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ABSTRACT 

 The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in 

the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic 

digestion.  The high sulfide level in the biogas stream is not only poisonous to many novel 

metal catalysts employed in thermo-catalytic processes but also reduces the quality of 

methane to produce renewable energy.  This study used an innovative, low-maintenance, 

low-cost biological sulfide removal technology to remove sulfides simultaneously from both 

gas and liquid phase.  ORP (Oxidation-Reduction-Potential) was used as the controlling 

parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU).  The micro-

aeration technique provided just enough oxygen to partially oxidize sulfides to elemental 

sulfur without inhibiting methanogenesis.  The SOU was equipped with a diffuser at the 

bottom for the dispersion of sulfide-laden biogas and injected air throughout the column.  

The SOU can be operated as a standalone unit or coupled with an anaerobic digester to 

simultaneously remove sulfide from the biogas and effluent.   

The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 

to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading 

rate of 0.24 kg/m3-day.  More than 98% of sulfide removed was recovered as elemental 

sulfur.  However, the standalone SOU was able to operate at high hydrogen sulfide loading 

of 1.46 kg/m3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas 

hydrogen sulfide concentrations to less than 10 ppmV.  The experiment also revealed that the 

ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening 

effect) during unexpected surges of aeration.  Using generalized linear regression, a model 



 vii 

predicting output H2S concentration based on input H2S concentrations, SOU medium 

heights, and biogas flow rates, was derived.  With 95% confidence, output H2S concentration 

was affected by changes in liquid heights the most, followed by changes in flow rates. 

Feasibility studies for H2S removal from biogas by micro-aeration were conducted at 

the Ames Water Pollution Control Facility (AWPCF) by using different types of liquid media 

available at the plant, i.e. plant effluent, mixed liquor, and digester supernatant. From the 

experiment at AWPCF, it was found that operating pHs were affected by the amount of 

alkalinity in the liquid media and that the removal efficiencies were affected by the operating 

pH.  Among all the liquid media tested, digester supernatant showed the greatest potential 

with more than 99% H2S removal at an operating pH of 7.0 and volumetric biogas flow rate 

of 21.6 m3/m3-hr.  By increasing trace metal contents and temperature of the medium, the 

hydrogen sulfide removal rate was greatly improved.  The operating cost of the full-scale 

system was estimated to be approximately $2/kg-S-removed.  In addition, it was also 

revealed that abiotic sulfide oxidation accounted for 95% of overall sulfide oxidation. 

This technology is expected to widen the use of biogas as a renewable fuel since the 

maintenance requirements of biogas handling equipment, the methane purification costs, and 

the emissions of SOx will dramatically be reduced.  Importantly, the technology does not 

require inoculation of special bacteria, addition of nutrients and trace elements, or chemicals 

for pH control. 
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CHAPTER 1. GENERAL INTRODUCTION 

  

Introduction 

  Anaerobic treatment of high sulfate/protein waste streams, e.g. animal wastes, 

contributes several different types of sulfur-containing compounds, including hydrogen 

sulfide, mercaptans, etc.  The sulfur-containing compounds are not only malodorous and 

harmful but also hinder the use of biogas as a renewable energy source in downstream 

processes, such as in boilers for heating, internal combustion engines for electricity 

production, and catalytic processes for methanol and biodiesel production.   

Previous studies have proven that sulfide could be biologically or chemically 

converted to elemental sulfur.  The major drawbacks for biological processes include the 

need for nutrients to support microorganism growth and the sustainability of the process.  

Even though the chemical process can solve some of these issues, it is more expensive and 

creates disposal problems. 

In practical application, sulfide generation is associated with anaerobic treatment of 

sulfate/protein-rich waste streams, which contain sufficient nutrients to support the growth of 

both methane production and sulfide oxidizing bacteria.  As a result, the use of anaerobic 

digester effluent as a medium in an integrated methane production/sulfide oxidizing system 

and a standalone sulfide removal system may help to reduce the overall cost of hydrogen 

sulfide removal.  In addition, the sulfide concentration in the effluent from the sulfide 

oxidizing unit (SOU) would be so low that the odor potential can be minimized.  To remove 

hydrogen sulfide in the integrated system, a portion of sulfide-free biogas produced from the 
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SOU is recycled back to the anaerobic digester to provide digester mixing and, at the same 

time, to strip newly formed hydrogen sulfide in the digester to be treated in the SOU.  If a 

standalone sulfide removal system is desired, all biogas is dosed with a small quantity of air 

before passing through the SOU. 

For operation control, precise oxygen dosing is extremely important to selectively 

convert the sulfide to elemental sulfur and to minimize the carry over of oxygen to the 

anaerobic digester. Oxygen introduced into the digester may reduce the methane yield (in the 

case of an integrated system) or end up in the biogas and form an explosive mixture of 

methane and oxygen.  Oxidation-reduction potential (ORP) will be used as a controlling 

parameter to precisely regulate oxygen dosing for hydrogen sulfide conversion to elemental 

sulfur.  Either too much or too little oxygen will lead to sulfate formation or sulfide residual 

in the biogas, respectively.  In addition, most sulfide control studies have been conducted 

using packed media in a tower to facilitate the conversion to elemental sulfur.  However, the 

use of media is not applicable for treating wastewater with a high solid content due to media 

clogging potential.  Therefore, the proposed study will employ a specially designed tubular 

oxidation reactor, the SOU, without packing media. 

To produce sulfide-free biogas, a low-cost, easy-to-operate, hydrogen sulfide 

oxidation unit has been developed.  The unit can be integrated into an anaerobic digester or 

operated as a standalone system.  The coupling of the SOU with the anaerobic digester 

allows (1) the SOU to use the effluent of anaerobic digester as medium and nutrient 

supplement for sulfide removal and (2) hydrogen sulfide to be stripped off from the content 

of anaerobic digester as soon as it is produced.  The system employs ORP as a parameter to 

control the degree of air injection and sulfide oxidation toward elemental sulfur recovery.  
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The specific aims of the proposed study included the following: 

1) To develop a low cost, easy-to-operate, ORP-based sulfide oxidation system for 

sulfide-free biogas production from an anaerobic digester treating high-solid 

wastewater, 

2) To study the mechanisms involved in sulfide oxidation in a reactor system, 

3) To examine the sulfide removal efficiency of the system at various operating 

conditions (sulfide loading rate, biogas recirculation rate, and pH) with different 

liquid media in the SOU, and 

4) To develop design criteria for full-scale operations. 

Dissertation Organization 

The dissertation is organized into three main parts—general introduction and 

literature review, experiment, and general conclusion.  The experiment part consisted of three 

research papers, describing studies at the Environmental Research Lab at Iowa State 

University and at the City of Ames Water Pollution Control Facility.  Thanapong 

Duangmanee was the primary author and data collector of all three papers. 

Literature Review 

Anaerobic digestion is one of the methods for producing biorenewable energy 

(Brown, 2003; Syed et al., 2006).  Biorenewable energy is, by definition, the energy 

produced from renewable resources, the resources that can regenerate themselves within a 

few years.  By being able to regenerate themselves in a relatively shot time, it is certain that 

the resources will be available all the time, aka “sustainable resources.”  Since substrates of 
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the anaerobic digestion are usually from agricultural origins that will be available all the time 

as long as humans raise animals and/or grow plants, anaerobic digestion is undoubtedly  a 

method to produce sustainable energy for the future.  

When wastes containing protein, sulfate, or other oxidized forms of sulfur are fed to 

the digester, sulfate reducing bacteria (SRB), such as Desulfovibrio, Desulfotomaculum, 

Desulfobacter, Desulfosarcina, and Desulfococcus,  will reduce sulfur containing compounds 

to sulfides (Clanton and Schmidt, 2000), resulting in biogas contaminated with hydrogen 

sulfide (Eq. 1).   

  
 SO4

2- + Organic matter  HS- + H2O + HCO3
-  Eq. 1  

 
 

The hydrogen sulfide in biogas limits the usage of biogas in many down stream processes.  

For instance, heat production using boilers requires hydrogen sulfide to be less than 1000 

ppmV whereas hydrogen sulfide limitations in electricity production by internal combustion 

engine is only 100 ppmV (Zicari, 2003).  If biogas is to be used as natural gas, the hydrogen 

sulfide needs to be less than 4 ppmV (Amirfakhri et al., 2006; Sublette and Sylvester, 

1987a).  Some other novel catalytic processes to convert methane to methanol as a feedstock 

for other chemical production, such as the production of biodiesel, require no presence of 

hydrogen sulfide. 

Methods to remove sulfide from biogas include (1) chemical processes, (2) 

physicochemical processes, and (3) biological processes.   
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Chemical processes for hydrogen sulfide removal 

In chemical processes, chemicals are added into liquids containing sulfides to either 

oxidize sulfides or to shift volatile sulfide, hydrogen sulfide, to the nonvolatile ones.  

According to Eqs 2 to 4, adding base into the solution would transform hydrogen sulfide to 

bisulfide and sulfide, preventing odorous sulfide from vaporizing.   

 

 H2Sgas ↔ H2Saq Eq. 2 

 H2Saq ↔ HS- + H+ Eq. 3 

 HS- ↔ S2- + H+ Eq. 4 

 

At 25 °C and pH of 7, if hydrogen sulfide in a vessel headspace is 3700 ppmV, at pH 

of 8, the concentration will be 830 ppmV, and at pH of 10, the concentration in headspace 

will be reduced to 10 ppmV.  Adding base solution may help to reduce hydrogen sulfide, but, 

at pH above 8, anaerobic digestion will be inhibited.  Oxidizing agents, such as chlorine, can 

be used to oxidize sulfide (Droste, 1997).  Besides chlorine, other oxidizing agents, such as 

ozone, potassium permanganate, hydrogen peroxide, and nitrite, can be used.  The dosage of 

the oxidizing agents can be problematic since not only do the agents oxidize sulfide, but also 

oxidize other organic and inorganic compounds present in wastewater.  Adding  chlorine or 

nitrite in wastewater produces unwanted byproducts, such as carcinogenic trihalomethane 

(THM), NOx, and ammonia (Droste, 1997; Kohl and Neilsen, 1997).  

 

  H2S + NaNO2 ↔ NH3 +3S0 + NaOH + some NOx  Eq. 5  
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Physicochemical processes for hydrogen sulfide removal 

In physicochemical processes, solid or liquid chemicals react with hydrogen sulfide in 

gas phase through either adsorption or absorption mechanisms.  The physical interaction of 

the chemicals and hydrogen sulfide is provided through a bubbling column, spray tower, 

trickling column, or other column-like container.   

Solid adsorbents: Iron oxide is one of the solid chemicals used to remove hydrogen 

sulfide from biogas (Kohl and Neilsen, 1997).  The famous one is “iron sponge.”  To remove 

hydrogen sulfide, dirty gas is forced to a container or a series of containers filled with iron 

sponge.  The iron oxide of iron sponge reacts with hydrogen sulfide and mercaptans (Eqs. 6 

and 7), and the spent iron sponge can be regenerated by blowing air into the containers (Eq 

8).   

 

 2Fe2O3 + 6H2S  ↔ 2Fe2S3 + 6H2O Eq 6. 

 2Fe2O3 + 6RSH  ↔ 2Fe(RS)3+ 3H2O Eq 7. 

 2Fe2S3 + 3O2  ↔ 2Fe2O3 + 6S Eq 8. 

 

For every lb of ferric oxide, 0.64 lb of hydrogen sulfide can be removed if hydrogen 

sulfide is completely transformed to iron sulfide.  For it to be effective, the iron oxide needs 

to be in true hydrated form, not just wetted iron oxide.  The regenerative reaction of iron 

oxide is highly exothermic; great care should be taken when it is conducted (Kohl and 

Neilsen, 1997).  However, after every regeneration, the iron sponge will lose approximately 

30% of its activity due to clogging by elemental sulfur and loss of hydrated water from the 
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iron sponge; therefore, a new sponge is needed after two to three regeneration (Zicari, 2003), 

making it useful only for just small volume of gas purification.   

Impregnated carbon is also widely used in gaseous hydrogen sulfide removal 

processes.  The technique offers the combined effect of adsorption and chemical reaction.  A 

carbon source, such as wood chips,  serves as an adsorbent for hydrogen sulfide.  Reactive 

chemicals, such as metal oxide (iron or zinc) and alkaline materials (sodium hydroxide or 

sodium carbonate), react with the sulfide and hold it in place as metal sulfide or sulfate (Eqs. 

9 and 10).   

 

 ZnO + H2S  ↔ ZnS + H2O Eq. 9 

 2NaOH + H2S  ↔ Na2S + 2H2O Eq. 10 

 

This combination increases the overall efficiency of the adsorbent.  The impregnated carbon 

is best to remove trace amounts of hydrogen sulfide, other low molecular-weight sulfur 

compounds, and some volatile organic compounds.  In addition, if an iron oxide bed is used, 

sodium carbonate should be added to the bed to control the pH between 8 and 10 (Kohl and 

Neilsen, 1997).   

Liquid absorbents: Using liquid absorbent to remove hydrogen sulfide has 

increasingly become popular in natural gas purification.  With just a couple of vertical 

bubbling columns (contactors), the liquid process can be installed in a small foot-print.  

Regenerative capability of the absorbent in the process provides reduced labor costs since the 

process can be operated in a continuous mode—absorption of sulfide and regeneration of 

absorbent.   More importantly, elemental sulfur produced in the process can be recovered 
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relatively easily, compared to that in a solid adsorbent process.  Some of the liquid media 

include iron oxide slurries, zinc oxide slurries, oxidizing solutions, aldehydes, 

alkylamine/aldehyde condensation products, triazines (polyamine), and caustic solutions 

(Kohl and Neilsen, 1997).  The iron oxide slurries, aka Slurrisweet process, has a similar 

chemistry as that of iron sponge.  The advantage is the ease of replacing and removing the 

spent media. The Chemsweet process uses powders of zinc oxide and zinc acetate mixed with 

water to dissolve hydrogen sulfide and precipitate out as zinc sulfide (Eqs. 11 to 13).  During 

operation, the pH of the media must be kept low to avoid carbon dioxide absorption but kept 

high enough to prevent corrosion.  

 

  ZnAc + H2S  ↔ ZnS + 2HAc Eq 11. 

 ZnO + 2HAC  ↔ ZnAc + 2H2O Eq 12. 

Overall: ZnO + H2S  ↔ ZnS + 2H2O Eq 13. 

 

Trace amount of hydrogen sulfide can be removed by using oxidizing solutions, such 

as permanganate and dichromate solutions.  The process consists of two bubbling columns 

operating in series, filled with 4% of permanganate or 5-10% of dichromate as the main 

ingredients.  When 75% of the oxidizing solution is used, it must be replaced.  In the Sulfa-

Check and Hondo HS-100 processes, nitrite solutions (either potassium or sodium) are used 

to absorb hydrogen sulfide and convert it into elemental sulfur (Eq. 5).  Even though the 

removal process can be achieved in just a single bubbling column, the solutions cannot be 

regenerated.  They have to be discarded and replaced with fresh solutions after all active 

nitrite is consumed.   
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Aldehyde is very reactive with hydrogen sulfide.  In the aldehyde process, such as the 

Scavinox process, the aldehyde absorbent is a mixture of formaldehyde and methanol.  After 

reacting with hydrogen sulfide, the resulting products are cyclic carbon-sulfur and small 

amounts of mercaptans.   Even though this process is very effective, the reaction reactants 

and products have a very strong offensive odor and disposal of the spent solutions is a major 

problem.  For these reasons, the process is not widely used today.     

Hydrogen sulfide is readily absorbed in alkali solutionsas in the caustic scrubbing 

process.  To prevent carbon dioxide from absorbing into the solution, the retention time 

needs to be short.  In a single stage, hydrogen sulfide can be reduced from 7,500 to 600 ppm, 

which may be clean enough for some uses (Kohl and Neilsen, 1997).  Although disposal of 

the spent solution may be problematic in some cases, some reaction products, such as sodium 

bisulfide (NaHS), can still be used in paper manufacture.      

Even though chemical and physiochemical processes seem to be very effective in 

removing hydrogen sulfide from biogas, the processes present unavoidable problems, such as 

high capital, labor, energy, and chemical costs (Buisman et al., 1991).  Disposal of the spent 

chemicals presents a major additional problem of the processes.  As an alternative, biological 

processes can convert hydrogen sulfide to elemental sulfur or sulfate with minimal use of 

energy.  Not only do the processes eliminate the generation of toxic wastes, they do not 

require the use of any catalyst, except for small amounts of oxygen, nutrients, and/or light. 
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Biological processes for hydrogen sulfide removal 

Microorganisms responsible for hydrogen sulfide removal fall into one of the three 

categories—purple sulfur bacteria, green sulfur bacteria, and colorless sulfur bacteria 

(Robertson and Kuenen, 2001; Madigan and Martinko, 2005).  Syed et al. (2006) 

summarized the biological processes to remove hydrogen sulfide from gas streams.  

Being part of proteobacteria, purple sulfur bacteria are a group of facultative bacteria 

capable of oxidizing sulfide to elemental sulfur in the presence of light.  The purple sulfur 

bacteria are classified into two families according to the location of sulfur deposited—

Chromatiaceae (i.e. genus Chromatium) and Ectothiorhodospiraceae (i.e. genus Ectothio-

rhodospira), which deposit sulfur outside and inside their cells, respectively.  Green sulfur 

bacteria represent a group of obligate phototrophic, strict anaerobes that use sulfide as an 

electron donor and convert it to elemental sulfur, which is deposited outside their cells.  

Representative of this group is the genus Chlorobium (family Chlorobiaceae).  The 

conversion of sulfide to elemental sulfur follows Van Niel’s reaction (Eq. 14):   

 

 2nH2S + nCO2  2nS + n(CH2O) + nH2O Eq. 14 

 

 The colorless sulfur bacteria consist of very diverse bacterial groups that can oxidize 

reduced sulfur (sulfide, elemental sulfur, thiosulfate, or organic sulfur) to gain energy and 

support growth.  Besides reduced sulfur compounds, some groups of bacteria can use ferrous 

ion as an electron donor.  While a majority of the colorless sulfur bacteria use oxygen as an 

electron acceptor, some can use nitrate in the process known as denitrification (Robertson 
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and Kuenen, 2001; ).  Among the colorless bacteria studied, Thiobacillus appears in research 

papers the most frequently.  Common reactions of this group of bacteria are the followings:  

 

 2HS- + 4O2   2SO4
2-

 + 2H+  ∆G0’ = -732.58 kJ/mol Eq. 15 

 2HS- + O2  2S0 + 2OH- ∆G0’ = -129.50 kJ/mol Eq. 16 

 2S0 + 3O2 + 2H2O  2H2SO4 ∆G0’ = -563.23kJ/mol Eq. 17 

 S2O3
2- +2O2 + H2O  ↔ SO4

2- + H2SO4  Eq. 18 

 5H2S + 8NO3
-  4SO4

2- + H2SO4 + 4N2 + H2O  Eq. 19 

 5H2S + 2NO3
-  5S0 + N2 + 2OH- + 4H2O  Eq. 20 

 5S0 + 6NO3
- + 2H2O  3SO4

2- + 2H2SO4 + 3N2  Eq. 21 

 

Phototrophic bacteria: Phototrophic green and purple bacteria can be found in 

almost any water body, especially on the surface of the water that has been polluted with 

organic materials and exposed to sunlight (Siefert et al., 1978).  They have bacteriophyll that 

can capture light energy at 460 to 760 nm and use it for sulfide oxidation.  The challenges for 

sulfide removal using phototrophic sulfur bacteria include (1) the reactor design that allows 

light penetration and (2) the amount of energy required.  The degree of sulfide conversion to 

elemental sulfur or to sulfate depends on the amount of light the bacteria received.  In a 

simple CSTR reactor with a fixed light intensity, it was found that at a sulfide loading rate of 

2.1 mg/L-hr in liquid, almost all of the sulfide was oxidized to sulfate.  At a loading of 4.4 

mg/L-hr, complete conversion of sulfide to elemental sulfur was achieved.  However, at the 

loading rate of 5.6 mg/L-hr, sulfide was found accumulated in a reactor (Henshaw et al., 

1998).  With nutrient supplement, Chlorobium thiosulfatophilum, a green sulfur bacteria, was 
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successfully used to remove hydrogen sulfide from gas containing as much as 3.6% hydrogen 

sulfide using a very complex 15-L reactor equipped with a light collecting system that can 

harvest light from either the sun or a 400 W light bulb (An and Kim, 2000).  The delivery of 

light into the reactor was achieved by using scratched optical fibers for dispersion of light 

along the wall of the fiber.  The fibers were covered with glass enclosure to prevent the solids 

from attaching on the surface.  The authors tried to use sunlight to save energy; however, 

they found that, when only sunlight was used, the sulfide removal rate was about four times 

less than that when the light bulb was used, stating the significance of the continuity of the 

light source.  Henshaw and Zhu (2001) used a pure culture, fixed-film, multiple-tubular 

reactor to increase surface area exposed to light.  A 250 W infrared bulb was used as a light 

source.  Among many loading rates tested (111 to 328 mg/L-hr), complete sulfide removal 

was found at a sulfide loading rate of 286 mg/L-hr with 92-95% elemental sulfur recovery.  It 

can be seen that when using the phototrophic sulfur bacteria to remove sulfide, the reactor 

must be optimized to obtain the maximum light exposure, in terms of reactor design and 

cleaning.  To remove sulfide as elemental sulfur, light intensity needs to be optimized.  In 

addition, supplemental nutrients are also required.    

Colorless sulfur bacteria:  The majority of hydrogen sulfide removal research has 

focused on using colorless sulfur bacteria.  The bacteria may be in suspension or attached to 

plastic or organic media.  Chemoautotrophic bacteria, such as Thiobacillus, have been used 

to remove hydrogen sulfide from a gas stream.  Gadre (1989) used a fixed-film reactor 

inoculated with an enriched culture of Thiobacillus to remove hydrogen sulfide from biogas 

containing as much as 2.4% (v/v) of hydrogen sulfide.  The biogas was generated from an 

anaerobic filter used to treat high-sulfate sugarcane molasses distillery wastewater.  The 
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reactor was supplied with a nutrient solution to support the growth of the autotrophic 

bacteria.  In the exhaust gas, the hydrogen sulfide content was found to be on the average of 

0.62% with overall removal efficiency, elemental sulfur recovery, and volumetric efficiency 

of 70%, 20%, and 3.2 mmol H2S removal /L-hr, respectively.  Buisman et al. (1991) used a 

Rotating Biological Contactor (RBC) sulfide treatment system to remove sulfide from 

sulfide-containing anaerobically treated papermill wastewater (30-150 mg-S2-/L).  To control 

the oxygen percentage in the headspace, the headspace volume of the reactor was exchanged 

with a different rate of flowing air (20% of oxygen in the headspace could be satisfied by an 

air flow rate of 22 L-air/min).  It was found that more than 90% of the sulfide was removed 

in effluent at an HRT of 19 min.  However, the exhaust gas from the reactor still contained as 

high as 1,500 ppm of hydrogen sulfide, which required further treatment.  A novel full-scale 

biogas purification process was adopted by Nishimura and Yoda (1997).  The process 

integrated an UASB reactor and activated sludge (AS) process with a multiple-tray contact 

tower.  Mixed liquor was trickled from the top of the tower while biogas was blown  upwards 

from the bottom of the tower.  Sulfide containing mixed liquor was dropped into an aeration 

tank where the sulfide was oxidized into sulfate.  Hydrogen sulfide in the biogas was reduced 

from approximately 2,000 ppm to about 20 ppm at the biogas flow rate of 40 m3/hr.  

However, the process design did not allow for elemental sulfur recovery.   

The use of a pure culture, Thiobacillus thiooxidans, has been conducted by Ranade 

and Bhirangi (2001).  The culture was allowed to grow in a fixed-film reactor with a nutrient 

medium pumped from a reservoir into the top of reactor and exiting at the bottom, dropping 

once again into the reservoir.  The author claimed that the biogas coming out from the reactor 

was free from hydrogen sulfide and that the optimum sulfide loading rate was 2.03 kg-
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H2S/m3-day (2.49 mmol-H2S/L-hr).  A similar set up was found to remove 98% hydrogen 

sulfide from a gas stream containing hydrogen sulfide as small as 20-100 ppmV by bacterial 

isolate Acinetogacter sp. MU1_03 and Alcaligenes faecalis MU2_03 (Potivichayanon et al., 

2006).  It also found that improvement of hydrogen sulfide removal efficiency could be 

obtained from increasing gas retention time, liquid flow rate, and column height.   

A biofilter filled with organic media, such as soil, compost, peat, woodchips or any 

combination thereof, is one of the most cost effective methods to remove low levels of 

hydrogen sulfide and other volatile organic compounds (VOCs).  The biofilter can also be 

augmented with microorganisms to increase its hydrogen sulfide removing efficiency.  

Chung et al. (1996) used a biofilter filled with immobilized Thiobacillus thioparus CH11 in 

Ca-alginate and found that more than 98% of hydrogen sulfide could be removed at a 

hydrogen sulfide loading rate of 25 g/m3-hr.  Ammonia and hydrogen sulfide can be removed 

simultaneously with a biofilter filled with woodchips.  85% and 90% removal efficiencies 

were obtained when a biofilter was used to treat gas with 100 and 80 ppmV of hydrogen 

sulfide and ammonia, respectively (Jones et al., 2004).  Elias et al. (2002) used a pelletized 

mixture of pig manure and sawdust packed in a lab-scale biofilter and found that 90% of 170 

ppmV of hydrogen sulfide could be removed when a superficial gas flow rate was 200 m/hr. 

In 1987ab, Sublette and Sylvester conducted several experiments on desulfurization 

of natural gas using Thiobacillus denitrificans.  It was found that the microorganism could 

use sulfide as an energy source and reduce hydrogen sulfide to very low levels in a reactor 

operated under a sulfide-limiting condition (< 200 µM or 6.4 mg/L as S).  The 

microorganism can tolerate high pressure (up to 12.5 MPa) well, but has a narrow range of 

optimum growth temperature (around 30 °C).  Contamination by heterotrophs did not show 
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any effect on sulfide reduction, which made it possible for aseptic operation.  Using the same 

microorganism, 10% of hydrogen sulfide in synthetic biogas can be reduced to undetectable 

levels with 1-2 seconds of gas contact time in a bubbling column.  However, since the 

authors used an airflow rate almost twice that of biogas, the entire product is sulfate 

(Sublettle et al., 1994).  Amirfakhri et al. (2006) proposed the use of autotrophic 

denitrification to replace the aeration step (for regeneration) in the Seaboard process, a 

natural gas desulfurization process which uses sodium carbonate to absorb hydrogen sulfide.  

The aeration step usually introduced a side reaction and disposal problem of foul air 

containing hydrogen sulfide.  In the autotrophic denitrification, thiosulfate or sulfide is used 

as an electron donor (energy source) while nitrate and carbon dioxide is used as an electron 

acceptor and carbon source, respectively.  With added nitrate, the process occurred in five-

compartmentalized anaerobic baffled reactors (ABR) that received a sulfide loading rate 

of0.62 mmole/L-hr.  Since sulfide was completely oxidized in the first compartment, the 

overall removal rate was 3.03 mmole/L-hr (96 mg-S/L-hr).  However, only 61% of sulfide 

was converted to elemental sulfur.  An innovative process was proposed by Kleerebezem and 

Mendez (2002) to treat high-organic, high-sulfate wastewater, such as that from fish 

processing industries.  The process consisted of an anaerobic digester to convert organic 

matter and sulfate to hydrogen sulfide containing biogas with ammonium discharged in the 

effluent.  The ammonium was converted to nitrate in an aeration tank.  The effluent from the 

aeration tank was sprayed in an absorption column to absorb hydrogen sulfide from biogas 

produced from the anaerobic digester.  Nitrate and sulfide containing effluent was then fed to 

an autotrophic denitrification fixed-film reactor to produce nitrogen and sulfate.  However, 

the author only focused on the fixed-film part with nitrate being overdosed, which resulted in 
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complete oxidation of sulfide.  The author also mentioned that a higher oxidation rate was 

not achieved since the filter was clogged with elemental sulfur.   

Other methods can be employed to indirectly remove hydrogen sulfide from biogas 

using a combination of chemical and biological processes.  Fe(III) can oxidize hydrogen 

sulfide to elemental sulfur.  The reduced Fe(II) can then be oxidized by iron-oxidizing 

bacteria, such as T. ferrooxidans, Acidithiobacillus  ferrooxidans, and Leptospirillum  

ferrooxidans.  The process can occur simultaneously in one reactor or occur in separate 

reactors with an improved sulfide removal efficiency (Park et al., 2005; Son and Lee, 2005).   

 

Oxygen in anaerobic digestion 

In anaerobic digestion, oxygen has been believed to be a toxic substance to the 

anaerobic consortium.  However, in some circumstances, limited amounts of oxygen may be 

beneficial, especially in the removal of hydrogen sulfide.  To remove small amounts of 

hydrogen sulfide in biogas, a small amount of air can be injected into the anaerobic digester 

at a rate of 7.5% of biogas production, which can reduce hydrogen sulfide from about 680 to 

less than 10 ppmV (Ikbal et al., 2003).  For anaerobic treatment of high sulfate and high 

COD wastewater, high levels of sulfide would be present in liquid and gas phases, which 

may pose a threat to the methanogenesis process.  In a wastewater with 1200 mg-SO4
2-/L (the 

condition that otherwise inhibits methanogenesis), introduction of a limited amount of 

aeration directly into a fluidized-bed anaerobic digester showed 60% improvement in terms 

of COD removal with a four-fold higher methane production (Zitomer and Shrout, 2000).   

In biological sulfide removal from gas or liquid streams, elemental sulfur is the 

preferred final product (Janssen et al., 1997; Janssen et al., 1998).  Since elemental sulfur is 
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insoluble, it can be removed from the streams relatively easily, resulting in reducing the 

overall sulfur species.  Sulfide oxidation to elemental sulfur requires four times less oxygen 

than the oxidation to sulfate; therefore, the energy consumption through aeration can greatly 

be reduced.  To gear the biological sulfide oxidation to sulfur formation, the supply of 

oxygen needs to be optimized.  By monitoring and controlling the molar ratio of 

oxygen/sulfide consumption (O2/S2-) in a biological sulfide oxidizing reactor, at steady state, 

it was found that the maximum elemental sulfur formation occurred at O2/S2- of 0.6 to 1.0, 

not at 0.5 as suggested by Eq. 16 (Janssen et al., 1995).  A similar result was obtained by 

Alcantara et al. (2004) who used a different strain of Thiobacillus sp.  They found the O2/S2- 

of 0.5 yielded the most sulfur.  When O2/S2- was more than 1.0, sulfate was a major, if not 

only, product of the sulfide oxidation.  In 0.3 to 0.7 range of O2/S2-, thiosulfate also formed, 

which was believed to be through chemical auto-oxidation (Eq. 22).   

 

 2HS- + 2O2  H2O + S2O3
2-   Eq. 22 

 

Oxidation-reduction potential 

Oxidation-Reduction Potential (ORP) or Redox potential signifies the tendency of a 

given solution to gain or lose electrons (Sawyer et al., 2003).  It is a measurement of the ratio 

of oxidized-to-reduced forms of all chemical species in the solution.  Oxidizing compounds 

have the ability to accept the electrons while reducing compounds have the ability to donate 

electrons.  The ORP electrode measures the electron activities.  According to the Nernst half-

cell potential equation (ox + ne-  red), the measured ORP is defined as: 
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    Eq. 23 

 

where Eh = measured ORP (mV), E0 =  standard electrode potential, R = the gas constant 

(8.314 J/K-mol), T = temperature (K), n = the number of electrons involved, F = the 

Faraday’s constant = 95,000 coulombs/mol, and {ox} or {red} = activity of oxidants and 

reductants, respectively.  A negative ORP indicates the tendency of the solution to donate 

electrons to the electrode (reducing environment), while a solution with positive ORP 

indicates its ability to accept electrons from the electrode (oxidizing environment).  However, 

the ORP is usually referenced with standard hydrogen electrode (SHE).  The ORP with 

respect to SHE can be calculated by:  

 

 E = Eh + ERef   Eq. 24 

 

where ERef = electrode potential with respect to SHE (mv) 

pH affects the ORP when the reaction contains H+.  Formation of H2S(g) can be 

derived from two half-cell reactions:  

S(s) + 2H+ +2e-  H2S(g)  E0 = 0.141 volt Eq. 25 

                   S2-  S(s) +2e- E0 = 0.48 volt Eq. 26 

____________________ 

Net                           S2- + 2H+ ↔ H2S(g)  E0 = 0.621 volt  Eq. 27 
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A positive E0 indicates that the reaction can theoretically proceed as written.  Considering Eq 

25, the Nernst half-cell equation suggests the inverse relationship between ORP and pH as 

the following:. 

 

   Eq. 28 

 

  Eq. 29 

 

Beside pH, ORP is also affected by the change in temperature.  However, the effect of 

temperature to ORP is rather complex since the temperature affects the electrode itself as 

well as it affects ionic activities of chemicals in the solution.  Therefore, it is preferable that 

the reaction is carried out at constant temperature and pH. 

 

Application of oxidation-reduction potential 

 The ORP has been used for “real time” monitoring and control of critical disinfectant 

levels in water disinfection (Suslow, 2004).  The ORP measurement can define the 

antimicrobial potential regardless of water quality (e.g. pH) when hypochlorite is used as a 

disinfectant.  The effectiveness of disinfection depends on availability of pH-dependent 

chlorine species.  Hypochlorous acid (HOCl) is more effective than hypochlorite ion (OCl-).  

As pH rises, the proportion of HOCl decreases  and more chlorine is needed to maintain the 

same effectiveness of disinfection This can be achieved by maintaining the same ORP 
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level—“an ORP of 700 mV at pH 6.5 has the same killing potential as the same ORP at pH 

8.5”.  The application of ORP can also be extended to wastewater treatment when it is critical 

to control the amount of aeration.  To reduce the high cost of aeration and alkalinity addition 

for nitrification/denitrification processes , partial oxidation of ammonia to nitrite, followed 

by autotrophic ammonia oxidation (anammox) was introduced (Ganigaué et al., 2007).  The 

critical component of this process is the partial oxidation of ammonia to nitrite so that the 1:1 

ratio of ammonia to nitrite is maintained (Eq. 30) for the anammox reaction.   

 

NH4
+ + 2HCO3

- + 1.5O2  NO2
- + 3H2O + 2CO2  Eq. 30 

 

 The ORP could also be utilized as a controlling parameter in aerobic/anoxic processes 

for carbon and nitrogen removal in a sequencing batch reactor (SBR).  The rapid changes in 

ORP would signal the end of each process in the reactor, allowing for better control of the 

system (Puig et al., 2005). 

 

Oxidation-reduction potential in sulfide removal 

During sulfur formation, dissolved oxygen never exceeds 0.1 mg/L, resulting in 

difficult oxygen input control into the reactor; therefore, a better controlling parameter needs 

to be developed to maximize sulfide oxidation to elemental sulfur.  Janssen et al. (1995) 

demonstrated a linear relationship between ORP and the logarithm of sulfide concentration.  

Later in 1998, Janssen et al. successfully demonstrated the use of oxidation-reduction 

potential (ORP) to control O2/S2- to approximately 0.38 while the amount of sulfide loading 

rate was varied simultaneously.  By controlling ORP at -137 mV, elemental sulfur was found 
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to be a major product, accounting for over 80% of total sulfide loaded.  However, 

Krishnakumar et al. (2005) used a similar reactor set up to find optimal ORP to maximize 

elemental sulfur production and found that an ORP range of -400 to -300 mV contributed 

around 80% sulfur recovery when the reactor was loaded by 19 kg-S2-/m3-day.  Sulfide was 

nearly 100% removed with sulfate and thiosulfate as the rest of the oxidizing products.  

Khanal and Huang (2003b) have conducted experiments to verify the feasibility of using 

ORP as the controlling parameter for oxygen injection to an upflow anaerobic filter treating 

high sulfate and COD wastewater.  By setting operating ORP at 25 mV above natural ORP (-

300 to -290 mV) in otherwise inhibitory influent sulfate concentrations (6000 mg/L), sulfide 

was reduced to only 12 mg/L with an improvement of methane generation by 46%.  

Oxidation of sulfide to elemental sulfur is faster than the oxidation to sulfate (Janssen 

et al., 1995). Therefore, it is possible to prevent sulfur from being oxidized to sulfate (Eqs. 

17 and 20).  This can be achieved by the removal of formed sulfur as soon as possible via 

better reactor design (Janssen et al., 1997; Krishnakumar et al., 2005) 

Most of the research mentioned above has focused on using the treatment of soluble 

wastewater.  Little attention has been paid to high-solids content wastewaters, such as animal 

waste (Total Soilds, TS of 2-6%).  The use of packed media in an anaerobic digester or in a 

sulfide oxidizing reactor simply prevents them from treating high-solid wastes due to 

clogging potential.  Since the proposed system does not require nutrient addition, pH 

adjustment, or media, the integration of the SOU and anaerobic digester will offer a low-cost, 

easy-to-operate, alternative for removing sulfide from gas and/or liquid streams.  The only 

requirement is limited air addition that is precisely controlled by ORP.  The circulation of 

sulfide-free biogas back to the anaerobic digester will remove newly formed sulfide as 
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quickly as it is produced.  However, when the integration is not preferred, the SOU can also 

be operated as a standalone unit, appended to existing biogas generating facilities with little 

modification. 

This innovative sulfide removal system is expected to be upgradable to full-scale in 

municipal, agricultural, and industrial applications.  
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ABSTRACT 

 

The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed 

stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion.  The 

high sulfide levels in the biogas stream are not only poisonous to many novel metal catalysts 

employed in thermo-catalytic processes but also reduce the quality of methane as a renewable 

energy source.  This study used an innovative, low-maintenance, low-cost biological sulfide 

removal technology to remove sulfides simultaneously from both gas and liquid phase.  ORP 

(Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air 

injection to the sulfide oxidizing unit attached to the digester.  The micro-aeration technique 

provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting 

methanogenesis.  The integrated system was capable of reducing hydrogen sulfide in biogas from 

2,450 to less than 2 ppmV with minimal sulfate production.  More than 98% of sulfide removed 

was recovered as elemental sulfur.  This technology will widen the use of biogas as a renewable 
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fuel since the maintenance requirement of downstream processes, the biogas purification cost, 

and the emission of SOx in the off-gas will dramatically be reduced.  Importantly, the technology 

does not require inoculation of special bacteria, addition of nutrients and trace elements, or pH 

control. 

 

 

KEYWORDS 

 

Biological sulfide removal, anaerobic digester, ORP, micro-aeration, hydrogen sulfide 

 

INTRODUCTION 

 

Anaerobic processes have been widely adopted to stabilize wastes/wastewater due to several 

inherent attributes, such as the generation of renewable energy (methane), less sludge 

production, lower energy consumption than aerobic counter part, etc.  However, the presence of 

sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates 

highly corrosive and odorous hydrogen sulfide during anaerobic treatment.  The high sulfide 

level in the biogas stream is not only poisonous to many novel metal catalysts employed in 

thermo-catalytic processes; but also reduces the quality of methane as a renewable energy.  

Moreover, aqueous sulfide in the bioreactor has a potential to inhibit methanogenesis, the main 

pathway for methane production in anaerobic processes. This significantly reduces the methane 

yield (Khanal et al., 2003). 
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When wastes containing sulfur compounds are fed to the digester, sulfate reducing bacteria 

(SRB), such as Desulfovibrio, Desulfotomaculum, Desulfobacter, Desulfosarcina, and 

Desulfococcus, will reduce sulfur containing compounds to sulfides (Clanton and Schmidt, 

2000), resulting in biogas contaminated with hydrogen sulfide by the  following equations:  

  

 SO4
2- + Organic matter  HS- + H2O + HCO3

-   

                       HS- + H+  ↔  H2S(g) 

 

The hydrogen sulfide in biogas limits the usage of biogas in many down stream processes.  For 

instance, heat production using a boiler requires hydrogen sulfide to be less than 1000 ppmV 

whereas the hydrogen sulfide limitation in electricity production by internal combustion engine 

is only 100 ppmV (Zicari, 2003).  To inject methane generated from a digester into a pipeline, 

hydrogen sulfide concentration is required to be less than 4 ppmV.   Some other novel catalytic 

processes to convert methane into other useful ingredients(such as biodiesel) require no presence 

of hydrogen sulfide.  In addition, burning biogas containing hydrogen sulfide would produce 

sulfur oxides, which is a main precursor of acid rain..  In addition to hydrogen sulfide in the off-

gas, sulfides in liquid phase, if they are allowed to release to the receiving steam, will be toxic to 

aquatic life and deplete oxygen concentrations. 

 

Methods to remove hydrogen sulfide from the biogas stream consist of mainly chemical, 

physical and/or biological processes.  Chemical processes involve adding chemicals into liquids 

containing sulfides to either oxidize the sulfides or shift volatile sulfides (hydrogen sulfide) to 
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the nonvolatile ones (sulfide and bisulfide).  Such chemicals are alkaline solutions, chlorine, 

ozone, potassium permanganate, hydrogen peroxide, and nitrite.  However, the dosage of the 

oxidizing agents can be problematic since not only do these agents oxidize sulfide, but also 

oxidize other organic and inorganic compounds present in wastewater.  Adding chlorine or nitrite 

in wastewater produces unwanted byproducts, such as carcinogenic trihalomethane (THM), 

NOx, and ammonia.  Physical processes involve the use of metal oxides (e.g. iron and zinc 

oxides), alkaline solutions, zinc acetate, ferrous chloride molecular sieve, activated carbon, etc. 

to react with sulfide.  However, these processes are high-cost and have inherent chemical 

disposal problems.  The sulfide removal activity deteriorates over a short period of time unless 

the absorbents are replaced, which incur recurring expenses.  In addition, the precipitates formed 

may greatly reduce the active volume of the digester (Droste, 1997, Kohl and Neilsen, 1997).  

Biological processes involve utilizing aerobic chemoautotrophs or anaerobic photoautotrophs to 

oxidize sulfides in both gas and liquid phases to elemental sulfur (Henshaw et al., 1998). The 

sulfide removal rates of the biological processes are comparable to that of the chemical or 

physical processes.  Moreover, biologically-produced sulfur is known as a better substrate for 

bioleaching of heavy metal contaminated wastes, such as swine manure (Tichý, 1994). 

 

Even though biological sulfide removal by anaerobic photoautotrophs is promising, it has two 

major disadvantages—the need for light and a complex reactor design.  Sulfide removal by 

aerobic chemoautotrophs offers a much easier reactor design with a high sulfide removal rate. 

Among the aerobic chemoautotroph studied, Thiobacillus is the most prevalent in research 

papers (Syed et al., 2006).  The following equations depict some biological sulfide removal 

processes:  
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 2HS- + 4O2   2SO4
2-

 + 2H+  ∆G0’ = -732.58 kJ/mol  

 2HS- + O2  2S0 + 2OH- ∆G0’ = -129.50 kJ/mol  

 2S0 + 3O2 + 2H2O  2H2SO4    

 S2O3
2- +2O2 + H2O  ↔ SO4

2- + H2SO4    

 

In biological sulfide removal from gas or liquid streams, elemental sulfur is preferred as a final 

product (Janssen et al., 1997 and 1998).  Since elemental sulfur is insoluble, it can be removed 

from the streams relatively easy, which results in the reduction of overall sulfur species.  Sulfide 

oxidation to elemental sulfur requires four times less oxygen than the oxidation to sulfate; 

therefore, the energy consumption through aeration can greatly be reduced.  To gear the 

biological sulfide oxidation to sulfur formation, the supply of oxygen needs to be optimized.  If 

the molar ratio of oxygen/sulfide consumption (O2/S2-) is at 2 or more, sulfate will be the major 

product.  However, if the O2/S2- ratio is approximately 0.5, then the majority of the products will 

be elemental sulfur.  By monitoring and controlling the molar ratio of oxygen/sulfide 

consumption (O2/S2-) in a biological sulfide oxidizing reactor, at steady state, it was found that 

the maximum elemental sulfur formation occurred at O2/S2- of 0.6 to 1.0, not at 0.5 (Janssen et 

al., 1995).  A similar result was obtained by Alcantara et al. (2004) who used a different strain of 

Thiobacillus sp., but they found the O2/S2-of 0.5 yielded the most sulfur.  Oxidation of sulfide to 

elemental sulfur is faster than the oxidation to sulfate (Janssen et al., 1995). Therefore, it is 

possible to prevent sulfur from being oxidized to sulfate.  This can be achieved by the removal of 

formed sulfur as soon as possible via improved reactor design (Janssen et al., 1997, 

Krishnakumar et al., 2005). When O2/S2- was more than 1.0, sulfate was a major, if not the only, 
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product of sulfide oxidation.  In the 0.3 to 0.7 range of O2/S2-, thiosulfate also formed, which was 

believed to be through chemical auto-oxidation as the following reaction: 

 

 2HS- + 2O2  H2O + S2O3
2-    

 

During sulfur formation, dissolved oxygen never exceeded 0.1 mg/L, making oxygen input into 

the reactor difficult to control.  Janssen et al. (1998) successfully demonstrated the use of 

oxidation-reduction potential (ORP) to control O2/S2- to approximately 0.38 while the sulfide 

loading rate was varied simultaneously.  By controlling ORP at -137 mV, elemental sulfur was 

found to be a major product, accounting for over 80% of total sulfide loaded.  However, 

Krishnakumar et al. (2005) used a similar reactor set up to find the optimal ORP to maximize 

elemental sulfur production and found that an ORP range of -400 to -300 mV contributed around 

80% sulfur recovery when the reactor was loaded at 19 kg-S2-/m3-day.  Sulfide was nearly 100% 

removed with sulfate and thiosulfate as the oxidizing products.  Khanal and Huang (2003) have 

conducted experiments to verify the feasibility of using ORP as the controlling parameter for 

oxygen injection into an upflow anaerobic filter treating high sulfate and COD wastewater.  By 

setting operating ORP at 25 mV above natural ORP (-300 to -290 mV) in otherwise inhibitory 

influent sulfate concentration (6000 mg/L), sulfide was reduced to only 12 mg/L with an 

improvement of methane generation by 46%.  

 

Most of the previously research mentioned has focused on using the treatment of dilute 

wastewater.  Little attention has been paid to high-solids wastewater treatment, such as animal 

waste (TS of 2-6%).  The use of packed media in an anaerobic digester or in a sulfide oxidizing 



 
29 

reactor prevents them from treating high-solids waste due to the potential for clogging. In this 

research, a low-cost, simultaneous, complete sulfide removal method from both gas and liquid 

phases was used, using an integrated sulfide oxidation reactor connected to an anaerobic digester 

treating high solid wastes.  Because the sulfide oxidizing unit (SOU) was not filled with packing 

media, the SOU was able to cope with a much higher solids concentration than other sulfur 

oxidizing columns (Krishnakumar  et al., 2005, Khanal et al., 2003, Koe and Fang, 2000).  Since 

the integration did not require nutrients, trace element addition, or pH adjustment, it offered 

considerable advantages over typical biological sulfide removal systems.  The only requirement 

is limited air addition whose amount is controlled by an ORP set point, on-off aeration, or 

continuous air injection.  This innovative sulfide removal and sulfur recovery system is expected 

to be upgradeable to full-scale in municipal, agricultural, and industrial applications. 

 

The objective of this research was to evaluate the feasibility of using the integrated system to 

remove hydrogen sulfide from biogas with maximum sulfur recovery but minimal sulfate 

production.  The performances of the digester and SOU before and after aeration were compared. 

 The mass balance of sulfur species (including sulfate, thiosulfate, sulfide, and elemental sulfur) 

was conducted.  In addition, the activities of methanogens, sulfate reducing bacteria, and 

facultative bacteria towards the overall treatment process were investigated.   
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METHODOLOGY 

 

Integrated sulfide removal systems 

 

Figure 1 shows a pilot-scale facility. The system consisted of a one-liter sulfide oxidizing unit 

(SOU) integrated with an anaerobic digester, a continuous stirred tank reactor (CSTR) with an 

internal settling zone, that had a working volume of 92 L.  The effluent from the digester was 

pumped out of the system into the SOU to provide medium for sulfide removal.   

 

 

Figure 1 – Schematic of the sulfide removing system. 

 

Sulfide-laden biogas produced in the digester was mixed with a small amount of air before being 
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forced through a diffuser located at the bottom of the SOU.  In the SOU, sulfide and oxygen 

flowed upward in a countercurrent direction against the digester effluent, where the formation of 

elemental sulfur took place.  The produced elemental sulfur was collected in the bottom of the 

SOU and discharged periodically.  Sulfide-free biogas was re-circulated back to the digester to 

scavenge the newly formed sulfide and brought back to the SOU again. The cycle was repeated.  

Hydraulic retention times (HRTs) of the pilot scale digester and the SOU were controlled at 20 

days and 4 hrs, respectively.  The digester was continuously mixed by means of biogas 

recirculation at the rate of 1.5 L/min (0.016 L/Ldigester-min) whereas the biogas recirculation rate 

of the SOU was 0.5 L/min (0.5 L/Lsou-min).  The integrated system was operated at a room 

temperature of 25±2°C.  The organic loading and COD rate to the digester were approximately 

0.8 g-VS/L-day and 1.2 g-COD/L-day, respectively (Table 1).  

 

Table 1 – The chemical analysis of the substrate. 

Parameters   

TS, g/L 21.1 ± 2.4 

VS, g/L 15.5 ± 1.5 

Alkalinity, g/L as CaCO3 1.3 ± 0.3 

pH 6.5 ± 0.7 

TCOD, g/L 24.2 ± 2.5 

SCOD, g/L 3.4 ± 0.6 

SO4, mg/L 122 ± 8 

Sulfides, mg/L ND1 

S2O3
2-, mg/L ND 

ND = Not detected 
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Aeration control: Two sets of pH and ORP probes were installed on top of the digester and 

SOU.  Every minute, the ORP/pH controller received signals from the ORP and pH electrodes in 

the SOU and responded to the changes of the ORP.  Depending on the ORP set point, the 

controller either turned ON or OFF a solenoid valve that would OPEN (injecting air) or CLOSE 

(stop injecting air), respectively.  The actual airflow into the SOU was also monitored with a 

flow meter.  A computer was used as a data acquisition system for monitoring and recording 

various necessary outputs.  During the beginning of the study, the aeration was controlled by 

ORP set points.  However, later on, a continuous aeration method (5 ml/min) was used and the 

corresponding ORP reading was monitored.  

 

Startup: The digester was inoculated with anaerobic digester sludge from a local wastewater 

treatment plant and fed with a synthetic organic substrate.  Fifteen liters of the synthetic organic 

substrate consisted of 338.1 g of commercial dog food (with minimum 27% of crude protein, 

minimum of 15% crude fat , maximum of 4% crude fiber, maximum 4% of moisture by weight), 

50 g of NaHCO3, and 15 ml of a trace element solution (prepared by adding 10 g of FeCl2.4H2O, 

2.0 g of CoCl2.6H2O, 1.0 g of EDTA, 500 mg of MnCl2.4H2O, 200 mg of Resazurin, 142 mg of 

NiCl2.6H2O, 123 mg of Na2SeO3, 90 mg of AlCl3.6H2O, 50 mg of H3BO3, 50 mg of ZnCl2, 50 

mg of (NH4)6MoO24.4H2O, 38 mg of CuCl2.2H2O, and 1.0 ml of HCl (37.7% solution) into 

distilled water to make 1 liter).  Substrate preparation was conducted by soaking the dog food for 

1 day, adding NaHCO3 and the trace element solution, and adjusting the volume to 15 L by tap 

water.  The substrate was kept in a 4°C refrigerator prior to feeding.  Table 1 shows the chemical 

analysis of the substrate.    
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Steady state operation:  After more than six months after digester start up, the SOU was 

connected to the digester as shown in Figure 1.  The testing of the integrated system was not 

conducted until the system was in a steady state, which was approximately three months (three 

HRTs of the digester) after the startup.  After all experiments under a no-aeration condition were 

completed, the system was subjected to aeration for sulfide removal.  The testing of the system 

under an aeration condition was not conducted until another steady state was reached, which was 

approximately another three-month period. 

 

Batch experiments 

 

Biomass preparation: Three batch experiments (methanogenic /sulfidogenic activity and 

specific oxygen uptake rate tests) were conducted.  The biomass was obtained by using a tube 

attached between the effluent port of the SOU and a bottle that had been flushed with 60:40% of 

N2/CO2 gas mixture to simulate the condition found in the integrated system.  To minimize the 

exposure to oxygen in the air, biomass from the digester was taken just before the experiment.  

Regardless of where the biomass came from, the biomass concentration in batch bottles was set 

to 2 and 1 g-VS/L for methanogenic/sufidogenic activity and specific oxygen uptake rate tests, 

respectively.  To achieve the desired biomass concentration in each bottle, an appropriated 

amount of reactor content was centrifuged at 3600 x g.  After discarding the supernatant, the 

biomass was then mixed with the appropriate amount of nutrient solution [prepared by adding 

7.95g of NaH2PO4.H2O, 6.0 g of K2HPO4, 2.8 g of NH4Cl, 1.0 g of MgSO4.7H2O, 1.0 g of Yeast 

extracts, 0.1 g of CaCl2, and 10 ml of trace element solution (above) into deoxygenated distilled 

water to make 1 liter], resuspended using a vortex mixer, and inoculated into each bottle.   
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Methanogenic activities.  The specific methanogenic activity tests (SMA) were conducted by 

using either 250-ml or 500-ml batch bottles with an active volume of 150 ml (total volumes of 

280 and 610 ml, respectively).  For methanogenic activity tests using acetate or glucose as a 

substrate, the 250-ml serum bottles were inoculated with concentrated biomass mixed with 15 ml 

of nutrient solution, acetate or glucose (2.0 g COD/L in the bottles), alkalinity (3.3 g/L as CaCO3 

in the bottles), and deoxygenated distilled water to make 150 ml.  After adjusting the pH to 7.0, 

the bottles were flushed with 80:20% of N2/CO2 gas mixture and capped with rubber septas.  For 

methanogenic activity tests using hydrogen as a substrate, the 500-ml serum bottles were 

inoculated with the same amount of chemicals and biomass as in the methanogenic activity tests 

without adding glucose or sodium acetate.  After adjusting the pH to 7.0, the bottles were flushed 

with 80:20% of H2/CO2 gas mixture, capped with rubber septas, and injected with 128 ml of 

80:20% of H2/CO2 gas mixture to result in 2 g COD/L (or 0.3 g COD) in the bottles.  All the 

bottles were incubated at room temperature (25 ± 2°C) on a shaker table rotating at 180 rpm.  All 

the experiments were duplicated.   

 

Methane production estimation: For bottles using acetate and glucose as a substrate, biogas 

production and methane concentration was measured periodically using a wetted syringe and a 

gas chromatograph, respectively.  To estimate the amount of methane production, the following 

equation was used:   

 

Methane production (ml) =  
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where M1 and M0 = methane concentration at the current time and at the previous time, 

respectively; V1 = volumetric biogas production; VH = head space volume of the serum bottle, 

which is equal to 130 ml.   

 

For bottles using hydrogen as substrate, after the pressure in bottles became negative, N2 was 

injected into bottles until the pressure was equal to atmosphere.  The methane concentration was 

then measured, and the methane production was estimated using the following equation:  

 

Methane production (ml) =   

 

where VH = head space volume of the serum bottle, which is equal to 460 ml.  When the bottles 

had positive pressure, the first equation to estimate methane production was used. The 

cumulative methane productions were plotted against experimental time, and the methane 

production rate was estimated from the highest slope.   

 

Sulfidogenic activities:  The sulfidogenic activity tests (SA) were conducted the same way as 

methanogenic activity except K2SO4 (3.0 g/L in the bottles) and Bromoethane sulfonic acid 

(BES), 98% (50 mM in the bottles) were added into the bottles as a source of sulfate and 

methane inhibitor, respectively.  Sodium acetate, glucose, or hydrogen was used as a substrate (2 

g COD/L in the bottles).  The COD/SO4
2- ratio in each bottle was set at 0.67 to minimize the 

methanogenic activity (Patidar and Tare, 2004).  Periodically, samples were taken from the 

bottles to measure sulfate concentrations.  The sulfate reduction rate was estimated from the 
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highest slope.  For all the experiments, duplicates were used.   

 

Specific oxygen uptake rate:  The specific oxygen uptake rate (SOUR) was conducted using 

BOD bottles with an active volume of 300 ml.  The bottles were inoculated with concentrated 

biomass mixed with 30 ml of nutrient solution, glucose (1.0 g COD/L in the bottles), alkalinity 

(0.8 g/L as CaCO3 in the bottles), and aerated distilled water to make 300 ml.  After adjusting the 

pH to 7.0, a dissolved oxygen (DO) probe was mounted on each bottle.  The depletion of the DO 

concentration was measured every minute to estimate SOUR.  Duplicates were used for all 

experiments. 

 

Analytical methods 

 

Methane, carbon dioxide, and nitrogen in the biogas were analyzed with a Gow Mac series 350 

GC-TCD fitted with an 84-mm (3.3-in.) stainless-steel column packed with Porapak T (60/80 

mesh) (GOW-MAC Instrument Company, Bethlehem, PA, USA). Helium was used as the carrier 

gas at a flowrate of 35 mL/min. The temperatures of the injection port, oven, and detector were 

at 150, 50, and 100°C, respectively.  Oxygen and hydrogen sulfide in the biogas were analyzed 

with a Gow Mac series 400 GC-TCD fitted with Chromosil ‘310 and Molesieve 18 80/100 (8 ft) 

column.  Helium was used as the carrier gas at a flow rate of 30 ml/min.  The temperatures of the 

injection port, oven, and detector were at 100, 60, and 115°C, respectively.  Hydrogen sulfide 

was also measured by a BW defender multi-gas detector (D4-2002) and Draeger tubes (RAE 

system).  All gas production data reported were standardized to standard temperature (0°C) and 

pressure (760 mm Hg). Sulfate and thiosulfate were analyzed by ion chromatograph (Dionex 
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model DX 500, Dionex Cooperation, Sunnyvale, CA, USA) with AN1 anionic column and 

ASRS® ULTRA II, 4 mm, suppressor (Dionex P/N 061561) at 50 mA suppressor conductivity.  

Sodium carbonate/biocarbonate eluent (1.8/1.7 mmole/L) was used as the mobile phase at 

conductivity at a flow rate of 1 ml/min. Volatile fatty acids (VFAs), Total solids (TS), Volatile 

solids (VS), aqueous sulfide, alkalinity, and COD measurements were made in accordance with 

the procedures listed in Standard Methods (APHA et al., 1995).  Elemental sulfur was quantified 

by a mass balance approach (Krishanakumar et al., 2005).  The soluble COD (SCOD) was 

defined as the COD component that passed through a 0.45-µm pore size filter.  pH and ORP was 

monitored through a pH/ORP controller (Consort R305, Consort nv, Belgium). 

 

 

RESULTS AND DISCUSSION 

 

Continuous experiments 

 

Micro-aeration experiment: In the beginning of the micro-aeration period of the continuous 

experiment, the aeration rate was arbitrarily set at 7 ml/min with an ORP set point of -210 mV.  

Figure 2 shows ORP and H2S profiles of the SOU and digester during the beginning of the 

micro-aeration period.  The numbers beside the data points represent hydrogen sulfide 

concentrations. 
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Figure 2 – ORP and H2S profiles during the beginning of the micro-aeration period. 

 

It took merely 24 hours to reduce the hydrogen sulfide in the biogas at the one-liter SOU from 

2500 to 3 ppmV and to less than 1 ppmV by the following day.  The ORP of the SOU increased 

from -462 mV to the set point ORP of -210 mV.  However, the ORP of the digester only went up 

22 mV from -484 mV.  
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Figure 3 – ORP profile of the SOU. 

 

Figure 3 demonstrates 8 cycles of the ORP profile of the SOU during a 2-hour period at the -210 

mV set point.  Before the -210 mV set point was reached, the aeration rate was approximately at 

7.0 ml/min (continuous aeration).  During the -210 mV set point, average aeration rate decreased 

to 3.1 ml/min due to intermittent aeration, corresponding to an O2 concentration of 0.31% during 

continuous aeration and 0.16% during intermittent aeration.  Since ORP is inversely proportional 

to logarithmic sulfide concentration (Janssen et al., 1998), the cycling pattern of ORP was likely 

to be the result of fluctuations of sulfide concentration in the SOU.  It is interesting to note that 

the off-gas H2S concentration during the period with or without aeration stayed less than 1 ppm.  

This means that only slight changes of dissolved sulfide concentrations could change the ORP 

and allow aeration to start/stop, adjusting the amount of air injected into the SOU. 
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Optimizing aeration rate by ORP.  Optimization was conducted by varying the ORP set point 

to yield the minimum aeration required for hydrogen sulfide removal in biogas.  The set points 

were randomly set in the following sequences to be -360 mV for 2 days, -410 mV for 1 day, -460 

mV for 3 days, -470 mV for 2 days, -460 mV for 4 days, -410 mV for 1 day, -435 mV for 1 day, 

-420 mV for 1 day, -410 mV for 1 day, -390 mV for 1 day, and then -370 mV for 1 day.  The 

ORP set points, the measured ORPs, and hydrogen sulfide concentrations at SOU headspace 

with the corresponding aeration rates were plotted from low to high in Figure 4.   

 

From Figure 4, the ORP of the SOU followed well with the ORP set point.  Increases in aeration 

rates directly resulted in the reduction in hydrogen sulfide at the SOU.  For ORP set points 

higher that -460 mV, increased ORP set point resulted in increased aeration rates.  However, at 

ORP set points of -460 mV or less, increases in aeration rates did not affect the ORP.  It is 

suggested that the ORP set point and the aeration rate needs to be more than -460 mV and 2.0 

ml/min to successfully remove hydrogen sulfide from biogas by using the integrated system. 
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Figure 4 – The relationship of ORP, aeration rate, and hydrogen sulfide at the SOU. 

 

Long-term experiments:  During long-term operation, a continuous aeration method was used 

to remove hydrogen sulfide from the biogas.  The goal was to find the minimum aeration rate 

that resulted in the lowest hydrogen sulfide concentration in the biogas at the SOU.  ORP 

changes were monitored throughout the study.  The aeration rates were varied between 2.0 to 6.0 

ml/min during two months of the experiment.  It was found that aeration rates needed to be 

approximately 4.0-5.0 ml/min to ensure that the hydrogen sulfide in the biogas at SOU was less 

than 5 ppmV.  This aeration rate was more than the 2.0 ml/min suggested earlier.  One of the 

reasons for this is that elemental sulfur formed in the SOU could possibly be reduced to 
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hydrogen sulfide with the biodegradable COD present, adding extra sulfide load to the SOU.  

Therefore, the SOU required more air.  Even at this high range of aeration rates, the ORP at the 

SOU was approximately -450 mV.  

 

Comparison experiments:  The comparison experiments between before and during micro-

aeration were conduced at different periods of time, approximately six months apart.  However, 

the system was operated in the same manner.  The biogas production, the percentage of methane, 

and the VFA in the reactor were approximately the same before the beginning of the micro-

aeration experiment.  Air injection of 5 ml/min was chosen to be the target continuous aeration 

rate.  During the two experiment periods, all necessary tests were conducted for 7 days in a row.  

Table 2 shows the performance of the integrated system before and during micro-aeration from 

one experiment. The results demonstrate that while the biogas production rates of the two 

periods were different, the methane production rates were comparable.  During micro-aeration, 

the hydrogen sulfide concentrations in the head space of SOU were never more than 4 ppmV 

and, most of the time, were less than a detection limit of 1 ppmV.  The percentage of methane in 

the biogas was slightly reduced as a result of N2 and O2 addition during micro-aeration.  The 

ORP levels of the digester and SOU increased from -477 and -461 mV to -465 and -446 mV, 

respectively.  Dissolved sulfides in the effluents from the digester and SOU decreased by 

approximately 80%. During micro-aeration, it was estimated that more than 98% of the sulfide in 

gas and liquid phases was converted to elemental sulfur, which resulted in a sulfide removal rate 

of 0.24 kg-S/m3-SOU/day.  As mentioned before, in theory, the molar oxygen/sulfide 

consumption (O2/S2-) of the biological sulfide oxidation to elemental sulfur needs to be at 0.5.  

However, in this pilot-scale experiment, the oxygen consumption rate was 1.36 kg-O2/m3-
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SOU/day, which resulted in the O2/S2- of 5.6.  In both conditions, COD and SCOD reductions of 

the integrated system were approximately 80 and 90%, respectively.  However, the SCOD of the 

SOU at influent and effluent was slightly reduced from 570 to 440 mg/L.  VFA and alkalinity 

ratios were less than 0.03 in both cases, indicating that the integrated system was healthy and not 

inhibited by the addition of small amount of air. 

 

Table 2 – Comparison between the performance of the system with and without micro-

aeration. 

  Before aeration After aeration 

  Reactor SOU Reactor SOU 

     

Biogas     

N2, % 0.5 ± 0.11 NT 5.8 ± 0.8 6.8 ± 1.0 

CH4, % 65.6 ± 0.6 NT 63.3 ± 2.2 62.6 ± 2.4 

CO2, % 33.6 ± 1.1 NT 30.2 ± 1.3 29.8 ± 1.1 

O2, % NT NT 0.4 ± 0.1 0.7 ± 0.1 

H2S, ppmV 2450 ± 150 2420 ± 170 29.0 ± 5.8 1.7 ± 1.7 

Biogas producition, L/d 54.2 ± 4.5 59.8 ± 2.6 

Methane production, L/d 35.0 ± 0.6 37.8 ± 0.1 

     

Liquid     

Sulfide, mg/L 17.7 ± 1.7 17.4 ± 1.7 1.1 ± 1.1 ND 

Sulfate, mg/L ND ND 0.1 ± 0.2 12.5 ± 8.3 

Thiosulfate, mg/L ND ND ND ND 
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ORP, mV -477 ± 8 -461 ± 7 -465 ± 12 -446 ± 3 

pH 7.17 ± 0.01 7.20 ± 0.01 7.24 ± 0.03 7.23 ± 0.01 

1Standard deviation of seven data points 

NT = Not tested 

ND = Not detected 

 

 

Batch experiment 

 

Methanogenic/sulfidogenic activities and specific oxygen uptake rates were studied using 

biomass from two different periods—with and without micro-aeration.  The activity tests were to 

evaluate the performance of the different groups of biomass in both the digester and the SOU.  

Table 3 summarizes the results obtained from the batch experiments.  The results showed no 

change in methanogenic activities utilizing different substrates.  This confirms the results from 

the continuous experiments that demonstrated the methane production rates from the two 

conditions were similar.  Even though oxygen is considered toxic to methanogens, the amount of 

oxygen injected into the system was not high enough to cause a toxicity effect.  However, after 

air injection, the activities of sulfate reducing bacteria were increased, especially, the sulfate 

reducing bacteria using hydrogen as substrate—the activities were more than doubled when  

oxygen was present in small amounts.  Specific oxygen uptake rates of the biomass in the 

digester at different conditions were similar; however, those of the biomass in the SOU were 

significantly different.  The uptake rate of the biomass in the SOU was almost tripled, indicating 

that aerobic or facultative bacteria were active when oxygen was present. 
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Table 3 – The results of biomass activity test. 

   Before aeration After aeration 

      Reactor SOU Reactor SOU 

Methanogenic activities         

g-CH4-COD/g-VS-day     

Acetate   0.21 ± 0.02 0.18 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 

Glucose   0.19 ± 0.02 0.16 ± 0.01 0.17 ± 0.01 0.15 ± 0.01 

Hydrogen     0.49 ± 0.18 0.47 ± 0.01 0.48 ± 0.02 0.46 ± 0.10 

       

Sulfidogenic activities     

mg-SO4-COD/g-VS-day     

Acetate   
6.30 ± 0.54 5.99 ± 0.72 7.15 ± 0.41 6.76 ± 0.28 

Glucose   
30.05 ± 2.21 29.35 ± 2.16 31.59 ± 7.75 35.13 ± 1.13 

Hydrogen     
44.13 ± 8.93 44.28 ± 7.93 104.73 ± 12.03 128.26 ± 31.36 

              

Specific oxygen Uptake 

rates     

mg-O2/g-VS-hr      

Glucose     3.90 ± 0.07 2.67 ± 0.09 3.80 ± 0.15 7.52 ± 0.15 
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CONCLUSIONS 

 

It was possible to use the integrated system to remove hydrogen sulfide from biogas (1-2 ppmV) 

with elemental conversion of more than 98% and minimal sulfate production.  The activities of 

the different groups of methanogens were not changed after micro-aeration, confirming the 

results that there was no deterioration of methane production rates in the continuous experiment. 

 When small amounts of oxygen were present, hydrogenotrophic sulfate reducing, aerobic, 

and/or facultative bacteria became significantly more active than the condition without oxygen. 

The findings of this study are significant in providing a preliminary design for an integrated 

sulfide removal system that is efficient, robust and yet inexpensive.   
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ABSTRACT 

 

Biogas utilization for electricity generation and other purposes can be hindered by the present of 

hydrogen sulfide because of its corrosive property to metals and production of sulfur dioxide 

after combustion.  In this research, ORP-controlled micro-aeration technique was proposed to 

remove hydrogen sulfide from biogas.  A 3-feet tall sulfide oxidizing unit (SOU) was equipped 

with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air 

throughout the column.  Hydrogen sulfide in biogas dissolved into a medium, i.e. the effluent of 

an anaerobic digester, and reacted with oxygen in air, resulting in sulfide-free biogas (< 1 ppmV) 

with minimal oxygen (< 1%) in the off-gas.  A long-term testing revealed that a ORP set point of 

-200 mV could be used as a controlling parameter for micro-aeration if the pH of medium was 

more than 6.  A short-term testing was conducted to estimate the maximum sulfide removal rate 

at different aeration and biogas recirculation rates.  It was found that the maximum sulfide 

removal rate of 0.61 kg/m3-day could be obtained when the SOU was operated at biogas 
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recirculation rate of 0.4 L/min (22.86 m3/m3-hr) and airflow rate of 1.0 ml/min (0.06 m3/m3-hr).  

Additional experiment also revealed that the ORP controlled aeration was sensitive enough to 

prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. 

 

KEYWORDS 

 

Hydrogen sulfide removal, anaerobic digester, biogas, ORP, micro-aeration, control 

 

INTRODUCTION 

 

Anaerobic treatment of waste streams containing sulfate/protein contributes several different 

types of sulfur-containing compounds, including hydrogen sulfide, mercaptan, etc., in biogas.  

The sulfur-containing compounds are not only malodorous and harmful but also hinder the use of 

biogas as renewable energy source, such as the uses in boiler for heating, internal combustion 

engine for electricity production, and other catalytic processes (Brown, 2003). 

 

When wastes containing sulfur compounds are fed to the digester, sulfate reducing bacteria 

(SRB), will reduce sulfur containing compounds to sulfides (Clanton and Schmidt, 2000), 

resulting in biogas contaminated with hydrogen sulfide.  The hydrogen sulfide in biogas limits 

the usage of biogas in many down stream processes.  The most popular use of biogas is the 

electricity generation via internal combustion engine.  However, many engine manufactures limit 

the hydrogen sulfide in biogas to be less than 100 ppmV (Zacari, 2003). To inject methane 

generated from digester to pipeline, hydrogen sulfide concentration is needed to be less than 4 
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ppmV (Amirfakhri et al., 2006; Sublette and Sylvester, 1987a).  In addition, burning of biogas 

containing hydrogen sulfide would produce sulfur oxides, which is a main precursor of acid rain 

that can damage any living organism and structure. 

 

Hydrogen sulfide can be removed from biogas by chemical (Droste, 1997; Kohl and Neilsen, 

1997), physiochemical (Guo et al., 2007), and biological processes (Jensen and Webb, 1995.  

Among these processes, biological sulfide removal is considered to be the cheapest alternative 

(Syed et al., 2006; ) due to high capital and operating costs and labor intensive nature of the 

counterparts (Buisman et al., 1991).    

 

In biological sulfide removal from gas or liquid streams, elemental sulfur is a preferred as a final 

product due to the lesser amount of oxygen requirement than having sulfate as end product 

(Janssen et al., 1997 and 1998).  Since element sulfur is insoluble, it can be removed from the 

streams relatively easy, which results in the reduction of overall sulfur species.  In theory, 

elemental sulfur would be the only product if the molar ratio of oxygen/sulfide consumption 

(O2/S2-) is 0.5.  However, the maximum elemental sulfur formation occurred at O2/S2- of 0.6 to 

1.0 (Janssen et al., 1995). 

 

During the sulfur formation, dissolved oxygen was never exceed 0.1 mg/L, giving the difficulty 

in controlling the oxygen input to the sulfide removal reactor.  Janssen et al., 1998 introduced the 

use of oxidation-reduction potential (ORP) to control O2/S2-. By controlling ORP at -137 mV, 

elemental sulfur was found to be a major product, accounted for over 80% of total sulfide loaded. 

 However, Krishnakumar et al. (2005) used similar reactor set up to find optimal ORP to 
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maximize elemental sulfur production and found that ORP range of -400 to -300 mV contributed 

around 80% sulfur recovery when the reactor was loaded by 19 kg-S2-/m3-day.  Khanal and 

Huang, 2003 used ORP to control oxygen injection to an upflow anaerobic filter, suffered from 

high level of sulfate (6000 mg/L) in the influent.  By setting operating ORP at 25 mV above 

operating ORP, the methane generation of the reactor improved by 46%.  To remove small 

amount of hydrogen sulfide in biogas, small amount of air can be injected into anaerobic digester 

at a rate of 7.5 % of biogas production, which can reduce hydrogen sulfide from about 680 to 

less than 10 ppmV (Ikbal et al., 2003).  

 

In this research, we proposed a low-cost, robust sulfide removal technique to removal sulfide 

from biogas generated from an anaerobic digester treating high solid wastes.  Because sulfide 

oxidizing unit (SOU) was not filled with packing media, the SOU was able to cope with much 

high solids than other sulfur oxidizing columns (Krishnakumar et al., 2005, Khanal et al., 2003, 

Koe and Fang, 2000).  Since, the SOU did not require nutrient, trace element addition, nor pH 

adjustment, it offer considerable advantages over typical biological sulfide removal systems.   

 

For full scale reactor design, the objectives of this research were (1) to estimate the maximum 

sulfide removal rates when a sulfide oxidation unit (SOU) was operated at various biogas 

recirculation rate and air injection rate and (2) to examine the feasibility of using ORP based 

micro-aeration technique for long-term hydrogen sulfide removal from biogas for maximizing 

elemental sulfur formation with minimal sulfate and thiosulfate formation. In addition, the mass 

balance of sulfur species (including sulfate, thiosulfate, sulfide, and elemental sulfur) was 

conducted. 
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METHODOLOGY 

 

The sulfide oxidizing unit 

 

Figure 1 shows a hydrogen sulfide removal system. The system consisted of a one-liter sulfide 

oxidizing unit (SOU) connected to an pilot scale anaerobic digester, a continuous stirred tank 

reactor (CSTR) with an internal settling zone, that had working volume of 92 L.  The 1.5-inch ID 

SOU was operated with liquid height of approximately 3 feet.  The effluent from the digester 

was occasionally pumped into the SOU to provide medium for sulfide removal. 

 

 

Figure 1 – Schematic of the sulfide removing system. 
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Sulfide-laden biogas produced in the digester was mixed with small amount of air before being 

forced through a fine diffuser located at the bottom of the SOU.  In the SOU, hydrogen sulfide in 

the biogas dissolved into the medium and reacted with oxygen in the injected air to form 

elemental sulfur.  After passing through a foam trap (not shown), sulfide-free biogas exited the 

system.  Hydraulic retention times (HRTs) of the pilot scale digester was controlled at 20 days.  

The digester was continuously mixed by means of biogas recirculation at the rate of 1.5 L/min 

(0.016 L/Ldigester-min) whereas the biogas recirculation rate of the SOU was set to either 0.2 or 

0.4 L/min (0.2 or 0.4 L/Lsou-min).  Both the SOU and the anaerobic digester were operated at a 

room temperature of 25±2°C.  The liquid and the head space volumes of SOU were 1.05 and 

11.1 L, respectively. 

 

Initially, the digester was inoculated with anaerobic digester sludge from a local wastewater 

treatment plant and fed with a synthetic organic substrate.  Fifteen liters of the synthetic organic 

substrate consist of 338.1 g of commercial dog food (with minimum 27% of crude protein, 

minimum of 15% crude fat , maximum of 4% crude fiber, maximum 4% of moisture by weight), 

50 g of NaHCO3, and 15 ml of trace element solution (prepared by adding 10 g of FeCl2.4H2O, 

2.0 g of CoCl2.6H2O, 1.0 g of EDTA, 500 mg of MnCl2.4H2O, 200 mg of Resazurin, 142 mg of 

NiCl2.6H2O, 123 mg of Na2SeO3, 90 mg of AlCl3.6H2O, 50 mg of H3BO3, 50 mg of ZnCl2, 50 

mg of (NH4)6MoO24.4H2O, 38 mg of CuCl2.2H2O, and 1.0 ml of HCl (37.7% solution) into 

distilled water to make 1 liter).  Substrate preparation was conducted by soaking of dog food for 

1 day, adding NaHCO3 and trace element solution, and adjusting the volume to 15 L by tap 

water.  The substrate was kept in a 4°C refrigerator prior to feeding.  The organic and COD 
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loading rate to the digester were approximately 0.8 g-VS/L-day and 1.2 g-COD/L-day, 

respectively. Prior to the experiments, the anaerobic digester had been operated for more than a 

year to ensure the steady state condition was reached.  Table 1 shows chemical analysis of the 

effluent and biogas compositions from the anaerobic digester.  

 

Table 1 – The chemical analysis of the effluent and biogas compositions. 

Parameters   

Chemical analysis  

TS, g/L 5.0±0.5a 

VS, g/L 1.7±0.4 

TSS, g/L 1.0±0.3 

VSS, g/L 0.9±0.2 

Alkalinity, g/L as CaCO3 4.8±0.2 

pH 7.24±0.03 

TCOD, g/L 3.2±0.3 

SCOD, g/L 0.6±0.1 

SO4, mg/L ND 

Volatile fatty acids (VFA), mg/L as acetic acid 61±23 

Sulfides, mg/L 22.6±2.6 

S2O3
2-, mg/L ND 

Biogas characteristics  

Biogas production rate, L/day 57.2±5.3 
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CH4, % 65.8±1.9 

CO2, % 33.6±1.5 

N2, % 0.2±0.1 

O2, % ND 

H2S, ppmV 2170±80 

aAn average and standard deviation of more than 5 data points                                                        

ND = Not detected 

 

Aeration control. Two set of pH and ORP probes were installed on top of the digester and SOU. 

 Air was supplied by compressed air tank equipped with a regulator to control airflow rate.  

Every minute, the ORP/pH controller would receive signal from the ORP and pH electrodes 

located at the SOU.  During the period when aeration was controlled by ORP, the ORP/pH 

controller would send signal to a set of solenoid valves to OPEN (injecting air) or CLOSE (stop 

injecting air), depending on ORP set point and ORP level at the moment.  However, during the 

period when constant aeration was utilized, the set of solenoid valves would be OPEN all the 

time to allow air into the SOU.  Airflow rate into the SOU was monitored with a digital flow 

meter that connected to a computer.  The computer was used as a data acquisition and 

monitoring system so that instantaneous and average airflow rates could be calculated.  To 

prevent pressurization of air line that could result in a surge of airflow into the SOU during the 

beginning of aeration, two solenoid valves (one normally OPEN and the other normally CLOSE) 

were installed.  This installation would allow air to exit the system during non-aeration period 

and allow air at predetermined flow rate into the SOU during aeration period.   
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Short-term experiment 

 

The estimation of maximum sulfide removal rate.  In normal operation, the sulfide removal 

rate of the SOU is only as high as the sulfide loading rate to the SOU.  The maximum sulfide 

removal rate can only be estimated when biogas containing sulfide is injected at the rate at which 

the sulfide loading rate is higher than the its removal rate, i.e. when the breakthrough of 

hydrogen sulfide occurs.  Because of the limited biogas supply of the pilot-scale anaerobic 

digester to the SOU, the sulfide removal rate is always underestimated.  However, during initial 

reduction of sulfide after air injection, the sulfide is reduced at the rate higher than the sulfide 

loading rate since biogas containing hydrogen sulfide is continuously injected to the SOU, yet 

hydrogen sulfide in the off-gas is reduced to less than 1 ppmV in merely hours.  Therefore, 

utilizing a mass balance technique, the maximum sulfide removal, which is higher than sulfide 

loading rate, can be estimated. 

 

This experiment consisted of six tests, each operated at different biogas recirculation rate (0.2 

and 0.4 L/min) and airflow rate (0.2, 0.4, and 1.0 ml/min).  To estimate the maximum sulfide 

removal rate, both medium and gas were sampled hourly from before air injection to when the 

hydrogen sulfide in the off-gas was reduced to less than 10 ppmV.  Then, a mass balance 

equation was applied to the data obtained from different intervals.  With at least two-hour 

duration, the interval that yielded the highest sulfide removal rate was chosen as the sulfide 

removal rate for the test.  Before each test, the SOU was cleaned and filled with new batch of 

medium from the anaerobic digester.  
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From a simple mass balance equation, 

 

€ 

IN −OUT − Accumulation = Reaction  

 

Given, 

 

€ 

IN −OUT =QinCS,in −QoutCS,out  

€ 

Reaction = rSV  

 

€ 

Accumulation =
dnS
dt

= Accugas + Acculiquid  

 

€ 

Accugas =
dnS,g
dt

 

 

€ 

Acculiquid =
dnS,l
dt

 

 

€ 

dnS,g = nS,g,1 − nS,g,0  

 

€ 

dnS,l = nS,l,1 − nS,l,0 +∑nS,l,add ,i −∑nS,l ,remove,i  

 

€ 

dt = t1 − t0  
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€ 

nS,g,0 = CS,g,0Vh  

 

€ 

nS,l ,0 = CS,l ,0V  

 

€ 

nS,g,1 = CS,g,1Vh  

 

€ 

nS,l ,1 = CS,g,1V  

 

€ 

∑nS,l ,add ,i =∑CS,l,add ,iVadd ,i  

 

€ 

∑nS,l ,remove,i =∑CS,l ,remove,iVremove,i 

 

Therefore, the mass balance becomes 

 

€ 

rS =
QinCS,in−QoutCS,out − (CS,g,1 −CSg,0 )

Vh

dt
− (CS,l,1 −CS,l,0 )

V
dt
−∑CS,l ,add ,i

Vadd ,i

dt
+∑CS,l ,remove,i

Vremove,i

dt
V

 

 

where 

€ 

Qin and 

€ 

Qout= Inflow and Outflow biogas rate (L/hr) from time 

€ 

t0 to

€ 

t1, 

€ 

CS,in and

€ 

CS,out= 

Average inflow and Outflow hydrogen sulfide concentration in gas phase (mole-S/L-gas) from 

time 

€ 

t0 to

€ 

t1, 

€ 

CS,g,0  and 

€ 

CS,g,1= Hydrogen sulfide concentration in gas phase (mole-S/L-gas) at 

time 

€ 

t0 and 

€ 

t1,

€ 

CS,l ,0  and 

€ 

CS,g,1= Sulfide concentration in liquid phase (mole-S/L) at time 

€ 

t0 and 

€ 

t1, 

€ 

rS= reaction rate (mole/L-hr or mg/L-hr), 

€ 

nS,g,0and 

€ 

nS,g,1= mole of hydrogen sulfide in gas 
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phase at time 

€ 

t0 and 

€ 

t1, 

€ 

nS,l ,0and 

€ 

nS,l ,1 = mole of sulfide in liquid phase at time 

€ 

t0 and 

€ 

t1, 

€ 

nS,l ,add ,iand 

€ 

nS,l ,remove,i= mole of sulfide in liquid phase of the medium added /removed due to ith 

sampling between 

€ 

t0 and 

€ 

t1, 

€ 

CS,l ,add ,i and 

€ 

CS,l ,remove,i= Sulfide concentration in liquid phase (mole-

S/L) of the medium added /removed due to ith sampling between 

€ 

t0 and 

€ 

t1 at, 

€ 

Vh  = the head 

space volume of the SOU (L), 

€ 

V = liquid volume of the SOU (L), 

€ 

Vadd ,iand 

€ 

Vremove,i  = volume of 

the medium added /removed due to ith sampling between 

€ 

t0 and 

€ 

t1,  and 

€ 

t  = time (hr).  Since, the 

liquid height of the SOU was maintained constant, 

€ 

∑Vadd ,i=

€ 

∑Vremove,i .   

 

ORP-controlled aeration rate.  In this experiment, the effect of instantaneous air injection rate 

on average aeration rate was studied.  The air injection of controlled by ORP.  Whenever the 

ORP of the SOU was below -200 mV for 5 seconds, air injection would start at predetermined 

instantaneous air injection rates (approximately 1.3, 1.7, 2.5, 4.8, and 12.9 ml/min) and, after the 

ORP increase more than -200 mV for 5 seconds, the air injection would stop.  The on-and-off 

cycle repeated.  To calculate the average aeration rate, the total amount of air injected during five 

cycles (five air injections) was divided by the total time taken to complete the five cycles.  On 

the other hand, the instantaneous air injection rate was defined as the amount of air injected 

during air injection periods divided by air injection time.  To minimize the effect of pH change 

on ORP, the experiment was conducted with a very narrow pH range of 7.10 to 7.15.  Biogas 

injected to the SOU in the testing period was consistent in terms of the concentration of each 

constituent, especially hydrogen sulfide, and the amount the biogas.  The biogas recirculation 

rate at the SOU was 0.4 L/min.  
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Long-term experiment 

 

The long-term experiment was conduced to mimic the operation of the SOU and to examine the 

feasibility of using the ORP as a controlling parameter for sulfide removal.  In the real reactor 

operation, the medium would be replaced to maintain the operating pH of the SOU.  However, to 

simulate the worse case scenario of the reactor operation, the pH of the SOU was not controlled 

and allowed to deplete as sulfuric acid formed.  In this experiment, the aeration was controlled 

by ORP for approximately two-third of the experiment that lasted about 30 days.  The ORP was 

set to inject air when the ORP went below -200 and 0 mV for more the 5 seconds.  Prior to the 

experiment the SOU was cleaned and filled with new medium from the anaerobic digester.  The 

SOU was operated at biogas recirculation rate of 0.4 L/min and airflow rate of 1.0 ml/min.  The 

ORP and pH values reported herein were averages of daily data.  

 

Analytical methods 

 

Methane, carbon dioxide, and nitrogen in the biogas were analyzed by a Gow Mac series 350 

GC-TCD fitted with a 84-mm (3.3-in.) stainless-steel column packed with Porapak T (60/80 

mesh) (GOW-MAC Instrument Company, Bethlehem, PA, USA). Helium was used as the carrier 

gas at a flowrate of 35 mL/min. The temperatures of the injection port, oven, and detector were 

at 150, 50, and 100°C, respectively.  Oxygen and hydrogen sulfide in the biogas were analyzed 

with a Gow Mac series 400 GC-TCD fitted with Chromosil ‘310 and Molesieve 18 80/100 (8 ft) 

column.  Helium was used as the carrier gas at flow rate of 30 ml/min.  The temperatures of the 

injection port, oven, and detector were at 100, 60, and 115°C, respectively.  Hydrogen sulfide 
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was also measured by BW defender multi-gas detector (D4-2002, BW Technologies, Arlington, 

TX, USA) and colorimetric gas detection tubes (RAE systems, San Jose, CA, USA).  All gas 

production data reported were standardized to standard temperature (0°C) and pressure (760 mm 

Hg). Sulfate and thiosulfate were analyzed by ion chromatograph (Dionex model DX 500, 

Dionex Cooperation, Sunnyvale, CA, USA) with AN1 anionic column (Varian Inc., Palo alto, 

CA, USA), and ASRS® ULTRA II, 4 mm, suppressor (Dionex P/N 061561) at 50 mA 

suppressor conductivity.  Sodium carbonate/biocarbonate eluent (1.8/1.7 mmole/L) was used as 

mobile phase at a flow rate of 1 ml/min.  Elemental sulfur was estimated using mass balance 

approach (Krishanakumar et al., 2005).  pH and ORP was monitored through pH/ORP controller 

(Consort R305, Consort nv, Belgium).  Airflow rate was monitored by digital differential 

pressure air flow meter with RS-232 (EW-32446 series, Cole-Parmer, Vernon Hills, IL, USA).  

The pH/ORP controller and digital gas flow meter were connected to a personal computer for 

data requisition.  Volatile fatty acids (VFAs), Total solids (TS), Volatile solids (VS), Total 

suspended solids (TSS), Volatile suspended solids (VSS), aqueous sulfide, alkalinity, and COD 

measurements were made in accordance with the procedures listed in Standard Methods (APHA 

et al., 1995). The soluble COD (SCOD) was defined as the COD component that passed through 

a 0.45-µm pore size filter.  All equipment was calibrated before every experiment.   
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RESULTS AND DISCUSSION 

 

Short-term experiment 

 

The estimation of maximum sulfide removal rate.  In this experiment, the SOU was subjected 

to different airflow (0.2, 0.4, and 1.0 ml/min) and biogas recirculation rates (0.2 and 0.4 L/min).  

Figure 2 shows the reduction of hydrogen sulfide in the off-gas of the SOU.  It can be seen that 

the maximum sulfide removal rate occurred during the first two to three hours after air injection. 

 It took approximately 6.5, 5.0, and 3.0 hours for hydrogen sulfide concentration in the off-gas of 

the SOU to be reduced to less than 10 ppmV for the SOU with airflow rate of 0.2,0.4, and 1.0 

ml/min, respectively.  However, after 1 days of aeration, the concentration could be reduced to 

less than 1 ppmV at all operating conditions.   
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Figure 2 – Reduction of hydrogen sulfide in the off-gas of the SOU. 

 

After unit conversion, the resulting terms in the above mass balance equation are shown in Table 

2.  Approximately 50% of sulfide removal was contributed from the reduction of hydrogen 

sulfide in the headspace due to large headspace volume of the SOU (11.1 L).  From Table 2, it 

can be seen that increases in airflow and/or biogas recirculation rates increased the reaction rate, 

which responded to increases in the changes of ORP and O2 content in the headspace of the 

SOU.  The experiment revealed that sulfide removal rate was significantly affected by the 

change of airflow rate.  When the airflow rate increased two-fold from 0.2 to 0.4 ml/min, the 

sulfide removal rate increased by approximately 31 and 27% at biogas recirculation rate of 0.2 

and 0.4 L/min, respectively.  However, with the same airflow rate, double the biogas 
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recirculation rate only slightly improved sulfide removal rate (approximately 10% or less).  The 

highest sulfide removal rate of 25.2 mg-S/hr or 0.61 kg-S/m3-day was obtained from the SOU 

subjected to airflow and biogas recirculation rate of 1.0 ml/min and 0.4 L/min, respectively.  

This suggests that it may not be wise to increase biogas recirculation rate since it would likely 

just increase operation cost without a major gain in sulfide removal rate.  This experiment also 

demonstrated that sulfide removal at the rate higher than the sulfide loading rate (in this case, 8.1 

mg-S/L-hr or 0.19 kg/m3-day) could be estimated by using the previously mentioned mass 

balance equations.  

 

Table 2 – The performance of the SOU. 

 

Airflow 

rate 

Biogas 

recirculation 

rate 

IN-OUT Accugas Acculiquid 
Reaction 

(rSV) 

Change 

in 

ORP 

Change in 

O2 

ml/min L/min mg-S/hr mg-S/hr mg-S/hr mg-S/hr mV/hr %/hr 

0.2 0.2 3.0 -6.7 -3.5 12.6 5 0.03 

0.4 0.2 4.2 -8.5 -4.6 16.5 9 0.06 

1.0 0.2 2.5 -13.8 -9.2 24.3 19 0.12 

0.2 0.4 3.0 -7.4 -4.2 13.9 7 0.04 

0.4 0.4 3.6 -8.9 -6.1 17.7 24 0.06 

1.0 0.4 2.4 -15.7 -8.5 25.2 46 0.14 
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ORP-controlled aeration rate.  In this experiment, ORP was used as a controlling parameter for 

aeration control.  Before the experiment, the SOU was operated at a constant airflow and biogas 

recirculation rates of 1.0 ml/min and 0.4 L/min, respectively.  The hydrogen sulfide 

concentration was maintained at less than 1 ppmV before and throughout the experiment.  Figure 

3 shows the effect of instantaneous airflow rate on ORP and average airflow rate.  Five waves 

represented five ORP profiles obtained from five tests that varied instantaneous airflow rates—

1.3, 1.7, 2.5, 4.8, and 12.9 ml/min from left to right.  There are five cycle in each wave.  Each 

cycle consisted of one air injection, which was responded to the change of ORP at the moment.  

Whenever the ORP stayed below the set point of -200 mV for 5 seconds, the air injection started. 

 From the figure, it can be seen that when the instantaneous airflow rate increased, each ORP 

cycle was higher in amplitude and wider, taking longer time to finish five cycles.  The 

differences between maximum and minimum ORP and the durations of air injection for 

instantaneous airflow rates of 1.3, 1.7, 2.5, 4.8, and 12.9 ml/min were summarized in Table 3.  
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Figure 3 – ORP profiles responded from different air injection rates. 

 

 

In response to the increase in the instantaneous airflow rates,  the ORP raised quickly and 

stopped airflow to the SOU.  After oxygen was depleted, the ORP went down again.  The higher 

the instantaneous airflow, the higher the ORP went up, which took longer time for it to come 

down.  This limited the amount of air injected to the SOU by acting like dumpener for air 

injection.  If it had not been for ORP controlled aeation technique, the percentage of air injection 

would have been 23 %, and the oxygen content in biogas would have been 5 % for the highest 

air.  Instead, the average airflow rate was only 2.0 ml/min, 6.5 times less than the instantaneous 

airflow rate, and the oxygen content in biogas was approximately 1.0%.  This indicates that the 
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ORP controlled aeration was sensitive enough to prevent oxygen overdosing.  Moreover, the 

ORP control technique can be used as safety measure for preventing too much air from being 

injected and causes combustion failure at biogas engine.  

 

 

Table 3 – Effect of the different instantaneous airflow rate on ORP profiles and 

characteristics of air injection. 

 

Parameters      

Instantaneous airflow, ml/min 1.3 1.7 2.5 4.8 12.9 

Differences between maximum 

and minimum ORP, mV 
20 28 34 105 148 

Duration of air injection, min 18 11.4 9.6 7.0 4.6 

Average airflow rate, ml/min 1.0 1.1 1.3 1.5 2.0 

 

 

Long-term experiment 

 

In long-term experiment, the SOU was subjected to aeration with ORP controlled technique.  

The experiment consisted of two phases whereby the aeration was controlled by ORP and 

followed by constant aeration.  To observe the limit of the aeration controlled by ORP, the 

medium of SOU was not intended to change, except for a small replacement of medium due to 

periodical samplings.  The pH of the SOU was allowed to decrease naturally during the first 18 

days of the experiment.  On the day 19 and 20, the pH was gradually adjusted from 
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approximately 6.4 to 5.1 by adding 6N HCl.  Thereafter, the pH decreased naturally.  Two ORP 

set points were used during the experiment to control aeration rate—the set points at -200 mV 

from day 1 to day 20 and at 0 mV on day 22.  On day 21 and after day 22, the air injection rate 

was set at 1.0 ml/min with or without ORP control. 

 

Figure 4 shows the profiles of pH, ORP, off-gas hydrogen sulfide concentration, and 

concentration of dissolved sulfide, sulfate, and thiosulfate during the long time experiment.  In 

general, the removal of sulfide from biogas gradually reduced pH of the medium due to 

hydrogen sulfide absorption into the medium and a conversion of sulfide or other sulfur species 

to sulfate.  The decrease of pH resulted in the increase of daily average ORP even though the 

ORP set point was -200 mV.   
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Figure 4 – The profiles of pH (a), off-gas hydrogen sulfide concentration (b), ORP (c), and 

concentrations of dissolved sulfide, sulfate, and thiosulfate during the long-

term experiment. 

 

 

Table 4 shows several characteristics of interaction between ORP and aeration.  As pH 

decreased, average aeration rate decreased.  When pH was at 7.17 on day 3, the average aeration 

rate was 0.54 ml/min (or 0.78 L/day).  However, the rate decreased to 0.36 ml/min (or 0.52 

L/day) when the pH was 6.43.  This was because, regardless of the sulfide or oxygen contents in 

the medium, the change of pH shifted ORP value, which resulted in the deterioration of aeration 

control. As pH decreased, ORP value increased after each aeration but became more difficult to 
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come down to the set point of -200 mV.  This made the ORP waves wider and taller.  During this 

period, the characteristics of ORP cycles also changed.  The number of ORP cycles for every 100 

min reduced from 4.8 to 3.5 while the difference between maximum and minimum ORP 

increased from 7 to 58 mV.  However, the oxygen was still enough to oxidize all of sulfide in the 

SOU and reduce off-gas hydrogen sulfide concentration to less than 1 ppmV.   

 

Table 4 – Effect of ORP controlled aeration on the characteristics of ORP and aeration. 

 

Parameters        

Day 3 8 12 17 19 20 22 

pH 7.17 6.97 6.71 6.43 5.69 5.12 3.30 

#Cycle/100 min 4.8 4.3 3.9 3.5 2.1 0.9 1.1 

Different between max and min ORP, mV 7 23 38 58 86 49 23 

Air injection per cycle, min 10.8 11.6 11.0 9.0 9.5 7.0 11 

Average aeration rate, ml/min 0.54 0.53 0.44 0.36 0.22 0.07 0.11 

 

 

As pH was adjusted on the day 19 and 20 to 5.69 and 5.12, the average aeration rates were 

merely 0.22 and 0.07 ml/min, resulting in the off-gas concentration of hydrogen sulfide increased 

to 83 and 700 ppmV, respectively.  On 21st day, the aeration was changed to continuous aeration 

at 1.0 ml/min, and the off-gas hydrogen sulfide concentration came down to less than 1 ppmV 

again.  On day 22, the aeration rate was controlled by ORP with a set point of 0 mV.  This 

improved the sulfide removal rate greatly from the set point at -200 mV, but the off-gas 

concentration was found to be 70 ppmV during air injection period and 128 ppmV during non-

aeration period.  When increasing aeration rate to 1.0 ml/min, the off-gas hydrogen sulfide 
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concentration remained less than 1 ppmV even though the pH was dropped to 2.32 at the end of 

the experiment.  At that low pH, only approximately 1 % of total sulfide can be in ionized form.  

On average, approximately 80% of sulfide in the biogas was converted to elemental sulfur.  A 

maximum conversion of 85% was found after the first day of operation.  However, because of 

sulfate production (Figure 4d), the conversion was diminished to approximately 72%.  A small 

percentage of thiosulfate (4%) was found only the first few days of the experiment (Figure 2, 

phase 1), and it was not found again even at continuous aeration (Figure 2, phase II). 

 

 

CONCLUSIONS 

 

It has been demonstrated that it is feasible to control the micro-aeration by ORP for a long-term 

operation of hydrogen sulfide removal from biogas.  However, it is required that the pH of the 

medium be controlled at certain range, otherwise, the ORP based aeration control will be 

ineffective and sulfide removal will become less efficient due to inadequate oxygen.  With 

constant pH, ORP controlled aeration was sensitive enough to prevent oxygen overdosing, 

resulting in a dampening effect to maintain the average aeration rate, regardless of the change of 

instantaneous air injection rate.  The sulfide removal rate of 0.61 kg/m3-day was found to be 

maximum for a SOU with approximately 3 feet in medium height.  Approximately 80% of 

sulfide was converted to elemental sulfur. 

 

 

 



 

73 

REFERENCES 

APHA, A., WEF (1995). Standard Methods for the Examination of Water and Wastewater. 

Washington, D.C., American Public Health Association, American Water Works 

Association, and Water Environment Federation. 

Amirfakhri, J., Vossoughi, M. and Soltanieh, M. (2006). Assessment of desulfurization of natural 

gas by chemoautotrophic bacteria in an anaerobic baffled reactor (ABR). Chemical 

Engineering and Processing, 45, 232-237. 

Brown, R. C. (2003). Biorenewable Resources: Engineering New Products from Agriculture. 

Ames, IA, A Blackwell Publishing Company. 

Buisman, C. J. N., Lettinga, G., Paasschens, C. W. M. and Habets, L. H. A. (1991). 

Biotechnological sulphide removal from effluents. Water Sci. Technol., 24, 347–356. 

Clanton, C. J. and Schmidt (2000). Sulfur Compounds in Gases Emitted from Store Manure. 

Transactions of ASAE, 43(5), 1229-1239. 

Droste, R. L. (1997). Theory and practice of water and wastewater treatment. John Wiley & Son, 

Inc. 

Guo, J., Luo, Y., Lua, A.C., Chi, R., Chen, Y., Bao, X. and Xiang, S. (2007). Adsorption of 

hydrogen sulphide (H2S) by activated carbons derived from oil-palm shell. Carbon, 45, 

300-336. 

Ikbal, T. Y., Shigematsu, T., Morimura, S. M. and Kida, K. (2003). Methanogenic activity and 

repression of hydrogen sulfide evolved during high rate thermophilic methane 

fermentation of municipal solid waste. Japanese Journal of Water Treatment Biology, 

39(1), 17-24. 

Jensen, A.B. and Webb, C. (1995). Treatment of H2S-containing gases: A review of 



 

74 

microbiological alternatives. Enzyme Microb. Technol., 17, 2-10. 

Janssen, A. J. H., Ma, S. C., Lens, P. and Lettinga, G. (1997). Performance of a sulfideoxidizing 

expanded-bed reactor supplied with dissolved oxygen. Biotechnol. Bioeng., 53,  32-40. 

Janssen, A. J. H., Meijer, S., Bontsema, J. and Lettinga, G. (1998). Application of the redox 

potential for controling a sulfide oxidizing bioreactor. Biotechnol. Bioeng., 60(2), 147-

155. 

Khanal S.K. and Huang J.C. (2003). ORP-based oxygenation for sulfide control in anaerobic 

treatment of high-sulfate wastewater. Wat. Res., 37(9), 2053-2062. 

Khanal, S.K., Shang, C. and Huang, J.C. (2003). Use of ORP (oxidation–reduction potential) to 

control oxygen dosing for online sulfide oxidation in anaerobic treatment of high sulfate 

wastewater. Water Sci. Technol., 47(12), 193-199. 

Koe, L.C.C. and Yang, F. (2000). A bioscrubber for hydrogen sulphide removal. Water Sci 

Technol., 41(6), 141-145. 

Kohl, A. and Neilsen, R. (1997). Gas Purification. Houston, Texas, Golf Publishing Company. 

Krishnakumar, B., Majumdar, S. and Manilal, V. B. H., A. (2005). Treatment of sulfide 

containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor 

(RFLR). Wat. Res., 39, 639-647. 

Sublette, K. L. and Sylvester, N. D. (1987a). Oxidation of hydrogen sulfide by Thiobacillus 

denitrificans: desulfurization of natural gas. Biotechnol. Bioeng., 29, 249–257. 

Syed, G., Soreanu, G., Falletta, P. and Beland, M. (2006). Removal of hydrogen sulfide from gas 

streams using biological processes - A review. Canadian Biosystem Engineering, 48, 2.1-

2.14. 

Zicari, S. M. (2003). Removal of Hydrogen Sulfide from Biogas using Cow-Manure Compost, 



 

75 

MS-Thesis, Cornell University. 



 
76 

MICRO-AERATION FOR SULFIDE REMOVAL AT A MUNICIPAL  

WASTEWATER TREATMENT PLANT 

 

A paper to be submitted to Water Research 

 

Thanapong Duangmanee and Shihwu Sung 

Department of Civil, Construction and Environmental Engineering, 

Iowa State University, Ames, IA 50011, USA 

 

 

ABSTRACT 

 

Feasibility studies for H2S removal from biogas by micro-aeration were conducted at the Ames 

Water Pollution Control Facility (AWPCF) by using different types of mediums available at the 

plant, i.e. plant effluent, mixed liquor, and digester supernatant.  Anaerobic digesters at the plant 

produce approximately 60 m3/hr of biogas (50,000 ft3/day) with H2S of less than 1000 ppmV.  

With the sulfide oxidizing unit (SOU), the goal was to remove H2S to less than 10 ppmV with 

less than 2% of O2 in off-gas.  Using generalized linear regression, a model predicting output 

H2S concentration, based on input H2S concentrations, medium heights, and biogas flow rates, 

was suggested.  With 95% confidence, output H2S concentration was affected by changes in 

liquid heights the most, followed by changes in biogas flow rates.  From the experiment at 

AWPCF, it was found that operating pHs were affected by the amount of alkalinity in the liquid 

media and that the removal efficiencies were affected by the operating pH.  Among all the liquid 
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media tested, digester supernatant showed the greatest potential with more than 99% of H2S can 

be removed at operating pH of 7.0 and volumetric biogas flow rate of 21.6 m3/m3-hr.  By 

increasing trace metal contents and temperature of the medium, the hydrogen sulfide removal 

rate was greatly improved.  The operating cost of the full-scale system was estimated to be 

approximately $2/kg-S-removed. In addition, it was also revealed that abiotic sulfide oxidation 

was accounted for 95% of overall sulfide oxidation and that over 70% of H2S was converted to 

elemental sulfur.   

 

 

KEYWORDS 

 

Biological sulfide removal, biogas, ORP, micro-aeration, hydrogen sulfide, municipal waste 

water treatment plant, model, trace metals 

 

 

INTRODUCTION 

 

In a municipal anaerobic digester, biogas often contains up to 400 mg/m3 of siloxanes which 

deposits as silicon in cylinder wall and piston if engine generator is used for electricity 

production (Dewil et al., 2006).  This level of siloxanes Siloxanes are often removed by 

absorbents e.g., activated carbon and silica gel (Schweigkofler and Niessner, 2001).  Prior to 

siloxane removal from biogas, the removal of H2S is a prerequisite to prevent the sulfide from 

blocking siloxane binding sites on the absorbents, and shortening the absorbents’ life.  In 
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addition, the H2S in biogas is not only poisonous but also reduces the quality of biogas to be used 

as a renewable energy source.  The maintenance cost is expected to increase by almost 4 folds if 

H2S is not reduced prior to an engine-generator set (Pipatmanomai et al., 2009).  H2S of less than 

100 ppmV is recommended to prevent the corrosion of biogas engine (Zicari, 2003).  H2S has to 

be lowered to less than 4 ppmV if pipeline-grade nature gas is to be produced from digester 

biogas.   

 

To minimize H2S in biogas prior to siloxane removal and electricity generation using internal 

combustion engine at Ames Water Pollution Control Facility (AWPCF), experiments were 

conducted to verify the possibility of using a patented micro-aeration H2S removal technology.  

The experiments were conducted at two places—the Environmental Research Laboratory lab at 

Iowa State University (ISU) and the AWPCF.  When the experiment was conducted at the lab, 

synthetic biogas (H2S in helium) was used to simulate the H2S-laden biogas while effluent from 

pilot-scale digester was used as medium for sulfide oxidizing unit (SOU).  However, when at the 

AWPCF, real biogas and different types of water were used to as medium to feed to the SOU. 

 

The primary objectives of the study were (1) to demonstrate an innovative, low-maintenance, 

low-cost, laboratory proven H2S removal unit at AWPCF and (2) to collect full-scale design 

parameters i.e. sizing, air dosing rate, sulfide removal efficiency, and operating cost estimate for 

AWPCF.  Addition to the primary objectives, a linear regression model was constructed to 

predict the concentration of output H2S based on input H2S concentration, biogas flow rate, and 

height of the SOU.  A test to quantify the contribution of biotic/abiotic sulfide removal was also 

conducted. 
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The study provides the potential cost effective solution to solve the siloxane removal problem 

encountered at AWPCF.  The outcomes of this research would not only benefit the city of Ames 

in terms of cost savings, operator safety, etc. but all biogas-to-energy facilities in the nation.  

   

 

METHODOLOGY 

 

Sulfide oxidizing unit 
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Figure 1 – The schematic of the sulfide oxidizing unit. 

A lab-scale sulfide oxidizing unit (SOU) used in this study was made up of several sections of 

Plexiglass tubes (ID 1.5 inch) to make height variation possible among 4, 6, and 8 ft (Figure 1).  

The bottom of the SOU was equipped with a medium bubble diffuser made by glass.  pH and 

ORP electrodes are located on the top of the SOU.  During the experiment, the tips of the 

electrodes were submerged in the medium at all time.  The biogas and air entered the SOU 

through pumping by a peristaltic pump and exited at the top of the SOU.  The SOU was operated 

as flow-through, meaning there was not recirculated.  The SOU was tested on three liquid 

heights—3, 5 and 7.5 ft.  At medium depths of 3, 5 and 7.5 ft, the SOU had active volume of 

0.99, 1.65 and 2.50 L, respectively. 

 

Liquid Media of Sulfide Oxidizing Unit 

 

The AWPCF employs a two-stage trickling filter for wastewater treatment with a contact basin at 

the downstream to provide additional aeration.  The first stage filter is designed for BOD 

removal while the second stage filter is designed for ammonia removal via nitrification process.   

 

Four different types of media were chosen.  This included (1) pilot-scale digester effluent, (2) 

plant effluent, (3) mixed liquor from biological treatment unit, and (4) digester supernatant.  The 

pilot-scale digester effluent was obtained from a 92-L digester operated fed with synthetic 

organic waste with organic loading rate of 1.2 g-COD/-day (Duangmanee et al., 2009).  The 

plant effluent was obtained from an effluent storage tank in the influent pumping station (wet 

well) while the mixed liquor and digester effluent were obtained from the contact basin, and a 
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top sampling port of the secondary anaerobic sludge digester, respectively.  Table 1 shows the 

characteristics of the medium.  The alkalinity of the plant effluent and mixed liquor were low, 

which was likely the result of the nitrification process employed at the plant. 

 

Table 1 – Characteristics of the medium. 

 
 

Pilot-scale 
digester 
effluent 

Plant 
effluent 

Mixed 
liquor 

Digester 
supernatant 

pH   7.24 5.83 6.92 7.53 

Alkalinity, mg/L as CaCO3 4,800 75 160 3,100 

Total Solids (TS), g/L 4.95 0.45 3.06 8.40 

Total Suspended solids (TSS), g/L  0.96 0.05 2.42 6.86 

 

 

To quantify the contribution of chemical sulfide oxidation, an abiotic sulfide removal study was 

conducted.  In this test, the digester supernatant, autoclaved at 121 °C for 30 min, was used as a 

medium.  Prior to each experiment, the different types of medium were fed through a sieve with 

opening size of approximately 1 mm to prevent clogging in the SOU.  

 

Biogas characteristics 

 

At the lab, H2S in helium was used as synthetic biogas.  The synthetic biogas was fed to the SOU 

from three different tanks with H2S concentration of 1000, 2000, and 3000 ppmV.  At the 

AWPCF, biogas was obtained from anaerobic digesters fed with waste activated sludge (WAS) 

and primary sludge.  During the experimental period, H2S concentrations were between 260 and 
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650 ppmV. The biogas consisted of the following constituents: CH4 59%, CO2 39%, and N2 2%.  

 

Short-term experiment  

 

The first short-term experiment was a series of H2S removal tests conducted at ISU.  The tests 

employed the use of various liquid heights of the SOU of 3, 5, and 7.5 ft, inlet H2S 

concentrations of 1000, 2000, and 3000 ppmV, and H2S loading rates of 0.83, 1.65, and 2.48 

g/day.  The inlet H2S concentrations were chosen since they cover the range of H2S 

concentrations from typical digesters, treating both municipal sewage sludge and agriculture 

wastes.  All the tests in the experiment were conducted at an operating pH of 7.5 by periodically 

adding either 6N HCl or NaOH to maintain the pH.  The gas mixture of H2S and helium was 

used in this experiment to supply H2S at various concentrations.  Air was injected into the SOU 

at a sufficient rate so that a target output H2S concentration of less than 10 ppmV could be 

achieved.  Regardless of output H2S concentration, air injection rate would stop if it resulted in 

an off-gas O2 concentration exceeding 2%.  From each test, the lowest outlet H2S concentration 

with minimum airflow rate was reported. 

 

The second short-term experiment was conducted in a pumping station at the AWPCF, using 

biogas produced from the anaerobic digesters.  Three different types of liquid media were used to 

find optimal operating conditions to maximize H2S removal efficiency.  The operating 

parameters included operating pH, ORP, biogas flow rate, airflow rate, and the medium height of 

the SOU.  During the experiment, off-gas H2S concentration, and O2 concentration were 

monitored.  The experiment consisted of several sets of tests.  In each set of tests, one set of 
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operating pH, liquid height, and type of medium was chosen.  The operating pH was adjusted by 

adding sodium bicarbonate to increase alkalinity until the desired operating pH was reached.  

This was an equilibrium pH resulted from a carbonate system—CO2 in biogas and carbonate 

species in medium.  After alkalinity addition, tested medium was pumped into the SOU.  Then, 

biogas and air were pumped into the SOU at different flow rates, biogas flow varied from 77 to 

896 ml/min and airflow varied from 4 to 179 ml/min.  The airflow rates were adjusted to meet 

either 5, 10, or 20% of biogas flows.  During the experiment, H2S concentrations in biogas varied 

from 260 to 651 ppmV.  Every set of the tests in short-term experiment lasted approximately 6-8 

hours. 

 

Validation experiment 

 

After conducting series of short-term and long-term experiments, validation experiment was 

conducted at the Environmental Research Laboratory at ISU, using the digester supernatant as 

the medium.  Unlike the short-term and long-term experiments, the validation experiment used a 

H2S in helium, instead of real biogas.  Since H2S in the biogas at the AWPCF was never higher 

than 700 ppmV, the use of higher concentrations in this experiment would ensure the worst-case 

scenario of a typical municipal sludge digester.  The experiment consisted of several tests of 

which their operating pH (7.0 and 7.5) levels and liquid heights (5 and 7.5 ft) were varied.  The 

operating pH of the SOU was controlled by either adding 6 N of HCl or NaOH.  The validation 

experiment was conducted at room temperature (25-28 °C) whereas the short-term and long-term 

experiments were conducted at 15 °C or less.  Biogas flow rates were varied from 300 to 1490 

ml/min with H2S concentration of 1000 ppmV.  Airflow rate was 10% that of biogas.  Because of 
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the difference of sampling dates, the digester supernatant in this test had TS and TSS of 26.9 and 

26.1 g/L, respectively. 

 

Analytical methods 

 

The following parameters were analyzed in liquid samples: pH, oxidation reduction potential 

(ORP), temperature, total solids (TS), total suspended solids (TSS), dissolved sulfide, insoluble 

sulfide, sulfate, thiosulfate, and elemental sulfur.  In gas sample, the following parameters were 

tested: methane (CH4), carbon dioxide (CO2), nitrogen (N2), oxygen (O2), and, hydrogen sulfide 

(H2S).  TS, TSS, dissolved sulfide, and insoluble sulfide were determined according to the 

Standard Methods (APHA, 1995).  CH4, CO2, and N2 were tested by using gas chromatography 

(GOW-MAC Series 350) equipped with a thermal conductivity detector (TCD) and fitted with a 

84-mm (3.3-in.) stainless-steel column packed with Porapak T (60/80 mesh) (GOW-MAC 

Instrument Company, Bethlehem, PA, USA).  Helium was used as the carrier gas at a flowrate of 

35 mL/min. The temperatures of the injection port, oven, and detector were at 150, 50, and 

100°C, respectively.  H2S and O2 were determined by a multi-gas detector (BW defender Multi-

Gas D4-2002-SP, BW Technologies, Arlington, TX, USA), colorimetric gas detection tubes 

(RAE Systems, San Jose, CA), or gas chromatography (GOW-MAC Series 400) equipped with 

TCD fitted with Chromosil ‘310 and Molesieve 18 80/100 (8 ft) column.  Helium was used as 

the carrier gas at flow rate of 30 ml/min.  The temperatures of the injection port, oven, and 

detector were at 100, 60, and 115°C, respectively.  Gas flows were measured by several 

rotameters (Flow line Options, Macedonia, OH) calibrated for different types of gas.  Sulfate and 

thiosulfate were analyzed by ion chromatograph (Dionex model DX 500, Dionex Cooperation, 
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Sunnyvale, CA, USA) with AN1 anionic column (Varian Inc., Palo alto, CA, USA), and ASRS® 

ULTRA II, 4 mm, suppressor (Dionex P/N 061561) at 50 mA suppressor conductivity.  Sodium 

carbonate/biocarbonate eluent (1.8/1.7 mmole/L) was used as mobile phase at a flow rate of 1 

ml/min.  Elemental sulfur was quantified by mass balance approach (Krishanakumar et al., 

2005).  pH and ORP was monitored through pH/ORP controller (Consort R305, Consort nv, 

Belgium). 

 

RESULTS AND DISCUSSION 

 

Short-term experiment 

 

Sulfide removal at high loading rate.  The first short-term experiment was conducted at the 

Environmental Research Laboratory lab at ISU.  This experiment consisted of 27 tests, subjected 

to the variations of input H2S concentrations (1000, 2000, and 3000 ppmV), liquid heights (3, 5, 

and 7.5 ft), and H2S loading rate (0.83, 1.65, and 2.48 g/day).  H2S loading rates were normalized 

to volumetric H2S loading rates by dividing the loading rates by reactor volumes (0.99, 1.70, and 

2.50 L) at different liquid heights (3, 5, and 7.5 ft, respectively).   

 

Figure 2 shows the effects of H2S loading rate, input H2S concentration, and liquid height on H2S 

removal efficiency.  At all liquid heights, increases in H2S loading rates would result in 

decreases in H2S removal efficiencies.  To maintain the same H2S loading rate with lower H2S 

concentrations, gas flow rates had to be increased.  By so doing, H2S removal efficiencies at the 

same H2S loading rate were lower at H2S concentrations of 1000 or 2000 than at 3000 ppmV.  In 
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the tests with 5-ft SOU, the H2S removal efficiencies at inlet H2S concentration of 3000 ppmV 

were 99 and 97% for volumetric H2S loading rates of 0.97 and 1.46 kg/m3-day, respectively.  

However, the efficiencies were reduced to 79 and 53% for the same volumetric loading rate 

(Figure 2a and 2c) at inlet H2S concentration of 1000 ppmV.  This indicated that the SOU was 

more sensitive to the change in biogas flow rates than the change in H2S concentrations at the 

inlet.  The maximum volumetric H2S removal rate obtained from the experiment was 1.41 kg/m3-

day (58.7 g/m3-hr) at liquid height of 5 ft, volumetric H2S loading rate of 1.46 kg/m3-day (60.8 

g/m3-hr), and inlet H2S concentration of 3000 ppmV.  However, to maintain the off-gas H2S 

concentration to be less than 10 ppmV, the maximum volumetric H2S loading rate cannot exceed 

0.49, 0.48, and 0.99 kg/m3-day (20.3, 20.3, and 41.3 g/m3-hr) for inlet H2S concentration of 

1000, 2000, and 3000 ppmV at medium heights of 5, 5 and 7.5 ft, respectively. 
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Figure 2 – Effects of H2S loading rate, input H2S concentration, and liquid height on H2S 

removal efficiencies. 

 

Since H2S concentration from anaerobic digesters at the AWPCF would never surpass 1000 

ppmV, from the experiment, it is suggested that the SOU can be fed with biogas up to 15.9 

m3/m3-hr when operated at 5-ft liquid height for outlet H2S concentration of less than 10 ppmV 
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at operating pH of 7.5.  However, if it is preferred to have outlet H2S concentration of less than 1 

ppmV, the SOU can be fed with biogas up to 10.8 m3/m3-hr when operated at 7.5-ft liquid height 

at pH of 7.5. 

 

Since ORP is related to the amount of oxygen and sulfide in the medium, it can be used as a 

controlling parameter for micro-aeration for sulfide removal (Duangmanee and Sung, 2009). To 

ensure that the off-gas H2S concentration stayed below 10 ppmV, the experiment suggested the 

ORP be more than approximately -220 mV when the operating pH was 7.5 (Figure 3).  This can 

be achieved by providing sufficient oxygen (or air) for sulfide oxidation. 

 

 

 

Figure 3 –  A Plot between ORP and off-gas H2S concentration at pH = 7.5. 
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Generalized Linear Model 

 

A Generalized Linear Model (GLM) was used to model the relationship between the hydrogen 

sulfide output concentrations, the liquid height of SOU, the hydrogen sulfide input concentration, 

the flow rate, and the loading rate.  The descriptive statistics, Pearson correlation and regression 

analysis were performed using the data collected from the experiments.  In the linear regression 

analysis, the hydrogen sulfide output concentration (H2S) is considered the dependent variables 

whereas the flow rate (F), the hydrogen sulfide input concentration (C), and the liquid height (H) 

of SOU are the explanatory variables.  The descriptive statistics and the Pearson correlation of 

dependent and explanatory variables are provided in Table 2 and 3, respectively.  

 

Table 2 – Descriptive Statistics. 

 Mean Unit Std. Deviation 
Hydrogen sulfide output concentration (H2S) 347.926 ppmV 520.880 
Liquid height (H) 5.167 ft 1.876 
Hydrogen sulfide input concentration (C) 2000.000 ppmV 882.060 
Flow rate (F) 550.000 ml/min 362.085 
 

Table 3 – Pearson Correlation. 

  H2S H C F H*C H*F C*F 
Pearson 
correlation    
  

H2S 1.000 -0.566 0.021 0.279 -0.386 -0.045 0.535 

 H -0.566 1.000 0.000 0.000 0.635 0.461 0.000 
 C 0.021 0.000 1.000 -0.689 0.728 -0.576 0.000 
 F 0.279 0.000 -0.689 1.000 -0.502 0.836 0.632 
 H*C -0.386 0.635 0.728 -0.502 1.000 -0.180 0.000 
 H*F -0.045 0.461 -0.576 0.836 -0.180 1.000 0.528 
 C*F 0.535 0.000 0.000 0.632 0.000 0.528 1.000 
Sig.  
(1-tailed) 

H2S . 0.001* 0.458 0.080 0.023* 0.411 0.002* 
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 H 0.001* . 0.500 0.500 0.000* 0.008* 0.500 
 C 0.458 0.500 . 0.000* 0.000* 0.001* 0.500 
 F 0.080 0.500 0.000* . 0.004* 0.000* 0.000* 
 H*C 0.023* 0.000* 0.000* 0.004* . 0.185 0.500 
 H*F 0.411 0.008* 0.001* 0.000* 0.185 . 0.002* 
 C*F 0.002* 0.500 0.500 0.000* 0.500 0.002* . 
 

 

At 95% confidence level, the Pearson correlation indicates that there is a significant relationship 

between hydrogen sulfide output concentration (H2S) and liquid height (H). For the predictors 

flow rate (F) and hydrogen sulfide input concentration (C), although their individual correlations 

to hydrogen sulfide output concentration (H2S) were not found significantly, their effect size was 

show up through their interaction (C*F). Moreover, the interaction of liquid height (H) and the 

hydrogen sulfide input concentration (C) is significantly related with the hydrogen sulfide output 

concentration (H2S). 

To model a multivariate regression models, besides four main independent predictor variables 

(i.e., H2S, F, C and H), the products of different explanatory variables (i.e., interaction terms) 

were also included in the regression analysis. Adding the interaction terms into the regression 

analysis can greatly expand understanding of the relationships among the variables in the model. 

 

Table 4 – Model Summary. 

Model Sum of Squares Df Mean 
Square 

F Sig. 

Regression 4959973 6 826662.2 7.895 0.000 

Residual 2094243 20 104712.1   
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Total 7054216 26    

R Square 0.703     

 

Table 5 – Coefficients.  

Model Coefficients T Sig  

(Constant) -1289.657 -1.315 0.203  

H 241.516 1.375 0.184  

C 0.533 1.572 0.132  

F 0.788 0.938 0.360  

H*C -0.130 -2.278 0.034a  

H*F -0.251 2.284 0.070a  

C*F 0.001 -1.912 0.006a  
a indicates the significant regression coefficients at 95% confidence level. 
 

Results from the regression analysis showed in Tables 4 and 5 indicate that the flow rate, the 

interaction between the liquid height of SOU and the flow rate, the interaction between and the 

hydrogen sulfide input concentration, and the interactions among the three main independent 

variables significantly determine the magnitude of the hydrogen sulfide output concentration.  

With the coefficient from table 11, a regression equation can be formulated as: 

. 

Since the interaction of the flow rate and the hydrogen sulfide input concentration (C*F) can also 

be described in term of the loading rate (L), the equation can be rewritten as:  
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where k is a constant value at a specific operating temperature and atmospheric pressure. 

 

At the operating temperature of 25°C and pressure 740 mmHg, k = 1.834x10-6, therefore the 

GLM to predict the hydrogen sulfide output concentration (H2S) when the operating temperature 

of 25°C and pressure at 740 mmHg is: 

 

 

 

Where 

H2S = hydrogen sulfide output concentration (ppmV) 

H = liquid height (ft) 

C = hydrogen sulfide input concentration (ppmV) 

F = flow rate (ml/min) 

L = loading rate (g/day) 

 

The regression equation expresses the best predictor of the hydrogen sulfide output concentration 

(H2S), given the liquid height (H), the flow rate (F), the hydrogen sulfide input concentration (C) 

and the loading rate (L). The R Square of 0.703 indicates that approximately 70.3% of the 

variability of the hydrogen sulfide output concentration (H2S) is accounted for by the liquid 

height (H), the flow rate (F), the hydrogen sulfide input concentration (C), the loading rate (L), 

and their interaction terms.  The regression also suggests that the change in the loading rate has 

the most effect on the change in hydrogen sulfide output concentration followed by the change of 
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the liquid height, the change of the flow rate, the change in the hydrogen sulfide input 

concentration, the change in the interaction of the liquid height and the flow rate, and finally the 

change in the interaction of the liquid height and the hydrogen sulfide input concentration. 

Moreover, at a given load rate and height, the change in flow rate (F) has more effect on the 

change in level of the hydrogen sulfide output concentration (H2S) than the change of hydrogen 

sulfide input concentration (C). 

 

   

Figure 4 –  Plots between experimental and predicted off-gas H2S concentrations. 

 

By assuming the negative calculated off-gas H2S concentrations equal to zero, the experimental 

and predicted values are plotted against H2S loading rate (Figure 4).  It can be seen that the 

experimental values were in close agreement with the predicted values, suggesting that the 

regression equation could be used to predict the off-gas H2S concentration at the given 
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conditions. 

 

Sulfide removal with various media.  The second short-term experiment was conducted at the 

AWPCF.  The experiments started with conducting series of sulfide removal tests examining the 

feasibility of using several types of media available at the AWPCF, namely plant effluent, mixed 

liquor, and digester supernatant.  The main goal was to reduce off-gas H2S concentration to < 10 

ppm with off-gas O2 < 2%.  The plant effluent was chosen due to a study in the laboratory at 

ISU, which suggested that significant sulfide removal could occur even when distilled water was 

used as medium (data not shown).  In addition the plant effluent is readily available and is easy 

to be disposed at the AWPCF.  A sulfide removal mechanism may be contributed from chemical 

and biological oxidations.  Previous researches suggested that biological contribution was a 

majority when sulfide concentration is low (Buisman et al., 1990b).  However, as sulfide 

concentration increases, the sulfide oxidation will be shifted towards the chemical one.  At the 

AWPCF, the sulfide concentration in biogas is < 1000 ppmV.  Therefore, adding mixed liquor 

that contained sulfide oxidizing bacteria to the medium would likely to add biological 

contribution to the overall sulfide oxidation.  Furthermore, some trace metals can serve as 

catalysts for sulfide oxidation (O’Brian and Birkner, 1977).  Heavy metals, such as Fe, Ni, Cu, 

Zn, Mn, and Co, are known to precipitate sulfide (Lewis and van Hille, 2006; Poulton et al., 

2002; Nedwell and Reynold, 1996).  As a result, digester supernatant that contains many trace 

metals may be a good candidate for sulfide oxidation by micro-aeration.  

 

Even though the experiment was conducted at three different percentages of airflow rates, only 

results at 10% air-to-biogas flow rate are shown in Table 2.  When alkalinity was not altered, the 
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operating pHs of the SOU when using plant effluent, mixed liquor, and digester supernatant were 

approximately 5.25, 5.65, and 6.75, respectively.  Because of the low operating pH, H2S removal 

efficiencies were not enough to reduce the off-gas H2S concentration to < 10 ppmV throughout 

the examined flow rates.  When the operating pHs were increased to 7.0 and 7.5, the H2S 

removal efficiencies increased to as much as 79.5 and 96.0% for plant effluent and mixed liquor, 

respectively.  However, the off-gas H2S concentration still could not meet the target of < 10 

ppmV.   When using digester supernatant as medium, H2S removal efficiencies improved 

greatly.  Up to 99.9% of H2S removal efficiency could be achieved with off-gas H2S 

concentration of < 1 ppmV and O2 of < 2%.  When the SOU was operated at pH of 7.2, the 

lowest off-gas H2S concentration (9 ppmV) was obtained at the biogas flow rate of 218 ml/min.  

 However, the highest H2S loading rate of 0.36 kg/m3-day (15.0 g/m3-hr) could be achieved 

while the off-gas O2 concentration was 0.7% when the SOU was operated at pH of 7.5.  In this 

case, the H2S concentration was merely 12 ppmV.  

 

 

Table 6 – Performance of the SOU when using plant effluent, mixed liquor, or digester 

supernatant as medium at liquid height of 7.5 ft and air at 10% of biogas flow 

rate 

Medium Operating 
pH 

ORP 
(mV) 

Biogas flow 
(ml/min) H2S (ppmV) % removal O2 (%) 

    Inlet Outlet   
Plant Effluent 5.26 -77 77 260 128 51.0 1.7 
(No pH adjustment) 5.26 -84 135 260 185 29.0 2.1 
 5.27 -81 219 260 197 24.5 2.5 
 5.25 -88 517 279 233 16.3 2.1 
 5.27 -88 896 279 251 10.0 2.1 
Plant Effluent 6.99 -195 218 361 148 58.9 1.9 
(pH = 7.0) 6.99 -206 517 361 202 43.9 1.9 
 6.99 -211 896 361 221 38.6 1.9 
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Plant Effluent 7.54 -195 218 357 73 79.5 2.3 
(pH = 7.5) 7.53 -202 517 357 158 55.6 1.3 
 7.54 -206 896 357 163 54.4 1.3 
Mix liquor 5.68 -92 218 477 319 33.2 1.3 
(No pH adjustment) 5.66 -96 517 477 345 27.6 0.9 
 5.63 -95 896 477 354 25.8 0.7 
Mix liquor 7.01 -203 218 506 255 49.6 1.3 
(pH = 7.0) 6.98 -207 517 506 286 43.5 0.9 
 6.97 -208 896 506 330 34.8 0.7 
Mix liquor 7.55 -201 218 480 19 96.0 0.9 
(pH = 7.5) 7.54 -224 517 480 59 87.7 0.9 
 7.52 -240 896 480 130 72.9 0.7 
Digester Supernatant 6.78 -147 218 378 72 81.0 1.1 
(No pH adjustment) 6.76 -164 517 378 143 62.2 0.7 
 6.73 -168 896 378 181 52.2 0.9 
Digester Supernatant 7.25 -143 218 444 9 98.0 1.3 
(pH = 7.2) 7.19 -175 517 444 53 88.1 0.7 
 7.18 -190 896 444 94 78.8 0.7 
Digester Supernatant 7.57 -109 218 530 <1 99.9 1.3 
(pH = 7.5) 7.54 -134 517 530 3 99.4 0.7 
 7.52 -166 896 530 12 97.7 0.7 

 

 

Abiotic and biotic sulfide oxidation.  To quantify abiotic and biotic contribution for sulfide 

oxidation, two tests were conducted using two types of media.  One medium was obtained from 

digester supernatant after alkalinity addition.  The other medium also came from digester 

supernatant but after autoclaving to suppress biological activity and followed by adjustment of 

alkalinity.  The two tests were conducted using approximately the same H2S concentrations (530-

550 ppmV) and operating pH (7.5).  Figure 5 shows the contribution of abiotic/biotic sulfide 

removal.  The H2S removal rates were adjusted so that the H2S loading rates of abiotic and biotic 

tests were equal.  It can be seen that the majority of sulfide oxidation was due to abiotic 

oxidation (or chemical oxidation).  At the biogas flow rate of 896 ml/min and airflow at 10%, 

H2S removal rate obtained from using non-autoclaved digester supernatant was 0.36 kg/m3-day 

(15.2 g/m3-hr); however, the sulfide removal rate from autoclaved supernatant was 0.35 kg/m3-

day (14.4 g/m3-hr).  This indicates that the overall sulfide removal was contributed 
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approximately 95% from abiotic oxidation.  

 

 

 

Figure 5 – H2S removal rate for abiotic/biotic H2S removal tests. 

 

Long-term operation of SOU 

 

After conducting the short-term experiment, the operating parameters (biogas flow rate, airflow 

rate, operating pH, type of liquid media, and liquid height) were chosen for the long-term study.  

The parameters that yielded the highest removal rate with H2S and O2 concentration < 10 ppmV 

and 2%, respectively, were selected.  Consequently, in the long-term experiment, the SOU 

received a biogas flow rate of 706 ml/min with 10% airflow and operated at pH of 7.5 with 

liquid height of 7.5 ft.   
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Figure 6 – Profile of ORP and Off-gas H2S concentration of long-term experiment 

 

 

The ORP and H2S concentration profiles in off-gas were shown in Figure 6.  During the first 

three hours of the experiment, only biogas with average H2S concentration of 620 ppm was 

injected into the SOU, resulted in an increase in H2S concentration in the off-gas from 0 to 

approximately 260 ppm with a decrease of ORP to -350 mV.  Then, air was injected into the 

SOU at the rate of 10% of biogas flow rate.  Only about 30 min after air injection, H2S 

concentration in the off-gas was reduced from 270 to 8 ppmV, coinciding with an increase of 

ORP to -160 mV.  Throughout the test, O2 concentration was between 0.7-1.3%.  The ORP and 

H2S concentration stayed near the level for approximately 24 hours.  After 24 hours of aeration, 
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the biogas flow rate was increased by approximately 30% to 896 ml/min.  As a result, the ORP 

decreased to -185 mV with off-gas H2S concentration of 18 ppmV.  In an attempt to reduce 

outlet H2S concentration, airflow rate was increased to 20% of biogas.  However, outlet H2S 

concentration only decreased to 13 ppmV.  

 

After the test, liquid samples were periodically drawn from the SOU for dissolved sulfide, 

insoluble sulfide, sulfate, and thiosulfate.  The amount of elemental sulfur was estimated by mass 

balance subtraction technique.  The quantities of all sulfur species are normalized to report in 

terms of sulfur (Figure 7).   

 

 

Figure 7 – Sulfur mass balance during the long-term experiment. 
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Since the SOU was not deprived of O2 prior to the start up, some element sulfur was formed 

during the first two hours of biogas injection; however, only slight change of elemental sulfur 

was found prior to air injection.  During the period, some of the H2S dissolved in to the medium, 

increased the concentration of dissolved sulfide, and elevated the H2S concentration in the off-

gas.  The amount of insoluble sulfide increased from 22 to 26 mg/L, indicating the binding of 

sulfide with trace metals in the medium.  After air injection, the concentration of dissolved and 

insoluble sulfides decreased to approximately 0.5 and 17 mg/L, thereby reducing the off-gas 

concentration of H2S to < 10 ppmV within about 30 min.  Significant amount of elemental sulfur 

was formed after aeration.  It was estimated that the elemental sulfur was formed at the rate 0.25 

kg/m3-day, and by the end of the experiment, over 70% of sulfur species was elemental sulfur.  

Dissolved sulfide, insoluble sulfide, sulfate, and thiosulfate constituted approximately 0.1, 3.0, 

3.0, 23.0%, respectively.  It was also interesting to note that not until the 8th hour of the 

experiment did the thiosulfate and sulfate begin to form.  These formations may be the result of 

the oxidation of elemental sulfur accumulated inside the SOU. 

 

Validation experiment 

 

The validation experiment was conducted at ISU, using digester supernatant obtained from the 

AWPCF.  The SOU with liquid height of 5 and 7.5 was used in the study.  Two pH levels, 7.0 

and 7.5, were chosen as operating pHs.  When the SOU was operated at pH of 7.0, no alkalinity 

was adjusted since the exiting alkalinity (approximately 5,000 mg/L as CaCO3) could maintain 

the operating pH.  In fact, when the biogas has CO2 of approximately 40%, the operating pH 

should have been close to 7.3 based on the relationship among operating pH,% of CO2 in biogas, 
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and alkalinity as described by Parkin and Owen, 1986.  However, for conservative approach, the 

pH of 7.0 was used in the test.  

 

Table 7 – Performance of the SOU when using digester supernatant at liquid height of 5 

and 7.5 ft and pH of 7.0 and 7.5, performed at temperature of 25-28°C. 

Medium  
Operating 

pH   ORP 
Biogas flow 

(ml/min) Sulfide (ppm) % removal 
   ml/min inlet Outlet  

 7.00 -148 675 1000 <1 99.9 
pH = 7.0 at 7.5 ft 7.01 -164 900 1000 9 99.1 
 6.99 -215 1350 1000 83 91.7 
 6.99 -266 300 1000 21 97.9 
pH = 7.0 at 5 ft 7.01 -259 450 1000 56 94.4 
 7.01 -242 900 1000 133 86.7 
 7.50 -128 900 1000 3 99.7 
pH = 7.5 at 7.5 ft 7.50 -179 1350 1000 2 99.8 
 7.50 -183 1490 1000 3 99.7 
 7.51 -190 900 1000 3 99.7 
pH = 7.5 at 5 ft 7.52 -239 1350 1000 17 98.3 
 7.51 -241 1490 1000 32 96.8 

 

 

Table 7 shows the performance of the SOU in this experiment.  It can be seen that the sulfide 

removal efficiencies of the test conducted at ISU were significantly higher than those conducted 

at the AWPCF (Table 6).  Since the experiment was conducted at the Environmental Research 

Laboratory, it was performed at temperature of 25-28 °C (compare to 8-15 °C at the AWPCF).  

Furthermore, TSS content of digester supernatant was approximately 26.1 g/L, which was 

significantly higher than 8.4 g/L used in the other experiment.  The digester supernatant with 

higher TSS would likely to have higher contents of trace metals.  The higher temperature and 

higher concentrations of trace metals would allow higher sulfide removal efficiency and rate, 

which also allow lower H2S concentration in the off-gas (compare to Table 6).   
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When operated at pH of 7.0, the SOU with liquid height of 7.5 ft could receive biogas up to 900 

ml/min and still meet the target off-gas H2S concentration of < 10 ppmV with O2 of < 2%.  

However, if the operating height of 5 ft is required, the operating pH must be 7.5 to meet the 

targets at biogas specific flow rate of 900 ml/min (21.6 m3/m3-hr).  Lastly, if the high biogas 

flow rate is priority, then the liquid height and operating pH need to be 7.5 ft and 7.5, 

respectively.  Up to 1490 ml/min (35.8 m3/m3-hr) of biogas specific flow can be maintained, and 

the target is still met.  Table 8 sums up the requirements and solutions to meet the target.  

 

Table 8 –  H2S loading rate to meet the targets (H2S < 10 ppmV and O2 < 2%) at different 

requirements.  

Requirements Minimum 
Operating pH 

Minimum 
Liquid height 

(ft) 

Maximum specific 
flow rate (m3/m3-hr) 

H2S loading rate 
(kg/m3-day) 

No pH adjustment 
required 7.0 7.5 21.6 0.66 

Height of 5 ft 
required 7.5 5 21.6 1.00 

High flow rate 
required 7.5 7.5 35.8 1.09 

 

 

Operating cost and other requirements 

 

The anaerobic digester at the AWPCF produces approximately 50,000 ft3/day (approximately 35 

cfm or 60 m3/hr) with H2S concentration < 1000 ppmV.  The assumption was made for the 

operation to be robust, low-maintenance, low-cost, easy-to-operate; therefore, the adjustment of 
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alkalinity will not be suitable for the operation at the plant. The design without alkalinity 

addition can handle H2S loading rate up to 0.66 kg/m3-day (27.5 g/m3-hr) at a liquid height of 7.5 

ft and operating pH of 7.0.  The digester supernatant with alkalinity approximately 5000 mg/L as 

CaCO3 and TSS of 26 g/L will be used as medium.  The operating temperature needs to be 

approximately 25°C; therefore, insulation is needed. 

 

Required reactor volume.  H2S loading rate is estimated by the following equations: 

 

 

 

where Mp = micro-gram, GMW = molecular weight = 32 g/mole, Va = 1 m3, T2 = Operating 

temperature (°K) = 298 °K, P2 = Operating pressure (kPa) = 98.658 kPa, and ppmV = 

Concentration of H2S = 1000 ppmV.  H2S loading rate of 1.82 kg-S/day can be obtained by 

multiplying H2S concentration (kg-S/m3) with biogas flow rate (m3/day).  The required volume 

can be calculated by dividing the H2S loading rate by volumetric loading rate (kg-S/m3-day) 

from the experiment.  The resulting required volume is approximately 3 m3. For 7.5-ft SOU, the 

inside diameter needs to be 4.5 ft to obtain the active volume of 3.4 m3 

 

Medium replacement for maintaining pH.  The requirement for medium replacement was 

estimated using worst-case scenario when H2S dissolved into the medium and turn into SO4
2- 

during H2S removal. 
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H2S ↔  HS- + H+ 

2HS- + O2  2S + 2OH- 

2HS- + 4O2  2SO4
2- + 2H+ 

 

From the scenario, two moles of H+ is formed per mole of H2S dissolved.  With alkalinity of 

5000 mg/L as CaCO3, the required medium replacement to maintain pH is approximately 0.05 

m3/hr.   

 

Medium replacement for maintaining temperature.  The requirement for medium 

replacement for temperature (25°C) was estimated by the following energy balance equation: 

 

 

 

Where m = mass of substance (g), Cp = heat capacity (J/g-°C), and T2 - T1 = temperature 

difference (°K).  Heat capacity of gas mixture (1.30 J/g-°C) can be calculated by assuming that 

the biogas contains 54% of CH4, 36% of CO2, and 10% of air.  Heat capacity of the medium is 

assumed to be equal to that of water (4.18 J/g-°C).  The temperature of input medium and biogas 

were assumed to be 20°C and 43°C, respectively.  Consequently, the required medium 

replacement to maintain temperature is approximately 0.08 m3/hr. 

 

Operating cost.  The main operating cost will be electricity consumption of motor used to run a 

blower.  It was estimated that a blower with 2.5 BHP could be used to pass biogas through the 
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SOU at 35 cfm and 5 psi.  Operating cost can be calculated from the following equation: 

 

€ 

KWinput =
BHPBlowerx0.746

Efficiencymotor ⋅ EfficiencyVFD
 

 

With motor efficiency of 85%, VFD efficiency of 97%, electricity cost of $0.10/KWhr, and 24-

hour operation, the electricity cost is $5.43/day.  With 99.1% H2S removal efficiency, the cost 

for H2S removal is $2.11/kg-S removed.  

 

CONCLUSIONS 

 

The SOU utilizes micro-aeration technique whereby small amount of air is injected into the 

reactor to selectively convert sulfide to elemental sulfur.  From the experiment, a full-scale SOU 

with active volume of 3.2 m3 at 7.5-ft liquid height can be installed at the AWPCF and remove 

up to 99% of H2S in biogas at flow rate up to 60 m3/hr (50,000 ft3/day) with maximum inlet H2S 

of 1000 ppmV.  The SOU requires no pH adjustment or chemical added.  The operating cost per 

kg of sulfur removed is estimated to be about $2/kg-S removed.  The increased metal contents 

and temperature of the medium was likely the reason for increased the H2S removal rate.  A 

generalized linear regression suggested that liquid height and flow rate significantly affected 

output H2S concentration. 

 

 

 



 
106 

REFERENCES 

 

APHA, A., WEF (1995). Standard Methods for the Examination of Water and Wastewater. 

Washington, D.C., American Public Health Association, American Water Works 

Association, and Water Environment Federation. 

Buisman, C.J.N., Geraats, B.G., Ijspeert, P. and Lettinga, G. (1990). Kinetics of chemical and 

biological sulfide oxidation in aqueous solutions. Wat. Res., 24, 667-671. 

Dewil, R., Appels, L. and Baeyens, J. (2006). Energy use of biogas hampered by the presence of 

siloxanes. Energy Concersion & Management, 47, 1711-1722. 

Duangmanee, T., Khanal, S. K., and Sung, S. (2007). Micro-aeration for sulfide removal in 

anaerobic treatment of high solid wastewater: A pilot-scale study. In CD-ROM 

Proceeding of 80th Annual Water Environment Federation Technical and Conference 

(WEFTEC), October 13 – 17, 2007, San Diego, California, U.S.A. 

Lewis, A. and van Hille, R. (2006). An exploration into the sulphide precipitation method and its 

effect on metal sulphide removal. Hydrometallurgy, 81, 197-204. 

Krishnakumar, B., Majumdar, S. and Manilal, V. B. H., A. (2005). Treatment of sulfide 

containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor 

(RFLR). Wat. Res., 39, 639-647. 

O'Brian, D. and Birkner, F. (1977). Kinetics of oxygenation of reduced sulfur in aqueous 

solution. Environmental Science & Technology, 11, 1114-1120. 

Potivichayanon, S., Pokethitiyook, P. and Kruatrachue, M. (2006). Hydrogen sulfide removal by 

a novel fixed-film bioscrubber system. Process Biochemistry, 41, 708–715. 

Nedwell, D.B. and Reynolds, P.J. (1996). Theatment of landfill leachate by methanogenic and 



 
107 

sulphate-reducing digestion. Wat. Res. 30(1), 21-28. 

Parkin, G.F. and Owen, W.F. (1987). Fundamentals of anaerobic digestion of wastewater sludge. 

J. Env. Eng., 112(5), 867-920. 

Poulton, S., Krom, M., Rijin, J.V. and Raiswell, R. (2002). The use of hydrous iron (III) oxides 

for the removal of hydrogen sulphide in aqueous systems. Wat. Res. 36, 825-834. 

Schweigkofler, M. and Niessner, R. (2001). Removal of siloxanes in biogases. Journal of 

Hazzardous Materials, B83, 183-196. 

Zicari, S. M. (2003). Removal of hydrogen sulfide from biogas using cow-manure compost, MS-

Thesis, Cornell University.  



  

 

108 

CHAPTER 5.  GENERAL CONCLUSIONS 

General Discussion 

It was demonstrated that hydrogen sulfide could be remove from the biogas by using 

micro-aeration controlled by oxidation-reduction potential (ORP).  With integrating the 

sulfide oxidizing unit (SOU) with an anaerobic digester, both gaseous and aqueous sulfide 

can simultaneously be removed with 98% elemental sulfur production.  By recycling the 

sulfide-free biogas (< 1 ppmV of hydrogen sulfide) back to the anaerobic digester, sulfide 

was removed as fast as it is produced without any change in methanogenic activity.  This 

reactor system is a perfect candidate for alleviating a possible sulfide toxicity posted to the 

digester.   

As controlling parameter, the ORP was able to control the amount to air injection to 

the SOU and prevent oxygen overdosing during unexpected surges of aeration by acting as 

dampener.  With the SOU as standalone unit, this innovative sulfide removal technique was 

able to sustain high hydrogen sulfide loading rate but still maintain output hydrogen sulfide 

to be less than 10 ppmV with out oxygen less than 2%.   

The SOU requires no media, nutrient or chemical addition since it uses the effluent 

from the digester as a medium for pH control and nutrient supplement.  However, since ORP 

increases as the pH decreases and sulfide absorption and removal reduces alkalinity, the SOU 

requires medium replacement to maintain the pH and the control of aeration.  The hydrogen 

sulfide in the biogas can be removed with a matter of hours.  The rate and efficiency of 

sulfide removal by micro-aeration depends on operating liquid height, biogas flow rate, 

hydrogen sulfide concentration, and operating pH.  However, a generalized linear regression 
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suggested that liquid height and flow rate significantly have more effect on the output H2S 

concentration.  Since 95% of hydrogen sulfide removal was contributed from abiotic 

reaction, this sulfide removal is classified as chemical process. By increasing trace metal 

contents and temperature of the medium, the hydrogen sulfide removal rate was greatly 

improved.  From this research, the maximum hydrogen sulfide was found to be 

approximately 1.0 kg/m3-day.  Operating cost was estimated to be approximately $2/kg-S 

removed.    

 

Recommendations for Future Research 

The future researches includes: 

• The effect of temperature variation:  From the experiment, it was suggested that low 

temperature adversely affected the hydrogen sulfide removal rate.  On the other hand, the 

experiment in Thailand confirms that the alleviated temperature flavors the reaction rate 

(data not shown).  The dilemma of the temperature is that the rise in temperature reduces 

hydrogen sulfide absorption but at the same time increases the reaction rate.  However, 

the comparison experiment using the same conditions has not been conducted yet.  

Therefore, the systematically designed experiment focusing on temperature is needed. 

 

• The effect of metal species and their concentrations: the presence of metal in the 

medium can catalyze the hydrogen sulfide removal.  However, there has been no research 

realizing the effect of metals on micro-aeration yet.  Consequently, this type of research 

is needed. 
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• The effect of shock loading: Hydrogen sulfide concentration from anaerobic digester 

can be varied with the change in feed composition and quantity.  The ORP can be used to 

control aeration rate and serve as dampener when instantaneous air injection rate was 

increased.  However, the behavior of ORP and its ability to control aeration during the 

shock loading has not been studied.  It will be a good assurance to know the effect of the 

shock loading of hydrogen sulfide. 
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