves) to an “equivalent”
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Figure 6.1: Effect of gamma on the Beta prior (solid curve) and Normal prior (dashed
curve) for gamma=0.1, 1, 10, 100 (top-left, top-right, bottom-left, bottom-right) and
for the transformed discriminative parameter T (w) = 0.2

Normal prior (dashed black curves) for four settings of γ. The Normal is parametrized

to have the same mode and variance as the Beta prior. As we can see, for high values

of γ (wherein the model is essentially generative), the two behave quite similarly.

However, for more moderate settings of γ, the priors are qualitatively quite different.

6.4 Related Work

There have been a number of efforts to combine generative and discriminative

models to obtain a hybrid model that performs better than either individually. Some
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of the earlier works [Raina et al., 2003; Bouchard and Triggs, 2004] use completely

different approaches to hybridize these models; Raina et al. [2003] present a model

for the document classification task where a document is split into multiple regions

and complementary properties of generative/discriminative models are exploited by

training a large set of the parameters generatively and only a small set of parameters

discriminatively. Bouchard and Triggs [2004] build a hybrid model by taking a linear

combination of generative and discriminative model. This model is similar to the

multi-conditional learning model presented by McCallum et al. [2006]. Jaakkola and

Haussler [1999] describe a scheme in which the kernel of a discriminative classifier

is extracted from a generative model. Though these models have shown to perform

better than just the discriminative or generative model, none of them combine the

hybrid model in natural way.

My work builds on the work of Lasserre et al. [2006] and Druck et al. [2007],

which are discussed in Section 6.2.1. Along these lines, Fujino et al. [2007] present

another hybrid approach where a generative model is trained using a small number

of labeled examples. Since the generative model has high bias, a generative “bias-

correction” model is trained in a discriminative manner to discriminatively combine

the bias-correction model with the generative model. Most of these work focus on the

application and little on the theory of the hybrid model. There has been a recent work

by Bouchard [2007] that presents a unified framework for the “PCP” model and the

“convex-combination” model [Bouchard and Triggs, 2004], and proves performance

properties.
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Table 6.1: Description of the datasets used in the experiments

No. of
Dataset Features Dataset description

movie 24, 841
classifies the sentiments of the review of the
movies from IMDB as positive or negative

webkb 22, 824
classifies webpages from university as student,
course, faculty or project

sraa 77, 494
classifies messages by the newsgroup to which
they were posted: simulated-aviation, real-
aviation, simulated-autoracing, real-autoracing

6.5 Experiments

I now show empirical results of my approach and compare them with the existing

(and the most related to my method) state-of-the-art semi-supervised methods [Druck

et al., 2007].

6.5.1 Experimental Setup

In order to have a fair comparison, I use experimental setup of Druck et al.

[2007] and perform experiments only for the datasets where PCP model have shown

to perform best, There are three such datasets: movie, sraa and webkb. Description

of these datasets is given in Table 6.1.

Although all of the examples in these datasets are labeled, I perform experiments

by taking a subset of dataset as labeled and treating the rest of the examples as

unlabeled. I use either 10 or 25 labeled examples from each class and vary unlabeled

examples from 0 to a maximum of 1000. Number of unlabeled examples are same in

each class. I show my results for two sets of experiments: (1) I show how performance
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varies as the number of unlabeled examples is varied; (2) I show how performance

varies with respect to λ. Here λ normalizes the γ ∈ [∞, 0] in the range of [0, 1] using

γ = ((1− λ)/λ)2. Now λ = 0 corresponds to the pure generative case while λ = 1

corresponds to the pure discriminative case. As in the work of Druck et al. [2007], the

success of the semi-supervised learning depends on the quality of the labeled examples,

therefore I choose five random labeled sets and report the average on them. In my

results, I report the percentage classification accuracy which is the ratio of number of

examples correctly classified to the total number of test examples.

6.5.2 Results and Discussion

Results on the above mentioned three datasets are presented in Table 6.2. Table

shows the results for the PCP model with the Gaussian prior (PCP-Gauss) and with the

Beta prior (PCP-Beta). Since PCP-Beta uses the binomial version of NB, I reimplemented

the PCP-Gauss for the binomial version of NB and compare the results with it. Though I

also show the results for PCP-Gauss multinomial [Druck et al., 2007], a fair comparison

would be to compare only binomial models. %change is the change in PCP-Beta with

respect to the PCP-Gauss binomial version. As we see, PCP-Beta performs better than

PCP-Gauss binomial in all experiments and better than PCP-Gauss multinomial in all

experiments except sraa(10). Compared to PCP-Gauss binomial, PCP-Beta performs

significantly better on sraa and movie datasets.

Comparing multinomial and binomial versions of PCP-Gauss, we see that for

movie and webkbb datasets, binomial version performs better (or almost equal) than
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Table 6.2: Comparative results for pcp with Gaussian prior and pcp with Beta prior.
Parenthesized values denote the number of labeled examples per class and the standard
deviation.

pcp-Gauss pcp-Gauss pcp-Beta %
Dataset Mult Bin Bin change

movie (10) 64.6 63.4 (3.2) 68.3 (5.5) +7.7%
movie (25) 68.6 69.0 (1.5) 76.7 (1.2) +11.1%
webkb (10) 72.5 73.7 (3.7) 75.3 (2.9) +2.2%
webkb (25) 76.7 83.8 (1.3) 83.9 (1.6) +1.1%
sraa (10) 81.6 67.7 (6.8) 79.1 (4.0) +16.8%
sraa (25) 84.1 76.6 (3.5) 86.1 (1.0) +12.4%

the multinomial while for sraa dataset, multinomial performs better. I conjecture that

reason for this behavior could be because sraa has a large number of features and

feature independence assumption is less violated in multinomial NB than in binomial

NB. When datasets do not have too many features, binomial version tends to perform

better because binomial NB accounts for both presence and absence of the features, in

contrast to multinomial NB which only accounts for the presence of the features.

Figure 6.2 and Figure 6.3 show the results for accuracy vs. λ for different

number of unlabeled examples for sraa and movie datasets respectively. Remember

that λ = 0 is the purely generative model and λ = 1 is the purely discriminative model.

In both of these figures, It is clear that as one increases the number of unlabeled

examples, performance improves. In sraa, it is observed that increasing the number

of unlabeled examples results in the shifting of optimal λ (λ∗) towards rights. It gives

an optimal λ∗ = 0.2 for a fully supervised model while for 1000 unlabeled examples,

λ∗ = 0.5. All the curves in this experiment are uni-modal which means that there is a

unique value of λ where hybrid model performs best.
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Figure 6.2: Results for sraa dataset for different number of unlabeled examples.
Number of labeled examples=10.

Unfortunately, these nearly-perfectly shaped curves are not common to all set-

tings, e.g., it is not observed in the other (movie) dataset (Figure 6.3). There are values

of λ where a fully supervised model performs better than the best semi-supervised

model. This experiment emphasizes the need for choosing the right value of λ and

also shows the importance of the hybrid model. If one does not choose the right value

of λ, he/she might end up hurting the model by using the unlabeled data. Note that

movie dataset gives us a bi-modal curve in contrast to the uni-modal curve obtained

in the sraa. From this figure, it is also noted that the curve is a uni-modal in the

supervised setting but as one introduces unlabeled examples, the curves not only

become bi-modal but also shift towards the left-hand side (best accuracy is achieved

close to the generative end). This naturally suggests that generative model is actually
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Figure 6.3: Results for movie dataset for different number of unlabeled examples,
Number of labeled examples=25.

affecting the hybrid model in a positive manner and exploiting the strength of the

unlabeled examples.

6.6 Conclusion and Future Work

I have presented a generalized “PCP” hybrid model for the exponential family

distributions and have experimentally shown that the prior conjugate to the generative

model is more appropriate than the Gaussian prior. In addition to the performance

advantage, the conjugate prior also gives us a closed form solution for the generative

parameters.
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Chapter 7

A Geometric View of Conjugate Priors

In this chapter I show how geometric methods can be used to gain insight into

existing algorithms. More specifically, I study the geometry underlying exponential

family models and use it to reason about the appropriateness of conjugate priors. I

use this study to gain insight into hybrid models Lasserre et al. [2006] – a family of

models built by combining discriminative and generative models – and justify the use

of conjugate prior to build one [Agarwal and Daumé III, 2009] as done in the previous

chapter (Chapter 6).

In probabilistic modeling, a practitioner typically chooses a likelihood function

(model) based on her knowledge of the problem domain. With limited training data,

a simple maximum likelihood estimation (MLE) of the parameters of this model will

lead to overfitting and poor generalization. One can regularize the model by adding a

prior, but the fundamental question is: which prior? In this work, I give a turn-key

answer to this problem by analyzing the underlying geometry of the likelihood model

and suggest choosing the unique prior with the same geometry as the likelihood. This

unique prior turns out to be the conjugate prior, in the case of the exponential family.

This provides justification beyond “computational convenience” for using the conjugate

prior in machine learning and data mining applications.

In this work, first I formulate the MLE problem into a completely geometric
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problem with no explicit mention of probability distributions (Section 7.2.1), and

then give geometric argument in the favor of using conjugate priors (Sections 7.2.3

and 7.2.4). Empirical evidence showing the effectiveness of the conjugate priors can

be found in our earlier work [Agarwal and Daumé III, 2009]. One important outcome

of this analysis is that it allows us to treat the hyperparameters of the conjugate prior

as the effective sample points drawn from the distribution under consideration. Finally,

this geometric interpretation of conjugate priors is extended to analyze the hybrid

model given by Lasserre et al. [2006] in a purely geometric setting and justify the

argument presented in the Chapter 6 (i.e. a coupling prior should be conjugate) using

a much simpler analysis (Section 7.3).

7.1 Motivation

The motivation for this analysis is the desire to understand the geometry of the

conjugate priors for the exponential families. I motivate this analysis by asking myself

the following question: Given a parametric model p(x;θ ) for the data likelihood, and

a prior on its parameters θ , p(θ ;α,β); what should the hyperparameters α and β of

the prior encode? It is known that θ in the likelihood model is the estimation of the

parameter using the given data points. In other words, the estimated parameter fits

the model according to the given data while the prior on the parameter provides the

generalization. This generalization is enforced by some prior belief encoded in the

hyperparameters. Unfortunately, one does not know what is the likely value of the

parameters; rather one might have some belief in what data points are likely to be
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sampled from the model. Now the question is: Do the hyperparameters encode this

belief in the parameters in terms of the sampling points? My analysis shows that the

hyperparameters of the conjugate prior is nothing but the effective sampling points. In

case of non-conjugate priors, the interpretation of hyperparameters is not clear.

A second motivation is the following geometric analysis. Before we go into the

problem, consider two points in the Euclidean space which one would like to interpolate

using a parameter γ ∈ [0, 1]. A natural way to do so is to interpolate them linearly i.e.,

connect two points using a straight line, and then find the interpolating point at the

desired γ, as shown in Figure 7.1(a). This interpolation scheme does not change if we

move to a non-Euclidean space. In other words, if we were to interpolate two points in

the non-Euclidean space, we would find the interpolating point by connecting the two

points by a geodesic (an equivalent to the straight line in the non-Euclidean space)

and then finding the point at the desired γ, shown in Figure 7.1(b).

a

c

b

de(a
, b)

γde(a
, b)

(a)

b
dg(a

, b)

γd
g
(a
, b
)

g
a

c

(b)

Figure 7.1: Interpolation of two points a and b using (a) Euclidean geometry,
and (b) non-Euclidean geometry. Here geometry is defined by the respective dis-
tance/divergence functions de and dg . It is important to notice that the divergence
is a generalized notion of the distance in the non-Euclidean spaces, in particular, in
the spaces of the exponential family statistical manifolds. In these spaces, it is the
divergence function that define the geometry.
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This situation arises when one has two models and wants to build a better

model by interpolating them. This exact situation is encountered in Lasserre et al.

[2006] where the objective is to build a hybrid model by interpolating (or coupling)

discriminative and generative models. In our earlier work [Agarwal and Daumé III,

2009], we used conjugate prior to couple these two models, and empirically showed

that using a conjugate prior for the coupling outperforms the original choice [Lasserre

et al., 2006] of a Gaussian prior. In this work, the hybrid model is instead built by

interpolating the two models using the inherent geometry1 of the space (interpolate

along the geodesic in the space defined by the inherent geometry) which automatically

results in the expression of the conjugate prior along with its hyperparameters.

7.2 Likelihood, Prior and Geometry

In this section, I first formulate the MLE problem into a Bregman median problem

(Section 7.2.1) and then show that the corresponding MAP problem can also be

converted into a Bregman median problem (Section 7.2.3). The MAP Bregman median

problem consists of two parts: a likelihood model and a prior. I argue (Sections 7.2.3

and 7.2.4) that a Bregman median problem makes sense only when both of these

parts have the same geometry. Having the same geometry amounts to having the same

log-partition function leading to the property of conjugate priors.

1In exponential family statistical manifold, inherent geometry is defined by the divergence function
because it is the divergence function that induces the metric structure and connection of the manifold.
Refer [Amari and Nagaoka, 2001] for more details.
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7.2.1 Likelihood in the form of Bregman Divergence

Let X be the input data space, and Θ be the parameter space such that for each

θ ∈ Θ, p(x;θ ) is an exponential family distribution as defined in (A.5) (the likelihood

of the point x ∈ X under distribution given by θ). Following [Collins et al., 2001], we

can write the log likelihood of exponential family distributions in terms of Bregman

divergence

log p(x;θ) = log po(x) + F(φ(x))− BF(φ(x)‖∇G(θ)). (7.1)

This relationship depends on two observations: F(∇G(θ)) + G(θ) = 〈∇G(θ),θ 〉 and

(∇F)−1(θ) =∇G(θ)⇒ (∇F)(∇G(θ)) = θ . These two observations can be used with

(A.3) to see that (7.1) is equivalent to the probability distribution defined in (A.5).

This representation of likelihood in the form of Bregman divergence gives insight in

the geometry of the likelihood function.

In learning problems, one is interested in estimating the parameters θ of the

model which results in low generalization error, and perhaps, the most standard

estimation method is maximum likelihood, which solves the following problem:

Definition 1. MLE. Given a set of data points Xn and a family of distribu-

tion p(x;θ) parametrized by θ ∈ Rd , MLE finds θ̂M L ∈ Θ such that θ̂M L =

arg maxθ∈Θ
∑n

i=1 log p(x i;θ).

It turns out that for exponential family distributions, the MLE problem can be

transformed into a geometric problem, in particular into a Bregman median problem.
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Lemma 1. Let Xn be a set of n i.i.d. training data points drawn from the exponential

family distribution with the log partition function G, and F be the dual function of G.

Then the dual of the MLE (θ̂M L) of Xn under the assumed exponential family model solves

the following Bregman median problem:

θ̂ ∗M L = µ̂M L = argmin
µ∈M

n
∑

i=1

BF(φ(x i)‖µ) (7.2)

Proof. The log-likelihood of Xn under the assumed exponential family distribution

is given by log p(Xn;θ) =
∑n

i=1 log p(x i;θ) which along with (7.1) can be used to

compute MLE i.e., θ̂M L:

θ̂M L = argmax
θ∈Θ

n
∑

i=1

�

log po(x i) + F(φ(x i))− BF(φ(x i)‖∇G(θ))
�

= argmin
θ∈Θ

n
∑

i=1

BF(φ(x i)‖∇G(θ)) (7.3)

which using ∇G(θ) = µ, takes the entire problem into the M-space and gives the

desired result.

The above theorem converts the problem of maximizing the log likelihood

log p(Xn;θ) into an equivalent problem of minimizing the corresponding Bregman

divergences which is nothing but a Bregman median problem, the solution to which is

given by µ̂M L =
1
n

∑n
i=1φ(x i). MLE θ̂M L can now be computed using the expression

∇G(θ) = µ, θ̂M L = (∇G)−1(µ̂M L).
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Figure 7.2: MLE as Bregman median problem into Θ and M spaces for exponential
family distributions. In Θ space, it is a problem over θis with optimal θ appearing in
the first argument of the divergence function while in M-space, it is a problem over
mean parameters with optimal µ appearing in the second argument in the divergence
function.

Corollary 1 (MLE for Single Point). Let x i be the only point observed, µ̂i,M L under this

observed point is φ(x i).

Proof. In Lemma 1, for single point, (7.2) is minimized when µ̂i,M L = φ(x i).

Unless otherwise stated, I will use µi instead of µ̂i,M L to make notations less

cluttered.

Theorem 4 (MLE as Bregman Median). Let M and Θ be dual spaces as defined earlier,

θi be the MLE of data point x i under the exponential family parametric model p(x;θ)

with log partition function G(θ ). Given such {θ1, . . . ,θn} for all points {x1, . . . , xn}, θ̂M L

is equivalent to:

θ̂M L = arg min
θ∈Θ

n
∑

i=1

BG(θ‖θi) (7.4)
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Proof. From Corollary 1, φ(x i) = µi, now replacing this in (7.2) gives

µ̂M L = argmin
µ∈M

n
∑

i=1

BF(µi‖µ).

Now for µ1,µ2 ∈ M and θ1,θ2 ∈ θ , using the relationship BF(µ1‖µ2) = BG(θ2‖θ1)

takes the entire problem from M-space to Θ-space giving the desired result.

Figure 7.2 gives a pictorial summarization of these MLE(s) as Bregman median

problems in Θ and M spaces. The above expression requires us to find a θ so that

divergence from θ to other θi is minimized. Now note that G is what defines this

divergence and hence the geometry of the Θ space (as discussed earlier in Section 7.1).

Since G is the log partition function of an exponential family, it is the log-partition

function that determines the geometry of the space. I emphasize that divergence

is measured from the parameter being estimated to other parameters θi(s), as shown

in Figure 7.3.

7.2.2 Conjugate Prior in the form of Bregman Divergence

An expression similar to the likelihood can be written for the conjugate prior:

log p(θ |α,β) = log m(α,β) + β(〈θ ,
α

β
〉 − G(θ)) (7.5)

(7.5) can be written in the form of Bregman divergence by a direct comparison
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to (A.5), replacing φ(x) with α/β .

log p(θ |α,β) = log m(α,β) + β
�

F
�

α

β

�

− BF

�

α

β
‖∇G(θ)

��

(7.6)

The expression for the joint probability of data and parameters is given by:

log p(x ,θ |α,β) = log po(x) + log m(α,β) + F(φ(x)) + βF
�

α

β

�

−
�

BF(φ(x)‖∇G(θ)) + βBF

�

α

β
‖∇G(θ)

��

Combining all terms that do not depend on θ :

log p(x ,θ |α,β) = const− BF(φ(x)‖µ)− βBF

�

α

β
‖µ
�

(7.7)

7.2.3 Geometric Interpretation of Conjugate Prior

In this section I give a geometric interpretation of the term BF(φ(x)‖µ) +

βBF(
α

β
‖µ) from (7.7).

Theorem 5 (MAP as Bregman median). Given a set Xn of n i.i.d. examples drawn

from the exponential family distribution with the log partition function G and a conjugate

prior as in (7.6), MAP estimation of parameters is θ̂MAP = µ̂∗MAP where µ̂MAP solves the

following problem:

µ̂MAP = argmin
µ∈M

n
∑

i=1

BF(φ(x i)‖µ) + βBF

�

α

β
‖µ
�

(7.8)
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which admits the following solution:

µ̂MAP =

∑n
i=1φ(x i) +α

n+ β

Proof. MAP estimation by definition maximizes (7.7) for all data points Xn which is

equivalent to minimizing BF(x i‖µ)+βBF(
α

β
‖µ). One can expand this expression using

(A.3) and use conditions F(∇G(θ ))+G(θ ) = 〈∇G(θ ),θ 〉 and (∇F)−1(θ ) =∇G(θ ) to

obtain the desired solution.

The above solution gives a natural interpretation of MAP estimation. One can

think of prior as β number of extra points at position α/β . β works as the effective

sample size of the prior which is clear from the following expression of the dual of the

θ̂MAP:

µ̂MAP =

∑n
i=1φ(x i) +

∑β

i=1
α

β

n+ β
. (7.9)

The expression (7.8) is analogous to (7.2) in the sense that both are defined in the

dual space M. One can convert (7.8) into an expression similar to (7.4) in the dual

space which is again a Bregman median problem in the parameter space.

θ̂MAP = argmin
θ∈Θ

n
∑

i=1

BG(θ‖θi) +
β
∑

i=1

BG

�

θ‖(
α

β
)∗
�

(7.10)

here (α
β
)∗ ∈ Θ is dual of α

β
. The above problem is a Bregman median problem consisting

of n+ β points, {θ1,θ2 . . .θn, (α/β)∗, . . . , (α/β)∗
︸ ︷︷ ︸

β times

}, as shown in Figure 7.3 (left).
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A geometric interpretation is also shown in Figure 7.3. When the prior is conju-

gate to the likelihood, they both have the same log-partition function (Figure 7.3, left).

Therefore they induce the same Bregman divergence. Having the same divergence

means that distances from θ to θi (in likelihood) and the distances from θ to (α/β)∗

are measured with the same divergence function, yielding the same geometry for both

spaces.

It is easier to see using the median formulation of the MAP estimation problem

that one must choose a prior that is conjugate. If one chooses a conjugate prior, then

the distances among all points are measured using the same function. It is also clear

from (7.9) that in the conjugate prior case, the point induced by the conjugate prior

behaves as a sample point (α/β)∗. A median problem over a space that have different

geometries is an ill-formed problem, as discussed further in the next section.

7.2.4 Geometric Interpretation of Non-conjugate Prior

The expression (7.10) was considering the prior to be conjugate to the likelihood

function. Had the prior been non-conjugate with the log-partition function e.g., Q, one

would have instead obtained:

θ̂M L =min
θ∈Θ

n
∑

i=1

BG(θ‖θi) +
β
∑

i=1

BQ

�

θ ‖
�

α

β

�∗�

. (7.11)

Here G and Q are different functions defined over Θ. Since these are the functions that

define the geometry of the space parameter, having G 6= Q is equivalent to consider

them as being defined over different (metric) spaces. Here, it should be noted that
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Figure 7.3: Prior in the conjugate case has the same geometry as the likelihood while
in the non-conjugate case, they have different geometries.

distance between the sample point (θi) and the parameter θ is measured using the

Bregman divergence BG. On the other hand, the distance between the point induced

by the prior (α/β)∗ and θ is measured using the divergence function BQ. This means

that (α/β)∗ can not be treated as one of the sample points. This tells us that, unlike

the conjugate case, belief in the non-conjugate prior can not be encoded in the form of

the sample points.

Another problem with considering a non-conjugate prior is that the dual space

of Θ under different functions would be different. Thus, one will not be able to find

the alternate expression for (7.11) equivalent to (7.8), and therefore not be able to

find the closed-form expression similar to (7.9). This tells us why non-conjugate does

not give us a closed form solution for θ̂MAP . A pictorial representation of this is also

shown in Figure 7.3. Note that, unlike the conjugate case, in the non-conjugate case,

the data likelihood and the prior both belong to different spaces.

I emphasize that it is possible to find the solution of (7.11) i.e., in practice, there
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is nothing that prohibits the use of non-conjugate prior, using the conjugate prior is

intuitive, and allows one to treat the hyper-parameters as pseudo data points.

7.2.5 Generalization to α-affine manifold

Not all probability distributions belong to the exponential family (although many

do). A broader family of distributions is the “α-family” [Amari and Nagaoka, 2001].

Although a full treatment of this family is beyond the scope of the work, we briefly

discuss an extension of my results to the α-family. An α-family distribution is defined

as:

log pα(x;θ) =







2
1−α

p(x;θ)(1−α)/2 α 6= 1

log p(x;θ) α= 1

where p(x;θ) defined as in (A.5). Note that the exponential family is a special

case of α-family for α= 1.

MAP estimation of the parameters in the exponential family can be cast as a

median problem, where an appropriate Bregman divergence is used to define the

geometry. In other words, for exponential family, a Bregman-median problem naturally

arose as an estimation method.

By using an appropriately defined, “natural,” divergence for the α-family, one

can actually obtain a similar result for this broader family of distributions. Using such

a natural divergence, one can also define a “conjugate prior” for the α-family. Zhang

154



[2004] shows that such a natural divergence exist for α-family and is given by:

DαG(θ1,θ2) =
4

1−α2

�

1−α
2

G(θ1) +
1+α

2
G(θ2)− G

�

1−α
2
θ1+

1+α
2
θ2

��

Like the exponential family, this divergence also induces the Fisher information

metric.

7.3 Hybrid model

In this section, I show an application of the above analysis to a common

supervised and semi-supervised learning framework, in particular, to a genera-

tive/discriminative hybrid model presented in the Chapter 6 [Agarwal and Daumé III,

2009; Druck et al., 2007; Lasserre et al., 2006] that has been shown to be successful

in many applications. I will show how the coupling using the conjugate prior can

be transformed into a coupling which is based on the distance geometry underlying

generative/discriminative models.

Recall the hybrid model from the previous chapter which can be written as:

p(x, y,θd ,θg) = p(θg ,θd)p(y|x,θd)p(x|θg) (7.12)

= p(θg ,θd)p(y|x,θd)
∑

y ′
p(x, y ′|θg)

here θd is a set of discriminative parameters, θg a set of generative parameters, and

p(θg ,θd) provides the natural coupling between these two sets of parameters.

As mentioned in the previous chapter, the most important aspect of this model is
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the coupling prior p(θg ,θd), which interpolates the hybrid model between two extremes:

fully generative when the prior forces θd = θg , and fully discriminative when the prior

renders θd and θg independent. In non-extreme cases, the goal of the coupling prior

is to encourage the generative model and the discriminative model to have similar

parameters. It is easy to see that this effect can be induced by many functions. One

obvious way is to linearly interpolate them as done by Lasserre et al. [2006] and Druck

et al. [2007] using a Gaussian prior (or the Euclidean distance) of the following form:

p(θg ,θd)∝ exp
�

−λ
�

�

�

�θg − θd

�

�

�

�

2
�

(7.13)

where, when λ= 0, model is purely discriminative while for λ=∞, model is purely

generative. Thus λ in the above expression is the interpolating parameter, and is

same as the γ in Section 7.1. Note that the log of the prior is nothing but the squared

Euclidean distance between two sets of parameters.

In the previous chapter we showed that using a prior that is conjugate to the

generative model outperforms the non-conjugate priors. It has been noted by other

authors [Bouchard, 2007] that a Gaussian prior is not always appropriate, and the

prior should instead be chosen according to models being considered. In our previous

chapter, our main argument for choosing the conjugate prior came from the fact that

this provides a closed form solution for the generative parameters and therefore is

mathematically convenient. In this work, I will show that it is more than convenience

that makes conjugate prior appropriate by using their geometric interpretation studied

in the previous section. In addition to providing a justification behind their use as a
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coupling prior, this analysis also derives the expression and hyperparameters of the

prior automatically (an additional advantage of using geometric methods).

7.3.1 Generalized Hybrid Model

In order to see the effect of geometry, recall the the generalized hybrid model

for distributions that belong to the exponential family. We recall the expression for the

generalized generative model:

p(x, y|θg) = h(x, y)exp(〈θg , T (x, y)〉 − G(θg)) (7.14)

where T (·) is the potential function similar to φ in (A.5), now only defined on (x, y).

Let G∗ be the dual function of G; the corresponding Bregman divergence (retain-

ing only the terms that depend on the parameter θ) is given by:

BG∗
�

(x, y)‖∇G(θg)
�

. (7.15)

Solving the generative model independently reduces to choosing a θg from the space

of all generative parameters Θg which has a geometry defined by the log-partition func-

tion G. Similarly to the generative model, the exponential form of the discriminative

model is given as:

p(y|x,θd) = g(y)exp(〈θd , T (x, y)〉 −M(θd ,x)) (7.16)
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BG(θg‖θd)

λ

Figure 7.4: Hybrid model by interpolating between θd and θg using the Bregman
divergence

Importantly, the sufficient statistics T are the same in the generative and discriminative

models; such generative/discriminative pairs occur naturally: logistic regression/naive

Bayes and hidden Markov models/conditional random fields are examples. However,

observe that in the discriminative case, the log partition function M depends on both

x and θd which makes the analysis of the discriminative model harder. Unlike the

generative model, one does not have the explicit form of the log-partition function M

that is independent of x. This means that the discriminative component (7.16) can not

be converted into an expression like (7.15), and the MLE problem can not be reduced

to the Bregman median problem like the one given in (7.4).

7.3.2 Geometry of the Hybrid Model

The analysis of the hybrid model is simplified by writing the discriminative model

in an alternate form. This alternate form makes obvious the underlying geometry of

the discriminative model. Note that the only difference between the two models is that

discriminative model models the conditional distribution while the generative model
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models the joint distribution. This observation can be used to write the discriminative

model in the following alternate form using the expression p(y|x ,θ ) = p(y,x |θ)
∑

y′ p(y ′x |θ)
and

(7.14):

p(y|x ,θd) =
h(x, y)exp(〈θd , T (x, y)〉 − G(θd))

∑

y ′ h(x, y ′)exp(〈θd , T (x, y ′)〉 − G(θd))
(7.17)

Denote the space of parameters of the discriminative model by Θd . It is easy to see

that geometry of Θd is defined by G since function G is defined over θd . This is same

as the geometry of the parameter space of the generative model Θg . Now let us define

a new space ΘH which is the affine combination of Θd and Θg . Now, ΘH will have the

same geometry as Θd and Θg i.e., geometry defined by G. Now the goal of the hybrid

model is to find a θ ∈ΘH that maximizes the likelihood of the data under the hybrid

model. These two spaces are shown pictorially in Figure 7.4.

7.3.3 Prior Selection

As mentioned earlier, the coupling prior is the most important part of the hybrid

model, which controls the amount of coupling between the generative and discrimina-

tive models. There are many ways to do this, one of which is given by Lasserre et al.

[2006] and Druck et al. [2007]. By their choice of Gaussian prior as coupling prior,

they implicitly couple the discriminative and generative parameters by the squared

Euclidean distance. I suggest coupling these two models by a general prior, of which

the Gaussian prior is a special case.
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Bregman Divergence and Coupling Prior: Let a general coupling be given by

BS(θg‖θd). Notice the direction of the divergence. This direction was chosen be-

cause the prior is induced on the generative parameters, and it is clear from (7.10)

that parameters on which prior is induced, are placed in the first argument in the

divergence function. The direction of the divergence is also shown in Figure 7.4.

Now recall the relation (7.6) between the Bregman divergence and the prior.

Ignoring the function m (this is consumed in the measure defined on the probability

space) and replacing ∇G(θ) by θ ∗, we get the following expression:

log p(θg |α,β) = β(F(
α

β
)− BF(

α

β
‖θ ∗g )) (7.18)

Now taking the α= λθ ∗d and β = λ, we get:

log p(θg |λθ ∗d ,λ) = λ(F(θ ∗d )− BF(θ
∗
d‖θ

∗
g )) (7.19)

p(θg |λθ ∗d ,λ) = exp(λ(F(θ ∗d ))) exp(−λBF(θ
∗
d‖θ

∗
g )) (7.20)

For the general coupling divergence function BS(θg‖θd), the corresponding coupling

prior is given by:

exp(−λBS∗(θ
∗
d‖θ

∗
g )) = exp(−λ(F(θ ∗d ))) p(θg |λθ ∗d ,λ) (7.21)

The above relationship between the divergence function (left side of the expression)

and coupling prior (right side of the expression) allows one to define a Bregman
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divergence for a given coupling prior and vise versa.

Coupling Prior for the Hybrid Model: It is known that that the geometry of the space

underlying the Gaussian prior is just Euclidean, which does not necessarily match

the geometry of the likelihood space. The relationship between prior and divergence

(7.21) allows one to first define the appropriate geometry for the model, and then

define the prior that respects this geometry. In the above hybrid model, this geometry is

given by the log partition function G of the generative model. This argument suggests

to couple the hybrid model by the divergence of the form BG(θg‖θd). The coupling

prior corresponding to this divergence function can be written using (7.21) as:

exp(−λBG∗(θd
∗‖θg

∗)) = p(θg |λθd
∗,λ) exp(−λF(θ ∗d )) (7.22)

where λ= [0,∞] is the interpolation parameter, interpolating between the discrimi-

native and generative extremes. In dual form, the above expression can be written

as:

exp(−λBG(θg‖θd)) = p(θg |λθd
∗,λ) exp(−λF(θ ∗d )). (7.23)

Here exp(−λF(θd
∗)) = exp(λ(G(θd)− θd∇G(θd))) can be thought of as a prior

on the discriminative parameters p(θd). In the above expression, exp(−λBG(θg‖θd)) =

p(θg |θg)p(θd) behaves as a joint coupling prior P(θd ,θg) as originally expected in the

model (6.3). Note that hyperparameters of the prior α and β are naturally derived

from the geometric view of the conjugate prior. Here α= λθ ∗d and β = λ.
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7.4 Related Work and Conclusion

To the best of my knowledge, there have been no previous attempts to under-

stand Bayesian priors from a geometric perspective. However, one related piece of

work [Snoussi and Mohammad-Djafari, 2002] uses the Bayesian framework to find

the best prior for a given distribution. It is noted that, in that work, the authors use

the δ-geometry for the data space and the α-geometry for the prior space, and then

show different cases for different values (δ,α). It is emphasized that even though it is

possible to use different geometry for the both spaces, it always makes more sense to

use the same geometry. As mentioned in remark 1 in Snoussi and Mohammad-Djafari

[2002], useful cases are obtained only when we consider the same geometry.

In this chapter, I have shown how geometry and the methods derived from it,

are useful to get a better understanding of existing models. More specifically, I have

considered the geometry underlying the model space and used it to transform the

MLE problem into a geometric problem, Bregman median problem. This geometric

interpretation of the space and the likelihood function allowed me to reason about

the conjugate prior beyond their mathematical convenience. In addition to providing

an insight in the hybrid model, this interpretation also justified the use of conjugate

prior as a coupling prior; and as an added advantage, derived the expression and the

hyperparameters of this coupling prior.
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Chapter 8

Generative Kernels

In this chapter, I use geometric methods to build a family of kernels that can

be used as off-the-shelf tool for any kernel learning method such as support vector

machines. Generative models provide a useful statistical language for describing data;

discriminative methods achieve excellent classification performance. In this chapter, I

use geometric understanding of generative models to propose a family of kernels i.e.,

generative kernels, defined as a family of kernels built around generative models for use

in discriminative classifiers. The key idea of generative kernels is to use the generative

model of the data to automatically define a statistical manifold, on which a particular

natural divergence (based on the Fisher information metric) can be translated into a

positive definite kernel. My approach is applicable to any statistical model belonging

to the exponential family, which includes common distributions like the Gaussian and

multinomial, as well as more complex models.

Apart from the geometric perspective, there are other reasons to consider the data

distribution when constructing the kernels. It is commonly observed that generative

models perform well when only a small amount of data is available [Ng and Jordan,

2002], especially when the model is a true model of the data distribution [Liang and

Jordan, 2008]. However, as the model becomes less true, or as the amount of data

grows, discriminative approaches prevail, both theoretically and empirically [Ng and
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Jordan, 2002; Liang and Jordan, 2008]. Ideally, one would like to take advantage of

both methods, and build a hybrid method, that performs well for small training data

and does not rely too much on the generative assumption. One way to build such a

hybrid model is to combine discriminative and generative models using a coupling

prior as I described in the previous chapter. Another way to build hybrid model is to

encode the generative process information in the kernel and then use this kernel in

the discriminative method.

There have been previous efforts to build kernels from generative models: the

Fisher kernel [Jaakkola and Haussler, 1999], the heat kernel[Lafferty and Lebanon,

2005], and the probability product (PP) kernel [Jebara et al., 2004]. The first two

consider the generative process by deriving the geometry for the statistical manifold

associated with the generative distribution family using the fundamental principle

of the information distance. Unfortunately, these kernels are intractable to compute

exactly even for very simple distributions due to the need to compute the Fisher

information metric. The approximations required to compute these kernels result in

a function that is not guaranteed to be positive definite [Martins et al., 2008]. More

discussion on the related work can be found in our published work [Agarwal and

Daumé III, 2011]. There is another family of kernels named semi-group kernels [Cuturi

et al., 2005] which turns out to have the same functional form as generative kernels

though both are derived completely differently. Unlike Cuturi et al. [2005], I consider

the geometry of the data distribution and reason why it is appropriate to call these

kernels generative kernels. Note that semi-group kernels are not generative kernels for

general probability distributions therefore empirical study of these kernels under the
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discriminative/generative paradigm is not considered in Cuturi et al. [2005]. In this

chapter, generative kernels are studied under generative/discriminative paradigm, in

particular, experiments are performed to see what happens when the data generation

assumption is violated i.e., when the model is mis-specified.

These generative kernels have a number of desirable properties:

• They are applicable to any exponential family distribution.

• They are built using the natural geometry of the model space associated with

data distribution.

• They are closed-form, efficient to compute, and by construction are always

positive definite.

• Empirical comparisons to the best published kernels using the same data and

experimental setup show improved performance.

• Empirical results with these kernels show that these kernels are able to exploit

the generative properties i.e., perform as well as a generative model when there

is less training data.

Unlike other distribution-based kernels, a discriminative method based on the

proposed generative kernel is able to exploit the properties of the generative methods

i.e., perform well when not enough data is given. Figure 8.1 shows typical result from

a real world classification task on the text data. The blue curve which represents the

generative method (Naive Bayes (NB)) performs better when training size n is small

but as n is increased, discriminative methods (other curves) start to take over. Although
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Figure 8.1: A typical example of relative performance on real dataset from multinomial
distribution. Exp and Inverse are the generative kernels.

other discriminative methods perform poorer than the NB for small n, discriminative

methods when used with generative kernel, perform better for all n. Generative kernels

(red and green curves) perform equal/better to NB when n is small, and outperform

all other methods as n gets large. Generative kernel curves are lower envelopes of all

other curves, giving us the best of both worlds.

8.1 Background: Statistical Manifolds and Dualistic Structure

In this section, I define statistical manifolds and the dualistic structure associated

with them. I in particular give reasons why it is important to choose the KL divergence

to define the kernel for the exponential family. A statistical manifold S is a d-

dimensional manifold S = {θ ∈ Θ} such that every θ ∈ Θ induces a probability
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distribution over some space X.

Following Amari and Nagaoka [2001], it is well known that all arbitrary diver-

gences induce a dualistic structure and a metric. In particular, for statistical manifolds,

the most natural divergence is the one that induces the Fisher information metric. The

Fisher information metric is a special Riemannian metric that has many attractive

properties (e.g. invariance under reparametrization), and is considered to be a natural

metric for statistical manifolds. A divergence function that induces the Fisher infor-

mation metric on the exponential family manifolds is K L divergence. It is also known

as D−1 divergence (a special case of Dη divergence for η = −1). Since exponential

family manifolds have dualistic structure (in fact they are dually flat), there exists a

dual space, where one can define the dual divergence i.e. D1 divergence. Following

Zhang [2004], this duality is called referential duality. In referential duality, for two

points p, q ∈ Θ D−1(p‖q) = D1(q∗‖p∗) or K L(p‖q) = K L∗(q∗‖p∗). For exponential

family statistical manifold, this duality is closely related to the other form of duality

i.e., Legendre duality, and is also known as representational duality; and in such duality,

BF(p‖q) = BG(q∗‖p∗), where F and G are dual of each other.

8.2 Generative Model to Metric

In this section, I develop generative kernels. I first take the Bregman median

problem corresponding to the exponential family distribution that generated the data,

and transform it into a problem that minimizes the KL divergence in Θ-space. As

mentioned above, a natural divergence in Θ-space is the K L divergence. I use this K L
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divergence to build a metric in Θ-space. Using duality, this metric is projected into

M-space, and then finally in the Section 8.3, this projected metric is converted into a

positive definite kernel.

Here, I first borrow the Bregman median problem from Section 7.2.1 correspond-

ing to the generative model belonging to the exponential family. Recall, the Bregman

median problem is:

θ̂M L = arg min
θ∈Θ

n
∑

i=1

BG(θ‖θi)

where M and Θ are dual spaces of each other as defined earlier, and {θ1, . . . ,θn} are

the MLE of data points {x1, . . . , xn}, under the exponential family model p(x;θ ). Now

this Bregman median problem in Θ-space can be transformed into a K L minimization

problem using the following Lemma.

Lemma 2 (KL and Bregman for Exponential Family). Let K L(θ1‖θ2) be the KL

divergence for θ1,θ2 ∈Θ, then K L(θ1‖θ2) = BG(θ2‖θ1)

Proof. This directly follows from the definitions of KL divergence and exponential

family; and from the relation, Eθ (x) =∇G(θ) for exponential family.

Theorem 6. MLE θ̂M L of data points Xn generated from exponential family is now given

by:

θ̂M L = argmin
θ∈Θ

n
∑

i=1

K L(θi‖θ) (8.1)

Proof. From Lemma 2, K L(θi‖θ) = BG(θ‖θi), substituting this in (7.4) gives the

desired result.
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In (8.1), It is worth nothing that the parameter being estimated comes in the sec-

ond argument of K L divergence. This observation along with the following definition

is used to construct a metric in Θ-space.

Definition 2 (JS Divergence). For θ1,θ2 ∈Θ and θ̃ = (θ1+θ2)
2

, JS(θ1,θ2) is defined as:

JS(θ1,θ2) =
1

2

�

K L(θ1‖θ̃) + K L(θ2‖θ̃)
�

It is well known that
p

JS is a metric.
p

JS have also been shown to be Hilber-

tian [Fuglede and Topsoe, 2004; Berg et al., 1984]. A metric d(x , y) is said to be

Hilbertian metric if and only if d2(x , y) is a negative definite(n.d.) [Schoenberg, 1938].

Since
p

JS is a Hilbertian metric, JS is n.d..

It is important to understand the purpose of the above analysis in deriving the

metric based on the JS divergence. I will call this metric as JS metric. This analysis

builds a bridge between the JS metric and the generative models. The JS metric can

therefore be used to build kernels that can exploit the generative properties of the

data. Establishing the connection between the JS metric and the generative models in

theory, and showing the efficacy of the kernels based on this metric in practice, is the

main contribution of this chapter.

The JS metric, which is based on symmetrized KL divergence has been known

for a long time [Cuturi et al., 2005]. However, what is not known is the generative

behavior of the JS metric. In the existing literature, JS metric is usually derived for

any probability distribution, and for a general probability distribution, JS metric does

not consider the generative model of the data, and therefore can not be used to build
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generative kernels. I, in this work, only consider the distributions belonging to the

exponential families, for which, the JS metric can be shown to have been derived

considering the generative model. This connection between the JS metric and the

generative model allows us to build kernels that can be used to build hybrid models.

Definition 3 (Dual JS Divergence). For µ1,µ2 ∈M and µ̃ = (µ1+µ2)
2

, let K L∗(.‖.) be

the dual of K L divergence then the dual JS divergence DJS(µ1,µ2) is defined as:

DJS(µ1,µ2) =
1

2

�

K L∗(µ̃‖µ1) + K L∗(µ̃‖µ2)
�

Theorem 7. DJS is negative definite.

Proof. Result is direct consequence of the fact that JS divergence is symmetric. Using

the relationship between K L and K L∗, one can simply take the dual of JS which is

DJS(θ1,θ2) =
1
2
(K L(θ1‖θ̃) + K L(θ2‖θ̃)) = JS(θ1,θ2) which is n.d..

Theorem 8. Let ψ(µ1,µ2) = DJS(µ1,µ2) be a n.d. function on M, then

ψ(µ1,µ2) =
F(µ1) + F(µ2)

2
− F
�µ1+µ2

2

�

(8.2)

Proof. Using the duality, K L∗(µ1‖µ2) = BF(µ2‖µ1); DJS(µ1,µ2) =
1
2
(BF(µ1‖µ̃) +

BF(µ2‖µ̃)). Expanding the expression for the Bregman divergence and using some

algebra yields the result.

Though not analyzed, this expression is also observed in Chen et al. [2008]. It is

to be noted that this metric (8.2) is defined over the mean parameters, so in order to
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define the metric over the data points Xn, one can use Corollary 1, according to which,

ψ(µ1,µ2) =ψ(φ(x1),φ(x2)). Recall φ(x) here is the sufficient statistics.

8.3 Metric to Kernel

In this section, I convert the previously constructed Hilbertian metric (n.d.

function) into a family of kernels that will be used later in the experiments. I now state

some results that can be used along with (8.2) to build the kernels called “generative

kernels“. Although there could be many ways [Berg et al., 1984; Schoenberg, 1938]

to transform a metric into a kernel, I mention a few here:

Proposition 1 (Centering). Let function ψ : X×X→ R be a symmetric function, and

x0 ∈ X. Let ϕ : X×X→ R be

ϕ(x , y) =ψ(x , x0) +ψ(y, x0)−ψ(x , y)−ψ(x0, x0),

then ϕ is n.d. if and only if ψ is positive definite (p.d.).

Proposition 2 (Exponentiated(Exp)). The function ψ : X×X→ R is n.d. if and only

if exp(−tψ) is p.d. for all t > 0.

Proposition 3 (Inverse). The function ψ : X×X→ R is n.d. if and only if (t +ψ)−1 is

p.d. for all t > 0.

Note that the computation complexity of generative kernels depends on the

computational complexity of the dual of log-partition function.
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8.4 Related Work

In this section, we briefly discuss the kernels that are close to generative kernels.

One of the earliest distribution-based kernels is Fisher kernels [Jaakkola and Haussler,

1999]. These kernels are constructed by taking the inner product in the tangent space

of Θ using the Fisher information metric. Although constructed in a principled manner,

these kernels are impractical due to the intractability of the Fisher information metric

computation.

Other kernels (heat kernels) based on the principle of the Fisher information

metric are proposed by Lafferty and Lebanon [2005]. Similar to generative kernels,

these kernels also consider the geometry of the statistical manifold. Like Fisher kernels,

these kernels also suffer from the intractability issue, and so for even most simple

geometries, there is closed-form solution.

Jebara et al. [2004] propose a family of kernels which is most similar to gen-

erative kernels, and at the same time, is fundamentally very different. Similar to

my work, they define kernels by considering the data distribution. Their kernel is

defined on the parameters space Θ while my kernel is defined on dual of Θ. For

exponential family their results reduce to the Bhattacharyya kernels [Bhattacharyya,

1943] K(θ1,θ2) = exp
�

G(θ1+θ2

2
) − G(θ1)+G(θ2)

2

�

while my kernel (Exp form) look like

K(µ1,µ2) = exp
�

F(µ1+µ2

2
) − F(µ1)+F(µ2)

2

�

. In my formulation, we use the dual of the

log-partition function F while they use the log-partition function G. These two kernels

are very different, one because of the space they are defined over, and other because,

there is no explanation as such what divergence (or metric) Bhattacharyya kernels
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induce on the statistical manifold while generative kernels by construction, induce the

Fisher information metric.

There has also been some recent work on the kernels on the probability mea-

sures [Martins et al., 2008; Hein and Bousquet, 2005]which are very restricted because

they are only defined on the probability measures not on the arbitrary spaces. Although

we take a completely different approach to derive the generative kernels, it can be

shown that for the exponential family distributions, Jensen Tsallis q-kernels [Martins

et al., 2008] reduce to generative kernels for q = 1.

As mentioned earlier, generative kernels have the same expression as the semi-

group kernels [Cuturi et al., 2005] for the exponential family, though both are derived

completely differently. I emphasize that semi-group kernels are defined for the gen-

eral probability distributions by considering the symmetrized KL divergence, and for

general probability distributions, these kernels are not the generative kernels because

in general, they do not induce the natural divergence (or natural metric) on the

statistical manifold. For general probability distributions, KL divergence is not the

natural divergence, therefore use of JS divergence to define the kernel is question-

able. Moreover, semi-group kernels do not justify why KL divergence (with θ̃ in the

second argument) is the appropriate divergence. In my work, we take an information

geometric approach to derive these kernels and show that these kernels are actually

the natural kernel because they induce the Fisher information metric. Semi-group

kernels only consider (both in theory and their evaluation) exp form of the kernel

while we consider a different number of kernels e.g. exp, inv, centering, and study

them in discriminative/generative framework. Note that exp version usually does not
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perform as well as others (see Tables 1 and 2).

8.5 Experiments

In this section I evaluate generative kernels on several text categorization tasks

(multinomial distributions), as a first evidence of their effectiveness. Later in the

proposed work, I plan to apply them for more complex models (tasks). In my prelimi-

nary experiments, I use multinomial distribution for this evaluation – mainly for two

reasons. First, multinomial is one of the most widely used distributions after Gaussian1.

Second, other principally similar kernels which I would like to compare against, have

been shown to work only for the multinomial geometry, for computational reasons.

Note that for multinomial distribution, φ(x) is simply the observed frequency vector.

I have performed experiments with six kernels: generative(centering, exp and

inverse), linear, Heat and PP kernels. In these experiments, generative kernels are

compared with some of the best published results for multinomial distribution i.e.,

heat and PP kernel. In order to see the discriminative/generative behavior, I also

include the results of a generative model (NB with α-smoothing). In order to make

graphs look less cluttered, I exclude generative centering and linear kernels. In most

of the cases they underperformed other kernels. For statistical significance, all of the

results are averaged over 20 runs. Although in my results, I only report the mean error,

variance was found to be very low (∼ 0.0001), and hence not reported for the clarity.

For evaluation, I use SVM toolbox[Canu et al., 2005].
1Gaussian is uninteresting because all kernels, heat, PP and generative reduce to RBF
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Here I report results on the synthetic data (generated from multinomial dis-

tribution) because these are more intuitive and give insight into hybrid behavior. I

have also performed experiments on real datasets mainly text classification tasks (i.e.

multinomial distribution) which can be found in our published work [Agarwal and

Daumé III, 2011].

For the multinomial distribution, the relative size of each trial w compared to

the dimension of the data d is important because that’s what makes problems difficult

or easier. if multinomial distributions are considered to be the documents, then long

documents compared to the vocabulary size(low d/w, dense setting) makes problem

easier while short documents (high d/w, sparse settings) makes the problem difficult.

I show results for both dense and sparse settings. For each of these settings, I perform

two kind of experiments, In one n is varied (no noise), and in other the noise level( n =

50) is varied. Noise is introduced by copying the result of previous trial with probability

p =noise level. In sparse setting d/w = 100 while in dense d/w = 5 with w = 20.

These results are shown in Figure 8.2 and Figure 8.3 respectively. Since in all of

these experiments, generative kernels outperform other kernel methods, an important

comparison would be to see how a method based on generative kernels performs

compared to a pure generative method (NB) mainly because discriminative models

based on generative kernels can be thought of as a mixture of discriminative/generative

models.

In all of these experiments, results are found to be interesting and consistent with

previous known facts. In the non-noise dense settings, it is observed that generative

kernels based method outperforms all other methods except for NB. It is known [Liang
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Figure 8.2: Performance variation with n on random multinomial dataset in sparse
and dense settings

and Jordan, 2008] that in case of correct model assumption, generative models

outperform discriminative methods hence in this case, one can not hope to beat NB,

though it beats all other discriminative models for all n. It is also emphasized that when

n is small generative kernels based method performs as well as the NB because for

small n, generative properties dominate discriminative properties, but as we increase

the data, discriminative properties tend to dominate and model starts to perform poor.

Similar results are obtained for the sparse setting except that problem is now harder,

and for hard problem, relative difference between generative and discriminative is not

very high.

An interesting phenomena occurs when I introduce noise, or when the model is

mis-specified. Results are presented in Figure 8.3. For simple problem (dense setting),

NB outperforms all discriminative methods for all noise levels. In simple problem,

introducing noise does not make much difference, and problem is still simple enough

for NB to perform better, therefore, it is the hard problem that is more interesting. In
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Figure 8.3: Performance variation with different noise levels on random multinomial
dataset in sparse and dense settings

hard problem (sparse setting), NB performs better when there is less noise (∼ 10%),

but as we increase the noise, correct model assumption breaks and generative kernels

based method starts to outperform.

8.5.1 Real Datasets

For experiments, I consider two standard datasets WebKB and Reuters2.

Datasets were preprocessed in a standard manner (short words and stopwords removal,

stemmer)3.

WebKB dataset contains web pages classified into four categories, student, faculty,

course and student. I take all four classes and construct binary classification tasks by

choosing class pairs, giving us a total of six tasks. For two such tasks, performance

variation with n is shown in Figure 8.4. These are typical results and were found

2Available at http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
and http://www.daviddlewis.com/resmyces/testcollections/

3http://web.ist.utl.pt/~acardoso/datasets/

177

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
http://www.daviddlewis.com/resmyces/testcollections/
http://web.ist.utl.pt/~acardoso/datasets/


0 50 100 150 200

10
−1

10
0

Training examples per class

C
la

ss
ifi

ca
tio

n 
er

ro
r

course vs. project

 

 

Exp

Inverse

PP

Heat

NB

0 50 100 150 200

10
−1

10
0

Training examples per class

C
la

ss
ifi

ca
tio

n 
er

ro
r

student vs. project

 

 

Exp

Inverse

PP

Heat

NB

Figure 8.4: Performance variation with n on WebKB dataset. Note that Y -axis is
log-scaled hence relative difference is not equal along the X -axis. Although not visible
from plot, relative improvement for n= 1) is ∼ 10%

to be consistent among other tasks. The results are very promising, giving the ideal

results for the discriminative/generative hybrid models. Generative kernel curves

form the lower envelopes of the discriminative and generative curves. Though, we

outperform all models in all cases, we perform significantly better ∼ 10%) when n is

small. Observe that NB performs better than other discriminative models when n is

small, an important property of the generative models [Ng and Jordan, 2002], which

we are able to exploit, and perform better/equivalent to generative models for small n,

and better than discriminative methods for large n. Table 8.1 shows the results for all

six tasks for n= 20. For WebKB dataset, Generative-centering does not perform very

good but other generative kernels outperform all methods. In some case i.e. faculty vs.

student difference is as much as 5%.

Reuters dataset is a collection of newswire articles classified according to the

topics. Although there are more than 140 topics, we take topics with largest number
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Table 8.1: Error comparison of generative kernels with other kernels on WebKB dataset

Task Generative Kernels Linear PP Heat Naive
Centering Exp Inverse Kernel Kernel Kernel Bayes

faculty vs. course 0.1727 0.0443 0.0413 0.1268 0.0616 0.0593 0.0719
student vs. project 0.2735 0.1142 0.1114 0.2166 0.1386 0.1364 0.1340
course vs. project 0.2120 0.0602 0.0602 0.1747 0.0699 0.0687 0.0663
faculty vs. project 0.2012 0.1310 0.1256 0.2259 0.1539 0.1509 0.2036
faculty vs. student 0.2945 0.1499 0.1476 0.2272 0.1926 0.1896 0.2098
student vs. course 0.3165 0.0541 0.0515 0.1227 0.0858 0.0819 0.0590

of labeled examples: acq, earn, crude, grain and money-fx. I again consider class

pair as a binary classification task which gives us a total of 10 tasks. Performance

variation with n for two such tasks is shown in Figure 8.5. Results are similar to the

WebKB dataset, generative kernel curves being the lower envelopes of all other curves.

Table 8.2 shows the results for all 10 tasks for n = 20. I see that generative kernels

are able to outperform all other methods but here unlike WebKB dataset, difference

among different version of generative kernels is not as high, in fact all of the generative

kernels perform almost equally good.

Table 8.2: Error comparison of generative kernels with other kernels on Reuters
dataset.

Task Generative Kernels Linear PP Heat Naive
Centering Exp Inverse Kernel Kernel Kernel Bayes

acq vs. earn 0.0694 0.0747 0.0664 0.0754 0.0673 0.0671 0.0684
acq vs. crude 0.0432 0.0410 0.0407 0.0966 0.0472 0.0469 0.0696
acq vs. money-fx 0.0074 0.0078 0.0071 0.0596 0.0110 0.0106 0.0191
earn vs. grain 0.0119 0.0142 0.0116 0.0776 0.0142 0.0123 0.0164
grain vs. money-fx 0.0138 0.0134 0.0131 0.0687 0.0198 0.0194 0.0265
acq vs. grain 0.0131 0.0153 0.0134 0.0791 0.0168 0.0168 0.0194
crude vs. money-fx 0.0082 0.0096 0.0089 0.0394 0.0121 0.0117 0.0209
earn vs. money-fx 0.0117 0.0142 0.0121 0.0567 0.0142 0.0135 0.0199
earn vs. crude 0.0326 0.0366 0.0329 0.0814 0.0363 0.0348 0.0450
grain vs. crude 0.0179 0.0194 0.0183 0.0705 0.0246 0.0246 0.0448
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Figure 8.5: Performance variation with n on Reuters dataset. Y -axis is log-scaled.

8.6 Conclusion and Future Work

In this chapter, I have used the geometric structure of the space associated with

the generative models to build a family of kernels called generative kernels that can be

used as off-the-shelf tool in any kernel learning method. When used in discriminative

models, these kernels exploit the properties of both, generative and discriminative

models, giving us the best of both worlds. Empirical results demonstrate this hybrid

behavior, in addition to the superior performance over the other state-of-the-art kernels.
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Part III

Conclusion and Future Work

This part presents the conclusion and findings of my dissertation.
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Chapter 9

Summary and Future Work

My dissertation demonstrates the power of geometric methods by applying them

to a variety of problems, both in data mining and machine learning. For these problems,

I show that the geometric methods are useful not only to gain insight into existing

algorithms, but also to build new and effective algorithms.

In data mining, I use geometric methods to solve a well known distance embed-

ding problem known as multidimensional scaling (MDS). These geometric methods

result in a powerful unified algorithmic framework that can be used to solve a number

of MDS variants. Furthermore, I modify the algorithms derived from this framework to

develop a scalable algorithm for dimensionality reduction, and also to solve a sensor

network localization problem.

In machine learning, I apply geometric methods to three problems: First, I

use them to reason about the appropriateness of conjugate priors, second, to use

them to build a hybrid model by combing discriminative and generative models using

the geometry underlying these models, and finally, to build a set of kernels called

generative kernels using the geometric structure underlying the generative process of

data. In all of these three problems, geometric methods exploit geometric structures

underlying probabilistic models, giving us powerful tools not only to analyze existing

algorithms but also to build new algorithms.
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9.1 Summary

Below, I enumerate problems that I solve in my dissertation, and discuss in detail

the contributions and findings in each problem. A list of relevant publications that

came out of this dissertation can be found in Appendix C.

Generalized Multidimensional Scaling: I have demonstrated the power of geomet-

ric methods by building a unified algorithmic framework to solve the generalized

multidimensional scaling (MDS) problem. This framework not only solves the

original MDS problem in Euclidean space more effectively than state-of-the-art

methods, but also generalizes to other spaces e.g., spherical space; and has

many desirable properties. In addition to the formal guarantees of convergence,

the algorithms derived from this framework are accurate; in most cases, they

converge to better quality solutions than existing methods in comparable time.

Moreover, they have a small memory footprint and scale effectively for large

data sets.

Large Scale Dimensionality Reduction: I have extended my generalized MDS frame-

work to build scalable algorithms for dimensionality reduction. In particular,

I have modified the MDS framework such that the resulting framework has a

time complexity that is linear in data size, and a memory complexity that is

independent of data size. My approach combines adaptive sampling with multi-

pass algorithm, which avoids expensive eigenvalue computations and uses a

non-linear projection. The approach generalizes to other distance measures and
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cost metrics, and can run MDS efficiently at data sizes well beyond what has

previously been demonstrated for the same accuracy.

Sensor Network Localization: I have also modified my generalized MDS framework

to solve the sensor network localization problem for mobile sensors. The resulting

algorithm is accurate, and scales to large data effectively i.e., it can handle large

number of sensors more efficiently that what has previously been reported.

This algorithm is the first ever algorithm that has been tested with number of

sensors more than 100, 000 with noisy distance measurements — it can localize

120, 000 sensors in less than 20 minutes. The experimental study across a variety

of networks with different moving patterns show that the proposed algorithm

outperforms the existing state-of-the-art methods. In our experiments, it is

especially found to be effective for real-time tracking for mobile sensors, as

it takes only a fraction of second for a tracking problem with 1000 sensors.

Furthermore, this algorithm is a decentralized algorithm, which means that the

localization computation can be carried out in the sensor itself needing only the

locations of its neighbors, and thus, adding less communication overhead which

is a significant bottleneck in sensor network localization problems.

Conjugate Priors and Hybrid Models: In my dissertation, I have shown that the ge-

ometric structure associated with statistical models can be used to gain insight

into existing algorithms by using it to reason about the appropriateness of conju-

gate priors, and then using this reasoning to justify the use of these conjugate

priors in hybrid models. These hybrid models are models that hybridize between
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discriminative and generative models. In my work, I first demonstrate that using

a conjugate prior as a coupling prior is more effective than using a non-conjugate

prior (as done previously), and then show that the hybrid model built using

conjugate prior as coupling prior can be built more naturally by simply inter-

polating between the participating generative and discriminative models using

the distance geometry underlying these models, and thus justifying the use of

conjugate priors to build these hybrid models in the first place.

Generative Kernels: My dissertation shows that the geometric structure associated

with the statistical process of a learning problem can also be used to build better

machine learning tools — later to be used in various other algorithms — by

building a family of kernels called generative kernels. My proposed method

considers the geometry of the space of statistical models associated with the

distribution that generated data, to build a set of efficient closed-form kernels best

suited for that distribution. Since these kernels are built considering the geometry

associated with the generative model, and are used in discriminative models as

in SVM, they naturally combine the power of both discriminative and generative

models, thus give us the hybrid behavior. My experiments demonstrate this

hybrid behavior, that is, the performance of an SVM using generative kernels is

better that an SVN using other kernels, and also better than a pure generative

model.
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9.2 Future Work

Here I discuss future directions of my research in the context of the problems

considered in this dissertation.

9.2.1 Distance Embedding

As mentioned earlier, the distance embedding is a generic class of problems

encompassing various other problems that take distance matrix as input and output a

set of points in a given space. These problems differ from each other depending on

the assumptions made about the input and the output. The multidimensional scaling

(MDS) problem is one such problem where the input is set of pairwise distances among

all pairs, and the output is a set of points in a given space. In my dissertation, I have

used geometric methods to build a unified algorithmic framework to solve the MDS

problem that performs better than existing methods for a variety of target spaces and

cost functions. In my experiments, the performance of MDS is measured by its ability

to converge to a solution (distortion cost). One algorithm is said to be better than the

other when it converges to a lower distortion cost in a comparable or lesser time.

Although useful in many cases, such a relative measurement has limited use in

the absence of any absolute measurement of the quality of the solution. Ideally one

would like to know the quality of the solution with respect to the best solution i.e.

global optimal, but unfortunately, the global optimal solution is not available for such

problems. In fact, there exists no work in the existing literature on MDS or in general

on distance embedding problems, that provides theoretical guarantees on the quality of
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a solution. Consequently, one natural future direction of this work would be to extend

it to do a theoretical analysis so as to determine the quality of the embedding in an

absolute sense or relative to the global optimal. Since my geometric framework allows

one to handle many variants of MDS with different cost functions and different target

spaces, a theoretical analysis in the context of the proposed framework will naturally

extend to other spaces and cost functions, leading to powerful MDS algorithms with

guarantees on the quality of the solution.

9.2.2 Spherical Embedding

In this dissertation, I have applied my generalized MDS framework to solve a

spherical embedding problem. Recall from our earlier discussion that the spherical

embedding problem is useful to reduce the dimension of histograms, and therefore, the

dimension of the text documents because text documents are nothing but histograms

when represented by normalized frequency vectors. One future avenue of my research

would be to show the effectiveness of spherical embedding in the context of text

analysis.

It is well known [Kass and Vos, 1997; Lebanon and Lafferty, 2004] that text

documents, when represented as term-frequency (tf) vectors can be isometrically em-

bedded into positive orthant of a sphere, under the assumption that the text documents

are generated from a multinomial distribution, and a natural distance between these

documents is information distances (computed using Fisher information metric on

multinomial distribution). Since documents are represented as term-frequency vectors,
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they are naturally of high dimension which being as high as the size of the vocabulary.

In many machine learning problems, this high dimensional nature of documents poses

several challenge i.e., high computational complexity, sparsity. One obvious way to

tackle these challenges is to preprocess the documents and reduce their dimension.

There are many methods that can be used to reduce the dimension of documents,

one natural method would be the one that preserves their geometric structure. Note

that text documents have an inherent geometry to them i.e., they lie on a high-

dimensional sphere, so when reducing the dimension of these documents, it would be

useful to preserve this inherent spherical property (they must lie on low-dimensional

sphere), a problem that is exactly solved by spherical MDS. Once the documents have

been processed to reduce their dimension, their geometric structure can be exploited

when performing a further analysis task on these documents. One method that exploits

the spherical structure of text documents in a classification task is the method proposed

by Lebanon [2005]. In his work, Lebanon assumes that text documents lie on a sphere

and classifies them using a hyperplane defined on the sphere. Hence one natural

extension of spherical embedding framework would be to reduce the dimension of

text documents, and then use the classification method presented by Lebanon [2005]

which will hopefully lead to a better classification for text documents.

Parallelization. Although I have mentioned that the proposed unified MDS frame-

work is easily parallelizable, a practical evidence showing the effectiveness of such a

parallel framework is yet to be shown. In our geometric framework, an update of a

point requires the most updated positions of other points, which means that before

188



an update can be made, positions of all other points have to be communicated to the

node where the point being updated resides. Such a parallelism would not only add

communication overhead, but it will also break convergence guarantees. Note that the

convergence guarantees that the cost function monotonically decreases in each update

only applies when these updates take place in a sequential manner.

9.2.3 Senor Network Localization

Recall that the SNL problem is a generalized version of the MDS problem because

in SNL, we are given a subset of all distances (i.e. distances among few pairs), and

the positions of some of the points (i.e. anchors), both of which can be adjusted to

give the original MDS problem. More specifically, when the given subset includes

all pairwise distances, and the number of anchors is zero, one recovers the standard

Euclidean MDS problem. Note that this seemingly simple generalization of MDS to

SNL brings in significant difficulties when solving the problem, and have been shown

to be closely related to other problems such as Euclidean distance matrix completion,

graph rigidity, graph realization and many more [Liberti et al., 2012]. Since in SNL,

one is interested in recovering actual locations of the sensors, it is important that the

underlying optimization problem has one unique solution because if there are multiple

solutions to the optimization problem, we might end up finding the solution that has

the same cost as the actual solution but is different in terms of the positions of the

sensors); and figuring out if there exists a unique solution to the given set of distances

in itself is a challenging problem, and is an active area of research [Hendrickson, 1992;
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Alfakih, 2001, 2005; Connelly, 2005; BELK and CONNELLY, 2007; Connelly, 2009].

One of the main challenges when dealing with an SNL problem can be attributed

to the partial (and noisy) distance matrix. In order to understand this, consider

an extreme case of the problem, i.e., consider the case when we are not given any

distances. In such a case, it is easy to see that any solution would be a solution to the

underlying optimization problem, however it would not be a solution of the actual

SNL problem. Even assuming that such extreme and degenerate cases do not exist, i.e.,

problem is well behaved in the sense it has a unique solution, finding the one is still

a challenge. In the context of the work presented in this dissertation, this challenge

comes from the fact that the partial distance makes algorithm more susceptible to local

miinima, compared to the case when the distance matrix is full or relatively dense.

One way to alleviate the problem of local minimia is to consider non-neighbor

points, and hence the distances from them making the distance matrix denser. That is,

when updating for one point x i, one should not only consider points that are neighbors

of the point x i, but also the points that are not neighbors. More specifically, one should

try to position the point x i relative to the neighbors x j at the given distances di j, while

at the same time, position it so that it is more than R (communication radius) distance

away from non-neighbors. Note that in the SNL problem definition, any point that

is less than R distance away from x i is a neighbor of x i. Mathematically, it should

optimize the following cost function:

Ci(Y, S, x i) =
∑

x j∈Y
di j∈S

�

‖x i − x j‖2− di j

�2
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s.t. ‖x i − x j‖2 ≥ R ∀x j 6∈ Y.

Note the difference between the above problem from the problem (5.2) on page 100.

The above problem has additional constraints that take into account repulsion from non-

neighbors. A similar formulation where both neighbors and non-neighbors constraints

are enforced to place a point is also considered in the work of Pong and Tseng [2009].

Identifying how to minimize the above cost function would be one direction

of future research. One possible way to solve this problem is to transform it into an

unconstrained optimization problem using a regularization parameter as done in Chen

and Buja [2009]:

Ci(Y, S, x i) =
∑

x j∈Y
di j∈S

�

‖x i − x j‖2− di j

�2
+λ

∑

x j 6∈Y

�

‖x i − x j‖2− R
�2

I believe that my MDS framework can be extended to solve the above unconstrained

optimization problem, since this is nothing but a special instance of (2.3) on page 26

with wi j = λ, ∀x j 6∈ Y .

9.2.4 Generative Kernels

In my dissertation, I have used generative kernels built using geometry underly-

ing probabilistic models that represent the generative process of a problem, and shown

their effectiveness on a document classification task where the generative process

consisted of a multinomial distribution. Although in principle, these generative kernels
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can be derived for any exponential family models, one has yet to establish practical

evidences. In machine learning, many exponential family models can be represented

as graphical models, and one future direction of this dissertation in the context of

generative kernels would be to build these kernels for such graphical models. Recall

that the computation of these kernels requires the computation of the dual of the log

partition function F , an important extension of this work would be to study how to

compute F . Once the dual of the log partition function is known, computing the kernel

is straightforward.

9.3 Conclusion

I conclude my dissertation with the remark that the geometric methods are

indeed powerful tools. The understanding of the geometric structure underlying a

problem and then using it appropriately results in algorithms that are helpful in many

ways. In addition to being simple and intuitive, these algorithms, in most cases, are

more effective than existing algorithms, and often provide insight into problems and

existing algorithms.
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Appendix A

Exponential Family and their Properties

In chapters 7 and 8, I use the geometry underlying exponential family models

to reason about conjugate priors, and build generative kernels. This chapter gives the

required background, in particular, concepts related to Legendre duality, Bregman

divergence, and exponential families.

A.1 Legendre Duality

Let M⊆ Rd and Θ⊆ Rd be two spaces and let F : M→ R+ and G :Θ→ R+ be

two non-negative real valued convex functions. F and G are conjugate duals of each

other if:

F(µ) := sup
θ∈Θ
{〈µ,θ 〉 − G(θ)}, ∀µ ∈M (A.1)

and

G(θ) := sup
µ∈M
{〈θ ,µ〉 − F(µ)}, ∀θ ∈Θ (A.2)

here 〈a, b〉 denotes the dot product of vectors a and b, R denotes the space of

real numbers, Rd denotes the d-dimensional space of real numbers, and R+ denotes

the space of non-negative real numbers. The spaces (Θ and M) associated with
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Figure A.1: Geometric representation of Bregman divergence

these dual functions are called dual spaces; this relationship between them is know as

Legendré duality or just the duality. There are standard notations to refer this duality

i.e., G = F ∗ and F = G∗. A particularly important connection between dual spaces is

that: for each µ ∈M,∇F(µ) = θ ∈ Θ (denoted as µ∗ = θ)) and similarly, for each

θ ∈Θ,∇G(θ) = µ ∈M (or θ ∗ = µ)). For more details, refer to [Rockafellar, 1996].

A.2 Bregman Divergence

I now give a brief overview of Bregman divergence (for more details see [Banerjee

et al., 2005]). Let F : M→ R+ be a continuously-differentiable real-valued and strictly

convex function. The Bregman divergence (see Figure A.1) associated with F for points

µ1,µ2 ∈M is:

BF(µ1‖µ2) = F(µ1)− F(µ2)− 〈∇F(µ2), (µ1−µ2)〉 (A.3)
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If G is the conjugate dual of F then:

BF(µ1‖µ2) = BG(µ
∗
2‖µ

∗
1) (A.4)

here µ∗1 and µ∗2 are the duals of µ1 and µ2 respectively. Note that the arguments

are flipped in (A.4). It is emphasized that Bregman divergence is not symmetric

i.e., in general, BF(p‖q) 6= BF(q‖p), therefore it is important what directions these

divergences are measured in.

A.3 Exponential Family

The exponential family is a set of distributions defined over a space X, whose

probability density function for some x ∈ X can be expressed in the following form:

p(x;θ) = po(x)exp(〈θ ,φ(x)〉 − G(θ)) (A.5)

here φ(x) : X→ Rd is a vector potentials or sufficient statistics [Nielsen, 1978], po(x)

is a function that depends on the base measure ν i.e., dν = p0(x) d x , and G(θ) is a

normalization constant or log-partition function. With the potential functions φ(x)

fixed, every θ induces a particular member p(x;θ) of the family. In the proposed

research, I deal with exponential families that are regular and have the minimal

representation. (For details on this, refer to [Wainwright and Jordan, 2008]).

The exponential family has a number of convenient properties and subsumes

many common distributions. It includes the Gaussian, Binomial, Beta, Multinomial
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and Dirichlet distributions, Bayes nets, etc.. Below I give two examples of Naive Bayes

and Gaussian distributions to show that they are exponential family distributions by

representing them in the canonical form (A.5)

Gaussian. The distribution can be written as:

p(x; a) =
1

p

(2πσ2)d
exp
�

−
1

2σ2‖x − a‖2

�

=
1

p

(2πσ2)d
exp
�

〈x ,
a

σ2 〉 −
1

σ2‖a‖
2−

1

σ2‖x‖
2

�

=
1

p

(2πσ2)d
exp
�

−
1

σ2‖x‖
2

�

exp
�

〈x ,
a

σ2 〉 −
1

σ2‖a‖
2

�

= po(x) exp (〈x ,θ 〉 − G(θ)) ,

where po(x) is independent of θ , and comparing with (A.5), θ = a
σ2 and G(θ) =

σ2

2
‖θ‖2.

Naive Bayes. The distribution can be written as following considering that each

feature x j is binary and is generated by Bernoulli distribution:

p(x; a) =
d
∏

j=1

a
x j

j (1− a j)
(1−x j)

= exp

 

log

 

d
∏

j=1

a
x j

j (1− a j)
(1−x j)

!!

= exp

 

d
∑

j=1

log
�

a
x j

j (1− a j)
(1−x j)

�

!

= exp

 

d
∑

j=1

�

x jlog a j + (1− x j)log (1− a j)
�

!
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= exp

 

d
∑

j=1

�

x jlog
a j

1− a j
+ log (1− a j)

�

!

= exp (〈x ,θ 〉 − G(θ))

where po(x) = 1, θ j = log
a j

1−a j
, and G(θ) =

∑d
j=1 log (1− a j).

One important property of the exponential family is the existence of conjugate

priors. Given any member of the exponential family as in (A.5), the conjugate prior is

a distribution over its parameters with the following form:

p(θ |α,β) = m(α,β) exp(〈θ ,α〉 − βG(θ)) (A.6)

here α and β are hyperparameters of the conjugate prior. Importantly, the function

G(·) is same between the exponential family member and its conjugate prior.

For exponential family, there exist a relationship between the log-partition

function G(θ) and the sufficient statistics. In particular, we have:

∂ G

∂ θ
= Eθ [T (x)] (A.7)

A second important property of exponential family member is that log-partition

function G is a continuously differentiable strictly convex function and defined over

the convex set Θ := {θ ∈ Rd : G(θ)<∞}. These properties of log-partition function

induce a Bregman divergence on the space Θ. Convexity of log-partition function G

ensures that there exists a space M, dual to Θ and a dual function F defined over

M. Here duality refers to Legendre duality. This convexity property also induces a
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Figure A.2: Duality between mean parameters and canonical parameters. Notice the
convex functions defined over both spaces. these functions are dual of each other
and so are the spaces.

Bregman divergence on both Θ and M.

Another important property of the exponential family is the one-to-one mapping

between the canonical parameters θ and the so-called “mean parameters” which we

denote by µ. For each canonical parameter θ ∈ Θ, there exists a unique corresponding

mean parameter µ, which belongs to the space M defined as:

M :=
n

µ ∈ Rd : µ=

∫

φ(x)p(x;θ) d x , θ ∈Θ
o

(A.8)

My notation in the above expression has been deliberately suggestive. Θ and M

are dual spaces, in the sense of Legendre duality because of the following relationship

between the log-partition function G(θ) and the expected value of the sufficient

statistics φ(x):

∇G(θ) = E(φ(x)) =
∫

φ(x)p(x;θ) d x = µ.

In Legendre duality, we know that two spaces Θ and M are dual of each other

if for each θ ∈Θ, ∇G(θ) = µ ∈M. Under this duality, there exists a dual function F

198



on M such that F = G∗. A pictorial representation of the duality between canonical

parameter space Θ and mean parameter space M is given in Figure A.2.
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Appendix B

Proof of JL Lemma for Spherical Data

Before we proceed with the proof, we require a key technical lemma.

Lemma 3. For ε ∈ [0,0.5] and x ∈ [0,0.7],

(1) sin((1− 2ε)x)≤ (1− ε) sin(x), and

(2) sin((1+ 2ε)x)≥ (1+ ε)sin(x).

Proof. Let gε(x) = (1− ε) sin x − sin((1− 2ε)x). We will show that for x ∈ [0, 1] and

ε ∈ [0,0.5], gε(x) is concave. This implies that it achieves its minimum value at the

boundary. Now gε(0) = 0 for all ε, and it can be easily shown that gε(0.7) ≥ 0 for

ε ∈ [0,0.5]. This will therefore imply that gε(x)≥ 0 in the specified range.

It remains to show that gε(x) is concave in [0, 0.7].

g ′′ε (x) = (1− 2ε)2 sin((1− 2ε)x)− (1− ε) sin x

≤ (1− ε)(sin((1− 2ε)x)− sin x)

which is always negative for ε ∈ [0,0.5] and since sin x is increasing in the range

[0,0.7].

This proves the first part of the lemma. For the second part, observe that

hε(x) = sin((1+ 2ε)x)− (1+ ε)sin(x) can be rewritten as hε(x) = g−ε(−x). The rest
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j
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i

Figure B.1: Illustration of the bounds on ∠x i ,x j
when ||yi − y j|| ≤ 1/2. The angle

∠xmax
i ,xmax

j
is the largest when ||xmax

i || = ||x
max
i || is as small as possible (lies on inner

circle) and ||xmax
i − xmax

j || is as large as possible (on the outer edges of the disks of
diameter ε/8 shifted down from dashed line of length ||yi − y j||. Bounds for xmin

i and
xmin

j are derived symmetrically.

of the argument follows along the same lines, by showing that hε(x) is concave in the

desired range using that h′′ε (x) = g ′′−ε(−x).

While the upper bound of 0.7 on x is not tight, it is close. The actual bound

(evaluated by direct calculation) is slightly over 0.72.

Proof of Theorem 3. Let X = πH(Y ). We consider two cases, (Short Case) when ‖yi −

y j‖ ≤ 1/2 and (Long Case) when ‖yi − y j‖ ∈ (1/2, 2].

Short Case: First consider points yi, y j ∈ Sd such that ||yi − y j|| ≤ 1/2. Note

that ||yi − y j|| = 2sin(∠yi ,y j
/2), since ||yi|| = ||y j|| = 1. By JL, we know that there

exists a constant c such that

(1− ε/8)||yi − y j|| ≤ c||x i − x j|| ≤ (1+ ε/8)||yi − y j||.

We need to compare the angle ∠x i ,x j
with that of ∠yi ,y j

. The largest ∠x i ,x j
can

be is when c||x i|| = c||x j|| = (1− ε/8) is as small as possible, and so ||cx i − cx j|| =
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(1+ ε/8)||yi − y j|| is as large as possible. See Figure B.1. In this case, we have

(||cx i||+ ||cx j||) sin(∠x i ,x j
/2) ≤ ||cx i − cx j||

2(1− ε/8) sin(∠x i ,x j
/2) ≤ (1+ ε/8)||yi − y j||

2(1− ε/8) sin(∠x i ,x j
/2) ≤ (1+ ε/8)2sin(∠yi ,y j

/2)

sin(∠x i ,x j
/2) ≤

1+ ε/8
1− ε/8

sin(∠yi ,y j
/2),

which for ε < 4 implies

sin(∠x i ,x j
/2)≤ (1+ ε/2) sin(∠yi ,y j

/2).

Similarly, we can show when∠x i ,x j
is as small as possible (when c||x i|| = c||x j|| = (1+ε)

and ||cx i − cx j||= (1− ε)||yi − y j||), then

(1− ε/2) sin(∠yi ,y j
/2)≤ sin(∠x i ,x j

/2).

We can also show (via Lemma 3) that since ||yi − y j|| ≤ 1/2 implies ∠yi ,y j
< 0.7

we have

sin((1− ε)∠yi ,y j
)≤ (1− ε/2) sin(∠yi ,y j

)

and

(1+ ε/2) sin(∠yi ,y j
)≤ sin((1+ ε)∠yi ,y j

).
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Thus, we have

sin((1− ε)∠yi ,y j
/2) ≤ sin(∠x i ,x j

/2) ≤ sin((1+ ε)∠yi ,y j
/2)

(1− ε)∠yi ,y j
/2 ≤ ∠x i ,x j

/2 ≤ (1+ ε)∠yi ,y j
/2

(1− ε)∠yi ,y j
≤ ∠x i ,x j

≤ (1+ ε)∠yi ,y j
.

Long Case: For ||yi − y j|| ∈ (1/2, 2], we consider 6 additional points y (h)i, j ∈ S
d+1

(for h ∈ [1 : 6]) equally spaced between yi and y j on the shortest great circle

connecting them. Let Ŷ be the set Y plus all added points {y (h)i, j }h=[1:6]. Note that

|Ŷ |= O(n2), so by JL we have that

(1− ε/8)||yi − ŷi, j|| ≤ c||x i − x̂ i, j|| ≤ (1+ ε/8)||yi − ŷi, j||.

For notational convenience let yi = y (0)i, j and y j = y (7)i, j . Since for ‖yi − y j‖ ∈ (1/2,2]

then ‖y (h)i, j − y (h+1)
i, j ‖ ≤ 1/2, for h ∈ [0 : 6]. This follows since the geodesic length

of the great circular arc through yi and y j is at most π, and π/7 < 1/2. Then the

chordal distance for each pair ‖y (h)i, j − y (h+1)
i, j ‖ is upper bounded by the geodesic distance.

Furthermore, by invoking the short case, for any pair

(1− ε)∠y(h)i, j ,y(h+1)
i, j
≤ ∠x (h)i, j ,x (h+1)

i, j
≤ (1+ ε)∠y(h)i, j ,y(h)i, j

.

Then since projections preserve coplanarity (specifically, the points 0 and y (h)i, j for

h ∈ [0 : 7] are coplanar, hence 0 and x (h)i, j for h ∈ [0 : 7] are coplanar), we can add
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together the bounds on angles which all lie on a single great circle.

(1− ε)∠yi ,y j
≤ (1− ε)

6
∑

h=0

∠y(h)i, j ,y(h+1)
i, j

≤
6
∑

h=0

∠x (h)i, j ,x (h+1)
i, j

≤ (1+ ε)
6
∑

h=0

∠y(h)i, j ,y(h+1)
i, j

≤min{π, (1+ ε)∠yi ,y j
}

and thus by ∠x i ,x j
=
∑6

h=0∠x (h)i, j ,x (h+1)
i, j

implies

(1− ε)∠yi ,y j
≤ ∠x i ,x j

≤min{π, (1+ ε)∠yi ,y j
}.
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Appendix C

List of Publications

Table C.1: List of publications from the work completed

Contribution Publication
Geometric analysis of conjugate priors and its appli-
cations to hybrid model

[Agarwal and Hal Daumé
III, 2010] (Best Student
Paper)

Semi-supervised hybrid model using conjugate prior [Agarwal and Daumé III,
2009]

Generative kernels for exponential family distribu-
tions

[Agarwal and Daumé III,
2011]

A unified framework for generalized MDS [Agarwal et al., 2010b]
Sensor Network Localization for Moving Sensors [Agarwal et al., 2012]
Adaptive Sampling for Large Scale MDS In preparation
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