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ABSTRACT 

 

 In 2014, the global pesticide industry’s projected worth is $52 billion and by 2020, the 

developing world will make up one-third of the world’s chemical production and consumption.  

Pesticides can have unintended negative consequences for human health and the environment, 

especially in the developing world where regulations are loose or nonexistent.  One country with 

unrestricted use of pesticides is Panamá, especially in Santa Rosa de Cucunatí.  In this 

indigenous village, small-scale farmers and ranchers spray paraquat, glyphosate, picloram, and 

2,4-D at higher elevations than the spring water source of a gravity-fed water system, the river, 

and the village.  The objective of this study was to estimate the concentration of these pesticides 

in the water system and the river and to perform a human health and ecological risk assessment. 

Pesticide fate and transport models in the graphical user interface EXAMS-PRZMS 

Exposure Simulation Shell (EXPRESS), which was developed by the United States 

Environmental Protection Agency, were used to predict concentrations of the four mentioned 

pesticides in drinking water and the river using chemical properties, data from Food and 

Agriculture Organization and Smithsonian Tropical Research Institute, and the author’s 

experience as a Peace Corps Volunteer.  The results from Tier I model FQPA Index Reservoir 

Screening Tool (FIRST) were used to compare immediate and delayed rain events, noting 

minimal difference.  The Tier II PRZM-EXAMS shell provided estimated drinking water 

concentration (EDWC) profiles. The paraquat profile was much lower than picloram, glyphosate, 

and 2,4-D, which had almost identical profiles with peak concentrations around 12 ppm and the 

average annual concentration 100 ppb.   
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Average Daily Dose (ADD) via drinking water was calculated for men, women, and 

children using model results and compared to the oral reference dose (RfD). ADDs only 

exceeded the RfD with maximum peak EDWCs, implying low risk.  However, RfD was used to 

calculate a breakpoint concentration, the concentration at which each pesticide presents a risk to 

the consumer.  This was then compared to the maximum peak (highest, i.e. worst-case scenario) 

and annual (lowest, i.e. best-case scenario) EDWC profiles.  In the best-case scenario, glyphosate 

and picloram did not pose a threat, paraquat posed a moderate threat and 2,4-D posed a high 

threat, with the concentration exceeding the breakpoint for 90 percent of the years.  With respect 

to the worst-case scenario, all four chemicals posed high threats to the consumer.  Individual 

exposure via consumption of fish from the river was calculated using a calculated 

bioconcentration (BCF) factor and calculated breakpoint concentrations.  For the best case 

scenario, picloram presented a low risk and 2,4-D presented a high risk but for the worst case, 

both of these chemicals presented a very high risk.  An additive exposure of these two human 

health pathways found that for the best case scenario, exposure from most of the four chemicals 

did not approach the RfD. However, for the worst-case scenario the exposures were significantly 

higher than the oral RfD—therefore, between the lowest and the highest concentrations, the 

general population is at risk. 

For the ecological risk assessment, the 96-hour peak profile was compared to the 96-hour 

lethal dose (LD50); glyphosate posed a high risk to fathead minnows and low risk to bluegills 

and 2,4-D presented a high risk to fathead minnows, low risk to channel catfish, and very high 

risk to bluegills.  A more general risk assessment compared maximum peak and annual 

concentrations to the US EPA’s aquatic life benchmarks.  Glyphosate presented no threat and 

2,4-D only presented a threat to plants.  For picloram, fish were at very high risk at the chronic 
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level and low risk at the acute level, and plants were at moderate risk.  Paraquat presented the 

most significant threat to aquatic life, exceeding benchmarks for all plants and invertebrates at 

the chronic level 100 percent of the time. It presented no threat to fish in the best-case scenario, 

but a high risk for fish at the chronic level in the worst case scenario, as well as very high risk for 

all invertebrates and plants. Improvements in application and watershed protection as part of a 

multi-disciplinary approach are proposed in place of technological mitigation strategies. 

Recommendations for future studies include the development of a developing-world context 

model and experimental studies in the developing world to compare to model results, where 

possible. 
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CHAPTER 1: INTRODUCTION 

 

Worldwide, pesticides have helped achieve higher food productions, increased food 

security by reducing vulnerability of crops to plagues and pathogens, and lower morbidity and 

mortality rates for certain vector-borne diseases such as malaria.  However, pesticides can have 

many adverse environmental impacts: persistence in soil can make once-rich soil unusable for 

farming, bioaccumulation can wipe out living creatures and sources of food, and runoff and 

groundwater infiltration can contaminate water, causing nutrient pollution (US EPA, 2005a).  

Additionally, pesticides have potential for various unintended negative consequences to human 

health ranging from respiratory issues, impairment to the central nervous system, developmental 

issues in babies and children, to types of cancer such as lymphoma (Bus & Hammond, 2007).  

Many of these unintended negative consequences are not yet fully understood. 

In 2007, five billion pounds of pesticides were sprayed worldwide (US EPA, 2013) and 

in 2014 world demand is expected to reach $52 billion (The Freedonia Group, Inc., 2010).  In 

recent decades, the availability of pesticides has increased in developing countries, to the far-out 

reaches of the countryside where ―subsistence‖ agriculture is still the lifestyle. Previously it was 

assumed that the poorest of the poor could not afford pesticides, but they are especially cheap in 

countries where regulations are loose. Sometimes they are given free of charge by government 

agencies (Mokhele, 2011; J. Girard, personal communication, April 11, 2011; Ruth Xochihua, 

personal communication, November 19, 2013) or are sold by agriculture supply stores that they 

are ―pure medicine‖ for the crops, as it happens in Panamá (V. Quintero, personal 

communication, March 13, 2012).  At times, pesticides that are banned or restricted for use in 
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developed countries are brought to developing countries for crops that are then shipped back to 

the developed world for sale (Wright, 1986) or return by atmospheric transport (Mihelcic, 

1999)—this is referred to as ―the circle of poison‖ (Wright, 1986). 

Since 2000, pesticide sales in North America have only increased slightly and sales in 

Europe have increased by nearly $6 billion (Figure 1).  Sales in the Middle East and Africa have 

remained steady probably due to the fact that the majority of farmers in sub-Saharan Africa 

remain too poor to use pesticides on a regular basis.  Pesticide sales in Asia have also increased 

substantially as they are highly dependent on pesticide use, which remains a significant public 

health issue.  For example, in Sri Lanka in the 1990s, death by pesticide poisonings exceeded 

death by infectious diseases (Eddleston et al., 2002).  Figure 1 shows that in the last five years, 

Latin America has started to approach North America in pesticide sales.  This is alarming 

because pesticide use and sales in Latin America remain generally unregulated. 

 
(Reproduced from Science, 2013) 

 

Figure 1: Global Pesticide Sales by Region 
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By 2020, the developing world is projected to be responsible for one-third of the world’s 

chemical production and consumption (including pesticides) (Rain, 2005).  In the developing 

world, adverse environmental and health effects are typically greater due to laws that are non-

existent or not enforced.  Agricultural supply stores sell chemicals without restriction. Workers, 

who utilize agriculture chemicals, are typically untrained in chemical safety, do not wear 

personal protective equipment or know how to properly use or store chemicals, and sometimes 

are illiterate and unable to read the toxicity warning labels.  In extreme cases, pesticides are used 

in suicide attempts.   

Lack of regulation or sound chemical management for pesticides in developing countries 

is a critical issue that may hinder the sustainable development of those countries.  Pesticide use 

can aid to achieve some of the Millennium Development Goals (MDGs), established in 2000 for 

international development and agreed upon by the United Nations (UN), such as eradicating 

extreme poverty and hunger and combating infectious diseases. However, unintended 

consequences of misuse of pesticides relate to all MDGs and have the potential to hinder their 

achievement (Table 1).  

Table 1: How Pesticide Safety Pertains to the Millennium Development Goals 
 

1 
Eradicate Extreme Poverty 

and Hunger 

Misuse by workers can impede their ability to work until death and 

overuse can hinder productivity of persons in poverty's farms. 

2 
Achieve Universal  

Primary Education 

Chemical exposure can have serious, irreversible adverse effects on 

mental development, can lower aptitude and increase behavioral deficits. 

3 
Promote Gender Equality 

and Empower Women 
Biologically, women absorb chemicals more in the body. Representing 

60% of the agricultural workforce, women are more likely to be exposed. 

4 Reduce Child Mortality 
Children are most vulnerable to the adverse effects of misuse of 

pesticides, sometimes resulting in death. 

5 Improve Maternal Health 
Pesticides can cause reproductive issues and impede a mother's ability to 

fight off disease and increases maternal mortality. 

6 
Combat HIV/AIDS, 

Malaria, and other diseases 

Pesticides may help to protect against vector-borne diseases, but if used 

incorrectly can do more harm than good and can cause disease. 

7 
Ensure Environmental 

Sustainability 

Chemicals are already present in all ecosystems and will only increase 

with time, causing harm to plants, animals, and humans. 

8 
Global Partnership for 

Development 
Existing and emerging sound chemical management policy is a global 

health concern in development platform. 

(Adapted from Rain, 2005) 
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The World Health Organization’s (WHO) International Program on Chemical Safety 

(IPCS), founded in 1980, rates hazardous pesticides as one of the top ten chemical or groups of 

chemicals of major public health concern worldwide (WHO, 2010).  Around the same time as 

the founding of the IPCS, the Food and Agriculture Organization (FAO) of the UN released the 

International Code of Conduct on the Distribution and Use of Pesticides, intended to reduce 

negative impacts associated with pesticide use, specifically in developing countries. The 

proclamation is considered ―the globally accepted standard for pesticide management‖ 

(Wesseling et al., 2005) and includes standards for national governments to enforce regarding 

registration of pesticides.  However, this document generally serves only as recommendation, as 

registration of pesticides and poisonings in Central America do not comply with the code 

(Wesseling et al., 2005).  Furthermore, most countries in Central America do not have their own 

legislation pertaining to pesticides but rather refer to the international legislation.  In Central 

America, 98% of all pesticide poisonings go unreported (Science, 2013).  El Salvador, 

Nicaragua, and Honduras have initiated efforts to restrict certain chemicals at the legislation 

level, while many countries lag behind (Wesseling et al., 2005).   

One country with seemingly nonexistent regulations in relation to pesticide safety is 

Panamá.  The Panamanian government only has legislation pertaining to the exportation and 

commercialization of agricultural products, establishing upper limits on resides of certain 

pesticides used.  Panamá has a population of 3.8 million, approximately 75% of which live in 

urban areas (World Bank, 2014).  Although Panamá has the highest GDP in Latin America and 

currently has ongoing high-profile projects such as the expansion of the Panamá Canal and an 

underground metro, it is home to the second worst wealth distribution of the region (CIA, 2014) 

and still has 27% of the population living below the poverty line (World Bank, 2014).  One 
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group especially vulnerable to wealth inequality is the Emberá indigenous peoples (Table 2), 

which are the local peoples at the study site.  One of the top environmental issues is water 

contamination by agricultural runoff, which kills marine life and contaminates drinking water 

with inadequate or often no treatment system at all (CIA, 2014).  The WHO Guidelines for 

Drinking Water (2004) recently emphasized the importance of protecting drinking water in the 

developing world from chemicals, especially pesticides from agricultural runoff. 

Table 2: Development Inequality between the Emberá and the National Averages 

(Ministerio de Salud, 2013) 

 

 
Emberá Nationwide 

Poverty 73.7% 25.8% 

Access to Improved Water 28% 92.9% 

Access to Improved Sanitation 58% 94.5% 

Illiteracy 22.9% 5.5% 

Primary School Dropout 14% 1.7% 

Population Density (person/km
2
) 2.3 45.9 

Life Expectancy (years) 66-69 76-79 

 

The most rural and most impoverished workers remain the least regulated and most 

vulnerable to adverse effects of pesticide use.  In the Darién province of Panamá, there is no 

industrial agriculture and the majority of the people dedicate themselves to subsistence 

agriculture, cattle farming, or fishing. In the rural areas, farmers and their families are exposed 

because pesticides are sold without restrictions and with no safety training on proper use of 

agricultural chemicals.  Herbicides, such as paraquat, glyphosate, picloram, and 2,4-D, are sold 

and used in an area that was once entirely primary rainforest.  Although occupational exposure is 

significant, exposure via drinking water may impact all community members who utilize 

community managed water systems.  The primary sources of drinking water in rural Panamá are 

gravity-fed water systems or nearby rivers, which are typically surrounded by agricultural areas, 
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so the rural populations are vulnerable to ingestion of water contaminated by pesticides, 

especially in the rainy season when pesticides are used the most.    

This study is significant because no water quality studies have been performed for the 

Darién province of Panamá, and studies on fate and transport of pesticides in water are very few 

in the developing world context (Batiha et al., 2008; Sangchan et al., 2012).  This is the first 

study that investigates the effect of pesticide use on gravity-fed water systems in the developing 

world.  A study such as this is also significant because local agencies such as the Ministry of 

Agriculture (Ministerio de Desarrollo Agropecuario, MIDA) and Ministry of Health (Ministerio 

de Salud, MINSA) have no plans to perform these types of studies, nor do they disseminate 

information about the topic (V. Quintero, personal communication, March 13, 2012). 

This research explores the impact of the use of pesticides in small-scale agriculture on 

water quality of a gravity-fed water system and its human health and ecological implications in 

an indigenous village in rural Panamá.  Chapter 2 explains the location of the study and the 

motivations, objectives, and hypotheses of this study.  Chemicals of interest and pesticide-related 

studies executed in the developing world are also discussed. After explaining the details of the 

study site and an overview of existing models used in the developed world, theory, model 

selection of EXAMS-PRZM Exposure Simulation Shell (EXPRESS), major assumptions and 

data inputs as well as the risk assessment methods are detailed in Chapter 3.  In Chapter 4, the 

results from EXPRESS are presented for the four chemicals of interest: paraquat, glyphosate, 

picloram, and 2,4-D and the human health and ecological risk assessment are presented before a 

brief explanation of limitations and public health and policy implications.  Chapter 5 provides 

final conclusions of the study and recommendations for future studies.   
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CHAPTER 2: STUDY BACKGROUND 

 

2.1 Study Site 

In the Darién province, and most other parts of Panamá, the majority of the rural 

population dedicate themselves to agriculture. The most produced crops are rice and corn, 

followed by several root plants including cassava and yams, and occasionally sugar cane, coffee, 

cacao, and other fruits. Vegetables and colder-weather crops (potatoes, carrots, onions, etc.) are 

mostly grown in the Chiriquí province in the mountains, where industrial agriculture is 

mainstream (this will not be discussed in this study). Cattle-farming is also widely practiced, 

especially in the Darién, where large areas of rainforest are deforested and chemicals are sprayed 

for monoculture grass. 

In what is now considered ―ancient times‖ by Emberá indigenous people, some integrated 

pest management (IPM) methods were utilized to combat plagues from destroying crops (G. 

Bacorizo, personal communication, November 17, 2011). However, this has changed over recent 

years, especially in the last 40 years when previously protected areas of the primary rainforests 

of the Darien province were opened up to whoever could mark and clear the land.  People from 

all corners of the country came for the free land, much of which was deforested for ranching.  

Shortly thereafter, pesticides were introduced to the area and became widely available without 

restriction (J. Barrigon, personal communication, June 20, 2012).  

Farming and ranching activities are typically held in higher-elevation areas, and 

populations reside in lower elevation areas. This is especially true with the Emberá indigenous 

peoples, who live down by rivers (often in flood plains). Additionally, most of the water systems 
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in Panamá are gravity-fed, which are also situated at higher elevations but typically at lower 

elevations than the farm fields. Therefore, if farms that use pesticides surround a gravity-fed 

water system at its source, there is significant potential for contamination through runoff.  In the 

Darién province, there is a very distinct difference between the rainy and dry seasons—and 

agricultural activities only take place in the rainy season because the dry season is too dry for 

crop production.  This means that there is potential contamination from runoff as far as all the 

way down to the village and the river. 

The particular site of interest is Santa Rosa de Cucunatí in the Darién province (Figure 2).   

 
(Adapted from Centers for Disease Control and Prevention, 2013; Public Domain) 

 

Figure 2: Geographic Location of Santa Rosa de Cucunatí, Darién, Panamá 

Santa Rosa de Cucunatí is a small Emberá indigenous community where the author lived and 

worked as a Peace Corps Volunteer for two years as part of the University of South Florida 
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Master’s International Program.  The gravity-fed water system (aqueduct) of interest is a spring 

source with a small forested area but mostly surrounded by cattle ranching and small-scale 

agriculture activities.  In general, the pesticides paraquat and glyphosate are used as herbicides in 

the smaller-scale agriculture of crops for consumption and in the lawns around the huts of the 

village.  Picloram and 2,4-D are the two main ingredients in ―Bulgrass‖, a herbicide sold in 

Panamá that is used extensively in pastures for livestock.     

2.2 Motivations, Objectives, and Hypotheses  

 The motivation of this study is to reduce acute and chronic illnesses in men, women, and 

children caused by the unrestricted use of pesticides paraquat, glyphosate, picloram, and 2,4-D in 

the Darién province of Panamá and potentially in other developing world contexts.   

The objectives of this study are to: 

1. Estimate the concentrations of paraquat, glyphosate, picloram, 2,4-D in the gravity-fed 

water system and the river in the context of rural Panamá using the EXPRESS model 

2. Explore the human health and ecological implications of the results of the model using 

standard risk assessment methods 

3. Provide recommendations to reduce risk and therefore minimize negative human health 

and ecological impacts and for future studies 

The hypotheses of this study are: 

1. The pesticides in the gravity-fed water system of the study location are above the 

threshold concentrations for acceptable levels of drinking water. 

2. The application of pesticides immediately before a rain event raises the concentration in 

the gravity-fed water system and the river more than if the rain event is delayed. 
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3. The concentrations of the pesticides in the river have the potential to kill off aquatic life 

in the river. 

4. Due to the concentrations of pesticides in the river, eating fish and shrimp from the river 

present a risk to the villagers. 

5. Alternative chemicals and alternative practices may help mitigate the adverse impacts of 

pesticide use on these sources of water. 

2.3 Chemicals of Interest 

 The four chemicals of interest are herbicides—chemicals used to get rid of unwanted 

weeds before planting a crop or a monoculture grass.  According to WHO, ―the main trouble 

pesticides with regard to acute poisoning globally have been organochlorines (OC), 

organophosphates (OP), carbamates and paraquat‖ (Wesseling et al., 2005), and all four 

chemicals of interest fall into one of these categories. All chemicals of interest are on Pesticide 

Action Network International’s List of Highly Hazardous Pesticides (Pesticide Action Network).  

2.3.1 Paraquat 

1,1'-Dimethyl-4,4'-bipyridinium dichloride (paraquat), C12H14Cl2N2, is one of the most 

notorious pesticides in the world.  Its toxicity has been studied for nearly 50 years (Clark et al., 

1966): its ingestion can have adverse effects on the gastrointestinal tract, lungs, kidney, liver, 

heart, and brain (US EPA, 1997).  Consequently, it is one of the top chemicals of choice for self-

poisoning (suicides), a problem so severe that some developing countries have actually banned 

(Trinidad) or restricted sales (Samoa) of paraquat (Eddleston et al., 2002).  More chronic health 

problems affect the central nervous system (CNS) and the brain, including Parkinson’s disease, 

gliomas, and neurobehavioral issues (McCormack et al., 2002; Lee et al., 2005; Brooks et al., 

1998).  A typical paraquat container is shown in Figure 3. 
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(Reproduced from fotosimagenes.org, 2013 under the Creative Commons License) 

 

Figure 3: Typical Container of Paraquat in the Developing World 

 

Paraquat has been shown to partition into the organic matter in soil due to its high koc 

value (koc=6,780).  It is resistant to both anaerobic and aerobic microbial degradation and does 

not photodegrade in aqueous solutions (US EPA, 1997).  Therefore, it is a threat to biodiversity 

and surface water, especially via runoff.  It has the seventh highest Environmental Impact 

Quotient (EIQ) out of hundreds of agricultural chemicals. EIQ is a parameter that combines farm 

worker exposure, a consumer component, and ecological toxicity, which include both 

groundwater and surface water factors.  Paraquat scored very high in applicator effects and 

aquatic and ecological toxicity (Kovach et al., 1992).  Additionally, several studies have 

documented paraquat’s increasing resistance (Bishop et al., 1987; Fuerst & Vaught, 1990). 



12 
 

2.3.2 Glyphosate 

N-(phosphonomethyl)glycine (glyphosate), C3H8NO5P, is the world’s highest selling 

agrochemical.  Patented by the agricultural giant Monsanto, glyphosate is the main ingredient in 

Roundup, a common weed killer both in the developed and developing world.  It is responsible 

for 10% of Monsanto’s annual revenue, even after their patent expired in 2009.  With genetically 

modified seeds that are glyphosate-tolerant, it makes up about half of Monsanto’s $14.8 billion 

net sales (Monsanto, 2013).  Glyphosate is the only pesticide in this study that is not restricted by 

the US EPA and available for purchase and use in the United States.  According to studies, 

glyphosate has relatively low acute dermal and oral toxicity.  The most significant acute toxicity 

concerns are eye and skin irritation from splashes (US EPA, 1993).  Although several long-term 

health studies conclude that glyphosate is non-carcinogenic, it is considered an endocrine-

disrupting (ED) compound (McKinlay et al., 2007). 

In 2012, the US EPA raised the acceptable amount of residue of glyphosate on food crops 

(RT USA, 2013).  Glyphosate, like most agrochemicals, has documented resistance, requiring 

more and more each season to accomplish the same goal; eventually killing off all good bacteria 

and depleting the nutrients in the soil and making it extremely difficult to plant new crops (Aktar 

et al., 2009).  Glyphosate has the lowest Henry’s law constant and koc value of all four chemicals 

of interest, which means that it tends to partition to the aqueous phase rather than gas phase or 

organic phase.  It presents a threat to surface water because it is not readily broken down by 

sunlight (photolysis) or hydrolysis.  Because of its low koc and preference for the aqueous phase, 

it is a threat to groundwater via leaching.  Additionally, it is toxic to many aquatic species and 

can cause fish kills (Kovach et al., 1992).  
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2.3.3 Picloram 

4-Amino-3,5,6-trichloro-2-pyridinecarboxylic acid (picloram), C6H3Cl3N2O2, is an 

ingredient in Agent Orange, a cocktail of herbicides sprayed during the Vietnam War from the 

years 1962 to 1971 over trees and dense foliage to destroy enemy cover (Institute of Medicine, 

2012).  As a result, millions of local Vietnamese and thousands of US soldiers were exposed, 

resulting in death, cancer, and developmental issues spanning multiple generations (Institute of 

Medicine, 2012).  As a standalone pesticide, picloram can have acute toxicity via inhalation and 

the eyes.  On a chronic level, it can be toxic to the liver, kidneys, and blood.  It has only been 

classified carcinogenic by the US EPA due to an additive and presents low cancer risk to 

workers, which are required by law in the United States to wear chemical resistant gloves (US 

EPA, 1995).  In other studies, it is classified as carcinogenic in rats to the adrenal and pituitary 

glands as well as the reproductive organs (Reuber, 1981).  It is also classified as an endocrine 

disrupting compound (McKinlay et al., 2007). 

It remains a restricted use pesticide by the US EPA as the main environmental threats are 

to surface water and groundwater.  It is highly persistent, extremely resistant to hydrolysis and 

microbial degradation with very high half-lives: some experimental values range from 167 to 

513 days (US EPA, 1995).  It is relatively mobile due to low koc value and has been detected in 

groundwater in at least 10 states and has been found in 420 out of 744 surface water samples by 

the US EPA Office of Drinking Water (US EPA, 1995).  It also has potential to kill aquatic 

species, with moderate toxicity to freshwater fish (US EPA, 1995). 

2.3.4 2,4-D 

(2,4-dichlorophenoxy)acetic acid, C8H6Cl2O3, commonly referred to as 2,4-D, is one of 

the two main ingredients in Agent Orange.  In 2005, approximately 46 million pounds were 
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sprayed in the United States alone and although it is classified as ―restricted‖ by the US EPA, it 

is available for use on home lawns (US EPA, 2005).  It sits near the top of many of the most 

hazardous pesticides lists and studies (Swanson et al., 1997) and has been under medical review 

for decades, but with the conclusions of no cause to cancer or non-Hodgkins lymphoma (Bus and 

Hammond, 2007).  Instead, it is classified as having low acute toxicity but is considered an 

endocrine-disrupting chemical with longer-term effects on reproductive organs, the eyes, kidney, 

adrenal, and thyroid glands (US EPA, 2005). 

2,4-D is a slightly controversial chemical in the United States: recently the National 

Resources Defense Council (NRDC) has unsuccessfully petitioned to the US EPA to reconsider 

the chemical’s toxicity (NRDC, 2012).  With regards to environmental fate, 2,4-D degrades 

relatively quickly in soil, and in aerobic aquatic environments but is highly persistent in 

anaerobic terrestrial and aquatic environments (US EPA, 2005b).  Studies by the United States 

Geological Survey (USGS) determined 2,4-D to be the top detected pesticide in surface water 

nationwide, present in 12 out of 13 streams (Aktar et al., 2009).  Other studies found 2,4-D in 19 

out of 20 river basins, and has been detected in the air up to 3.9 ng/m
3
 (Aktar et al., 2009). 

2.4 Developing World Studies 

2.4.1 Use and Understanding 

 Most literature about pesticides in the developing world are studies of use and 

availability, finding that they are widely available, widely used, and with little to no education on 

their dangers and restrictions of sale.  Developing countries have increased use of synthetic 

chemical pesticides in recent decades due largely to their transitions from agricultural to 

industrial economies, but also to ―eradicate insect-borne and endemic diseases‖ (such as 

malaria), and to increase crop yield and protection of one-product farming (Ecobichon, 2001).  
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Older, more acutely toxic and environmentally persistent pesticides are sold in developing 

countries than in developed nations (where they are banned) because they come non-patented, 

are less expensive, and sometimes manufactured in country or regionally. 

Although small-scale use from subsistence farmers and cattle ranchers remains small in 

comparison to ―agricultural giants‖, their use should not be undermined: the World Health 

Organization estimates 3 million ―acute, severe poisonings‖ with 220,000 deaths and perhaps 

more unreported cases (Ecobichon, 2001) and chronic effects remain unmonitored and 

undocumented.  Although the majority of studies reporting self-poisoning come from Asia, a 

study detailed paraquat self-poisonings of Mexican farm workers (Tinoco et al., 1993).  An 

epidemiological study in Panamá from February to July 1992 from Hospital Santo Tomas, the 

largest public hospital in Panamá City, documents 343 pesticide intoxications, of which only 26 

were adults, with 10 total deaths, 6 of which were attributed to paraquat (Acosta de González et 

al., 1993).   

 A survey of farmers in a village in Venezuela found statistically significant difference in 

pesticide-related health problems of farmers versus non-farmers and found that farmers did not 

use personal protective equipment and commonly mixed pesticides (Rojas et al., 1999).  In a 

survey of vegetable farmers in northern rural Tanzania, most report acute side effects of pesticide 

use yet are still increasing their use annually (Ngowi et al., 2007).  In the Amazon basin of 

Ecuador, virtually all 111 farmers surveyed (99.1%) used pesticides (the most common being 

paraquat, organophosphates, and glyphosate), most (89.1%) knowing that they are dangerous.  

More than half also reported spraying in the house to eliminate insects and only 11.7% reported 

using personal protective equipment (Hurtig et al., 2003).  The vast majority of studies show that 

at the most, sprayers wear long pants and rubber boots (which they typically wear to work in the 
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farm anyways), and the majority make no attempt to wear face or head coverings and gloves are 

not used (Mokhele, 2011), sometimes with extensive knowledge of the dangers of pesticides 

(Ngowi et al., 2007).  

 In a study of pesticide use in Egypt, 86% reported using these chemicals in the home, 

which is not the intended use of these chemicals and can be very persistent within the household 

(Ibitayo, 2006).  Those from the study in Venezuela started farming as young as 7 years old, as 

children working in the family farms from an early age are very common in the developing 

world.  In Trinidad, children are allowed to purchase pesticides and only 2% of pesticides used 

are on the approved national list (Pereira et al., 2007). 

The top factors influencing occupational exposures mostly include poor safety practices 

attributed to little to no safety training and occupational regulations. The vast majority of 

developing country pesticide users lack secondary education and any safety training regarding its 

use (Mokhele, 2011).  One study in Brazil found that even though the safety information on the 

containers was in the local language and included pictograms for illiterate users to understand the 

dangers of pesticides and proper safety procedures (Figure 4), safety measures were not observed 

(Waichman et al., 2007).  

 
(Adapted from Waichman et al., 2007) 

 

Figure 4: Common Safety Pictograms on Pesticide Containers  

Mixing of pesticides is common in rural Tanzania and other developing countries and no 

information is disseminated on the consequences: mixing insecticides can almost guarantee 
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resistance (Metcalf, 1980).  With regards to environmental persistence and toxicity, the majority 

of those surveyed in a study in Egypt revealed that they were unsure of whether or not pesticides 

left a residue on plants or contaminated nearby water sources (Ibitayo, 2006). 

In rural Panamá, many subsistence farmers are illiterate.  Often, the poorest of the poor 

work as day-wage laborers that are paid very little for an entire day’s manual labor, which most 

often consists of spraying these chemicals in someone else’s farm.  It does not appear that most 

users read the labels or looked at the pictograms as personal protective equipment was not used.  

Ministry of Agriculture workers and those who sell the chemicals give no advice about pesticide 

safety.  Workers eat and drink during spraying sessions and mix pesticides frequently.  Sprayers 

are not washed or rinsed and containers are burned, littered, or used for other purposes.  

Chemicals and the backpack sprayers used are stored in the house often near food.  The general 

population seems to understand that pesticide runoff can harm the river as fish kills have 

occurred at the study site but do not concern themselves with the runoff that is most likely 

entering the spring that feeds the gravity-fed water system (i.e. drinking water) for the 

community.  Several developmental defects have been seen in children under 5 in the area, 

usually manifesting itself as a disfigured hand but the effect on children’s motor skills was not 

obvious to the author as general literacy rates are low among both children and adults. 

2.4.2 Occupational Exposure 

The three main pathways of human exposure are inhalation, ingestion, and skin contact.  

Direct ingestion is rare except in the case of intentional pesticide poisoning, so the main pathway 

of ingestion is by water contaminated by pesticides, which is the main focus of this study.  

Inhalations from spraying and air drift are also noted pathways.  A study of smallholder farmers 

in the Philippines tested for their exposure by putting water in their knapsack sprayers and water-
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sensitive papers were placed in a test field and on the subjects.  Their legs were by far the most 

exposed, 31 times higher than on their arms due to the nature of the equipment and crops, as well 

as the fact that farmers walk through sprayed rows of crops out of necessity (Snelder et al., 

2008).  Although similar findings occurred in the studies in greenhouses in Italy and Finland 

(Capri et al., 1999; Tuomainen et al., 2002),  a study of greenhouse workers in Argentina found 

that the torso absorbed most of the chemical from spray drift (Flores et al., 2011).   

A study created ―the weight method‖ to calculate airborne drift and deposition potential 

from backpack sprayers based on a ―water mass balance measured in high absorbent papers 

(HAP) under low evaporative conditions and unsaturated atmosphere‖ in Colombia. This method 

requires HAP and a drying oven to calculate exposure per unit area. This is calculated for 

different parts of the body under different weather conditions and an estimate for soil deposition 

is calculated (Garcia-Santos et al., 2011).  Other experimental studies calculate personal dermal 

exposure (PDE) using tracers, such as fluorescent tracers or uranine, one comparing exposure as 

a function of the nozzle on the backpack sprayer for potato farmers in Colombia (Lesmes-Fabian 

et al., 2012).  A more sophisticated study utilizing personalized exposure dynamics through 

spatial drift and half-life equations with GPS points estimates a personal exposure level of small-

scale agricultural workers in developing countries (Leyk et al., 2009).  A study among Malaysian 

rice paddy farmers using paraquat and 2,4-D found that wind speed had the largest effect on 

inhalation and PDE was extremely negatively correlated with the amount of personal protective 

equipment worn (Baharuddin et al., 2011).   

The last noteworthy pathway is mother to baby.  Although several survey studies show 

that it is mostly men who are spraying pesticides (e.g., Mokhele 2011; Rojas et al., 1999; Ngowi 

et al., 2007), a study of Yemeni women living farming communities show that the vast majority 
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have sprayed banned pesticides and without personal protective equipment and some have done 

so while pregnant (El-Zaemey et al., 2013).  Additionally, women are typically washing the 

clothes with pesticide residues on them and caring for the children.  A study potentially linking 

parental exposures to pesticides and childhood Leukemia in Costa Rica found that fathers 

working with picloram, benomyl, and paraquat had a positive correlation with risk of childhood 

Leukemia, though more studies are needed to link the two (Monge et al., 2007). 

2.4.3 Modeling and Experimental Studies 

Few studies were identified that assess the environmental fate and transport of pesticide 

use in the developing countries (as classified by the World Bank).  A study in Thailand tested the 

validity of a common model, Agricultural Nonpoint Source (AGNPS), in watershed in a tropical 

environment.  The study used two years of rainfall data and extensive mapping in Geographic 

Information Systems (GIS) to determine that the model was an accurate predictor of nutrient 

yields (total nitrogen and total phosphorus) and predicted runoff but over-predicted peak flow.  

However, this study did not choose to model pesticide environmental fate and transport or 

acknowledge any toxicity implications (Babel et al., 2004).  A similar study in Rwanda sampled 

11 sites for one year along the Akagera River (which feeds into Africa’s largest lake, Lake 

Victoria) to model nonpoint source pollution and compare to land use to identify nutrient 

pollutants mostly in the form of nitrates, phosphates, ammonium (Wali et al., 2011).  Batiha et al. 

(2009) simulated fate and transport of mancozeb, spinosad, and chlorosulfuron (pesticides) in 

Malaysia using the modified Equilibrium Criterion (EQC) model to include vegetation 

compartment in addition to model air, soil, sediment, and water. This study found that the 

degradation in vegetation is significant and should be incorporated into the model, but does not 

mention toxicity or risk assessment. 
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Another study in Thailand aims to understand pesticide dynamics in a river in a tropical 

watershed by sampling once per hour and analyzing with gas chromatography, finding that many 

pesticides, especially those with low koc values (logkoc<3), have the ability to be transported 

during runoff peaks.  Therefore, for an accurate profile of the fate and transport, ―high temporal 

resolution‖ (sampling over short time periods) is necessary (Sangchan et al., 2012).  Some 

studies in Argentina (Peruzzo et al., 2008) and Hong Kong (Tsui et al., 2007) utilized high-

performance liquid chromatography (HPLC) to measure for glyphosate in the environment.  

Peruzzo et al. (2008) found that SoilFug model simulations were good predictions of glyphosate 

concentrations.  Tsui et al. (2007) also used bioassays on river fish, but neither study explored 

risk implications. The previously mentioned study of rural farming in the Philippines (Snelder et 

al., 2008), most of the pesticides studied fall under the margin of exposure (MOE), indicating a 

serious threat to human health and the environment.  Glyphosate does not have a determined 

MOE, which is noteworthy because it was present in high levels.  Humans and aquatic species 

were determined to be at risk. 
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CHAPTER 3: WATER SYSTEM STUDIED AND METHODOLOGY 

 

3.1 Location and Characteristics of Study System 

 The community in this study is Santa Rosa de Cucunatí, a small remote indigenous 

village in the Darién province of Panamá.  The system of interest is the gravity-fed water system, 

a spring source that provides water for 135 villagers for all of their drinking, cooking, washing, 

bathing, and cleaning necessities.  The spring is moderately protected with a constructed spring 

box, connected to a break pressure tank to relieve some of the pressure build-up during the rainy 

season.   

   

Figure 5: Spring Source (left) and Distribution Line (right) of the Water System 
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The distribution line consists of 4‖ PVC pipe that spans approximately 3 kilometers.  The 

distribution line connects to a storage tank that holds approximately 7,500 gallons and with a 

flow rate of 20 gallons per minute (typically overflowing), where the water is then distributed to 

the 33 taps through 1‖ PVC pipe. 

The system has been operational since 1996 with few outages.  Materials were donated 

by the Panamanian Ministry of Health and the people of Santa Rosa constructed the system.  

Throughout the years, the system has been threatened with increasing deforestation due to the 

increasing land use changes from rainforest to cow pasture.  According to the local water 

committee, this has decreased the quantity of water throughout the system’s history.  However, it 

has been noted that climate change can have more of a projected impact on decrease in spring 

recharge than land use change (Fry et al., 2012).  Additionally, water quality may be threatened 

due to increasing use of agrochemicals in both the cow pastures and the small-scale farms, which 

are at a higher elevation than the spring source of the gravity-fed water system.  Therefore, when 

it rains the spring is potentially vulnerable to contamination from pesticide runoff. 

3.2 Modeling Approach 

 Santa Rosa de Cucunatí is located 18 kilometers down a dirt road winding through 

primary rainforest and countless cow pastures to the nearest electricity, telephone signal, or basic 

necessities.  The nearest laboratory to test water is in Panamá City, a one-day trip from Santa 

Rosa.  Laboratories in this location are only able to test for basic water parameters: turbidity, 

fecal coliform, pH, etc.  Santa Rosa’s water has never been tested by the Ministry of Health, as 

technicians are typically overworked and with limited resources.  More sophisticated methods 

such as Gas Chromatography (GC) and various types of assays are simply unavailable.  

Additionally, unlike E Coli and pH testing, there are less resource intensive field testing methods 
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for chemical pollutants.  For these reasons, this study utilizes modeling to achieve its objectives 

and evaluate its hypotheses.  The sources of model input, the methods used and the logic flow of 

the entire study is shown in Figure 6. 

 

Figure 6: Process Schematic of Study Methodology 

3.3 Overview of Existing Models 

 Because non-point source pollution from agricultural runoff is a global issue for the 

environment and human health, several models have been developed over the past several 

decades, including several by the US EPA and the United States Geological Survey (USGS).  

Fate and transport environmental models are typically divided into two categories:  (1) 

watershed-scale, which aims to calculate the effects at a larger scale (an entire watershed) and (2) 
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catchment-scale, which aims to calculate the effects at a smaller scale, the field.  For the 

purposes of this study, only catchment-scale models were considered.  Generally, models 

incorporate or are paired with GIS for watershed-scale studies.  Additionally, GIS data for this 

study site are not available; therefore, models utilizing GIS were not considered. 

The Agricultural Chemical Transport Model (ACTMO), one of the first agricultural 

runoff models, was developed nearly 40 years ago, but was not determined in the literature 

review to being applied to any studies relevant to this research.  The Pesticide Transport and 

Runoff (PTR) and the updated version Agricultural Runoff Management (ARM) models were 

also developed around the same time by the US EPA and are also not cited as being used to carry 

out simulations in published studies similar to the proposed research in this thesis.  Similarly, the 

Water Sediment Chemical (WASCH) model was also developed over 40 years ago: no current 

versions of the model or publication citations were able to be located. 

Watershed Regressions for Pesticides (WARP) are statistical models developed to predict 

concentration statistics for unmonitored streams.  This model was first developed for atrazine 

and has evolved to include prediction maps for many chemicals in a USGS database, but only 

within the United States (Stone et al., 2013).  They are not available for other countries nor can 

they be adapted for such purposes.  The USGS has over 100 water quality models available for 

public use, some of which can simulate solute transport, but none are specifically designed to 

model pesticide fate and transport and the majority use GIS.   

Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) 

was developed by the United States Department of Agriculture (USDA), though it is now 

considered obsolete because the Groundwater Loading Effects of Agricultural Management 

Systems (GLEAMS) model was developed as an update to replace it and is one of the most 
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commonly used pesticide fate models (McCarthy et al., 2007).  It is typically used for field-scale 

studies as it can over-predict in watershed-scale simulations and it predicts ―runoff, percolation, 

and soil and chemical losses of a nutrient or pesticide at the edge of a field and from the root 

zone‖ (Shirmohammadi & Knisel, 1994).  However, since it is a model intended for groundwater 

it was not considered for this study.  The Agricultural Drainage and Pesticide Transport model 

(ADAPT) was developed as a combination of GLEAMS and DRAINMOD, a subsurface 

drainage model and is also intended for groundwater simulations.  The Dynamic Watershed 

Model (DWSM) is a single storm event model which models storm water runoff, soil erosion, 

and has the capability to model non-point source chemical transport in a watershed.  However, 

the watershed is divided into several sub-watersheds with further subdivisions of water channels 

and is used mostly for its hydrologic capabilities rather than its chemical transport capabilities 

(Boorah, 2010).   

Toxic Substances in Surface Waters (TOXSWA), was developed in the Netherlands to 

describe the fate of pesticides entering field ditches to calculate edge-of-field pesticide predicted 

environmental concentrations in surface water.  However, since sedimentation and suspended 

solids are not programmed into the model it is only able to be used for time periods less than one 

month (Adriaanse, 1996).  SHETRAN is a spatially-distributed hydrologic model that was 

developed in the United Kingdom.  It has been used in studies in over 100 cited publications but 

its main concern and capabilities are soil erosion, land use changes, and catchment hydrology 

(SHETRAN, 2013).  Hydrological Simulation Program-Fortran (HSPF) is a Fortran-based model 

that simulates effects from hydrologic changes, is particularly useful in mixed urban and non-

urban locations, but requires extensive input, e.g. hourly rainfall (CWEMF, 2007). 
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SoilFug was developed by the Canadian Centre for Environmental Modeling and 

Chemistry to assess potential degradation, evaporation, and leaching of pesticide to a surface soil 

(CEMC, 1996).  The required inputs are various chemical properties, dosage rates, and various 

soil properties.  Outputs include system fugacity, D values (the time required to kill 90% of the 

microorganisms in the soil), concentrations in soil and basin water, and pesticide losses by 

runoff, degradation, and volatilization.  SoilFug takes into account different transport processes 

(e.g. degradation, runoff) with the assumption of phase equilibrium (Calamari & Zhang, 2002).  

It has been used mainly to calculate the concentration in the runoff water (Guardo et al., 1994, 

Tremolada and Paola, 1996), which is then assumed to be as the same concentration in a 

drainage basin (Calamari & Zhang, 2002).  Calamari and Zhang (2002) recommend using 

SoilFug for developing world contexts due to the fact that most of the inputs are chemical and 

soil properties and not experimentally measured data.  Another model developed by the 

Canadian Centre for Environmental Modeling is ChemCAN, but it comes pre-loaded with 24 

regions of Canada (CEMC, 2003).  Another model with geographic specificity is ChemGL, a 

multi-compartment model developed to simulate chemical fate and transport in the Great Lakes 

(Zhang et al., 2003). 

The US EPA has been involved in environmental fate and transport modeling for decades 

and the Office of Pesticide Programs (OPP) has developed several models with specific interest 

in pesticide fate and transport.  Surface water pesticide fate and transport models include 

Pesticide Root Zone Model (PRZM), Exposure Analysis Modeling System (EXAMS),  EXAMS-

PRZM Exposure Simulation Shell (EXPRESS), kow Aquatic Bioaccumulation Model (KABAM), 

FQPA Index Reservoir Screening Tool (FIRST), Generic Estimated Environmental 

Concentration (GENEEC2), Tier I Rice Model, and Pesticides in Flooded Application Model 
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(PFAM).  KABAM consists of a bioaccumulation model that estimates pesticide concentrations 

in aquatic organisms and a risk assessment from the consumption of those organisms by birds 

and mammals, intended for use for non-ionic organic chemicals with a logkow value between 4 

and 8 (US EPA, 2009), which does not pertain to any of the four chemicals of interest of this 

study.  PFAM is intended to estimate pesticide concentration in any sort of agricultural flooded 

field.  The Tier I Rice Model is specifically intended to model pesticide concentration in rice 

paddies.  Tier I models require less input and give fewer results: they are typically more of a 

cursory, conservative estimation. Tier II models aim to give a more comprehensive analysis, 

which require more inputs and provide more results. 

EXPRESS is the combination of two Tier I models (FIRST and GENEEC2) and two Tier 

II models (PRZM and EXAMS).  Because FIRST and GENEEC2 are Tier I models that do not 

provide extensive results, they are not cited in literature.  The Tier II models, PRZM and 

EXAMS are combined into one model in EXPRESS. EXAMS has been used extensively since 

its development.  The first published study modeled phalate esthers (chemicals mainly used as 

plasticizers) in four different aquatic environments: a pond, an oligotrophic lake, a eutrophic 

lake, and a river and was carried out by the Environmental Research Laboratory of the US EPA 

(Wolfe et al., 1980).  In 1986, a study assessing EXAMS’ prediction of volatilization of three 

herbicides in a flooded rice field found EXAMS simulations to agree with measured data to be a 

good predictor when compared to lab experiments (Seiber et al., 1986).  Sato and Schnoor (1991) 

then compared EXAMS to two other chemical fate models, concluding that all three models can 

be ―useful tools for assessing long-term fate of persistent chemicals‖, as long as the user is aware 

of limitations of each model.  EXAMS was also used to assess the environmental fate of anti-

foulants in seawater (Jacobson & Willingham, 2000) and accurately predicted levels of estrogen 
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in a river (Balam et al., 2010).  An adapted version of EXAMS was used to predict fate of 

herbicide atrazine in a small tidal estuary in North Carolina (McCarthy et al., 2006).  PRZM has 

also been cited extensively in literature; most of the studies deal directly with the pesticide in 

root zone soil.  However, Chiovarou and Siewicki (2007) combined EXAMS with PRZM to 

model various agrochemicals’ behavior in a lake in Oregon and a creek in Florida to assess their 

relative aquatic risk. 

3.4 Model Selection 

An appropriate model is chosen with the objectives and hypotheses of the study in mind.  

The hypotheses are interested in investigating fate and transport of pesticides in surface water 

(the river) and groundwater (a spring), the impact on drinking water and fish consumption, and 

the effect of rainfall on these two at the field scale.  FIRST and GENEEC2 are Tier I models and 

PRZM and EXAMS are Tier II models; the integration of all four with graphical user interface is 

EXPRESS (Figure 7).   

 

Figure 7: The EXPRESS Model Contains Multiple Models 

EXAMS was developed by the US EPA to assess the fate, exposure, and persistence of 

pesticides in surface water systems (Burns, 2007). PRZM was developed by the US EPA to 

simulate chemical movement within and immediately below the plant root zone (Burns, 2007).  
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EXAMS and PRZM are established models and have been widely used for several years.  They 

were linked together so often to provide a more comprehensive exposure assessment of 

pesticides in aquatic environments, with specific interest in impacts on drinking water, that the 

US EPA developed a model linking the two with a graphical user interface, EXPRESS. 

3.5 Theory 

 Once a pesticide is sprayed, there are various transport pathways by which it partitions to 

the various environmental compartments.  There are also physical, chemical, and biological 

processes that determine its persistence and fate.  Persistence is a measure of how long the 

chemical remains in exposed particular compartment.  Fate can be defined by the expected 

environmental concentrations (EEC) of the chemical in various compartments, which ultimately 

relates to risk. Transport and transformation processes of pesticides in the environment are 

described below.  

3.5.1 Transport Processes 

When the pesticide is applied, plant uptake occurs and the pesticide accumulates in the 

plant as intended.  This raises concerns to the consumer if they are continually consuming foods 

with pesticide residue.  Emission refers to pesticide losses to air during application, which is 

more significant when the pesticide is applied with a sprayer, as it is in this study.  Volatilization 

is the transport of a compound from liquid or solid phase to gas phase (Mihelcic, 1999) and with 

respect to this study refers to the diffusion of the chemical from the surface of the plant, soil and 

water up into the air. Volatilization is highly dependent on the chemical’s vapor pressure.  Wash 

off is the process that occurs when water hits the sprayed plant and transport it to the soil.  

Surface runoff is when the pesticides are carried by rain, rolling off the ground surfaces to be 

deposited in surface water bodies. Leaching is when the pesticide infiltrates the soil layer and 
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goes all the way down to the water table, affecting the groundwater.  The pesticide transport 

processes of this study are summarized in Figure 8. 

 

Figure 8: Transport Pathways of Pesticides in this Study 

3.5.2 Transformation Processes 

 Degradation refers to the breakdown of pesticides in the environment and is the major 

process of pesticide loss after application. The breakdown of the ―parent‖ compound convert into 

intermediate products and eventually simple products such as CO2, H2O, nitrogen, phosphorus or 

sulfur (Cheng & Lehman, 1985).  Photolysis is the breaking down of chemicals via sunlight, 

which in water depends on various circumstances such as light intensity, turbidity of water, and 

depth in the water column.  Direct photolysis occurs when the molecules absorb the light photons 

directly and indirect photolysis occurs when the energy from the molecule that has absorbed the 

light photon affects another molecule.   

Biodegradation comes from the microbial metabolism of pesticides and depends on many 

factors such as the presence of enzymes and bacteria, temperature, pH, moisture, and 

Air

Plant Soil Surface Water
plant uptake

volatilizationvolatilization volatilization

air drift air drift
air drift
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bioavailability
1
 of pesticides.  For example, 2,4-D has been observed to degrade faster when the 

pH is above 6.0 (Kells et al., 1980).   

Chemical degradation processes include hydrolysis and ionization.  Hydrolysis is the 

process of breaking bonds in a chemical due to a reaction with water, which is highly dependent 

on the pH of the water.  Ionization refers to the transfer of ions; an ionized compound behaves 

differently than its neutral version.  For example, an ionized organic acid can be adsorbed to the 

sediment much more readily than its neutral form and the solubility of the ionized form of an 

organic compound is higher than its neutral form (PMM, 2002).  

3.6 Model Inputs, Outputs and Assumptions 

The EXPRESS graphical user interface provides reproducible simulations quickly for an 

unlimited number of crop scenarios.  EXPRESS actually contains four separate models: FQPA 

Index Reservoir Screening Tool (FIRST) and Generic Estimated Environmental Concentration 

(GENEEC2) are both Tier I analyses and the PRZM-EXAMS shell is the Tier II Analysis.  

Because the PRZM and EXAM models are combined into one model, EXPRESS can be 

considered a ―3-in-1‖ model.  The FIRST and GENEEC2 Tier I models require most of the same 

inputs (Table 3), most of which pertain to the crop, application of the pesticide, and pesticide 

chemical properties.  The FIRST model gives only two outputs: peak day untreated drinking 

water concentration and average annual untreated drinking water concentration.    GENEEC2 

was not considered in this study because it is based on a farm pond rather than the drinking water 

reservoir that is pre-programmed in FIRST and the PRZM-EXAMS shell.  FIRST simulations 

were run twice for each of the four chemicals to compare the results from immediate versus 

delayed rain events. 

                                                           
1
 Bioavailability refers to the extent to which a toxic contaminant can be transformed in 

biological media or actions in an aquatic environment (Hammelink et al., 1992). 

http://www.usask.ca/toxicology/jgiesy/pdf/publications/BC-044.pdf
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The PRZM-EXAMS shell requires substantially more inputs than FIRST and GENEEC2 

as it is more complex, but the inputs are still chemical properties and field and farming 

properties.  Both the original pesticides and degradation products are simulated.  The model 

provides tabular and graphical outputs for each individual scenario and the water column and 

benthic zone for both a farm pond (no flow) and a drinking water index reservoir (with flow).   

Table 3: EXPRESS Models’ Inputs and Outputs 

Model Inputs Outputs 

FIRST 

crop, application rate and timing, percent cropped area, koc, 

soil aerobic half-life, wetting, type of spray, depth of 

incorporation, solubility, aerobic aquatic half-life,  

hydrolysis half-life  

peak day concentration (acute), 

average annual drinking water 

concentration (chronic) 

GENEEC2 

crop, application rate and timing, koc, soil aerobic half-life, 

wetting, type of spray, high/low boom, fine/medium droplet 

size, width of no-spray zone, depth of incorporation, 

solubility, aerobic aquatic half-life, hydrolysis half-life  

Estimated Environmental 

Concentrations (EECs): peak, max 

4-day, max 21-day, max 60-day, 

max 90-day 

PRZM-

EXAMS 

crop/weather scenario, presence of metabolites, chemical 

name, molecular weight, partition coefficient, soil aerobic 

half-life, vapor pressure, flow/no flow, water column half-life, 

benthic sediment half-life, hydrolysis by temperature profile, 

photolysis, % crop cover, spray method, application rate and 

timing 

upper 10th percentile soil and water 

concentration profiles, annual 

hydrology summary at bottom of soil 

column, water balance (leaching/ 

evapotranspiration/ runoff), 

dissolved EECs in drinking water 

reservoir and sediment 

   

Because EXPRESS was developed to predict concentrations of pesticides in drinking 

water sources systems that are near agricultural activities in the United States, the user interface 

comes pre-loaded with more than 160 farm scenarios within the United States.  These crop 

scenarios list the crop (e.g. tomatoes, alfalfa, and potatoes) and the city and state which is loaded 

with multiple decades of weather data.  Because EXPRESS is user-friendly, it has simplified 

many of its parameters.  There are only two environments to choose from: the water system is 

automatically modeled as both a farm pond (no flow) and a flowing index reservoir, based on a 

typical Midwest drinking water reservoir.  The model does not allow the users to design their 

own environment.  Therefore, another important assumption to note is that the spring source for 
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the gravity-fed water system in Panamá is modeled as the default index reservoir in EXPRESS 

for both Tier I and Tier II simulations.  Therefore, the most significant difference in the inputs in 

this study is the difference in chemicals themselves (i.e. relative toxicities and associated risk). 

3.7 Data Input Sources for Modeling 

 There are three categories of data inputs for the Tier I simulations in FIRST: farm field 

parameters, pesticide application parameters, and pesticide chemical properties (Table 4).   

Table 4: Inputs for FIRST Simulations in EXPRESS 

 
Paraquat Glyphosate Picloram 2,4-D 

Crop
1 Rice Rice Rice Rice 

Application (lb/acre)
2
 16.745 16.745 16.745 16.745 

Applications/year
1 10 10 10 10 

Interval b/t Applications (d)
1 15 15 15 15 

Crop Cover (%)
1 87 87 87 87 

koc
4 6,780 1.0 38.77 29.63 

Soil Aerobic Half-Life (d)
4 75 30 120 75 

Immediate Rain? yes/no yes/no yes/no yes/no 

Nozzle Height (in)
1 20-50 20-50 20-50 20-50 

Droplet Size
1 fine fine fine fine 

Width of No-Spray Zone (ft)
1 0 0 0 0 

Depth of Incorporation (in)
1 0 0 0 0 

Solubility (mg/L)
3 6.20E+05 1.05E+04 430 677 

Aerobic Aquatic Half Life (d)
5 150 60 240 150 

Photolysis Half Life (d)
3 0 0 7 13 

1
Field observations 

2
Smithsonian Tropical Research Institute 

3
EPI Suite, experimental 

4
EPI Suite, modeled 

5
As per model instructions, aerobic aquatic half-life used was double the soil aerobic half-life 

 

All farm field parameters (crop, crop cover, width of no spray zone, depth of incorporation) and 

the majority of the application parameters were gathered from the author’s personal 

observational experience in the field.  The national annual average of pesticides used per acre 

given by the Smithsonian Tropical Research Institute was used as the application rate because 
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application rates were not measured in the field.  Due to common overuse of pesticides at the 

study site, this most likely provides conservative model results.  Chemical property parameters 

were provided by the Estimation Program Interface (EPI)-Suite developed by the OPP of the US 

EPA.  Experimentally-based parameters were used as they were available.   

Inputs for Tier II PRZM/EXAMS simulations are similar to those of the Tier I 

simulations.  Inputs are broken down into design, PRZM-Efate, EXAMS-Efate, and application 

parameters, and are provided in Table 5.   

Table 5: Summary of Inputs for PRZM/EXAMS Simulations 

 
Paraquat Glyphosate Picloram 2,4-D 

Crop Scenario
1 FL sugarcane FL sugarcane FL sugarcane FL sugarcane 

Molecular Weight 257.16 169.07 241.46 221.04 

Solubility (mg/L)
3 6.20E+05 1.05E+04 430 677 

koc
3 6,780 1.0 38.77 29.63 

Soil Aerobic Half-Life (d)
4 75 30 120 75 

Vapor Pressure (mmHg)
4 1.00E-07 1.25E-09 3.20E-07 2.79E-05 

Farm Pond? (no flow)
1 no no no no 

Index Reservoir? (flow)
1 yes yes yes yes 

Aquatic Aerobic Half-Life (d)
4 150 60 240 150 

Hydrolysis Half-Life (d)
3 0 0 0 38 

Aquatic Direct Photolysis (d)
3 0 0 7 13 

Application Rate (lb/acre)
2 16.745 16.745 16.745 16.745 

Crop Cover (%)
1 87 87 87 87 

Applications
1
 10 10 10 10 

Days b/t Applications
1 15 15 15 15 

Application Method
1 ground spray ground spray ground spray ground spray 

1
Field observations 

2
Smithsonian Tropical Research Institute 

3
EPI Suite, experimental 

4
EPI Suite, modeled 

5
As per model instructions, aerobic aquatic half-life used was double the soil aerobic half-life 

 

The most significant difference between the Tier I and Tier II models is that the PRZM-EXAMS 

model requires the user to choose one of the pre-loaded 160 crop-and-weather scenarios.  The 

chosen crop scenario is a sugar cane farm in West Palm Beach, Florida.  Sugar cane was chosen 

because with respect to the height above the ground, roots belowground, and shape of the crop is 
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the mostly similar to rice crops that are available in the study area; they are both grasses 

(Chastain, 2013).  Figure 9 also details that the West Palm Beach area in the southernmost part 

of Florida has the same ecological classification as the Darién province of Panamá: tropical 

moist deciduous forest. 

 

(Image adapted from FAO) 

Figure 9: South Florida and Eastern Panamá are Ecologically Comparable 

Weather data from south Florida is also pre-programmed in the model simulations, including 

rainfall data.  The Pacific side of the Darién province experiences lower average annual rainfall 

than the Caribbean side, around 70 inches per year (UNESCO), which is slightly higher than the 

average annual rainfall in West Palm Beach, Florida.  The dominant soil type in south Florida, 

however is inceptisol and in the Darién, Panamá it is ultisol, also known as red clay soil (USDA) 

(Table 6).   

Table 6: Comparison of Soil and Weather Data for Panamá and South Florida 

 
Darién, Panamá West Palm Beach, Florida 

FAO Climate Classification tropical moist deciduous forest tropical moist deciduous forest 

Average Annual Rainfall (in) 70.87 62.45 

USDA Soil Classification ultisol inceptisol 
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3.8 Risk Assessment Methodology 

3.8.1 Human Health Risk Assessment Methods 

Risk to human health is determined by toxicological parameter and the exposure.  

Exposure is a function of concentration over time depending on the exposure pathways.  In this 

study, two exposure pathways are considered. 

3.8.1.1 Risk Associated with Drinking Water 

Because the study’s main interest is the exposure of humans through drinking water from 

the gravity-fed water system that is near pesticide spraying, the method of quantifying exposure 

is through the average daily dose (ADD), which is defined by the concentration, intake rate, a 

person’s body weight, exposure duration, and averaging time. 

                    
  

    ⁄    
              (

  

 
)              (

 

 
)                      

                                    
  

Equation 1 

ADD was calculated for men, women, and children due to differing body weights and 

consumption habits.  The average daily dose is then compared to the toxicology parameter oral 

reference dose (RfD), which is defined as ―an estimate (with uncertainty spanning perhaps an 

order of magnitude) of a daily exposure to the human population (including sensitive subgroups) 

that is likely to be without deleterious effects during a lifetime‖ (US EPA, 2011).   

The oral RfDs for the chemicals of interest in this study are shown in Table 7.  It should 

be noted that the Joint FAO/WHO Meeting on Pesticide Residue have their own database of 

Acceptable Daily Intake values (mg/kg*d), but there is no value for picloram.  The value for 2,4-

D is identical to the oral RfD and for paraquat, the values are nearly identical.  The oral RfD 

differs significantly only for glyphosate, which is three times higher than the US EPA’s oral RfD 

value. 
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Table 7: Oral RfDs for Chemicals of Interest (US EPA, 2012c) 

 
Paraquat Glyphosate Picloram 2,4-D 

RfD (mg/kg*d) 4.5E-03 1.0E-01 7.0E-02 1.0E-02 

 

Because different groups of the population are more vulnerable to illness and disease, 

such as children and the elderly, it is important to perform separate calculations for each group.  

Therefore, these calculations were performed for men, women, and children.  The average body 

weight of an adult male in the United States is about 80 kilograms (US EPA, 2011), but as 

Panamá is a developing country it is much lower.  The average weight for an adult male in 

Panamá is 61.8 kilograms and an adult female is 55.4 kilograms (de Bermudez et al., 1984).   

Additionally, for a more comprehensive risk profile, the oral RfD was then set to the 

ADD in order to back calculate the concentration at which the pesticide poses a threat to the 

consumer, named ―breakpoint concentration‖.  Breakpoint concentrations were calculated for 

each chemical of interest as well as for men, women, and children in order to compare to the 

estimated drinking water concentration (EDWC) profiles, which are modeled over 30 years’ 

meteorological data in order to see the percentage of years exceeding breakpoint concentrations 

and therefore presenting a risk to the consumer. 

3.8.1.2 Risk Associated with Fish Consumption 

Another major ingestion pathway is the fact that the villagers in Santa Rosa go fishing in 

the river almost daily in order to eat small river fish and/or shrimp as a major source of protein.  

The river is in the same watershed and more specifically and significantly, at an even lower 

elevation than the spring source of the gravity-fed water system.  Therefore, for the purposes of 

further analysis, it is assumed that the EDWCs are also the concentrations of the pesticides in the 

river.  However, to calculate the estimated individual exposure to each pesticide from ingesting 
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river fish (Em, mg/kg*d), the concentration of the pesticide in the fish (Cm, mg/kg), the 

consumption rate (kg/d), and the body weight (kg) must be known. 

   
     

  
 

Equation 2 

 Although there was no way to measure the chemical concentrations of the fish from the 

river in Santa Rosa, it was estimated using a bioconcentration factor (BCF).  The BCF is the 

proportion of the chemical concentration in the fish to the concentration of the chemical in the 

surrounding water.  The chemical concentration of the pesticide in the fish, Cm, has units of 

mg/kg.  The commonly accepted method to estimate BCF (Veith et al., 1980) is based on the 

octanol-water partition coefficient, kow.  

                       

Equation 3 

As with all previous chemical properties used in calculations and for modeling inputs in this 

study, the octanol-water coefficient, kow, was taken from EPI suite.  Similar to the drinking water 

risk assessment methods, individual exposure is compared to oral RfD.  Breakpoint 

concentrations are calculated for concentrations of each pesticide in the river at which fish 

consumption presents a risk to the consumer.  These are compared to the concentration profiles 

in order to see the percent years exceeding the breakpoint concentrations and therefore, 

presenting a risk to the consumer. 

3.8.1.3 Additive Human Health Exposure Risk Assessment 

 As per standard risk assessment methods, the calculated human exposure from drinking 

water and fish consumption were added together for a more comprehensive ingestion exposure.  

Similar to the drinking water risk assessment methods, these additive exposures calculated using 
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both the highest concentration and lowest concentration from the PRZM-EXAMS concentration 

profiles.  This was done in order to obtain a best- and worst-case human health additive risk 

assessment. 

3.8.2 Ecological Risk Assessment Methods 

Although the primary intention of this study is assessing the impacts of unrestricted 

pesticide use on the drinking water, there are ecological toxicological implications as well.  The 

author of this study witnessed fish kills in the local river two times in two years, to which the 

local villagers attributed to overuse of pesticides.  As previously mentioned, the PRZM-EXAMS 

concentration profiles are assumed to be the concentration of the stream in order to compare 

them to acute aquatic toxicity data, i.e. how much risk is present to the aquatic creatures due to 

the spraying of pesticides.  The maximum 96-hour concentration profiles for all four chemicals 

of interest are compared to 96-hour LD50s for three fish species from the US Forest Service 

(Table 8) in order to see the percent of years’ posing a threat to these specific species.  The 96-

hour LD50 concentration is an ecotoxicity parameter that shows at which concentration 96 hours 

after application that will kill approximately 50 percent of each respective species.   

Table 8: 96-hour LD50, mg/L 

 
Paraquat Glyphosate Picloram 2,4-D 

fathead minnow unavailable 2.3 22°C unavailable 2.7 20°C 

channel catfish <100 18°C 13.0 22°C 15.5 22°C 7.0 20°C 

bluegill 13 24°C 5.6 22°C 23.0 22°C 0.54 22°C 

(Adapted from Johnson & Finley, 1980) 

The acute LD50 for grass shrimp was also compared to the river concentration profiles.   

Catfish and minnows are present in the river at the study site.  Additionally, for a more general 

risk assessment, stream concentrations are compared to aquatic life benchmarks for general 
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aquatic life groups: fish, invertebrates, and plants (Table 9).  This provides a risk assessment not 

only for the fish in the river, but also invertebrates and vascular and non-vascular plants. 

Table 9: Aquatic Life Benchmarks (ppb) 

 
Fish Invertebrates Nonvascular Vascular 

 
Acute Chronic Acute Chronic Plants Plants 

Paraquat 6,000 < 369 600 < 36.9 0.396 71 

Glyphosate 21,500 1,800 26,600 49,900 12,100 11,900 

Picloram 6,500 550 34,150 11,800 4,900 — 

2,4-D 12,075 14,200 12,500 16,050 3,880 13.1 

(Adapted from US EPA, 2012d) 

As with previous risk assessments, this was done with the minimum and maximum concentration 

profiles in order to provide a best- and worst- case scenario for aquatic life. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Model Results 

4.1.1 Tier I Model (FIRST) Results 

 The primary goal of FIRST is to provide side-by-side concentration estimates in parts per 

million (ppm) for drinking water reservoirs near agricultural activities where pesticides are used.  

The model index reservoir used is a 427 acre watershed that feeds to a community water supply 

(CWS) in Shipman, Illinois.  The simulations were run twice for each chemical in FIRST in 

order to compare the results from an immediate rain following spray events compared to a 

delayed rain following spray events (Figure 10).   

 

Figure 10: Summary of Outputs from Tier I Model Food Quality Protection Act Index 

Reservoir Screening Tool (FIRST) 
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Because the concentrations here are in the drinking water reservoir and not at the field itself, it is 

expected that concentrations with delayed rain event to be lower than those with immediate rain.  

However, the difference between the two is only between 1 and 5 percent for each output value. 

The difference between the resulting concentrations between immediate and delayed rain 

events is surprisingly small.  The program assumes ―that rainfall and resulting runoff are 

sufficient to remove up to eight percent of the pesticide‖ from the field and a ―portion of the 

chemical… flows into the reservoir and is dissolved in the reservoir water‖ (US EPA, 2012a).  

FIRST also assumes that the delayed rain event occurs two days after the spray event.  

Depending on how immediate and intense the rain event is, this may be too low of a proportion 

of that which is actually washed off and carried away by runoff.  Additionally, the model is 

based off the assumption that rainfall is only sufficient for two reservoir turnovers per year, 

which is very low compared to the actual system studied. 

 Based on the results from this model, it seems that picloram has the most impact on 

drinking water, with the highest acute and chronic concentrations for both immediate and 

delayed rain scenarios.  This is probably due to its high half-lives in both soil and water.  2,4-D 

has the second highest concentrations in water which seems counterintuitive because it can be 

broken down by photolysis,  implying faster degradation.  However, the end concentration is 

highly dependent on koc value of the chemical (US EPA, 2012a).  Paraquat has the lowest end 

point concentrations due to its high koc value.  Since koc measures the proportion of the amount 

of the chemical sorbed to the soil to the amount of the chemical dissolved in solution, it is 

expected that paraquat would preferentially partition into soil instead of water. 
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4.1.2 Tier II Model (PRZM-EXAMS) Results 

 The primary goal of the PRZM-EXAMS shell is to provide a more refined (i.e., Tier II) 

prediction of the concentrations of pesticides in drinking water sources as well as aquatic 

ecosystems for exposure assessments (Burns, 2007).  The PRZM component accounts for 

―climatic conditions, crop-specific management practices, specific soil properties, site-specific 

hydrology, pesticide-specific application and dissipation (fate and transport) processes‖ (Burns, 

2007).  The EXAMS component combines ―subsequent hydrologic transport, volatilization, 

sorption, hydrolysis, biodegradation, and photolysis of the pesticide‖ (Burns, 2007).   

The base index reservoir for the PRZM-EXAMS shell is the same reservoir as the 

aforementioned FIRST model.  Unlike the Tier I models in EXPRESS, the PRZM-EXAMS shell 

does not allow for the adjusting of rainfall data.  Since this model utilizes 30 years’ worth of 

historical meteorological data, side-by-side comparisons of the immediate versus delayed rain 

scenarios are not possible and were not simulated.  The Estimated Drinking Water 

Concentrations (EDWCs) for the index reservoir for each chemical are shown in Figures 8, 9, 10, 

and 11, plotted against their percent of years exceeding the respective concentrations.   

The maximum peak profile represents the maximum concentrations after pesticide 

application for each month averaged over a year; therefore its profile has the greatest value.  The 

maximum 96-hour concentration profile (green) represents the maximum concentration 96 hours 

after application for each month averaged over a year.  For example, Figure 11 shows that 50 

percent of the years over 30 years the maximum 96 hour concentration exceeds 400 ppb.  The 

maximum 21-day, 60-day, and 90-day profiles show the average of the maximum concentrations 

at 21, 60, and 90 days, respectively.  Lastly, the annual concentration profile represents the 

average annual concentration versus the percent of years exceeding those concentrations. 
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          Figure 11: Profiles for Estimated Drinking Water Concentration, Paraquat 

 Paraquat’s highest maximum peak concentration averaged over the 30 years of 

meteorological data is approximately 1,400 ppb.  In contrast, its average annual mean 

concentration is approximately 85 ppb for almost 100 percent of the years.  The maximum 96-

hour profile is almost approaching the maximum peak profile; therefore, paraquat does not 

degrade much in the first 96 hours after application.  The maximum 21-day profile shows 

significant degradation as it is much lower than the maximum 96-hour profile.  The maximum 

60- and 90-day concentration profiles even more so, with not much difference in their average 

concentrations.  This implies that the third month after application there is not much degradation. 
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Figure 12: Profiles for Estimated Drinking Water Concentration, Glyphosate 

 The EDWC profile for glyphosate (Figure 12) shows an average maximum peak 

concentration more than a magnitude greater than that of paraquat, which is a little more than 11 

ppm.  In the first 96 hours after application, glyphosate virtually does not degrade.  Significant 

degradation in the index reservoir takes a couple months, as the maximum 60- and 90-day 

profiles are much lower than where the maximum peak profile.  The annual concentration profile 

is relatively flat, which implies that for the 30 years that the annual concentrations were average, 

they were not very different.  The average annual concentration is an estimated 160 ppb for 

almost 100 percent of the years. 
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Figure 13: Profiles for Estimated Drinking Water Concentration, Picloram 

 The picloram EDWC profile (Figure 13) shows a similar degradation profile to that of 

glyphosate but with even slower degradation.  Picloram has the highest average maximum peak 

concentration (more than 12 ppm) and also like glyphosate, virtually does not degrade within the 

first 96 hours after application.  There is a very significant difference between the maximum 90-

day profile and the annual concentration profile, signifying that most of the degradation within a 

year occurs in the latter nine months of the year.  The annual concentration profile has a wider 

range, implying that the annual concentration was not as consistent and the average annual 

concentration is estimated at 270 ppb. 
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Figure 14: Profiles for Estimated Drinking Water Concentration, 2,4-D 

 2,4-D shows a fairly evenly distributed degradation profile (Figure 14).  Its maximum 

peak EDWC is very similar to that of glyphosate and picloram.  The average annual 

concentration is roughly 90 ppb.  Like the simulations in FIRST, picloram shows the highest 

peak EDWC.  2,4-D and glyphosate show similarly high average maximum peak EDWCs, 

around 11 ppm each.  All three show significant differences between the maximum 60-day 

EDWC profile and maximum annual EDWC profile and slight difference between their 

maximum peak and maximum 96-hour EDWC profiles.  Paraquat has a significantly different 

profile: a much lower peak and faster degradation.   
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Another important distinguishing feature of the Tier II model is that in addition to the 

estimated drinking water concentration profiles, dissolved EEC profiles in the benthic pore water 

are provided.  The dissolved EEC profiles in benthic pore water for paraquat are shown in Figure 

15. 

 
 

Figure 15: Estimated Environmental Concentration Profiles in Benthic Pore Water, 

Paraquat 

 

The highest average maximum peak concentration for paraquat is about 310 ppb.  The similar 

profiles of all but the annual concentration signify that paraquat degrades slowly in the benthic 

pore water in the first 90 days, but degrades more rapidly in the latter part of a year.  The average 



49 
 

annual concentration exceeds 40 ppb for nearly 100 percent of the modeled years, as seen by the 

lowest point on the annual concentration profile. 

 
 

Figure 16: Estimated Environmental Concentration Profiles in Benthic Pore Water, 

Glyphosate 

 

 Glyphosate’s highest average maximum peak benthic aqueous EEC is roughly 1400 ppb, 

much higher than that of paraquat (Figure 16), as seen by the highest point on the graph.  This 

could be because paraquat has a very high koc so its EDWC and EEC profiles are lower than the 

other chemicals because it tends to move to the sediment.  Similar to paraquat, glyphosate does 

not degrade readily in the first 90 days and the majority of the degradation occurs in the last nine 

months of the year.  The annual concentration profile is fairly dynamic.  Glyphosate’s average 
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annual benthic aqueous EEC is estimated as 65 ppb.  The EEC profiles for picloram are shown in 

Figure 17. 

 
 

Figure 17: Estimated Environmental Concentration Profiles in Benthic Pore Water, 

Picloram 

 

 The highest average maximum peak EEC for picloram is about 3000 ppb.  It virtually 

does not degrade in the first 90 days after application.  The annual concentration profile has the 

largest range out of all of the chemicals, starting around 1300 ppb and the average annual EEC is 

roughly 240 ppb for almost 100 percent of the years.  The EEC profiles in benthic pore water for 

2,4-D are shown in Figure 18.  2,4-D’s highest average maximum peak concentration is much 

lower, around 1600 ppb.  Similarly, it does not degrade in the first 90 days.  Its annual EEC 
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profile has a much smaller range and the average annual EEC exceeds 80 ppb for nearly 100 

percent of the modeled years. 

 

Figure 18: Estimated Environmental Concentration Profiles in Benthic Pore Water, 2,4-D 

Annual dissolved EECs in the benthic pore water are significantly lower than the EDWC 

profiles.  The large difference between the maximum 90-day EEC and the maximum annual 

concentration implies that all four chemicals do not degrade significantly in the first 90 days 

after application, that the four chemicals are persistent in the benthic pore water.  Again, the 

paraquat concentration is predicted as a magnitude lower than that of picloram.  Glyphosate and 

2,4-D have very similar EEC profiles. 



52 
 

EXPRESS is a self-proclaimed ―screening-level‖ model, not a sophisticated ―higher-tier 

application.‖ Additionally, the lack of experimental data due to the very remote study site forced 

many assumptions.  Therefore, the estimated concentration profiles cannot be assumed to be 

completely representative of the gravity-fed water system in Santa Rosa, but environmental and 

ecological toxicity implications as well as human health implications can still be explored and 

discussed. 

4.2 Risk Assessment for Human Health 

4.2.1 Risk Associated with Drinking Water  

The calculated ADDs for adult males are shown in Table 10.  As per US EPA risk 

assessment standards, the daily intake rate of drinking water for adults was 2 liters per day for 

both men and women.   

Table 10: Average Daily Doses for Adult Males (mg/kg*d) 

 
Paraquat Glyphosate Picloram 2,4-D 

FIRST, acute 6.5E-05 1.7E-04 3.2E-04 2.8E-04 

FIRST, chronic 9.1E-06 2.8E-05 1.2E-04 8.7E-05 

PRZM-EXAMS, annual average 2.8E-03 5.2E-03 8.7E-03 2.9E-03 

PRZM-EXAMS, max peak 4.5E-02 3.6E-01 4.0E-01 3.7E-01 

 

Because the FIRST model predicted the lowest concentrations for all four chemicals of interest, 

the calculated ADDs were significantly lower than those of PRZM-EXAMS.  Both acute and 

chronic ADDs calculated from concentrations in drinking water from the FIRST model are 

several magnitudes shy of the oral RfD for each chemical, implying that there is no associated 

risk.  The only ADDs that exceeded the oral RfDs were using the worst-case scenario, the 

maximum peak of the PRZM-EXAMS profile, which implies an associated risk for all four 

chemicals of interest.  The calculated ADDs for adult females are shown in Table 11. 
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Table 11: Average Daily Doses for Adult Females (mg/kg*d) 

 
Paraquat Glyphosate Picloram 2,4-D 

FIRST, acute 7.2E-05 1.9E-04 3.6E-04 3.2E-04 

FIRST, chronic 1.0E-05 3.2E-05 1.4E-04 9.7E-05 

PRZM-EXAMS, annual average 3.1E-03 5.8E-03 9.7E-03 3.2E-03 

PRZM-EXAMS, max peak 5.1E-02 4.0E-01 4.4E-01 4.1E-01 

 

 As expected due to their lower body weight, the ADDs for adult women calculated are 

slightly higher than those of adult men.  The two concentrations used from the Tier II PRZM-

EXAMS simulation shell are the highest and lowest predicted: the maximum peak concentration 

and the annual average for nearly 100 percent of the years, respectively.  Because the average 

maximum peak for each chemical is the highest average maximum peak concentration for each 

chemical averaged over 30 years, it is not surprising that the ADDs calculated with these 

concentrations all exceed the oral RfD.  In fact, the concentrations from the highest average 

maximum peak in PRZM-EXAMS were the only ADDs that exceeded the oral RfDs. 

The body weight for a generic ―child‖ was 25 kilograms for the purposes of this study.  

Also based on US EPA guidelines, the daily intake rate of drinking water for children was 1 liter 

per day.  The calculated ADDs for children are shown in Table 12.  Even though some ADDs 

come closer to approaching the oral RfDs, it is still only the highest average maximum peak 

concentrations from PRZM-EXAMS that exceed those values.   

Table 12: Average Daily Doses for Children (mg/kg*d) 

 
Paraquat Glyphosate Picloram 2,4-D 

FIRST, acute 8.0E-05 2.1E-04 4.0E-04 3.5E-04 

FIRST, chronic 1.1E-05 3.5E-05 1.5E-04 1.1E-04 

PRZM-EXAMS, annual average 3.4E-03 6.4E-03 1.1E-02 3.6E-03 

PRZM-EXAMS, max peak 5.6E-02 4.5E-01 4.9E-01 4.6E-01 
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By these calculations, it can be assumed that the community members of Santa Rosa are 

not in danger of adverse effects of drinking from the untreated water of the gravity-fed water 

system.  However, because the PRZM-EXAMS concentration profiles are quite detailed, it is 

worthwhile to investigate how often the ADDs are exceeding the oral RfDs by looking closer at 

the concentration profiles.  In order to do this, a ―breakpoint concentration‖ was calculated; that 

is to say, the concentration at which the ADD will exceed the RfD for men, women, and 

children.  These values are shown in Table 13. 

Table 13: Calculated Breakpoint Concentrations, ppb 

 
Paraquat Glyphosate Picloram 2,4-D 

men 140 3,100 2,200 310 

women 120 2,800 1,900 280 

children 110 2,500 1,800 250 

 

Once breakpoint concentrations are calculated, each value is compared to the EDWC 

profile for each chemical and for each subgroup of the population.  Since the average annual 

concentration profiles have the most conservative estimations, this profile will have the lowest 

percentage of years exceeding the breakpoint concentration.  The values for percent years 

exceeding breakpoint concentrations for average annual concentrations are shown in Table 14. 

Table 14: Percent Years Average Annual Concentration Exceeds Breakpoint 

Concentrations (Drinking Water) 

 

 
Paraquat Glyphosate Picloram 2,4-D 

men 38 0 0 90 

women 60 0 0 90 

children 70 0 0 90 

 

The entire average annual concentration profiles over the 30 years’ time for glyphosate and 

picloram do not exceed the breakpoint concentrations.  Therefore, if the consumer is only 
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concerned with the average annual concentration for these two chemicals, there is no risk.  

Paraquat shows moderate to high risk for the average annual concentration profile, and 2,4-D 

shows that nearly 100 percent of the time the ADD will exceed the oral RfD, which is alarming. 

The percent years that the highest average maximum peak concentration exceeds the breakpoint 

concentrations are shown in Table 15. 

Table 15: Percent Years that the Highest Average Maximum Peak Concentration Exceeds 

Breakpoint Concentrations (Drinking Water) 

 

 
Paraquat Glyphosate Picloram 2,4-D 

men 100 70 92 100 

women 100 80 94 100 

children 100 90 94 100 

 

 As can be expected, these percentages are much higher than the previous best-case 

scenario values.  Paraquat and 2,4-D, the two chemicals that showed risk over average annual 

concentration now show that 100 percent of the years the highest average maximum peak 

concentrations are predicted to exceed the breakpoint concentration.  Therefore, when the 

maximum peak concentrations of these two chemicals are considered to calculate the ADD, they 

will always exceed the oral RfD.  Glyphosate and picloram show high risk at their peak 

concentrations, with very high percentages exceeding the breakpoint concentrations.  This shows 

that at maximum peak concentrations, drinking the water from the gravity-fed water system 

almost always presents high levels of risk, implying a very high possibility of adverse human 

health effects. 

4.2.2 Risk Associated with Consumption of Fish from the River 

Bioconcentration factors (BCFs) are a ratio of the concentration of the chemical in a 

living organism divided by the concentration in an environmental medium (air, water, soil) 

(Mihelcic, 1999).  The estimated BCFs are shown in Table 16. 
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Table 16: Calculated Bioconcentration Factors 

 
Paraquat Glyphosate Picloram 2,4-D 

BCF 2.24E-04 1.53E-03 1.64E+02 8.05E+02 

 

The BCFs for paraquat and glyphosate are small (less than 1) and the BCFs for picloram and 2,4-

D are much higher, much greater than 1.  BCF is related to the hydrophobicity of a chemical 

(represented by kow) but is also related to the lipid content as the chemicals tend to accumulate in 

the fatty tissue of a species (Mihelcic, 1999).  Since BCF and concentration of each pesticide are 

the only differentiating factors, Em for picloram and 2,4-D are much higher than that of paraquat 

and glyphosate (Table 17). 

Table 17: Individual Exposure to Contaminant Due to Ingestion of Fish (Em, mg/kg*d) 

 
Paraquat Glyphosate Picloram 2,4-D 

men 7.20E-08 4.00E-06 4.70E-02 2.10E-01 

women 6.00E-08 3.30E-06 3.90E-02 1.70E-01 

children 4.10E-08 2.20E-06 2.60E-02 1.20E-01 

 

The Em for men, women, and children can then be compared to the oral RfD as was done 

with the ADD for the drinking water ingestion estimation.  The values for the concentration of 

each pesticide in water were the highest average maximum peak from the PRZM-EXAMS Tier 

II model results, so they are high concentration values.  Although the Em for picloram is the same 

magnitude as its RfD, it is not above the RfD.  Paraquat and glyphosate’s predicted ingestion 

values do not come close to the oral RfD.  However, the Em values for 2,4-D for men, women, 

and children are significantly higher than the oral RfD, which means that all subgroups are at 

risk of adverse health effects from 2,4-D by eating the fish from the river.   

As with the risk assessment for drinking water, the breakpoint concentrations were 

calculated for exposure from fish consumption (Table 18). 



57 
 

Table 18: Calculated Breakpoint Concentrations (Fish Consumption), ppb 

Paraquat Glyphosate Picloram 2,4-D 

8.7E+07 2.8E+08 1.9E+03 5.4E+01 

 

It can be noted that the breakpoint concentrations for paraquat and glyphosate are very high.  

This is due to their low BCFs.  Breakpoint concentrations were then compared to the EDWC 

profiles for the best- and worst-case scenarios (Tables 19 and 20). 

Table 19: Percent Years Average Annual Concentration Exceeds Breakpoint 

Concentrations (Fish Consumption) 

 

Paraquat Glyphosate Picloram 2,4-D 

0 0 7 100 

 

As can be expected, the breakpoint concentrations were not even close to presenting a risk for 

paraquat and glyphosate.  Picloram presents a very small risk but 2,4-D presents a very high risk 

to the consumer via fish consumption for the best-case scenario. 

Table 20: Percent Years that the Highest Average Maximum Peak Concentration Exceeds 

Breakpoint Concentrations (Fish Consumption) 

 

Paraquat Glyphosate Picloram 2,4-D 

0 0 95 100 

 

For the worst-case scenario, both picloram and 2,4-D present a very high risk to the consumer 

while paraquat and glyphosate still present no risk.  There are high uncertainties associated with 

the estimated risk due to uncertainties in the calculation of BCF and in model concentration 

estimations. 

4.2.3 Additive Exposure and Risk for Human Health 

 The results of additive risk for human health for the best case scenario are shown in 

Figure 19. 
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Figure 19: Additive Exposures Compared to Oral RfDs, Best Case Scenario 

None of the additive exposures for men, women, or children exceed the oral RfD, implying zero 

risk in the best case scenario.  The oral RfDs for glyphosate and Picloram are one magnitude 

higher than the calculated additive exposures.  However, the additive exposures for 2,4-D is 

about one-half of the oral RfD.  For paraquat, the additive exposures are approaching the oral 

RfD, which indicates that when the concentration of paraquat in water exceeds the minimum 

estimated values, it presents a risk to the consumer.  The results from the worst case scenario are 

shown in Figure 20. 

The additive exposures for men, women, and children all exceed the oral RfDs by several 

magnitudes for paraquat, glyphosate, picloram, and 2,4-D.  This indicates a very high risk for all 

population groups from all four chemicals of interest.  Additionally, these calculations do not 

take into account other ingestion pathways such as eating the sprayed crops, so exposure (and 

therefore risk) is most likely even higher. 
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Figure 18: Additive Exposures Compared to Oral RfDs, Worst Case Scenario 

4.3 Ecological Toxicity Implications 

 The comparison of the average maximum 96-hour concentration profiles to the 96-hour 

LD50s is shown in Table 21).  The results show that in terms of acute aquatic toxicity, paraquat 

and picloram pose no threat (although two data points are missing).  However, the assumed 

concentrations of glyphosate and 2,4-D in the stream pose a significant threat to fathead 

minnows and bluegills.  Fathead minnows are the type of fish that are caught the most in the 

river.   

Table 21: Percent Years Stream Concentration Exceeds 96-hour LD50 

 
Paraquat Glyphosate Picloram 2,4-D 

fathead minnow unavailable 87 unavailable 74 

channel catfish 0 0 0 14 

bluegill 0 22 0 100 
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Unfortunately, the only LD50 value found for freshwater shrimp, the aquatic species that is most 

common and most consumed in Santa Rosa, was for 2,4-D.  The acute LD50 for grass shrimp is 

0.092 mg/L or 92 ppb (US Forest Service, 2006), which the average annual concentration 

exceeds for nearly 100 percent of the years.  Therefore, 2,4-D is considered to present a high 

level of risk to the shrimp in the local stream. 

 For a more general risk assessment, the assumed stream concentrations can be compared 

to the US EPA’s Office of Pesticides Program’s Aquatic Life Benchmarks.  As before, these 

values were compared to the average annual concentration profiles in order to quantify the 

number of years for which the concentration exceeded the benchmark, therefore presenting a 

threat to a respective aquatic group in the best case scenario (Table 22).   

Table 22: Percent Years Average Annual Concentration Exceeds Aquatic Life Benchmark 

 
Fish Invertebrates Nonvascular Vascular 

 
Acute Chronic Acute Chronic Plants Plants 

Paraquat 0 0 0 100 100 100 

Glyphosate 0 0 0 0 0 0 

Picloram 0 95 0 0 0 — 

2,4-D 0 0 0 0 0 98 

 

It seems that with respect to average annual concentrations, the only threats are to fish from 

picloram at the chronic time scale and that paraquat presents a significant chronic threat to 

invertebrates and all aquatic plants.  Vascular plants are at risk by the assumed concentrations of 

2,4-D in the river. 

Considering the worst-case scenario, the average maximum peak concentrations are taken 

into account.  Perceived risk becomes greater as the peak concentrations are higher than annual 

concentrations (Table 23).   
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Table 23: Percent Years Highest Average Maximum Peak Concentration Exceeds Aquatic 

Life Benchmarks 

 

 
Fish Invertebrates Nonvascular Vascular 

 
Acute Chronic Acute Chronic Plants Plants 

Paraquat 0 91 65 100 100 100 

Glyphosate 0 93 0 0 0 0 

Picloram 17 100 0 5 46 — 

2,4-D 0 0 0 0 59 100 

 

Concentrations of paraquat present moderate to very high risk on nearly all groups aquatic 

species.  Glyphosate poses a threat only on fish at the chronic level, and 2,4-D threaten both 

nonvascular and vascular plants.  Picloram presents maximum risk to fish on the chronic time 

scale and a low risk at the acute time scale, with moderate risk to nonvascular plants.   

4.4 Study Limitations  

 All objectives of this study focus on the water quality aspect of unrestricted pesticide use, 

with special consideration to human exposure via drinking water and ingestion of contaminated 

fish/shrimp as well as the ecological impacts to aquatic life.  However, there are several 

occupational and non-occupational exposure pathways that could not be considered due to lack 

of data and/or model limitations. These are summarized in Table 24.   

Table 24: Summary of Non-Occupational and Occupational Exposure Pathways 

Non-occupational Occupational 

Drinking Water Spraying 

Eating fish/shrimp from the river           Dermal 

Eating sprayed crops (rice, corn, etc.)           Inhalation 

Swimming in the river Walking through sprayed fields 

Walking/playing on the lawn Mixing 

Household storage Disposal of containers 

Residue on skin, clothes   

Washing contaminated clothes   

Pesticide container re-use   

Baby-to-mother (breastfeeding)   
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The calculation for exposure from eating sprayed crops was not possible because there were no 

predicted concentration of pesticides in soil.  The remaining exposure pathways are even less 

quantifiable, such as washing the contaminated clothes and pesticide container re-use, though 

they can be significant exposure pathways.  

Sources of uncertainty due to the nature of pesticide fate and transport modeling are 

another limitation.  The necessary assumptions equating the system studied with the index 

reservoir default in EXPRESS and the weather and soil data for the Florida sugarcane scenario 

are a very limiting factor of this study.  Many chemical properties that came from the EPI Suite 

were estimated by models and have high uncertainty.  Additionally, transport and transformation 

of pesticides in the environment can be affected by soil properties such as moisture content, 

fraction organic carbon; water properties such as temperature and pH; air properties such as 

humidity and wind speed; biological properties such as presence of microorganisms and plant 

physiology; and topography (Estevez et al., 2007).  Another significant source of uncertainty is 

the fact that more often than not, these pesticides are being mixed together when they are 

applied.  Sources of uncertainty in human health risk assessment lie with the variations from 

person to person ingestion of contaminated food and water and metabolism. 

4.5 Risk Mitigation Strategies 

 There are several technological mitigation strategies in the form of best management 

practices (BMPs) or Integrated Pest Management (IPM).  Reichenberger et al. (2007) reviewed 

mitigation strategies to reduce pesticide loads to ground- and surface water.  Technological 

mitigation strategies include buffer strips, constructed wetlands, and subsurface drains.  A buffer 

strip is typically a strip of vegetation at the edge of a field and/or by a body of water to intercept 

runoff.  Because a small area immediately surrounding the spring source of the gravity-fed water 
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system is forested, it can be said that it already has a buffer strip.  A focus on increasing the 

amount of vegetation between agricultural activities and the spring source of the gravity-fed 

water system should be considered as a form of source protection.   

Constructed wetlands are man-made wetlands for habitat restoration or for the runoff of 

anthropogenic activities, e.g. wastewater discharge.  They can help with load reduction and many 

studies find that they reduce pesticide loads to surface water (Reichenberger et al., 2007) but 

their placement must be deliberate and their design can be complicated if one is unfamiliar, i.e. 

they may not be appropriate technology for a small village in Panamá.  For subsurface drains, the 

study found that there was no technology that could be implemented to mitigate these processes, 

but they could be reduced through ―application rate reduction, product substitution and shift of 

the application date‖ (Reichenberger et al., 2007). 

 Changes in application are probably the most feasible mitigation strategies.  As 

previously stated, pesticides are not only used in farming and ranching activities in and around 

Santa Rosa, but they are overused and abused.  Simply reading and following the instructions on 

the pesticide containers would greatly reduce the application rate.  The instructions detail how 

much water to add, how much should be sprayed per area of land, that it should not be mixed, 

human and environmental toxicity, and proper safety procedures.  Product substitution could 

mean changing from the synthetic chemical pesticides to biological pesticides, or 

―biopesticides‖, which are pesticides derived from biological material such as animals, plants, 

bacteria, and certain minerals.  However, because the definition of biopesticide remains unclear 

and they are unavailable in most Latin American countries (US EPA, 2014), they are not 

currently recommended as a potential risk mitigation strategy. 
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4.6 Public Health and Policy Implications 

 Although technological mitigation strategies and BMPs have the potential to create a 

barrier between pesticides and humans and therefore decrease exposure and risk, they are not 

always the best fit to empower the community to improve or take preventative measures for their 

own health.  At the community level, the most obvious intervention is pesticide education for the 

farmers and ranchers.  The author noted that at the study site radio public service announcements 

(PSAs) seemed to have been effective teaching tool for villagers to learn (or be reinforced of the 

idea) to chlorinate their water.  Therefore, a PSA that describes property safety equipment and 

handling and application procedures has the potential to increase safe use of pesticides.  

However, it cannot be assumed that education alone will change dangerous behaviors.  With 

respect to non-suicidal negative health consequences, most can be mitigated or minimized 

simply by banning the most lethal pesticides, WHO class I and II pesticides.  This also requires 

substituting these products with alternatives.  

 The aforementioned FAO International Code of Conduct on the Distribution and Use of 

Pesticides is the internationally accepted standard.  This code ―responded to growing concerns 

about inadequate controls on pesticides and the lack of regulatory infrastructure in developing 

countries‖, but on a voluntary basis for both public and private interests (Jansen, 2008).  The 

Prior Informed Consent (PIC) legislation was signed at the Rotterdam Convention in 1998 by 

Panamá and 152 other countries as well as the European Union (Rotterdam Convention, 2013), 

which includes a short list of hazardous chemicals that member countries must sign off on either 

allowing or banning these chemicals in the respective countries.  None of the four chemicals of 

interest in this study are included on the short list, which includes the infamous DDT. 
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Legislation starting in the 1970s in Sri Lanka has been aimed at reducing the number of 

deaths from acute pesticide poisonings (most of them suicides).  From the gradual ban of WHO 

class I organophosphate (OP) pesticides, poisoning and deaths from pesticides decreased.  

However, they were replaced with WHO class II chemicals, including endosulfan, which was 

eventually banned.  The majority of deaths from pesticides continue to be from WHO class II 

OPs, which are less toxic than class I but still toxic enough for self-harm (Roberts et al., 2003). 

 A case study of Honduras argues for the banning of highly toxic pesticides over more 

complicated legislation that has been difficult to enforce (Jansen, 2008).  It wasn’t until 1995 that 

Honduras took interest in pesticide legislation via the Organismo Internacional Regional de 

Sanidad Agropecuaria (OIRSA), which was established to present a legal framework for Central 

American countries to comply with FAO code.  In 1998 the German development agency (GTZ) 

helped establish concrete regulations, but they were later repealed. Although there is legislation, 

successful enforcement has still not been achieved (Jansen, 2008). 

 In 1991, the pesticide industry under the Global Crop Protection Federation (GCPF) 

initiated three voluntary pilot projects in Kenya, Thailand, and Guatemala, coined the Global 

Safe Use campaign.  The pilot project in Guatemala consisted of three phases, the first of which 

was training and education. Eight hundreds government extension agents were trained, who then 

trained hundreds of thousands of farmers and housewives, school teachers, and children.  Near 

the end of the first year of the campaign, the United States Agency for International 

Development (USAID) joined with its own $4 million, three-year project, Pesticide Management 

Activity (PMA).  The second phase focused on technical training of small vegetable growers.  

The final phase is ―self-sustaining‖ control from the host country, in which a levy on imported 

pesticide active ingredients is collected to fund continuing education activities.  Reported 
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pesticide poisonings between 1972 and 1997 have gone down dramatically, most trained children 

report not re-using pesticide containers (while most surveyed untrained children do) and most 

trained farmers read labels (while most untrained farmers surveyed do not) (Murray & Taylor, 

2000). 

In 2013, El Salvador, led by its Environmental Commission and the Movement for the 

Defense of Life and Natural Resources passed landmark legislation, banned 53 pesticides 

nationwide.  Among the banned chemicals are paraquat, 2,4-D, DDT, and glyphosate.  They plan 

to oust all of these pesticides within two years, giving them time to find alternatives. However, 

since the legislation is so new, it is unclear whether the bans are successfully being implemented 

(Sustainable Pulse, 2013).   

A 2011 study by WHO surveyed 142 member countries and 113 of the countries 

completed the survey of pesticide legislation, regulation, and enforcement.  Of those surveyed, 

84 percent have national or regional legislation but are only enforced ―to a large extent‖ by 41 

percent.  The Code calls for countries to document poisonings, but very few countries have a 

mechanism to do so.  About half of the countries have no quality control facilities and report 

substandard or counterfeit pesticides to be a problem.  Comprehensive legislation, registration, 

and enforcement practices are absolutely essential to mitigating potential risks from pesticide use 

(Matthews et al., 2011).  It should also be noted that where capacity building activities are 

lacking is most likely due to the fact that the policy makers and their advisers have low levels of 

awareness of adverse unintended consequences from pesticide use and abuse (WHO, 2010). 

 Pesticide safety is not only a developing world public health issue.  The US EPA recently 

amended the Agricultural Worker Protection Standard (WPS) with the intention of making 

pesticide use safer for farmers in the United States.  Changes include annual mandatory trainings, 
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more mandatory no-entry signs for places where hazardous pesticides were sprayed, first-ever 

minimum age of 16 (except for family farms), new no-entry 25-100 foot buffer zones, first-ever 

accessibility to spraying and hazard information for farmworker advocates and medical 

personnel, and mandatory record-keeping to improve states’ ability to follow up on compliance 

and enforce compliance (EPA Connect, 2014).  This is important because in the United States 

more than 2 billion kilograms of pesticides are sprayed annually, about 77% from agricultural 

use (Rice et al., 2007).  Understanding environmental fate and transport of pesticides is a global 

health issue.  Ever-changing social, economic, and environmental pressures have the power to 

directly impact demand for pest management, (Rice et al., 2007) so the sustainability of pest 

management is an interdisciplinary issue and cannot be addressed by environmental engineering 

or public health studies alone. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

 

 The objectives of this study were to review the studies of pesticides’ effects on drinking 

and surface water in the developing world, existing models in the developed world, and to 

estimate concentrations of paraquat, glyphosate, picloram, and 2,4-D in drinking water and the 

river.  The related hypotheses were that the pesticides in question were above concentrations in 

the gravity-fed water system and the river that pose a risk to the people of Santa Rosa via 

drinking water and ingestion of the fish from the river (hypotheses 1 and 4, respectively) and that 

the river fish were in danger of dying off (hypothesis 3).  Also, the application of pesticides 

immediately before a rain event would result in higher concentrations than application followed 

by a delayed rain event (hypothesis 2).  Additionally, alternative chemicals and alternative 

practices may help mitigate the adverse impacts of pesticide use on the environment and human 

health (hypothesis 4). 

The EXAMS-PRZM Exposure Simulation Shell (EXPRESS) models FQPA Index 

Reservoir Screening Tool (FIRST) and Pesticide Root Zone Model-Exposure Analysis Modeling 

System (PRZM-EXAMS) shell were used for all modeling in this study.  FIRST provided acute 

and chronic drinking water concentration estimations for the simulations, where picloram had the 

highest untreated drinking water concentrations.  These Tier I models were used to assess 

hypothesis 2.  Concentrations in water were higher for immediate rain events, but only by 1 to 5 

percent.  When the concentrations from FIRST were used for the risk assessment for human 

health via drinking water, the calculated Average Daily Doses (ADDs) were magnitudes below 

the oral References Doses (RfDs). 
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Simulations from the II PRZM-EXAMS shell provided Estimated Drinking Water 

Concentration (EDWC) and benthic pore water Estimated Environmental Concentration (EEC) 

profiles.  The highest average maximum peaks and average annual concentrations were the main 

values used in the risk assessment, finding that only with the highest average maximum peak 

concentrations did the ADDs exceed the RfDs.  However, when the breakpoint concentrations 

were calculated and compared to the concentration profiles, the annual concentration profiles 

presented moderate and high risks with respect to paraquat and 2,4-D with no risk associated 

with glyphosate and picloram but when compared to the maximum peak concentration profiles 

presented high risk to human health from drinking water for all four chemicals of interest 

(hypothesis 1). 

Calculations were also carried out to assess the risk associated with consumption of fish 

from the river.  Individual exposure to each pesticide was calculated and compared to RfDs and 

2,4-D was the only chemical of interest that presented a threat to human health by this exposure 

route.  When the RfD was set to the individual exposure, however, more risk was seen when 

compared to the stream concentration profiles.  For the best case, picloram presented a low level 

of risk and 2,4-D presented a high risk but for the worst case both of these chemicals presented a 

very high risk to the consumer.  Additive exposures from drinking water and fish consumption 

ingestion routes were also calculated and compared to the oral RfDs.  For the best case, none of 

the four chemicals posed a threat to the consumer but for the worst case, exposure from all four 

chemicals greatly exceeded the oral RfDs, presenting a very high risk to the consumer. 

Ecological implications were also explored by comparing concentrations of the pesticides 

in the river to aquatic life benchmarks.  With regards to specific species, glyphosate and 2,4-D 

concentrations in the river exceeded 96-hour LD50s (lethal dose) for fathead minnows and 
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bluegills.  With regards to the US EPA’s aquatic life benchmarks, invertebrates at the chronic 

level and all plants were at risk due to paraquat concentrations with the average annual 

concentration.  When the highest average maximum peak was considered, paraquat endangered 

nearly all fish, invertebrates, and plants at acute and chronic levels and fish at the chronic level 

were threatened by nearly all of the chemicals.  This is in accordance with hypothesis 3 and 

observations made in the field by the author of this thesis.  

Limitations of this study include the major assumptions that were necessary to perform 

model simulations and missing exposure pathways in the risk assessment.  Additionally, the risk 

assessment due to the mixing of all four chemicals of interest could not be performed due to lack 

of methods and combined toxicity data points in literature of these chemicals.  Technological 

mitigation strategies are not recommended but changes to application are feasible (hypothesis 4).  

Reducing occupational exposure by simply following instructions on pesticide containers and 

wearing personal protection equipment could minimize exposure to harmful chemicals can 

reduce overall exposure.  Public health and policy implications conclude that this global public 

health issue is a multi-faceted problem that needs to be address at all levels and the solution will 

ultimately be a multi-disciplinary approach.   

Recommendations for future studies include simulating pesticide concentrations using a 

model where the user can design their own environment, as one pre-loaded index reservoir in 

Illinois cannot be assumed to be identical to a gravity-fed water system in Panamá (or most other 

developing countries).  Additionally, the ideal model would have weather data from all over the 

world, as the climate in Florida is very similar but the weather patterns are not the same as 

Panamá.  The development of a fate and transport model for gravity-fed water systems with 

integrated human health and environmental risk assessment in the developing world context 
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could be useful.  Additionally, low-cost field methods for testing for pesticides should be 

developed to monitor the pesticide concentration and compare the measured data to model 

results to validate the model.  
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APPENDIX A: FIRST MODEL INPUT FILES 

 

 

Figure A.1: FIRST Model DOS User Interface 
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APPENDIX B: FIRST MODEL OUTPUT FILE 

 

 

Figure B.1: FIRST Model Outputs 
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APPENDIX C: PRZM-EXAMS INPUT FILES 

 

 

Figure C.1: PRZM-EXAMS Graphical User Interface 
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Figure C.2: PRZM-EXAMS Project Design Window 

  



85 
 

 

Figure C.3: PRZM Chemical Parameters Inputs 
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Figure C.4: EXAMS-Efate Input: Transport and Transformation Parameters 
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Figure C.5: Pesticide Application Data Input Interface 
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APPENDIX D: PRZM-EXAMS OUTPUT FILES 

 

 

Figure D.1: EXPRESS Results Interface 
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Figure D.2: Example Upper 10
th

 Percentile Limnetic Estimated Drinking Water 

Concentration in Index Reservoir (Paraquat) 
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Figure D.3: Example Upper 10
th

 Percentile Benthic Estimated Environmental 

Concentration in Index Reservoir (Paraquat) 
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Figure D.4: Example Hydrology Summary Output (Paraquat) 
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Figure D.5: Example Water Column Dissolved Estimated Drinking Water Concentration 

Profile in Index Reservoir (Paraquat) 
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Figure D.6: Dissolved Estimated Environmental Concentration Profiles in Index Reservoir 

in Benthic Pore Water (Paraquat) 
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APPENDIX E: PERMISSION FOR REPRODUCTION OF FIGURE 4 
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