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The purpose of this study was to compare the ways that teachers use Connected 

Classroom Technology (CCT) to potentially support achievement on translation 

problems that require moving from one representation to another. Representational 

fluency is essential for students’ mathematical conceptual understanding. Previous 

research has studied how communication and technologies serve as instructional 

strategies that may separately support how students develop representational fluency. 

However, students often leave schools without obtaining these abilities (e.g., Herman, 

2007). This dissertation extends prior research by examining how communication in 

CCT environments may improve students’ representational fluency abilities in 

mathematics classes.  

Four mathematics classrooms were chosen based on their gain scores on 

translation problems in algebra pre- and posttest examinations. The classrooms chosen 

were the two with the highest and the two with lowest gain scores among the 

classrooms with pre-test scores that were below 50%. This study used video-recorded 



 

14 

observational data from each classroom to examine the similarities and differences of 

classrooms where teachers used CCT.  

This study analyzes the general classroom description, psychological 

environments, and general teaching approaches as well as each teacher’s 

representational practices. It then identifies and details representational fluency themes, 

focusing on how fluency is practiced in effective and less effective classrooms. This 

study found that both teachers in effective classrooms created environments wherein 

students could interpret representations by linking them to real-world scenarios; 

moreover, these students used multiple representations simultaneously and translate 

between representations through discussion. Additionally, the students and teachers co-

constructed different translations. Contrastingly, it shows that teachers in less effective 

classrooms fostered environments wherein students interpreted representations 

superficially, used representations independently, and missed opportunities to translate 

representations through discussion. Students in less effective classrooms generally 

observed translations. Implications for the results, including this study’s limitations and 

further research are discussed. 
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CHAPTER 1 
INTRODUCTION 

The U.S. educational system has undergone reform based on international 

comparison studies such as Program for International Student Assessment (PISA, 

2003). Since its introduction, PISA has influenced the way that high school mathematics 

education continues to be reformed (Tienken, 2008). Later, President George W. Bush 

created the National Mathematics Advisory Panel (NMAP) in 2006 to make policy 

recommendations based on concerns that U.S. students were not competitive globally. 

The members of the advisory panel emphasized their concern about the increasing 

number of retiring workers as well as the need for technologically knowledgeable 

workers as both a safety issue for the nation and an issue affecting the quality of life. As 

the Final Report of the NMAP (2008) notes, the United States employs many technically 

talented people from abroad, which affects the nation’s autonomy in mathematics, 

natural sciences, and engineering. The aim of the NMAP report was to make 

recommendations that would establish the United States as an international leader in 

the global economy. The U.S. rank in international tests, however, is very low for an 

international leader.  

The U.S. students’ international achievement scores come from Trends in 

International Mathematics and Science Study (TIMSS) and PISA (McGrath, 2011). 

TIMSS measures fourth and eighth graders’ mathematics and science achievement. 

Forty-eight countries participated in the TIMMS 2007 eighth-grade mathematics 

assessment. According to the International Association for the Evaluation of Educational 

Achievement (IAEEA, 2007), the United States ranked 9th, and the average score for 

U.S. students was 508 in mathematics, whereas the average TIMSS score across all 
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countries was 500. PISA measures 15-year-old students’ mathematics, science, and 

reading literacy achievement. With 65 countries and educational systems participating, 

PISA 2009 is the most recent international test. Compared to the Organization for 

Economic Co-operation and Development (OECD) countries’ average score of 496, the 

U.S. average was 487 in mathematics literacy (IAEEA, 2009). In general, United States 

students’ average scores were close to the average score across countries in TIMMS 

2007 and PISA 2009. Many feel, however, that since the U.S. is an international leader, 

its students should be scoring higher than average (NMAP, 2008).  

The National Governors Association Center for Best Practices and the Council of 

Chief State School Officers (CCSSO) organized the Common Core State Standards 

(CCSS) initiative to augment instruction so that U.S. students may compete successfully 

in a global economy (CCSSO, 2010). One of the Standards for Mathematical Practice 

(CCSSO, 2010) states that “mathematically proficient students can explain 

correspondences between equations, verbal descriptions, tables, and graphs or draw 

diagrams of important features and relationships, graph data, and search for regularity 

or trends” (p. 6), which are necessary abilities for representational fluency.  

Representational fluency is a cognitive competence that includes being able to 

interpret and construct representations as well as translate flexibly between them 

(Sandoval, Bell, Coleman, Enyedy, & Suthers, 2000). Translating between 

representations refers to the ability to interchange between forms, for instance, moving 

from a graph to an equation, or vice versa. Representational fluency is an essential skill 

for the professional use of mathematics in modeling situations (Lesh & Zawojewski, 
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2007). The ability to competently model problems requires using a diversity of 

mathematical representations, such as words, graphs, pictures, and images.  

Students need to have opportunities to engage in problem solving to be 

mathematically proficient (CCSSO, 2010). Mathematical problems generally occur in 

multi-representational environments (Lesh, Post, & Behr, 1987), which serve as tools for 

problem solving (NMAP, 2008). Students use a variety of representations to simplify, 

explain, justify, or predict problem solutions (Lesh et al., 1987). In fact, one 

recommendation for improving mathematical problem solving is “to teach students how 

to use visual representations” (National Center for Education Statistics [NCES], 2012, p. 

23).  

The mathematics education community in the U.S. has paid increasing attention 

to representational fluency because of new mathematical proficiency standards and the 

need to develop 21st century skills (e.g., critical thinking). The National Council of 

Teachers of Mathematics (NCTM, 2000) calls for at least three instructional strategies to 

increase students’ opportunities to learn representational fluency. First, students should 

be provided opportunities to use both conventional representations and non-

conventional representations (diSessa, Hammer, Sherin, & Kolpakowski, 1991; Greeno 

& Hall, 1997). Second, students should be able to identify and create connections 

between representations, which also supports understanding (Brenner et al., 1997). 

Third, students need multiple opportunities to flexibly work with representations to solve 

problems and to defend their solutions in order to develop representational fluency 

(diSessa et al., 1991; Greeno & Hall, 1997; Warner, Schorr, & Davis, 2009).  
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This study aims to examine the ways in which teachers used connected 

classroom technology (CCT) to potentially support representational fluency. It 

investigates the effects of technology and the role of communication on the 

development of representational fluency.  

This chapter explores the relationship between representational fluency, 

conceptual understanding, and achievement. Then the potential effects of technology 

and classroom communication on developing representational fluency are examined. 

The need for representational fluency and the difficulty of developing representational 

fluency are discussed under the Statement of the Problem section. Finally, this chapter 

concludes with the purpose of the study and research question.  

Representational Fluency, Mathematical Understanding, and Achievement 

Hiebert and Lefevre (1986) defined conceptual knowledge as “knowledge that is 

rich in relationships” (p. 3). These researchers used a metaphor of a “connected web of 

knowledge” (p. 3) to illustrate this notion. For example, students exhibit conceptual 

knowledge based on the degree to which they can recognize the relationship between 

different forms of information such as multi-digit subtraction and the place value position 

of digits in a number. 

Representational fluency and conceptual understanding are two sides of the 

same coin; they are intertwined constructs. One source of evidence for conceptual 

understanding is “us[ing] and interrelat[ing] models, diagrams, manipulatives, and varied 

representations of concepts” (National Assessment of Educational Progress [NAEP], 

2003). In other words, conceptual understanding is reflected in the ability to translate 

between representations, such as between graphs, tables, and words. Representational 

fluency is therefore a marker or indicator of conceptual understanding.  
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Conceptual understanding is developed when connections between multiple 

representations are formed through their active use during instruction (Pape & 

Tchoshanov, 2001). Models of translations between representations (e.g., Lesh et al., 

1987) show that mathematical concepts can be understood in multiple ways. If a learner 

makes connections between these abstractions, then they will likely develop meaningful 

understanding (Cramer, 2003). That is, students understand mathematical concepts 

better when they are able to switch between and understand the connection across 

representations (Brenner et al., 1997; Cramer, 2003; Even, 1998; Herman, 2007; Lesh 

et al., 1987; Lesh & Zawojewski, 2007; NCTM, 2000; Pape & Tchoshanov, 2001). 

Representational fluency not only has an impact on conceptual understanding, it also 

plays a significant role in helping students solve problems correctly (Ainsworth, Bibby, & 

Wood, 2002; Nistal, Van Dooren, Clarebout, Elen, & Verschaffel, 2009). 

Even though some researchers have suggested that representational fluency by 

itself is not enough to solve a problem correctly (Bieda & Nathan, 2009), it is an 

important component of problem solution (Ainsworth et al., 2002; Nistal et al., 2009). 

Students perform more accurately when they use more and combined representations 

(Bostic & Pape, 2010; Herman, 2007; Nathan & Kim, 2007), use non-symbolic 

representations (Suh & Moyer, 2007), and have the ability to translate between 

representations (Brenner et al., 1997). In addition, the nature of particular problem 

structures may require representational fluency since problem solvers need to be 

flexible in their use and need to be able to change naturally to more efficient 

representations during problem solving (Lesh et al., 1987). In other words, if students 

have the ability to translate between representations flexibly, they can move to 
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representations that are effective (i.e., adaptive use of representations) (Ainsworth et 

al., 2002; Nistal et al., 2009), or use representations that are more comfortable for them. 

Thus, they will become more likely to solve problems than students who do not have the 

ability to translate representations.  

Factors that Support Representational Fluency 

To develop students’ representational fluency abilities, students need 

opportunities to see the relationship between different representations. This can be 

done by creating discussion environments that require students to state the relationship 

between representations and how they are aligned to one another during problem-

solving activities. This study therefore argues that two tools, communication and 

technology, may support the development of representational fluency. 

Mathematically proficient students are able to “justify their conclusions, 

communicate them to others, and respond to the arguments of others” (CCSS, 2010, p. 

6-7). Students therefore need an environment in which they can critique their peers’ 

representations and respond to others’ critiques about their representations (diSessa et 

al., 1991; Warner et al., 2009). Teachers’ and peers’ roles are critical in students’ 

interactions and discussions about representations.  

Active engagement in the construction and interpretation of representations can 

include both creating new representations, such as non-standard representations (e.g., 

drawings) and reformulating or refining existing, standard representations (e.g., 

symbolic representations) (diSessa et al., 1991; Greeno & Hall, 1997; Warner et al., 

2009). Students use and value others’ representations in such engagements, and they 

also change their representations with the aim of explaining and generalizing (Warner et 

al., 2009). These interactions create the opportunity for the development of 
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representational fluency for the individual as well as the group (diSessa et al., 1991; 

Warner et al., 2009). That is, representation is both socially negotiated and individually 

constructed (Cobb, Yackel, & Wood, 1992).  

The use of graphing calculators, such as the Texas Instruments Nspire (TI-

Nspire) calculators, enables students to translate between and use multiple 

representations (Bieda & Nathan, 2009; Bostic & Pape, 2010; Herman, 2007; Knuth, 

2000) because they allow multiple representations (i.e., symbolic, tabular, and graphical 

representations) to be viewed on one calculator screen (Bostic & Pape, 2010). 

Calculator use can support cognitive links between representations by providing quick 

access which in turn may increase students’ ability to flexibly translate between 

representations (Bostic & Pape, 2010). In addition, when students are given the 

opportunity, they are able to use non-symbolic representations such as graphical 

representations rather than traditional symbolic and computational strategies (Bostic & 

Pape, 2010). Because evidence suggests that communication and technology may 

separately support students’ developing representational fluency, the present study 

investigates instruction that is characterized by the use of technology with the aim of 

examining the relationship between these instructional strategies and increasing such 

fluency.  

Connected Classroom Technology 

CCT systems are “wireless communication systems that connect the teacher’s 

computer and students’ handheld technology” (Pape, Irving, Owens, et al., 2013, p. 

169). These systems are designed to provide greater opportunities to discuss 

connections among multiple representations. The recent studies about these types of 

classroom communication systems (e.g., Hegedus & Moreno-Armella, 2009) emphasize 
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a sociocultural perspective that focuses on the relationship between learning 

opportunities and students’ abilities to take advantage of these opportunities during 

learning (Gee, 2008). CCT provides at least two learning opportunities that support the 

development of students’ representational fluency. These opportunities include “the 

mobility of multiple representations of mathematical objects” and “the ability to flexibly 

collect, manipulate and display to the whole-classroom representationally-rich student 

constructions, and to broadcast mathematical objects to the class” (Hegedus & Moreno-

Armella, 2009, p. 403). Jim Kaput once postulated, “wireless connectivity ‘inside’ the 

classroom would change the communicative heart of the mathematics classroom” 

(Hegedus & Penuel, 2008, p. 171). CCT technology’s progression has enacted this 

transformation. 

 This technology has evolved from Audience Response Systems (ARS) to 

second-generation CCT systems. Pape et al. (2013) called the Texas Instruments (TI) 

Navigator a second-generation CCT system to demonstrate the difference of this 

system from ARS systems. The TI-Navigator system has four components to support 

learning: Quick Poll, Learn Check, Screen Capture, and Activity Center (Pape et al., 

2013). The first two components are similar to ARS systems; however, the last two 

components, which are not present in ARS systems, show the sophisticated structure of 

the CCT. A summary of the TI-Navigator system components is given in Appendix A, 

and the details of each component are explained in Chapter 2.  

With Screen Capture, teachers can show each student’s response on the 

projector as a “snapshot” of each calculator. This feature allows both teachers and 

students to compare the solutions or representations through productive discussion. 
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With Activity Center, the teacher can show a shared coordinate plane onto which 

students can submit their points, equations, and graphs. One of the affordances of the 

second-generation CCT is that the activity center promotes examination and analysis of 

patterns as well as justification of mathematical generalizations, which may support 

representational fluency and conceptual understanding. For example, students start to 

generalize the effect of changing parameters of an equation on the graph’s position and 

shape as their classmates or themselves submit their equations (Hegedus & Moreno-

Armella, 2009). 

These last two components provide a context for effective classroom discourse 

because they are designed to publicly display multiple linked representations (Hegedus 

& Moreno-Armella, 2009; Pape et al., 2013; Roschelle, Vahey, Tatar, Kaput, & 

Hegedus, 2003). The public display of students’ mathematical constructions in 

conjunction with the communication of ideas and strategies fosters representational 

expressivity (Hegedus & Moreno-Armella, 2009). That is, projection of students’ 

mathematical thinking by using public display provides a context in which students 

communicate about representations. In addition, because students’ contributions are 

anonymous, they can see the differences between their work and the group’s work 

comfortably, which provides a suitable context for conjectures and generalization. The 

public display shows “the juxtaposition of ideas, often literally a debate rather than a 

resolution or synthesis” (Stroup, Ares, & Hurford, 2005, p. 188). Also, the activities in 

the activity center with multiple representations may support translation between 

representations (Bostic & Pape, 2010; Herman, 2007), which are distinguishing 
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characteristics of mathematical proficiency (CCSSO, 2010; Kilpatrick, Swafford, & 

Findell, 2001).  

 Although teachers have found CCT to be an efficient means of instruction, there 

is little evidence that demonstrates or evaluates the effectiveness of its mechanisms 

(Vahey, Tatar, & Roschelle, 2007). Thus, researchers have suggested qualitative 

studies that explore learning and teaching in CCT classrooms (e.g., Hegedus & 

Moreno-Armella, 2009; Hegedus & Penuel, 2008; Pape et al., 2013). Given the current 

attention called to CCT environments, there is a need to examine this potential for 

supporting representational fluency in second-generation CCT environments under 

realistic conditions.  

Statement of the Problem  

To benefit from representations, students need to be able to comprehend each 

representation and make connections between them (e.g., Ainsworth, 1999; Brenner et 

al., 1999; Cramer, 2003; Knuth, 2000; Lesh & Doerr, 2003). As students’ 

representational repertoire expands, they should learn to evaluate the strengths and 

weaknesses of these representations, know their different purposes, and be able to 

translate between representations.  

Research has shown, however, that students lack these skills at the middle 

school (Ainsworth et al., 2002), high school (Knuth, 2000), and college (Herman, 2007) 

levels. Current research suggests two reasons for the paucity of these skills: the 

overemphasis of symbolic representations within instruction and curriculum (e.g., Knuth, 

2000), and the cognitive difficulty of representational fluency (e.g., Ainsworth et al., 

2002). Students have difficulty translating between and within representations 

(Ainsworth et al., 2002; Davis & Maher, 1997; Even, 1998; Lesh et al., 1987). For 
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example, students often identify functions with symbolic representations only (Bostic & 

Pape, 2010; Herman, 2007; Kaldrimidou & Ikonomou, 1998; Knuth, 2000). This may 

cause difficulty for researchers in examining representational fluency in typical 

classrooms. But the CCT environment may provide a context for researchers to 

examine representational fluency by providing students the opportunity to see 

interconnected representations and discuss the relationship between representations.  

Since representational fluency is important to student learning, instructional 

contexts that support the development of representational fluency need to be better 

understood. Few studies have examined environments that help develop these skills 

(Brenner et al., 1997). The present study argues that implementing CCT technology 

within a discourse-rich environment supports students’ developing representational 

fluency. 

Purpose of the Study 

CCT provides a context for possible communication by increasing teachers’ 

knowledge about their students’ understanding and projecting students’ mathematical 

constructions. “CCTs encompass a broad range of devices that network a teacher’s 

computer with students’ handheld devices employed to increase communication among 

and between students and teachers” (Pape, Irving, Bell, et al. 2012, p. 178). For 

example, a teacher may project an image from the Internet superimposed on a 

coordinate grid, and students may be asked to submit the equation of a curve that fits 

the arc within the image. Irving et al. (2010) indicate, the “simultaneous display of 

multiple mathematical representations (e.g., equations, graphs, data tables) creates 

opportunities for rich mathematical discourse and supports the design and 

implementation of inquiry lessons related to the coordinate plane” (p. 6-7).  
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Moreover, classroom communication within CCT-enhanced environments may 

support the development of representational fluency and conceptual understanding. 

Students exhibit stronger performance in problem solving when they have conceptual 

knowledge or representational fluency (Herman, 2007). Therefore, this investigation 

seeks to examine the effects of CCT on the development of representational fluency, 

classrooms were ranked by using students’ achievement on translation problems. 

Among the classrooms that evidenced initially low achievement, the two classrooms 

with the highest gain and the two classrooms with the lowest gain were selected to 

analyze through classroom observation videos. Thus, the purpose of the present study 

was to compare the ways in which teachers used CCT to potentially support 

representational fluency within initially lower achieving classrooms that showed distinct 

progress on translation problems.  

Research Question 

How do teachers’ uses of CCT differ between classes that were initially low 

achieving but then showed differential improvement on translation problems? 
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CHAPTER 2 
LITERATURE REVIEW 

Chapter 1 revealed the importance of representational fluency for learning 

mathematics and using mathematics professionally.  In Chapter 2, more precise 

meaning is given to the relevant terms. These terms are not simply defined but are 

associated with the significant connections to representations in the educational 

research literature. This section examines the definitions of representations and 

representational fluency, the impacts of representational fluency on mathematical 

understanding and achievement, and the factors that influence the development of 

representational fluency, such as communication and technology. Finally, the effect of 

CCT on representational fluency is explored. 

Representational Fluency 

The Concept of Representation 

Representations are tools to help record, analyze, solve, reason, understand, 

justify, explain, and communicate mathematical concepts (Greeno & Hall, 1997; Pape & 

Tchoshanov, 2001; Preston & Garner, 2003). Some researchers have conceptualized 

representations as a language of mathematics (Coulombe & Berenson, 2001). Students 

use representations when they interpret mathematical phenomena, much like an artist 

interprets the world through mediums such as paint, sculpture, or literature. Greeno and 

Hall (1997) compare the expressive and inventive properties of mathematical 

representations to those of painting, sculpting, and literature in that “particular uses of 

expression and communication are flexibly constructed, and are open to multiple 

interpretations” (p. 367). 
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One of the definitions for representation is “a configuration of signs, characters, 

icons, or objects that can somehow stand for, or ‘represent’ something else” (Goldin, 

2003, p. 276). In this definition, interpretations of representations include “correspond 

to, denote, depict, embody, encode, evoke, label, mean, produce, refer to, suggest, or 

symbolize” (Goldin, 2003, p. 276). For instance, a graph as a representation can 

correspond to an algebraic function, depict a set of data, or denote a linear relationship. 

The problem with this definition is that it only emphasizes concrete properties of 

representations. For example, a graph is an object or its corresponding algebraic 

function is an action.  

Referring to something as a representation means that one needs to interpret 

and give a meaning to notations (Greeno & Hall, 1997). According to this view, a table 

of values is a representation if a child interprets and gives a meaning to it; otherwise it is 

just as meaningless notation. Representations are constructed flexibly, open to multiple 

interpretations, and used for communication and expression of mathematical ideas in 

the learning and teaching of mathematics. A definition that emphasizes the process and 

product features of representations is used in the present study. According to NCTM 

(2000), representation means “the act of capturing a mathematical concept or 

relationship in some form and to the form itself” (p. 67).  

Representations have been categorized as internal and external (Goldin, 2003; 

Goldin & Kaput, 1996; Pape & Tchoshanov, 2001). Internal representations refer to an 

individual’s mental constructions. In other words, those “presumed to be encoded in the 

brain but mainly described at more holistic levels (such as verbal and syntactic 

configurations, visual imagery, internalized mathematical symbols, rules and algorithms, 
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heuristic plans, schemata, and so forth)” (Goldin, 2002, p. 207). These internal 

representations, which are an “abstraction of mathematical ideas or cognitive schemata” 

(Pape & Tchoshanov, 2001, p. 119), are developed through an individual’s learning 

experiences.  

External representations refer to physical configurations that can be observed in 

the present environment such as real-world objects or events, pictures, spoken or 

written words, formulas and equations, geometric figures, graphs, base ten blocks, or 

computer-based microworld configurations (Goldin, 2002; Goldin & Kaput, 1996). For 

example, 5 (numeral) and five (number name) are the external representations that 

stimulate an image of a set of five objects, which is an internal representation (Pape & 

Tchoshanov, 2001). The relationship between external and internal representations is 

called “cognitive representation,” which is conceptualized “as a zone of interaction of 

external and internal representations” (Pape & Tchoshanov, 2001, p. 126). This study 

focuses only on external representations because they are observable. Also, these are 

the types of representations that have mostly been studied by researchers (e.g., 

Herman, 2007). 

Types of Representations 

There are at least five different types of representations: real scripts, 

manipulative models, static pictures, written symbols, and spoken language (Lesh et al., 

1987). In real or experience-based scripts, knowledge is arranged around real-world 

situations providing a context to interpret and solve other types of problems. The 

relationships and operations related to the manipulative models have meaning rather 

than the elements themselves. Examples include arithmetic blocks, fraction bars, and 

number lines. Similar to manipulative models, static pictures include static figurative 
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models, and they “can be internalized as ‘images’” (p. 33). Written symbols include 

“specialized sentences and phrases” (p. 34), such as 3x + 5 = 8, and spoken language 

contains “specialized sublanguage” (p. 33), which is related to a domain such as logic. 

A model of these types is shown in the unshaded part of Figure 2-1. 

 

Figure 2-1. Meanings of conceptual systems are distributed across a variety of 
representational media. Adapted from Foundations of a models and modeling 
perspective on mathematics teaching, learning, and problem solving (p. 12), 
by R. Lesh and H. Doerr, 2003, in R. Lesh & H. Doerr (Eds.), Beyond 
constructivism: Models and modeling perspectives on mathematics problem 
solving, learning, and teaching (pp. 3-33). Mahwah, NJ: Erlbaum. 

Each type of representation has different advantages and disadvantages for 

cognitive processes. For example, verbal representations are helpful for understanding 

and communicating about a problem or interpreting its results. However, they can 

mislead students or cause ambiguity because they depend on personal style 

(Friedlander & Tabach, 2001). That is, using different representations is powerful 

because users do not need to limit themselves by the weakness of only one 

representation (Kaput, 1989). When students have a comprehensive representational 

repertoire and translation abilities, they can use different representations to illuminate 
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different aspects of a complex concept or relationship. Thus, students need experience 

working with different representations as well with ways of linking them together (Amit & 

Fried, 2005). 

Symbolic, pictorial, tabular, verbal, and graphical representations are used in the 

present study. The descriptions of these representations, which are adaped from Bostic 

(2012) and Preston and Garner (2003), are included in Appendix B.  

Translation between and Transformation within Modes of Representations  

As students’ repertoires of representations expand, they begin to learn to 

translate between representations (NCTM, 2000). To translate between 

representations, students need to link the representations with each other. Kaput (1989) 

has stated that “cognitive linking of representations creates a whole that is more than 

the sum of its parts…it enables us to see complex ideas in a new way and apply them 

more effectively” (p. 179-180). In other words, seeing the big picture as a whole with 

connected parts is more effective than knowing parts of the whole separately. The 

important premise is that the relationship between these representations should be 

explicit (Goldin, 2002). 

Researchers have defined translation and transformation between 

representations as an important part of the problem-solving process (Lesh et al., 1987). 

Translation among representations refers to moving between representations, from one 

representation to a different type of representation, such as translation from a graph to 

an equation. During translation, one reinterprets an idea from one representation to 

another, which demonstrates the understanding of concepts in multiple ways. 

Transformation among representations refers to moving within representations, from 

one representation to another of the same kind, such as transformation from a graph to 
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another graph. It is most common for researchers to use the term translation to discuss 

both of these constructs. For the purpose of this study, the term “translation” is used to 

refer to the process of moving from one representation to another representation 

regardless of representation type. 

The Concept of Representational Fluency 

Most researchers define representational fluency as an ability to translate 

between representations (e.g., Bieda & Nathan, 2009). However, representational 

fluency is much more than the translation between representations. Instead, it is the 

interaction between each representation inside the individual’s cognition in a meaningful 

way (Zbiek, Heid, Blume, & Dick, 2007). Representational fluency is “translation across 

representation, drawing a meaning of a mathematical entity by using different 

representations, and generalizations across different representations” (Zbiek et al., 

2007, p. 1192). Some authors use different words to describe representational fluency. 

For example, Hong and Thomas (2002) define representational versatility “to include 

both fluency of translation and the ability to interact procedurally and conceptually with 

individual representations” (p. 1002).  

This definition also aligns with the Zbiek and colleagues’ (2007) definition and 

adds the interaction with representations procedurally. Sandoval and colleagues (2000) 

provide an alternative definition: 

…being able to interpret and construct various disciplinary 
representations, and to be able to move between representations 
appropriately. This includes knowing what particular representations are 
able to illustrate or explain, and to be able to use representations as 
justifications for other claims. This also includes an ability to link multiple 
representations in meaningful ways. (p. 6) 
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This definition is comprehensive and extends prior definitions to include necessary 

knowledge and abilities for representational fluency. Sandoval and colleagues’ (2000) 

definition is therefore adapted for the present study. 

The Characteristics of Representational Fluency 

Students benefit from being able to translate between representations. Moving 

from one representation to another and understanding the connections between 

representations demonstrate a deep understanding of concepts (Lesh & Zawojewski, 

2007; NCTM, 2000; Pape & Tchoshanov, 2001). The cognitive results of learning 

involve improvement in students’ ability to represent functional relations in words, 

tables, figures, and translation among representations (Brenner et al., 1997). 

Representational fluency is not only related to understanding, but also plays a large role 

in helping students solve problems correctly (Ainsworth et al., 2002; Even, 1998; Nistal 

et al., 2009). The following sections explain the relationship between representational 

fluency, mathematical understanding, and achievement.  

The Relationship between Representational Fluency and Mathematical 
Understanding  

Students translate between and within representations by reinterpreting one 

representation for another (Cramer, 2003). This reinterpretation process reflects a 

reconstruction of knowledge and impacts students’ deep conceptual understanding. 

Deep understanding occurs when students appreciate each representation and its 

connection with concepts, as well as the links between representations (Duncan, 2010). 

In literature on representational fluency, the focus is generally on relational 

understanding (diSessa et al., 1991; Duncan, 2010, Suh, Johnston, Jamieson, & Mills, 

2008; Suh & Moyer, 2007) as well as abstraction (diSessa et al., 1991; Warner et al., 
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2006) and generalization (Bieda & Nathan, 2009; Nathan & Kim, 2007; Warner et al., 

2009).  

Researchers have explored the impact of representational fluency on relational 

understanding. Duncan (2010) examined 12 teachers’ views from six schools in 

Scotland to examine whether dynamically linked representations improve students’ 

relational understanding. Teachers used TI-Nspire software and calculators in this 

investigation and were given six days of professional development (PD). In the first two 

days of the PD, the teachers were trained to use the software and discussed possible 

lessons and teaching approaches that focused on multiple representations and 

relational understanding. The teachers were also introduced to the outline of the study 

and terminology, and discussed the evidence for relational understanding. On the other 

days of PD, teachers discussed their experiences and issues.  

The researchers examined teachers’ responses by looking at the evidence of 

relational understanding and multiple representations. Student feedback and researcher 

observations were then used for triangulation. Duncan (2010) concluded that 80% of 

teachers stated that the use of multiple representations improved the students’ 

relational understanding. Most teachers in this study mentioned that they observed 

students making specific use of multiple representations, detailing verbal and written 

responses, and “aha” moments, which demonstrated their understanding. For example, 

a teacher observed his or her students’ discussion about the fact that a square is a 

special kind of rectangle. 

While some studies explicitly state that they are investigating the relationship 

between linked representations and relational understanding (e.g., Duncan, 2010), 
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others imply this relationship. For example, even though diSessa and colleagues’ 

(1991) study on metarepresentational expertise in children does not explicitly mention 

linked representations and relational understanding, their research reveals that the 

students understood the connection between duration, speed, and distance by 

translating between representations when inventing graphs. Similarly, Suh and Moyer 

(2007) and Suh and colleagues (2008) discussed this kind of relationship only without 

using the term relational understanding. Instead, these authors used relational learning 

and thinking (Suh & Moyer, 2007) or flexibility in thinking (Suh et al., 2008). 

Suh and Moyer (2007) explored 36 third graders’ algebraic reasoning and 

relational learning as they used physical and virtual manipulatives to develop their 

representational fluency in a one-week unit. The aim of the unit was to use different 

algebraic modes to develop students’ relational thinking. There were two groups of 

students. The first group of students used a virtual manipulative (applet) named Virtual 

Balance Scale. During this exercise, unit boxes represented numbers, and blue boxes 

represented unknown values such as x. The goal was to get the remaining x-value 

alone on one side by removing the same amount of unit boxes from both of the sides. 

This virtual environment provided students “(a) explicit linking of visual and symbolic 

modes; (b) guided step-by-step support in algorithmic processes; and (c) immediate 

feedback and a self-checking system” (p. 165). The second group of students used a 

physical manipulative tool, Hands-On Equations®, which included a balance scale mat, 

number cubes, and pawn pieces representing an unknown value such as x. The goal 

was same as the goal for the students who used the virtual manipulatives. This physical 

environment provided students “(a) tactile features; (b) more opportunities for invented 
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strategies; and (c) more mental mathematics” (p.164).  Overall, the students in both of 

the environments made gains in algebraic reasoning, and they demonstrated flexibility 

in their translation with word problems, pictorial and symbolic representations, and 

manipulatives. The researchers concluded that students’ understanding was improved 

by using different kinds of representations.  

Flexibility in the use of representations has an impact on thinking about concepts 

more comprehensively. Suh and colleagues (2008) conducted a study to support this 

relationship and examined a collaborative study about teaching addition and subtraction 

of decimal numbers to improve students’ representational fluency and proficiency in 

mathematics. The representations were helpful for the teachers to assess their 

students’ conceptual understanding. The students made a link between whole numbers 

and decimal numbers by using representations. The teachers had concerns about 

potential student confusion of flat manipulatives as a representation for 100 in whole 

numbers and for representing units in decimal numbers. But the researchers argued 

that representational flexibility helped students to make a connection between decimal 

and whole numbers. Suh and colleagues (2008) stated that students who understand 

decimal numbers just extend the notion of whole numbers by using their 

representational flexibility. In addition, the researchers noted that the flexible use of 

representations helps students to make generalizations about place value. 

Students are able to abstract and generalize after they gain representational 

flexibility competence. Warner and colleagues (2006) examined how five middle school 

teachers interacted with their students with respect to constructing, linking, and 

modifying their representations and then their movement toward abstraction and 
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generalization. The teachers helped their students through these investigations, and the 

students imitated their teachers’ behaviors such as justifying their solutions, asking 

hypothetical problems (i.e., what if…), or providing opportunities for generalization and 

abstract representations. Overall, there was an increase in teachers’ encouragement 

related to students’ building, explanation, and justification of their peers’ and their own 

representations as well as discussion about their peers’ and their own thinking. This 

study found that when hypothetical situations were employed during these exercises, 

students improved their abilities in generalizing and abstracting representations. In 

addition, the students were encouraged to discover their own errors. Teachers asked 

students to justify their ideas rather than providing them the answers or telling them that 

their answers were incorrect. 

Students who possess representational fluency competence (in constructing, 

linking, and modifying representations, for instance) are able to progress toward 

abstraction and generalization. diSessa and colleagues (1991) also conducted a study 

where the students moved to abstraction through the development of 

metarepresentational competence by inventing representational activities. There is a 

clear connection between metarepresentational competence and representational 

fluency. Metarepresentational competence includes “generat[ing], critique[ing] and 

refin[ing] representational forms” (diSessa et al., 1991, p.2) and representational fluency 

includes constructing, translating and interpreting representations (Sandoval et al., 

2000). Thus, the present study uses diSessa and colleagues (1991) to define 

representational fluency. 
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The sixth-grade students in diSessa and colleagues’ (1991) study were able to 

understand concepts related to motion as well as move to abstraction. Overall, most of 

the students already knew the graph, but they reinvented the graph which provided 

evidence of representational fluency. In addition, diSessa and colleagues noted that 

students improved their understanding by using other students’ representations. Some 

studies, which will be discussed later, used the terminology of representational fluency 

and illustrated students’ abilities at making generalizations after gaining representational 

fluency. Bieda and Nathan (2009) asserted that if the students were able to translate 

from a graph to an equation, they would be more likely to make generalizations. 

Moreover, students were able to generalize problems with the development of 

representational fluency (Warner et al., 2009). 

In summary, through representations teachers are able to better examine 

students’ thinking and understanding of concepts (Greeno & Hall, 1997; Suh et al., 

2008; Zbiek et al., 2007). In addition, when students understand the inter-related nature 

of mathematical representations, they can improve their understanding of mathematical 

concepts. Bostic and Pape (2010) argued that “well-formed” (p.140) links between 

representations aid in students’ understanding of mathematical concepts. Thus, 

representational fluency and conceptual understanding are two sides of the same coin; 

they are intertwined constructs. Representational fluency is very significant for students’ 

development of conceptual understanding (Bostic & Pape, 2010; Duncan, 2010; 

Herman, 2007; Lesh & Zawojewski, 2007; NCTM, 2000; Nistal et al., 2009; Pape & 

Tchoshanov, 2001; Warner et al., 2009), specifically relational understanding (diSessa 

et al., 1991; Duncan, 2010, Suh & Moyer, 2007; Suh et al., 2008), and generalization 
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and abstraction (Bieda & Nathan, 2009; Nathan & Kim, 2007; Suh et al., 2008; Warner 

et al., 2006; Warner et al., 2009).  

The Relationship between Representational Fluency and Achievement  

Cognitive flexibility theory is related to achievement and representational fluency.  

According to this theory, the ability to construct and move between representations in a 

domain is necessary for successful learning (Ainsworth et al., 2002). If students are able 

to reconstruct their knowledge to meet the demands of specific tasks, they will be more 

successful (Nistal et al., 2009). That is, if students have the ability to translate between 

representations flexibly, they can move to representations that are effective (adaptive 

use of representation) or use representations with which they are more comfortable. 

Thus, these students will more likely become better problem solvers than students who 

do not have the ability to translate representations.  

Students who use two or more representations to solve a problem are more 

successful than students who use only one representation to solve the problem (Nathan 

& Kim, 2007). Nathan and Kim explored the development of representational fluency in 

middle school students by looking at their abilities in pattern generalization. The 

researchers conducted a cross-sectional study with 372 middle school students (122 

sixth-graders, 115 seventh-graders, and 135 eighth-graders) and a longitudinal study 

with 81 sixth-graders through their seventh- and eighth-grade years.  

The students were asked to solve problems with two modes: discrete mode (i.e., 

point-wise graph) and continuous mode (i.e., line graph). Each problem included three 

tasks: Near Prediction (i.e., NP; reading the data), Far Prediction (i.e., FP; reading 

between data), and Abstraction (i.e., AB; reading beyond the data). The students were 

randomly assigned to solve six problems with one type of representation (i.e., verbal, 
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graphical, or combined). The researchers examined the differences in students’ pattern 

generalization performance between different tasks (i.e., NP, FP, and AB), different 

presentation modes (i.e., continuous and discrete patterns), and different 

representations (i.e., verbal, mathematical, and combined representations). For the 

cross-sectional study, the researchers found an overall advantage of verbal 

representations when solving problems correctly, especially with continuous patterns. In 

addition, sixth-graders had a verbal advantage on the discrete patterns and difficulty in 

solving problems mostly with graphical representations. Overall, the highest 

performance in pattern generalizations was observed when the representations were 

combined. The researchers therefore suggested that teachers focus on combined or 

verbal representations, especially for younger students.  

Similar to the cross-sectional study, the longitudinal study indicated that there 

was a verbal advantage over graphical representations for continuous patterns in the 

longitudinal study. For discrete patterns, the verbal advantage dropped from the 

seventh to the eighth grade, though rose during the eighth grade. The importance of 

Nathan and Kim’s (2007) study is that it showed that students performed better with 

verbal representations than they did with graphical representations. In addition, this 

study indicated that students who used combined representations performed better than 

the students who used verbal and graphical representations in pattern generalizations. 

In other words, students who have representational competence perform better than 

those without such fluency.  

Moreover, students perform better at solving and representing function word 

problems when they are able to translate between representations. Brenner and 
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colleagues (1997) designed a unit that included 20 days of instruction to improve 

students’ skills in translation and in applying representations. The authors used four 

mathematics reform principles in this instruction. The first mathematics reform principle 

focused on the representation skill that included representing a problem situation with a 

mental representation, such as drawing conclusions from word problems, rather than 

symbolic manipulation skills such as using arithmetic and algebraic processes. The 

second mathematics reform principle encourages students to use meaningful thematic 

contexts rather than isolating problems. The third mathematics reform principle 

emphasized the process rather than the product during problem solving. The fourth 

principle centered on a guided discovery approach rather than direct instruction. Their 

study involved 128 seventh- and eighth-graders from six classes in three schools. One 

of the three teachers’ classes was randomly assigned as a comparison group (n=56) 

and the other two were randomly assigned as the experimental group (n=72) in which 

the students were taught with traditional and experimental curricula, respectively. In the 

traditional curricula, the emphasis was on building symbolic manipulation skills that 

involved using algebraic and arithmetic procedures through direct instruction. In the 

experimental curricula, the focus was on developing problem representation skills that 

involved the translation and application of tables, graphs, pictures, and diagrams 

through the guided discovery approach. In addition, the problems were open-ended 

which gave students opportunities to solve problems in multiple ways.  

In general, the students who answered correctly used an appropriate 

representation to solve the problems. The students in the experimental group used 

correct representations more frequently than the students in the comparison group. In 
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addition, the students in the treatment group showed greater improvement in 

representing and solving the function word problems as well as in translating word 

problems into tables, equations, or graphs than the students in the comparison group. 

The students in the treatment and comparison groups showed similar improvement in 

solving two-step problems, which required problem representation or symbolic 

manipulation skills. The students in the comparison group were better at using 

arithmetic and algebraic procedures, which required symbolic manipulation skills, than 

were the students in the treatment group.  

Thus, if the goal is to perform symbolic manipulation, based on Brenner and 

colleagues four mathematics reform principles, the conventional method is more 

beneficial than instruction with multiple representations. However, if the goal is to solve 

function word problems by creating and constructing representations, instruction with 

multiple representations is more beneficial. Brenner and her colleagues (1997) noted 

that to solve an algebra word problem one needs to have both representation skill 

during the solution planning and monitoring phase and symbolic manipulation skill 

during the solution execution phase. Representation skill includes being able to use 

verbal, symbolic, tabular, and graphical representations. Symbolic manipulation skill 

includes being able to use algebraic and arithmetic processes. In schools, students are 

generally taught symbolic manipulation skills and do not understand functional 

relationships.  

Furthermore, students are more successful when they use non-symbolic 

representations. As discussed earlier, Suh and Moyer (2007) explored physical and 

virtual manipulative effects on algebraic reasoning and relational thinking and also 
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analyzed students’ use of eight pictorial, eight symbolic, and two word problems from 

their posttests. The researchers used a scoring rubric to categorize students’ 

understanding. Seventy-eight percent of the students were more successful with 

pictorial representations than with symbolic representations or word problems. The 

students used pictorial representations to solve the problems and translated from 

symbolic to pictorial representations which indicated that students could fluently 

translate between representations. The importance of Suh and Moyer’s study is that it 

demonstrates that students gained proficiency in algebraic reasoning in both physical 

and virtual manipulative environments. The researchers conclude that translation from 

one representation to another during problem solving reflects achievement in algebraic 

reasoning.  

In summary, even though representational fluency by itself is not sufficient to 

solve a problem correctly (Bieda & Nathan, 2009), it is an important component for 

solving problems successfully (Ainsworth et al., 2002; Nistal et al., 2009). Students 

perform better when they use more and multiple representations (Bostic & Pape, 2010; 

Herman, 2007; Nathan & Kim, 2007), when they have the ability to translate between 

representations (Brenner et al., 1997), and when they prioritize non-symbolic 

representations (Suh & Moyer, 2007). Thus, good problem solvers are flexible in their 

uses of representations and are able to change their representations naturally to more 

convenient representations during problem solving (Lesh et al., 1987). 

Factors that Influence the Development of Representational Fluency 

Representational fluency involves students’ choice of representations as well as 

translation between representations while solving problems. In this section, factors that 

affect students’ choice of representation and translation between representations are 
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explored briefly, and two of the major factors that influence and support the 

development of representational fluency – communication and technology – are 

examined in depth.  

Three factors that the literature suggests affect the ability to make flexible 

representational choice are task, subject, and context (Nistal et al., 2009). Task factors 

include compatibility models, which emphasize using different representations for 

different tasks. These models state that if students determine the demands of a task 

and select the most suitable representation for these task demands, they perform better 

than individuals who do not (Nistal et al., 2009). For instance, students who select a 

graph typically perform better than individuals who select a different representation to 

solve spatial tasks. Thus, representational fluency is related to the ability to match the 

representation with the task’s demands.  

Individual student factors include “prior conceptual and procedural knowledge 

about representations, abstract conditional knowledge about representations, domain-

specific knowledge, representational preference and affective factors” (Nistal et al., 

2009, p. 630). Abstract conditional knowledge means knowing when and why a 

representation is used for solving a task (Nistal et al., 2009). All knowledge types, 

except domain-specific knowledge, affect subjects’ selection of appropriate 

representations. There is disagreement, however, about whether domain-specific 

knowledge is a requirement for students to interact with representations (Nistal et al., 

2009). Also, students’ representational preference is influenced by affective factors, 

such as curiosity and frustration (Nistal et al., 2009).  
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Context factors include an “environment, which provides active guidance in 

representational selection, [and an] environment which encourages active comparison 

and evaluation of representations” (Nistal et al., 2009, p. 630). Students need to be 

asked to evaluate their classmates’ use of different representations and their use of 

inappropriate representations.  

For the development of students’ representational fluency, teachers need to be 

aware of the factors that impact both students’ representational choices and their 

translations between representations. Ainsworth and colleagues (2002) explored the 

factors that influence translation between representations in a multiple representational 

environment. The students were taught computational estimation, which included the 

process of making problems simple and solving with certain procedures to get a suitable 

and satisfactory answer by calculating mentally. There were four conditions: one control 

and three different experimental conditions, including pictorial-pictorial (pictorial 

condition), in which the students used a pair of pictorial representations; mathematical-

mathematical (mathematical condition), where the students used a pair of mathematical 

representations; and pictorial-mathematical (mixed condition), where the students used 

a mix of pictorial and mathematical representations.  

The researchers examined students’ estimation accuracy and their judgments in 

these conditions. For each experimental condition, the researchers used one 

continuous representation that included the magnitude and direction information as well 

as one categorical representation that included only the information of magnitude. 

Ainsworth and colleagues used the Computational Estimation Notation-Based Teaching 

System (CENTS) in two experiments to support students’ understanding while 
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practicing with and reflecting on computational estimations. In addition, students were 

mean to see how the effect of transforming numbers helps understanding on the 

accuracy of answers during estimation. The focus of their research was to understand 

how transforming numbers affect the accuracy of the answers when estimating.  In 

Experiment 1, 48 year-5 pupils participated in the study, and in Experiment 2, 48 year-5 

and year-6 pupils participated. In Experiment 1, students spent 80-100 minutes (2 

times) with CENTS, and all students in all conditions became more accurate estimators. 

However, while only the students in the mathematical and pictorial conditions improved 

their ability to judge the accuracy of their estimation, the students in the mixed condition 

did not improve this ability. The researchers first thought that this failure might be 

because of the cognitive load of the tasks. 

Thus, in Experiment 2, the researchers allotted extra time to remove a possible 

time effect for translation for the students in the mixed condition group. The students in 

Experiment 2 spent 150-200 minutes (4 times) with CENTS. This time, students in all 

conditions became more accurate estimators and improved their ability to judge the 

accuracy of their estimations. Although the students in the mixed condition mastered the 

mathematical (continuous) representation that helped them solve the task successfully, 

they did not master the pictorial (categorical) representations. Whether students could 

accurately estimate was based on their use of one representation that included the 

necessary information to solve the given task. The students in the mixed condition did 

not master the categorical representation, showing that the reason behind the failure of 

the translation in Experiment 1 was not due to the cognitive load of the task. Instead, it 

was based on the difficulty of translating between two different representations.  
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The researchers provided three reasons why they believed the students in the 

pictorial and mathematical conditions translated between representations instead of 

using them separately. The first reason was that if the students used representations 

individually, they would become experts in judging the accuracy of their estimations 

before becoming experts in translation. It was reversed for the mathematical condition, 

however, in which the students were experts in the translation but not experts in their 

judgment of accuracy of their estimations for Experiment 1. The second reason was that 

if the students used representations separately without translation, the result would not 

change based on the representations with which they were paired. However, in this 

study, the pictorial (categorical) representation was paired with the numerical 

(continuous) representation, and the students did not solve the problem with the 

categorical representation. But when the same representation was paired with pictorial 

(continuous) representations, the students solved the problem with the categorical 

representation. The third reason was cognitive economy. If a student completed many 

tasks with one representation, the process would be difficult. To simplify the process, 

they could remember the outcome and use the information for another representation.  

The researchers also suggested factors related to why the students were able to 

translate in the pictorial and mathematical conditions, while the students in the mixed 

condition were not. The translation between different pictorial representations was easy 

for the students because the representations were based on the same metaphor in 

which formats and operators were similar. Also, the way in which students interacted 

with the representations for pictorial representations was through direct manipulation. 
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The students in this age group also had much more experience with these 

representations.  

The students also translated successfully between different mathematical 

representations because both representations used the same numbers, which made 

students believe they were equivalent representations. The students in the mixed 

condition failed to translate between representations because the representations had 

different numbers and different modalities (i.e., graphical versus textual). Also, these 

representations are different in terms of interaction method (i.e., direct manipulation 

versus keyboard use), and in terms of representations (i.e., mathematical versus non-

mathematical).  

In addition, Ainsworth and colleagues suggested that differences in the 

appearance of the representations affect students’ ability to recognize similarities 

between them. They pointed out the need for integration between the represented world 

and representing world to explain the factors that affect the translation between 

representations. Palmer (1978) describes the represented and representing world in the 

following way: “representations can differ in two ways, either in the information they 

express or in the way that information is presented, that is, the represented and 

representing worlds” (as cited in Ainsworth et al., 2002, p. 31). For the represented 

world, the factors that affect the translation between representations might be “the 

amount of available information, the resolution of information, and information 

redundancy” (Ainsworth et al., 2002, p. 58). For the representing world, the factors 

might be “the modality of the representations (textual vs. graphical), level of abstraction, 

type of representations (static vs. dynamic), type of strategies, and interfaces of 
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representations” (Ainsworth et al., 2002, p. 58). Thus, if two representations’ formats 

and operators are similar in the representing world, students can translate between 

them. In addition, to solve a problem successfully in the represented world, at least one 

representation must cover all necessary information in the problem.  

Thus, exploring and examining students’ development of representational fluency 

is challenging. Although students should be able to demonstrate the ability to translate 

between representations fluently, research has shown that students lack these skills at 

middle school (Ainsworth et al., 2002), high school (Knuth, 2000), and college (Herman, 

2007) levels. That is, students leave school without developing representational fluency 

(Knuth, 2000). Since representational fluency is important, then instructional contexts 

that support the development of representational fluency need to be more fully 

understood. There are at least two tools, however, that may support students in 

developing representational fluency: communication and technology. In the following 

sections, these tools are explored separately. 

The Role of Communication  

Representational flexibility is developed both when students explain the logical 

aspects of their reasoning in terms of representations to their peers and teachers and 

when their teachers and peers question their solutions (Warner et al., 2009). In these 

types of conversations, students are faced with two difficulties. The first difficulty is that 

students need to solve a task, and the second difficulty is that they need to believe in 

themselves as well as to prove themselves to others (Warner et al., 2009).  

Studies have focused on students’ invention of new representations or the 

construction and interpretation of representations while they explain, critique, and 

respond to critiques (diSessa et al., 1991; Greeno & Hall, 1997; Warner et al., 2009). As 
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discussed earlier, diSessa and colleagues (1991) explored eight sixth graders’ meta-

representational competence, which means “the faculty to generate, critique, and refine 

representational forms” (p. 118). The students graphically represented various objects 

in motion. The students collaboratively discussed the activities by creating new 

representations, which were more applicable and flexible than school-learned 

representations. The activities allowed students to develop conceptual and interactional 

skills as well as build their interest and their ownership in inventing representations. The 

researchers focused on the flow of the students’ discourse and moment-by-moment 

interaction. During the activities, the students discussed the ideas in a roundtable format 

in a respectful manner.  

The researchers examined students’ representations by having them invent 

representations, critique the representations, respond to the critiques, and invent further 

representations. This study was conducted over five days with 30-40 minutes per day 

during a full-year elective course. In the initial days of the study, the students worked in 

pairs to simulate motion for a Logo-like turtle. The teacher asked them to describe the 

motion with five words. After that, the students started to draw pictures. First, the 

students invented representations. Second, the teacher asked the students to describe 

the motion with more words than they did before as well as to clarify and describe their 

first day’s representations. Third, one of the students combined the discrete 

representation of motion segments with constant speed and created a continuous form 

of the representation. Another student suggested grids for graphing the motion. On the 

fourth day, the students played a game that included using many representations for a 

given motion. They discussed whether a representation looked like a hill. Finally, the 
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students discussed whether a “stop” occurred in the motion when reversing the 

direction. The teacher’s questions of the students helped them to redesign their 

representations by learning from others’ ideas. The students praised the other students’ 

representations and were able to identify the advantages of their representations.  

The students also used the following criteria for the quality of the representations: 

“transparency, homogeneity, compactness, conceptual clarity, objectivity, appropriate 

abstractness, faithfulness, completeness, economy, quantitative precision, and 

consistency” (diSessa et al., p. 148). The students fully engaged themselves by giving 

suggestions, asking questions, and evaluating as well as valuing representations of 

other students. They used and elaborated on each other’s ideas. The students 

compared representations based on their advantages and disadvantages and became 

capable of determining differences between representations. In addition, the teacher 

had a very important role. She prompted students to explain their ideas to each other 

and refused to give the correct answer. The teacher made critical decisions about 

where to lead the discussion in order to make classroom interactions more efficient.  

The cycle of inventing representations, critiquing representations, responding to 

the critiques, and re-inventing may increase students’ meta-representational expertise. 

In addition, invented representations are more applicable and flexible than school-

learned representations. Furthermore, this study reflects how using criteria to determine 

the quality of representations, and using and praising other students’ representations to 

redesign their own representations potentially improved their representational fluency.  

Similar to diSessa and colleagues, Greeno and Hall (1997) emphasized that the 

construction and interpretation of representations must include communication and 
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reasoning. They mentioned that non-standard representations such as narratives or 

drawings served these purposes better than standard representations, such as 

algebraic expressions or formulas. But Greeno and Hall (1997) also noted that standard 

forms of representations are essential and “a sizable community shares their [standard 

forms of representations] conventions of interpretation” (p. 362). So students should 

learn how to use them. Also, the students need to actively join in discussions to 

construct and interpret representations and to discuss their advantages and limitations 

(diSessa et al., 1991).  

Every child needs to experience a multiple representational environment and 

learn how to construct representations (Greeno & Hall, 1997). Representations are very 

useful for students to monitor their ideas and structure their ongoing work. Greeno and 

Hall mentioned the aims of building representations during communication and solving 

problems. Students built representations “to see patterns and perform calculations and 

taking advantage of the fact that different forms provide different supports for inference 

and calculation” (p. 365). In addition, students used multiple representations where 

some were taught and some were invented. The way that students practice 

representations, such as evaluating the efficiency of representations and reviewing the 

representations of others is very important for learning and teaching mathematics 

(diSessa et al., 1991; Greeno & Hall, 1997). In addition, the researchers emphasized 

that students need to be in a school environment where a variety of representations are 

used frequently.  

Similar to diSessa and colleagues (1991) and Greeno and Hall (1997), Warner 

and colleagues (2009) explored students’ development of representational fluency as a 
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result of defending their solutions or posing questions to their peers. Unlike diSessa and 

colleagues (1991), the students in Warner and colleagues’ (2009) study did not invent 

representations. Rather, they reformulated their old representations. Warner’s team 

conducted a case study of one student as well as her peers and a teacher to investigate 

the effect of peer interaction and student-teacher interaction on the development of 

representational systems. The study included 10 classroom sessions over 6 months 

and included the university researcher and the teacher who facilitated the students’ 

group work. The students reformulated their representations during the peer/teacher 

interaction process, which made their thinking more explicit and conscious. The 

researchers noted the places and the times when students “modified existing 

representations, asked questions that seemed to contribute to a modification or change 

in representation, responded to other students’ or the teacher’s requests for 

explanations, and posed or shared extensions to the problem” (Warner et al., 2009, p. 

667). The researchers primarily focused on one student named Aiesha, assessing her 

representational flexibility, in addition to that of two other students in an eight-grade 

class.  

The students were presented with similar handshake problems at different times. 

The first handshake problem was: “John is having a Halloween party. Every person 

shakes hands with each person at the party once. Twenty-eight handshakes take place. 

How many people are at the party? Convince us” (Warner et al., 2009, p.668). In 

Aiesha’s initial solution, she drew a pictorial representation and multiplied seven by 

eight, but she did not figure out that she was supposed to divide 56 by two. Two weeks 

later, the students were presented with a similar handshake problem. Aiesha’s peer’s 
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questioning was critical for her, and using her friend’s representation, she reconstructed 

her own representation. After Aiesha realized why dividing by two was necessary, she 

started to work with larger numbers of people in the problem. Next, she moved to a 

symbolic representation to generalize a formula for handshake problems. The other 

students’ questioning helped her to make connections between the representations. 

After six months, the students were asked a similar question. Many students in 

the classroom used Aiesha’s formula, which included both symbolic and pictorial 

representations. In addition, she wrote a verbal explanation of her reasoning. With this 

result, Warner and colleagues (2009) demonstrated that Aiesha’s representation 

became “a declarative represented tool to explain her reasoning as well as to display a 

general formula” (p. 675). One of the group members retrieved the representation very 

easily because she was involved in the discussion when Aiesha built and explained her 

representation. In addition, a student who asked a question at the beginning about why 

Aiesha divided the result by two now solved the problem based on reasoning provided 

in the explanation of dividing by two.  

The researcher presented five features for the development of the 

representations. First, students asked very interesting questions about the other 

students’ reasoning without teacher intervention. Second, the questions were sparks for 

students to reorganize, rethink, and reconstruct their answers, which were also helpful 

for using representations flexibly. Third, repairing a representation was shown to be a 

norm for students. Fourth, whether or not the representations were flexible, they were 

not of a single type. The fifth feature was that the students used different types of 

representations when they felt there was a need.  



 

55 

Thus, students have different preferences according to the purpose of using the 

representations such as for generalization or explanation. For clarifying and defending 

their reasoning, students need to create representations as well as explain their 

representations to their peers and teachers. In addition, the new representations that 

students create are not arbitrary. Instead, they are reconstructions or reorganizations of 

the representations that have been used in the class previously. In addition, the Warner 

team’s study indicates that Aiesha, her group member, and a student who questioned 

Aiesha were able to improve their representational fluency within a discussion based 

environment. 

In summary, students need an environment where they can criticize their peers’ 

representations and respond to others’ critiques about their representations (diSessa et 

al., 1991; Warner et al., 2009). Active engagement in the construction and interpretation 

of representations is essential (Greeno & Hall, 1997). In these students’ interactions and 

discussions about representations, teachers’ and peers’ roles are very critical (diSessa 

et al., 1991; Warner et al., 2009). Generally, students are shown to develop 

representational fluency by both explaining their own representations and by responding 

to other students’ questions about their choices (diSessa et al., 1991; Warner et al., 

2009). In these engagements, students also use others’ representations (diSessa et al., 

1991; Greeno & Hall, 1997; Warner et al., 2009) and learn to value others’ 

representations (diSessa et al., 1991). Finally, students are shown to change their 

representations with the aim of explaining and generalizing (Warner et al., 2009).  
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The Role of Technology   

Research suggests that one way students may develop representational fluency 

is by using technology such as graphing calculators and easy-to-use computer software 

(Bostic & Pape, 2010; Herman, 2007; Knuth, 2000; Nathan & Kim, 2007; NCTM, 2000; 

Suh & Moyer, 2007). Because the present study focuses on graphing calculators within 

a connected classroom network, the results of studies using TI-Nspire CAS is reported. 

One important feature of TI-Nspire CAS is that it can display multiple representations on 

one screen. This capability exemplifies the type of feature that may change students’ 

overdependence on symbolic representations.  

Students rely heavily on symbolic representations in high schools (Bostic & 

Pape, 2010; Knuth, 2000) and in college (e.g., Herman, 2007). In Herman’s (2007) 

study, 38 college students used TI-83+ graphing calculators within a 10-week advanced 

algebra course. This study investigated the students’ choice of representations, the 

course’s effect on the number of representations used by students, and the correctness 

of their solutions, as well as the students’ beliefs about multiple representations and 

their effect on understanding. The algebra course was reported to have two aims: (a) to 

help students realize that different problems can be solved with the same model even if 

they seem unrelated, and (b) to help students realize that the problems could be solved 

using multiple representations and that some representations may prove more efficient 

than others. Thus, the course’s focus was on the connection between symbolic, 

graphical, and tabular representations in polynomial, exponential, and logarithmic 

functions.  

To identify students’ choice of representations, the course’s influence on the 

number of representations students learned to use, and the correctness of their 
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solutions, the researcher posed six problems on the pre- and posttest. To explore 

students’ beliefs about multiple representations and their effect on understanding, the 

researcher designed and implemented two questionnaires for students, a questionnaire 

for the instructor, and semi-individual interviews with seven students who applied more 

representations than their classmates or changed their representation on the posttest 

compared to their pre-test. Even though the students had the opportunity to use 

graphical and tabular representations, they were more likely to use symbolic 

representations. Herman concluded that this was due to the students’ beliefs that 

symbolic representations are more mathematical. Students also used the words 

“algebra” or “math” as synonymous for symbolic representations in their statements.  

The students stated that they did not want to depend on calculators and therefore 

used calculators for checking their answers. They believed that instructors would 

require them to have a strong knowledge of symbolic representations in future courses. 

In addition, the students thought that even though their teachers liked graphs, the 

teachers emphasized symbolic representation, which was confirmed by the teachers’ 

statements on the teacher questionnaire. The same situation applied to using tables. 

The students did not like to use tables for checking their answers, which was a 

reflection of their teachers’ preferences.  

Generally the students’ use of the representations increased from the pre-test to 

posttest except for problems with which they were familiar because they appeared on 

the pre-test. In addition, the students who were more likely to come up with correct 

responses used more varied types of representations. Thus, although the students felt 

comfortable and confident using the calculators and believed that multiple types of 
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representations were beneficial to understanding, they thought that symbolic 

representations were more mathematically correct. 

TI-83+ graphing calculators were used in Herman’s (2007) study. Some 

researchers compared instruction with TI-Nspire CAS to TI-83+ calculators. The 

difference between TI-83+ and TI-Nspire CAS is that TI-Nspire CAS allows students to 

see symbolic, tabular, and graphical representations in one screen of the calculator. 

Bostic and Pape (2010) compared the impact of two instructional methods on students’ 

achievement, perceptions about the use of the technology, problem-solving success, 

and problem-solving representations. Like Herman (2007), Bostic and Pape also 

explored the relationship between the number of representations used and students’ 

problem-solving success.  

Bostic and Pape selected four Algebra II classrooms for their investigation, two of 

which were honors classes. The researchers randomly assigned one regular and one 

honors class to the treatment and comparison groups. The treatment group consisted of 

30 students who used TI-Nspire CAS, and the comparison group consisted of 23 

students who used TI-83+ in class. Both of the groups experienced lecture-based 

instruction, and the students were given the opportunity to work individually or in pairs. 

Instruction in the comparison group was less-calculator based, and the students 

generally worked individually. Data sources included: (1) students’ achievement on a 

unit test, (2) students’ responses to two prompt questions, and (3) students’ solutions to 

one problem. They concluded that there was no statistically significant difference 

between treatment and comparison groups relating to student achievement, students’ 

perception about the use of technology, students’ perceptions about technology’s 
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benefits for their understanding, students’ problem-solving success, or the number of 

strategies used by students.  

While the students in the comparison group tended to use symbolic 

representations predominantly, the students in the treatment group tended to use 

graphical representations. The researchers therefore stated that the students who 

experienced TI-Nspire CAS used more efficient and effective representations to solve 

the problem. In addition, as in the Herman (2007) study, Bostic and Pape found a 

relationship between the number of representations that the students used and their 

problem-solving success across groups. Therefore, the feature of the TI-Nspire CAS 

calculator that shows multiple representations in one window may promote the use of 

more varied representations (Bostic & Pape, 2010). Suggestions for further research 

include longitudinal studies (Herman, 2007) and larger sample size and expanded 

instruments (Bostic & Pape, 2010).  

The use of graphing calculators has been suggested for students who have 

difficulty in representational fluency (Bieda & Nathan, 2009; Knuth, 2000). Bieda and 

Nathan (2009) analyzed 38 middle school students’ gestures and speech to understand 

how students generalize patterns in a Cartesian graph. There were five questions 

related to the graph of which two far prediction tasks served as the focus of the study. 

The first question provided an x-value close to the limit of the x-axis on the graph and 

requested a y-value that was beyond the highest value represented on the y-axis. In the 

second question, both the x-value given and y-value requested were beyond the graph. 

In these tasks, the students were faced with a dead-end with the first representation, 

and therefore, they tried to find another way to solve the tasks. These tasks allowed the 
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researchers to explore translations because the problems were designed to force 

students to translate between representations.  

Three constraints that students demonstrated as they solved the pattern 

generalization tasks included physically, spatially, and interpretatively grounded. 

Building on previous literature, the researchers stated,  

grounding is commonly used to describe the mapping that a person 
makes between an unfamiliar or abstract representation, and a more 
concrete or familiar referent. … One’s perceptions and reasoning 
processes can be inappropriately bound to the representations they are 
grounded to, which can impose superfluous or incorrect constraints on the 
representations themselves and the strategies that draw upon them, 
thereby negatively affecting problem-solving performance or transfer. 
(Bieda & Nathan, 2009, p. 638)  

The physically-grounded students saw the graph with a bounded view with regard to its 

numerical and physical limitations. They were not able to go beyond the graph. The 

spatially-grounded students tried to extend the graph but could not translate to another 

representation to solve the task. However, interpretatively-grounded students 

demonstrated representational fluency. These students were able to translate the graph 

to an equation, which is a more abstract representation. The researchers explained that 

the physically- and spatially-grounded students demonstrated representational 

disfluency “where perceived shortcomings in using representations to solve problems 

motivate students to modify or translate among representations” (p. 637).  

Thirty-six percent of the students were physically grounded to the graph. In 

addition, unbounded gestures had a significant effect on representational fluency, which 

means if students saw a graph without being bound to its physical and numerical limits, 

they were able to translate from the graphical to symbolic representation flexibly 

because they went beyond the graph. In conclusion, the researchers suggested that 
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teachers should consider the negative effects of the grounding and emphasize the 

unbounded nature of the function. The limitation of the Cartesian graph needs to be 

discussed with students to help them realize the patterns and unbounded nature of the 

graphs. The researchers suggested using graphing calculators or larger sized paper to 

help the spatially-grounded students. The spatially-grounded students have both 

bounded and unbounded views of evidence, making it seem like these students are 

making progress from disfluency to fluency, contrary to the authors’ coding of these 

students as representationally disfluent. Since students could also zoom, turn, or 

lengthen graphs in TI-Nspire calculators to see the graphs as limitless, these calculators 

may be helpful for students who are between representational disfluency and fluency 

because it is helpful for students to see an unbounded view of graphs.  

In summary, although students rely heavily on symbolic representations (Bostic & 

Pape, 2010; Herman, 2007; Knuth, 2000) or are bounded with physical and numerical 

limits of representations (Bieda & Nathan, 2009), these researchers suggest using 

graphing calculators such as the TI-Nspire CAS to support students’ development of 

representational fluency. For instance, in the treatment group of Bostic and Pape’s 

(2010) study, the students tended to use graphical representations, which means that 

when students are given the opportunity, they are able to use more effective non-

symbolic representations such as graphical representations more than traditional 

symbolic and computational strategies.  

In addition, NCTM (2000) called for the use of technology and stated that it is 

helpful for obtaining accuracy and immediate feedback as well as for visualizing tables, 

graphs, and equations and their relationships. In contrast, in Herman’s (2007) study, the 
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students’ interactions with representations provided evidence of using symbolic 

representations by hand, and tabular and graphical representations by calculator, which 

may have affected students’ translation between representations. Similar to Herman, 

Ainsworth and colleagues (2002) mentioned that one of the factors causing difficulty in 

translation between two different representations is the different way of interaction with 

representations.  

Both Herman’s (2007) and Bostic and Pape’s (2010) studies showed that students’ 

use of a variety of representations increased after instruction. Both studies concluded 

that there was a relationship between the number of representations used and the 

number of problems solved correctly. The students in Knuth’s (2000) study mastered 

translating from equations to graphs but not from graphs to equations. However, TI-

Nspire CAS provides links between representations. Bieda and Nathan (2009) suggest 

the use of graphing calculators for spatially grounded students who have bounded and 

unbounded views of graphs in order to make progress from representational disfluency 

to fluency. That is, students can zoom, turn, and lengthen graphs by using graphing 

calculators (NCTM, 2000), which helps them see representations without a bounded 

view regarding their numerical and physical limitations. This new version of handheld 

calculators may also enhance bidirectional translation (i.e., graph-symbolic and 

symbolic-graph). Ozgun-Koca and Edwards (2009) analyzed 19 pre-service, 26 in-

service teachers’ and 54 middle school students’ views on benefits and weaknesses of 

TI-Nspire after their first use. The purpose of their study was to explore whether 

teachers are ready to use this novel technology. Participants manipulated a graph 

corresponding to its symbolic representation in a quadratic equation. Then the 
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researchers conducted a survey included Likert type and open-ended questions. 

Results showed that in-service teachers believed in the capability of novel TI-Nspire 

properties more than pre-service teachers although they had similar views on this 

technology. Additionally, 97% of the students liked multiple representations and 96% of 

them liked moving the graph and examining the equation. Thus, changing a graph’s 

structure and seeing changes in the symbolic form may help students who have 

difficulty translating from graphical to symbolic representation, which was the case for 

students in Knuth’s (2000) study. NCTM (2000) calls for research in graphing 

technology because calculators and computers alter the use of conventional 

representations and increase the number of representations. 

The Role of CCT on the Development of Representational Fluency 

Technology is a very helpful tool when it is used efficiently for both conceptual 

and procedural understanding. CCSSM (Common Core State Standards Initiative 

[CCSSI], 2010) emphasized the use of technology to explore students' understanding. 

For example, according to these standards “mathematically proficient high school 

students analyze graphs of functions and solutions generated using a graphing 

calculator” (CCSSI, 2010, p. 7).  

Technology (e.g., tools, software, hardware) has evolved very quickly. Graphing 

calculators are commonly used and increase student achievement by reducing extra 

cognitive load and allow students to focus more on conceptual understanding (Ellington, 

2003). Researchers (e.g., Herman, 2007) have used graphing calculators in their 

interventional research on ways to help improve teaching and learning. Furthermore, 

studies have found that technologically enhanced classrooms create more interactive 

learning environments. For instance, Roschelle et al. (2003) has found that the 
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classroom network and response system technologies with specific questioning 

pedagogy increases participation. These technologies are being employed to transform 

classrooms into more learner- and community-centered environments (Bransford, 

Brown, & Cocking, 2000). 

As discussed earlier, classroom communication and technology may impact the 

development of representational fluency (e.g., Pape & Bostic, 2010; Warner et al., 

2009); however, communication and technology have primarily been examined 

separately in research. The combination of these factors can be seen in networked 

classrooms such as CCT. This technology has evolved from ARS to TI-Navigator. In 

this section, the first generation of CCT (ARS systems) is analyzed, followed by the 

second generation of CCT (TI-Navigator). Then, the effect of second-generation CCT 

on representational fluency is explored. 

First-generation CCT: ARS systems 

Networked classrooms started more than one decade ago with what is most well-

known as ClassTalk™ (Abrahamson, 1998, 2000). ARS systems such as electronic 

voting, personal response, and clickers, which are the first basic forms of CCT, provide 

opportunities to exchange information electronically between teachers and students. In 

educational environments, these systems enable students to use remote control 

devices (e.g., clickers) to send their answers (e.g., true/false, yes/no, numeric, multiple-

choice) to the teacher’s computer. Teachers can determine which students have not 

responded, and the results are shown to the class anonymously (e.g., histogram graph), 

which allows the teacher and class to review and discuss the responses. 

During the 1960s and 1970s, ARS had a positive effect on student enthusiasm 

but did not increase their learning (Pape et al., 2013). More recent research on ARS’s 
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current effectiveness in classrooms, however, shows that it facilitates student-centered 

teaching and has increased attendance, participation, collaborative learning, student 

engagement, student comprehension, student class satisfaction, and conceptual gain 

(Paschal, 2002; Judson & Sawada; 2002; Pape et al., 2013).  

Not only is a first generation CCT, ARS instructional system more beneficial than 

a non-CCT environment, but research shows that second generation connected 

classrooms allow for even more instructional opportunities by facilitating platforms 

wherein students may submit multiple answers and employ a variety of representations 

(Hegedus & Moreno-Armella, 2009). In a traditional classroom, generally one student is 

allowed to answer each question; however, with second generation CCT, every student 

is allowed and even expected to answer the question. If an intervention requires more 

student responses, it increases learning (e.g., Greenwood, Delquardi, & Hall, 1984). 

Also second generation CCT provides richer types of formative assessments than 

clickers. Students can answer with numerical, symbolic, or graphical representations 

rather than only multiple-choice options, allowing teachers to check students’ 

understanding and modify their instruction if needed.  

Second-generation CCT: TI-Navigator 

Second-generation CCT (see Figure 2-2) consists of “wireless communication 

systems that connect the teacher’s computer and students’ handheld technology” (Pape 

et al., 2013, p. 169). The TI-Navigator system has four components to support learning: 

Quick Poll, Learn Check, Screen Capture, and Activity Center. With Quick Poll, the 

teacher can send an individual question to the students to explore their prior knowledge. 

With Learn Check, the teacher can send questions (e.g., quizzes) to the students. The 

questions may vary in response type including open-ended, true-false, Likert-type, or 
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multiple-choice questions. A related component, Class Analysis, accumulates students’ 

responses as a bar graph in the teacher’s computer for class examination. 

 

Figure 2-2. Depiction of the TI-Navigator within a classroom. Adapted from Classroom 
connectivity in algebra I classrooms: Results of a randomized control trial (p. 
171), by S. J. Pape et al., 2013, Effective Education, 4, 169-189. 

The first two components can be seen in ARS systems, while the last two 

components, Screen Capture and Activity Center, show the sophisticated structure of 

the CCT. With Screen Capture, teachers can show each student’s response on the 

projector as a “snapshot” of each calculator. This feature allows both teachers and 

students to compare the solutions in productive discussion. With Activity Center, the 

teacher can show a shared coordinate plane for students to send their points, 

equations, and graphs. A summary of TI-Navigator’s system components is provided in 

Appendix A. 

By displaying multiple linked representations publicly, the last two components 

facilitate effective classroom discourse (Hegedus & Moreno-Armella, 2009; Pape et al., 

2013; Roschelle et al., 2003). In addition, these components provide an environment 
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that allows students to interact with each other while exploring patterns and constructing 

knowledge. That is, “instead of constraining the learning experience to be narrowly 

individualistic, this technology supports socially situated interaction and investigation. 

Moreover, the group itself owns the learning trajectories and the processes of 

knowledge construction, rather than outside experts or programmers” (Stroup et al., 

2005, p. 183). 

Impact of CCT  

Second-generation CCT has four affordances (Pape et al., 2012). First, Activity 

Center promotes examination and analysis of patterns as well as justification of 

mathematical generalizations, which may support representational fluency and 

conceptual understanding. For example, students start to generalize the effect of 

changing parameters of the equations on a graph’s position and shape as their 

classmates or themselves submit their equations (Hegedus & Moreno-Armella, 2009). 

In addition, the ability to submit student work anonymously and to project this work for 

public examination allows students the opportunity to see the differences between their 

work and the group’s work. The public display shows “the juxtaposition of ideas, often 

literally a debate rather than a resolution or synthesis” (Stroup et al., 2005, p. 188). 

Second, the ability to modify the discourse pattern changes students’ interaction 

with concepts (Stroup et al., 2005). Teachers may use students’ responses, errors, and 

misconceptions as tools for productive discourse, which changes the traditional 

discourse pattern of initiate-respond-evaluate (IRE) (Pape et al., 2010) and provides 

essential learning gains (Black & William, 1998). Thus, CCT mediates discourse 

practices (e.g., communication infrastructure) and enhances critical thinking (Hegedus & 

Moreno-Armella, 2009). Public display with comparison of ideas and strategies also 
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opens up ways for students to communicate through representations (Hegedus & 

Moreno-Armella, 2009).  

Third, the public display of students mathematical reasoning improves students’ 

identities while engaging in mathematical thinking and changing the discourse process 

(Hegedus & Penuel, 2008). In this kind of environment, students play a larger role in 

classroom discussions and debates as opposed to the traditional classroom wherein a 

teacher plays the primary role in discussion (Hegedus & Penuel, 2008). A teacher’s role 

thus changes from an instructor to a facilitator in this kind of environment (Leng, 2011).  

Allowing students to see their input publicly, receive critique from others, and 

immediately make changes will foster “forms of identity and identification of ones 

contribution to a mathematical argument” (Hegedus & Moreno-Armella, 2009, p. 404). 

To put it another way, when the IRE discourse pattern is modified, students have more 

opportunities to engage in classroom discussions. Thus, students’ dynamic 

representations move from private to public display, which positively affects students’ 

identity, rich discourse (Hegedus & Moreno-Armella, 2009), and mathematical and 

scientific knowledge and reasoning (Stroup et al., 2005). 

Fourth, public display supports formative assessment that can be used by 

students for self-assessment, which improves students’ metacognition (Hegedus & 

Kaput, 2004). In addition, connected classrooms improve teachers’ knowledge about 

their students’ present understanding, which can prompt teachers’ future decisions 

about specific feedback and instruction (William & Thompson, 2008). 

Some researchers used SimCalc MathWorlds within the TI-Navigator system 

(e.g., Hegedus & Kaput, 2004). This system uses interactively linked representations, 
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simulations (representational infrastructure) and TI-Navigator (communication 

infrastructure). The SimCalc representational infrastructure has four key properties: “(1) 

hot-links between graphs and simulations, (2) visually editable, piecewise-definable 

graphs of functions, (3) hot-links between rates and total graphs and (4) importing 

physical data into the computational notation” (Hegedus & Moreno-Armella, 2009, p. 

401).  

SimCalc MathWorlds within TI-Navigator system influences participation and 

classroom social structure in two ways: (1) it provides the opportunity to prepare novel 

activities and allows teachers to instantly collect and analyze class contributions, and 

(2) students can make better sense of their contributions by generalizing and reasoning 

their work alongside that of their classmates’ contributions (Hegedus & Moreno-Armella, 

2009). Hegedus and Moreno-Armella (2009) explored two “new forms of participatory 

activity” that are made possible through the use of “representationally-rich software with 

wireless networks” (p. 403). The first is “mathematical performances” where 

representations are created by students on their own or as a group. The second is 

“participatory aggregation to a common display” (p. 403). These activities include 

“systematic variations” within small groups or across groups to discover patterns, evolve 

generalizations, show special cases, and help students focus on group work as 

opposed to individual work.  

The second generation CCT increases participation because students can 

submit their responses anonymously, allowing for more equitable access; “[it] broadens 

the ‘bandwidth’ of classroom collaboration” (White, 2006, p. 359) by “expand[ing] the 

range of collaborative ‘frequencies’ through which students participate in a small group” 
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(p. 380). Reducing the hierarchy increases participation, or in other words, anonymous 

participation decreases student anxiety and allows students to see all other students’ 

work in a non-threating environment. In this type of environment, even when students’ 

answers are not correct, they do not feel alone. Instead, they receive feedback to 

improve themselves (Davis, 2003), which enhances the motivational climate of a class 

(Owens et al., 2004). 

Several quasi-experimental designs were implemented in connected classrooms 

to demonstrate the impact of SimCalc materials (Hegedus & Kaput, 2003). Hegedus 

and Kaput (2003) analyzed the performance of the middle and high school students 

who attended an after-school, five-week algebra program that used Simcalc integrated 

into a classroom network. Pre- and posttests included 20 items consisting of multiple 

choice, short answer, and open-response questions. The combination of these 

affordances improved students' learning in high achieving middle schools as well as 

with at-risk ninth-grade students even though they lacked prior knowledge about core 

algebraic ideas. Additionally, critically important skills such as graphical interpretation 

were improved. Recent studies also showed similar increases in students’ learning and 

positive changes in student attitudes toward learning in connected classrooms 

(Hegedus et al., 2007).  

To evaluate the impact of SimCalc MathWorlds on students’ conceptual and 

procedural knowledge, Tatar and colleagues (2008) conducted a pilot experiment 

including 21 seventh-grade mathematics teachers in Texas. They used a replacement 

unit that was three weeks long to compare students in SimCalc classrooms to the 

students in a control group with a regular curriculum. Their most important finding was 
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the growth in students’ mathematics knowledge. The students in the treatment condition 

had greater gains and higher scores than the students in the control group on the 

posttest. Most of the gains came from function-based items (i.e., conceptual items). 

That is, the students’ scores on function-based items were statistically significant 

whereas there was no statistical difference in formula-based items (i.e., procedural). 

Thus, the students in the treatment condition made significant gains in challenging 

mathematics problems. In addition, their knowledge about formula-based mathematics 

did not change. Not only did the students in the SimCalc condition learn more complex 

and conceptually difficult mathematics, but they also maintained the same progress on 

procedural knowledge as the students in the control group.  

Another study focusing on the effect of second generation CCT on students’ 

knowledge was conducted by Leng (2011). Leng’s study was comprised of 35 

secondary-school students in Singapore to explore how TI-Nspire improves calculus 

learning and teaching. He first introduced TI-Nspire Navigator by conducting 14, 30-

minute training sessions about using TI-Nspire with enriched activities before he 

integrated its use into the classroom. Qualitative data (i.e., classroom observations, self-

reflections, interviews) were then collected. Leng selected eight students randomly to 

conduct structured interviews to explore students’ conceptual understanding of 

derivatives. He found that with the help of TI-Nspire, students in calculus were able to 

make better generalizations and visualizations about the relevant properties of 

mathematics by using appropriate graphical, numerical, and symbolic representations. 

The students linked the representations, especially symbolic and graphical 

representations that helped them develop better conceptual understanding and 
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problem-solving abilities. The researcher determined six methods of using TI-Nspire: 

exploratory, graphing, confirmatory, problem solving, visualization, and the calculation 

tool. Even though it was not a specific aim of his study, the researcher found that TI-

Nspire Navigator provides a learning community that allows students to communicate 

mathematical concepts by increasing their participation in the learning process.  

Finally, Pape and colleagues (2013) examined data from the first year of a four-

year control trial in Algebra I classrooms to show the impact of connected classroom 

implementation on student achievement. The intervention included both PD and 

second-generation CCT. The PD focused on the effective use of CCT, such as rich 

mathematical tasks, multiple representations, formative assessment, classroom 

interaction, discourse, and sustained engagement. The teachers in the treatment group 

were provided PD and they used CCT in their classrooms. On the other hand, the 

teachers in the control group used graphing calculators only. Eighty-two teachers (39 

treatment, 43 control) and 1224 students were included in the data analysis (53.4% 

treatment, 54.1% female). HLM analysis showed that there was a treatment effect on 

the treatment group’s posttests. Treatment status was associated with visual, symbolic, 

and mechanical items after controlling for teachers’ years of experience. Teacher 

knowledge about students’ understanding and improvement was positively associated 

with the posttest and three subscores. Through TI-Nspire Navigator, the teacher was 

able to immediately see students’ difficulties and know students’ understanding so 

he/she can modify the lesson based on that knowledge. Teacher knowledge about 

student understanding and student achievement is enhanced as a result of TI-Navigator 

use, because the technology provides more feedback, and PD focuses on responsive 
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student thinking. The treatment (i.e., PD and technology together) had an effect on 

overall and subtest (i.e., visual, symbolic, mechanical) achievement. The effect size was 

0.30, a medium effect size, is rare in randomized experiments in education. 

Thus, CCT (1) gives access to patterns, conjectures and generalizations, (2) 

changes discourse patterns, (3) provides an environment that fosters engagement, and 

(4) increases achievement. Furthermore, CCT also provides the context for 

representational expressivity, which is the combination of representational infrastructure 

and communication infrastructure. These features are detailed in the next section.  

Second Generation CCT effect on representational fluency 

Two CCT properties may have significant impacts on representational fluency. 

The first is “the mobility of multiple representations of mathematical objects”, and the 

second is “the ability to flexibly collect, manipulate and display to the whole-classroom 

representationally-rich student constructions, and to broadcast mathematical objects to 

the class” (Hegedus & Moreno-Armella, 2009, p. 403). These researchers explored “the 

meaning of mathematical representations through enhanced communicative forms” (p. 

410), which can be visualized as an intersection of representation infrastructure and 

communication infrastructure, as seen in Figure 2-3.  

The representation infrastructure allows for the creation of a social network and 

increased communication (Hegedus & Moreno-Armella, 2009). The authors defined 

communication as “human actions in terms of speech or physical movement (e.g., 

gesture) or digital inscriptions through modern-day interfaces” (p. 400). That is, students 

can communicate with their teachers and peers through verbalization, body language, 

and digital input via their handhelds. 
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Figure 2-3. Model of RI and CI intersecting. Adapted from Intersecting representation 
and communication infrastructures (p. 400), by S. J. Hegedus and L. Moreno-
Armella, 2009, ZDM Mathematics Education, 41, 399-412.  

The authors also defined communication infrastructure as “the organizational 

structure of the various communication inlets and outlets available in society. A digital 

infrastructure is composed of networks, wires, and servers to create information flow of 

communication acts and services to various populations” (p. 400). In networked 

classrooms, the web structure of digital communication infrastructures consists of 

graphing calculators, networks, wires, and servers to provide the flow of information 

among the students and their teacher.  

In second generation CCT, representations are more visual, interactive, and 

dynamic than ever before, and new hardware allows a connected wireless system to be 

“more portable in terms of its hand-heldability” (Hegedus & Moreno-Armella, 2009, p. 

399). These properties affect representation and communication infrastructures 

(Hegedus & Moreno-Armella, 2009). Even though these infrastructures are largely 

developed separately, the authors postulated that when these two infrastructures 
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develop/co-develop together, they affect each other’s development, allowing for new 

forms of activities to be designed.  

The authors defined representational expressivity, which is the intersection of 

representation and communication infrastructure, as “where learners can express 

themselves through the representational layers of software and where a participatory 

structure enables learners to express themselves in natural ways through speech acts 

(e.g., metaphors, informal registers, and deixis) and physical actions (e.g., gestures or 

large body movements)” (p. 400). In other words, students express their thinking 

representationally by using multiple representations, verbalization, and body language, 

all of which form a learning environment that is interactive.  

Although teachers found CCT to be an effective means of instruction, there is 

limited evidence of the mechanisms for its effectiveness (Vahey et al., 2007). Therefore, 

researchers have called for more qualitative studies that explore learning and teaching 

in CCT classrooms (e.g., Hegedus & Moreno-Armella, 2009; Hegedus & Penuel, 2008; 

Pape et al., 2013). Further studies of CCT implementation could reveal which 

instructional changes yielded better student achievement, as well as identify which 

components of the technology and the PD created those instructional changes (Pape et 

al., 2013).  

Currently, research needs to explore representational fluency in second-

generation CCT environments under realistic conditions. These types of studies would 

be feasible for the future since TI-Navigator technology is relatively inexpensive 

(Hegedus & Moreno-Armella, 2009; Pape et al., 2013) and affordable to use in the 

education system. Hegedus and Moreno-Armella (2009) also suggest further work 
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based on pedagogical actions that would explore teacher knowledge about effective 

practices determined by measurable learning gains. Due to verified affordances of CCT 

environments, future work should examine its potential for supporting representational 

fluency in second-generation CCT environments under realistic conditions. 

Summary 

Representational fluency is not only the ability to translate between 

representations but also the ability to interpret and construct representations, to 

recognize specific representations for the aim of demonstration or explanation, to use 

representations for justifications of claims, and to link multiple representations in a 

meaningful way (Sandoval et al., 2000). Representational fluency is considered both a 

mechanism for supporting the development of deep conceptual understanding (Bostic & 

Pape, 2010; Duncan, 2010; Lesh & Zawojewski, 2007; NCTM, 2000; Nistal et al., 2009; 

Pape & Tchoshanov, 2001; Warner et al., 2009) and a means of assessing conceptual 

understanding (Suh et al., 2008). That is, representational fluency and conceptual 

understanding are two sides of the same coin; they are intertwined constructs. 

Representational fluency not only supports conceptual understanding but also 

generalization and abstraction (Bieda & Nathan, 2009; Nathan & Kim, 2007; Suh et al., 

2008; Warner et al., 2006; Warner et al., 2009). It is also an essential component for 

solving a problem correctly (Ainsworth et al., 2002; Nistal et al., 2009). Students are 

more successful when they possess the ability to translate between representations as 

well as use multiple and non-symbolic representations (Bostic & Pape, 2010; Brenner et 

al., 1997; Herman, 2007; Nathan & Kim, 2007; Suh & Moyer, 2007).  

Through research and CCSSM document, the education community continues to 

emphasize the importance and need for developing representational fluency (CCSSI, 
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2010; NCTM, 2000). However, students in middle, high, and even college levels leave 

school without attaining proper representational fluency (Ainsworth et al., 2002; Cramer, 

2003; Davis & Maher, 1997; Even, 1998; Gerson, 2008; Herman, 2007; Lesh et al., 

1987; Kaput, 1989; Knuth, 2000) often because representational fluency is a cognitively 

difficult ability for students to develop (Ainsworth et al., 2002). 

There are at least two factors that potentially support the development of 

representational fluency: communication and technology. Through communication, 

representational fluency may be supported by active engagement in the discussions 

about interpretation, construction, evaluation, comparison, generalizing of 

representations, justifying the representations in solutions, and criticizing/questioning or 

explaining/responding to the critiques of their peers or their own representations 

(diSessa et al., 1991; Warner et al., 2009). The development of representational fluency 

may be supported by the following interrelations between technology and 

communication: a calculator’s allowance for quick-access to multiple representations 

(e.g., symbolic, tabular, and graphical), accuracy and immediate feedback, step-by-step 

support in algorithmic processes, a self-checking system, and flexibility in actions on 

representations (Bieda & Nathan, 2009; Bostic & Pape, 2010; Herman, 2007; Knuth, 

2000). Because evidence suggests that communication and technology may separately 

support students’ developing representational fluency, the present study investigates 

instruction that is characterized by the use of CCT with the aim of examining the 

relationship between these instructional strategies and increasing such fluency. 
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CHAPTER 3 
METHOD 

Context of the Study 

The present study reported on classroom observations conducted during the 

third year of a four-year project. The Classroom Connectivity for Mathematics and 

Science Achievement (CCMS) project examined the effect of CCT on students’ 

achievement in Algebra I and Physical Science (Pape et al., 2013). In the first year of 

the project, teachers who volunteered to participate in the study were randomly 

assigned to treatment or control groups. The treatment group participated in a one-week 

summer institute where the teachers learned about TI-Navigator. The teachers 

“engaged in demonstration, practice, and discussion of appropriate teaching with CCT 

for Algebra I as well as brief lectures on formative assessment, classroom discourse, 

and self-regulated learning” (Pape et al., 2010, p. 10). Teachers also received follow-up 

PD at an annual conference, Teachers Teaching with Technology, and were supported 

by a listserv, online training modules, and telephone interviews (Irving et al., 2010; 

Owens et al., 2008; Pape et al., 2010; Pape et al., 2013).  

Teachers in the control group taught the Algebra I class with graphing calculators 

without CCT in their first year. In the second year, the control teachers were able to use 

CCT. The research design of the larger study was a randomized control trial where the 

teacher participants were randomly assigned to treatment or control groups in the first 

year of the project. Thus, the overall design was a randomized field trial with a wait list 

control design. 

To examine the effects of CCT on the development of representational fluency, 

this study first identified the classrooms with initial mean pre-test scores below 50%. 



 

79 

Then, the two classrooms with the highest and two classrooms with the lowest gain 

scores were selected for analysis. This research employed a qualitative study design, 

with the intent of providing contrasting or illustrative instances in instructional use of 

representations. Classroom observations conducted on these four classes were 

examined to determine the similarities and differences that may potentially be 

associated with these classes’ gain-score differences. Thus, the purpose of the present 

study was to compare the ways in which teachers used CCT to potentially support 

representational fluency within initially lower achieving classrooms that showed distinct 

progress on translation problems.  

The following research question guided this inquiry: How do teachers’ uses of 

CCT differ between classes that were initially low achieving but then showed differential 

improvement on translation problems? 

Participants 

Initially, 127 teachers participated in the study, with 66 of them assigned to the 

experimental (treatment) group and 61 assigned to the control group (Irving et al., 

2010). Some teachers were excluded from the study due to personal reasons such as 

resignation from their teaching position or health problems. The majority of the teachers 

were white, female, and held mathematics degrees. Their teaching experience ranged 

from 1 to 36 years across different years of the study. The complete demographic 

information is provided in Table 3-1. Depending upon the year of the study, between 

271 and 696 students participated. Each student completed pre- and post algebra tests 

as well as surveys related to their perceptions about instruction. Approximately half of 

the students were female. Student demographic information for the present study is 

provided in Table 3-2. 
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Table 3-1.  Teacher Demographic Data  
Group * Year of 

CCT use  
N**  % White  % Female  % Math 

degree  
Years 
Teaching 
Experience 
(Median)  

% 
Free/Reduced 
Lunch 
(Median)***  

Treatment 
2Y3  

2  28  89.3  76.7  73.3  13  15  

Treatment 
1Y3  

3  19  100  77.3  59.1  12  9  

Note. Adapted from Algebra Achievement over Four Years in TI-Navigator Connected Classrooms, by 
D. T. Owens, S. J. Pape, K. E. Irving, L. Abrahamson, D. Silver, V. A. Sanalan, and B. Morton, 2010, 
April, Poster presented at the Annual Meeting of National Council of Teachers of Mathematics (NCTM), 
San Diego, CA.    
* In year 1, Cohort 1 is the experimental and Cohort 2 is the control group. The last number shows the 
year of the study. For instance, Control 2Y3 indicates data from Cohort 2 in the third year of the study. 
Treatment 1Y3 indicates data from Cohort 1 in the third year of the study. In both cohorts, teachers are 
the same across the years of the study with different students.  
**Number of teachers who reported demographic data.   
***This column demonstrates school averages as a proxy for classroom composition and should be 
interpreted with caution. 

 
Table 3-2.  Student Demographic Data. 

Group N % Female Group N % Female 

Treatment 1Y3 577 47.2 Treatment 2Y3 696 52.8 
Note. Adapted from Algebra Achievement over Four Years in TI-Navigator Connected Classrooms, by D. 
T. Owens, S. J. Pape, K. E. Irving, L. Abrahamson, D. Silver, V. A. Sanalan, and B. Morton, 2010, April, 
Poster presented at the Annual Meeting of National Council of Teachers of Mathematics (NCTM), San 
Diego, CA. 
 

Teachers who participated in classroom observations during the third year of the 

larger study were chosen for the present study because these teachers had sufficient 

experience using the TI-Navigator. That is, by year three, the teachers would have had 

ample opportunity to engage with the technology and were thus likely more proficient in 

deliberately using the affordances of the technology. In addition, the greatest number of 

teachers was observed during year three of the original study, which provides a 

substantial set of data. Forty of the 41 teachers’ classroom observations were included 

because the audio was of sufficient quality for analysis. The demographic information 

for four teachers who were selected for this analysis is listed in Table 3-3 (see below for 

participant selection procedures). 



 

81 

Table 3-3.  Teacher Participants Demographic Data  
Teachers Year of 

CCT use  
Undergraduate 
Major  

Graduate Major  Years Teaching 
Experience  

Ms. BW  2  Pre-Vet Med  Ph.D., Animal 
Feeding/Animal 

13  

Ms. MB  3  Communication  MA, Journalism 3  

Ms. MA 2 Mathematics MA, Educational 
Computing 

21 

Ms. JR 2 Mathematics Curriculum and 
Instruction 

20 

 
Data sources 

Classroom Observations 

Classroom observations typically consisted of two consecutive class periods. The 

length of each observation is between 48 and 97 minutes, and these observations were 

collected between April and June in 2008. The classroom videos and their verbatim 

transcripts were used in this research.  

Algebra Pre- and Posttest 

A description of the Algebra pre- and posttests as well as their development 

within the CCMS project was adapted from Irving et al. (2010). The pre-test and 

posttests are in Appendices C and D. 

Algebra pre-test 

The Algebra pretest consists of a total of 32 pre-algebra and algebra items (α = 

0.81) containing multiple choice, short-answer, and extended constructed-response 

formats and was administered at the beginning of the school year to measure baseline 

achievement of participating students. This pretest, which was previously validated by 

the National Center for Research on Evaluation, Standards, and Student Testing 

(CRESST, 2004) was based on released items from the National Assessment of 
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Educational Progress (NAEP) and the California Standards Test. This measure was 

validated using a three-parameter logistic (3PL) Item Response Theory (IRT) model. 

Algebra posttest 

The development of the Algebra I posttest (Abrahamson et al., 2006) began by 

comparing mathematics content standards of 13 states, with Ohio, Texas, New York, 

and Virginia representing those states from which a majority of CCMS participants were 

drawn. Thirty-five questions aligned with these standards were selected from released 

items from California and Virginia standardized mathematics tests and from the TIMSS 

assessment and NAEP. IRT analysis was conducted to ensure that the technical quality 

of the measures resulted in the exclusion of five items. The final instrument included 24 

multiple-choice items, 5 extended-response items, and 1 three-part short-answer 

question (α = 0.85). 

Translation problems in pre- and posttests  

To measure representational fluency, translation problems were extracted from 

the pre- and posttests. Translation problems are those in which the initial representation 

(i.e., input) and the answer’s representation (i.e., output) are different (Nathan et al., 

2002). An example of a verbal-graph translation problem is provided in Figure 3-1. Nine 

verbal-symbolic (i.e., Problems 5, 6, 12, 14, 15, 21, 23, 25, and 26), one verbal-

graphical (i.e., Problem 19), and one symbolic-graphical (i.e., Problem 24) translation 

problems were identified on the pre-test (n=11). Ten verbal-symbolic (i.e., Problems 2, 

4, 6, 7, 9, 13, 15, 21, 23, and 28), one verbal-graphical (i.e., Problem 5), three symbolic-

graphical (i.e., Problems 8, 19, and 25), three graphical-symbolic (i.e., Problems 18, 20, 

and 22) problems were identified on the posttest (n=17).  

 



 

83 

 

Figure 3-1. An example of verbal-graph translation (Adapted with permission from 
Stephen Pape). 

Procedure 

Participant Selection 

There were two criteria for participant selection. First, the content of the videos 

was considered. Only classroom observations that focused on quadratic equations were 

considered because instruction related to quadratic equations provides more 

opportunities to observe students’ use of representations. Second, classrooms with 

initial mean pre-test scores below 50% with highest and lowest gain scores were 

considered. That is, among the classroom observations that focused on quadratic 

equations, the two teachers’ classrooms with the highest gain and the two teachers’ 

classrooms with the lowest gain scores were selected. Gain scores were calculated as 

the percentage of the maximum possible change (i.e., (Post – Pre)/(Maximum Score 

(100) – Pre)), which is displayed in Table 3-4. The unit of analysis was the two 

classrooms’ observations per teacher.  
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Table 3-4.  Classroom Gain Scores  
Classroom Gain Score 

Ms. BW  0.14773 

Ms. MB  0.146815 

Ms. MA -0.06471 

Ms. JR -0.13157 

 

Open-ended item scoring procedure within CCMS project 

The algebra pre-test and posttest respectively contained seven and six open-

ended items, five of which were common to both measures. Thirteen points were 

allocated for the open-ended items on each measure. Following initial scoring by the 

research team, a graduate research associate scored a random selection of 10% of the 

papers to estimate inter-rater reliability, which ranged from 0.88 and 0.98 reflecting a 

high degree of consistency. 

Translation problem achievement 

Students’ translation problem achievement on the pre- and posttest were 

calculated to determine a sub-score by summing their scores on translation problems. 

The maximum score on the 11 translation pre-test items was 13 points with two 

problems weighing two points each. The maximum score on the 17 posttest translation 

items was 20 points with three problems weighing two points each. To create consistent 

scores on each measure, the students’ pre-test scores were divided by 13 and 

multiplied by 100, and their posttest scores were divided by 20 and multiplied by 100. 

Students with missing data were deleted from the dataset. The gain score on translation 

problems, which was the percentage of the maximum possible change, was determined 

for each student by using the method described above. Finally, the gain score arithmetic 

mean was calculated for each classroom.  
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Data Analysis 

The main aim of data analysis in a qualitative study is to search for meanings. 

Hatch (2002) stated the analysis of meaning as “organizing and interrogating data in 

ways that allow researchers to see patterns, identify themes, discover relationships, 

develop explanations, make interpretations, mount critiques, or generate theories” (p. 

148). Generally constructivist researchers adopt post-positivist procedures to search for 

these meanings (e.g., Lincoln & Guba, 1985). I have adopted the steps from several 

analytic methods described by Hatch (2002). The following steps were used for each 

teacher studied: 

 First, I began reading the entire transcript of two class periods to become familiar 

with the context of the class. Then, I reread the transcript to identify the frame of the 

analysis in order to break the transcript into “analyzable parts” (Hatch, 2002). Tesch 

(1990) defined these smaller parts of transcript data as “a segment of text that is 

comprehensible by itself and contains one idea, episode, or piece of information” (p. 

116). The frame of analysis for this study was the conversations, which generally 

started with a teacher’s question to the students and ended when the problem was 

solved.  

Next, I watched the teacher’s classroom observation videos while simultaneously 

consulting the corresponding transcripts. Throughout the data analysis, I kept a daily 

research journal in which I included the daily tasks performed along with my overall 

impressions of each day’s class. The teachers’ behaviors were described without 

knowledge of whether their students made progress from pre-test to posttest. I read 

through the descriptions developed while watching the classroom observation video 

recordings. These descriptions were separated into three sections including classroom 



 

86 

context; psychological environment and general teaching strategies; and 

representational practices. The first section included the total number of students, class 

involvement, topics covered, setting, and general impressions derived about the class. 

Then, I described the psychological environment and general teaching strategies and 

recorded observations such as the way teachers encouraged students to take notes or 

let them explore. The use of representations, which included translation between 

representations, construction, and interpretation of representations, were detailed in the 

last section. Particular descriptions of episodes or instances in certain classes were 

explained in a couple of words in separate memos, which are “written notes to yourself 

about the thoughts you have about the data and your understanding of them” (Graue & 

Walsh, 1998, p. 166). Some examples of when I used memos in my analysis were 

instances during the classrooms that involved interpreting representations within real-

world scenarios and using representations for specific purposes.  

Third, I reviewed the teaching strategies potentially related to representational 

fluency by going back to the related segments of the video and the transcript. During 

this step, the segments were analyzed in more detail to make sure that the memo 

provided accurate descriptions and sufficient evidence for the memo. If there was a 

need, the memos and their descriptions were revised. Next, evidence from transcripts 

and videos (e.g., screen shots and excerpts) were included to support the memos.  

Fifth, I searched for emerging themes across the memos during cross-case 

analysis. In this step, since the purpose was to look for commonalities and differences 

across effective and less effective classrooms, the memos were categorized according 

to effective or less effective classrooms. I then stepped back from individual memos to 
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identify connections between them. The memos were grouped under themes (e.g., 

formative assessment) based on similarities. Themes were created either by keeping 

the original form of the memo or by combining more than one memo of similar 

information. In addition, I also categorized certain memos as belonging to more than 

one theme. Once the themes were finalized, the memos were re-examined to ensure 

that they represented their assigned themes. The themes were compared continuously 

until clear distinctions between them were determined.  

While some researchers claim that it is better to take out personal beliefs and 

characteristics from research reports, other researchers encourage tracking subjectivity 

systematically during the research to better understand analyses and outcomes (Gall et 

al., 2007). Including brief notes about the researchers’ background and experiences can 

support trustworthiness and increase readers’ understanding of their findings. Thus, I 

include a brief note about my background and experiences.  

Researcher Subjectivity 

Before undertaking this study, I will shed some light on my own personal 

educational experiences, beliefs, perceptions about technology, and expectations for 

the study. Not until my graduate education did I have access to common technological 

tools such as graphing calculators or even a laptop computer. Prior to my graduate 

education, I believed that symbolic representations were very important, and there was 

no mathematical problem that I could not solve by using symbolic representations.  

After I came to the United States, I attended a workshop that discussed the 

educational benefits of using the TI-Navigator. I was impressed with how teachers and 

students were using different representations flexibly. A couple of years after that, I had 

an opportunity to assist on a project in which I prepared lesson plans with a group of 
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instructors and professors. I observed instructors teaching with TI-Navigator. It was very 

beneficial for me to witness how students and teachers used this technology. In 

addition, I had a chance to visit both public and private high schools and see how the 

TI-Navigator was being used to make classrooms more interactive and practical.  

Soon afterward, in my doctoral seminar on mathematical processes, I was struck 

by how representations could be taught and made useful for students. I began to read 

journal articles and books about the various types of representations and soon realized 

that being able to make connections between representations increases problem-

solving efficiency. Finally, at the University of Florida, I had the opportunity to use the 

TI-Navigator while teaching and observed how my students’ improved their 

understanding of concepts.  

At a personal level, I am particularly interested in how students and teachers in 

the United States use representations and the TI-Navigator. As an instructor, I hope to 

witness additional positive aspects of technology and the use of representations among 

the participants of this study. As a researcher, I acknowledge how my personal and 

educational experiences may affect my perceptions of the participants and their 

teaching practices.  

Ensuring the Quality and Rigor of Qualitative Research 

To increase the credibility and validity of my conclusions, I applied three out of 

five strategies mentioned by Gall et al. (2007). Two of the strategies could not be 

applied because one of them requires the participants’ involvement in the research and 

the other includes support from quantitative data.  

The first strategy is usefulness; that is, making the study “useful to readers” (Gall 

et al., 2007, p. 474). I achieved this by conducting the study theoretically and practically. 
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Theoretically, I studied the representational fluency process in a comprehensive way. 

Practically, I described and recommended contexts that support improved 

representational fluency abilities.  

Second is the chain of evidence, which includes “build[ing] clear, meaningful links 

between research questions, raw data, and the findings” (Gall et al., 2007, p. 474). I 

achieved this by making an audit trail, which includes documentation of my research 

process.  

The final strategy, truthfulness and reporting style, involves “be[ing] honest and 

straightforward” (p. 474). I achieved this by including direct quotes and describing 

specific and concrete events from the video recordings.  
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CHAPTER 4 
OVERVIEW OF CLASS SESSIONS  

This chapter provides an overview of the Algebra I class sessions including a 

description of the topics and activities, the class’s psychological environment, and the 

general mathematics teaching approach, as well as discusses the representational 

practices of each teacher. The psychological environment and general mathematics 

teaching approaches section describes how the class was set up in terms of fostering or 

hindering a space conducive to mathematical instruction. The representational practices 

section explains how individual teachers used representations within instructional 

strategies. Chapter 5 provides a cross-case analysis of the classroom instruction, which 

compares the teachers’ practices related to each of these characteristics.  

Excerpts from transcripts and screenshots from classroom observation video 

recordings are used as evidence to support the researcher’s interpretations and 

findings. The excerpts are identified with the participant, date, period number (when 

appropriate), and line number. For example, (MA_05.06.08_Per. 6, 36-45) refers to line 

numbers between 36 and 45 of a transcript from Ms. MA’s class held in period six on 

May 6th, 2008. The screenshots are identified according to the participant, date, period 

number (when appropriate), and time. For example, (MB_04.01.08, 16:14) refers to time 

16:14 of a classroom observation video recording from Ms. MB’s class held on April 1st, 

2008. If necessary, pseudonyms are used for students. Otherwise, “S” indicates one 

student and “SS” refers to two or more students.  
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Ms. BW 

One class was observed on two consecutive days. A detailed description of the 

lesson activities is discussed in this section to provide an overall understanding of the 

class sessions. 

General Classroom Description 

Ms. BW’s class consisted of approximately 19 students. The majority of the 

students consistently participated in classroom discussions. The students worked 

individually or in pairs. Although the students were quiet, they were energetic and 

engaged.  

The teacher began the first class period using the Learn Check component of TI-

Navigator to identify the homework questions on which students had received help from 

others. The students submitted “yes” if they received help from others on a specific 

question. Next, the teacher shared a class analysis to show the number of students who 

did or did not need help on each question. If most of the students solved a homework 

question by themselves, she quickly went over the problem. If most of the students 

received help from others (e.g., word problems), the teacher provided detailed 

explanations before collecting their homework. The teacher asked the students to check 

and correct each other’s homework and then return it to its owners. This activity took 20 

minutes of class time.  

Then, working individually, the students worked on eight exercises related to 

quadratic equations while using calculators. In these exercises, the students found the 

roots of an equation by factoring and also identified x-intercepts. In addition, they 

sketched its graph and determined the axis of symmetry. Finally, the vertex of a 
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quadratic equation was found algebraically and the axis of symmetry was identified by 

hand. These exercises took 24 minutes of class time. 

In the next activity, the students watched a video clip about a real-world detective 

scenario. In the clip, wherein a man attempted suicide, a parabolic shape was created 

while he fell from a bridge to the ground (Figure 4-1). The scenario involved a detective 

who wanted to determine the horizontal distance between the ground under the bridge 

and the point where the man fell. The students’ goal was to predict where the man 

should have fallen and the distance he should have traveled. 

 

Figure 4-1. Introduction to the detective problem (BW_05.06.08, 49:23).  

The students entered the coordinates of the man (values for X and Y that were 

collected by the detective) into a table (Figure 4-2A) in the graphing calculator to identify 

its scatter plot (Figure 4-2B). They came up with the corresponding equation (Figure 4-

2C) and entered it into the calculator to create its graph (Figure 4-2D). This activity took 

17 minutes. 
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A B 

C D 

Figure 4-2. Screenshots from the students’ work on the detective problem. A) X- and Y-
values in tabular representation, B) Scatter plot of the values, C) Quadratic 
equation, and D) Graph of the equation (BW_05.06.08, 52:52, 55:33, 58:14, & 
58:17). 

Another real-world problem required drawing the curve for a basketball player’s 

shot to a basket. She asked the students to determine the coordinates identifying a 

parabola that went through the three points representing the locations of the player, 

basket, and coach on the X-Y coordinate system. They performed this activity by either 

using the activity sheet in front of them or by coming up to the board. The students 

identified and submitted their equations through TI-Navigator to find a parabola that fit 

between these points (Figure 4-3). 
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Figure 4-3. Basketball shot problem screenshot (BW_05.06.08, 01:11:23). 

The teacher encouraged the students to resubmit their graphs. Yet during the 

discussion she realized that the students forgot how to modify the location and shape of 

a parabola by changing the equation’s coefficients. She therefore opened a new screen 

with a coordinate plane in Activity Center and asked the students to determine an 

equation that matched her parabola on the screen (Figure 4-4). This activity took 14 

minutes. 

 

Figure 4-4. Students’ submitted parabolas matching with Ms. BW’s (BW_05.06.08, 
01:21:18).  
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At the beginning of the second class period, the teacher projected a natural 

landform picture on the screen and asked the students to submit their quadratic 

equations individually (Figure 4-5). She assigned a color to each student’s submission 

so they could clearly see their parabolas. The aim was to fit the parabolas between two 

mountains on the picture. 

 
 
Figure 4-5. Natural landform problem (BW_05.07.08, 04:45).  

Together the students analyzed each equation and discussed how to make them more 

accurate. The teacher used the Activity Center component for this activity, which took 

10 minutes. 

Then students exchanged homework and spent six minutes checking each 

other’s work; their homework task had been to find the roots of quadratic equations 

using the calculator and sketching the graph by hand. The teacher asked one student to 

share the homework answers with the class, and the other student to correct their 

classmates’ work. Students returned the corrected homework to its owner, and the 

teacher went over the questions if the students needed detailed explanations.  

After the students checked their homework, they worked on a lesson from the 

book about solving quadratic equations by factoring. They started with warm-up 
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activities including finding the product of a quadratic function and factoring a polynomial. 

Then the teacher continued the lesson with PowerPoint slides explaining how to solve 

quadratic equations by graphing. The class spent nine minutes on this exercise. 

The students solved two real-world word problems on their worksheet using a 

graphing calculator. The first problem was to find the length of time a frog remained in 

the air after jumping straight up. The quadratic function 𝑓(𝑡) = −16𝑡2 + 12𝑡 modeled the 

frog’s height above the ground after t seconds. Another real-world problem scenario 

included a dolphin jumping out of the water. The quadratic equation 𝑦 = −16𝑥2 +

32𝑥 was used to model the dolphin’s height above the water after 𝑥 seconds. The class 

found and discussed the length of time the dolphin remained out of the water. After 

solving these problems, the teacher sent a quiz related to finding roots of quadratic 

functions to the students using the Learn Check component. The class spent seven 

minutes each on the real-world problems and the quiz.  

Finally, the students performed a group activity to create a quadratic equation to 

model revenue related to selling flowers. The scenario involved students acting as the 

owners of a shop. If they sold 100 bouquets, they charged 15 dollars for each bouquet. 

Every time they lowered the price by 20 cents, the number of bouquets sold increased 

by four units. First the teacher created a table with the values of X, cost, and number of 

bouquets by hand (Figure 4-6A). Then the students identified an expression for the 

price of the bouquets and the number sold so they could use these expressions to 

create an equation for revenue. Once it was created, they entered it into the calculator 

to draw a graph for revenue (Figure 4-6B). This activity took 30 minutes.  
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A  B 

Figure 4-6. Creating the quadratic equation to model the revenue in the flower problem. 
A) Table with values and B) Graph of the revenue equation (BW_05.07.08, 
54:32 & 01:08:40). 

Psychological Environment and General Mathematics Teaching Approach  

Four characteristics of this class emerged through the analysis: (a) fostering 

strong communication skills, (b) promoting student participation and attention, (c) 

teaching in a fast-paced manner, and (d) encouraging technology-use.  

Fostering strong communication skills 

Ms. BW engaged the students in classroom activities by fostering effective 

communication, which was facilitated by her sense of humor. For example, in one 

instance when her marker dried out, she sarcastically threw the marker in the trash and 

said it was a good marker. She also joked with a tall student by calling him “little”, and 

she made fun of her age and said she was getting old and needed a bigger calculator 

when she misread the numbers on the calculator. She also started a comical exchange 

with some girls, sarcastically asking, “What’s going on over here, ladies, other than 

doing hair?” (BW_05.07.08, 2174).  

Ms. BW exhibited specific ways of dynamically expressing her feelings. She said, 

“ah, ah, ah, ah” (BW_05.06.08, 939) when a student answered her question incorrectly 



 

98 

and “oh, oh” (BW_05.06.08, 38:37) while teaching an important concept. In addition, 

she would spend a little time talking with students about non-academic issues such as 

their birthdays, which tended to support her efforts to build rapport with her students.  

Ms. BW explained the correct use of terminology when communicating concepts 

to her students. In the first class period when identifying the x-intercepts, the students 

figured out that a parabola that did not intersect with the x-axis had “no solution”. The 

teacher, however, clarified the distinction between “no solution” and “no real solution” by 

explaining real and imaginary numbers.  

T: At our stage of mathematical knowledge, the answer when it doesn’t cross 
the x-axis is “no real solution.” It’s not that there is no solution ever; it’s 
that at our level we’re not cool with imaginary numbers so as far as we 
know there is no real number solution to it, which is why we say “real 
solution” because we’re talking about real numbers. Ok? The reason is it 
does not cross the x-axis, so any time you see one where it doesn’t cross 
the x-axis, there are no real solutions. (BW_05.06.08, 1082-1087) 

The students used this term correctly in the second class period. When the 

teacher asked a similar question, they responded by saying, “There’s no real number” 

(BW_05.07.08, 767). As in the previous example, Ms. BW promoted correct use of 

terminology by clarifying additional misunderstandings when the students expressed 

confusion over the axis of symmetry and the vertex, which they thought were same. The 

teacher also corrected a student’s misconception about the difference between a 

solution and a factor. 

Promoting student participation and attention 

A high level of class participation was observed in Ms. BW’s classroom. She 

promoted participation even when reviewing the students’ homework by asking that 

students provide each of the answers. The teacher initiated discussion by directing a 

question to one student and would redirect the question only if the student was not able 
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to provide an answer. With this approach, Ms. BW could interact with each student 

quickly. However, while this approach might be helpful for a teacher to increase 

students’ participation, Ms. BW sometimes used it harshly. In one instance, when a 

student was not able to provide a correct answer for a question, she repeated the 

question, and when another student attempted to share his answer without the teacher 

asking him, Ms. BW angrily replied “You’re not Miss _____” (BW_05.07.08, 474).  

The teacher sometimes checked whether the students were focused such as 

following an explanation about a problem, she checked if the students were on track. In 

one instance, when Ms. BW saw that the students’ attention was inadequate, she 

clapped her hands to reengage them in the lesson. In another instance, she helped one 

group and left to check other groups; after a few minutes, she came back to check the 

progress of the first group and still remembered what they had done. She said, “When I 

left you, you were going to multiply these two together for revenue and nothing 

happened” (BW_05.07.08, 2178-2179). 

Further, the teacher remained in control of the class throughout the period. When 

the students talked about unrelated topics, she warned them by saying, “There should 

not be any talking” (BW_05.07.08, 40). Possibly to engage the students better, she 

mentioned that the quiz available through the Learn Check component of TI-Navigator 

would be similar to the quiz that would be given the next day.  

Ms. BW showed appreciation for students’ mathematical work. For example, 

when drawing the curve for the basketball player’s shot, she praised one of her students 

who submitted an accurate graph, saying, “This is Reddick? That’s a good one, 

Reddick. Just a little low; you’re going right through this end so you need to shift a little 



 

100 

to the right” (BW_05.06.08, 1876-1877). While working on the natural landform problem, 

the students’ parabolas were all facing the correct direction, and they were all parabolas 

rather than lines (Figure 4-5). Thus, she said, 

T: Everybody did a really good job on this because like I said it’s not a 
perfect parabola. Everybody’s got them facing the right direction; that’s a 
start for us. We have all quadratics, which is a really good start because 
sometimes we end up with a bunch of lines and we don’t have any of 
those this time so we’re making good progress on trying to understand 
what it means to be a quadratic. (BW_05.07.08, 175-179) 

The teacher showed her appreciation when the students made good progress in their 

work such as translating between representations. 

The teacher also promoted participation by engaging the students in rich 

mathematical tasks such as the modeling problems. When performing the last activity 

about modeling revenue for selling flowers, some students said, “I’m excited” 

(BW_05.07.08, 1366) and “that’s exciting” (BW_05.07.08, 1395). In addition, the teacher 

increased the students’ submission rate by counting down from ten seconds to indicate 

the end of an activity.  

Another way Ms. BW promoted participation was through creating a safe 

environment for the students to ask questions. Even though the students did not 

indicate needing help on several homework questions, they wanted to discuss them and 

asked several questions. In addition, without the teacher’s encouragement, the students 

were comfortable asking questions. For example, a student said, “I have a question. For 

number six how do you tell there’s no real solution here?” (BW_05.07.08, 517). They 

sometimes asked the teacher to repeat the questions possibly to avoid 

misunderstanding. At other times, however, Ms. BW sometimes apparently only wanted 

to hear the correct answers from the students. She said, “Don’t send it to me unless you 
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know it’s right” (BW_05.06.08, 2047). This may discourage student participation in 

classroom discussions.  

Teaching in a fast-paced manner 

The teacher used the entire class period and valued each minute of class time. 

She assigned tasks to the students even when collecting their homework. For example, 

she said, “Alright, while I’m collecting homework we’re going to be taking notes from the 

PowerPoint so go ahead and warm yourself up with these” (BW_05.07.08, 610-611). 

Before the time was up, she would let students know how much remained to finish a 

given task. But on several occasions, the students needed more time. In one instance, 

when Ms. BW reminded the students about the remaining time, one said, “I’m still on the 

first one” (BW_05.07.08, 1160). During another activity, some students did not have 

enough time to send a graph, so the teacher could not assign a color to them. 

Sometimes she did not give enough time for the students to think and solve the 

problems for themselves.  

Ms. BW taught in a very fast-paced manner. When a student came up with an 

incorrect answer, she sometimes explained how to arrive at a solution too quickly. Even 

if a student answered a question partially, the teacher moved onto the next question 

without checking if others knew the complete answer. During the last activity of the first 

class period, the teacher asked the students to match their graphs with hers and said, 

“Match me” (BW_05.06.08, 2021-2042) several times in a row. The students, however, 

became stressed by this fast-paced teaching approach and said, “Ok, hold on, Jesus” 

(BW_05.06.08, 2044).  

In several instances Ms. BW limited the students’ thinking thorough this fast-

paced discourse environment. She occasionally provided answers and gave 
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explanations before letting the students explore an activity. At the beginning of the 

activity about selling flowers described earlier, the teacher explained that the revenue 

equation would be quadratic. Even before the students started to determine expressions 

of the revenue equation, she stated, “Revenue is equal to the price that you are 

charging times… that’s multiplication… the number of bouquets. And if you do that, or 

let’s say when you do that, not if… when you do that correctly the revenue equation that 

you get should be a quadratic, ok?” (BW_05.07.08, 1441-1443). Ms. BW, however, 

provided thorough explanations and did well to clarify important steps to problems, 

despite sometimes giving the explanations prematurely. 

Encouraging technology-use 

Ms. BW provided explicit instruction on how students could use technology to 

their advantage. She projected instructions on using the technology on the board and 

distributed printouts to the students. When needed, she also gave instructions verbally 

and encouraged the students to use the calculator by making statements such as, “The 

calculator makes life a whole lot easier for us” (BW_05.06.08, 609). She mentioned that 

finding a solution using the calculator was easier than calculating by hand. When a 

problem required extensive calculations, the teacher did not overwhelm the students by 

performing the activity manually. Instead, she encouraged them to use the calculator, 

saying, “So really we’re going to push a couple of buttons on the calculator if you look at 

it” (BW_05.06.08, 844-845). Then she went over the steps on the calculator. She 

reiterated that calculating was “not that much work because most of the work was done 

in the calculator” (BW_05.06.08, 982-983). 
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Representational Practices 

Five characteristics of Ms. BW’s representational practices emerged: (a) 

fostering the use of representations, (b) using different translations, (c) distributed 

nature of translations, (d) formative assessment, and (e) promoting translation through 

teacher questioning. 

Fostering the use of representations 

Ms. BW fostered the use of representations in two ways: (a) by engaging 

students with real-world scenarios and (b) by using representations for specific 

purposes. For example, she introduced the detective problem during the first class 

period by watching a video clip (Figure 4-2). For this activity, the students were asked to 

think of themselves as detectives and predict where the man in the picture would fall by 

determining the quadratic equation for the man’s path after he jumped from the bridge, 

drawing its graph, and identifying the distance that the man fell. The students 

demonstrated their familiarity with solving these kinds of problems and made 

connections with another real-world problem they had solved before; at the beginning of 

this activity when the teacher explained the scenario, the students related it to a 

previous exercise, stating, “Oh, the basketball thing” (BW_05.06.08, 1355).  

During the second class period, the students were asked to determine a frog’s 

jumping height. Ms. BW guided the students in linking their answers to real-world 

applications through the questions she asked, “What does that [frog’s jump] look like on 

the graph?” (BW_05.07.08, p.19). She also drew a parabola on the board (Figure 4-7), 

pointed out that the frog started at x = 0 on the coordinate system, and asked where it 

returned back to the x-axis. 
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Figure 4-7. Graph for the frog jump calculation (BW_05.07.08, 38:19). 

The teacher then asked the students to link the problem to other interpretations by 

asking the length of time the frog had stayed in the air: 

T:   I want to know how long he’s in the air.  

SS:   That’s an intersection. / It would be the X… / Something happens… / 
…zero on the ground. 

T:   Right, it will be here when he comes back to zero again.  

S:   Point seven five. 

T:   He starts at zero, zero but he comes back at something comma zero. 

S:   Point seven five, point seven five.  

T:   Point seven five, so he’s in the air for how long? (BW_05.07.08, 964-976) 

Similarly, Ms. BW presented problems (described earlier) involving real-world 

scenarios including a basketball player, a natural landform, and a dolphin’s jump out of 

the water. 

Another way Ms. BW fostered the use of representations was by using graphical 

and tabular representations for specific purposes when solving problems. The following 

excerpt shows how she encouraged the students to use specific representations when 

solving problems: 
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T: And I always graph it first because I want to see what I’m looking for, and 
one of these is going to jump out at you as to why I always look at it first. I 
mean technically you don’t have to look at it first, but I think you should so 
you have some idea of what they’re hunting for. (BW 05.06.08, 1023-
1026) 

Additionally, Ms. BW emphasized using tabular representations displayed on the 

calculators to verify answers. After she initially calculated the vertex algebraically, she 

verified its Y-value by looking at the corresponding X-value in the tabular representation 

displayed on the calculator.  

Using different translations 

The use of unidirectional and bidirectional translations were noted during 

observation of Ms. BW’s class. Unidirectional translation refers to translating between 

different representations within the same activity in the following sequence Symbolic1 → 

Graphical → Symbolic2. Bidirectional translation refers to translating between the same 

representations within the same activity, such as Symbolic1 → Graphical → Symbolic1.  

Unidirectional translations including two, three, and four translations were 

observed in Ms. BW’s class. For example, when she was using PowerPoint slides to 

explain how to solve quadratic equations during the second class period, the students 

initially drew a graph for a quadratic equation using the graphing calculator. They then 

translated from graphical to symbolic representations to find the X-intercepts of the 

quadratic equation. This represents a translation from an equation to a graph and then 

to X-intercepts. At the end of the second class period, Tabular → Symbolic → Graphical 

translations were used in selling flowers activity. The teacher created a table by hand 

and the students then found an expression to create an equation for revenue. Finally, 

students entered the revenue equation into the graphing calculator to draw a graph for 

the revenue (Figure 4-6B). 
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Three unidirectional translations observed while solving real-world problems in 

the second class period are detailed as follows: Symbolic1 → Graphical → Symbolic2 → 

Verbal. The same type of translation was observed when the students solved the frog 

and dolphin problems. In the frog example, Ms. BW initially entered the quadratic 

equation into the calculator to draw its graph. Using calculators, the students then 

identified the x-intercepts for the parabola. Finally, they discussed the findings (e.g., x-

intercepts) by linking them with their real-world meanings as described earlier.  

At the beginning of the first class period, four unidirectional translations of the 

form Symbolic1 → Graphical → Tabular → Symbolic2 → Graphical were observed when 

the students were solving the quadratic equation exercises. The students initially 

entered an equation to draw a graph. They used a tabular representation in the 

calculator to find values of Y for given X-values. Using the data obtained from the 

calculator, the students finished the activity by sketching its graph.  

Bidirectional translation was also observed during of Ms. BW’s class 

observations. During the detective problem, they initially entered the coordinates of the 

man on the sheet provided and then identified its scatter plot. Then the students came 

up with an equation by looking at the scatter plot and entering it into the calculator to 

create its graph. This series of translations can be depicted in the following chain of 

representations: Pictorial → Tabular → Graphical1 → Symbolic → Graphical1. 

Dynamic features of the technology enabled the simultaneous use of 

representations. This feature allowed students to visualize how each modification they 

made to their equations would simultaneously change their graphs. For example, when 
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they tried to find the best fit between the basketball player, basket, and coach, they saw 

the symbolic and graphical representations together and used them jointly (Figure 4-8). 

 
 
Figure 4-8. Using dynamic representations simultaneously (BW_05.06.08, 01:13:48).  

Simultaneous use of representations helped students to translate between 

representations bidirectionally until they reached the correct solution. Thus, the students 

translated between two representations iteratively in both directions and multiple times 

until the answer was determined. This type of bidirectional translation is referred to as 

cycling between translations and may be depicted by a double arrow (↔). In Ms. BW’s 

class, the students translated between representations in the following sequence 

Symbolic1 → Graphical ↔ Symbolic2 when the teacher created a parabola and asked 

the students to find a graph that matched hers (Figure 4-4). While they resubmitted their 

graphs, they could continue translating bidirectionally until an accurate graph was 

found.  

The students also used cycling translations of the form Pictorial → Symbolic1 →

 Graphical ↔ Symbolic2. In the natural landform problem, the students were allowed to 

resubmit their graphs, translating between symbolic and graphical representations until 

they identified the most accurate graph. The teacher mentioned that the parabola drawn 
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using the calculator and submitted through the TI-Navigator would not be a perfect fit for 

the natural landform. She, however, encouraged the students to estimate the most 

accurate graph for this real-world representation and promoted cycling between 

representations.  

Distributed nature of translations  

Students were jointly involved in translating between representations in Ms. BW’s 

class. Translations can be collaboratively shared between students and teachers, and 

they can be mediated through the calculators. In Ms. BW’s first class period, the 

students translated from symbolic to graphical and graphical to symbolic 

representations with the help of the calculator. The teacher initially entered a quadratic 

equation into the calculator to draw a graph. Then, using the calculator, the students 

tried to find the minimum point of the parabola by clicking the “minimum” button. While 

the point on the parabola descended to the minimum vertex automatically, the X- and Y-

values changed at the bottom of the calculator simultaneously (Figure 4-9).  

 
 
Figure 4-9. Translation from graphical to symbolic representations (BW_05.06.08, 

31:11). 

Moreover, collaboratively shared translations were also observed, wherein 

knowledge was distributed across students, the teacher, and the calculator. When 



 

109 

solving exercises in Ms. BW’s first class, the students used their calculators to translate 

from symbolic to graphical and from graphical to tabular representations but translated 

from tabular to symbolic and from symbolic to graphical representations by hand. In this 

exercise, the students calculated the x-intercepts, solutions, factors, and vertex, and 

they then used a calculator to graph the equation. Finally, they used the tabular 

representation from the calculator to identify the Y-values corresponding to the X-values 

as shown in Figure 4-10. The following screenshot shows the students finding the Y-

value for X=1 with the help of the calculator. Using the data obtained from the 

calculator, they then sketched a graph that they had already seen.  

 
 
Figure 4-10. Translating from tabular to symbolic representations (BW_05.06.08, time: 

33:16). 

In the second class period, while working on the frog jump problem, the students 

translated from symbolic to graphical and graphical to symbolic representations by 

using their calculator, whereas students translated from symbolic to verbal 

representations manually. The teacher initially entered the quadratic equation for the 

frog’s jump into the calculator. Then using the calculator, the students identified the x-

intercepts for the parabola. Finally, the students and teacher discussed the findings 

(e.g., x-intercepts) by associating them to the real-world meanings described earlier.  
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Another sequential translation was observed when the teacher involved herself in 

the joint task of creating a equation for the revenue from selling flowers. When creating 

the equation, the class performed the translation from tabular to symbolic 

representations. The students tried to find expressions for both the price and number of 

bouquets after the teacher created a table. The teacher initiated working on this task 

and the students continued it (Figure 4-6A) leading to the expressions being used to 

create the revenue equation. The students then entered the equation into the calculator 

to draw its graph (Figure 4-6B). 

Formative Assessment  

Ms. BW was aware of her students’ occasional discomfort and comfort with the 

use of representations. It seemed that her students were predisposed to think 

negatively about solving word problems. For example, when the teacher used the Learn 

Check component at the beginning of the first class period, most of the students 

submitted “yes”, meaning they had received help from others in solving the word 

problems included in their homework:  

T:  42 and 44 [The numbers of the problems on which the students received 
help from others]. So these through 44. So you know what they are? I 
know what they are. 

S:   The solutions ones?  

T:   No, they’re not the solution ones; they’re the… 

SS:   Word problems.  

T:   The word problems. Ok, for some reason all [you] have to do is see the 
words in front of you and all of a sudden, “Ahhh! Can’t be done!” 
(BW_05.06.08, 133-142) 
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Ms. BW was already aware that her students were having a difficult time solving word 

problems. With the help of TI-Navigator, she could validate her students’ lack of 

understanding and confidence solving these types of problems. 

The teacher effectively monitored her students’ in-class work. Ms. BW shared 

Class Analysis with the students without revealing individual names and scores. She 

only let the students know about the classroom average and the number of students 

who scored within each given score range. Other students were curious about their 

classmates’ work, since they could not see who solved the problem correctly or 

incorrectly. A student—while his classmates were present—asked Ms. BW how well he 

performed; she didn’t share that information, explaining that it was private. 

In addition to using these properties of TI-Navigator, Ms. BW also used the 

Screen Capture component (Figure 4-11) at the end of the first class period to allow the 

students to examine their mathematical constructions and to make changes. This also 

allowed the teacher to point out students’ technical errors right away instead of having 

to walk around the classroom.  

  

Figure 4-11. Using the Screen Capture component (BW_05.06.08, 01:11:12). 

Ms. BW was sometimes flexible and made adjustments in her teaching according 

to the students’ needs. When she realized that some students forgot how to change the 
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shape and location of a parabola, she stopped the activity and opened an empty 

coordinate plane. Additionally, when some students had difficulty entering the correct 

boundaries for the graph on their calculators, Ms. BW opened up the discussion to the 

whole class; she showed them how to change the boundaries on the calculator setting 

so they could see the graph.  

Although the projection of students’ mathematical objects provided a vehicle to 

understand their mathematical thinking, most of the students had a difficult time 

assessing their work during Ms. BW’s first class period. They did not know which graphs 

on the screen belonged to them unless the teacher dragged the mouse over their 

parabolas. Thus, in the next class, Ms. BW assigned a color to each of the student’s 

graphs so that they could track their submission. The coloring system made the 

resubmission process even more effective, because the students’ names were kept 

private. Alternatively, students’ names would have to be displayed on the screen and 

visible to their classmates. This approach, however, did potentially have some negative 

impact on representational fluency. Some students were afraid of making mistakes, 

even if there was an opportunity to resubmit. One student said, “I don’t want mine if 

there’s a mistake” (BW_05.06.08, 1794). Some students also made fun of their 

classmates who submitted incorrect graphs. In one instance, when a student submitted 

a line instead of a parabola, the students laughed sarcastically (BW_05.07.08, 08:08) 

and asked who submitted the line. 

Promoting translation through teacher questioning 

In both class periods, Ms. BW asked questions to create an environment where 

students translated between representations. For instance, while students submitted 

their equations to fit a parabola to a specific shape, Ms. BW asked questions to promote 
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cycling translations between symbolic and graphical representations. The following 

exemplifies the types of questions that Ms. BW would ask: “This one is upside down. 

How do you turn it back around?” (BW_05.06.08, 1811), “What does skinny mean?” 

(BW_05.06.08, 2189), “What’s wrong with this one?” (BW_05.06.08, 2160), “How would 

we make him fatter?” (BW_05.07.08, 146), “What do you notice?” (BW_05.07.08, 524). 

The students usually responded with short answers. In the second class period, while 

the students were submitting their equations for drawing a curve that would fit between 

two mountains, the teacher asked, “how do we move him (a low graph)?” 

(BW_05.07.08, 154). The students responded by saying, “add” (BW_05.07.08, 156). In 

another instance, the teacher asked, “how would we make him fatter?” BW_05.07.08, 

146), and the student replied, “fraction” (BW_05.07.08, 148). The following excerpt 

highlights the character of these conversations. 

T:   Stop. Ok, let’s talk about the different ones that we have. What’s wrong 
with this one? 

SS:  It’s too long. / Too skinny. 

T:   Too skinny. How would we make him fatter?  

SS:   Fraction. 

T:   Fraction, ok. What’s wrong with this one? 

SS:   Too low.  

T:   How do we move him?  

SS:   Add. 

T:   Add. Ok, this one’s too low. What’s wrong with number… or black I think it 
is or dark green?  

S:   Too wide.  

T:   Ok, it’s not quite too wide because… 
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SS:   It’s too low. 

T:   …it ends here. It’s too far… 

S:   Over. 

T:   …right. How would we bring something left?  

SS:   Positive / Subtract. / Add. 

T:   Add. Right? Add; if we want to shift it to the left, we add. If we want to shift 
it to the right, we subtract, ok? (BW_05.07.08, 142-174) 

Summary of Ms. BW’s Classroom Environment 

Ms. BW had a good sense of humor and established a strong rapport with her 

students. She sometimes talked with them about topics other than those related to the 

classroom context. The teacher also promoted participation and attention by ensuring 

that every student had a chance to speak. She sometimes checked whether the 

students were on track and remained in control of the classroom. If the students began 

talking about non-class related topics, she usually admonished them to refocus on the 

class discussion. Ms. BW created an open environment where students could ask 

questions without hesitation. She used the class time efficiently and did not stop until 

the end of the period. Her manner of teaching was fast-paced; however, her pace 

sometimes did not provide adequate time for her students to solve problems. Overall, 

however, she provided thorough explanations and clarified important steps to problems, 

even though she sometimes provided an explanation before letting students work out 

solutions for themselves. The teacher also encouraged students to use calculators and 

develop competence in using mathematical terminology.  

Ms. BW provided opportunities for her students to propose interpretations about 

representations by linking them to real-world scenarios. She used graphical and tabular 
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representations for specific purposes when solving problems. Ms. BW included many 

unidirectional and bidirectional translations during classroom activities. In addition, the 

students used symbolic and graphical representations simultaneously. This encouraged 

them to translate between these representations until an accurate answer was reached. 

Students collaboratively translated between representations several times within the 

same activity. Ms. BW would monitor students’ progress often during the class period; 

at the end, she would share the class analysis with her students. By continuously 

assessing her students’ progress, she identified their discomfort with solving word 

problems in using representations involving real-world scenarios. And when she 

realized the students had difficulty in understanding the use of representations, she 

made adjustments to her teaching to provide better clarification. Finally, Ms. BW created 

an environment in which she promoted the translation between representations by 

asking questions throughout the classroom discussion. 

Ms. MB  

One class was observed on two consecutive days in Ms. MB’s Algebra I class. 

The following is a detailed description of the activities during these lessons to provide 

an overall understanding of the class sessions.  

General Classroom Description 

There were approximately 30 students in the class, and most participated in 

discussions. They generally worked in groups of three, although a few students worked 

individually. The students had their own calculators during the first class observation, 

but each group had only one calculator when working on an activity during the second 

class. There was an additional teacher who helped the students during both periods.  
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In both classes, the students discussed their graphical representations and 

corresponding symbolic representations. For example, during the first period, the 

teacher initially drew two parabolas (Figure 4-12A) and asked the students to compare 

them including their axes of symmetry. She recorded students’ answers by writing them 

on the board (Figure 4-12B). 

A B 

Figure 4-12. Comparing two parabolas. A) Drawings and B) Similarities and differences 
(MB_04.01.08, 16:14 & 19:56). 

In this exercise, students noticed that both parabolas were wide and their axis of 

symmetry intersected the x-axis to the right of the origin. While the students mentioned 

that the graphs had minimum and maximum vertices and positive and negative leading 

coefficients, the class did not explicitly make the connection between these 

characteristics. However, the teacher emphasized and the students discussed this 

connection in the next activities. This activity took 27 minutes. 

Next, the teacher modeled how to determine the shape and location of a 

parabola given pre-determined parameters of the equation (i.e., axis of symmetry 

between -5 and 5; positive or negative leading coefficient of a quadratic equation or the 

“a” in the quadratic term) and then asked students to determine an equation given a 

different set of parameters. The students entered their equations into the calculators to 
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submit to the TI-Navigator (Figure 4-13). Finally, as a class, they discussed why 

individual graphs did or did not meet the criteria. The teacher used the Activity Center 

component of TI-Navigator for this activity, which took 20 minutes. 

 

Figure 4-13. Students’ submitted equations using pre-determined parameters 
(MB_04.01.08, 38:30). 

During the second class observation, the students initially looked at a picture 

projected on the screen showing a basketball player shooting a basket. This activity was 

similar to the last activity during the first period of Ms. BW’s class. Unlike her, though, 

Ms. MB used only two points and excluded the third point representing the coach. Then 

the students were asked to identify an equation that drew a curve from the location of 

the player to the basket (Figure 4-14). 

 

Figure 4-14. Basketball shot problem screenshot (MB_04.02.08, 24:21). 
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The teacher asked the students several questions about the information needed to 

identify an equation before she allowed them to find it. For example, she questioned 

students’ knowledge about the “a” and “b” values (i.e., the coefficients of the quadratic 

and linear terms), vertex, axis of symmetry, and y-intercept. Then she let the students 

discuss the equation within their own groups, which were responsible for submitting one 

equation. Some students left their groups to look at the picture on the board. When the 

groups had submitted their equations, they examined the accuracy of each shot, which 

led to a discussion about changes each group might make. The teacher used the 

Activity Center component of TI-Navigator for this activity, which took 36 minutes.  

At the end of the class, students solved quadratic equations on a worksheet, and 

the teacher tried to evaluate students’ progress through the Learn Check component of 

TI-Navigator; however, the class period ended before she could check and discuss the 

students’ answers. The class spent 20 minutes on this activity. 

Psychological Environment and General Mathematics Teaching Approach 

Three characteristics of this class emerged through the analysis: (a) building a 

class community, (b) promoting a safe environment for exploration, and (c) promoting 

participation and attention. 

Building a class community 

The teacher generally used “we” instead of “you” language when communicating 

with her students. She usually emphasized the word “all” and pressed the students to 

engage in class activities. In one instance, while she was saying “Now, let’s all talk 

about this together” (MB_04.02.08, 537), she emphasized “all” by moving one of her 

hands as if she was drawing a circle twice, while elongating the word and increasing the 

volume of her voice. 
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Even though the teacher tried to create a sense of community among the 

students, some students did not respond to this effort. For example, while the students 

discussed how to identify the most accurate equation for the basketball shot on the 

second day, one group submitted a very accurate graph. Some students said, “He got 

the equation already” (MB_04.02.08, 367-368) and attributed all the success to only one 

of their classmates instead of the whole group. As a consequence of emphasizing 

students’ exploration, Ms. MB created an environment in which the students engaged in 

discussions throughout class periods. 

Promoting a safe environment for exploration  

Ms. MB encouraged the students to share their solutions with their classmates 

and to share their opinions with others while solving the problems. She said, “listen 

carefully. One of your colleagues is going to make a recommendation about how he 

made this equation more accurate” (MB_4.02.08, 560-562), and added, “I want you to 

try putting in this equation because your colleagues have come up with something that 

they think will help” (MB_4.02.08, p.587-588). 

The teacher also facilitated a learning environment in which the students 

interacted with her and with one another. The students were not hesitant to share their 

thoughts about their classmates’ answers. They comfortably commented on their 

classmates’ answers and indicated whether they agreed with their answers. In one 

instance, when a student disagreed with one classmate about whether an equation was 

in standard form, the teacher was excited. She moved both her hands up and down and 

brought them all the way to her back while exclaiming, “this is fantastic” (MB_04.01.08, 

209). Some students, however, reacted negatively to the student’s conflicting comment. 

But their negativity subsided when this student explained her reasoning. Sometimes Ms. 
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MB changed the volume of her voice for communicative dynamics such as when she 

responded back to a student with “ah hah, ah hah” (MB_04.01.08, 143) upon hearing a 

correct answer. 

The class’s safe environment for exploration was reflected through the teacher’s 

verbal encouragement to use correct terminology. For example, when explaining his 

answer to a question, one student said, “The first graph has a minimum vertex and the 

second graph had a maximum” (MB_04.01.08, 64). The teacher responded, “One graph 

had a minimum vertex…excellent use of language…minimum vertex. The other had a 

maximum” (MB_04.01.08, 70-71).  

Ms. MB facilitated a safe environment wherein students could resubmit their 

graphs when determining the shape and location of a parabola in the last activity of the 

first class period. Ms. MB projected the students’ responses anonymously in both class 

periods (Figure 4-15).  

 

Figure 4-15. Projecting the students’ responses anonymously (MB_04.01.08, 38:06). 

Ms. MB also promoted a safe environment for exploration through questioning. In 

the activity related to the basketball foul shot, Ms. MB asked the students to submit their 

equation through TI-Navigator to fit their curves on the picture (Figure 4-14). She started 
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the activity by asking an open-ended question, “what kinds of information might help 

you identify the equation?” (MB_4.02.08, 52). After the students were given a moment 

to recall prior knowledge, she pressed them to explore by saying, “that’s for you guys to 

figure out…try to figure out” (MB_4.02.08, 158). By using open-ended questions, the 

teacher created an environment wherein the students could make connections between 

concepts. For example, when discussing methods to find an accurate curve in the 

second class period, she asked for another way to describe the “C” value in the 

equation to make a connection between this value and the y-intercept.  

Promoting student participation and attention 

Ms. MB promoted interaction by valuing students’ input. When she explained 

solutions, she created an interactive environment wherein all students could contribute. 

For example, when the students were describing the similarities and differences 

between the two parabolas, she recorded their contribution within a two-column table on 

the board (Figure 4-12B). If a student was not able to provide a clear explanation, the 

teacher would ask his/her classmates for help by saying, “who can help us out?” 

(MB_04.01.08, 155). Finally, when the students answered the questions, the teacher 

engaged them with encouraging words. For example, “very good; I didn’t even notice 

that. That’s an excellent observation” (MB_04.01.08, 193-194). 

Almost all of the students, however, were engaged and participated in classroom 

discussions. For example, when the teacher began the activity related to determining 

the shape and location of a parabola, she encouraged the students to become involved 

by saying, “we need your help” (MB_04.01.08, 281). They were very excited to engage 

with the activity and to understand the steps needed to solve the problem. In addition, 

instead of the same group of students responding, she asked different students to 
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participate in the discussions. Furthermore, when she felt the students’ attention starting 

to wane, the teacher would make sure that they stayed on track. For example, during 

the second period, one of the students near the window was sitting passively with her 

head on her desk. After the teacher talked to the student, however, the student involved 

herself in the class activities.  

As a result of the class’s high engagement and participation, the classroom was 

noisy. The teacher sometimes had to give instructions in a very loud setting. She once 

wrote the instructions on the board rather than providing them verbally. She became 

angry and irritated because the students could not hear the instructions. Even after the 

teacher spelled out the activity’s instructions on the board, the students still asked for 

them. Generally, she repeated explanations, warned the students frequently about 

becoming quieter, and said, “As I said before; did everyone listen? I said this a couple of 

times. I’ll wait till everybody’s listening. Ok… Still waiting …. Shhh” (MB_04.02.08, 32-

37). Some students warned their disruptive classmates as well by saying “Quiet” 

(MB_04.02.08, 9) and “Shhh” (MB_04.02.08, 161). In one case, a student raised her 

hand and tried to get the teacher’s attention to answer a question, but, because of the 

chaotic environment, the teacher did not realize this until two minutes had passed. 

Despite this, the teacher tried to set up social norms such as encouraging students to 

raise their hands.  

Representational Practices 

The representational practices in Ms. MB’s classroom were characterized by four 

aspects: (a) fostering the use of representations, (b) using different translations, (c) 

distributed nature of translations, and (d) promoting translation through teacher 

questioning.  
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Fostering the use of representations  

Activities that linked representations to real-world scenarios made some students 

excited in Ms. MB’s class. When the activity involving the basketball player’s shot 

(Figure 4-14) was over, the students made the following comments. 

T: Ok? All right, so, you guys have any other comments or questions on this 
activity?  

SS:   No./ I like the green picture better.  

T:   Sorry guys, what was that?  

S:   With the picture, isn’t it more fun that way? 

T:   It’s a little bit more fun that way, right? (MB_04.02.08, 694-703) 

When Ms. MB asked her students to determine the best curve between the 

basketball player and the basket (Figure 4-14), the students initially submitted their 

equations through TI-Navigator and came up with slightly different graphs for the given 

picture. Although they all looked correct, the starting and ending points of these graphs 

were a bit different. So, Ms. MB would help her students make interpretations of their 

parabolas by encouraging them to link their reasoning to real-world scenarios, as seen 

here:  

T:   What kind of shot were they trying to make?  

S:   Backboard shot.  

T:   A backboard shot, all right, ok.  

S:   Yeah. 

T:   Yes sir. 

S:   Mine is the orange one; it shows it more clear because he doesn’t show 
from the bottom, just from the top. 

T:   Ok, everybody listen to K., please. Ladies and gentlemen, everybody 
listen to K.; he’s describing his equation, the orange graph. Go ahead. 
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K:   He shoots it from the top, not the bottom. 

T:   He shoots it from the top, up here over his head… 

SS:   Ohhh. / Yeah. (MB_04.02.08, 633-653) 

Using different translations  

As in Ms. BW’s class, different translations including unidirectional and 

bidirectional were observed in Ms. MB’s classroom. The students used unidirectional 

translation only once. At the beginning of the first period, while comparing two 

parabolas, Ms. MB promoted a translation from graphical to symbolic representations 

(Figure 4-12B). In this activity, by looking at parabolas drawn on the board, students 

identified the axes of symmetry, determined whether the leading coefficient of 

corresponding quadratic equations was positive or negative, decided whether the 

parabolas had a minimum or maximum vertex, and so on. 

At the end of the first class, Ms. MB provided an opportunity for her students to 

bidirectionally translate between representations. They initially translated from symbolic 

to graphical and then back to the same symbolic representations. In this activity, the 

students created their own equations and entered them into calculators to draw its 

corresponding graph. Then the students were asked to submit their graphs through TI-

Navigator and discuss whether these graphs met the given criteria (Figure 4-13). 

Ms. MB also promoted the use of two representations on one screen; thus, a 

modification made to one of them would change another one simultaneously. At the end 

of the first period, Ms. MB used the Activity Center component of TI-Navigator so her 

students could see symbolic and graphical representations simultaneously on the 

board. She showed the synchronized equations with graphs, and the students made 

changes to their equations and resubmitted them to TI-Navigator (Figure 4-16).  
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Figure 4-16. Using dynamic representations simultaneously (MB_04.01.08, 39:56).  

Cycling translations were fostered by using representations simultaneously in 

Ms. MB’s classroom. When performing the activity to find a curve for the basketball 

player’s shot, a sequence of translations of the form Pictorial → Symbolic → Graphical 

↔ Symbolic were followed. The students initially identified the location for the axes of 

symmetry by analyzing the picture on the screen (Figure 4-14). Then each group of 

students submitted an equation to draw a curve that would allow the man to shoot a 

basket. At the end, the entire class discussed the ways to improve the accuracy of the 

graphs, resulting in cyclical translations of the form Graphical ↔ Symbolic, which were 

bidirectionally constructed until the correct solution was obtained.  

Distributed nature of translations 

Co-construction of representations was also observed in Ms. MB’s class when 

the students were asked to create quadratic equations using pre-determined criteria. 

The students initially determined their own equations and then entered them into their 

calculators to draw the corresponding graphs, and in doing so they translated from 

symbolic to graphical representations with the support of their calculator. When all 

graphs were submitted, the teacher projected them on the board, and the students 
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discussed whether and why the graphs met the given criteria (Figure 4-13). From here, 

they translated from graphical to symbolic representations and discussed whether the 

criteria matched with the pre-drawn parabola. Similar to Ms. BW’s class, co-construction 

of translation was observed when students in Ms. MB’s class worked on a problem 

related to a basketball player’s shot. 

Promoting translation through teacher questioning  

Ms. MB promoted translation by asking follow-up, open-ended, and hypothetical 

questions. She usually asked follow-up questions to advance the students’ thinking if 

she realized that they were unsure of how to respond or if they did not reply promptly 

and clearly. At the beginning of the first class, the students were asked to compare the 

concave and convex parabolas drawn on the board by the teacher (Figure 4-12A). They 

were encouraged to translate from graphical to symbolic representations. For each 

parabola, they identified the axes of symmetry, determined whether coefficients “a” in 

quadratic equations were positive or negative, and decided whether the parabolas had 

a minimum or maximum vertex. If a student could not reach a correct answer, the 

teacher would rephrase the question. Furthermore, the teacher used constructive 

language to help students reach the correct solution. Specifically, she directed them 

from general to specific thinking by asking questions such as "What else did you 

notice?" (MB_04.01.08, 58) and “How do you know our value is negative?” 

(MB_04.01.08, 435). Additionally, she said, “Can you be a little more specific with that? I 

know what you’re trying to say, but when you say…I’m not really sure because there’s 

so much to talk about” (MB_04.01.08, 95-96). This may have encouraged students to 

keep thinking about the problem until they reached a solution and could express it 

clearly and concisely.  
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The students also translated between representations on their own. In another 

instance, when the students noticed similarities between the parabolas that the teacher 

did not, she replied, “Ok. Both the X- and Y-values of the first vertex are positive. Very 

good. I didn’t even notice that. That’s an excellent observation, and both the X- and Y-

values of the second are negative. Good” (MB_04.01.08, 193-194). There were other 

moments when students advanced their thinking as the teacher asked questions. For 

instance, when discussing how to make a parabola wider, one student suggested a 

smaller value for coefficient “a,” and the teacher asked the follow-up question, “what if 

we went all the way down to -9? That’s smaller than ½, isn’t it?” (MB_04.01.08, 346). 

The teacher pointed this out so that students would clearly understand that the absolute 

value of the leading coefficient of a quadratic equation determines whether the parabola 

was wider or narrower. 

T:   Do you guys remember Ms. ___ decided…I said I wanted a wide parabola 
and Ms. ___ said oh, then we should be between 0 and 1. Do you guys 
remember why that…how does that affect the opening of a parabola? 
Ashley, do you remember?  

A:   The smaller numbers the wider… 

T:   The smaller the number… 

SS:   The wider it gets. / The wider… 

T:   The wider the parabola.  

S:   [inaudible] 

T:   Um hum, but what if we went all the way down to -9, that’s smaller than ½, 
isn’t it?  

SS:   No. 

T:   Is -9 going to be wider than… 

S:   The negative doesn’t count.  
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T:   Ok, so it’s the absolute value of those numbers, ok. (MB_04.01.08, 332-
354) 

The teacher also asked hypothetical questions that may have helped students 

translate between graphical and symbolic representations flexibly until they came up 

with the most accurate representation. She said “what could the group that has the red 

equation do to make it more accurate? Let’s talk about the things that need to change”  

(MB_04.02.08, 407-409). In another activity, while discussing the location and definition 

for the axes of symmetry, Ms. MB promoted a translation from graphical to verbal 

representation. When the students expressed confusion, the teacher clarified what the 

axes of symmetry were; she also asked about a shot that was the most accurate, and 

the role of the leading coefficient of a quadratic equation (i.e., the “a” value). The 

following shows part of the transcript that highlights this conversation. 

T:   Ok, and what do you think the A value might be? 

SS:   5. / The A value’s going to be 5. / [inaudible]. / Yeah, like 10. / 10.5. 

T:   The A value? What’s the A value again of the… 

S:   Isn’t it the [inaudible]?  

T:   What’s the A value again? 

SS:   Ah… / 14. 

T:   What does the A value determine? Let me ask you that.  

S:   How wide it’s going to be. 

T:   How wide it’s going to be, correct? 

S:   Yeah. 

T:   So what do you think the A value might be?  

S:   It would be a negative.  

T:   It’s going to be negative. Why? 
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SS:   [inaudible] / Because it’s going down. 

T:   Because it’s going down, good.  

SS:   Maybe like -1, or 2. / The number is the Y-value. 

T:  Ok, so what do you think? Do you think it’s going to be close to 1? Do you 
think it’s going to be between 1 and 0? 

SS:   Between 1 and 0. / I think the [inaudible] of the vertex [inaudible]. 
(MB_4.02.08, 209-244) 

Even though the teacher created a productive discussion environment, 

sometimes the discussions lost direction. Some were not very well organized, seemed 

to be too digressive for students to follow, and (in some instances) Ms. MB would 

initiate a new conversation without finalizing a previous one. For example, when 

discussing the accuracy of the students’ graphs during the basketball shot activity, the 

teacher started to analyze another graph without clarifying the current one.  

Summary of Ms. MB’s Classroom Environment 

Ms. MB created an environment in which her students could feel a sense of 

community, even though some of them were reluctant to respond to this effort. She 

created a safe environment for the students to explore solutions to problems and 

encouraged them to resubmit their responses when necessary by projecting them 

anonymously. If other students realized one of their classmate’s mistakes, they would 

often comment comfortably and share thoughts with the class. Ms. MB was appreciative 

and verbally encouraged her students when they used terminology correctly.  Most of 

the students participated and appeared engaged during many of Ms. MB’s discussions. 

She valued her students’ thoughts and promoted an interactive environment wherein 

her students could contribute. If a student left a question unanswered, the teacher 

asked other students for their assistance. Ms. MB’s class, however, was noisy at times, 
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and the students sometimes could not hear the instructions well. In these instances, she 

reiterated explanations several times and frequently warned her disruptive students.  

Since the students were excited to solve practical problems, Ms. MB helped them 

to make interpretations involving real-world scenarios. Unidirectional and bi-directional 

translations were observed in Ms. MB’s classroom. They sometimes used symbolic and 

graphical representations simultaneously resulting in cycling translations. She ensured 

that her students did not just observe the translations but collaboratively engaged in 

translating between representations using the calculator as a tool. She would 

encourage students to participate in classroom discussions and to translate between 

representations by asking follow-up, open-ended, and hypothetical questions that 

helped the students continue thinking about problems. And, to help her students stay on 

the right path when solving problems, Ms. MB used constructive language and asked 

questions. 

Ms. MA 

Two classes were observed on two consecutive days for a total of four class 

periods in Ms. MA’s Algebra I class. The following is a detailed description of the 

activities during these lessons to provide an overall understanding of the class sessions.  

General Classroom Description 

There were approximately 18 students in both classes but only a few students 

participated in discussions. All students had calculators and worked both individually 

and within groups. Although both classes were generally quiet, the students in period 

six were noisier than those in period four. In period six, there were a few students 

talking to each other about non-class related topics. However, in the sixth period, the 

students were more engaged with the lesson than those in the fourth period.  
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The activities conducted in both classes were for the most part similar. During the 

first class period, the students worked individually. The teacher sent five exercises to 

the students’ calculators related to linear equations (4x-4=0; -2x+8=0; 3x-9=0; 1/2x-3=0; 

2(x+1)-4=0) by using the Quick Poll component of TI-Navigator. The students solved 

these equations algebraically on their worksheets and submitted their answers via the 

TI-Navigator. Then, the teacher shared the class analysis with the students (Figure 4-

17). Ms. MA generally identified the students who submitted the correct answers and 

displayed their worksheets using document camera. 

 

Figure 4-17. Class Analysis showing the number of students who provided each answer 
(MA_05.06.08_Per. 4, 12:41).  

After solving these five linear equations algebraically, Ms. MA used the Activity Center 

component of TI-Navigator to solve them graphically as follows. The students followed 

three steps. They initially moved to any point on the line (Figure 4-18A), and then the 

teacher selected two points and instructed the students to locate these points on their 

worksheet and to draw a line. Finally, the students moved their points to the x-intercept 

by using their calculators (Figure 4-18B). This activity took approximately 23 minutes.  
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A B 

Figure 4-18. Solving the equations graphically. A) Moving to any point on the line and B) 
Moving the cursor to the x-intercept (MA_05.06.08_Per. 4, 28:51 & 23:45). 

Next, the teacher sent five quadratic equations (𝑥2 − 2𝑥 − 3 = 0; 𝑥2 − 9 =

0; 𝑥2 + 5𝑥 + 4 = 0; 𝑥2 − 9𝑥 + 14 = 0; 2𝑥2 + 2𝑥 − 4 = 0) to the students’ calculators 

using the Quick Poll component of TI-Navigator. The students found the roots of the 

equations algebraically by applying several techniques (e.g., guess and test, box ABC, 

difference of squares, and greatest common factor). The questions were presented as 

multiple choice questions (Figure 4-19). 

 

Figure 4-19. An example of a Quick Poll question (MA_05.06.08_Per. 4, 38:03).  

Ms. MA solved the first problem, and the students solved the rest. After the students 

solved each problem, the teacher shared the Class Analysis with the class and solved 
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these problems. Ms. MA then used the Activity Center component of TI-Navigator, and 

the students solved the quadratic equations graphically (Figure 4-20) by following the 

same three steps that they had in the previous set of equations. During the second step, 

however, the teacher selected five points from which the students would draw a 

parabola on their worksheet. The students spent 19 minutes on this activity. 

 

Figure 4-20. Solving the quadratic equations graphically (MA_05.06.08_Per. 6, 46:27).  

Finally, Ms. MA demonstrated how to solve a quadratic equation (𝑥2 + 4𝑥 − 12 =

0) by projecting her worksheet on the board using a document camera. The students 

copied down the solution on their worksheets. The X-value for the vertex of the parabola 

and its corresponding Y-value were calculated initially. After the X-Y table was filled out, 

the students, with Ms. MA’s help, plotted these points on the coordinate grid on their 

worksheet and joined them to draw a parabola. Finally, they estimated x-intercepts and 

entered these points into the equation using their graphing calculator. This activity took 

seven minutes. 

During the second day of observations, the students also worked both 

individually and within groups. They initially graphed the remaining quadratic equations 
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from the previous class. Even though the teacher had stated that the students would 

have to work on the rest of the questions by themselves, she solved them by herself. 

They worked on two quadratic equations (𝑥2 + 4𝑥 + 4 = 0 and 𝑥2 − 4𝑥 + 6 = 0). They 

used the same solution strategies and performed similar analyses such as identifying 

vertex values, drawing a parabola, and estimating x-intercepts. This activity took 11 

minutes. 

Next, the students worked in groups of two, three, or four, and each student had 

a calculator. They explored a scenario wherein they were asked to design a dog run 

constructed of 40-feet of fencing for a dog named Milk Dud. The design was expected 

to be a rectangle where the length of each side was to be integer numbers. On the 

board, the teacher drew a 1 by 19 rectangle as an example of one possible design. 

Then the students drew all the other possible design dimensions onto a grid by hand 

(Figure 4-21A). In the table on their worksheets, they filled out each possible length for 

each of the sides as well as the perimeter and area (Figure 4-21B). The teacher then 

asked the students to select and send three chart values via the TI-Navigator. Using the 

values of one side and the area, Ms. MA showed the relationship between these two 

parameters on one graph with the help of the Activity Center component of TI-Navigator 

(Figure 4-21C). After showing the relationship between one side and the area, Ms. MA 

identified the formula (x*(20-x)) and wrote it at the bottom of the area column of the 

table (Figure 4-21B). The students entered this equation into their calculator to submit 

its graph to the TI-Navigator (Figure 4-21D). 
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A B 

C D 
 
Figure 4-21. Solving dog run problem. A) Listing possible designs on grid paper, B) 

Filling out each of the dimension possibilities in a table, C) Showing the 
relationship between area and one side, and D) Showing graphical 
representation of the area and one side (MA_05.07.08_Per. 6, 24:11, Per. 4, 
33:26, 37:10, & 43:50). 

After this activity, the teacher asked the class to determine which rectangular design 

resulted in the largest area, “So if I want to give Milk Dud the biggest play area, the 

most area, which Y-value are we going to use?” [MA_05.07.08_Per. 4, 820-821], and to 

make a generalization using these results. This activity took 10 minutes. 

Ms. MA then introduced a word problem involving another real-world scenario 

and solved it by hand on the worksheet projected on the board. The problem’s scenario 

involved launching firework rockets from an 80-foot tower with an initial upward velocity 

of 64 feet per second. The goals of the problem were to determine the length of time it 
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would take for the rocket to reach its highest point, the height of the rocket, and the 

length of time it would take for the rocket to hit the ground. The equation, 𝐻𝑇 = −16𝑇2 +

64𝑇 + 80, was given in the problem to show the relationship between the height (𝐻𝑇) 

and travel time (𝑇) of the rocket. Ms. MA solved this quadratic equation by factoring, 

and the students contributed by performing arithmetic operations. This activity took 

seven minutes. 

Finally, with the teacher’s guidance, the students drew a graph for an equation 

that was given in intercept form ((x-6)(x-2)=0) as shown in Figure 4-22. The graph was 

drawn on the worksheet by determining X-intercepts and the X and Y-values of the 

vertex. This activity was conducted only in period four and took two minutes. As in the 

previous activity, the teacher did not use TI-Navigator. 

 

Figure 4-22. Drawing the graph of the equation in intercept form (MA_05.07.08_Per. 4, 
56:13). 

Psychological Environment and General Mathematics Teaching Approach  

Three characteristics of this class emerged through the analysis: (a) showing 

care for students, (b) fostering politeness in class, and (c) monitoring participation. 



 

137 

Showing care for students  

Ms. MA showed care for her students by spending some time talking about their 

lives before or after class. In one instance, she asked one of her students how his knee 

was (it appeared that he had been injured). She also inquired whether another student 

had dental work done and if he was healthy. At the end of the second day of period six, 

she told one of her students who found a summer job “Have fun, nice outside work in 

the summer” (MA_05.07.08_Per. 6, 1221). Additionally, she valued what the students 

thought about the difficulty of the exercises. After solving quadratic equations at the 

beginning of the second day of period four the students learned how to solve quadratic 

equations graphically. The teacher asked, “Do you think we’re doing a lot of work here?” 

(MA_05.07.08_Per. 4, 148) and told the students that she would show them another 

method that simplified the process. 

Fostering politeness in class  

Throughout her teaching, Ms. MA cultivated respect by using kind words. She 

was also a calm and mannerly person. She started her classes by greeting her students 

and thanking them many times during class when they assisted her with tasks such as 

distributing materials to classmates or contributed their input. In addition, she honored a 

researcher who was visiting the class saying, “It really is our great pleasure to have him 

in our classroom. We don’t normally get that caliber of scientist here in our classes” 

(MA_05.06.08_Per. 6, 55-56). 

The teacher encouraged her students verbally often using the words “good” and 

“nice” to acknowledge their successes. During the first day of period four, for example, 

when the students were solving a linear equation algebraically, the teacher asked them 

how to undo the subtraction, and they responded by saying, “So you would add it?” 
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(MA_05.06.08_Per. 4, 157). Ms. MA encouraged them by stating, “That’s a good first 

step” (MA_05.06.08_Per. 4, 159). In another instance while working on the same 

equation, the teacher was walking around the class and showed appreciation by saying: 

“Those look good. Very nice. So remember you always undo your additions and 

subtractions first” (MA_05.06.08_Per. 4, 185-186). When all students arrived at the 

correct answer, she became excited and said, “Look at you guys go, very nice…and this 

is what I love to see. All of you were able to get the answer” (MA_05.06.08_Per. 6, 262-

266). Additionally, some students corrected their parabolas and the teacher showed her 

appreciation by saying “good job on fixing that” (MA_05.07.08_Per. 6, 951). 

Some students turned the teacher’s words into sarcasm and were a bit sarcastic 

with one another. Their sarcasm was, at times, close to misbehavior. A few times when 

students answered questions correctly, other students could be heard saying 

sarcastically, “Good job, Damon” (MA_05.07.08_Per. 6, 571), “You’re amazing, 

Sabrina” (MA_05.07.08_Per. 6, 1091), and “What a brain” (MA_05.07.08_Per. 6, 1210).  

Monitoring participation 

Ms. MA monitored whether the students solved problems throughout both 

classes. She used the Class Analysis component of TI-Navigator to keep track her 

students’ progress. She determined the level of difficulty of each question by looking at 

their submission rates. When solving a problem on the first day during fourth period, the 

students’ submission rate was 11 out of 18, and she said, “must be a little harder 

problem” (MA_05.06.08_Per. 4, 247-248). Another time, after the students submitted 

their points, she realized that there was a gap in the parabola because some of the 

students had not yet made their submissions. She said, “I think we’re still waiting for a 
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big group of people here” (MA_05.07.08_Per. 6, 776) and asked these students to send 

their answers through TI-Navigator.  

The teacher generally waited for all students to submit their answers to the TI-

Navigator before going over the exercises. In one instance, only 12 students submitted 

their answers within the allotted time. She then gave extra time and waited for about two 

more minutes for the other students to solve the problem and submit their answers. She 

often checked if the time provided was sufficient and once asked, “Did I give you 

enough time to get the line drawn on that graph with those points?” (MA_05.06.08_Per. 

4, 320-321). Although some students needed more time, others were usually further 

ahead in solving the problems. These faster learners waited until all their classmates 

were finished. 

The teacher walked around the class to check whether the students performed 

the activities. She sometimes made sure that students were on the right track and 

informed them about their progress. At the end of the first activity, she praised the 

students’ success: “It took us a little bit to get started but you did great in the end” 

(MA_05.06.08_Per. 6, 393-394).  

Representational Practices 

The representational practices in Ms. MA’s classroom were characterized by the 

following four aspects: (a) decontextualized representations, (b) using unidirectional 

translations, (c) observing translations, and (d) a teacher-centered approach.  

Decontextualized representations  

The problems Ms. MA asked the students to solve were predominantly 

decontextualized equations, and the solutions were not interpreted within real-world 

situations, which sometimes resulted in unrealistic answers. For example, in the real-
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world problem that asked the students to design the dog run, the students initially drew 

all possible design dimensions on a grid by hand and then identified the dimensions of 

the most practical running area for the dog. Although she chose a real-world context, 

Ms. MA’s and most of the students’ answers did not reflect that they were thinking of the 

problem in terms of the actual scenario. Ms. MA asked a question that led to an 

unrealistic answer and most of the students did not realize that the answer did not fit the 

real-world context. Yet one of the students interpreted the representations by linking it to 

a real-word scenario without any guiding instruction. 

T:   So what would be the dimensions that would give Milk Dud the largest 
running area?  

SS:   1 by 19. / 1 by 19… 

T:   1 by… 

SS:   19. / She’s just going on. 

T:   It may not be a big area but it’s a big length so that would be the best.  

S:   There’s no way you and your dog can fit into a 1 by 19 thing. 

T:   I wouldn’t be running with my dog. I wouldn’t go with her in there.  

SS:   I would. / I run with my dog. (MA_05.07.08_Per. 6, 1022-1036) 

The student saw that the problem involved an actual location, which practically 

speaking, needs to be more than 1 foot wide. This shows that he was thinking of the 

problem in real, rather than hypothetical, terms. The teacher and his classmates did not, 

however, realize this unrealistic solution. 

Additionally, in the rocket problem Ms. MA asked the students to determine the 

length of time it would take for the rocket to hit the ground. The rocket was, however, 

broken into pieces after the fire works explosion. Thus, it would never make to the 

ground.     
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Using unidirectional translations 

Two and three unidirectional translations were observed in Ms. MA’s class. In the 

second period, her students made translations in the form of Symbolic1 → Graphical →

 Symbolic2 when solving the real-world problem related to launching fireworks. The 

teacher initially solved the quadratic equation by factoring and then drew its graph on 

the worksheet while projecting it on the board. By looking at this graph, students 

identified the answers to such questions as, “How long would it take for the rocket to 

reach its highest point?” Similar to this activity, the students observed translations of the 

form Symbolic1 → Graphical → Symbolic2 when the teacher solved the quadratic 

equation shown in Figure 4-22.  

In addition to translations between symbolic and graphical representations, Ms. 

MA and her students made the following translation Symbolic → Tabular → Graphical. 

The students entered the equation into their calculator and identified the X-value for the 

vertex and its corresponding Y-value. They completed the table with the coordinates 

value that were obtained by adding and subtracting one from the vertex. Since the 

parabola was symmetric, the values for Y were the same because corresponding X’s 

had same distance (e.g. -2, +2) from vertex. After the table was completed, the students 

determined these points on the coordinate grid on their worksheet and joined them to 

draw a parabola. 

In the second class, Ms. MA used two unidirectional translations twice within the 

dog run activity as follows: Pictorial → Tabular → Graphical and Tabular → Symbolic →

 Graphical. They drew rectangles (Figure 4-21A), determined the possible sides, 

perimeter, and area, and wrote them in a tabular format (Figure 4-21B). Then the 
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teacher asked them to select and send three chart values via the TI-Navigator. Using 

the values of one side and the area, the teacher showed the relationship between these 

two parameters on a graph in the Activity Center component of the TI-Navigator (Figure 

4-21C). Then, the students came up with a formula by looking at the pattern in the 

tabular format (Figure 4-21B), which was then entered into the calculator to represent 

the graph (Figure 4-21D). 

Also, three unidirectional translations were only observed in the first class when 

the students constructed translations of the form Symbolic1 → Graphical → Symbolic2 

→ Graphical. The teacher initially entered a linear equation in the TI-Navigator to draw 

its graph (Figure 4-18A). Then the students moved their cursors to any point on the line, 

and Ms. MA selected two points for students to draw a line on their worksheet by hand. 

The same type of translation was performed when solving quadratic equations as well. 

While some unidirectional translations were observed, the class’s focus was not 

typically on the dynamic relationships between the representations. These 

representations were not linked with each other; thus, a modification made on one of 

them did not change another one simultaneously. That is, the class engaged with the 

representations independent of one another, which resulted in no cycling translations 

being observed. In the first class, the students initially solved linear equations 

algebraically by hand and then solved them graphically. The solutions obtained by these 

two representations were obviously the same; however, while the teacher pointed this 

out and called students’ attention to it, the students were not provided the opportunity to 

observe them as dynamically linked because of the way the problems were presented. 

Ms. MA tried to promote relational learning between solutions and X-intercepts and 
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emphasized the link between symbolic and graphical solution methods. This was done, 

however, by analyzing different representations on separate screens on the calculator. 

Thus, the students engaged with the representations independently without translation 

for both linear (Figure 4-18A and Figure 4-18B) and quadratic functions (Figure 4-19 

and 4-20).  

Observing translations  

Students in Ms. MA’s class passively observed translations in the last two 

activities of the second period. One of these activities was taken from the real-world 

word problem involving launching firework rockets. The teacher asked several questions 

related to the given quadratic equation such as the highest point that the rocket could 

reach. She, however, did not let the students practice this problem. While she was 

solving the quadratic equation by hand, she projected her worksheet on the screen. So, 

while the students observed a translation from symbolic to graphical representation, 

they did not participate in its construction with the teacher. In another activity, Ms. MA 

drew a graph of an equation to determine the x-intercepts and the X- and Y-values of 

the vertex. As in the previous activity, the teacher translated from symbolic to graphical 

representations, and the students observed but did not take part in the activity (Figure 

4-22). Ms. MA’s class observed other types of translations as well. In the first class 

period, while Ms. MA was identifying the points of a quadratic equation (𝑥2 + 4𝑥 − 12 =

0), the students observed a translation from symbolic to tabular representations 

performed by the teacher. After the table was filled out, the teacher drew the graph, and 

similarly the students observed a translation from tabular to graphical representations.  

To a lesser degree, students were provided several opportunities to jointly 

construct translations with the teacher and the calculator. After the students solved 
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linear equations algebraically during Ms. MA’s first class, they were asked to solve the 

same equations graphically. The teacher and the students jointly translated from 

symbolic to graphical, graphical to symbolic, and symbolic to graphical representations 

while using the calculator as a tool. When the class found the solution to the linear 

equation as described earlier, the teacher initially drew the graph, and using Activity 

Center, the students moved their points to the graph on the screen, and Ms. MA 

selected some of those points whereby the students could draw the same graph. In this 

way, the students translated from symbolic to graphical representations (Figure 4-18A). 

This same solution approach was used to solve quadratic equations (Figure 4-20). 

During the second class, other translations between pictorial, tabular, graphical, 

as well as tabular, symbolic, and graphical representations constructed by multiple 

parties were observed. While performing the activity involving the design of the dog run, 

the students were asked to identify the relationship between the sides and area of a 

rectangle. The first translation observed was from pictorial to tabular representations 

(Figure 4-21A and 4-21B). The teacher initially showed one possible design, and the 

students then drew the remaining design options by hand. Using the possible designs 

drawn on the grid sheet, the students determined the length of each side, the perimeter, 

and area and then construed a table of values. Following this step, the students 

translated from tabular to graphical representations by using their calculators (Figures 

4-21B and 4-21C). They then sent three pairs of values via TI-Navigator, and the 

teacher displayed the relationship between the side and the area on one graph with the 

Activity Center component.  
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By looking at the table that Ms. MA initiated, the students came up with a formula 

for the relationship between one side and the area (Figure 4-21B). The teacher and 

students made this translation from tabular to symbolic representations jointly. Finally, 

the students entered the equation into the graphing calculator. This time, the students 

translated from symbolic to graphical representations using their calculators. Even 

though this activity was rich in terms of the number of translations, Ms. MA primarily 

facilitated the exercise and did not adequately let the students explore the practices of 

translating and using representations for themselves.  

A teacher-centered approach  

Ms. MA generally solved problems and explained them with limited interaction 

from her students. While solving quadratic equations in the first period, the students 

were supposed to discuss the answers, but she provided the answers by writing them 

on the worksheet and projecting them on the screen. In another example, Ms. MA 

asked the students to solve the rest of the questions, but she primarily kept solving 

them by herself. The discussions would typically end with her explanations. For 

instance, when solving a quadratic equation graphically at the beginning of the second 

class, the teacher asked, “So, I’m saying when are these numbers, when [are] these Y’s 

going to equal to zero?” and she answered right away, “Y is always zero on the x axis” 

(MA_05.07.08_Per. 4, 25). Her predominately lecture-based style is easily visible when 

referring to the transcript; each page of the transcript is mainly composed of the 

teacher’s lengthy explanations (Appendix E). 

Moreover, she rarely asked questions and encouraged students to explore. In 

one of these rare instances, she asked students to discover, saying, “Just 

brainstorm…tell me anything you know about this graph before we actually start to 
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graph” (MA_05.07.08_Per. 4, 846-847). The students were also given only a few 

opportunities to contribute. However, even these contributions were limited to arithmetic 

operations. Additionally, when Ms. MA reviewed linear equations in the first class 

period, she explained the solution without first asking for the students’ input. While 

solving one of these equations, she translated between from symbolic to graphical 

representations and provided the solution by saying: “So our very first equation was 4X 

minus 4 and because X is to the 1st that makes it a linear equation and its graph is a 

line” (MA_05.06.08_Per. 4, 306-307). During the first and second day of period six, she 

involved the students a little more when solving a problem but generally asked them 

about their steps for calculations.  

T: Show me the [inaudible] steps. Show me the algebra. Ok, looks like a lot 
of people are getting one for this answer so the problem was 2 times the 
quantity X plus 1 minus 4 is equal to zero. Ok, what did you do as a first 
step?  

S:   Got rid of the parentheses.  

T:   Ok, so she got rid of her parentheses and she distributed. Did anyone do 
something different as a first step? Ok then let’s go with that. Let’s multiply 
and get rid of the parentheses. So two times X is 2X. Two times 1 is 2… 
Ok, I probably would combine like terms then. And a 2 and a neg. 4 would 
be a neg. 2. Ok, so then Carly, what would you do as a next step?  

C:   Add 2. 

T:   Add 2, so that would give me 2X equals 2 so to finish it up what would our 
last step be?  

SS:   Divide by 2. 

T:   Divide by 2 and we get 1, so 1 is the correct answer. (MA_05.06.08_Per. 
6, 278-295) 

She also asked whether anyone used a different method for the first step; 

however, she did not wait and explained that there are different ways that simplify the 
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process of solving this problem right away. Ms. MA mentioned that the intercept form 

was the easiest way and started solving the problem with this method. Once done, she 

asked the students, “Wasn’t that less work than the tables?” and the students said “No. / 

No” (MA_05.07.08_Per. 6, 1190-1191). The students did not find this method easier. 

The students would generally follow the solution steps shown by the teacher, 

which seemed to make them dependent upon Ms. MA for methods and solutions. She 

asked the students why it was not necessary to calculate the values of two Y points on 

a parabola whose X points were located at the same distance from the axis of 

symmetry. But before the students could respond, she provided the answers, not 

allowing them to identify the solution method. Ms. MA’s teaching method did not seem 

to allow students to become comfortable with solving difficult problems.  

Ms. MA also asked the same questions across class periods to initiate 

discussion. For example, in the same class period, she asked “What’s the formula that 

helps me find the X coordinate of my vertex?” (MA_05.07.08_Per. 4, 26) and “How do 

we find the X-value of the vertex?” (MA_05.07.08_Per. 4, 100-101). Furthermore, when 

providing explanations, she used the same words and repeated the same information. 

During these moments, the students tended to begin talking about unrelated topics. In 

addition, while Ms. MA explained new concepts about quadratic equations, she asked 

questions calling for short answers. The following excerpt reflects this notion. 

T: Ok, so let’s plot those numbers. Negative 5, negative 7; negative 4, 
negative 12; negative 3, negative 15; negative 2, negative 16; zero, 
negative 12 and 1, negative 7. Does it look like a parabola? 

S:   Yes. 

T:   There’s a nice word. A is 1. Does our parabola open up?  

S:   Yeah. 
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T:   Does it appear to cross the Y-axis at negative 12? So it fits in with 
everything that we’ve talked about this chapter. (MA_05.06.08_Per. 4, 
686-696) 

When the students had a difficult time reaching a solution, Ms. MA usually 

corrected them directly instead of allowing them to think through the process of the 

solution. In the second day of period four, when the students were doing the dog run 

problem and sent their values for one side and the area through the TI-Navigator, the 

teacher identified the points that were off the parabola (Figure 4-23) and corrected them 

herself. The following excerpt shows the dialogue between Ms. MA and her students 

exemplifying this problem. 

T: Do you think our graph is perfectly parabolic?  

SS:   No. 

T:   Do you see that point right there? It looks a little bit off. Let’s look. 

S:   Blank.  

T:   Ok, blank. 

S:   Ohhh.  

T:   When you had a side of 16 what was the other side?  

SS:   4.  

T:   Ok, so if you took 16 times 4 would you get 75?  

S:   No. 

T:   What would you get?  

S:   Um, it would be 64. 

T:   64, so I’m going to correct that if you don’t mind. Oh! That fixed it. 
(MA_05.07.08_Per. 4, 732-757) 
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A B 
 
Figure 4-23. Correcting students’ work. A) The point that was off the parabola, and B) 

Corrected point (MA_05.07.08_Per. 4, 42:17 & 42:51). 

Ms. MA rarely created a setting where the students could evaluate themselves 

and discuss their mistakes afterward. She initiated conversation to understand which 

parts of certain problems students needed more clarification. She sometimes 

encouraged the students to identify their own mistakes. She once said, “If you wanted to 

change your answer to one then you tell me how you would get to that answer” 

(MA_05.06.08_Per. 6, 360-361). She received a number of responses to such 

statements. One student said that he had made a mistake accidentally. Another student 

added, “I typed in 4 divided by 4” (MA_05.06.08_Per. 6, 156). Additionally, the teacher 

asked one of the students why he found an incorrect answer by saying, “Would anyone 

be willing to say that they got the 1/4th, the .25?” (MA_05.06.08_Per. 6, 243-244) “What 

did you do?” (MA_05.06.08_Per. 6, 248). He responded “I did negative 2X divided by 8” 

(MA_05.06.08_Per. 6, 250). Ms. MA would often point out students’ mistakes right 

away, however, instead of letting them figure out the issues.  

In the first day of period four, while the students were solving a quadratic 

equation, Ms. MA provided several hints. She wrote two blank parentheses on the 



 

150 

board to direct the students to use the guess-and-test method without considering other 

options.  

T:   Ok. As I walk around I see a good start to this problem. I see this, which is 
good, because it’s telling me sort of what technique you’re thinking about. 
What technique are you using to solve this one?  

S:   Guess and test. 

T:   Guess and test. Ok. (MA_05.06.08_Per. 4, 481-487) 

In the second day of period four, Ms. MA also provided hints while performing the 

activity related to launching fireworks. She explained that the vertex would be located 

between the x-intercepts and then asked the students to find the vertex with given x-

intercepts by saying, “Now, your vertex is going to be right between those intercepts, so 

what number do you find right between negative 1 and 5?” (MA_05.07.08_Per. 4, 930-

932). 

Ms. MA asked the students to make obvious generalizations during class 

activities. In the first class, they solved linear equations first algebraically and then 

graphically. Although it was clear that the findings of these different methods were the 

same, the teacher nevertheless asked, “What was true about the solutions from the top 

half and the X intercepts from the bottom half?” (MA_05.06.08_Per. 4, 394-395). In the 

second day of period four, when Ms. MA conducted the dog run activity, she asked if 

there was a pattern observed between the sides and the perimeter of the rectangular. 

As seen in Figure 4-21B, the value of one side showed a downward trend when the 

value of the other side increased. The students replied, “It started going down” 

(MA_05.07.08_Per. 4, 588). The following excerpt details another example of such 

questions: 
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T: On this chart I asked you to generalize. When the first side was X, how 
was it getting the length of side two? What do you do to one to make 19? 
What do you do to 2 to make 18? What can you do to 3 to make 17? Is 
there any pattern between those numbers? Do 1 and 19 do anything the 
same as 2 and 18, 3 and 17?  

S:   They add to 20? 

T:   Oh, they add to 20, so I bet 20 is part of the relationship, so think about 20 
and think about 1. What would you do with those numbers to make a 19?  

S:   Subtract. 

T:   Oh, subtract, and starting with what number, the 1 or the 20?  

S:   20.  

T:   So if you have a side length of X in this column, it’s just found by taking 
20, because that seems to be what they add up to be, and subtracting that 
X. Ok. If this is 40 and this is 40, and this is 40 and this is 40, what’s the 
general pattern for our perimeter answer?  

S:   It stays the same. 

T:   Again, that’s constantly 40 because you have 40 ft. of fencing. 
(MA_05.07.08_Per. 4, 688-710) 

Summary of Ms. MA’s Classroom Environment 

Ms. MA exhibited a caring attitude toward her students. She was interested in 

knowing about her students’ lives outside class and was aware of the challenges they 

faced in their personal lives. She used kind language and verbally encouraged her 

students when they arrived at a correct solution. Her students would reciprocate with 

appreciative language, though a few times somewhat sarcastically. Relatedly, they 

sometimes misbehaved. Ms. MA routinely monitored the students’ participation and 

made sure the students were on the right track. In addition, she usually did not start 

working on a new problem until all students were finished with the current one. She 

would walk around the class to check whether her students performed the activity as 

expected and often informed them about their progress.  
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Ms. MA sometimes chose real-world problems and most of the students did not 

interpret the solutions realistically. While two and three unidirectional translations were 

constructed, they used different representations independently rather than 

simultaneously. The students either observed or jointly constructed these translations 

with the teacher and calculator. Some activities were rich in terms of different 

translations, but Ms. MA primarily completed the exercises and did not adequately let 

the students explore the practices of translating and using representations for 

themselves.  

The students in Ms. MA’s class didn’t voice their questions or hold open 

discussion. She generally solved the problems herself and then provided explanations. 

The majority of the teacher’s questions were related to arithmetic operations. In both of 

her classes, Ms. MA used similar questions and explanations. Instead of letting students 

work out the problems by themselves, Ms. MA usually corrected students’ answers 

directly. Additionally, she provided several hints to direct the students to a specific 

strategy or a correct solution. Finally, Ms. MA asked students to make obvious 

generalizations regarding solutions during class activities. 

Ms. JR 

One class was observed on two consecutive periods in Ms. JR’s Algebra I class. 

A detailed description of the activities during these lessons is discussed in this section 

to provide an overall understanding of the sessions. 

General Classroom Description 

There were approximately 20 students in the class, but only a few actively 

participated in discussions. Some students were engaged in activities that did not relate 

to the lesson. For example, one student was observed reading a book instead of 
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participating. When the teacher used the Class Analysis component of TI-Navigator, the 

participation increased; however, the class remained quiet during discussions. The 

students sat in groups of two, but they worked individually and had their own 

calculators.  

During the first day of observations, the teacher reviewed three methods to solve 

quadratic equations: factoring, square roots, and the quadratic formula. The teacher 

used the Quick Poll component of TI-Navigator and initially asked the students which 

method they would use to solve each of six exercises [𝑥2 − 6𝑥 + 9 = 0; 𝑥2 − 49 = 0; 

(𝑥 + 4)2 − 9 = 0; 3𝑥2 + 12𝑥 = 0; 𝑥2 − 2𝑥 − 2 = 0; 3𝑥2 + 2𝑥 + 4 = 0] without actually 

solving it. One of them is shown in Figure 4-24. 

 

Figure 4-24. An example of a Quick Poll question (JR_05.28.08, 09:17). 

The teacher directed the students to find out which method they used in their previous 

homework solving similar quadratic equations. After the students submitted their 

answers to the TI-Navigator, Ms. JR showed the students’ preferred methods through 

the Class Analysis component of TI-Navigator (Figure 4-25). 
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Figure 4-25. An example of Class Analysis (JR_05.28.08, 10:00). 

After showing the class analysis, the teacher solved the exercises on the board by 

hand. She started to solve the equation by using the method most chosen by her 

students and only interacted with the students when the arithmetic operations were 

required. When there was a need to perform these operations such as to determine the 

discriminant, the students used their calculators. 

During the second day, the teacher dedicated the first 15 minutes to displaying 

the answers from the previous assignment on the smart board (Figure 4-26) using five 

slides [𝑦 = 𝑥2 + 4𝑥 − 5; 𝑦 = 𝑥2 − 6𝑥 + 5; 𝑦 = 𝑥2 + 𝑥 + 2; 𝑦 = 𝑥2 − 4; 𝑦 = −2𝑥2 + 2𝑥 +

4]. The exercises included the standard form of quadratic functions and their graphs. 

While she was sharing the answers with the students to check their work, she explained 

each exercise. 

 

Figure 4-26. An example of reviewing the previous assignment (JR_06.03.08, 12:14).  
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Ms. JR used the Activity Center component of TI-Navigator to teach students 

how to move their parabolas on the coordinate plane. She created the function 𝑦 = 𝑥2 

on the screen and asked students to move the location (i.e., up, down, right, left, and 

vertex in third quadrant) and to change the shape of the parabola (i.e., narrower or 

wider, and upside down). Figure 4-27 shows an example of the students trying to move 

the teacher’s parabola up. The vertex form was explained, as were the coefficients 

(e.g., “a” in front of 𝑥2) affecting the parabola. This activity took 30 minutes. 

 

Figure 4-27. Changing the location of a parabola (JR_06.03.08, 24:26).  

Finally, Ms. JR went over the first question of the homework. The goal was to 

draw the parabola for 𝑦 = (𝑥 − 3)2 − 4 by determining the vertex, x-intercepts, y-

intercept, and axis of symmetry. The students used graphing calculators (Figure 4-28). 

A  B 
 
Figure 4-28. Graphing the quadratic equation using the graphing calculator. A) Equation 

and B) Graph of the equation (JR_06.03.08, 58:30 &1:00:01). 
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The teacher initially provided some explanation. She stated that the vertex could be 

found by looking at the patterns for Y-values, and that the vertex was located in 

between decreasing and increasing values of Y (Figure 4-29).  

 

Figure 4-29. Finding the vertex by looking at the patterns for Y-values (JR_06.03.08, 
1:00:26).  

Additionally, she explained that x-intercepts could be identified by looking at the X-

values where Y-values were zero using the calculator. After solving the first homework 

problem graphically, Ms. JR solved the quadratic equations algebraically to verify the 

answers. She again asked the students to calculate arithmetic operations. During the 

last 30 minutes of class, the students started working on the homework questions 

individually. 

Psychological Environment and General Mathematics Teaching Approach  

Two characteristics of this class emerged through the analysis: (a) monitoring 

participation and (b) inefficient use of class time. 

Monitoring participation 

Ms. JR kept track of her students’ presence in class and demonstrating 

awareness of students who missed the previous class. During the second period, she 
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quickly went over the topics of the previous day with a student who had been absent 

before covering the next topic. In addition, she used the TI-Navigator to display 

students’ names on the board and checked whether they were logged into the system. 

When she did not see one of the students’ names, she asked, “Did you get this problem 

here?” (JR_06.03.08, 986). She usually tried to get students’ confirmations about their 

understanding by saying “OK” and provided clarification if needed. In another instance, 

while the students were working on a problem, she walked around and checked if there 

was any confusion. Ms. JR inquired when she realized that one of the students erased 

his work. She wanted to know which part of the problem the student had made mistake 

on.  

Although Ms. JR tried to promote students’ input in the class, participation was 

low, and the same few students contributed to discussions. Although the teacher 

warned students several times to take notes, some students appeared unmotivated and 

answered questions with a weak voice. For the most part, the students seemed 

uninterested and did not listen to Ms. JR’s instruction. Instead, many of them were 

engaged in activities that did not relate to the class content. During the first class, for 

example, one of the students was listening to music with earphones while others were 

working on the homework questions. Another student was reading a book instead of 

working with his calculator or taking notes. During the second period, this same student 

was again disengaged from the lesson. Another student also did not have the course 

materials in front of her and was looking into a personal mirror at her desk 

(JR_06.03.08, 15:45). 
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Inefficient use of class time  

In both periods, the teacher did not use class time efficiently. During the first 

class, Ms. JR spent the first 10 minutes on instructions for an activity and half the time 

(40 minutes) on a survey and homework problems at the end. In addition, during the 

first period, the students spent a good amount of time calculating arithmetic operations. 

For example, when solving an equation using the quadratic formula, Ms. JR explained 

the solution and the students helped her with their calculators when needed. In the final 

step, the teacher asked students to calculate an operation and provide the answer by 

using their calculators. The students, however, came up with approximately 10 different 

answers and did not come to an agreement on the right one. The teacher did not have 

the answer ready, so she could not guide them toward the correct answer. 

During the second period, Ms. JR spent about 12 minutes at the beginning on the 

previous homework, 30 minutes on the next day’s homework, and announcements 

related to senior activities. Thus, the class time was not used efficiently as more than 

half of the time was dedicated to reviewing old concepts and working on homework.  

Representational Practices 

The representational practices in Ms. JR’s classroom were characterized by the 

following five aspects: (a) decontextualized representations, (b) using representations 

explicitly for specific purposes, (c) limited translations, (d) observing translations, (e) a 

teacher-centered approach. 

Decontextualized representations  

The problems Ms. JR provided were typically decontextualized, and her students 

did not interpret representations based on their meaning. Instead, students commented 

on superficial aspects such as their shape. When the students changed the location and 
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shape of the parabola in the second period, they did not interpret any representations 

while making connections between the graphical and real-world representations. 

Instead, they only used metaphors to describe the graphs’ shape. For example, the 

students would liken the shape of the parabolas to a tacos or fountain, as seen in 

Figures 4-30A and B, respectively.  

A B 
 
Figure 4-30. Changing the shape and location of a parabola. A) Taco comparison and 

B) Fountain comparison (JR_06.03.08, 28:33 & 52:57).  

One example of these conversations is as follows:  

SS:   Oh, that one’s mine. / It looks like a…  

T:   Looks like a…? 

S:   A taco. 

T:   A taco? 

SS:   It does look like a taco. / [inaudible] 

T:   Like the solar system? 

S:   Yeah. 

T:   A taco solar system?  

SS:   How does it look like a taco? / A taco… (JR 06.03.08, 318-334) 
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Using representations explicitly for specific purposes 

Ms. JR explicitly encouraged the use of specific representations for specific 

purposes. In her class, there was a poster stating, “Do algebraically, support 

graphically; do graphically, confirm algebraically” (JR_06.03.08, 3:01), which reflects the 

different purposes of representations. When solving the homework, a tabular 

representation was used to find the vertex, x-intercepts, y-intercept, and axis of 

symmetry for a given equation. The students identified the vertex by looking at the 

pattern within the Y-values and the intercepts by looking at the values where X=0 or 

Y=0 (Figure 4-31).  

 
 
Figure 4-31. Using tabular representation to find X-intercepts (JR_06.03.08, 01:00:59).  

At the end of this activity, the students used symbolic representation to verify their 

answers, as seen here: 

T:   Oh, so here in this box you’re going to show the work for your X intercepts 
and in this box you’ll show your work for the Y intercepts. Because the 
idea was what I wanted you to…to use the tables on the calculator to find 
the graph. So when you found the answers from the table and the graph 
first, then you used algebra to verify those answers. (JR 06.03.08, 1208-
1211) 

Additionally, Ms. JR let the students know about the use of a graphical representation to 

support a tabular representation. She said, “Looking at the graph helps you decide 

where to [look into the table]” (JR 06.03.08, 1226-1227). That is, a graphical 
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representation provides an overall idea about what the value is, and students can look 

at a tabular representation to find the exact numbers. 

Limited translations 

The students were observed only once performed activities including 

unidirectional and cycling translations. In the second class, when solving the homework, 

four unidirectional translations of the form Symbolic1 → Graphical → Tabular → 

Symbolic2 → Graphical were constructed. Ms. JR initially entered the equation, which 

was given in vertex form, into the calculator. After seeing its graph, she found the 

vertex, x-intercept, y-intercept, and axis of symmetry by looking at the tabular format on 

the calculator. Then she used this information to draw the graph for the parabola (Figure 

4-28A and 4-28B). 

Ms. JR also used cycling translation once in her second class. She initially 

created the function 𝑦 = 𝑥2 on the screen and asked the students to change the shape 

(e.g., narrower) and location of a parabola (e.g., up) (Figure 4-27). The students 

translated from symbolic to graphical representations bi-directionally until they correctly 

changed the shape and location of the parabola. 

Although cycling translation was observed once, similar to Ms. MA’s students, 

Ms. JR’s students generally used multiple representations independently. When the 

students worked on the five exercises from the previous homework, they saw symbolic 

and graphical representations in the same PowerPoint slide; however, these 

representations were static versus dynamic. Changing the equation did not 

automatically modify its associated graph (Figure 4-26). 



 

162 

Observing translations  

Ms. JR constructed representations and translations on her own when 

performing most of the class activities. Before solving quadratic equations in the first 

period, Ms. JR used the Quick Poll component of the TI-Navigator to ask students to 

identify their preferred method of solution. But without students’ input, the teacher 

solved all of them, and the students passively observed the symbolic representations 

Ms. JR constructed. 

At the end of the second period, the teacher used representations while solving 

the homework questions using the calculator as a tool. Ms. JR initially used the table in 

the graphing calculator to identify the vertex, x-intercepts, y-intercept, and axis of 

symmetry (Figure 4-28A and 4-28B). Then she drew a graph by hand based on the 

information obtained from the calculator. The students only followed the steps, 

observing the teacher’s translations from symbolic to tabular and from symbolic to 

graphical representations.  

Additionally, the students translated between representations when changing the 

shape and location of a parabola. The students used their calculators to translate from 

symbolic to graphical and from graphical to symbolic representations. The students 

initially entered an equation into the graphing calculator to draw its graph, and Ms. JR 

projected their graphs through the TI-Navigator so that the students could adjust their 

graphs if needed.  

A teacher-centered approach  

Ms. JR was predominantly involved in problem solving throughout the observed 

classes. She sometimes asked good questions; however, she typically provided the 

answers right away. Without allotting sufficient time for her students to complete current 
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work, she moved to the next question. Generally, Ms. JR asked questions that could be 

answered very quickly, often completing students’ answers or providing detailed 

explanations herself.   

T:   I’m not too sure about factoring because I don’t know what the equation 
looks like in that standard form without parentheses. I would have to go 
through and I’d have to square this, find my terms, and then maybe it can 
be factored, but it can always use the quadratic formula if I can’t factor it. 
But we’re going to stick now to the top choice so we’re going to use 
square roots. How do I solve this using square roots?  

S:   Square [inaudible] (JR_05.28.08, 269-275) 

Ms. JR clarified without interaction if a question was not clearly understood. She 

usually did not encourage students to discover solutions on their own. Once, when the 

students were performing an activity related to determining the location of a quadratic 

equation in the coordinate plane by looking at its vertex form, a student curiously asked 

Ms. JR to clarify why the location of 𝑦 = (𝑥 − 3)2 + 7 is in the first quadrant of the X-Y 

coordinate system. Ms. JR provided an explanation without encouraging the student to 

search for the answer on his own.  

T:   So if I add that equation, if we take a look at … did I have minus 3? So 
right three, up seven because we’re starting from the very basic X square 
…. (JR_06.03.08, 669-670) 

Ms. JR sometimes responded curtly to students when they gave incorrect 

solutions or answers. She did not take up and explore students’ answers. She also did 

not allow students time to work through their own mistakes to correct themselves. If she 

disagreed with a student’s answer, she often did so sharply. For instance, when one 

student arrived at zero for an answer, the teacher told him that he was incorrect by 

saying “I don’t agree with zero” (JR_05.28.08, 397). Another time she said impatiently, 

“I’m finding wrong answers…I have found four wrong answers” (JR_06.03.08, 69-70).  
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When the students worked on a difficult problem, Ms. JR let them know about the 

challenge and preferred to solve the problems by herself without challenging the 

students to think independently. In the second class, when drawing a graph, she said 

“So this is that one problem that’s really, really tough” (JR_06.03.08, 1231) and 

continued to explain by saying, “So you need to think about factors of 12 and factors of 

six. Factors of six give me my first term; factors of 12 give you the second term. You just 

have to use…guess and check that to see if we can get this…This one you should have 

a greatest common factor first …” (JR_06.03.08, 1235-1237). 

The students repeatedly made the same mistakes on some concepts. During the 

second period, the students thought that the vertex includes only one coordinate, but it 

has both x and y coordinates. Additionally, the teacher explained the vertex several 

times and reviewed several practice problems to show how to find it, but by the end of 

class one student still admitted, “I still do not get that [vertex]” (JR_06.03.08, 871).  

Unlike her usual teaching strategy wherein she would identify the solution 

method for the students, Ms. JR sometimes foregrounded the students’ methodological 

choices in solving quadratic equations such as during the first period when she asked 

the students their preference for solving a quadratic equation. She explained the task by 

saying: 

T: Ok, what we’re going to work on today is reviewing these three methods; 
solve by factoring, solve by using square roots, solve by quadratic 
formula, and we need a couple people to get logged in. So no new 
methods, just deciding which is the appropriate method; what’s going to 
be the easiest, the fastest or which one you’re more comfortable with, so 
you also need to get out a piece of paper. We’re going to go through some 
quick poll questions and decide and some practice reviewing the solving. 
So I want your three assignments out so you can look at and say, gee, this 
problem looks like the first assignment, the second assignment; it will help 
you decide. (JR_05.28.08, 61-67) 
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This task may give more freedom to the students in selecting strategies when solving 

problems, which might enhance representational fluency. The teacher, however, limited 

the students' choices by directing them to look for similar exercises in their homework. 

Similar to Ms. MA, Ms. JR provided hints to her students without allocating time 

for them to think while solving problems. In the second period, when the students were 

asked to move a parabola to the left or right and did not initially include parentheses, the 

teacher told them to add them, but they still could not correctly move the graph as 

instructed. Thus, Ms. JR provided additional hints saying, “squared outside the 

parenthesis” (JR_06.03.08, 433). These hints made the problem less challenging and 

interrupted the students’ independent thinking.  

Finally, at the end of the second period, Ms. JR provided hints when going over 

the first question of the homework, which was related to finding the vertex of a quadratic 

function. The following excerpt reflects this:  

T:  I am giving you a hint. Can you tell me what the vertex is before we even 
look at the graph? 

SS:   [inaudible] 

T:   I am giving you a hint. Can you tell me what the vertex is before we even 
look at the graph? 

SS:   Negative 3… no / Zero. / No. / 3. / 3 and 4. 

T:   It’s going to have the 3 and 4 in there.  

S:   Positive 3 and negative 4. (JR_06.03.08, 850-860) 

Ms. JR also asked her students to generalize the findings of the activities, but as 

in Ms. MA’s class, the students were asked to make obvious generalizations. When 

changing the location and shape of the parabola, Ms. JR asked her students to move 

the parabola straight down. After they submitted their parabolas, she asked “x squared 
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minus 6, x squared minus 5, minus 3, minus 2…so what did we have to do to drop the 

graph?” (JR_06.03.08, 345-346). With this question, the students were asked to 

generalize how a chosen number changes the location of a parabola. Thus, they related 

a symbolic representation with a graphical representation, as well as made a translation 

between them. Ms. JR, however, simplified her question by providing a hint.  

Summary of Ms. JR’s Classroom Environment 

To some degree, Ms. JR attempted to encourage student participation. The 

participation remained low, however, as the same few students consistently contributed 

to the discussion. Overall, the students appeared unmotivated and unenthusiastic. Ms. 

JR also spent time reviewing previous homework and explaining both the assignments 

and the instructions for that day’s activities.  

Additionally, Ms. JR’s students exhibited difficulties understanding 

representations. For instance, rather than interpreting the meaning, the students 

primarily only commented on the shape of graphical representations. She did, however, 

explicitly direct her students to various representations for different purposes. Tabular, 

symbolic, and graphical representations were used to find the values of a quadratic 

equation, to verify answers, and to support tabular representations, respectively. Similar 

to Ms. MA’s students, Ms. JR’s class used multiple representations. Four unidirectional 

and cycling translations were observed. Except in one activity wherein the students 

translated between representations using their calculator, the students were not 

involved in constructing representations and translations but only observed the teacher 

performing them. Ms. JR generally missed opportunities to foster a dynamic, 

discussion-based environment. She would often provide answers to questions quickly, 

and if she did not agree with a student’s response, she would often respond abruptly or 



 

167 

dismissively. Additionally, her students did not exhibit sufficient competence in the 

course material; they would make the same mistakes repeatedly and did not seem to 

fully grasp the course’s concepts. Similar to Ms. MA, Ms. JR provided hints when 

students were challenged. However, her hints often interrupted the students’ 

independent thinking. She also asked questions leading to simple generalizations 

regarding the activities’ findings.
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CHAPTER 5 
REPRESENTATIONAL FLUENCY INSTRUCTIONAL PRACTICES: A CROSS-CASE 

ANALYSIS  

As stated in chapter 3, the cases examined in this study were identified first by 

examining the gain scores for classes that initially were low performing on the pretest. 

The effective classes were those that had the greatest gain from pretest to posttest 

among these initially low-performing classes, and the less effective classrooms were 

those that experienced the least amount of growth from pre- to posttest (Table 3-4). 

Once the cases were identified, all identifying information was deleted prior to the initial 

analysis. The cases were randomly chosen for analysis without knowledge of 

effectiveness. The aim of Chapter 4 was to explore these teachers’ practices in terms of 

how their students engaged with mathematics and representations. Following the initial 

coding, the effectiveness category of the classes was identified and the effective and 

less effective cases are compared through cross-case analysis in chapter 5. 

Psychological environment and general mathematics teaching approach are discussed 

briefly, and then teachers’ representational practices are analyzed in detail. Five themes 

that potentially support representational fluency were identified in the present study. In 

each subsection, a theme and how it is practiced in both effective and less effective 

classrooms is described. 

Psychological Environment and General Mathematics Teaching Approach 

Looking across the cases, similarities and differences of the effective and less 

effective classrooms in terms of general mathematics teaching were identified. Both 

teachers in the effective classrooms, Ms. BW and Ms. MB, promoted student 

participation and attention by including rich mathematical tasks. They made sure their 

students were on track. For example, Ms. BW assisted one group and left them to 
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check the other group’s progress at the end of the second period. After a while, she 

came back and still remembered what the first group had done. The teachers created a 

safe environment for the students to ask their questions and resubmit their graphs. They 

appreciated their students’ input in classroom discussions and verbally encouraged 

them when they used correct terminology. Additionally, Ms. BW had a sense of humor, 

which helped her to build strong rapport and communication with her students. She 

used the class time efficiently but taught in a fast-paced manner. Although this 

approach might not give all of the student sufficient time to think, her explanations were 

clear and concise during problem solving. On the other hand, Ms. MB built a class 

community by using “we” language and emphasizing the word “all” to encourage 

students’ interaction with each other.  

Both teachers in the less effective classrooms, Ms. MA and Ms. JR, monitored 

participation throughout the class periods. The participation was low, however, and the 

students seemed uninterested in classroom discussions. In addition, Ms. MA showed 

care for the students and talked about their lives. She also fostered politeness in her 

classroom by using kind words and verbally encouraging her students. Ms. JR used the 

class time inefficiently by allocating approximately half of the time to review previous 

concepts and homework. 

Compared to less effective classrooms, students in effective classrooms 

engaged in many rich mathematical tasks that required them to use multiple 

representations. To meet these task demands, the students needed to translate 

between representations by reconstructing their knowledge (Nistal et al., 2009). As 

these researchers mentioned, the reconstruction process might make them more 
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successful than the students in less effective classrooms. Participation is increased 

through classroom response system technologies with specific questioning techniques 

(Rochelle et al, 2003). Leng (2011) stated that TI-Navigator provides a learning 

community that allows students to communicate mathematical concepts by increasing 

their participation in the learning process, which was observed in effective classrooms. 

Additionally, students are potentially more engaged in using representations in 

classrooms where the participation is high. The teachers in effective classrooms also 

increased participation and attention by providing a safe environment for students to ask 

their questions. Furthermore, CCT creates more student- and community-centered 

classrooms (Bransford et al., 2000), which was observed in Ms. MB’s class.  Having a 

good sense of humor, Ms. BW helped students to focus on classroom discussions. 

Additionally, Ms. MA talked about students’ lives. Although Ms. MB, Ms. BW, and Ms. 

MA had strong communication with their students, students in Ms. BW and Ms. MB’s 

classrooms communicated more frequently within the context of translating between 

representations whereas Ms. MA held these conversations outside of mathematics 

activities, which were either at the beginning or end of the class periods.  

Representational Practices 

Use of Representations 

Representational fluency includes three abilities: constructing representations, 

interpreting them, and translating between representations (Sandoval et al., 2000). The 

interpretation of representations is, in a way, a pre-requisite to constructing and 

translating between representations. If students misinterpret representations, they will 

not be able to accurately construct representations and correctly translate between 

them. The interpretation of representations gains more importance in real-world 
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problems that require students to model situations, and the ability to model problems is 

related to the ability to interpret mathematical representations, such as pictures or 

images.  

Students usually find representations difficult, especially relating to higher-level 

mathematical concepts. Since mathematics is abstract, it may not initially be enjoyable 

or interesting to them. But teachers may better capture students’ interests by 

diversifying how they present mathematical representations. One way teachers can do 

this is by making representations more tangible, hands on, and real-world oriented; by 

personalizing representations, teachers can better motivate their students to learn them. 

Each representation provides different advantages and disadvantages during problem 

solving. For example, verbal representations are helpful when students understand a 

problem or interpret its results; however, verbal representations can also mislead 

students if a teacher is not aware of a students’ personal style (or language use) 

(Friedlander & Tabach, 2001). One can use different representations more dynamically 

if the strengths for their specific use are identifiable and well understood. If students 

have a strong repertoire related to specific uses of representations, they can use 

different representations to solve problems (Bostic & Pape, 2010; Herman, 2007; 

Nathan & Kim, 2007).  

In the effective classrooms, Ms. BW and Ms. MB included representations from 

real-world scenarios, encouraged their students to make interpretations, and guided 

them to link these representations to such scenarios. Additionally, Ms. BW used 

representations explicitly for specific purposes. She sometimes used graphical 

representations to provide a global perspective that was used to determine the range of 
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possibilities for an answer, and she sometimes used tabular representations to verify 

the answers.  

In the less effective classrooms, only Ms. MA included some problems from real-

world scenarios in her second class period. Both Ms. MA and Ms. JR, however, focused 

on the characteristics of the representations rather than interpretation within the real-

world context. In Ms. JR’s class, the students used representations explicitly for specific 

purposes; her students used tabular representations to find the answers, symbolic 

representations to verify them, and graphical representations to support tabular ones in 

determining the range of an answer.   

Using Different Translations 

Students have been shown to perform better when they can use multiple 

representations (Bostic & Pape, 2010; Herman, 2007; Nathan & Kim, 2007), translate 

between representations (Brenner et al., 1997), and use non-symbolic representations 

(Suh & Moyer, 2007). In addition, the new versions of handheld calculators may 

enhance students’ translation capabilities bidirectionally from graphical to symbolic and 

from symbolic to graphical representations (Ozgun-Koca & Edwards, 2009).  

Increasing students’ repertoire of representations and translations is useful in 

sparking their understanding about how concepts relate to one another in various ways. 

Thus, students need experiences that not only involve working with different 

representations but that also involve learning how to link them. In this study, 

unidirectional and bidirectional translations were observed. As described in Chapter 4, 

unidirectional refers to translating between different representations and bidirectional 

refers to translating between the same representations. 
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The students in all four classrooms frequently used different unidirectional 

translations. In effective classrooms, however, unidirectional translation was observed 

only once in Ms. MB’s classrooms. All unidirectional translation sequences and the 

longest sequence of translations were observed in Ms. BW’s classroom, an effective 

classroom. Among the less effective classrooms many unidirectional translations were 

observed in Ms. MA’s classroom video recordings. Although Ms. JR did not include any 

translations in her first class period, the longest unidirectional translation among less 

effective classrooms was observed in her classroom. Although many unidirectional 

translations were observed in less effective classrooms, the students did not generally 

translate between representations instead they observed their teacher’s translations. 

Translations used in the unidirectional category are summarized in the Table 5-1.   

Table 5-1. Unidirectional Translations  

Classroom # of 
Translations 

Translation Sequence Teacher 
Practiced 

Effective  
 

One  Graphical → Symbolic Ms. MB 

Two Symbolic1 → Graphical → Symbolic2 Ms. BW 
 Tabular → Symbolic → Graphical                          Ms. BW 
Three  Symbolic1 → Graphical → Symbolic2 → 

Verbal 

Ms. BW 

Four  Symbolic1 → Graphical → Tabular → 

Symbolic2 → Graphical 

Ms. BW 

    

Less 
Effective 

Two Symbolic1 → Graphical → Symbolic2 Ms. MA 

 Symbolic → Tabular → Graphical Ms. MA 

 Pictorial → Tabular → Graphical Ms. MA 

 Tabular → Symbolic → Graphical Ms. MA 

Three Symbolic1 → Graphical → Symbolic2 → 
Graphical 

Ms. MA 

Four Symbolic1 → Graphical → Tabular → 
Symbolic2 → Graphical 

Ms. JR 

 

In addition to unidirectional translations, one of the main features that 

differentiated between the effective and less effective classrooms was the presence of 
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bidirectional translations, which were observed only in the effective classrooms. Using 

four translations including bidirectional translation in Ms. BW’s class might have 

improved her students’ translation abilities because it includes many representations 

and translation processes. Table 5-2 displays the sequences of translations in each of 

the effective classrooms. Although, there was only one bidirectional translations in each 

of the effective classes, the activities in which these translations were observed took a 

substantial amount of class time. 

Table 5-2. Bidirectional Translations in Effective Classrooms 

# of 
Translations 

Translation Sequence Teacher Practiced  

Two  Symbolic1 → Graphical → Symbolic1 Ms. MB  

Four  Pictorial → Tabular → Graphical1 → Symbolic 
→ Graphical1 

Ms. BW  

 

Connecting knowledge to another meaningfully and practically can garner 

deeper, more comprehensive conceptual understanding (Hiebert & Lefevre, 1986). The 

teacher’s role in promoting interactions and discussions about representations is crucial 

in increasing the quality and quantity of these connections (diSessa et al., 1991). One 

way for teachers to do this is to show multiple representations on a calculator screen. 

However, as described earlier, when the students in less effective classrooms were 

exposed to multiple representations they did so independently rather than dynamically. 

Thus, viewing multiple representations in one window may not be sufficient unless these 

representations are dynamically linked and bidirectionally translated. For example, in 

the dynamically linked situation when students modify the value of a parameter in an 

equation, they can see the change on the corresponding graph. In addition, CCT allows 

users to view multiple representations both dynamically and publicly and to change their 

representations accordingly. Showing more than one representation simultaneously 
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provides a rich environment for mathematical discourse that benefits student learning 

(Irving et al., 2010). To improve students’ representational fluency, they need numerous 

opportunities to see the relationship between different representations simultaneously. 

In this study cycling of translations were observed where students iteratively translated 

between representations bidirectionally until they reached the correct solution.  

Both teachers in the effective classrooms provided tasks that allowed their 

students to view multiple representations simultaneously. These students saw that each 

modification they made in their equations would simultaneously change their graph. The 

students in Ms. BW’s class could see the symbolic representation of a point on a drawn 

parabola while changing the location of the point on it. Finally, cycling translations were 

observed twice in effective classrooms: (a) two translations with one of them cycling and 

(b) three translations with one of them cycling. On the other hand, in the less effective 

classrooms, cycling translation between Symbolic → Graphical ↔ Symbolic was 

observed only once in one of Ms. JR’s class during the second period (Table 5-3). This 

cycling was not, however, used within a real-world context and the students did not 

interpret the representations. Ms. JR also gave many hints during the cycling process 

instead of letting the students think for themselves. As stated earlier, an additional 

difference was the fact that representations were not generally dynamically linked within 

the less effective classrooms. The students in these classrooms only used 

representations independent of one another because at least one of the representations 

was provided on a worksheet. 
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Table 5-3. Cycling Translations   

Classroom # of 
Translations 

Translation Sequence Teacher 
Practiced 

 

Effective At least two  Symbolic → Graphical ↔ Symbolic Ms. BW  

 At least three Pictorial → Symbolic → Graphical ↔
 Symbolic 

 

Ms. MB and Ms. 
BW 

 

Less 
Effective 

At least two Symbolic → Graphical ↔ Symbolic Ms. JR  

 

Distributed Nature of Translations 

In-school teaching and learning places emphasis primarily on an individual’s 

performance; however, work and tasks outside the classroom are usually socially 

shared. This consideration has prompted researchers to investigate more practical 

methods for developing instructional strategies. In her research on learning in and out of 

school, for example, Resnick (1987) examined the commonalities of successful 

educational programs that focus on thinking skills, learning skills, and higher-order 

cognitive abilities. She concluded that to be more effective, school programs should 

include socially-shared intellectual work, jointly accomplished tasks, and cognitive tools 

(including using computer software and calculators). Not only do technological tools 

better facilitate learning cognitively-difficult concepts, but they also increase students’ 

learning capacities by encouraging them to think and work more independently 

(Resnick, 1987). In mathematics classrooms these affordances can be facilitated by 

teachers using the TI-Navigator, which allows students quick, convenient access to 

multiple representations in addition to providing ways of translating between them. By 

using this technology, students can focus more on the meaning of representations and 

the connections and relationships between them. 
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Fostering socially-shared thinking and active engagement is potentially important 

for teachers to prepare their students to be more adaptive learners, especially when 

using representations. With an instructor’s active guidance, students can move to a 

representation that is more effective in solving a specific type of problem or switch 

between representations to solve an unfamiliar problem. 

In the present study, students passively translated between representations in 

less effective classrooms, and actively translated between representations in effective 

classrooms. As described earlier, students in less effective classrooms generally 

observed while their teacher translated between representations with or without the help 

of calculators. This is in contrast to the effective classrooms where the translations were 

distributed between students and teachers and mediated through calculators. Thus, to 

foster students’ ability to learn mathematical concepts through translating between 

representations, students should be encouraged to create their own representations; by 

actively creating representations themselves, students also become the main actors in 

both using representations and translating between them.  

The translations were jointly shared between students and the teacher using the 

calculator as a tool in effective classrooms. The teachers also encouraged students to 

create their own representations when solving problems. For example, students in Ms. 

MB’s class came up with their own symbolic representations and entered them into the 

graphing calculator using pre-determined criteria. In addition, Ms. BW usually 

encouraged the students to use calculators; however, when building a model to identify 

the revenue gained from selling flowers, she asked the students to fill out a table by 

hand first. This might help students become less reliant on calculators and therefore 



 

178 

help them use representations and translate between them to better understand 

particular mathematical concepts.  

Students should be provided opportunities to share their work during the initial 

process of translating and using representations. Viewing translations and 

representations, however, is important for students, especially while learning new 

concepts. Co-construction of translations was only observed a few times in the less 

effective classrooms. However, Ms. MA and Ms. JR did not generally provide the 

students chances to translate between representations on their own. The teachers in 

the less effective classrooms usually translated for the class rather than allowing the 

students to translate between representations on their own. They would initiate all 

translations, and their students would then only follow their steps when solving 

problems. The students thus imitated translations, but unfortunately the teachers did not 

encourage them to think of the processes behind this activity.  

Formative Assessment  

Students who lack understanding about a particular representation may be 

challenged when solving problems requiring the use of that representation. Since new 

knowledge is dependent on existing knowledge, a teacher’s awareness of students’ 

understanding of and comfort level with specific representations is essential for adapting 

instruction according to their students’ particular needs. When teachers know their 

students’ strengths and weaknesses regarding representations, they use this 

knowledge to potentially improve their students’ competence in solving problems 

correctly (Nistal et al., 2009). 

Assessments provide opportunities for students to learn about their own 

understanding and help teachers monitor their students’ progress and thus make 
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pertinent instructional decisions. The projection of representations through the TI-

Navigator, which increases how much teachers know about their students’ thinking and 

reasoning, visualizes students’ representational knowledge. That is, by projecting 

representations, teachers can not only know more about their students’ use of 

representations, but they can also monitor students’ understanding during instructional 

activities. As a result, they can adjust their teaching of mathematical concepts through 

particular representations or identify misunderstandings that may affect students’ 

learning. Additionally, projecting representations allows students to learn from their own 

work through self-assessment and recognize where their representations have fallen 

short or need revision. 

In the classrooms that were observed to be effective learning environments, both 

teachers used the resubmission property of TI-Navigator so that students could 

compare their graphs with the constraints of a problem and with others’ representations. 

The students initially entered their equations into their graphing calculator and submitted 

their graphs through the TI-Navigator. The resubmission property allowed students to 

identify whether their graphs were accurate or inaccurate, and (if inaccurate) how they 

could modify their graphs by changing the equations. More importantly, these changes 

were often a subject of the discussion within the classroom. Students were given the 

opportunity to provide feedback to their classmates related to how they could change 

the representation. This type of self-assessment helped students to flexibly translate 

between representations, because they could modify their equations until they obtained 

the most accurate graph. The following excerpt reflects this benefit: 
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T:  I will let you resubmit so you can look at it up here. So if you send one you 
can actually see how well it fits and then you can resubmit; edit it. You 
know how you preview it on your screen? Well on this particular case this 
is one where you can send it and then replace it. (BW_05.06.08, p. 37)  

Students previewed their graphs on their calculator screens before submitting 

them to compare theirs with others’ work. Additionally, the teachers in the effective 

classrooms projected the students’ responses anonymously or with color-coding, thus 

creating a safe environment for the students to resubmit their graphs. Students might 

not be afraid of making mistakes while reworking on their resubmissions. In addition, 

Ms. BW was sometimes flexible and adopted her teaching when needed. Furthermore, 

she used the Screen Capture component in her class, was aware of her students’ 

representations, and used TI-Navigator to validate their strengths and weaknesses 

regarding representations.  

In the less effective classrooms, there was limited evidence of formative 

assessment. Ms. JR used the resubmission property only once and in only one of her 

classrooms. During this activity, she did not create a discussion-rich environment 

wherein students could also resubmit their graphs. She initially created the function 𝑦 =

𝑥2 on the screen and then asked students to move the location and change the shape 

of the parabola. The students modified their equations if needed. During this activity, 

Ms. JR did not initially hide the students’ names but later on, she changed the settings 

of the TI-Navigator to project the students’ responses anonymously.  

Scaffolding Translation through Teachers’ Questioning  

To develop students’ representational fluency, teachers need to create 

environments in which students can actively engage in constructing and interpreting 

representations (diSessa et al., 1991; Greeno & Hall, 1997; Warner et al., 2009). In 
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classrooms with this environment, students learn to value and use others’ 

representations; such an environment also gives them the opportunity to change their 

own representations with the aim of generalizing and explaining them to others. 

Fostering an environment wherein students can talk about their methods and 

choices increases individual and collective learning; mathematically proficient students 

should be able to “justify their conclusions, communicate them to others, and respond to 

the arguments of others” (CCSS, 2010, p. 6-7). Thus, during the learning process 

students should critique their peers’ representations and respond to others’ critiques 

about their own. Teachers’ and peers’ roles are essential in discussions about 

representations.  

CCT potentially increases communication between the students and their 

teachers (Pape et al., 2012). Publically displaying work provides a context wherein 

students can best communicate about representations. Also, teachers’ knowledge about 

the students’ representational understanding is better facilitated by projecting students’ 

mathematical thinking. Teachers should therefore use the opportunities provided by 

CCT to promote translation through discussion.  

The teachers in the effective classrooms, Ms. MB and Ms. BW, asked questions 

to promote students’ translation between representations during activities. Ms. BW 

usually asked questions requiring short answers. When Ms. MB realized that her 

students seemed lost or confused, or if she needed a student to clarify an answer, she 

would ask follow-up, open-ended, or hypothetical questions. Ms. MB invited all students 

to participate. She also encouraged them to share their solutions and opinions while 

solving the problems. 
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The teachers in the less effective classrooms, Ms. MA and Ms. JR, missed many 

opportunities to create discussion-rich environments. Also, by providing hints or asking 

questions that led to obvious generalizations, both teachers did not adequately 

challenge their students during problem-solving activities. Thus, the questioning 

techniques she used did not require the in-depth thinking that would encourage 

students to make translations between representations. In addition, Ms. MA and Ms. JR 

did not sufficiently interact with their students when they made mistakes. Instead, they 

provided explanations right away. When discussing alternative ways of solving a 

problem, Ms. MA often started using her method without allowing her students adequate 

time to think for themselves.  

Conclusions 

The purpose of this study was to compare high school mathematics teachers’ 

use of CCT that potentially supported achievement on translation problems. Research 

has shown that students at the middle school (Ainsworth et al., 2002), high school 

(Knuth, 2000), and college (Herman, 2007) levels may lack adequate translation 

abilities. These studies demonstrate and standards documents highlight the significance 

of and necessity for the development of representational fluency (CCSS, 2010; NCTM, 

2000). Some studies have indicated two solutions to developing the types of 

representational fluency abilities important for conceptual understanding and 

achievement (e.g., Lesh & Zawojewski, 2007; Nistal et al., 2009). Communication is 

suggested as one solution. Research demonstrates that students need an environment 

where they can actively engage in discussions about interpreting, constructing, 

evaluating, comparing, and generalizing representations as well as justifying the 

representations in solutions, criticizing or questioning, and explaining or responding to 
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the critiques of their peers or their own representations (diSessa et al., 1991; Greeno & 

Hall, 1997; Warner et al., 2009).  

Technology is suggested as another potential solution. The development of 

representational fluency may be supported by the ability to access multiple 

representations on one screen and use them flexibly (Bieda & Nathan, 2009; Bostic & 

Pape, 2010; Herman, 2007; Knuth, 2000). Since research shows that communication 

and technology separately support students’ development of representational fluency, 

the present study investigated instruction that integrated both communication and 

technology with the goal of examining the relationship between these instructional 

strategies and increasing representational fluency.  

CCT provides a discourse-rich environment by increasing students’ use of 

multiple representations simultaneously (Irving et al., 2010), projecting students’ 

representations, and therefore increasing teachers’ knowledge about their students’ 

understanding, as well as students’ awareness of their own understanding. Few studies, 

however, have examined an environment that helps develop representational fluency 

skills (Brenner et al., 1997). The present study therefore extends prior research by 

examining the implementation of CCT technology within a discourse-rich environment, 

specifically high school mathematics classes, to possibly support representational 

fluency.  

To do this, data collected within the CCMS project through classroom 

observations and algebra pre- and posttests were explored to investigate how teachers’ 

use of CCT in effective and less effective classrooms differs. The two classrooms with 
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the highest and two classrooms with the lowest gain scores from a pool of classes with 

initial pre-test scores below 50% were selected for the analysis.  

TI-Navigator made students’ representational thinking and understanding visible 

for the teachers through projecting students’ representations. Among the effective 

classrooms, only Ms. BW, however, was aware of her students’ representational 

knowledge, even though research shows that knowing students’ strengths and 

weaknesses in using representations is important for supporting their representational 

fluency abilities (Nistal et al., 2009).  

Interpretation of representations is one of the key elements in representational 

fluency competence (Sandoval et al., 2000). While the students in the effective 

classrooms interpreted representations within real-world contexts, the students in the 

less effective classrooms focused on the characteristics of representations without 

understanding them in a real-world context. Teachers should include activities wherein 

students can learn mathematical concepts through representations by connecting them 

to their real-world meanings. 

Although knowing the advantages or disadvantages of using representations is 

important (Friedlander & Tabach, 2001; Kaput, 1989), one teacher from each effective 

and less effective classroom emphasized the use of representations explicitly for 

specific purposes. Ms. BW first explained and then let students use representations for 

specific purposes whereas Ms. JR explained the advantages of using different 

representations and used these representations on her own in problem-solving 

activities. Thus, the students in Ms. JR’s classroom passively used representations for 

specific purposes. Students might need an environment in which they explore the 
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advantages and disadvantages of different representations and their uses—through 

hands-on practice—instead of teachers simply explaining and using the representations 

for their students. 

Teachers in both the effective and less effective classrooms provided an 

environment where students could use multiple representations on one screen. Only the 

teachers in the effective classrooms, however, encouraged their students to use 

multiple representations simultaneously. These students saw that each modification 

they made in their equations would simultaneously change their graph. On the other 

hand, the students in the less effective classrooms used representations independently 

on their activity sheets. Although research indicates that seeing multiple representations 

on one window may help develop students’ flexibility in translation between 

representations (Bostic & Pape, 2010), this study extends that notion by suggesting that 

not only is seeing multiple representations on one screen enough, but that students also 

need an environment where they can use different representations simultaneously.  

Students in the less effective classrooms mostly observed representations and 

translations and were not provided the opportunity to create representations. 

Conversely, the students in the effective classrooms used representations and 

translations by jointly sharing them, or creating representations and translations on their 

own. Resnick (1987) also concluded that school programs should include socially 

shared intellectual work, jointly-accomplished tasks, and cognitive tools when she 

examined commonalities in successful programs, which focused on thinking skills, 

learning skills, and higher-order cognitive abilities. Students should start to create 

representations and translations on their own, along every stage of the learning path. 
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Students might learn to become more independent in their learning process regarding 

translations and representations.  

Research shows that students perform better when they use more and multiple 

representations (Bostic & Pape, 2010; Herman, 2007; Nathan & Kim, 2007), when they 

have the ability to translate between representations (Brenner et al., 1997), and when 

they use non-symbolic representations (Suh & Moyer, 2007). Although in both the less 

effective and effective classrooms, students used multiple representations, only the 

students in the effective classrooms generally used bi-directional and cycling 

translations. Since the new version of handheld calculators enhances translation bi-

directionally (Özgün-Koca & Edwards, 2009) and repairing representations is a norm 

that the classes should apply (Warner et al., 2009), with bi-directional and cycling 

representations via TI-Navigator, the teacher creates an environment where students 

have a chance to make changes to their representations until they arrive at the most 

accurate one. The students might be more successful if they can use bi-directional and 

cycling translations along with multiple unidirectional translations.  

CCT provides the context that makes increased communication between 

students and their teacher more possible (Pape, Irving, Bell, et al. 2012). And the public 

display of student work provides a context in which students can communicate about 

representations. Although both teachers in the effective classrooms asked questions 

that prompted students to translate between representations, only Ms. MB created a 

productive discussion environment to promote translations. Ms. BW, however, accepted 

partial answers and did not question whether all students understood these translations 

thoroughly; however, her fast-paced teaching approach might have been a result of her 
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limited time. Although researchers and mathematical educators generally seek ideal 

teaching environments, it is important for them to be realistic about the challenges high 

school teachers face given high-stakes testing and the demands of parents and 

administration.  

Implications 

This study provides a thick description of four teachers’ practices. It may offer 

examples to mathematics teacher-educators when they prepare pre-service teachers or 

administer professional development to in-service teachers. While the teachers of the 

effective classrooms in this study might not serve as perfect examples, they do provide 

realistic examples of how teachers might construct their classroom to better promote 

their students’ representational fluency abilities.  

Teachers should be aware of their students’ representational knowledge and 

seek technological or cognitive tools to visualize their students’ thinking. Through the 

use of classroom connectivity technology such as the TI-Navigator, instructors can 

monitor and assess their students formatively to adapt their instruction based on their 

students’ needs and misconceptions. Ultimately, teachers should create environments 

for students to interpret representations by linking them to real-world scenarios. 

Students should not only be able to see multiple representations on one screen, but 

they should also see the changes made to one representation simultaneously when 

another one is modified. Teachers and students should jointly share in the process of 

translation with the help of cognitive tools because translation is a cognitively difficult 

process with the goal of enabling students to create representations or translations by 

themselves. Moreover, they should be provided more opportunities for students to make 

judgments about the accuracy of their representations and to change them as 
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appropriate during problem-solving activities, which can be accomplished by including 

activities that require bi-directional and cycling translations. In addition, teachers should 

frame questions that facilitate students’ developing understanding of representations 

and translations over time. One way to promote such sustained thinking is to foster 

discussion-based environments.  

Limitations and Suggestions for Further Research 

As in most research studies, this study has several limitations and opportunities 

for expansion. Since the data were collected within the CCMS project, which was not 

conducted for the aim of the present study, all representations that are normally used in 

these classrooms might not have been captured during the videotaped classes. 

Furthermore, student work, descriptions of context, and student or teacher interviews 

related to the purpose of this study were not available. Multiple methods of data 

collection could not be used to increase the validity of findings (e.g., triangulation). In 

addition, member checks could not be conducted.  

In this study, student achievement was identified based on the gains in their 

scores on the translations problems only. Since representational fluency includes both 

the interpretation and construction of representations, complete student understanding 

cannot be captured with one test; some qualitative data might support, for example, the 

selection of what are classified as “effective” and “less effective” classrooms in this 

study. Some supplementary data, for instance, might include interviews with students. 

Two classroom observation video recordings were studied for each teacher. 

Additional video recordings may, however, provide better insights into how these 

teachers use technology and communication in their typical teaching practices to 
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support representational fluency. In addition to the limitations mentioned, there are 

potential areas that warrant future research. 

Future study may include interviews with teachers or students to include their 

own words to better understand how students can be supported in developing their 

representational fluency abilities. On several occasions, it was difficult to understand 

who was involved in the co-construction of the representations and translations. 

Interviewing students and their teachers would clear up some of this confusion.  

As research has shown, students lack representational fluency or translation 

abilities in middle school, high school, and college since they do not develop these 

abilities in their early educational years. Thus, the present study can be extended to 

focus on students’ representational fluency abilities in pre-K or elementary school 

through long-term observation. 

Finally, general mathematics teaching approaches or a classroom’s 

psychological environment might affect the development of representational fluency. 

Teachers in the effective classrooms were found to possess strong communication 

skills, promote students’ attention and participation, and create discussion-based 

environments for their students. On the other hand, the students in the less effective 

classrooms participated infrequently, had short attention spans, and missed 

opportunities that a more discussion-friendly environment would provide. Studies that 

deeply examine these factors would help researchers and teacher educators better 

address the challenges that teachers and students face regarding how representations 

are currently taught.  
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APPENDIX A 
CONNECTED CLASSROOM (COMPONENTS OF TI-NAVIGATOR) 

Components of TI-

Navigator 

Description 

Quick Poll Sending a single question to the students’ calculators 

Learn Check Sending several questions to the students’ calculators 

Class Analysis Analyzing summarizes students’ responses, which may 

be displayed as bar graphs 

Screen Capture Taking a “screenshot” of individual student’s calculator 

screens for display 

Activity Center Allowing teachers to display a coordinate system 
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APPENDIX B 
REPRESENTATION TYPES AND THEIR DESCRIPTIONS 

Representation Description 

Symbolic Expressions that utilize numeric, symbolic or a combination of 

numeric and symbolic characters 

Pictorial Drawings that represent values, symbols, or real-world objects 

Tabular Stem-and-leaf plots, frequency tables, or charts that categorize 

and organize data 

Verbal Written statements that use words to represent numbers and 

mathematical operations 

Graphical Diagrams that exhibits quantitative relationships such as trends, 

increases, intersections, and minimums 

Note. Symbolic, pictorial, tabular, verbal representations’ descriptions are adapted from “The Effects of 
Teaching Mathematics through Problem-Solving Contexts on Sixth-Grade Students’ Problem-Solving 
Performance and Representation Use,” by J. D. Bostic, 2012, Doctoral Dissertation, p. 196. Graphical 
representation description is adapted from “Representation as a vehicle for solving and communicating,” 
by R. Preston and A. Garner, 2003, Mathematics Teaching in the Middle School, 9, p. 42. 
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APPENDIX C 

ALGEBRA PRE-TEST  
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APPENDIX D 
ALGEBRA POSTTEST  
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APPENDIX E 
LONG EXCERPT FROM MS. MA’S TRANSCRIPT  

 
S:  It’s one. 
 
T:  Ok, so if you were a 4X or an 8X, keep that in mind. So as far as numbers go it looks like 
one person answered neg. 4 and thirteen of you answered 1. Who answered 1? Hailey, would 
you bring your worksheet up and let’s just show how you solved that. Ok, so she said to undo 
the subtract you add four to both sides so the neg. 4 and the 4 zero out leaving us with 4X on 
the left side and zero plus 4 gives us 4 on the right side. So then she undid the multiply by 4 by 
dividing by 4 and what is your answer? If you didn’t get one could you please correct it and have 
a one there in that blank when you’re finished? Thank you. Alright.  
 
SS:  [work quietly] 
 
T:  The second problem was the equation neg. 2X plus 8 equals zero. Tell me what you worked 
that answer out to be. One more. Ok, I’m glad not to see any X’s this time. I saw some solutions 
and we have some useful answers. If I went with the majority, it looks like most of you said 4, so 
who in here did give an answer of 4? Sammy, can we borrow your paper and check it? Ok, you 
always undo your additions and subtractions first, so Sammy chose to undo the 8 by subtracting 
8. So that zeros out the 8 and leaves us with neg. 2X on the left and zero plus neg. 8 is neg. 8. 
Then she undid the multiply by neg. 2 by dividing by neg. 2 and she realized that two neg. 
became a pos. Ok, those of you who answered neg. 4 could it be just a sign error? Yeah? Ok. 
Will the person who answered 16 maybe explain what they might have done? Anybody share? I 
guess my guess would be instead of taking 8 and dividing by 2, what did they probably do?  
 
S:  Multiply. 
 
T:  Multiplied, so there I would choose to undo with division rather than multiplication. Excellent, 
Sammy. Do you [inaudible] this?  
 
S:  Yes. 
 
T:  Problem number 3, tell me what you got for a solution to 3X minus 9 equals zero. 16 of 18 so 
far; let’s see how you’re doing. Oh, I love this. Everybody got the same answer of 3. Ok, and 
now we have 18 of 18. So you add 9 and you divide by 3. Excellent. Ok, now we’re getting a 
little bit harder equation. What did you do with 1/2X minus 3 equals zero? What did you end up 
solving that to be? Good. What you want to do is be sure you add to both sides so there’s your 
equals. That’s what’s dividing the sides. So unfortunately you put plus 3 on the same side. It 
would be nice to move this one over to the other side. Yeah, that would be better. Ok. Ok. Must 
be a little harder problem 11 of 18 so far. Let’s see how it’s going. Those are the two answers I 
would have predicted and what that tells me is I think you worked out the first step correctly. We 
were working on the equation 1/2X minus 3 equals zero. So Andrea, what would you do as a 
first step to solving this problem?  
 
A:  I’d add 3. 
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