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Mathematics education currently emphasizes engaging students in mathematical 

modeling to understand problems of everyday life and society (Council of Chief State 

School Officers (CCSSO), 2010; English & Sriraman, 2010; Lesh & Zawojewski, 2007). 

The Common Core State Standards for mathematics also stress that high school 

students should develop understanding of algebra, functions, statistics, and geometry in 

conjunction with modeling (CCSSO, 2010). A review of mathematical modeling literature 

indicated a lack of information regarding which contextual factors impact students’ 

success in solving modeling activities. The present study attempts to fill this gap by 

examining associations between self-efficacy beliefs, self-regulated learning strategies 

(e.g., cognitive and metacognitive strategy use), and students’ performance in modeling 

tasks. 

Self-efficacy beliefs were measured by developing a new instrument, Modeling 

Self-Efficacy scale. Data for participants’ self-reported use of cognitive and 

metacognitive strategies were gathered through their responses on the modified version 

of the Motivated Strategies for Learning Questionnaire (Kaya, 2007). Modeling 
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outcomes were measured in terms of students’ success in solving six modeling 

problems. These problems were adapted from the PISA 2003 problem-solving 

assessment.   

 The confirmatory factor analysis indicated an acceptable fit of the data with the 

hypothesized measurement model. The structural model tested using Structural 

Equation Modeling techniques suggested that perceived modeling self-efficacy beliefs 

( = .50, p < .001) directly and positively predicted students’ performance in solving 

modeling problems. However, organization strategy use (β = −.62, p < .05) had a 

significant negative direct effect on students’ modeling success. The direct effects of 

students’ use of critical thinking (β = −.59, p = .08), elaboration (β = .40, p = .41), and 

metacognitive strategies (β = .46, p = .16) on their performance in solving modeling 

tasks were non-significant. Also, indirect effects of students’ self-efficacy beliefs on 

modeling task success through their effect on their use of cognitive and metacognitive 

strategies were non-significant. The implications for future research along with 

limitations of this study are discussed.  
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CHAPTER 1 
INTRODUCTION 

One of the core tenets of Common Core State Standards for Mathematics 

(CCSSM) is to prepare students for the 21st century global society (Council of Chief 

State School Officers (CCSSO), 2010). Towards this end, the Standards for 

Mathematical Practice specify that students should solve real-world problems by 

engaging in modeling activities. Modeling with mathematics is the process of using 

knowledge and skills from across and within the curriculum to solve problems arising in 

everyday life, society, and workforce (CCSSO, 2010). Mathematical modeling is not 

only an important mathematical practice that teachers should promote through 

classroom instruction, discussions, and activities but also a conceptual category in high 

school standards where it is expected that students should learn algebra, functions, 

probability, and statistics in conjunction with modeling (CCSSO, 2010). The authors 

state that, 

Modeling links classroom mathematics and statistics to everyday life, work, 

and decision‐making. It is the process of choosing and using appropriate 

mathematics and statistics to analyze empirical situations, to understand 
them better, and to improve decisions. Quantities and their relationships in 
physical, economic, public policy, social, and everyday situations can be 
modeled using mathematical and statistical methods (CCSSO, 2010, p. 72). 

The importance of and need to prepare students for a global society and 

workforce is further emphasized through statistics that show that U.S. students rank 

significantly below European and Asian students on international assessments such as 

PISA (Programme for International Student Assessment) and TIMSS (Trends in 

Mathematics and Science Study). PISA 2003 tested the problem-solving skills of 15-

year-old students by examining their readiness to meet the challenges of today’s global 

and technological society. Specifically, it measured the extent to which students across 
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the world can solve real-life situations by thinking flexibly and creatively. Sadly, 

American students ranked 25th among peers from 38 participating Organization for 

Economic Cooperation and Development (OECD) countries (Lemke et al., 2004). The 

U.S. average score on the problem-solving scale was also lower than the average 

OECD score. TIMSS 2007, on the other hand, measured eighth-grade students’ 

mastery of curriculum-based mathematical knowledge and skills. Although U.S. 

students’ mean mathematics score was above the TIMSS average score and their 

performance was better than previous assessment years, only six percent of American 

students were able to “organize information, make generalizations, solve non-routine 

problems, and draw and justify solutions from data” (Gonzales et al., 2009, p. 14).  

These results point toward the need to improve U.S. students’ problem-solving 

behaviors, especially in regard to solving problems in real life. One way to do this is by 

developing students’ expertise in modeling practices. Since modeling as a Standard for 

Mathematical Practice puts forth the expectation that students should develop expertise 

in solving real-world situations (CCSSO, 2010), the present study is interested in 

investigating factors that may influence students’ modeling outcomes. Due to a lack of 

literature informing which contextual factors impact students’ success in solving real-

world modeling tasks, the present study draws upon problem-solving literature to 

explore the degree to which effective problem-solving behaviors are associated with 

students’ modeling outcomes.  

Effective problem-solving behaviors, such as setting appropriate goals, 

controlling one’s actions, monitoring one’s progress, reflecting back on one’s thinking, 

trying alternative solution paths, and perseverance with challenging academic tasks, 



 

17 

align very closely with the self-regulated learning (SRL) behaviors (Pape & Smith, 2002; 

DeCorte, Verschaffel, & Op’t Eynde, 2000; Zimmerman & Campillo, 2003). Self-

regulated students control and regulate their thoughts, actions, behaviors, and 

motivation in order to achieve a targeted goal (Schunk & Zimmerman, 1994; 

Zimmerman, 2000). They use effective learning strategies, constantly monitor and 

assess their progress toward their goal, reflect on their thought processes, expend more 

effort, persist longer, stay motivated on the task, and create productive learning 

environments (Schunk & Zimmerman, 2008; Zimmerman, 2000). SRL strategies not 

only enhance students’ academic performance (Dignath, Buetter, & Langfeldt, 2008; 

Zimmerman, 2002; Zimmerman & Kitsantas, 2005) but also increase their motivation to 

learn (Pintrich, 1999).  

Out of numerous behaviors, attitudes, and beliefs exercised by self-regulated 

learners, motivational beliefs such as self-efficacy judgments and SRL strategies such 

as cognitive and metacognitive strategy use profoundly influence students’ engagement 

and persistence on complex mathematical tasks and their academic performance (De 

Corte et al., 2000; Hoffman & Spatariu, 2008; Pape & Wang, 2003; Puteh & Ibrahim, 

2010; Verschaffel et al., 1999). Several studies have reported that self-efficacy beliefs 

are related to and predictive of students’ problem-solving performance (Greene, Miller, 

Crowson, Duke, & Alley, 2004; Pajares, 1996; Pajares & Graham, 1999; Pajares & 

Kranzler, 1995; Pajares & Miller, 1994, Pajares & Valiante, 2001; Pintrich & DeGroot, 

1990). Students’ judgments of their problem-solving performance positively impact their 

engagement, behavior, and cognition during academic activities. Further, students’ 

perceived capabilities to use a variety of cognitive and metacognitive strategies also 
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influence their academic achievement (Pape & Wang, 2003; Pintrich & De Groot, 1990; 

Pintrich, Smith, Garcia, & McKeachie, 1993; Zimmerman & Martinez-Pons, 1986, 1988, 

1990). Cognitive and metacognitive strategies not only help problem solvers in planning, 

monitoring, evaluating, and revising courses of actions, but also encourage them to be 

more flexible in selecting a solution plan or a strategy. Research also shows that 

students with high academic self-efficacy beliefs are more likely to report using cognitive 

and metacognitive strategies and they persist longer to reach their goals (Bouffard-

Bouchard, Parent, & Larivee, 1991; Heidari, Izadi, & Ahmadian, 2012; Nevill, 2008; 

Pintrinch & DeGroot, 1990).  

The present study built upon and extended existing problem-solving literature by 

examining these associations in the context of mathematical modeling and real-life 

problem solving. Specifically, the present study explored associations between 

motivational beliefs (e.g., self-efficacy beliefs), SRL strategies (e.g., cognitive and 

metacognitive strategies), and modeling outcomes. The next section describes the 

background of the study including the average performance of students on international 

assessments to illustrate that modeling problems are not only difficult for U.S. students 

but also challenging for students all over the world. This is followed by a brief overview 

of mathematical modeling and SRL processes. The chapter concludes with a statement 

of the problem, purpose of the study, research questions, and significance of the study. 

Background of the Study 

Today’s global society and changing economy require students to be creative 

thinkers and effective problem solvers. This is because the kind of mathematical 

thinking that is needed beyond school has changed significantly with the advent of new 

communication and collaboration technologies (English, Lesh, & Fennewald, 2008; 
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Lesh, 2000). For example, the actual price of a car is much more than the sticker price. 

Determining the actual cost of a vehicle involves interpreting loans, down payment, 

monthly payments, annual percentage rate, and billing periods. Yet, most classrooms 

are still not preparing students for life beyond school as they seldom provide students 

with opportunities to apply what they have been learning to understand problems 

situated in real-world contexts (English et al., 2008).  

The average performance of students from all over the world on international 

assessments (e.g., PISA, TIMSS) further shows their lack of experience in relation to 

real-life problem solving. PISA 2003 tested students’ real-life problem-solving skills by 

measuring the extent to which they can successfully solve “cross-disciplinary situations 

where the solution path is not immediately obvious and where the content areas or 

curricular areas that might be applicable are not within a single subject area of 

mathematics, science or reading” (OECD, 2004, p. 26). Students’ problem-solving 

abilities were measured through three different types of problems including decision-

making, system analysis and design, and troubleshooting (OECD, 2004). These 

problems were carefully selected to encompass several problem-solving abilities that 

students may need in understanding day-to-day situations. Some of the problem-solving 

abilities tested by PISA include making appropriate decisions, choosing strategically 

among several alternatives, analyzing situations, describing underlying relationships, 

designing systems, or diagnosing and rectifying faulty systems. 

In all, 38 countries participated in the PISA 2003 problem-solving assessment. 

PISA rated students’ performance on a problem-solving scale for which the mean score 

was 500 points. Sadly, the overall problem-solving score of only 17 of the 38 
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participating countries was higher than the OECD average score of 500. The PISA 

problem-solving scale also distinguishes students’ abilities across three proficiency 

levels. Level three represents students with the strongest problem-solving skills, and 

level one denotes students with the weakest problem-solving skills. The percentage 

distribution of 15-year-old students on the problem-solving scale indicated that 17 

percent of the students that participated in the PISA problem-solving assessment 

scored below level one, 30 percent at level one, 34 percent at level two, and 18 percent 

at level three (Lemke et al., 2004). There were only four countries (e.g., Finland, China, 

Japan, and Korea) that had 30 percent or more of their students scoring at level three.  

In contrast to PISA, TIMSS 2007 measured eighth-grade students’ school-based 

mathematical knowledge and skills (Gonzales et al., 2008). Students’ mathematics 

achievement was measured by testing their subject matter knowledge in the area of 

number sense, algebra, geometry, and data and chance. Students’ cognitive skills were 

assessed in three domains including knowledge of mathematical facts, procedures, and 

concepts (knowing), ability to apply known operations, methods, and strategies 

(applying), and ability to handle unfamiliar situations, complex contexts, and multi-step 

problems (reasoning).  

TIMSS measured students’ performance on a scale ranging from 0 to 1000 with 

an average score of 500 (Gonzales et al., 2008). Of the 48 participating countries, the 

mathematics score of only 12 countries was higher than the TIMSS average score. 

There were 18 countries that scored higher than 500 points in the areas of knowing, 

applying, and reasoning. Further, participating students’ performance against 

international benchmarks of mathematics achievement showed that there were only five 



 

21 

countries who had a significant percentage of 8th-grade students (e.g., 26% to 45%) 

reaching the advanced level skills including organizing information, making 

generalizations, solving non-routine problems, drawing conclusions, and justifying 

solutions (Mullis, Martin, & Foy, 2008). The rest of the 43 countries had fewer than 10 

percent of their students demonstrating advanced level skills.  

Thus, both PISA and TIMSS assessments point toward the need to improve 

students’ problem-solving behaviors, especially in regard to solving problems in real life. 

Learning mathematics with modeling has been cited as one of the possible solutions 

because modeling not only improves transfer but also fosters 21st century skills of 

reasoning, critical thinking, and strategic decision-making (English, 2011; English & 

Sriraman, 2010; Lesh & Zawojewski, 2007). 

Mathematical Modeling 

According to a models and modeling perspective, students understand real-world 

situations by participating in iterative cycles of modeling where they progressively 

create, test, revise, and refine their mathematical interpretations (Lesh & Harel, 2003). 

Such interpretations are largely influenced by students’ existing knowledge and 

experiences as well as beliefs and attitudes that they bring to the classroom (Eric, 

2010). In the field of mathematical modeling, students’ purposeful descriptions, 

interpretations, and explanations of mathematical situations are known as models. 

Examples of mathematical models include equations, graphs, tables, written symbols, 

spoken language, diagrams, metaphors, concrete models, or computer-based 

simulations (Lesh, Hoover, Hole, Kelly, & Post, 2000; Lesh & Doerr, 2003). Further, 

mathematical tasks that require students to understand real-life situations through 

developing models are known as model-eliciting activities (MEAs) or modeling tasks 
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(Lesh et al., 2000). Students develop efficient models for these activities by engaging in 

several modeling cycles (Mousoulides, Christou, & Sriraman, 2008; Lesh & Doerr, 2003; 

Lesh & Zawojewski, 2007). Each modeling cycle consists of four different modeling 

processes including (1) understanding the modeling task (description), (2) developing a 

mathematical model (manipulation), (3) interpreting the actual situation based on the 

created model (prediction), and (4) analyzing and reflecting upon the results 

(verification). Furthermore, it is important to note that this modeling cycle bears some 

structural similarity to many of the general problem-solving heuristics proposed over the 

years by researchers such as Polya (1957), Newell and Simon (1972), and Bransford 

and Stein (1984).  

Polya’s four steps to solving a problem include understanding the problem, 

devising a plan, carrying out the plan, and looking back. Although the process of 

describing a modeling task and understanding a problem-solving task involve making 

sense of the task, the cognitive skills required to comprehend modeling tasks are more 

demanding. Problem-solving strategies such as representing the problem, separating 

various parts of a problem, organizing data in the form of a table, or making connections 

between the known and unknown information may help students in understanding a 

word problem. In addition to these strategies, modeling tasks challenge students’ 

competency to mathematize realistic situations, which includes “sorting, organizing, 

selecting, quantifying, weighting, and transforming large data sets” (English & Sriraman, 

2010, p. 273). 

The second step in Polya’s heuristic requires students to devise a solution plan 

for a mathematical problem by looking for a problem having the same or similar 
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unknowns, employing strategies or methods of previously solved problems, looking for 

patterns, making an orderly list, considering special cases, or solving the same problem 

by making use of smaller numbers. On the other hand, during the manipulation phase of 

the modeling cycle students generate hypotheses about a given situation by developing 

a mathematical model that represents relationships between different variables involved 

in a system. However, it may also include modifying a previously developed model.  

During Polya’s next stage, carrying out the plan, students implement the steps 

required to solve a problem as well as make sure that each step is mathematically 

correct. Model development processes, however, place less emphasis on the precision 

and accuracy of the solutions and stress the importance of correctly predicting the 

actual situation based on the model created (e.g., making decisions, designing systems, 

or diagnosing faulty systems).  

Verification processes involved in Polya’s heuristic and the model development 

cycle encourage students to analyze and look back on their solutions, especially to 

judge the accuracy of their solutions or models. It is important to note, however, that 

verification processes involved during model development clearly emphasize the need 

to re-understand and re-interpret the situation when the created model fails to explain 

the real-world situation. Research also shows that students interpreting modeling 

activities seldom produce effective models during their engagement with the first cycle 

of modeling processes (English, 2006; Eric, 2010; Mousoulides, Pittalis, Christou, & 

Sriraman, 2010). The following section describes the cognitive and metacognitive 

processes involved in solving problems as well as motivational beliefs exhibited by 

effective problem solvers, which align very closely with SRL processes. 
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Self-Regulatory Processes and Problem Solving 

Social cognitive theory is a useful framework for understanding SRL behaviors 

that enhance students’ problem-solving skills (Zimmerman & Campillo, 2003). The 

theory describes human functioning in terms of reciprocal interactions between personal 

variables, environmental factors, and behavioral objectives (Bandura, 1986). It presents 

a view of human agency where people make meaningful and purposeful choices to 

achieve goals. For example, students’ personal beliefs such as self-efficacy beliefs 

influence their learning behaviors such as choice of problem-solving strategies, effort 

expended, and persistence (Pintrich & De Groot, 1990; Schunk & Mullen, 2012). In turn, 

effective use of cognitive and metacognitive strategies raises students’ confidence 

about their problem-solving capabilities, which motivates them to work harder to 

produce meaningful solutions. The triadic reciprocal interaction also influences the three 

cyclical phases of self-regulation: forethought, performance, and self-reflection. 

During the forethought phase, problem-solvers analyze the requirements of a 

task, establish achievable goals, and design solution plans by selecting strategies 

appropriate to achieve these goals (Zimmerman, 2000). These processes are 

influenced by several motivational beliefs such as self-efficacy beliefs, outcome 

expectations, intrinsic interest, and goal orientation. Out of these, self-efficacy beliefs 

involving students’ perceptions of their own capabilities to accomplish a particular task 

have been extensively explored in the context of mathematical problem solving 

(Hoffman & Spatariu, 2008; Pajares, 1996; Pajares & Graham, 1999; Pajares & Miller, 

1994; Schunk & Pajares, 2009; Schunk & Mullen, 2012). Self-efficacious problem 

solvers set challenging goals, expend more effort, use effective learning strategies, and 

persist longer in times of difficulties (Pajares, 2008; Schunk & Pajares, 2009).  
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The next phase, performance phase, comes into play when students are actually 

engaged in solving mathematics problems or preparing for a test. Effective problem 

solvers increase their attention and persistence over tasks through self-instruction, 

attention focusing, and task strategies. They also utilize self-observation processes, 

such as self-monitoring and self-recording, to monitor their progress toward the goals as 

well as to check their understanding of the task (Dabbagh & Kitsantas, 2004). From the 

problem-solving perspective, these are important SRL strategies because they support 

students in finding errors in their learning and prompt them to adjust their strategies and 

procedures in case they are not making adequate progress. Error analyses are closely 

followed by self-evaluation and self-reaction processes of the self-reflection phase 

(Cleary & Zimmerman, 2012). Self-regulated learners self-evaluate their performance 

against their personal goals and attribute their mistakes to a lack of adequate effort 

(Zimmerman, 2000; Zimmerman & Campillo, 2003). Effective and ineffective problem 

solvers have been found to behave and react differently in all three phases of self-

regulation (Clearly & Zimmerman, 2001; Zimmerman & Campillo, 2003). 

Although there are numerous motivational beliefs and SRL behaviors that 

support students during problem solving, the present study emphasized the importance 

of self-efficacy beliefs and SRL strategies such as cognitive and metacognitive 

strategies. Cognitive strategies support students in processing information, such as 

elaboration, organization, and critical thinking. Elaboration strategies, such as 

paraphrasing, summarizing, and note taking, facilitate students in developing 

meaningful representations (or models) for the problems. The organization strategies, 

such as clustering, outlining, and selecting main ideas, are helpful in differentiating 
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relevant and irrelevant information. These strategies may be useful in solving system 

analysis and design problems, where students represent relationships among different 

parts of a system either in the form of a table or a chart. Finally, critical thinking 

strategies support students to make logical decisions and analysis. These strategies are 

considered to be the most important skills as they help students to think logically, 

consider alternative conceptions of a problem, make effective decisions, reason 

deductively as well as justify reasoning (Stein, Haynes, Redding, Ennis, & Cecil, 2007). 

Metacognitive strategies including monitoring, controlling, and regulating 

cognition and learning support students in self-evaluating the effectiveness of their 

models, creating revised models, group decision making, and describing situations 

using models. These processes are especially important during students’ engagement 

with the successive modeling cycles of describing, manipulating, predicting, and 

verifying situations using models. The present study examined associations between 

self-efficacy beliefs, self-reported use of cognitive strategies (e.g., elaboration, 

organization, and critical thinking) and metacognitive strategies (e.g., planning, 

monitoring, and regulating), and students’ modeling outcomes. 

Statement of the Problem 

Mathematics education currently emphasizes providing students with 

opportunities to apply mathematical knowledge and skills to understand problems of 

everyday life and society (CCSSO, 2010; English & Sriraman, 2010; Lesh & 

Zawojewski, 2007). The CCSSM also emphasize that high school students should 

develop understanding of algebra, functions, statistics, and geometry within real-world 

contexts. In spite of this, the current mathematics textbooks, teaching practices, and 

assessment techniques hardly support students in developing understandings and 
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abilities useful for mathematical modeling (Lesh, 2003). The adoption of CCSSM, 

however, offers some hope regarding preparing students with skills useful for life 

beyond school. The Standards for Mathematical Practice describe the kind of 

mathematical knowledge and skills to be fostered in classrooms with regard to 

modeling. As such, they do not inform teachers about factors that may influence 

students’ achievement on modeling tasks. To this end, the literature on models and 

modeling perspective is also of little help because it is still developing. Kaiser, Blomhøj, 

and Sriraman (2006) argued, “The theory of teaching and learning mathematical 

modeling is far from being complete. Much more research is needed, especially in order 

to enhance our understanding on micro levels, meaning teaching and learning 

problems, which occur in particular educational settings where students are engaged in 

modeling activities” (p. 82). The present study attempts to fill this gap by examining 

associations between effective problem-solving behaviors and student success rates on 

modeling tasks.  

Purpose of the Study 

The present study is aimed toward investigating factors that may influence 

students’ ability to apply mathematical knowledge in understanding modeling tasks or 

real-world situations. Problem-solving literature informs us that self-efficacy beliefs 

(Greene et al., 2004; Pajares & Graham, 1999; Pajares & Krazler, 1995; Pajares & 

Miller, 1994) and SRL strategy use (Zimmerman & Martinez-Pons, 1986, 1988, 190) 

significantly correlate with students’ performance on complex mathematical tasks. Thus, 

the focus of this research is to examine relationships between self-efficacy beliefs, 

cognitive and metacognitive strategy use, and students’ success on modeling tasks. 

Modeling processes including building, describing, testing, revising, manipulating, and 
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verifying models align very closely with the three types of problem-solving tasks (e.g., 

decision-making, system analysis and design, and troubleshooting tasks) chosen by the 

PISA 2003 assessment (Blum, 2011; Mousoulides, 2007). The present study, therefore, 

examined associations between self-efficacy beliefs, cognitive and metacognitive 

strategy use, and students’ ability to correctly solve decision-making, system analysis 

and design, and troubleshooting tasks. 

Research Questions 

The study was guided by three research questions. 

1. What are the direct effects of students’ self-efficacy beliefs for modeling tasks on 
their performance on modeling tasks? 

2. What are the direct effects of students’ self-reported use of cognitive and 
metacognitive strategies on their performance on modeling tasks? 

3. What are the indirect effects of students’ self-efficacy beliefs for modeling tasks on 
their performance on modeling tasks through their effects on their use of cognitive 
and metacognitive strategies? 

Significance of the Study 

The present study was stimulated by the need for research that examines 

students’ beliefs and skills that may impact their performance on the modeling tasks. A 

review of the problem-solving literature indicated that motivational beliefs, such as self-

efficacy beliefs, and SRL strategies, such as cognitive and metacognitive strategies, are 

related to students’ academic achievement and problem-solving success. Studies that 

investigated the effects of self-efficacy beliefs reported that students’ perceived 

confidence in their ability is positively correlated with their problem-solving skills and 

academic performance (Pajares, 1996; Pajares & Graham, 1999; Pajares & Kranzler, 

1995; Pajares & Miller, 1994, Pajares & Valiante, 2001; Pintrich, 1999; Pintrich & De 

Groot, 1990). Students’ reported use of cognitive and metacognitive strategies are also 
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positively associated with their learning and problem-solving performance (Pape & 

Wang, 2003; Verschaffel et al., 1999; Zimmerman & Martinez-Pons, 1986, 1988, 1990). 

The present study extends our understanding of how students’ beliefs about their 

capabilities as well as use of cognitive and metacognitive strategies are associated with 

their modeling task success. Thus, the results of this study provide researchers and 

educators with information on factors that may enhance students’ success in modeling 

tasks.  

Furthermore, the present study developed a new instrument, the Modeling Self-

Efficacy scale, to measure students’ perceptions of modeling competence. The 

psychometric properties of this scale including internal consistency and construct 

validity were tested using this sample. As such, development of this new scale 

contributes to the literature related to self-efficacy theory and the mathematical 

modeling field.  

Definition of Terms 

 COGNITIVE STRATEGIES. Learning strategies that influence students’ 
processing of information (Pintrich et al., 1993). The present study highlights the 
importance of three cognitive strategies such as elaboration, organization, and 
critical thinking. 
 

 CRITICAL THINKING STRATEGIES. These strategies support students in 
logical decision-making especially in considering alternative conceptions of a 
problem, making effective decisions, reasoning deductively, and justifying 
reasoning. 
 

 DECISION-MAKING TASKS. These are real-world problems requiring students 
to make appropriate decisions by choosing strategically among several 
alternatives provided under a given set of conditions (OECD, 2004). 

 
 ELABORATION STRATEGIES. Strategies that help students to understand 

challenging modeling situations by making connections with their existing 
mathematical knowledge and skills (Ormord, 2008). Examples include 
paraphrasing, summarizing, creating analogies, and explaining ideas to others. 
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 MATHEMATICAL MODELING. It is the process of using knowledge and skills 
from across and within the curriculum to solve problems arising in everyday life, 
society, and workforce (CCSSO, 2010).  

 
 METACOGNITIVE STRATEGIES. Metacognitive strategies including planning, 

monitoring, controlling, and regulating cognition and learning support students in 
self-evaluating the effectiveness of their models, creating revised models, group 
decision making, and describing situations using models.  
 

 MODEL-ELICITING ACTIVITIES. These are real-world mathematical situations 
that are generally understood by creating, testing, and revising models (Lesh et 
al., 2000). 

 
 MODELING OUTCOMES. It represents outcomes of engaging students in 

modeling activities. In this study, modeling outcomes include ability to analyze 
real-world problems by drawing effectively on multi-disciplinary knowledge, 
planning, monitoring, and assessing progress, making decisions, troubleshooting 
faulty systems, or analyzing structures of complex systems. 
 

 MODELING PROCESSES. Modeling processes, such as building, describing, 
manipulating, predicting, testing, verifying, and revising mathematical 
interpretations, are the cognitive and metacognitive processes employed by 
students to produce efficient models.  

 
 MODELS. Models are conceptual systems that represent how students are 

thinking, interpreting, and describing modeling tasks (Lesh & Doerr, 2003). 
Models can be as simple as writing a mathematical equation to depict a 
relationship between two variables or as complicated as creating a spreadsheet 
to plan an event. 
 

 ORGANIZATION STRATEGIES. Organization strategies, such as clustering, 
outlining, and selecting main ideas, are helpful in differentiating relevant and 
irrelevant information. These strategies may be useful in solving system analysis 
and design problems, where students are expected to organize information in 
meaningful ways.  

 
 REAL-LIFE PROBLEMS. Real-life problems are simulations of the situations 

actually faced by students in their “personal life, work and leisure, and in the 
community and society” (OECD, 2004, p. 27). Students generally understand 
these problems by applying their personal knowledge and prior experiences. 

 
 SELF-EFFICACY BELIEFS. It refers to individuals’ perceptions of their own 

capabilities to accomplish a particular task (Bandura, 1986). In this study, self-
efficacy beliefs are defined as students’ judgments of their own abilities to 
accurately solve decision-making, system analysis and design, and 
troubleshooting tasks. 
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 SELF-REGULATED LEARNING STRATEGIES. These strategies refer to 

“actions directed at acquiring information or skill that involves agency, purpose 
(goals), and instrumentality self-perceptions by a learner” (Zimmerman & 
Martinez-Pons, 1986, p. 615). This study focuses on students’ use of cognitive 
(e.g., elaboration, organization, and critical thinking) and metacognitive (e.g., 
planning, monitoring, and regulating procedures) strategies.  
 

 SELF-REGULATION. It is the ability of learners to control and adapt their 
cognition, behavior, and emotions in order to achieve a targeted goal (Schunk & 
Zimmerman, 1994; Zimmerman, 2000). 

 
 SYSTEM ANALYSIS AND DESIGN TASKS. Real-world problems that require 

students to design systems, such as diagrams, tables, or flow charts, to 
represent relationships between variables (OECD, 2004). 

 
 TROUBLESHOOTING TASKS. Real-world problems that require students to 

diagnose and repair faulty or underperforming systems (OECD, 2004). 
 



 

32 

CHAPTER 2 
LITERATURE REVIEW 

As stated in the first chapter, the present study aims to explore relationships 

between SRL and students’ modeling outcomes by examining associations between 

self-efficacy beliefs, cognitive and metacognitive strategy use, and success on modeling 

tasks. This chapter provides a summary of research related to critical processes 

involved in mathematical modeling and SRL in three major sections. The first section 

involves an overview of a models and modeling perspective on mathematical learning 

and problem solving. The second section is devoted to a discussion of SRL from a 

social cognitive perspective to explicate the relationship between self-regulatory 

processes and mathematical problem solving. Finally, the last section presents a review 

of the research on two aspects of self-regulation, self-efficacy beliefs and students’ use 

of cognitive and metacognitive strategies, and it argues for the positive effect of these 

constructs on students’ problem-solving skills.  

Mathematical Modeling 

Mathematical modeling has been regarded as an effective platform for providing 

students with experiences that support them in developing mathematical knowledge and 

skills essential to succeed in life beyond school (English & Sriraman, 2010; Dark, 2003; 

Galbraith, Stillman, & Brown, 2010; Lesh & Zawojewski, 2007). During mathematical 

modeling, students work with tables of values, graphs, and charts to “describe, explain, 

or predict patterns or regularities associated with complex and dynamically changing 

systems” (Lesh, 2000, p. 179). They make sense of realistic situations by engaging in 

the processes of mathematization such as quantifying, organizing, sorting, weighting, 

and coordinating data. As such, students are provided with many opportunities to 
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exercise mathematical skills that are needed to understand real-world situations. This 

section provides a brief description of models, model-eliciting tasks, and modeling 

processes to illustrate the modeling view of mathematical problem solving.  

Models 

According to Hestenes (2010), models represent the structure of a problem-

solving situation, which include the objects that make up a system as well as the 

relationships that exist between these objects. Students use models to solve and make 

predictions about complex problem-solving situations. Lesh and his colleagues also 

provided a similar definition and described models as 

a system that consists of (a) elements; (b) relationships among elements; 
(c) operations that describe how the elements interact; and (d) patterns or 
rules……that apply to the relationships and operations. However, not all 
systems function as models. To be a model, a system must be used to 
describe another system, to think about it, or to make sense of it, or to 
explain it, or to make predictions about it (Lesh et al., 2000, p. 609). 

In a way, models represent how students are thinking, interpreting, or organizing 

information provided in a given situation. They are students’ representations of their 

ideas, and these representations are both internal and external to them (Lesh & Doerr, 

2003; Lesh, Doerr, Carmona, & Hjalmarson, 2003). In fact external representations 

such as verbal explanations, mathematical expressions, graphs, diagrams, computer 

graphics, or metaphors are descriptions of students’ internal conceptual structures. The 

complexity or choice of a mathematical model is not a matter of concern provided it fits 

with a situation; the model can be as large as consisting of several representations or 

as small as a simple arithmetic equation or ordinary spoken language (Lesh & Doerr, 

2003). Also, models need to be shareable, generalizable, and reusable in nature, which 

means that models should not only be used to describe a modeling situation for which it 
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is developed but should also be easily adaptable to understand similarly structured 

situations. Such models are produced when students repeatedly revise and refine their 

interpretations about the real-world situation (Lesh et al., 2000; Lesh & Doerr, 2003; 

Lesh & Lehrer, 2003). During this process of iterative refinement, students do not create 

just one model but develop a sequence of models that describe their ways of thinking 

about a complex modeling situation (Doerr & English, 2003; Larson et al., 2010). One 

form of such complex contexts, which is both model-eliciting and thought-revealing, is 

model-eliciting activities or MEAs.  

Model-Eliciting Activities (MEAs) 

MEAs are problem-solving activities that are based on real-life situations. These 

activities are carefully designed so that students can use their current mathematical 

knowledge and understanding to produce powerful, shareable, and re-usable models 

(Lesh, Yoon, & Zawojewski, 2007). Creation of such models involves identifying, 

selecting, and collecting relevant data, describing situations using a variety of 

representation media, and interpreting the solution repeatedly in the context of a real-

world situation (Lesh & Doer, 2003). Modeling tasks are also called thought-revealing 

activities because models reveal how students are thinking, reasoning, explaining, 

comparing, or hypothesizing about mathematical objects, relations, and operations 

(Lesh et al., 2000). For example, one model-eliciting activity called “Big Foot” requires 

students to develop a procedure for police detectives that helps them to predict the 

height of a person from the size of a shoe print (Lesh & Doerr, 2003). The students 

were told that the procedure developed by them should work for all footprints. Lesh and 

Doerr reported that a group of students estimated the height to be about six times the 

size of the footprint by using trend estimation techniques rather than setting up a 
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proportion. These students recorded their height and shoe sizes as well as graphed the 

measurements by plotting the foot measurements on the x-axis and height 

measurements on the y-axis. The line of best fit helped students to determine a 

relationship between the size of a foot and height of a person. Thus, student-

constructed models provide insight into students’ understanding of mathematical 

concepts and relationships.  

MEAs that provide students with opportunities to develop and test models in 

order to understand complex real-world mathematical problems are designed by taking 

into account six principles (Lesh et al., 2000). First, solutions to the modeling activities 

should require students to construct explicit models to describe, explain, and predict 

about patterns and regularities involved in the situations (the model construction 

principle). Second, the problem-solving tasks should be based on authentic situations 

that students could interpret using their current mathematical knowledge and skills (the 

reality principle). Third, modeling activities should include information that students 

could use to test and revise their thinking, create alternate solutions, and judge when 

and how their models need to be improved (the self-assessment principle). Fourth, the 

context of MEAs should encourages students to document and record their thinking 

about problem-solving situations, especially about the givens, goals, and possible 

solutions as they recursively move through each phase of the modeling cycle (the 

construct documentation principle). Fifth, models (e.g., spreadsheets, graphs, or 

graphing-calculator programs) developed by students should be shareable with other 

people as well as easily modifiable to make sense of situations structurally similar to the 

existing task (the construct shareability and reusability principle). Finally, models 
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produced by students should be based on useful metaphors (the effective prototype 

principle).  

Modeling Processes 

As stated above, students create models to understand and make predictions 

about modeling situations. The process of producing sophisticated models involves the 

extension of existing knowledge and understanding during which problem solvers 

repeatedly express, test, and modify their interpretations about these situations. Some 

important processes employed by effective students (or modelers) include “identification 

of flaws and ‘soft spots’ in the model, testing the trial model, understanding the 

limitations and better understanding the problem situation, revising the model, and 

testing it again” (Zawojewski, 2010, p. 239). These modeling processes support 

students in improving and refining their thinking about the nature of elements involved in 

the problem, relationships among elements, operations describing how the elements 

relate to one another, and understanding patterns or regularities in the problem-solving 

situations (Lesh & Lehrer, 2003).  

Researchers in the field of mathematical modeling understand students’ use of 

modeling processes in terms of modeling cycles. A modeling cycle describes different 

stages that students have to pass through in order to provide solutions to real-world 

situations. Lesh and colleagues (Lesh & Doerr, 2003; Lesh & Zawojewski, 2007) 

proposed a modeling cycle comprised of four different stages including description, 

manipulation, prediction, and verification to illustrate ideal modeling behaviors (see 

Figure 2-1). Description involves understanding the structure of the real-world situation 

by comprehending texts, diagrams, graphs, charts, tables, or the context of the 

situation. It also represents behaviors involved in simplifying complex situations, such 
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as students making assumptions based on their prior knowledge. Manipulation refers to 

the act of developing a mathematical model through constructing hypotheses, critically 

examining mathematical details embedded within the task, and by mathematizing data. 

Prediction involves interpreting the actual situation based on the created model. 

Verification involves checking, evaluating, analyzing, and reflecting upon the predictions 

by considering real-world constraints as well as communicating results. The information 

gathered through this process supports students in refining and revising their thinking 

about the mathematical situation, which places them in the next cycle of the four-step 

modeling process. Students typically engage in a series of modeling cycles to generate 

productive interpretations about situations because givens and goal(s) are not clearly 

defined in modeling situations, and a single modeling cycle is not sufficient to 

understand a given situation, choose appropriate procedures, and create effective 

models (Haines & Crouch, 2010; Lesh & Doerr, 2003).  

Research studies that examined students’ reasoning with modeling data provide 

evidence that students go through multiple cycles of modeling processes to develop 

mathematical models that adequately describe complex modeling situations (Amit & 

Jan, 20120; Doerr, 2007; Doerr & English, 2003; English, 2006; Eric, 2009; Eric, 2010; 

Mousoulides, Christou, & Sriraman, 2008). Eric (2010) engaged three groups of sixth-

grade students in a modeling activity: The Floor-Covering problem. The activity required 

students to choose carpet, tiles, or mats as the best covering material for a rectangular 

floor. Students selected the covering material by taking into account the dimensions of 

each material, cost per unit area of material, cost of loose material for patchwork, and 

labor expenses involved in cutting the material. They were also provided with actual 
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carpet, tiles, and mats to simulate the situation. Students’ group discussions, written 

work, and reflections were used to determine the time spent by students in each phase 

of the modeling cycle. The timeline diagram across the various modeling stages 

described the modeling cycle to be iterative in nature. Students in all three groups (2 

high-ability and 1 mixed-ability) chose the best covering material by repeatedly 

modifying their models, especially by moving cyclically around the four phases of 

description, manipulation, prediction, and verification as well as by revising their 

understanding of models within each of these four phases. Further, the timeline diagram 

indicated that the mixed-ability group students produced more model iterations, and 

students belonging to the high-ability groups revised their models a multiple number of 

times within a particular modeling phase (e.g., manipulation). The study also provides 

evidence that the creation and development of models are influenced by students’ 

personal knowledge and experiences. For example, one of the high-ability groups 

recommended for using tiles over cheaper means of using a mat because they 

considered tiles to be more durable and allergy free compared to the carpets.  

Doerr and English (2003) also reported that students solve modeling tasks by 

repeatedly refining their understanding of a modeling situation. They engaged four 

groups of middle-grade students in five mathematically equivalent activities to develop 

their understanding of the rating system, especially about ranking, sorting, selecting, 

and weighting data. The five modeling activities, including Sneakers, Restaurant, 

Weather, Summer camp, and Crime, involved developing a generalizable and reusable 

rating system often by creating and modifying quantities. For example, the Sneakers 

problem required students to develop a rating system for purchasing a pair of sneakers 
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by brainstorming important factors such as comfort, style, size, cost, brand, quality, and 

grip. In the Restaurant problem, participants were required to determine the most 

important factors influencing customers to revisit a restaurant based on the survey data 

of customers’ rank preferences for fries, burgers, kids’ meals, quickness, and price. 

Students’ written work, records of small-group discussions, and field notes established 

that they engaged in multiple cycles of modeling to rank, select, and weight data, 

especially to describe situations and make effective decisions. Similar to Eric’s (2010) 

study, students revised and refined their understanding of the real-world situation, 

quantities, and relationships between and among quantities at each stage of the 

modeling cycle. Further, the successive modeling cycles represented a progressive shift 

in students’ ways of thinking and modeling solutions. For example, a group of students 

improved their ranking system of buying a pair of sneakers from ‘nonmathematical 

rankings’ consisting of personal preferences to ‘frequency rankings’, which involved 

ranking factors by taking into account the nonmathematical rankings of all the groups 

and aggregating the number of times factors occurred most frequently at the top two 

positions. However, when factors could not be ranked using frequency-ranking strategy, 

students used ‘pairwise comparisons’ to compare the relative order of the factors. 

These findings further prove when students are engaged in the successive sequences 

of the modeling cycle, they not only create efficient models but also develop a deeper 

understanding of the constraints and limitations associated with their models at each 

stage of the model development (Zawojewski, 2010).  

Furthermore, students’ approaches to these modeling problems indicate that 

MEAs are cognitively demanding tasks (Blum, 2011; English, 2010; Gailbraith, 2011), 
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and students need to work harder, persist longer, show greater interest in learning, and 

expend a lot of effort and time to produce possible solutions. Researchers who tracked 

students’ models during their engagement with modeling tasks also claim that students 

typically spent two 40-minute class sessions to understand and describe a single 

modeling task (Doerr & English, 2003; Eric, 2009; Eric, 2011). Within the field of 

academic motivation, these behaviors are found to be associated with self-efficacy 

beliefs that refer to individuals’ judgments of their own capabilities to accomplish a 

particular task (Schunk & Pajares, 2009). Also, there is considerable evidence in the 

problem-solving literature that higher sense of self-efficacy beliefs significantly affect 

students’ learning, problem-solving achievement, self-regulation, amount of effort, and 

persistence on complex mathematical tasks (Chen, 2002; Nicolidau & Philippou, 2004; 

Pajares & Graham, 1996; Pajares & Krazler, 1995; Pajares & Miller, 1994). Given this 

literature, the present study hypothesized that self-efficacy beliefs would have positive 

effects on students’ modeling task success.  

The modeling problems used in the Doerr and English (2003) study emphasized 

the use of cognitive and metacognitive strategies. As mentioned earlier, students in this 

study developed rating systems for five different real-world situations by ranking 

quantities, identifying relationships between and among quantities, and selecting 

appropriate operations and representations. Such notions of ranking, sorting, selecting, 

organizing, transforming, and weighting data may require the use of cognitive 

strategies. Specifically, elaboration strategies may be useful in summarizing data sets 

or information provided in the problem, explaining ideas to others, noting important 

points, and negotiation of conjectures and clarification of explanations. Organization 
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strategies may be useful in transforming and organizing information in meaningful ways, 

modifying quantities, and ranking multiple factors. Describing, explaining, and predicting 

actual situations with the help of rating systems (or models) may require the use of 

critical thinking strategies. Metacognitive strategies may play an active role when 

students refine their models during multiple cycles of interpretations, descriptions, 

conjectures, explanations, and justifications. Additional studies that examine the role of 

cognitive and metacognitive strategies in mathematical modeling will be discussed in 

the next section. 

Summary 

Researchers (e.g., Blum, 2011; English & Sriraman, 2010; Lesh & Zawojewski, 

2007) as well as current mathematics standards (e.g., CCSSM) argue for engaging 

students in mathematical modeling to provide them with opportunities to use and apply 

mathematical knowledge and skills in solving real-world situations. Modeling tasks are 

complex problem-solving activities that are solved by iteratively creating, testing, and 

revising models. Models are students’ representations of their ideas that describe how 

they are thinking, organizing, and interpreting information provided in the modeling 

tasks (Lesh & Doerr, 2003). Students use modeling processes to understand and solve 

these real-world problems (Lesh at al., 2000). Modeling processes include explaining 

the problem, describing the problem, building a mathematical model, connecting the 

model with the real-world situation, predicting real-world problems, and verifying the 

solution within the context of the real-world situation. A brief review of research focused 

on designing and tracking students’ responses on modeling activities informs us that 

self-efficacy beliefs and SRL strategy use may influence students’ success in solving 

modeling tasks. Self-efficacy beliefs may influence students’ performance, persistence, 
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and efforts in solving complex modeling tasks. The self-reported use of SRL strategies, 

such as cognitive and metacognitive strategies, may support learners in interpreting 

real-world situations and developing efficient models. In order to test these hypotheses, 

the present study examined associations between self-efficacy beliefs, cognitive and 

metacognitive strategy use, and students’ success in modeling tasks. The next section 

describes the importance of self-regulatory processes that play a major role in students 

being active agents of their own learning process. 

Self-Regulatory Processes and Problem Solving 

In this section, self-regulation is discussed from a social cognitive perspective, 

which may provide a useful framework to understand the proactive and independent 

working style of students engaged in mathematical modeling. Modeling as a Standard 

for Mathematical Practice requires students to apply their mathematical knowledge and 

skills to solve problems arising in a real-world environment. Self-regulation theory may 

help us to understand how students engaged in complex modeling activities control and 

regulate their behaviors during iterative modeling cycles.  

Social cognitive theory defines self-regulated students as “metacognitively, 

motivationally, and behaviorally active participants in their own learning process” 

(Zimmerman, 1989, p. 329). Such students regulate their motivation and behaviors by 

establishing realistic and attainable learning goals, monitoring and assessing progress 

towards these goals, and setting revised goals and actions (Zimmerman, 1989, 2000). 

In general, social-cognitive theory views self-regulation as (1) an interaction among 

personal, behavioral, and environmental factors, and (2) comprised of cognitive and 

metacognitive processes as well as self-motivational beliefs.  
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Triadic Reciprocal Interactions  

A central tenet of social cognitive theory is that human functioning involves 

reciprocal interactions among personal, behavioral, and environmental factors 

(Bandura, 1997; Zimmerman, 2000). During these triadic interactions, problem solvers 

not only control their behaviors and environments but also are influenced by them. 

Personal variables include covert processes (e.g., cognitive and metacognitive 

processes), beliefs (e.g., self-efficacy beliefs), and affective factors (e.g., perceptions of 

satisfaction or dissatisfaction) that students use to acquire knowledge and skills 

(Zimmerman, 1989). Behavioral factors involve making changes in behavior to improve 

learning, overcoming anxiety, and reducing perceptions of low self-efficacy 

(Zimmerman, 1989, 2000). Examples of critical behaviors are keeping track of problem-

solving strategies through journal writing, self-evaluating performances, making 

appropriate choices, increasing effort or persistence toward the task, and verbalizing 

thoughts. Environmental factors comprise the social and physical environment of the 

problem solver such as the nature of the task posed, statements communicated, or 

feedback provided by the environment including teachers.  

The triadic model assumes that personal, behavioral, and environmental 

variables are distinct from each other but constantly influence each other in a reciprocal 

fashion. For example, the environment influences behavior when a teacher shares a 

modeling task with the students and directs their attention (behavior) toward it. Behavior 

affects the environment when students do not understand the complex mathematical 

task and the teacher (environment) supports students to understand the task through 

scaffolding. Students’ behaviors such as the use of cognitive and metacognitive 

strategies raise their self-efficacy beliefs for solving tasks, which further influence 



 

44 

personal factors such as increased persistence as well as effort expended in 

interpreting modeling tasks. The social cognitive theory presents a view of personal 

agency through which students exert control over their thoughts, feelings, and actions 

(Schunk & Pajares, 2005). Researchers have found that effective and ineffective 

problem solvers regulate and control aspects of personal, behavioral, and immediate 

learning environments differently (Clearly & Zimmerman, 2001).  

Cyclical Phases of Self-Regulation 

The social cognitive theory of self-regulation segments behaviors aimed toward 

accomplishing a task into three phases including forethought, performance, and self-

reflection that are associated with specific cognitive and metacognitive strategies 

(Zimmerman, 2002; Zimmerman & Campillo, 2003) (see Figure 2-2).  

Forethought phase 

The forethought phase processes involve planning and preparation efforts before 

engaging in a task. Self-regulated students proactively engage in goal setting and 

strategic planning by analyzing the problem-solving task, setting realistic goals, and 

activating problem-solving strategies (Zimmerman, 2002). Carefully selected methods 

and strategies enhance students’ cognition, affect, and motoric execution (Zimmerman 

& Campillo, 2003). Self-regulatory processes are influenced by several self-motivational 

beliefs including students’ beliefs in their abilities to accomplish a task (self-efficacy 

beliefs), their beliefs about the future benefits of engaging in a task (outcome 

expectations), their natural interest in a topic (intrinsic interest), and their general 

reasons for engaging in a task (goal orientation).  

The present study focused particularly on self-efficacy beliefs, which refer to 

individuals’ perceptions of their own capabilities to accomplish a particular task 
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(Bandura, 1997). In academic settings, particularly school mathematics, self-efficacy 

refers to students’ judgments of their abilities to solve mathematics problems, perform 

mathematics-related tasks, or engage in mathematical activities (Pajares, 1996). Self-

efficacy beliefs are task- and situation-specific judgments, which are reported in relation 

to a goal (Pajares, 2008). For example, students may hold high self-efficacy beliefs for 

solving routine mathematics problems that require procedural knowledge of basic 

mathematics rules and low efficacy beliefs for solving real-world problems that require 

conditional knowledge of when to use a particular mathematical rule or strategy. This is 

because one’s efficacy beliefs stem from several factors such as the nature of the tasks, 

amount of effort required, skills needed, and environmental factors. These beliefs reflect 

students’ judgments of performing a task in future rather than their actual performance 

level. In actual reporting, students may underestimate or overestimate their judgments 

about their own competence (Pajares & Miller, 1994; Pajares & Kranzler, 1996; Schunk 

& Pajares, 2009). Poor calibration mainly occurs because students fail to understand 

the complexity involved in the task and cognitive demands posed by it (Schunk & 

Pajares, 2009).  

Academic self-efficacy plays an important role during the three phases of self-

regulation (Schink & Ertmer, 2000; Zimmerman, 2002a). During the forethought phase, 

self-efficacy beliefs influence goal setting as well as the strategies selected to 

accomplish a task (Schunk, 2000). Students with high self-efficacy beliefs set proximal 

and challenging goals, whereas those with low efficacy tend to stay away from difficult 

tasks (Schunk, 1983a; Zimmerman, Bandura & Martinez-Pons, 1992). Additionally, self-

efficacious problem solvers set “learning goals, use effective learning strategies, 
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monitor comprehension, evaluate goal progress, and create supportive learning 

environment” (Schunk & Mullen, 2012, p. 222). Thus, motivational beliefs impact the 

extent to which students engage in self-control and self-observation processes of the 

performance phase. 

Performance phase 

Performance phase processes come into play when students are actually 

involved in doing a task, such as solving a mathematics problem or preparing for a test. 

Self-regulated students utilize several self-control processes, such as self-instruction, 

attention focusing, and task strategies, to increase their focus, attention, and 

persistence towards the task (Zimmerman & Campillo, 2003). Specifically, they control 

their cognition by employing cognitive strategies such as organization, elaboration, and 

critical thinking. They manage their behaviors and actions by using self-instruction 

strategies such as overt or covert self-verbalization. Self-observing or monitoring 

processes closely follow the self-control processes. Self-monitoring involves tracking 

one’s performance purposefully, especially to diagnose errors and mistakes in their 

methods and strategies (Cleary & Zimmerman, 2012). These processes inform students 

about their progress toward their goals and motivate them to adjust their strategies and 

behaviors as necessary. Further, the extent to which students use these processes is 

governed by the beliefs they hold about their own capabilities. Self-efficacious students 

during their engagement with tasks use productive problem-solving strategies and are 

more likely to monitor their performances as well as assess their progress toward goals 

(Schunk & Mullen, 2012). They work harder, persist longer, and persevere in difficult 

times (Pintrich, Roeser, & DeGroot, 1994; Zimmerman & Martinez-Pons, 1990). 
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Self-reflection phase 

The self-reflection phase is contingent upon cognitive and behavioral monitoring 

and tracking of the problem-solving steps. Effective students improve their learning 

strategies and problem-solving performance by engaging in processes such as self-

judgment and self-reaction. Specifically, during this phase students evaluate their 

progress by comparing their current performances with their previous achievements and 

by tracking the ways in which they have improved (Zimmerman, 2000; Zimmerman & 

Campillo, 2003). Self-evaluative judgments are closely linked to the attributions students 

make for their successes and failures. These attribution judgments play a crucial role 

during the self-reflection phase, as students who attribute the cause of their failures to 

low ability react negatively and refrain from engaging in the same task with greater 

effort. On the contrary, students who attribute their mistakes to poor problem-solving 

strategies believe that they can correct their mistakes by improving their strategies. 

Further, it is important to note that students who are confident in their abilities attribute 

their poor performance to the lack of effort or strategy use. Additionally, they are more 

likely to revise their strategies and goals.  

Summary of the Self-Regulation Processes 

The social cognitive view of self-regulated learning postulates that human 

functioning occurs as a result of the reciprocal interaction between personal, behavioral, 

and environment factors (Zimmerman, 2000). During this interaction, each of the three 

factors not only influences the other two factors but also is affected by them. The theory 

also hypothesizes that self-regulatory processes and motivational beliefs are enacted 

within three cyclical phases of forethought, performance, and self-reflection 

(Zimmerman & Campillo, 2003). During the forethought phase, self-efficacious problem 
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solvers analyze the task and plan strategically to accomplish self-set goals. 

Performance phase processes facilitate students’ progress toward their goals. Students 

who believe in their academic abilities use effective learning strategies for learning the 

material as well as adjust their strategies and methods by engaging in self-observation 

and self-monitoring procedures. Self-reflection processes involve students’ reactions to 

their learning outcomes, especially how they performed against a self-set goal. 

Inconsistencies between the established goals and actual performance guide problem 

solvers to modify and revise their goals and strategies, which places them into the next 

SRL cycle (Clearly & Zimmerman, 2012).  

Furthermore, these behaviors are structurally similar to the modeling behaviors 

exhibited by students who are engaged in the successive modeling cycles. During these 

modeling cycles, students iteratively test, revise, and modify their mathematical 

interpretations until they develop a model that adequately describes a modeling 

situation. Similar to self-regulated learners, students engaged in complex modeling 

activities are typically required to analyze tasks, select appropriate mathematical 

concepts and operations to mathematize realistic situations, create and keep track of 

their models, and refine their interpretations iteratively when the created model(s) fails 

to predict the actual situation (Amit & Jan, 2010; English, 2006; Eric, 2010; Mousoulides 

et al., 2010). Because self-regulation involves proactive processes and beliefs to 

acquire self-set goals (Zimmerman, 1989), SRL behaviors and motivational beliefs may 

play an important role during students’ independent engagement with the real-world 

modeling problems. The present study hypothesized that these behaviors and beliefs 

might be associated with students’ modeling outcomes. The next section argues for 
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these relationships through an examination of associations between self-efficacy 

beliefs, self-regulatory strategies, and problem-solving (or modeling) achievement. 

Self-Regulation and Mathematical Problem Solving 

In this section, self-efficacy beliefs and SRL strategies will be explained. The first 

subsection describes research studies that explored correlations between self-efficacy 

beliefs and students’ problem-solving performance. Additionally, studies will be 

discussed that established correlations between self-efficacy beliefs with students’ 

reported use of cognitive and metacognitive strategies. The second subsection includes 

a review of studies that explored associations between students’ self-reported use of 

cognitive and metacognitive strategies and their performance on academic tasks.  

Self-Efficacy Beliefs and Mathematical Problem Solving 

As stated earlier, the social cognitive theory highlights that human functioning 

occurs as a result of reciprocal interactions among personal variables, behavioral 

factors, and environmental influences. Further, the theory states that proactive, self-

reflecting, and self-regulated learners have the capacity to take control of their thoughts, 

feelings, and actions. According to Bandura (1997), self-regulated learners display this 

sense of personal agency because of the beliefs they hold about themselves and their 

capabilities. The present study is interested in understanding the influence of self-

efficacy perceptions on students’ ability to correctly solve real-world or modeling tasks.  

Research shows that self-efficacy beliefs correlate positively with students’ 

academic achievement and problem-solving success (Chen, 2003; Greene, Miller, 

Crowson, Duke, & Alley, 2004; Nicolidau & Philippou, 2004; Pajares, 1996; Pajares & 

Graham, 1999; Pajares & Kranzler, 1995; Pajares & Miller, 1994, Pajares & Valiante, 

2001; Pintrich & DeGroot, 1990). For example, Pajares and Miller (1994) measured 
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mathematics confidence in 350 college undergraduate students. Participants also 

reported their mathematics self-concept, mathematics anxiety, perceived usefulness of 

mathematics, prior experience (number of years/semesters in mathematics), and 

mathematics performance. Students’ mathematics performance was measured through 

a test composed of items from the National Longitudinal Study of Mathematics Abilities 

(Pajares & Miller, 1994). Correlations between all independent variables (e.g., self-

confidence, self-concept, mathematics anxiety, perceived usefulness, and prior 

experience) and mathematics performance were found to be significant. However, 

students’ self-beliefs about their capabilities to solve problems were found to be the 

most predictive of their actual ability. In fact, self-efficacy had stronger direct effects on 

performance than any other variable.  

The previous study was replicated and extended by examining the role of self-

efficacy beliefs in a high school setting and by taking into account students’ general 

mental ability (Pajares & Kranzler, 1995). Two hundred and seventy three high school 

students reported their mathematics self-efficacy and mathematics anxiety. 

Researchers also collected information about students’ general mental ability through 

their performance on a general reasoning ability test. Students’ mathematics 

performance was measured through a problem-solving test consisting of 18 items 

focusing on arithmetic, algebra, and geometry. The correlations between mathematics 

self-efficacy beliefs, mathematics ability, anxiety, prior experience, and mathematics 

performance were found to be significant. Moreover, Pajares and Kranzler found 

stronger direct effects of students’ self-efficacy beliefs on mathematical problem-solving 

performance even after controlling for general mental ability. Pajares further reported 
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that self-efficacy beliefs are helpful in predicting the problem-solving performance of not 

only college and high school students but also middle-grade students (Pajares & 

Graham, 1999).  

Self-efficacy beliefs are more strongly related to students’ problem-solving 

achievement when other factors, such as students’ attitudes toward mathematics, are 

studied within a statistical model (Nicolidau & Philippou, 2004). In this study, 238 fifth-

grade students reported their self-efficacy beliefs and attitudes toward mathematics. 

Students’ problem-solving achievement was measured in terms of their success on a 

test consisting of 10 word problems and 10 routine problems. In agreement with 

research findings discussed above, researchers found that self-efficacy beliefs had 

stronger direct effects on students’ problem-solving performance (β = .55, p < .001) than 

their attitudes toward mathematics (β = .37, p < .001). 

Self-efficacy beliefs not only influence problem-solving achievement directly but 

also indirectly through their influence on students’ use of cognitive and metacognitive 

strategies (Bouffard-Bouchard et al., 1991; Heidari et al., 2012; Pintrinch & DeGroot, 

1990; Zimmerman & Bandura, 1994). In a study involving 173 seventh-grade students, 

Pintrich and De Groot (1990) examined the correlations between students’ motivational 

orientation (e.g., self-efficacy beliefs), self-regulated learning strategy use (e.g., 

cognitive, metacognitive, and effort management strategies), and academic 

performance in science and English classrooms. The Motivated Strategies for Learning 

Questionnaire (MSLQ) consisting of 56 items was used to collect data related to self-

efficacy beliefs and SRL strategies. Academic achievement data were collected through 

students’ performance on classroom tasks and assignments. Higher academic self-
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efficacy was associated with students’ reported use of cognitive engagement and 

performance. This implies that students who report high levels of academic self-efficacy 

would also report using various cognitive and self-regulative metacognitive strategies, 

and they were more likely to persist under difficult learning activities. Self-efficacy 

judgments, however, were not associated with students’ academic performance on 

seatwork, academic essays, and exams when cognitive variables were included in the 

statistical analyses. Based on these findings, Pintrich and De Groot concluded, “self-

efficacy beliefs play a facilitative role in relation to cognitive engagement” (p. 37). 

Zimmerman and Bandura (1984) also reported that self-efficacy for writing influence 

students’ performance both directly as well as indirectly through personal goal setting. 

Approximately 95 college undergraduates reported on two questionnaires that measure 

their self-efficacy for writing as well as the extent to which they regulate their writing 

activities (e.g., planning, organizing, and revising compositions). Self-efficacy and goal 

setting together accounted for 35% of the variance in academic achievement.   

These findings were supported in other subject areas (e.g., English) as well 

(Greene et al., 2004). A total of 220 high school students responded to a self-report 

questionnaire measuring their self-beliefs, use of cognitive strategies, mastery goals, 

performance goals, and academic achievement in English classes. Self-efficacy and 

use of meaningful strategies had the strongest direct effect on students’ academic 

achievement among other variables such as mastery and performance goal 

orientations. Further, self-efficacy beliefs positively influence students’ use of 

meaningful strategies as well as indirectly affect students’ academic achievement 

through their use of cognitive strategies. Supporting these findings, Bouffard-Bouchard 
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et al. (1991) also reported a positive association between self-efficacy beliefs and 

students’ SRL behaviors. They engaged 45 high-school junior and 44 high-school 

senior students in nine comprehension tasks involving replacement of irrelevant words 

with meaningful words. Students’ self-efficacy beliefs were correlated with several 

dependent variables such as the number of times they checked the time (monitoring of 

time), their persistence over a task, self-evaluation, and their performance on the test. 

Students who believe in their English reading comprehension skills were found to 

display greater performance monitoring, task persistence as well as performed better on 

the comprehension tasks than students with low self-efficacy beliefs. 

Nevill (2008) also found significant correlations between reading self-efficacy 

beliefs and regulation of cognition. A convenience sample of 84 elementary students 

reported their self-efficacy beliefs on a reading scale called The Reader Self-Perception 

scale. The researcher rated students’ metacognitive behavior on a scale called 

Behavior Rating Inventory of Executive Function. Further, students’ reading 

achievement was measured on an oral reading fluency test. Nevill reported that 

students who were self-efficacious about their reading abilities were more likely to 

regulate their thought processes than students who held low self-efficacy beliefs in 

reading. Similar findings were reported by another study involving 50 high-school junior 

Iranian students majoring in English translation (Heidari et al., 2012). Students 

responded to a self-efficacy belief questionnaire and vocabulary learning strategy 

questionnaire. High self-efficacy beliefs significantly correlated with more diverse use of 

vocabulary learning strategies. Based on these results, researchers concluded that 
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students who believed they were capable of reading would use vocabulary strategies 

more frequently and effectively.  

Taking into account the positive correlations established between students’ 

perceived self-efficacy beliefs and academic performance, the present study extended 

past research by exploring the influence of self-efficacy beliefs on students’ 

performance in solving modeling tasks. The indirect effects of self-efficacy beliefs on 

students’ modeling success through their use of cognitive and metacognitive strategies 

were also investigated. The next section describes associations between SRL 

strategies (e.g., cognitive and metacognitive strategy use) and mathematical problem-

solving success. 

Cognitive and Metacognitive Strategies  

Learning strategies refer to students’ strategic approaches to understand and 

solve academic tasks (Garcia & Pintrich, 1994). Zimmerman and Martinez-Pons (1986) 

define SRL strategies as “actions directed at acquiring information or skill that involve 

agency, purpose (goals), and instrumentality self-perceptions by a learner” (p. 615). 

Although self-regulated students utilize various strategies, the present study focused on 

the use of cognitive and metacognitive strategies. Cognitive strategies are learning 

strategies that influence students’ processing of information, for example elaborative, 

organization, and critical thinking (Pape & Wang, 2003; Pintrich & De Groot, 1990; 

Pintrich et al., 1993; Zimmerman & Martinez-Pons, 1986, 1988, 1990). Elaborative 

strategies are higher-order learning strategies that support students' acquisition of 

information by integrating new material with existing knowledge (Ormord, 2008; Schunk 

& Zimmerman, 1998). Some elaborative strategies used by effective problem solvers 

include paraphrasing or summarizing material, creating analogies, productive note 



 

55 

taking, explaining the material to others, and asking or answering questions to clarify 

understanding or improving comprehension (Kitsantas & Dabbagh, 2010). These 

strategies may be useful to understand modeling activities, where students are required 

to make sense of real-world situations using their current mathematical knowledge and 

skills.  

Similar to elaborative strategies, organizational strategies also help students in 

building connections between different ideas as well as to arrange the material 

meaningfully (Ormord, 2008). Organizational strategies, such as selecting and outlining 

important ideas or topics, developing concept maps, or representing concepts 

graphically, support students in distinguishing relevant from irrelevant material and in 

placing similar ideas together. These strategies may be helpful in mathematizing 

realistic modeling tasks, which include sorting, quantifying, organizing, and selecting 

large data sets. 

In addition to cognitive strategies, metacognitive strategies may influence 

students’ learning and problem-solving performance (Pape & Wang, 2003; Pintrich & De 

Groot, 1990; Pintrich et al., 1993; Zimmerman & Martinez-Pons, 1986, 1988, 1990). 

Metacognitive strategies are typically comprised of three different types of processes 

including planning goals, monitoring actions, and regulating strategies or methods. 

Planning strategies assist students in analyzing the task as well as setting appropriate 

goals, especially by activating existing knowledge and experiences. These strategies 

may help students in organizing their thoughts, and selecting concepts and strategies 

useful in understanding modeling tasks.  
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Monitoring strategies focus students’ attention on the task and prompt them to 

keep track of their strategies and actions. Students may monitor their work by tracking 

their attention while working on a task or using questions to check their understanding 

of the task. These strategies may help students in evaluating their thinking about a 

modeling situation or finding limitations in their models. Regulating strategies are closely 

connected to the monitoring strategies, as they involve students’ reactions to the 

evaluative judgments made using monitoring strategies. These strategies may help 

students in improving their models because they encourage them to modify their 

strategies or methods of inquiry by acquiring more information or reviewing initial 

models.  

Similar to academic self-efficacy, learning strategies also influence the cyclical 

phases of self-regulation. Specifically, strategic students analyze the task, develop 

learning plans to achieve their academic goals, choose task appropriate strategies, and 

organize, monitor, and regulate their thought processes throughout the three phases. 

Several researchers have reported that cognitive and metacognitive strategy use is 

related to as well as predictive of students’ problems-solving and academic 

performance (Pape & Wang, 2003; Pintrich, 1989; Pintrich & De Groot, 1990; 

Verschaffel et al., 1999; Zimmerman & Martinez-Pons, 1986, 1988, 1990). For example, 

Pintrich and De Groot (1990) reported that seventh-grade students’ reported use of 

cognitive (e.g., elaboration, organization and critical thinking) and self-regulative 

metacognitive strategies were significant predictors of their academic performance in 

science and English classes. Zimmerman and Martinez-Pons (1986) also reported 

similar results in a study with 40 high-school students. They explored the learning 
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strategies used by high- and low-achieving students during learning. Participants 

reported use of learning strategies in relation to six problem situations were categorized 

into 14 self-regulated behaviors, such as self-evaluation, organization and 

transformation, goal setting and planning, keeping records, and monitoring. 

Researchers found that high- and low-achieving groups differed significantly in their 

strategy use, frequency of using each strategy, and consistency of using a particular 

strategy. Specifically, high-achieving students reported greater use of all SRL strategies 

such as organizing, transforming, maintaining records, and monitoring.  

In a study with middle-grade students, Pape and Wang (2003) examined sixth- 

and seventh-graders’ reported use of strategies and relationships between strategy use, 

academic achievement, problem-solving behaviors, and problem-solving success. On a 

self-report Strategy Questionnaire adapted from Zimmerman and Martinez-Pons’ (1986) 

study, students reported the strategies they used during reading and mathematical 

problem-solving situations, frequency of using these strategies, and confidence in using 

these strategies. Students’ mathematical problem-solving behavior and success in 

problem solving were examined by engaging them in videotaped think-aloud sessions. 

The high and low achievement group students did not differ significantly in relation to 

the number of strategies used, frequency of using each strategy, and confidence 

ratings. However, high-achieving students used more sophisticated strategies than low-

achieving students with respect to mathematical problem-solving situations. For 

example, they solved mathematics problems by understanding the context of the 

problem as well as by transforming information into meaningful representations.  
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Some traces of students’ use of cognitive strategies are also found in modeling 

studies that examined students’ use of mathematization processes, such as sorting, 

quantifying, categorizing, dimensionalizing, and weighting data, in simplifying situations 

and building models (Doerr & English, 2003; English, 2006; Eric, 2009, Mousoulides, 

Pittalis, Christou, & Sriraman, 2010). English (2006) examined sixth-grade students’ 

mathematization processes by understanding how they modeled a situation involving 

creation of a consumer guide for deciding the best snack chip. During the study, 

students were engaged in whole-class discussions focusing on the “notion of 

consumers, various consumer items, criteria that consumers might consider in 

purchasing an item, and the nature of consumer guides” (English, 2006, p. 308). 

Students sort and organize data by identifying and ranking important factors related to 

the snack (e.g., chip size, cost, freshness, moistness, crunchiness, guarantee, and 

quality), assigning and negotiating ratings, quantifying qualitative data such as taste, 

raising sample issues, and revising strategies repeatedly to prepare a consumer guide. 

Such actions and behaviors may require the use of cognitive strategies. Specifically, 

students may need to use elaboration strategies to select relevant material, organization 

strategies to arrange information meaningfully, and critical thinking strategies to critically 

interpret quantitative data. Further, decisions involving revisions of models may involve 

critical and logical decision-making. 

Mousoulides et al. (2010) showed that older students (e.g., 8th-grade) are more 

likely to employ superior mathematization processes and produce more efficient models 

in comparison to younger students (e.g., 6th-grade). Researchers in this study compared 

and contrasted the modeling and mathematization processes of sixth- (n = 19) and 
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eighth-grade (n = 18) students in understanding a “University Cafeteria” problem that 

required them to choose three part-time and three full-time vendors based on the 

number of hours worked and money collected by nine vendors. Students in both the 

grades engaged in several mathematization processes to organize and explore data as 

well as to rank and select employees. However, eighth-grade students presented more 

refined and sophisticated models as they considered all the relevant variables and 

possible relationships to identify patterns and relations. Further, 6th-grade students did 

not verify their models in the real-world context, whereas 8th graders interpreted their 

models several number of times within the context of the situation to select employees. 

These students also indulged in metacognitive activity such as reflecting and revising 

models based on the suggestions provided by others (e.g., teacher or teammates). 

Further, the time spent (four 40 minute sessions) by students in both the groups to find 

a solution for the problem indicated that modeling problems require a lot of time and 

effort.  

Furthermore, the iterative process of describing, testing, and revising models 

requires the use of metacognitive skills such as planning, monitoring, and revising 

strategies or solutions. Blum (2011) also argues, “metacognitive activities are not only 

helpful but even necessary for the development of modeling competencies” (p. 22). The 

importance of metacognitive knowledge and strategies during mathematical modeling 

can be found in studies conducted by Kramarski and his colleagues investigating the 

influence of metacognitive instruction in understanding real-world problems (e.g., 

Mevarech & Kramarski, 1997; Kramarski, Mevarech, & Arami, 2002; Kramarski, 2004). 

In an attempt to support students in understanding authentic mathematical tasks, 
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Kramarski et al. (2002) engaged seventh-grade (N = 91) students in two different types 

of learning environments, cooperative learning with metacognitive instruction and 

cooperative learning with no metacognitive instruction.  

In the cooperative-metacognitive condition, students were provided experience in 

using metacognitive questions to discuss and solve standard mathematics problems. 

Metacognitive questions focused on the cognitive processes of comprehending the 

problem (e.g., what is the problem all about?), constructing connections between new 

and previously solved problems (e.g., what are the similarities or differences between 

the current and already solved problem?), using appropriate strategies (e.g., what are 

the strategies/tactics/principles appropriate for solving the problem and why?), and 

reflecting (e.g., what did I do wrong here?). Students in the cooperative learning group 

discussed the problems in a group without undergoing any training on using 

metacognitive questions. Each student shared his/her solution process with the whole 

group and discussed the problem collectively to provide a common solution. The effect 

of the cooperative-metacognitive learning environment was evaluated by testing 

students on authentic and standard mathematical tasks prior to and following the 

intervention.  

The authentic tasks used by Kramarski and his colleagues align very closely with 

the decision-making tasks used in the PISA 2003 assessment. For example, the 

posttest problem involved ordering pizzas for a party after considering a variety of 

information such as the price of the pizza, size of the pizza, and the number of toppings. 

These tasks required students to make a decision after taking into account a host of 

different factors as well as considering several constraints. The standard mathematical 
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test involved 41 multiple-choice questions focusing on whole numbers, fractions, 

decimals and percentages. Students in the cooperative-metacognition group scored 

better on authentic and standard tasks, and they provided better justifications than the 

students in the cooperative group. Further, both high and low achievers in the 

cooperative-metacognitive group outperformed their peers in the cooperative group.  

 In a follow-up study, Kramarski (2004) examined the effect of cooperative-

metacognitive environment on students’ ability to construct and interpret graphs. Eighth-

grade students were either placed into cooperative learning environments or 

cooperative-metacognitive learning environments. In each environment, students 

learned several graphical concepts including understanding of slope, intersection point, 

and rate of change as well as various methods of interpreting graphs. Metacognitive 

instruction significantly enhances students’ ability to construct and interpret graphs. The 

students trained in metacognitive instruction were also found to possess less alternative 

conceptions about graph interpretation.  

In contrast to these experimental studies, Magiera and Zawojewski (2011) 

investigated the influence of metacognitive knowledge using an exploratory approach. 

They claimed that small-group mathematical modeling provides contexts for activating 

metacognitive aspects of thinking because during these discussions students interpret 

diverse perspectives of group members, explain and justify their own reasoning, and 

seek mathematical consensus. Magiera and Zawojewski examined the metacognitive 

behaviors of three ninth-grade students within a collaborative learning environment 

where they collectively solved five modeling problems. After the problem solving was 

complete, students watched the video records of each modeling session to explain and 
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justify their thought processes about understanding and solving modeling problems. 

Students’ metacognitive behaviors were established by coding transcribed interviews 

into metacognitive awareness, evaluation, and regulation. The frequency of occurrence 

of each behavior was also noted. Students predominantly engaged in metacognitive 

evaluation and regulation followed by awareness of their thought processes. Based on 

this literature, the present study hypothesized the positive effect of self-reported use of 

cognitive and metacognitive strategies on students’ modeling outcomes.  

Summary 

In this section, three components of SRL: Self-efficacy beliefs, cognitive 

strategies, and metacognitive strategies were described along with their influence on 

students’ problem-solving performance and achievement. Students who believe in their 

competence set challenging goals, select productive strategies, persist longer and 

expend more effort toward academic tasks (Schunk & Pajares, 2008). Efficacious 

students are also more likely to correctly solve problem-solving tasks (Pajares & Miller, 

1995). Cognitive and metacognitive strategies, which support students in organizing 

thought processes as well as in planning, monitoring, and regulating problem-solving 

behaviors, were also described. Several studies have found self-reported use of 

cognitive and metacognitive strategies to be correlated with students’ problem-solving 

achievement (Pape & Wang, 2003; Pintrich & De Groot, 1990; Zimmerman & Martinez-

Pons, 1986, 1988, 1990). The use of metacognitive questions has been found to be 

useful in solving authentic and real-world mathematical tasks (Mevarech & Kramarski, 

1997; Kramarski et al., 2002; Kramarski, 2004). Further, academic self-efficacy 

facilitates the use of cognitive and metacognitive strategies (Bouffard-Bouchard et al., 

1991; Pintrich & DeGroot, 1990). Based on the review of literature, this study examined 
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associations between self-efficacy beliefs, cognitive and metacognitive strategy use, 

and students’ success in solving three different types of modeling problems including 

decision-making, system-analysis and design, and troubleshooting. 
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 Figure 2-1.  Modeling cycles often involves four basic steps including description, 
manipulation, prediction and verification (Lesh & Doerr, 2003, p. 17) 
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Figure 2-2.  Phases of self-regulation (Zimmerman, 2002, p.13) 
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CHAPTER 3 
METHOD 

Introduction 

The goal of this study was to gain understanding of the relationships between 

SRL and mathematical modeling by examining how self-efficacy beliefs, cognitive 

strategies, and metacognitive strategies were associated with students’ success rates 

on solving modeling tasks. Based on the purpose of the present study, three key 

research questions were investigated.  

Research Questions 

1. What are the direct effects of students’ self-efficacy beliefs for modeling tasks on 
their performance on modeling tasks? 

2. What are the direct effects of students’ self-reported use of cognitive and 
metacognitive strategies on their performance on modeling tasks? 

3. What are the indirect effects of students’ self-efficacy beliefs for modeling tasks on 
their performance on modeling tasks through their effects on their use of cognitive 
and metacognitive strategies? 

Research Hypotheses 

Past research studies have reported a positive correlation between self-efficacy 

beliefs and problem-solving achievement (Hoffman & Spatariu, 2008; Pajares, 1996; 

Pajares & Graham, 1999; Pajares & Kranzler, 1995; Pajares & Miller, 1994, Pintrich & 

DeGroot, 1990). These studies provide evidence that students’ beliefs about their 

competence are a significant predictor of their problem-solving success even after 

controlling for mental ability (Pajares & Kranzler, 1995) and mathematics anxiety 

(Pajares & Graham, 1999). Efficacy judgments positively influence students’ 

engagement and persistence with complex tasks as well as amount of cognitive effort 

exerted during problem-solving activities (Schunk & Mullen, 2012; Schunk & Pajares, 
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2009). Self-regulated learning strategies such as cognitive and metacognitive strategies 

also correlate positively with students’ academic achievement and problem-solving skills 

(Pape & Wang, 2003; Pintrich & De Groot, 1990; Pintrich et al., 1993; Zimmerman & 

Bandura, 1994; Zimmerman, & Martinez-Pons, 1986, 1988, 1990). Cognitive strategies 

such as elaboration, organization, and critical thinking influence students’ processing of 

information, which further helps them to better understand the problem and create 

superior solutions. Pintrich and colleagues (e.g., Pintrich, 1989; Pintrich et al., 1991) 

found that students who report using more cognitive and metacognitive strategies solve 

more problem-solving tasks correctly and receive higher grades. Further, they reported 

that students who believe in their abilities are more cognitively engaged and display 

greater use of cognitive and metacognitive strategies in solving mathematics problems 

(Pintrich & De Groot, 1990). Similar results were reported by Bouffard-Bouchard et 

al.(1991), who found that high-school students with high self-efficacy beliefs for 

academic tasks displayed greater monitoring on academic performance and persisted 

longer than students with low self-efficacy beliefs.  

Given the literature in the field, a statistical model was developed that 

hypothesizes relationships between students’ self-efficacy beliefs, cognitive and 

metacognitive strategy use to their performance on a modeling test (see Figure 3-1). 

Based on the literature, three hypotheses were proposed for this study. First, it was 

hypothesized that students’ self-efficacy beliefs for the modeling tasks would have a 

positive direct influence on their ability to correctly solve problems on the modeling test. 

Second, it was hypothesized that students’ self-reported use of cognitive and 

metacognitive strategies would directly influence their performance on the modeling 
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test. Third, it was hypothesized that students’ self-efficacy beliefs for modeling tasks 

would have a positive indirect influence on their performance on modeling tasks through 

the positive effect on their use of cognitive and metacognitive strategies. 

Pilot Study 

In order to answer these research questions, two major steps were taken related 

to data collection procedures. First, problems from the PISA problem-solving 

assessment were revised to contextualize them within participants’ immediate 

surroundings. Second, a Modeling Self-Efficacy scale was developed to collect data 

about participants’ confidence in solving modeling problems. A pilot study was 

conducted to test the psychometric properties of this scale including item analysis, 

internal consistency, content validity, and construct validity. 

Participants 

One hundred and fifty one 10th-grade students were selected through 

convenience sampling from three different locations. Out of these, 91 students between 

the ages of 15 and 18 were engaged from a local research developmental school, 46 

rising tenth-graders between the ages of 14 and 15 were engaged from a summer 

science camp hosted by the researcher’s university, and the remaining 14 students 

between the ages of 14 and 18 were involved from a summer camp program organized 

at a local community college. The total sample consisted of 17 fourteen-year-old, 37 

fifteen-year-old, 34 sixteen-year-old, 37 seventeen-year-old, and 26 eighteen-year-old 

students. The mean age of all the participants was 16.18 years (SD = 1.28). The sample 

included about 60% females (n = 90) and 40% males (n = 61). The participants’ self-

identified ethnicity included 53.6% White (n = 81), 18.5% African-American (n = 28), 
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16.6% Hispanic (n = 25), 7.3% Asian (n = 11), 0.7% Native Hawaiian (n = 1), and 3.3% 

others (n = 5). 

Measure 

The Modeling Self-Efficacy survey consisted of nine modeling problems (see 

Appendix A). Each modeling problem was followed by four self-efficacy questions 

including students’ confidence in understanding the problem, determining a strategy, 

determining the information, and correctly solving the modeling problem. Following 

Bandura’s (2006) recommendation, students rated their confidence on a 100-point scale 

ranging from 0 (not at all sure) to 100 (very sure) (see Appendix B).  

Procedure 

Students were invited to participate in the study by providing them information 

about the purpose of the study, tasks involved, the benefits and risks involved in joining 

this study, and the confidentiality of their responses. Students who returned signed 

consent forms were issued alphanumeric codes to maintain anonymity. Before 

administering the questionnaire, the researcher highlighted the importance of reporting 

accurate efficacy judgments and requested students to provide their honest opinions. 

Participants completed the self-efficacy survey in approximately 25 minutes. It is 

important to note that participants did not solve any of the modeling problems. They 

reported their judgments for understanding and solving modeling problems after reading 

them. Additionally, five students from the research developmental school with different 

ability levels were engaged in think-aloud interviews to ascertain that students 

understood these problems and could solve them. These students were selected based 

on the recommendations of the classroom teachers. 
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Data Analysis 

Descriptive analysis of the scale (see Table 3-1) indicated that participants’ 

reported high levels of self-confidence in understanding and solving the Cinema Outing 

(M = 87.78, SD = 13.84), Library System (M = 87.72, SD = 17.28), and Children’s Camp 

(M = 886.48, SD = 12.80) problems. They reported almost similar confidence ratings for 

the Hospital (M = 85.0, SD = 15.92), Holiday (M = 84.18, SD = 17.30), and Energy 

Needs (M = 83.40, SD = 18.85) problems. Students appeared to be least confident in 

solving the Course Design (M = 81.92, SD = 16.40), Irrigation (M = 77.86, SD = 18.34), 

and Freezer (M = 77.85, SD = 20.29) problems. 

Internal consistency estimates ensure that participants’ responses are consistent 

across items when a single form of a test is administered (Kline, 2005). It is important to 

have high internal consistency among the items within a scale so that all the items are 

consistently measuring students’ self-efficacy beliefs for modeling tasks. The full scale 

was found to have Cronbach’s alpha coefficient equal to .89. Additionally, item-total 

correlation analyses were performed to ensure that all the items on the scale were 

homogeneous. Kline (2000) suggested .30 as an acceptable corrected item-total 

correlation for the inclusion of an item. Item-total correlations (see Table 3-2) for the 

scale, ranged from .48 to .77, suggesting that all the items were adequately measuring 

a single underlying construct.  

Factor analysis was performed to establish construct validity that also means 

identifying any underlying association between the items on the scale. Principal 

Component Analysis with varimax rotation indicated a single factor model because the 

first factor accounted for 54.5% of the variance in students’ efficacy to understand 

modeling tasks in comparison to the second factor that only accounted for 9.3% of the 
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total variance. The scree plot showed that the second (9.3%) and third (8.5%) factors 

were similar in magnitude (see Figure 3-2). Further, inspection of the component matrix 

table showed that all items load strongly on the single underlying construct (all factor 

loadings were higher than .67).  

Content validity measures whether the wording and format of the questions on a 

scale are consistent with the construct of interest. The items on the self-efficacy scale 

were reviewed and verified by experts in the field including researchers familiar with the 

psychological construct and people with measurement expertise.  

 Further, five students from a research developmental school with different ability 

levels were engaged in think-aloud interviews during which they were encouraged to 

verbalize the steps taken by them in solving modeling tasks. The major purpose of the 

think aloud interview was to ascertain whether the modeling tasks were sufficiently 

challenging to activate students’ cognitive and metacognitive skills. Think-aloud 

interviews revealed that problems on the modeling test were not very challenging for 

tenth-grade students between 16 to 18 years of age. Accordingly, four students from 

lower grade-levels, specifically 8th- and 9th-grade were selected to solve the modeling 

problems. These students were interviewed individually and were encouraged to share 

their thought processes about the strategies they used in understanding and solving 

these problems. Since the modeling problems were found to be sufficiently challenging 

for eighth- and ninth-grade students, it was decided to recruit eighth- and ninth-grade 

students between 13 to 15 years of age for the dissertation study.  
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Research Design 

The present study measured the degree of association between self-efficacy 

beliefs, self-reported use of cognitive and metacognitive strategies, and students’ 

performance on the modeling test. Thus, this study followed a correlational research 

design to determine whether and to what degree the variables involved in the study 

were related to one another (Clark & Creswell, 2010). It is important to note that 

correlational research is not causal in nature. As such, no attempts were made to 

establish cause-effect relationships among the variables. Data were collected in the 

form of self-report questionnaires and students’ responses on a modeling test. 

Structural equation modeling (SEM) techniques were used to explain relationships 

among the variables under investigation (Byrne, 2012; Kline, 2005/2011). SEM helps to 

estimate and test direct and indirect effects of the latent variables involved in a system 

through a series of regression equations. Latent variables, such as self-efficacy beliefs, 

cognitive strategies, and metacognitive strategies, are constructs that can neither be 

observed nor measured directly. Rather, they are indirectly measured by using 

observed variables that reflect different characteristics of the desired construct. For 

example, in this study students’ use of metacognitive strategies was measured indirectly 

through their ratings on nine items measuring their ability to plan, monitor, and regulate 

goals or problem-solving strategies. The structural relationships among the variables 

can be represented in the form of a statistical model (see Figure 3-1).  

Determination of Minimum Sample Size 

Determining appropriate sample sizes for research studies is crucial to detecting 

statistically significant relations if they exist. Meeting the criteria for the minimum sample 

size decreases the probability of committing a Type II error (failing to detect relations 
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among the variables when they do exist) or increases the power of a study. With regard 

to SEM and confirmatory factor analysis, there is little consensus in the research 

community concerning minimum sample size requirements (Kline, 2011; Mundfrom, 

Shaw, & Ke, 2005). Various methods have been suggested in this regard such as a 

minimum sample size approach of 200 participants, estimating sample sizes by using 

the N:q rule, where N is the number of participants and q is the number of parameters 

included in the statistical model, or through conducting power analysis (Jackson, 2003; 

Kline, 1998, 2005, 2011; Marsh, Balla, & McDonald, 1988; Mundfrom et al., 2005). In 

determining sample sizes through the N:q rule, it is unclear how many participants (e.g., 

20, 10, or 5) should be selected for each statistical variable (Kline, 2005/2011; Jackson, 

2001/2003). Kline (2005/2011) suggested that sample sizes greater than 200 are large 

enough for statistical model testing as well as to obtain a desired level of statistical 

power. Following Kline’s recommendations, the current study recruited 225 eighth- and 

ninth-graders from a local research developmental school affiliated with the researcher’s 

university. 

Method 

Participants 

A total of 325 eighth- and ninth-grade students in 13 classrooms were invited to 

participate in this study. Out of these, 236 (72.6%) students returned the signed parent 

consent and student assent forms. Eleven students were absent on the day the 

questionnaires were administered. Thus, 225 eighth- (n = 88, 39.11%) and ninth-grade 

(n = 137, 60.8%) students participated in the study. The average age of the participants 

was 14.22 with a standard deviation of 0.85. The number of female students (n = 122, 

54.2%) was slightly higher than the number of male students (n = 103, 45.8%). 
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Participants reported their ethnicity as White (n = 111, 49.3%), African American (n = 

46, 20.44%), Hispanic (n = 33, 14.6%), Asian (n = 12, 5.33%), and Native Hawaiian (n = 

1, 0.44%). The remaining students reflected their ethnic background as either a 

combination of these categories (n = 19, 8.4%) or as “others” (n = 3, 1.33%). 

Measures 

Three instruments were used to measure the desired constructs including: (1) a 

self-efficacy scale developed to measure students’ efficacy judgments on the modeling 

tasks, (2) a modified version of the MSLQ as developed for Connected Classroom in 

Promoting Mathematics (CCMS) project and used by Kaya (2007) to assess students’ 

use of cognitive and metacognitive strategies, and (3) a modeling test adapted from 

PISA 2003 problem-solving items to measure students’ modeling outcomes.  

Self-efficacy scale 

The self-efficacy scale assessed students’ confidence in solving modeling 

problems. Students provided judgments of their perceived capability to correctly solve 

modeling problems after reading each problem on the test. Specifically, they responded 

to four questions that elicited students’ self-efficacy judgments including,  

1. How sure are you that you can understand this mathematical problem?  
2. How sure are you that you can determine a strategy to solve this problem?  
3. How sure are you that you can determine the information required to solve this   

problem?  
4. How sure are you that you can solve this mathematical problem correctly? 

 
Students recorded the strength of their efficacy beliefs on a 100-point scale, divided into 

10-unit intervals ranging from 0 (not at all sure) to 100 (very sure) (see Appendix B). 

Psychometric properties of the Modeling Self-Efficacy scale tested during the pilot study 

suggest that the scale has high internal consistency (α = .89). 
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Motivated Strategies for the Learning Questionnaire (MSLQ) 

 The MSLQ is a self-report instrument designed to measure college students’ 

motivational orientation and their use of learning strategies in studying material for a 

college course (Pintrich et al., 1991; Pintrich et al., 1993). The motivation and learning 

strategies section together represent 15 subscales (or constructs) with a total of 81 

items. The present study used four subscales from the learning strategies section 

addressing students’ use of cognitive and metacognitive strategies including 

elaboration, organization, critical thinking, and metacognitive self-regulation. Students 

reported their cognitive and metacognitive strategy use on a seven-point Likert scale 

from 1 representing “not at all true of me” to 7 representing “very true of me”. Higher 

scores indicate greater levels of the constructs being measured or greater reported 

strategy use. The MSLQ is a widely used questionnaire that has been validated by a 

variety of empirical studies. Pintrich and his colleagues (1991) claim that the MSLQ 

scales can be used collectively as well as independently.  

Since the original MSLQ instrument was developed for college students, the 

present study used a version of the questionnaire that was modified for the CCMS 

project and used by Kaya (2007). Modifications in this questionnaire were made to meet 

the cognitive levels of middle-grade students. Also, some items were reworded to reflect 

motivational beliefs and use of learning strategies in reference to mathematics. The 

modified questionnaire included 67 items related to student motivation, cognitive and 

metacognitive strategy use, and management strategies (Kaya, 2007). Because the 

present study focused on students’ use of cognitive and metacognitive strategies, 15 

items related to cognitive strategy use and 9 items concerned with metacognitive 

strategy use were included in the self-report questionnaire (see Appendix C). Kaya 
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(2007) administered the modified MSLQ to 1,626 Algebra I students to test the internal 

consistency of the scale and the reliability estimates indicated high item-total 

correlations. The elaboration (6 items, α = .78), organization (4 items, α = .73), critical 

thinking (5 items, α = .76), and metacognitive self-regulation (9 items, α = .83) 

subscales had satisfactory Cronbach’s alpha values. Further, three problematic items 

on the original metacognitive self-regulation subscale of the MSLQ were deleted (Kaya, 

2007).  

Cognitive strategies. The cognitive strategies section includes 15 items across 

three subscales including elaboration, organization, and critical thinking (Kaya, 2007) 

(see Table 3-3). The elaboration subscale is designed to assess students’ use of 

learning strategies such as paraphrasing, summarizing, and note taking. These 

strategies support learners to process information more deeply through translating new 

information into their own words and creating mental models of a problem by 

associating the information given in a problem to their existing knowledge (Ormrod, 

2008). Students’ use of elaborative strategies was measured through six items (e.g., I 

try to relate ideas in this subject to those in other courses whenever possible). 

Elaboration strategies may be helpful in solving all three types of problems chosen for 

the PISA problem-solving assessment. Relating the problem-solving situations to what 

students already know may help them to solve decision-making, system analysis and 

design, and troubleshooting problems.  

The organization subscale consisting of four items measured the extent to which 

students use learning strategies such as clustering, outlining, and selecting main ideas 

to differentiate relevant and irrelevant information (e.g., I make simple charts, diagrams, 
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or tables to help me organize course material). These strategies may be useful in 

solving decision-making tasks that require students to identify the relevant alternatives 

and constraints. Organization strategies may also be helpful in solving system analysis 

and design problems, where students represent relationships among different parts of a 

system in the form of a table or a chart.  

Finally, the critical thinking subscale includes five items that measured the 

degree to which learners apply their prior knowledge and skills to thinking logically 

about new situations (e.g., I treat the course material as a starting point and try to 

develop my own ideas about it). Critical thinking skills are considered to be the most 

important skills for solving modeling tasks as these strategies support learners to think 

analytically, consider alternative conceptions of a problem, make effective decisions, 

reason deductively as well as justify their reasoning. 

Metacognitive strategies. The metacognitive self-regulation subscale consisting 

of nine items measured the extent to which students (1) plan their goals or activities 

(e.g., Before I study new material thoroughly, I often skim it to see how it is organized), 

(2) monitor their actions to enhance attention and to self-evaluate their progress (e.g., I 

ask myself questions to make sure I understand the material I have been studying in 

this class), and (3) regulate their cognitive strategies and goals (e.g., When studying for 

this course I try to determine which concepts I don’t understand well). Items included on 

the metacognitive self-regulation scale are provided in Table 3-4. Prominent 

researchers in the field of mathematical modeling reported that metacognitive strategies 

such as planning, monitoring, and regulating strategies support students in self-

evaluating the effectiveness of their models, creating revised models, and describing 
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situations using models (Blum, 2011; Magiera & Zawojewski, 2011; Lesh, Lester & 

Hjalmarson, 2003).  

The modeling test 

The third instrument used in this study was a test composed of six real-world 

situations to examine students’ modeling success competence (see Appendix D). The 

modeling test was developed by adapting problems from the PISA 2003 problem-

solving assessment (OECD, 2004). These problems were selected because 

researchers in the field of mathematical modeling often regard PISA problems as 

complex modeling tasks (Blum, 2011; Carriera, Amado, & Lecoq, 2011; MaaΒ & Gurlitt, 

2011; Mousoulides, 2007; Mousoulides, Christou, & Sriraman, 2008). The PISA 2003 

problems have been empirically examined and validated with students from 41 

countries and the overall reliability of the problem-solving scale from which these items 

were adapted was very high (α = .87). The modeling test assessed students’ modeling 

performance through three different types of tasks: decision-making, system analysis 

and design, and troubleshooting. It included six modeling problems, with two problems 

for each type of task.  

The problem-solving (or modeling) processes involved in solving decision-

making, system analysis and design, and troubleshooting tasks include understanding 

the problem, characterizing the problem, representing the problem, solving the problem, 

reflecting on the solution, and communicating the solution (see Figure 3-3). 

Understanding the problem is very similar to the description process of the modeling 

cycle. It involves making sense of the context and information given in the problem 

(e.g., text, diagrams, formulas, or the tabular data) by utilizing prior knowledge and 

experiences. Characterizing includes identifying relevant variables involved in the 
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problem and noticing relationships between them. It also includes “constructing 

hypotheses; and retrieving, organizing, considering, and critically evaluating contextual 

information” (OECD, 2004, p. 27). Further, learners establish relationships between the 

variables by representing the situation in tabular, graphical, symbolic, or verbal forms. In 

order to successfully solve these problems, students need to make predictions about 

real-world problems. This includes making appropriate decisions in the case of decision-

making tasks, analyzing or designing systems in the case of system analysis and 

design tasks, and diagnosing faulty systems in the case of troubleshooting tasks. 

Verification involves evaluating results within the context of the real-world situation 

(OECD, 2004). Finally, communication involves selecting effective methods of 

communication to report solutions such as choosing appropriate forms of media and 

representations.  

The decision-making tasks measured the extent to which students could make 

appropriate decisions by choosing strategically among several alternatives provided 

under a given set of conditions. The decision-making skills were tested through Cinema 

Outing and Energy Needs (see Appendix D) problems. These problems involved a 

variety of information, and students were required to understand and provide solutions 

to these problems by identifying the constraints given in the situation, translating the 

information into meaningful representations, and making a decision after systematically 

considering all the alternatives and constraints (OECD, 2004). For example, the Energy 

Needs problem required students to select suitable food for a person after calculating 

his/her required daily energy needs. In order to calculate the energy needs of a person, 

students needed to integrate two or more pieces of information such as age, gender, 
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activity level, and occupation of a person. Students’ ability to make accurate decisions is 

largely affected by the number of factors present in a problem, especially in separating 

the relevant from the irrelevant information. 

The system analysis and design tasks required students to identify complex 

relationships among the variables or to design a system by satisfying all the conditions 

given in a problem. The two system analysis and design problems included in the test 

were Children’s Camp and Course Design (see Appendix D). Similar to decision-making 

tasks, system-analysis and design problems involved a variety of information and 

students needed to sort through the information in order to depict relationships among 

the variables. But unlike decision-making problems, all the alternatives were not given 

and the constraints were not obvious. For example, the Children’s Camp problem 

involved assignment of children and teachers into different dormitories by matching the 

capacity of each dorm with the number and gender of the people. It required thorough 

understanding of the context of the situation, list of adults and children, and knowledge 

of the dormitory rules. As such, these problems required students to think logically and 

critically about all the variables as well as constantly monitor, reflect, and adjust their 

actions.  

The third type of task, troubleshooting problems, required students to diagnose, 

rectify, and improve a faulty or underperforming system. The modeling test included two 

trouble-shooting problems, Irrigation and Freezer (see Appendix D). In order to solve 

these problems, students needed to understand the main components of a system as 

well as the role of each component in the system’s functioning. Additionally, they were 

required to understand how different components of a system interact with each other 
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causally (OECD, 2004). Based on this understanding, students were required to 

diagnose a malfunction of a system and propose an appropriate solution. Students 

could communicate their recommendations by either drawing a diagram or writing a 

problem solution report. For example, the Freezer problem was a trouble-shooting item, 

where students needed to diagnose the probable cause of a malfunctioning freezer 

based on several variables such as the knowledge of the manual, the functioning of the 

warning light, the state of the temperature control, and external indications about the 

freezer motor. It is important to note that all six problems on the modeling test were 

either open-ended having more than one correct solution or in multiple-choice format 

requiring them to choose “yes” or “no” for a series of questions. 

Procedure 

Data Collection 

The present study was conducted during the fall of 2012 at a developmental 

research school. Students were recruited following the approval of procedures from the 

University of Florida Institutional Review Board. All the students completed the MSLQ 

questionnaire as well as solved modeling problems after rating their confidence for 

solving these problems. Both the questionnaires and modeling test were administered 

during regular class periods in two sittings. The MSLQ survey took approximately 10-15 

minutes to complete. Before the administration of the questionnaire, students were 

instructed to respond to the items with reference to their mathematics classroom. 

Students took approximately 15 minutes in rating their confidence in solving modeling 

tasks. Finally, they solved problems on the modeling test in approximately 30 minutes. 

During the modeling test administration, students were encouraged to not only solve but 

also to provide justifications for their responses. The present study, however, did not 
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take into account students’ justifications while scoring their responses on the modeling 

test. 

Data Analysis 

Scoring scheme 

Students’ performance on the modeling test was evaluated in accordance with 

the scoring system used in the PISA 2003 problem-solving assessment (see Appendix 

E). Students could earn a maximum of 2 points for some problems (e.g., Cinema 

Outing, Energy Needs, Children’s Camp, and Course Design), while other problems 

(e.g., Irrigation, Freezer) were worth a maximum of 1 point. As such, they could earn a 

maximum of 10 points on the modeling test. The Cinema Outing problem required 

students to identify movies that three friends could watch together upon analyzing the 

duration and show times for each movie. Students received a maximum score of 2 for 

correctly choosing “yes” or “no” for all the six multiple-choice questions, and a partial 

score of 1 for answering all but one of the questions correctly. They received zero points 

for incorrectly answering more than two multiple-choice questions. 

The Energy Needs problem required students to suggest a suitable food for a 

person that aligns with his or her energy needs. To receive full credit, students needed 

to show all the calculations including the total energy of the fixed price menu, sum of the 

fixed price menu and the person’s energy intake for the day, and difference between 

this sum and the person’s recommended daily energy needs followed with a correct 

conclusion. Students received partial credit in two ways, either by showing all the 

calculations correctly but providing a wrong conclusion, or making a minor error in one 

of the calculations steps leading to a wrong conclusion. Students, however, did not get 

any credit for simply calculating total energy of the fixed price meal.  
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The Children’s Camp was an open-ended problem involving assignment of adults 

and students to different dormitories based on the dormitory rules. A full credit response 

involved allocating people to eight dormitories after ensuring the total number of girls 

(e.g., 26), boys (e.g., 20), and adults (e.g., 4 females and 4 males) were equal to the 

required number. Further, the total number of people in each dormitory should not 

exceed the number of beds, adults and children in each dormitory should be of the 

same gender, and there should be at least one adult sleeping in each dormitory. 

Students received a partial credit of 1 point if they violated at most two of the 

recommended six conditions. They did not receive any credit for violating more than two 

conditions.  

The Course Design problem required students to sequence 12 college courses 

over a three-year period. Full credit involved listing subjects by satisfying the two 

recommended conditions. Students received partial credit of 1 point if they listed all the 

subjects in proper order except mechanics and economics. However, they received no 

credit for completing the whole table correctly but failing to put electronics courses (e.g., 

Electronics (I) and Electronics (II)) into the table. The Irrigation problem required 

students to decide whether the water would flow through all the way by choosing “yes” 

or “no” in three different problem situations. Students earned a full credit of 1 point on 

correctly answering all the three multiple-choice questions. Unlike other problems, they 

could not earn any partial credit for this problem. The Freezer is a multiple-choice 

problem that required students to detect whether the warning light of a malfunctioning 

home freezer was working properly when the temperature was controlled at different 

positions. In order to receive full credit, students needed to answer all three questions 
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correctly. Similar to the Irrigation problem, no partial credit was given if any of the three 

responses were incorrect.  

Scoring procedure 

The researcher and a fellow mathematics education graduate student scored 

participants’ responses on the modeling test. Interrater agreement was examined 

between the two raters to ensure the consistency of the implementation of the scoring 

rubric. It represents the “extent to which different judges tend to make exactly the same 

judgment about the rated subject” (Tinsley & Weiss, 2000, p. 99). Interrater agreement 

was reported by measuring Cohen’s kappa and values higher than .80 are generally 

considered to be acceptable (Tinsley & Weiss, 2000). The present study found high 

interrater agreement between the two raters ( = .96).  

Descriptive analysis 

Descriptive analysis was conducted by reporting reliability estimates, patterns of 

missingness, and descriptive statistics for each construct. The reliability estimates for 

elaboration, organization, critical thinking, metacognitive self-regulation subscales as 

well as self-efficacy and modeling test were determined by calculating Cronbach’s 

alpha. Coefficient alpha measures internal consistency of a scale that refers to the 

“degree to which responses are consistent across the items within a single measure” 

(Kline, 2005, p.59). In the social sciences, acceptable reliability estimates range from 

.70 to .80 (Kline, 2005). Missing values analysis procedure including pattern of missing 

data was performed using the SPSS statistical software. Specifically, univariate 

descriptive statistics including non-missing values, means, standard deviations, and 

number and percent of missing values were computed.  
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Descriptive statistics including mean scores for each subscale in the MSLQ and 

mean self-efficacy scores for each modeling problem were calculated. By following the 

recommendations made in the MSLQ manual, mean scores for the elaboration, 

organization, critical thinking, and metacognitive self-regulation subscales were 

calculated by averaging participants’ ratings across all the items within that subscale. 

Further, participants’ mean self-efficacy scores for the six modeling problems were 

calculated by averaging participants’ ratings across the four self-efficacy questions (i.e., 

confidence in understanding the problem, determining information, determining 

strategies, and solving the problem).  

Further, construct validity for the MSLQ and Modeling Self-Efficacy scale was 

examined through Confirmatory Factor Analysis (CFA). In CFA, relationships between 

the observed indicators and underlying latent constructs, known as factor loadings, are 

specified a priori based on the review of the literature (Byrne, 2012). The hypothesized 

model is tested by examining goodness-of-fit indices such as, Chi-square test statistics, 

comparative fit index (CFI), Tucker Lewis index (TLI), and root mean square error of 

approximation (RMSEA). In the present study, the CFA of the MSLQ was conducted by 

allowing elaboration, organization, critical thinking, and metacognitive self-regulation 

items to load freely on their corresponding latent factors. The CFA of the Modeling Self-

Efficacy scale was performed by loading participants’ mean self-efficacy scores for each 

of the six modeling problems on the overall modeling self-efficacy latent variable. 

Analyses 

 Data were analyzed using SEM techniques. The statistical calculations such as 

estimating fit indices, errors, and model parameters were performed using the Mplus 

version 7 program. The hypothesized statistical model was tested using weighted least 
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square means and variance adjusted (WLSMV) estimator. This estimator was selected 

because it produces accurate parameter estimates and unbiased standard errors with 

varying sample sizes (N = 100 to 1,000) and models in which observed variables are 

measured on widely varying scales (Brown, 2006; Muthèn & Muthèn, 1998-2012). It 

also provides superior measurement model fit and more precise factor loadings with 

categorical data.  

SEM is a useful methodology to study relations among observed and unobserved 

(i.e., latent) variables in both experimental and non-experimental settings (Byrne, 

2009/2012; Hoyle, 1995). Such relations, however, are not causal in nature (Kline, 

2005). These relations can be represented in the form of a series of structural equations 

as well as depicted pictorially in the form of a structural model (Byrne, 2012). The 

hypothesized structural model that guided the present study is presented in Figure 3-1. 

Students’ use of cognitive strategies was measured indirectly through their self-reported 

use of elaboration, organization, and critical thinking strategies. Thus, students’ mean 

ratings for the elaboration, organization, and critical thinking subscales were loaded on 

the cognitive strategy latent variable. Students’ use of metacognitive strategies was 

measured indirectly through their ratings on nine items measuring their self-reported 

use of planning, monitoring, and regulating strategies. It is important to note that mean 

of students’ ratings across nine metacognitive items was not computed rather students’ 

ratings for each metacognitive item were loaded on the overall metacognitive latent 

variable. Students’ self-efficacy beliefs for modeling tasks were indirectly measured in 

terms of their confidence in solving decision-making, system analysis and design, and 

troubleshooting tasks. Self-efficacy beliefs for decision-making, system analysis and 
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design, and troubleshoot tasks were calculated by computing students’ mean ratings for 

the Cinema Outing and Energy Needs, Children’s Camp and Course Design, and 

Irrigation and Freezer problems, respectively. Modeling outcomes were indirectly 

measured through students’ success in solving decision-making, system analysis and 

design, and troubleshooting tasks. Modeling success rates for decision-making, system 

analysis and design, and troubleshooting tasks were calculated by averaging students’ 

scores in Cinema Outing and Energy Needs, Children’s Camp and Course Design, and 

Irrigation and Freezer problems, respectively. 

SEM determines the extent to which the hypothesized model fits with a set of 

data obtained from a given sample. The general structural equation model consists of 

two sub models: a measurement model and a structural model (Byrnes, 2012; Hoyle, 

1995; Kline, 2005). The measurement model determines how well the latent variables 

are described by the observed variables. This model is analogous to confirmatory factor 

analysis because it indicates how each observed measure (e.g., items or subscales on 

the questionnaire) loads on a particular factor (i.e. latent variable). The second 

component is the structural model, which defines relations among the unobserved latent 

variables and the extent to which each latent variable “directly or indirectly influence(s) 

changes in the values of certain other latent variables in the model” (Byrne, 2012, p.14). 

In the present study, the structural model describes relationships between modeling 

self-efficacy beliefs (exogenous latent variable) and cognitive strategies, metacognitive 

strategies, and modeling tasks (endogenous latent variables).  

Benefits of SEM. There are several benefits of using SEM over multivariate 

procedures, such as Analysis of Variance (ANOVA) and multiple regressions (Byrne, 
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2012). First, SEM involves a confirmatory approach to the data analysis because 

relations among the variables are specified a priori based on the review of the literature. 

Second, SEM provides explicit estimates for the measurement errors, which are not 

assessed correctly using traditional multivariate procedures. Measurement errors are 

associated with observed variables, and accounting for such errors results in accurate 

estimation of the structural relations between the observed and latent variables. Third, 

SEM allows researchers to test several hypotheses and make inferences based on both 

latent and observed variables.  

Five basic steps of SEM. SEM involves five basic steps including model 

specification, model identification, model estimation, model testing, and model 

modification (Hoyle, 1995). Model specification involves proposing a model by reviewing 

relevant theory and literature (e.g., Figure 3-1). Specifically, it includes establishing 

observed variables that can appropriately measure the latent variables as well as 

defining relations between observed and latent variables.  

Model identification focuses on whether “a single, unique value for each and 

every free parameter can be obtained from the observed data” (Hoyle, 1995, p. 4). A 

model is said to be identified if it meets two basic assumptions: “(1) there must be at 

least as many observations as free model parameters (dfM ≥ 0), and (2) every 

unobserved (latent) variable must be assigned a scale (metric)” (Kline, 2005, p. 105). 

Structural models may be under-identified, just-identified, or over-identified. If the 

number of free parameters exceeds the number of observations, a model is said to be 

under-identified and cannot be estimated. A just-identified model fits the data perfectly, 

as it involves only one possible set of values for the parameters. In general, over-
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identified models, in which the number of observations is more than the number of 

independent parameters, are preferred as they facilitate statistical model testing.  

The model estimation process yields parameter values such that the 

“discrepancy (i.e., residual) between the sample covariance matrix and the population 

covariance matrix implied by the model is minimal” (Byrne, 2012, p. 65). Specifically, 

during this stage initial values are plugged in for all the parameters and then the model 

is estimated iteratively using an estimator, such as WLSMV, until the discrepancy 

between sample and population covariance matrix is minimum. This is also known as 

model convergence.  

The model-fit test is one of the most crucial steps of SEM since it assesses the 

extent to which the observed data fit the proposed statistical model. SEM allows 

researchers to test theoretical propositions by determining the goodness-of-fit between 

the hypothesized statistical model and the data collected from the population of interest. 

Byrne (2012) describes the model-fitting procedure in SEM as follows: 

Data = Model + Residual 

In this equation, “data” symbolizes scores obtained from the sample on the observed 

variables, “model” represents the proposed statistical model denoting relations between 

the observed and latent variables, and if possible relations between latent variables as 

well. This model is generally hypothesized after the review of extant literature. 

“Residual” represents the difference between the hypothesized model and the observed 

data. As such, goodness-of-fit is the variance in the data that is not explained by the 

proposed model.  
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The model-fit is generally evaluated based on two broad criteria: (1) the 

goodness-of-fit statistic and (2) the individual parameter estimate (Byrnes, 2012). 

Byrnes further recommends that the model should be examined based on several 

criteria. Some prominent goodness-of-fit statistics that indicate overall fit of the model 

include chi-square test of model fit (2), the root mean square error of approximation 

(RMSEA), the comparative fit index (CFI), and the Tucker Lewis index (TLI). 

The chi-square index evaluates the discrepancy between the population 

covariance matrix and the sample covariance matrix. This means as the chi-square 

values increases, the fit of the model becomes worse. The null hypothesis in a chi-

square goodness-of-fit test states that the hypothesized model fits the data. In other 

words, factor loadings, factor variances and covariances, and residual variance for the 

model under study are valid (Byrne, 2012). Mplus typically calculates this statistic as (N) 

Fmin, where N represents the sample size and Fmin is the minimum fit function (Byrne, 

2012). The probability value associated with 2 determines the fitness between the 

hypothesized model and the model obtained from the sample population. It represents 

the likelihood that the chi-square test statistic is greater than the 2 value when the null 

hypothesis is true. Thus, higher p-values (p > .05) indicate closer fitness between the 

two types of models. It is important to note, however, that chi-square’s sensitivity to 

large sample sizes frequently results in rejection of the hypothesized model. The effect 

of large sample sizes can be reduced by dividing the chi-square index by the degrees of 

freedom (Kline, 2005). Higher correlations among observed variables also increase the 

probability of rejecting the null hypothesis (Miles & Shevlin, 2007). This occurs because 

higher correlations among the variables give greater power to the tested model causing 
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an increase in chi-square index. It is, therefore, recommended to check the results 

obtained from chi-square with other fit-indices such as CFI, TLI, or RMSEA.  

Both CFI and TLI are incremental indices of fit in SEM, which measure the 

relative improvement in fit of the hypothesized model in comparison to the baseline 

model (Byrne, 2012). The baseline model is also called the null or independence model 

that assumes zero covariance among the observed variables (Kline, 2005). The values 

of CFI lie between .0 and 1.0, with values greater than .95 indicating that the population 

matrix fits closely with the hypothesized model (Byrne, 2012). TLI is called the 

nonnormed index since it’s values lie beyond the normal range of .0 to 1.0. Similar to 

CFI, TLI values close to .95 indicate that the hypothesized model is a good-fitting 

model.  

RMSEA tells us how well the model with “unknown but optimally chosen 

parameter estimates would fit the population covariance matrix” (Browne & Cudeck as 

cited in Byrne, 2012). It assumes that the model does not fit the sample data perfectly. 

Unlike chi-square, it is not sensitive to large sample sizes. RMSEA values less than .05 

are considered a good fit, values in the range of .06 and .08 are considered a moderate 

fit, and values greater than .10 indicate poor fit.  

The goodness-of-fit statistics evaluate model fitness by concentrating on the 

model as a whole. On the other hand, the individual parameter estimates focus on 

“appropriateness of the estimates and their statistical significance” (Byrnes, 2012, p. 

77). Specifically, parameter estimates assess the degree to which statistical estimates 

are consistent with the proposed model, such as correct sign and size. Values of the 

estimated parameters that fall beyond the required range, such as correlations greater 
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than 1.00 or negative variances, represent incorrect estimates. The estimated standard 

errors with extremely large and small values also indicate poor model fit. 

Model modification generally occurs when the original model does not fit the data 

as indicated by the goodness-of-fit indices. It involves adding or removing statistical 

paths as suggested by the residuals and modification indices (MI) obtained from running 

the original model (Hoyle, 1995). Byrne further specified that statistical paths in the 

proposed model should not be modified solely on the basis of modification indices, the 

suggested paths should also be theoretically appropriate. 

Assumptions of SEM. There are two basic assumptions of structural equation 

modeling: independence assumption and multivariate normality assumption. The 

independence assumption implies that “error in predicting Y from X for one case is 

unrelated to that of another case” (Kline, 2005, p. 23). The independence assumption 

requires independent observations obtained through random sampling. This assumption 

is usually violated in social and behavioral sciences because most often participants are 

nested within schools or classrooms or they are not selected through random sampling. 

Nonrandom sampling does not provide accurate estimates of variances and 

covariances associated with the latent constructs (McDonald & Ho, 2002). In the 

present study, the independence assumption was violated because students belonged 

to different classrooms within a school, and they were selected through nonrandom 

sampling. Fabrigar, Wegener, MacCallum, and Strahan (1999) suggested that in the 

case of convenience sampling, researchers should refrain from selecting participants 

who are relatively homogeneous with respect to the factors of interest. In the present 

study, the impact of this assumption violation was reduced to some extent because the 
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selected students belonged to varying socioeconomic status and different cultural 

backgrounds. 

Multivariate normality means that observations are drawn from a continuous and 

multivariate normal population (Kline, 2005). The violation of this assumption results in 

substantial overestimation of goodness-of-fit statistics (e.g., 2, CFI, TLI, RMSEA) and 

underestimation of standard error estimates. Although the measurement model in the 

present study was tested using the WLSMV estimator, which produces accurate 

parameter estimates under non-normality, the multivariate normality assumption was 

tested by computing univariate skewness and kurtosis values for each variable. Both 

skew and kurtosis describe the distribution of observed data around the mean. 

Skewness indicates whether the observed scores are above (negative skew) or below 

the mean (positive skew) (Kline, 2005). On the other hand, kurtosis values suggest 

whether the multivariate distribution of the observed variables has high peak and 

heavier tails (positive kurtosis) or the curve is flat with light tails (negative kurtosis). 

Further, it is important to note that skew values influence tests of means, whereas 

kurtosis values impact tests of variance and covariance (DeCarlo, 1997 as cited in 

Byrne, 2012). Considering the fact that SEM is based on analysis of covariance 

structure, parameter estimates and standard errors tend to be more influenced by 

abnormal kurtosis values in comparison to skew values. Kline (2005) reported that 

skewness greater than 3.0 generally suggests a serious problem. Kurtosis values 

greater than 10.0 might be interpreted as a sign of a problem while the values greater 

than 20.0 may point to a serious problem. These reports were used as a point of 

reference for the examination of the multivariate normality of the current data.  
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Handling Missing Data. Missing data causes problems for researchers using 

SEM techniques. Choosing the most appropriate method for handling missing data is of 

utmost importance because applying inappropriate methods may lead to bias in 

standard errors and test statistics (Allison, 2003). According to Widaman (2006), the 

cause of missing data can be due to item nonresponse, scale nonresponse, or dropout 

of the participants during the course of a study. Item nonresponse may occur when a 

participant does not respond to a particular item because of temporary lack of attention, 

inability to comprehend a situation, or personal issues. Scale nonresponse occurs when 

a participant fails to respond to all the items pertinent to a particular construct (e.g., if a 

participant does not respond to all six items of the elaboration scale).  

Further, missing data are classified either as missing completely at random 

(MCAR) or missing at random (MAR) (Kline, 2005; Widaman, 2006). MCAR means that 

the missingness is completely random and is not predictable from either the observed 

variables or latent variables in the study. The missing data were tested for MCAR 

assumption by using Little’s MCAR test. The null hypothesis for Little’s MCAR test 

assumes that data are missing completely at random. Hence, p-values less than .05 

significance level indicates data are not missing completely at random. MAR means that 

the missingness is unpredictable from the latent variables as well as the observed 

variable for which it is a missing data indicator. However, it is predictable from other 

observed variables.  

Some common techniques to handle missing data include listwise deletion, 

pairwise deletion, mean imputation, and Maximum Likelihood (ML) estimation (Enders & 

Bandalos, 2001). Listwise deletion methods remove the complete record of a participant 
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with any missing values. Although this method is very easy to implement, it results in 

the loss of valuable data leading to small sample size that further decreases power and 

accuracy, and biased parameter estimates when the data are not MCAR (Arbuckle, 

1996; Wothke, 2000). Nevertheless, it is recommended to use listwise deletion if the 

percentage of observations that contain missing values is reasonably low (less than 5%) 

(Bentler, 2005; Hair, Black, Babin, Anderson, & Tatham, 2006).  

The second method to handle missing data involves pairwise deletion. In this 

method, cases are excluded only when the case has missing data for a variable that is 

part of the data analysis. Similar to listwise deletion, it is easy to apply and results in 

less loss of data but has several disadvantages. First, the pairwise deleted correlation 

matrix may not be positive, which means certain mathematical operations with the 

matrix will be difficult to carry out. Second, it results in biased parameter estimates 

when the data are not MCAR. Third, pairwise deletion raises the tendency to reject the 

statistical model (Enders, 2001). Fourth, it produces standard error estimates that may 

not be consistent with true standard errors. This problem arises because it uses 

different sample sizes for estimating different parameters. 

Another way of handling missing data is mean imputation, which involves 

substituting missing values with the mean score of that observed variable. Imputation 

allows researchers to include subjects with missing values in data analysis, but it 

distorts the shape of the distribution of the data as well as relationships between 

variables. It also results in reduced variance and underestimated standard errors. In 

general, this method is not an appropriate method to handle missing data. 
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In comparison to these methods, maximum likelihood (ML) estimation has been 

regarded as one of the most promising methods to handle missing values in SEM 

because it can handle missing data under the MAR assumption (Byrne, 2012; Kline, 

2005). Unlike mean imputation and listwise deletion, ML neither fills in the missing 

values nor discards the data. Rather, it uses all the available data to produce parameter 

estimates that “have the highest probability of producing the sample data” (Baraldi & 

Enders, 2010). Specifically, it identifies population parameter values and by using a log 

likelihood function generates sample estimates that best fit the data. Further, Byrne 

(2012) indicated several benefits of using this method. First, in comparison to listwise 

and pairwise estimates, ML estimation provides more reliable and efficient solutions 

under MCAR assumption. Second, ML offers reliable estimates even when the data 

values are missing under MAR conditions. Third, ML estimation does not cause any 

problems with the covariance matrices that occur during the case of pairwise deletion. 

In order to use the ML estimation method to handle missing data, several conditions 

must be satisfied including existence of a valid model, large sample size, multivariate 

normal distribution for observed variables, and use of a continuous scale for the 

observed variables (Byrne, 2001). The most challenging assumption in the present 

study would be the treatment of ordinal scale variables (e.g., Likert-scale) as 

continuous. Byrne (2001) suggested that the violation of this assumption can be 

handled if the observed variables have multivariate normal distribution and include four 

or more categories. As discussed before, unless extreme values for skewness and 

kurtosis are detected, ML methods provide reliable estimation.  
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Multicollinearity. Multicollinearity is yet another serious issue influencing SEM 

analyses. It occurs when there exist high inter-correlations among the latent variables 

causing the dependent variable to load on more than one factor. It is problematic 

because it produces singular covariance matrices and makes some mathematical 

calculations difficult to carry out (Kline, 2005). In the present study, multicollinearity 

between the latent variables was reported using the correlation matrix with correlations 

greater than .90 indicating multicollinearity.  

Direct and Indirect Effects. Direct effects between the exogeneous (e.g., self-

efficacy beliefs) and endogeneous variables (e.g., cognitive strategies, metacognitive 

strategies, and students’ modeling outcomes) are interpreted as path coefficients or 

regression coefficients (Kline, 2005). Indirect effects involve “one or more intervening 

variables presumed to ‘transmit’ some of the causal effects of prior variables onto 

subsequent variables” (Kline, 2005, p. 68). Intervening variables that explain a 

relationship between two variables are also known as mediators. Similar to direct 

effects, indirect effects of the variables are also interpreted as path coefficients. Indirect 

effects are generally estimated as the product of two path coefficients. For example, the 

basic mediation model as shown in Figure 3-4 consists of three variables, the 

independent or the exogenous variable X, the dependent or the endogenous variable Y, 

and the mediator M. If ‘a’ is the coefficient for X in a model predicting M from X, ‘b’ and 

‘c’ are the coefficients in a model predicting Y from M and X respectively (see Figure 3-

4), then ‘c’ denotes the direct effect of X on Y and the product of ‘a’ and ‘b’ quantifies 

the indirect effect of X on Y through M. The total effect is equal to the sum of the direct 

effect of X on Y and the indirect effect through the mediating variable M. Additionally, it 
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is important to note that an independent variable (X) can indirectly influence a 

dependent variable (Y) through a mediating variable (M) even if X and Y are not 

correlated (Mathieu & Taylor, 2006). 

Although there are several methods available (e.g., Sobel test, bootstrapping, 

and the empirical M-test) to test the statistical significance of the mediating variables, 

researchers (e.g., MacKinnon, Lockwood, & Williams, 2004; Preacher & Hayes, 2004; 

Shrout & Brogler, 2002) now advocate using bootstrapping procedures for several 

reasons. First, bootstrapping is already implemented in some SEM software such as 

Mplus. Second, unlike the Sobel test, it does not assume normality of the sampling 

distribution of the indirect effect (Preacher, Rucker, & Hayes, 2007). Third, unlike M-

test, it can be used to test the effect of the mediating variables in complex path models 

(William & Mackinnon, 2008). Fourth, it provides better estimates in small to moderate 

samples. In bootstrapping method, samples are drawn with replacement from the 

population of interest. Then, the indirect effect is estimated for each resampled data set. 

This process is repeated for k (e.g., 1000) number of times, which on completion 

provides k estimates of the indirect effect. The distribution of these k estimates serves 

as the empirical approximation of the sampling distribution of the indirect effects. 

Bootstrapped standard errors and confidence intervals for the indirect effects are 

calculated using this distribution. In Mplus, bootstrapped standard errors and confidence 

intervals for the indirect effects can be requested by specifying the number of bootstrap 

draws to be used in the computation.  

Assumptions of the Study 

The study holds three assumptions. First, students engaged in this study would 

make accurate self-efficacy judgments for modeling tasks. Second, students would 
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express their true feelings and provide honest reports about their use of cognitive and 

metacognitive strategies during academic learning. Further, students’ self-efficacy 

judgments and their responses on the self-report questionnaire would not be affected by 

any social or peer pressure. Third, students would expend a lot of effort in solving 

modeling tasks.
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Table 3-1.  Item statistics for the Modeling Self-Efficacy scale 

 N Mean Standard Deviation 

SE1  150 87.78 13.84 
SE2  150 83.40 18.85 
SE3  150 84.18 17.30 
SE4  150 86.48 12.80 
SE5  150 81.91 16.40 
SE6  150 87.71 17.27 
SE7  150 77.87 18.34 
SE8  150 77.85 20.29 
SE9  150 85.05 15.92 
Note. SE1 = Cinema Outing, SE2 = Energy Needs, SE3 = Holiday,  
SE4 = Children’s Camp, SE5 = Course Design, SE6 = Library System,  
SE7 = Irrigation, SE8 = Freezer, SE9 = Hospital. 

 
 
Table 3-2.  Item-Total Correlation Analysis 

 Scale Mean 
if Item 

Deleted 

Scale 
Variance if 

Item Deleted 

Corrected 
Item-Total 
Correlation 

Squared 
Multiple 

Correlation 

Cronbach’s 
Alpha if Item 

Deleted 

SE1 664.47 9923.79 .773 .691 .868 
SE2 668.85 9722.87 .583 .410 .881 
SE3 668.06 10262.51 .480 .279 .889 
SE4 665.76 10362.06 .660 .497 .876 
SE5 670.33 9732.35 .693 .540 .871 
SE6 664.53 9783.92 .633 .533 .876 
SE7 674.38 9533.13 .633 .478 .874 
SE8 674.40 9219.43 .671 .510 .874 
SE9 667.20 9759.22 .709 .560 .870 
Note. SE1 = Cinema Outing, SE2 = Energy Needs, SE3 = Holiday, SE4 = Children’s Camp, SE5 = 
Course Design, SE6 = Library System, SE7 = Irrigation, SE8 = Freezer, SE9 = Hospital. 
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Table 3-3.  Items for cognitive strategies with three scales 

Scales 

Elaboration 
1. When reading (your mathematics textbook) for this class, I try to relate the material 

to what I already know. 
2. I try to understand the material in this class by making connections between the 

readings (your mathematics textbook) and the concepts from my teachers’ lectures. 
3. I try to apply ideas from course readings (your mathematics textbook) in other class 

activities such as lecture and discussion. 
4. When I study for this class, I pull together information from different sources, such 

as lectures, readings, and discussions. 
5. I try to relate ideas in this subject to those in other courses whenever possible. 
6. When I study for this course, I write brief summaries of the main ideas from the 

readings (your mathematics textbook) and my class notes. 
Organization 

1. When I study the readings (your mathematics textbook) for this course, I outline the 
material to help me organize my thoughts. 

2. When I study for this course, I go through the readings (your mathematics textbook) 
and my class notes and try to find the most important ideas. 

3. I make simple charts, diagrams, or tables to help me organize course material. 
4. When I study for this course, I go over my class notes and make an outline of 

important concepts. 
Critical Thinking 

1. I often find myself questioning things I hear or read in this course to decide if I find 
them convincing. 

2. When a theory, interpretation, or conclusion is presented in class or in the readings, 
I try to decide if there is good supporting evidence. 

3. I treat the course material as a starting point and try to develop my own ideas about 
it. 

4. I try to play around with ideas of my own related to what I am learning in this 
course. 

5. Whenever I read or hear an assertion or conclusion in this class, I think about 
possible alternatives. 

 

 



 

 102 

Table 3-4.  Items for metacognitive strategies scale 

Metacognitive Self-regulation 

1. When I become confused about something I'm reading for this class, I go back and 
try to it out. 

2. If course readings are difficult to understand, I change the way I read the material. 
3. Before I study new course material thoroughly, I often skim it to see how it is 

organized. 
4. I ask myself questions to make sure I understand the material I have been 

studying in this class. 
5. I try to change the way I study in order to fit the course requirements and the way 

my teacher presents the material. 
6. I try to think through a topic and decide what I am supposed to learn from it rather 

than just reading it over when studying for this course. 
7. When studying for this course I try to determine which concepts I don't understand 

well. 
8. When I study for this class, I set goals for myself in order to direct my activities in 

each study period. 
9. If I get confused taking notes in class, I make sure I sort it out afterwards. 
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Figure 3-1.  The hypothesized model depicting relationships between self-efficacy 

beliefs, cognitive and metacognitive strategy use, and students’ performance 
on model-eliciting tasks 
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Figure 3-2.  The scree plot showing Modeling Self-Efficacy scale as one factor model 
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Decision making 
 

System analysis and design 
 

Trouble shooting 

Goals Choosing among 
alternatives under 
constraints 

Identifying the relationships 
between parts of a system 
and/or designing a system 
to express the relationships 
between parts 

Diagnosing and correcting a 
faulty or underperforming system 
or mechanism 

Processes 
involved 

Understanding a situation 
where there are several 
alternatives and constraints 
and a specifi ed task 

Understanding the information 
that characterises a given system 
and the requirements 
associated with a specifi ed task 

Understanding the main features 
of a system or mechanism and its 
malfunctioning, and the demands 
of a specifi c task 

Identifying relevant 
constraints 

Identifying relevant parts of 
the system 

Identifying causally related 
variables 

Representing the possible 
alternatives 

Representing the relationships 
among parts of the system 

Representing the functioning of 
the system 

Making a decision among 
alternatives 

Analysing or designing a system 
that captures the relationships 
between parts 

Diagnosing the malfunctioning of 
the system and/or proposing a 
solution 

Checking and evaluating 
the decision 

Checking and evaluating the 
analysis or the design of the 
system 

Checking and evaluating the 
diagnosis/solution 

Communicating or 
justifying  the decision 

Communicating the analysis or 
justifying the proposed design 

Communicating or justifying the 
diagnosis and the solution 

Possible sources 
of complexity 

Number of constraints Number of interrelated 
variables and nature of 
relationships 

Number of interrelated parts of 
the system or mechanism and the 
ways in which these parts interact 

Number and type of 
representations used (verbal, 
pictorial, numerical) 

Number and type of 
representations used (verbal, 
pictorial, numerical) 

Number and type of 
representations used (verbal, 
pictorial, numerical) 

 
Figure 3-3.  Problem-solving (modeling) processes involved in three different types of 

problem-solving (modeling) tasks (OECD, 2004, p. 29) 
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Figure 3-4.  A basic mediation model with X as an independent variable, Y as a 

dependent variable, and M as an intervening variable 
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CHAPTER 4 
RESULTS 

This chapter describes results of descriptive analysis including internal 

consistency of each construct, patterns of missingness, assumptions of structural 

equation modeling, and Confirmatory Factor Analysis (CFA) of the MSLQ and Modeling 

Self-Efficacy scales. It also includes results of CFA of the full measurement model and 

results obtained from testing the structural model.  

Descriptive Analysis 

Reliability Estimates 

Results of the reliability estimate for each scale, provided in Table 4-1, indicated 

that coefficient alpha ranged from .60 to .89. The reliability estimate of the Modeling 

Self-Efficacy scale was very high with coefficient alpha equal to .89. As minimum 

acceptable level of reliability in social sciences varies from .70 to .80, the low reliability 

estimates of the organization subscale (α = .61) and the modeling test (α = .60) caused 

concerns with regard to the results of this study. 

Missing Data Analysis 

Missing data or observations with missing values were examined by performing 

missing value analysis. The percentage of missing values for each observed variable 

was not more than 1% (see Table 4-2) and remained under 3% for each latent construct 

(see Table 4-3). Since the missingness in each case was under 5%, no missing pattern 

analysis was conducted. Further, in the present study data were analyzed using the 

WLSMV estimator, which estimates models by using all the available data except for 

those cases with missing data on the exogenous observed variables (Muthèn & Muthèn, 

2002). As evident from the Table 4-2 there were no missing values for the self-efficacy 
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variables, which were the exogenous variables in the present study, WLSMV utilized all 

the available 225 cases without either imputing data or eliminating cases based on the 

assumption that missingness was completely at random (MCAR).  

Descriptive Statistics 

Participants’ mean scores for each subscale in the MSLQ were calculated by 

averaging the participants’ ratings across all the items on a subscale as recommended 

in the MSLQ manual (Pintrich et al., 1991). Descriptive analysis of the MSLQ subscales 

(see Table 4-3) indicated that means of the elaboration (M = 3.99, SD = 1.14) and 

organization subscales (M = 3.92, SD = 1.24) were higher than the critical thinking 

subscale (M = 3.62, SD = 1.24). The overall mean score for the metacognitive self-

regulation scale was 4.25 (SD = 1.05).  

Participants’ mean self-efficacy scores for each of the six modeling problems 

were calculated by averaging participants’ ratings across all the four self-efficacy 

questions. For example, the mean self-efficacy score for the Cinema Outing problem 

was calculated by averaging participants’ ratings for understanding the problem, 

determining a strategy, determining the information, and correctly solving a problem. 

Table 4-4 shows the descriptive analysis of the Modeling Self-Efficacy scale. Consistent 

with the pilot study results, eighth- and ninth-grade students reported higher levels of 

self-confidence in solving the Cinema Outing (M = 82.02, SD = 17.44) and Children’s 

Camp (M = 81.00, SD = 16.80) problems than the Energy Needs problem (M = 76.0, SD 

= 20.34). Students appeared to be least confident in solving the Course Design (M = 

72.93, SD = 21.73), Irrigation (M = 71.74, SD = 21.61), and Freezer (M = 72.16, SD = 

21.55) problems.  
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Students engaged in this study also solved six modeling problems. Some of the 

problems required a definite solution including yes or no, whereas some problems 

required students to provide explanations of their solutions. The minimum and 

maximum scores received by students on each problem vary between 0 and 2. Table 4-

5 shows that students earned the highest average score for the Cinema Outing (M = 

0.85, SD = 0.62) and Children’s Camp (M = 0.78, SD = 0.72) problems. These scores 

were consistent with their high self-efficacy beliefs reported for these tasks. With regard 

to the Course Design and Freezer problems, there were some inconsistencies between 

the levels of confidence reported by students and their scores on these problems. 

Students reported similar levels of confidence for both the problems, but the mean 

score for the Course Design (M = 0.77, SD = 0.88) was much higher than the Freezer 

problem (M = 0.37, SD = 0.49). The mean for the Energy Needs and Irrigation problems 

were .74 (SD = 0.86) and .43 (SD = 0.50), respectively.  

Multivariate Normality Assumption 

Multivariate normality assumption implies that each individual variable is normally 

distributed and combinations of such variables are distributed as multivariate normal 

(Kline, 2005/2011). The departure from normality causes the chi-square test statistic to 

be larger than expected and standard errors to be smaller than they should be. 

Although parameter estimates, standard errors, and test statistics in the present study 

were computed using a robust WLSMV estimator that produces accurate results under 

both normal and non-normal distributions (Byrne, 2012; Muthèn & Muthèn (2002), it is 

always a good idea to check the distribution of each variable for univariate normality. 

The skew and kurtosis values, as presented in Tables 4-3, 4-4 and 4-5, for each 

variable were within reasonable ranges. Skewness values for each variable were not 
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greater than 3.0 (e.g., values ranged from −1.632 to 0.530), and kurtosis values stayed 

much under 10.0 (e.g., values ranged from −1.935 to 3.295). Thus, the assumption of 

multivariate normality was satisfied.  

Confirmatory Factor Analysis of the MSLQ Scale 

In an attempt to gather evidence of construct validity for the MSLQ scale, 

individual parameters, such as factor loadings and factor correlations, were examined 

through CFA procedures. In general, the values for factor loadings should be 

moderately high to establish significant relationships between observed indicators and 

their corresponding latent variables. On the other hand, values for factor correlations 

should be minimal to discriminate latent variables from one another. The item-level 

factor analysis of the MSLQ scale provided an acceptable fit to the data in terms of Chi-

square, CFI, TLI, and RMSEA fit indices (2 [246 df, N = 225] = 442.55, p < .001, CFI = 

.92, TLI = .91, RMSEA = .06 with 90% CI [.05, .06]). The standardized parameter 

estimates for the factor loadings, provided in Table 4-6, indicated that all observed 

indicators had standardized factor loadings on their common factors greater than .30. 

Further, all indicators (i.e. items on each subscale) in the model had statistically 

significant standardized factor loadings (p < .001) confirming that observed indicators 

for each construct were correlated.  

Construct correlations, presented in Table 4-7, indicated high correlation 

between latent factors suggesting low discriminant validity between them. Specifically, 

statistically significant correlations were found between metacognitive self-regulation 

scale and indicators of the cognitive strategies such as elaboration (r = .876, p < .001), 

critical thinking (r = .730, p < .001), and organization (r = .716, p < .001) subscales. 
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Such high correlations were also found in Kaya (2007) study that used the same version 

of the MSLQ. These correlations were expected because one of the important aspects 

of metacognitive strategies is to enable learners to control, monitor, and regulate their 

cognitive processes, which involve the use of elaboration, organization, and critical 

thinking strategies (Pintrich, 2002; Pintrich et al., 1993). The high correlations between 

metacognitive self-regulation and elaboration, organization, and critical thinking 

subscales suggested potential multicollinearity problems between metacognitive self-

regulation and cognitive strategies scale.  

Confirmatory Factor Analysis of the Modeling Self-Efficacy Scale 

Before model testing, CFA of the Modeling Self-Efficacy scale was conducted to 

investigate whether the factor-loading pattern established during the pilot study fits the 

data from a new sample. The CFA for the Modeling Self-Efficacy scale was conducted 

by loading participants’ mean ratings for the six modeling problems, calculated across 

four self-efficacy questions, on the overall modeling self-efficacy latent variable. For 

example, “sedm1” represents participants’ mean rating for the Cinema Outing problem 

calculated over four self-efficacy items including understanding the problem, 

determining a strategy, determining information, and solving the problem. The goodness 

of fit indices such as chi-square, RMSEA, CFI, and TLI indicated that the model fits the 

data well (2 [9 df, N = 225] = 13.48, p = .14, CFI = .99, TLI = .99, RMSEA = .05 (with 

90% CI lower bound = .00 and upper bound = .10)). Parameter estimates shown in 

Table 4-8 indicated that each observed variable had statistically significant (p < .001) 

standardized factor loading on the overall Modeling Self-Efficacy scale.  
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Overview of Model Testing 

Model testing in the current study was performed by using the two-step modeling 

approach including verifying the measurement model and testing the full Structural 

Equation Model (Kline, 2005/2011). During the first step, confirmatory factor analysis of 

the measurement model is performed to determine relationships between the observed 

indicators and the continuous latent variables. On obtaining an acceptable 

measurement model, the second part of the two-step modeling procedure is performed 

to test relationships among latent variables. As such, under the full SEM model both the 

measurement and structural models are tested.  

Results of a confirmatory factor analysis indicated an acceptable fit of the data 

with the hypothesized measurement model. The goodness-of-fit test results were 2 

[129 df, N = 225] = 250.60, p < .001, CFI = .92, TLI = .90, and RMSEA = .06 with 90% 

CI [.05, .07]. Further, all observed indicators in the model had statistically significant (p < 

.001) standardized factor loadings on their corresponding latent factors. As expected, a 

large correlation (r = .96, p < .001) was found between cognitive and metacognitive 

factors indicating multicollinearity problems. In order to improve the model-fit and to 

reduce correlations between the cognitive and metacognitive factors, modification 

indices for the measurement model were reviewed to check for adding cross-loadings 

between metacognitive factor indicators (e.g., nine metacognitive items) and cognitive 

factor indicators (e.g., elaboration, organization, and critical thinking). However, no 

cross-loadings were found between these two highly correlated factors. In such cases, 

Grewal, Corte, and Baumgartner (2004) suggest re-specifying the statistical model. 
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Accordingly, the latent cognitive factor in the original model was replaced by three latent 

factors including elaboration, organization, and critical thinking. 

The modified model (see Figure 4-1) provided a much better fit to the data with 

regard to CFI (.94), TLI (.94), and RMSEA (.05 with 90% CI lower bound = .04 and 

upper bound = .06) fit indices. However, Chi-square statistics (2 [390 df, N = 225] = 

595.97, p < .001) suggested a large discrepancy between the sample covariance matrix 

and the restricted population covariance matrix. As depicted in Figure 4-2, the model 

consisted of six correlated latent factors including self-efficacy for modeling tasks, 

metacognitive, critical thinking, organization, elaboration strategies, and modeling tasks.  

Standardized factor loadings, factor correlations, and R2 estimates are presented 

in Table 4-9, 4-10, and 4-11. The evaluation of the factor loadings in Table 4-9 indicated 

that all the observed indicators had standardized factor loadings greater than .30 on 

their common factors, which suggested that they adequately represent their underlying 

latent variables. The ratio of each parameter estimate to its corresponding standard 

error was greater than 1.96, indicating that all the estimates were statistically significant. 

All the standard errors were in good order since they were neither very large nor too 

small. Excessively large standard errors make the test statistic for the related 

parameters difficult to compute and standard errors approaching zero result in 

undefined test statistic (Bentler as cited in Byrne, 2012).  

On reviewing factor correlations presented in Table 4-10, it was found that some 

of the bivariate correlations among latent factors were in the expected directions while 

others were troublesome. Students’ self-efficacy beliefs for modeling tasks were found 

to correlate positively with students’ reported use of cognitive strategies such as critical 
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thinking (r = .383, p < .001) and elaboration (r = .320, p < .001) as well as metacognitive 

strategies (r = .330, p < .001). Also, self-efficacy beliefs had a significant moderate 

correlation with students’ success rate on modeling tasks (r = .542, p < .001). However, 

correlations between modeling self-efficacy beliefs and organization strategies were not 

significant at the .05 level (r = .009, p = .910). Similar inappropriate relationships were 

observed among other variables as well. Specifically, insignificant correlations were 

found between students’ reported use of metacognitive strategies (r = .095, p = .288) 

and their success rate in the area of mathematical modeling. Critical thinking strategies 

(r = .029, p = .769) and elaboration strategies (r = .058, p = .517) also did not correlate 

significantly with students’ performance on the modeling test. Further, a significant 

negative correlation was found between organization strategies and modeling task 

success (r = −.277, p = .005).  

As found in the CFA for the MSLQ, high correlations existed between 

metacognitive strategies and critical thinking (r = .731, p < .001), organization (r = .714, 

p < .001), and elaboration (r = .876, p < .001) strategies. Kline (2005) specified that 

correlations higher than .85 lead to multicollinearity problems. Thus, high correlations 

between elaboration and metacognitive self-regulation factors caused concerns for 

multicollinearity. Therefore, Modification Index (MI) values, as presented in Table 4-12, 

were reviewed to identify whether observed indicators of elaboration, critical thinking, 

and metacognitive factors were cross-loading on more than one factor. For the 

purposes of this study, parameters having MI values greater than or equal to 10.00 

were reported. On inspecting these parameters, it was found that most of the MI values 

were very small and not worthy of inclusion in a subsequent model. For example, a MI 
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value of 11.39 suggested that if ORG, which was designed to measure organization 

strategies, were to load additionally onto metacognitive factor, the overall model Chi-

square value would decrease by 11.39. Moreover, such modifications (e.g., combining 

organization and metacognitive subscales) did not make sense theoretically because 

organization, elaboration, critical thinking, and metacognitive self-regulations are distinct 

constructs (Pintrich et al., 1991). As such, no further actions were taken. 

R2 estimates reported in Table 4-11 represent the proportion of variance in each 

observed variable that can be explained by the latent construct to which it is linked. All 

R2 estimates were found to be reasonable as well as statistically significant except two 

weak indicators, ELAB1, measuring students’ reported use of elaboration strategies, 

and TS, measuring students’ success rate on troubleshooting tasks, that had R2  values 

equal to .18 and .18, respectively. 

Research Hypotheses Testing 

The full structural model was estimated by specifying all the structural regression 

paths including effects of self-efficacy beliefs on students’ self-reported use of 

elaboration, organization, critical thinking, and metacognitive strategies; effects of self-

efficacy beliefs and use of elaboration, organization, critical thinking, and metacognitive 

strategies on students’ performance on modeling tasks; indirect effects of self-efficacy 

beliefs on modeling tasks success via use of elaboration, organization, critical thinking, 

and metacognitive strategies. Unfortunately, estimation of the full structural model did 

not converge when the default starting values supplied by Mplus were used. As a result, 

the measurement model was estimated again with ‘SVALUES’ option that asks Mplus to 

produce a model statement, which includes final estimates as the starting values 

(Muthèn & Muthèn, 1998-2012). On using these starting values, the model estimation 
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terminated normally. The full structural model fit adequately to the given data with 

regard to CFI, TLI, and RMSEA fit indices (2 [390 df, N = 225] = 595.97, p < .001, CFI 

= .95, TLI = .94, RMSEA = .05 (with 90% CI lower bound = .04 and upper bound = .06)).  

As presented in Figure 4-2 and Table 4-13, eighth- and ninth-grade self-efficacy 

beliefs for modeling tasks showed significant positive direct effects on critical thinking (β 

= .38, p < .001), elaboration (β = .32, p < .001), and metacognitive strategies (β = .33, p 

< .001). This implies that students’ who perceived themselves capable of solving and 

understanding mathematical modeling tasks also reported the use of these strategies. 

Surprisingly, results indicated that perceived modeling self-efficacy (β = .009, p = .910) 

did not correlate significantly with participants’ organization strategy use. Therefore, no 

credible evidence was found to support an association between modeling self-efficacy 

and organization strategy use.  

Perceived modeling self-efficacy (β = .50, p < .001) directly positively predicted 

students’ performance in solving modeling problems correctly. In other words, students 

who reported greater self-efficacy for solving modeling tasks were more likely to 

correctly solve the modeling problems. Contrary to the hypothesized relationship, 

organization strategy use (β = −.62, p = .004) had a significant negative direct effect on 

students’ performance on the modeling test. This means that students who reported 

using more organization strategies tended to get lower scores on the modeling test. 

Further, direct effects of students’ use of critical thinking (β = −.59, p = .08), elaboration 

(β = .40, p = .41), and metacognitive strategies (β = .46, p = .16) on their performance in 

solving modeling tasks were non-significant. Therefore, the data did not provide any 
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evidence of the direct effects of critical thinking, elaboration, and metacognitive 

strategies on their performance in modeling-ability test.  

As reported earlier, students’ perceived self-efficacy for modeling tasks directly 

predicted their reported use of critical thinking, elaboration, and metacognitive strategies 

but the direct effects of cognitive and metacognitive strategies on modeling task 

success were non-significant. As expected, the indirect effects of students’ self-efficacy 

for modeling on their performance in solving modeling tasks through its effect on their 

use of critical thinking (β = −.225, p = .10), organization (β = −.006, p = .91), elaboration 

(β = .128, p = .41), and metacognition strategies (β = .15, p = .18) were non-significant.  
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Table 4-1.  Summary of reliability estimates of each scale 

Scales Cronbach’s alpha Number of Items 

Self-efficacy  .89 6 

Elaboration  .73 6 

Organization  .61 4 

Critical thinking  .76 5 

Metacognitive self-regulation .78 9 

Modeling test .60 6 

Note. N = 225 
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Table 4-2.  Missing data analysis for the observed indicators of the full model 
 N M S.D. Missing 

    Count Percent 

MSLQ 
elab1 225 4.73 1.77 0 0.0 
elab2 225 3.79 1.83 0 0.0 
elab3 225 5.03 1.71 0 0.0 
elab4 225 2.13 1.56 0 0.0 
elab5 225 4.38 1.76 0 0.0 
elab6 224 3.90 1.87 1 0.4 
org1 225 2.96 1.61 0 0.0 
org2 225 5.05 1.80 0 0.0 
org3 225 3.10 1.88 0 0.0 
org4 225 4.59 1.99 0 0.0 
ct1 225 3.89 1.72 0 0.0 
ct2 225 5.05 1.80 0 0.0 
ct3 225 3.52 1.65 0 0.0 
ct4 225 3.82 1.84 0 0.0 
ct5 225 3.38 1.77 0 0.0 
mcsr1 224 5.29 1.50 1 0.4 
mcsr2 224 3.17 1.65 1 0.4 
mcsr3 225 3.61 2.03 0 0.0 
mcsr4 225 4.27 1.84 0 0.0 
mcsr5 225 3.64 1.64 0 0.0 
mcsr6 225 4.14 1.60 0 0.0 
mcsr7 225 5.45 1.58 0 0.0 
mcsr8 225 4.13 1.94 0 0.0 
mcsr9 224 3.90 1.87 1 0.4 

Self-Efficacy Scale 
q1se1 225 83.78 18.52 0 0.0 
q1se2 225 79.47 20.17 0 0.0 
q1se3 225 83.64 18.15 0 0.0 
q1se4 225 81.20 19.84 0 0.0 
q2se1 225 77.78 21.05 0 0.0 
q2se2 225 74.84 21.15 0 0.0 
q2se3 225 77.07 21.98 0 0.0 
q2se4 225 74.58 22.73 0 0.0 
q3se1 225 82.58 17.56 0 0.0 
q3se2 225 79.51 18.40 0 0.0 
q3se3 225 82.62 17.02 0 0.0 
q3se4 225 79.29 19.19 0 0.0 
q4se1 225 75.24 21.85 0 0.0 
q4se2 225 71.47 22.36 0 0.0 
q4se3 225 74.53 22.51 0 0.0 
q4se4 225 70.49 24.26 0 0.0 
q5se1 225 72.62 22.61 0 0.0 
q5se2 225 71.07 21.62 0 0.0 
q5se3 225 72.89 22.56 0 0.0 
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Table 4-2.  Continued 
 N M S.D. Missing 

    Count Percent 

Self-Efficacy Scale 
q5se4 225 70.40 24.13 0 0.0 
q6se1 225 73.33 20.98 0 0.0 
q6se2 225 71.07 22.09 0 0.0 
q6se3 225 73.91 22.37 0 0.0 
q6se4 225 70.36 24.30 0 0.0 

Modeling Tasks 
mod1 219 0.85 0.62 6 2.7 
mod2 219 0.74 0.86 6 2.7 
mod3 219 0.78 0.72 6 2.7 
mod4 219 0.77 0.87 6 2.7 
mod5 219 0.43 0.49 6 2.7 
mod6 219 0.37 0.48 6 2.7 
Note. MCSR = Metacognitive Self-Regulation, ELAB = Elaboration, ORG = Organization, CT = Critical 
Thinking, mod1 = Cinema Outing, mod2 = Energy Needs, mod3 = Children’s Camp, mod4= Course 
Design, mod5 = Irrigation, mod6 = Freezer problems 
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Table 4-3.  Missing Value Analysis for each construct 

 N M S.D. Missing Skewness Kurtosis 
    Count Percent   

Elaboration 225 3.99 1.14 0 0.0 -0.102 -0.303 
Organization 225 3.92 1.24 0 0.0 -0.139 -0.341 
Critical 
Thinking 

225 3.62 1.24 0 0.0 0.297 -0.269 

MCSR 225 4.25 1.05 0 0.0 -0.385 -0.100 
Self-Efficacy 225 75.98 18.24 0 0.0 -0.884 0.721 
Modeling 
Tasks 

219 3.93 2.41 6 2.7 0.229 -0.954 

Note. MCSR = Metacognitive Self-Regulation 
 
 

Table 4-4.  Descriptive statistics for the Modeling Self-Efficacy scale 

 N M S.D. Skewness Kurtosis 

SE1 225 82.02 17.44 -1.632 3.295 
SE2 225 76.06 20.34 -1.012 0.609 
SE3 225 81.00 16.80 -1.214 1.627 
SE4 225 72.93 21.73 -0.898 0.284 
SE5 225 71.74 21.61 -0.672 -0.354 
SE6 225 72.16 21.55 -0.882 0.382 
Note. SE1 = Self-efficacy for Cinema Outing, SE2 = Self-efficacy for Energy Needs, SE3 = Self-efficacy 
for Children’s Camp, SE4 = Self-efficacy for Course Design, SE5 = Self-efficacy for Irrigation, SE6 = Self-
efficacy for Freezer problems 
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Table 4-5.  Descriptive statistics for the modeling test 

Problems N Min Max M S.D. Skewness Kurtosis 

Cinema 
Outing 

219 0.00 2.00 0.85 0.621 0.111 -0.474 

Energy 
Needs 

219 0.00 2.00 0.74 0.862 0.530 -1.452 

Children’s 
Camp 

219 0.00 2.00 0.78 0.723 0.367 -1.025 

Course 
Design 

219 0.00 2.00 0.77 0.876 0.473 -1.535 

Irrigation 219 0.00 1.00 0.43 0.496 0.288 -1.935 
Freezer 219 0.00 1.00 0.37 0.485 0.522 -1.743 
Note. N = 225 (Six students did not complete the modeling test) 
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Table 4-6.  Confirmatory Factor Analysis of MSLQ subscales with WLSMV parameter 
estimate 

Parameter Standardized 
Factor Loading 

Standard Error Est./S.E. Two-tailed p-
value 

MCSR1 .56 .05 11.55 .000 
MCSR2 .54 .05 11.15 .000 
MCSR3 .53 .05 10.46 .000 
MCSR4 .67 .04 15.67 .000 
MCSR5 .51 .05 9.53 .000 
MCSR6 .62 .05 13.12 .000 
MCSR7 .52 .06 9.50 .000 
MCSR8 .55 .05 11.17 .000 
MCSR9 .48 .06 8.73 .000 
CT1 .47 .06 7.58 .000 
CT2 .71 .04 18.40 .000 
CT3 .69 .04 17.95 .000 
CT4 .59 .05 11.98 .000 
CT5 .76 .04 19.19 .000 
ORG1 .63 .06 10.94 .000 
ORG2 .50 .06 8.58 .000 
ORG3 .49 .07 7.19 .000 
ORG4 .69 .06 12.18 .000 
ELAB1 .44 .05 8.19 .000 
ELAB2 .62 .04 14.03 .000 
ELAB3 .61 .04 14.11 .000 
ELAB4 .56 .06 10.14 .000 
ELAB5 .67 .04 17.49 .000 
ELAB6 .70 .04 20.26 .000 
Note. MCSR = Metacognitive Self-Regulation, ELAB = Elaboration, ORG = Organization, CT = Critical 
Thinking 
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Table 4-7.  Estimated correlation matrix for the latent variables 

 MCSR Critical Thinking Organization Elaboration 

MCSR 1.000    

Critical Thinking .730 1.000   

Organization .716 .402 1.000  

Elaboration .876 .862 .632 1.000 

Key:  p< .05, MCSR = Metacognitive Self-Regulation  

 
 
Table 4-8.  Confirmatory Factor Analysis of Modeling Self-Efficacy scale with WLSMV 

estimator 

Parameter Standardized 
Factor Loading 

Standard Error Est./S.E. Two-tailed p-
value 

SE1 .72 .04 19.47 .000 
SE2 .82 .03 30.58 .000 
SE3 .75 .03 21.98 .000 
SE4 .75 .03 22.54 .000 
SE5 .77 .03 24.18 .000 
SE6 .79 .03 26.48 .000 
Note. SE1 = Self-efficacy for Cinema Outing, SE2 = Self-efficacy for Energy Needs, SE3 = Self-efficacy 
for Children’s Camp, SE4 = Self-efficacy for Course Design, SE5 = Self-efficacy for Irrigation, SE6 = Self-
efficacy for Freezer problems 
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Table 4-9.  Confirmatory Factor Analysis for the full measurement model 

Parameter Standardized 
Factor 

Loading 

Standard 
Error 

Est./S.E. 
 

Two-
Tailed P-

value 

Modeling Self-Efficacy 
SE-DM .89 .02 45.18 .000 
SE-SAD .85 .02 38.55 .000 
SE-T .84 .02 39.98 .000 

MSLQ Subscales 
MCSR1 .57 .05 11.88 .000 
MCSR2 .53 .05 10.88 .000 
MCSR3 .52 .05 9.85 .000 
MCSR4 .68 .04 15.58 .000 
MCSR5 .49 .05 9.19 .000 
MCSR6 .62 .05 13.02 .000 
MCSR7 .53 .05 9.79 .000 
MCSR8 .55 .05 10.76 .000 
MCSR9 .49 .05 8.97 .000 
CT1 .45 .06 7.30 .000 
CT2 .71 .04 18.27 .000 
CT3 .69 .04 18.01 .000 
CT4 .61 .05 12.29 .000 
CT5 .77 .04 19.68 .000 
ORG1 .63 .06 11.18 .000 
ORG2 .50 .06 8.55 .000 
ORG3 .49 .07 7.30 .000 
ORG4 .67 .06 12.44 .000 
ELAB1 .43 .05 7.96 .000 
ELAB2 .62 .04 14.05 .000 
ELAB3 .62 .04 14.06 .000 
ELAB4 .55 .05 9.74 .000 
ELAB5 .68 .03 18.00 .000 
ELAB6 .70 .03 19.66 .000 

Modeling Tasks 
Decision-making tasks .56 .07 7.59 .000 
System analysis tasks .70 .08 8.56 .000 
Troubleshooting tasks .42 .08 4.96 .000 
Note. SE-DM = Self-Efficacy for Decision-making tasks, SE-SAD = Self-Efficacy for System  
Analysis and Design tasks, and SE-T = Self-Efficacy for Troubleshooting tasks.  
MCSR = Metacognitive Self-Regulation, ELAB = Elaboration, ORG = Organization, 
 CT = Critical Thinking 
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Table 4-10.  Correlations among latent variables 

Parameter Standardized 
Correlations 

Standard 
Error 

Est./S.E. 
 

Two-Tailed 
P-value 

MCSR SE .33 .07 4.82 .000 
CT SE .38 .07 5.85 .000 
CT MCSR .73 .04 18.14 .000 
ORG SE .01 .08 0.11 .910 
ORG MCSR .71 .05 14.39 .000 
ORG CT .40 .07 5.74 .000 
ELAB SE .32 .07 4.60 .000 
ELAB MCSR .87 .03 29.01 .000 
ELAB CT .86 .04 24.21 .000 
ELAB ORG .63 .06 10.34 .000 
Modeling Tasks SE .54 .08 7.17 .000 
Modeling Tasks MCSR .10 .09 1.06 .288 
Modeling Tasks CT .03 .10 0.29 .769 
Modeling Tasks ORG −.28 .10 −2.82 .005 
Modeling Tasks ELAB .06 .09 0.65 .517 
Note. MCSR = Metacognitive Self-Regulation, ELAB = Elaboration, ORG = Organization, CT = Critical 
Thinking, SE = Self-Efficacy 
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Table 4-11.  R2 estimates for each observed and latent dependent variable in the model 

Observed Variable Estimate Standard 
Error 

Est./S.E. 
 

Two-Tailed P-
value 

Self-Efficacy 
(decision-making) 

.79 .03 22.59 .000 

Self-Efficacy 
(system analysis) 

.73 .04 19.28 .000 

Self-Efficacy 
(troubleshooting) 

.71 .04 19.99 .000 

MCSR1 .33 .06 5.94 .000 
MCSR2 .28 .05 5.44 .000 
MCSR3 .27 .05 4.93 .000 
MCSR4 .46 .06 7.79 .000 
MCSR5 .24 .05 4.60 .000 
MCSR6 .39 .06 6.51 .000 
MCSR7 .28 .06 4.90 .000 
MCSR8 .30 .05 5.38 .000 
MCSR9 .24 .05 4.48 .000 
CT1 .21 .06 3.65 .000 
CT2 .50 .06 9.13 .000 
CT3 .48 .05 9.00 .000 
CT4 .37 .06 6.15 .000 
CT5 .59 .06 9.84 .000 
ORG1 .40 .07 5.59 .000 
ORG2 .25 .06 4.28 .000 
ORG3 .24 .07 3.65 .000 
ORG4 .45 .07 6.22 .000 
ELAB1 .18 .05 3.98 .000 
ELAB2 .39 .06 7.03 .000 
ELAB3 .38 .05 7.03 .000 
ELAB4 .30 .06 4.87 .000 
ELAB5 .46 .05 8.99 .000 
ELAB6 .49 .05 9.83 .000 
Decision-making 
tasks 

.31 .08 3.80 .000 

System-analysis 
tasks 

.50 .12 4.28 .000 

Troubleshooting 
tasks 

.18 .07 2.48 .013 

Note. MCSR = Metacognitive Self-Regulation, ELAB = Elaboration, ORG = Organization, CT = Critical 
Thinking 
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Table 4-12.  Model Modification Indices 

Parameters M.I. E.P.C. 

CT BY ELAB1 12.09 −1.36 
ORG BY MCSR1 11.39 −0.56 
ORG BY ELAB1 21.43 0.63 
ORG  BY ELAB2 16.66 −0.60 
ORG BY ELAB4 17.34 0.63 
Note. MCSR = Metacognitive Self-Regulation, ELAB = Elaboration, ORG = Organization, CT = Critical 
Thinking, M.I. = Modification Index, E.P.C. = Expected Parameter Change 
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Table 4-13.  Standardized estimates of the path coefficients in the full structural 

equation model 

Parameter Standardized 
Estimate 

Standard 
Error 

Est./S.E. Two-Tailed 
p-value 

Self-Efficacy ON Critical Thinking .38 .07 5.42 .000 
Self-Efficacy ON Organization .01 .08 0.11 .910 
Self-Efficacy ON Elaboration .32 .07 4.60 .000 
Self-Efficacy ON Metacognitive .33 .07 4.82 .000 
Critical Thinking ON Modeling tasks −.59 .35 −1.70 .088 
Organization ON Modeling Tasks −.62 .21 −2.90 .004 
Elaboration ON Modeling Tasks .40 .49 0.81 .417 
Metacognitive ON Modeling Tasks .46 .33 1.40 .161 
Self-Efficacy ON Modeling tasks .50 .10 4.78 .000 
Note. Statistically significant paths are in boldface. 
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Figure 4-1.  The modified measurement model depicting relationships between 

modeling self-efficacy beliefs, use of elaboration, organization, critical 
thinking, metacognitive strategies, and modeling task success. 

Note. SE for DM = Self-Efficacy for Decision-making tasks, SE for SAD = Self-Efficacy for System 
Analysis Design tasks, SE for TS = Self-Efficacy for Troubleshooting tasks, MCSR = Metacognitive Self-
Regulation, ELAB = Elaboration, ORG = Organization, CT = Critical Thinking 
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Figure 4-2.  Standardized path coefficients in the full structural model. 

Note. *p < .05 
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CHAPTER 5 
DISCUSSION 

Summary of the Findings 

The primary purpose of this study was to examine associations between self-

efficacy beliefs, self-regulated learning behaviors, and students’ modeling outcomes. 

Towards this end, three research hypotheses were tested. First, students’ self-efficacy 

beliefs for the modeling tasks were hypothesized to have a positive direct influence on 

their ability to correctly solve problems on the modeling test. Second, students’ self-

reported use of cognitive and metacognitive strategies was hypothesized to directly 

influence their performance on the modeling test. Third, students’ self-efficacy beliefs for 

modeling tasks were hypothesized to have a positive indirect influence on their 

performance on the modeling test through the positive effect on their use of cognitive 

and metacognitive strategies. This investigation was guided by prior research indicating 

students’ beliefs about their competence (e.g., Pajares & Miller, 1994; Pajares & 

Kranzler, 1995; Nicolidau & Philippou, 2004) as well as their self-reported use of 

cognitive and metacognitive strategies (e.g., Pape & Wang, 2003; Pintrich & DeGroot, 

1990; Zimmerman & Martinez-Pons, 1986, 1988, 1990) significantly influence students’ 

problem-solving and mathematics achievement.  

The present study, however, is different from these studies in a few respects. 

First, the present study examined the influence of self-efficacy beliefs and SRL strategy 

use on students’ success in solving complex real-world problems (i.e., modeling tasks). 

Second, research studies such as Bouffard-Bouchard et al. (1991), Mousoulides and 

Philippou (2005), Pintrich and DeGroot (1990), and Kaya (2007) studied the impact of 

SRL strategy use by indicating elaboration, critical thinking, and organization strategies 
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as observed indicators for the cognitive strategy latent variable. Owing to high 

multicollinearity found between cognitive and metacognitive strategy scales, the present 

study used items on the MSLQ to define elaboration, critical thinking, and organization 

latent variables in the modified measurement model rather than including them as 

observed indicators for defining the cognitive latent variable. 

There is strong evidence that students’ beliefs about their competence are 

related to as well as predictive of their problem-solving achievement (Chen, 2003; 

Greene et al., 2004; Nicolidau & Philippou, 2004; Pajares & Graham, 1999; Pajares & 

Kranzler, 1995; Pajares & Miller, 1994; Pajares & Valiante, 2001; Pintrich & DeGroot, 

1990). Consistent with the problem-solving literature, the findings of the present study 

indicated that self-efficacy beliefs are associated with students’ success in modeling 

tasks. That is, students who reported higher levels of confidence for understanding 

modeling tasks were more successful in solving these tasks. Further, research has 

shown that students who believe in their competence are more likely to employ 

sophisticated cognitive and metacognitive strategies to understand and solve academic 

or problem-solving tasks (Bouffard-Bouchard et al., 1991; Greene et al., 2004; Pintrich 

& DeGroot, 1990; Zimmerman & Bandura, 1984; Zimmerman & Martinez-Pons, 1990). 

Similarly, the findings of the present investigation indicated that self-efficacy beliefs 

were significantly associated with students’ self-reported use of cognitive and 

metacognitive strategies. Specifically, students who perceived themselves capable of 

understanding and solving modeling tasks also tended to report using elaboration, 

critical thinking, and metacognitive strategies as they engage in mathematical activities. 
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The present study, however, did not find significant association between self-efficacy 

beliefs and students’ self-reported use of organization strategies.  

Further, significant associations have been identified in the literature between 

SRL strategy use and student problem-solving performance (Pape & Wang, 2003; 

Pintrich & DeGroot, 1990; Zimmerman & Martinez-Pons, 1986, 1988, 1990). These 

studies have established that students who are successful in solving problem-solving 

tasks tend to report using more sophisticated learning strategies. These results were 

not confirmed in the present study because no significant associations were found 

between students’ reported use of elaboration, critical thinking, and metacognitive 

strategies and their success on the modeling tasks. The use of organization strategies, 

however, was negatively associated with students’ performance on the modeling test. 

That is, students who reported higher use of organization strategies received lower 

scores on the modeling test. This result was also found in previous studies (e.g., 

Mousoulides & Philippou, 2005; Kaya, 2007) although they examined the direct effect of 

cognitive strategy use on students’ mathematics achievement. The negative association 

between the self-reported use of organization strategies and students’ performance on 

the modeling tasks might have occurred because of the low reliability estimate ( = .61) 

of the organization scale indicating that items on the scale might not be consistently 

measuring the required construct. 

With regard to the third objective of this study, the findings of the present study 

contradict earlier assertions made by Bouffard-Bouchard et al. (1991), Heidari et al. 

(2012), Pintrinch and DeGroot (1990), and Zimmerman and Bandura (1994).  

Specifically, the findings did not provide evidence for the indirect effects of self-efficacy 



 

135 

beliefs on students’ success in solving modeling problems through its influence on 

elaboration, organization, critical thinking, and metacognitive strategy use. These 

results were expected because no significant associations were found between the 

mediating variables (i.e., elaboration, organization, critical thinking, and metacognitive 

strategies) and the dependent variable (i.e., the modeling task success) (Zhao, Lynch, & 

Chen, 2009). 

Further, the current study attempted to provide a valid and reliable instrument to 

measure students’ confidence in solving modeling tasks. The reliability of the Modeling 

Self-Efficacy scale evaluated during the pilot and main studies indicated that the items 

consistently measured students’ self-efficacy beliefs for understanding and solving 

modeling tasks ( = .89). The construct validity of the scale established using 

confirmatory factor analysis revealed that the items had significantly high factor 

loadings, ranging from .72 to .82, on the overall modeling self-efficacy latent variable. 

These findings suggest that the Modeling Self-Efficacy scale is a dependable instrument 

that can be used in future studies to measure students’ perceived confidence for solving 

modeling tasks.  

Reasons for Inconsistent Results and Recommendations for Future Research 

In this section, possible reasons for finding results inconsistent with the past 

literature will be explored and based on that recommendations for future research 

projects will be offered. One of the possible explanations would be that the MSLQ 

instrument might not be appropriate for measuring students’ use of cognitive and 

metacognitive strategies in relation to real-world problem solving. The MSLQ is a 

retrospective measure requiring students to self-report their use of SRL strategies 
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based on recollections of past experiences (Zimmerman, 2008). Further, self-reports 

such as the MSLQ provide information about students’ global self-regulatory behaviors 

(Cleary as cited in National Research Council, 2011). Cleary stated that self-reports 

“capture the characteristics of self-regulated learning but they do so in a 

decontextualized manner” (National Research Council, 2011, p. 88). He indicated two 

potential problems of using self-reports to measure students’ SRL behaviors. First, there 

are validity issues involved in using self-report questionnaires that do not measure 

context-specific SRL behaviors. There is evidence that students’ frequency of self-

reporting SRL behaviors varies across tasks as well as subject areas (Zimmerman & 

Martinez-Pons, 1986, 1988, 1990). Second, self-reports are often incongruent with the 

strategies actually employed by students in doing specific academic tasks (Winnie & 

Jamieson-Noel, 2002). This mismatch between the strategies reported and actually 

used again indicates that students use different learning strategies for different tasks.  

In contrast to using self-report measures, future research studies should consider 

using event measures such as observing students’ behaviors when they are actually 

involved in solving modeling tasks, personal diaries in which students record their 

thoughts and problem-solving strategies toward solving modeling problems, and think-

aloud interviews to measure students’ use of SRL strategies before, during and after 

engaging in modeling tasks (Cleary as cited in National Research Council, 2011; 

Zimmerman, 2008). Although these measures are very time consuming, they provide a 

more reliable estimate of students’ SRL behaviors. Another suggestion would be 

modifying items on the MSLQ scale to more closely align with the strategies used by 

students when engaged in modeling activities. For example, one of the elaboration 
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items used in this study was: When I study for this class, I pull together information from 

different sources such as lectures, readings, and discussions we have in class. A 

revised elaboration item more applicable within the modeling context might be: I solve 

math problems in everyday life by applying math learned in school (e.g., through 

lectures, readings, math text book and discussions). An organization item used in this 

study was: When I study the readings (your mathematics textbook) for this course, I 

outline the material to help me organize my thoughts. This item could be revised as: 

When I read math problems that are not immediately resolvable, I outline the material to 

help me organize my thoughts. 

Second, it is likely that the eighth- and ninth-grade students who participated in 

this study might not have enough experience solving real-world PISA problems. The low 

reliability estimate ( = .60) of the modeling test further indicates that the test was not 

consistently measuring the desired construct (i.e., students’ modeling skills) although it 

is well documented in the mathematical modeling literature that PISA problems are valid 

to test students’ modeling capabilities (Blum, 2011; Mousoulides, 2007; Mousoulides, 

Christou, & Sriraman, 2008). Perhaps, pilot testing PISA problems for item difficulty and 

item discrimination might have resulted in developing a modeling test that more reliably 

measures students’ individual differences in solving modeling tasks.   

Third, students’ responses on the modeling test were scored in accordance with 

the rubric used by PISA 2003 problem-solving assessment (see Appendix E). This 

rubric was selected because it was assumed appropriate to score students’ responses 

with the same scoring system from where these problems were obtained. However, the 

PISA scoring guide might be conservative because it didn’t give students partial credit 
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for correctly solving many of the sub-questions or performing many of the mathematical 

steps. As such, it resulted in restricting the variance of scores. For example, the Cinema 

Outing problem required students to answer all six multiple-choice questions correctly in 

order to receive full credit (i.e., 2 points). Students did not earn partial credit even if they 

answered four out of six multiple-choice questions correctly. Similarly, in the Irrigation 

and Freezer problems students received full credit for answering all three multiple-

choice questions correctly. They did not earn partial points for correctly answering one 

or two of the required three sub-questions. This narrow scoring rubric restricted the 

range of scores and may not be appropriate for grading students’ responses on the 

modeling test. Perhaps a more robust and comprehensive rubric that provides students 

partial credit for correctly answering even sub-questions would have been more 

suitable. Thus, future investigation might include developing a more comprehensive 

scoring rubric for the modeling test.  

Contributions to the Field 

 The primary objective of this study was to examine relationships between self-

efficacy beliefs for solving complex modeling tasks, self-reported use of cognitive and 

metacognitive strategies, and the direct and indirect effects of these variables on 

students’ success in solving real-world modeling tasks. The present study contributed to 

research in mathematics education in several ways. A significant contribution of this 

study to the mathematics education literature was the creation of a statistical model 

connecting self-efficacy beliefs and SRL strategy use with students’ modeling 

outcomes. This model responded to a need in mathematical modeling research by 

investigating factors that might influence students’ success in solving modeling tasks. 

The fit indices for the measurement model suggested an adequate fit for the data and 
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structural model indicated positive association between self-efficacy beliefs and 

students’ modeling task success. Further, considering self-efficacy beliefs have never 

been studied in relation to students’ understanding of real-world modeling problems, the 

significant relationship established between these constructs contributes significantly to 

both academic self-efficacy and mathematical modeling literature.  

Another significant contribution of this study is the development of a reliable and 

valid scale measuring students’ self-efficacy beliefs for correctly solving real-world 

modeling tasks. In the field of educational psychology, self-efficacy beliefs have been 

found to strongly influence individuals’ motivation, persistence, effort expended, 

achievement, and self-regulation (Schunk & Mullen, 2010; Schunk & Pajares, 2008). 

Further, there is a growing body of literature suggesting the need to engage students in 

mathematical modeling for instilling 21st century workforce skills (English & Sriraman, 

2010; Kaiser, Blum, Ferri, & Stillman, 2011; Lesh & Doerr, 2003). In contrast to word 

problems usually found in school mathematics, solutions to modeling problems situated 

in real-world contexts are not readily available (Lesh, Yoon, & Zawojewski, 2007; 

Verschaffel, van Dooren, Greer, & Mukhopadhyay, 2010). To correctly solve modeling 

problems, students need to understand the context of the situation, select or acquire 

appropriate mathematical concepts, procedures and problem-solving strategies for 

describing the situation and interpreting the solution (Blum, 2011; Verschaffel et al., 

2010). As a result, it would not be appropriate to measure students’ self-efficacy for 

modeling tasks by merely asking their confidence in solving these problems, which is 

the typical way of measuring self-efficacy beliefs for solving mathematical tasks. 

Bandura (2006) also argued that behavior is better predicted by measuring individuals’ 
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self-efficacy beliefs for processes or actions needed to exhibit a particular behavior 

(e.g., modeling-task success). The development of a Modeling Self-Efficacy scale not 

only fulfilled this need but also contributed to the growing literature of self-efficacy 

theory and mathematical modeling field. The data also provided evidence for the 

reliability and construct validity of the scale suggesting its use for future research 

purposes.  

Implications 

 The present study found high correlations between the metacognitive self-

regulation scale and the observed indicators for the cognitive strategy scale such as 

elaboration (r = .876, p < .001), critical thinking (r = .730, p < .001), and organization (r = 

.716, p < .001) subscales. The high multicollinearity found between the cognitive and 

metacognitive strategies indicated that the two scales might be measuring a similar 

construct. Therefore, one of the major theoretical implications of this study is that the 

measurement of cognitive and metacognitive constructs might not be easy for 

researchers. Artzt and Armour-Thomas (1992) also indicated that although cognitive 

and metacognitive activities can be distinguished conceptually but “operationally the 

distinction is often blurred” (p. 141). This is because metacognitive activities involve 

controlling, monitoring, and regulating cognitive processes, and cognitive activities such 

as the use of elaboration, organization, and critical thinking strategies may implicitly 

involve the use of metacognitive actions. As a result, it is difficult to categorize a 

particular problem-solving behavior as purely cognitive or purely metacognitive. For 

these reasons, Artzt and Arthur-Thomas advocate for observing students during small-

group problem solving. The small-group problem solving not only provides natural 

settings for activating cognitive and metacognitive strategies but also offers researchers 
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with opportunities to differentiate problem-solving behaviors into cognitive and 

metacognitive activities through students’ justifications of their own actions.  

 The present study also has some practical implications for the educators. The 

study provided evidence that self-efficacy is an important factor impacting students’ 

performance in solving modeling tasks. Students’ confidence in their own competence 

influences the amount of effort and time they expend (Schunk & Pajares, 2008). 

Therefore, teachers should support students in raising their self-efficacy beliefs for 

solving complex modeling problems. The self-efficacy literature, especially that stems 

from Bandura’s social cognitive theory, offers several suggestions for raising students’ 

self-efficacy beliefs for solving modeling tasks.  

 As peer relationships become increasingly important in adolescence (Schunk & 

Meece, 2006), teachers may provide students with vicarious learning experiences to 

raise their self-efficacy beliefs. Specifically, creating opportunities to observe peers with 

similar or higher ability levels struggle and eventually succeed when engaged in 

cognitively demanding modeling problems may motivate students to exert significant 

effort, time, and energy towards understanding and solving modeling problems. 

Instructional practices such as providing students with effective feedback and 

engaging them in self-evaluative processes may also raise students’ self-efficacy beliefs 

(Schunk & Mullen, 2012). Teacher feedback intended to encourage and make students 

aware of their capabilities supports them in believing themselves capable of solving 

complex modeling tasks. This is because students doubt their own competencies and 

hearing positive performance-related statements from teachers or their peers provide 

them with information about how well they are learning and performing on these tasks. 
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In addition to performance feedback, teachers should provide students with attribution 

feedback encouraging them to attribute their success to effort and failure to lack of 

effort. This would motivate students with low abilities to work harder and persist longer 

on academic tasks. Further, teachers should educate students to self-reflect, self-

monitor, and self-evaluate their solution processes (Schunk & Ertmer, 2000; Schunk & 

Pajares, 2008). Such metacognitive processes may convey information about students’ 

own learning progress, which further motivates them to persist at tasks and more 

cognitively engage in them. Furthermore, creating positive and supportive learning 

environments such as encouraging students to participate in classroom discussions, 

explaining their thought processes, and focusing on the process rather than the correct 

answer may positively impact students’ self-efficacy beliefs.  

Delimitations and Limitations of the Study 

This study is delimited in several ways. First, SRL processes in the present study 

are limited to self-efficacy beliefs and cognitive and metacognitive strategy use. 

According to the model of self-regulation of learning proposed by Zimmerman and 

Campillo (2003), effective problem solvers engage in several self-regulatory processes 

such as goal setting, strategic planning, self-control, self-observation, self-judgment, 

and self-reaction processes, and they exhibit a variety of motivational beliefs such as 

self-efficacy, outcome expectation, task value, and goal orientation. Although all these 

variables are important, inclusion of too many variables in the statistical model would 

have been difficult to study and manage. Additionally, considering too many variables 

reduces the efficiency of a statistical model as it results in over fitting of a model with the 

sample data (Kline, 2005). The definition of cognitive strategy use was also delimited to 

self-reported use of elaboration, organization, and critical thinking strategies. The use of 
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rehearsal strategies such as naming, reciting, or repeating material for learning was 

deliberately excluded as these strategies were not identified in prior literature as 

effective in helping students understand complex modeling problems.  

Second, the definition of mathematical modeling taken up in this study is 

somewhat limited. According to Julie (2002), there are two approaches to the teaching 

of mathematical modeling: modeling as vehicle and modeling as content. The modeling 

as vehicle approach uses mathematical modeling activities as a platform for teaching 

curriculum-based mathematical knowledge and skills. The primary purpose of this 

approach is to enhance students’ understanding of a particular content area by using 

real-world contexts. The modeling as content approach, which is also the focus of the 

present study, involves the process of solving problems arising in other discipline areas 

or in real-world environments by making use of curriculum-based mathematics. This 

approach was appropriate for the present investigation as it was interested in examining 

factors that may influence students’ ability to apply mathematical knowledge and skills 

in solving modeling problems. The Standards for Mathematical Practice also utilize 

modeling as content approach to exemplify the modeling expectations. Specifically, 

modeling practice requires students to apply mathematical concepts to understand 

problems situated in real-world contexts. Further, the present study focused on the 

extent to which students can utilize school-based knowledge and skills to solve real-

world problems that students might find in their personal life, work, and leisure. Thus, 

this definition of mathematical modeling may be limited in promoting the essential 21st 

century skills and abilities.  
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Students’ self-reported use of cognitive and metacognitive strategies was 

measured through the MSLQ questionnaire. By adopting the modeling perspective put 

forth by the Standards for Mathematical Practice (CCSSO, 2010), the focus of this study 

was to examine the extent to which students use and apply learning strategies acquired 

in schools to solve problems situated in real-world contexts. Therefore, the MSLQ scale, 

which measured students’ use of cognitive and metacognitive strategies during school-

based mathematical tasks, was considered appropriate. 

Fourth, the present study engaged eighth- and ninth-grade students between 13 

and 15 years of age. The PISA problems, however, were specifically designed for tenth-

grade students between 15 to 16 years of age (OECD, 2004). This decision was made 

because think-aloud interviews conducted during the pilot study indicated that PISA 

problems were not challenging for tenth-grade students aged 15 to 18 years of age. 

This may have been the case because the study was conducted in a research 

developmental school where students are regularly engaged in innovative educational 

projects. Further, there is evidence when students are engaged in think-aloud 

interviews, they are more likely to provide correct responses to real-world challenging 

tasks (Selter, 1994, 2001). This is because interview questions, such as what exactly 

are you doing or why are you doing it, prompt students to reflect on their problem 

procedures and solutions. As a result, students may be more likely to provide correct 

responses.  

The study has some limitations that need to be acknowledged. First, a limitation 

of any correlational research study is that correlations between two or more variables 

cannot be interpreted in terms of causal relationships. For example, the present study 
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suggests that there is a relationship between self-efficacy beliefs and students’ 

performance on the modeling tasks, but the findings do not indicate a causal 

relationship between increased self-efficacy beliefs and correct modeling solutions. 

Second, data were collected using self-report questionnaires. Although survey methods 

are helpful in collecting large amounts of data in a relatively short period of time, there is 

an underlying assumption that participants provide honest responses to survey 

questions. The tendency of some participants to provide socially desirable responses 

might have introduced bias into the results. Third, the present study found low reliability 

estimate for the organization subscale (α = .61) although prior studies (e.g., Kaya, 2007) 

reported this subscale to have good internal consistency (α = .72). The low reliability 

index might indicate that the organization strategy subscale is not a reliable measure, 

but in the present study it might be an issue of sample size.  

Further, the modeling test included problems adapted from the PISA 2003 

problem-solving assessment. These problems were situated within the real-life contexts 

as well as embedded within the subject-areas of mathematics, science, and reading 

(OECD, 2004). The performance on the modeling test might be influenced by students’ 

individual differences in reading, cognitive ability, their familiarity with the context of the 

problem, socioeconomic status, gender, and their prior mathematics achievement. The 

present study did not control for the influence of these factors on students’ modeling 

achievement.  

Summary. The main objective of this study was to examine the influence of self-

efficacy beliefs and use of cognitive and metacognitive strategies on students’ 

performance in solving modeling tasks. The findings of the present study provide 
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evidence that students’ self-efficacy beliefs are significantly associated with modeling 

task success. The study, however, did not provide evidence for the direct influence of 

SRL strategy use on correctly solving modeling tasks. Further, the structural model did 

not provide evidence for the indirect influence of self-efficacy beliefs mediated by SRL 

strategy use on modeling task success. Future researchers might consider modifying 

the PISA scoring rubric to capture the range of mathematical skills displayed by 

students. This may result in increasing the reliability of the modeling test. They might 

modify the MSLQ scale involving revision of items with respect to real-life problem 

solving. Finally, they should consider giving these problems to tenth-grade students 

between 15 to 16 years of age. 
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APPENDIX A 
THE MODELING TEST 

______________________________________________________________________ 
 

(a) DECISION-MAKING TASKS 
 
1. CINEMA OUTING 

James, a 15 year old, wants to organize a cinema outing with two of his friends, who are 
of the same age, during the one-week Spring Break. The break begins on Saturday, 
March 24th and ends on Sunday, April 1st.  
 
James asks his friends for suitable dates and times for the outing. He received the 
following information. 
 
Mike: “I have to stay home on Monday and Wednesday afternoons for music practice 
between 2:30 and 3:30.” 
 
Richard: “I have to visit my grandmother on Sundays, so it can’t be Sundays. I have 
seen Tower Heist and don’t want to see it again.” 
 
James’ parents insist that he only goes to movies suitable for his age and does not walk 
home. They will fetch the boys home at any time up to 10 p.m. 
 
James checks the movie times for the Spring Break. He finds the following information. 
 
 

Regal Cinema 

3702 West University Avenue, Gainesville FL-32607 
Advance Booking Number: (352) 373-4277 

Bargain Day Tuesdays: All films $3 
Films showing from Friday March 23rd for two weeks: 

Children in the Net 
 
1hr and 53 min 
2:00 PM (Mon-Fri only) 
9:35 PM (Sat/Sun only) 
 
Suitable only for persons of 12 years and 
over 

Pokamin 
 
1 hr and 45 min 
1:40 PM (Daily) 
4:35 PM (Daily) 
 
Parental Guidance. General viewing, but 
some scenes may be unsuitable for young 
children 

Monsters from the Deep 
 
2 hrs and 44 min 

Enigma 
 
2 hrs and 24 min 
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7:55 PM (Fri/Sat only) 
 
Suitable only for persons of 18 years and 
over 

3:00 PM (Mon-Fri only) 
6:00 PM (Sat/Sun only) 
 
Suitable for persons of 12 years and over 

Carnivore 
 
2 hrs and 28 min 
6:30 PM (Daily) 
 
Suitable only for persons of 18 years and 
over 

King of the Wild 
 
1 hr and 3 minutes 
6:30 PM (Mon-Fri only) 
6:50 PM (Sat/Sun only) 
 
Suitable for persons of all ages 

 

Question 1: CINEMA OUTING 

Taking into account the information James found on the movies, and the information he 
got from his friends, which of the six movies should James and the boys consider 
watching? 
 
Circle “Yes/No” for each movie. Justify your responses. 
 

Movie Should the three boys consider 
watching the movie? 

Children in the Net Yes/No 

Monsters from the Deep Yes/No 

Carnivore Yes/No 

Pokamin Yes/No 

Enigma Yes/No 

King of the Wild Yes/No 

 
2. ENERGY NEEDS 

This problem is about selecting suitable food to meet the energy needs of a person in 
Florida. The following table shows the recommended energy needs in kilojoules (KJ) for 
different people. 
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DAILY ENERGY NEEDS RECOMMENDED FOR ADULTS 
 

  MEN WOMEN 

Age (years) Activity Level Energy Needed 
(KJ) 

Energy Needed 
(KJ) 

From 18 to 29 
 

Light 
Moderate 
Heavy 

10660 
11080 
14420 

8360 
8780 
9820 

From 30 to 59 Light 
Moderate 
Heavy 

10450 
12120 
14210 

8570 
8990 
9790 

60 and above Light 
Moderate 
Heavy 

8780 
10240 
11910 

7500 
7940 
8780 

 
        ACTIVITY LEVEL ACCORDING TO OCCUPATION 
 

Light Moderate Heavy 

Indoor sales person Teacher Construction worker 

Office worker Outdoor salesperson Laborer 

Housewife Nurse Sportsperson 
 

 

Samantha Gibbs is a 19-year old high jumper. One evening, some of Samantha’s 
friends invite her out for dinner at a restaurant. Here is the menu. 
 

 MENU Samantha’s estimate of 
energy per serving (KJ) 

Soups: Tomato Soup 355 

 Cream of Mushroom Soup 585 

   

Main 
Courses: 

Mexican Chicken 960 

 Caribbean Ginger Chicken 795 

 Pork and Sage Kebabs 920 

   

Salads: Potato Salad 750 

 Spinach, Apricot and Hazelnut Salad 335 

 Couscous Salad 480 

   

Desserts: Apple and Rasberry Crumble 1380 

 Ginger Cheesecake 1005 

 Carrot Cake 565 
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Milk 
Shakes: 

Chocolate 1590 

 Vanilla 1470 

 
The restaurant also has a special fixed price menu. 

Fixed Price Menu 
(50 dollars) 

Tomato Soup 
Caribbean Ginger  
Carrot Cake 

 

QUESTION 2: ENERGY NEEDS 

Samantha keeps a records of what she eats each day. Before dinner on that day her 
total intake of energy had been 7520 kJ. Samantha does not want her total energy 
intake to go below or above her recommended daily amount by more than 500 kJ. 
 
Decide whether the special “Fixed Price Menu” will allow Samantha to stay within ±500 
kJ of her recommended energy needs. Show you work. 
 
3. HOLIDAY 
 
This problem is about planning the best route for a holiday. 
  s 1 and 2 show a map of the area and the distance between towns. 

 
   1: Map of roads between towns 
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QUESTION 3: HOLIDAY 

Calculate the shortest distance by road between Nuben and Kado. 

Distance: ________________ miles. 

______________________________________________________________________ 

(b) SYSTEM ANALYSIS AND DESIGN TASKS 

4. CHILDREN’S CAMP 

The Florida Gator Community Service is organizing a five-day Children’s Camp. Forty- 
six children (26 girls and 20 boys) have signed up for the camp, and 8 adults (4 men 
and 4 women) have volunteered to attend and organize the camp. 
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QUESTION 4: CHILDREN’S CAMP 
Dormitory Allocation. 
Fill the table to allocate the 46 children and 8 adults to dormitories, keeping to all the 
rules 

Name # of Boys # of girls Name(s) of adult(s) 

Red    

Blue    

Green    

Purple    

Orange    

Yellow    

White    

 

5. COURSE DESIGN 

A technical college offers the following 12 subjects for a 3-year course, where the 
length of each subject is one year. 
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QUESTION 5: COURSE DESIGN 
  

Each student will take 4 subjects per year, thus completing 12 subjects in 3 years.  
  
 A student can only take a subject at a higher level if the student has completed the 

lower level(s) of the same subject in a previous year. For example, you can only take 
Business Studies Level 3 after completing Business Studies Levels 1 and 2. 

  
In addition, Electronics Level 1 can only be taken after completing Mechanics Level 1, 
and Electronics Level 2 can only be taken after completing Mechanics Level 2. 
 
Decide which subjects should be offered for which year, by completing the following 
table. Write the subject codes in the table. 
 

 Subject 1 Subject 2 Subject 3 Subject 4 

Year1     

Year 2     

Year 3     

 
6. LIBRARY SYSTEM 
 
The John Hobson High School library has a simple system for lending books: for staff 
members the loan period is 28 days, and for students the loan period is 7 days. The 
following is a decision tree diagram showing this simple system: 
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The Greenwood High School library has a similar, but more complicated, lending 
system: 

 All publications classified as “Reserved” have a loan period of 2 days. 

 For books (not including journals) that are not on the reserved list, the loan 
period is 28 days for staff, and 14 days for students. 

 For journals that are not on the reserved list, the loan period is 7 days for 
everyone. 

 Persons with any overdue items are not allowed to borrow anything. 
 

QUESTION 6: LIBRARY SYSTEM 
You are a student at Greenwood High School, and you do not have any overdue items 
from the library. You want to borrow a book that is not on the reserved list. How long 
can you borrow the book for? 

 
Answer: ______________ days 
______________________________________________________________________ 
 
(c) TROUBLESHOOTING TASKS 
 
7. IRRIGATION 
 
Below is a diagram of a system of irrigation channels for watering sections of crops. The 
gates A to H can be opened and closed to let the water go where it is needed. When a 
gate is closed no water can pass through it.  
This is a problem about finding a gate, which is stuck closed, preventing water from 
flowing through the system of channels. 
 

 
Michael notices that the water is not always going where it is supposed to. 
He thinks that one of the gates is stuck closed, so that when it is switched to open, it 
does not open. 
 
QUESTION 7: IRRIGATION 
 
Michael used the following gate settings to test the gates. 
Table 1: Gate Settings 

A B C D E F G H 

Open Closed Open Open Closed Open Closed Open 



 

155 

 
Michael finds that, when the gates have the Table 1 settings, no water flows through, 
indicating that at least one of the gates set to “open” is stuck closed. 
 
Decide for each problem case below whether the water will flow through all the way. 
Circle “Yes” or “No” in each case, and justify your response. 
 

Problem Case Will water flow through all the way? 

Gate A is stuck closed. All other gates 
are working properly as set in Table 1. 

YES / NO 

Gate D is stuck closed. All other gates 
are working properly as set in Table 1. 

YES / NO 

Gate F is stuck closed. All other gates are 
working properly as set in Table 1. 

YES / NO 

 

8. FREEZER 

Jane bought a new cabinet-type freezer. The manual gave the following instructions: 

 Connect the appliance to the power and switch the appliance on. 
o You will hear the motor running now. 
o A red warning light (LED) on the display will light up. 

 Turn the temperature control to the desired position. Position 2 is normal. 
 

Position Temperature 

1 5°F 

2 -0.399°F 

3 -5.80°F 

4 -13°F 

5 -25.6°F 

The red warning light will stay on until the freezer temperature is low enough. 
This will take 1-3 hours, depending on the temperature you set. 

 

 Load the freezer with food after four hours. 
 

Jane followed these instructions, but she set the temperature control to position 4. 
After 4 hours, she loaded the freezer with food. After 8 hours, the red warning light 
was still on, although the motor was running and it felt cold in the freezer. 
 

QUESTION 8: FREEZER 
 
Jane wondered whether the warning light was functioning properly. Which of the 
following actions and observations would suggest that the light was working properly? 
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Circle “Yes” or “No” for each of the three cases. 

Action and Observation Does the observation suggest that 
the warning light was working 
properly? 

She put the control to position 5 and the red 
light went off. 

Yes / No 

She put the control to position 1 and the red 
light went off. 

Yes / No 

She put the control to position 1 and the red 
light stayed on. 

Yes / No 

 

9. HOSPITAL 
 

The cardiology department at a local hospital employs 5 doctors. Every doctor can work 
from Monday to Friday and examine 10 patients per day. In a whole year 
(365 days, 52 weeks) a cardiologist can have 25 days for holidays, and 26 days off for 
attending seminars and the weekends.  

 
QUESTION 9: Can the 5 cardiologists deal with the 12000 patients that are expected to 
arrive at the hospital during the following year? If not, what do you suggest that the 
hospital can do? Explain your answer. 
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APPENDIX B 
SELF-EFFICACY SCALE 

The following scale will be used to measure students’ self-efficacy related to each 
problem on the modeling ability test. Students will read each problem and respond to 
following questions on a scale ranging from 0 to 100. 
 
1. How sure are you that you can understand this mathematical problem? 

0 10 20 30 40 50 60 70 80 90 100 

Not at all Sure                            Moderately Sure Very Sure 

 

2. How sure are you that you can determine a strategy to solve this problem? 

0 10 20 30 40 50 60 70 80 90 100 

Not al all sure                                 Moderately Sure Very Sure 

 

3. How sure are you that you can determine the information required to solve this 
problem? 

0 10 20 30 40 50 60 70 80 90 100 

Not at all Sure                                                       Moderately Sure Very Sure 

 

4. How sure are you that you can solve this mathematical problem correctly? 

0 10 20 30 40 50 60 70 80 90 100 

Not at all Sure                                                          Moderately sure Very Sure 
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APPENDIX C 
MOTIVATED STRATEGIES FOR LEARNING QUESTIONNAIRE 

______________________________________________________________________ 
 
Today’s Date:  _____________ 
 
Participant Number:  _____________ Student’s Initials: __________ 
 
Month of birth: _____________ Year of birth: __________ 
 
Grade in school: _____________ 
 
Gender:   Male  Female 
 
Ethnicity:  American Indian 
   Asian 
   Black or African-American 
   Hispanic or Latino/a 
   Native Hawaiian or Pacific Islander 
   White, non-Hispanic 
   Other (please specify)  
 

The following questions ask about your learning strategies and study skills for YOUR 
mathematics class. When the questions ask you about the readings for the class think 
about reading the textbook that you have for your mathematics class or other materials 
your teacher might give you to read or study from.  
 
Again, there are no right or wrong answers. Answers the questions about how you study 
in this class as accurately as possible. Use the same scale to answer the remaining 
questions. If you think the statement is very true of you, fill in the circle next to 7; if a 
statement is not at all true of you, fill in the circle next to 1. If the statement is more or 
less true of you, find the number between 1 and 7 that best describes you. 
 
Not at all true   O 1    O 2    O 3    O 4    O 5    O 6    O 7    Very true of me
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Motivated Strategies for Learning Questionnaire 

  Not at all 
true 

  Very true of 
me 

1. When I study the readings (your 
mathematics textbook) for this course, 
I outline the material to help me 
organize my thoughts. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

2. I often find myself questioning things I 
hear or read in this course to decide if 
I find them convincing. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

3. When I become confused about 
something I’m reading for this class, I 
go back and try to    it out. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

4. When I study for this course, I go 
through the readings (your 
mathematics textbook) and my class 
notes and try to find the most 
important ideas. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

5. If course readings (your mathematics 
textbook) are difficult to understand, I 
change the way I read the material. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

6. When a theory, interpretation, or 
conclusion is presented in class or in 
the readings (your mathematics 
textbook), I try to decide if there is 
good supporting evidence. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

7. I make simple charts, diagrams, or 
tables to help me organize course 
material. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

8. I treat the course material as a starting 
point and try to develop my own ideas 
about it. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

9. When I study for this class, I pull 
together information from different 
sources, such 
as lectures, readings (your 
mathematics textbook), and 
discussions we have in class. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

10. Before I study new course material 
thoroughly, I often skim it to see how it 
is organized. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

11. I ask myself questions to make sure I 
understand the material I have been 
studying in this class. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

12. I try to change the way I study in order O 1   O 2   O 3   O 4   O 5   O 6   O 7 
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to fit the course requirements and the 
way my teacher presents the material. 

13. I try to think through a topic and 
decide what I am supposed to learn 
from it rather than just reading it over 
when studying for this course. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

14. I try to relate ideas in this subject to 
those in other courses whenever 
possible. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

15. When I study for this course, I go over 
my class notes and make an outline of 
important concepts. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

16. When reading (your mathematics 
textbook) for this class, I try to relate 
the material to what I already know. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

17.  I try to play around with ideas of my 
own related to what I am learning in 
this course. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

18. When I study for this course, I write 
brief summaries of the main ideas 
from the readings (your mathematics 
textbook) and my class notes. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

19. I try to understand the material in this 
class by making connections between 
the readings (your mathematics 
textbook) and the concepts from my 
teachers’ lectures. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

20. Whenever I read or hear an assertion 
or conclusion in this class, I think 
about possible alternatives. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

21. When studying for this course I try to 
determine which concepts I don't 
understand well. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

22. When I study for this class, I set goals 
for myself in order to direct my 
activities in each study period. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

23. If I get confused taking notes in class, 
I make sure I sort it out afterwards. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 

24. I try to apply ideas from course 
readings (your mathematics textbook) 
in other class activities such as lecture 
and discussion. 

O 1   O 2   O 3   O 4   O 5   O 6   O 7 
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APPENDIX D 
THE MODELING TEST 

______________________________________________________________________ 
 

(a) DECISION-MAKING TASKS 
 
1. CINEMA OUTING 

James, a 15 year old, wants to organize a cinema outing with two of his friends, who are 
of the same age, during the one-week Spring Break. The break begins on Saturday, 
March 24th and ends on Sunday, April 1st.  
 
James asks his friends for suitable dates and times for the outing. He received the 
following information. 
 
Mike: “I have to stay home on Monday and Wednesday afternoons for music practice 
between 2:30 and 3:30.” 
 
Richard: “I have to visit my grandmother on Sundays, so it can’t be Sundays. I have 
seen Tower Heist and don’t want to see it again.” 
 
James’ parents insist that he only goes to movies suitable for his age and does not walk 
home. They will fetch the boys home at any time up to 10 p.m. 
 
James checks the movie times for the Spring Break. He finds the following information. 
 
 

Regal Cinema 

3702 West University Avenue, Gainesville FL-32607 
Advance Booking Number: (352) 373-4277 

Bargain Day Tuesdays: All films $3 
Films showing from Friday March 23rd for two weeks: 

Children in the Net 
 
1hr and 53 min 
2:00 PM (Mon-Fri only) 
9:35 PM (Sat/Sun only) 
 
Suitable only for persons of 12 years and 
over 

Pokamin 
 
1 hr and 45 min 
1:40 PM (Daily) 
4:35 PM (Daily) 
 
Parental Guidance. General viewing, but 
some scenes may be unsuitable for young 
children 

Monsters from the Deep 
 
2 hrs and 44 min 

Enigma 
 
2 hrs and 24 min 
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7:55 PM (Fri/Sat only) 
 
Suitable only for persons of 18 years and 
over 

3:00 PM (Mon-Fri only) 
6:00 PM (Sat/Sun only) 
 
Suitable for persons of 12 years and over 

Carnivore 
 
2 hrs and 28 min 
6:30 PM (Daily) 
 
Suitable only for persons of 18 years and 
over 

King of the Wild 
 
1 hr and 3 minutes 
6:30 PM (Mon-Fri only) 
6:50 PM (Sat/Sun only) 
 
Suitable for persons of all ages 

 

Question 1: CINEMA OUTING 

Taking into account the information James found on the movies, and the information he 
got from his friends, which of the six movies should James and the boys consider 
watching? 
 
Circle “Yes/No” for each movie. Justify your responses. 
 

Movie Should the three boys consider 
watching the movie? 

Children in the Net Yes/No 

Monsters from the Deep Yes/No 

Carnivore Yes/No 

Pokamin Yes/No 

Enigma Yes/No 

King of the Wild Yes/No 

 
2. ENERGY NEEDS 

This problem is about selecting suitable food to meet the energy needs of a person in 
Florida. The following table shows the recommended energy needs in kilojoules (KJ) for 
different people. 
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DAILY ENERGY NEEDS RECOMMENDED FOR ADULTS 
 

  MEN WOMEN 

Age (years) Activity Level Energy Needed 
(KJ) 

Energy Needed 
(KJ) 

From 18 to 29 
 

Light 
Moderate 
Heavy 

10660 
11080 
14420 

8360 
8780 
9820 

From 30 to 59 Light 
Moderate 
Heavy 

10450 
12120 
14210 

8570 
8990 
9790 

60 and above Light 
Moderate 
Heavy 

8780 
10240 
11910 

7500 
7940 
8780 

 
        ACTIVITY LEVEL ACCORDING TO OCCUPATION 
 

Light Moderate Heavy 

Indoor sales person Teacher Construction worker 

Office worker Outdoor salesperson Laborer 

Housewife Nurse Sportsperson 
 

 

Samantha Gibbs is a 19-year old high jumper. One evening, some of Samantha’s 
friends invite her out for dinner at a restaurant. Here is the menu. 
 

 MENU Samantha’s estimate of 
energy per serving (KJ) 

Soups: Tomato Soup 355 

 Cream of Mushroom Soup 585 

   

Main 
Courses: 

Mexican Chicken 960 

 Caribbean Ginger Chicken 795 

 Pork and Sage Kebabs 920 

   

Salads: Potato Salad 750 

 Spinach, Apricot and Hazelnut Salad 335 

 Couscous Salad 480 

   

Desserts: Apple and Rasberry Crumble 1380 

 Ginger Cheesecake 1005 

 Carrot Cake 565 
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Milk 
Shakes: 

Chocolate 1590 

 Vanilla 1470 

 
The restaurant also has a special fixed price menu. 

Fixed Price Menu 
(50 dollars) 

Tomato Soup 
Caribbean Ginger  
Carrot Cake 

 

QUESTION 2: ENERGY NEEDS 

Samantha keeps a records of what she eats each day. Before dinner on that day her 
total intake of energy had been 7520 kJ. Samantha does not want her total energy 
intake to go below or above her recommended daily amount by more than 500 kJ. 
 
Decide whether the special “Fixed Price Menu” will allow Samantha to stay within ±500 
kJ of her recommended energy needs. Show you work. 
 
____________________________________________________________________ 

(b) SYSTEM ANALYSIS AND DESIGN TASKS 

3. CHILDREN’S CAMP 

The Florida Gator Community Service is organizing a five-day Children’s Camp. Forty- 
six children (26 girls and 20 boys) have signed up for the camp, and 8 adults (4 men 
and 4 women) have volunteered to attend and organize the camp. 
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QUESTION 3: CHILDREN’S CAMP 
Dormitory Allocation. 
Fill the table to allocate the 46 children and 8 adults to dormitories, keeping to all the 
rules 

Name # of Boys # of girls Name(s) of adult(s) 

Red    

Blue    

Green    

Purple    

Orange    

Yellow    

White    

 

4. COURSE DESIGN 

A technical college offers the following 12 subjects for a 3-year course, where the 
length of each subject is one year. 
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QUESTION 4: COURSE DESIGN 

  
Each student will take 4 subjects per year, thus completing 12 subjects in 3 years.  

  
 A student can only take a subject at a higher level if the student has completed the 

lower level(s) of the same subject in a previous year. For example, you can only take 
Business Studies Level 3 after completing Business Studies Levels 1 and 2. 

  
In addition, Electronics Level 1 can only be taken after completing Mechanics Level 1, 
and Electronics Level 2 can only be taken after completing Mechanics Level 2. 
 
Decide which subjects should be offered for which year, by completing the following 
table. Write the subject codes in the table. 
 

 Subject 1 Subject 2 Subject 3 Subject 4 

Year1     

Year 2     

Year 3     
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______________________________________________________________________ 
 
(c) TROUBLESHOOTING TASKS 
 
5. IRRIGATION 
 
Below is a diagram of a system of irrigation channels for watering sections of crops. The 
gates A to H can be opened and closed to let the water go where it is needed. When a 
gate is closed no water can pass through it.  
This is a problem about finding a gate, which is stuck closed, preventing water from 
flowing through the system of channels. 
 

 
Michael notices that the water is not always going where it is supposed to. 
He thinks that one of the gates is stuck closed, so that when it is switched to open, it 
does not open. 
 
QUESTION 5: IRRIGATION 
 
Michael used the following gate settings to test the gates. 
Table 1: Gate Settings 

A B C D E F G H 

Open Closed Open Open Closed Open Closed Open 

 
Michael finds that, when the gates have the Table 1 settings, no water flows through, 
indicating that at least one of the gates set to “open” is stuck closed. 
 
Decide for each problem case below whether the water will flow through all the way. 
Circle “Yes” or “No” in each case, and justify your response. 
 

Problem Case Will water flow through all the way? 

Gate A is stuck closed. All other gates 
are working properly as set in Table 1. 

YES / NO 

Gate D is stuck closed. All other gates 
are working properly as set in Table 1. 

YES / NO 

Gate F is stuck closed. All other gates are 
working properly as set in Table 1. 

YES / NO 
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6. FREEZER 

Jane bought a new cabinet-type freezer. The manual gave the following instructions: 

 Connect the appliance to the power and switch the appliance on. 
o You will hear the motor running now. 
o A red warning light (LED) on the display will light up. 

 Turn the temperature control to the desired position. Position 2 is normal. 
 

Position Temperature 

1 5°F 

2 -0.399°F 

3 -5.80°F 

4 -13°F 

5 -25.6°F 

The red warning light will stay on until the freezer temperature is low enough. 
This will take 1-3 hours, depending on the temperature you set. 

 

 Load the freezer with food after four hours. 
 

Jane followed these instructions, but she set the temperature control to position 4. 
After 4 hours, she loaded the freezer with food. After 8 hours, the red warning light 
was still on, although the motor was running and it felt cold in the freezer. 
 

QUESTION 6: FREEZER 
 
Jane wondered whether the warning light was functioning properly. Which of the 
following actions and observations would suggest that the light was working properly? 

 
Circle “Yes” or “No” for each of the three cases. 

Action and Observation Does the observation suggest that 
the warning light was working 
properly? 

She put the control to position 5 and the red 
light went off. 

Yes / No 

She put the control to position 1 and the red 
light went off. 

Yes / No 

She put the control to position 1 and the red 
light stayed on. 

Yes / No 
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APPENDIX E 
SCORING RUBRIC FOR MODELING PROBLEMS 

 
1. CINEMA OUTING SCORING  
 

Full Credit (Score 2) Partial Credit (Score 1) No Credit (Score 0) 

If the answers are in the 
order: Yes, No, No, No, Yes 
and Yes 
 

One incorrect answer Other responses 

 
2. ENERGY NEEDS SCORING 
 

Full Credit (Score 2) Partial Credit (Score 1) No Credit (Score 0) 

Food from the fixed price 
menu does not contain 
enough energy for 
Samantha to keep within 
500 KJ of her energy 
needs. The following steps 
are necessary: 
(i) Calculation of the total 
energy of the fixed price 
menu: 355+795+565=1715 
(ii) Recognition that 
Samantha’s daily 
recommended energy need 
is 9820 KJ. 
(iii) Calculating 
7520+1715=9235 and 
showing that Samantha 
would be more than 500 KJ 
below her recommended 
energy need. 
(iv) Conclusion that the 
fixed price menu does not 
contain enough energy. 

Correct method, but a minor 
error or omission in one of 
the calculation steps leading 
to a correct or incorrect, but 
consistent, conclusion. 

 1715+7520=9235, 
this is within 500 of 
8780, so “Yes” 

 
Or 
 
Correct calculations, but 
concludes “Yes” or gives no 
conclusion 

Other responses, including 
“No” without explanation. 

 No, Samantha 
should not order 
from the fixed price 
menu 

 1715 is above 500 
KJ, so Samantha 
should not have this 
 

Or 
 
Correct reasoning in words 
but no   s shown. That is 
partial credit needs to have 
some supporting   s. 

 The fixed price 
menu does not have 
enough KJ, so 
Samantha should 
not have it. 

 

 
3. CHILDREN’S CAMP SCORING 
 

Full Credit (Score 2) Partial Credit (Score 1) No Credit (Score 0) 

Six conditions to be 
satisfied 

 Total girls = 26 
 Total boys = 20 

One or two conditions (as 
mentioned in the first column) 
violated. Violating the same 
condition more than once will 

Other responses. 
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 Total adults = four 
female and four male 

 Total (children and 
adults) per dormitory 
is within the limit for 
each dormitory. 

 People in each 
dormitory are of the 
same gender. 

 At least one adult 
must sleep in each 
dormitory to which 
children have been 
allocated. 

be counted as ONE violation 
only. 

 Forgetting to count the 
adults in the tally of the 
number of people in 
each dormitory. 

 The number of girls and 
the number of boys are 
interchanged (no. of 
girls = 20, no. of boys = 
26), but everything else 
is correct. (Note that this 
counts as two conditions 
violated) 

 The correct number of 
adults in each dormitory 
is given, but not their 
names or gender. (Note 
that this violates both 
condition 3 and 
condition 5). 

 
5. COURSE DESIGN SCORING 
 

Full Credit (Score 2) Partial Credit (Score 1) No Credit (Score 0) 

The order of subjects within a year 
is unimportant, but the list of 
subjects for each year should be 
as given below: 
 

 Sub1 Sub2 Sub3 Sub4 

Y1 B1 M1 T1 C1 

Y2 B2 M2 E1 C2 

Y3 B3 T2 E2 C3 

 
  

Mechanics does not 
precede electronics. All 
other constraints are 
satisfied. 

Other responses 
 
Table completely 
correct except that “E2” 
is missing and “E1” is 
repeated where “E2” 
should be or this cell is 
empty. 

 
5. IRRIGATION SCORING 
 

Full Credit (Score 1) No Credit (Score 0) 

No, Yes, Yes in that order Other responses 

 
6. FREEZER SCORING 
 

Full Credit (Score 1) No Credit (Score 0) 

No, Yes, No in that order Other responses 
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