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Chapter 1

Ontology-Enabled Traceability

1.1 Problem Statement

Modern engineering systems that are required to provide a wide range of

functionality, operate at high levels of performance, and offer good economy are

nearly always team-based efforts. In the design of planes, train and automobiles,

for example, a team of project stakeholders will skew the system capabilities to

ensure their interests are taken into account. Teams of discipline-specific engineers

will conceptualize, design, and build the subsystems that will be integrated into the

larger system being developed. Teams of test engineers will make sure the system

operates correctly. Teams will operate and maintain the system during its working

lifetime. During the design and development of a system, it is the responsibility of

the systems engineer to gather and integrate subsystems, and to ensure ensure that

every engineer is working from a consistent set of project assumptions. Systems

engineers are also responsible for making necessary adjustments to a project when

requirements change – for example, the scope of a project might need to be trimmed

back to meet new economic realities.

Figure 1.1 illustrates the essential details of the modeling problem faced by

systems engineers, and the complementary role it plays to that faced by designers

1
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Figure 1.1: A systems engineering view of engineering, requirements, and organiza-
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Figure 1.2: Class diagram of concepts contributing to development of architecture
descriptions. Assembled from ideas due to Eeles et al. [15], Maier [34], and defini-
tions in the IEEE 1471 Standard [30].
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from the traditional engineering domains. Without models to represent the system

elements and their connectivity, systems engineers will have difficulty in making

quantitative decisions regarding the adequacy of a design, and in choosing ratio-

nally among different design alternatives. While a designer from the traditional

engineering domains (e.g, from the mechanical or civil domains) is most likely to be

concerned with predictions of performance, cost and assembly within their domain,

systems engineers need models that make connections between the participating

domains, the capture and allocation/flowdown of requirements, and the strategic

goals and operations of an organization. These connections are vitally important

because without them, there is no rational way of tracking progress, and tracing

cause-and-effect relationships between changes in requirements and their impact

on a system’s measures of effectiveness (cost, performance, functionality), and/or

day-to-day system operations and the satisfaction of requirements.

To understand why solutions to the connectivity/traceability problem are

hard, consider the class diagram of concepts contributing to development of archi-

tecture descriptions shown in Figure 1.2. The heart of the traceability problem lies

in a chain of many-to-many relationship involving stakeholders, design concerns, de-

sign viewpoints and views, and multiple engineering models, that may be arbitrarily

intertwined and complex. The traceability problem is further complicated by the

size of problems that need to be handled. As pointed out by Balasubramaniam in

a comprehensive study of traceability meta-models, high-end users of traceability

work with design problems that have, on average, about 10,000 requirements [4].

3



Looking forward, it is evident that the importance of traceability connections

will only increase. One source of increasing concern stems from the present-day

reliance on human-in-the-loop operations steadily giving way to automated control

systems, many of them networked together. A second indicator of this trend is

the growing class of applications for which long-term managed evolution and/or

managed sustainability is the primary development objective. The underlying tenet

of our work is that neither of these trends will become fully mature without: (1)

An understanding for how and why system entities are connected together, and

(2) Formal procedures (methodologies and tools) for assessing the correctness of

system operations, estimating system performance, and understanding trade spaces

involving competing design criteria.

Glossary of Key Terms

This glossary provides definitions of key terms employed in this work:

• Action: (Effect) is the response given to stimuli in a transition, and will normally

corresponds to an activity performed during the transition from one state to

another state in the statechart.

• Association: An association represents a linkage (i.e. a connection line) between

two classes in an ontology or a class diagram. An association can have a

name and can be adorned with role names, ownership indicators, multiplicity,

visibility, and other properties. Bi-directional and uni-directional associations

are the most common types of associations.

4



• Bi-directional Association: Refers to a symmetric dependency between two

classes. i.e. Class A uses Class B and vice versa.

• Block Diagram: A SysML diagram, the represents the principal components

of a system and the structural design that connects them together.

• Class Diagram: A UML diagram, which focuses on different classes existing in

software systems and their connection with respect to each other.

• Communication Hub: A piece of script that assembles model, views, and

controllers in MVC architecture.

• Constraint: A design constraint refers to some limitation on the conditions

under which a system is developed.

• Controller: (Mediator) A component of MVC design pattern, that acts as a

communication channel between the model and the view.

• Design Concept: Refers to an existing entity in the design domain.

• Directional Association: Implies directional dependency relationships (e.g.,

complies with, satisfies, requires, implements). i.e. class A implements class

B.

• Event: Stimuli that may cause a system to transition from one state to another

state in statechart. There are four main categories of events: signal, time,

change and call events.

5



• Finite State Machine: A finite-state machine (FSM) is a mathematical model

of computation for an abstract machine defined in terms of a finite number of

states and transitions, and sequences of input events that will be consumed

during the machine operation.

• Generic Object: A placeholder representing an entity in the design domain.

• Guard Condition: A guard condition is a predicate expression associated with

an event. Guard conditions are used to ensure that a transition can only

trigger if the evaluation of the guard is true.

• Individual: Is a semantic web terminology that represents an instance of a class

in the ontology. i.e. data

• Listener: (Observer) A class that registers its interest to be notified for changes

in other classes (Observable) in observer design pattern.

• Mediator: In mediator pattern, a mediator, defines an object that encapsulates

how a set of objects should interact.

• Mediator Pattern: A behavioral design pattern that is used to manage algo-

rithms, relationships and responsibilities between objects. It mitigates the

need for point-to-point connections between objects by defining an object

that controls how a set of objects will interact. Loose coupling between col-

league objects is achieved by having colleagues communicate with the media-

tor, rather than with one another.

• Meta-model: Is a language that defines how the model should be formed.

6



• Model: A model is an approximation, representation, or idealization of selected

aspects of the structure, behavior, operation, or other characteristics of a real-

world process, concept, or system (IEEE 610.12-1990)

•Model-Based Systems Engineering: Model-based systems engineering (MBSE)

is the formalized application of modeling to support system requirements, de-

sign, analysis, verification and validation activities beginning in the concep-

tual design phase and continuing throughout development and later life cycle

phases (INCOSE-TP-2004-004-02, Version 2.03, September 2007).

• Model-View-Controller (MVC): Is a system design pattern that separates

the representation of information from the user’s interaction with it.

• Observer Pattern: The observer pattern is applicable to problems where a

message sender (observable) needs to broadcast a message to one or more

receivers (or observers), but is not interested in a response or feedback from

the observers.

• Ontology: A model that describes what entities exist in a design domain, and

how such entities are related.

• Ontology Class: A placeholder for an entity in the system design. An ontology

class may have some dataType or objectType properties.

• DataType Property: DataType Property defines the relation between in-

stances of classes and literal values, i.e., String using the Protg tool.

7



• ObjectType Property: ObjectType Property defines the relation between

instances (individuals) of two classes in semantic web terminology using protg

tool.

• Ontology-Enabled Traceability: A mechanism that maps a requirement to a

design concept in the ontology and from there to the engineering objects.

•Ontology Web Language: The Web Ontology Language (OWL) is a knowledge

representation languages for defining ontologies.

• Reasoner (Rule Engine): A semantic reasoner, reasoning engine, rules engine,

or simply a reasoner, is a piece of software able to infer logical consequences

from a set of asserted facts or axioms.

• Reasoning: To infer new statements based on set of asserted facts in the ontol-

ogy.

• Requirement: A textual representation derived from stakeholders statement of

need, or system functionality limitations.

• Rule Checking: A mechanism that ensures existing data in the ontology is

consistent with rules defined over an ontology. A rule engine often performs

this task.

• Semantic Web: (Web of liked data) The ultimate goal of the semantic web is

to develop systems that can support trusted interactions over the network.

8



• Semantic Web Layer Cake: An informal term used to describe the stack of

technologies used in the implementation of the Semantic Web.

• Semantic Web Technologies: Semantic Web technologies provide features to

build vocabularies, and develop rule repositories and ontologies.

• Software Design Patterns: In software engineering a design pattern is a

general reusable solution description to a recurring problem. It, also provides

the core solution to the problem.

• State: A state is a description of the status of a system that is waiting to execute

a transition.

• Statechart: In model-based systems engineering, state machines (statecharts)

are used to describe the state-dependent behavior of a system component

throughout its life cycle.

• Semantic Web Rule Language: The Semantic Web Rule Language (SWRL) is

a rule language that is compatible with OWL ontologies. It is not standardized

yet.

• SysML: The Systems Modeling Language (SysML) is a graphical modeling lan-

guage used to define models of systems structure and system behavior.

• Traceability Mechanism: A approach which represents traceability between

different phases of system development or component in the system.

9



• Transition: A transition is a set of actions to be executed when a condition is

fulfilled or when an event is received.

• Transition Notation: A notation that is used in statecharts to show how

a transition will proceed.e.g. Event(Parameters), guard evaluation/ action

which implies that if an event is received, and the guard expression evaluates

to true, and action will be performed while the transition is proceeding.

• Unified Modeling Language: UML is a graphical modeling language used to

define mainly software systems structure and behavior.

• View: Visual representation of the model in MVC design architecture.

• Workspaces: Requirement, ontology and engineering workspaces are created to

store various viewpoints and their associated models.

1.2 From Operations Concepts to Requirements and System Design

Let us assume that the required engineering system does not exist. Figure

1.3 illustrates the development pathway for one level of abstraction, beginning with

the formulation of an operations concept, requirements, fragments of behavior, and

tentative models of system structure. Requirements need to be organized according

to role they will play in the design (e.g., behavior, structure, test) and processed to

insure consistency, completeness, and compatibility with the requirements system.

System performance can be evaluated with respect to the value of performance at-

tributes. Models of structure specify how the system will accomplish its purpose.

10
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System architecture will be evaluated with respect to selected objects, and the value

of their attributes e.g., attributes of the physical structure of the design; attributes

of the environmental elements that will interact the the system; attributes of the

system inputs and system outputs). System designs are created by assigning (or

mapping) fragments of required to object and subsystems in the system structure.

Thus, the behavior-to-structure mapping defines (in a symbolic way) the functional

responsibility of each subsystem/component and establishes constraint satisfaction

problems to address several issues: (1) Can all the components be connected in a

way that enables the required functionality? (2) What kinds of compatibility of ob-

ject and component interfaces will need to be satisfied? (3) Can the components be

packed into a sufficiently small space?, and (4) Do the objects and components have

a sufficient set of attributes against which performance metrics can be assessed?

During the system evaluation, functional and performance characteristics are eval-

uated against the test requirements. Several iterations of development (involving

modifications to the operations concepts, system behavior, system structure) will

usually be required before all of the system requirements are satisfied.

1.3 State-of-the-Art Requirements Traceability

Present-day requirements management tools such as SLATE [29], CORE

[9], and DOORS [14] provide the best support for top-down development where

the focus is on requirements representation, traceability, and allocation of require-

ments to system abstractions. In most of today’s requirements management tools,

12



individual requirements are represented as textual descriptions with no underlying

semantics. System engineers like to organize groups of requirements (e.g., functional

requirements, interface requirements) and abstractions for system development into

tree-like hierarchies, in part, because this technique is comfortable and well known.

See, for example, the traceability report shown in Figure 1.4. This is state-of-the-art

practice. However, when requirements are organized into layers for team develop-

ment, graph structures are needed to describe the comply and define relationships,

sometimes tracing across the same level. This happens because requirements are

tightly interdependent with each other across the same level of abstraction. Be-

cause the underlying graphical formalism is weak, many questions that a user might

want to ask about requirements and/or the system structure remain unanswered or

omitted. Simple questions like “Show me all complying and defining requirements

that are related to this particular requirement” cannot be answered.

As a case in point, the IBM Teamcenter (SLATE) Requirements Tool aims to

improve systems engineering productivity (e.g., better accuracy; accelerated func-

tional design; support for trade studies), particularly at the conceptual stages of

development. SLATE is based upon very good data representations for require-

ments and abstraction blocks (ABs), linked together into a graph structure. The

graph edges correspond to relationships between entities in the system development

– for example, traceability links (complying and defining links) and connectivity of

different abstraction block hierarchies with translational mappings. ABs provide

modeling support for attributes (whose values can be used in performance assess-
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Figure 1.4: Schematic of a traceability report as modeled in DOORS.

ment), functional flows (i.e., data inputs and outputs), links to other ABs (e.g.,

in parent/child relationships), connectivity to groups and translational mappings,

and budgets. See Figure 1.5. Justification for use of abstraction blocks in lieu of

more detailed representations of an engineering system is really very simple – at

the conceptual stages of development, most of these details (e.g., geometry) remain

to be developed. Translational mapping relationships (TRAMs) provide a method

for connecting abstraction blocks across hierarchies and for evaluating design alter-

natives. The upper part of Figure 1.6 shows, for example, trace links connecting

requirements to abstraction blocks in a functional decomposition hierarchy. Then,

TRAMs relay the existence of dependencies between ABs in the electrical, mechan-

ical and software viewpoints.
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Figure 1.5: Anatomy of a generic object in IBM Telelogic SLATE [29].

Figure 1.6: Modeling of translational mappings (TRAMs) across hierarchies in IBM
Telelogic SLATE [29].
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1.4 Ontology-Enabled Traceability Models and Mechanisms

In a step toward mitigating the weaknesses in state-of-the-art capability in

requirements modeling and traceability, in this section we describe a new approach

to requirements traceability.

1.4.1 Basic Ontology-Enabled Traceability Model

In state-of-the-art traceability mechanisms design requirements are con-

nected directly to design solutions (i.e., engineering objects). An alternative, and

potentially better, approach is to satisfy a requirement by asking the basic ques-

tion: What design concept (or group of design concepts) should I apply to satisfy

a requirement? Design solutions are the instantiation/implementation of these con-

cepts.

State of the Art Traceability Model

Requirement

Requirement

Design
Concept

Engineering 
Object

Object
Engineering 

Proposed Traceability Model

Figure 1.7: Simplified view of ontology-enabled traceability.

Figure 1.7 provides a visual comparison of these two approaches to system trace-

ability. In the basic model the requirements, ontology, and engineering models

provide distinct views of a design: (1) Requirements are a statement of “what is
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required.” (2) Engineering models are a statement of “how the required function-

ality and performance might be achieved,” and (3) Ontologies are a statement of

“concepts justifying a tentative design solution. In a standard system development

the requirements and engineering models will be defined in an iterative manner,

with a focus on covering the breadth of a problem before drilling down to work out

the design details.

Remark on Ontologies. An ontology is a set of knowledge terms, including the

vocabulary, the semantic interconnections, and some simple rules of inference and

logic for some particular topic or domain [21, 26, 42]. Two practical examples

of ontoloiges for insurance and university applications can be found at the end of

Chapter 2. To provide for a formal conceptualization within a particular domain,

and for people and computers to share, exchange, and translate information within a

domain of discourse, an ontology needs to accomplish three things [32]: (1) Provide

a semantic representation of each entity and its relationships to other entities, (2)

Provide constraints and rules that permit reasoning within the ontology, and (3)

Describe behavior associated with stated or inferred facts. Items 1 and 2 cover the

concepts and relations that are essential to describing a problem domain. Items 2

and 3 cover the axioms that are often associated with an ontology. Usually, axioms

will be encoded in some form of first-order logic.

Benefits. From a design standpoint, the proposed method offers the following

benefits:

1. The use of ontologies within traceability relationships helps engineers deal with
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issues of system complexity by raising the level of abstraction within which

systems may be represented and reasoned with. In fact, by explicitly connect-

ing requirements to engineering system representations through ontologies we

are indicating “how and why” requirements satisfaction is taking place.

2. Because ontologies represent concepts for a problem domain, the ontologies are

inherently reusable across families of similar projects.

3. A key advantage of the proposed model is that software for “design rule check-

ing” can be embedded inside the design concepts module. Thus, rather than

waiting until the design has been fully specified, this model has the potential

for detecting rule violations at the earliest possible moment. This is where

design errors are easiest and cheapest to fix.

1.4.2 Support for Multiple Viewpoint Design

Figure 1.7 is overly simplified in the sense that it implies one requirement will

be satisfied through the activation of one design concept and one design entity. As

already illustrated in Figure 1.2, real-world systems will have multiple stakeholders,

many requirements, and multiple design criteria that will sometimes be in conflict.

To accommodate these relationships in a disciplined way, there needs to be a formal

framework for: (1) Connecting stakeholder concerns to engineering entities, (2)

Capturing the interactions and restrictions among the various viewpoints, and (3)

Systematically abstracting away details of a problem specification that are unrelated

to a particular decision.
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Extension of the Proposed Model to Multiple Viewpoint Design

Requirement

Requirement

Derived Requirement

Requirement

Design
Concept

Design
Concept

Design
Concept

Engineering 
Object

Engineering 
Object

Dependency

Interaction Mechanism

Dependency

Viewpoint A

Viewpoint B

Basic Viewpoint Basic Viewpoint Basic Viewpoint

Cross cutting
Viewpoint

Cross cutting
Viewpoint

Cross cutting
Viewpoint

Figure 1.8: Extension of the proposed model to multiple-viewpoint design.

Same as ...

Entity 1 Entity 2

Viewpoint 1 Viewpoint 2

Interaction Mechanism

Dependency Link

SatisfiesComplies withOrganizationalAssociation

Requires

Contains

Part

Constrained by ...

Figure 1.9: Class hierarchy for dependency relationships among design entities.
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Figures 1.8 and 1.9 show extensions of the basic model to support the ad-

ditional complexities associated with team-based design of systems with multiple

stakeholders and multiple viewpoints. The basic model is extended from a chain to

a graph of design concept entities. Most of the graph edges will involve bi-directional

association relationships (e.g., same as and constrained by). However, directional

dependency relationships (e.g., complies with, satisfies, requires) will also occur. In

the design of building, for example, stackeholders will include the architects, struc-

tural engineers, and hvac engineers, among others. Architects are concerned with

the design and layout of spaces. Structural engineers are concerned with the de-

sign of a system that can safely transfer forces to the building foundation. HVAC

engineers are concerned with the air quality and comfort of the occupants. Each

discipline will require resources (e.g., cost) and may impose constraints on other

disciplines.

The project stakeholders and system developers will look at subsets of the

graph. For example, a requirements engineer is concerned about the gathering, rep-

resentation, and organization of requirements across all viewpoints. This is a basic

viewpoint. Similar relationships exist for the ontology engineer and the engineering

of the system itself. The project stakeholders will have viewpoints that cut across

the different stages of project development, from requirements to selection of design

concepts (ontology) and their implementation in the engineering system. Ontolo-

gies for different design viewpoints (e.g., system structure, system behavior) may

also be linked, thereby establishing dependencies among the viewpoints of different
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engineering disciplines and their concerns.

Step-by-Step Procedure for System Development. The graph of require-

ments to ontologies to engineering model relationships can be mapped onto the

step-by-step procedure for system development. Figure 1.10 shows the extension of

Figure 1.3 to include ontologies for different design viewpoints (e.g., system struc-

ture, system behavior) their linking to create dependency relationships, and the use

of rule checking.

1.4.3 Support for Systems Management

Ontology-enabled traceability mechanisms were originally proposed with

an eye to improving the way engineers design and create things. However, it is

evident that once a system has been designed and built, the traceability mechanisms

can switch purposes and support real-time performance assessment, which in turn,

provides data for decision making in systems management.

Figure 1.11, a slight extension of Figure 1.7, shows the role that sensing and design

rule checking will play in ontology-enabled traceability support for systems manage-

ment. In design, requirements are satisfied through the selection of design concepts,

which, in turn, are implemented as detailed (engineering) model and further down-

stream, the as-built system itself. This is a left-to-right flow of activities.

Systems management will correspond to a right-to-left flow. Sensors em-

bedded in the real-world physical system will collect and transmit streams of data
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Figure 1.10: Flowchart for system development and traceability.
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Figure 1.11: Application of ontology-enabled traceability to systems management.

to models of sensors in the engineering model. Then, the data will be forwarded to

procedures for design rule checking (design compliance) attached to the ontologies.

When a changes in rule checking status occurs (e.g., because something in the real-

world system breaks), notifications will be sent to the requirement node. Simple

visual indicators can be used to visualize changes in requirements status.

1.5 First-Generation Software Implementation

The basic model for ontology-enabled traceability was formulated by Austin

and Bever in 2005-2006 [3, 8], extended to multiple-viewpoint design by Austin in

2010 [2], and prototyped with software that modeled the interaction of requirements,

ontologies, and models associated with architectural design of the Washington DC

Metro System. Figures 1.12 through 1.15 are screendumps of the requirements,

ontology classes, and a plan view of the Washington DC Metro System. The re-

quirements model contains only five requirements and is displayed in a table format.

UML class diagrams are used to display ontology concepts because this is the most

natural place to start. The top right-hand window is a plan view of the Washington
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Figure 1.12: Tracing a requirement to the UML class diagram and onto the engi-
neering model. Source: Austin and Wojcik [2].

Figure 1.13: Graphical display of requirements and engineering model objects asso-
ciated with the MetroStation class. Source: Austin and Wojcik [2].
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Figure 1.14: Graphical display of requirements and ontology classes associated with
the College Park Metro Station. Source: Austin and Wojcik [2].

Figure 1.15: Implementation of rule checking for the track requirement. Source:
Austin and Wojcik [2].
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DC Metro System.

Designers are provided with the tools to freely interact with the symbols

in each viewpoint, and for changes in status to be synchronized across viewpoints.

Such a framework transforms the models and views into spreadsheet-like support

for engineering design and systems management. As a case in point, Figure 1.14 il-

lustrates the screen interface when a designer’s mouse is positioned over the College

Park Metro Station. A pop-up bubble displays attributes of the College Park Metro

Station (e.g., whether or not there is parking). Under the hood, the requirements,

ontology, and engineering models synchronize their states through the use of trace-

ability mechanisms implemented as graphs of listener mechanisms. Thus, when a

user interacts with an object in the engineering view, messages for event interaction

are propagated to the ontology and requirements views. So we see that conceptually

the College Park Metro Station is both a Metro Station in a Transportation net-

work, and Node in a Graph. Four of the five requirements shown along the bottom

of Figure 1.14 employ the concept of Metrostation in their satisfaction.

1.6 Contributions of this Thesis

Figures 1.16 and 1.17 illustrate the natural extensions of Figures 1.12 through

1.15, and the motivating force for the four contributions of this thesis:

1. Software Design Patterns. This work involves the design and implemen-

tation of software design patterns (e.g., model-view-controller, mediator, and

observer) to support the management and visualization of traceability rela-
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Figure 1.17: Graph and tree views of a metro system ontology. Transportation and
mathematical concerns are shown in blue and green respectively.
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tionships.

2. Web Ontology Language (OWL). This work investigates the use of OWL

to capture and represent design concepts used in the various applications.

3. Semantic Web Ruling Language (SWRL). This work investigates the use

of SWRL for rule checking of systems operations which may change over time.

4. Graph Visualization Techniques. This work resulted in a visualization

package for executable modeling of statechart behaviors.

In Figure 1.16, an end-of-line parking requirement is associated with the Metro-

station ontology which, in turn, traces to all of the metro station instances in the

Washington DC Metro System model. Figure 1.17 highlights the importance of

presenting multiple visual perspectives (e.g., tree and graph views) to designers and

visualizing dependencies among system perspectives.

The scope of work conducted by Wojcik and Austin [2] was restricted to

design of a metro system architecture (i.e., stations and tracks). The first-cut

implementation has no time, no behavior, and no trains! In this project, simpli-

fied timetable-driven train behaviors will be added to the system model. Time-

dependent behavior of the train scheduler and individual trains will be modeled

as a network of communicating statechart behaviors. Traceability mechanisms will

link the requirements to the ontologies to the engineering models. At the component

level, such an extension will require traceability connections between functional and

performance requirements and individual states, the value of attributes within states
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of behavior models, and the value of guard conditions that will enable transitions

between states. The existence of a direct pathway from requirements to performance

attributes and their evaluation will allow for trade-space studies of constraint set-

tings versus performance. At the system level, traceability mechanisms will be

evaluated in terms of relationships among and aggregations of lower-level entities.

For example, system-level requirements for safety might trace to a value represent-

ing the spacing of trains. Overall metro system performance could be evaluated in

terms of passenger capacity of the operating trains.

While it is relatively straightforward to prototype a small-scale system that

implements basic model of ontology-enabled traceability, the problem with “quick

and dirty implementations is that they nearly always end up being an intertwined

mess of software code that is neither scalable, nor reusable, nor readily extensi-

ble. The ad-hoc implementation of larger-scale systems may not even be tractable

[11, 12, 13]. As such, the only way forward is to step back and approach the software

architectural design problem from first principles, namely: use of software compo-

nents and their interfaces, mechanisms for communication between components, and

use of software design patterns to structure the overall software architecture.

The scope of work for this project is as follows: Chapter 2 describes the

role that Semantic Web formalisms can play in the implementation of ontologies,

and formal approaches to reasoning and rule checking. The application of software

design patterns to the system architecture design and implementation of workspaces

is covered in Chapter 3. The hope is that software patterns will facilitate the
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implementation of multiple models of visualization. Chapter 4 discusses a software

implementation of statechart behavior and its application to standalone statechart

behavior and implementation of requirements-ontology-engineering traceability in

a simple lamp. A rail transit systems management case study – an ontology will

define the design domain and a sets of rules will describe to system constraints – is

described in Chapter 5. Chapter 6 covers the project conclusions and future work.
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Chapter 2

Systems Engineering and the Semantic Web

2.1 Problem Statement

The Semantic Web is important to the Systems Engineering community

because it provides formalisms (i.e., models and tools) for sharing and reasoning

with data on the Web. As companies move toward the team-based development

of projects and products, having Web access to design specifications and models

adds value to business operations. An early example of this trend is the STEP

AP233 standard [35, 37], which allows for systems engineering data exchange among

tool vendors. This project is concerned with opportunities for using Semantic Web

technologies to create ontological descriptions of design domains, supported by rule-

based reasoning about the adequacy of a design and its operations.

Figure 2.1 shows the essential details of a three-part framework – textual

requirements, ontology model and engineering model – for the implementation of

ontology-enabled traceability mechanisms and rule-based design assessment. Tex-

tual requirements are connected to the ontology model, and logical and mathemati-

cal design rules, and from there to the engineering model. Ontology models encom-

passes the design concepts (ontology classes) which have properties (c.f., attributes

in classes) to represent the consequence of constraint and design rule evaluations.
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Figure 2.1: Framework for implementation of ontology-enabled traceability and de-
sign assessment.

The advantages in this approach to problem solving are as follows [33, 41]: (1) Rules

that represent policies are easily communicated and understood, (2) Rules retain a

higher level of independence than logic embedded in systems, (3) Rules separate

knowledge from its implementation logic, and (4) Rules can be changed without

changing source code or underlying model. A rule-based approach to problem solv-

ing is particularly beneficial when the application logic is dynamic (i.e., where a

change in a policy needs to be immediately reflected throughout the application)

and rules are imposed on the system by external entities. Both of these conditions

apply to the design and management of engineering systems.

In a departure from state-of-the-art systems engineering practice, where

Unified Modeling Language (UML) and System Modeling Language (SysML) are

used to visualize and informally assess models of system structure and behavior,

this chapter describes the pathway from textual requirements to formal represen-
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tations for rules. The Semantic Web Rule Language (SWRL) will be used for the

representation of design constraints (rules) or domain regulations. Ontologies will

be created with Protege tool. Inference and rule checking in ontology models will

be handled by the Pellet Reasoner.

2.2 Semantic Web Vision

In his original vision for the World Wide Web, Tim Berners-Lee described

two key objectives [7]: (1) To make the Web a collaborative medium, and (2) To

make the Web understandable and, thus, processable by machines. During the past

twenty years the first part of this vision has come to pass – today’s Web provides a

medium for presentation of data/content to humans. Although, machines are used

primarily to retrieve and render information, humans are still expected to interpret

and understand the meaning of the content.

The Semantic Web [26] aims to give information a well-defined meaning,

thereby creating a pathway for machine-to-machine communication and automated

services based on descriptions of semantics [20]. The realization of this goal will

require mechanisms that can work and reason with data and semantic description

of data. In our view, future generations of computer support for the exchange,

management, and visualization of design data will make use of Semantic Web tech-

nologies.
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2.3 Technical Infrastructure

Figure 2.2 displays the technical infrastructure that supports the Semantic

Web vision. Each new layer builds upon, and provides compatibility with, the layers

of technology below it. The bottom layer provides standardized support hypertext

web (i.e., via Universal Resource Identifiers) and multi-lingual languages. URIs

are a generalized mechanism for specifying a unique address for an item on the

web. Unicode serves an important role in representing and manipulating the text

and documents in different human languages. Moving to the next layer, XML, is

a markup language that enables the construction and management of documents

composed of structured portable data. XML grew out of demands to make the

hypertext markup language (HTML) more flexible. The technology itself has two

aspects; First, it is an open standard which describes how to declare and use simple

tree-based data structures within a plain text file (human readable format). XML

namespaces provides a way for the markups from multiple sources to be used. This

is similar to the use of namespaces in Java. A second key benefit in representing

data in XML is that we can filter, sort and re-purpose the data for different devices

using the Extensible Stylesheet Language Transformation (XSLT) [44, 48].

The middle layers of Figure 2.2 the resource description framework (RDF)

allows for the representation of statements in the form of triples, and collections

of triples in the form of graphs (RDF graphs). The graph-based nature of RDF

means that it can resolve circular references, an inherent problem of the hierarchical

structure of XML. An RDF Schema (RDFS) provides the basic vocabulary for RDF
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Figure 2.2: Technologies in the Semantic Web Layer Cake

statements, and machinery to create hierarchies of classes and properties. The Web

Ontology Language (OWL) extends RDFS by adding: (1) Advanced constructs to

describe the semantics of RDF statements, and (2) Vocabulary support for relation-

ships between classes (complementOf and disjointWith), equality of classes (sameAs,

equivalentClass), richer properties (symmetric, transitive, inverseOf), and restric-

tions on properties (cardinality, someValuesFrom, allValuesFrom) [46]. Together,

these features and language capabilities provide the foundations for reasoning with

first order and descriptive logic.

The top layers of Figure 2.2 are proposals to enhance the semantic web and

are yet standardized. The Semantic Web Rule Language (SWRL) will bring sup-

port for rules in way that cannot be directly described using first order logic. The
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Figure 2.3: Two Towers Architecture for the Semantic Web (Source: Horrocks et
al. [28]).

proof and trust layers introduce logical reasoning, establishment of consistency and

correctness, and evidence of trustworthiness into the Semantic Web framework. En-

campusing all the layers, cryptography ensures and that Semantic Web statements

are coming from a trusted source. And finally, the user interface layer enables hu-

mans to use semantic web applications.

Recent Modification to the Semantic Web Layer Cake. The Semantic Web

Layer Cake architecture shown in Figure 2.2 has been the de facto representation for

Semantic Web for the past decade. Recent work by the W3C Web Ontology Working

Group [5] has included instantiating the ontology layer with OWL and development

of the rules layer. Horrocks and co-workers [28] assert that the current semantic web

stack has some fundamental misconceptions on the relationships between the various

languages. To fix this problem they propose the modified two towers structure shown

in Figure 2.3. In this new architecture stack, Descriptive Logic Programs (DLPs)

are layered on top of RDFS and form a common base for parallel rules (presumably

intended as datalog/logic programming style rules) and OWL layers.
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2.4 Working with Ontologies, Rules and Reasoners

Pathway from SysML and UML to Semantic Web. In state-of-the-art sys-

tems engineering practice, UML class diagrams and SysML block diagrams are com-

monly used to represent the structural aspects of a system. Occasionally they are

also used to represent relationships among domain concepts. The key problem with

these diagrams is their semi-formal semantics and their inability to support formal

assessment a system. We assert that this problem can be overcome through the

use of ontology-enabled rule sets and rule engines. Semantic web technologies can

be used in offline applications, to check for inconsistency in the design domain (in-

consistent relationships in the ontology) or by rule checking mechanisms for any

constraint violations.

Pathway from Textual Requirements to Rules. Table 2.1 summarizes some of

the key characteristics of good requirements [10]. During the early stages of system

development, it is commonplace to express requirements in a natural language for-

mat. Natural language descriptions are easy to develop, but suffer from ambiguity

in intent. To this end, and in the move from UML to SysML, systems engineers

added the requirements diagram to the suite of visual modeling formalisms. A re-

quirements diagram holds a textual representation of a user’s need and/or physical

constraints in the system.

Requirements can be classified as being either functional (FR) or non-

functional (NFR). The purpose of a FR is to specify one or more actions that a
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Attribute Description

Complete There is no missing information regarding this require-
ment.

Consistent This requirement does contradict with other require-
ments.

Traceable Confirms that the requirement satisfies the need (no
more - and no less than what is required).

Feasible The requirement can be implemented within the con-
straints of the project.

Unambiguous The requirement is concisely stated and it is clear what
it means.

Verifiable The implementation of the requirement can be tested
through basic possible methods.

Table 2.1: Characteristics of good requirements.

system must be able to perform, without considering physical constraints [31]. For

example, in a transportation network, a functional requirement might be:

The objects shall move from one point to another point in the network.

NFRs complement FRs by placing restrictions or performance or interface con-

straints on the system under development. Typically, these constraints will affect

the internal architecture, design, implementation, or testing decisions. For exam-

ple, the corresponding NFR for the transportation network application might place

a bound on the allowable time that can be taken to traverse the network. The

solution to NFRs can only be good and bad, but not right or wrong.
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2.4.1 Ontology Concepts and Models

Ontologies provide a way of viewing the domain of interest, and for orga-

nizing information. Ontologies are also required for sharing a common vocabulary

and the meanings for different terms. Computer science uses ontologies to describe

specific conceptual terms and relationships in a standardized machine readable for-

mat [6, 27]. Ontologies can be represented either graphically or in a structured

text format using different languages and standards, i.e., OWL, RDF. The former

is usually used when the goal is to visualize a shared understanding of the domain

and the relationships among those concepts. And the latter approach is used for

computer applications that use the ontology facilitates programmatic exploration

and editing of ontologies.

Individuals are instances of classes, and properties are used to relate one

individual to another individual. This property is defined for the class and indi-

viduals own it as a member of the class. Properties state relationships between

individuals or from an individual to data value. Property can be of the types Ob-

jectTypeProperty or DataTypeProperty. ObjectTypeProperty defines the relation

between instances of two classes. A DataTypeProperty defines the relation between

instances of classes and literal values such as string, number, boolean, and date.

Example 2.1. A University Ontology. Tables 2.3 and 2.2 summarize the data

and object properties associated with the concepts of professor and course, part of a

university domain. The university ontology specification provides basic description
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Course Datatype Property Object Property

hasTitle :text hasInstructor :Professor
hasSection :int belongsToDepartment :Department

numberOfCredits :int hasStudents :Student
hasCapacity :int hasPrerequisite :Course

Table 2.2: University Ontology - Course Class

Professor Datatype Property Object Property

hasName :text isTeacherOf :Course
hasRank :text hasGraduateStudent :Student

hasEducation :text hasHomeDepartment :Department
dateEmployed :date isAuthorOf :Book

Table 2.3: University Ontology - Professor Class

of the concepts and properties for describing the university domain. Each of these

concepts, or classes, may own a datatype property to represent an attribute or an

object property to represent a relationship with another concept.

Ontology Modeling in Protege. Protege is a free, open source ontology software

editor and knowledge-base framework [40]. This integrated development environ-

ment (IDE) helps the user to create ontology classes, assign properties (datatype

and object) to these classes. The output of Protege can be an XML or an OWL

file readable for computer programs. The main benefit here is to eliminate the

error-prone process of creating the ontology OWL file manually. A second bene-

fit is support for reasoners use these OWL files to for inference and rule checking

procedures. Ontologies are built upon classes and the relationships among them.

Each class may have none or some individuals (members) with specific values for

the attributes of that class.
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Example 2.2. A Car Insurance Ontology. Figure 2.4 shows a sample car

insurance ontology created in the Protege environment.

Figure 2.4: Car insurance ontology.

The key concepts of this domain are the “Car,” “Citation,” “Driver,” “InsurancePol-

icy” and “DrivingLicense” classes. The “Driver” and “insurancePolicy” classes are

generalizations (i.e., super classes) of the “AdultDrive,” “YoungDriver,” “Discount-

edRate” and “RegularRate” classes, respectively. Figure 2.5 is a close-up view of the

driver class; in this class “hasCitation” is an ObjectTypeProperty which represents

the relationship between “Driver” and “Citation” classes. Furthermore, “age” is a

DataTypeProperty that shows the value of this attribute has to be an integer. And

Figure 2.6 represents the car class in that ontology – it shows that the the con-

nection between these two classes is through the ObjectTypeProperty link “Driver”

“Owns” “Car.” This class has two members: “Honda” and “Hyundai.” Similarly,

in Figure 2.6, the “Car” class is connected to the “Driver” and “InsurancePolicy”

classes through the “OwnedBy” and “Insured” properties, respectively.
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Figure 2.5: Detailed description of the “Driver” class in the insurance ontology.

Figure 2.6: Detailed description of the “Car” class in the insurance ontology.

2.4.2 SWRL Rules

As previously mentioned, rules are used to impose the physical constraints

or regulations applied to the concepts of a system ontology. The underlying idea

of a rule engine is to externalize problem solving logic. Therefore, a rule engine

can be viewed as a sophisticated interpreter of if-then statements. The if-then

statements are the rules. An individual rule is composed of two parts, a condition
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and an action: when the condition is met, the action is executed. The inputs to a

rule engine are a collection of rules and data objects (i.e, the domain model). The

outputs are determined by the inputs, and may include the original data objects

with modifications, new data objects, and possible side effect actions.

Example 2.3. Reasoning with SWRL. The following examples demonstrate

the capabilities of SWRL. First, consider the rule:

hasEngine( ?M, ?e ) ^ checkEngineStatus(?E,false) -> Defective(?M)

This rule states that if a motor has an engine and the engine the status of the engine

is failed, then the motor is defective. SWRL has a number of built-in functions that

can be utilized for basic algebraic or logical expressions. Suppose, for example, that

we want to use peak acceleration as a measure for vehicle classification. The rule:

Engine(?C) ^ hasAcceleration(?C, ?A) ^ swrlb:lessThanOrEqual(?A, 4) -> SportsCar(?C)

states that if the peak car acceleration greater than or equal to 4 m/s2, then the

car is considered as a sport car. Finally, the script of code:

Person(?x)^ hasAge(?x, ?age) ^ calorieIntakePerDay(?x, ?caloriesConsumed) ^
swrlb:greaterThan(?age, 55) ^ swrlb:subtract(?deltaAge, ?age, 55) ^
swrlb:multiply(?deltaCalories, ?deltaAge, 30) ^
swrlb:subtract(?recommendedCalories, 2550, ?deltaCalories) ^
swrlb:greaterThan(?caloriesConsumed, ?recommendedCalories) -> isOvereating(?x, true)

shows how SWRL can be used to define the constraints in the domain. This example

talks about the amount of calories one person takes and considering the age he or

she can be categorized as an over eating person.
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2.4.3 The Pellet Reasoner

This project employed Pellet as the external reasoner to the ontology. Pellet

can can infer logical consequences from a set of asserted facts or axioms, and can be

utilized for inconsistency checking prior to rule checking procedures. The snippet

of code:

Reasoner r = PelletReasonerFactory.theInstance().create();

creates an instance of the Pellet reasoner and attach it to an ontology. Obtaining

the ontology OWL file created with Protege, and associating it with a reasoner is

easy:

String ont = "file:./data/WashingtonMetro.owl";
model = ModelFactory.createOntologyModel(r);
model.read( ont );

When changes occur in the ontology, the reasoner is notified and ontology will be

updated based on the reasoner’s inference on the modified data.

Example 2.4. Reasoning for Driving Insurance Premiums. In the car

insurance ontology example, the insurance companies policies can be captured via

SWRL rules.

Figure 2.7 shows three different rules implied in this ontology: (1) If a driver has a

citation, he can not benefit from discounted premium rate, (2) A female driver older

than 25 can get discount on her premium rate, and (3) If someone is older than 17,

then they are considered to be an adult.
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Figure 2.7: SWRL Rules associated with insurance car Insurance premiums.

Figures 2.8 and 2.9 are snapshots of the two driver individuals created in

the Protege environment. The yellow highlighted boxes represent data that has

been inferred through reasoning procedures and application of the Pellet Reasoner.

Notice that due to their age values and rule (3), both members are categorized as

adult drivers. Furthermore, Figure 2.8 shows how rule (1) is verified, and Figure 2.9

is a proof for rule (2).
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Figure 2.8: Example of an “AdultDriver” member with a “Citation.”

Figure 2.9: Example of a female “AdultDriver.”
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Chapter 3

Software Design Patterns and System Architecture

3.1 Problem Statement

The implementation of software solutions for ontology-enabled traceability

is complicated by the very nature of the problem to be supported. Traceability

mechanisms are required to provide linkages between discipline-specific domains

and across various stages of system development (e.g., requirements, design, man-

agement). Each domain will have its own way of modeling and visualizing their

concerns. Teams of engineers will work concurrently on the various stages of a

systems development. These requirements dictate the traceability mechanisms will

provide linkages across heterogeneous models, multiple types of visualization, and

will need to synchronize data/information models and views, and across concurrent

processes. We would also like software solutions to be scalable. These complexities

indicate a strong need for a disciplined approach to software development, based

upon patterns of implementation that have worked well in the past and, perhaps,

even new patterns of development. To that end, this chapter describes the software

patterns employed in our implementation described in Chapters 3 through 5.
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3.1.1 Definition and Benefits

Definition. Experienced designers know that instead of always returning to first

principles, routine design problems are best solved by adapting solutions to designs

that have worked well for them in the past. A design pattern is simply: (1) A

description of a problem that occurs over and over again, and (2) A description of

a core solution to that problem stated in such a way that it can be reused many

times [1, 19]. In other words, a design pattern prescribes a [ problem, solution ] pair.

The design pattern identifies the participating subsystems and parts, their roles and

collaborations, and distribution of responsibilities.

Benefits. For a wide range of domains, this approach to problem solving is popular

because it encodes many years of professional experience in the how and why of

design, and is time efficient. Design patterns crop up in many avenues of day-to-day

life. For example, that layout of streets in planned communities follows familiar

patterns [1]. Gamma and co-workers [19] point out that patterns facilitate reuse –

one persons pattern can be another persons fundamental building block. Software

design patterns are particularly beneficial in the development of architectures for

distributed systems.

3.2 Software Design Patterns used in this Project

We believe that behavioral patterns, such as the Observer pattern, will play

a fundamental role in the efficient implementation of traceability relationships span-
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Behavior Structure System

Command Adapter Model-View-Controller

Interpreter Bridge Session

Mediator Composite Router

Observer Decorator Transaction

Table 3.1: Commonly used software design patterns. Those highlighted in bold are
relevant to ontology-enabled traceability.

ning requirements to ontologies to various aspects of system structure and system

behavior. Similarly, the model-view-controller pattern (MVC) implemented with

appropriate interfaces and abstract class definitions will allow for the assembly of

traceability models that are both scalable and readily extensible.

3.2.1 Mediator (Behavior) Design Pattern

The mediator design pattern is used to manage algorithms, relationships

and responsibilities between objects.. It mitigates the need for point-to-point con-

nections between objects by defining an object that controls how a set of objects will

interact. Loose coupling between colleague objects is achieved by having colleagues

communicate with the mediator, rather than with one another.

To see why this pattern is useful, the left- and right-hand sides of Figure 3.1

show two approaches to connecting an ensemble of models to a collection of views.

In the point-to-point solution, each model is connected to each view. For n models

and n views this requires O(n2) interfaces.

This strategy of development simplifies communication between models and
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Mediator Design Pattern

Mediator

Model 1

Model 2

Model 3

View 1

View 2

View 3 Model 3

Model 2

Model 1 View 1

View 2

View 3

Point to Point Connection

Figure 3.1: Communication between models and views. left: point-to-point connec-
tion, right: use of a mediator.

views because they do not need to implement the specific details of communication

with each other. Moreover, this pattern provides maximum flexibility for expansion,

because the logic for the communication is contained within the mediator.

The mediator pattern can be combined with the classical model0view-

controller (MVC) pattern, resulting in a hybrid MVC design pattern[38]. In this

project, controllers will be implemented as part of the model-view-controller design

pattern, a means for synchronizing data among sets of models and views. The con-

trollers will also act as mediators of communication. Further details will be provided

in Section 3.2.4.

3.2.2 Observer (Behavior) Design Pattern

The observer pattern is applicable to problems where a message sender needs

to broadcast a message to one or more receivers (or observers), but is not interested

in a response or feedback from the observers.

Figure 3.2 shows the relationship of classes and interfaces in an implemen-

tation of the observer design pattern. During the problem setup, an observer will
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extends

<< interface >>
Observer

Observable uses

Concrete ObserverObservable Subject

implements

Figure 3.2: Relationship of classes and interfaces in the observer design pattern.

register for changes in the state of an observable object. When such a change oc-

curs, the observer is notified and will handle the change through and event handler

method.

Perhaps the best known application of the observer design pattern is the

the graphical user interface (GUI) event model used in Java. Graphical components

(listeners) register for changes in other components by implementing the Property-

ChangeListener interface – one can think of the event source component as a discrete

observable, and the event change listener as a discrete observer.

In this study, the observer pattern will be used to notify the controllers

about a property change that has occurred in the model. There a a number of ways

of achieving this functionality, including use of the

firePropertyChangeEvent( propertyname, old value, new value );

method in Java. This feature facilitates the communication from model to the con-

troller when a model property has changed. Graphical components (listeners) will

register for changes in other components by implementing the PropertyChangeLis-

tener interface. This feature is used in the views where they can be added to the
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components of GUI and be notified when an event happens. i.e., the view is notified

when a curser is moved on the GUI panel.

3.2.3 Composite Hierarchy (Structure) Design Pattern

In many systems engineering applications, system structures have a hier-

archal design and follow a tree shape structure. The composite hierarchy design

pattern provides a flexible way to create hierarchical tree structures (i.e., part-whole

hierarchies) of arbitrary complexity, while enabling every element in the structure

to operate with a uniform interface.

Figure 3.3 shows the class diagram for the composite design pattern. Im-

plementations of this pattern employ component, node, and composite classes:

1. Component. The component interface defines methods available to all parts

of the tree structure.

2. Composite. This class is defined by the components it contains. It supports

a dynamic group of Components, and so it has methods to add and remove

Component objects from its collection. The Composite class also provides

concrete implementations of operational methods defined in the interface class

Component.

3. Node. The node (or leaf) classes represent terminal behavior (i.e., parts of the

composite that cannot contain other components). They implement the Com-

ponent interface and provides an implementation for each of the component’s
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Component components [];

Component

void operation();

Node Composite

void operation();
void addComponent ( Component c);
void removeComponent ( Component c );
void operation();

0 .. *<<interface>>

Figure 3.3: Composite class diagram.

operational methods.

The composite hierarchy pattern in very general – composites can contain compo-

nents, each of which could be a composite. Traversal of the composite hierarchy

occurs through recursion that continues to the lowest level where a node (leaf) is

obtained.

3.2.4 Model-View-Controller (System) Design Pattern

The model-view-controller (MVC) design pattern divides a subsystem into

three logical parts the model, view and controller and offers a systematic approach

for modifying each part. As pointed out by Martin Fowler [17], this design pattern

was one of the first attempts at creating systematic approaches to user-interface (UI

development in large scales applications. At the heart of MVC is a clear division
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between domain objects that model the perception of the real world, and presenta-

tion objects that represents the GUI elements we see on the screen. Domain objects

(model) should be completely self contained and independent of the presentation,

and they should also be able to support multiple presentations at the same time.

This is what is been used in current technology which allows many applications to

be manipulated through both a graphical and command-line interface[36].

Figure 3.4 illustrates two approaches to implementation for MVC. In the

most common implementation of this pattern (see, for example, the Java patterns

in Stelting and Maasson [43], views register for their intent to be notified when

changes to a model occur. Controllers register their interest in being notified of

changes to a view. When a change occurs in the view, the view (graphical user

interface) will query the model state and call the controller if the model needs to be

modified. The controller then makes the modification. Finally the model notifies

the view that an update is required, based on a on change in the model.

In the second approach to the implementation of MVC, the controller is

positioned at the center of the pattern and the models and views communicate

through the controller channels. For example, after a view has notified the controller

of a user action, the controller will update the property in the model based upon that

action. From other direction, the controller registers for the changes in the model

and updates the view based on the notification triggered from the model. This

approach is combined with the mediator where the controller plays the mediator

role for model and view communications.
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to the controller.
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User Actions
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change
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Figure 3.4: Styles of model-view-controller implementation.

55



3.3 System Architecture Design

This section explains how a combination of software patterns, workspaces,

and mechanisms for distributed computing will be used in the design and imple-

mentation of a systems architecture for ontology-enabled traceability. The fully

developed system will have separate workspaces for the requirements, ontology and

engineering phases of system development, plus a time workspace responsible for

delivering temporal information to the system model via clocks and timers.

3.3.1 Requirements, Ontology, and Engineering Workspaces

The term “workspace” is most often used to describe a space allocated

for work (e.g., such as an office) or an area reserved for some particular purpose.

From a systems engineering standpoint, the concept of workspaces is attractive

because it provides a way to develop work (i.e., data, information, models, products)

independent of other activities occurring in a larger system view.

Workspaces for Ontology-Enabled Traceability. Figure 3.5 represents a com-

plex system design, where low level (system) requirements are derived from various

viewpoints constraints. These viewpoints can belong to different stakeholders ranged

from users to design and manufacturing team. On the other hand, in ontology-

enabled-traceability mechanisms, a path is required from a requirement to at least a

concept or relationship in the ontology and ultimately to an engineering object that

may have a certain behavior (statechart) at each viewpoint. In other worlds, this
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Design
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Viewpoint

Cross cutting
Viewpoint

Ontology Enabled Traceability support for Multiple Viewpoint Design
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Figure 3.5: Multiple-viewpoint design support partitioned into requirements, ontol-
ogy and engineering workspaces.

architecture is scalable to expand vertically by covering more viewpoints or more

levels of details (system, subsystem, component). However, the horizontal axis is

fixed and provide information about the requirements, ontology, engineering objects

in the notion of workspaces and the connectivity between them. To achieve these

goals, the requirement, ontology and engineering workspaces are created to store

various viewpoints and their associated models. Moreover, the connection between

the workspaces provides traceable threads from requirements to ontology and to

engineering objects and vice versa.
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3.3.2 Distributed Implementation

We expect that real-world implementations of ontology-enabled traceabil-

ity will need to handle hundreds, and possibly thousands of requirements, dozens of

ontologies, and engineering models containing thousands of components and connec-

tions among components. A practical way of handling and presenting information

associated with each of these design concerns is to distribute them across multiple

computers, with machines dedicated to supporting a particular phase of the systems

engineering development. This is why the use of workspaces in Figure 3.5 makes

sense.

Figure 3.6 shows the system architecture currently being implemented as a

pyramid (i.e., a two-level graph) of model-view-controllers. The systems relationship

hub (SRH) will be responsible for defining high-level system development entities

and their initial connections, and then systematically assembling the graph infras-

tructure to mimic the graph structure and workspaces shown in Figure 3.5. Each

block will employ a combination of the mediator and model-view-controller design

patterns. The requirements block (Figure 3.6) is expanded to show the details of

model, view and controller and how controller is being in place as a mediator between

the model and views. The requirements, ontology and engineering workspaces will

be implemented as networks of model-view-controllers (MVCs). This means that:

(1) Models do not communicate with other models, (2) Views do not communi-

cate with other views. Instead, models and views can only communicate with their

controllers. Thus, workspaces communicate via interaction mechanisms between
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Figure 3.6: System architecture implemented as a network of model-view-controllers.

controllers. Therefore, the fully implemented system will be a network of MVCs.

Engineering Workspace. Engineering workspace models will be implemented as

composite hierarchies, a natural structure for subsystem organization (and network

modeling therein). This design practice reduces the complexity of modeling connec-

tions between those pieces and provides a scalable, reusable architecture where new

objects can be added, removed and altered at different levels of abstraction without

affecting the rest of system. As a case, an engineering system can have a component

(leaf level) and it can have a subsystem as another composite which itself has a

number of components.
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Synchronization of Workspaces. An event-based model (observer design pat-

tern) will be used for synchronization of states and data in views and models (Ob-

server design pattern). The expanded requirements box in Figure 3.6 shows how this

will work. User actions detected in views (e.g., a user highlights a row in a table) will

be propagated to the controller, which in turn, will forward the updates to related

views within the same workspace and to the controllers of connected workspaces.

Similarly, property changes to a model will be sent to the controller for distribution

to related viewpoints and to the controllers to connected workspaces.

Note: Create a connection between ontologies to the concept of “body of knowl-

edge” – summarize key points from the three papers given to us by Srini at NIST.
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Chapter 4

Modeling Behavior with Statecharts

4.1 Overview

In model-based systems engineering, state machines (statecharts) are used to

describe the state-dependent behavior of a system component throughout its life cy-

cle. Common applications of statecharts include the real-time behavior modeling of

computer systems (e.g., computer software; operating systems; telecommunication

protocols) and embedded systems (e.g., vending machines; elevators in buildings;

electronic systems in automobiles). Statecharts are widely used in SysML to de-

scribe systems having complexity ranging from switches in a simple lamp to very

complex control units in aerospace applications.

This chapter describes the use of statecharts as a formalism for modeling sys-

tem behavior that is described in terms of responses to internal and external events.

It presents a software implementation of statecharts that is cast into the model-

view-controller design pattern format. The chapter concludes with four standalone

working examples (e.g., a countdown timer) that illustrate the various features of

statechart behavior and serve as a stepping-stone to railway transportation system

case study covered in Chapter 5.
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4.2 Finite State Machines

A finite-state machine (FSM) is a mathematical model of computation for an

abstract machine defined in terms of a finite number of states and transitions, and

sequences of input events that will be consumed during the machine’s operation. A

state is a description of the status of a system that is waiting to execute a transition.

A transition is a set of actions to be executed when a condition is fulfilled or when

an event is received. At any point in time, the machine can only be in one state

(called the current state). When the machine receives an appropriate input event,

condition or message, the state machine can transition to a new current state. In

some finite-state machine representations, entry and exit actions are performed when

entering/exiting a state.

4.2.1 State Transition Diagrams

A state transition diagram is a graphic representation of the real-time (or

on-line) behavior of a system.

Figure 4.1 show, for example, a simple finite state machine model for a sensor

testing procedure. The rectangular nodes with rounded edges represent states –

states are commonly labeled with a name to represent the action that will occur

while the state is active. The beginning and end states are drawn as a large black

dot and black dot with a surrounding circle, respectively. They are examples pseudo

states – that is, a special type of state exists only for the purposes of modeling.
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Reset Needed

Sensor Operation

System Test

Test Completed

Figure 4.1: Sensor testing procedure.

State transitions are shown as a solid-line arrows (directed edges) originating

from the source state and terminating by an arrow at the target state. A state state

is a pseudostate that only has outgoing transitions, and the final-state only has in-

coming transitions. Annotations along the transition edges represent the events, ac-

tions and guard conditions that will affect the machine behavior. The sensor testing

procedure is very simple – Reset Needed and Test Completed are the events that

transition the machine between the System Test and Sensor Operation states.

4.2.2 Events, Actions, and Guard Conditions

The transitional behavior of finite state machines can be refined with the

association of events with actions and guard conditions.

Events. An event is a kind-of stimulus that can be presented to an object or

system, and then the object or system can decide how it wishes to respond. The

main categories of events are [18]:
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• Signal Event: A signal which arrives from the surrounding environment. It may

contain a number of arguments that will be used in execution of the transition.

• Time Event: This event indicates that a specific instance of time (relative) or,

timeout interval has reached (absolute).

• Change Event: Indicate that a status of an object in the system has changed and

a set of attribute values hold.

• Call Event: Notifies that an operation is been requested. It is very similar to

method calls and is possible to be accompanied by number of arguments.

Actions. An action (also known as an effect) is the response given to stimuli in a

transition, and will normally correspond to an activity that is performed during a

transition. States many also have entry/exit behaviors and “do” activities that will

start immediately after the completion of an entry action. Hence, the synopsis of

the transition is as follows:

1. The transition is triggered by an event and the guard expression is evaluated.

If the guard is evaluated as ”true”:

2. The exit behavior of the current (source) state is executed.

3. The transition effect (action) is executed.

4. The entry action of the new (target) state is executed

5. While in that state perform “Do Activity.”
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Every state can have a completion-transition, which is a transition without an event.

If the state has no such transition, and all transitions are triggered by events, then a

system will stay in a state until an appropriate event can be handled by an outgoing

transition.

Guard Conditions. A guard condition is a predicate expression associated with

an event. Guard conditions are used to make sure that a transition can only trigger

if the evaluation of the guard is true. The syntax for representing cases where an

action is triggered by an event is as follows:

eventName ( parameters ) [ guardCondition ] / action

From left-to-right, parameters is a comma-separated list of parameters supplied

by the event, and guardCondition is a predicate expression in square brackets. A

forward slash precedes action, the transition effect.

Begin Operations for a Train System

Begin Operations ( time ) [ time == 5 am ] / Start TrainsTrain System
Closed

Train System 
Running

State A State B
eventName ( parameter ) [ guardCondition ] / action

Syntax for a Guard Condition

Figure 4.2: Guard conditions: Top. Graphical syntax. Bottom. Use of a guard
condition to trigger a change in operations for a train system.

Figure 4.2 shows the graphical counterpart of a guard condition along with a simple

example that uses a guard condition to trigger opening operations in a train system.
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4.3 Benefits and Limitations of the Basic FSM Model

In computer science circles, many basic implementation of finite state ma-

chines have their origins in the consumption of characters or tokens. The benefits

of basic state machine models are as follows:

1. Easy to use graphical languages (e.g., in UML and SysML).

2. Powerful mathematical algorithms for synthesis of hardware and software and

verification.

However, basic state machine models are limited in several respects:

1. They do not scale well. Even for small- to- moderate sized engineering problems,

the number of states can quickly become unmanageable.

2. Basic state machine models only support a single thread of concurrency – that

is, at any point in time, only one external event can be recognized, and only

a single state may be active.

3. A single state machine cannot directly represent the aggregate behavior of two

or more independent processes running concurrently.

Together, these limitations are significant impediments to the behavior modeling

of real-world systems. As such, we need a formalism that can allow for complex

system behaviors to be decomposed into process hierarchies and as communication

networks of simpler finite state machine behaviors.

66



4.4 Statecharts

Statecharts were developed for the graphical modeling of control require-

ments in complex reactive systems [23, 24, 25], and to overcome the limitations of

basic state machine models discussed in the previous section. Formally, statecharts

are a higraph-based extension of standard state-transition diagrams, where:

Statecharts = state transition diagrams + depth + orthogonal-

ity + broadcast communication.

Statecharts incorporate all of the semantics of diagrams for basic finite state machine

models. Depth refers to the simplification of models achieved by the hierarchical

nesting of states (i.e., each state encloses a FSM). Significant reductions in diagram

complexity will occur for applications where a system may transition to a new

state from many state locations. Orthogonality refers to the modeling of two or

more independent control strategies and/or independent behaviors at the same time.

Broadcast means that all machines are visible to other. In practical terms, this

means that an output action of any process may be sent to and consumed by any

another process.

4.4.1 Statechart Model Components

This section describes the statechart model components including the differ-

ent types of states, regions, transitions and control nodes. To facilitate this process,

Figure 4.3 is a big-picture view of the a generic statechart containing the range
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Figure 4.3: Schematic of different types of components in a statechart.

components that will be supported.

Hierarchical, Composite, and Pseudo States

The statecharts formalism supports both hierarchical states and simple

states. Hierarchical states (also known as or-state) are used to decompose a compos-

ite state into graphs of lower-level substates and orthogonal regions. Each substate

(or region) will be defined in terms of states and pseudostates and the transitions be-

tween these states, and will operate under the assumption of independent contexts.

When the execution of an object reaches a composite state, exactly one sub-state

will be automatically activated. Substates in orthogonal regions are concurrent,
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which means that while the superstate is active, the statechart can be in exactly

one substate from each orthogonal region during each statechart iteration. Some

implementations will allow for concurrent execution of substates and others will not.

Like their finite state machine counterparts, initial and final pseudostates are ac-

tive upon arrival and/or termination from a statechart. When a final state become

active in a superstate, then the region to which it belongs will be completed.

State Transitions

The semantics for handling events and transitions within and across stat-

echart hierarchies is considerably more complicated than for basic finite state ma-

chines. Several sources of complication exist. As a case in point, software implemen-

tations need to make sure than when need to make sure that when an event-triggered

transition occurs from an or-state, every substate will have the opportunity to handle

this event as well. To realize this semantics, outgoing transitions from hierarchical-

state are inherited by all substates, and this requires modeling of event-triggered

transitions be organized into a hierarchy tree.

Control Nodes

Control nodes route the control and data along paths in the statechart.

Decision nodes are used to route input to one of several alternative outgoing paths.

Merge nodes recombine the data from different paths into one. Fork nodes transfer

the data into several parallel output paths. Join nodes synchronize the data coming

from different paths into one output.
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4.5 Statechart Software Package

Our work on modeling and implementation of event-driven behavior with fi-

nite state machines has been adapted from the open source package UML Statechart

Framework for Java [45]. Modeling support is provide for: (1) Simple, hierarchical

and concurrent states, start and final states, (2) History and deep-history pseu-

dostates in hierarchical states, (3) Fork- and join pseudostates for concurrent states,

(4) Segmented transitions using junction points, and (5) Events, guards and actions

for transitions. All elements are real objects. Transitions can cross borders of com-

posite states (implicit entry/exit). Unfortunately, support for the visual modeling

of statechart behavior is lacking.

This project employed the model-view-controller design pattern discussed in

Section 3.2.4, and the mxGraphics package to provide a visualization of statechart

behavior. Figure 4.4 shows the high-level software architecture consisting of an ab-

stract controller, abstract models, and abstract views. The primary purpose of these

abstract (super) classes is to encapsulate the common functionalities of controllers,

views and models, respectively. For example, methods are provided to add and

remove listeners in a model, to add and remove models and views in the controller,

for notifying the controller of events occurring through interactions in the views,

and to notify the controller when the value of a property is changed. The State and

Transition classes – detailed below – are extensions of AbstractModel. They send

property change events to the statechart controller when the state is entered/exited

or a transition is executed, respectively. The controller plays the mediator role by
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PropertyChanged

TransitionState

PropertyUpdate

Update View

Event Recieved

Statechart Model

AbstractModel
<< abstract >>

AbstractController
<< abstract >>

AbstractView
<< abstract >>StatechartController

StatechartView

Figure 4.4: Class structure in the UML Statechart Framework modified to work
with the MVC design pattern.

passing the messages between the model and views. The abstract view provides

mechanisms for the translation of user interactions to the model domain. This is

achieved through the use of the observer design pattern and features in Java to

support listeners for Swing components. From other direction, the controller calls

all the registered views when a model property update has occurred. The statechart

view is a graph that displays the states as nodes and the transitions as vertices.

4.5.1 Software Framework Components

This section briefly explains the main classes and components of the state-

chart package shown in Figure 4.5.

Action and Guard Interfaces

Application-specific statechart behaviors are specified through the use of
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classes that implement the Action and Guard interface specifications, i.e.,

public interface Action {
void execute( Metadata data, Parameter param);

}

public interface Guard {
boolean check( Metadata data, Parameter param);

}

The arguments of execute() and check(), data and param, represent a runtime data

object and parameter for this action, respectively.

StateRuntimedata

StateRuntimedata describes runtime specific data of the statechart. The

main data is the currently active state, or in general all actives when using hierarchy.

For every active state a StateMetadata-Object (Stateruntimedata) is created. It

stores runtime specific data for the state (e.g., the timeset since entering the state).

This object is disposed of when the state becomes inactive.

Metadata

Metadata objects describe the run-time specific data of the statechart. They

are created and passed to the statechart when an event is dispatched, and are deleted

when the state becomes inactive. The value field in this class allows active states to

have access to and modify the most recent data value.

State

This class is a concrete class of AbstractModel. Thus, It sends a property

change message to the controller when the statechart enters a new state. The
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fragment of code:

public class State extends AbstractModel {
protected Action entryAction = null; // The entry action to execute.
protected Action doAction = null; // The do action to execute.
protected Action exitAction = null; // The exit action to execute.

protected Vector<Transition> transitions = new Vector<Transition>();

Context context = null; // The context of this state.
Statechart statechart = null; // The statechart this state belongs to.
protected String name = null; // The name of the state.
boolean status, oldStatus; // To keep the activation status

public State( String name, Context parent, Action entryAction,
Action doAction, Action exitAction) throws StatechartException {

... details of constructor removed ...
}

}

shows the essential details of the State class definition. The context of a state is

simply the parent state. Support is provided for entry, do, and exit Action, as

previously discussed. Each state stores a list of references to permissible transitions

away from the state.

Transition

The transition class extends AbstractModel and is defined by event, guard

and action objects. The fragment of code:

public class Transition extends AbstractModel {
Event event = null; // The triggering event or 0 if no event is used.
Guard guard = null; // The guard watching if the transition can trigger.
Action action = null; // The action to execute when the transition triggers.
String name; // Name of transition
boolean status, oldStatus; // Status of transition

// List of all states which must be deactivated/activated when triggering.

Vector<State> deactivate = new Vector<State>();
Vector<State> activate = new Vector<State>();

// Constructor methods ...
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public Transition(State start, State end) {
init(start, end, null, null, null);

}

// Initialize the transition ...

private void init(State start, State end, Event event, Guard guard, Action action) {
this.event = event;
this.guard = guard;
this.action = action;
Transition.calculateStateSet( start, end, deactivate, activate );
start.addTransition(this);

... details of initialization removed ...
}

}

shows the essential details of the Transition class definition. When a transition

executes the sequence of activities is as follows:

1. Check that the event to be handled matches the event associated with the state

transition.

2. Check that the guard evaluates to true.

3. Deactivate all states.

4. Execute the exit-action.

5. Execute all of the new states.

6. Fire a propertyChange event to the statechart controller.

Statechart

The statechart model employs the composite hierarchy design pattern to

store the statechart components (i.e., it holds the states, exit and entry actions to
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those states, events and guard expressions). It operates as a pool of executable

lightweight processes – in fact, at least two threads for asynchronous and timeout

events

public class Statechart extends Context implements Runnable {
private ExecutorService threadpool = null;
DelayQueue<EventQueueEntry> timeoutEventQueue = new DelayQueue<EventQueueEntry>();
HashMap<String, State> states = new HashMap<String, State>();

... details removed ...
}

The main entry point for using the statechart framework. Contains all necessary

methods for delegating incoming events to the substates. When deleting the stat-

echart all substates, actions, events, guards and transition will be deleted auto-

matically. Methods are provided for adding events to the event queue, dispatching

events, and dequeuing elements from the timeout queue and dispatches them.

4.5.2 Evaluation of Guard Expressions

This project employees jEval for the symbolic representation and evalua-

tion of guard expressions. JEval is a library for adding math, string, boolean and

functional expression parsing and evaluation in Java applications. For example, the

expression:

((2 < 3) || ((1 == 1) && (3 < 3)))

evaluates to 1.0 (i.e., true). Support is provided for custom functions, nested func-

tions and variables.
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4.5.3 Statechart Animation

Execution of the test examples considered in this chapter is so quick that if

the model and visual portions of the statechart package are perfectly synchronized,

then the human eye cannot detect and follow the sequence of events. The statechart

package solve this problem through use of the StatechartAnimation class and a

mechanism to delay – slow down – the period of an active state or transition (current

statechart status) being highlighted, while preserving the exact sequence of activities

in the statechart behavior.

The animation class receives the state entrance/exit and transition execution

events in a queue. It constantly checks for new element in the queue and adjusts

the time count period if new item is added to the queue. Time count is used as a

counter to display a transition or state hilighted. For those cases where there a no

new entries in the queue, the current state/transition is highlighed for a longer time.

However, when a new entry is received in the queue, the count down is performed

faster.
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4.6 Standalone Statechart Behavior Modeling

In this section we present details of behavior modeling with statecharts for

four applications: (1) Behavior modeling for a lamp switch, (2) Behavior modeling

for a countdown timer, (3) Behavior modeling for a surveillance system, and (4)

Behavior modeling for lamp workspace with statechart and engineering views. The

standalone lamp switch will be used in the lamp workspace example. The count-

down timer illustrates control of flow that depends on evaluated guard conditions.

The surveillance system illustrates the use of hierarchical states, decision nodes and

timeout guard conditions. The lamp workspace example will illustrate synchro-

nization of engineering and statechart views that update in response to user-driven

events.

4.6.1 Example 1. Statechart Behavior for Lamp Switch

Figure 4.6 shows a sequence of screen captures for the operation of simple

lamp. The lamp behavior model has two states (i.e., On and Off) two transitions

(i.e., on and off), no state-dependent data, and no guard conditions. We exercise

the lamp behavior through a sequence of four transition events: (1) start, (2) on,

(3) off, and (4) end. In each case, the currently active states are shown in red.

The abbreviated fragment of code:

Output generated by the lamp statechart model ...

[java] *** Enter Transition( start ).execute() ...
[java] *** State.deactivate(): Start deactivated
[java] *** Transition.execute(): start executed
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Step 3: off action. Step 4: end action.

Step 2: on action.Step 1: start action.

Figure 4.6: Statechart sequence for start, on, off, and end states in a simple lamp.
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[java] *** State.activate(): Operating activated
[java] *** Transition.execute(): start executed
[java] *** State.activate(): Off activated
[java] *** Transition( on ).execute() ...
[java] *** Transition( end ).execute() ...
[java] *** Transition( on ).execute() ...
[java] *** State.deactivate(): Off deactivated
[java] *** Transition.execute(): on executed
[java] *** State.activate(): On activated
[java] *** Transition( off ).execute() ...
[java] *** Transition( end ).execute() ...
[java] *** Transition( off ).execute() ...
[java] *** State.deactivate(): On deactivated
[java] *** Transition.execute(): off executed
[java] *** State.activate(): Off activated

[java] *** Transition( on ).execute() ...
[java] *** Transition( end ).execute() ...
[java] *** Transition( on ).execute() ...

[java] *** Transition( end ).execute() ...
[java] *** State.deactivate(): Off deactivated
[java] *** State.deactivate(): Operating deactivated
[java] *** Transition.execute(): end executed
[java] *** State.activate(): End activated
[java] *** Enter State( End ).dispatch() ...
[java] *** Leave State( End ).dispatch() return false ...

Response of the lamp statechart view ...

[java] *** LampStatechartView.highlight() nodeId = start
[java] *** LampStatechartView.highlight() nodeId = Operating
[java] *** LampStatechartView.highlight() nodeId = start
[java] *** LampStatechartView.highlight() nodeId = Off
[java] *** LampStatechartView.highlight() nodeId = on
[java] *** LampStatechartView.highlight() nodeId = On
[java] *** LampStatechartView.highlight() nodeId = off
[java] *** LampStatechartView.highlight() nodeId = Off
[java] *** LampStatechartView.highlight() nodeId = end
[java] *** LampStatechartView.highlight() nodeId = End

is partitioned into two sections: (1) Output generated by the lamp statechart model,

and (2) Response of the lamp statechart view. Details on the propagation of model

property changes through the abstract controller to the statechart view have been

removed. At each step in the statechart execution, the statechart checks each of

the local transitions to see if it is a valid exit. In this example, the statechart
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can transition from states On and Off to state End. Also notice that the output

generated by the statechart view occurs after the model has essentially completed

its execution. This happens because the model and view are separate threads of

execution, and because the timer associated with the processing of events in the

statechart view is deliberately slowed down for human visualization.

4.6.2 Example 2. Statechart Behavior for a Countdown Timer

The next level of complexity in statechart behavior occurs with the addition

of state-dependent data and guard conditions.

To see how this works in practice, Figure 4.7 is a snapshot of a statechart

behavior for a countdown timer that counts down from 5 to 1 and then expires. Sup-

port for state-dependent data and guard conditions is provided through user-defined

classes that implement the Action and Guard interfaces. Figure 4.8 summarizes the

essential details for the countdown timer application. Count decrements the counter

by one. Reset sets the counter to zero. SetValue initialize the counter value to a

user-defined value (in this case 5). Expired evaluates the guard condition (i.e., is

the counter value equal to 1?).

Scripted Transition Events and System Response. The abbreviated fragment

of code:

Thread thread = new Thread(stv,"statechartdisplay");
thread.start();
metaData = new TimerMetaData();
chart.start(metaData);

TransitionEvent te = new TransitionEvent("Count");
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Figure 4.7: Statechart for a countdown timer.

Guard

Countdown Specific Code Stetechart Interfaces

<< interface >>
Action

Count

Reset

SetValue

Expired implements

implements

implements

implements

<< interface >>

Figure 4.8: Implementation of statechart interfaces for the countdown application.
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for ( int i = 1; i <= 5; i = i + 1 ) {
System.out.println("*** Command: chart.dispatch( ...... )";
chart.dispatch(metaData, te );

}

initiates execution of the statechart thread and then systematically dispatches five

instances of the transition event "Count". The abbreviated script of code shows

flow of control among the statechart, state and transition classes for the counter

countdown.

[java] *** Enter TimerStatechart.create() ...
[java] *** Enter TimerStatechart.startStatechart() ...

... details of output removed ...

[java] ***
[java] *** Command: chart.dispatch(metaData, new TransitionEvent("Count")); ...
[java] ***
[java] *** Enter State( counting ).dispatch() ...
[java] *** Transition( Expired ).execute() ...
[java] *** Enter Expired.check(): expression: is 1 == 5?
[java] *** Leave Expired.check(): bResult = false

... details of output removed ...

[java] ***
[java] *** Command: chart.dispatch(metaData, new TransitionEvent("Count")); ...
[java] ***
[java] *** Enter State( counting ).dispatch() ...
[java] *** Transition( Expired ).execute() ...
[java] *** Enter Expired.check(): expression: is 1 == 4?
[java] *** Leave Expired.check(): bResult = false

... details of output removed ...

[java] *** Enter Expired.check(): expression: is 1 == 1?
[java] *** Leave Expired.check(): bResult = true

[java] *** TimerStatechartView.highlight() nodeId = counting
[java] *** TimerStatechartView.highlight() nodeId = Expired
[java] *** TimerStatechartView.highlight() nodeId = expired

Details of the modelPropertychange() calls to the statechart view and flows of prop-

ertyChange values through the abstract controller have been omitted. With each
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iteration, the counter value is decremented by one, and the iterates of statechart be-

havior will continue until the boolean expression associated with Expired evaluates

to true.

4.6.3 Example 3. Statechart Behavior for a Surveillance System

The statechart package provides modeling support for decision nodes, time-

out guard conditions, hierarchal, composite, and nested states.

Figure 4.9 shows, for example, a snippet of statechart behavior for the

surveillance system case study described in the SysML text by Fridenthal, Moore

and Steiner [18]. The top-level surveillance model has three pseudostates (i.e., start,

end, and junction), four regular states (i.e., Idle, Initializing, Diagnosing, and Shut-

tingDown) and one hierarchal state (i.e., Operating). The second-level states (i.e.,

within Operating) are LoggedOn and LoggedOff. LoggedOn contains two third-level

states, Normal and Alerted.

Statechart behavior emanates from sequences of events that trigger transi-

tions connecting the states. Transitions occur through a mixture of externally and

internally generated events. Examples of the former are the events startup and

turnoff. The statechart will transition from Initializing to Operational when the

internal attribute for initializing evaluates to true.

Scripted Transition Events and System Response. The prescribed sequence

of transition events:
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Figure 4.9: Statechart for behavior of a surveillance system. The highlighted region
is the LoggedOn state.
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Thread thread = new Thread(stv,"statechartdisplay");
thread.start();
metaData = new SurveillanceMetadata();

chart.start(metaData);
chart.dispatch(metaData, new TransitionEvent( "startup" ));
chart.dispatch(metaData, new TransitionEvent( "alert"));
chart.dispatch(metaData, new TransitionEvent( "standdown"));
chart.dispatch(metaData, new TransitionEvent( "logoff" ));
chart.dispatch(metaData, new TransitionEvent( "logon" ));
chart.dispatch(metaData, new TransitionEvent( "alert" ));
chart.dispatch(metaData, new TransitionEvent( "standdown"));
chart.dispatch(metaData, new TransitionEvent( "logoff" ));
chart.dispatch(metaData, new TransitionEvent( "shutdown" ));
chart.dispatch(metaData, new TransitionEvent( "turnoff" ));

is handled by the statechart beginning with the start state. A high-level view of the

statechart behavior can be summarized as follows:

Sequence of States ....
-------------------------------------------------------------------------
start -> Idle -> Initializing -> Operation -> ShuttingDown -> Idle -> end
=========================================================================

When the statechart reaches the hierarchal state, Operation, the lower-level states

move through the following sequence

-------------------------------------------------------------------------
start2 -> Normal -> Alerted -> Normal -> LoggedOff -> Operation -> ...
=========================================================================

The abbreviated system response is as follows:

[java] *** Transition( startidle ).execute() ...
[java] *** In State.deactivate(): start deactivated

[java] *** Transition.execute(): startidle executed
[java] *** Transition.execute(): startup executed
[java] *** Transition.execute(): initializingoperating executed
[java] *** Transition.execute(): start2normal executed
[java] *** Transition.execute(): start2normal executed
[java] *** Transition.execute(): alert executed
[java] *** Transition.execute(): logoff executed
[java] *** Transition.execute(): logon executed
[java] *** Transition.execute(): logoff executed
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[java] *** Transition.execute(): shutdown executed
[java] *** Transition.execute(): confirmation executed
[java] *** Transition.execute(): junctionidle executed
[java] *** Transition.execute(): turnoff executed

[java] *** Enter SurveillanceViewAnimator.actionPerformed() ...

... details of output removed ...

[java] *** Enter SurveillanceViewAnimator.actionPerformed() ...

One the statechart has entered a state, it will systematically test each of the tran-

sition arcs to see if their guard conditions evaluate to true. Notice that some of

the statechart behavior occurs without a transition event – for example, once the

statechart reaches state Initializing it can transition to state Operating without any

input.

4.6.4 Example 4. Lamp with Timer and Scheduled Behavior

Our first real networked application is behavior of a simple lamp having an

on/off switch and a clock. The statechart is composed of two states, on and off,

representing the high level functionality of a lamp. The clock operates as a separate

process and send time events to the lamp controller.

Table 4.1 summarizes the system requirements and expected behavior of

such system. In a more realistic application, the requirements would be refined to

detailed subsystem and component requirements describing the physics and safety

aspects from the electrical, or reliability engineering perspective, e.g., the maximum

wattage of the lamp, range of acceptable voltage, and so forth.
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System Requirements Expected Behavior

1. The lamp shall be
switched to on when time is
8:00 pm.

When the time is 8 pm, the statechart will tran-
sition to the On state if it is not already in that
state.

2. The lamp shall be
switched to off when time is
7:00 am.

When the time is 7 am, the statechart will tran-
sition to the Off state if it is not already in that
state.

3. The user shall be able to
switch the lamp off at any
given time.

When the user clicks the switch button (small
black box) in the lamp view, the lamp will turn
off if it was on.

4. The user shall be able to
switch the lamp on at any
given time.

When the user clicks the switch button (small
black box) in the lamp view, the lamp will turn
on if it is off.

Table 4.1: Lamp System Requirements and Expected Behavior

Lamp Network Topology and Local/Global Behavior

Figure 4.10 is a schematic of the simple lamp architecture with timer and

scheduled behavior. Due to simplicity of lamp prototype, a communication channel

was created between the controllers in the MVC network. Controllers register their

interest to be notified of events occurring throughout the network. For example, the

Light controller is registered to Clock controller, and the the statechart controller is

registered to Light controller.

This arrangement implies local and global types of system change in the

system. Local changes are initially triggered through the interaction of a user with

a view (e.g., pressing a button in the lamp view).. The controller, updates the

model accordingly and notifies the view to display the recent change. But it also

notifies the listener controllers in the list about a global change, and they also follow

the same rule to update their own component and/or notify other components. As
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Lamp Controller

2D View View Model

Model View

Statechart Controller

Clock Controller

Time Model

Digital View

Schedule Controller

Light Statechart

 List of controllers ...  List of models ...  Clocks and timers.

Lamp Workspace

Figure 4.10: Architecture for simple lamp with timer and scheduled behavior.
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On Off

Lamp System Workspace
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Statechart Model

Structure ....

Behavior ....

Transitions ....

States ....

Time Model

listeners

hasBehaviour

Clock Controller

Digital Clock View

notify

update

Property changedUser action

Statechart Controller

Figure 4.11: Schematic for lamp behavior prototype.
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a case in point, the clock controller receives a time change event from the time

model, and it passes it to the scheduler controller. For the purpose of simplicity,

no (statechart) views or model are attached to scheduler controller. Finally, the

engineering system, lamp, receives this global change and update the lamp status

(on/off) and model behavior (statechart model). Accordingly, statechart controller

calls for an update in the lamp statechart view to represent the recent status of the

lamp.
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Chapter 5

Rail Transit Systems Management Case Study

5.1 Case Study Problem Statement

This chapter describes a prototype implementation of ontology-enabled

traceability models and mechanisms, targeted toward rail transit systems design

and management. The motivating application is a simplified fragment of trains

operating in the Washington D.C. Metro System.

Figure 5.1 sets the stage for descriptions of the railway transit management

architecture organized into a network of communicating requirements, ontology,

engineering model, and time workspaces (for details, see Chapters 3 and 4), and

implemented through repeated application of the MVC design pattern. Emphasis

is placed on the implementation of mechanisms (i.e., observer and MVC design

patterns) that provide well maintained and scalable visualization in traceability.

We will describe how these mechanisms work across different workspaces, and how

changes the view or model of a workspace are propagated to all of the registered

models and workspaces. We exercise the behavioral aspects of the transit system

through train behaviors that are modeled and visualized using statecharts. Finally,

we implement real-time rule checking to monitor and control train behavior to satisfy

safety requirements.
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Train Statechart View

Structure ....
Behavior ....

Metro System 
Model

Ontology Model and Rule checker

Metro Scheduler

Metro Controller

Metro Line Model

Station Model

Train Model
Requirements Model

Req 1.
Req 2.

Req 3.

Digital Clock View System Level Behavior of Trains.

Time Model

Scheduler Statechart View

Figure 5.1: Railway Management System Architecture with Model View Controller
Approach.

Figure 5.2: Map of the Washington D.C. Metro System
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5.2 The Washington D.C. Metro System

The Washington D.C. Metro System is the second largest rail transit system

in the United States. It serves a population of 3.5 million people with more than

200 million passenger rides per year. As of 2006, there were 86 metro stations in

service and 106.3 miles of track.

Figure 5.2 shows the map of the Metro System. The five Metro System lines

cover the District of Columbia; the suburban Maryland counties of Montgomery and

Prince George’s; the Northern Virginia counties of Arlington, Fairfax and Loudoun;

and the Virginia cities of Alexandria, Fairfax and Falls Church [47].

5.3 Framework for Rail Transit Systems Design and Management

Modern railway systems are a complex intermingling of traditional infras-

tructure with electronics and telematics (i.e., GIS and GPS) [39]. To keep the

complexity of design concerns in check, railway system design procedures strive to

separate the underlying infrastructure (e.g., track profile and layout) from opera-

tional (e.g., schedule and capacity) and control (e.g., sequencing of switching and

crossings) concerns. In systems engineering terminology the track infrastructure

and railway vehicles define the systems structure. System behavior is defined by

the operations and control. The first and most important priority is to ensure that

all operations are completely safe. Then with safety concerns satisfied, schedules,

capacity and switching operations are designed to maximize available capacity and
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switches and signals.

Train Capacity

Control

Track InfrastructureTrack layout

Required capacity

Requirements Design Process

Metrostation location.

Design Outcomes

Metrostation locations.
Track layout.
Parking capacities.Weekday and weekend

schedule requirements.

Allocation of train engines to 
train timetables.

Safety constraints Train timetable
Algorithms for controlling

Figure 5.3: Flowdown of requirements and design outcomes in a top-down down
development process.

minimize delays, subject to cost and performance constraints.

Figure 5.3 shows the sequence of developments and flowdown of requirements

in a (simplified) top-down development process. The development process begins

with decisions on track infrastructure (e.g., positioning of metro stations; track

layout; transfer stations) which deals with static and structural aspect of the system.

Moreover, issues of scheduling (e.g., weekday and weekend departure and arrival

times for trains) and train control (e.g., routing trains through railway stations)

have to be addressed. This phase defines system dynamics and behavior. The

primary purpose of a railway control system is to prevent events from happening

that could lead to an unsafe system state. Generation of a “train timetable” is

often complicated by highly utilized and intertwined railway networks with many

connections between trains [49]. Since many sections of the track will operate as a

shared resource (meaning that different trains will use the same section of track at

different times), strategies for scheduling and control must guarantee that all safety

constraints are met. The most straightforward approach to achieving this objective
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is to implement centralized control algorithms that: (1) have access to the global

state of the system, and (2) verify correctness of system operations through formal

analysis. Finally, decisions are made on train selection to satisfy requirements on

scheduling and passenger capacity. A complete study would also generate a mix of

best-engine allocations for a number of fleet alternatives [16].

5.4 Railway System Architecture and Workspaces

In the best practice of ontology-enabled traceability architectures, individ-

ual workspaces are represented as a MVC node with a controller and number of

attached registered models and views. For the purposes of simplifying the railway

system implementation, a shared controller (metro controller) is responsible for set-

ting up the communication channel between different models and views across the

network (i.e., the different models and views are connected to one controller). Fig-

ure 5.1 shows the architectural layout of this system. MetroController serves as the

main communication hub for time, ontology and engineering workspaces. And since

MetroController extends AbstractController (for details see Chapter 3 and 4) it can

have a number of registered views and models.

Requirements Workspace. This workspace stores information about the safety

(i.e., maximum capacity and operational spacing of trains), regulations (i.e., location

of the stations and parking spots), scheduling (i.e., train timetables) and design

requirements (i.e., size and specification of track, train car specification).
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Figure 5.4: Tree view of requirements.

Figure 5.5: Tabular view of requirements.

Procedurally, the requirements are stored in an XML file format, read and

converted into a RequirementModel (i.e., a hashtable collection), and are then

adapted to a variety of visualization formats. Figure 5.4, shows, for example, a

tree view of the requirements. In a tree view, emphasizes is placed on categories

(e.g., safety rules and design rules) and hierarchal organization. Figure 5.5 shows

that the requirements model can also be adapted and displayed in a tabular view.

Now, emphasis is placed on describing the textual details of each requirement and

their operational status. Status “true” refers to a situation when a requirement is
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active or satisfied.

In both view representations, only one model (i.e., RequirementModel) is

used, and this is how multiple view points are addressed in this framework. We will

soon see how the separate view are connected to one controller and how traceability

visually shows the connection between them (i.e., when one requirement is true in

the table view, the same requirement will also be selected in the tree view. Moreover,

we will see that requirements (or derived constraints) are correspondent with rules

maintained in the ontology workspace. While the metro system needs to satisfy

safety, behavioral, and non-functional engineering requirements, among others, our

discussion here is restricted to behavioral requirements for the trains. In this test

case the dynamics of the trains, the safety rule in terms of minimum distance of two

following trains were examined. This requirement become active or not in a real

time manner as trains move along the tracks.

Safety Requirements. These requirements are with respect to timing and schedul-

ing of the trains. As a case in point, the distance between the back and the front

of two following trains, can not be less than a quantity. If it is violated, the train

following on the back will be stopped until the one in the front moves and satisfy

the minimum distance.

Ontology Workspace. Figure 5.6 builds upon Figures 1.12 through 1.15, and

displays a mockup of a metro system ontology that takes into account the design

concerns of transportation and mathematical analysis stakeholders. A mathemati-

cian will view the metro network as a graph of nodes and edges. Many algorithms
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Figure 5.6: Mockup of a Metro System Ontology

now exist to analyze the properties of a graph. Transportation engineers look at the

same network in terms of metro stations (nodes) and tracks (edges) and groups of

track elements are organized into lines (e.g., the green line, the red line) to facilitate

passenger navigation from a source to a destination. The collection of concepts in

each of these perspectives will have well defined purposes and will be constrained

by design rules and constraints.

The Railway system ontology is created in Protege and stored in an OWL

file. Figure 5.7 is a schematic the metro ontology and and SWRL rule repository as

modeled in the Protege framework. And Figure 5.8 shows the relationship between

the ontology model and ontology classes and properties. To provide application

programs with the ability to search, query and modify the ontology data, the Jena

framework creates a one-to-one mapping from the ontology classes to Java attributes.
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Figure 5.7: Schematic of Metro Ontology and SWRL rule repository in Protege
Framework

MetroTrain(?t1), MetroTrain(?t2), hasFronLocation(?t2,?l2),hasRearLocation(?t1,?l1), subtract(?d,?l1,?l2), lessThan(?d,"2") > DangerZone(?t2)

OntClass MetroTrain
OntProperty hasFrontLocation
OntProperty hasRearLocation 

...

+AddClass(String className)

+RemoveClass(String className)

+AddInstance(String Class, String indv)

 

MetroOntology

...

Safety Rule: 

Figure 5.8: Relationship between the Ontology Model and Ontology Classes and
Properties
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For the railway case study the ontology model is a Java class that stores the ontology

classes (e.g., train, station) and their associated properties (e.g., hasLocation, has-

Capacity) as attributes. End-users are provided with the means to not only modify

the ontology by adding new individuals (e.g., a new train) and/or remove existing

individuals (e.g., removing a train from operations) from the ontology model, but

property values such as the location of a train can be updated at each time-step of

a simulation. A reasoner attached to the Jena framework will perform rule checking

in response to changes in the ontology model and, if required, in real-time. The

reasoner is used to evaluate safety requirements associated with the minimum al-

lowable spacing between trains – when the rule fails, the train at the back will be

labeled as entering a the danger zone, and a message will be sent to the controller

to stop the train.

Engineering Workspace. The engineering workspace models the system structure

and system behavior and, as such, can be visualized with multiple abstractions (e.g.,

CAD-like views of the system layout; metro map views that highlight connectivity

but simplify geometry; statechart views of train behavior). Due to the geometric

nature of the transportation system layout, nested data structures and collections

store models of the stations, trains and tracks. Each object type will have an

assortment of attribute values (e.g., station location, train capacity, source and

destination of track, line color, station location, train capacity size and location).

Figure 5.9 is a top-level view for part of the engineering model. The metro

system model holds a collection (i.e., HashSet) of different components or subsys-
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+ run()

HashMap<String, Train> trains
HashMap<String, Station> stations
HashMap<String, Line> lines
HashMap<String, Path> paths

Engineering Model

+setMetroLines()

+setMetroPath

+setMetroStations()

+setMetroTrains()

String CarNo

...

Station Origin
Station Destination

Train implements Runnable

TrainStatechart tstatechart
...

+assign Behavior
+stop()

Figure 5.9: A part of the engineering model class diagram.

+receiveEvent(String Event)

TrainStatechartView

(AbstractModel)
(AbstractModel)

(AbstractController)

(AbstractView)

Statechart Controller TransitionState

TrainStatechart

HashMap<String, Transition> transtitions
HashMap<String, State> states

StatechartController stController

TrainStatechartView tStatechartView

+initStatechart()
+addState()
+removeState()
+addTransition()
+removeTransition()

Metadata mData

Figure 5.10: MVC design pattern for implementing the train statechart.
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tems. For those components that also have assigned behavior, information on the

associated statechart – states, transitions, guard conditions – is attached to the

component and operates as a separate thread of execution. Figure 5.10 shows the

associated train statechart class diagram that contains states and transitions rep-

resenting that statechart and creates MVC between transitions, states, statechart

controller and statechart view.

High-level train functionality corresponds to a collection of methods for

simple operations, e.g., run(), stop(). The details of how and when a train has

to function depends on the timing rules and are stored in the rule set. When

a statechart model enters a new state or completes a transition, the associated

controller will notify all of the registers views that an update to the statechart

view is required. Figures 5.11 and 5.12 show the two train states employed in this

simplified model – state “run” is connected to “stop” with transition “Stop()” and

guard condition “[safety]”. When an active state changes or a transition occurs the

views will updates themselves in response to a call from the controller.

Time Workspace. The time workspace provides time to the scheduler to notify

the trains when to run, stop, park, end/begin a service. Changes in the time model

are due to the timer event (every second, minute, and hour), which triggers the

controller to update the clock view. The time model contains a timer that notifies

the controller in case of a second, minute and hour change. The time display view

is implemented as a digital view, but analog views are also possible.
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Figure 5.11: State run is active in statechart view.

Figure 5.12: State stop is active in statechartview.
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5.5 Traceability

Recent research in creating, maintaining, and using traceability mechanisms

has identified the following challenges [22]:

• Exploring topics related to automating the traceability process

• Developing strategies for achieving cost-effective traceability

• Visualizing traceability and advancing its effectiveness for end users

• Developing traceability practices that apply across a wide range of domains

For the purposes of this project, the term traceability refers to an ability to link

system requirements forward to design concept models and rules, and to engineer-

ing system components and simulations. Starting from the engineering workspace,

traceability also implies that an event in the engineering workspace can be traced

back to dependencies in the ontology and requirements workspaces. These mech-

anisms provide end-users with the ability to conduct impact analyses and require-

ments validation. Requirements traceability can demonstrate that a system meets

the different stakeholder viewpoints, stated requirements, and complies with a sets

of regulations.

This case study focuses on the capture of two types of traceability mecha-

nism: (1) Traceability within a single workspace (e.g., selecting on requirement tree

view will select the corresponding requirement in table view), and (2) Traceability
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across workspaces (e.g., requirements and engineering) which shows how a change

in one workspace is related to a change in another workspace.

5.6 Traceability of Requirements to Statechart Behavior Modeling

The traceability of requirements to statechart behavior modeling occurs

across the requirements, ontology and engineering workspaces, and will be visualized

through a variety of views. Their quantitative evaluation involves the attribute

values of states and guard condition expressions in the transitions of finite state

machines.

Consider, for example, the requirement: The distance between two trains

shall not be less than 5 meters. The associated traceability mechanism may be

activated in a number of ways. First, a user positions the cursor over a train

spacing requirement in either a tabular or tree view. The propagation of traceability

dependencies will result in the corresponding guard condition being highlighted in

the statechart view. A second possibility occurs when simulations are setup with

(different) train speeds that will lead to a spacing violation. Pathways of traceability

can also be followed from the system behavior views back to the requirements, as

well as from a statechart view to engineering view. Suppose, for example, that a user

mouses over a statechart describing train behavior the propagation of traceability

relationships will result in the owner train being highlighted in the engineering view.

User Initiated Changes. To see how this works in practice, let us suppose that
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Figure 5.13: Schematic of visual traceability across workspaces.

a user positions the cursor/mouse over a track, train or a station. The visual rep-

resentation will indicate selection by becoming highlighted. Behind the scenes, the

mouseMoved() method attached to a view will cause the engineering controller to

update its model – the controller will search through collections (trains, tracks and

stations) to retrieve the model based on the coordinates of the selection and set it

is status to true or active. The change of the status in the model side will trigger

the controller to update the view side based on the recent changes from the model.

The controller will propagate a change-event to each of the registered views, which

in turn, will decide whether or not they wish to respond (e.g., by also highlighing

the selected item).
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System Dynamic Changes. System dynamic changes are triggered by changes

in the internal state or behavior of an engineering component. During simulation

of the rail transit system, the train velocities and locations are constantly being

updated. When a change in behavior occurs due to evaluation of a guard condition,

a traceability pathway will also exist back to a source requirement. Figure 5.13

shows, for example, a scenario where a transition from “go” to “stop” is active in

the statechart view; the corresponding source requirement in both the tree and table

views are active as well.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Work and Contributions

The most important contribution of this thesis is development of a software

framework to support ontology-enabled traceability from requirements to ontologies

and elements of system structure and behavior. The framework design is based upon

a multitude of software design patterns which work together to provide mechanisms

for modeling systems as networks of controllers, multiple models (i.e., for require-

ments, ontologies, and engineering developments), and multiple visualizations (e.g.,

plan views, tree views, table views).

In state-of-the-art approaches to traceability, requirements are mapped di-

rectly to engineering objects without making any reference to how or why the map-

ping makes sense. The proposed model improves upon this practice by providing

engineers with the mechanisms to: (1) Understand why different components of

the system exist and what requirement(s) led to that design, and (2) Obtain in-

formation on cause-and-effect relationships among requirements, design concepts,

and models in the engineering domain. Previous contributions to this problem area

at the University of Maryland [2] have focused on traceability of requirements to

elements of the system structure. This project has taken the next step and provides
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mechanisms for evaluating requirements associated with fragments of component

and system behavior. This is achieved through the tracing of requirements to guard

expressions in statecharts and evaluation of relationships among components (e.g.,

spacing between trains).

Although statechart diagrams in UML and SysMl provide information about

the different states and transitions in a system, they do not represent real-time be-

havior of the system components. This capability has been implemented by combin-

ing a SourceForge statechart package (on the modeling side) with a the Java-based

graph visualization toolkit JGraphX. The modeling and visualization aspects of

statecharts are synchronized through use of the MVC software design pattern. The

MVC statechart package has been tested on a number of standalone applications.

The key benefits of this capability are visual feedback on the current operating

state(s) of a system, and enhanced understanding for how and why a system may

have failed.

In state-of-the-art approaches to systems engineering with SysML, paramet-

ric relationships describe dependencies among constraints, and constraints verify

requirements. Generally speaking, a key weakness of SysML is a lack of semantic

support to represent and reason with data and knowledge in engineering domains.

To address this problem, in this project Semantic Web technologies (e.g., OWL

and SWRL) have been employed for the capture of rules and rule checking at the

design stage and during the operation of a system. With this approach it is con-

venient to think of an ontology as a block (or class diagram) and the rules as the
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constraints that are checked and verified with a reasoner. The result is improved

support for system verification. In the railway management system case study, the

Protege framework was used to create a metro ontology. A safety requirement rule:

“The distance between two trains shall be less than 2 m” was created and stored

in the SWRL rule repository. During a simulation of train behavior, data on the

train locations are streamed to the ontology in real-time. The rule checker evaluates

the safety requirement and takes action (i.e., stops a train) when this rule is not

satisfied.

6.2 Future Work

Our program of research to understand the role that software patterns, on-

tology technologies, and mixtures of graph and tree visualization can play in the

implementation of ontology-enabled traceability mechanisms is still in its infancy.

Further work is needed to create software capability for the vision conveyed in Fig-

ures 1.16 and 1.17, for the modeling and display of requirements and ontologies

as graphs, and to incorporate real-time measurement of performance into the sys-

tem assessment. The latter can occur in a number of ways. Within an engineering

workspace, for example, it is sometimes possible to cast engineering models as graph

problems and use well-devloped algorithms for operational planning (e.g., shortest

path for train travel between 2 points). This information can to perform trade-space

analyses for performance versus economics, an so forth. To date, the train sched-

uler has been very rudimentary. Improvements will include the ability to generate
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timetables for each train based on models of passenger demand. We plan to replace

SWRL with the Jena Framework, a Java framework for the development of Seman-

tic Web applications. We also wish to move toward a model of one controller per

workspace and, thus, networks of controllers connected together. This capability

will give us the freedom to add and remove workspaces.

When the Washington D.C. Metro System example is complete (i.e., includ-

ing schedules, timetables, requirements, ontologies and animated train behaviors)

our plans are to move onto energy efficient buildings.
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