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ENHANCING DIAGNOSTIC STRATEGY OF RESPIRATORY VIRUSES IN THE 
PEDIATRIC POPULATION USING MACHINE LEARNING AND TEXT MINING 
 
Mark Mai, Michael Krauthammer. Department of Pathology Informatics, Yale University 
School of Medicine, New Haven, CT. 
 
Despite pressure from the federal government for US hospitals to adopt electronic 

medical records systems (EMR), the benefits of adopting such systems have not been 

fully realized.  One proposed advantage of EMRs involves secondary use, in which 

personal health information is used for purposes other than direct health care delivery, 

particularly quality improvement.  We sought to determine whether information recorded 

in the EMR could improve diagnostic pathways used to diagnose respiratory viruses in 

children, the most common etiology of diagnoses in the pediatric population.  These tests 

potentially represent a source of unnecessary testing. We performed a retrospective 

observational study analyzing pediatric inpatients receiving respiratory virus testing at 

Yale-New Haven Children’s Hospital between March 2010 to March 2012.  Billing data 

(age, gender, season), laboratory data (sample adequacy, results), and clinical documents 

were gathered.  We used MetaMap, a program distributed by the National Library of 

Medicine, to identify phrases denoting symptoms and diseases in the admission notes of 

patients.  Identified concepts were added as additional variables to be modeled.  Weka, 

another freely available software that allows for easy incorporation of machine learning 

algorithms, was used to derive models based on the C4.5 decision tree algorithm that aim 

to predict whether or not patients should be tested.  Orders for pediatric patients 

accounted for 26.3% of all respiratory virus test orders placed during this time.  Negative 

test results accounted for 69.5% of all tests ordered during the study period.  The lengths 

of stay for all viral diagnoses were not statistically different.  Models based on age, 
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gender and season alone, were predictive for influenza (AUC 0.743, SE = 0.126), 

parainfluenza (AUC 0.686, SE = 0.078), RSV (AUC 0.658, SE = 0.048), and hMPV 

(AUC 0.713, SE = 0.143).  Using MetaMap terms alone, only the model for RSV showed 

discriminatory ability (AUC 0.661, SE = 0.048).  When basic variables were used in 

conjunction with MetaMap concepts, only the model for RSV showed improved 

performance (AUC 0.722, SE = 0.051) in comparison to both the basic and MetaMap 

models.  Respiratory virus tests for general admission pediatric inpatients are ordered 

year-round and are mostly negative.  Using models based on decision tree learning, our 

results showed that test volume could be reduced by about 20-50% for certain tests, as 

measured by model specificity.  Furthermore, clinical concepts obtained via text mining 

in conjunction with basic variables improved prediction of RSV test results.  The tradeoff 

between the false negative rates required to achieve any substantive specificity may be 

mitigated by our finding that hospital stays were nearly identical, regardless of the 

diagnostic outcome.  These results support the use of EMR data for the auditing of and 

improvement of laboratory utilization.  In addition, the improvement of predictive 

modeling for RSV with a simple implementation of text mining support the idea that 

clinical notes can be used for secondary use. 
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INTRODUCTION 

The Costs of Testing 

While rates of health care spending seem to have stabilized compared to the 

growth of the gross domestic product in the United States, more effective and flexible 

approaches to cost control have remained at the forefront of national discussion (1–4).  

Of the various strategies proposed to reduce costs, identifying areas of waste is an 

important step (5).  Six categories were listed by the Institute of Medicine as key sources 

of spending waste, which include unnecessary services, inefficient delivery of services, 

excess administrative costs, overcharged prices, missed prevention opportunities, and 

fraud.  Of the $2.5 trillion spent on healthcare in the United States in 2009, the excess 

spending totaled an estimated $750 billion with unnecessary services leading these 

categories at $210 billion (5).  This group of expenditures also includes unnecessary 

pathology and laboratory tests, which as a whole constitute about 4% of annual 

healthcare costs (5, 6).   

Improved utilization of laboratory tests represents an area with the potential to 

substantially impact healthcare spending in the United States.  Despite the relatively 

small fraction of healthcare spending comprised by laboratory spending, physicians 

routinely base their decision making on information gleaned from laboratory data (6).  

Some have estimated that 60-80% of critical medical decisions, such as admissions, 

treatments, and discharges, are influenced by laboratory data, though this frequently cited 

number has been recently called into question (7–9).  One prospective study looking at 

the impact of rapid diagnosis of influenza, found that emergency department (ED) 

physicians aware of a positive influenza result were significantly less likely to order 
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additional tests, particularly complete blood cell counts and blood cultures (p < 0.001).  

In addition, there was a reduction in the number of antibiotic prescriptions, in the mean 

charge per patient, and time to discharge for patients whose physicians knew of a positive 

test result.  Physicians who were aware of a negative rapid influenza test result were not 

significantly different from physicians who were unaware of the test result, suggesting 

that knowledge of a test result affects management when the result is abnormal (10). 

Although the role of laboratory tests is extremely important in the clinical setting, 

various behaviors likely contribute to excess spending in this area.  From the laboratory 

point of view, unrequested tests (reflex testing), slow turnaround of results, and collection 

of incorrect or inadequate samples may contribute to additional test ordering (11).  Other 

studies have linked the ubiquity of repetitive test ordering to systemic variables such as 

daily variations in test ordering and provider continuity (12–14).  A systematic review by 

Sood et al. identified multiple physician determinants for non-evidence based test 

ordering practices (15).  One group of factors included those that are non-modifiable, like 

practice location, age, sex, and specialization of the physician.  Modifiable factors 

included physicians’ experience or knowledge, fear of litigation, lack of experience, 

belief system, lack of knowledge of test costs and feedback.  The modifiable factors are 

perhaps the most important, as addressing these areas may have a considerable impact on 

the number of unwarranted tests performed.  

Appropriate utilization of tests, or demand management, aims not only to reduce 

test volume, but also to ensure appropriate requests.  This implies that references or 

guidelines exist for what may be deemed appropriate and inappropriate (11).  One such 

reference comes in the form of clinical prediction rules (CPRs).  CPRs are clinical 
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models comprised of variables from the history, physical examination, and basic 

diagnostic tests that provide a probability of a diagnostic outcome.  CPRs are designed to 

quantify the amount of uncertainty present in medical decision making (16).  In this way, 

physicians may employ clinical information to quantitatively risk stratify patients or to 

assess the value of additional steps in management.  One of the most well-known 

examples incorporated clinical assessment with a less costly screening test to diagnose 

deep venous thromboses, demonstrating the value of clinical diagnosis in an age of 

increasing reliance on technology and testing (17).  Known as the Wells’ criteria, this 

CPR has been further validated in multiple studies, although widespread adoption of the 

algorithm is scattershot (18).  Since the publication of the Wells’ criteria, hundreds of 

CPRs for numerous applications have been developed (19, 20).  Independent studies have 

found that the use of Wells’ crteria for pulmonary embolism could reduce the number of 

computed tomographic pulmonary angiography procedures done by around 10-25% (21, 

22).  By helping physicians reduce the amount of diagnostic uncertainty, CPRs encourage 

a more efficient diagnostic process, and thus a reduction in the number of unnecessary 

tests that are performed.  

Respiratory Virus Testing in Children 

Upper respiratory infections comprise one of the most common emergency 

department diagnoses in the pediatric population (23).  Respiratory illnesses account for a 

large percentage of pediatric emergency department visits each year - up to 25% during 

influenza seasons (24).  A large variety of viruses may cause respiratory symptoms, but 

only a handful of viruses can be diagnostically confirmed (25–30).  In the majority of 
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children, a respiratory viral infection is mild and considered self-limiting with adequate 

supportive care (31–33).  

Nevertheless, routine testing for specific viruses (adenovirus, influenza A/B, 

parainfluenza 1-3, and respiratory syncytial virus) in defined populations is likely 

warranted, as certain subpopulations of pediatric patients are at greater risk for 

complications secondary to these infections (27, 33–35).  Adenovirus infections remain a 

large concern for pediatric patients who have undergone transplantation, as the incidence 

of infection is about 2.5-fold greater than adult populations (36).  Positive test results in 

this population may allow physicians to discontinue antibiotics or even consider 

treatment with cidofovir in cases of severe infection (37, 38).  For cases of seasonal 

influenza, the American Academy of Pediatrics recommends that treatment be initiated 

for any child hospitalized with presumed influenza or complicated illness, as well as for 

children one year of age (39).  Furthermore, early detection of a seasonal influenza 

infection within 48 hours of symptom onset may prompt treatment with neuraminidase 

inhibitors in children (40).  Although evidence is lacking, some institutions have 

considered treating parainfluenza in immunocompromised patients with ribavirin and or 

intravenous immunoglobulin (41).  Routine testing might also make some economical 

sense, as it may decrease antibiotic usage, shorten the length of hospitalization, and 

reduce the number of additional tests ordered for patients that are positive for these 

viruses (26, 42–49). 

 The evidence for viral testing as a screening tool in otherwise healthy patients 

presenting with acute respiratory illness is equivocal.  A recent meta-analysis by Doan et 

al. found that in the pediatric emergency room setting, rapid viral testing for acute febrile 
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respiratory illness did not lead to reduced use of antibiotics, shorter ED stay, or change in 

blood or urine testing, although those tested had lower rates of chest X-rays (RR 0.77 

95% CI 0.65 to 0.91) (50).  Some institutions use viral testing primarily to allocate newly 

admitted patients to shared rooms with patients who have a similar viral diagnosis, 

otherwise known as “cohorting.”  Krasinski et al. found that screening for RSV at 

admission and subsequent cohorting reduced the RSV nosocomial rate from 7.17 cases 

per 1000 patient days to less than 1 (51).  A recent study from the Netherlands further 

evaluated this claim in a prospective observational cohort study in pediatric patients 

hospitalized due to bronchiolitis (52).  The study found that while over half of the 

patients shared a room with a patient infected with a different virus (54.1%), only two 

patients (4.2%) acquired a co-infection during admission.  In addition, these co-infected 

patients did not share a room with another patient during their stay.  These data suggest 

that using viral testing for cohorting purposes may not be rooted in the best available 

evidence.  As further studies are needed to determine the effect of cohorting, proper 

contact precautions and hand washing may be the most effective measures in preventing 

nosocomial infections (53, 54). 

Having largely replaced detection by viral culture, rapid viral testing has now 

become a standard diagnostic tool for respiratory infections.  Methods for rapid detection 

often entail lateral flow immunochromatography (rapid flu tests), a type of antibody 

binding, direct fluorescent antigen (DFA) testing, and viral isolation by nucleic acids via 

polymerase chain reaction (PCR) (55–57).  While both DFA and PCR have high 

specificity, tests based on DFA are less sensitive (25, 58).  As DFA is a more cost-

effective test than PCR (59), some institutions have instituted a schema where DFA is 
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used as a first-line “screening test” for respiratory viruses (57, 58, 60). In these 

institutions, PCR testing is only done for patients with negative DFA test results.  

Although this “stacked” testing approach does allow for some cost-saving by eliminating 

the need for expensive PCR testing for patients with positive DFA results, it does not 

adequately address the issue that the vast majority of pediatric ER visits for respiratory 

illness produce negative test results for all viruses tested (25).  Thus, in many cases, 

patients receive two types of testing for the same viral agent.  

 Diagnosis of respiratory viruses likely represents a source of inappropriate 

utilization.  The available evidence has not backed the routine use of laboratory testing of 

respiratory viruses.  The American Academy of Pediatrics published a clinical practice 

guideline in 2006 on the diagnosis and management of bronchiolitis, which included the 

recommendation against routine diagnostic studies, in favor of the history and physical 

examination (61).  In spite of this, testing practices vary widely from institution to 

institution. 

The Use of Clinical Prediction Rules 

Clinical prediction rules for pediatric respiratory illnesses have been developed to 

help reduce the uncertainty, but these mostly focus on the risk of unfavorable outcomes 

due to RSV infection, like hospitalization or clinical deterioration.  A CPR developed by 

Rietveld et al. estimated the monthly risk of hospitalization due to RSV in young children 

(62).   The study found five clinical predictors: gender, gestational age, birth weight, 

presence of bronchopulmonary dysplasia and age.  By discriminating between high and 

low risk children, the study estimated that passive immunization for RSV could be 

reduced by 20%.  Another CPR based on data from a prospective birth cohort study, 
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determined the risk of RSV lower respiratory tract infection in healthy newborns (63).  

The CPR incorporated the birth history predictors of weight and month of birth, in 

addition to the social history components of day care attendance and/or siblings and 

parental education.  The model had an area under the receiving operating characteristic 

curve (AUC) of 0.72 (95% CI 0.64 to 0.80). Brooks et al. developed a prediction rule for 

point-of-care use that estimated the risk of deterioration in infants with and RSV 

infection (64).  Their model focused on more physiological parameters and found 

tachypnea and hypoxemia to be predictors with high specificity, >97% for each, and low 

sensitivity ≤ 30%.  The data suggested that the wide variability in clinical presentation 

limited the usefulness of these parameters. 

Determining the odds of a specific laboratory diagnosis for respiratory viruses has 

not been thoroughly explored in the literature.  Michiels et al. derived prediction rules for 

distinguishing between influenza and influenza-like illness in the primary care setting 

(65).  The study found that ruling out influenza using clinical and historical information 

is a more feasible approach than trying to rule it in.  During periods outside when 

influenza is not highly prevalent, the absence of a cough or fever is associated with a 14-

fold decrease in likelihood of influenza.  The presence of sick contacts, cough, 

expectoration, and fever during a period of an epidemic increases the likelihood by a 

factor of three.  Using similar clinical factors employed in clinical prediction rules, it may 

be possible to calculate the likelihood of being carrier for other viruses.  Potential 

predictors, such as the seasonality of the influenza, parainfluenza, and RSV viruses, 

meteorological parameters, and clinical features have been documented in the literature 

(66–71).  Little is known, however, about the ordering patterns of these tests and whether 
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test ordering is correctly aligned with seasonal prevalence. If satisfactory test 

performance characteristics (sensitivity and/or specificity) are met, clinical models may 

be viewed as diagnostic tests that do not add to the cost of a patient’s hospitalization and 

are useful for triaging patients with low or high likelihood of serious illness. 

As described by Wasson et al. in their seminal article, clinical prediction rules 

should adhere to strict methodological standards for use in clinical practice (16).  These 

include guidelines pertaining to the development of the CPR, like clearly defining the 

event to be predicted, as well as the predictive findings, and blinded assessment of 

outcome and prediction.  Other criteria relate to the communication and evaluation of the 

rule, like statement of the specific population that the rule may be applied to and a 

description of the mathematical technique employed.   By striving to meet all of the 

guidelines, researchers are able to ensure that the prediction rules are based on principles 

of sound study design and are generalizable. 

While CPRs are powerful tools that can supply physicians with point-of-care 

diagnostic and prognostic probabilities, which facilitate reductions in spending, the 

guidelines to the development, validation, and implementation of CPRs, fail to address 

barriers to their use in practice (72).  Katz offers multiple reasons for the underuse of 

prediction rules, including lack of validation and reproducibility, preference for one’s 

own judgment, and a time-consuming process (73).  Furthermore, the different types of 

CPRs - scoring by univariate analysis, models based on multivariate analysis, 

nomograms, artificial neural networks, and decision trees - requires that physicians be 

familiar with multiple models, as well as their advantages and disadvantages (19).  By 

definition, CPRs should contain at least three variables for prediction (16), with 
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additional variables usually resulting in better accuracy of a model.  Implementation of 

such models in practice are computationally heavy processes for physicians, whereas 

leveraging the computational power behind electronic medical records would likely 

improve upon and accelerate the process of building clinical models to reduce uncertainty 

(74–77).   

Practice Based Evidence from Electronic Medical Records 

The term “secondary use” of health data entails utilizing personal health 

information for purposes other than direct health care delivery (76).  The electronic 

medical record represents an underutilized source of information on the delivery and 

consumption of health services.  In their report Best Care at Lower Cost: The Path to 

Continuously Learning Health Care, the Institute of Medicine emphasized the 

importance of building such a digital infrastructure that supports the improvement of 

patient care both immediately at the time of delivery and for patients in the future (3).  

This perspective recognizes that areas for quality improvement in health care can already 

be found in the electronic medical record, but the system is lacking in the appropriate 

tools to identify and act on these areas.   

The derivation of clinical prediction rules might potentially benefit from advances 

in secondary use.  First, the EMR could help practitioners identify inefficient practices, 

like non-evidence-based laboratory testing, that are high volume and consume precious 

financial resources.  These practices could serve as foci for institutional quality 

improvement projects.  Second, the EMR could serve as an initial source of pre-existing 

data, prior to the much more costly expenses of performing the prospective studies that 

are required by the strict standards of developing CPRs.  Examples of such “practice-
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based” workflows are now beginning to unfold, as advances in health information 

technology, although thus far, efforts have not been focused prediction rules for disease. 

Studies incorporating electronic health information into clinically useful models 

have increased evidence for real-world application of secondary use.  Lependu et al. 

published novel methods that utilize the information contained in the free-text portion of 

clinical documents to improve pharmacovigilance (78, 79).  Specifically, their work 

identified both adverse drug events (AUC 75.3%), as well as drug-drug interactions 

(AUC 81.5%).  Had a continuously learning system been in place, six out of nine drugs in 

their reference set would have been detected on a time scale earlier than the official date.  

The Duke Enterprise Data Unified Content Explorer (DEDUCE) is an example of 

learning health system that serves as a portal for investigators to query their database 

containing millions of clinical records, obtain aggregate reports, and expedite cohort 

recruitment (80, 81).  The system further supports text mining and integration of clinical 

text with structured data.  Another study demonstrated that automatically extracted 

clinical elements could provide accurate real-time assessments of a patient’s physiologic 

status in a clinical setting.  The researchers focused on an algorithm based on 26 clinical 

variables, including vital signs, laboratory test results, cardiac monitoring, and nursing 

assessments, to automatically generate a score of a patient’s general condition, known as 

the Rothman index (RI).  They found that the earliest recorded RI stratified by scores 

were significantly correlated with total costs of hospitalization (p < 0.0001) and average 

lengths of stay (p<0.0001).  Furthermore, the average RI score was significantly 

correlated with measures, as well as the average number of complications (p < 0.00001) 

(82).   
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The application of clinical prediction rules to laboratory testing may benefit from 

a similar approach.  A retrospective study by Cismondi et al. aimed to reduce 

unnecessary laboratory testing for patients with gastrointestinal bleeds in the intensive 

care unit setting (83).  Using vital signs data along with previous lab values, the study 

employed fuzzy modeling, a type of machine learning for nonlinear systems, to ascertain 

whether additional testing would lead to information gain for a given test.  Models were 

developed for eight blood tests chosen by expert consensus to be most important in the 

management of gastrointestinal bleed.  The researchers found that use of the models 

could reduce testing by 50% on average. Using these models, however, would have also 

led to an average false negative rate of 11.5% of tests that actually went unperformed, but 

would have resulted in information gain.  Particularly in the case of respiratory viruses, 

the development of a practice-based CPR might make sense.  Use of the electronic 

medical record would enhance the audit of test utilization to evaluate whether the current 

practice of physicians could actually be improved.  Furthermore, as geographic variation 

exists in tandem with seasonal variation of different viruses, an institutional based 

method might not be generalizable, but may have positive implications for the institution 

in question.  Furthermore, extraction of clinical concepts through automated text mining 

of clinical documents would allow for automated calculation of CPRs or other 

computational clinical models, relieving the practitioner to focus on clinical care, as 

opposed to memorizing and recalling numerous criteria for a variety of different CPRs.   
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SPECIFIC AIMS 

Develop a clinical model using an optimal machine learning classifier that reduces the 

volume of respiratory virus tests without missing false negatives.  Hypothesis: That 

clinical features, such as season, age, and reported symptoms can be used to quantify the 

need for testing. 

A. Develop a simple clinical model based on billing data variables (season, age, and 

gender). 

B. Augment the simple clinical model with variables gathered from text mining of 

documented history of present illness (HPI). 

  



18 

METHODS 

Patients and specimens 

This retrospective study was performed using protocols reviewed and approved 

by the Yale University Institutional Review Board.  Prior to data collection, discussions 

were held with practicing pediatric experts in hospitalist medicine, infectious disease, and 

emergency medicine regarding the volume of respiratory testing, the cost of testing, and 

the effect of test results on management.  Patients were selected from a database of 

patients who received respiratory virus laboratory testing.  The study population 

consisted of 11,476 hospitalized inpatients from which nasopharyngeal swabs were 

obtained from March 2010 to March 2012 at Yale New Haven Hospital (YNHH).  The 

following inclusion criteria were employed: adequate nasopharyngeal swab sample, 

inpatients 18 years old and younger, and test ordering within two days of admission.  

While the volume of respiratory virus testing is much higher in the adult population, 

pediatric patients were chosen for this study because at this particular institution, 

respiratory testing in the adult ED often is ordered prior to a physician seeing the patient, 

whereas in the pediatric ED, the patient is usually seen before the order is placed.  As a 

result, the HPIs written for adult patients might not contain the clinical rationale behind 

testing, since the physician taking care of a patient would not have been responsible for 

the order.   

The data were received in a Microsoft Access database, consisting of the 

following variables: MRN, Date of Birth, Billing Number, Order ID, Order Date, 

Admission Date, Discharge Date, Gender, Race, Patient Type, Specimen Quality, and 

Test Results.  The results for the following tests were included: Adenovirus DFA and 
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PCR, Influenza A/B DFA and PCR, Parainfluenza 1-3 DFA and PCR, Respiratory 

Syncytial Virus DFA and PCR, Human Metapneumovirus PCR, and Rhinovirus PCR.   

The following steps were used to de-identify the data.  Each patient was given 

randomly generated numeric key (Patient ID), which was stored in a master key file on an 

encrypted machine used solely for data de-identification and clinical note retrieval.  

Because each Billing Number is associated with a specific visit, we defined a variable for 

"Visit Number" for patients with multiple admissions, which stored whether the given set 

of test results were obtained during the patient’s first, second, third, etc visit of a given 

year.  In a similar fashion, some patients received nasopharyngeal swab testing more than 

once during their stay, and a new variable for "Order Number" was generated based on 

the Order ID and Order Date.  The season of testing was obtained from the Order Date.  

The age of each patient at the time of testing was calculated into a new variable.  The 

number of days from admission to the date of the order was also generated.  Length of 

stay was calculated for each patient, as the difference between the Admission Date and 

the Discharge Date.  The final resulting de-identified database contained the following 

variables: Patient ID, Visit Number, Order Number, Season, Age at Testing, Days until 

Order, Length of Stay, Gender, Patient Type, Specimen Quality, and Results for the 

following tests: Adenovirus DFA and PCR, Influenza A/B DFA and PCR, Parainfluenza 

1-3 DFA and PCR,  Respiratory Syncytial Virus DFA and PCR, Human 

Metapneumovirus PCR, and Rhinovirus PCR. 

Medical concept identification in notes. 

For each patient, the history and physical examination on admission was obtained 

by accessing Sunrise Clinical Manager on the encrypted machine.  A short program was 
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written in Java to parse the HPI from each note, regardless of the specific document 

template used.  These resulting sections were then de-identified and saved in text files, 

identified by the Patient ID, which had been randomly assigned in the previous de-

identification step. 

MetaMap 2013 was used to identify medical concepts in the HPI of each note.  

MetaMap 2013 is a program made available by the National Library of Medicine that 

allows users to map biomedical text to the Unified Medical Language System 

Metathesaurus (84, 85).  The program offers a high degree of configurability to users, 

allowing them to specify the semantic types of concepts to be mapped, set the minimum 

threshold for a mapping score, negate concepts, select specialized terminologies, and 

expand abbreviations, as well as many other options.  In addition, a Java application 

programming interface, or API, is also available for MetaMap, which permits users to 

query terms to be matched in MetaMap with specified options and tailored outputs.  The 

Java API was used to write a program that sent the parsed HPI portions to the MetaMap 

program for concept identification and exported the returned results into a spreadsheet 

containing the original phrase, the matched concept, and the concept type. 

The following options were used in MetaMap.  We limited the mapping of terms 

to the SNOMED CT terminology, considered to be the most comprehensive medical 

terminology available.  Furthermore, we limited the semantic types to “signs and 

symptoms” and “diseases and syndromes”, as we hypothesized that these factors would 

most likely be predictive for respiratory virus test results.  We also set MetaMap to utilize 

all derivational variants of a word identified in the HPI, as well as allow for concept gaps.  

MetaMap was also set to expand any acronyms and abbreviations that matched, as well 
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as output negated concepts with a prefix of “neg_concept”.  The identified concepts were 

stored as a string vector with concepts delimited by a non-letter character (exclamation 

point), which were used as delimiters for the tokenization process in the modeling 

software.  This string was then appended to the data of the corresponding Patient ID.   

Machine learning models 

The table, including each patient’s age, gender, season of testing, and string of 

mapped concepts, was imported into Weka for model development.  Weka is a freely 

available Java based implementation that houses numerous machine learning algorithms, 

as well as tools for data pre-processing, or “munging,” classification, clustering, 

association rules, attribute selection, and visualization - all steps employed in data mining 

projects.  For this thesis project, Weka version 3.7.9 was used specifically for select data 

munging steps, attribute selection, and classification model development (86). 

Following identification of UMLS Metathesaurus concepts by MetaMap, the data 

consisted of the following variables:  

● ID (independent variable) 

● Age (independent variable) 

● Gender (independent variable) 

● Season (independent variable) 

● String of MetaMap concepts (independent variable) 

● Viral diagnosis (dependent variable) 

 In order to prepare the data for model development, a number of filters within the 

Weka software were applied to the data.  First, we applied a filtered classifier that used a 

word tokenization process to convert the string of MetaMap concepts into a word vector, 
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which across all patients comprised a feature matrix.  To be included in the matrix, 

concepts had to be present in at least 10 notes.  This process resulted in the concepts 

featured as additional columns in the table, with 1 representing whether or not the 

concept was mentioned in a patient’s HPI and 0 representing the absence of the concept.  

Following this step, we performed attribute selection, otherwise known as feature 

selection, which determined the most relevant independent variables in the matrix, given 

the virus to be modeled.  In this step we employed information gain to evaluate the worth 

of an attribute.  As the information gain was automatically computed by the Weka toolkit, 

the mathematical background behind the technique is referenced elsewhere (87, 88).  

Attribute selection using information gain allowed us to efficiently shrink the number of 

variables to include in the model from over 400 to less than 20, depending on the virus 

we were modeling.  

 Following the application of these filters, the data were then in a format ready for 

modeling.  For this step, we used a cost sensitive classifier on top of other machine 

learning algorithms to deal with our unbalanced dataset (89).  Using this approach, we 

were able to overcome the fact that the number of negative cases greatly outnumbered the 

positive cases for any viral diagnosis.  Thus, by weighting against a particular outcome - 

in this case false negative results - the subsequent machine learning algorithm could train 

to discriminate what might actually constitute positive cases, instead of classifying all 

cases as negative, which would provide the best objective results for the model. 

 Finally, the decision tree learning algorithm, J48, was used to develop and 

evaluate each model via 10-fold cross-validation.  J48 is an open-source Java 

implementation of the C4.5 decision tree algorithm, which classifies instances by 



23 

iteratively adding nodes and branches that optimize the information gain at each step 

(90).  Cross-validation was chosen in order to minimize bias associated with differences 

that arise year to year.  To construct a receiver-operator characteristic (ROC) curve, we 

generated multiple sensitivities and specificities at various thresholds, which we set by 

varying the cost ratio between false negative to false positive cases for the cost sensitive 

classifier.  Formally, this technique is known as ROC instance-varying transformation, 

although will be referred to as ROC for the purposes of this thesis (91).  ROCIV takes 

into account that the cost associated with classification errors varies by situation.  

Following the iterative process of producing sensitivities and specificities at subsequent 

cost thresholds, these values were then used to construct receiver operator characteristic 

curves via the trapezoidal rule for each of the three models for each virus: basic, 

MetaMap-based, and combined.  The trapezoidal rule was defined as base*height/2. 

In order to calculate the standard error for each ROC curve, we used the equation 

below as published by Hanley and McNeil (92),    

SE	 ൌ ඨ
Aሺ1 െ Aሻ 	൅	ሺn ୟ െ 1ሻሺQଵ െ A ଶሻ 	൅	ሺn ୬ െ 1ሻሺQଶ െ A ଶሻ

n ୟn ୬
	 

where A is the area under the curve, na is the number of abnormals, nn is the 

number of normals, Q1 is the probability that two randomly chosen abnormal results are 

both classified as abnormal compared to a random normal result, and Q2 is the 

probability that one randomly chosen abnormal result is classified as abnormal compared 

to two randomly chosen normal results.  Q1 and Q2 are estimated by: 

Qଵ ൌ
୅

ሺଶ	ି	୅ሻ
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ଶ୅మ

ሺଶ	ି	୅ሻ
  

Statistical analysis 

A pairwise Wilcoxon rank sum test was used to compare the lengths of stay for 

different viral diagnoses.  The pairwise.wilcoxon.test function in R was used to 

calculate whether or not the populations differed with respect to length of stay.  Because 

multiple comparisons were made, the Bonferroni correction was used to appropriately 

adjust the p-value. 

To determine the precision of the MetaMap software when run on the corpus of 

clinical notes, concepts identified by MetaMap were compared to the original text.  One 

hundred notes were randomly selected for review.  For each note, the identified concepts 

were reviewed and compared to the original utterance, which had been mapped.  Partial-

match precision was calculated by dividing the number of MetaMap matches (both partial 

and exact) by the total number of matches made by MetaMap in a fashion similar to Pratt 

and Yetisgen-Yildiz  (93).  A partial-match was defined as situations in which the 

identified MetaMap concept contained all the words expressed in the original phrase, but 

did not match the phrase exactly.  For example, when MetaMap identified the concept 

developmental language delay, whereas the original phrase was developmental delay, the 

label “partial-match” was assigned to this mapping.  Recall was not calculated because 

we were primarily interested in the concepts that MetaMap was actually able to identify 

and not terms outside of its matching capabilities. 
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RESULTS 

From the period of March 2010 to March 2012, 18,947 nasopharyngeal swab 

orders were placed for 11,476 patients during 16,043 visits.  Figure 1 shows the 

subsequent sample sizes after applying exclusion criteria.  Orders for pediatric patients, 

who were not originally admitted to the neonatal intensive care unit, comprised 26.3% 

orders placed during this time.  This population of patients made up 27.9% of all patients 

tested.  In this sub-population, 58.3% of orders were performed on inpatient admissions, 

which encompassed 60.2% of pediatric patient types that were tested.  Of the tests that 

were ordered within 2 days of admission, 85.6% of specimens were of adequate sample 

quality to run the tests.  For the patient subset meeting these inclusion criteria, clinical 

notes were able to be obtained for 1,848 of these visits.  In total, orders for general 

admission pediatric inpatients accounted for 11.5% of all respiratory virus test orders 

placed during this time. 

Table 1 summarizes the basic clinical variables of gender, age, and season by 

etiology.  Negative test results accounted for 69.5% of all tests ordered during the study 

period.  Males comprised around half of each viral diagnosis except for adenovirus 

diagnoses of which males comprised 68.8%.  The mean age for all viral diagnoses was 

less than 5 years of age, except for positive cases of influenza, where the mean age of 

diagnosis was higher at 8.24.  It should be noted that the standard deviation for each of 

the mean ages was rather large.  One easily measured health outcome, median length of 

stay, was consistent across all diagnoses at less than 3 days except for human 

metapneumovirus infections (Figure 2).  The median duration of stay held true for both 

positive and negative cases alike at 2 days, even for patients in whom multiple viruses 
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were detected.  A pairwise Wilcoxon rank sum test showed no statistically significant 

difference in lengths of stay associated with different viral diagnoses. 

Both DFA and PCR panels were ordered throughout the period under study and 

showed similar patterns in peak months of test ordering (Figure 3).  During the study 

period, DFA panels (n = 2152) were ordered 3.9 times more often than PCR panels (n = 

550).  Figure 4 shows density plots of the positive laboratory tests aggregated by month 

during the study duration.  Adenovirus and rhinovirus were detected in all months with 

no clear pattern.  Cases of co-infection, influenza, hMPV, parainfluenza, and RSV 

demonstrated regular seasonal fluctuations.  The proportion co-infected cases were 

present at low rates during the entire year, but demonstrated peaks in the winter months 

of each year.  None of the cases of influenza occurred outside the winter or spring 

months.  Cases of hMPV have a similar distribution to influenza infections.  Positive 

parainfluenza test resulted largely occur during the late winter into the summer, although 

positive test results were seen throughout the year.  Cases of RSV arose primarily during 

the winter months, although the onset of the RSV season appeared to differ between the 

two years. 

Prior to building the models for each diagnosis using clinical variables, MetaMap 

variables, or both, we evaluated the performance of the MetaMap program in identifying 

concepts by calculating the partial-match precision across 100 randomly selected notes.  

The partial-match precision can be likened to the positive predictive value, in which we 

evaluated the concepts MetaMap identified against their original phrases.  The main 

author evaluated the MetaMap concepts in comparison to the original phrase.  As 

described in the methods section, partial-matches included cases where the MetaMap 
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concepts contained all of the words in the original phrase, but did not match exactly.  

Negative matches failed to meet these criteria.  Correct mappings were considered to be 

“true positive” cases in the equation, whereas incorrect mappings were “false positive” 

cases.  The partial-match precision was calculated to be 0.724 across this random sample.  

Recall (or sensitivity) was not calculated, as we were not interested in the 

comprehensiveness of MetaMap as a concept identifier, but rather in its accuracy. 

We initially developed models for the outcomes of DFA or PCR panels, as 

positive or negative. A positive DFA or PCR panel meant that at least one test on the 

panel returned positive.  Season, gender, and age were termed “basic clinical variables” 

to be used as the independent variables for inclusion in our initial modeling.  The results 

are depicted in Figure 5.  As can be seen, the models generated using these variables are 

both positively predictive, although to a very minimal extent with the AUC for all models 

falling < 0.65.  Our MetaMap model for the panels consisted of independent variables 

solely based on the concepts identified in the history of present illness (HPI) section of a 

patient’s admission note.  As with the basic clinical variables, MetaMap terms were 

predictive, but to a low degree, yielding low rates of sensitivity for varying cost 

thresholds.  When the MetaMap terms were used in conjunction with the basic clinical 

variables, the performance of the resulting model appeared to be slightly more robust in 

the case of DFA panel prediction, and remained low for PCR panels. 

We then used the same approach to model the test results for individual viruses, 

which is graphically displayed in Figure 6 and numerically shown in Table 2.  For each 

of the six viruses, modeling with basic clinical variables yielded models with predictive 

value. Discrimination of test results with basic variables were best with influenza, hMPV, 
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parainfluenza, and RSV, while adenovirus and rhinovirus models showed minimal 

predictive power.  The use of concepts identified by MetaMap as the sole independent 

variables for the models was non-predictive for any virus, except for RSV, where the 

MetaMap based model was nearly equally as predictive as the model based on clinical 

variables (AUC: 0.661 vs. 0.658, respectively).  In all cases except for RSV, models 

based on basic variables alone performed as well as or better than models using both 

basic and combined variables.  For RSV, the use of both clinical variables as well as 

concepts identified in HPIs resulted in a model that showed better discrimination than 

either basic or MetaMap model alone. 

As MetaMap concepts were found to be predictive for RSV test results, we 

explored the resulting tree produced by the J48 decision tree algorithm.  The tree is 

shown in Figure 7.  At the root node, the term “acute otitis media” identifies the first 

branch point, where inclusion of the term in an HPI was classified as positive by the 

model.  This node was followed by the term “bronchiolitis,” where again, inclusion of the 

word resulted in a positive classification.  The presence of the “cough” concept split the 

tree into two branches, where presence of the concept along with confirmation of “no 

rhinorrhea” resulted in a negative classification.  The presence of “cough” with 

“rhinorrhea” resulted in a positive classification.  On the other branch, the lack of 

“cough” was followed by whether the concept of “fever with cough” was present.  

Presence of “fever with cough,” “rhinorrhea,” and “crackles” resulted in a positive 

classification.  “Fever with cough” without mention of “rhinorrhea” also led to positive 

classifications.  Finally, the presence of “fever with cough” along with “rhinorrhea” 

without mention of “crackles” or “URI” resulted in a positive classification. 
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To determine how the MetaMap terms factor into the combined model for RSV, 

we mapped out the decision tree of the combined model (Figure 8).  Age was determined 

to be the first branching point, where patients less than 5.67 were deemed positive.  

Patients older than this age were then considered based on the season of their 

presentation.  Cases during the spring were classified as negative.  During the summer, if 

patients were > 14.33 years old, they were labeled as positive; otherwise, summer tests 

were negative.  During the fall, the model considered whether the concept “fever with 

cough” was present in the HPI and if so, the case was labeled positive.  Otherwise, the 

tree evaluated the patient’s age and if it was greater than 10.06, the patient was classified 

as positive.  The model evaluated cases during the winter first by whether “cough” or 

“fever with cough” were present.  If so, the case was labeled as positive.  If neither term 

was found in the HPI, the model evaluated the patient’s age, which if greater than 18.17, 

was classified as positive. 

We evaluated the each of the combined models for each of the viruses by calculating the 

sensitivity, specificity, positive predictive value (PPV) and negative predictive value 

(NPV), as shown in Table 3.  Because of the trade-off between sensitivity and specificity, 

we sought a target sensitivity of 95% for each of the models, as a sensitivity of 100% 

would yield 0% specificity and a lower sensitivity would potentially miss positive cases.  

Given the specifics of the decision tree algorithm, this target could not be achieved for all 

models, namely for rhinovirus, where sensitivity reached 94.3% before increasing to 

100%.  As detailed in Table 3, specificity ranged from 3.7% to 45.5% for all of the 

models at a sensitivity > 95% (except for rhinovirus).  Models for adenovirus and 

rhinovirus showed the lowest specificities, in the single digits.  While the PPV ranged 
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from 50.1% to 64.7% for all models, the NPV ranged from 52.1% to 100%.  For 

influenza, parainfluenza, RSV, and hMPV, the NPV was above 80.7%.  
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DISCUSSION 

This retrospective study evaluated respiratory virus testing performed in the 

general pediatric population at a tertiary academic children's hospital.  Over a quarter of 

all respiratory virus tests ordered were attributable to the pediatric population.  Of the 

tests that were ordered, the vast majority resulted in a negative finding.  Although we did 

not study the correlation of testing with changes in management (i.e. decreased antibiotic 

use, fewer studies ordered, or decreased cost of hospitalization), we found that no 

statistically significant difference in the lengths of stay of the various possible viral 

diagnoses, even where the result was negative.  In addition to a lack of clear guidelines 

that outline changes in management based on test results (except for influenza), our study 

calls into question the clinical utility of a positive result, as well as the basis of routine 

testing.   

Our objective was to develop a clinical model using information available at the 

time of test ordering that might reduce test volume, while ensuring that patients with 

detectable infections are still tested.  This study found that predictive models built on 

clinical variables were able to discriminate positive from negative better than chance.  

For 4 out of 6 viruses included in our study, billing data alone (age, season, gender) could 

be used to build models with fair predictive ability.  We also hypothesized that concepts 

contained in the HPI portion of the clinician’s admission documentation could improve 

the predictive ability of our models.  The precision of our concept matches via MetaMap 

were in line with previously published results (94–96).  In the case of RSV, a model 

based only on concepts in the HPI had the same predictive power as the model based on 

billing data.  Combining these two sources of data improved prediction of RSV.  Our 
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findings suggest a useful role for admission notes, aside from documentation. 

In the MetaMap-based model for RSV, our approach identified terms that fit the 

clinical representation of an RSV infection, supporting the validity of our methodology.  

The terms, particularly “bronchiolitis,” made intuitive sense for the diagnosis of RSV.  

One term that was somewhat surprising to us was the inclusion of “acute otitis media” as 

the root node of the tree.  Previously published literature has identified acute otitis media 

as a frequent complication following RSV infection (97–102).  However, only one study 

was found that suggests acute otitis media may present prior to to an RSV infection 

(103).  While further investigation is required, these results suggest that concept mapping 

in clinical notes has the potential to reveal new or understudied risk factors. 

Effective implementation of these models as screening tests requires practical 

understanding of the test characteristics as they relate to an institution’s clinical goals.  

The false negative rate may be an important measure, as care providers may assign a 

negative utility to a missed positive case.  As a result, a high sensitivity may be a highly 

valued attribute of a clinical model.  However, there exists a tradeoff with clinical models 

in which sensitivity and specificity are usually inversely related.  Therefore, a sensitivity 

of too high a value may yield a model that does not discriminate between positive and 

negative cases.  In this way, the specificity of the model has a large effect on cost, as it 

the measure that informs a decision maker that a test would likely yield a negative result.  

A model with increased specificity means that fewer patients, who would otherwise test 

negative, would actually receive DFA or PCR testing.  By limiting the number of disease 

negative patients who receive diagnostic testing, the population receiving diagnostic 

testing would be enriched for positive cases. Therefore a practical, cost-saving clinical 
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model would have the highest possible sensitivity to ensure a low false negative rate.  

Any model specificity above 0 would be safe and cost-effective without negative effects 

on care, compared to current practice.   

It is important to note that the presented clinical models are not designed to 

predict positive cases with high accuracy.  While we sought models that resulted in the 

highest sensitivities, these models often had very high false positive rates.  Thus, in our 

models, the “positive” and “negative” labels should be considered to be labels 

designating “high risk for positive result” and “low risk for positive test result.”  The 

distinction is important to the proposed function of the models, as the models were 

intended to aid the practitioners in reducing the number of overall tests that they order.  

In this way, for this project, models were considered to be helpful if they could achieve 

high sensitivity and any amount specificity.  Sacrificing sensitivity for specificity would 

result in fewer tests that might be ordered, but would also result in many more positive 

test results that would have been missed. 

From a practical point of view, clinical models could act as an “in silico” 

screening test for whether or not patients should receive testing.  If the models can be 

validated against a prospective dataset, they might find practical application via 

integration into the electronic medical record, running in the background as the clinician 

is entering data about a patient.  At the time of test ordering, the physician would be 

presented with information regarding what tests are likely negative or potentially 

positive.  The use of basic variables, as well as documented clinical symptoms, can 

reduce test volume for certain tests by up to nearly half with a low false negative rate.  

Future work will focus on validating the models, refining the text mining approach and 
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concept identification and implementing the information from the models into the 

clinician’s decision making pathway, as well as exploring the concept of customized 

panels, based on the prediction results of the models.     

 Our study has several limitations.  First, the population under study included only 

patients who received respiratory virus testing and selection criteria were not based on 

diagnostic codes.  As a result, the seasonal prevalence of disease may not be reflective of 

the true prevalence of viral infections.  Second, because of our numerous exclusion 

criteria, the models may not be generalizable beyond general pediatric inpatients.  Third, 

while the billing data are true independent variables, the variables collected by text 

mining with MetaMap may not be fully independent.  Because the timing of when 

admission notes were written could not be controlled, there is the possibility that some 

notes may have been written after test results were communicated.  We took several 

measures to prevent this, including selecting the oldest admission note on record and 

manually reviewing notes for mention of testing.   In addition, the retrospective nature of 

the study also prevented a comprehensive chart review with regard to the variables used 

in our models.  Instead, concepts from HPI text were recorded as “mentioned” versus 

“unmentioned.”  Because of the nature of the study, we were unable to conduct a 

prospective validation of our models, which would allow for perhaps a more accurate 

assessment of performance.  Our study also did not differentiate between different strains 

of viruses, which some of the tests are able to do (i.e. influenza A and B, parainfluenza 1-

3). 

The results presented here offer a new perspective on analyzing test utilization 

practices for respiratory viruses using data mining and natural language processing 
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techniques.  We find that in a tertiary academic children’s hospital, the majority of 

respiratory virus testing returns negative.  Furthermore, our results suggest that additional 

clinical factors may be used in a clinical model to predict the likelihood of an infection 

and the need for further diagnostic testing.  Text mining of clinical notes may augment 

the predictive power of future models, as demonstrated in our models of RSV.  This work 

contributes to the growing body of evidence that diverse forms data in the electronic 

medical record, not just billing data, can be used productively to build models that aid 

physicians in decision making.    
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FIGURES 

 

Figure 1. The graphic depicts the study population with inclusion criteria.  From all 

of the respiratory virus test orders placed during this period, we identified pediatric 

patients who had not been hospitalized in the NNICU since birth.  Tests from inpatient 

visits, lasting less than 100 days were then selected.  To prevent the selection of 

nosocomial cases, we selected cases where testing was performed within a short window 

following admission.  From this, we selected cases where an adequate NP sample had 

been collected.  Visits where an admission note was available were included for the final 

study cohort.  Abbreviations: NNICU, neonatal intensive care unit; LOS, length of stay; 

NP, nasopharyngeal. 
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Figure 2. Boxplots of the lengths of stay are similar for all possible virus diagnoses.  

The median length of stay for diagnoses of adenovirus (n = 32), influenza (n = 40), 

parainfluenza (n = 93), RSV (n = 234), rhinovirus (n = 180), co-infection (n = 57), and 

non-detected viruses (n = 1519) is 2 days. The median length of stay for a diagnosis of 

human metapneumovirus (n = 29) is 3 days.  The dark horizontal lines represent the 

median with the box representing the 25th and 75th percentiles.  The whiskers depict the 

5th and 95th percentiles and outliers are represented by dots. 
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Figure 3.  Ordering of respiratory test panels throughout the year.  (A) total number 

of ordered DFA panels by month; (B) total number of ordered PCR panels by month. 

Note that the y-axis for the panels differ, as DFA panels are ordered in greater volume 

than PCR panels. 
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Figure 4. Positive test results as a proportion of all test result for each detectable 

virus, by month. Each line represents the pattern of positive test results for each virus, 

where each point is the monthly proportion of positive results over all positive tests 

during the observed study period.   
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Figure 5. J48 decision tree classifier models predicting whether a panel of tests 

(DFA or PCR) will contain one positive result.  A cost sensitive classifier was used as 

a wrapper for the J48 decision tree classifier to weight against false negative cases.  

Models were designed to discriminate between panels containing at least one positive test 

result versus all negative test results.  The varying lines represent different sources of 

data use to generate the models.  Lines in red represent “basic” models derived from 

administrative billing data that predict the outcome for DFA (AUC = 0.523) and PCR 

(AUC = 0.601) panels.  Lines in blue represent “MetaMap” models using concepts 

identified by the MetaMap software only to predict the outcome for DFA (AUC = 0.624) 

and PCR (AUC = 0.576) panels.  Lines in green represent “combined” models that use 

both administrative billing data and MetaMap concepts for DFA (AUC = 0.671) and PCR 

(AUC = 0.628) panel prediction. 
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Figure 6. J48 decision tree classifier models predicting the outcome of laboratory 

tests for individual viruses.  Models were designed to discriminate positive versus 

negative test results for each virus.  A cost sensitive classifier was used as a wrapper for 

the J48 decision tree classifier to weight against false negative cases.  The varying lines 

represent different sources of data use to generate the models.  The performance 

characteristics for the models are listed in Table 3. 
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Figure 7. Graphical depiction of the RSV decision tree generated by the J48 

classifier model using only MetaMap concepts.  Using the tree, each case begins with 

the presence (bolded double line) or absence (dashed line) of the term “acute otitis 

media” in the physician’s history of present illness, passes through the subsequent nodes 

in a similar manner, and depending on the concepts contained in the HPI, ends in 

terminal leaves, marked “positive” and “negative”.   
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Figure 8. The graphical representation of the J48 decision tree classifier for RSV 

when based on both administrative billing data and MetaMap concepts.  Thresholds 

for administrative billing data (age and season) were determined by the J48 algorithm 

based on the information gain provided by the resulting attribute splits.  These are 

denoted by the single lines.  The presence or absence of terms in the clinician HPIs are 

depicted by branching nodes, followed bolded double lines and dashed lines, 

respectively. 
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Table 2. Receiver operator characteristic curve characteristics 

 ROC curve AUC (SE) 

 Basic model MetaMap model Combined model 

Adenovirus 0.568 (0.114) 0.480 (0.099) 0.532 (0.108) 

Influenza 0.743 (0.126) 0.451 (0.084) 0.715 (0.122) 

Parainfluenza 0.686 (0.078) 0.510 (0.061) 0.694 (0.078) 

RSV 0.658 (0.048) 0.661 (0.048) 0.722 (0.051) 

hMPV 0.713 (0.143) 0.474 (0.103) 0.682 (0.138) 

Rhinovirus 0.549 (0.047) 0.471 (0.041) 0.570 (0.048) 
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Table 3. Test characteristics of combined model for each of the viruses 

Virus Sensitivity Specificity PPV NPV 

Adenovirus 0.966 0.037 0.501 0.521

Influenza 1.00 0.455 0.647 1.00

Parainfluenza 0.965 0.198 0.546 0.850

RSV 0.953 0.196 0.542 0.807

hMPV 0.974 0.205 0.551 0.887

Rhinovirus 0.943 0.076 0.505 0.571

*A minimum threshold sensitivity of 95% was set for each of the combined models. 
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