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ABSTRACT 

Three field studies were conducted in Ada Hayden Lake in Ames, Iowa to study 

generation of turbulence on the sloping boundary and to investigate boundary-interior 

communication in a lake with dye tracking experiments and measurements of meteorological 

conditions, internal wave response, and turbulence. The objectives of these studies were to 

(1) predict the occurrence and strength of turbulent mixing in terms of meteorological forcing 

and stratification by investigating the dependence of internal waves and turbulence on the 

slope on the Lake number, (2) investigate the fate of mixed fluid by tracking an intrusion 

generated at the boundary; and (3) evaluate offshore transport by basin scale seiches.  

To predict the Lake number conditions under which turbulence will be generated at 

the slopes (objective 1), the rate of dissipation of turbulent kinetic energy was determine 

from near-bottom velocity measurements using the structure function method, and 

histograms of ε/νN2
 were analyzed for all the data and for five different Lake number 

regimes. Although a quantitative relationship between the Lake number and the turbulence 

intensity could not be determined, some relationships between the Lake number and ε/νN2
 

for different Lake number regimes could be observed. For example, for high Lake number, 

most of the values of ε/νN2
 were low enough to suggest that transport was mainly caused by 

molecular diffusion, while for low Lake number, turbulence was energetic. For moderate 

Lake numbers, the value of ε/νN2
 at the peak in the histogram increased as the Lake number 

decreased from 30 to 1.  

To investigate intrusion generation and propagation (objective 2), temperature 

microstructure measurements on the slope and horizontal and vertical dye mapping were 

used. Profiles of temperature microstructure measured soon after the injection both at the 

injection site and offshore showed large eddy diffusivity near the boundary. The propagation 

characteristics of the intrusion were predicted most closely by a formulation for an 

axisymmetric intrusion governed by a balance between buoyancy and inertia.  

To evaluate offshore transport by basin scale seiches (objective 3), the horizontal 

variation in internal wave shear and strain, which can increase the lateral dispersion between 

the boundary and the interior, was analyzed. The strain can spread the mixed fluid far enough 
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from the boundary that vertical shear becomes an important dispersion process. These 

findings improve the understanding of the pathway from energy input from the wind to 

offshore transport. 
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CHAPTER 1. INTRODUCTION 

 

1.  Significance 

 

Understanding the transport of dissolved substances such as oxygen, nutrients, 

microorganisms, and plankton is essential for managing water quality in lakes and reservoirs. 

The ability of stratification, which is caused by temperature, salinity, or sometimes chemical 

species, to restrict vertical mixing and control the spatial variability of nutrients and other 

substances affects the distribution of dissolved oxygen in the water column (e.g., Rao et al. 

2008), the availability of nutrients to phytoplankton (e.g., MacIntyre et al. 1999) and 

transport of pollutants between the hypolimnion and epilimnion (e.g., Morillo et al. 2008). 

Most temperate lakes experience seasonal overturns twice a year, although some lakes 

remain stratified for years. As large scale mixing events do not dominate transport within a 

lake during the strong summer stratification, small-scale mixing plays an important role in 

distributing dissolved substances. 

The current model in ocean and lake mixing is that turbulence created at the 

boundaries by internal waves and currents causes most of the mixing (e.g., Gregg 1998; 

Ledwell et al. 2000; Wunsch and Ferrari 2004). The turbulence created on the boundaries by 

internal waves or currents can suspend bottom sediments (Gloor et al.1994), possibly 

releasing nutrients stored in the sediment pore waters. Alternately, if nutrients are trapped in 

a particular portion of the water column, the vertical mixing at the boundaries can entrain the 

nutrient-rich water into the nutrient-poor water (MacIntyre et al. 1999). While much work 

has been done to investigate mixing at boundaries in lakes and the ocean, less attention has 

been paid to the fate of the mixed fluid.  

 

2. Background 

 

This section reviews the background and previous work on boundary mixing and the 

fate of mixed fluid. Part a reviews the background on lake stratification. Internal waves and 

seiches are discussed in part b. In part c, previous research on boundary mixing is 
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summarized. Two possible mechanisms for boundary-interior communication are discussed 

in parts d and e.   

 

a. Stratification in Lakes 

 

For most lakes, the dominant sources of energy are solar radiation and the wind. Solar 

radiation sets up a stable thermal stratification, with a well mixed surface layer (the 

epilimnion), a region of strong temperature gradient (the metalimnion or thermocline), and 

then another more weakly stratified bottom layer (the hypolimnion) as seen in Figure 1. For 

dimictic lakes (typically found between 40º and 60º latitude), this stratification is established 

early in the summer and persists until the fall overturn when the air temperature drops 

sufficiently to cool the surface water to the same temperature as the bottom water. 

 

 

Figure 1. Typical vertical structure of lakes, with the warmer, less dense water at the surface. 

 

The wind adds energy to the lake through several mechanisms that affect the 

stratification. Turbulent mixing generated by the wind keeps the epilimnion well-mixed. 

These turbulent motions in the epilimnion can also erode the thermocline, but the effect of 

epilimnion 

thermocline 

hypolimnion 

    temperature 
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this direct wind stirring is confined to the surface layer. Wind stresses can also cause the 

surface to tilt. To reduce the horizontal pressure gradient that this tilt creates, the water below 

the epilimnion tilts as well. This wind set-up allows energy from the wind to be transferred to 

the entire water column, but wind set-up occurs only when the wind is sufficiently strong. 

To determine if wind set-up will occur, the information about the lake stratification 

and the wind forcing can be combined through the dimensionless Lake number. The Lake 

number is a ratio between the strength of the stratification strength and the strength of the 

wind, which is acting to overturn the stable density structure (Imberger and Patterson 1989): 
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where g is the gravitational acceleration, zT is the center of the metalimnion, zS is the height 

of the surface, ρs is the density at the surface, u* is the shear velocity of the wind, As is the 

area of the surface, zv is the height of the center of volume, and St is the stability of the water 

body defined as 
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The shear velocity of the wind is defined as 

 

2

* /a Dw w Su C uρ ρ=         (3) 

 

where ρa is the air density, CDw is the wind drag coefficient, and uw is wind speed. The wind 

drag coefficient depends on the wind speed. For uw < 5 m/s, Wüest and Lorke (2003) did a 

least squares fit of data from several studies to yield CDw = 0.0044uw
-1.15

, where uw is in m/s. 

For uw > 5 m/s, CDw = (1/κ ln(10g/CDw/uw
2
) + 11.3)

-2
. Note that uw is typically taken as the 

velocity 10 m above the water; if the velocity is measured at a different level, the measured 
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velocity has to be converted to a velocity at 10 m using the logarithmic law for velocity 

profiles over a rough surface. 

 

b. Internal Waves and Seiches 

 

When a horizontal density interface, such as that between air and water or between 

the epilimnion and hypolimnion of a lake, is disturbed, gravity restores the horizontal 

interface and waves are generated. Internal waves are generated within the water column, as 

opposed to on the surface. The interface on which the waves are generated need not be sharp, 

like the examples mentioned above; internal waves can exist wherever there is a stable 

density stratification.  

When the amplitudes of the waves are considered to be small compared to the 

wavelength, then linear wave theory applies. For two-dimensional internal waves in a 

linearly stratified fluid, the frequency ω of the wave is related to the wavenumber vector k by 

the dispersion relation 

 

θω cos

2/1

22

2

N
mk
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+
=       (4) 

 

where k and m are the horizontal and vertical components of the wavenumber respectively, θ 

is the angle that the wavenumber vector k makes with the horizontal plane and N is the 

buoyancy frequency defined as 
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N
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∂
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        (5) 

 

where ρ0 is a reference density and ρ is the background density (Turner 1973). This relation 

states that a wave with a given frequency in a fluid of a given stratification has a phase that 

propagates at a specific angle. This relation also shows that waves of frequencies higher than 
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the buoyancy frequency cannot be sustained. For surface waves, both the phase and energy 

propagate in the same direction. For internal waves, the energy propagates perpendicular to 

the phase (i.e., at an angle φ = π/2 − θ). 

 To conserve energy, internal wave energy must reflect from boundaries. Upon 

reflection, the angle φ with respect to the horizontal plane must be maintained. When the 

wave approaches a boundary with a slope α, three scenarios are possible (Figure 2). If φ < α, 

the wave energy is reflected back into the lake interior (subcritical reflection). If φ > α, the 

wave energy is reflected forward up the slope (supercritical reflection). When φ = α, critical 

reflection occurs and the energy propagates along the boundary. When critical reflection 

occurs, linear wave theory breaks down as the vertical wavenumber of the reflected wave 

approaches infinity (because of energy considerations). 

This simplified reflection theory is limited in its application to real waves on real 

topography. In natural water bodies, more than one frequency of wave exists (Garrett and 

Munk 1979). Eriksen (1985) theoretically analyzed how this spectrum of internal waves 

changes upon reflection from a slope and observed the spectrum was most perturbed around 

the critical frequency, where there should be a singularity in the reflected spectrum. Gilbert 

and Garrett (1989) addressed the issue of irregular bottom topography and theoretically 

evaluated internal waves reflecting off convex and concave slopes, finding more energy 

enhancement over convex topography. Using oceanic observations, Eriksen (1998) 

investigated internal waves reflecting off a steep sloping boundary and found significant 

differences between the measurements and the behavior predicted by the linear theory. 

Because the amplitude of the reflected waves decayed with the wavenumber and the 

dominant mode critically reflecting resulted in a vanishing vertical wavenumber (as opposed 

to an infinite one), care must be taken when applying linear wave theory to field 

observations. Dauxois and Young (1999) theoretically addressed this case of non-linear near-

critical internal waves interacting with a slope in a linearly stratified fluid and analyzed the 

conditions in which these near-critical waves can create turbulence and intrusive layers. 

A seiche is a special case of internal wave. When the wind relaxes after wind set-up, a 

basin-scale standing wave, or seiche, is formed. For a rectangular basin of constant width, the 

first horizontal mode seiche has a wavelength that is twice the length of the lake with a single 



6 

 

 

 

 

Figure 2. Internal waves reflecting off a sloping boundary: (a) subcritical reflection; (b) 

supercritical reflection; (c) critical reflection. 
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node in the middle; the complex geometry and bathymetry of real lakes change the modal 

structure (e.g., Fricker and Nepf 2000).  Higher modes have more nodes (the second mode 

has two nodes, etc.). Under different conditions, the wind can alternatively create surges or 

solitary waves, which do not follow linear internal wave theory. Boegman et al. (2005) 

conducted laboratory experiments with a two-layer stratification to determine the energy 

distribution between standing seiches and these other wave forms. They found that if the 

inverse of the Wedderburn number (a simpler version of the Lake number derived for two 

layer stratification in a rectangular basin) W
-1

 < 0.3, seiches should form; otherwise, 

nonlinear surges and solitary waves should form. During these same experiments, Boegman 

et al. (2005) found that 98% of the energy was contained in the first horizontal mode seiche. 

In a two-layer stratification such as theirs, only the first vertical mode can exist; in lakes with 

a thermocline of finite thickness (i.e., a metalimnion), the second vertical mode can dominate 

the first mode and can cause large isotherm displacements (e.g., Wiegand and Chamberlain 

1987, Münnich et al. 1992). 

The seiches can generate observable currents in the water column. A first vertical 

mode seiche has peak velocities at the top and bottom of the water column with a minimum 

in the metalimnion. The compression of the metalimnion that is a signature of the second 

vertical mode results in a velocity maximum in the metalimnion. Higher modes have more 

peaks in the velocity profile. Current profiles have shown this velocity structure induced by 

higher mode seiches in several lakes (e.g. Antenucci et al. 2000, Vidal et al. 2005, Boehrer et 

al. 2000).  

Once seiching motions have been initiated, they will continue until they are damped 

by the lake boundary, but field observations (e.g., Stevens et al. 1996) have shown that the 

energy in the seiches sometimes is dissipated faster than would be expected by viscous 

damping because other mechanisms transfer energy from the seiches. Using laboratory 

experiments with a two-layer fluid, Horn et al. (2001) classified how seiches degenerate in a 

lake based on the Wedderburn number and the ratio between the depth of the thermocline 

and the total depth (Figure 3). The response was classified into five regimes indicating the 

dominant mechanism for energy loss from the seiches: damped linear waves, solitons, 

supercritical flow, Kelvin-Helmholtz billows, and bores and billows. For all depth ratios, W > 
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5 falls into the first regime of damped linear waves, as the time scale for damping is less than 

the time scale for nonlinear steepening of the waves, which produces solitons. Outside of the 

first regime, linear wave theory would no longer apply.  

Figure 3. Regimes from Horn et al. (2001) predicting wave behavior given the Wedderburn 

number and the depth of the thermocline. The parameter range for Ada Hayden Lake during 

typical summer stratification is shaded. 

 

c. Boundary Mixing 

 

Using a balance between a downward turbulent heat flux and upwelling of cold 

bottom water in the ocean, Munk (1966) estimated that a vertical eddy diffusivity K, which is 

a measure of the mixing on the order of 10
-4

 m
2
/s, a value 1000 times greater than the 

molecular diffusivity of heat, was required to maintain the observed stratification. While 

microstructure measurements in the open ocean have yielded estimates ranging from only 10
-

6
 to 10

-5
 m

2
/s (Polzin et al. 1997), measurements near topography, using both microstructure 

(see Gregg (1998) for a review) and dye dispersion (Ledwell et al. 2000), show K  ranging 

Regime 1 

(damped linear waves) 

Regime 2 (solitary waves) 

Regime 3  

(supercritical flow) 

Regime 4 (K-H billows) 

Regime 5 (bores and billows) 

AHL 
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from 10
-5

 to 10
-2

 m
2
/s.  This elevated mixing at topography is important for closing the global 

oceanic heat budget (e.g., Wunsch and Ferrari 2004).  

Similarly to the ocean, boundary mixing has been shown to be an integral mechanism 

for vertical fluxes in lakes. Goudsmit et al. (1997) performed a tracer release experiment in a 

lake to investigate the importance of boundary mixing to vertical transport. They observed 

that the vertical diffusivity was small in the interior of the lake and increased by an order of 

magnitude at the boundaries. This enhanced mixing over the boundary is often attributed to 

critical internal wave reflection or currents passing over the bottom. 

When wind acts on the surface of a stratified lake, it can set up seiches, which 

generate currents along the boundaries. The friction with the bottom generates turbulence 

that mixes the water locally to create a turbulent bottom boundary layer (e.g., Gloor et al. 

2000, Hondzo and Haider 2004). The seiching motions can also degenerate into higher 

frequency waves. Some of these waves propagate towards the boundary with a critical 

frequency set by the stratification and the slope of the boundary. When the critical waves 

approach the boundary, their energy reflects along the slope and energizes a turbulent bottom 

boundary layer (e.g., Eriksen 1998, MacIntyre et al. 1999). 

Boundary mixing due to breaking internal waves in lakes has been observed in 

several lakes. MacIntyre et al. (1999) measured temperature microstructure profiles in a lake 

at offshore and onshore sites to determine the presence of boundary mixing and its effect on 

nutrient fluxes. Measurements at the onshore site (on a sloping boundary) showed enhanced 

mixing at the bottom that they attributed to the presence of critical internal waves breaking 

on the sloping bottom onshore. Hondzo and Haider (2004) measured turbulence in the 

benthic boundary layer on the sloping boundary of a lake using an acoustic Doppler 

velocimeter and temperature microstructure and attributed the high dissipation levels to 

energy from the internal wave field. With detailed measurements of temperature and velocity 

in the bottom boundary layer, Lorke (2007) observed periodic enhanced turbulence on the 

slope, coinciding with the period of high-frequency internal waves seen at a mooring in the 

deepest part of the lake. This oscillation in the turbulence in the bottom boundary layer was 

also observed in numerical simulations of mixing from internal wave reflection on a slope 

(Slinn and Riley 1996). 
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Fewer researchers have looked at the turbulence generated by seiching currents, 

although several have proposed that large amplitude internal seiches may create significant 

mixing (e.g., Patterson et al. 1984). Lorke and Wüest (2005) estimated the dissipation rate of 

turbulent kinetic energy over the lake bottom and observed oscillations in the dissipation 

with the same period as the dominant seiching currents. The currents elevated the dissipation 

rate by over two orders of magnitude compared to measurements in the interior. Lorke et al. 

(2005) observed convective turbulence in the bottom boundary resulting from the periodic 

seiching currents. Because of friction with the boundary the fluid near the boundary moves 

slower than the fluid at the top of the boundary layer. As a result, when the direction of the 

seiching currents is up the slope, denser water is advected over less dense water, causing 

convection. When the seiche moves downslope, the stratification in the boundary layer 

becomes even stronger. As the velocity magnitude (and hence the shear) is the same 

regardless of the direction of the seiching movements, shear induced mixing will necessarily 

be smaller during this period of stronger stratification than during the upslope seiching phase. 

Lorke et al. (2008) confirmed that this behavior by observing differences in mixing on the 

slope when the seiche was moving upslope and downslope. 

Low mode waves that have associated observable currents (such as seiches) can be 

critical with respect to the boundary as well. One question that has not been addressed is if 

such waves cause enhanced turbulence on the boundary or if turbulence due to breaking or 

friction dominates. In the ocean, the closest analogy would be the behavior of the semi-

diurnal M2 tide; oceanographers typically attribute the enhanced mixing they observe on the 

continental slope to internal tides reflecting critically (e.g., Nash et al. 2004, Rudnick et al. 

2003), not to the currents generated by such a tide. 

Once the turbulence has been generated (whether by breaking internal waves or 

currents), it is important to determine if the turbulence can overcome the stable stratification 

to irreversibly mix the fluid and create a turbulent bottom boundary layer. To describe the 

turbulence generated at a slope, a Reynolds number (ReT) and a Froude number (FrT) can be 

defined using three standard length scales in stratified turbulence: the centered displacement 

scale LC (a measure of the size of the overturns in a density profile, attributed to large scale 

turbulent eddies), the Ozmidov scale LO = (ε/N
3
)
1/2

, and the Kolmogorov scale LK = (ν3/ε)
1/4 
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(Ivey and Imberger 1991). The last two are derived from dimensional analysis using scaling 

arguments. The Ozmidov scale is the length scale at which the buoyancy force are of the 

same order of magnitude as the inertial forces of the overturning motions. The Kolmogorov 

scale is the smallest turbulent length scale that can exist before viscosity resists the inertial 

forces. Using these scales, ReT = (LC/LK)
4/3 

and FrT = (LO/LC)
2/3

.  The remaining combination 

of length scales can be used to define the turbulence intensity parameter ε/νN2
 = (LO/LK)

4/3
 

(Ivey et al. 2008).  

The eddy diffusivity K has been shown to depend on ε/νN2
. With measurements of 

the dissipation rate, the eddy diffusivity in lakes and the ocean is often estimated using the 

Osborn (1980) model. In this method, Osborn (1980) used the turbulent kinetic energy 

equation: 
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where Jj
 
is a flux of turbulent kinetic energy,  0/'' ρρ wgb = is the buoyancy flux, and ρ0 is a 

reference density.  For oceanic flows, Osborn (1980) argued that the last three terms balance. 

For more general flows, Ivey and Imberger (1991) wrote (6) as m = b + ε.  Using the 

generalized flux Richardson number mbR f /= and the flux-gradient relationship 

zKw ∂∂−= /'' ρρ ρ  gives 

 

 
221 NNR
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f

f εε
ρ Γ=

−
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where Γ  is the dissipation coefficient.    

Some uncertainty in estimating the eddy diffusivity Kρ computed with the Osborn 

method comes from uncertainty in the value used for the dissipation coefficient Γ . The 

dissipation coefficient Γ is commonly assumed to be 0.2, although it can vary with 

stratification strength and the process generating the turbulence (e.g., Ivey and Imberger 
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1991).  Laboratory measurements show that Γ decreases when ε/νN2
 > O(10

3
) (Itsweire et al. 

1986, Barry et al. 2001, Rehmann and Koseff 2004), although measurements from the upper 

ocean show the opposite trend (Ruddick et al. 1997). Using the results from direct numerical 

simulations and laboratory experiments, Shih et al. (2005) defined three regimes of stratified 

turbulence based on ε/νN2
. For ε/νN2

 < 7, the diffusivity is molecular; Ivey and Imberger 

(1991) found cutoff values for turbulence generation at about twice this value (ε/νN2
 = 15, 

for ReT > 15). For 7 < ε/νN2
< 100, Γ = 0.2 approximated the results well. But Shih et al. 

(2005) found that as ε/νN2
increases above 100, the mixing efficiency decreases because the 

turbulence is more energetic than necessary to break down the stratification; thus, the 

turbulence acts on fluid that has already been mixed. In the field this can occur after a bottom 

boundary layer is formed and the turbulence continues to act upon already mixed fluid in the 

boundary layer (Garrett 1979).  

 

d. Fate of Mixed Fluid: Intrusions 

 

The mixed bottom boundary layer that develops due to boundary mixing is 

hydrodynamically unstable with respect to the stratified interior. Gravitational adjustment of 

this mixed fluid leads to collapse into an intrusion that propagates horizontally along an 

isopycnal (level of constant density) into the interior. These intrusions can transport the 

mixed fluid from the boundaries into the lake interior to a distance from the slope on the 

order of the internal Rossby radius of deformation (the length scale at which Coriolis forces 

begin to dominate the buoyant forces driving the flow), but there is a lack of knowledge of 

how efficiently intrusions transport material from the boundaries into the interior of lakes 

(Thorpe 1998). Figure 4 shows a schematic of the mechanisms for creating turbulence at the 

boundary layer and the process of intrusion generation that may result.  

Neglecting this horizontal transport may lead to an underestimate of the nutrients 

available for biological production offshore. Also, the vertical boundaries of intrusions are 

characterized by sharp density gradients where there is very little vertical mixing, creating 

thin layers where biological matter gets trapped. Knowledge of the properties of these 
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Several studies provide evidence for intrusions from boundary processes. Caldwell et 

al. (1978) observed stepped profiles near sloping boundaries in a lake that they attribute

intrusions generated by boundary mixing. Gloor et al. (2000) observed mixed water masses

extending up to 200 m into the lake interior and ascribed them to intrusions, which reduce the 

boundary layer thickness by discharging mixed fluid into the interior. Intrusions can also 

explain turbid layers observed in the interior of a water body. Dickson and McCave (1986) 

and Thorpe and White (1988) proposed that nepheloid layers along a continental slope 

resulted from boundary mixing due to the semi-diurnal M2 tide reflecting critically. Dye 

injected into the water column above a slope in a fjord was eventually entrained into a 

turbulent boundary layer generated by the semidiurnal tide moving over rough topography, 

and then it entered the interior as intrusions (Inall 2009). 

While several field experiments have provided evidence of intrusions from boundary 

mixing, intrusions resulting from the collapse of turbulent regions have been tracked from the 
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mixing, intrusions resulting from the collapse of turbulent regions have been tracked from the 
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boundary into the interior mostly in laboratory experiments. Some laboratory work focuses 

on intrusive gravity currents traveling along the interface between two fluids (e.g., Lowe et 

al. 2002, Sutherland et al. 2004), a scenario that might mimic behavior of an intrusion along 

the thermocline in a lake. While these intrusions are generally not created by boundary 

mixing processes, these experiments relate intrusion properties, such as the velocity, to the 

depth and density of the ambient fluids. Phillips et al. (1986) conducted laboratory 

experiments in a two layer fluid where a turbulent boundary layer was generated on a slope 

by an oscillating bed. Gravitational adjustment of the turbulent boundary layer created 

intrusions. From their observations and a theoretical analysis, they proposed a model for the 

intrusion velocity that is based on a viscous-buoyant balance.  

Other laboratory experiments investigate intrusions in a linearly stratified fluid, which 

is typical of the hypolimnion of many lakes or the ocean thermocline. In some earlier studies, 

the turbulence was generated by an oscillating grid that created a uniform vertical turbulent 

patch that gravitationally collapsed into several intrusions (e.g., Ivey and Corcos 1982, 

Thorpe 1982). Hopfinger (1987) summarized previous stratified turbulence experiments and 

found that collapse appears to occur when FrT ~ 1.  Browand et al. (1987) showed that the 

vertical scale of the intrusions was limited by the Ozmidov scale. The intrusions that make up 

the front propagated at a rate that was related to a local Froude number that decreased as the 

intrusion advanced. 

Several experiments have investigated the vertical mixing from breaking internal 

waves and observed intrusions (e.g., Cacchione and Wunsch 1974, Ivey and Nokes 1989), 

but fewer have quantified the intrusion properties. De Silva et al. (1997) and McPhee-Shaw 

and Kunze (2002) measured propagation of intrusions resulting from breaking internal waves 

on a slope and related the intrusion speed to the energy of the incident internal waves. The 

former observed no change in the background density stratification due to the intrusion, 

whereas the latter observed persistent steps; however, as De Silva et al. (1997) noted, even if 

the intrusion does not change the thermal structure of a lake, dissolved substances can still be 

transported offshore. The experiments of Wells and Helfrich (2004) provide information on 

the three-dimensional behavior of an intrusion generated at the boundary; in those, effects of 

rotation limited the propagation of the intrusion.  
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e. Fate of Mixed Fluid: Internal Wave Driven Transport 

 

While intrusions are an outcome of the internal waves interacting with the boundary, 

the internal waves themselves may drive transport between the boundary and the interior. As 

described above, the mechanisms by which internal waves may contribute to horizontal 

mixing in a lake are through lateral advection by the mean velocity field of the internal waves 

in the metalimnion, shear dispersion by the vertical variation of internal wave induced 

velocities, and strain due to the horizontal variation in the internal wave velocity field, and  

In a lake, the first potential mechanism for this offshore transport is the water column 

currents generated by the internal seiches. Marti and Imberger (2008) observed a well-

defined turbid layer in a large lake and used numerical modeling with field measurements of 

turbulence and the internal wave field to predict exchange between the boundary and the lake 

interior. They associated the change in the turbid layer with the changes in the bottom 

boundary layer as the seiches passed over the slope. Given the basin-scale internal waves in 

the lake, they concluded that the turbid layer was advected offshore by a jet in the 

metalimnion that resulted from a second vertical mode wave. Their numerical model showed 

residual velocities in the metalimnion after such a seiching event and these residual velocities 

can explain some aspects of the observed distribution of the turbid layer. 

Due to the oscillatory nature of seiching motions, significant movement due to mean 

advection as observed in Marti and Imberger (2008) is expected to be rare as any transport 

into the interior will be reversed when the seiche moves in the other direction. But the 

velocities in a lake vary significantly both horizontally and vertically. The vertical variations 

in velocity can lead to lateral shear dispersion, while the horizontal velocity variations causes 

straining of the water mass. 

Young et al. (1982) studied dispersion in an infinite fluid with an oscillating velocity 

profile and a horizontal velocity component given by 

 

cos cosu U mz tω=               (8) 

  

and found 
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where 2 /zd K m ω= , U is the maximum velocity, m is the vertical wavenumber, Kx is the 

horizontal diffusivity without the presence of internal wave shear, and Kz is the vertical eddy 

diffusivity. Sundermeyer and Ledwell (2001) used the Young et al. (1982) results with the 

results of Smith (1982) to estimate this enhanced horizontal diffusivity and compare the 

estimates to the observed spreading from four dye release experiments in the coastal ocean. 

They found that this shear dispersion was not sufficient to explain their dye distributions and 

oftentimes was an order of magnitude too low. There appear to be no similar tracer 

experiments in lakes; tracer experiments carried out in the metalimnion of the lake focused 

on mean shear, not internal wave induced shear (Peeters et al. 1996).  

 The horizontal variations in velocity can cause the cloud to spread laterally. Unlike 

shear dispersion, this spreading mechanism is reversible (Sundermeyer and Ledwell 2001). 

Because there can be no flow into a boundary, the horizontal velocity normal to the wall of 

the lake must be zero. For basin scale seiches, a first horizontal mode wave has a sinusoidal 

form with the horizontal velocity maximum in the middle of the lake. Thus all velocity fields 

induced by seiches have horizontal gradients. While the internal wave strain 

parameterizations have been used to estimate vertical mixing in lakes (e.g. MacIntyre et al. 

2009), internal wave strain as a mechanism for spreading mixed fluid away from the 

boundaries has not been investigated. As the straining is at a maximum at the boundary for 

first horizontal modes, this process may be important for moving mixed fluid into the interior 

where other dispersive forces may act on it. 

 

f. Summary 

 

Boundary mixing has been shown to be an integral mechanism for vertical fluxes in 

lakes, and boundary mixing due to breaking internal waves in lakes has been observed in 

several lakes. However, fewer researchers have studied the turbulence generated by seiching 
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currents, although several have proposed that large amplitude internal seiches may create 

significant mixing. Once the turbulence has been generated (whether by breaking internal 

waves or currents), it is important to determine if the turbulence can overcome the stable 

stratification to irreversibly mix the fluid. While observational evidence exists that connects 

the forcing conditions to internal wave generation and then to boundary mixing, there have 

been no systematic studies to determine if the forcing conditions can be used to predict 

boundary mixing in a lake, information which would be useful for water quality management 

in lakes and reservoirs. 

The mixed bottom boundary layer that develops due to boundary mixing is 

hydrodynamically unstable with respect to the stratified interior. As a result, the mixed layer 

can collapse and form and intrusion of mixed fluid into the interior. From a water quality 

perspective, intrusions can transport nutrients offshore, making them more readily available 

to phytoplankton in the pelagic zone. While several field experiments have provided 

evidence of intrusions from boundary mixing, intrusions resulting from the collapse of 

turbulent regions have been tracked from the boundary into the interior mostly in laboratory 

experiments.  

While intrusions are an outcome of the internal waves interacting with the boundary, 

the internal waves themselves may drive transport between the boundary and the interior. In 

a lake, the potential mechanism for this offshore transport is the water column currents 

generated by the internal seiches. Due to the oscillatory nature of seiching motions, 

significant net movement due to mean advection is expected to be rare as any transport into 

the interior will be reversed when the seiche moves in the other direction. While the net 

advection might be minimal, the vertical shear generated by these currents can lead to lateral 

shear dispersion. Additionally, the horizontal variations in velocity can cause the cloud to 

spread laterally by internal wave straining. While there have been tracer studies in the open 

ocean that address these transport mechanisms, this process has not been well-studied in 

boundary regions where it may enhance boundary-interior communication. 
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3. Objectives 

 

In the present work, field experiments were used to study transport by turbulence 

generation at a sloping boundary and the fate of this boundary mixed fluid. The objectives of 

this study were to 

1. Predict the occurrence and strength of turbulent mixing in terms of 

meteorological forcing and stratification by investigating the 

dependence of internal waves and turbulence on the slope on the 

Lake number, which compares the stabilizing tendency of 

stratification to the destabilizing tendency of the wind. 

2. Investigate the fate of mixed fluid in a lake by using a tracer to 

track an intrusion generated at the boundary and conducting 

simultaneous turbulence measurements. 

3. Evaluate offshore transport by basin scale seiches by tracking 

tracer as it spread from the boundary region into the interior  

These objectives were achieved through measurements and observations throughout three 

summers at Ada Hayden Lake in Ames, Iowa. Measurements included bathymetry, currents, 

velocity profiles, turbidity, temperature profiles, wind direction and speed, internal wave 

spectra and temperature microstructure in addition to dye tracking experiments. These results 

will aid in predicting when boundary mixing will occur and enable us to estimate lateral 

transport from the boundaries, which can have serious implications for the spatial distribution 

of dissolved substances such as oxygen, nutrients, microorganisms, and plankton. 

Understanding the extent to which boundary mixing and the fate of the mixed fluid might 

control these distributions is essential for maintaining the water quality of a stratified water 

body. 

 

4. Dissertation Organization 

 

In this dissertation, the pathway from wind forcing to boundary mixing and possible 

outcomes of boundary mixing are examined. In Chapter 1, the background on lake 
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stratification, internal waves, boundary mixing, and possible fates of mixed fluid were 

examined. In Chapter 2, prediction of boundary mixing in a lake from basic measurements of 

stratification, wind forcing, and bathymetry is addressed. In Chapters 3 and 4, some 

mechanisms by which internal waves may lead to lateral transport in lakes are investigated. 

These mechanisms of boundary-interior communication include intrusions of mixed fluid 

from the turbulent boundary layer into the interior, lateral advection by the velocity field of 

the internal waves, shear dispersion by the vertical variation of internal wave induced 

velocities, and strain due to the horizontal variation in the internal wave velocity field. 
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CHAPTER 2. LAKE NUMBER AS A PREDICTOR OF TURBULENCE 

GENERATION ON A SLOPE 

 
A paper to be submitted to Journal of Geophysical Research - Oceans 

 

Danielle Wain and Chris Rehmann 

 

Abstract 

 

A crucial unanswered question in lake and reservoir management is whether the Lake 

number can be used to predict mixing in a lake. To address this question, three field 

campaigns with measurements of meteorological conditions, internal wave response by three 

thermistor chains, and dissipation of turbulent kinetic energy were conducted to study 

generation of turbulence on the sloping boundary of a small lake for Lake numbers between 

0.1 and 1000. We measured the velocities in the bottom boundary layer with a high 

resolution acoustic current profiler and then computed the dissipation using the structure 

function method, which uses the spatial correlations of velocity along a beam to estimate the 

dissipation. During the low Lake number events, the dissipation of turbulent kinetic energy 

increased by up to four orders of magnitude above the default background level of 10
-10

 

m
2
/s

3
, except during the fall turnover when the wind energy was used in thermocline 

deepening. To evaluate the Lake number conditions under which turbulence will be 

generated at the slopes, histograms of ε/νN2
 were analyzed for all the data and for five 

different Lake number regimes. While the spread of the measurements defied developing a 

quantitative relationship between the Lake number and ε/νN2
, several patterns were 

observed. In general, the typical value of ε/νN2
 increased as the Lake number decreased 

below 30. A larger jump within the energetic regime was observed when the Lake number 

dropped below 1. 
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1. Introduction 

 

Stratification in lakes restricts vertical mixing and often controls the spatial variability 

of nutrients and other substances, affecting the distribution of dissolved oxygen in the water 

column (e.g., Rao et al. 2008), the availability of nutrients to phytoplankton (e.g., MacIntyre 

et al. 1999), and transport of pollutants between the hypolimnion and epilimnion (e.g., 

Morillo et al. 2008). The current model in ocean and lake mixing is that turbulence created at 

the boundaries by internal waves and currents causes most of the mixing (e.g., Gregg 1998, 

Ledwell et al. 2000, Wunsch and Ferrari 2004). In the ocean, much of this mixing is driven 

by regular tidal motions; in most lakes, this mixing is the result of wind-induced internal 

waves. Both the strength of the wind forcing required to generate these waves and the ability 

of these waves to mix fluid at the boundary depend on the stratification and the bathymetry. 

Because turbulence is difficult to measure, we seek to determine whether turbulence at the 

boundary can be predicted from standard measurements of meteorological conditions, 

stratification, and bathymetry. 

Wind acting on the surface of a stratified lake can set up seiches, which generate 

currents along the boundaries. The friction with the bottom generates turbulence that mixes 

the water locally to create a turbulent bottom boundary layer (e.g., Gloor et al. 2000, Hondzo 

and Haider 2004). The seiching motions can also degenerate into higher frequency waves. 

Some of these waves propagate towards the boundary with a critical frequency set by the 

stratification and the slope of the boundary. When the critical waves approach the boundary, 

their energy reflects along the slope and energizes a turbulent bottom boundary layer (e.g., 

Eriksen 1998, MacIntyre et al. 1999). 

Boundary mixing due to breaking internal waves in lakes has been observed in 

several lakes. MacIntyre et al. (1999) measured temperature microstructure profiles in a lake 

at offshore and onshore sites to determine the presence of boundary mixing and its effect on 

nutrient fluxes. Measurements at the onshore site (on a sloping boundary) showed enhanced 

mixing at the bottom which they attribute to the presence of critical internal waves breaking 

on the sloping bottom onshore. Hondzo and Haider (2004) measured turbulence in the 

benthic boundary layer on the sloping boundary of a lake using temperature microstructure 
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measurements and an acoustic Doppler velocimeter; they attributed the high dissipation 

levels to energy from the internal wave field. With detailed measurements of temperature and 

velocity in the bottom boundary layer, Lorke (2007) observed periodic enhanced turbulence 

on the slope, coinciding with the period of high-frequency internal waves seen at a mooring 

in the deepest part of the lake. This oscillation in the turbulence in the bottom boundary layer 

was also observed in numerical simulations of mixing from internal wave reflection on a 

slope (Slinn and Riley 1996).  

Fewer researchers have looked at the turbulence generated by seiching currents, 

although several have proposed that large amplitude internal seiches may create significant 

mixing (e.g., Patterson et al. 1984). Lorke and Wüest (2005) estimated the dissipation rate of 

turbulent kinetic energy over the lake bottom and observed oscillations in the dissipation 

with the same period as the dominant seiching currents. The currents elevated the dissipation 

rate by over two orders of magnitude compared to measurements in the interior. Lorke et al. 

(2005) observed convective turbulence in the bottom boundary resulting from the periodic 

seiching currents. Because of friction with the boundary the fluid near the boundary moves 

slower than the fluid at the top of the boundary layer. As a result, when the direction of the 

seiching currents is up the slope, denser water is advected over less dense water, causing 

convection. When the seiche moves downslope, the stratification in the boundary layer 

becomes even stronger. As the velocity magnitude (and hence the shear) is the same 

regardless of the direction of the seiching movements, shear induced mixing will necessarily 

be smaller during this period of stronger stratification than during the upslope seiching phase. 

Lorke et al. (2008) confirmed that this behavior by observing differences in mixing on the 

slope when the seiche was moving upslope and downslope. 

Once the turbulence has been generated (whether by breaking internal waves or 

currents), it is important to determine if the turbulence can overcome the stable stratification 

to irreversibly mix the fluid and create a turbulent bottom boundary layer. Using the results 

from direct numerical simulations and laboratory experiments, Shih et al. (2005) defined 

diffusive, transitional and energetic regimes of stratified turbulence based on ε/νN2
. They 

determined a threshold for turbulent mixing and found that as ε/νN2
 continued to increase 

above 100, the mixing efficiency decreases because the turbulence is more energetic than 
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necessary to break down the stratification; thus, the turbulence acts on fluid that has already 

been mixed. In the field this can occur after a bottom boundary layer is formed and the 

turbulence continues to act upon already mixed fluid in the boundary layer (Garrett 1979). 

Based on reported values of eddy diffusivity in lakes, typical values of ε/νN2
 in lakes range 

between 5 and 5000. 

To predict the occurrence and strength of turbulent mixing in terms of meteorological 

forcing and stratification, we investigated the dependence of internal waves and turbulence 

on the slope on the Lake number, which compares the stabilizing tendency of stratification to 

the destabilizing tendency of the wind. Section 2 describes the lake, the measurements, and 

the analysis. In Section 3, we discuss the analysis of the data to extract Lake number and 

dissipation of turbulent kinetic energy. In Section 4, we present details of the Lake number, 

internal wave field and turbulence for each of the three field studies. Lastly, in Section 5, we 

describe the patterns of turbulence generation as a function of Lake number. 

 

2. Experiment 

 

Two thermistor chains and a Lake Diagnostic System (LDS) manufactured by 

Precision Measurements Engineering were deployed in the south basin of Ada Hayden Lake 

in Ames, IA, and a Nortek HR Aquadopp, a high resolution pulse coherent acoustic Doppler 

current profiler, was placed on a slope in the metalimnion of the lake for three deployments 

of 13, 15, and 8 days in July, September, and October 2008 respectively. 

Ada Hayden Lake (Figure 1) is an abandoned rock quarry that is used as a secondary 

water supply for Ames. It consists of two basins, and the experiment was performed in the 

larger, deeper south basin, which has a surface area of about 0.3 km
2
 and a maximum depth 

of about 17 m. Water enters the lake from groundwater and surface water runoff, which is 

filtered through wetlands. The two basins are separated by a 3-m deep sill. Because the sill is 

shallower than the summer thermocline, exchange between the two basins most likely 

consists only of epilimnetic waters. Stirring from boat traffic is small because motorized 

boats are prohibited on the lake. The lake has steep sides except for a few areas; the southern  
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Figure 1. Bathymetric map of Ada Hayden Lake with contour intervals in meters.  The 

locations of the LDS (×), the T-chains (●), and the Aquadopp (▼). The black, gray, and 

white indicate the location of the Aquadopp during the July, September, and October 

deployments, respectively. The Aquadopp was almost in an identical position in July and 

September. Two other thermistor chains manufactured by Precision Measurements 

Engineering were deployed in the lake.  

 

slope, where the Aquadopp was placed, has a more moderate slope ranging between 5 and 

10% 

The LDS is a meteorological station with an attached thermistor chain (described 

below) that was moored in the lake for the entire summer. The LDS measures wind speed 

and direction, solar radiation, net radiation, relative humidity, and air temperature. To 

determine the wind forcing on the lake, the wind speed and direction were measured 

approximately 2.5 m above the water surface by a propeller anemometer and a wind vane, 
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respectively, both by Met One Instruments, Inc. All the sensors on the LDS were sampled 

every 15 s.  

Two other thermistor chains manufactured by Precision Measurements Engineering 

were deployed in the lake. Our thermistor chains each have 29 nodes starting approximately  

1 m below the surface and were speaced approximately every half meter.  The thermistors 

were sampled at 15 s intervals and stored in a submersible data logger. The temperature time 

series that result from these measurements were used to examine the internal wave field in 

the lake. 

The high resolution 2-MHz Aquadopp Profiler manufactured by Nortek AS has three 

beams; each acoustic beam is slanted at 25 degrees from the vertical. The instrument was 

configured to measure and report beam velocity measurements. The Aquadopp has an 

internal tilt and compass sensor to measure the current direction within 0.2° and 2° 

respectively. The high resolution system allows greater accuracy of measurements at smaller 

cell sizes and greater sampling rates (over a short range). The Aquadopp was set to sample in 

burst mode, in which 512 samples were collected at 8 Hz every five minutes.  

The Aquadopp measured velocity profiles in the bottom boundary layer of Ada 

Hayden Lake. The Aquadopp measured in uplooking mode and was mounted on a weighted 

PVC frame that was designed to have a low profile (7.5 cm) and lie flat on the lake bottom. 

The frame may have sunk into the bottom sediments, but the strong amplitude of the 

Aquadopp signal suggested that the instrument sensors were not buried. Because preliminary 

work indicated that the boundary layer is on the order of 1 m thick, the Aquadopp was 

configured to measure up to 1.5 m above the bottom. To study turbulence generated on the 

sloping boundary, the Aquadopp was placed on the slope indicated in Figure 1. The 

Aquadopp also has a temperature sensor on it, which can show the temperature oscillations 

right at the boundary. 

 

3. Processing 

 

The Lake number LN can indicate whether boundary mixing from seiching and 

breaking internal waves should be present in Ada Hayden Lake. The Lake number compares 
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the strengths of the stratification and the wind, which can cause the stable density structure to 

overturn. The Lake number extends the concept of the Wedderburn number to account for 

arbitrary stratification and bathymetry (Imberger and Patterson 1990): 
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where g is the acceleration of gravity, zT is the center of the metalimnion, zS is the height of 

the water surface, ρs is the density at the surface, u* is the wind shear velocity, As is the area 

of the surface, zv is the height of the center of volume, and St is the stability of the water body 

defined as 
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where A(z) is the surface area as a function of depth. The shear velocity of the wind is 
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where ρa is the air density, CDw is the wind drag coefficient, and uw is wind speed. The drag 

coefficient was computed with the formulas from Wüest and Lorke (2003). The wind speed 

is typically taken as the velocity 10 m above the water. A Lake number of 1 implies 

upwelling conditions. Low Lake numbers (LN < 10) indicate that the wind stress is sufficient 

to generate wind setup throughout the water column (Imberger and Patterson 1990). 

A 15-minute moving average of the meteorological and thermistor chain data from 

the LDS were used to compute the Lake number. The temperature profile was interpolated 

onto a 1-m grid to match the hypsograph. Given the thick metalimnion with a non-constant 

buoyancy frequency, finding the depth of the thermocline to use in the Lake number 

formulation is not obvious. The region of highest temperature gradient is directly below the 
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well-mixed surface layer; computing the Lake number using this depth will most likely 

underestimate the Lake number. Instead, the depth of the thermocline was determined by 

finding the depth of the maximum amplitude of the first vertical mode seiche. as this would 

be the depth around which the lake will oscillate. 

To estimate the internal wave energy in the lake, we use the depth integrated potential 

energy defined as 
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(Antenucci et al. 2000). As discussed in Antenucci et al. (2000), the primary advantage of 

this approach is that it does not rely on the selection of a single isotherm to represent the 

entire time series. The disadvantage is that it is most sensitive to first vertical mode waves 

and can mask higher vertical modes. One concern not addressed by Antenucci et al. (2000) is 

how to remove the effects of daily heating from solar radiation, which creates diurnal 

oscillations in the integrated potential energy. To emphasize the contribution of internal 

waves to potential energy changes, the upper portion of the water column that appeared to be 

most affected by surface heating was removed from the analysis. For the July deployment, 

this was the top 3 m and for the September and October deployments, the top 5 m were 

removed. We are primarily concerned with changes in the potential energy, not absolute 

values; as the surface layer is well mixed and cannot support internal waves, it does not 

contribute to internal wave generated changes in PE. 

To compute the integrated potential energy, each temperature profile measured by the 

LDS and two thermistor chains was mapped onto a vertical grid of 25 cm intervals from 3 or 

5 m to 15 m (the depth of the lake at the LDS position) and then integrated numerically. The 

PE was then divided by a reference density to yield a potential energy per unit mass. 

The time series of the rate of dissipation of turbulent kinetic energy was computed 

using the structure function method developed by Wiles et al. (2006).  This method uses the 

spatial correlations of velocity along a beam to estimate the dissipation as  
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where ( ) ( ) 2, ( ' '( ))D z r v z v z r= − +  where the overbar denotes a temporal average, z is the 

normal distance from the boundary, r is the separation between the two points in the 

turbulent field, 22 nN σ=  where 2

nσ  is the noise variance, Cv is a constant approximately 

equal to 2.1, and 'v  is the turbulent velocity fluctuation. Two other methods were initially 

investigated: fitting a logarithmic velocity profile to the measurements to estimate dissipation 

and using the inertial subrange of the spectrum of the turbulent velocity fluctuations. A clear 

logarithmic boundary layer was not apparent in many of the profiles, so that method proved 

to be unsound. The weakness of the inertial subrange fitting method is that using the beam 

velocities for spectral analysis is limited because no direction is defined as streamwise and 

the theoretical turbulent spectrum has a different constant for the streamwise direction. As 

Lorke and Wüest (2005) noted, the directional uncertainty leads to uncertainty of up to a 

factor of 0.65 in their estimates of the dissipation rate, but Lorke (2007) compared the inertial 

subrange fitting method and the structure function method and found good agreement 

between the two. As the structure function method has successfully been used in the 

oscillatory bottom boundary of a lake (Lorke 2007, Lorke et al. 2008), we use that method 

here. 

 As in Wiles et al. (2006), D was computed from a central difference over three bins; 

thus with 5 cm bins, along the beam r ≈ 11cm. The values of D in a bin were squared and 

averaged over each burst for each beam. Because the noise variance has been shown to be a 

function of depth (Gordon et al. 1999), the noise variance for each bin in each beam for each 

data set was determined. Following Gordon et al. (1999), the noise level was determined by 

visual inspection of the spectra of the fluctuating velocity. Given the large number of 

individual spectra (~100,000), each spectrum was not evaluated. Instead five arbitrary bursts 

from each data set were chosen, and the noise level in each bin of each beam was chosen 

manually. The log of the five noise estimates for each bin were then averaged and a mean 

noise level of 10 raised to this mean was determined. The noise level was then multiplied by 
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the bandwidth of the spectra (4 Hz) to determine the noise variance. Then a profile of the 

dissipation was computed using (5). If D was below the noise (thus yielding an imaginary 

estimate of the dissipation), then it was assumed that the turbulence was negligible and a 

background dissipation estimate of 10
-10

 m
2
/s

3
 was substituted (see Table 1 for a summary by 

dataset of the occurrence of measurements below the noise). The three estimates of 

dissipation for each bin (one for each beam) were logarithmically averaged to yield a single 

dissipation profile. Then the estimates from all the bin were logarithmically averaged to yield 

a single depth averaged dissipation rate for each measurement burst. The noise level in the 

velocity measurements increased with the distance from the transducer and was different 

between datasets. The noise variance ranged between 10
-7

 m
2
/s

2 
and 10

-4
 m

2
/s

2
. The 

measurements that were below the noise were not discarded but set to background levels 

because otherwise this averaging of the three beams and over the depth is biased high.  

 

Table 1. Summary of the percentage of bins that were below the noise by dataset and the 

percentage of the dataset where the Lake number is greater than 100. 

 July September October 

D < noise 70% 86% 52% 

LN < 100 62% 55% 4% 

 

4. Results 

 

Between the study periods, the lake stratification changed significantly (Figure 2). As 

is typical of a dimictic lake, the thermocline deepened, and the stratification weakened from 

summer to fall. The depth of maximum buoyancy frequency increased from ~5 m in July, to 

~7 m in September, and then to ~9 m in October. Because of the increasing mixed layer 

depth, the Aquadopp was placed deeper on the slope during the October deployment (Figure 

1). 

During the July/August deployment, low Lake numbers were caused by isolated 

storms (Figure 3a). Only twice did the Lake number drop below 10. On seven other 

occasions, the Lake number dropped to between 10 and 30. The temperature recorded at the  
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Figure 2. Mean temperature and buoyancy frequency profiles for the three Aquadopp 

deployments. Temperature measurements come from the Lake Diagnostic System. The depth 

of the Aquadopp during each deployment is indicated (▼). 

 

Aquadopp at 7.0 m depth (Figure 3b) suggests that some internal wave activity may even 

occur for LN < 40. For example, on 7/31 temperature oscillations measured in the bottom 

boundary layer were of the same magnitude as those during LN < 10 events. Of note is that 

the integrated potential energy, which is a measure of the interal wave activity, (Figure 3c) 

shows very little change on this day. Visual inspection of the temperature record during on 

7/31 shows potential metalimnetic compression and expansion, implying that a second 

vertical mode wave was excited (Figure 4); the expansion of the metalimnion at 12:00, 

contraction at 14:00, and expansion at 16:00 yield a period of about 4 hours, which falls 

within the range of 3-4.5 hours (depending on the fetch) predicted for the V2H1 seiche from 

a normal mode analysis. The thick metalimnion during the deployment is conducive to the 

generation of higher vertical modes, and as noted above, the integrated potential energy 



31 

 

 

Figure 3. LDS and Aqaudopp data for the Aquadopp deployment beginning 24 July 2008. (a) 

Lake number measured at the LDS. (b) Temperature recorded by the Aquadopp on the slope. 

(c) The depth-averaged potential energy computed from the LDS thermistor chain. (d) 

Dissipation measured by the Aquadopp. 
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Figure 4. Metalimnetic expansion and compression on 31 July 2008. 

 

masks these modes. The integrated potential energy from the two thermistor chains is not 

shown, but both have similar patterns as the LDS, although in the case of the northern 

thermistor chain, the oscillations are in the opposite direction as the LDS thermistor chain, 

which is consistent with a first horizontal mode wave. 

 During the low Lake number events, the dissipation of turbulent kinetic energy 

increased by up to four orders of magnitude above the default background level of 10
-10

 m
2
/s

3
 

(Figure 3d). During this deployment, the peaks in the dissipation coincided with the drops in 

the Lake number, a pattern confirmed in the power spectra (Figure 5). The large peak at 

approximately 1 cpd indicates a diurnal component to the wind forcing that causes a daily 

pattern in the dissipation to emerge. At this frequency, the phase shift between the two 

signals, determined from the cross spectrum, indicates that the dissipation lags behind the 

Lake number by approximately three hours. While at lower frequencies the dissipation is 

correlated with the Lake number, at higher frequencies the spectral density of the dissipation 
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is slightly elevated near the frequencies of the V2H1 and V1H1 seiches. For the stratification 

during this period and the method of normal modes, the V2H1 frequency is between 5 and 8 

cpd and the V1H1 frequency is between 16 and 23 cpd; the range is due to uncertainty in the 

fetch as this changes with wind direction. Also of note is that a moderate Lake number event 

that persists for a longer time (e.g., the event on 7/31) can have the same effect on turbulence 

at the slope as the impulsive winds that produced the values of LN < 10 (e.g., the event on 

7/29). 

 

Figure 5. Frequency spectra of Lake number and dissipation rate for the July/August 2008 

deployment. Following Lorke et al. (2008), the spectra were computed from the logs of the 

variables, and the spectral density was normalized by the maximum value.  

During the September deployment, the Lake number dropped each day due to 

seasonal wind patterns (Figure 6a). The Lake number dropped below 10 in seven events and 

dropped below 30 on 67 occasions. An event is defined as starting when the Lake number 

drops below 30 and ending when the Lake number rises above 30 again. Despite the more  



34 

 

 

 

Figure 6. Same as Figure 3 for the Aquadopp deployment beginning 15 September 2008. 

 

frequent drops in Lake number, the temperature oscillated less in the bottom boundary layer 

(Figure 6b), probably because of the position of the Aquadopp on the slope. The Aquadopp 

was at 6.5 m deep, which is right at the base of the surface mixed layer for the stratification  
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Figure 7. Frequency spectra of Lake number and dissipation rate for the September 2008 

deployment. The spectra were computed from the logs of the variables and the spectral 

density was normalized by the maximum value.  

in September. Thus, only large oscillations will generate a signal in the temperature 

measurements. As in the July/August deployment, the integrated potential energy (Figure 6c) 

increased only with more impulsive wind events.  

The time record of dissipation (Figure 6d) also showed daily increases in dissipation, 

following the dips in Lake number. Unlike the July/August deployment, the signal was 

dominated by regular patterns instead of impulse events. Again, a pronounced peak at a 

frequency of 1 cpd appears in spectra of the Lake number and dissipation (Figure 7). Unlike 

the July/August deployment, the spectral density was not enhanced at the V2H1 and V1H1 

frequencies (4-6 cpd and 12-19 cpd, respectively, for this stratification). The dissipation 

lagged the Lake number (Figure 6d) by 10 hours during this deployment instead of 3 hours as 

in the July/August dataset. The low Lake number events during this period were longer, and  



36 

 

 

Figure 8. Same as Figure 3 for the Aquadopp deployment beginning 19 October 2008. 

 

the lag time encompasses the time until the wind relaxes, when internal wave motions should 

theoretically begin. Thus, the lag between the Lake number and the dissipation is consistent 

with internal waves being damped on a slope after a wind event. However, if the turbulence 

is then generated by these motions after the wind relaxes, then spectra should be enhanced at 
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Figure 9. Frequency spectra of Lake number and dissipation rate for the October 2008 

deployment. The spectra were computed from the logs of the variables and the spectral 

density was normalized by the maximum value.  

the seiche frequencies. One potential explanation for a lack of enhancement is the position of 

the current profiler in the water column. With each oscillation of the seiche, the amplitude is 

damped by friction with the boundaries. Because the Aquadopp was relatively high in the 

metalimnion, it may have measured the initial turbulence generated by the first oscillation, 

but the subsequent oscillations were too damped to generate turbulence that far up the slope. 

During the deployment of October 2008, the lake experienced strong winds that 

eroded the thermocline and led to the fall turnover. The Lake number dropped below the 

upwelling value of 1 four times and on 21 occasions, it dropped below 3 (Figure 8a). The 

Lake number dropped between 3 and 10 in only one isolated event. The Lake number never 

decreased below 30 without continuing to decrease below 10; in fact for 85% of the record, 

the Lake number was below 30. As in September, the Aquadopp was located at the base of 
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Figure 10. Thermocline deepening during the October Aquadopp deployment. The solid line 

indicated the theoretical thermocline depth from wind mixing. The depth of the Aquadopp is 

indicated by the gray horizontal line. 

the surface mixed layer (at 8.8 m). Thus the temperature signal at the instrument was 

dominated by the wind mixing that eroded the thermocline (Figure 8b). The change in 

integrated potential energy in the lake was also dominated by the thermocline deepening 

(Figure 8c).  

The time series of dissipation shows surprisingly low values, given the low Lake 

numbers during this period (Figure 8d). Over 40% of the dissipation estimates were below 

10
-9

 m
2
/s

3
, while only 5% were above 10

-7
 m

2
/s

3
. The spectra of the Lake number and 

dissipation show no dominant frequencies (Figure 9). It is likely that the wind energy input 

into the lake was used to permanently change the thermal structure instead of to generate 

internal waves that are damped at the boundaries. , we can estimate The thermocline 

deepening due to wind mixing can be estimated by using a simple surface layer model 
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(Fischer et al. 1979, p.177) and assuming, from the LDS data, that the lake starts with a 9 m 

thick mixed layer with a mean temperature of 15.7°C, overlying a 1.5 m linearly stratified 

metalimnion with a temperature gradient equal to the average gradient in that region. The 

theoretical thermocline depth follows the data quite closely. After 10/23, the model does not 

account for some of the thermocline deepening. Horn et al. (2001) found that for a deep 

thermocline and Wedderburn number (a simplified form of the Lake number) < 1.5, that 

Kelvin-Helmholtz billows were more likely to form than damped internal waves, in which 

case the mixing is occurring in the interior as opposed to the boundary. The high values of 

dissipation at the end of the record coincide with Lake numbers of 0.1; because the 

Aquadopp was in the surface layer at this point, the dissipation rates measured by the 

Aquadopp may be from surface layer turbulence and not particular to the boundary region. 

 

5. Discussion 

 

 We now address the issue of whether the Lake number can be used to predict mixing 

in a lake, a question of relevance for management of water quality in lakes and reservoirs. 

Turbulence measurements in the field are difficult and require specialized knowledge and 

equipment. The Lake number can be computed from commonly measured variables on a 

monitored lake or reservoir. Thus it would be valuable to be able to predict mixing from the 

Lake number. 

 Dissipation rates of turbulent kinetic energy are just one element that determines 

whether mixing will occur. In less stratified environments, less turbulent production is 

needed to generate the same amount of mixing. The three study periods each had different 

stratification, so to compare the Lake number to turbulence generation and mixing, we use 

the dimensionless parameter ε/νN2
. Shih et al. (2005) classified the turbulence as diffusive, 

transitional or energetic based on ε/νN2
. For ε/νN2

 < 7 (the diffusive regime), the diffusivity 

is molecular; Ivey and Imberger (1991) found cutoff values for turbulence generation at 

about twice this value (ε/νN2
 = 15). For 7 < ε/νN2

< 100 (the transitional regime), the mixing 

efficiency was constant and coincided well with the typical value used in eddy diffusivity  
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Figure 11. Relative frequency of occurrence for ε/νN2
 for different Lake number regimes: (a) 

all the data (n = 11857), (b) 30 ≤ LN < 100 (n = 2989), (c) 10 ≤ LN < 30 (n = 769), (d) 3 ≤ 

LN < 10 (n = 811), (e) 1 ≤ LN < 3 (n = 451), and (f) LN < 1 (n = 2001).  

 

parameterizations in lakes and the ocean; the mixing efficiency decreased as ε/νN2
 grows 

above 100 (the energetic regime).  

For each measurement of dissipation, the Lake number at the closest measurement 

time was used for comparison. In Figure 11, we show histograms of the relative frequency of 

occurrence of each decade of ε/νN2
 for all the data (Figure 11a) and five different Lake 

number regimes (Figure 11b-f). The histogram for all of the data (Figure 11a) is dominated 

by values of ε/νN2
 below 10, although a small tail extends to 10

6
.  As the data is analyzed by 

order of magnitude, in the following we define ε/νN2
 = 10 as the turbulence threshold, which 

is the same order of magnitude as the thresholds defined by Shih et al. (2005) and Ivey and 

Imberger (1991). Most of the dataset is in the diffusive regime, below the threshold for 
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turbulent mixing. In a lake interior, values of dissipation as low as 10
-10

 m
2
/s

3
 are not rare 

(Wüest and Lorke 2003). When the Lake number is between 30 and 100 (Figure 11b), while 

there are a few instances of elevated ε/νN2
 (> 10), for the most part the measurements remain 

in the diffusive regime. As the Lake number drops further to between 10 and 30 (Figure 11c), 

higher values of ε/νN2
 occur more frequently, although most values still fall within the 

diffusive regime. When the Lake number drops below 10 (Figure 11d), most of the estimates 

of elevated ε/νN2
 are above the turbulence threshold, although transitional turbulence 

(between 10 and 100) dominates. When the Lake number drops below 3 (Figure 11e), 

dramatically fewer measurements fall in the diffusive regime, and the peak in the ε/νN2
 

histogram moved to the energetic turbulence regime between 10
2
 and 10

3
. Finally, when the 

Lake number drops below 1 (Figure 11f), almost all the measurements of ε/νN2
 are elevated 

and the location of the peak is between 10
4
 and 10

5
. 

 While the spread of the measurements defies developing a functional relationship 

between the two variables, several observations can be made. First, Lake numbers between 

30 and 100 very rarely will produce turbulence that surpasses the threshold for mixing, 

although it is not impossible. Second, the threshold of Lake number = 10 (Imberger and 

Patterson 1990) may be too low for mixing considerations; during the current deployments, 

27% of estimates of ε/νN2
 were above in the transitional and energetic turbulence regimes 

when the Lake number was between 10 and 30. Third, the changes in ε/νN2 
with Lake 

number may have a continuous functional relationship, but the spread in the measurements 

makes it difficult to quantify. The peak in ε/νN2
 increased by an order of magnitude with 

each regime of decreasing Lake number below 30. When the Lake number dropped below 1, 

however, ε/νN2 
increased by two orders of magnitude. This data spans three very different 

sets of background conditions. If other factors that may affect the spread of the 

measurements can be constrained, there is potential for predicting boundary mixing within an 

order of magnitude with commonly measured lake parameters. 
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5. Summary 

 

Three field campaigns with measurements of meteorological conditions, internal 

wave response, and dissipation of turbulent kinetic energy were conducted to study 

generation of turbulence on the sloping boundary of a small lake. The temperature time series 

from three thermistor chains were used to examine the internal wave field in the lake. The 

Aquadopp also had a temperature sensor on it, which can show the temperature oscillations 

right at the boundary. The dissipation rate was estimated from the Aquadopp using the 

structure function method. 

During the July/August 2008 deployment, the integrated potential energies from the 

two thermistor chains on opposite ends of the lake were out of phase with each other 

following wind events, which is consistent with the generation of first horizontal mode 

seiches. The highest dissipation rate was recorded during an event that had a Lake number of 

approximately 30; a moderate Lake number event that persisted for a longer time appeared to 

have the same effect on turbulence at the slope as the impulsive winds that produced the 

values of LN < 10. During the September 2008 deployment, the dissipation lagged behind the 

Lake number, consistent with the wind setting up internal seiches which then dissipate by 

friction with the boundary.  

During the October 2008 deployment, the lake was entering the fall overturn; thus the 

change in integrated potential energy in the lake was dominated by the thermocline 

deepening. The high values of dissipation at the end of the record coincided with Lake 

numbers of 0.1; because the Aquadopp was in the surface layer at this point, the dissipation 

rates measured by the Aquadopp may be from wind mixing and not particular to the 

boundary region.  

To evaluate the Lake number conditions under which turbulence will be generated at 

the slopes, histograms of ε/νN2
 were analyzed for all the data and for five different Lake 

number regimes. While the spread of the measurements was restrictively large for 

determining a quantitative relationship between the Lake number and the turbulence 

intensity, some relationships between the Lake number and ε/νN2
 for different Lake number 

regimes could be observed. In general, the typical value of ε/νN2
 increased as the Lake 
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number decreased below 30. A larger jump within the energetic regime was observed when 

the Lake number dropped below 1. Further work to understand the spread of ε/νN2
 in each 

Lake number regime would assist in helping to define a functional relationship between Lake 

number and mixing that could be used by those responsible for lake and reservoir 

management. 
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CHAPTER 3. TRANSPORT BY AN INTRUSION GENERATED BY 

BOUNDARY MIXING IN A LAKE 
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Danielle Wain and Chris Rehmann 

 

Abstract 

 

A dye study was conducted to track an intrusion generated at the boundary of a small 

lake.  Persistent turbid layers offshore presented evidence of possible intrusions from 

boundary mixing.  After high winds, a streak of Rhodamine WT was injected at the boundary 

of the lake where the slope was between 5 and 10%. Both vertical profiles and horizontal 

transects of the dye concentration were measured. The three dimensional dye mapping 

showed a distinct dye intrusion, ranging between 0.5 and 1 m thick, over 200 m in horizontal 

extent offshore, one day after the injection. Profiles of temperature microstructure measured 

soon after the injection both at the injection site and offshore showed an elevated eddy 

diffusivity near the boundary where the dye was injected, indicating that the intrusion results 

from boundary mixing.  Because the dominant internal waves are subcritical, the mixing is 

most likely due to seiching currents interacting with the boundary. The propagation 

characteristics of the intrusion were predicted most closely by a formulation for an 

axisymmetric intrusion governed by a balance between buoyancy and inertia. These results 

show that intrusion generation and propagation may be a significant process for mass 

transport in stratified lakes and reservoirs. 

 

1. Introduction 

 

Understanding the transport of dissolved substances such as oxygen, nutrients, 

microorganisms, and plankton is essential for managing water quality in lakes and reservoirs. 

The ability of stratification, which is caused by temperature, salinity, or sometimes chemical 

species, to restrict vertical mixing and control the spatial variability of nutrients and other 



 

Figure 1. Schematic of physical processes leading to boundary mixing and intrusions in a 

lake. Wind on a stratified lake can create internal seiching currents and critical internal 

waves.  

 

substances affects the distribution of dissolved oxygen in the water column [e.g., 

2008], the availability of nutrients to phytoplankton [e.g., 

transport of pollutants between the hypolimnion and epilimnion [e.g., 

The current model in ocean and lake mixing is that turbulence cr

internal waves and currents causes most of the mixing [e.g., 

2000; Wunsch and Ferrari, 2004]. While much work has been done to investigate mixing at 

boundaries in lakes and the ocean, less attention h

One possible outcome, investigated in this study, is that intrusions transport mixed fluid into 

the interior.  

Two main mechanisms generate turbulence at a boundary that can lead to intrusions 

(Figure 1). Wind acting on the surface of a stratified lake can set up seiches, which generate 

currents along the boundaries. The friction with the bottom generates turbulence that mixes 

the water locally to create a turbulent bottom boundary layer [e.g., 

seiching motions can also degenerate into higher frequency waves. Some of these waves 

propagate towards the boundary with a critical frequency set by the stratification and the 

of physical processes leading to boundary mixing and intrusions in a 

lake. Wind on a stratified lake can create internal seiching currents and critical internal 

substances affects the distribution of dissolved oxygen in the water column [e.g., 

2008], the availability of nutrients to phytoplankton [e.g., MacIntyre et al.

transport of pollutants between the hypolimnion and epilimnion [e.g., Morillo et al.

The current model in ocean and lake mixing is that turbulence created at the boundaries by 

internal waves and currents causes most of the mixing [e.g., Gregg, 1998; 

, 2004]. While much work has been done to investigate mixing at 

boundaries in lakes and the ocean, less attention has been paid to the fate of the mixed fluid. 

One possible outcome, investigated in this study, is that intrusions transport mixed fluid into 

Two main mechanisms generate turbulence at a boundary that can lead to intrusions 

cting on the surface of a stratified lake can set up seiches, which generate 

currents along the boundaries. The friction with the bottom generates turbulence that mixes 

the water locally to create a turbulent bottom boundary layer [e.g., Gloor et al

seiching motions can also degenerate into higher frequency waves. Some of these waves 

propagate towards the boundary with a critical frequency set by the stratification and the 
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of physical processes leading to boundary mixing and intrusions in a 

lake. Wind on a stratified lake can create internal seiching currents and critical internal 

substances affects the distribution of dissolved oxygen in the water column [e.g., Rao et al., 

MacIntyre et al., 1999], and 

Morillo et al., 2008]. 

eated at the boundaries by 

, 1998; Ledwell et al., 

, 2004]. While much work has been done to investigate mixing at 

as been paid to the fate of the mixed fluid. 

One possible outcome, investigated in this study, is that intrusions transport mixed fluid into 

Two main mechanisms generate turbulence at a boundary that can lead to intrusions 

cting on the surface of a stratified lake can set up seiches, which generate 

currents along the boundaries. The friction with the bottom generates turbulence that mixes 

Gloor et al., 2000]. The 

seiching motions can also degenerate into higher frequency waves. Some of these waves 

propagate towards the boundary with a critical frequency set by the stratification and the 
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slope of the boundary. When the critical waves approach the boundary, their energy reflects 

along the slope and energizes a turbulent bottom boundary layer [e.g. Eriksen, 1998; 

MacIntyre et al., 1999]. Once a turbulent boundary layer is created on the slope, the mixed 

boundary layer fluid becomes gravitationally unstable with respect to the stratified water 

adjacent to it, and the mixed patch collapses and redistributes laterally. 

Several studies provide evidence for intrusions from boundary processes. Caldwell et 

al. [1978] observed stepped profiles near sloping boundaries in a lake that they attributed to 

intrusions generated by boundary mixing. Gloor et al. [2000] observed mixed water masses 

extending up to 200 m into the lake interior and ascribed them to intrusions, which reduce the 

boundary layer thickness by discharging mixed fluid into the interior. Intrusions can also 

explain turbid layers observed in the interior of a water body. Dickson and McCave [1986] 

and Thorpe and White [1988] proposed that nepheloid layers along a continental slope 

resulted from boundary mixing due to the semi-diurnal M2 tide reflecting critically. Dye 

injected into the water column above a slope in a fjord was eventually entrained into a 

turbulent boundary layer generated by the semidiurnal tide moving over rough topography, 

and then it entered the interior as intrusions [Inall, 2009]. Such observations in lakes are rare: 

Marti and Imberger [2008] observed a well-defined turbid layer whose thickness was 

associated with the thickness of the seiche generated bottom boundary layer; they concluded 

that the turbid layer was advected offshore by a jet in the metalimnion that resulted from a 

second vertical mode seiche.   

While several field experiments have provided evidence of intrusions from boundary 

mixing, intrusions resulting from the collapse of turbulent regions have been tracked from the 

boundary into the interior mostly in laboratory experiments. Several experiments have 

investigated the vertical mixing from breaking internal waves and observed intrusions [e.g., 

Cacchione and Wunsch, 1974; Ivey and Nokes, 1989], but fewer have quantified the intrusion 

properties. De Silva et al. [1997] and McPhee-Shaw and Kunze [2002] measured propagation 

of intrusions resulting from breaking internal waves on a slope and related the intrusion 

speed to the energy of the incident internal waves. The former observed no change in the 

background density stratification due to the intrusion, whereas the latter observed persistent 

steps; however, as De Silva et al. [1997] noted, even if the intrusion does not change the 
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thermal structure of a lake, dissolved substances can still be transported offshore. The 

experiments of Wells and Helfrich [2004] provide information on the three-dimensional 

behavior of an intrusion generated at the boundary; in those, effects of rotation limited the 

propagation of the intrusion.  

To investigate the fate of mixed fluid in a lake, we used a tracer to track an intrusion 

generated at the boundary and conducted simultaneous turbulence measurements. Section 2 

describes the lake, the measurements, and the analysis. In Section 3, we present 

measurements of the wind, eddy diffusivity, and dye concentrations. In Section 4 we 

compare our measurements to previous work on intrusions, discuss the source of the 

intrusion, the force balance that drives its propagation, and the implications for water quality. 

 

2. Experiment  

 

An experiment that combined microstructure measurements with a dye release was 

conducted at Ada Hayden Lake in Ames, Iowa, USA (Figure 2). The combined 

tracer/microstructure study took place one hour after a storm front passed on July 21, 2005. 

An atmospheric gravity wave produced strong winds that reversed direction by 180 degrees 

as the wave passed. We measured the temperature microstructure six hours after the dye 

injection and mapped the dye cloud one day after the injection. Another atmospheric gravity 

wave passed over the lake 17 hours after the injection but before the mapping. 

Ada Hayden Lake is an abandoned rock quarry that is used as a secondary water 

supply for Ames. It consists of two basins, and the experiment was performed in the larger, 

deeper south basin, which has a surface area of about 0.3 km
2
 and a maximum depth of about 

17 m. The fetch in the primary wind direction is approximately 700 m. The lake is strongly 

stratified in the summer with a well-mixed epilimnion lying over a strongly stratified 

metalimnion and a weakly stratified hypolimnion (Figure 3a). Water enters the lake from 

groundwater and surface water runoff, which is filtered through wetlands. The two basins are 

separated by a 3-m deep sill. Because the sill is shallower than the summer thermocline, 

exchange between the two basins most likely consists only of epilimnetic waters. Stirring 

from boat traffic is small because motorized boats are prohibited on the lake. The lake has 
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Figure 2.  Map of the south basin of Ada Hayden Lake. Depth contours are marked in meters.  

Dye was injected at Station A, and microstructure was measured near Stations A and B. 

Closed circles (•) indicate where dye profiles were measured for the transect series in Figure 

7. 

 

steep sides except for a few areas; the northeast corner, where dye was injected, has a more 

moderate slope ranging between 5 and 10%.  

During July, the mean winds at Ada Hayden Lake are 2-3 m/s SSE. Stronger winds 

(>5 m/s) are typically associated with storms, most often from the south. Wind measurements 

come from the Ames Municipal Airport, approximately 8 km south of the lake. Comparing 

these measurements to those from several meteorological stations in communities 

surrounding the lake suggests that wind speeds measured at the airport represent the 

conditions at the lake. The wind was measured every minute at the airport, and then a moving 

average over a 15 minute interval was computed. The strength of the wind, which can cause 
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Figure 3. Conditions during the experiment: (a) Average temperature profile, (b) buoyancy 

frequency N, and (c) turbidity profile before the dye injection. The turbidity profile as a 

function of temperature was mapped onto the mean temperature profile to remove internal 

wave effects. 

 

 the stable density structure to overturn, was compared to the strength of the stratification, 

which resists overturning, with the Lake number [Imberger and Patterson, 1990]:  
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where g is the acceleration of gravity, zT is the center of the metalimnion, zS is the height of 

the water surface, ρs is the density at the surface, u* is the shear velocity of the wind, As is the 
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area of the surface, zv is the height of the center of volume, and St is the stability of the water 

body defined as 
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where A(z) is the surface area as a function of depth. The shear velocity of the wind is 

defined as 
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where ρa is the air density, CDw is the wind drag coefficient, and uw is wind speed, typically 

taken as the velocity 10 m above the water. The drag coefficient was computed with the 

formulas from Wüest and Lorke [2003]. A Lake number of 1 implies upwelling conditions. 

Low Lake numbers (LN < 10) indicate that the wind stress is sufficient to generate wind setup 

throughout the water column [Imberger and Patterson, 1990]. When the wind relaxes after 

wind setup occurs, seiching motions are generally observed in other lakes [e.g., MacIntyre et 

al., 2009; Romero et al., 1998; Stevens and Lawrence, 1997], so we expect the same outcome 

here. 

 Temperature profiles were measured with the temperature sensor on a Self-Contained 

Underwater Fluorescence Apparatus (SCUFA) from Turner Designs, which was sampled 

simultaneously at 1 Hz with an SBE 50 Digital Oceanographic Pressure Sensor from Sea-

Bird Electronics. The instruments were lowered by hand at approximately 0.25 m/s, and 76 

vertical profiles were measured. The water column was divided into 1-m bins, and all the 

measurements in the depth bin were averaged to produce a mean temperature profile for the 

experiment, with the mean value associated with the center of the bin. The equation of state 

of Chen and Millero [1977] was used to compute the density profile from the mean 

temperature profile. This density profile was mapped onto a 0.25 m grid, and the buoyancy 
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frequency was computed using a centered difference (Figure 3b). Background turbidity was 

also measured with the SCUFA. 

Temperature microstructure was measured with a Self Contained Autonomous 

MicroProfiler (SCAMP) manufactured by Precision Measurement Engineering. The SCAMP 

measures small-scale temperature fluctuations with Thermometrics FP07 thermistors, which 

have a nominal response time of 7 ms, though the actual response depends on probe speed 

and sensor construction [Gregg, 1999]. The fall rate of the SCAMP was approximately 0.1 

m/s, and temperatures were recorded at 100 Hz.  Analog signal processors in the SCAMP 

computed the time derivative of the voltage signals from the thermistors before the signals 

were digitized, and profiles of temperature gradient were computed with Taylor's hypothesis.  

The temperature gradients were then used to compute the dissipation of temperature 

variance χT and eddy diffusivity KT. As in Soga and Rehmann [2004], χT was computed by 

assuming isotropy and integrating the difference of the observed spectrum Sobs, computed in 

segments of 256 points or about 0.25 m, and the noise spectrum Sn over the wavenumber k1: 
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where DT is the molecular diffusivity of heat. The eddy diffusivity was computed with the 

relation from Osborn and Cox [1972]:  
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χ

.        (5) 

 

The mean temperature gradient dzTd /  was determined by fitting a line to the temperature in 

each segment. Values of dzTd /  and χT were assigned to 0.25 m intervals in the vertical, and 

profiles of the ensemble averages and their 95% confidence limits were computed for each 

sampling site from 200 bootstrap resampled populations. Data from segments with unstable 

temperature gradients (i.e., dzTd /  < 0) were discarded before averaging because the 



52 

 

Osborn-Cox method was developed for stably stratified flows. The statistics for χT and the 

temperature gradient were used to compute profiles of KT and their 95% confidence limits 

using equation (5). Wain and Rehmann [2005] addressed the uncertainty in the eddy 

diffusivity KT computed with the Osborn-Cox method, which comes from the assumption of 

isotropy, the fit of the mean temperature gradient for each segment, the resolution of χT, and 

the validity of the Osborn-Cox balance.  

Rhodamine WT was used to track mixed fluid from the slope into the interior. The 

presence of a turbid layer (Figure 3c) and steps in the individual temperature profiles, which 

indicate mixed layers that may result from intrusions, were used to determine the target depth 

of 6 m for injection. The dye was mixed with surface water to match the density on the target 

isotherm. The dye was injected in a 10 m streak by pumping from the shore through a hose 

connected to a diffuser that spread the dye and reduced the turbulence generated by the 

injection. The injection device included the SCUFA and SBE 50 so that the diffuser could be 

set to the target depth. Once the dye mixture was emptied from the vessel in which it was 

mixed, the remaining dye was flushed out the hoses with surface water. 

After the dye was injected, it was tracked using the SCUFA. The SCUFA 

compensates for the effect of temperature on fluorescence, and it responds linearly to 

concentrations up to 200 ppb [Turner Designs, pers. comm.]. The SCUFA was calibrated 

using a 50 ppb Rhodamine WT standard. Profiles of concentration were measured throughout 

the northeast portion of the lake to capture the major characteristics and the edges of the dye 

cloud. All the measurements were combined to yield a map of the dye cloud. Following 

Ledwell et al. [2004], a column integral of the concentration was computed for each profile. 

The column integral represents the mass of dye in each box of the grid in the dye mapping.  

The column integral allows neglect of the effect of internal waves and seiches on the depth of 

the dye cloud because it essentially yields a depth-averaged value. Each profile’s position 

was determined using a hand held global positioning system. The column integral calculated 

for each profile yielded a two-dimensional map of the dye cloud. To bound the cloud, the 

column integral was set to zero at the 4-m depth contour, the depth of the epilimnion, 

because no dye was observed in the epilimnion during the study. The column integrals were 
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then mapped onto a regular grid, and a contour plot was generated to delineate the edges of 

the cloud.  

 

 3. Results 

 

The wind measurements indicate the passage of atmospheric gravity waves before the 

injection and on the second day of the experiment (Figure 4a).  The peaks in wind speed were 

accompanied by 180 degree changes in wind direction (Figure 4b). The Lake number varied 

between 4 and 600 (Figure 4c). The low values of LN suggest that seiches and internal waves 

were generated. Data from a meteorological station with a thermistor chain that was placed 

on the lake in 2007 and 2008 confirmed that wind speeds greater than approximately 7 m/s 

(corresponding to a Lake number of approximately 14) are sufficient to generate internal 

waves during summer stratification. 

 Mixing was enhanced where the thermocline intersected the sloping boundary (Figure 

5a). The eddy diffusivity was more than an order of magnitude greater on the slope (site A) 

than in the interior (site B). At the bottom of the water column at site A, mixing was 

enhanced relative to that at both site B and in the upper portion of the water column below 

the epilimnion. There was another peak in the eddy diffusivity profile at 8.25 m; however, 

the 95% confidence intervals at this depth span two orders of magnitude. The enhanced 

turbulence at site A generated a mixed layer on the slope between 6 and 7 m depth (Figure 

5b). This layer is not present on the lake bottom at site B, where the stratified water column 

reaches the bottom at about 9 m. However, the temperature step bounding the mixed layer 

generated at the slope is seen in the water column at site B at about 6.8 m depth, indicating 

possible intrusion formation due to the elevated mixing on the slope. The dye profiles from 

sites A and B confirm the connection between the mixed fluid at the boundary and the mixed 

layer in the interior (Figure 5c). The difference in the depths of the peaks is due to seiching 

motions between measurements; the peaks coincide when concentration is plotted as a 

function of temperature. 

The dye cloud propagated approximately 260 m into the interior of the lake one day 

after the injection (Figures 6 and 7). A small amount of dye appeared to have separated from  
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Figure 4. Wind at Ames Municipal Airport: (a) Wind speed, (b) wind direction, and (c) Lake 

number. The time of dye injection is marked with a dashed line, and the times of the SCAMP 

measurements and dye cloud mapping are also indicated 

 

the main cloud and was observed at the circled point in Figure 6. Because the main cloud 

contained 91% of the mass of dye injected, this point was removed to make the analysis 
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Figure 5. Comparison of profiles on the slope (site A, dashed line) and in the interior (site B, 

solid line): (a) Vertical eddy diffusivity with 95% confidence intervals, (b) temperature, and 

(c) dye concentration.  

 

clearer. Within one day, over 58% of the dye injected moved off the slope region, defined by 

the 10 m isobath, with a front velocity of 0.3 cm/s. On average, the intrusion was 1 m thick 

over an area of approximately 50,000 m
2
.  

The propagation distance was determined from the transect in Figure 7; the edge of 

the dye cloud was considered to be where the dye concentration dropped to 5% of the 

maximum concentration in the transect. The maximum dye concentration was located in the 

middle of the cloud, indicating that diffusion alone cannot be responsible for the dye 

distribution. While we expect that some background horizontal diffusion processes may 

occur in the lake, some of the assumptions behind standard tracer moment analysis are 

invalid when the tracer interacts with the boundary, so we cannot compute a dispersion 

coefficient from the current tracer study. Additionally, laboratory experiments that have  
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Figure 6. Spread of the dye cloud 24 hours after injection. The contour indicates where the 

column integral is below 5% of the maximum. Dots indicate dye profile locations, and stars 

(*) indicate the profiles shown in the transect series below. Site A is the injection site. At the 

circled dye profiling location, a small amount of dye was detected. This point was removed 

from the analysis as described in the text. 

 

tracked dye from boundary mixing processes (De Silva et al. [1997], McPhee-Shaw and 

Kunze [2002], and Wells and Helfrich [2004]) describe dye injected at the boundary 

propagating as a front, as opposed to the distribution being controlled by diffusive processes.  

 

4. Discussion 

 

In this section, we, discuss the source of the turbulence that generates the intrusion, 

compare the intrusion propagation distance to results derived from a force balance, compare 

our results to the field measurements of Inall [2009], and investigate the mass transport 
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Figure 7. Longitudinal transect of dye cloud 24 hours after injection. The dye was injected at 

A. The contour indicates where the concentration drops to 5% of the maximum. The depth-

averaged background concentration was subtracted from all the profiles. The concentration 

profiles were mapped onto the corresponding temperature profile to remove internal wave 

effects and the mean temperature profile was used to convert the profile to a function of 

depth. 

 

transport offshore and its importance for water quality in lakes and reservoirs. 

Internal waves generated turbulence on the slope. In 2005, there was no thermistor 

chain in the lake, but the displacement of the dye maxima between successive dye 

measurements indicates the possibility of seiching motions with an amplitude of at least 0.5 

m being present. Unfortunately, without thermistor chain data, we can only make 

assumptions about the amplitude of the seiche. Given the small size of the lake, we do not 

expect the seiche amplitude to ever get much larger than 1 m during summer stratification; 

thermistor chain data from subsequent summers support this assumption. Modal analysis 
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with the stratification during the experiment yields a V1H1 seiche with a period of 1.3 hours. 

The time between the wind speed peaks of atmospheric gravity wave passing over the lake 

was 1.5 hours, which may potentially resonate with the natural frequency of the V1H1 

seiche. Although detailed information regarding the internal wave field is not available for 

this experiment, the microstructure measurements show enhanced turbulence on the slope 

relative to lake interior. Eddy diffusivities on the order of 10
-4

 m
2
/s have been observed on 

lake slopes [e.g., MacIntyre et al., 1999]; the current observations are lower than that but 

similar to those from other studies [e.g., Gloor et al., 2000]. 

In the lake the boundary mixing is likely due to seiching currents rather than breaking 

internal waves. For the given stratification, the first mode seiche is critical with respect to the 

slope only in the region of the deepest turbid layer; while higher frequency waves may be 

critical at the depths of the two uppermost turbid layers, often most of the energy in the 

internal wave field in a lake is contained at the dominant seiching frequencies [e.g., Boegman 

et al., 2005; Münnich et al. 1992]. Laboratory experiments on critical breaking internal 

waves on a slope [De Silva et al., 1997; McPhee-Shaw and Kunze, 2002] suggest that 

interaction between incident and reflected rays of slightly supercritical waves may also 

enhance turbulence at the boundary. For the regions of interest on the slope, the ratio 

between the seiching frequency and the critical frequency is 0.3, which is lower than the 

parameter range of these lab experiments (which had lower limits of approximately 0.8 and 

0.5, respectively), but both studies imply that the turbulence generation caused by critical 

reflection decreases as the waves become more subcritical. For these reasons, we eliminate 

breaking internal waves as the mechanism for generating turbulence and attribute the 

elevated boundary mixing to the seiche-induced currents passing over the boundary, as 

observed by others [e.g., Gloor et al., 2000; Lorke and Wüest, 2005].  

Turbulence can also be generated by convective mixing caused by the seiching 

motions as described in Lorke et al. [2005] and Lorke et al. [2008]. In this process, shear in 

the bottom boundary layer advects cooler water over warmer water as the seiche moves 

upslope, weakening the stratification and potentially causing convective motions. As the 

seiche moves downslope, the stratification strengthens and less turbulence is observed. The 

amplitudes of the wave motions that created convective mixing in those studies were several 
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times greater than the amplitudes observed here. However, time series of turbulence 

quantities in the bottom boundary layer would be required to determine definitely whether 

convective mixing generates turbulence in Ada Hayden Lake. 

The properties of the intrusion will depend on the force balance at the intrusion 

generation site. To describe an axisymmetric intrusion generated by a bubble plume, 

Lemckert and Imberger [1995] used the turbulent Froude number and the turbulent Reynolds 

number, defined as 1/3 2/3 / ( )T CFr NLε=  and 1/3 4/3 /T CRe L vε= respectively, where ε is the rate 

of dissipation of turbulent kinetic energy, LC is the centered displacement scale (similar to the 

Thorpe scale), and ν is the kinematic viscosity of water. Using measurements on the slope of 

the bootstrap mean of the dissipation computed from microstructure measurements, the mean 

buoyancy frequency, and the mean Thorpe scale we estimate FrT = 1.4 and ReT = 20. These 

values fall within the parameter range expected for boundary mixing processes [Imberger 

and Ivey, 1991]. As FrT number drops to 1, buoyancy begins to affect the turbulence; as ReT 

drops to 15, the viscosity begins to affect the turbulence [Ivey and Imberger, 1991]. Thus for 

these values of the parameters, the turbulence can best be described by an inertia-buoyancy 

balance. The balance regime implied by the turbulent Reynolds and Froude numbers does not 

depend on the process. 

Although an intrusion may start with a balance between buoyancy and inertia, it will 

eventually reach a critical distance where viscous forces will become important. That 

distance will depend on the geometry of the spreading. If the boundary mixing occurs at a 

point, the resulting intrusion will spread radially in three dimensions, but if the mixing occurs 

along the entire width of the slope, the intrusion will spread in two dimensions only. Because 

the nature of the source is unclear, we use both formulations. It is important to note that the 

derivations below assume a continuous source of momentum to drive the intrusion. While the 

winds forcing the internal waves might be impulse events, the resulting seiching motions do 

not decay immediately, but rather can maintain the bottom boundary layer (e.g., Gloor et al. 

2000). During the current study, another wind event occurred between the dye injection and 

the dye mapping. For these reasons, we continue this analysis with the assumption that the 

inertia-buoyancy balance held at all time at the intrusion generation site. 
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Following Chen [1980] and scaling the viscous force as 2~ /vF QL hρυ  and the 

inertial force as 2~ /iF Q Lhρ , where Q is the volumetric flow rate of mixed fluid away from 

the source, � is the length of the intrusion, and h is the intrusion thickness, Lemckert and 

Imberger [1993] derived an expression for the transition distance for a radially axisymmetric 

intrusion as 
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=  
 

        (6) 

 

The coefficient was determined with results from a dye injection in a bubble plume intrusion. 

It is important to note that this expression was derived for an intrusion generated in the center 

of the lake which spreads symmetrically in all directions and does not interact with the 

boundary. In the current study, the flow is bounded by the slope, but the pressure gradient 

still only exists in a radially outward direction. For a two-dimensional intrusion, the 

transition distance is  
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where q is the flow per unit width and the constant comes from the theory of Chen [1980]. 

We use N = 0.081 rad/s, the average buoyancy frequency at the depth of the intrusion, and 

estimate Q = 0.53 m
3
/s from the average intrusion thickness, the areal extent of the dye cloud 

away from the source, and the time between the injection and the dye cloud mapping (1.06 

d). Then the transition distance for an axisymmetric intrusion is Ltax ≈ 260 m, and with an 

average intrusion width of 170 m, the transition distance for a two-dimensional intrusion is 

Lt2D = 420 m. Both estimates imply that the intrusion was governed by an inertia-buoyancy 

balance during the experiment. In contrast, the propagation of intrusions in the laboratory 

experiments of De Silva et al. [1997] and the field observations of Gloor et al. [2000] were 

described by a viscous-buoyancy balance. 
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The force balance allows the intrusion’s propagation to be predicted. By equating the 

inertial force and the buoyancy force, 3 2~bF Lh Nρ , Lemckert and Imberger [1993] used 

their results to estimate the intrusion position as a function of time as  

 

1/3 2/30.4( ) ,axL QN t=         (8) 

 

while Chen’s [1980] results for a two-dimensional intrusion can be used to obtain 
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In the current experiment, the theoretical propagation distance under an inertia-buoyancy 

balance is 280 m for an axisymmetric intrusion and 980 m for a two-dimensional intrusion. 

The actual propagation distance was 260 m away from the source, implying that the three-

dimensional spreading observed here is better approximated by the axisymmetric model than 

a two-dimensional model. As the transition distance is approached, viscous effects should 

start to become important and retard the propagation of the intrusion. Also, these estimates 

treat the flow as steady; in our flow the currents generating the turbulence oscillate. Time 

series of temperature in the bottom boundary layer would be needed to determine whether the 

boundary layer properties remain steady.   

As discussed in the introduction, several field observations provide evidence of 

intrusions, but only one other study has directly measured intrusions in a natural 

environment. Inall [2009] injected dye into the stratified water column of a fjord in a manner 

similar to Goudsmit et al. [1997] (as opposed to on the bottom boundary as in the present 

study). The tracer was then mapped two-dimensionally along the main axis of the fjord, 

which differs from the three-dimensional spreading observed in Ada Hayden Lake. The 

tracer was eventually entrained into the bottom boundary layer and swept upslope and 

downslope by the internal tide, which is presumed to generated turbulence at the rough 

boundary (although there were no turbulence measurements in the bottom boundary layer). 

Vertical mapping of the dye cloud showed that the dye swept downslope and intruded into 

the interior along isopycnals. In our study, most of the dye did not travel far up or down the 
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slope, most likely because the amplitude of the seiching motions was on the order of 1 m, 

which is ten times smaller than the displacements in the fjord. However, turbidity 

measurements before the dye injection show three distinct turbid layers (Figure 3c), 

indicating that the entire slope might be a site for turbulence generation and a source of 

suspended sediment. The lack of dye in the epilimnion, the upper 4 m of the water column, 

shows that the dye did not move upslope.  

The vertical scales of the intrusions (the thickness and the vertical separation) can be 

set by the stratification, the forcing, or the topography. The intrusion thickness of 1 m is 6.3 

times the Ozmidov scale of 0.16 m. This result is similar to that for intrusions generated by a 

horizontally-oscillating vertical grid [Browand et al., 1987]. However, Inall [2009] found 

that intrusions generated by the passage of the internal tide over rough topography did not 

organize according to the Ozmidov scale; the thickness and spacing of the intrusions in his 

experiments were 20 times the Ozmidov scale or larger. Instead, the spacing and thickness of 

the intrusions were similar to the dominant wavelength of the bottom topography 

(determined by spectral analysis of the variation of the bed elevation along the slope to be 10 

m). In Ada Hayden Lake, the separation of the turbid layers (Figure 3c) is about 10 times the 

Ozmidov scale. However, the bed topography is smoother than in the fjord of Inall [2009]. If 

the wavelength of the topography sets the intrusion spacing, then the separation of the turbid 

layers should be larger than we observed in Ada Hayden Lake. In both the present 

experiments and those of Inall [2009], vertical scales of the intrusions were on the order of 

the amplitude of the dominant internal waves. The length and depth of the fjord were about 

ten times those in Ada Hayden Lake and the internal wave amplitudes and intrusion thickness 

were also ten times greater. The velocity of the intrusion front in the fjord was also about ten 

times faster than was measured in Ada Hayden Lake. As the bottom topography and 

Ozmidov scales did not show this same relationship between the two environments, this 

implies that some of the length scales of the intrusions might be the result of large scale 

geometric considerations in the lake and fjord. 

Intrusions can be an important path for transporting heat and other scalars offshore. 

The presence of turbid layers offshore indicates that the turbulence at the boundary may be 

suspending sediments that then are transported into the lake interior. The resuspension of 
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sediments by internal seiches in lakes has been documented by several researchers [e.g., 

Gloor et al., 1994; Pierson and Weyhenmeyer, 1994]. This sediment resuspension has been 

shown to release dissolved constituents such as methane [Murase et al., 2005] and 

phosphorus [e.g., Eckert et al., 2003] from the sediment pore waters. As Gloor et al. [2000] 

noted, intrusions enhance the efficiency of boundary mixing because they move the mixed 

fluid offshore. In the current study, almost 60% of the mass of the dye injected moved off the 

slope and into the interior after one day, indicating that a significant portion of substances 

entrained into the bottom boundary layer may end up in the pelagic zone of the lake. In this 

manner, localized mixing at the boundaries can be communicated to other parts of the lake. 

Thus, in a strongly stratified lake, intrusion formation can play a major role in transporting 

scalars in a lake. 

 

5. Summary 

 

A field experiment with measurements of tracer concentrations and temperature 

microstructure was conducted to study the consequences of boundary mixing in a small lake. 

Rhodamine WT was injected along the sediment-water interface to track an intrusion. Along 

with the observations of Inall [2009], this study is one of the first direct measurements of 

such boundary generated intrusions in the field, and it is the first to map the intrusion in three 

dimensions. Enhanced mixing indicated by estimates of the vertical eddy diffusivity from 

temperature microstructure measurements on the slope is attributed to seiching currents 

interacting with the boundary. Unlike Inall [2009], we did not observe upslope transport 

within the bottom boundary layer. The observed bottom boundary layer collapsed into an 

intrusion governed by a balance between inertia and buoyancy. The intrusion had an average 

thickness of 1 m, and it propagated approximately 260 m into the lake interior after one day. 

The intrusion’s behavior matched the propagation characteristics predicted by Lemckert and 

Imberger [1993] for an axisymmetric intrusion generated by a bubble plume. Almost 60% of 

the mass of dye injected moved off the slope and into the pelagic zone; the intrusion had a 

volume flow rate of 0.53 m
3
/s. These observations, along with the persistent turbid layer at 
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the depth of the intrusion, suggests that intrusion formation may be an important mechanism 

for transporting dissolved substances and affecting lake ecology. 
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CHAPTER 4. OBSERVATIONS OF OFFSHORE TRANSPORT BY 

INTERNAL SEICHES 

 
A paper in preparation for Limnology and Oceanography 

 

Danielle Wain and Chris Rehmann 

 

Abstract 

 

A field experiment was conducted to study boundary-interior exchange in a small 

lake. Tracking of a tracer injected into the metalimnion was combined with wind 

measurements and measurements of internal waves from two thermistor chains. Horizontal 

and vertical coherence and phase spectra indicated that V1H1 and V2H1 seiches were 

initiated after a wind event, after which the tracer was observed to move offshore. Four 

potential mechanisms for the spreading of the tracer from the boundary to the interior were 

investigated: intrusions from boundary mixing, advection from the V2H1 seiche, spreading 

by internal wave strain, and internal wave driven shear dispersion. The interaction between 

the internal wave strain and shear was determined to be the most likely explanation for the 

tracer behavior, although the combination of strain and shear dispersion could not completely 

account for the lateral dispersion of the tracer as determined from a moment analysis. The 

horizontal variation in the velocity field leads to an increase in the lateral dispersion as tracer 

moves into the interior. The strain can spread the mixed fluid far enough from the boundary 

that vertical shear becomes an important dispersion process. These findings improve the 

understanding of the pathway from energy input from the wind to offshore transport. 

 

Understanding the transport of dissolved substances such as oxygen, nutrients, 

microorganisms, and plankton is essential for managing water quality in lakes and reservoirs. 

The current paradigm in ocean and lake mixing is that turbulence created at the boundaries 

by internal waves and currents is responsible for the majority of the mixing that occurs. 

While much work has been done investigating mixing at boundaries in lakes and the ocean, 

less attention has been paid to the fate of this mixed fluid. In this study, we investigate 

mechanisms for boundary-interior communication by the internal wave field, including 
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intrusions from boundary mixing, advection from the V2H1 seiche, spreading by internal 

wave strain, and internal wave driven shear dispersion. 

Wind acting on the surface of a lake can cause basin-scale standing waves (seiches) to 

form. For a rectangular basin of constant width, the first horizontal mode seiche has a 

wavelength that is twice the length of the lake with a single node in the middle; the complex 

geometry and bathymetry of real lakes change the modal structure (e.g., Fricker and Nepf 

2000).  Higher modes have more nodes (the second mode has two nodes, etc.). In a two-layer 

stratification, only the first vertical mode can exist; in lakes with a thermocline of finite 

thickness, the second vertical mode can dominate the first mode and can cause large isotherm 

displacements (e.g., Wiegand and Chamberlain 1987, Münnich et al. 1992).  

A first vertical mode seiche has peak velocities at the top and bottom of the water 

column with a minimum in the metalimnion. The compression of the metalimnion that is a 

signature of the second vertical mode results in a velocity maximum in the metalimnion. 

Higher vertical modes (which are more rarely observed) have more peaks in the velocity 

profile (e.g., Antenucci et al. 2000). One consequence of this velocity structure is that the 

higher shear generated by changes in velocity over shorter vertical length scales means that 

these higher modes are more dampened (Vidal et al. 2005). 

While first vertical modes are most likely to be excited, higher vertical modes can 

have a large impact on the lake hydrodynamics. In addition to often having larger amplitudes 

than first vertical mode waves, in larger lakes the period of the higher modes is often long 

enough to resonate with diurnal wind patterns. Identification of higher mode seiches is 

typically accomplished with thermistor chains and/or current profilers. Observations of the 

second vertical mode are relatively common (e.g. Wiegand and Chamberlain 1987, Münnich 

et al. 1992, Appt et al. 2004, MacIntyre et al. 1999, Saggio and Imberger 1998, Boehrer et al. 

2000), but even higher vertical modes have been documented in the field as well, although 

such observations are rare.  

Antenucci et al. (2000) observed the first three vertical modes in Lake Kinneret, but 

the vertical profile of velocity in the lake was largely attributed to the currents generated by 

the higher mode seiches when they were excited. For the thermal structure of Lake Kinneret, 

the second and third vertical mode waves had similar frequencies and thus could not be 
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isolated from each other by spectral analyses. These higher vertical mode seiches were found 

to be first horizontal mode seiches. Antenucci et al. (2000) also found that the higher mode 

seiches were not always generated as a result of the regular wind forcing; residual motions 

from previous wind events were determined to play a role. Third vertical mode waves have 

also been observed in the Sau Reservoir (Vidal et al. 2005, Marce et al. 2007). The thick 

continuously stratified metalimnion and diurnal wind patterns were shown to favor excitation 

of the third vertical mode. The third vertical mode frequency resonated with the wind 

patterns and, as a result, dominated the internal wave motion of the reservoir.  

While higher vertical modes may exist, these uncommon observations suggest that a 

combination of environmental conditions is necessary for the higher modes to be excited. 

Higher horizontal modes are less rare. Lemmin and Mortimer (1986) several studies of lake 

first vertical mode waves that have up to five horizontal modes. The combination of high 

vertical mode and high horizontal mode is documented in a few instances for second vertical 

mode waves (MacIntyre et al. 1999, Munnich et al. 1992), but there does not appear any 

documented cases of third vertical mode, high horizontal mode seiches. 

The interaction between the seiches and lake boundary can generate a turbulent 

bottom boundary layer that hydrodynamically unstable with respect to the stratified interior. 

Gravitational adjustment of this mixed fluid leads to collapse into an intrusion that 

propagates horizontally along an isopycnal (level of constant density) into the interior. These 

intrusions can transport the mixed fluid from the boundaries into the lake interior (Thorpe 

1998). 

While intrusions are an outcome of the internal waves interacting with the boundary, 

the internal waves themselves may drive transport between the boundary and the interior. 

The mechanisms by which internal waves may contribute to horizontal mixing in a lake are 

through lateral advection by the mean velocity field of the internal waves in the metalimnion, 

shear dispersion by the vertical variation of internal wave induced velocities, and strain due 

to the horizontal variation in the internal wave velocity field, and  

In a lake, the first potential mechanism for this offshore transport is the water column 

currents generated by the internal seiches. Marti and Imberger (2008) observed a well-

defined turbid layer in a large lake and used numerical modeling with field measurements of 
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turbulence and the internal wave field to predict exchange between the boundary and the lake 

interior. They associated the change in the turbid layer with the changes in the bottom 

boundary layer as the seiches passed over the slope. Given the basin-scale internal waves in 

the lake, they concluded that the turbid layer was advected offshore by a jet in the 

metalimnion that resulted from a second vertical mode wave. Their numerical model showed 

residual velocities in the metalimnion after such a seiching event and these residual velocities 

can explain some aspects of the observed distribution of the turbid layer. 

Due to the oscillatory nature of seiching motions, significant movement due to mean 

advection as observed in Marti and Imberger (2008) is expected to be rare as any transport 

into the interior will be reversed when the seiche moves in the other direction. But the 

velocities in a lake vary significantly both horizontally and vertically. The vertical variations 

in velocity can lead to lateral shear dispersion, while the horizontal velocity variations causes 

straining of the water mass. 

Young et al. (1982) studied dispersion in an infinite fluid with an oscillating velocity 

profile and a horizontal velocity component given by 

 

cos cosu U mz tω=               (1) 
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where 2 /zd K m ω= , U is the maximum velocity, m is the vertical wavenumber, Kx is the 

horizontal diffusivity without the presence of internal wave shear, and Kz is the vertical eddy 

diffusivity. Sundermeyer and Ledwell (2001) used the Young et al. (1982) results with the 

results of Smith (1982) to estimate this enhanced horizontal diffusivity and compare the 

estimates to the observed spreading from four dye release experiments in the coastal ocean. 

They found that this shear dispersion was not sufficient to explain their dye distributions and 

oftentimes was an order of magnitude too low. There appear to be no similar tracer 
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experiments in lakes; tracer experiments carried out in the metalimnion of the lake focused 

on mean shear, not internal wave induced shear (Peeters et al. 1996).  

 The horizontal variations in velocity can cause the cloud to spread laterally. Unlike 

shear dispersion, this spreading mechanism is reversible (Sundermeyer and Ledwell 2001). 

Because there can be no flow into a boundary, the horizontal velocity normal to the wall of 

the lake must be zero. For basin scale seiches, a first horizontal mode wave has a sinusoidal 

form with the horizontal velocity maximum in the middle of the lake. Thus all velocity fields 

induced by seiches have horizontal gradients. While the internal wave strain 

parameterizations have been used to estimate vertical mixing in lakes (e.g. MacIntyre et al. 

2009), internal wave strain as a mechanism for spreading mixed fluid away from the 

boundaries has not been investigated. As the straining is at a maximum at the boundary for 

first horizontal modes, this process may be important for moving mixed fluid into the interior 

where other dispersive forces may act on it. 

To investigate offshore transport by basin scale seiches, we used a tracer to lateral 

dispersion in the metalimnion between the boundary and the interior. We first describe the 

lake, the measurements, and the analysis. The details of the internal wave field and the results 

of the dye tracking are then described. Finally, we compare the results with the theoretical 

spreading due to shear dispersion and straining from seiches. 

 

Field Site  

 

The measurements and dye release experiment were conducted at Ada Hayden Lake 

in Ames, Iowa (Figure 1) on 6-7 August 2007. Ada Hayden Lake is an abandoned rock 

quarry that was filled to create a secondary water supply for Ames. It consists of two basins, 

and the experiments were performed in the larger, deeper south basin, which has a surface 

area of about 0.3 km
2
 and a maximum depth of about 17 m. The lake is strongly stratified in 

the summer with a well-mixed epilimnion lying over a strongly stratified metalimnion and a 

weakly stratified hypolimnion (Figure 2). The metalimnion occupies over a third of the water 

column, a condition which increases the potential for higher vertical mode seiches to be 

important (Wiegand and Chamberlain 1987, Münnich et al. 1992). Water enters the lake from 
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Figure 1. Map of the south basin of Ada Hayden Lake. Depth contours are marked in meters.  

Shown are the dye injection location (▼),thermistor chain (●), and the LDS (×). 

 

groundwater and surface water runoff, which is filtered through wetlands. The two basins are 

separated by a 3-m deep sill. Because the sill is shallower than the summer thermocline, 

exchange between the two basins probably consists only of epilimnetic waters. Stirring from 

boat traffic is small because motorized boats are prohibited on the lake. The lake has steep 

sides except for a few areas; the northeast corner, where dye was injected, has a more 

moderate slope ranging between 5 and 10%. Stirring from boat traffic is small since 

motorized boats are prohibited on the lake. During the summer, the mean winds at Ada 

Hayden Lake are 2-3 m/s SSE. Stronger winds (>5 m/s) are typically associated with storms, 

most often from the south. 
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Figure 2. Conditions during the experiment: (a) Average temperature profile and (b) 

buoyancy frequency N as measured by the LDS (○) and the thermistor chain (●). 

 

Measurements  

 

Meteorological Station - A Lake Diagnostic System (LDS) manufactured by 

Precision Measurements Engineering was moored in the lake at the position denoted in Fig. 

1. The LDS measures wind speed and direction, solar radiation, net radiation, relative 

humidity, and air temperature. To determine the wind forcing on the lake, the wind speed and 

direction were measured approximately 2.4 m above the water surface by a propeller 

anemometer and a wind vane, respectively, both by Met One Instruments, Inc. All the 

sensors on the LDS are sampled every 15 s.  

Thermistor Chains - Two thermistor chains manufactured by Precision Measurements 

Engineering were deployed in the lake. One was attached to the LDS, and another was 

deployed 215 m from the LDS (Fig. 1). The thermistor chain at the LDS had 29 nodes 
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starting approximately 1 m below the surface and spaced every 0.5 m thereafter. The other 

thermistor chain had 19 functioning nodes spaced approximately every 1 m, and the sample 

interval was 15 s. 

Fluorometry - Dye tracking was used to measure the spread of the mixed fluid. 

Rhodamine WT, a non-toxic tracer designed to track water, was used for the studies. One 

liter of the dye was injected in a horizontal streak on a target isotherm to focus on spreading 

of the intrusion away from the boundary. The Rhodamine WT was mixed with surface water 

of known density (based on temperature measurements) to yield a mixture of the proper 

density. The dye was injected from a boat; the injection hose was equipped with a diffuser 

pipe to minimize turbulence generation from the injection. In the experiment, the dye was 

injected approximately 6 m deep along the slope under calm conditions on 6 August 2007. 

Once the dye was injected, it was tracked using a Self-Contained Underwater 

Fluorescence Apparatus (SCUFA) by Turner Designs. Before use, the SCUFA was calibrated 

using a 50 ppb Rhodamine WT standard. The range where the relationship between the 

emissions detected by the receptors and the fluorescence is linear extends to approximately 

200 ppb (Turner Designs, pers. comm.). The SCUFA was mounted in a protective cage, 

along with an SBE 50 Digital Oceanographic Pressure Sensor from Sea-Bird Electronics to 

measure the depth of the SCUFA. The SCUFA and SBE 50 were sampled simultaneously 

with position from a global positioning system at 1 Hz through LabVIEW. To capture both 

the vertical and horizontal extents of the dye cloud, a tow-yo sampling strategy was 

employed. Measurements along a transect were taken both horizontally and vertically until 

background fluorescence levels determined by pre-injection surveys were reached to ensure 

that the entire cloud was captured. 

 

Processing 

 

Temperature and Buoyancy Frequency Profiles-The temperatures recorded by the 

thermistor chains on 7 August 2007 were averaged to generate a mean temperature profile. 

The equation of state of Chen and Millero (1977) was used to compute the density profile 
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from the mean temperature profile. The buoyancy frequency was then computed using a 

centered difference.  

Lake Number - The strength of the wind, which can cause the stable density structure 

to overturn, was compared to the strength of the stratification, which resists overturning, with 

the Lake number (Imberger and Patterson 1990): 
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where g is the acceleration of gravity, zT is the center of the metalimnion, zS is the height of 

the water surface, ρs is the density at the surface, u* is the shear velocity of the wind, As is the 

area of the surface, zv is the height of the center of volume, and St is the stability of the water 

body defined as 
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where A(z) is the surface area as a function of depth. All measurements are with respect to 

the bottom at z = 0. The shear velocity of the wind is defined as 
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where ρa is the air density, CDw is the wind drag coefficient, and uw is wind speed, typically 

taken as the velocity 10 m above the water. The drag coefficient was computed with the 

formulas from Wüest and Lorke (2003). A Lake number of 1 implies upwelling conditions. 

Low Lake numbers (LN < 10) indicate that the wind stress is sufficient to generate wind setup 

throughout the water column (Imberger and Patterson 1990).  

 A 15-minute moving average of the meteorological and thermistor chain data from 

the LDS were used to compute the Lake number. The temperature profile was interpolated 
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onto a 1-m grid to match the hypsograph. The thick metalimnion with a non-constant 

buoyancy frequency complicated finding the depth of the thermocline to use in computing 

the Lake number . The region of highest temperature gradient is directly below the well-

mixed surface layer; computing the Lake number using this depth will most likely 

underestimate the Lake number. Instead, the depth of the thermocline was taken as the depth 

of the maximum isotherm displacement of the first vertical mode seiche. 

Seiching modes – To determine the natural seiching frequencies in the lake, the model 

of Münnich et al. (1992) was used. The temperature data recorded by the freestanding 

thermistor chain on 7 August 2007 was averaged and then linearly extrapolated onto a 25-cm 

grid that covered the entire water column. The density and buoyancy frequency profile were 

computed as described above. The eigenvalue problem was then solved to determine the 

phase speeds of the first four vertical modes. At the depth of the thermocline, the fetch of the 

lake is 755 m when the wind comes from the west, as during the period of the study. The 

theoretical frequencies of these modes were computed with this length. 

Internal wave spectra - To investigate the internal wave field, linear interpolation was 

used for each temperature profile to determine the level of each isotherm to create a time 

series of isotherm depth versus time. After subtracting the mean isotherm position, Welch’s 

periodogram method was used to create a spectrum of the isotherm displacements in 

frequency space. Coherence and phase spectra were used to determine the modal nature of 

the seiching motions. A coherence spectrum measures the similarity between the spectral 

energy distribution of two signals. At a given frequency, if two signals are perfectly coherent, 

then the coherence spectrum will have a value of one. For coherent signals, we can compute 

a phase spectrum to determine the lag between the two signals. For example, two sine waves 

of the same frequency are both coherent and in phase. A sine wave and a cosine wave of the 

same frequency are coherent, but 90 degrees out of phase. 

Within a single thermistor chain, the coherence and phase spectra were computed 

between isotherms so the existence of higher vertical mode waves could be confirmed (e.g., 

Münnich et al. 1992). Between the two thermistor chains, the coherence spectrum for 

displacements for a given isotherm was calculated to determine whether the internal waves 

were coherent across the entire basin (e.g., Lemckert et al. 2004). The phase spectrum was 
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computed to determine the horizontal mode of the seiches. For all spectra, a window of 4096 

points (~17 hrs) was advanced by one hour and the eight resulting spectra were averaged. 

Dye mapping - All the measurements in a set of transects were combined to yield a 

map of the dye cloud. Following Ledwell et al. (2004), a column integral of the concentration 

was computed for each up or down profile measured while tow-yoing. The column integral 

essentially yields a depth-averaged value; thus, it is insensitive to vertical movement of the 

dye cloud by the internal waves. Each profile’s position was determined by averaging the 

position reading from the GPS during each profile time. The column integral was calculated 

for each profile to yield a two-dimensional map of the dye cloud.  

To determine the horizontal dispersion coefficient, we used a moment analysis of the 

dye cloud (e.g. Fischer et al. 1979). Because of the nature of the process being investigated, 

the typical moment analysis must be adapted. With one mapping, it is common to assume 

that the initial variance of the dye cloud is zero. In the current study, the dye cloud is 

subjected to two different forcings and thus a single Keff is not adequate to describe the dye 

movement. The dye was injected in the northeastern corner of the lake during calm 

conditions. Fourteen hours later, the westerly wind event generated the seiching movements 

in the lake. The northern portion of the dye cloud was mapped 12 hours later, followed by the 

southern portion of the dye cloud (including the portion that moved into the lake interior). 

This mapping was completed approximately 14 hours after the wind event. To compute the 

moments in the x-direction (the E-W axis), we divide the dye cloud into this northern and 

southern portion, with the division at approximately y = 160 m (see Figure 10 below), which 

is approximately where the lake opens up to a longer westerly fetch. For the northern portion 

of the cloud, we assume the initial x-variance is zero. Using the horizontal diffusivity for the 

northern portion, we estimate the x-variance at the time of the wind event and use that value 

as ths intital variance for computing the horizontal diffusivity in the south portion. We are 

primarily concerned with the enhanced horizontal diffusivity observed along the x-axis in the 

southern portion of the cloud relative to the northern portion of the cloud. 
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Results 

 

In this section, we discuss the conditions during the experiment and describe the 

theoretical behavior of the first four vertical modes. Using the measurements from the 

thermistor chains, we evaluate the potential for existence of these modes during the 

experiment. We then use the dye study results to investigate the implication of the internal 

wave field in offshore transport in lakes. 

Lake Number - At approximately 2 am on 7 August 2007, the wind increased in speed 

and changed direction to come from the west (Figures 3a-b). The minimum Lake number 

observed during this event was approximately 11 (Figure 3c). While the Lake number was 

higher than the threshold of 10 described above, the wind stress was still sufficient to 

displace isotherms (Figure 3d). 

Seiching Modes - The vertical profiles of modal amplitudes are shown in Figure 4. 

The natural periods for the VxH1 mode for x = 1, 2, 3, and 4 are 1.4 hrs, 4.0 hrs, 6.8 hrs, and 

9.3 hrs respectively. The periods of the VxH2-4  modes are half, one-third, and one-quarter 

of the VxH1 periods, respectively. For a rough approximation to the velocity field, we can 

assume a simple bathymetry and compute the horizontal velocity profile for a standing wave 

for each mode.  

Internal Wave Spectra – Now that we have theoretical approximations for the first 

four vertical modes, we can use the coherency and phase spectra to determine if the higher 

modes exist. First we look for coherent motions within the water column. We use the 

temperature measurements from the freestanding thermistor chain, as on a westerly fetch it 

was closer to the lake boundary than the LDS. Consequently the displacement of isotherms 

due to seiching motions should be clearer at the thermistor chain. 

The coherency and phase spectra were computed between all isotherm pairs. In 

Figure 5, we show phase of each isotherm with respect to the 26°C isotherm (the warmest 

isotherm) at the frequencies that are closest to the theoretical frequencies of the VxH1 

seiches computed above. At the V1H1 frequency, most of the water column moves in phase 

(Figure 5a), which is the expected response. At the V2H1 frequency (Figure 5b), the upper 

portion of the water column moves out of phase with the lower portion of the water column, 
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Figure 3. (a) – (c) Wind measured by the LDS on 7 August 2007: (a) Wind speed, (b) wind 

direction, and (c) Lake number. (d) Displacement of the 19°C (solid line) and 12°C (dashed 

line) isotherms as measured at the thermistor chain and low pass filtered with a pass 

frequency of twice the theoretical period of the V1H1 seiche. The time of the dye cloud 

mapping is also indicated. 
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Figure  4. (a) Temperature profile used for computing the vertical modes based on the data 

from the stand alone thermistor chain. (b) Buoyancy frequency profile associated with (a). (c)  

- (f). Theoretical modal amplitudes (solid line) and associated horizontal velocities (dashed 

line) for the first four vertical modes (arbitrary units). 

 

consistent with a second vertical mode. The solid circles indicate the depth of the peaks in 

the theoretical modal amplitudes; each peak is necessarily 180 degrees out of phase with the 

ones above and below it. At the V2H1 frequency, the computed phases match the theoretical 

phases at these depths well. Because of the record length, the frequency resolution is such 

that the closest resolved frequency to the V3H1 and V4H1 is the same. The phase profile 

atthis frequency was compared to the theoretical phases for these two modes (Figures 5c,d). 

The V3H1 structure fits the measured profiles better than the V4H1 structure. This does not 

eliminate the possibility that a V4H1 seiche may exist, but our sample length precludes 

isolating the signal. As the thermistor chain recorded for several months during summer 

2007, it is possible to extend the sample length from 17 hours (2
12

 data points) to 34 hours 
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Figure 5. Phases of the 25°C – 8°C isotherms with respect to the 26°C isotherm (○) at the 

frequencies approximating the theoretical frequencies of the first four modes: (a) f = 0.70 cph 

(2.0 × 10
-4

 Hz), (b) f = 0.23 cph (6.5 × 10
-5

 Hz), (c) f = 0.12 cph (3.3 × 10
-5

 Hz), and (d) f = 

0.12 cph (3.3 × 10
-5

 Hz). Only isotherms with coherence with the 26°C isotherm of greater 

than 0.5 are shown. The closed circles (●) indicate the depths of the peaks in the theoretical 

modal amplitudes for each mode. 

 

 (2
13

 data points), but as the wave life is shorter than this, a longer sampling window does not 

seem reasonable. 

 The phase profiles described above indicate that there is potential for V1H1, V2H1, 

and V3H1 seiches in the lake. In the following we use the results from two isotherms (19°C 

and 12°C) in the lower and upper portions of the metalimnion to determine if higher 

horizontal harmonics may exist. These isotherms were chosen because the maximum 

displacements in the water column interior (i.e., not on the bottom or top of the water 

column) were observed at these isotherms. These isotherms will be in phase for the V1H1  
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Figure 6. Coherency (solid line) and phase (•) spectra at the VxH1 frequencies: (a) between 

the 19°C and 12°C isotherms as measured by the stand alone thermistor chain, (b) between 

the stand alone thermistor chain and the LDS thermistor chain for the 19°C isotherm, and (c) 

between the stand alone thermistor chain and the LDS thermistor chain for the 12C isotherm. 

The phase is only indicated when the coherency is greater than 0.5. The theoretical 

frequencies of the first four vertical modes are indicated. 

 

seiche and all of its associated higher harmonics and out of phase for the V2H1, V3H1, and 

V4H1 seiches and their higher harmonics. The coherency and phase spectra between the 

19°C and 12°C isotherms are shown in Figures 6a, 7a, 8a, and 9a for the VxH1-VxH4 modes 

respectively. At the VxH1 seiching frequencies (Figure 6a), the two isotherms move 

coherently for all four vertical modes. The isotherms are out of phase at the frequencies 

closest to vertical mode 2-4 frequencies and in phase at the vertical mode 1 frequency, 

implying that all four vertical modes may exist in the lake. The isotherms are also coherent at 

all the VxH2 frequencies (Figure 7a). The isotherms are in phase at the VIH2 and V2H2  
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Figure 7. Same as Figure 6 for the VxH2 seiche frequencies. 

 

frequencies and out of phase at the V3H2 and V3H2 frequencies. This evidence indicates the 

possible existence of the V1H2, V3H2, and V4H2 modes but is contrary to the existence of a 

V2H2 mode (as such a mode should have the isotherms out of phase). At the VxH3 

frequencies (Figure 8a), the isotherms also move coherently. At the V4H3 frequency, they 

are out of phase, but they are in phase at the V3H3, V2H3, and V1H3 frequencies; thus, the 

phases indicate that potentially the V4H3 and V1H3 seiches may exist. Finally, the isotherms 

are coherent at the V4H4, V3H4, and V2H4 seiching frequencies (but not at V1H4), but are 

in phase, which is not consistent with the existence of the higher vertical mode seiches 

(Figure 9a). 

 To determine if the seiches are horizontally coherent, we computed the coherency and 

phase spectra for the 19°C and 12°C isotherms between the freestanding thermistor chain and 

the LDS. In an idealized lake, given the position of the thermistor chain and the LDS along 

the fetch, we would expect that for the VxH1 and VxH4 modes the isotherm displacements  
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Figure 8. Same as Figure 6 for the VxH3 seiche frequencies. 

 

will be in phase, and that for the VxH2 and VxH3 modes the isotherm displacements will be 

out of phase. At the VxH1 frequencies (Figure 7b,c,d), both the isotherm movements are 

coherent between the thermistor chain and the LDS at the V4H1, V2H1, and V1H1 

frequencies but not at the V3H1 frequency. At the V4H1 frequency, the signal is in phase for 

the 19°C isotherm and out of phase for the 12°C isotherm, implying that the motions at this 

frequency are not due to a V4H1 seiche. At the V2H1 frequency, both signals are out of 

phase and at the V1H1 frequency they are in phase; these observations are consistent with the 

existence of these two modes. At the VxH2 frequencies (Figure 8b,c,d), there are coherent 

motions for all modes for both isotherms. With the exception of the 19°C isotherm signal at 

the V3H2 frequency, all of the coherent motions are not of the correct phase to be VxH2 

seiches. As the upper and lower portions of the water column are horizontally of different 

phase, we expect that the motions at this frequency are not due to a V3H2 mode. At the 

VxH3 frequencies, both the isotherm movements are coherent between the thermistor chain  
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Figure 9. Same as Figure 6 for the VxH4 seiche frequencies. 

 

Table 1. Summary of evidence from coherency and phase spectra for the seiching modes. At 

the frequency of each mode, if the isotherms are coherent and of the proper phase shift for 

the mode, then there is potential for that mode to exist according to that isotherm pair. The 

19°C-12°C pair pertains to vertical coherence; the other two pertain to horizontal coherence.  

Isotherms V1H1 V2H1 V3H1 V4H1 V1H2 V2H2 V3H2 V4H2 

19°C-12°C x x x x x  x x 

19°C-19°C x x  x   x  

12°C-12°C x x    x   

 V1H3 V2H3 V3H3 V4H3 V1H4 V2H4 V3H4 V4H4 

19°C-12°C x   x     

19°C-19°C  x    x  x 

12°C-12°C   x x  x   
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Figure 10. Spread of the dye cloud approximately 24 hours after injection. The contour 

indicates where the column integral is below 5% of the maximum. The dye injection location 

(▼) and the freestanding thermistor chain (●) are indicated. The dotted line marks the 

transect shown in Figure 11. 

 

and the LDS at the V4H3 and V3H3 frequencies but not at the V2H3 and V3H3 frequencies. 

At both the V4H3 and V3H3 frequencies, the upper and lower portions of the water column 

are again not of the same horizontal phase shift, so these motions are most likely not V4H3 

and V3H3 seiches. At the VxH4 frequencies (Figure 9b,c,d), both the isotherms are 

horizontally coherent for the V4H4 and V2H4 frequencies, but not the V3H4 and V1H4 

frequencies. Both isotherms are correctly out of phase for the V2H4 seiche, but of different 

phase shifts at the V4H4 frequencies, implying the former may exist, while the latter should 

not. 

 Table 1 summarizes which modes may possibly exist according to the coherency and 

phase spectra presented in Figures 6-9. While an individual spectrum may show evidence for  
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Figure 11. Longitudinal transect of dye cloud approximately 24 hours after injection. The 

contour indicates where the concentration drops to 5% of the maximum. The dotted lines 

indicate the mean depth of the 20°C, 19°C, and 18°C isotherms. 

 

the existence of a particular mode, if the same evidence is not present in the other spectra, 

there is no compelling reason to believe that such seiching motions are controlling the 

isotherm movements. As is apparent in Table 1, the only seiching modes that are coherent 

and in proper phase in all three spectra are the V1H1 and V2H1 seiches. 

Dye Mapping- Because the stronger winds at the lake typically come from the south, 

we chose the north slope for the dye injection. After the injection, the winds were atypically 

very calm until the wind event at 2 am. The dye mapping (Figures 10 and 11) occurred 

approximately 12-14 hours after this wind event. Between the injection and the mapping, the 

dye stayed close to the eastern shore of the lake until it reached the portion of the lake 

exposed to the longest westerly fetch. The dye then spread over 200 meters into the interior  
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of the lake at a rate of approximately 0.4 cm/s, although the concentration maximum 

remained near the shoreline. 

Following the procedure of Sundermeyer and Ledwell (2001), we first compute the 

moments of the distribution of the column integral � ( ), ,C x y t  of dye in Figure 10. To 

determine the relative importance of internal wave generated shear and strain, we first 

estimated the effective horizontal diffusivity assuming no straining by internal waves. For the 

northern half of the cloud, we assume that the initial variance is zero and using the time of 

completion of that mapping, we estimate Kx = 0.008 m
2
/s. This can be considered the 

background horizontal diffusivity. Estimating the enhanced effective horizontal diffusivity is 

more complicated. Based on the diffusivity in the y-direction, we expect that the dye had 

reached the open region of the lake before the wind event. Using Kx, we can estimate the x-

variance of the dye cloud at the time of the wind event. With this estimate of initial variance, 

we computed Keff  = 0.017 m
2
/s (see Equation 20 in the appendix), or approximately twice the 

diffusivity in the northern portion of the lake. 

 

Discussion 

 

We consider four potential mechanisms for the spreading of the dye into the interior 

due to the internal waves: an intrusion generated by internal waves interacting with the slope 

advection due to the velocity field generated by the V2H1 seiche, internal wave strain, and 

shear dispersion from the internal wave field. 

Intrusion Caused by Internal Wave Interactions with the Slope – Intrusions can be 

generated as the result of breaking internal waves or the generation of a frictional boundary 

layer from the seiching currents. Breaking of critical internal waves probably did not 

contribute to the transport. The eastern slope of the lake is approximately 30%, which is 

relatively steep in comparison to slopes in other field studies of intrusions generated by 

boundary mixing (e.g Inall 2009). At the depth of the dye, critical internal waves in the lake 

have a frequency of 0.004 Hz, which is over an order of magnitude higher than the V1H1 

seiche frequency. The energy in the internal wave field contained at this frequency is more 

than two orders of magnitudes smaller than the energy contained in the range of the seiching 
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frequencies. Thus, it is not expected that this mechanism played a role in the dye 

propagation. While the seiching currents may have possibly generated a turbulent bottom 

boundary layer, the steep slope angle is not conducive to that process as the boundary layer 

thickness is inversely proportional to the slope (Gloor et al. 2000, Hondzo and Haider 2004). 

Advection by Seiching Velocities - Next we look at the advection generated by the 

internal wave field. . Direct velocity measurements were not available, but if  V1H1 and 

V2H2 seiches drive the dominant motions in the lake, the horizontal velocity field can be 

computed from the isotherm displacements measured at the freestanding thermistor chain. To 

remove the high frequency motions, we first filtered the isotherm displacements with a low 

pass filter with a pass band of f < 2ω1--that is, twice the frequency of the V1H1 seiche. The 

profile of the vertical velocity w was then computed as 
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where ζ is the isotherm displacement. If we model the basin as two-dimensional in the x-z 

plane, then continuity, 

 

0
u w

x z

∂ ∂
+ =

∂ ∂
         (7) 

 

where u is the horizontal velocity, holds at any position in the plane. For a first horizontal 

mode seiche, the horizontal and vertical velocities can be expressed as 

 

( )0( , , ) , sin
x

u x z t u z t
L

π =  
 

       (8) 

( )0( , , ) , cos
x

w x z t w z t
L

π =  
 

       (9) 

 

where L is the length of the lake at the depth of the thermocline. The velocity u0 can be found 

by substituting (8) and (9) into (7): 
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u z t
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∂

= −
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        (10) 

 

Because � is known at the thermistor chain, we can compute w0 using (9), u0 using (10) and 

finally u using (8). 

 If we place particles at x = 0 m (in Figure 11), we can observe the transport by the 

advective field from the seiches. Most of the dye sits between the 20°C and 18°C isotherms. 

Due to the sinusoidal form of the horizontal velocity, as the particle moves into the interior it 

accelerates and as it moves towards the shore it decelerates. The velocity right at the lake 

boundary is necessarily zero, because there can be no flow into the wall. As noted above, the 

19°C isotherm displacement is a relative maximum in the water column. This implies that 

there is a zero velocity crossing at this depth (see Figure 4). If we place particles at the depth 

of the 18°C and 20°C isotherms, advection from the seiching motions is in opposite 

directions (Figure 12). While these particles experience velocities between ±1.25 cm/s, 

because of the oscillatory nature of the flow, there is no significant net advection that can 

explain the propagation of the dye into the interior.  

Marti and Imberger (2008) attributed the net advection into the interior in the 

metalimnion to residual currents from internal wave rectification. They computed the 

magnitude of the residual currents by averaging the velocity field from a numerical model of 

the lake over a six day period. Averaging the velocities over the time period above yields 

very small currents (< 0.02 cm/s) that are too small to cause the observed dye propagation. 

Internal Wave Strain – The horizontal variation in u can lead to internal wave driven 

straining of the dye cloud. Next we include the strain in the moment analysis to determine the 

lateral dispersion coefficient (see Appendix A for details). Because of the zero velocity 

crossing at the 19°C isotherm, we cannot average the velocity over the depth of the dye cloud 

to compute the strain, as the depth averaged velocity of the cloud is close to zero due to 

velocity reversal at the zero crossing. Using the strain measured at the 20°C, 19°C, and 18°C 

isotherms respectively, Keff  is estimated to be 0.011 m
2
/s, 0.013 m

2
/s and 0.017 m

2
/s 

respectively. In essence, the straining reduces the dispersion required to explain the dye  
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Figure 12. Track of particles placed at x = 0 at the depth of the 20°C isotherm (solid line) and 

the 18°C isotherm (dashed line). The particle tracks begin at the time of the low Lake number 

event on 7 August  2007 and end at the completion of the dye mapping. 

 

spreading. This implies that in the upper portion of the dye cloud, the strain can account for 

some of the spreading of the dye cloud, thus reducing the effective horizontal diffusivity 

needed to produce the observed variance, but in the lower portion of the cloud the straining 

has no effect. This is consistent with the vertical structure of the dye cloud observed in 

Figure 11. 

Shear Dispersion from Internal Waves - Even when the background diffusivity is 

included, there was still a “missing” diffusivity between 0.003 m
2
/s and 0.009 m

2
/s. We next 

computed the effective diffusivity from the vertical internal wave shear to determine if this 

process could account for the missing mixing. Sundermeyer and Ledwell (2001) use a 

modified form of the relationship between the variance and the shear dispersion which allows 

for an arbitrary time dependence of the vertical shear 
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where G is a distortion factor given by 

 

0

1
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       (12) 

 

where α is the vertical shear and 2

0 / 2z zt Kσ= −ɶ . Equation (11) is equivalent to the m = 0 case 

presented by Young et al. (1982) and consequently is an upper bound on the effective 

diffusivity. The variance is then 

 

( )2 2 2

0

0

2 2 ( )

t

x x x zt K t K G t dtσ σ= + + ∫       (13) 

 

where Kz was determined to be 1.2 x 10
-6

 m
2
/s using microstructure measurements and the 

Osborn-Cox model (e.g. Wain and Rehmann 2005). The dye cloud was approximately 1 m 

thick. We approximated the thickness of the cloud by 4σz (Fischer et al. 1979), but a range 

between 0.25 m and 1 m was tested; the results differed by only 4% and thus are very 

insensitive to this choice. Using the estimates of the shear at the x-position of the center of 

mass of the southern portion of the dye cloud, we estimate the shear dispersion due to the 

internal waves to be approximately 0.001 m
2
/s, which is not sufficient to account for the 

missing mixing.  

Sundermeyer and Ledwell (2001) also found that this form of shear dispersion was 

not sufficient to explain their dye distributions and oftentimes was an order of magnitude too 

low. They attributed the remaining missing mixing to lateral intrusions from interleaving of 

adjacent water parcels and from the collapse of mixed patches. Lakes typically have a more 

quiescent interior than the ocean. During the the experiment, the strong stratification 
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prevented the Richardson number from dropping below 0.25; thus vertical mixing from the 

vertical shear is unlikely. 

Combined effects of internal wave driven shear and strain - One of the key 

assumptions of the moment analysis is that the horizontal eddy diffusivity does not change in 

space. For all horizontal modes and all bathymetries, both the horizontal strain ∂u/∂x and the 

vertical shear ∂u/∂z change with x. Closer to the edge of the basin for the first horizontal 

mode, the horizontal strain is the largest, and it decreases to zero in the middle of the lake. 

Conversely, the vertical shear is necessarily zero at the wall (since u is zero everywhere), and 

it reaches a maximum in the middle of the lake where u reaches a maximum. While the 

spreading of the cloud by straining is not a dispersion process, in trying to evaluate the 

observed spreading, we can represent the contribution by the strain to the variance as a 

“diffusivity.” For example as noted above, the strain stretches the cloud so that less lateral 

dispersion is required to explain the dye distribution. The strain reduced the effective 

horizontal diffusivity to 0.011–0.017 m
2
/s dependent upon the depth. Without strain, the 

required effective horizontal diffusivity is 0.017 m
2
/s. Thus the strain contributes a 

“diffusivity” of 0.006 – 0 m
2
/s, depending on the depth. The contribution of the strain and the 

shear to the observed diffusivity as a function of x is shown in Figure 13. In the analysis 

above, both Ksh and Kst were computed at the location of the center of mass of the dye cloud, 

which was approximately x/L = 0.9. As the dye cloud spreads into the interior, parts of the 

cloud are exposed to higher total diffusivities, which could possibly explain the missing 

mixing. 

 The patterns observed in Figure 13 will be true of any lake with a dominant first 

horizontal mode velocity field; this has implications for exchange between the pelagic and 

interior regions of the lake. If fluid is mixed at the boundary, but the boundary layer is not 

thick enough to cause lateral intrusions to form (Gloor et al. 2000), then that fluid and its 

constituents (e.g., nutrients, suspended sediments) will have no means of spreading into the 

interior of the lake. The u = 0 boundary condition implies that fluid right along the boundary 

is subject to very little advection by the internal wave field. Because of this, shear dispersion 

will also be low (Figure 13). But at the boundary, the horizontal velocity gradient is the 

greatest. So conceivably the two processes can work in conjunction to cause spreading of 
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mixed fluid into the interior. After the fluid is mixed, it is subjected to high strains, which 

may cause the cloud to grow large enough that regions of the cloud are then subject to 

appreciable effective horizontal diffusivities from shear dispersion. 

 

 

Figure 13. Patterns of diffusivity as a function of x. Ktot = Ksh + Kst + Kx. Ksh is depth 

averaged over the vertical extent of the dye cloud. 

 

Summary 

 

A field experiment with measurements of tracer concentrations, meteorological 

conditions, and internal wave response was conducted to study boundary-interior exchange in 

a small lake. Rhodamine WT was injected into the metaliminion near the shoreline and 

tracked as it spread into the interior after a westerly wind event that generated basin scale 

seiches. Coherence and phase spectra between the 19°C and 12°C isotherms, which were in 

the upper and lower portions of the metalimnion, and between the same isotherms at two 
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thermistor chains indicate the existence of V1H1 and V2H1 seiches in the lake. The 

spreading of the dye cloud in the E-W direction changed dramatically once the cloud reached 

the open portion of the lake with the longest westerly fetch, where the dye spread over 200 

meters at into the interior. The enhanced spreading could not be attributed to either advection 

from the internal wave field, despite the presence of a second vertical mode wave, or to 

residual currents from the internal wave field. The observed diffusivity in this portion of the 

lake calculated with a strain-free model after the westerly wind event was Kobs = 0.017 m
2
/s. 

The background horizontal diffusivity measured in the sheltered part of the lake was Kx = 

0.008 m
2
/s, less than half that observed in the open part. We use the internal wave field at the 

location of the center of mass of the dye cloud and determine the contribution of the strain to 

the diffusivity was estimated to be Kst = 0-0.006 m
2
/s, depending on the depth, and the 

effective horizontal diffusivity due to the vertical shear was estimated to be Ksh = 0.001 m
2
/s. 

The gap between the observed spreading of the dye and the theoretical spreading due to 

internal wave shear and strain may be due to the horizontal variation in K. As the dye cloud 

spreads into the interior, K increases, accelerating the spreading process. This horizontal 

variation may also enhance the importance of internal wave shear and strain to boundary-

interior exchange, as the strain can spread the mixed fluid far enough from the boundary that 

vertical shear becomes an important for dispersion.  
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Appendix A: Moment Analysis with Unsteady Strain 

 

The moments are defined as  
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The zeroth moment M00 is related to the mass. The first moments, M10 and M01, are related to 

the position of the center of mass (µx,µy) by µx = M10/M00 and µy = M01/M00. The second 

moments are related to the variances of the dye cloud by 
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The moments computed above are computed directly from the dye distribution. We 

can manipulate the advection-diffusion equation to yield the theoretical properties of these 

moments, in particular the variance in the x direction. Following Sundermeyer and Ledwell 

(2001), we assume that the growth of horizontal variance of the dye cloud is the result of an 

effective horizontal diffusivity and a large scale horizontal strain � � ��/��. They treated γ 

as a constant; Equation (8) shows that γ depends on x, z, and t for basin scale seiches. 

Including the x dependence in γ in the advection-diffusion equation yields an expression for 

the growth of the horizontal variance that cannot be solved analytically. Thus here we retain 

the time dependence of γ but compute ��/�� at the location of the center of mass of the dye 

cloud denoted by µx. 

We multiply the advection-diffusion equation by x
2
 and integrate between -∞ and ∞: 

 

2 2
2 2

2 2
( ) eff y

C C C C
x t x dx x K K dx

t x x y
γ

∞ ∞

−∞ −∞

   ∂ ∂ ∂ ∂
+ = +   ∂ ∂ ∂ ∂   

∫ ∫
ɶ ɶ ɶ ɶ

   (17) 

 

The moment definition in (14) is then used to yield an expression for the growth of the 

horizontal variance: 



95 

 

 

2
22 ( ) 2x
x et K

t
ff

σ
γ σ

∂
− =

∂
       (18) 

 

which is identical to Equation (5) from Sundermeyer and Ledwell (2001), as the time 

dependence of γ does not play a role until we integrate the above equation with respect to 

time to determine the behavior of the variance with time. Doing so yields the expression 

 

( ) ( ) ( ) ( )2 2

0

0 0 0 0

2 2 2 2

t t t t

x x efft exp t dt K exp t dt exp t dt dtσ σ γ γ γ
     

= + −     
     
∫ ∫ ∫ ∫  (19) 

 

which reduces to Equation (7) in Sundermeyer and Ledwell (2001) when γ is constant and  

the more common 

 

2 2

0( ) 2x x efft K tσ σ= +         (20) 

 

when γ is zero. Moving from Equation (17) to Equation (18) requires the standard moment 

analysis assumption that there is no interaction with the boundary. The dye mapping in 

Figure 11 does not show the dye cloud impinging on the boundary, but this could be 

sampling error.  
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CHAPTER 5. CONCLUSIONS 

 

1. Summary 

 

Boundary mixing in lakes and oceans plays an important role in governing budgets of 

heat, salt, and other dissolved constituents. Many studies have shown elevated mixing at the 

side of the basin or at underwater topography as compared to the interior of the lake or ocean, 

but because the mixing occurs over such a small portion of the basin, it is critical to 

understand if, when, and how such mixing affects the entire water body. Without 

understanding the fate of fluid mixed at the boundary, basin scale effects can be incorporated 

into global heat transport models in the ocean or water quality models in lakes and reservoirs. 

To address this issue, the objectives of present work were to 

1. Predict the occurrence and strength of turbulent mixing in terms of 

meteorological forcing and stratification by investigating the dependence of 

internal waves and turbulence on the slope on the Lake number, which 

compares the stabilizing tendency of stratification to the destabilizing 

tendency of the wind. 

2. Investigate the fate of mixed fluid in a lake by using a tracer to track an 

intrusion generated at the boundary and conducting simultaneous turbulence 

measurements. 

3. Evaluate offshore transport by basin scale seiches by tracking tracer as it 

spreads from the boundary region into the interior  

To address objective 1, three field campaigns with measurements of meteorological 

conditions, internal wave response, and dissipation of turbulent kinetic energy were 

conducted to study generation of turbulence on the sloping boundary of a small lake. To 

evaluate the Lake number conditions under which turbulence will be generated at the slopes, 

histograms of ε/νN2
 were analyzed for all the data and for five different Lake number 

regimes. While the spread of the measurements was restrictively large for determining a 

quantitative relationship between the Lake number and the turbulence intensity, some 

relationships between the Lake number and ε/νN2
 for different Lake number regimes could 
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be observed. In general, the typical value of ε/νN2
 increased as the Lake number decreased 

below 30. A larger jump within the energetic regime was observed when the Lake number 

dropped below 1. Further work to understand the spread of ε/νN2
 in each Lake number 

regime would assist in helping to define a functional relationship between Lake number and 

mixing that could be used by those responsible for lake and reservoir management. 

To address objective 2, a field experiment with measurements of tracer concentrations 

and temperature microstructure was conducted to study the consequences of boundary 

mixing in a small lake. Along with the observations of Inall (2009) this study is one of the 

first direct measurements of such boundary generated intrusions in the field, and it is the first 

to map the intrusion in three dimensions. The observed bottom boundary layer collapsed into 

an intrusion governed by a balance between inertia and buoyancy. The intrusion’s behavior 

matched the propagation characteristics predicted by Lemckert and Imberger (2003) for an 

axisymmetric intrusion generated by a bubble plume. Almost 60% of the mass of dye 

injected moved off the slope and into the pelagic zone. These observations, along with the 

persistent turbid layer at the depth of the intrusion, suggests that intrusion formation may be 

an important mechanism for transporting dissolved substances and affecting lake ecology. 

To address objective 3, a field experiment with measurements of tracer 

concentrations, meteorological conditions, and internal wave response was conducted to 

study boundary-interior exchange in a small lake. Coherence and phase spectra between the 

19°C and 12°C isotherms (located in the upper and lower portions of the metalimnion) and 

between the same isotherms at two thermistor chains suggest the existence of V1H1 and 

V2H1 seiches in the lake. The spreading of the dye cloud in the E-W direction changed 

dramatically once the cloud reached the open portion of the lake with the longest westerly 

fetch, where the dye spread over 200 meters into the interior. The enhanced spreading could 

not be attributed to either advection from the internal wave field (despite the presence of a 

second vertical mode wave) or to residual currents from the internal wave field. The 

observed diffusivity in this portion of the lake based on a strain-free model after the westerly 

wind event was twice the background horizontal diffusivity measured in the sheltered part of 

the lake. Using the internal wave field at the location of the center of mass of the dye cloud, 

the contribution of the strain to the diffusivity was determined to be significant, while the 
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contribution from the vertical shear was estimated to be very small. The gap between the 

observed spreading of the dye and the theoretical spreading due to internal wave shear and 

strain may be due to the horizontal variation in K. As the dye cloud spreads into the interior, 

K increases, accelerating the spreading process.   

The three key findings from these experiments are 

1. While the Lake number was not derived to estimate mixing, there is 

potential for relating the Lake number to turbulence on the slope of a lake. 

2. The mass transport offshore from intrusions may be an important 

mechanism for transporting dissolved substances and affecting lake 

ecology.  

3. The horizontal variation in internal wave shear and strain can increase the 

lateral dispersion between the boundary and the interior; the strain can 

spread the mixed fluid far enough from the boundary that the magnitude of 

shear induced dispersion is significant when compared to other dispersion 

mechanisms. 

These findings contribute to our better understanding of the pathway from energy input from 

the wind to offshore transport. 

 

2. Future Work 

 

 Further research can be divided into three categories related to the objectives. For the 

first objective, a better parameterization of the internal wave energy should be developed so 

that the pathway between wind and slope turbulence is better defined. Displacement of a 

single isotherm is not a useful parameter as different modes of waves will create oscillations 

in different isotherms. As the obvious next step is constructing an energy budget relating the 

wind energy input to the energy in the internal wave field to the energy dissipated on the 

slope, a single isotherm is useless. Also, the three thermistor chains provide spatial 

information regarding the internal wave field; this information could be better integrated to 

determine if spatial heterogeneity may play a role in turbulence prediction on the slope. 
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An important element of the first objective is evaluating the universality of the results 

between lakes. Aquadopp data collected in summer 2009 at West Okoboji Lake, a much 

larger and deeper lake, can be evaluated to see if the Lake number and turbulence intensity 

are related in the same manner as at Ada Hayden Lake. A key part of this question is the role 

of the slope angle in determining if a bottom boundary layer will form. The role of the lag 

between the wind event and the turbulence has also not been fully investigated; adjusting the 

lag might reduce the spread of the measurements. Whether the lag is different between the 

lakes of different sizes and strong pulse-like events and longer more steady events should 

also be addressed. From the data presented here, there seems to be some indication that the 

time integrated wind energy input might be a more relevant forcing parameter than the 

instantaneous wind input as parameterized by the Lake number; this would explain the 

similar turbulence levels measured during the strong pulses and the long steady events. A 

comparison of this behavior in the two lakes should also be done. Finally, the alternative 

methods of calculating the dissipation from the Aquadopp data should be re-visited and 

evaluated to determine if lower values of the turbulence intensity can be determined, thus 

covering the entire range of turbulence intensity typically found in lakes.  

For the second objective, successful tracking of more than one intrusion that was 

generated under different conditions would also aid in extrapolating results to other lakes. A 

particular point of interest is if inertia-buoyancy balances are always the driving force behind 

intrusion propagation or, if under some conditions, intrusions form and propagate under a 

viscous-buoyancy balance in the field. Another unanswered question is whether intrusions 

will always form when a boundary layer is created from mixing on the slope or if in some 

cases the boundary layer simply restratifies before becoming unstable enough to generate an 

intrusion. 

For the third objective, a series of tracer studies that focus on the horizontal variation 

in internal wave strain and shear would help confirm the theoretical variability in lateral 

dispersion due to internal waves, especially if the tracer release is combined with full water 

column velocity measurements with an acoustic Doppler current profiler. If dye were to be 

injected at several positions between the lake boundary and the lake interior, the variation in 

horizontal spreading could be evaluated. Ideally the dye would be injected in calm 
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conditions, mapped some hours later to estimate the background horizontal diffusivity, and 

then mapped again after a wind event generated internal waves. There do not appear to be 

any field measurements that confirm that the Young et al. (1982) estimate of shear dispersion 

due to oscillating vertical shear can explain horizontal mixing of tracer, so these dye studies 

help in determining if this process could be important in certain regions of a lake. 
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